
Oracle® JavaScript Extension Toolkit
(Oracle JET)
Developing Oracle JET Apps Using MVVM
Architecture

17.1.0
G12877-01
November 2024

Oracle JavaScript Extension Toolkit (Oracle JET) Developing Oracle JET Apps Using MVVM Architecture, 17.1.0

G12877-01

Copyright © 2014, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

Related Resources xii

Conventions xiii

1 Get Started with Oracle JavaScript Extension Toolkit (JET)

The Oracle JET Model-View-ViewModel Architecture 1-1

What's Included in Oracle JET 1-3

Third Party Libraries Used by Oracle JET 1-4

Create a Development Environment for Oracle JET 1-5

Choose a Development Editor 1-5

Install Oracle JET Tooling 1-6

Install Node.js 1-6

Use the npx Node.js Package Runner 1-6

Install the Oracle JET Command-Line Interface 1-7

Yarn Package Manager 1-8

Configure Oracle JET Apps for TypeScript Development 1-8

Work with the Oracle JET Starter Templates 1-11

About the Starter Templates 1-11

About Modifying Starter Templates 1-13

Modify Starter Template Content 1-14

Work with the Oracle JET Cookbook 1-17

Optimize App Startup Using Oracle CDN and Oracle JET Libraries 1-18

2 Understand the Web App Workflow

Scaffold a Web App 2-1

About ojet create Command Options for Web Apps 2-2

About Scaffolding a Web App 2-3

About the Web App File Structure 2-4

Modify the Web App’s File Structure 2-5

iii

Add Progressive Web App Support to Web Apps 2-7

Build a Web App 2-8

About ojet build Command Options for Web Apps 2-9

Serve a Web App 2-9

About ojet serve Command Options and Express Middleware Functions 2-10

Serve a Web App to a HTTPS Server Using a Self-signed Certificate 2-12

Serve a Web App Using Path-based Routing 2-14

Customize the Web App Tooling Workflow 2-16

About the Script Hook Points for Web Apps 2-16

About the Process Flow of Script Hook Points 2-19

Change the Hooks Subfolder Location 2-20

Create a Hook Script for Web Apps 2-21

Pass Arguments to a Hook Script for Web Apps 2-23

Use Webpack in Oracle JET App Development 2-25

Configure Oracle JET's Default Webpack Configuration 2-26

3 Design Responsive Apps

Oracle JET and Responsive Design 3-1

Media Queries 3-1

Oracle JET Flex, Grid, Form, and Responsive Helper Class Naming Convention 3-3

Oracle JET Flex Layouts 3-3

About Modifying the flex Property 3-4

About Wrapping Content with Flex Layouts 3-6

About Customizing Flex Layouts 3-6

Oracle JET Grids 3-6

About the Grid System 3-7

The Grid System and Printing 3-8

Grid Convenience Classes 3-9

Responsive Form Layouts 3-11

Add Responsive Design to Your App 3-11

Use Responsive JavaScript 3-12

The Responsive JavaScript Classes 3-12

Change a Custom Element’s Attribute Based on Screen Size 3-13

Conditionally Load Content Based on Screen Size 3-14

Create Responsive Images 3-15

Use the Responsive Helper Classes 3-16

Create Responsive CSS Images 3-17

Change Default Font Size 3-17

Change Default Font Size Across the App 3-18

Change Default Font Size Based on Device Type 3-18

iv

Control the Size and Generation of the CSS 3-18

4 Use RequireJS for Modular Development

About Oracle JET and RequireJS 4-1

About Oracle JET Module Organization 4-1

About RequireJS in an Oracle JET App 4-5

Use RequireJS in an Oracle JET App 4-7

Add Third-Party Tools or Libraries to Your Oracle JET App 4-8

Troubleshoot the Addition of Third-Party Tools and Libraries 4-12

Troubleshoot RequireJS in an Oracle JET App 4-13

About JavaScript Partitions and RequireJS in an Oracle JET App 4-14

5 Create Single-Page Apps

Design Single-Page Apps Using Oracle JET 5-1

Understand Oracle JET Support for Single-Page Apps 5-1

Create a Single-Page App in Oracle JET 5-2

Use the oj-module Element 5-2

Work with oj-module’s ViewModel Lifecycle 5-3

6 Understand Oracle JET User Interface Basics

About the Oracle JET User Interface 6-1

Identify Oracle JET UI Components, Patterns, and Utilities 6-1

About Common Functionality in Oracle JET Components 6-1

About Oracle JET Reserved Namespaces and Prefixes 6-4

About Binding and Control Flow 6-4

Use oj-bind-text to Bind Text Nodes 6-5

Bind HTML Attributes 6-7

Use oj-bind-if to Process Conditionals 6-8

Use oj-bind-for-each to Process Loop Instructions 6-10

Bind Style Properties 6-12

Bind Event Listeners to JET and HTML Elements 6-13

Bind Classes 6-15

Add an Oracle JET Component to Your Page 6-18

Add Animation Effects 6-19

Manage the Visibility of Added Component 6-20

7 Work with Oracle JET User Interface Components

About Oracle JET User Interface Components 7-1

v

Work with Collections 7-2

Choose a Table, Data Grid, or List View 7-3

About DataProvider Filter Operators 7-5

Work with Controls 7-6

Work with Forms 7-6

Work with Layout and Navigation 7-6

Work with Visualizations 7-7

Choose a Data Visualization Component for Your App 7-7

Use Attribute Groups With Data Visualization Components 7-12

8 Work with Oracle JET Web Components

Design Custom Web Components 8-1

About Web Components 8-2

Web Component Files 8-6

Web Component Slotting 8-7

Web Component Template Slots 8-8

Web Component Events 8-9

Web Component Examples 8-10

Best Practices for Web Component Creation 8-10

Recommended Standard Patterns and Coding Practices 8-10

CSS and Theming Standards 8-15

Version Numbering Standards 8-16

Create Web Components 8-18

Create Standalone Web Components 8-18

Create JET Packs 8-26

Create Resource Components for JET Packs 8-31

Create Reference Components for Web Components 8-34

Theme Web Components 8-36

About Web Component Theming 8-36

Guidelines for Web Component Theming 8-37

Theme a Web Component 8-38

Consolidate CSS for JET Packs 8-42

Optimize CSS to Allow Consuming Apps to Provide Styles 8-44

Incorporate Themed Components into a Consuming App 8-46

Test Web Components 8-49

Add Web Components to Your Page 8-50

Build Web Components 8-52

Generate API Documentation for VComponent-based Web Components 8-53

Package Web Components 8-54

Create a Project to Host a Shared Oracle Component Exchange 8-55

Publish Web Components to Oracle Component Exchange 8-58

vi

Upload and Consume Web Components on a CDN 8-60

9 Use Oracle JET REST Data Provider APIs

About the Oracle JET REST Data Provider 9-1

About the Oracle JET REST Tree Data Provider 9-2

Create a CRUD App Using Oracle JET REST Data Providers 9-3

Define the Data Model for REST Data Provider 9-3

Read Records 9-4

Create Records 9-5

Update Records 9-6

Delete Records 9-7

10

Validate and Convert Input

About Oracle JET Validators and Converters 10-1

About Validators 10-1

About the Oracle JET Validators 10-2

About Oracle JET Component Validation Attributes 10-2

About Oracle JET Component Validation Methods 10-3

About Converters 10-3

About Oracle JET Component Converter Options 10-3

About Oracle JET Converters 10-6

Use Oracle JET Converters with Oracle JET Components 10-6

About Oracle JET Converters Lenient Parsing 10-9

Understand Time Zone Support in Oracle JET 10-10

Use Custom Converters in Oracle JET 10-11

Use Oracle JET Converters Without Oracle JET Components 10-13

About Oracle JET Validators 10-13

Use Oracle JET Validators with Oracle JET Components 10-14

Use Custom Validators in Oracle JET 10-19

About Asynchronous Validators 10-20

11

Work with User Assistance

Understand Oracle JET's Messaging APIs on Editable Components 11-1

About Oracle JET Editable Component Messaging Attributes 11-2

About Oracle JET Component Messaging Methods 11-2

Understand How Validation and Messaging Works in Oracle JET Editable Components 11-3

Understand How an Oracle JET Editable Component Performs Normal Validation 11-4

About the Normal Validation Process When User Changes Value of an Editable
Component 11-4

vii

About the Normal Validation Process When Validate() is Called on Editable
Component 11-5

Understand How an Oracle JET Editable Component Performs Deferred Validation 11-5

About the Deferred Validation Process When an Oracle JET Editable Component is
Created 11-5

About the Deferred Validation Process When value Property is Changed
Programmatically 11-6

Use Oracle JET Messaging 11-6

Notify an Oracle JET Editable Component of Business Validation Errors 11-6

Use the messages-custom Attribute 11-6

Use the showMessages() Method on Editable Components 11-8

Understand the oj-validation-group Component 11-8

Track the Validity of a Group of Editable Components Using oj-validation-group 11-9

Create Page and Section Level Messaging 11-11

Configure an Editable Component's oj-label Help Attribute 11-12

Configure an Editable Component's help.instruction Attribute 11-13

Control the Display of Hints, Help, and Messages 11-15

12

Develop Accessible Oracle JET Apps

About Oracle JET and Accessibility 12-1

About the Accessibility Features of Oracle JET Components 12-2

Create Accessible Oracle JET Pages 12-2

Configure WAI-ARIA Landmarks 12-3

Configure High Contrast Mode 12-4

Understand Color and Background Image Limitations in High Contrast Mode 12-5

Add High Contrast Mode to Your Oracle JET App 12-5

Add High Contrast Images or Icon Fonts 12-6

Test High Contrast Mode 12-6

Hide Screen Reader Content 12-6

Use ARIA Live Region 12-7

13

Internationalize and Localize Oracle JET Apps

About Internationalizing and Localizing Oracle JET Apps 13-1

Internationalize and Localize Oracle JET Apps 13-3

Use Oracle JET's Internationalization and Localization Support 13-3

Enable Bidirectional (BiDi) Support in Oracle JET 13-5

Set the Locale and Direction Dynamically 13-6

Work with Currency, Dates, Time, and Numbers 13-9

Work with Oracle JET Translation Bundles 13-9

About Oracle JET Translation Bundles 13-9

viii

Add Translation Bundles to Oracle JET 13-13

14

Use CSS and Themes in Oracle JET Apps

About the Redwood Theme Included with Oracle JET 14-1

CSS Files Included with the Redwood Theme 14-1

Create an App with the Redwood Theme 14-2

Adjust the Scale of the Redwood Theme 14-3

Best Practices for Using CSS and Themes 14-4

DOCTYPE Requirement 14-7

Set the Text Direction 14-8

Work with Images 14-8

Image Considerations 14-8

Icon Font Considerations 14-9

Work with Custom Themes and Component Styles 14-9

About CSS Variables and Custom Themes in Oracle JET 14-9

Add Custom Theme Support with the JET CLI 14-10

Modify the Custom Theme with the JET CLI 14-12

Modify the Custom Theme with Theme Builder 14-15

Optimize the CSS in a Custom Theme 14-17

Style Component Instances with CSS Variables 14-18

Disable JET Styling of Base HTML Tags 14-19

15

Secure Oracle JET Apps

About Securing Oracle JET Apps 15-1

Oracle JET Components and Security 15-1

Oracle JET Security and Developer Responsibilities 15-1

Oracle JET Security Features 15-1

Oracle JET Secure Response Headers 15-3

Content Security Policy Headers 15-4

Use OAuth in Your Oracle JET App 15-7

Initialize OAuth 15-8

Verify OAuth Initialization 15-8

Obtain the OAuth Header 15-8

About Cross-Origin Resource Sharing (CORS) 15-9

16

Configure Data Cache and Offline Support

About the Oracle Offline Persistence Toolkit 16-1

Install the Offline Persistence Toolkit 16-2

ix

17

Optimize Performance of Oracle JET Apps

About Performance and Oracle JET Apps 17-1

Add Performance Optimization to an Oracle JET App 17-2

About Configuring the App for Oracle CDN Optimization 17-6

Configure Bundled Loading of Libraries and Modules 17-7

Configure Individual Loading of Libraries and Modules 17-8

Understand the Path Mapping Script File and Configuration Options 17-8

Work with Libraries and Modules on Content Delivery Networks 17-9

18

Audit Oracle JET App Files

19

Test and Debug Oracle JET Apps

Test Oracle JET Apps 19-1

Testing Types 19-1

Composite Component Unit Testing 19-4

About the Oracle JET Testing Technology Stack 19-5

Configure Oracle JET Apps for Testing 19-6

Use BusyContext API in Automated Testing 19-9

Debug Oracle JET Apps 19-13

Debug Web Apps 19-13

20

Package and Deploy Oracle JET Apps

Package Web Apps 20-1

Deploy Web Apps 20-1

Remove and Restore Non-Source Files from Your JET App 20-1

A Troubleshooting

B Oracle JET App Migration for Release 17.1.0

Migrate Redwood-themed Apps from Releases 9.x.0 or Later to Release 17.1.0 B-1

Migrate to the Redwood Theme CSS B-7

Migrate Alta-themed Apps from Releases Prior to 8.3.0 to Release 17.1.0 B-9

C Oracle JET References

Oracle Libraries and Tools C-1

x

Third-Party Libraries and Tools C-1

D Properties in the oraclejetconfig.json File

E Oracle JET CLI API for CI/CD

Properties E-1

Method E-2

Examples E-2

xi

Preface

Developing Oracle JET Apps Using MVVM Architecture describes how to build responsive web
apps using Oracle JET.

Topics:

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Audience
Developing Oracle JET Apps Using MVVM Architecture is intended for intermediate to
advanced front-end developers who want to create client-side, responsive web, or progressive
web apps based on JavaScript, TypeScript, HTML, and CSS.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

• Oracle JET Web Site

• API Reference for Oracle® JavaScript Extension Toolkit (Oracle JET)

• Oracle® JavaScript Extension Toolkit (JET) Keyboard and Touch Reference

• Oracle® JavaScript Extension Toolkit (JET) Styling Reference

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://www.oracle.com/webfolder/technetwork/jet/index.html
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJACC
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiii

1
Get Started with Oracle JavaScript Extension
Toolkit (JET)

Oracle JET is a collection of Oracle and open source JavaScript libraries engineered to make it
as simple and efficient as possible to build client-side web apps based on JavaScript, HTML5,
and CSS.

To begin using Oracle JET, you do not need more than the basics of JavaScript, HTML, and
CSS. Many developers learn about these related technologies in the process of learning
Oracle JET.

Oracle JET is designed to meet the following app needs:

• Add interactivity to an existing page.

• Create a new end-to-end client-side web app using JavaScript, HTML5, CSS, and best
practices for responsive design.

View videos that provide an introduction to Oracle JET in the Oracle JET Videos collection.

The Oracle JET Model-View-ViewModel Architecture
Oracle JET supports the Model-View-ViewModel (MVVM) architectural design pattern.

In MVVM, the Model represents the app data, and the View is the presentation of the data. The
ViewModel exposes data from the Model to the view and maintains the app's state.

1-1

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/videos.html

To support the MVVM design, Oracle JET is built upon a modular framework that includes a
collection of third-party libraries and Oracle-provided files, scripts, and libraries.

To implement the View layer, Oracle JET provides a collection of UI components implemented
as HTML5 custom elements, ranging from basic buttons to advanced data visualization
components such as charts and data grids.

Knockout.js implements the ViewModel and provides two-way data binding between the view
and model layers.

Chapter 1
The Oracle JET Model-View-ViewModel Architecture

1-2

Oracle JET Features

Oracle JET features include:

• Messaging and event services for both Model and View layers

• Validation framework that provides UI element and component validation and data
converters

• Caching services at the Model layer for performance optimization of pagination and virtual
scrolling

• Filtering and sorting services provided at the Model layer

• Connection to data sources through Web services, such as Representational State
Transfer (REST) or WebSocket

• Management of URL and browser history using Oracle JET CoreRouter and oj-module
components

• Integrated authorization through OAuth 2.0 for data models retrieved from REST Services

• Resource management provided by RequireJS

• A RESTDataProvider API to represent data from JSON-based REST services

• JavaScript logging

• Popup UI handling

Oracle JET Visual Component Features

Oracle JET visual components include the following features and standards compliance:

• Compliance with Oracle National Language Support (NLS) standards (i18n) for numeric,
currency, and date/time formatting

• Built-in theming supporting the Oracle Redwood theme style specifications and
implementing the Oracle Redwood Design System

• Support for Oracle software localization standards, l10n, including:

– Lazy loading of localized resource strings at run time

– Oracle translation services formats

– Bidirectional locales (left-to-right, right-to-left)

• Web Content Accessibility Guidelines (WCAG) 2.1. In addition, components provide
support for high contrast and keyboard-only input environments.

• Gesture functionality by touch, mouse, and pointer events where appropriate

• Support for Oracle test automation tooling

• Responsive layout framework

What's Included in Oracle JET
The Oracle JET zip distribution includes Oracle JET libraries and all third party libraries that the
toolkit uses.

Specifically, Oracle JET includes the following files and libraries:

• CSS and CSS files for the Redwood theme

Chapter 1
What's Included in Oracle JET

1-3

• Minified and debug versions of the Oracle JET libraries

• Data Visualization Tools (DVT) CSS and JavaScript

• Knockout and Knockout Mapping libraries

• jQuery libraries

• RequireJS, RequireJS text plugin, and RequireJS CSS plugin

• js-signals

• es6-promise polyfill

• Hammer.js

Oracle JET components use Hammer.js internally for gesture support. Do not add to
Oracle JET components or their associated DOM nodes.

• Oracle JET dnd-polyfill HTML5 drag and drop polyfill

• proj4js library

• webcomponentsjs polyfill

Third Party Libraries Used by Oracle JET
To begin using Oracle JET, you do not need to understand more than the basics of JavaScript,
HTML, and CSS or the third party libraries and technologies that Oracle JET uses. In fact,
many developers learn about these related technologies in the process of learning Oracle JET.

Name Description More Information

CSS Cascading Style Sheets http://www.w3.org/Style/CSS

HTML5 Hypertext Markup Language 5 http://www.w3.org/TR/html5

JavaScript Programming language https://developer.mozilla.org/en-US/docs/Web/
JavaScript/About_JavaScript

TypeScript Typed superset of JavaScript that enables you
to support typechecking against the TypeScript
API of JET elements and non-element classes.

http://www.typescriptlang.org

jQuery JavaScript library designed for HTML document
traversal and manipulation, event handling,
animation, and Ajax. jQuery includes an API
that works across most browsers.

http://jquery.com

Knockout JavaScript library that provides support for two-
way data binding

http://www.knockoutjs.com

RequireJS JavaScript file and module loader used for
managing library references and lazy loading of
resources. RequireJS implements the
Asynchronous Module Definition (AMD) API.

RequireJS: http://www.requirejs.org

AMD API: http://requirejs.org/docs/whyamd.html

SASS SASS (Syntactically Awesome Style Sheets)
extends CSS3 and enables you to use
variables, nested rules, mixins, and inline
imports to customize your app’s themes. Oracle
JET uses the SCSS (Sasy CSS) syntax of
SASS.

http://www.sass-lang.com

If you will be using Oracle JET tooling, you may also want to familiarize yourself with the
following technology.

Chapter 1
Third Party Libraries Used by Oracle JET

1-4

http://www.w3.org/Style/CSS
http://www.w3.org/TR/html5
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
http://www.typescriptlang.org
http://jquery.com
http://www.knockoutjs.com
http://www.requirejs.org
http://requirejs.org/docs/whyamd.html
http://www.sass-lang.com

Name Description More Information

Node.js Open source, cross-platform runtime
environment for developing server-side web
apps, used by Oracle JET for package
management. Node.js includes the npm
command line tool.

https://nodejs.org

Create a Development Environment for Oracle JET
You can decide what development environment you want to use before you start developing
Oracle JET apps. If you will use Oracle JET tooling to develop web apps, you must install the
Oracle JET packages.

Choose a Development Editor
You can develop Oracle JET apps in virtually any integrated development environment (IDE)
that supports JavaScript (or TypeScript), HTML5, and CSS3. However, an IDE is not required
for developing Oracle JET apps, and you can use any text editor to develop your app.

You can use an IDE in conjunction with the Oracle JET command-line tooling, where you
scaffold web apps by using one of the provided starter templates. You can proceed to develop
the scaffolded app in the IDE of your choice by opening the project that was created using the
JET tooling, in that IDE. After saving changes your app files in the IDE, you use the JET tooling
to build and run the JET app.

If you are using Microsoft Visual Studio Code (VS Code) as your editor, you can add the Visual
Studio Code Extension of Oracle JET Core to support developing Oracle JET apps.
Specifically, the Oracle JET extension for VS Code improves developer productivity for creating
clientside JavaScript or TypeScript web apps by providing:

• Code completion against the JET API and JET component metadata.

• Ability to work with code snippets for the most commonly used Oracle JET components.

• Capability to diagnose app source (JavaScript, HTML, CSS, and JSON files) by running
Oracle JET audit reports.

This custom HTML data support for JET components support means that when you are editing
HTML files, VS Code will prompt you with Oracle JET tags and attributes. As you start typing
your Oracle JET HTML tag, a dropdown will show a list of matching choices:

Chapter 1
Create a Development Environment for Oracle JET

1-5

https://nodejs.org/

For more examples of Oracle JET support for VS Code, visit the Oracle JET Core Extension
download page in the Visual Studio Marketplace.

Install Oracle JET Tooling
You must install Node.js to use Oracle JET tooling to develop Oracle JET apps. You’ll also
need the Oracle JET CLI, ojet-cli. You can use the ojet-cli through the Node.js package
runner (npx), or you can install it on your development platform.

If you already have Oracle JET tooling installed on your development platform, check that you
are using the minimum versions supported by Oracle JET and upgrade as needed. For the list
of minimum supported versions, see Oracle JET Support.

Install Node.js
Install Node.js on your development machine.

From a web browser, download and install one of the installers appropriate for your OS from
the Node.js download page. Oracle JET recommends that you install the latest LTS version.
Node.js is pre-installed on macOS, but is likely an old version, so upgrade to the latest LTS
version if necessary.

After you complete installation and setup, you can enter npm commands from a command
prompt to verify that your installation succeeded. For example, enter npm config list to show
config settings for Node.js.

If your computer is connected to a network, such as your company's, that requires you to use a
proxy server, run the following commands so that your npm installation can work successfully.
This task is only required if your network requires you to use a proxy server. If, for example,
you connect to the internet from your home, you may not need to perform this task.

npm config set proxy http-proxy-server-URL:proxy-port
npm config set https-proxy https-proxy-server-URL:proxy-port

Include the complete URL in the command. For example:

npm config set proxy http://my.proxyserver.com:80
npm config set https-proxy http://my.proxyserver.com:80

Use the npx Node.js Package Runner
We recommend that you use the npx Node.js package runner to create and manage Oracle
JET apps. With the npx Node.js package runner, you won’t need to uninstall and reinstall the
NPM packages that deliver the ojet-cli if you frequently change releases of the ojet-cli.

To use npx, you must install Node.js and you must uninstall any globally installed instances of
the Oracle JET CLI from your computer. To list globally-installed packages, run the npm list
--depth=0 -g command in a terminal window. To uninstall a globally installed instance of the
Oracle JET CLI, run the npm -g un @oracle/ojet-cli command.

Once you have installed Node.js, you can use npx and the version of the Oracle JET CLI NPM
package that you want to use, plus the appropriate command. The following examples

Chapter 1
Create a Development Environment for Oracle JET

1-6

https://marketplace.visualstudio.com/items?itemName=Oracle.oracle-jet-core
https://www.oracle.com/webfolder/technetwork/jet/index.html?_ojCoreRouter=help
https://nodejs.org/en/download/

demonstrate how you create Oracle JET apps using different releases of the CLI and then
serve them on your local development computer.

// Create and serve an Oracle JET 15.0.0 app
$ npx @oracle/ojet-cli@15.0.0 create myJET15app --template=navdrawer
$ cd myJET15app
$ npx @oracle/ojet-cli@15.0.0 serve

// Create and serve an Oracle JET 17.1.0 app
$ npx @oracle/ojet-cli@17.1.0 create myJETapp --template=navdrawer
$ cd myJETapp
$ npx @oracle/ojet-cli@17.1.0 serve

You can use all the Oracle JET CLI commands (create, build, serve, strip, restore, and so
on) by following the syntax shown in the previous examples (npx package command).

The npx package runner fetches the necessary package (for example, @oracle/ojet-
cli@17.1.0) from the NPM registry and runs it. The package is installed in a temporary cache
directory, as in the following example for a Windows computer:

C:\Users\JDOE\AppData\Roaming\npm-cache_npx
No NPM packages for the releases of the Oracle JET CLI shown in the previous examples are
installed on your computer, as you will see if you run the command to list globally installed
NPM packages:

$ npm list --depth=0 -g
C:\Users\JDOE\AppData\Roaming\npm
+-- json-server@0.16.3
+-- node-gyp@9.0.0
+-- typescript@4.2.3
`-- yarn@1.22.18

Use the following command to clear the temporary cache directory:

npx clear-npx-cache
To learn more about npx, see the Node.js documentation. For more information about the
commands that the Oracle JET CLI provides, see Understand the Web App Workflow.

Install the Oracle JET Command-Line Interface
Use npm to install the Oracle JET command-line interface (ojet-cli).

• At the command prompt of your development machine, enter the following command as
Administrator on Windows or use sudo on Macintosh and Linux machines:

[sudo] npm install -g @oracle/ojet-cli

It may not be obvious that the installation succeeded. Enter ojet help to verify that the
installation succeeded. If you do not see the available Oracle JET commands, scroll
through the install command output to locate the source of the failure.

– If you receive an error related to a network failure, verify that you have set up your
proxy correctly if needed.

Chapter 1
Create a Development Environment for Oracle JET

1-7

https://www.npmjs.com/package/npx

– If you receive an error that your version of npm is outdated, type the following to update
the version: [sudo] npm install -g npm.

You can also verify the Oracle JET version with ojet --version to display the current
version of the Oracle JET command-line interface. If the current version is not displayed,
please reinstall by using the npm install command for your platform.

Yarn Package Manager
Oracle JET CLI supports usage of the Yarn package manager.

You must install Node.js as Oracle JET uses the npm package manager by default. However, if
you install Yarn, you can use it instead of the default npm package manager by specifying the
--installer=yarn parameter option when you invoke an Oracle JET command.

The --installer=yarn parameter can be used with the following Oracle JET commands:

• ojet create --installer=yarn
• ojet build --installer=yarn
• ojet serve --installer=yarn
• ojet strip --installer=yarn
Enter ojet help at a terminal prompt to get additional help with the Oracle JET CLI.

As an alternative to specifying the --installer=yarn parameter option for each command,
add "installer": "yarn" to your Oracle JET app's oraclejetconfig.json file, as follows:

{
. . .
 "generatorVersion": "17.1.0",
 "installer": "yarn"
}

The Oracle JET CLI then uses Yarn as the default package manager for the Oracle JET app.

For more information about the Yarn package manager, including how to install it, see Yarn's
website.

Configure Oracle JET Apps for TypeScript Development
If you plan to build an Oracle JET app or Oracle JET Web Component in TypeScript, your app
project requires the TypeScript type definitions that Oracle bundles with the Oracle JET NPM
package.

When you install Oracle JET from NPM, the TypeScript type definitions for version 5.4.5 get
installed with the JET bundle and are available for use when you develop apps. To begin app
development using TypeScript, Oracle JET tooling supports scaffolding your app by using a
variety of Oracle JET Starter Templates that have been optimized for TypeScript development,
with the default ES6 implementation. For details, see Scaffold a Web App.

If you have already created an app and you want to switch to developing with TypeScript, you
can use the Oracle JET tooling to add support for type definitions and compiler configuration.

Chapter 1
Create a Development Environment for Oracle JET

1-8

https://yarnpkg.com/
https://yarnpkg.com/

To add TypeScript version 5.4.5 to an existing app, use ojet add typescript from your app
root.

ojet add typescript

When you add TypeScript support to an existing app, Oracle JET tooling installs TypeScript
locally with an NPM install. The tooling also creates the tsconfig.json compiler configuration
file at your app root. You can relocate the tsconfig.json file within your project by setting the
optional paths.source.tsconfig subproperty in the oraclejetconfig.json file. See
Properties in the oraclejetconfig.json File.

When you begin development with TypeScript, you can import TypeScript definition modules
for Oracle JET custom elements, as well as non-element classes, namespaces, and interfaces.
For example, in this Oracle JET app, the oj-chart import statement supports typechecking
against the element’s TypeScript API.

And, your editor can leverage the definition files for imported modules to display type
information.

Chapter 1
Create a Development Environment for Oracle JET

1-9

Note that the naming convention for JET custom element types is changing. The type name
that you specify within your TypeScript project to import a JET component's exported interface
will follow one of these two naming conventions:

• componentName + Element (new "suffix" naming convention)

For example, oj-input-search and the oj-stream-list have the type name
InputSearchElement and StreamListElement, respectively.

or

• oj + componentName ("oj" prefix naming convention of not yet migrated components)

For example, oj-chart and oj-table continue to adhere to the old-style type naming with
"oj" prefix: ojChart and ojTable, respectively.

Until all JET component interface type names have been migrated to follow the new standard,
suffix naming convention, some JET core components will continue to follow the old "oj" prefix
naming convention (without the "Element" suffix). To find out the type name to specify in your
TypeScript project, view the Module Usage section of the API documentation for the
component.

For more information about working with TypeScript in JET, see API Reference for Oracle®
JavaScript Extension Toolkit (Oracle JET) - JET In Typescript Overview.

Chapter 1
Create a Development Environment for Oracle JET

1-10

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/TypescriptOverview.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/TypescriptOverview.html

Work with the Oracle JET Starter Templates
The Oracle JET Starter Templates provide everything you need to start working with code
immediately. Use them as the starting point for your own app or to familiarize yourself with the
JET components and basic structure of an Oracle JET app.

Each template is designed to work with the Oracle JET Cookbook examples and follows
current best practice for app design.

You can also view a video that shows how to work with the Oracle JET Starter Templates in the
Oracle JET Videos collection.

About the Starter Templates
Each template in the Starter Template collection is a single page app that is structured for
modular development. The collection of available Starter Templates supports JavaScript or
TypeScript development and will depend on the template type you add to your app.

Instead of storing all the app markup in the index.html file, the app uses the oj-module
component to bind either a view template containing the HTML markup for the section or both
the view template and JavaScript or TypeScript file that contains the viewModel for any
components defined in the section.

The following code shows a portion of the index.html file in the Web Nav Drawer Starter
Template that highlights the oj-module component definition. For the sake of brevity, most of
the code and comments are omitted. Comments describe the purpose of each section, and
you should review the full source code for accessibility and usage tips.

<!DOCTYPE html>
<html lang="en-us">
 <head>
 <title>Oracle JET Starter Template - Web Nav Drawer</title>
 ... contents omitted
 </head>
 <body class="oj-web-applayout-body">

 ... contents omitted

 <oj-module role="main" class="oj-web-applayout-max-width oj-web-applayout-content"
config="[[moduleAdapter.koObservableConfig]]">
 </oj-module>

 ... contents omitted

 <!-- This injects script tags for the main javascript files -->
 <!-- injector:scripts -->
 <!-- endinjector -->
 </body>
</html>

The main page’s content area uses the Oracle JET oj-web-applayout-* CSS classes to
manage the responsive layout. The main page’s content uses the HTML oj-module element
with its role defined as main (role="main") for accessibility.

The oj-module component’s config.view attribute tells Oracle JET that the section is only
defining a view template, and the view will be bound to the existing viewModel. When the oj-
module element’s config.view-model attribute is defined, the app will load both the viewModel

Chapter 1
Work with the Oracle JET Starter Templates

1-11

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/videos.html

and view template with the name corresponding to the value of the config.view-model
attribute.

When the oj-module element’s view and view-model attributes are missing, as in this
example, the behavior will depend on the parameter specified in the config attribute’s
definition.

• If the parameter is an Oracle JET router’s moduleConfig object as in the above example,
then oj-module will automatically load and render the content of the viewModel script and
view template corresponding to the router’s current state.

The Web Nav Drawer Starter Template uses CoreRouter to manage navigation when the
user clicks one of the app’s navigation items. The routes include dashboard, incidents.
customers, and about. If the user clicks Incidents, for example, the main content area
changes to display the content in the incidents view template.

• If the parameter is a Knockout observable containing the name of the viewModel, the app
will load both the viewModel and view template with the indicated name.

The /js/views folder contains the view templates for the app and the /js/viewModels
contains the viewModel scripts. The image below shows the Web Nav Drawer Starter Template
file structure.

Chapter 1
Work with the Oracle JET Starter Templates

1-12

For additional information about working with single page apps, oj-module, CoreRouter, and
Knockout templates, see Create Single-Page Apps.

For details about the oj-web-applayout-* CSS classes, see Web Application Patterns. For
additional information about working with responsive design, see Design Responsive Apps.

About Modifying Starter Templates
The Starter Template is the starting point for creating your apps. You can modify any Oracle
JET starter template to provide a customized starting point.

You can obtain the Starter Template from the Oracle JET app that you create when you
Scaffold a Web App. Load the starter template into your favorite IDE, or extract the zip file into
a development folder.

Chapter 1
Work with the Oracle JET Starter Templates

1-13

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=web&demo=webHeader

Tip:

If you used the command line tooling to scaffold your app, you can still use an IDE
like Visual Studio Code for editing. For example, in Visual Studio Code, choose File –
> Open Folder and select the folder containing the app you created. Edit your app as
needed, but use the tooling commands in a terminal window to build and serve your
app.

To modify the template you can remove unneeded content and add new content. Content that
you add can be your own or you can reuse content from Oracle JET Cookbook samples. When
you copy markup from a Cookbook sample, you copy the desired HTML and the supporting
JavaScript.

Included in the code you add will be the RequireJS module dependency for the code. The
app's main.js file contains the list of RequireJS modules currently included in the app. If you
are using the Cookbook sample, you can determine modules that you need to add by
comparing list of libraries in the app's main.js file to the list in the Cookbook sample. You will
add any missing modules to the define() function in the JavaScript file for your app. For
example, to add the oj-input-date-time component from the Cookbook, you would need to
add the ojs/ojdatetimepicker module to the dashboard.js viewModel file since it's not
already defined in dashboard.js.

To familiarize yourself with the RequireJS module to add for a Cookbook sample or for your
own code, see the table at About Oracle JET Module Organization.

If you add content to a section that changes its role, then be sure to change the role associated
with that section. Oracle JET uses the role definitions for accessibility, specifically WAI-ARIA
landmarks. For additional information about Oracle JET and accessibility, see Develop
Accessible Oracle JET Apps.

Modify Starter Template Content
To add content, modify the appropriate view template and ViewModel script (if it exists) for the
section that you want to update. Add any needed RequireJS modules to the ViewModel’s
define() definition, along with functions to define your ViewModel.

The example below uses the Web Nav Drawer Starter Template, but you can use the same
process on any of the Starter Templates.

Before you Begin:

• See the Date and Time Pickers demo in the Oracle JET Cookbook. This task uses code
from this sample.

To modify the Starter Template content:

1. In your app’s index.html file, locate the oj-module element for the section you want to
modify and identify the template and optional ViewModel script.

In the Web Nav Drawer Starter Template, the oj-module element is using the config
attribute. The following code sample shows the mainContent HTML oj-module definition in
index.html, where the moduleAdapter observable, a ModuleAdapterClass object, obtains
the configuration from its koObservableConfig field.

<oj-module role="main" class="oj-web-applayout-max-width oj-web-applayout-content"
 config="[[moduleAdapter.koObservableConfig]]">
</oj-module>

Chapter 1
Work with the Oracle JET Starter Templates

1-14

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=dateTime&demo=simple

The return value of the [[moduleAdapter.koObservableConfig]] observable is set to the
current state of the CoreRouter object. The CoreRouter object is defined with an initial
value of dashboard in the app's appController.js script, where the page initially loads
and no path is yet specified, as shown in the navData array below for the empty path case.
The router object is created from the array and then passed to the moduleAdapter
declaration.

let navData = [
 { path: '', redirect: 'dashboard' },
 { path: 'dashboard', detail: { label: 'Dashboard', iconClass: 'oj-ux-ico-bar-
chart' } },
 { path: 'incidents', detail: { label: 'Incidents', iconClass: 'oj-ux-ico-
fire' } },
 { path: 'customers', detail: { label: 'Customers', iconClass: 'oj-ux-ico-contact-
group' } },
 { path: 'about', detail: { label: 'About', iconClass: 'oj-ux-ico-information-
s' } }
];

// Router setup
let router = new CoreRouter(navData, {
 urlAdapter: new UrlParamAdapter()
});
router.sync();

this.moduleAdapter = new ModuleRouterAdapter(router);
this.selection = new KnockoutRouterAdapter(router);

The navigation data provider for oj-navigation-list element is created as an
ArrayDataProvider object that associates the available navData routes by using the
slice(1) function to remove the first path definition in the navdata array that specifically
handles the "empty path" case.

// Setup the navDataProvider with the routes, excluding the first redirected route.
this.navDataProvider = new ArrayDataProvider(navData.slice(1), {keyAttributes:
"path"});

To modify the starter templates, for example, the Dashboard Content Area, you will modify
both dashboard.html and dashboard.js.

2. To modify the view template, remove unneeded content, and add the new content to the
view template file.

For example, if you are working with an Oracle JET Cookbook sample, you can copy the
markup into the view template you identified in the previous step (dashboard.html).
Replace everything after the <h1>Dashboard Content Area</h1> markup in the template
with the markup from the sample.

The following code shows the modified markup if you replace the existing content with a
portion of the content from the Date and Time Pickers demo.

<div id="div1">
 <oj-label for="dateTime">Default</oj-label>
 <oj-input-date-time id="dateTime" value='{{value}}'>
 </oj-input-date-time>

 Current component value is:
 <oj-bind-text value="[[value]]"></oj-bind-text>

Chapter 1
Work with the Oracle JET Starter Templates

1-15

</div>

3. To modify the ViewModel, remove unneeded content, and add the new content as needed.
Include any additional RequireJS modules that your new content may need.

The app's main.js file contains the list of RequireJS modules currently included in the app.
Compare the list of libraries with the list you need for your app, and add any missing
modules to your define() function in the ViewModel script. For example, to use the oj-
input-date-time element shown in the demo and to use the IntlConverterUtils
namespace API, add ojs/ojdatetimepicker and add ojs/ojconverterutils-i18n
modules to the dashboard.js ViewModel script since it's not already defined in
dashboard.js.

The sample below shows a portion of the modified dashboard.js file, with the changes
highlighted in bold.

define(['knockout', 'ojs/ojconverterutils-i18n', 'ojs/ojknockout', 'ojs/
ojdatetimepicker', 'ojs/ojlabel'
], function(ko, ConverterUtilsI18n) {
 /**
 * The view model for the main content view template
 */
 function DashboardViewModel() {
 var self = this;
 self.value =
ko.observable(ConverterUtilsI18n.IntlConverterUtils.dateToLocalIso(new Date(2020, 0,
1)));
 }

 return DashboardViewModel;
});

Note:

In this example, you are not copying the entire code section. The Cookbook uses
a require() call to load and use the needed libraries in a single bootstrap file.
The Starter Template that you are pasting uses define() to create a RequireJS
module that can be used by other parts of your app.

4. If you want to add, change, or delete modules or templates in the app, modify the main.js
RequireJS bootstrap file and appController.js file as needed.

The appController.js file also contains the event handler that responds when a user
clicks one of the navigation items. Depending upon your modifications, you may need to
update this method as well.

5. Verify the changes in your favorite browser.

The following image shows the runtime view of the Web Nav Drawer Starter Template with
the new Dashboard Content Area content showing oj-input-date-time with its current
value.

Chapter 1
Work with the Oracle JET Starter Templates

1-16

Work with the Oracle JET Cookbook
The Oracle JET Cookbook is a valuable resource for you to use as you develop apps. It
includes an implementation of each JET component, along with samples that demonstrate how
to implement common usage patterns using one or more of the JET components.

Each Oracle JET Cookbook demo includes a brief introduction, the demo implementation, and,
following the implementation, tabs (Info, demo.html, and so on) that describe how to implement
the demo, show the source HTML, JavaScript/TypeScript, and, where applicable, the CSS and
JSON.

Effective use of the cookbook will make your development task easier. You can, for example,
copy code from the cookbook to your own apps, or you can modify code directly in your
browser and click Apply Changes to preview changes in your browser.

• API Doc: Navigates to the API doc for the components that are used in the demo.

• (Setting button): Displays additional controls that allow you to change the theme, the
font size, reading direction, and debug mode of the demo code in the browser. Note that
these changes affect only the portion of the browser that renders the demo
implementation.

• JS/TS: Toggle this button to view the demo implementation in JavaScript or TypeScript.

• Apply Changes: You can edit the HTML and JS/TS of the demo in the browser and click
Apply Changes to see your changes in the browser. This is useful if you want to test the
behavior or a component when you change an attribute value, for example.

Chapter 1
Work with the Oracle JET Cookbook

1-17

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html

Optimize App Startup Using Oracle CDN and Oracle JET
Libraries

You can configure the Oracle JET app to minimize the network load at app startup through the
use of Oracle Content Delivery Network (CDN) and the Oracle JET distributions that the CDN
supports.

When your production app supports users who access the app from diverse geographical
locations, you can perform a significant performance optimization by configuring the Oracle
JET app to access Oracle CDN as its source for loading the required Oracle JET libraries and
modules. Oracle maintains its CDN with the libraries and modules that are specific to a given
Oracle JET release. The CDN support for each release is analogous to the way Oracle JET
tooling also supports copying these files into the local src folder of the app for a particular
release. In both cases, access to the appropriate libraries and modules is automated for the
app developer. You configure the app to determine where you want the app to load the libraries
and modules from.

After you create your app, the app is configured by default to load the needed libraries and
modules from the local src folder. This allows you to create the app without the requirement for
network access. Then, when you are ready to test in a staging environment or to move to
production, you can configure the Oracle JET app to use CDN server replication to reduce the
network load that occurs when users access the app at the start of a browser session. When
the user initially starts the app in their browser, Oracle CDN ensures a distributed server
closest to the geographic location of the user is used to deliver the app's needed third party
libraries and Oracle JET modules to the user's browser.

Configuring the app to load from CDN offers these advantages over loading from the app src
folder:

• Once loaded from a CDN distribution server, the required libraries and modules will be
available to other apps that the user may run in the same browser session.

Chapter 1
Optimize App Startup Using Oracle CDN and Oracle JET Libraries

1-18

• Enables the option to load bundled libraries and modules using a bundles configuration file
that Oracle maintains on CDN. The bundles configuration file groups the most commonly
accessed libraries and modules into content packages that are specific to the release and
makes them available for delivery to the app as a bundle.

Tip:

Configuring your app to reference the bundles configuration on Oracle CDN is
recommended because Oracle maintains the configuration for each release. By
pointing your app to the current bundles configuration, you will ensure that your app
runs with the latest supported library and module versions. For information about how
to enable this bundle loading optimization, see About Configuring the App for Oracle
CDN Optimization.

Chapter 1
Optimize App Startup Using Oracle CDN and Oracle JET Libraries

1-19

2
Understand the Web App Workflow

Developing client-side web apps with Oracle JET is designed to be simple and efficient using
the development environment of your choice and starter templates to ease the development
process.

Oracle JET supports creating web apps from a command-line interface:

• Before you can create your first Oracle JET web app using the CLI, you must install the
prerequisite packages if you haven’t already done so. For details, see Install Oracle JET
Tooling.

• Then, use the Oracle JET command-line interface package (ojet-cli) to scaffold a web
app containing either a blank template or a complete pre-configured app that you can
modify as needed.

• After you have scaffolded the app, use the ojet-cli to build the app, serve it in a local
web browser, and create a package ready for deployment.

You must not use more than one version of Oracle JET to add components to the same HTML
document of your web app. Oracle JET does not support running multiple versions of Oracle
JET components in the same web page.

Scaffold a Web App
Use the Oracle JET command-line interface (CLI) to scaffold an app that contains a blank
template or one pre-configured Starter Template with a basic layout, navigation bar, or
navigation drawer. Each Starter Template is optimized for responsive web apps. Additionally,
Starter Templates support TypeScript development should you wish to create your app in
TypeScript. After scaffolding, you can modify the app as needed.

Before you can create your first Oracle JET web app using the CLI, you must also install the
prerequisite packages if you haven’t already done so. For details, see Install Oracle JET
Tooling.

To scaffold an Oracle JET web app:

1. At a command prompt, enter ojet create with optional arguments to create the Oracle
JET app and scaffolding.

ojet create [directory]
 [--template={template-name:[web]|template-url|template-file}]
 [--typescript]
 [--use-global-tooling]
 [--help]

Tip:

You can enter ojet help at a terminal prompt to get additional help with the
Oracle JET CLI.

2-1

For example, the following command creates a web app in the my-web-app directory using
the web version of the navbar template:

ojet create my-web-app --template=navbar

To scaffold the web app using the same Starter Template but with support for TypeScript
version 5.4.5 development, add the --typescript argument to the command:

ojet create my-web-app --template=navbar --typescript

To scaffold the web app that will use the globally-installed @oracle/oraclejet-tooling
rather than install it locally in the app directory, enter the following command:

ojet create my-web-app --use-global-tooling

2. Wait for confirmation.

The scaffolding will take some time to complete. When successful, the console displays:

Oracle JET: Your app is ready! Change to your new app directory my-web-app
and try ojet build and serve...

3. In your development environment, update the code for your app.

Tip:

If you selected the blank template during scaffolding, you can still follow the
same process to add cookbook samples or other content to your app. However, it
will be up to you to create the appropriate view templates or viewModel scripts.

About ojet create Command Options for Web Apps
Use ojet create with optional arguments to create the Oracle JET web app and scaffolding.

The following table describes the available ojet create command options and provides
examples for their use.

Option Description

directory App location. If not specified, the app is created in the current directory. The directory will be
created during scaffolding if it doesn’t already exist.

Chapter 2
Scaffold a Web App

2-2

Option Description

template Template to use for the app. Specify one of the following:

• template-name
Predefined template. You can enter blank, basic, navbar or navdrawer . Defaults to
blank if not specified.

• template-URL
URL to zip file containing the name of a zipped app: http://path-to-app/app-
name.zip.

• template-file
Path to zip file on your local file system containing the name of a zipped app: "path-
to-app/app-name.zip". For example:

--template="C:\Users\SomeUser\app.zip"
--template="/home/users/SomeUser/app.zip"
--template="~/projects/app.zip"

If the src folder is present in the zip file, then all content will be placed under the src
directory of the app, except for the script folder which remains in the root. If no src
folder is present, the contents of the zip file will be placed at the root of the new app.

use-global-tooling If not specified, the Oracle JET CLI installs the Oracle JET tooling in appRootDir/
node_modules/@oracle and the following dev dependency appears in the app's
package.json file.

"devDependencies": {
 "@oracle/oraclejet-tooling": "https://.../ojet-dev-local/oracle-
oraclejet-tooling-17.1.0.tgz"
 },

If you work with JET apps that use different versions of JET (11.0.0, 10.1.0, and so on), we
recommend that you install the JET tooling locally in app.

If you scaffold an app using ojet create my-web-app --use-global-tooling, the
scaffolded app uses the globally-installed tooling. On a Windows computer, the globally-
installed tooling is in a directory similar to
C:\Users\...\AppData\Roaming\npm\node_modules\@oracle\ojet-
cli\node_modules\@oracle\oraclejet-tooling.

webpack Specify --webpack if you want to scaffold an app that uses Webpack. See Use Webpack in
Oracle JET App Development.

installer Specify --installer=yarn if you want to scaffold an app using the Yarn package manager
rather than the default Node package manager (npm). See Yarn Package Manager.

help Displays a man page for the ojet create command, including usage and options: ojet
create --help.

About Scaffolding a Web App
Scaffolding is the process you use in the Oracle JET command-line interface (CLI) to create an
app that contains a blank template or one pre-configured with a basic layout, navigation bar, or
navigation drawer. Each pre-configured template is optimized for responsive web apps. After
scaffolding, you can modify the app as needed.

The following image shows the differences between the pre-configured Starter Templates. The
blank template contains an index.html file but no UI features. The basic:web template is

Chapter 2
Scaffold a Web App

2-3

similar to the blank template but adds responsive styling that will adjust the display when the
screen size changes. The navbar:web and navdrawer:web templates contain sample content
and follow best practices for layout, navigation, and styling that you can also modify as
needed.

After scaffolding, you can perform the following tasks to customize your app:

• Modify Starter Template Content

• Modify the Web App’s File Structure

About the Web App File Structure
The Oracle JET scaffolding process creates files and folders that you modify as needed for
your app.

The new app will have a directory structure similar to the one shown in the following image.

Chapter 2
Scaffold a Web App

2-4

The app folders contain the app and configuration files that you will modify as needed for your
own app.

Directory or File Description

node_modules Contains the Node.js modules used by the tooling.

scripts Contains template hook scripts that you can modify to define
new build and serve steps for your app. See Customize the
Web App Tooling Workflow

src Site root for your app. Contains the app files that you can
modify as needed for your own app and should be committed
to source control.

The content will vary, depending upon your choice of
template. Each template, even the blank one, will contain an
index.html file and a main.js RequireJS bootstrap file.

Other templates may contain view templates and viewModel
scripts pre-populated with content. For example, if you
specified the navbar template during creation, the js/views
and js/viewModels folders will contain the templates and
scripts for a web app that uses a nav bar for navigation.

.gitignore Defines rules for app folders to ignore when using a GIT
repository to check in app source. Users who do not use a
GIT repository can use ojet strip to avoid checking in
content that Oracle JET always regenerates. Note this file
must not be deleted since the ojet strip command
depends on it.

oraclejetconfig.json Contains the default source and staging file paths that you
can modify if you need to change your app's file structure.

package.json Defines npm dependencies and project metadata.

After scaffolding, you can perform the following tasks to customize your app:

• Modify Starter Template Content

• Modify the Web App’s File Structure

Modify the Web App’s File Structure
You can modify your scaffolded app’s file structure if the default structure doesn’t meet your
needs.

The oraclejetconfig.json file in your app’s top level directory contains the default source
and staging file paths that you can modify.

{
 "paths": {
 "source": {
 "common": "src",
 "web": "src-web",
 "hybrid": "src-hybrid",
 "javascript": "js",
 "typescript": "ts",
 "styles": "css",
 "themes": "themes"
 },
 "staging": {

Chapter 2
Scaffold a Web App

2-5

 "web": "web",
 "hybrid": "hybrid",
 "themes": "themes"
 }
 },
 "defaultBrowser": "chrome",
 "sassVer": "8.0.0",
 "defaultTheme": "redwood",
 "architecture": "mvvm",
 "generatorVersion": "17.1.0"
}

Other entries in the oraclejetconfig.json file, such as the value of the architecture
property are used by Oracle JET tooling to process the app source appropriately for the app
architecture. You should not modify this property's value.

To change the web app’s file structure:

1. In your app’s top level directory, open oraclejetconfig.json for editing.

2. In oraclejetconfig.json, change the paths as needed and save the file.

For example, if you want to change the default styles path from css to app-css, edit the
following line in oraclejetconfig.json:

"styles": "app-css"

3. Rename the directories as needed for your app, making sure to change only the paths
listed in oraclejetconfig.json.

For example, if you changed styles to app-css in oraclejetconfig.json, change the
app’s css directory to app-css.

4. Update your app files as needed to reference the changed path.

For example, if you modified the path to the CSS for your app to app-css, update the links
appropriately in your app’s index.html.

<link rel="icon" href="app-css/images/favicon.ico" type="image/x-icon" />

 <!-- This is the main css file for the default theme -->
 <!-- injector:theme -->
 <link rel="stylesheet" href="app-css/libs/oj/v17.1.0/redwood/oj-
redwood-min.css" type="text/css"/>
 <!-- endinjector -->

5. At the command prompt, from the app root directory, build your app to use the new paths.

ojet build

Chapter 2
Scaffold a Web App

2-6

Add Progressive Web App Support to Web Apps
Add Progressive Web App (PWA) support to your JET web app if you want to give users a
native-like mobile app experience on the device where they access your JET web app.

Using the ojet add pwa command, you add both a service worker script and a web manifest to
your JET web app. You can customize these artifacts to determine how your JET web app
behaves when accessed as a PWA.

Using the ojet add pwa command, you add both a service worker script, an assets folder with
a series of image files for app launcher icons and splash screens, plus a web manifest file to
your JET web app. You can customize these artifacts to determine how your JET web app
behaves when accessed as a PWA.

To add PWA support to your web app:

• At a terminal prompt, in your app's top level directory, enter the following command to add
PWA support to your JET web app:

ojet add pwa
When you run the command, Oracle JET tooling makes the following changes to your JET web
app:

• Adds the following two files to the app’s src folder:

– assets folder

The assets folder contains an additional two sub-folders, icons and splashscreens,
that contain image files of various dimensions to use as app launcher icons and splash
screens on the devices where you install the JET web app.

– manifest.json
This file tells the browser about the PWA support in your JET web app, and how it
should behave when installed on a user's desktop or mobile device. Use this file to
specify the app name to appear on a user’s device, plus device-specific icons. For
information about the properties that you can specify in this file, see Add a web app
manifest.

– swinit.js
This is the initialization file for the service worker script (sw.js).

– sw.js
This is the service worker script that the browser runs in the background. Use this file
to specify any additional resources from your JET app that you want to cache on a
user’s device if the PWA service worker is installed. By default, JET specifies the
following resources to cache:

const resourcesToCache = [
 'index.html',
 'manifest.json',
 'js/',
 'css/',
 'assets/',
];

Chapter 2
Scaffold a Web App

2-7

https://web.dev/add-manifest/
https://web.dev/add-manifest/

• Registers the splash screen files, the manifest file, and the service worker script in the JET
web app's ./src/index.html file:

<html lang="en-us">
 <head>
 . . .
 <meta name="apple-mobile-web-app-title" content="Oracle JET" />
 <meta name="theme-color" content="#000000">
 <!-- Splash screens -->
 <link rel="apple-touch-startup-image" href="assets/splashscreens/
splash-640x1136.jpg" . . .">
 . . .
 <link rel="manifest" href="manifest.json">
</head>
 . . .
<script src="swinit.js"></script>
</body>

With these changes, a user on a mobile device, such as an Android phone, can initially access
your JET web app through its URL using the Chrome browser, add it to the Home screen of the
device, and subsequently launch it like any other app on the phone. Note that browser and
platform support for PWA is not uniform. To ensure an optimal experience, test your PWA-
enabled JET web app on your users' target platforms (Android, iOS, and so on) and the
browsers (Chrome, Safari, and so on).

PWA-enabled JET web apps and service workers require HTTPS. The production environment
where you deploy your PWA-enabled JET web app will serve the app over HTTPS. If, during
development, you want to serve your JET web app to a HTTPS-enabled server, see Serve a
Web App to a HTTPS Server Using a Self-signed Certificate.

Build a Web App
Use the Oracle JET command-line interface (CLI) to build a development version of your web
app before serving it to a browser. This step is optional.

Change to the app’s root directory and use the ojet build command to build your app.

ojet build [--cssvars=enabled|disabled
 --theme=themename
 --themes=theme1,theme2,...
 --sass]

Tip:

You can enter ojet help at a terminal prompt to get help for specific Oracle JET CLI
options.

The command will take some time to complete. If it’s successful, you’ll see the following
message:

Done.

Chapter 2
Build a Web App

2-8

The command will also create a web folder in your app’s root to contain the built content.

Note:

You can also use the ojet build command with the --release option to build a
release-ready version of your app. For information, see Package Web Apps.

About ojet build Command Options for Web Apps
Use the ojet build command with optional arguments to build a development version of your
web app before serving it to a browser.

The following table describes the available options and provides examples for their use.

Option Description

--theme Theme to use for the app. The theme defaults to redwood.

You can also enter a different themename for a custom theme
as described in About CSS Variables and Custom Themes in
Oracle JET.

--themes Themes to include in the app, separated by commas.

If you don’t specify the --theme flag as described above,
Oracle JET will use the first element that you specify in --
themes as the default theme.

--cssvars Injects a Redwood theme CSS file that supports working with
CSS custom properties when you want to override CSS
variables to customize the Redwood theme, as described in
About CSS Variables and Custom Themes in Oracle JET.

--sass Manages Sass compilation. If you add Sass and specify the
--theme or --themes option, Sass compilation occurs by
default and you can use --sass=false or --no-sass to
turn it off.

If you add Sass and do not specify a theme option, Sass
compilation will not occur by default, and you must specify --
sass=true or --sass to turn it on.

Serve a Web App
Use ojet serve to run your web app in a local web server for testing and debugging. By
default, the Oracle JET live reload option is enabled which lets you make changes to your app
code that are immediately reflected in the browser.

To run your web app from a terminal prompt:

1. At a terminal prompt, change to the app’s root directory and use the ojet serve command
with optional arguments to launch the app.

ojet serve [--server-port=server-port-number --livereload-port=live-reload-
port-number
 --livereload
 --watch-files
 --sass

Chapter 2
Serve a Web App

2-9

 --build
 --cssvars=enabled|disabled
 --theme=themename --themes=theme1,theme2,...
 --server-only
 --server-url=server-url
]

For example, the following command launches your app in the default web browser with
live reload enabled.

ojet serve

2. Make any desired code change in the src folder, and the browser will update automatically
to reflect the change unless you set the --no-livereload flag.

While the app is running, the terminal window remains open, and the watch task waits for
any changes to the app. For example, if you change the content in src/js/views/
dashboard.html , the watch task will reflect the change in the terminal as shown below on
a Windows desktop.

. . .
Listening on port 35729.
Starting watcher.
Watching files.
Watching Interval: 1000.
Watcher: sass is ready.
Watcher: sourceFiles is ready.
Watcher: themes is ready.
Changed: C:\jetMVVMapp\src\ts\views\dashboard.html
Running before_watch hook.
Running after_watch hook.
Page reloaded resume watching.

3. To terminate the process, close the app and press Ctrl+C at the terminal prompt. You may
need to enter Ctrl+C a few times before the process terminates.

The ojet serve command supports a variety of optional arguments that you can use to run the
app for specific platforms and with custom themes. Also, when you finish development of your
JET app, you use the ojet serve command with the --release option to serve a release-
ready version of your app. See Package Web Apps.

To get additional help for the supported ojet serve options, enter ojet serve --help at a
terminal prompt.

About ojet serve Command Options and Express Middleware Functions
Use ojet serve to run your web app in a local web server for testing and debugging.

The following table describes the available ojet serve options and provides examples for their
use.

Oracle JET tooling uses Express, a Node.js web app framework, to set up and host the web
app when you run ojet serve. If the ready-to-use ojet serve options do not meet your
requirements, you can add Express configuration options or write Express middleware
functions in Oracle JET’s before_serve.js hook point. For an example that demonstrates how

Chapter 2
Serve a Web App

2-10

https://expressjs.com/

to add Express configuration options, see Serve a Web App to a HTTPS Server Using a Self-
signed Certificate.

The before_serve hook point provides options to determine whether to replace the existing
middleware or instead prepend and append a middleware function to the existing middleware.
Typically, you’ll prepend a middleware function (preMiddleware) that you write if you want live
reload to continue to work after you serve your web app. Live reload is the first middleware that
Oracle JET tooling uses. You must use the next function as an argument to any middleware
function that you write if you want subsequent middleware functions, such as live reload, to be
invoked by the Express instance. In summary, use one of the following arguments to determine
when your Express middleware function executes:

• preMiddleware: Execute before the default Oracle JET tooling middleware. The default
Oracle JET tooling middleware consists of connect-livereload, serve-static, and
serve-index, and executes in that order.

• postMiddleware: Execute after the default Oracle JET tooling middleware.

• middleware: Replaces the default Oracle JET tooling middleware. Use if you need strict
control of the order in which middleware runs. Note that you will need to redefine all the
default middleware that was previously added by Oracle JET tooling.

Option Description

server-port Server port number. If not specified, defaults to 8000.

livereload-port Live reload port number. If not specified, defaults to 35729.

watch-files Enable the watch files feature. Watch files is enabled by default (--watch-files=true).

Use --watch-files=false or --no-watch-files to disable the watch files feature.

Disabling watch files also disables the live reload feature.

Configure the interval at which the watch files feature polls the Oracle JET project for updates by
configuring a value for the watchInterval property in the oraclejetconfig.json file. The
default value is 1000 milliseconds.

livereload Enable the live reload feature. Live reload is enabled by default (--livereload=true).

Use --livereload=false or --no-livereload to disable the live reload feature.

Disabling live reload can be helpful if you’re working in an IDE and want to use that IDE’s
mechanism for loading updated apps.

The interval at which the live reload feature polls the Oracle JET project depends on the watch-
files option.

build Build the app before you serve it. By default, an app is built before you serve it (--build=true).

Use --build=false or --no-build to suppress the build if you’ve already built the app and just
want to serve it.

theme Theme to use for the app. The theme defaults to redwood.

themes Themes to use for the app, separated by commas.

If you don’t specify the --theme flag as described above, Oracle JET will use the first element that
you specify in --themes as the default theme. Otherwise Oracle JET will serve the app with the
theme specified in --theme.

server-only Serves the app, as if to a browser, but does not launch a browser. Use this option in cloud-based
development environments so that you can attach your browser to the app served by the
development machine.

server-url Specify the server URL to serve the Oracle JET app from. For example, ojet serve --server-
url=https://www.example.com/jet. If not specified, defaults to localhost.

Chapter 2
Serve a Web App

2-11

Serve a Web App to a HTTPS Server Using a Self-signed Certificate
You can customize the JET CLI tooling to serve your web app to a HTTPS server instead of
the default HTTP server that the Oracle JET ojet serve command uses.

Do this if, for example, you want to approximate your development environment more closely
to a production environment where your web app will eventually be deployed. Requests to your
web app when it is deployed to a production environment will be served from an SSL-enabled
HTTP server (HTTPS).

To implement this behavior, you’ll need to install a certificate in your web app directory. You’ll
also need to configure the before_serve.js hook to do the following:

• Create an instance of Express to host the served web app.

• Set up HTTPS on the Express instance that you’ve created. You specify the HTTPS
protocol, identify the location of the self-signed certificate that you placed in the app
directory, and specify a password.

• Pass the modified Express instance and the SSL-enabled server to the JET tooling so that
ojet serve uses your middleware configuration rather than the ready-to-use middleware
configuration provided by the Oracle JET tooling.

• To ensure that live reloads works when your web app is served to the HTTPS server, you’ll
also create an instance of the live reload server and configure it to use SSL.

If you can’t use a certificate issued by a certificate authority, you can create your own certificate
(a self-signed certificate). Tools such as OpenSSL, Keychain Access on Mac, and the Java
Development Kit’s keytool utility can be used to perform this task for you. For example, using
the Git Bash shell that comes with Git for Windows, you can run the following command to
create a self-signed certificate with the OpenSSL tool:

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes
Once you've obtained the self-signed certificate that you want to use, install it in your app's
directory. For example, place the two files generated by the previous command in your app’s
root directory:

...

.gitignore
cert.pem
key.pem
node_modules
...

Once you have installed the self-signed certificates in your app, you configure the script for the
before_serve hook point. To do this, open the AppRootDir/scripts/hooks/before_serve.js
with your editor and configure it as described by the comments in the following example
configuration.

'use strict';

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running before_serve hook.");

Chapter 2
Serve a Web App

2-12

 // Create an instance of Express, the Node.js web app framework that
Oracle
 // JET tooling uses to host the web apps that you serve using ojet serve
 const express = require("express");

 // Set up HTTPS
 const fs = require("fs");
 const https = require("https");

 // Specify the self-signed certificates. In our example, these files
exist
 // in the root directory of our project.
 const key = fs.readFileSync("./key.pem");
 const cert = fs.readFileSync("./cert.pem");
 // If the self-signed certificate that you created or use requires a
 // password, specify it here:
 const passphrase = "1234";

 const app = express();

 // Pass the modified Express instance and the SSL-enabled server to the
Oracle JET tooling
 configObj['express'] = app;
 configObj['urlPrefix'] = 'https';
 configObj['server'] = https.createServer({
 key: key,
 cert: cert,
 passphrase: passphrase
 }, app);

 // Enable the Oracle JET live reload option using its default port number
so that
 // any changes you make to app code are immediately reflected in the
browser after you
 // serve it
 const tinylr = require("tiny-lr");
 const lrPort = "35729";

 // Configure the live reload server to also use SSL
 configObj["liveReloadServer"] = tinylr({ lrPort, key, cert, passphrase });

 resolve(configObj);
 });
};

Once you have completed these configuration steps, run the series of commands (ojet build
and ojet serve, for example) that you typically run to build and serve your web app. As the
certificate that you are using is a self-signed certificate rather than a certificate issued by a
certificate authority, the browser that you use to access the web app displays a warning the
first time that you access the web app. Acknowledge the warning and click the options that
allow you to access your web app. On Google Chrome, for example, you click Advanced and
Proceed to localhost (unsafe) if your web app is being served to https://localhost:8000/.

Once your web app opens in the browser, you'll see that the HTTPS protocol is used and an
indicator that the connection is not secure, because you are not using a certificate from a
certificate authority. You can also view the certificate information to confirm that it is the self-

Chapter 2
Serve a Web App

2-13

signed certificate that you created. In Google Chrome, click Not secure and Certificate to
view the certificate information.

The before_serve hook point is one of a series of script hook points that you can use to
customize the tooling workflow for Oracle JET apps. See Customize the Web App Tooling
Workflow.

Serve a Web App Using Path-based Routing
Oracle JET apps use parameter-based routing by default. With a couple of changes, you can
use path-based routing instead.

With parameter-based routing, the URLs that appear in a user’s browser may not be
descriptive or easy to remember. For example, a JET app that uses the navbar template
displays the following URLs in the browser when served locally:

• http://localhost:8000/?ojr=dashboard
• http://localhost:8000/?ojr=incidents

Chapter 2
Serve a Web App

2-14

By way of contrast, the same app configured to use path-based routing uses the following
URLs when the app displays the Dashboard or Incidents page:

• http://localhost:8000/dashboard
• http://localhost:8000/incidents
To implement this behavior, you need to configure the JET app so that when it receives a
request from the client for a page, it rewrites the URL before it serves the request. Specifically,
you’ll need to do the following:

• Update the appController.js file so that your app uses path-based routing by creating an
instance of the UrlPathAdapter class that takes the base URL from which the app is
served as a parameter.

• Configure the before_serve.js hook to do the following:

– Write an Express function to inspect the path of the requested URL. If the request is for
any of the typical file extensions (.js, .ts, and so on), the Express instance handles
these requests while other requests are passed to the app's index.html file for JET's
CoreRouter to manage.

– Invoke the Express middleware function that you write using the before_serve.js
hook point’s configObj['preMiddleware'] option so that the new Express middleware
function is invoked before the default middleware used by Oracle JET tooling, such as
live reload.

To update the appController.js file so that your app uses path-based routing, open the
AppRootDir/src/js/appController.js with your editor and configure it as described by the
comments in the following example configuration.

// Replace the entries that the JET tooling generates for 'ojs/
ojurlparamadapter' and UrlParamAdapter
// with entries for 'ojs/ojurlpathadapter' and UrlPathAdapter
define(... 'ojs/ojurlpathadapter', 'ojs/ojarraydataprovider', 'ojs/
ojknockouttemplateutils', 'ojs/ojmodule-element', 'ojs/ojknockout'],
 function(... UrlPathAdapter, ArrayDataProvider, KnockoutTemplateUtils) {
....
let baseUrl = "/";
 let router = new CoreRouter(navData, {
 urlAdapter: new UrlPathAdapter(baseUrl)
 });
 router.sync();
....

To configure the script for the before_serve hook point, open the AppRootDir/scripts/hooks/
before_serve.js with your editor and configure it as described by the comments in the
following example configuration.

'use strict';

module.exports = function (configObj) {

 /* Write an Express middleware function to inspect the path of the
requested
 URL. If the request is for any of the extensions (js, ts, and so on),

Chapter 2
Serve a Web App

2-15

 the Express instance handles these requests while other requests are
 passed to the app’s index.html file for the JET CoreRouter to manage.
 */
 function urlRewriteMiddleware(req, res, next) {
 const matchStaticFiles = req.url.match(/\/(js|css)\/.*/);
 req.url = matchStaticFiles ? matchStaticFiles[0] : '/index.html';
 next();
 }
 return new Promise((resolve, reject) => {
 /* Call the Express middleware function that inspects the URL to rewrite
 and prepend it to JET’s default middleware so that other options
provided
 by JET’s default middleware, such as live reload continue to work.
 */
 configObj['preMiddleware'] = [urlRewriteMiddleware]
 resolve(configObj);
 });
};

Customize the Web App Tooling Workflow
Hook points that Oracle JET tooling defines let you customize the behavior of the JET build
and serve processes when you want to define new steps to execute during the tooling
workflow using script code that you write.

When you create an app, Oracle JET tooling generates script templates in the /scripts/hooks
app subfolder. To customize the Oracle JET tooling workflow, you can edit the generated
templates with the script code that you want the tooling to execute for specific hook points
during the build and serve processes. If you do not create a custom hook point script, Oracle
JET tooling ignores the script templates and follows the default workflow for the build and
serve processes.

To customize the workflow for the build or serve processes, you edit the generated script
template file named for a specific hook point. For example, to trigger a script at the start of the
tooling's build process, you would edit the before_build.js script named for the hook point
triggered before the build begins. That hook point is named before_build.

Therefore, customization of the build and serve processes that you enforce on Oracle JET
tooling workflow requires that you know the following details before you can write a
customization script.

• The Oracle JET build or serve mode that you want to customize:

– Debug — The default mode when you build or serve your app, which produces the
source code in the built app.

– Release — The mode when you build the app with the --release option, which
produces minified and bundled code in a release-ready app.

• The appropriate hook point to trigger the customization.

• The location of the default hook script template to customize.

About the Script Hook Points for Web Apps
The Oracle JET hooks system defines various script trigger points, also called hook points, that
allow you to customize the create, build, serve, package, and restore workflow across the

Chapter 2
Customize the Web App Tooling Workflow

2-16

various command-line interface processes. Customization relies on script files and the script
code that you want to trigger for a particular hook point.

The following table identifies the hook points and the workflow customizations they support in
the Oracle JET tooling create, build, serve, and restore processes. Unless noted, hook points
for the build and serve processes support both debug and release mode.

Hook Point Supported
Tooling
Process

Description

after_app_create create This hook point triggers the script with the default name
after_app_create.js immediately after the tooling concludes
the create app process.

after_app_restor
e

restore This hook point triggers the script with the default name
after_app_restore.js immediately after the tooling concludes
the restore app process.

before_build build This hook point triggers the script with the default name
before_build.js immediately before the tooling initiates the
build process.

before_release_b
uild

build (release
mode only)

This hook point triggers the script with the default name
before_release_build.js before the minification step and the
requirejs bundling step occur.

before_app_types
cript

build / serve This hook point triggers the script with the default name
before_app_typescript.js after the build process or serve
process steps occur and before the app is transpiled. Use the
hook to update, add or remove TypeScript compiler options
defined by your app's tsconfig.json compiler configuration file.
The hook system passes your reference to the modified
tsconfig object to the TypeScript compiler. A script for this hook
point can only be used with a TypeScript app.

after_app_typesc
ript

build / serve This hook point triggers the script with the default name
after_app_typescript.js after the build process or serve
process steps occur and immediately after the
before_app_typescript hook point executes. This hook
provides an entry point for apps that require further processing,
such as compiling generated .jsx output using babel. A script for
this hook point can only be used with a TypeScript app.

before_component
_typescript

build / serve This hook point triggers the script with the default name
before_component_typescript.js after the build process or
serve process steps occur and before the component is
transpiled. Use the hook to update, add or remove TypeScript
compiler options defined by your app's tsconfig.json compiler
configuration file. The hook system passes your reference to the
modified tsconfig object to the TypeScript compiler. A script for
this hook point can only be used with a TypeScript app.

after_component_
typescript

build / serve This hook point triggers the script with the default name
after_component_typescript.js after the build process or
serve process steps occur and immediately after the
before_component_typescript hook point executes. This
hook provides an entry point for apps that require further
processing, such as compiling generated .jsx output using
babel. A script for this hook point can only be used with a
TypeScript app.

Chapter 2
Customize the Web App Tooling Workflow

2-17

Hook Point Supported
Tooling
Process

Description

before_injection build / serve This hook point triggers the script with the default name
before_injection.js after the tooling concludes the before
build process and before Oracle JET injects the correct path
mappings into your application and performs the tasks to insert
the CSS theme into the app. In other words, this hook point
controls which files and which markers are patched by Oracle
JET itself.

before_optimize build / serve
(release mode
only)

This hook point triggers the script with the default name
before_optimize.js before the release mode build/serve
process minifies the content.

before_component
_optimize

build / serve This hook point triggers the script with the default name
before_component_optimize.js before the build/serve
process minifies the content. A script for this hook point can be
used to modify the build process specifically for a project that
defines a Web Component.

after_build build This hook point triggers the script with the default name
after_build.js immediately after the tooling concludes the
build process.

after_component_
create

build This hook point triggers the script with the default name
after_component_create.js immediately after the tooling
concludes the create Web Component process. A script for this
hook point can be used to modify the build process specifically for
a project that defines a Web Component.

after_component_
build

build (debug
mode only)

This hook point triggers the script with the default name
after_component_build.js immediately after the tooling
concludes the Web Component build process. A script for this
hook point can be used to modify the build process specifically for
a project that defines a Web Component.

before_serve serve This hook point triggers the script with the default name
before_serve.js before the web serve process connects to
and watches the app.

after_serve serve This hook point triggers the script with the default name
after_serve.js after all build process steps complete and the
tooling serves the app.

before_watch serve This hook point triggers the script with the default name
before_watch.js after the tooling serves the app and before
the tooling starts watching for app changes.

after_watch serve This hook point triggers the script with the default name
after_watch.js after the tooling starts the watch and after the
tooling detects a change to the app.

after_component_
package

package This hook point triggers the script with the default name
after_component_package.js immediately after the tooling
concludes the component package process.

before_component
_package

package This hook point triggers the script with the default name
before_component_package.js immediately before the tooling
initiates the component package process.

Chapter 2
Customize the Web App Tooling Workflow

2-18

About the Process Flow of Script Hook Points
The Oracle JET hooks system defines various script trigger points, also called hook points, that
allow you to customize the create, build, serve, and restore workflow across the various
command-line interface processes.

The following diagram shows the script hook point flow for the create process.

The following diagram shows the script hook point flow for the build process.

Chapter 2
Customize the Web App Tooling Workflow

2-19

The following diagram shows the script hook point flow for the serve and restore processes.

Change the Hooks Subfolder Location
When you create an app, Oracle JET tooling generates script templates in the /scripts/hooks
app subfolder. Your development effort may require you to relocate hook scripts to a common
location, for example to support team development.

By default, the hooks system locates the scripts in the hooks subfolder using a generated
JSON file (hooks.json) that specifies the script paths. When the tooling reaches the hook
point, it executes the corresponding script which it locates using the hooks.json file. If you
relocate hook script(s) to a common location, you must edit the hooks.json file to specify the
new location for the hook scripts that you relocated, as illustrated by the following example.

{
 "description": "OJET-CLI hooks configuration file",
 "hooks": {
 "after_app_create": "scripts/hooks/after_app_create.js",
 ...
 "after_serve": "http://example.com/cdn/common/scripts/hooks/
after_serve.js "
 }
}

Chapter 2
Customize the Web App Tooling Workflow

2-20

Create a Hook Script for Web Apps
You can create a hook point script to define a new command-line interface process step for
your web app. To create a hook script, you edit the hook script template associated with a
specific hook point in the tooling build and serve workflow.

The Oracle JET hooks system defines various script trigger points, also called hook points, that
allow you to customize the build and serve workflow across the various build and serve modes.
Customization relies on script files and the script code that you want to trigger for a particular
hook point. Note that the generated script templates that you modify with your script code are
named for their corresponding hook point.

To customize the workflow for the build or serve processes, you edit the generated script
template file named for a specific hook point. For example, to trigger a script at the start of the
tooling's build process, you would edit the before_build.js script named for the hook point
triggered before the build begins. That hook point is named before_build.

A basic example illustrates a simple customization using the before_optimize hook, which
allows you to control the RequireJS properties shown in bold to modify the app's bundling
configuration.

requirejs.config(
{
 baseUrl: "web/js",
 name: "main-temp",
 paths: {
 // injector:mainReleasePaths
 "knockout":"libs/knockout/knockout-3.x.x.debug",
 "jquery":"libs/jquery/jquery-3.x.x",
 "jqueryui-amd":"libs/jquery/jqueryui-amd-1.x.x",
 ...
 }
 // endinjector
 out: "web/js/main.js"
}
...

A script for this hook point might add one line to the before_optimize script template, as
shown below. When you build the app with this customization script file in the default location,
the tooling triggers the script before calling requirejs.out() and changes the out property
setting to a custom directory path. The result is that the app-generated main.js is created in
the named directory instead of the default web/js/main.js location.

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running before_optimize hook.");
 configObj.requirejs.out = 'myweb/js/main.js';
 resolve(configObj);
 });
};

You can retrieve more information about the definition of configObj that is passed into many
script hook points as a parameter by making the following modification in one of the build-

Chapter 2
Customize the Web App Tooling Workflow

2-21

related hook points and then running ojet build. For example, the before_build.js hook
point can be modified as follows:

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running before_build hook.", configObj);
 resolve(configObj);
 });
};

The console from where you run the ojet build command then displays the available options
that you can customize in configObj.

Cleaning staging path.
Running before_build hook {
 buildType: 'dev',
 opts: {
 stagingPath: 'web',
 injectPaths: {
 startTag: '// injector:mainReleasePaths',
. . .

Elsewhere, read examples that illustrate how to use the configObj to customize a hook point
to, for example, add Express configuration options or write Express middleware functions in
the before_serve.js hook point if the ready-to-use ojet serve options do not meet your
requirements. See Serve a Web App to a HTTPS Server Using a Self-signed Certificate and
Serve a Web App Using Path-based Routing.

Tip:

If you want to change app path mappings, it is recommended to always edit the
path_mappings.json file. An exception might be when you want app runtime path
mappings to be different from the mappings used by the bundling process, then you
might use a before_optimize hook script to change the requirejs.config paths
property.

The following example illustrates a more complex build customization using the after_build
hook. This hook script adds a customize task after the build finishes.

'use strict’;

const fs = require('fs');
const archiver = require('archiver');

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running after_build hook.");

 //Set up the archive
 const output = fs.createWriteStream('my-archive.war');
 const archive = archiver('zip');

Chapter 2
Customize the Web App Tooling Workflow

2-22

 //Callbacks for the archiver
 output.on('close', () => {
 console.log('Files were successfully archived.');
 resolve();
 });

 archive.on('warning', (error) => {
 console.warn(error);
 });

 archive.on('error', (error) => {
 reject(error);
 });

 //Archive the web folder and close the file
 archive.pipe(output);
 archive.directory('web', false);
 archive.finalize();
 });
};

In this example, assume the script templates reside in the default folder generated when you
created the app. The goal is to package the app into a ZIP file. Because packaging occurs
after the app build process completes, this script is triggered for the after_build hook point.
For this hook point, the modified script template after_build.js will contain the script code to
ZIP the app, and because the .js file resides in the default location, no hooks system
configuration changes are required.

Tip:

Oracle JET tooling reports when hook points are executed in the message log for the
build and serve process. You can examine the log in the console to understand the
tooling workflow and determine exactly when the tooling triggers a hook point script.

Pass Arguments to a Hook Script for Web Apps
You can pass extra values to a hook script from the command-line interface when you build or
serve the web app. The hook script that you create can use these values to perform some
workflow action, such as creating an archive file from the contents of the web folder.

You can add the --user-options flag to the command-line interface for Oracle JET to define
user input for the hook system when you build or serve the web app. The --user-options flag
can be appended to the build or serve commands and takes as arguments one or more space-
separated, string values:

ojet build --user-options="some string1" "some string2" "some stringx"

Chapter 2
Customize the Web App Tooling Workflow

2-23

For example, you might write a hook script that archives a copy of the build output after the
build finishes. The developer might pass the user-defined parameter archive-file set to the
archive file name by using the --user-options flag on the Oracle JET command line.

ojet build web --user-options="archive-file=deploy.zip"

If the flag is appended and the appropriate input is passed, the hook script code may write a
ZIP file to the /deploy directory in the root of the project. The following example illustrates this
build customization using the after_build hook. The script code parses the user input for the
value of the user defined archive-file flag with a promise to archive the app after the build
finishes by calling the NodeJS function fs.createWriteStream(). This hook script is an
example of taking user input from the command-line interface and processing it to achieve a
build workflow customization.

'use strict';
const fs = require('fs');
const archiver = require('archiver');
const path = require('path');

module.exports = function (configObj) {
 return new Promise((resolve, reject) => {
 console.log("Running after_build hook.");

 //Check to see if the user set the flag
 //In this case we're only expecting one possible user defined
 //argument so the parsing can be simple
 const options = configObj.userOptions;
 if (options){
 const userArgs = options.split('=');
 if (userArgs.length > 1 && userArgs[0] === 'archive-file'){
 const deployRoot = 'deploy';
 const outputArchive = path.join(deployRoot,userArgs[1]);

 //Ensure the output folder exists
 if (!fs.existsSync(deployRoot)) {
 fs.mkdirSync(deployRoot);
 }

 //Set up the archive
 const output = fs.createWriteStream(outputArchive);
 const archive = archiver('zip');

 //callbacks for the archiver
 output.on('close', () => {
 console.log(`Archive file ${outputArchive} successfully created.`);
 resolve();
 });

 archive.on('error', (error) => {
 console.error(`Error creating archive ${outputArchive}`);
 reject(error);
 });

 //Archive the web folder and close the file
 archive.pipe(output);

Chapter 2
Customize the Web App Tooling Workflow

2-24

 archive.directory('web', false);
 archive.finalize();
 }
 else {
 //Unexpected input - fail with information message
 reject(`Unexpected flags in user-options: ${options}`);
 }
 }
 else {
 //nothing to do
 resolve();
 }
 });
};

Use Webpack in Oracle JET App Development
You can use Webpack to manage your Oracle JET app, as well as the build and serve tasks.

If you decide to use Webpack, Oracle JET passes responsibility to Webpack to build and serve
the source files of your Oracle JET project. Before you decide to use Webpack, note that it is
not possible to use Webpack with Oracle JET apps that need to build, package or publish web
components, or to test apps using Oracle JET's Component WebElements UI automation
library (TestAdapters).

If you decide to use Webpack in your Oracle JET app, you can specify it as a command-line
argument when you scaffold the project, as demonstrated by the following example command:

ojet create <app-name> --template=basic --webpack
To build and serve the app with Webpack, simply run ojet build and ojet serve respectively.
You cannot use the ojet serve --release command. To run a release build from your local
development environment, use the ojet build --release command, and then use a static
server of your choice (for example, http-server) from the /web folder.

To add Webpack to an existing Oracle JET app, run the following command from the root
directory of your Oracle JET project:

ojet add webpack
The files and directories in an Oracle JET project that uses Webpack differ to a project an app
generated without specifying the --webpack argument. The following table describes the
differences that result from use of the --webpack argument.

Option Description

ojet.config.j
s

This file manages Oracle JET's default webpack configuration. For more detail about this file and how to
configure it, see Configure Oracle JET's Default Webpack Configuration.

tsconfig.json In constrast to the tsconfig.json generated for apps without Webpack, the esModuleInterop and
resolveJsonModule flags are set to true. The esModuleInterop flag allows apps to standardize on
default imports for all module types. Calls such as import * as <importName> from "path/to/
import" should be written as import <importName> from "path/to/import". The
resolveJsonModule flag allows apps to directly import JSON files. Paired with Webpack's automatic
support for resolving JSON file imports, you do not have to use the RequireJs text! plugin followed by
JSON.parse to consume JSON files in the Oracle JET app.

Chapter 2
Use Webpack in Oracle JET App Development

2-25

https://www.oracle.com/webfolder/technetwork/jet/wdtsdoc/index.html
https://www.oracle.com/webfolder/technetwork/jet/wdtsdoc/index.html
https://www.npmjs.com/package/http-server

As mentioned at the start of this topic, it is not possible to use Webpack in Oracle JET projects
that build, package or publish web components, or projects that need use JET theming. In
other words, this means that you cannot use the following commands from the Oracle JET CLI:

• ojet build (component|pack)
• ojet package (component|pack)
• ojet publish (component|pack)
One other thing to note is that when you serve your Oracle JET app in development mode (the
default), the Oracle JET app loads styles from memory and styles appear in the <styles> tag
in the HTML of your browser. In contrast, when you serve an Oracle JET app that you have
built in release mode (ojet build --release), styles come from the CSS file link that is
included in the HTML file. In the following image, with an Oracle JET app instance that runs in
development mode and release mode instance, you can see the different entries using the
browser’s developer tools.

Configure Oracle JET's Default Webpack Configuration
You can configure the default Webpack configuration generated by the Oracle JET CLI through
the webpack function in the ojet.config.js file.

Chapter 2
Configure Oracle JET's Default Webpack Configuration

2-26

The webpack function receives an object with the Oracle JET build context (context) and
Webpack configuration (config). Note the buildType property which indicates whether
Webpack executes in development or release mode. As for config, the default Webpack
configuration generated by Oracle JET, you can customize it to fit your needs.

To view the default options in the ojet.config.js file, add a console log statement to the
ojet.config.js file, as demonstrated by the following examples:

. . .
webpack: ({ context, config }) => {
 if (context.buildType === "release") {
 // update config with release / production options
 } else {
 // Print out the default webpack configuration options
 // as a JSON string
 console.log(JSON.stringify(config));
 // Or let your terminal console determine how to
 // present the configuration
 console.log(config);
 }
. . .

Then build your Oracle JET project using the following command to render the default
configuration in the terminal console:

ojet build

Tip:

Create a JSON-formatted file in Visual Studio Code to view the default configuration
in a more readable form to that returned by the terminal.

The default Webpack configuration for an Oracle JET app built in development mode includes
the following top-level nodes:

{
 "entry": { },
 "output": { },
 "module": {},
 "resolve": {},
 "resolveLoader": { },
 "plugins": [],
 "mode": "development",
 "devServer": { }
}

Once you have identified the configuration setting in Oracle JET's default Webpack
configuration that you want to change, you add the alternative value in the ojet.config.js file.
The following example illustrates how to change the port number when you serve your Oracle
JET app in development mode using Webpack.

module.exports = {

Chapter 2
Configure Oracle JET's Default Webpack Configuration

2-27

 webpack: ({ context, config }) => {
 if (context.buildType === 'release') {
 // update config with release / production options
 } else {

 // update config with development options. In the following example, we
specify
 // a different server port number to the default of 8000
 config.devServer.port = 3000;

 // Print out the default webpack configuration options as a JSON string
 console.log(JSON.stringify(config));
 // Or let your terminal console determine how to present the
configuration
 console.log(config);
 }
 return config;
 }
};

Chapter 2
Configure Oracle JET's Default Webpack Configuration

2-28

3
Design Responsive Apps

Oracle JET includes classes that support a flexbox–based layout, 12-column responsive grid
system, responsive form layout, and responsive JavaScript that you can use to design
responsive web apps.

Oracle JET and Responsive Design
Responsive design describes a design concept that uses fluid grids, scalable images, and
media queries to present alternative layouts based on the media type. With responsive design,
you can configure Oracle JET apps to be visually appealing on a wide range of devices,
ranging from small phones to wide-screen desktops.

Oracle JET includes classes that support a flexible box layout. In a flex layout, you can lay out
the children of a flex container in any direction, and the children will grow to fill unused space
or shrink to avoid overflowing the parent. You can also nest boxes (for example, horizontal
inside vertical or vertical inside horizontal) to build layouts in two dimensions.

Oracle JET also provides a 12-column grid system and form layout classes that include styles
for small, medium, large, and extra large screens or devices that you can use in conjunction
with the flex layout classes to achieve finer control of your app’s layout. The grid system and
form classes use media queries to set the style based on the width of the screen or device,
and you can use them to customize your page layout based on your users' needs.

In addition, media queries form the basis for responsive helper classes that show or hide
content, align text, or float content based on screen width. They are also the basis for
responsive JavaScript that loads content conditionally or sets a component's option based on
screen width.

Media Queries
CSS3 media queries use the @media at-rule, media type, and expressions that evaluate to true
or false to define the cases for which the corresponding style rules will be applied. Media
queries form the basis for Oracle JET’s responsive classes.

<style>
@media media_types (expression){
 /* media-specific rules */
}
</style>

The CSS3 specification defines several media types, but specific browsers may not implement
all media types. The media type is optional and applies to all types if not specified. The
following media query will display a sidebar only when the screen is wider than 767 pixels.

@media (max-width: 767px){
 .facet_sidebar {
 display: none;
 }
}

3-1

http://www.w3.org/TR/css-flexbox-1/

Oracle JET defines CSS3 media queries and style class custom properties to define screen
widths for the themes included with Oracle JET.

Width and Custom Property Name Redwood Theme:
Default Range in Pixels

Device Examples

small

$screenSmallRange
0-599 phones

medium

$screenMediumRange
600-1023 tablet portrait

large

$screenLargeRange
1024-1439 tablet landscape, desktop

extra large

$screenXlargeRange
1440 and up large desktop

For printing, Oracle JET uses the large screen layout for printing in landscape mode and the
medium screen layout for printing in portrait mode.

Oracle JET's size defaults and media queries are defined in the Sass variables contained in
site_root/scss/oj/17.1.0/common/_oj.common.variables.scss and are used in the grid,
form, and responsive helper style classes. The following code sample shows the responsive
screen width variables and a subset of the responsive media queries. In most cases the
defaults are sufficient, but be sure to check the file for additional comments that show how you
might modify the variables for your app if needed.

// responsive screen widths
$screenSmallRange: 0, 767px !default;
$screenMediumRange: 768px, 1023px !default;
$screenLargeRange: 1024px, 1280px !default;
$screenXlargeRange: 1281px, null !default;

// responsive media queries
$responsiveQuerySmallUp: "print, screen" !default;
$responsiveQuerySmallOnly: "screen and (max-width: #{upper-
bound($screenSmallRange)})" !default;

$responsiveQueryMediumUp: "print, screen and (min-width: #{lower-
bound($screenMediumRange)})" !default;
$responsiveQueryMediumOnly: "print and (orientation: portrait), screen and
(min-width: #{lower-bound($screenMediumRange)}) and (max-width: #{upper-
bound($screenMediumRange)})" !default;
$responsiveQueryMediumDown: "print and (orientation: portrait), screen and
(max-width: #{upper-bound($screenMediumRange)})" !default;

$responsiveQueryLargeUp: "print and (orientation: landscape), screen and
(min-width: #{lower-bound($screenLargeRange)})" !default;
$responsiveQueryLargeOnly: "print and (orientation: landscape), screen and
(min-width: #{lower-bound($screenLargeRange)}) and (max-width: #{upper-
bound($screenLargeRange)})" !default;
$responsiveQueryLargeDown: "print and (orientation: landscape), screen and
(max-width: #{upper-bound($screenLargeRange)})" !default;

$responsiveQueryXlargeUp: "screen and (min-width: #{lower-
bound($screenXlargeRange)})" !default;

Chapter 3
Media Queries

3-2

$responsiveQueryXlargeOnly: null !default;
$responsiveQueryXlargeDown: null !default;

$responsiveQueryXXlargeUp: null !default;

$responsiveQueryPrint: null !default;

Responsive media queries are based on the screen widths defined in the $screen{size}Range
variables and a range qualifier. For example:

• $responsiveQuerySmallUp applies to all screens in the $screenSmallRange or wider.

• $responsiveQuerySmallOnly applies only to screens in the $screenSmallRange.

• $responsiveQueryXlargeDown applies to all screens in the $screenXlargeRange and
narrower.

For additional information about Oracle JET’s use of Sass and theming, see Use CSS and
Themes in Oracle JET Apps.

For additional information about CSS3 media queries, see https://developer.mozilla.org/en-US/
docs/Web/Guide/CSS/Media_queries and http://www.w3.org/TR/css3-mediaqueries.

Oracle JET Flex, Grid, Form, and Responsive Helper Class
Naming Convention

The Oracle JET flex, form, grid, and responsive style classes use the same naming convention
which can help you identify the style size, function, and number of columns the class
represents.

Each class follows the same format as shown below:

oj-size-function-[1-12]columns

Size can be one of sm, md, lg, xl, and print and are based on the media queries described in
Media Queries. Oracle JET will apply the style to the size specified and any larger sizes unless
function is defined as only. For example:

• oj-lg-hide hides content on large and extra-large screens.

• oj-md-only-hide hides content on medium screens. The style has no effect on other
screen sizes.

You can find a summary of the classes available to you for responsive design in Oracle JET in
the Oracle® JavaScript Extension Toolkit (JET) Styling Reference.

Oracle JET Flex Layouts
Use the Oracle JET oj-flex and oj-flex-item classes to create flexible box layouts that are
based on the CSS flexible box layout model.

In the flex layout model, you create flex containers with children that you can lay out in any
direction or order. As the available unused space grows or shrinks, the children grow to fill the
unused space or shrink to avoid overflowing the parent.

To create a basic flex layout, add the oj-flex class to a container element (HTML div, for
example) and then add the oj-flex-item class to each of the container’s children.

Chapter 3
Oracle JET Flex, Grid, Form, and Responsive Helper Class Naming Convention

3-3

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
http://www.w3.org/TR/css3-mediaqueries
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

The following image shows an example of a default flex layout using the Oracle JET flex box
styles. The sample contains two flex containers, each with three children. As the screen size
widens, the flex container allocates unused space to each of the children. As the screen size
shrinks below the width of one of the flex items, the flex container will wrap the content in that
item as needed to no wider than the maximum display width. In this example, this has the
effect of causing the F child to wrap to the next row.

The markup for this flex layout is shown below, with the flex layout classes highlighted in bold.
The demo-flex-display class sets the color, font weight, height, and border around each flex
item in the layout.

<div id="container">
 <div class="demo-flex-display">
 <div class="oj-flex">
 <div class="oj-flex-item">A</div>
 <div class="oj-flex-item">B</div>
 <div class="oj-flex-item">C</div>
 </div>

 <div class="oj-flex">
 <div class="oj-flex-item">D</div>
 <div class="oj-flex-item">E</div>
 <div class="oj-flex-item">F - This child has more text to show the
effect of unequal content.</div>
 </div>
 </div>
</div>

You can customize the flex layout using styles detailed in Flex Layout Styling and described
below.

About Modifying the flex Property
Oracle JET provides layout classes that you use to modify the properties of your responsive
layout.

The Oracle JET layout classes are based on the CSS Flexible Box Layout Module which
defines CSS flex common values for flex item sizing. By default, Oracle JET’s flex layout

Chapter 3
Oracle JET Flex Layouts

3-4

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-styling/FlexLayout.html
http://www.w3.org/TR/css-flexbox-1/

defaults to the auto CSS flex property which allows a flex item to shrink or grow as needed for
responsive layouts. However, the CSS model sets the default flex property to initial , which
allows a flex item to shrink but will not allow it to grow.

You can achieve the same effect by adding the oj-sm-flex-items-initial class to the flex
container to set the flex property to initial for all child flex items, or add the oj-sm-flex-
initial class to an individual flex item to set its property to initial. The following image
shows the effect.

The code sample below shows the markup. In this example, padding is also added to the
content using the oj-flex-items-pad class on the parent container.

<div id="container">
 <div class="demo-flex-display oj-flex-items-pad">
 <div class="oj-flex oj-sm-flex-items-initial">
 <div class="oj-flex-item">A</div>
 <div class="oj-flex-item">B</div>
 <div class="oj-flex-item">C</div>
 </div>

 <div class="oj-flex">
 <div class="oj-flex-item">A</div>
 <div class="oj-sm-flex-initial oj-flex-item">B</div>
 <div class="oj-flex-item">C</div>
 </div>
 </div>
</div>

You can also override the default auto flex property by using the oj-size-flex-items-1 class
on the flex container. This class sets the flex property to 1, and all flex items in the flex
container with a screen size of size or higher will have the same width, regardless of the items’
content.

Chapter 3
Oracle JET Flex Layouts

3-5

To set the flex property to 1 on an individual flex item, add oj-sm-flex-1 to the flex item. The
Flex Layouts section in the Oracle JET Cookbook includes the examples used in this section
that you can use and modify to observe the flex layout’s responsive behavior.

About Wrapping Content with Flex Layouts
You can set the flex-wrap property to nowrap by adding oj-sm-flex-nowrap to the oj-flex
container.

By default, Oracle JET sets the CSS flex-wrap property to wrap, which sets the flex container
to multi-line. Child flex items will wrap content to additional lines when the screen width shrinks
to less than the width of the flex item’s content. However, the CSS model sets the flex-wrap
property to nowrap, which sets the flex container to single-line. When a child item’s content is
too wide to fit on the screen, the content will wrap within the child.

The following image shows the effect of changing the flex-wrap property to nowrap.

About Customizing Flex Layouts
You can customize an Oracle JET flex layout by adding the appropriate style to the flex
container or child. The flex layout classes support some commonly-used values.

• flex-direction
• align-items
• align-self
• justify-content
• order
The Oracle JET Cookbook includes examples for customizing your flex layout at: Flex Layouts.

Oracle JET Grids
Use the Oracle JET grid classes with flex layouts to create grids that vary the number and
width of columns based on the width of the user's screen.

The Responsive Grids section in the Oracle JET Cookbook provides several examples and
recipes for using the Oracle JET grid system, and you should review them to get accustomed
to the grid system.

Chapter 3
Oracle JET Grids

3-6

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=flex&demo=basics
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=flex&demo=basics
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=grid&demo=gridresponsive

About the Grid System
Oracle JET provides a 12-column responsive mobile-first grid system that you can use for
responsive design. The grid builds upon the Oracle JET flex layout and allows you to specify
the widths of each flex item using sizing classes for small, medium, large, and extra-large
screens.

For example, you can use the grid classes to change the default display in the Flex Layouts
Auto example to use different widths for the flex items when the screen size changes. As
shown in the image below, the flex layout by default will allocate the unused space evenly to
the three flex items regardless of the screen size.

When the defaults are not sufficient, you can specify relative widths for the flex items when the
screen size changes. In the following image, the flex layout is using grid classes to define
different widths when the screen size changes to medium, large, and extra large.

The grid classes follow the Oracle JET Flex, Grid, Form, and Responsive Helper Class Naming
Convention. Use oj-size-numberofcolumns to set the width to the specified numberofcolumns
when the screen is the specified size or larger. For example:

• oj-sm-6 works on all screen sizes and sets the width to 6 columns.

• oj-lg-3 sets the width to 3 columns on large and extra-large screens.

Chapter 3
Oracle JET Grids

3-7

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=flex&demo=basics

• oj-sm-6 and oj-lg-3 on the same flex item sets the width to 6 columns wide on small and
medium screens and 3 columns wide on large and extra-large screens.

Design for the smallest screen size first and then customize for larger screens as needed. You
can further customize the grid by adding one of the Grid Convenience Classes or by using one
of the responsive helper classes described in Use the Responsive Helper Classes.

The following code sample shows the markup for the modified Flex Auto Layout display, with
grid classes defined for medium, large, and extra-large screens.

<div class="oj-flex">
 <div class="oj-md-6 oj-lg-2 oj-xl-8 oj-flex-item">A</div>
 <div class="oj-md-3 oj-lg-4 oj-xl-2 oj-flex-item">B</div>
 <div class="oj-md-3 oj-lg-6 oj-xl-2 oj-flex-item">C</div>
</div>

When the screen size is small, the flex layout default styles are used, and each item uses the
same amount of space. When the screen size is medium, the A flex item will use 6 columns,
and the B and C flex items will each use 3 columns. When the screen size is large, The A flex
item will use 2 columns, the B flex item will use 4 columns, and the C flex item will use 6
columns. Finally, when the screen size is extra large, the A flex item will use 8 columns, and
the B and C flex items will each use 2 columns.

For a complete example that illustrates working with the grid system, see Responsive Grids.

The Grid System and Printing
The Oracle JET grid system applies the large styles for printing in landscape mode and the
medium style for printing in portrait mode if they are defined. You can use the defaults or
customize printing using the print style classes.

In the grid example below, Row 2 and Row 4 include the oj-md-* style classes. Row 3 and
Row 4 include the oj-lg-4 style for all columns in the row.

<div class="demo-grid-sizes demo-flex-display">
 <div class="oj-flex oj-flex-items-pad">
 <div class="oj-sm-9 oj-flex-item"></div>
 <div class="oj-sm-3 oj-flex-item"></div>
 </div>
 <div class="oj-flex oj-flex-items-pad">
 <div class="oj-sm-6 oj-md-9 oj-flex-item"></div>
 <div class="oj-sm-6 oj-md-3 oj-flex-item"></div>
 </div>
 <div class="oj-flex oj-flex-items-pad">
 <div class="oj-sm-6 oj-lg-4 oj-flex-item"></div>
 <div class="oj-sm-4 oj-lg-4 oj-flex-item"></div>
 <div class="oj-sm-2 oj-lg-4 oj-flex-item"></div>
 </div>
 <div class="oj-flex oj-flex-items-pad ">
 <div class="oj-sm-8 oj-md-6 oj-lg-4 oj-xl-2 oj-flex-item"></div>
 <div class="oj-sm-2 oj-md-3 oj-lg-4 oj-xl-8 oj-flex-item"></div>
 <div class="oj-sm-2 oj-md-3 oj-lg-4 oj-xl-2 oj-flex-item"></div>
 </div>
</div>

As shown in the following print preview, when you print this grid in landscape mode, the oj-
lg-4 style classes will be applied on Row 3 and Row 4. When you print the grid in portrait
mode, the oj-md-* style classes apply on Row 2 and Row 4.

Chapter 3
Oracle JET Grids

3-8

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=grid&demo=gridresponsive

If you want to change the printing default, you can set the Sass $responsiveQueryPrint
variable to print in a custom settings file. After you enable the print classes, you can add the
oj-print-numberofcolumns style class to the column definition. This has the effect of changing
the column sizes for printing purposes only. In the following example, Row 1 includes the oj-
print-6 class for each column in the row.

<div class="oj-flex oj-flex-items-pad">
 <div class="oj-sm-9 oj-print-6 oj-flex-item"></div>
 <div class="oj-sm-3 oj-print-6 oj-flex-item"></div>
</div>

In normal mode, Row 1 contains two columns, one column with a size of 9 and one column
with a size of 3, regardless of screen size. If you do a print preview, however, you'll see that
Row 1 will print with two columns in portrait and landscape mode, both with a size of 6.

Grid Convenience Classes
Oracle JET's grid system includes convenience classes that make it easier to create two- and
four- column layouts with specified widths.

• oj-size-odd-cols-numberofcolumns: Use this in a 2-column layout. Instead of putting
sizing classes on every column, you can put a single class on the flex parent. The number
of columns specifies how many of the 12 columns the odd-numbered columns can use. In
a 2-column layout, the even-numbered columns will take up the remainder of the columns.

Chapter 3
Oracle JET Grids

3-9

For example, setting oj-md-odd-cols-4 on the flex parent will have the effect of setting the
odd column (col1) width to 4 and the even column (col2) width to 8 for all rows in the grid
on medium-size screens and higher.

The code sample below shows the grid configuration used to render the figure. The
example also sets oj-sm-odd-cols-12 which will set the odd column width to 12 on small
screens, displaying col2 on a new row.

<div class="oj-md-odd-cols-4 oj-flex-items-pad">
 <div class="oj-flex">
 <div class="oj-flex-item">col 1</div>
 <div class="oj-flex-item">col 2</div>
 </div>
 <div class="oj-flex">
 <div class="oj-flex-item">col 1</div>
 <div class="oj-flex-item">col 2</div>
 </div>
 <div class="oj-flex">
 <div class="oj-flex-item">col 1</div>
 <div class="oj-flex-item">col 2</div>
 </div>
</div>

You could achieve the same effect by defining oj-md-4 for the first column's width and oj-
md-8 for the second column's width on each flex item.

<div class="oj-flex-items-pad"
 <div class="oj-flex">
 <div class="oj-sm-12 oj-md-4 oj-flex-item">col 1</div>
 <div class="oj-sm-12 oj-md-8 oj-flex-item">col 2</div>
 </div>
 <div class="oj-flex">
 <div class="oj-sm-12 oj-md-4 oj-flex-item">col 1</div>
 <div class="oj-sm-12 oj-md-8 oj-flex-item">col 2</div>
 </div>
 <div class="oj-flex">
 <div class="oj-sm-12 oj-md-4 oj-flex-item">col 1</div>
 <div class="oj-sm-12 oj-md-8 oj-flex-item">col 2</div>
 </div>
</div>

oj-size-even-cols-numberofcolumns: Use in a 4-column layout. In this layout, you must
use both the odd-cols class to control the width of odd-numbered columns and the even-
cols class to control the width of the even columns.

For example, setting oj-md-odd-cols-2 and oj-md-even-cols-4 on the flex parent has the
effect of setting the first and third column widths to 2, and the second and fourth column
widths to 4.

Chapter 3
Oracle JET Grids

3-10

The code sample below shows the grid configuration used to render the figure.

<div class="oj-sm-odd-cols-12 oj-md-odd-cols-2 oj-md-even-cols-4 oj-flex-items-pad">
 <div class="oj-flex">
 <div class="oj-flex-item">col 1</div>
 <div class="oj-flex-item">col 2</div>
 <div class="oj-flex-item">col 3</div>
 <div class="oj-flex-item">col 4</div>
 </div>
 <div class="oj-flex">
 <div class="oj-flex-item">col 1</div>
 <div class="oj-flex-item">col 2</div>
 <div class="oj-flex-item">col 3</div>
 <div class="oj-flex-item">col 4</div>
 </div>
</div>

If you don't use the convenience classes, you must define the size classes on every
column in every row as shown below.

<div class="oj-flex-items-pad">
 <div class="oj-flex">
 <div class="oj-sm-odd-cols-12 oj-md-2 oj-flex-item">col 1</div>
 <div class="oj-sm-odd-cols-12 oj-md-4 oj-flex-item">col 2</div>
 <div class="oj-sm-odd-cols-12 oj-md-2 oj-flex-item">col 3</div>
 <div class="oj-sm-odd-cols-12 oj-md-4 oj-flex-item">col 4</div>
 </div>
 <div class="oj-flex">
 <div class="oj-sm-odd-cols-12 oj-md-2 oj-flex-item">col 1</div>
 <div class="oj-sm-odd-cols-12 oj-md-4 oj-flex-item">col 2</div>
 <div class="oj-sm-odd-cols-12 oj-md-2 oj-flex-item">col 3</div>
 <div class="oj-sm-odd-cols-12 oj-md-4 oj-flex-item">col 4</div>
 </div>
</div>

Responsive Form Layouts
Oracle JET provides the oj-form-layout component that you can use to create form layouts
that adjust to the size of the user's screen. Use the oj-input-text and oj-text-area custom
elements within the oj-form-layout component to create an organized layout.

For more information on oj-form-layout component, see Form Layouts.

Add Responsive Design to Your App
To create your responsive app using Oracle JET, design for the smallest device first and then
customize as needed for larger devices. Add the applicable app, flex, grid, form, and
responsive classes to implement the design.

To design a responsive app using Oracle JET classes:

1. Design the app content’s flex layout.

For help, see Oracle JET Flex Layouts.

2. If the flex layout defaults are not sufficient and you need to specify column widths when the
screen size increases, add the appropriate responsive grid classes to your flex items.

For help, see Oracle JET Grids.

3. If you’re adding a form to your page, add the appropriate form style classes.

Chapter 3
Responsive Form Layouts

3-11

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=ojFormLayout&demo=forminputs

4. Customize your design as needed.

For additional information, see:

• Use Responsive JavaScript

• Use the Responsive Helper Classes

• Create Responsive Images

• Change Default Font Size

For the list of responsive design classes and their behavior, see the Responsive* classes listed
in the Oracle® JavaScript Extension Toolkit (JET) Styling Reference.

For Oracle JET Cookbook examples that implement responsive design, see:

• Flex Layouts

• Responsive Grids

• Form Layouts

• Responsive Behaviors

Use Responsive JavaScript
Oracle JET includes the ResponsiveUtils and ResponsiveKnockoutUtils utility classes that
leverage media queries to change a component's value option or load content and images
based on the user's screen size or device type.

The Responsive JavaScript Classes
The ResponsiveUtils and ResponsiveKnockoutUtils responsive JavaScript classes provide
methods that you can use in your app's JavaScript to obtain the current screen size and use
the results to perform actions based on that screen size. In addition, the ResponsiveUtils
provides a method that you can use to compare two screen sizes, useful for performing actions
when the screen size changes.

JavaScript Class Methods Description

responsiveUtils compare(size1, size2) Compares two screen size constants. Returns a negative integer if
the first argument is less than the second, a zero if the two are
equal, and a positive integer if the first argument is more than the
second.

The screen size constants identify the screen size range media
queries. For example, the ResponsiveUtils.SCREEN_RANGE.SM
constant corresponds to the Sass $screenSmallRange variable
and applies to screen sizes smaller than 768 pixels in width.

responsiveUtils getFrameworkQuery(framew
orkQueryKey)

Returns the media query to use for the framework query key
parameter.

The framework query key constant corresponds to a Sass
responsive query variable. For example, the
ResponsiveUtils.FRAMEWORK_QUERY_KEY.SM_UP constant
corresponds to the $responsiveQuerySmallUp responsive query
which returns a match when the screen size is small and up.

Chapter 3
Use Responsive JavaScript

3-12

https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=flex&demo=basics
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=grid&demo=gridresponsive
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=ojFormLayout&demo=forminputs
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootFramework_childResponsiveBehaviors

JavaScript Class Methods Description

responsiveKnockoutUtil
s

createMediaQueryObservab
le(queryString)

Creates a Knockout observable that returns true or false based on
a media query string. For example, the following code will return
true if the screen size is 400 pixels wide or larger.

var customQuery =
 ResponsiveKnockoutUtils.createMediaQueryObservable(
 '(min-width:
400px)');

responsiveKnockoutUtil
s

createScreenRangeObserva
ble()

Creates a computed Knockout observable, the value of which is
one of the ResponsiveUtils.SCREEN_RANGE constants.

For example, on a small screen (0 - 767 pixels), the following code
will create a Knockout observable that returns
ResponsiveUtils.SCREEN_RANGE.SM.

self.screenRange =

ResponsiveKnockoutUtils.createScreenRangeObservable();

For additional detail about responsiveUtils, see the ResponsiveUtils API documentation. For
more information about responsiveKnockoutUtils, see ResponsiveKnockoutUtils.

Change a Custom Element’s Attribute Based on Screen Size
You can set the value for a custom element’s attribute based on screen size using the
responsive JavaScript classes. For example, you may want to add text to a button label when
the screen size increases using the oj-button element's display attribute.

In this example, the oj-button element’s display attribute is defined for icons. The code
sample below shows the markup for the button.

<div id="optioncontainer">
 <oj-button display="[[large() ? 'all' : 'icons']]">

 calendar
 </oj-button>
</div>

The code sample also sets the oj-button display attribute to all, which displays both the label
and icon when the large() method returns true, and icons only when the large() method
returns false.

The code sample below shows the code that sets the value for large() and completes the
knockout binding. In this example, lgQuery is set to the LG_UP framework query key which
applies when the screen size is large or up. this.large is initially set to true as the result of
the call to ResponsiveKnockoutUtils.createMediaQueryObservable(lgQuery). When the

Chapter 3
Use Responsive JavaScript

3-13

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/ResponsiveUtils.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ResponsiveKnockoutUtils.html

screen changes to a smaller size, the self.large value changes to false, and the display
attribute value becomes icons.

require(['knockout', 'ojs/ojbootstrap', 'ojs/ojresponsiveutils', 'ojs/
ojresponsiveknockoututils', 'ojs/ojknockout', 'ojs/ojbutton'],
 function(ko, Bootstrap, ResponsiveUtils, ResponsiveKnockoutUtils)
 {
 function MyModel(){
 // observable for large screens
 var lgQuery = ResponsiveUtils.getFrameworkQuery(
 ResponsiveUtils.FRAMEWORK_QUERY_KEY.LG_UP);

 this.large = ResponsiveKnockoutUtils.createMediaQueryObservable(lgQuery);
 }

 Bootstrap.whenDocumentReady().then(
 function ()
 {
 ko.applyBindings(new MyModel(), document.getElementById('optioncontainer'));
 }
);
 });

The Oracle JET Cookbook contains the complete code for this example which includes a demo
that shows a computed observable used to change the button label's text depending on the
screen size. You can also find examples that show how to use custom media queries and
Knockout computed observables. For details, see Responsive JavaScript Framework Queries.

Conditionally Load Content Based on Screen Size
You can change the HTML content based on screen size using the responsive JavaScript
classes. For example, you might want to use a larger font or a different background color when
the screen size is large.

In this example, the HTML content is defined in Knockout templates. The markup uses
Knockout's data-bind utility to display a template whose name depends on the value returned
by the large() call. If the screen is small or medium, the app will use the sm_md_template. If
the screen is large or larger, the app will use the lg_xl_template.

<div id="sample_container">

 <!-- large template -->
 <script type="text/html" id="lg_xl_template">
 <div id="lg_xl"
 style="background-color:lavenderblush;
 padding: 10px; font-size: 22px" >
 This is the content in the lg/xl template.
 </div>

Chapter 3
Use Responsive JavaScript

3-14

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=responsiveoptions&demo=optionfwkquery

 </script>

 <!-- small template -->
 <script type="text/html" id="sm_md_template">
 <div id="sm_md"
 style="background-color:lightcyan;
 padding: 10px; font-size: 10px" >
 This is the content in the sm/md template.
 </div>
 </script>

 <!-- display template -->
 <div data-bind="template: {name: large() ? 'lg_xl_template' :
 'sm_md_template'}"></div>
</div>

The code that sets the value for large() is identical to the code used for setting component
option changes. For details, see Change a Custom Element’s Attribute Based on Screen Size.

For the complete code used in this example, see the Responsive Loading with JavaScript
demo in the Oracle JET Cookbook.

Create Responsive Images
You can use the responsive JavaScript classes to load a different image when the screen size
changes. For example, you may want to load a larger image when the screen size changes
from small and medium to large and up.

In this example, the image is defined in a HTML img element. The markup uses Oracle JET’s
attribute binding to display a larger image when the large() call returns true.

<div id="container">
 <p>current width:

 <oj-bind-text value="[[large() ? 'large' : 'not large']]"></oj-bind-text>

 </p>

 <img alt="puzzle" id="puzzle"
 :src="[[large() ? 'images/responsive/puzzle.png' : 'images/responsive/
puzzle_small.png']]"
 />
</div>

The code that set the value for large() is identical to the code used for setting component
option changes. For details, see Change a Custom Element’s Attribute Based on Screen Size.

Chapter 3
Use Responsive JavaScript

3-15

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=responsiveloading&demo=templates

Note:

The image will not begin to load until the JavaScript is loaded. This could be an issue
on devices with slower connections. If performance is an issue, you can use
responsive CSS as described in Create Responsive CSS Images. You could also use
the HTML picture element which supports responsive images without CSS or
JavaScript. However, browser support is limited and may not be an option for your
environment.

For the complete code used in this example, see the Oracle JET Cookbook Responsive
Images demos.

Use the Responsive Helper Classes
Use the Oracle JET generic responsive utility classes to hide content, end align text, and set
float in your grid.

• oj-size-hide: Hide content at the specified size.

• oj-size-text-align-end: In left-to-right languages, set text-align to right. In right-to-left
languages, set text-align to left.

• oj-size-float-end: In left-to-right languages, set float to right. In right-to-left languages,
set float to left.

Chapter 3
Use the Responsive Helper Classes

3-16

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=responsiveimages&demo=responsivesizing
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=responsiveimages&demo=responsivesizing

• oj-size-float-start: In left-to-right languages, set float to left. In right-to-left languages,
set float to right.

To see examples that implement the responsive helper classes, consult the Oracle JET
Cookbook at Responsive Helpers.

Create Responsive CSS Images
Use CSS generated from Sass media query variables and responsive queries to use a
different, larger image when the screen width changes from small to large.

The code below shows the markup that defines the image. In this example, bulletlist is a
CSS class generated from the Sass responsive variables and media queries.

<div role="img" class="oj-icon bulletlist" title="bulleted list image"></div>

The following image shows the bulletlist CSS class. When the screen is small or medium
size, the icon_small.png image loads. When the screen increases to large or larger, or to
print, the icon.png loads instead.

The Oracle JET Cookbook includes the Sass variables and queries used to generate the
bulletlist CSS class. You can also find a Sass mixin that makes generating the CSS easier,
but you are not required to use SCSS to create responsive CSS images.

In addition, the Oracle JET Cookbook includes examples that show high resolution images,
sprites, button images, and more. For details, see Responsive CSS Images.

Note:

You can also use responsive JavaScript to change the images based on screen size.
For details, see Create Responsive Images.

Change Default Font Size
By default, Oracle JET includes the Redwood theme, starting in JET release 9.0.0, that set a
default font size of 1em (16px) on the root (html) element. This font size is optimized for

Chapter 3
Create Responsive CSS Images

3-17

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=responsive&demo=visibility
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=imagecssresponsive&demo=imageSizing

visibility and touchability on mobile devices, but you can customize the size as needed for your
app.

Change Default Font Size Across the App
The browser's font size is defined in the Sass $rootFontSize variable and included in the
generated CSS html class. You can use Sass to change the variable or override the generated
CSS.

To change the browser default font size across your app, do one of the following:

• In a custom Sass settings file, modify the Sass $rootFontSize variable, and regenerate
the CSS.

• In your app-specific CSS, override the font-size setting for the html class.

For example, to set the browser's default font size to 12 pixels, add the following to your
app-specific CSS:

html {
 font-size: 12px;
}

Change Default Font Size Based on Device Type
You can change the default font size based on device type by detecting the device type used to
access the browser and then setting the appropriate style on the html element.

To change the browser default font size based the user’s device type:

1. Use whatever means you like to detect that the browser is running on the specified device.

For example, you may want to change the browser’s default font size on a desktop device.
Use your own code or a third party tool to detect the device type.

2. When your app detects that the user is accessing the browser with the specified device, on
the html element in your markup, set style="font-size: xxpx". Substitute the desired
pixel size for xx.

For example, to set the font size to 12 pixels when the app detects the specified device,
add logic to your app to add the highlighted code to your markup.

<html style="font-size: 12px">
 ... contents omitted
</html>

Perform this step before initializing components to avoid issues with some Oracle JET
components that measure themselves.

Control the Size and Generation of the CSS
You can change the size of the CSS content automatically generated by Oracle JET so that
unused classes or particular types of classes are compressed, removed, excluded, or not
generated.

Chapter 3
Control the Size and Generation of the CSS

3-18

When you use the responsive framework classes, Oracle JET generates a large number of
classes that you may not need. Here are some steps you can take to control the size and
generation of the CSS.

• Use compression.

The responsive classes are often repetitive and compress well. For details about
compressing your CSS, see Optimize Performance of Oracle JET Apps.

• Remove unused classes.

By default, Oracle JET generates responsive classes small, medium, large, and xlarge
screens. If you know that your app will not use some of these classes, you can set the
associated $responsiveQuery* variables to none.

// If you don't want xlarge classes, you could set:
$screenXlargeRange: none;
$responsiveQueryLargeOnly: none;
$responsiveQueryXlargeUp: none;

• Exclude unused classes from the app layout, flex, grid, form layout, and responsive helper
groups.

You can use the following variables to exclude classes from these groups altogether:

– $includeAppLayoutClasses
– $includeAppLayoutWebClasses
– $includeFlexClasses
– $includeGridClasses
– $includeFormLayoutClasses
– $includeResponsiveHelperClasses

• Stop generation of a particular responsive helper class.

For finer-grained control, there are additional variables that you can set to false to
generation of a particular type of class.

Variable Description

$responsiveGenerateH
ide

Generate hide classes like .oj-md-hide.

$responsiveGenerateT
extAlignEnd

Generate text-align end classes like .oj-md-text-align-end.

$responsiveGenerateF
loatStart

Generate float start classes like .oj-md-float-start.

$responsiveGenerateF
loatEnd

Generate float end classes like .oj-md-float-end.

Chapter 3
Control the Size and Generation of the CSS

3-19

4
Use RequireJS for Modular Development

Oracle JET includes RequireJS, a third party JavaScript library that you can use in your app to
load only the Oracle JET libraries you need. Using RequireJS, you can also implement lazy
loading of modules or create JavaScript partitions that contain more than one module.

About Oracle JET and RequireJS
RequireJS is a JavaScript file and module loader that simplifies managing library references
and is designed to improve the speed and quality of your code.

RequireJS implements the Asynchronous Module Definition (AMD) API which provides a
mechanism for asynchronously loading a module and its dependencies.

Oracle JET's modular organization enables app developers to load a subset of needed
features without having to execute require() calls for each referenced object. Each Oracle
JET module represents one functional area of the toolkit, and it typically defines more than one
JavaScript object.

You do not have to use RequireJS to reference Oracle JET libraries, but it is required if you
plan to use Oracle JET's internationalization or data visualization components in your app. The
Oracle JET download includes the RequireJS library, and it is used by default in the Oracle
JET Starter Templates and Cookbook examples.

For more information about RequireJS, see http://requirejs.org.

About Oracle JET Module Organization
The Oracle JET modules are listed in the following table with description and usage tips. Use
this table to determine which modules you must load in your app. Where your app can directly
interact with a module API, the available objects that the module returns also appear in the
table. Your app would typically call functions on the returned object or instantiate new objects
via the constructor function. For more information about module loading in Oracle JET apps,
see API Reference for Oracle® JavaScript Extension Toolkit (Oracle JET) - JET Module
Loading Overview.

Note:

Certain functionality that had been previously available from the now deprecated
ojcore, ojvalidation-base, ojvalidation-datetime, and ojvalidation-number
modules is provided by refactored modules that return their own object. The table
indicates which modules have been refactored. You should explicitly import needed
modules in the dependency list of your require function to use its classes.

4-1

http://requirejs.org
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/ModuleLoadingOverview.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/ModuleLoadingOverview.html

Oracle JET Module Refactored Available Objects Description When to Use

ojs/ojmodel No Collection
Events
Model
OAuth
URLError

Classes of the JET
Common Model

Other than OAuth, all
Oracle JET Common
Model classes should be
replaced by the Oracle
JET RESTDataProvider
class.

ojs/ojknockout-model No KnockoutUtils Utilities for integrating
Oracle JET's Common
Model into Knockout.js

Deprecated. Use the
Oracle JET
RESTDataProvider class.

ojs/ojcomponent No Varies by component Oracle JET component
modules. Examples
include
• ojs/ojbutton
• ojs/ojtoolbar
• ojs/ojtabs
Most Oracle JET
components have their
own module with the
same name in lowercase
and without hyphens as
shown above, except for
the following
components:
• oj-buttonset-*:

ojs/ojbutton
• oj-input-password:

ojs/ojinputtext
• oj-text-area: ojs/

ojinputtext
• oj-combobox-*: ojs/

ojselectcombobox
• oj-select-*: ojs/

ojselectcombobox
• oj-spark-chart:

ojs/ojchart
• oj-*-gauge: ojs/

ojgauge

Use component modules
that correspond to any
Oracle JET component in
your app.

ojs/ojknockout No ComponentBinding Oracle JET data binding
for global attributes of
any HTML element in the
user interface

Use when your app
includes HTML elements
(JET custom elements
included) with databound
global attributes (ones
that use the : (colon)
prefix) or that use the
[[..]]/{{..}} syntax (for
global attributes of
custom elements).

ojs/ojcorerouter No urlParamAdapter,
urlPathAdapter
CoreRouter,
CoreRouterState

Class for managing
routing in single page
apps

Use if your single page
app needs to manage
routing.

ojs/ojmodule No ModuleBinding Binding that implements
navigation within a region
of a single page app

Use if your single page
app needs to manage
navigation within a page
region.

Chapter 4
About Oracle JET and RequireJS

4-2

Oracle JET Module Refactored Available Objects Description When to Use

ojs/ojmodule-element No ModuleElementAnimation Component that
implements navigation
within a region of a single
page app

Use if your single page
app needs to manage
navigation within a page
region.

ojs/
ojmoduleanimations

No ModuleAnimations Used in conjunction with
ojs/ojmodule-element.
Adds animation support
via CSS animation
effects.

Use if your app adds
animation effects.

ojs/ojcontext Yes, from
ojcore

BusyContext, Context Class that exposes the
BusyContext that keeps
track of components that
are currently animating or
fetching data.

Use if your app needs to
query the busy state of
components on the page.

ojs/ojconfig Yes, from
ojcore

Config Class for setting and
retrieving configuration
options.

Use if your app needs to
set or retrieve app
configuration details.

ojs/ojlogger Yes, from
ojcore

Logger Utilities for setting up a
logger and collecting
logging information

Use if your app needs to
define logger callback
functions.

ojs/ojresponsiveutils Yes, from
ojcore

ResponsiveUtils Utilities for working with
responsive screen widths
and ranges. Often used
in conjunction with ojs/
ojresponsiveknockoutut
ils to create knockout
observables that can be
used to drive responsive
page behavior.

Use if your app needs to
work with responsive
page design.

ojs/ojthemeutils Yes, from
ojcore

ThemeUtils Utilities for getting theme
information

Use if your app needs to
know about the theme's
fonts or the target
platform.

ojs/ojtimeutils Yes, from
ojcore

TimeUtils Utilities for time
information

Use if your app needs to
calculate the position of a
given time point within a
range.

ojs/ojtranslation Yes, from
ojcore

Translations Service for retrieving
translated resources

Use if your app needs to
work with translated
resources.

ojs/
ojattributegrouphandl
er

No AttributeGroupHandler,
ColorAttributeGroupHan
dler,
ShapeAttributeGroupHan
dler

Classes for managing
attribute groups

Use if your app needs to
generate attribute values
from data set values (key
value pairs).

ojs/
ojknockouttemplateuti
ls

No KnockoutTemplateUtils Utilities for converting
Knockout templates to a
renderer function that can
be used in JET
component renderer APIs

Use if your app needs to
work with Knockout
templates.

ojs/
ojresponsiveknockoutu
tils

No ResponsiveKnockoutUtil
s

Utilities for creating
Knockout observables to
implement responsive
page design

Use if your app needs to
create observables for
responsive page design.

Chapter 4
About Oracle JET and RequireJS

4-3

Oracle JET Module Refactored Available Objects Description When to Use

ojs/ojswipetoreveal No SwipeToRevealUtils Utilities for setting up and
handling swipe to reveal
on an offcanvas element

Use if your app needs to
support the swipe
gesture.

ojs/ojkeyset No KeySet, KeySetImpl,
AllKeySetImpl

Class for working with
selection items in
ojTable, ojListView,
and ojDataGrid
components

Use if your app needs to
work with selections as a
set.

ojs/ojdiagram-utils No DiagramUtils Utilities for working with a
JSON object to support
the ojDiagram
component

Use if your app creates
an ojDiagram component
from a JSON object.

ojs/ojoffcanvas No OffcanvasUtils Class for controlling off-
canvas regions

Use if your app needs to
manage off-canvas
regions.

ojs/ojcube No Cube, CubeAggType,
CubeAxis,
CubeAxisValue,
CubeCellSet,
CubeDataValue,
CubeHeaderSet,
CubeLevel,
DataColumnCube,
DataValueAttributeCube

Classes for aggregating
data values in
ojDataGrid

Use if your app renders
aggregated cubic data in
an ojDataGrid
component.

ojs/
ojtypedataprovider

No ArrayDataProvider,
ArrayTreeDataProvider,
CollectionDataProvider
,
DeferredDataProvider,
FlattenedTreeDataProvi
der,
IndexerModelTreeDataPr
ovider,
ListDataProviderView,
PagingDataProviderView
, TreeDataProviderView
FilterFactory

Data provider modules.
Examples include:
• ojs/

ojarraydataprovide
r

• ojs/
ojcollectiondatapr
ovider

• ojs/
ojtreedataprovider

Use if your app includes
an Oracle JET
component, and its data
source is defined in one
of the *DataProvider
classes.

ojs/ojtimezonedata No no public class available Time zone data Use if you want to add
time zone support to oj-
input-date-time, oj-
input-time, or
converters.

ojconverter-color,
ojconverter-datetime,
ojconverter-number

Yes, from
ojvalidation-
base,
ojvalidation-
datetime, or
ojvalidation-
number

ColorConverter,
converterDateTime,
converterColor

Color, date, and time
conversion services.

Use if your app needs to
support conversion
services.

Chapter 4
About Oracle JET and RequireJS

4-4

Oracle JET Module Refactored Available Objects Description When to Use

ojvalidator-
daterestriction,
ojvalidator-
datetimerange,
ojvalidator-length,
ojvalidator-
numberrange,
ojvalidator-regexp,
ojvalidator-required

Yes, from
ojvalidation-
base,
ojvalidation-
datetime, or
ojvalidation-
number

DateRestrictionValidat
or,
DateTimeRangeValidator,
LengthValidator,
NumberRangeValidator,
RegExpValidator,
RequiredValidator

Date and number
validation services.

Use if your app needs to
support validation
services.

ojasyncvalidator-
daterestriction,
ojasyncvalidator-
datetimerange,
ojasyncvalidator-
length,
ojasyncvalidator-
numberrange,
ojasyncvalidator-
regexp,
ojasyncvalidator-
required

Yes, from
ojvalidation-
base,
ojvalidation-
datetime, or
ojvalidation-
number

AsyncDateRestrictionVa
lidator,
AsyncDateTimeRangeVali
dator,
AsyncLengthValidator,
AsyncNumberRangeValida
tor,
AsyncRegExpValidator,

Async date and number
validation services.

Use if your app needs to
support async validation
services.

About RequireJS in an Oracle JET App
Oracle JET includes the RequireJS library and sample bootstrap file in the Oracle JET
download.

The code below shows excerpts of the main-template.js bootstrap file distributed with the
Oracle JET base distribution in the
appRootDir\node_modules\@oracle\oraclejet\dist\js\libs\oj\ directory. Typically, you
place the bootstrap file in your app's js directory and rename it to main.js . The comments in
the code describe the purpose of each section. The sections that you normally edit are
highlighted in bold.

/**
 * Example of Require.js boostrap javascript
 */
(function () {
 requirejs.config({
 // Path mappings for the logical module names
 paths: {

 },

 // This section configures the i18n plugin. It is merging the Oracle
JET built-in translation
 // resources with a custom translation file.
 // Any resource file added, must be placed under a directory named
"nls". You can use
 // a path mapping or you can define a path that is relative to the
location
 // of this main.js file.
 config: {
 ojL10n: {

Chapter 4
About Oracle JET and RequireJS

4-5

 merge: {
 // 'ojtranslations/nls/ojtranslations': 'resources/nls/
myTranslations'
 }
 },
 text: {
 // Override for the requirejs text plugin XHR call for loading text
 // resources on CORS configured servers
 // eslint-disable-next-line no-unused-vars
 useXhr: function (url, protocol, hostname, port) {
 // Override function for determining if XHR should be used.
 // content omitted for brevity
 // Return true or false. true means "use xhr", false
 // means "fetch the .js version of this resource".
 return true;
 }
 }
 }
 });
 }());

 /**
 * A top-level require call executed by the app.
 * Although 'ojcore' and 'knockout' would be loaded in any case (they are
specified as dependencies
 * by the modules themselves), we are listing them explicitly to get the
references to the 'oj' and 'ko'
 * objects in the callback.
 *
 * For a listing of which JET component modules are required for each
component, see the specific component
 * demo pages in the JET cookbook.
 */
 require(['ojs/ojcore', 'knockout', 'jquery', 'ojs/ojknockout', 'ojs/
ojbutton', 'ojs/ojtoolbar', 'ojs/ojmenu'],
 // add additional JET component modules as needed
 // eslint-disable-next-line no-unused-vars
 function (oj, ko, $) { // this callback gets executed when all required
modules are loaded
 // add any startup code that you want here
 }
);

You can use RequireJS in a regular app as shown, or you can use RequireJS with oj-module
element to define view templates and viewModels for page sections in a single-page app. For
example, the Oracle JET Starter Templates use the oj-module element with RequireJS to use
a different view and viewModel when the user clicks one of the navigation buttons.

For additional information about the Oracle JET Starter Templates, see About the Starter
Templates. For more information about using ojModule and templates, see Create Single-Page
Apps.

Chapter 4
About Oracle JET and RequireJS

4-6

Use RequireJS in an Oracle JET App
To use RequireJS in your app, edit the bootstrap file to add the Oracle JET modules you need.
You can also add your own modules as needed for your app code.

If needed, install Oracle JET and install RequireJS at http://requirejs.org.

To use RequireJS in an Oracle JET app:

1. In the bootstrap file or your app scripts, in the require() definition, add additional Oracle
JET modules as needed.

2. Add any scripts that your app uses to the require() definition and update the
function(ko) definition to include the script.

3. Add any app startup code to the callback function.

4. If your app includes resource bundles, enter the path to the bundle in the merge section.

Here's an example of the steps in order.

oj-dialog
require(['knockout', 'ojs/ojmodel', 'ojs/ojknockout-model','ojs/ojdialog'],
 function(ko) // obtaining a reference to the oj namespace
 {
 }
);

Then, to use a script named myapp.js, add the highlighted code to your require() definition.

require(['myapp', 'knockout', 'ojs/ojmodel', 'ojs/ojknockout-model', 'ojs/ojdialog'],
 function(myapp, ko) // obtaining a reference to the oj namespace
 {
 }
);

Next, you have a Knockout binding call for an element named dialogWrapper. Add that to the
callback function.

require(['myapp', 'knockout', 'ojs/ojmodel', 'ojs/ojknockout-model', 'ojs/ojdialog'],
 function(myapp, ko) // obtaining a reference to the oj namespace
 {
 ko.applyBindings(new app()/*View Model instance*/,
 document.getElementById('dialogWrapper'));
 }
);

Finally, you have a translations bundle, which you add to the merge section.

config: {
 ojL10n: {
 merge: {
 'ojtranslations/nls/ojtranslations': 'resources/nls/myTranslations'
 }
 }
}

For more information about module loading in Oracle JET apps, see API Reference for
Oracle® JavaScript Extension Toolkit (Oracle JET) - JET Module Loading Overview.

Chapter 4
Use RequireJS in an Oracle JET App

4-7

http://requirejs.org
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/ModuleLoadingOverview.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/ModuleLoadingOverview.html

Add Third-Party Tools or Libraries to Your Oracle JET App
You can add third-party tools or libraries to your Oracle JET app. The steps to do this vary
depending on the method you used to create your app.

If you used the Oracle JET command-line tooling to scaffold your app, you install the library
and make modifications to appRootDir/src/js/path_mapping.json. If you created your app
using any other method and are using RequireJS, you add the library to your app and update
the RequireJS bootstrap file, typically main.js.

Note:

This process is provided as a convenience for Oracle JET developers. Oracle JET
does not support the additional tools or libraries and cannot guarantee that they will
work correctly with other Oracle JET components or toolkit features.

To add a third-party tool or library to your Oracle JET app, complete one of the following
procedures.

• If you created your app with command-line tooling, perform the following steps:

1. In your app's root directory, enter the following command in a terminal window to install
the library using NPM:

npm install library-name --save

2. Add the new library to the path mapping configuration file.

a. Open appRootDir/src/js/path_mapping.json for editing.

A portion of the file is shown below.

{
 "baseUrl": "js",
 "use": "local",
 "cdns": {
 "jet": "https://static.oracle.com/cdn/jet/17.1.0/default/js",
 "css": "https://static.oracle.com/cdn/jet/17.1.0/default/css",
 "config": "bundles-config.js"
 },
 "3rdparty": "https://static.oracle.com/cdn/jet/17.1.0/3rdparty"
},
"libs": {
 "knockout": {
 ...
 },
...

Oracle JET's CLI helps manage third-party libraries for your app by adding entries
to its local path_mapping.json file.

For each library listed in the libs map in the path_mapping.json file, the following
two actions happen at build time. First, one or more files are copied from

Chapter 4
Add Third-Party Tools or Libraries to Your Oracle JET App

4-8

somewhere (usually appRootDir/node_modules) into the appRootDir/web output
folder. Second, a requireJS path value is created for you to represent the path to
the library; it is injected into the built main.js file or optimized bundle. If you use
TypeScript, then this should be the same path name that you use at design time
for imports from the library.

The following example is an existing path mapping entry for the persist library,
which we analyze below to describe what each attribute does and how it relates to
the two build-time actions defined above.

1 | "persist": {
2 | "cdn": "3rdparty",
3 | "cwd": "node_modules/@oracle/oraclejet/dist/js/libs/persist",
4 | "debug": {
5 | "cwd": "debug",
6 | "src": [
7 | "**"
8 |],
9 | "path": "libs/persist/debug",
10 | "cdnPath": "persist/debug"
11 | },
12 | "release": {
13 | "cwd": "min",
14 | "src": [
15 | "**"
16 |],
17 | "path": "libs/persist/min",
18 | "cdnPath": "persist/min"
19 | }
20 | },

– Line 1: This is the name of the libs map entry ("persist", in this case). This
name is used as the name of the requireJS path entry that is created;
therefore, it is also the import path. The same name is used for the folder that
gets created under the appRootDir/web/js/libs folder in the built application.

Note:

If your app uses TypeScript, then you'll also need a tsconfig.json
file paths entry with the same name.

– Line 2 (Optional): The cdn attribute sets the name of the CDN root for the
location of this library. In this case, it is set to the value 3rdparty, which maps
to a particular location in the Oracle CDN. Any third-party libraries that you add
yourself (that is, those that are not present on the Oracle CDN) should not
have a cdn or cdnPath value at all, unless you maintain your own CDN
infrastructure where you can place the library.

– Line 3: The first role of each path mapping entry at build time is to copy files.
The cwd attribute on this line tells the tooling where to start copying from, and
subsequent paths are relative to this root. This is generally some folder under
appRootDir/node_modules/<library>.

– Lines 4 through 12: The debug and release sections here are the same, with
the exception that if you do a normal build, then the specifications in the debug

Chapter 4
Add Third-Party Tools or Libraries to Your Oracle JET App

4-9

section are followed, and if you do a --release build, then the specifications in
the release section are followed. For example, the latter case can allow the
copying of only optimized assets for release.

– Line 5 (Optional): In the context of the debug or release build, this second cwd
attribute further refines the copy root for everything that follows. For example,
when running a normal (debug) build for the persist library, the copy root is
appRootDir/node_modules/@oracle/oraclejet/dist/js/libs/persist/
debug, where the debug cwd value is appended to the top-level cwd value.
Additionally, this folder name is used in the output; the copied files end up in
the appRootDir/web/js/libs/persist/debug directory. This attribute is
optional; if omitted, then all copies are copied from paths relative to the root
cwd location and placed in the root of the destination folder.

– Line 6: The src attribute holds an array of all the files that you want to copy
from your root location into the built app (that is, all the files that are actually
needed at runtime). The paths you add here can either be specific file names,
or you can use globs to match multiple files at once. In the example above, the
glob ** is used, which results in copying everything from the /debug folder,
including subfolders. Folder structure is preserved in the copied output under
the /web directory.

– Line 9: The path attribute is used for the second role performed by each path
mapping entry; it defines the value of the requireJS path that gets injected
into the main.js file. For the above example, the requireJS path mapping is
"persist":"libs/persist/min", which is relative to the requireJS load root,
typically appRootDir/web/js.

– Line 10 (Optional): The cdnPath attribute is optional and should only be used if
you have actually put a copy of the library onto a CDN. If that is the case, then
if the path_mapping.json file has the use attribute set to "cdn" rather than
"local", then the generated requireJS path statement uses this cdnPath
value rather than the path value (line 9). The path here is relative to the CDN
root defined by the alias allocated to the CDN and used in the cdn attribute for
that library. If “use” is set to “cdn” but a library does not include CDN
information, then the build falls back to using the local copy of the library and
set up the requireJS path accordingly.

b. Copy one of the existing library entries in the "libs" map and modify as needed
for your library.

The code sample below shows modifications for my-library, a library that
contains both minified and debug versions.

...
 "libs": {
 "my-library": {
 "cwd": "node_modules/my-library/dist",
 "debug": {
 "src": "my-library.debug.js",
 "path": "libs/my-library/my-library.debug.js"
 },
 "release": {
 "src": "my-library.js",
 "path": "libs/my-library/my-library.js"
 }

Chapter 4
Add Third-Party Tools or Libraries to Your Oracle JET App

4-10

 },
...

In this example, the cwd attribute points to the location where NPM installed the
library, the src attribute points to a path or array of paths containing the files that
are copied during a build, and the path attribute points to the destination that
contains the built version.

When defining your own library entry in the path_mapping.json file, you should
test it out by running the ojet build command and then confirm that all the
expected files have been copied into the appRootDir/web/js/libs directory and
that the requireJS path mapping has been injected in the built
appRootDir/web/js/main.js file.

Note:

If the existing library entry that you copy to modify includes "cdn":
"3rdparty", remove that line from the newly-created entry for your
library. This line references the Oracle JET third-party area on the
content distribution network (CDN) managed by Oracle. Your library
won't be hosted there, and keeping this line causes a release build to fail
at runtime by mapping your library's path to a non-existent URL.

If you use a CDN, add the URL to the CDN in the entry for the cdnPath
attribute. For information on working with libraries loaded from CDNs,
see Understand the Path Mapping Script File and Configuration Options.

3. If your project uses TypeScript, then you also need to define a paths entry in your
tsconfig.json file that allows you to import the library using the same path name at
design time as you'll use at runtime. If the library in question also provides some types
for you to use, then the path should point to these to allow your editor to provide
TypeScript support for your usage of that library. Here is an example of an existing
paths entry in an Oracle JET app created with the command-line tooling.

"paths": {
 "ojs/*": [
 "./node_modules/@oracle/oraclejet/dist/types/*"
],
...

• If you didn’t use command-line tooling to create your app, perform the following steps to
add the tool or library.

1. In the app’s js/libs directory, create a new directory and add the new library and any
accompanying files to it.

For example, for a library named my-library, create the my-library directory and add
the my-library.js file and any needed files to it. Be sure to add the minified version if
available.

2. In your RequireJS bootstrap file, typically main.js, add a path for the library file in the
path mapping section of the requirejs.config() definition.

Chapter 4
Add Third-Party Tools or Libraries to Your Oracle JET App

4-11

For example, add the highlighted code below to your bootstrap file to use a library
named my-library.

requirejs.config({
 // Path mappings for the logical module names
 paths:
 {
 'knockout': 'libs/knockout/knockout-3.x.x',
 'jquery': 'libs/jquery/jquery-3.x.x.min',
 ...
 'text': 'libs/require/text',
 'my-library': 'libs/my-library/my-library
 },
 require(['knockout', 'my-library'],
 // this callback gets executed when all
 // required modules are loaded
 function(ko)
 {
 // Add any start-up code that you want here
 }
);

For additional information about using RequireJS to manage your app's modules, see
Use RequireJS for Modular Development.

3. If your project uses TypeScript, then you also need to define a paths entry in your
tsconfig.json file that allows you to import the library using the same path name at
design time as you'll use at runtime. If the library in question also provides some types
for you to use, then the path should point to these to allow your editor to provide
TypeScript support for your usage of that library. Here is an example of an existing
paths entry in an Oracle JET app created with the command-line tooling.

"paths": {
 "ojs/*": [
 "./node_modules/@oracle/oraclejet/dist/types/*"
],
...

Troubleshoot the Addition of Third-Party Tools and Libraries
In most cases, when adding a third-party tool or library to your Oracle JET app, failures
manifest in one of three ways:

1. A 404 error in your browser-tools network panel.
If this occurs, you may have omitted a file from the set that you copied, or the library that
you have selected has downstream dependencies and you need to define additional third-
party libraries.

2. An error dump on the browser console.
This is often an indication that the library is not in the correct format; see the following list
of common problems for more information.

3. Your usage of the library fails.

When diagnosing integration issues with third-party libraries, the following problems are
frequently encountered:

Chapter 4
Troubleshoot the Addition of Third-Party Tools and Libraries

4-12

• The library is not a browser library.
Sometimes developers choose to use libraries that are intended for use in Node.js, rather
than in a browser. Read the library’s documentation to ensure that it is a browser library.

• The library is in the wrong format.
There are multiple library formats in the JavaScript ecosystem, some of which are intended
for use in browsers and others that are not. You may be unable to load a library that you
found because it is in an incorrect format.

Check that your path mapping entry uses the correct distribution of the library out of its
possible format options. For runtime use, you need modules that are in either AMD or
UMD format. Alternatively, you can convert from one module format to another using
external tools.

• The library has runtime dependencies.
The library might require you to include multiple dependencies into your
path_mapping.json file so that all the required paths and modules are available at runtime.
When loading a library at runtime, a 404 error is often a result of a missing downstream
dependency.

Read the library’s documentation, examine the package.json file for the library itself, and
review the 404 error in detail to help figure out the error.

• The library expects specific RequireJS path names.
The library that you are consuming may expect to be loaded from a specific path name, or
it may expect a dependency to be set up in the same way. This exhibits a 404 error when
trying to load a resource.

From the path submitted in the GET request, you should be able to figure out what is going
on. Remember that you can configure the path_mapping.json file with the name of the
path that must be created, so you should be able to correct this in the metadata to get
everything working.

• The library needs a script tag to load code.

Most libraries are compatible with a module loading system and, assuming they are AMD
compatible, will work with an import statement or define() and require() methods.
However, in some cases, you need to use a <script> tag in your page to load the code,
rather than have a module loader do it for you.

A case where you may need to use a <script> tag is when the JavaScript library that you
want to use is only available in ESM format. If you don't tranform it to AMD format, you
import it into the root level of your project (the appRootDir/src/index.html file) using a
<script> tag.

Be cautious with code that requires a <script> tag like this, as it is probably likely to
interact with the global JavaScript context in a way that is incompatible with modern
module development. In cases like this, the library’s documentation should help point you
in the right direction.

Troubleshoot RequireJS in an Oracle JET App
RequireJS issues are often related to modules used but not defined.

Use the following tips when troubleshooting issues with your Oracle JET app that you suspect
may be due to RequireJS:

• Check the JavaScript console for errors and warnings. If a certain object in the oj
namespace is undefined, locate the module that contains it based on the information in

Chapter 4
Troubleshoot RequireJS in an Oracle JET App

4-13

About Oracle JET Module Organization or the Oracle JET Cookbook and add it to your
app.

• If the components you specified using Knockout.js binding are not displayed and you are
not seeing any errors or warnings, verify that you have added the ojs/ojknockout module
to your app.

About JavaScript Partitions and RequireJS in an Oracle JET App
RequireJS supports JavaScript partitions that contain more than one module.

You must name all modules using the RequireJS bundles option and supply a path mapping
with the configuration options.

requirejs.config(
 {
 bundles:
 {
 'commonComponents': ['ojL10n', 'ojtranslations/nls/ojtranslations',
 'ojs/ojknockout', 'ojs/ojcomponentcore',
 'ojs/ojbutton', 'ojs/ojpopup'],
 'tabs': ['ojs/ojtabs', 'ojs/ojconveyorbelt'] }
 }
);

In this example, two partition bundles are defined: commonComponents and tabs.

RequireJS ships with its own Optimizer tool for creating partitions and minifying JavaScript
code. The tool is designed to be used at build time with a complete project that is already
configured to use RequireJS. It analyzes all static dependencies and creates partitions out of
modules that are always loaded together. The Oracle JET team recommends that you use an
optimizer to minimize the number of HTTP requests needed to download the modules.

For additional information about the RequireJS Optimizer tool, see http://requirejs.org/docs/
optimization.html.

For additional information about optimizing performance of Oracle JET apps, see Optimize
Performance of Oracle JET Apps.

Chapter 4
About JavaScript Partitions and RequireJS in an Oracle JET App

4-14

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html
http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html

5
Create Single-Page Apps

Oracle JET includes the oj-module component and CoreRouter framework class that you can
use to create single-page apps that simulate the look and feel of desktop apps.

Design Single-Page Apps Using Oracle JET
Oracle JET includes Knockout for separating the model layer from the view layer and
managing the interaction between them. Using Knockout, the Oracle JET oj-module
component, and the Oracle JET CoreRouter framework class, you can create single-page
apps that look and feel like a standalone desktop app.

Understand Oracle JET Support for Single-Page Apps
Single-page apps (SPAs) are typically used to simulate the look and feel of a standalone
desktop app. Rather than using multiple web pages with links between them for navigation, the
app uses a single web page that is loaded only once. If the page changes because of the
user's interaction, only the portion of the page that changed is redrawn.

Oracle JET includes support for single page apps using the CoreRouter class for virtual
navigation in the page, the oj-module component for managing view templates and viewModel
scripts, and Knockout for separating the model layer from the view layer and managing the
binding between them. In the Oracle JET Cookbook, you can view a number of
implementations that use the CoreRouter class. These implementations range from the simple,
that switch tabs, to more complex examples that use parameters and child routers. See the
CoreRouter demo in the Oracle JET Cookbook.

When routing a single-page app, the page doesn't reload from scratch but the content of the
page changes dynamically. In order to be part of the browser history and provide
bookmarkable content, the Oracle JET CoreRouter class emulates the act of navigating using
the HTML5 history push state feature. The CoreRouter also controls the URL to look like
traditional page URLs. However, there are no resources at those URLs, and you must set up
the HTML server. This is done using a simple rule for a rewrite engine, like mod rewrite module
for Apache HTTP server or a rewrite filter like UrlRewriteFilter for servlets.

In general, use query parameters when your app contains only a few views that the user will
bookmark and that are not associated with a complex state. Use path segments to display
simpler URLs, especially for nested paths such as customers/cust/orders.

The Oracle JET Cookbook uses the Oracle JET oj-module feature to manage the Knockout
binding. With oj-module, you can store your HTML content for a page section in an HTML
fragment or template file and the JavaScript functions that contain your viewModel in a
viewModel file.

When oj-module and CoreRouter are used in conjunction, you can configure an oj-module
object where the module name is the router state. When the router changes state, oj-module
will automatically load and render the content of the module name specified in the value of the
current RouterState object.

5-1

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=corerouter&demo=simple
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://tuckey.org/urlrewrite/

Create a Single-Page App in Oracle JET
The Oracle JET Cookbook includes complete examples and recipes for creating a single-page
app using path segments and query parameters for routing and examples that use routing with
the oj-module component. Regardless of the routing method you use, the process to create
the app is similar.

To create a single-page app in Oracle JET:

If needed, create the app that will house your main HTML5 page and supporting JavaScript.
For additional information, see Understand the Web App Workflow.

1. Design the app's structure and identify the templates and ViewModels that your app will
require.

2. Add code to your app's main script that defines the states that the router can take, and add
the ojs/ojcorerouter module to your require() list.

3. Add code to the markup that triggers the state transition and displays the content of the
current state.

When the user clicks one of the buttons in the header, the content is loaded according to
the router's current state.

For additional information about creating templates and ViewModels, see Use the oj-
module Element.

4. To manage routing within a module, add a child router using
CoreRouter.createChildRouter().

5. Add any remaining code needed to complete the content or display.

See the CoreRouter demo in the Oracle JET Cookbook that implements CoreRouter and
provides a link to the API documentation.

Use the oj-module Element
With the oj-module element, you can store your HTML content for a page section in an HTML
fragment or template file and the JavaScript functions that contain your viewModel in a
viewModel file.

Many of the Oracle JET Cookbook and sample apps use oj-module to manage the Knockout
binding.

To use oj-module in your Oracle JET app:

If needed, create the app that will house your main HTML5 page and supporting JavaScript.
See Understand the Web App Workflow. Oracle JET apps are built with default views and
viewModels folders under app_folder/src/js.

1. In your RequireJS bootstrap file (typically main.js) add ojs/ojmodule-element to the list
of RequireJS modules, along with any other modules that your app uses.

require(['knockout', 'ojs/ojmodule-element-utils', 'ojs/ojcorerouter', 'ojs/
ojlogger'', 'ojs/ojresponsiveknockoututils'
'ojs/ojarraydataprovider', 'ojs/ojoffcanvas', 'ojs/ojknockouttemplateutils', 'ojs/
ojmodule-element', 'ojs/ojknockout',
'ojs/ojbutton', 'ojs/ojmenu', 'ojs/ojmodule', 'text', 'ojs/ojcheckboxset', 'ojs/
ojswitch']

2. Create your view templates and add them to the views folder as the default location.

Chapter 5
Use the oj-module Element

5-2

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=corerouter&demo=simple

3. Create your viewModel scripts and add them to the viewModels folder as the default
location.

4. Add code to the app's HTML page to reference the view template or viewModel in the oj-
module element. To obtain the router configuration, set the config attribute of the oj-
module element to the koObservableConfig observable created by the
ModuleRouterAdapter.

<oj-module role="main" class="oj-panel" style="padding-bottom:30px"
config="[[moduleAdapter.koObservableConfig]]"></oj-module>

For more information about CoreRouter and oj-module, see the Oracle JET CoreRouter and
oj-module API documentation.

Tip:

oj-module is not specific to single-page apps, and you can also use it to reuse
content in multi-page apps. However, if you plan to reuse or share your content
across multiple apps, consider creating Oracle JET Web Components instead. Web
Components are reusable components that follow the HTML5 Web Component
specification. They have the following benefits:

• Web Components have a contract. The API for a Web Component is well defined
by its component.json, which describes its supported properties, methods, and
events in a standard, universal, and self-documenting way. Providing a
standardized contract makes it easier for external tools or other apps to consume
these components.

• Web Components include version and dependency metadata, making it clear
which versions of Oracle JET they support and what other components they may
require for operation.

• Web Components are self-contained. A Web Component definition can contain
all the libraries, styles, images, and translations that it needs to work.

To learn more about Web Component features, see Work with Oracle JET Web
Components.

Work with oj-module’s ViewModel Lifecycle
The oj-module element provides lifecycle listeners that allow you to specify actions to take
place at defined places in the ViewModel’s lifecycle.

For example, you can specify actions to take place when the ViewModel is about to be used for
the View transition, after its associated View is inserted into the document DOM, and after its
View and ViewModel are inactive.

The following table lists the available methods with a description of their usage.

Chapter 5
Use the oj-module Element

5-3

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/CoreRouter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojModule.html

Method Name Description

connected() The optional method will be invoked after the View
is inserted into the DOM.

This method might be called multiple times:

• after the View is created and inserted into the
DOM

• after the View is reconnected after being
disconnected

• after a parent element (oj-module) with
attached View is reconnected to the DOM

transitionCompleted() This optional method will be invoked after transition
to the new View is complete. This includes any
possible animation between the old and the new
View.

disconnected() This optional method will be invoked when the View
is disconnected from the DOM.

This method might be called multiple times:

• after the View is disconnected from the DOM
• after a parent element (oj-module) with

attached View is disconnected from the DOM

You can also find stub methods for using the oj-module lifecycle methods in some of the
Oracle JET templates. For example, the navbar template, available as a template when you
Scaffold a Web App, defines stub methods for connected(), disconnected(), and
transitionCompleted(). Comments describe the expected parameters and use cases.

function DashboardViewModel() {
 var self = this;
 // Below are a set of the ViewModel methods invoked by the oj-module component.
 // Please reference the oj-module jsDoc for additional information.

 /**
 * Optional ViewModel method invoked after the View is inserted into the
 * document DOM. The app can put logic that requires the DOM being
 * attached here.
 * This method might be called multiple times - after the View is created
 * and inserted into the DOM and after the View is reconnected
 * after being disconnected.
 */
 self.connected = function() {
 // Implement if needed
 };

 /**
 * Optional ViewModel method invoked after the View is disconnected from the DOM.
 */
 self.disconnected = function() {
 // Implement if needed
 };

 /**
 * Optional ViewModel method invoked after transition to the new View is complete.
 * That includes any possible animation between the old and the new View.
 */
 self.transitionCompleted = function() {
 // Implement if needed
 };

Chapter 5
Use the oj-module Element

5-4

 }

 /*
 * Returns an instance of the ViewModel providing one instance of the ViewModel.
If needed,
 * return a constructor for the ViewModel so that the ViewModel is constructed
 * each time the view is displayed.
 */
 return DashboardViewModel;
 }

For more, see the oj-module API documentation.

Chapter 5
Use the oj-module Element

5-5

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojModule.html

6
Understand Oracle JET User Interface Basics

Oracle JET User Interface (UI) components extend the htmlElement prototype to implement
the World Wide Web Consortium (W3C) web component specification for custom elements.
Custom elements provide a more declarative way of working with Oracle JET components and
allow you to access properties and methods directly on the DOM layer.

About the Oracle JET User Interface
Oracle JET includes components, patterns, and utilities to use in your app. The toolkit also
includes an API specification (if applicable) and one or more code examples in the Oracle JET
Cookbook.

Identify Oracle JET UI Components, Patterns, and Utilities
The Oracle JET Cookbook lists all the components, design patterns, and utilities available for
your use. By default, the cookbook is organized into functional sections, but you can also click
Sort to arrange the contents alphabetically.

The Cookbook contains samples that you can edit online and see the effects of your changes
immediately. You’ll also find links to the API documentation, if applicable.

About Common Functionality in Oracle JET Components
All Oracle JET components are implemented as custom HTML elements, and programmatic
access to these components is similar to interacting with any HTML element.

Custom Element Structure

Oracle JET custom element names start with oj-, or oj-c- for the newer Core Pack
components, and you can add them to your page the same way you would add any other
HTML element. In the following example, the oj-label and oj-input-date-time custom
elements are added as child elements to a standard HTML div element.

<div id="div1">
 <oj-label for="dateTime">Default</oj-label>
 <oj-input-date-time id="dateTime" value='{{value}}'>
 </oj-input-date-time>
</div>

Each custom element can contain one or more of the following:

• Attributes: Modifiers that affect the functionality of the element.

String literals will be parsed and coerced to the property type. Oracle JET supports the
following string literal type coercions: boolean, number, string, Object, Array, and any. The
any type, if used by an element, is marked with an asterisk (*) in the element’s API
documentation and coerced to Objects, Arrays, or strings.

6-1

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html

In the oj-input-date-time element defined above, value is an attribute that contains a
Date object. It is defined using a binding expression that indicates whether the element’s
ViewModel should be updated if the attribute’s value is updated.

<oj-input-date-time id="dateTime" value='{{value}}'>

The {{...}} syntax indicates that the element’s value property will be updated in the
element’s ViewModel if it’s changed. To prevent the attribute’s value from updating the
corresponding ViewModel, use the [[...]] syntax.

• Methods: Supported methods

Each custom element’s supported method is documented in its API.

• Events: Supported events

Events specific to the custom element are documented in its API. Define the listener’s
method in the element’s ViewModel.

var listener = function(event)
{
 // Check if this is the end of "inline-open" animation for inline message
 if (event.detail.action == "inline-open") {
 // Add any processing here
 }
};

Reference the listener using the custom element’s DOM attribute, JavaScript property, or
the addEventListener().

– Use the DOM attribute.

Declare a listener on the custom element using on-event-name syntax.

<oj-input-date-time on-oj-animate-start='[[listener]]'</oj-input-date-
time>

Note that in this example the listener is declared using the [[...]] syntax since its
value is not expected to change.

– Use the JavaScript property.

Specify a listener in your ViewModel for the .onEventName property.

myInputDateTime.onOjAnimateEnd = listener

Note that the JavaScript property uses camelCase for the onOjAnimateEnd property.
The camelCased properties are mapped to attribute names by inserting a dash before
the uppercase letter and converting that letter to lower case, for example, on-oj-
animate-end.

– Use the addEventListener() API.

myInputDateTime.addEventListener('ojAnimateEnd', listener);

By default, JET components will also fire propertyChanged custom events whenever a
property is updated, for example, valueChanged. You can define and add a listener using

Chapter 6
About the Oracle JET User Interface

6-2

any of the three methods above. When referencing a propertyChanged event declaratively,
use on-property-changed syntax.

<oj-input-date-time value="{{currentValue}}" on-value-
changed="{{valueChangedListener}}" </oj-input-date-time>

• Slots

Oracle JET elements can have two types of child content that determine the content’s
placement within the element.

– Any child element with a supported slot attribute will be moved into that named slot. All
supported named slots are documented in the element’s API. Child elements with
unsupported named slots will be removed from the DOM.

<oj-table>
 <div slot='bottom'<oj-paging-control></oj-paging-control></div>
</oj-table>

– Any child element lacking a slot attribute will be moved to the default slot, also known
as a regular child.

A custom element will be recognized only after its module is loaded by the app. Once the
element is recognized, Oracle JET will register a busy state for the element and will begin the
process of upgrading the element from a normal element to a custom element. The element
will not be ready for interaction until the upgrade process is complete. The app should listen to
either the page-level or element-scoped BusyContext before attempting to interact with any
JET custom elements. However, property setting (but not property getting) is allowed before
the BusyContext is initialized. See the BusyContext API documentation on how BusyContexts
can be scoped.

The upgrade of custom elements relies on a binding provider which manages the data binding.
The binding provider is responsible for setting and updating attribute expressions. Any custom
elements within its managed subtree will not finish upgrading until the provider applies bindings
on that subtree. By default, there is a single binding provider for a page, but subtree specific
binding providers can be added by using the data-oj-binding-provider attribute with values
of none and knockout. The default binding provider is knockout, but if a page or DOM subtree
does not use any expression syntax or knockout, the app can set data-oj-binding-
provider=”none" on that element so that its dependent JET custom elements do not wait for
bindings to be applied to finish upgrading.

Other Common Functionality

Oracle JET custom elements also have the following functionality in common:

• Context menus

Custom elements support the slot attribute to add context menus to Oracle JET custom
elements, described in each element’s API documentation.

<oj-some-element>
 <-- use the contextMenu slot to designate this as the context menu for
this component -->
 <oj-menu slot="contextMenu" style="display:none" aria-label="Some
element's context menu"
 ...
 </oj-menu>
</oj-some-element>

Chapter 6
About the Oracle JET User Interface

6-3

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.BusyContext.html

• Keyboard navigation and other accessibility features

Oracle JET components that support keyboard navigation list the end user information in
their API documentation. For additional information about Oracle JET components and
accessibility, see Develop Accessible Oracle JET Apps.

• Drag and drop

Oracle JET includes support for standard HTML5 drag and drop and provides the dnd-
polyfill library to extend HTML5 drag and drop behavior to supported mobile and
desktop browsers. In addition, some Oracle JET custom elements such as oj-table
support drag and drop behavior through the dnd attribute. For specific details, see the
component’s API documentation and cookbook examples. To learn more about HTML5
drag and drop, see http://www.w3schools.com/html/html5_draganddrop.asp.

• Deferred rendering

Many Oracle JET custom elements support the ability to defer rendering until the content
shown using oj-defer. To use oj-defer, wrap it around the custom element.

<oj-collapsible id="defer">
 <h4 id="hd" slot="header">Deferred Content</h4>
 <oj-defer>
 <oj-module config='[[deferredRendering/content]]'>
 </oj-module>
 </oj-defer>
</oj-collapsible>

Add the deferred content to the app’s view and ViewModel, content.html and content.js,
as specified in the oj-module definition. For the complete code example, see Collapsibles -
Deferred Rendering.

For a list of custom elements that support oj-defer, see oj-defer.

Custom Element Examples and References

The Oracle JET Cookbook and API Reference for Oracle® JavaScript Extension Toolkit
(Oracle JET) provide examples that illustrate how to work with custom elements. In addition,
the Cookbook provides demos with editing capability that allow you to modify the sample code
directly and view the results without having to download the sample.

To learn more about the World Wide Web Consortium (W3C) web component specification for
custom elements, see Custom Elements.

About Oracle JET Reserved Namespaces and Prefixes
Oracle JET reserves the oj namespace and prefixes for the original set of UI components that
predate the introduction of the Oracle JET Core Pack components in release 14.0.0. This
includes, but is not limited to component names, namespaces, pseudo-selectors, public event
prefixes, CSS styles, Knockout binding keys, and so on. Oracle JET also reserves the oj-c
namespace for the newer Core Pack components.

About Binding and Control Flow
Oracle JET includes components and expressions to easily bind dynamic elements to a page
in your app using Knockout.

Chapter 6
About Binding and Control Flow

6-4

http://www.w3schools.com/html/html5_draganddrop.asp
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=collapsible&demo=deferredRendering
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=collapsible&demo=deferredRendering
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojDefer.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.w3.org/TR/custom-elements/

Use oj-bind-text to Bind Text Nodes
Oracle JET supports binding text nodes to variables using the oj-bind-text element and by
importing the ojknockout module.

The oj-bind-text element is removed from the DOM after binding is applied. For example,
the following code sample shows an oj-input-text and an oj-button with a text node that
are both bound to the buttonLabel variable. When the input text is updated, the button text is
automatically updated as well.

<div id='button-container'>
 <oj-button id='button1'>
 <oj-bind-text value="[[buttonLabel]]"></oj-bind-text>
 </oj-button>

 <oj-label for="text-input">Update Button Label:</oj-label>
 <oj-input-text id="text-input" value="{{buttonLabel}}"></oj-input-text>
</div>

The script to create the viewModel for this example is shown below.

• TypeScript

• JavaScript

TypeScript

import * as ko from "knockout";
import "ojs/ojinputtext";
import "ojs/ojlabel";
import "ojs/ojbutton";

class ButtonModel {
 buttonLabel: ko.Observable<string>;

 constructor() {
 this.buttonLabel = ko.observable("My Button");
 }
}

export = ButtonModel;

JavaScript

define(["knockout", "ojs/ojknockout", "ojs/ojbutton",
 "ojs/ojinputtext", "ojs/ojlabel"],

 function (ko) {

 function ButtonModel() {
 this.buttonLabel = ko.observable("My Button");

Chapter 6
About Binding and Control Flow

6-5

 }

 return ButtonModel;

 });

The figure below shows the output for the code sample.

The Oracle JET Cookbook contains the complete example used in this section. See Text
Binding.

Chapter 6
About Binding and Control Flow

6-6

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=text
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=text

Bind HTML Attributes
Oracle JET supports one-way attribute data binding for attributes on any HTML element by
prefixing ":" to the attribute name and by importing the ojknockout module.

To use an HTML attribute in an HTML or JET element, prefix a colon to it. JET component–
specific attributes do not need the prefix.

The following code sample shows two JET elements and two HTML elements that use both the
prefixed and non-prefixed syntax. Since the label and input elements are native HTML
elements, all their data bound attributes should use the colon prefixing. The oj-label and oj-
input-text elements use the prefix only for native HTML element attributes and the non-
prefixed syntax for component-specific attributes.

<div id="demo-container">
 <oj-label for="[[inputId1]]">oj-input-text element</oj-label>
 <oj-input-text :id="[[inputId1]]" value="{{value}}"></oj-input-text>

 <label :for="[[inputId2]]">HTML input element</label>

 <input :id="[[inputId2]]" :value="[[value]]" style="width:100%;max-width:18em"/>
</div>

The script to create the viewModel for this example is shown below.

• TypeScript

• JavaScript

TypeScript

import * as ko from "knockout";
import "ojs/ojinputtext";
import "ojs/ojlabel";
import 'ojs/ojknockout';

class ViewModel {
 inputId1: ko.Observable<string>;
 inputId2: ko.Observable<string>;
 value: ko.Observable<string>;

 constructor() {
 this.inputId1 = ko.observable("text-input1");
 this.inputId2 = ko.observable("text-input2");
 this.value = ko.observable("This text value is bound.");
 }
}

export = ViewModel;

Chapter 6
About Binding and Control Flow

6-7

JavaScript

define(["knockout", "ojs/ojknockout", "ojs/ojinputtext", "ojs/ojlabel"],

 function (ko) {

 function ViewModel() {
 this.inputId1 = ko.observable("text-input1");
 this.inputId2 = ko.observable("text-input2");
 this.value = ko.observable("This text value is bound.");
 }

 return ViewModel;

 });

The figure below shows the output for the code sample.

The Oracle JET Cookbook contains the complete example used in this section. See Attribute
Binding.

Use oj-bind-if to Process Conditionals
Oracle JET supports conditional rendering of elements by using the oj-bind-if element and
importing the ojknockout module.

The oj-bind-if element is removed from the DOM after binding is applied, and must be
wrapped in another element such as a div if it is used for slotting. The slot attribute has to be
applied to the wrapper since oj-bind-if does not support it. For example, the following code
sample shows an image that is conditionally rendered based on the option chosen in an oj-
buttonset.

<div id="demo-container">
<oj-buttonset-one class="oj-buttonset-width-auto" value="{{buttonValue}}">
 <oj-option id="onOption" value="on">On</oj-option>
 <oj-option id="offOption" value="off">Off</oj-option>
</oj-buttonset-one>

<div>Image will be rendered if the button is on:</div>
<oj-bind-if test="[[buttonValue() === 'on']]">
 <oj-avatar role="img" aria-label="Avatar of Amy Bartlet" size="md"

Chapter 6
About Binding and Control Flow

6-8

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=attr
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=attr

initials="AB"
 src="../css/images/avatar-image.jpg" class="oj-avatar-image"></oj-avatar>
</oj-bind-if>
</div>

In the above example, the oj-avatar element is an icon which can display a custom or
placeholder image. See oj-avatar.

The script to create the view model for this example is shown below.

• TypeScript

• JavaScript

TypeScript

import * as ko from "knockout";
import "ojs/ojknockout";
import "ojs/ojbutton";
import "ojs/ojavatar";

class ViewModel {
 buttonValue = ko.observable("off");
}
export = ViewModel;

JavaScript

define(['knockout', 'ojs/ojknockout', 'ojs/ojbutton', 'ojs/ojavatar'],
 function (ko) {
 function ViewModel() {
 this.buttonValue = ko.observable("off");
 }
 return ViewModel;
 }
);

The figure below shows the output for the code sample. When the oj-buttonset is set to 'on',
the oj-avatar element is rendered and displayed.

Chapter 6
About Binding and Control Flow

6-9

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojAvatar.html

The Oracle JET Cookbook contains the complete example used in this section. See If Binding.

Use oj-bind-for-each to Process Loop Instructions
Oracle JET supports processing loop instructions, such as binding items from an array by
using the oj-bind-for-each element and by importing the ojknockout module.

The oj-bind-for-each element only accepts a single template element as its direct child. Any
markup to be duplicated, such as li tags, must be placed inside the template tag. For
example, the following code sample shows an unordered list nested inside another unordered
list. The list items are created using an oj-bind-text tag inside nested oj-bind-for-each
elements.

<div id="form-container">

 <oj-bind-for-each data="[[categories]]">
 <template data-oj-as="category">

 <oj-bind-for-each data="[[category.data.items]]">
 <template data-oj-as="item">

 <oj-bind-text value="[[category.data.name + ' : ' + item.data]]"></oj-
bind-text>

 </template>
 </oj-bind-for-each>

 </template>
 </oj-bind-for-each>

</div>

Chapter 6
About Binding and Control Flow

6-10

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=if

In the above example, the data-oj-as attribute provides an alias for the bound data. This alias
is referenced in the nested oj-bind-for-each and oj-bind-text elements.

The script to create the viewModel for this example is shown below.

• TypeScript

• JavaScript

TypeScript

import 'ojs/ojknockout';
import "ojs/ojbutton";

class ViewModel {
 categories: Array<Object>;

 constructor() {
 this.categories =
 [{ name: "Fruit", items: ["Apple", "Orange", "Banana"] },
 { name: "Vegetables", items: ["Celery", "Corn", "Spinach"] }
];
 }
}

export = ViewModel;

JavaScript

define(["ojs/ojknockout", "ojs/ojbutton"],

 function () {

 function ViewModel() {

 this.categories =
 [{ name: "Fruit", items: ["Apple", "Orange", "Banana"] },
 { name: "Vegetables", items: ["Celery", "Corn", "Spinach"] }
];
 }

 return ViewModel;

 });

The figure below shows the output for the code sample.

Chapter 6
About Binding and Control Flow

6-11

The Oracle JET Cookbook contains the complete example used in this section. See Foreach
Binding.

Bind Style Properties
The Oracle JET attribute binding syntax also supports style attributes, which can be passed as
an object or set using dot notation. The ojknockout module must be imported.

The style attribute binding syntax accepts an object in which style properties should be
referenced by their JavaScript names. Apps can also set style sub-properties using dot
notation, which uses the CSS names for the properties. The code sample below shows two
block elements with style attributes. The first element binds a style object, while the second
binds properties directly to the defined style attributes.

<div id="demo-container">
 <div :style="[[style]]">Data bound style attribute</div>

 <div :style.color="[[fontColor]]" :style.font-style="[[fontStyle]]">Data bound style
using dot notation</div>
</div>

The script to create the viewModel for this example is shown below. The style object
referenced above is highlighted below.

• TypeScript

• JavaScript

TypeScript

import 'ojs/ojknockout';
import 'ojs/ojlabel';
import 'ojs/ojinputtext';

class ViewModel {
 fontColor = 'blue';
 fontStyle = 'italic';

Chapter 6
About Binding and Control Flow

6-12

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=foreach
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=foreach

 style = { fontWeight: 'bold',
 color: 'red' };
}

export = ViewModel;

JavaScript

define(["ojs/ojknockout", "ojs/ojlabel", "ojs/ojinputtext"],

 function () {

 function ViewModel() {

 this.fontColor = 'blue';
 this.fontStyle = 'italic';
 this.style = {
 fontWeight: 'bold',
 color: 'red'
 };
 }

 }

 return ViewModel;
});

The figure below shows the output for the code sample.

The Oracle JET Cookbook contains the complete example used in this section. See Style
Binding.

Bind Event Listeners to JET and HTML Elements
Oracle JET provides one-way attribute data binding for event listeners on JET and HTML
elements using the on-[eventname] syntax and by importing the ojknockout module.

Oracle JET event attributes provide two key advantages over native HTML event listeners.
First, they provide three parameters to the listener:

• event: The DOM event, such as click or mouse over.

• data: equal to bindingContext['$data']. When used in iterations, such as in an oj-bind-
for-each, this parameter is the same as bindingContext['$current'].

Chapter 6
About Binding and Control Flow

6-13

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=style
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=style

• bindingContext: The entire data binding context (or scope) that is applied to the element.

Second, they have access to the model state and can access functions defined in the
ViewModel using the data and bindingContext parameters.

Note:

The this context is not directly available in the event listeners. This is the same
behavior as native HTML event listeners.

For example, the following code sample shows an oj-button that uses the on-oj-action
event attribute and an HTML button that uses the on-click event attribute to access custom
functions defined in the ViewModel shown below.

<div id="demo-container">
 <oj-label for="button1">oj-button element</oj-label>
 <oj-button id="button1" on-oj-action="[[clickListener1]]">Click me!</oj-button>

 <label for="button2">HTML button element</label>

 <button id="button2" on-click="[[clickListener2]]">Click me!</button>

 <div style="font-weight:bold;color:#ea5b3f;">
 <oj-bind-text value="[[message]]"></oj-bind-text>
 </div>
</div>

Note:

HTML events use the prefix “on”, such as onclick and onload. JET events use the
prefix “on-”, such as on-click and on-load.

The script to create the view model for this example is shown below. Note the usage of the
data attribute to access the message parameter.

require(['ojs/ojbootstrap', 'knockout', 'ojs/ojbutton', 'ojs/ojlabel', 'ojs/ojknockout'],
 function(Bootstrap, ko)
 {
 function ViewModel()
 {
 this.message = ko.observable();

 this.clickListener1 = function(event, data, bindingContext)
 {
 data.message('oj-button is clicked');
 };

 this.clickListener2 = function(event, data, bindingContext)
 {
 data.message('HTML button is clicked');
 };
 }

 Bootstrap.whenDocumentReady().then(
 function ()
 {

Chapter 6
About Binding and Control Flow

6-14

 ko.applyBindings(new ViewModel(), document.getElementById('demo-container'));
 }
);
 });

The figure below shows the output for the code sample.

The Oracle JET Cookbook contains the complete example used in this section. See Event
Binding.

Bind Classes
The Oracle JET attribute binding syntax has enhanced support for the class attribute, and can
accept in addition to a string, an object or an array. This can be used to set classes on
components. The ojknockout module must be imported.

The :class attribute binding can support expressions that resolve to a space delimited string,
an Array of class names, or an Object of class to a boolean value or expression for toggling the
class in the DOM. Object values can be used to toggle classes on and off. Array and string
values can be used only to set classes.

For example, the following code sample shows an oj-input-text and an HTML input that
both use :class.

<oj-input-text id="input1"
 :class="[[{'oj-form-control-text-align-right': alignRight}]]"
 value="Text Content"></oj-input-text>
<oj-button id="button2" on-oj-action="[[clickListener2]]">Toggle Alignment</oj-button>

<input id="input2" :class="[[classArrayObs]]"

Chapter 6
About Binding and Control Flow

6-15

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=event
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=event

 value="Text Content" style="width:100%;max-width:18em"/>
<oj-button id="button1" on-oj-action="[[clickListener1]]">Add Class</oj-button>

The script to create the view model for this example is shown below.

require(['ojs/ojbootstrap', 'knockout', 'ojs/ojlabel', 'ojs/ojinputtext', 'ojs/
ojbutton', 'ojs/ojknockout'],
 function(Bootstrap, ko)
 {
 function ViewModel()
 {
 this.alignRight = ko.observable(false);
 this.classArrayObs = ko.observableArray();
 var classList = ['pink', 'bold', 'italic'];
 var self = this;

 this.clickListener1 = function(event, data, bindingContext) {
 var newClass = classList.pop();
 this.classArrayObs.push(newClass);

 // Disable the add button once we're out of classes
 if (classList.length === 0)
 document.getElementById('button1').disabled = true;
 }.bind(this);

 this.clickListener2 = function(event, data, bindingContext) {
 self.alignRight(!this.alignRight());
 }.bind(this);;
 }

 Bootstrap.whenDocumentReady().then(
 function ()
 {
 ko.applyBindings(new ViewModel(), document.getElementById('demo-container'));
 }
);
 });

The CSS class styles used by the classList variable above are shown below.

.bold {
 font-weight: bold;
}
.italic {
 font-style: italic;
}
.pink {
 color: #ff69b4;
}

The figure below shows the first of the two outputs for the code sample. The button acts as a
toggle to switch on and off the oj-form-control-text-align-right class property and hence
change the alignment of the text.

Chapter 6
About Binding and Control Flow

6-16

The figure below shows the second of the two outputs for the code sample. The button calls a
function to take a pre-defined array of classes and add them to the input element. Each class
has CSS modifications that come into effect when the class is added.

The Oracle JET Cookbook contains the complete example used in this section. See Class
Binding.

Chapter 6
About Binding and Control Flow

6-17

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=class
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=class

Add an Oracle JET Component to Your Page
Use the Oracle JET Cookbook recipes and API documentation to locate examples that
illustrate the specific element and functionality you want to add to your page.

If you haven't already, create the app that you will use for this exercise.

To add an Oracle JET custom element to your page:

1. Using the Oracle JET Cookbook, select the Oracle JET element that you want to add.

2. If you've set up your app using a Starter Template, or are using a page fragment, add the
element to the define block.

3. Follow the example’s recipe and add the markup to your HTML page. Modify the attributes
to your need.

<div id="div1">
 <oj-label for="dateTime">Default</oj-label>
 <oj-input-date-time id="dateTime" value='{{value}}'>
 </oj-input-date-time>

 Current component value is:
 <oj-bind-text value="[[value]]"></oj-bind-text>

</div>

In this example, the oj-input-date-time element is declared with its value attribute using
{{...}} expression syntax, which indicates that changes to the value will also update the
corresponding value in the ViewModel. Each Oracle JET custom element includes
additional attributes that are defined in the custom element's API documentation.

4. Use the Oracle JET Cookbook for example scripts and the syntax to use for adding the
custom element’s Require module and ViewModel to your RequireJS bootstrap file or
module.

For example, the basic demo for oj-input-date-time includes the following script that you
can use in your app.

require(['ojs/ojbootstrap, 'knockout', 'ojs/ojvalidation-base', 'ojs/ojknockout',
'ojs/ojdatetimepicker', 'ojs/ojtimezonedata', 'ojs/ojlabel'],
 require(['knockout', 'ojs/ojbootstrap',
 'ojs/ojconverterutils-i18n', 'ojs/ojknockout',
 'ojs/ojdatetimepicker', 'ojs/ojlabel'],

 function (Bootstrap, ko, ConverterUtilsI18n)
 {
 function SimpleModel()
 {
 this.value =
ko.observable(ConverterUtilsI18n.IntlConverterUtils.dateToLocalIso(new Date(2020, 0,
1)));
 }

 Bootstrap.whenDocumentReady().then(
 function ()
 {

Chapter 6
Add an Oracle JET Component to Your Page

6-18

 ko.applyBindings(new SimpleModel(), document.getElementById('div1'));
 }
);
 });

If you already have a RequireJS bootstrap file or module, compare your file with the
Cookbook sample and merge in the differences. For details about working with RequireJS,
see Use RequireJS for Modular Development.

The Cookbook sample used in this section is the Date and Time Pickers demo.

Add Animation Effects
You can use the oj-module component’s animation property in conjunction with the
ModuleAnimations namespace to configure animation effects when the user transitions
between or drills into views. If you’re not using oj-module, you can use the AnimationUtils
namespace instead to add animation to Oracle JET components or HTML elements.

Adding Animation Effects Using the oj-module Component

The ModuleAnimations namespace includes pre-configured implementations that you can use
to configure the following animation effects:

• coverStart: The new view slides in to cover the old view.

• coverUp: The new view slides up to cover the old view.

• drillIn: Animation effect is platform-dependent.

– Web and iOS: coverStart
– Android: coverUp

• drillOut: Animation effect is platform-dependent.

– Web and iOS: revealEnd
– Android: revealDown

• fade: The new view fades in and the old view fades out.

• goLeft: Navigate to sibling view on the left. Default effect is platform-dependent.

– Web and iOS: none

– Android: pushRight
• goRight: Navigate to sibling view on the right. Default effect is platform-dependent.

– Web and iOS: none

– Android: pushLeft
• pushLeft: The new view pushes the old view out to the left.

• pushRight: The new view pushes the old view out to the right.

• revealDown: The old view slides down to reveal the new view.

• revealEnd: The new view slides left or right to reveal the new view, depending on the
locale.

• zoomIn: The new view zooms in.

• zoomOut: The old view zooms out.

Chapter 6
Add an Oracle JET Component to Your Page

6-19

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=dateTime&demo=simple
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/ModuleAnimations.html

For examples that illustrate how to add animation with the oj-module component, see
Animation Effects with Module Component.

Adding Animation Effects Using AnimationUtils

The AnimationUtils namespace includes methods that you can use to configure the following
animation effects on HTML elements and Oracle JET components:

• collapse: Use for collapsing the element

• expand: Use for expanding the element

• fadeIn and fadeOut: Use for fading the element into and out of view.

• flipIn and flipOut: Use for rotating the element in and out of view.

• ripple: Use for rippling the element.

• slideIn and slideOut: Use for sliding the element into and out of view.

• zoomIn and zoomOut: Using for zooming the element into and out of view.

Depending on the method’s options, you can configure properties like delay, duration, and
direction. For examples that illustrate how to configure animation using the AnimationUtils
namespace, see Animation Effects.

Manage the Visibility of Added Component
Follow the recommended best practice when you programmatically manage the display of
Oracle JET components in the DOM.

If you manage the display of collection components and other complex component by using
the CSS display property values of none or block, you may also need to use
Components.subtreeHidden(node) when you hide a component and
Components.subtreeShown(node) when you display the component. The node parameter
refers to the root of the subtree in the DOM for the component that you are hiding or
displaying. You need to notify Oracle JET if you change the display status of these types of
component to ensure that the component instance continues to work correctly in the app.

Not all components where you programmatically manage the display require you to notify
Oracle JET when you change their display state. Components such as oj-collapsible, oj-
dialog, and oj-popup are examples of components where you do not need to call
Components.subtreeHidden(node) or Components.subtreeShown(node). These components
manage rendering when visibility is changed and also manage any components that they
contain. Similarly, you do not need to use these methods in conjunction with the oj-bind-if
component because Oracle JET rewrites the appropriate part of the DOM in response to the
evaluation of the oj-bind-if component’s test condition.

Failure to use the subtreeHidden and subtreeShown methods to notify Oracle JET when you
hide or show a component can result in unexpected behavior for the component, such as
failure to render data or failure to honor other component attribute settings. For more
information about the subtreeHidden and subtreeShown methods, see API Reference for
Oracle® JavaScript Extension Toolkit (Oracle JET).

Chapter 6
Add an Oracle JET Component to Your Page

6-20

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=ModuleElement&demo=specificAnimation
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/AnimationUtils.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=animation&demo=effects
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

7
Work with Oracle JET User Interface
Components

Oracle JET provides a variety of user interface (UI) components that you can configure for use
in your app. The Oracle JET Cookbook includes an example of each component for working
with collections, controls, forms, visualizations, and other features.

About Oracle JET User Interface Components
Oracle JET currently has two sets of UI components. The first set with components that use
the oj- namespace are packaged in @oracle/oraclejet and date back to the initial releases
of Oracle JET. The newer Core Pack components, introduced in January 2023 with release
14.0.0 of Oracle JET, use the oj-c- namespace and are packaged in @oracle/oraclejet-
core-pack.

Core Pack components represent the future of JET. The JET team are rewriting all the existing
JET UI components from scratch using Preact, a modern virtual DOM rendering library that
uses React design and composition principles. The JET 14 release delivers the first set of
these newer Core Pack components. This component set will grow over the coming years until
all existing components have been re-created as Core Pack components. The JET team will
also be introducing new UI components to the Core Pack component set during the same
period.

JET's existing set of UI components, now referred to as Legacy components, has served the
JET community and its app developers well for the last 10 years. The Legacy components,
using the oj- namespace, will run side-by-side with the newer Core Pack components, using
the oj-c- namespace in the same JET apps. The APIs are similar, if not identical in many
cases. The newer Core Pack was created with the intention of allowing for updates and
changes to APIs that don't make sense going forward, without disrupting your existing
application code. As a developer, you can choose when you want to move to the new
components as part of your regular development cycle.

You might ask why you should move to these components at all. The main reason is
performance. Rendering performance is significantly improved with the Core Pack
components. While a new component set will not automatically change the overall
performance of your app, the render time can definitely make your apps look and feel more
responsive to your customer. The second reason to use the Core Pack component set is that
all future new components will be delivered as part of it. We will not be developing new Legacy
UI components (oj-) in the future.

Each new Core Pack component includes an example implementation in the Oracle JET

Cookbook and an entry in the API documentation. A badge identifies these
implementations and entries.

7-1

For details about how to work with the Core Pack components, any short-term limitations, and
migration information, see Core Pack in the API documentation.

Work with Collections
Use Oracle JET data collection components to display data in tables, data grids, list views, or
trees.

The Oracle JET data collection components include oj-table, oj-data-grid, oj-tree, and
oj-list-view, and you can use them to display records of data. oj-table and oj-data-grid
both display data in rows and columns, and your choice of component depends upon your use
case. Use oj-tree-view to display hierarchical data such as a directory structure and oj-
list-view to display a list of data. The toolkit also includes pagination and row expanders that
display hierarchical data in a data grid or table row.

The Oracle JET Cookbook's Collections category and API Reference for Oracle® JavaScript
Extension Toolkit (Oracle JET) include complete demos and examples for using the collection
components.

Note:

If you programmatically control the display of a collection component, such as oj-
table, review Manage the Visibility of Added Component.

Chapter 7
Work with Collections

7-2

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/CorePackOverview.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootCollections
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

Choose a Table, Data Grid, or List View
Oracle JET provides the oj-table, oj-data-grid, and oj-list-view components to display
data in rows and columns. This section helps you decide which component to use in your app.

The oj-table component displays records of data on a row basis. It's best used when you
have simple data that can be presented as rows of fields, and it should be your first choice as it
provides a simpler layout to represent the data and also supports most of the common
features, unless you require advanced features. A selection in the table provides you with the
row of data and all of the fields in that row or record. The sizing of the table is based on the
content itself. The height and width of the cells is adjusted for the content included. You can
write templates using oj-table elements such as tr, td, th, and so on. Also consider making
use of the oj-table component’s layout attribute that enables you to change column sizing
based on fixed values or content size. See the oj-table component’s Column Layouts demo
in the Oracle JET Cookbook.

The oj-data-grid is designed to provide grid functionality. It provides the ability to select
individual or ranges of cells of data. It's best used when you need to display totals or tallies of
data across columns or rows of data. The oj-data-grid is designed to be much more flexible
in its layout and functionality than the oj-table component. It's a low-level component that you
can shape in your app to how you want the data to be displayed. The overall size of the data
grid is not determined by its content, and the developer specifies the exact height and width of
the container. The data grid acts as a viewport to the contents, and unlike a table its size is not
determined by the size of the columns and rows. With this custom HTML oj-data-grid
element, you can host the template content inside it.

The oj-list-view element displays a list of data or a list of grouped data. It is best used when
you need to display a list using an arbitrary layout or content. You can also use oj-list-view
to display hierarchical data that contains nested lists within the root element.

The table below provides a feature comparison of the oj-table, oj-data-grid, and oj-list-
view components.

Feature oj-table oj-data-grid oj-list-view

Column/Row sizing Controlled by content or
fixed by CSS styles. All
CSS sizing strings are
supported for width and
height.

Controlled by cell
dimensions. Does not
support percent values
for width and height.

No

User-resizable column Yes Yes No

User-resizable row No Yes No

Row reordering No Yes No

Column sorting Yes Yes No

Column selection Yes Yes No

Row sorting No Yes No

Row selection Yes Yes Yes

Cell selection No Yes No

Marquee selection No Yes No

Row header support No Yes No

Chapter 7
Work with Collections

7-3

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=table&demo=columnLayouts

Feature oj-table oj-data-grid oj-list-view

Freeze columns Yes

Use the frozenEdge
property to freeze a
column to the start or
end of the table.

No No

Pagination Yes Yes Yes

Scrolling (high water
mark / infinite scrolling)

Yes, when end of table
reached (or document
size). See note at the
end about virtual
scrolling.

Yes, when data grid
column / row count
reached (see note about
virtual scrolling option)

Yes, when end of list
reached (or document
size) See note at the end
about virtual scrolling.

Custom cell templates Yes Yes No

Custom row templates Yes No Yes

Custom cell renderers Yes Yes No

Custom row renderers Yes No Yes

Row expander support Yes No No

Cell stamping Yes Yes No

Cell merging No Yes No

Render aggregated
cubic data

No Yes No

Custom footer template Yes (provides access to
column data for passing
to a JavaScript function)

Yes No

Cell content editing Yes Yes No

Content filtering Yes Yes No

KeySet API support Yes No Yes

Note:

True virtual scrolling is available as a feature of oj-data-grid. Modern design
principles should be considered and implemented before implementing virtual
scrolling. It is much more desirable to present the end user with a filtered list of data
that will be more useful to them, than to display thousands of rows of data and expect
them to scroll through it all. True virtual scrolling means that you can perform
scrolling in both horizontal and vertical directions with data being added and removed
from the underlying DOM. High water mark scrolling (with lazy loading) is the
preferred method of scrolling, and you should use it as a first approach.

In the case of oj-table and oj-list-view, you can set scroll-policy-
options.scroller to specify the document size as the maximum scroll position
before the next data fetch occurs. This is particularly useful when your app runs in a
mobile device where the table or list occupies the entire screen.

KeySet objects are used to represent the selected items in a component. The collection
components generally uses an array for the selected items or an object that defines the range
of selected items. You can modify these components to use a KeySet object that handles the

Chapter 7
Work with Collections

7-4

representation of selected items. Note that the Data Grid component does not currently
support KeySet object referencing for the selected items. The oj-list-view component can
use KeySet to determine the selected items. The oj-table component can use KeySet to
determine the selected items for the rows or columns. If both values are specified, then row will
take precedence and column will be reset to an empty KeySet.

About DataProvider Filter Operators
The DataProvider interface is used to get runtime data for JET components that display list of
items. DataProvider implementations use filter operators for filtering.

You can specify two types of filters:

• Attribute Filter: Provides filters with the functionality of attribute operator filtering.

interface AttributeFilter<D> extends AttributeFilterDef<D>{
 filter(item: D, index?: number, array?: Array<D>): boolean;
}
type Filter<D> = AttributeFilter<D> | CompoundFilter<D>;

type RecursivePartial<T> = {
 [P in keyof T]?:
 T[P] extends (infer U)[] ? RecursivePartial<U>[] :
 T[P] extends object ? RecursivePartial<T[P]> :
 T[P];
};

interface AttributeFilterDef<D> {
 readonly op: AttributeFilterOperator.AttributeOperator;
 readonly attribute?: keyof D;
 readonly value: RecursivePartial<D>;
}

type AttributeFilterAttributeExpression = '*';

• Compound Filter: Provides filter operators for compound operations.

interface CompoundFilter<D> extends CompoundFilterDef<D>, BaseFilter<D> {
}

interface CompoundFilterDef<D> {
 readonly op: CompoundFilterOperator.CompoundOperator;
 readonly criteria: Array<AttributeFilterDef<D> | CompoundFilterDef<D>>;
}

Filter definition which filters on DepartmentId value 10:

{op: '$eq', value: {DepartmentId: 10}}
Filter definition which filters on DepartmentId value 10 and DepartmentName is Hello:

{op: '$eq', value: {DepartmentId: 10, DepartmentName: 'Hello'}}
Filter definition which filters on subobject Location where State is California and
DepartmentName is Hello:

{op: '$eq', value: {DepartmentName: 'Hello', Location: {State: 'California'}}}

Chapter 7
Work with Collections

7-5

For additional detail and the complete list of operators that you can use with Attribute filters,
see the AttributeFilterDef API documentation.

For additional detail and the complete list of operators that you can use with Compound filters,
see the CompoundFilterDef API documentation.

Work with Controls
Oracle JET includes buttons, menus, and container elements to control user actions or display
progress against a task. For HTML elements such as simple lists, you can use the standard
HTML tags directly on your page, and Oracle JET will apply styling based on the app's chosen
theme.

For example, you can use the oj-button element as a standalone element or include in oj-
buttonset , oj-menu, and oj-toolbar container elements.

Navigation components such as oj-conveyor-belt, oj-film-strip, and oj-train use visual
arrows or dots that the user can select to move backward or forward through data.

To show progress against a task in a horizontal meter, you can use the oj-progress-bar
element. To show progress against a task in a circle, you can use the oj-progress-circle
element.

The Oracle JET Cookbook's Controls category and API Reference for Oracle® JavaScript
Extension Toolkit (Oracle JET) include complete demos and examples for using Oracle JET
controls.

Work with Forms
Oracle JET includes classes to create responsive form layouts and components that you can
add to your form to manage labels, form validation and messaging, input, and selection. The
input components also include attributes to mark an input as disabled or read-only when
appropriate.

The Oracle JET Cookbook's Forms category and API Reference for Oracle® JavaScript
Extension Toolkit (Oracle JET) includes complete demos and examples for using forms.

Important:

When working with forms, use the HTML div element to surround any Oracle JET
input components. Do not use the HTML form element because its postback
behavior can cause unwanted page refreshes when the user submits or saves the
form.

Work with Layout and Navigation
Use the Oracle JET oj-accordian, oj-collapsible, oj-dialog, oj-drawer-*, oj-flex*, oj-
navigation-list, oj-panel, oj-popup, oj-size*, and oj-tab-bar components and patterns
to control the initial data display and allow the user to access additional content by expanding
sections, selecting tabs, or displaying dialogs and popups.

The Oracle JET Cookbook's Layout and Navigation category and API Reference for Oracle®
JavaScript Extension Toolkit (Oracle JET) include complete demos and examples for using the
layout and navigation components.

Chapter 7
Work with Controls

7-6

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/AttributeFilterDef.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/CompoundFilterDef.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootControls
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootForms
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootLayoutNav
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

For information about the flex layout (oj-flex*) and responsive grid (oj-size) classes, see
Design Responsive Apps.

Work with Visualizations
The Oracle JET visualization components include charts, gauges, and other components that
you can use and customize to present flat or hierarchical data in a graphical display for data
analysis.

Choose a Data Visualization Component for Your App
The visualization components include charts, gauges, and a variety of other visualizations
including diagrams, timelines, thematic maps, and so on that you can use for displaying data.
You may find the following usage suggestions helpful for determining which visualization to use
in your app.

Charts

Charts show relationships among data and display values as lines, bars, and points within
areas defined by one or more axes.

Chart Type Image Description Usage Suggestions

Area Displays series of data whose values are
represented by filled-in areas. Areas can be
stacked or unstacked. The axis is often labeled
with time periods such as months.

Use to show cumulative trends over time, such
as sales for the last 12 months.

Area charts require at least two groups of data
along an axis.

If you are working with multiple series and
want to display unstacked data, use line or line
with area charts to prevent values from being
obscured.

Bar Displays data as a series of rectangular bars
whose lengths are proportional to the data
values. Bars display vertically or horizontally
and can be stacked or unstacked.

Use to compare values across products or
categories, or to view aggregated data broken
out by a time period.

Box Plot Displays the minimum, quartiles, median, and
maximum values of groups of numerical data.
Groups display vertically or horizontally. You
can also vary the box width to make the width
of the box proportional to the size of the group.

Use to analyze the distribution of data. Box
plots are also called box and whisker
diagrams.

Bubble Displays three measures using data markers
plotted on a two-dimensional plane. The
location of the markers represents the first and
second measures, and the size of the data
markers represents the proportional values of
the third measure.

Use to show correlations among three types of
values, especially when you have a number of
data items and you want to see the general
relationships.

For example, use a bubble chart to plot
salaries (x-axis), years of experience (y-axis),
and productivity (size of bubble) for your work
force. Such a chart enables you to examine
productivity relative to salary and experience.

Chapter 7
Work with Visualizations

7-7

Chart Type Image Description Usage Suggestions

Combination Displays series of data whose values are
represented by a combination of bars, lines, or
filled-in areas.

Combination charts are commonly configured
as lines with bars for lines with stacked bars.

For example, you can use a line to display
team average rating with bars to represent
individual team member ratings on a yearly
basis.

Funnel Visually represents data related to steps in a
process as a three-dimensional chart that
represents target and actual values, and levels
by color. The steps appear as vertical slices
across a horizontal cone-shaped section. As
the actual value for a given step or slice
approaches the quota for that slice, the slice
fills.

Use to watch a process where the different
sections of the funnel represent different
stages in the process, such as a sales cycle.

The funnel chart requires actual values and
target values against a stage value, which
might be time.

Line Displays series of data whose values are
represented by lines.

Use to compare items over the same time.

Charts require data for at least two points for
each member in a group. For example, a line
chart over months requires at least two
months. Typically a line of a specific color is
associated with each group of data such as the
Americas, Europe, and Asia.

Lines should not be stacked which can
obscure data. To display stacked data, use
area or line with area charts.

Line with Area Displays series of data whose values are
represented as lines with filled-in areas.

Use for visualizing trends in a set of values
over time and comparing those values across
series.

Pie Represents a set of data items as proportions
of a total. The data items are displayed as
sections of a circle causing the circle to look
like a sliced pie.

Use to show relationship of parts to a whole
such as how much revenue comes from each
product line.

Consider treemaps or sunbursts if you are
working with hierarchical data or you want your
visual to display two dimensions of data.

Polar Displays series of data on a polar coordinate
system. The polar coordinate system can be
used for bar, line, area, combination, scatter,
and bubble charts. Polygonal grid shape
(commonly known as radar) is supported for
polar line and area charts.

Use to display data with a cyclical x-axis, such
as weather patterns over months of the year,
or for data where the categories in the x-axis
have no natural ordering, such as performance
appraisal categories.

Chapter 7
Work with Visualizations

7-8

Chart Type Image Description Usage Suggestions

Pyramid Displays values as slices in a pyramid. The
area of each slice represents its value as a
percentage of the total value of all slices.

Use to display hierarchical, proportional and
foundation-based relationships, process steps,
organizational layers, or topics
interconnections.

Range Displays a series of data whose values are
represented either as an area or bar
proportional to the data values.

Use to display a range of temperatures for
each day of a month for a city.

Scatter Displays two measures using data markers
plotted on a two-dimensional plane.

Use to show correlation between two different
kinds of data values, such as sales and costs
for top products. Scatter charts are especially
useful when you want to see general
relationships among a number of items.

Spark Display trends or variations as a line, bar,
floating bar, or area. Spark charts are simple
and condensed.

Use to provide additional context to a data-
dense display. Sparkcharts are often displayed
in a table, dashboard, or inline with text.

Stock Display stock prices and, optionally, the volume
of trading for one or more stocks. When any
stock or candlestick chart includes the volume
of trading, the volume appears as bars in the
lower part of the chart.

Gauges

Gauges focus on a single value, displayed in relation to minimum, maximum, or threshold
values.

Gauge Type Image Description Usage Suggestions

LED Graphically depicts a measurement, such as a
key performance indicator (KPI). Several styles
of shapes are available, including round or
rectangular shapes that use color to indicate
status, and triangles or arrows that point up,
left, right, or down in addition to the color
indicator.

Use to highlight a specific metric value in
relation to its threshold.

Chapter 7
Work with Visualizations

7-9

Gauge Type Image Description Usage Suggestions

Rating Displays and optionally accepts input for a
metric value.

Use to show ratings for products or services,
such as the star rating for a movie.

Status Meter Displays a metric value on a horizontal,
vertical, or circular axis. An inner rectangle
shows the current level of a measurement
against the ranges marked on an outer
rectangle. Optionally, status meters can display
colors to indicate where the metric value falls
within predefined thresholds.

Other Data Visualizations

Other data visualizations include maps, timelines, Gantt charts and various other components
that don’t fit into the chart or gauge category.

Data
Visualization
Component

Image Description Usage Suggestions

Diagram Models, represents, and visualizes information
using a shape called a node to represent data,
and links to represent relationships between
nodes.

Use to highlight both the data objects and the
relationships between them.

Gantt Displays bars that indicate the start and end
date of tasks.

Use to display project schedules.

Legend Displays a panel which provides an
explanation of the display data in symbol and
label pairs.

Consider using the legend component when
multiple visualizations on the same page are
sharing a coloring scheme. For an example
using ojLegend with a bubble chart, see Use
Attribute Groups With Data Visualization
Components.

Chapter 7
Work with Visualizations

7-10

Data
Visualization
Component

Image Description Usage Suggestions

NBox Displays data items across two dimensions.
Each dimension can be split into multiple
ranges, whose intersections result in distinct
cells representing data items.

Use to visualize and compare data across a
two-dimensional grid, represented visually by
rows and columns.

PictoChart Uses stamped images to display discrete data
as a visualization of an absolute number or the
relative size of different parts of a population.

Common in infographics. Use when you want
to use icons to:

• visualize a discrete value, such as the
number of people in a sample that meets
a specified criteria.

• highlight the relative sizes of the data,
such as the number of people belonging to
each age group in a population sample.

Sunburst Displays quantitative hierarchical data across
two dimensions, represented visually by size
and color. Uses nodes to reference the data in
the hierarchy. Nodes in a radial layout, with the
top of the hierarchy at the center and deeper
levels farther away from the center.

Use for identifying trends for large hierarchical
data sets, where the proportional size of the
nodes represents their importance compared
to the whole. Color can also be used to
represent an additional dimension of
information.

Use sunbursts to display the metrics for all
levels in the hierarchy.

Tag Cloud Displays textual data where font style and size
emphasizes the importance of each data item.

Use for quickly identifying the most prominent
terms to determine their relative importance.

Thematic Map Displays data that is associated with a
geographic location.

Use to show trends or patterns in data with a
spatial element to it.

Time Axis Displays a range of dates based on specified
start and end dates and a time scale.

Use when you want to fulfil certain Gantt use
cases. This component is intended to be
stamped inside Table or Data Grid
components.

Chapter 7
Work with Visualizations

7-11

Data
Visualization
Component

Image Description Usage Suggestions

Timeline Displays a set of events in chronological order
and offers rich support for graphical data
rendering, scale manipulation, zooming,
resizing, and objects grouping.

Use to display time specific events in
chronological order.

Treemap Displays quantitative hierarchical data across
two dimensions, represented visually by size
and color. Uses nodes to reference the data in
the hierarchy. Nodes are displayed as a set of
nested rectangles.

Use for identifying trends for large hierarchical
data sets, where the proportional size of the
nodes represents their importance compared
to the whole. Color can also be used to
represent an additional dimension of
information

Use treemaps if you are primarily interested in
displaying two metrics of data using size and
color at a single layer of the hierarchy.

For examples that implement visualization components, see the Oracle JET Cookbook at Data
Visualizations.

Note:

To use an Oracle JET data visualization component, you must configure your app to
use RequireJS. For details about adding RequireJS to your app, Use RequireJS in an
Oracle JET App.

Use Attribute Groups With Data Visualization Components
Attribute groups allow you to provide stylistic values for color and shape that can be used as
input for supported data visualization components, including bubble and scatter charts,
sunbursts, thematic maps, and treemaps. In addition, you can share the attribute values across
components, such as a thematic map and a legend, using an attribute group handler.

Using attribute groups is also one way that you can easily provide visual styling for data
markers for a given data set. Instead of manually choosing a color for each unique property
and setting a field in your data model, you can use an attribute group handler to get back a
color or shape value given a data value. Once an attribute group handler retrieves a color or
shape value given a data value, all subsequent calls that pass in the same data value will
always return that color or shape.

Oracle JET provides the following classes that you can use for adding attribute groups to your
data visualization components:

• ColorAttributeGroupHandler: Creates a color attribute group handler that will generate
color attribute values.

Colors are generated using the values in the .oj-dvt-category-index* tag selectors.

Chapter 7
Work with Visualizations

7-12

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootVisualizations
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootVisualizations

• ShapeAttributeGroupHandler: Creates a shape attribute group handler that will generate
shape attribute values.

Supported shapes include square, circle, human, triangleUp, triangleDown, diamond,
and plus.

You can see the effect of applying attribute groups to a bubble chart in the following figure. In
this example, the shape of the markers (round, diamond, and square) indicates the year for
which the data applies. The color differentiates the brand. The example also uses the Legend
data visualization component to provide a legend for the bubble chart.

The bubble chart's legend uses the same attribute group handlers for color and shape.

The Oracle JET Cookbook provides the complete code for implementing bubble charts at
Bubble Charts.

You can also initialize an attribute group with match rules which consist of a map of key value
pairs for categories and the matching attribute values. For example, if you wanted to specify
colors for specific categories instead of using the default colors, you could define the color
attribute group with match rules.

var colorHandler = new ColorAttributeGroupHandler({"soda":"#336699",
 "water":"#CC3300",
 "iced tea":"#F7C808"});

For detailed information about ColorAttributeGroupHandler, see the
ColorAttributeGroupHandler API documentation. For more information about
ShapeAttributeGroupHandler, see the ShapeAttributeGroupHandler API documentation.

Chapter 7
Work with Visualizations

7-13

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=bubbleChart&demo=default
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ColorAttributeGroupHandler.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ShapeAttributeGroupHandler.html

8
Work with Oracle JET Web Components

Oracle JET Web Components are reusable pieces of user interface code that you can embed
as custom HTML elements. Web Components can contain Oracle JET components, other Web
Components, HTML, JavaScript, and CSS. You can create your own Web Component or add
one to your page.

Design Custom Web Components
Oracle JET Web Components are custom components that include multiple component types.
Web components that you create can be used in your app or they can be uploaded to Oracle
Component Exchange to share with other developers.

The variety of component types supported by Oracle JET and Oracle Component Exchange
are:

• Standalone Web Components are classic UI components with some kind of UI along with
a defined set of properties, methods, events and slots. They can represent everything from
a simple better-button type of widget all the way to a super complex whole page
component such as a calendar.

• Pack components, also called a JET Pack, represents a versioned stripe of related
components designed to be used together. When consumers pick up a component that is a
member of a JET Pack they associate their app with the version of the pack as a whole,
not the individual components within it. The JET Pack simplifies the setup of such projects
and the dependency management as a whole.

• Resource components are re-usable libraries of assets used by Web Components
contained in JET Packs. Resource components typically contain things like shared images,
resource bundles, utility classes and so forth. A resource component has no hard and fast
predefined structure so can contain anything that you want. However, it does not itself
provide any UI components. Instead conventional standalone components would depend
on one of these for shared resources. We only expect resource components to be used in
concert with JET Packs.

• Reference components define a look-up reference to third party code. As such, reference
components are a pointer to that code either as a NPM module and/or as a CDN location.
Reference components don't actually include the third party libraries, they just point to it.

You can create standalone Web Components to support your specific app needs. You can also
create sets of Web Components that you intend to be used together and assemble those in a
JET Pack, or pack component type. The pack component contains the Web Components and
configuration files that define the version stripe of each component in the pack. When Web
Components are part of a pack, changes to their definition file are required to differentiate them
from the same component used as a standalone component.

Tip:

When you assemble components into a small number of packs, from the consumer's
point of view, it makes path setup and dependency management much simpler.

8-1

You can enhance JET Pack components by using resource components when you have re-
usable libraries of assets that are themselves not specifically UI components. The resource
component structure is flexible so you add anything that you want, such as shared images,
resource bundles, utility classes and so forth.

If you need to reference third-party code in a Web Component, you can create a reference
component. The reference component doesn't include any third-party libraries, but it can define
a pointer to that code either as a NPM module and/or as a CDN location. Although it is
possible to embed third party library code into the packaged distribution of a given component,
by separating it out you get two particular benefits:

• The dependency is clear and declared up front. This is an important consideration for
organizations that care about third party liability and license usage. It also makes reacting
to security vulnerabilities in third party code much easier.

• You can maximize re-use of these libraries - particularly with common libraries, such as
moment.js.

The only component type that is not allowed in packs are reference components.

When creating JET Packs it is important to think about how their components can evolve over
time in relation to the consuming apps. A common mistake is to start out syncing the
component version numbers to the version number of the primary consuming app. This
relationship can break down, however, for example when a breaking API change in one of your
components forces a major version change which now takes you out of sync. The best practice
is to adopt Semantic Versioning (SemVer) of components from the start and not to sync
versions with the consuming app. Take the time to understand how SemVer works, particularly
in relation to re-release versions. For more information, see Version Numbering Standards.

You should maintain the source code for your component sets separately from the apps that
will consume them. Remember that components will evolve over time at a separate rate from
the consuming app so having the source code decoupled into a separate source code project
and repository makes a huge amount of sense.

The recommended project layout for your component source project is based on the default
project layout created by Oracle JET CLI tooling. The JET CLI supports the creation of
TypeScript components as well as standard ES6 based components. If you follow adhere to
the project layout generated by JET tooling, then you derive the following tooling benefits:

• Automatic creation of the correct requireJS path mappings for your components and their
upstream dependencies when testing within the context of this component source project

• Support for live editing when using the ojet serve command (both JS and TS
components)

• Auto transpilation of Typescript based components to ES6

• Automatic creation of both debug and minified components by the ojet build command

• Automatic creation of component bundles for JET Packs where bundling is specified

• Ability to directly publish to the Component Exchange using the ojet publish component
command

• Ability to directly package your components into distributable zip files using the ojet
package component command

About Web Components
Oracle JET Web Components are packaged as standalone modules that your app can load
using RequireJS. The framework supplies APIs that you can use to register Web Components.

Chapter 8
About Web Components

8-2

Knockout currently provides one and two way data binding, template markup, and Web
Component activation.

If you are new to Web Components and would like to learn more, visit this Oracle Blogs page
for a series of articles that will introduce you to important concepts: https://blogs.oracle.com/
groundside/cca.

Web Component Architecture

The following image shows a high-level view of the JET Web Component architecture. In this
example, an Oracle JET app is consuming the Web Component, but you can add Web
Components to other JavaScript or Oracle apps where supported.

Web Components contain:

• A custom DOM element: Named element that functions as a HTML element.

<my-web-component attribute1="value1" attribute2="value2" ...>
</my-web-component>

• Web Component binding definition: Knockout expression for setting Web Component
attributes.

<my-web-component attribute1="value1" attribute2="[[value2]]"
attribute3="{{value3}}">
</my-web-component>

attribute1’s value can be a primitive JavaScript type (boolean, number, string) or a JSON
object, attribute2’s value uses one way data binding, and attribute3 ‘s value uses a
two way binding. One way bindings on Web Components specify that the expression will
not update the app’s ViewModel if the value changes. In two way bindings, the expression
will update and the value written back to the app’s ViewModel.

In the following code sample, the Web Component is declared with three attributes: type,
data, and axis-labels.

<my-chart type=bubble data="[[salesData]]" axis-
labels={{showAxisLabels}} ... </my-chart>

Chapter 8
About Web Components

8-3

https://blogs.oracle.com/groundside/cca
https://blogs.oracle.com/groundside/cca

Because the salesData expression is declared using one way binding ([[salesData]]), it
will not be written back to if the data property is updated by the Web Component's
ViewModel. The data property will contain the current value, but the salesData expression
will not be updated. Alternatively, if the axisLabels property is updated by the ViewModel,
both the axisLabel property and the {{showAxisLabels}} expression will contain the
updated value.

• Metadata: Data provided in JSON format which defines the Web Component’s required
properties: name, version, and jetVersion. Metadata may also define optional properties,
including description, displayName, dependencies, icon, methods, events, and slots.

Web Components support both runtime and design time metadata. Design time metadata
isn’t required at runtime and is useful for design time tools and property editors. Design
time tools can define tools-specific metadata extensions to the Web Component’s
metadata. For any tool-specific metadata extensions, refer to the documentation for that
specific tool. For additional information about metadata properties, see Composite in the
API documentation.

The following sample shows some of the available metadata fields with descriptions of
their content and whether they are not used at run time. Required metadata are highlighted
in bold.

{
 "name": "The component tag name",
 "version": "The component version. Note that changes to the metadata
even for minor updates like updating the jetVersion should result in at
least a minor Web Component version change, e.g. 1.0.0 -> 1.0.1.",
 "jetVersion": "The semantic version of the supported JET version(s). Web
Component authors should not specify a semantic version range that
includes unreleased JET major versions as major releases may contain non
backwards compatible changes. Authors should instead recertify Web
Components with each major release and update the component metadata or
release a new version that is compatible with the new release changes.",
 "description": "A high-level description for the component. Not used at
run time.",
 "displayName": "A user friendly, translatable name of the component. Not
used at run time.",

 "properties": {
 "property1": {
 "description": "A description for the property. Not used at run
time.",
 "displayName": "A user friendly, translatable name of the property.
Not used at run time.",
 "readOnly": "Boolean that determines whether a property can be
updated outside of the ViewModel. False by default.",
 "type": "The type of the property, following Google's Closure Compiler
syntax.",
 "value": "Object containing an optional default value for a
property.",
 "writeback": "Boolean that determines whether an expression bound to
this property should be written back to. False by default.",
 "enumValues": "An optional array of valid enum values for a string
property. An error is thrown if a property value does not match one of the
provided enumValues.",
 "properties": "A nested properties object for complex properties.
Subproperties exposed using nested properties objects in the metadata can

Chapter 8
About Web Components

8-4

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Composite.html
https://docs.npmjs.com/about-semantic-versioning
https://developers.google.com/closure/compiler/docs/js-for-compiler#types

be set using dot notation in the attribute. See the Subproperties section for
more details on working with subproperties."
 },

 "property2": {
 ... contents omitted
 }
 },

 "methods": {
 "method1": {
 "description": "A description for the method. Not used at run time.",
 "displayName": "A user friendly, translatable name of the method.
Not used at run time.",
 "internalName": "An optional ViewModel method name that is different
from, but maps to this method.",
 "params": "An array of objects describing the method parameter . Not
used at run time.",
 "return": "The return type of the method, following Closure Compiler
syntax. Not used at run time."
 },
 "method2": {
 ... contents omitted
 }
 },

 "events": {
 "event1": {
 "bubbles": "Boolean that indicates whether the event bubbles up
through the DOM or not. Defaults to false. Not used at run time.",
 "cancelable": "Boolean that Indicates whether the event is
cancelable or not. Defaults to false. Not used at run time.",
 "description": "A description for the event. Not used at run time.",
 "displayName": "A user friendly, translatable name of the method.
Not used at run time.",
 "detail": {
 "field name": "Describes the properties available on the event's
detail property which contains data passed when initializing the event.
Not used at run time."
 }
 },
 "event2": {
 ... contents omitted
 }
 },

 "slots": {
 "slot1": {
 "description": "A description for the slot. Not used at run time.",
 "displayName": "A user friendly, translatable name of the method.
Not used at run time."
 }
 }
}

Chapter 8
About Web Components

8-5

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Composite.html#subproperties

• HTML markup: (Required) Contains the View definition which describes how to render the
Web Component. The Web Component's View has access to several $ variables along
with any public variables defined in the Web Component's ViewModel. Some of the
variables that can be used in the Web Component's View are:

Variables Description

$properties A map of the Web Component's current property
values

$slotCounts A map of slot names containing a number of
associated child nodes assigned to that slot

$unique A unique string value provided for every
component instance that can be used for unique
ID generation

$uniqueId The ID of the Web Component, if specified.
Otherwise, it is the same as unique

$props Deprecated since 5.0.0, use $properties
instead

$slotNodeCounts Deprecated since 5.0.0, use $slotCounts
instead

• JavaScript: Optional script for defining the ViewModel and custom events.

The ViewModel is also where you define callbacks for various stages of the Web
Component’s lifecycle. Web Components support the following optional lifecycle methods:
activated (context), connected (context), bindingsApplied (context),
propertyChanged (context), and disconnected (element). For more information on
lifecycle methods, see Composite - Lifecycle.

• CSS: Optional styling for the Web Component.

CSS is not scoped to Web Components, and you must define styles appropriately.

• SCSS: Optional files containing Sass variables to generate the Web Component’s CSS.

If you’re defining only a few styles for your component, then adding the CSS manually may
be sufficient. However, there may be use cases where you want to use Sass variables to
generate the CSS. In those cases, create and place the SCSS files in the Web
Component’s folder and use the tooling to add node-sass to your app. See Step 8 -
Creating Web Components.

Important:

You must add the Sass files manually to the Web Component’s folder. The
tooling will compile any Sass files if they exist, but it will not create them for you.

Web Component Files
Web Components can contain CSS, HTML, JavaScript, and metadata files that you can modify
according to your app requirements.

You can create a Web Component manually by creating a folder and adding the required files
within the folder. You can also create a Web Component by using the Oracle JET CLI
command ojet create component <component-name> that automatically generates the Web
Component folder with the required files for your app.

Chapter 8
About Web Components

8-6

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Composite.html#lifecycle

When you create a Web Component manually, place the Web Component files in a folder with
the same name as the Web Component tag. Typically, you place the folder within your app in a
jet-composites folder: app-path/jet-composites/my-web-component/.

You can also place your Web Component in a different file location or reference a Web
Component on a different server using RequireJS path mapping. For examples, see
Composite - Packaging and Registration.

Each Web Component file should use the following naming convention to match the purpose:

• my-web-component—view.html: view template

• my-web-component—viewModel.js: ViewModel

• component.json: metadata

• my-web-component-styles.css: CSS styling

• my-web-component-styles.scss: Sass variables to generate CSS for Web Components

• loader.js: RequireJS module defining the dependencies for its metadata, View,
ViewModel, and CSS This file should also include the Web Component registration.

Web Component Slotting
Slots are used as placeholders in a Web Component that users can fill in with their markup.
Slot is defined in the component JSON file of your Web Component.

Use slotting to add child components (which can also be Web Components) that get slotted
into specified locations within the Web Component's View markup. The following example
contains a portion of the View markup for a Web Component named demo-columns.

<div class="oj-flex oj-flex-item-pad">
 <div role="group" :aria-label="[[$properties.headers[0]]]"
 class="oj-flex-item demo-columns-col-a oj-flex oj-sm-flex-direction-column
oj-sm-align-items-center">
 <h3>
 <oj-bind-text value="[[$properties.headers[0]]]"></oj-bind-text>
 </h3>
 <oj-bind-slot name="columnA">
 </oj-bind-slot>
 </div>
 ... content omitted
</div>

In this example, the demo-columns Web Component defines an oj-bind-slot named
columnA. As shown below, a developer can specify a child component with a slot named
columnA when adding the demo-columns Web Component to the page.

<demo-columns id="composite-container" headers='["Sales", "Human Resources",
"Support"]'>
 <!-- ko foreach: sales -->
 <demo-card slot="columnA" name="[[name]]" work-title="[[title]]"></demo-
card>
 <!-- /ko -->
 ... contents omitted
</demo-columns>

Chapter 8
About Web Components

8-7

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Composite.html#registration

Web Component Template Slots
You can define placeholders in your template using template slots that can be filled with any
markup fragment you want when the template element is used within a markup of your
component.

When you need to reuse a stamped template with varying data, you can use a template slot to
expose the additional data from the component's binding context.

You can define placeholders in your template using template slots that can be filled with any
markup fragment you want when the template element is used within a markup of your
component. When you need to reuse a stamped template with varying data, you can use a
template slot to expose the additional data from the component's binding context.

Template slots for Web Components are used to define additional binding contexts for a slotted
content within an app. To declaratively define a template slot, use the oj-bind-template-slot
element in the Web Component's View markup for the slot that contains a stamped template
DOM. The oj-bind-template-slot element is similar to the oj-bind-slot element, but its
slotted content should be wrapped inside a template element within the app DOM.

In the below example, the demo-list Web Component defines an oj-bind-template-slot
named item. This template slot provides the data attribute that exposes additional properties
to the template DOM and an data-oj-as attribute that is used as an alias for the $current
variable. Note that the data-oj-as attribute for template element can be referenced only
inside a default template.

<table>
 <thead>
 <tr>
 <th>
 <oj-bind-text value="[[$properties.header]]"></oj-bind-text>
 </th>
 </tr>
 </thead>
 <tbody>
 <oj-bind-for-each data="{{$properties.data}}">
 <template>
 <tr>
 <td>
 <!-- Template slot for list items with default template and an
optional alias -->
 <oj-bind-template-slot name="item"
data="{{'value': $current.data}}">
 <!-- Default template -->
 <template data-oj-as="listItem">

 <oj-bind-text value='[[listItem.value]]'</oj-bind-text>

 </template>
 </oj-bind-template-slot>
 </td>
 </tr>
 </template>
 </oj-bind-for-each>
 </tbody>

Chapter 8
About Web Components

8-8

 ... contents omitted
</table>

The oj-bind-template-slot children are resolved when the Web Component View bindings
are applied and are then resolved in the app's binding context extended with additional
properties provided by the Web Component. These additional properties are available on
the $current variable in the app provided template slot. The app can use an optional data-oj-
as attribute as an alias in the template instead of the $current variable. The following example
contains a portion of the app’s markup named demo-list.

<demo-list data="{{groceryList}}" header="Groceries">
 <template slot="item" data-oj-as="groceryItem">
 <oj-checkboxset>
 <oj-option value="bought"><oj-bind-text
value='[[groceryItem.value]]'></oj-bind-text></oj-option>
 </oj-checkboxset>
 </template>
... contents omitted
</demo-list>

The Oracle JET Cookbook at Web Component - Template Slots includes complete examples
for using template slots. oj-bind-template-slot API documentation describes the attributes and
other template slot properties.

Web Component Events
Oracle JET Web Components can fire automatic property changed events that are mapped to
the properties defined in the component metadata. These components will also fire custom
events for the events delared in the component metadata.

Web Components can internally listen to the automatically generated propertyChanged events
that are mapped to the properties in the component metadata using the propertyChanged
lifecycle method. For example, a propertyChanged event is fired when a property is updated.
This propertyChanged event contains the following properties:

• property: Name of the property that changed.

• value: Current value of the property.

• previousValue: Previous value of the property that changed.

• updatedFrom: The location from where the property was updated.

• Subproperty: An object holding information about the subproperty that changed.

When there is a need to declaratively define a custom event for a Web Component, you must
declare the event in the component's metadata file. These events will only be fired if the code
of the Web Component calls the dispatchEvent() method. The app can listen to these events
by declaring the event listener attributes and property setters. These event listeners can be
added declaratively or programmatically.

For the declarative specification of event listeners, use the on-[event-name] syntax for the
attributes. For example, on-click, on-value-changed, and so on.

<oj-element-name value="{{currentValue}}" on-value-
changed="{{valueChangedListener}}"></oj-element-name>

Chapter 8
About Web Components

8-9

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=composite&demo=templateSlots
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojBindTemplateSlot.html

The programmatic specification of event listeners may use the DOM addEventListener
mechanism or by using the custom element property.

The DOM addEventListener mechanism uses the elementName.addEventListener method.
For example:

elementName.addEventListener("valueChanged", function(event) {...});

The custom element property uses the elementName.onEventName syntax for the property
setter. For example:

elementName.onValueChanged = function(event) {...};

For more information, see the Web Components - Events and Listeners API documentation.

Web Component Examples
Web Components can contain slots, data binding, template slots, nested Web Components,
and events. You can use the examples provided in the Oracle JET Cookbook for these Web
Component features.

The Oracle JET Cookbook contains complete examples for creating basic and advanced Web
Components. You can also find examples that use slotting and data binding. For details, see
Web Component - Basic.

For additional information about Web Component fields and methods, see Composite in the
API documentation.

Best Practices for Web Component Creation
Best practices for creating Oracle JET Web Components include required and recommended
patterns, configuration, coding practices, version numbering, and styling standards. Follow
best practices to ensure interoperability with other Web Components and consuming
frameworks.

Recommended Standard Patterns and Coding Practices
Recommended patterns and coding practices for Oracle JET Web Components include
standards for configuration, versioning, coding, and archival.

Component Versioning

Your Web Component must be assigned a version number in semantic version format.

When assigning and incrementing the version number associated with your components, be
sure to follow semantic version rules and update Major, Minor and Patch version numbers
appropriately. By doing so, component consumers will have a clear understanding about the
compatibility and costs of migrating between different versions of your component.

To assign a version number to your Web Component, see About semantic versioning.

JET Version Compatibility

You must use the semantic version rules to specify the jetVersion of the supported JET
version(s). Web Component authors should not specify a semantic version range that includes

Chapter 8
Best Practices for Web Component Creation

8-10

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/CustomElementOverview.html#ce-events-section
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=composite&demo=basic
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Composite.html
https://docs.npmjs.com/about-semantic-versioning

unreleased JET major versions as major releases may contain non backwards compatible
changes. Authors should instead recertify Web Components with each major release and
update the component metadata or release a new version that is compatible with the new
release changes.

Translatable Resources

Developers who want to localize Web Component translatable resources now get a resource
bundle (template) when they create their Web Component. These components should use the
standard Oracle JET mechanism using the ojL10n requireJS plugin. You must store the
translation bundles in the webcomponentname/resources/nls subdirectory that is a peer to the
webcomponentname/resources/nls/root subdirectory with the resource strings for your Web
Component’s folder. You can declare the languages and locales that you support in the Web
Component metadata.

Peer-to-Peer Communication

Components must prefer a shared observable provided by the consumer over any kind of
secret signaling mechanism when you are dealing with a complex integration. For example, a
filter component and a data display component. By using a shared observable you can pre-
seed and programmatically interact with the components through the filter.

Alternatively, you can use events and public methods based on one of the following
approaches being used:

• A hierarchical relationship between the source and receiver of the event.

• The identity of the source being passed to the receiver.

Note that in some runtime platforms, the developer doing the wiring may not have access
to component IDs to pass the relevant identity.

• Listeners attached by components at the document level.

In this case, you are responsible for the cleanup of those listeners, management of
duplicates, and so on. Also, such listeners should preferably be based on Web Component
events, not common events such as click, which might be overridden by intermediate
nodes.

Note:

Under the web-component standards (shadow DOM), events will be re-targeted as
they transition the boundary between the component and the consuming view. That
is, the apparent identity of the raising element might be changed, particularly in the
case of Nested Web Component architecture where the event would get tagged with
the element representing the outer Web Component rather than the inner Web
Component. Therefore, you should not rely on the event.target attribute to identify
the Web Component source when listening at the document level. Instead, the
event.deepPath attribute can be used to understand the actual origin of the event.

Access to External Data

Web Components do not permit the usage of the knockout binding hierarchy to obtain data
from outside the Web Component context, for example, $root, $parent[1], and so on. All data
transfer in and out of the component must be through the formal properties, methods, and
events.

Chapter 8
Best Practices for Web Component Creation

8-11

Object Scope

All properties and functions of Web Components should be confined to the scope of the view
model. No window or global scope objects should be created. Similarly, the existence of
window scope objects should not be assumed by the Web Component author. If a consumer
Web Component defined externally at window or global level is required for read or write then
that component must be passed in by the consuming view model through a formal property.
Even if a well known global reference is needed from outside of the component, it should be
formally injected using the require define() function and declared as a dependency in the
Web Component metadata.

External References

If a Web Component must reference an external component, it should be part of the formal API
of the component. The formal API passes the component reference through a property. For
example, to allow the registration of a listener, the Web Component code requires a
component reference defined externally. You must not allow Web Components to obtain IDs
from hard-coded values, global storage, or walking the DOM.

Subcomponent IDs

Within the framework if any component needs a specific ID, use context.unique or
context.uniqueId value to generate the ID. This ID is unique within the context of the page.

ID Storage

Any generated IDs should not be stored across invocation, such as in local storage or in
cookies. The context.unique value for a particular Web Component may change each time a
particular view is executed.

LocalStorage

It is difficult to consistently identify a unique instance of a Web Component within an app. So, it
is advised not to allow a Web Component to utilize the local storage of a browser for persisting
information that is specific to an instance of that Web Component. However, if the app provides
a unique key through the public properties of the component you can then identify the unique
instance of the component.

Additionally, do not use local storage as a secret signaling mechanism between composites.
You cannot assure the availability of the capability and so it is recommended to exchange
information through a shared JavaScript object or events as part of the public API for the
component(s).

String Overrides

Web Components will often contain string resources internally to service their default needs for
UI and messages. However, sometimes you may want to allow the consumer to override these
strings. To do this, expose a property for this purpose on the component. By convention such a
property would be called translations, and within it you can have sub-properties for each
translatable string that relates to a required property on the component, for example
requiredHint, requiredMessageSummary, and so on. These properties can then be set on the
component tag using sub-property references. For example:

"properties" : {
 "translations": {
 "description": "Property to allow override of default messages",
 "writeback" : false,

Chapter 8
Best Practices for Web Component Creation

8-12

 "properties" : {
 "requiredHint": {
 "description": "Change the text of the required hint",
 "type": "string"
 },
 "requiredMessageSummary": {
 "description": "...",
 "type": "string"
 },
 "requiredMessageDetail": {
 "description": "...",
 "type": "string"
 }
 }
 }
 }
}

Logging

Use Logger to write log messages from your code in preference to console.log(). The Web
Components should respect the logging level of the consuming app and not change it. You
should ideally prefix all log messages emitted from the component with an identification of the
source Web Component. As a preference, you can use the Web Component name. The
components should not override the writer defined by the consuming app.

Expensive Initialization

Web Components should carry out minimum work inside the constructor function. Expensive
initialization should be deferred to the activated lifecycle method or later. The constructor of a
Web Component is invoked even if the component is not actually added to the visible DOM.
For example, if a constructor is invoked within a Knockout if block. The further lifecycle
phases will only occur when the component is actually needed.

Service Classes

The use of global service classes, that is functionality shared across multiple Web
Components, can constitute an invisible contract that the consumer of your Web Component
has to know about. To avoid this, we recommend:

• Create the service as a module that every Web Component can explicitly set it as
require() block, thus removing the need for the consumer to do this elsewhere.

• Consider the timing issues that might occur if your service class needs some time to
initialize, for example fetching data from a remote service. In such cases, you should be
returning promises to the service object so that the components can safely avoid trying to
use the information before it is actually available.

Using ojModule

If you use ojModule in a Web Component and plan to distribute the Web Component outside of
your app, you must take additional steps to ensure that the contained ojModule could be
loaded from the location relative to the location of the Web Component. Unless the View and
ViewModel instances are being passed to ojModule directly, you will need to provide the
require function instance and the relative paths for views and view models. The require

Chapter 8
Best Practices for Web Component Creation

8-13

function instance should be obtained by the component loader module by specifying require
as a dependency.

<div data-bind="ojModule: {require: {instance: require_instance, viewPath:
"path_to_Web_Component_Views", modelPath:
"path_to_cWeb_Component_ViewModels"}}"></div>

require Option Type Description

instance Function Function defining the require instance

viewPath String String containing the path to the Web
Component’s Views

modelPath String String containing the path to the Web
Component’s ViewModels

For additional information about working with ojModule, see ojModule.

Archiving Web Components for Distribution

If you want to create a zip file for packaging, create an archive with the same name as the
component itself. You may add version-identifying suffixes to the zip file name for operational
reasons. The Web Component artifacts must be placed in the root of the zip file, and there
should be no intermediate directory structure before reaching the files.

Using Lifecycle Methods

If a ViewModel is provided for a Web Component, the following optional callback methods can
be defined on its ViewModel that will be called at each stage of the Web Component's lifecycle.
Some of the callback methods that can be used are listed below:

• activated(context): Invoked after the ViewModel is initialized.

• connected(context): Invoked after the View is first inserted into the DOM and then each
time the Web Component is reconnected to the DOM after being disconnected.

• bindingsApplied(context): Invoked after the bindings are applied on the View.

• propertyChanged(context): Invoked when properties are updated before the
[property]Changed event is fired.

• disconnected(element): Invoked when this Web Component is disconnected from the
DOM.

For additional information on Web Component lifecycle methods, see Composite - Lifecycle.

Template Aliasing

JET components that support inline templates can now use an optional data-oj-as attribute to
provide template specific aliases for $current variable at the app level. In the instances where
the component must support multiple template slots as in the case of chart and table
components, a single alias may not be sufficient. In such cases, you can use an optional data-
oj-as attribute on the template element. For more information on the usage of this optional
attribute with template slots, see oj-bind-template-slot API documentation.

Chapter 8
Best Practices for Web Component Creation

8-14

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/ojModule.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Composite.html#lifecycle
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojBindTemplateSlot.html

CSS and Theming Standards
Oracle JET Web Components should comply with all recommended styling standards to
ensure interoperability with other Web Components and consuming apps.

For information on the generic best practices for using CSS and Themes, see Best Practices
for Using CSS and Themes.

Standard Details Example

Prevent flash
of unstyled
content

Oracle JET will add the oj-complete class to the Web
Component DOM element after metadata properties have been
resolved. To prevent a flash of unstyled content before the
component properties have been setup, the component’s CSS
should include a rule to hide the component until the oj-
complete class is set on the element.

Note that this is an element selector, and there should not be a
dot (.) before acme-branding.

acme-branding:not(.oj-
complete) {
 visibility: hidden;
}

Add scoping Use an element selector to minimize the chance that one of your
classes is used by someone outside of your component and
becomes dependent on your internal implementation. In the
example to the right, if someone tries to apply the class acme-
branding-header, it will have no effect if it's not within an
acme-branding tag.

acme-branding .acme-branding-
header {
 color: white;
 background: blue;
}

IMPORTANT: If your component also
includes a dialog, then when displayed,
that dialog will be attached to the main
document DOM tree and will not be a
child of your component. Therefore, if you
define a style to apply to a dialog defined
by your component, you cannot scope it to
the component name as that's not the
actual container for the dialog when
displayed.

To resolve, use the component name as
the prefix instead:

.acme-branding-dialog-
background{
 color: white;
 background: blue;
}

Avoid
element
styling

The app will often style HTML tag elements like headers, links,
and so on. In order to blend in with the app, avoid styling these
elements in your Web Component.

 Avoid styling on elements like
headers.

acme-branding .acme-branding-
header h3{
 font-size: 45px;
}

Chapter 8
Best Practices for Web Component Creation

8-15

https://www.w3schools.com/cssref/css_selectors.asp

Version Numbering Standards
All types of Web Components, including standalone, JET Pack, and Resource components,
require a version number and that number should adhere to a semantic versioning (SemVer)
scheme that ensures a standard for development teams to follow similar to the approach
adopted by Oracle JET release versioning.

Reference components are a slightly special case as the version of the reference component
will always match the version of the NPM library that it references.

All other Web Component types, rely on semantic versioning to designate a version of the
component. Semantic versioning defines a version number which has three primary segments
and an optional fourth segment. The first three segments are defined as
MAJOR.MINOR.PATCH with these meanings:

• MAJOR version when you make incompatible API changes

• MINOR version when you add functionality in a backward compatible manner

• PATCH version when you make backward compatible bug fixes

Note:

For background on semantic versioning, visit https://semver.org.

When defining a version number for your Web Component, you must define all three of these
core segments:

1.0.0

Additionally after the PATCH version, you can append an optional extension segment which
can consist of two additional pieces of information:

• A segment delimited by a leading hyphen which allows you to assign a pre-release version

• A purely informational segment preceded by a plus sign (+) that you might use to hold a
GIT commit hash or other control information. This segment plays no part in the
comparison of component versions.

Here's an example of a fully-defined version number for a pre-release version of a component:

1.0.1-beta.1+332

In this case beta.1 is a pre-release indicator and 332 is a build number.

The change in version number for a Web Component should indicate to consumers the risk
level of consuming that new version. Consumers should know that they can drop in a new
MINOR or PATCH release of your components without needing to revise their code. If you
make changes to the Web Component source code that forces the consuming app to do more
than just refresh the Web Component's directory or change a CDN reference, then you should
revise the MAJOR version to indicate this.

The Web Component metadata file component.json lets you define the supported version of
Oracle JET that the component can work with. This is the jetVersion attribute which can be

Chapter 8
Best Practices for Web Component Creation

8-16

https://semver.org

set to a specific version or version range, as defined by npm-semver. For example, the
jetVersion attribute will be set to one of the following:

• Preferred: All MINOR and PATCH versions from the specified version forward until there is
a change in MAJOR release number. For example: "jetVersion:: "^9.1.0", , which
indicates support for that release and all subsequent MINOR and PATCH versions, up to
(but not including) the next MAJOR release and it is equivalent to ">=9.1.0 <10.0.0".

• The exact semantic version of exact version of Oracle JET that the Web Component
supports. For example: "jetVersion" : "9.1.0", which implies that this Web Component
supports only Oracle JET 9.1.0.

• All PATCH versions of Oracle JET within a specific MAJOR.MINOR release. For example:
"jetVersion" : "9.0.x", which implies that this Web Component supports every release
of JET between JET 9.0.0 and JET 9.1.0 (but specifically not JET 9.1.0 itself).

• A specific range of Oracle JET versions. For example: "jetVersion" : "9.0.0 -9.1.0",
which implies that this Web Component supports every release of JET between JET 9.0.0
and JET 9.1.0 inclusive (so not including, for example, JET 9.2.0 or JET 8.0.0).

Tip:

The Oracle JET recommended format is the first case defined similar to "^9.1.0".
Given that JET itself follows the semantic versioning rules, changes that occur in
MINOR or PATCH versions ought not break your Web Component source code. This
also means that you don't have to release an update to all your Web Components for
every MINOR release of Oracle JET (unless you choose to make use of a new
feature).

Note:

For background on npm-semver, visit npm documentation at this web site https://
docs.npmjs.com/about-semantic-versioning.

In the case of JET Packs, you should pay attention to the dependencies attribute in the
component.json file located in the pack. You should strive to require the various components
bundled into the pack to be consumed together, and as such, you should define such
dependencies with absolute version matches rather than version ranges to indicate this. For
example, in this case the demo-memory-game component at version 1.0.2 will only expect to
host a demo-memory-card at exactly version 1.0.2.

{
 "name": "demo-memory-game",
 "version": "1.0.2",
 "type": "pack",
 "displayName": "JET Memory Game",
 "description": "A memory game element with a configurable card set and
attempt counter.",
 "dependencies": {
 "demo-memory-card": "1.0.2"
 }
}

Chapter 8
Best Practices for Web Component Creation

8-17

https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning

Create Web Components
Oracle JET supports a variety of custom Web Component component types. You can create
standalone Web Components or you can create sets of Web Components that you intend to be
used together and you can then assemble those in a JET Pack, or pack component type. You
can enhance JET Packs by creating resource components when you have re-usable libraries
of assets that are themselves not specifically UI components. And, if you need to reference
third-party code in a standalone component, you can create reference components to define
pointers to that code.

Create Standalone Web Components
Use the Oracle JET command-line interface (CLI) to create an Oracle JET Web Component
template implemented as JavaScript or TypeScript that you can populate with content. If you’re
not using the tooling, you can add the Web Component files and folders manually to your
Oracle JET app.

The following image shows a simple Web Component named demo-card that displays contact
cards with the contact’s name and image if available. When the user selects the card, the
content flips to show additional detail about the contact.

The procedure below lists the high level steps to create a Web Component using this demo-
card component as an example. Portions of the code are omitted for the sake of brevity, but
you can find the complete example at Web Component - Basic. You can also download the

demo files by clicking the download button () in the cookbook.

Before you begin:

• Familiarize yourself with the steps to install the Oracle JET CLI, see Install Oracle JET
Tooling.

• Familiarize yourself with the steps to add a Web Component to an Oracle JET app using
the Oracle JET CLI, see Understand the Web App Workflow.

• Familiarize yourself with the list of reserved names for a Web Component that are not
available for use, see valid custom element name.

• Familiarize yourself with the list of existing Web Component properties, events, and
methods, see HTMLElement properties, event listeners, and methods.

• Familiarize yourself with the list of global attributes and events, see Global attributes.

To create a Web Component:

Chapter 8
Create Web Components

8-18

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=composite&demo=basic
https://www.w3.org/TR/custom-elements/#valid-custom-element-name
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes

1. Determine a name for your Web Component.

The Web Component specification restricts custom element names as follows:

• Names must contain a hyphen.

• Names must start with a lowercase ASCII letter.

• Names must not contain any uppercase ASCII letters.

• Names should use a unique prefix to reduce the risk of a naming collision with other
components.

A good pattern is to use your organization’s name as the first segment of the
component name, for example, org-component-name. Names must not start with the
prefix oj- or ns-, which correspond to the root of the reserved oj and ns namespaces.

• Names must not be any of the reserved names. Oracle JET also reserves the oj and
the ns namespace and prefixes.

For example, use demo-card to duplicate the contact card example.

2. Determine where to place your Web Component, using one of the following options.

• Add the Web Component to an existing Oracle JET app that you created with the
Oracle JET CLI.

If you use this method, you’ll use the CLI to create a Web Component template that
contains the folders and files you’ll need to store the Web Component’s content.

• Manually add the Web Component to an existing Oracle JET app that doesn’t use the
Oracle JET CLI.

If you use this method, you’ll create the folders and files manually to store the Web
Component’s content.

3. Depending upon the choice you made in the previous step, perform one of the following
tasks to create the Web Component.

• If you used the Oracle JET CLI to create an app, then in the app’s top level directory,
enter the following command at a terminal prompt to generate the Web Component
template:

ojet create component component-name

For example, enter ojet create component demo-card to create a Web Component
named demo-card in a base app created with JavaScript. The command will add jet-
composites/demo-card to the app’s js folder and files containing stub content for the
Web Component.

Chapter 8
Create Web Components

8-19

The base app's implementation of JavaScript or TypeScript determines the folder and
implementation of the Web Component. If your base app has a TypeScript
implementation, then the ts folder, not the js folder, contains the stub contents of the
Web Component.

• If you’re not using the Oracle JET CLI, create a jet-composites folder in your app’s js
folder or ts folder, and add folders containing the name of each Web Component you
will create.

For the demo-card example, create the jet-composites folder and add a demo-card
folder to it. You’ll create the individual Web Component files in the remaining steps.

4. Determine the properties, methods, and events that your Web Component will support and
add them to the component.json file in the Web Component’s root folder, creating the file if
needed.

The name of the Web Component properties, event listeners, and methods should avoid
collision with the existing HTML element properties, event listeners, and methods.
Additionally, the property name slot should not be used. Also, you must not re-define the
global attributes and events.

The demo-card example defines properties for the Web Component and the contact’s full
name, employee image, title, work number, and email address. The required properties are
highlighted in bold.

 {
 "name": "demo-card",
 "description": "A card element that can display an avatar or initials on
one side and employee information on the other.",
 "version": "1.0.2",
 "displayName": "Demo Card",
 "jetVersion": ">=6.0.0 <17.1.0",
 "properties": {
 "name": {
 "description": "The employee's full name.",
 "type": "string"
 },
 "avatar": {
 "description": "The url of the employee's image.",
 "type": "string"
 },
 "workTitle": {

Chapter 8
Create Web Components

8-20

 "description": "The employee's job title.",
 "type": "string"
 },
 "workNumber": {
 "description": "The employee's work number.",
 "type": "number"
 },
 "email": {
 "description": "The employee's email.",
 "type": "string"
 }
 }
}

This basic demo-card example only defines properties for the Web Component. You can
also add metadata that defines methods and events as shown below. The metadata lists
the name of the method or event and supported parameters.

{
 "properties": {
 ... contents omitted
 },
 "methods": {
 "flipCard": {
 "description": "Method to toggle flipping a card"
 },
 "enableFlip": {
 "description": "Enables or disables the ability to flip a card.",
 "params": [
 {
 "name": "bEnable",
 "description": "True to enable card flipping and false
otherwise.",
 "type": "boolean"
 }
]
 },
 },
 "events": {
 "cardClick": {
 "description": "Triggered when a card is clicked and contains the
value of the clicked card..",
 "bubbles": true,
 "detail": {
 "value": {
 "description": "The value of the card.",
 "type": "string"
 }
 }
 }
 }
}

5. If your Web Component contains a ViewModel, add its definition to web—component-name-
viewModel.js in the Web Component’s root folder, creating the file if needed.

Chapter 8
Create Web Components

8-21

The code sample below shows the ViewModel for the demo-card Web Component.
Comments describe the purpose, parameters, and return value of each function.

define(['knockout', 'ojs/ojknockout'],
 function(ko) {
 function model(context) {
 var self = this;
 self.initials = null;
 self.workFormatted = null;
 var element = context.element;

 /**
 * Formats a 10 digit number as a phone number.
 * @param {number} number The number to format
 * @return {string} The formatted phone number
 */
 var formatPhoneNumber = function(number) {
 return Number(number).toString().replace(/(\d{3})(\d{3})
(\d{4})/, '$1-$2-$3');
 }

 if (context.properties.name) {
 var initials = context.properties.name.match(/\b\w/g);
 self.initials = (initials.shift() +
initials.pop()).toUpperCase();
 }
 if (context.properties.workNumber)
 self.workFormatted =
formatPhoneNumber(context.properties.workNumber);

 /**
 * Flips a card
 * @param {MouseEvent} event The click event
 */
 self.flipCard = function(event) {
 if (event.type === 'click' || (event.type === 'keypress'
&& event.keyCode === 13)) {
 // It's better to look for View elements using a
selector
 // instead of by DOM node order which isn't guaranteed.
 $(element).children('.demo-card-flip-
container').toggleClass('demo-card-flipped');
 }
 };
 }

 return model;
 }
)

6. In the Web Component’s root folder, add the View definition to web—component-name-
view.html, creating the file if needed.

Chapter 8
Create Web Components

8-22

The View for the demo-card Web Component is shown below. Any property defined in the
component’s metadata is accessed using the $properties property of the View binding
context.

<div tabindex="0" role="group" class="demo-card-flip-container"
 on-click="[[flipCard]]" on-keypress="[[flipCard]]" :aria-
label="[[$properties.name + ' Press Enter for
more info.']]">
 <div class="demo-card-front-side">
 <oj-avatar class="demo-card-avatar" role="img" size="lg"
initials="[[initials]]"
src="[[$properties.avatar]]" :aria-label="[['Avatar of '
+ $properties.name]]">
 </oj-avatar>
 <h2>
 <oj-bind-text value="[[$properties.name]]"></oj-bind-text>
 </h2>
 </div>

 <div class="demo-card-back-side">
 <div class="demo-card-inner-back-side">
 <h2>
 <oj-bind-text value="[[$properties.name]]"></oj-bind-text>
 </h2>
 <h5>
 <oj-bind-text value="[[$properties.workTitle]]"></oj-bind-text>
 </h5>
 <oj-bind-if test="[[$properties.workNumber != null]]">
 <h5>Work</h5>
 <oj-bind-text
value="[[workFormatted]]"></oj-bind-text>
 </oj-bind-if>
 <oj-bind-if test="[[$properties.email != null]]">
 <h5>Email</h5>
 <oj-bind-text
value="[[$properties.email]]"></oj-bind-text>
 </oj-bind-if>
 </div>
 </div>
</div>

For accessibility, the View’s role is defined as group, with aria-label specified for the
contact’s name. In general, follow the same accessibility guidelines for the Web
Component View markup that you would anywhere else within the app.

7. If you’re not using the Oracle JET CLI, create the loader.js RequireJS module and place
it in the Web Component’s root folder.

The loader.js module defines the Web Component dependencies and registers the
component’s tagName, demo-card in this example.

define(['ojs/ojcomposite', 'text!./demo-card-view.html', './demo-card-
viewModel',
 'text!./component.json', 'css!./demo-card-styles'],
 function(Composite, view, viewModel, metadata) {

Chapter 8
Create Web Components

8-23

 Composite.register('demo-card', {
 view: view,
 viewModel: viewModel,
 metadata: JSON.parse(metadata)
 });
 }
);

In this example, the CSS is loaded through a RequireJS plugin (css!./demo-card-styles),
and you do not need to pass it explicitly in Composite.register().

8. Configure any custom styling that your Web Component will use.

• If you only have a few styles, add them to web—component-name-styles.css file in the
Web Component’s root folder, creating the file if needed.

For example, the demo-card Web Component defines styles for the demo card’s
display, width, height, margin, padding, and more. It also defines the classes that will
be used when the user clicks a contact card. A portion of the CSS is shown below.

/* This is to prevent the flash of unstyled content before the Web
Component properties have been setup. */
demo-card:not(.oj-complete) {
 visibility: hidden;
}

demo-card {
 display: block;
 width: 200px;
 height: 200px;
 perspective: 800px;
 margin: 10px;
 box-sizing: border-box;
 cursor: pointer;
}

demo-card h2,
demo-card h5,
demo-card a,
demo-card .demo-card-avatar {
 color: #fff;
 padding: 0;
}
 ... remaining contents omitted

• If you used the Oracle JET tooling to create your app and want to use Sass to
generate your CSS:

a. If needed, at a terminal prompt in your app’s top level directory, type the following
command to add node-sass to your app: ojet add sass.

b. Create web—component-name-styles.scss and place it in the Web Component’s
top level folder.

c. Edit web—component-name-styles.scss with any valid SCSS syntax and save the
file.

Chapter 8
Create Web Components

8-24

In this example, a variable defines the demo card size:

$demo-card-size: 200px;

/* This is to prevent the flash of unstyled content before the Web
Component properties have been setup. */
demo-card:not(.oj-complete) {
 visibility: hidden;
}

demo-card {
 display: block;
 width: $demo-card-size;
 height: $demo-card-size;
 perspective: 800px;
 margin: 10px;
 box-sizing: border-box;
 cursor: pointer;
}

demo-card h2,
demo-card h5,
demo-card a,
demo-card .demo-card-avatar {
 color: #fff;
 padding: 0;
}
... remaining contents omitted

d. To compile Sass, at a terminal prompt type ojet build or ojet serve with the --
sass flag and app-specific options.

ojet build|serve [options] --sass

ojet build --sass will compile your app and generate web—component-name-
styles.css and web—component-name-styles.css.map files in the default
platform’s folder. For a web app, the command will place the CSS in web/js/js-
composites/web—component-name.

ojet serve --sass will also compile your app but will display the web app in a
running browser with livereload enabled. If you save a change to web—
component-name-styles.scss in the app’s src/js/jet-composites/web—
component-name folder, Oracle JET will compile Sass again and refresh the
display.

Tip:

For help with ojet command syntax, type ojet help at a terminal
prompt.

9. If you want to add documentation for your Web Component, add content to README.md in
your Web Component's root folder, creating the file if needed.

Chapter 8
Create Web Components

8-25

Your README.md file should include an overview of your component with well-formatted
examples. Include any additional information that you want to provide to your component’s
consumers. The recommended standard for README file format is markdown.

For help with markdown, refer to GitHub documentation.

For the complete code of the demo-card Web Component CSS styles, see demo-card-
styles.css in the Web Component - Basic cookbook sample.

For information on adding Web Component metadata that defines methods and events, see
the Web Component - Events cookbook sample.

Create JET Packs
Create JET Packs to simplify project management for consumers who might pick up a
component that is related to one or more components. You may require specific versions of the
referenced components for individual JET Packs.

Fundamentally, the JET Pack is a library of related Web Components that does not directly
include those assets, but is as an index to a particular versioned stripe of components.

Note:

Note there is one exception to the pack as a reference mechanism for related
components. A pack might include one or more RequireJS bundle files which
package up optimized forms of the component set into a small number of physical
downloads. This, however, is always in addition to the actual components being
available as independent entities in Oracle Component Exchange.

The components referenced by the JET Pack are intended to be used together and their usage
is restricted by individual component version. Thus, the JET Pack that you create will tie very
specific versions of each component into a relationship with very specific, fixed versions of the
other components in the same set. Thus, a JET Pack itself has a "version stripe" which
determines the specific components that users import into their apps. Since the version
number of individual components may vary, the JET Pack guarantees the consumer associates
their app with the version of the pack as a whole, and not with the individual components
contained by the pack.

For details about versioning JET Packs, see Version Numbering Standards.

1. Create the JET Pack using the JET tooling from the root folder of your app.

ojet create pack my-pack

Consider the pack name carefully, as the name will determine the prefix to any
components within that pack.

The tooling adds the folder structure with the template files that you will need to modify:

/(working folder)
 /src
 /js
 /jet-composites

Chapter 8
Create Web Components

8-26

https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=composite&demo=basic
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=composite&demo=events

 /my-pack
 component.json

2. Create the components that you want to bundle with the JET Pack by using the JET tooling
from the root folder of your app. The component name that you specify must be unique
within the pack.

ojet create component my-widget-1 --pack=my-pack

The tooling nests the component folder /my-widget-1 under the my-pack root folder and
the new component files resemble those created for a standalone Web Component.

/(working folder)
 /src
 /js
 /jet-composites
 /my-pack
 component.json
 /my-widget-1
 /resources
 /nls
 /root
 my-widget-1-strings.js
 component.json
 loader.js
 README.md
 my-widget-1-viewModel.js
 my-widget-1-styles.css
 my-widget-1-view.html

Note the following about the created component files.

• component.json specifies the name of the component as my-widget-1 and the pack
is set to my-pack, providing the complete definition of the component's identity.

• loader.js registers the HTML tag for the new component as my-pack-my-widget-1.
This is the full name of the component, which is a concatenation of the pack name and
the component name. When you need to refer to this component in a dependency
from another component's metadata or in HTML, you will use the full name.

3. Optionally, for any Resource components that you created, as described in Create
Resource Components for JET Packs, add the component's working folder with its own
component.json file to the pack file structure.

The tooling nests the component folder /my-widget-1 under the my-pack root folder and
the new component files resemble those created for a standalone Web Component.

/(working folder)
 /src
 /js
 /jet-composites
 /my-pack
 component.json
 /my-widget-1
 /resources
 /nls

Chapter 8
Create Web Components

8-27

 /root
 my-widget-1-strings.js
 component.json
 loader.js
 README.md
 my-widget-1-viewModel.js
 my-widget-1-styles.css
 my-widget-1-view.html
 /my-resource-component-1
 component.json
 /converters
 file1.js
 ...
 /resources
 /nls
 /root
 strings-file.js
 /validators
 file1.js
 ...

4. Optionally, generate any required bundled for desired components of the pack. Refer to
RequireJS documentation for details at the https://requirejs.org web site.

Tip:

You can use RequireJS to create optimized bundles of the pack components, so
that rather than each component being downloaded separately by the consuming
app at runtime, instead a single JavaScript file can be downloaded that contains
multiple components. It's a good idea to use this facility if you have sets of
components that are almost always used together. A pack can have any number
of bundles (or none at all) in order to group the available components as
required. Be aware that not every component in the pack has to be included in
one of the bundles and that each component can only be part of one bundle.

5. Use a text editor to modify the component.json file in the pack folder root similar to the
following sample, to identify pack dependencies and optional bundles. Added components
must be associated by their full name and a specific version.

{
 "name": "my-pack",
 "version": "1.0.0",
 "type": "pack",
 "displayName": "My JET Pack",
 "description": "An example JET Pack",
 "dependencies": {
 "my-pack-my-widget-1":"1.0.0",
 ...
 },
 "bundles":{
 "my-pack/my-bundle":[
 "my-pack/my-bundle-file1/loader",
 ...
]

Chapter 8
Create Web Components

8-28

https://requirejs.org

 },
 "extension": {
 "catalog": {
 "coverImage": "coverimage.png"
 }
 }
 }
}

Your pack component's component.json file must contain the following unique definitions:

• name is the name of the JET Pack has to be unique, and should be defined with the
namespace relevant to your group. This name will be prepended to create the full
name of individual components of the pack.

• version defines the exact version number of the pack, not a SemVer range.

Note:

Changes in version number with a given release of a pack should reflect the
most significant change in the pack contents. For example, if the pack
contained two components and as part of a release one of these had a Patch
level change and the other a Major version change then the pack version
number change should also be a Major version change. There is no
requirement for the actual version number of the pack to match the version
number(s) of any of it's referenced components. For more information see,
Version Numbering Standards.

• type must be set to pack.

• displayName is the name of the pack component that you want displayed in in Oracle
Component Exchange. Set this to something readable but not too long.

• description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain how the pack is intended to be used.

• dependencies defines the set of components that make up the pack, specified by the
component full name (a concatenation of pack name and component name). Note that
exact version numbers are used here, not SemVer ranges. It's important that you
manage revisions of dependency version numbers to reflect changes to the referenced
component's version and also to specify part of the path to reach the components
within the pack.

If you want to include all components in the JET Pack directory, use a token,
"@dependencies@", as the value for dependencies rather than defining individual
entries for all the components in the pack. The following snippet illustrates how you
use this token in your component.json file:

{
 "name": "my-pack",
 "version": "1.0.0",
 "type": "pack",
 "displayName": "My JET Pack",
 "description": "An example JET Pack",
 "dependencies": "@dependencies@"
}

Chapter 8
Create Web Components

8-29

• bundles defines the available bundles (optional) and the contents of each. Note how
both the bundle name and the contents of that bundle are defined with the pack name
prefix as this is the RequireJS path that is needed to map those artifacts.

• catalog defines the working metadata for Oracle Component Exchange, including a
cover image in this case.

6. Use a text editor to modify the component.json file in the component folder root similar to
the following sample, to identify the pack relationship. Components must be identified by a
unique name (without the pack prefix) and a specific version.

{
 "name": "my-widget-1",
 "pack": "my-pack",
 "displayName": "My Web Component",
 "description": "Fully featured component",
 "version": "1.0.0",
 "jetVersion": "^10.0.0",
 "dependencies": {
 "my-widget-file1":"^1.0.0",
 ...
 },
 ...
}

Your pack component's component.json file must contain the following unique definitions:

• name is the name of the component has to be unique. This name will be prepended
with the pack name to create the component full name. For example,

• pack is the name of the JET Pack that the component is a part of.

• displayName is the name of the component that you want displayed in Oracle
Component Exchange.

• description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain the role of the components in the pack as
they are intended to be used.

• version defines the exact version number of the component, not a SemVer range.

• jetVersion defines the compatible version(s) of Oracle JET, specified by a semantic
version (SemVer) range. It's important that you manage revisions of this version
number to inform consumers of the compatibility of a given change and also to specify
part of the path to reach the components within the pack. For more information see,
Version Numbering Standards.

• dependencies defines the set of libraries and other components that make up the
component within the pack. In the case where a dependent component is also listed as
a member of the JET Pack, specify components here by their full name (a
concatenation of pack name and component name). For example, my-pack-my-
component. Note that SemVer ranges are allowed. It's important that the range
selected for a component within a particular JET Pack version overlaps with the
members of that stripe.

7. Optionally, create a readme file in the root of your working folder. This should be defined as
a plain text file called README.txt (or README.md when using markdown format).

8. Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. The file name can be the same as the name attribute in the
component.json file.

Chapter 8
Create Web Components

8-30

9. Use the JET tooling to create a zip archive of the JET Pack working folder when you want
to upload the component to Oracle Component Exchange, as described in Package Web
Components.

10. Support consuming the JET Pack in Oracle Visual Builder projects by uploading the
component to Oracle Component Exchange, as described in Publish Web Components to
Oracle Component Exchange.

Create Resource Components for JET Packs
Create a resource component when you want to reuse assets across web components that
you assemble into JET Packs. The resource component can be reused by multiple JET Packs.

When dealing with complex sets of components you may find that it makes sense to share
certain assets between multiple components. In such cases, the components can all be
included into a single JET Pack and then a resource component can be added to the pack in
order to hold the shared assets. There is no constraint on what can be stored in a pack,
typically it may expose shared JavaScript, CSS, and JSON files and images. Note that third
party libraries should generally be referenced from a reference component and should not be
included into a resource component.

You don't need any tools to create the resource component. You will need to create a folder in
a convenient location. This folder will ultimately be zipped to create the distributable resource
component. Internally this folder can then hold any content in any structure that you desire.

To create a resource component:

1. If you have not already done so, create a JET Pack using the following command from the
root folder of your app to contain the resource component(s):

ojet create pack my-resource-pack
2. Still in the root folder of your app, create the resource component in the JET Pack:

ojet create component my-resource-comp --type=resource --pack=my-resource-pack
The tooling adds the folder structure with a single template component.json file and an
index file.

/root folder
 /src
 /js or /ts
 /jet-composites
 /my-resource-pack
 /my-resource-comp
 component.json

3. Populate the created folder (my-resource-comp, in our example) with the desired content.
You can add content in any structure desired, with the exception of NLS content for
translation bundles. In the case of NLS content, preserve the typical JET folder structure;
this is important if your resource component is going to include such bundles.

/(my-resource-folder)
 /converters
 phoneConverter.js
 phoneConverterFactory.js
 /resources
 /nls
 /root

Chapter 8
Create Web Components

8-31

 oj-ext-strings.js
 /phone
 countryCodes.json
 /validators
 emailValidator.js
 emailValidatorFactory.js
 phoneValidator.js
 phoneValidatorFactory.js
 urlValidator.js
 urlValidatorFactory.js

In this sample notice how the /resources/nls folder structure for translation bundles is
preserved according to the folder structured of the app generated by JET tooling.

4. Use a text editor to update the component.json file in the folder root similar to the following
sample, which defines the resource my-resource-comp for the JET Pack my-resource-
pack.

{
 "name": "my-resource-comp",
 "pack": "my-resource-pack",
 "displayName": "Oracle Jet Extended Utilities",
 "description": "A set of reusable utility classes used by the Oracle JET
extended
 component set and available for general use. Includes
various
 reusable validators",
 "license": "https://opensource.org/licenses/UPL",
 "type": "resource",
 "version": "2.0.2",
 "jetVersion": ">=8.0.0 <10.1.0",
 "publicModules": [
 "validators/emailValidatorFactory",
 "validators/urlValidatorFactory"
],
 "extension":{
 "catalog": {
 "category": "Resources",
 "coverImage": "cca-resource-folder.svg"
 }
 }
}

Your resource component's component.json file must contain the following unique
definitions:

• name is the name of the resource component has to be unique, and should be defined
with the namespace relevant to your group.

• pack is the name of the JET Pack containing the resource component.

• displayName is the name of the resource component as displayed in Oracle
Component Exchange. Set this to something readable but not too long.

• description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain the available assets provided by the
component.

Chapter 8
Create Web Components

8-32

• type must be set to resource.

• version defines the semantic version (SemVer) of the resource component as a
whole. It's important that you manage revisions of this version number to inform
consumers of the compatibility of a given change.

Note:

Changes to the resource component version should roll up all of the changes
within the resource component, which might not be restricted to changes only
in .js files. A change to a CSS selector defined in a shared .css file can
trigger a major version change when it forces consumers to make changes to
their downstream uses of that selector. For more information see, Version
Numbering Standards.

• jetVersion defines the supported Oracle JET version range using SemVer notation.
This is optional and depends on the nature of what you include into the resource
component. If the component contains JavaScript code and any of that code makes
reference to Oracle JET APIs, then you really should include a JET version range in
that case. For more information about specifying semantic versions see Version
Numbering Standards.

• publicModules lists entry points within the resource component that you consider as
being public and intend to be consumed by any component that depends on this
component. Any API not listed in the array is considered to be pack-private and
therefore can only be used by components within the same pack namespace, but may
not be used externally.

• catalog defines the working metadata for Oracle Component Exchange, including a
cover image in this case.

5. Optionally, create a readme file in the root of your working folder. A readme can be used to
document the assets of the resource. This should be defined as a plain text file called
README.txt (or README.md when using markdown format).

Tip:

Take care to explain the state of the assets. For example, you might choose to
include utility classes in the resource component that are deemed public and can
safely be used by external consumers (for example, code outside of the JET
Pack that the component belongs to). However, you may want to document other
assets as private to the pack itself.

6. Optionally, create a change log file in the root of your working folder. The change log can
detail significant changes to the pack over time and is strongly recommended. This should
be defined as a text file called CHANGELOG.txt (or CHANGELOG.md when using markdown
format).

7. Optionally, include a License file in the root of your working folder.

8. Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. Using the third party logo can be helpful here to identify the usage.
The file name can be the same as the name attribute in the component.json file.

9. Create a zip archive of the working folder when you want to upload the component to
Oracle Component Exchange. Oracle recommends using the format <fullName>-

Chapter 8
Create Web Components

8-33

<version>.zip for the archive file name. For example, my-resource-pack-my-resource-
comp-2.0.2.zip.

For information about using the resource component in a JET Pack, see Create JET Packs.

Create Reference Components for Web Components
Create a reference component when you need to obtain a pointer to third-party libraries for use
by Web Components.

Sometimes your JET Web Components need to use third party libraries to function and
although it is possible to embed such libraries within the component itself, or within a resource
component, it generally better to reference a shared copy of the library by defining a reference
component.
Create the Reference Component

You don't need any tools to create the reference component. You will need to create a folder in
a convenient location where you will define metadata for the reference component in the
component.json file. This folder will ultimately be zipped to create the distributable reference
component.

Reference components are generally standalone, so the component.json file you create must
not be contained within a JET Pack.

To create a reference component:

1. Create the working folder and use a text editor to create a component.json file in the folder
root similar to the following sample, which references the moment.js library.

{
 "name": "oj-ref-moment",
 "displayName": "Moment library",
 "description": "Supplies reference information for moment.js used to
parse,
 validate, manipulate, and display dates and times in
JavaScript",
 "license": "https://opensource.org/licenses/MIT",
 "type": "reference",
 "package":"moment",
 "version": "2.24.0",
 "paths": {
 "npm": {
 "debug": "moment",
 "min": "min/moment.min"
 },
 "cdn": {
 "debug": "https://static.oracle.com/cdn/jet/packs/3rdparty/moment/
2.24.0/moment.min",
 "min": "https://static.oracle.com/cdn/jet/packs/3rdparty/moment/
2.24.0/moment.min"
 }
 },
 "extension": {
 "catalog": {
 "category": "Third Party",
 "tags": [
 "momentjs"

Chapter 8
Create Web Components

8-34

],
 "coverImage": "coverImage.png"
 }
 }
}

Your reference component's component.json file must contain the following unique
definitions:

• name is the name of the reference component has to be unique, and should be
defined with the namespace relevant to your group.

• displayName is the name of the resource component as displayed in Oracle
Component Exchange. Set this to something readable but not too long.

• description is the description that you want displayed in Oracle Component
Exchange. For example, use this to explain the function of the third party library.

• license comes from the third party library itself and must be specified.

• type must be set to reference.

• package defines the npm package name for the library. This will also be used as the
name of the associated RequireJS path that will point to the library and so will be used
by components that depend on this reference.

• version should reflect the version of the third party library that this reference
component defines. If you need to be able to reference multiple versions of a given
library then you will need multiple versions of the reference component in order to map
each one.

• paths defines the CDN locations for this library. See below for more information about
getting access to the Oracle CDN.

• min points to the optimal version of the library to consume. The debug path can point
to a debug version or just the min version as here.

• catalog defines the working metadata for Oracle Component Exchange including a
cover image in this case.

2. Optionally, create readme file in the root of your working folder. A readme can be used to
point at the third party component web site for reference. This should be defined as a plain
text file called README.txt (or README.md when using markdown format).

3. Optionally, create a cover image in the root of your working folder to display the component
on Oracle Exchange. Using the third party logo can be helpful here to identify the usage.
The file name can be the same as the name attribute in the component.json file.

4. Create a zip archive of the working folder when you want to upload the component to
Oracle Component Exchange. Oracle recommends using the format <fullName>-
<version>.zip for the archive file name. For example, oj-ref-moment-2.24.0.zip.

5. Support consuming the reference component in Oracle Visual Builder projects by
uploading the component to a CDN. See below for more details.

Consume the Reference Component

When your Web Components need access to the third party library defined in one of these
reference components, you use the dependency attribute metadata in the component.json to
point to either an explicit version of the reference component or you can specify a semantic

Chapter 8
Create Web Components

8-35

range. Here's a simple example of a component that consumes two such reference
components at specific versions:

{
 "name":"calendar",
 "pack":"oj-sample",
 "displayName": "JET Calendar",
 "description": "FullCalendar wrapper with Accessibility added.",
 "version": "1.0.2",
 "jetVersion": "^9.0.0",
 "dependencies": {
 "oj-ref-moment":"2.24.0",
 "oj-ref-fullcalendar":"3.9.0"
 },

 ...

When the above component is added to an Oracle JET or Oracle Visual Builder project this
dependency information will be used to create the correct RequireJS paths for the third party
libraries pointed to be the reference component.

For more information about semantic version usage, see Version Numbering Standards.

Alternatively, when you install a Web Component that depends on a reference component and
you use Oracle JET CLI, the tooling will automatically do an npm install for you so that the
libraries are local. However, with the same component used in Oracle Visual Builder, a CDN
location must be used and therefore the reference component must exist on the CDN in order
to be used in Visual Builder.

Theme Web Components
Oracle JET Web Components may need to inherit styling from consuming app, such as the
background color, where the color style is themeable. Web Components may also enable
theming so the consuming app can customize the provided styles. You can add theming
support to your Web Component, and you can define CSS variables to support customization
of your component's look and feel.

About Web Component Theming
When you theme Web Components you work with SASS partial files to define the style classes
and expose the styles through CSS variables, by using the JET Tooling to derive optimized
CSS.

It is not always necessary to theme custom components and component packs that you create.
In many cases you may not need to enable custom theming. For example, when you only need
to wrap some core JET components with no additional user interface, no theming is needed.
As these two use cases suggest, it depends how you expect your components to be used in
the consuming app.

• Theme-enable the custom component, or component pack, when the component needs to
inherit styling from the consuming app, such as the background color that color style must
be themeable in your component.

• Theme-enable the custom component, or component pack, when the component defines
its own style class and that style needs to be themeable in the consuming app for
customization.

Chapter 8
Theme Web Components

8-36

Oracle JET relies on CSS variables to theme apps. The use of CSS variables to theme your
Web Component supports easy integration into a consuming app. To streamline the theming
process and support the generation of optimised stylesheets, your Web Component relies on
SASS partial files and SCSS processing.

After you create the Web Component, you run the ojet add theming command to install
support for scss processing into the base app where you will add the component. Then you
can use the ojet create component command to add your component to the jet-composites
folder. The new component project will contain a themes folder and three subfolders:
base,redwood, and stable containing SASS partials files, as follows:

• base folder - contains the base SASS partial file, where you define the style classes for the
component that are common across themes. The style classes reference CSS variables,
the values of which are generally provided by the theme specific SASS partial file.

• redwood folder - contains the theme-specific SASS partial file for the Redwood theme,
where you define style settings for the component, specifically you use it to set any CSS
variable values that the theme variant needs to set on the base _myComponent.scss partial
file. The Redwood theme implements the look and feel for Oracle apps, future changes will
be made to address Oracle's requirements.

• stable folder - contains the theme-specific SASS partial file for the Stable theme, where
you define style settings for the component, specifically you use it to set any CSS variable
values that the theme variant needs to set on the base _myComponent.scss partial file. The
Stable theme is recommended as the base theme for custom themes if you want to reduce
the likelihood that future theme updates affect your custom theme.

The SASS partials split between these folders supports the separation of the core style
definitions from the variable driven theme-specific definitions. This structure allows you to
define multiple themes but in practice is not a requirement for JET web apps, where the
Redwood theme runs across platforms and environments, such as iOS on a mobile device or
Windows on a desktop machine.

In addition to the generated theme folders, each component also has an SCSS file (ie,
myComponent-styles.scss) at the root of the component folder that the JET Tooling processes
to generate the final CSS from the theme SASS partials. The root .scss file contains a single
line:

@import "themes/redwood/_myComponent.scss";

Guidelines for Web Component Theming
JET relies on the use of CSS variables as the primary vehicle for theming, which allows even a
single supported theme configuration to adapt to the requirements of the consuming app.

When theming the Web Component observe the following considerations to guide the process.

• The goal should be to make your themed Web Component work out of the box for most
cases and still allow the component to be themeable by a consuming app. Maintain a
single default theme across your entire set of components.

• While a Web Component must provide a single default theme that works out of the box,
you may choose to define the settings for multiple themes within the component. Note that
only one theme can be active and surfaced for the component for direct runtime use.

• Document the supported themes in the readme file for the component or pack. This
information, combined with component metadata that you supply in component.json,
specify the contract that the consuming app must fulfill.

Chapter 8
Theme Web Components

8-37

• Use CSS variables to externalize anything that you want to make configurable within a
theme. This supports component-instance style overrides where needed and also
simplifies the creation of custom themes for the component.

• Inherit as much information as possible from the core JET Redwood theme, for example
color ramps and sizing. This ensures that the Web Component's theming harmonizes with
all of the core JET components present in the app and that your component will be able to
adapt well to a custom theme. Where possible, use the oj-flex classes supplied by JET
or other public layout styles to manage layout. This will ensure that the finer attributes of
theming, such as padding, are consistent.

• CSS usage should be optimized to allow consolidation at the JET Pack level or the app
level. The use of CSS variables supports CSS consolidation.

If your themed component is configured through CSS variables so that the consuming app may
override at the app or instance level, then add those variables to a section called Theming in
the component README.md and document what they do and what they should be set to. Once
documented in this way, the variables become a formal part of the component API and you
should follow the normal semver rules when it comes to making changes. A change to the
default theme should be classed as a MAJOR version number change in semantic version
number.

Theme a Web Component
You can use Oracle JET Tooling to theme-enable a custom Web Components project and work
with CSS variables to theme custom components that you add to the project.

You enable theming of a new Web Components project, or JET Pack project, by using the JET
Tooling to add theming support to the containing project. The tooling adds SASS partials files
used to streamline the CSS generation process and is a prerequisite step to creating a custom
component or pack to support modifications to the base theme.

After you theme-enable your containing project by running the ojet add theming command at
the project root, new custom components that you create in the project will contain a themes
folder with subfolders that each contain a single SASS partials file that you will modify:

• /<componentName>/themes/base/_<componentName>.sccs defines your custom styling for
the component that you want to remain common across themes. The styling portions that
need to change with theme variations will be injected via CSS variable values and come
from either the base JET theme or from the component theme-specific settings.

• /<componentName>/themes/redwood/_<componentName>.sccs contains the theme-specific
settings for the component. Specifically, in this file you can specify any CSS variable
values that a custom theme based on the Redwood theme needs to set on the base
partials.

• /<componentName>/themes/stable/_<componentName>.sccs contains the theme-specific
settings for the component. Specifically, in this file you can specify any CSS variable
values that a custom theme based on the Stable theme needs to set on the base partials.

Additionally, any custom component in a theme-enabled project will also contain a
<componentName>.scss SASS file in the component's root folder. This file serves to import the
CSS file that the JET build process generates from the SASS partials files.

Chapter 8
Theme Web Components

8-38

Note:

A CSS build error may result if a pack or component is created before running ojet
add theming. The add theming command enables SCSS compilation to generate the
CSS. Be sure to run add theming before creating the pack or component.

Before you begin:

• Refer to the JET CSS Variables section of the JET API reference doc for an overview of
the CSS variables and values to use when directly defining custom selectors of the web
component.

• View the CSS Variables section in the Oracle JET Cookbook for examples of CSS variable
usages.

• Optionally, download and install the CSS Variable Theme Builder - Instruction Tab app
when you want to learn about the available CSS variables in this interactive demo app.
Follow the instructions online to modify the theme definition files to learn how CSS variable
overrides change the demo tool UI.

To add theming support and theme a component:

1. In your Web Component project's top-level directory, enter the following command at a
terminal prompt to install the theming toolchain.

ojet add theming

2. Create a Web Component in the containing project. Or, create a JET Pack and add a Web
Component to the pack, as this sample shows.

ojet create pack my-pack
ojet create component my-widget1 --pack=my-pack

For example, the following commands create a pack oj-sample and add a custom
component metric to the pack.

ojet create pack oj-sample
ojet create component metric --pack=oj-sample

These commands create a jet-composites folder that contains the oj-sample pack folder
and the metric component.

src
| index.html
|
+---css
+---js
\---ts
 +---jet-composites
 | \---oj-sample
 | | component.json
 | |
 | \---metric
 | | component.json

Chapter 8
Theme Web Components

8-39

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/CssVariablesOverview.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootFramework_childtheming
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder-CSS-Vars/public_html/index.html?_ojCoreRouter=library

 | | loader.ts
 | | metric-styles.scss
 | | metric-view.html
 | | metric-viewModel.ts
 | | README.md
 | |
 | +---resources
 | \---themes
 | +---base
 | | _metric.scss
 | |
 | +---redwood
 | | _metric.scss
 | |
 | \---stable
 | _metric.scss
 |
 +---viewModels
 +---views

In the directory above, the metric folder shows the base SASS file metric-styles.scss.
The themes subfolder contains the SASS partials files _metric.scss that you will modify.

Note:

If you see a .css file instead of a .scss file in the root folder of the component, it
indicates you did not run the add theming command before creating the
component.

3. In the /<componentName>/themes/base folder, edit the _componentName.scss SAAS
partials file to define the style selectors for your component. You can define selector
properties with hardcoded values or you can define properties controlled by CSS variables
when you want to allow overriding of the property by a consuming app.

Note that style and variable names must be named-spaced to the owning component's
HTML element tag to avoid redefinition. For example, the style .oj-sample-metric-value-
color is name-spaced by oj-sample-metric.

@import "oj/utilities/_oj.utilities.modules.scss";
// Even if this file is imported many times 'module-include-once' ensures
the content is included just once.
@include module-include-once("oj-sample-metric.base") {
 oj-sample-metric:not(.oj-complete){
 visibility: hidden;
 }
 // Selector definitions section
 oj-sample-metric .oj-sample-metric-value-text {
 display:inline-block;
 align-self:center;
 }
 oj-sample-metric .oj-sample-metric-label {
 font-size: var(--oj-sample-metric-label-font-size);
 }
 oj-sample-metric .oj-sample-metric-value-color {

Chapter 8
Theme Web Components

8-40

 color: var(--oj-sample-metric-value-color);
 }
 oj-sample-metric .oj-sample-metric-label-color {
 color: var(--oj-sample-metric-label-color);
 }
 ...
}

In this sample, only the selector .oj-sample-metric-value-text selector is completely
defined in place and references no CSS variables. Properties of this style cannot be
overridden. The font-size property for the .oj-sample-metric-label selector references
a CSS variable that you will define in the theme-specific SASS partials file. The color
property for the .oj-sample-metric-value-color and .oj-sample-metric-label-color
selectors also references a CSS variable to be defined. The usage of CSS variables allows
these properties to be overridden in the consuming app.

When you do not need to allow overriding of a selector property value in the consuming
app, you can reference variables defined by JET itself without definition in the theme-
specific SASS partials file. In this next sample, the selector is defined directly by --oj-
core-text-color-secondary, a JET CSS variable that defines text color.

 ...
 oj-sample-metric .oj-sample-metric-label-color {
 color: var(--oj-core-text-color-secondary);
 }
 ...
}

For a list of JET CSS variables, refer to the resources listed in the Before You Begin
section of this topic.

Note:

If you define mappings such as:

color: rgb(var(--oj-palette-neutral-rgb-60));

Then, when you build your project, you will encounter an error: "Error: Function
rgb is missing argument $green" in your .scss files. This is a known SASS
compiler issue and the workaround is to use uppercase for the function name,
like this:

color: RGB(var(--oj-palette-neutral-rgb-60));

4. In the /<componentName>/themes/redwood or /<componentName>/themes/stable folder,
edit the _componentName.scss SAAS partials file to provide the theme-specific settings
required by the base partials SCCS file. Within root you can define all component-specific
CSS variables as hardcoded values or JET CSS variables.

@include module-include-once("_metric.redwood") {
 :root {
 --oj-sample-metric-label-font-size:0.875rem;
 --oj-sample-metric-value-color:var(--oj-core-text-color-primary);
 --oj-sample-metric-label-color:var(--oj-core-text-color-secondary);

Chapter 8
Theme Web Components

8-41

 ...
 }
}

In this sample, only the CSS variable --oj-sample-metric-label-font-size is
hardcoded. The other two variables inherit values from underlying JET variables. However,
all settings defined in the theme-partials file may be overridden in the app that consumes
the web component.

For a list of JET CSS variables, refer to the resources listed in the Before You Begin
section of this topic.

To prepare the themed component or pack for a consuming app, see these topics:

• Consolidate CSS for JET Packs

• Optimize CSS to Allow Consuming Apps to Provide Styles

Consolidate CSS for JET Packs
You can consolidate the stylesheets of custom components in a JET Pack to a single CSS file.

When you add custom Web Components to a JET Pack, initially, each component provides it's
own CSS file. Although this approach works, it's optimal in a production app to reduce the
number of physical roundtrips to the server and take full advantage of browser caching and the
CDN. To reduce the number of roundtrips, you can enable loading from a single CSS file
through the use of a shared Resource component that you add to the pack.

Before you begin:

• Create a Resource component with a working folder common and its component.json file,
as described in Create Resource Components for JET Packs.

To create a single shared CSS file in a pack:

1. Add the Resource component that you created with a component.json file to the pack file
structure and add a subfolder styles with a single SCSS file that you will use to import the
CSS of the individual components in the pack.

In the figure above, the folder common is the working folder for the Resource component
and the styles subfolder shows a SCSS file oj-sample-style.scss named for the pack.

Chapter 8
Theme Web Components

8-42

2. Edit the SCCS file in the styles folder to replicate the import commands for the SCSS
partials files of the components that you want to combine into the consolidated stylesheet.

@import "../../metric/themes/redwood/_metric.scss";
@import "../../input-email/themes/redwood/_input-email.scss";
@import "../../input-email/themes/redwood/_input-url.scss";

In this sample, we show import statements for three components from the oj-sample pack
example. In addition to the metric component's import, we include the import statements
for the input-email component and the input-url component (omitted from the figure).

3. For each component that you want to consolidate into a shared stylesheet, edit the
component's loader.js file (.ts in the case of a TypeScript project) to reference the
shared stylesheet named in the Resource component. Do not edit the loader file for any
component that you want to continue to use the component-specific stylesheet.

define (['ojs/ojcomposite',
 'text!./metric-view.html',
 './metric-viewModel',
 'text!./component.json',
 'css!oj-sample/common/styles/oj-sample-styles'
],

function(Composite, view, viewModel, metadata){
 Composite.register("oj-sample-metric", {
 view: view,
 viewModel: viewModel,
 metadata: JSON.parse(metadata)
 });
 }
);

In this JavaScript sample, the loader script for the metric component shows the modified
path statement references oj-sample-style from the SCSS file that was added to the
Resource component's /common/styles folder.

In the case of a TypeScript app, modify the import statement like this sample:

import "css!oj-sample/common/styles/oj-sample-styles";

Note:

Do not use relative path mapping to reference a pack component. Identify the
path to the consolidated file in the pack component as shown in the previous
examples for a JavaScript and TypeScript app.

To perform a further optimization that allows the consuming app to manage the style
completely in its own CSS, you can perform this task:

• Optimize CSS to Allow Consuming Apps to Provide Styles

Chapter 8
Theme Web Components

8-43

Optimize CSS to Allow Consuming Apps to Provide Styles
You can optimize the loading of component styles in the theme CSS for the consuming app.

To support downstream usages of the themed component, the Web Component needs to
establish a contract for what the component needs. The developer who consumes your
themed custom component into their app should be able to incorporate the styles unchanged
and, optionally, perform a CSS optimization to enable loading from a single CSS file.

To enable these usages you must establish a contract that the downstream developer can
observe when adding your component to their app.

To define and support the contract, you decorate the custom component with metadata that
specifies the theme SCSS partials that the component exposes, and you modify the default
loader script for the component CSS to specify the CSS requireJS plugin with the configurable
ojcss plugin.

Before you begin:

• Set up the consolidation of component stylesheets with the aid of a Resource component
you create at the pack level, as described in Consolidate CSS for JET Packs.

To define a theme-consuming contract for the component:

1. For each component that you want to consolidate into a shared stylesheet, edit the
component's loader.js file (.ts in the case of a TypeScript project) and modify the import
statement for the consolidated stylesheet by replacing the normal CSS requireJS plugin
with the configurable ojcss plugin.

define (['ojs/ojcomposite',
 'text!./metric-view.html',
 './metric-viewModel',
 'text!./component.json',
 'ojcss!oj-sample/common/styles/oj-sample-styles'
],

function(Composite, view, viewModel, metadata){
 Composite.register("oj-sample-metric", {
 view: view,
 viewModel: viewModel,
 metadata: JSON.parse(metadata)
 });
 }
);

In the case of a TypeScript app, modify the import statement like this sample:

import "ojcss!oj-sample/common/styles/oj-sample-styles";

Note that the ojcss plugin import gives the downstream developer the ability to set up their
app to configure the processing of the plugin directive and optionally suppress loading of
custom component stylesheets when the consuming app defines the styles.

Chapter 8
Theme Web Components

8-44

2. For these same components, edit the component's component.json file to decorate the
component with the extension metadata to specify the SCSS partials that define its theme.

{
 "name": "metric",
 "pack": "oj-sample",
 "type":"composite",
 "displayName": "Metric Component",
 "license": "https://opensource.org/licenses/UPL",
 "description": "A simple tile that displays a label and value.",
 "version": "4.0.0",
 "jetVersion": ">=8.0.0 <10.0.0",
 "icon": {
 "iconPath": "extension/images/cca-metric.svg",
 "selectedIconPath": "extension/images/cca-metric.svg",
 "hoverIconPath": "extension/images/cca-metric-ovr.svg"
 },
 "properties": {
 . . .
 },
 "events": {
 . . .
 },
 "extension": {
 "themes":{
 "default":"Redwood",
 "unsupportedThemes":["Alta"]
 "partials":{
 "Redwood":"themes/redwood/_oj-sample-metric.scss"}
 }
 "catalog": {
 . . .
 },
 "vbdt": {
 . . .
 }
 }

 }

In this sample, the extension : themes attribute defines an array of themes supported by
the component. Each theme points to the relative path of the root partial as the source for
that component's theme implementation. The definition also indicates whether or not it is
the expected default theme. Components may support multiple themes, but only one of
can be marked as the default.

Note that this metadata is not required by JET but is recommended for any themeable
custom component. This information will be used by the downstream developer to set up
their app to pull in these SCSS partials into its own SCSS file. They can then build the app
to assemble individual stylesheets into a combined CSS file.

In normal usage there is no difference in operation between the ojcss and css plugins.
However, the consuming app now has the ability to control the processing of the plugin
directive.

Chapter 8
Theme Web Components

8-45

To understand how the consuming app controls the processing of the plugin directive to
suppress the loading of the component CSS and define style classes within their app's
custom theme, see Incorporate Themed Components into a Consuming App.

Incorporate Themed Components into a Consuming App
You can override CSS variables in a properly themed Web Component by making changes to
the style classes in your consuming app's theme.

When consuming a custom component and its theme is the same as your app's theme, then
you can add the custom component to your app and use it without changes. However, when
the consuming app theme changes the styles of the custom component, you need to reference
the custom component theme partials SCSS files in your app.
For example, if your app's custom theme alters the default Redwood theme color ramp, you
want to ensure that the same colors are inherited by the themeable custom components that
you add to your app. This process of overriding the CSS variables of the custom component by
the consuming app requires that you incorporate the partials supplied by each component that
you want to consume. This process is statically defined and therefore you will need to re-
perform this whenever you add a new component that requires theming into the consuming
app.

Note that you also can use this process when you do not need to make changes to the
underlying Redwood theme and only want to optimize the number of CSS files by consolidating
both the core Redwood styles, plus the extra styles defined for the custom components you will
use.

Before you begin:

1. Create a working project that you will use to carry out the theme creation process.

ojet create redwood-plus-theme-source --template=basic

In this example, the working project is named redwood-plus-theme-source.

2. Add theming support to the project and create the custom theme.

ojet add theming
ojet create theme redwood-plus --basetheme=redwood

In this example, the theme name redwood-plus distinguishes the custom theme from the
out-of-the-box redwood theme name. Note that JET, as of release 11.0.0, supports another
out-of-the-box theme (stable) that is less likely to be affected by future changes to the out-
of-the-box redwood theme. Choose stable as the --basetheme argument value if the
consuming app uses a theme based on the stable theme.

3. When working with Oracle Component Exchange to add Web Components, set up access
to Component Exchange.

ojet configure --exchange-url=https://xxxxx-
cloud01.developer.ocp.oraclecloud.com/xxxxx-cloud01/s/xxxxx-
cloud01_sharedcomponentcatalog_8325/compcatalog/0.2.0

4. Add the components that you want to include into your theme. This process will download
the components into the /jet_components cache folder in the root of your theme source
project.

Chapter 8
Theme Web Components

8-46

You can add the components one by one:

ojet add component oj-sample-metric@^4.0.0

Or, you can add an entire pack at once.

ojet add pack oj-sample@^4.0.0

In this example, the component name and pack name are reused from the examples
shown in the previous topics in this section.

Note when adding the components or packs, you should specify the versions that you
need. Similar to the way you would use the core JET theme, you can expect to rebuild and
regenerate the theme if there is a change in the major version number of the component or
pack.

To incorporate themeable components into the custom theme:

1. In the working project, where you added the custom components, open the /src/themes/
<themeName>/web folder and examine the folder structure.

/src
 /themes
 /redwood-plus
 /web
 _redwood-plus.components.scss
 _redwood-plus.cssvars.settings.scss
 _redwood-plus.sass.settings.scss
 redwood-plus.scss

In this sample, we see three SCSS partials files and the CSS aggregating file redwood-
plus.scss. In the context of customizing the theme in the working project with themeable
custom components, the four files have these purposes.

• _redwood-plus.components.sccs allows you to tune the overall size of your theme by
specifying that it should only style specific components from JET core. Usually you will
not touch this file as you'll be styling the whole component set. See also Optimize the
CSS in a Custom Theme.

• _redwood-plus.cssvars.settings.scss is the file that you use to make most of the
style changes in your custom theme, assuming you need to make any. You will use it
to set the CSS variable values that you want to be used by the various JET Core
components (and possibly by the custom components, as well). For example, to
change the primary text color for JET, as a whole, you can do it in this file by
uncommenting and setting the value for --oj-core-text-color-primary. Assuming
this same variable happens to be used by one of the custom components, then it
would share this common change. See also Modify the Custom Theme with the JET
CLI.

• _redwood-plus.sass.settings defines other aspects of the theme that you may need
to change but that can't be expressed as simple variable values, for example
animation effects. For basic theming scenarios, you probably don't need to touch this
file.

• redwood-plus.scss this is the main CSS aggregating file for the theme as a whole and
is the one that will be transformed into the final output, as the redwood-plus.css file.

Chapter 8
Theme Web Components

8-47

2. In the /src/themes/<themeName>/web folder, edit the CSS aggregating file
<themeName>.scss and add the import statements for the theme-able custom components
that you added to the working project.

...
// import SASS custom variable overrides
@import "_redwood-plus.sass.settings.scss";

// Imports all jet components styles
//@import "oj/all-components/themes/redwood/_oj-all-components.scss";

// To optimize performance, consider commenting out the above oj-all-components
// import and uncomment _redwood-plus.components.scss below.
// Then in _redwood-plus.components.scss uncomment only the component
// imports that your app needs.
//

// @import "_redwood-plus.components.scss";

// Import components from oj-sample JET Pack
@import "oj-sample/metric/themes/redwood/_oj-sample-metric.scss";
@import "oj-sample/input-email/themes/redwood/_input-email.scss";
@import "oj-sample/input-url/themes/redwood/_input-url.scss";

// import CSS Custom properties
@import "_redwood-plus.cssvars.settings.scss";

In this sample, the import statements for the three theme-able custom components in the
oj-sample pack are added. With these import statements referencing each component
partials' includePath added to the CSS aggregating file, the indicated component partials
will be incorporated into the custom theme.

3. Optionally, if you are making changes to the theme (and not using the process only to
consolidate CSS), you can test your theme by embedding sample components, including
your custom components, into the working project's index.html page and run it. You can
then verify the theme changes are what you expect. However, before you run the project,
you must ensure that the custom components can pick up their styles from the theme, and
not from their own stylesheets.

a. To suppress the loading of component CSS, edit the main.js file and add an ojcss
configuration section in the requirejs configuration that names the CSS loading to
suppress.

requirejs.config(
 {
 baseUrl: 'js',
 ojcss: {
 'exclude': ['oj-sample']
 },
 paths:
 /* DO NOT MODIFY
 ** All paths are dynamically generated from the
path_mappings.json file.
 ** Add any new library dependencies in path_mappings json file
 */
 // injector:mainReleasePaths
 {
 ...
 }

Chapter 8
Theme Web Components

8-48

 // endinjector
 ,

 }
);
}());

Make sure that you add the ojcss configuration section outside of the //injector
block, as shown. Otherwise, the build process will remove and ignore the section.

In this sample, the ojcss section of the requirejs configuration excludes the
consolidated stylesheet of the JET Pack oj-sample. The ojcss section defines an
array of requireJS paths that will be excluded from loading. Note this configuration
depends upon imports within the component using consistent Reliable Referencing
based paths that match.

b. Run the project to verify the changes.

ojet serve --theme=redwood-plus

4. Update the version number in the /src/themes/<myTheme>/theme.json file to one that is
suitable for the target CSS and build the consolidated theme. By default the version
number is initially 0.0.1.

ojet build --theme=redwood-plus

Test Web Components
Test Oracle JET Web Components using your favorite testing tools for client-side JavaScript
apps.

Regardless of the test method you choose, be sure that your tests fully exercise the Web
Component’s:

• ViewModel (if it exists)

Ideally, your test results should be verifiable via code coverage numbers.

• HTML view

Be sure to include any DOM branches that might be conditionally rendered, and test all
slots with and without default content.

• Properties and property values

• Events

• Methods

• Accessibility

• Security

For additional information about testing Oracle JET apps, see Test Oracle JET Apps.

Chapter 8
Test Web Components

8-49

Add Web Components to Your Page
To use an Oracle JET Web Component, you must register the Web Component’s loader file in
your app and you must also include the Web Component element in the app’s HTML. You can
add any supporting CSS or files as needed.

1. In the Web Components’s root folder, open component.json and verify that your version of
Oracle JET is compatible with the version specified in jetVersion.

For example, the demo-card example specifies the following jetVersion:

"jetVersion": ">=3.0.0 <17.1.0"

This indicates that the component is compatible with JET versions greater than or equal to
3.0.0 and less than 17.1.0.

If your version of Oracle JET is lower than the jetVersion, you must update your version
of Oracle JET before using the component. If your version of Oracle JET is greater than
the jetVersion, contact the developer to get an updated version of the component.

2. In your app’s index.html or main app HTML, add the component and any associated
property declarations.

For example, to use the demo-card standalone Web Component, add it to your index.html
file and add declarations for name, avatar, work-title, work-number, email, and
background-image.

<div id="composite-container" class="oj-flex oj-sm-flex-items-initial">
 <oj-bind-for-each data="[[employees]]">
 <template>
 <demo-card class="oj-flex-item"
 name="[[$current.data.name]]"
 avatar="[[$current.data.avatar]]"
 work-title="[[$current.data.title]]"
 work-number="[[$current.data.work]]"
 email="[[$current.data.email]]">
 </demo-card>
 </template>
 </oj-bind-for-each>
</div>

In the case of components within a JET Pack, the HTML tag name is the component full
name. The full name of a pack's member component is always a concatenation of the pack
name and the component name, as specified by the dependencies attribute of the pack-
level component.json file (located in the pack root folder under jet-composites). For
example, a component widget-1 that is a member of the JET Pack my-pack, has the
following full name that you can reference as the HTML tag name.

my-pack-widget-1

Note that the framework maps the attribute names in the markup to the component’s
properties.

Chapter 8
Add Web Components to Your Page

8-50

• Attribute names are converted to lowercase. For example, a workTitle attribute will
map to a worktitle property.

• Attribute names with dashes are converted to camelCase by capitalizing the first
character after a dash and then removing the dashes. For example, the work-title
attribute will map to a workTitle property.

You can access the mapped properties programmatically as shown in the following
markup:

<h5><oj-bind-text value="[[properties.workTitle]]"></oj-bind-text></h5>

3. In your app’s ViewModel, set values for the properties you declared in the previous step
and add the component’s loader file to the list of app dependencies.

For example, the following code adds the ViewModel to the app’s RequireJS bootstrap file.
The code also defines the jet-composites/demo-card/loader dependency.

require(['ojs/ojbootstrap', 'knockout', 'ojs/ojknockout', 'demo-card/
loader'],
function(Bootstrap, ko) {
 function model() {
 var self = this;
 self.employees = [
 {
 name: 'Deb Raphaely',
 avatar: 'images/composites/debraphaely.png',
 title: 'Purchasing Director',
 work: 5171278899,
 email: 'deb.raphaely@oracle.com'
 },
 {
 name: 'Adam Fripp',
 avatar: null,
 title: 'IT Manager',
 work: 6501232234,
 email: 'adam.fripp@oracle.com'
 }
];
 }

 Bootstrap.whenDocumentReady().then(function()
 {
 ko.applyBindings(new model(), document.getElementById('composite-
container'));
 }
);
});

In the case of a JET Pack, you add the loader file for the JET Pack by specifying the path
based on the pack root and folder name of the component contained within the pack.

'my-pack/widget-1/loader'

4. Add any supporting CSS, folders, and files as needed.

Chapter 8
Add Web Components to Your Page

8-51

For example, the demo card example defines a background image for the contact card in
the app’s demo.css:

#composite-container demo-card .demo-card-front-side {
 background-image: url('images/composites/card-background_1.png');
}

Build Web Components
You can build your Oracle JET Web Component to optimize the files and to generate a minified
folder of the component that can be shared with the consumers.

When your Web Component is configured and is ready to be used in different apps, you can
build the Web Components of the type: standalone Web Component, JET Pack, and Resource
component. Building these components using JET tooling generates a minified content with the
optimized component files. This minified version of the component can be easily shared with
the consumers for use. For example, you would build the component before publishing it to
Oracle Component Exchange. To build the Web Component, use the following command from
the root folder of the JET app containing the component:

ojet build component my-web-component-name

For example, if your Web Component name is demo-card-example, use the following
command:

ojet build component demo-card-example

For a JET Pack, specify the pack name.

ojet build component my-pack-name

Note that the building individual components within the pack is not supported, and the whole
pack must be built at once.

This command creates a /min folder in the web/js/jet-composites/demo-card-example/
x.x.x directory of your Oracle JET web app, where x.x.x is the version number of the
component. The /min folder contains the minified (release) version of your Web Component
files.

Reference component do not require minification or bundling and therefore do not need to be
built.

When you build Web Components:

• If your JET app contains more than one component, you can build the containing JET app
to build and optimize all components together. The build component command with the
component name provides the capability to build a single component.

• You can optionally use the --release flag with the build command, but it is not necessary
since the build command generates both the debug and minified version of the
component.

• You can optionally use the --optimize=none flags with the build command when you want
to generate compiled output that is more readable and suitable for debugging. The

Chapter 8
Build Web Components

8-52

component's loader.js file will contain the minified app source, but content readability is
improved, as line breaks and white space will be preserved from the original source.

Generate API Documentation for VComponent-based Web
Components

The Oracle JET CLI includes a command (ojet add docgen) that you can use to assist with
the generation of API documentation for the VComponent-based web components
(VComponent) that you develop.

When you run the command from the root of your project, the JSDoc NPM package is installed
and an apidoc_template directory is added to the src directory of your project. The
apidoc_template directory contains the following files that you can customize with appropriate
titles, subtitles, and footer information, such as copyright information, for the API reference
documentation that you'll subsequently generate for your VComponent(s).

footer.html
header.html
main.html

You write comments in the source file of your VComponent, as in the following example:

import { ExtendGlobalProps, registerCustomElement } from "ojs/ojvcomponent";
. . .

type Props = Readonly<{
 message?: string;
 address?: string;
}>;

/**
 *
 * @ojmetadata version "1.0.0"
 * @ojmetadata displayName "A user friendly, translatable name of the
component"
 * @ojmetadata description "<p>Write a description here.</p>
 <p>Use HTML tags to put in new paragraphs</p>

 Bullet list item 1
 Bullet list item 2
 * <p>Everything before the closing quote is rendered</p>
 * "
 *
 */

function StandaloneVcompFuncImpl({ address = "Redwood shores",
 message = "Hello from standalone-vcomp-func" }:
Props) {
 return (
 <div>
 . . .
 </div>

Chapter 8
Generate API Documentation for VComponent-based Web Components

8-53

);
}

Once you have completed documenting your VComponent’s API in the source file, you run the
build command for your component or the JET Pack, if the component is part of a JET pack
(ojet build component component-name or ojet build component jet-pack-name) to
generate API reference doc in the appRootDir/web/js/jet-composites/component-or-pack-
name/vcomponent-version/docs directory.

The following /docs directory listing shows the files that the Oracle JET CLI generates for a
standalone VComponent. You can’t generate the API documentation by building the Oracle
JET app that contains the component. You have to build the individual VComponent or the JET
Pack that contains VComponents. Note too that you can’t generate API doc for CCA-based
web components using the Oracle JET CLI ojet add docgen command.

appRootDir/web/js/jet-composites/standalone-vcomp-func/1.0.0/docs
| index.html
| jsDocMd.json
| standalone-vcomp-func.html
| standalone.StandaloneVcompFunc.html
|
+---scripts
| | deprecated.js
| |
| \---prettify
| Apache-License-2.0.txt
| lang-css.js
| prettify.js
|
\---styles
 | jsdoc-default.css
 | prettify-jsdoc.css
 | prettify-tomorrow.css
 |
 \---images
 bookmark.png
 linesarrowup.png
 linesarrowup_blue.png
 linesarrowup_hov.png
 linesarrowup_white.png
 oracle_logo_sm.png

One final thing to note is that if you want to include an alternative logo and/or CSS styles to
change the appearance of the generated API doc, you update the content in the following
directory appRootDir/node_modules/@oracle/oraclejet/dist/jsdoc/static/styles/.

Package Web Components
You can create a sharable zip file archive of the minified Oracle JET Web Component from the
Command-Line Interface.

When you want to share Web Components with other developers, you can create an archive
file of the generated output contained in the jet-composites subfolder of the app's /web. After

Chapter 8
Package Web Components

8-54

you build a standalone Web Component or a Resource component, you use the JET tooling to
run the package command and create a zip file that contains the Web Component compiled
and minified source.

ojet package component my-web-component-name

Similarly, in the case of JET packs, you cannot create a zip file directly from the file system. It
is necessary to use the JET tooling to package JET packs because the output under the /jet-
composites/<packName> subfolder contains nested component folders and the tooling ensures
that each component has its own zip file.

ojet package pack my-JET-Pack-name

The package command packages the component's minified source from the /web/js/jet-
composites directory and makes it available as a zip file in a /dist folder at the root of the
containing app. This zip file will contain both the specified component and a minified version of
that component in a /min subfolder.

Reference components do not require minification or bundling and therefore do not need to be
built. You can archive the Reference component by creating a simple zip archive of the
component's folder.

The zip archive of the packaged component is suitable to share, for example, on Oracle
Component Exchange, as described in Publish Web Components to Oracle Component
Exchange. To help organize components that you want to publish, the JET tooling appends the
value of the version property from the component.json file for the JET pack and the individual
components to the generated zip in the dist folder. Assume, for example, that you have a
component pack, my-component-pack, that has a version value of 1.0.0 and the indiviudal
components (my-widget-1, and so on) within the pack also have version values of 1.0.0, then
the zip file names for the generated files will be as follows:

appRootDir/dist/
my-web-component-name_1-0-0.zip
my-component-pack_1-0-0.zip
my-component-pack-my-widget-1_1-0-0.zip
my-component-pack-my-widget-2_1-0-0.zip
my-component-pack-my-widget-3_1-0-0.zip

You can also generate an archive file when you want to upload the component to a CDN. In the
CDN case, additional steps are required before you can share the component, as described in
Upload and Consume Web Components on a CDN.

Create a Project to Host a Shared Oracle Component Exchange
When you want to store and share Web Components across machines for re-use by other
developers, you can use a Component Exchange that you create in Oracle Visual Builder
Studio.

When you want to share Web Components, you generally need to set up a dedicated project to
specifically host a Shared Exchange. Although every project within Oracle Visual Builder
Studio has a private Component Exchange instance, the Shared Exchange makes uploaded
components accessible to other developers. You can use the same project in your Shared
Exchange to host the source code repository of your components.

Chapter 8
Create a Project to Host a Shared Oracle Component Exchange

8-55

To create the Shared Exchange:

1. Create a new project in Oracle Visual Builder Studio.

2. Select the Initial Repository template for the new project.

Chapter 8
Create a Project to Host a Shared Oracle Component Exchange

8-56

3. Leave the defaults settings unchanged or, optionally, select the settings for importing your
component source code and click Finish.

4. In the project provisioning screen, verify that Component Exchange is one of the services
being created.

Chapter 8
Create a Project to Host a Shared Oracle Component Exchange

8-57

5. Share the project with all users who will need to access published components by adding
them as members to the project. They will then use their own user name and password to
access the Shared Component Exchange.

Once the project is created you can obtain the correct URL for use with the Oracle JET tooling
to access the Shared Component Exchange, as described in Publish Web Components to
Oracle Component Exchange.

Publish Web Components to Oracle Component Exchange
When you want to store and share Web Components across machines for re-use by other
developers, you can use the Oracle JET CLI (Command-Line Interface) to configure access to
a Shared Component Exchange defined in Oracle Visual Builder Studio and then publish
components to a public project.

When you want to share Web Components, you can use Oracle JET CLI to configure access
to a Shared Component Exchange by supplying the URL to the target Component Exchange.
Once you have configured the JET tooling for a specific Component Exchange, you can run
the publish component command in the JET CLI to upload specified components. Users with
access rights can use the CLI to search the Component Exchange for components by keyword
and add components to their web app project.

Before you begin:

Chapter 8
Publish Web Components to Oracle Component Exchange

8-58

• Create a project in a Shared Component Exchange, as described in Create a Project to
Host a Shared Oracle Component Exchange.

• Share the project with all users who will need to access components by adding them as
members to the project, as described in Create a Project to Host a Shared Oracle
Component Exchange. Users will need to create their own user name and password to
access the Shared Component Exchange.

To publish components to a Shared Component Exchange:

1. Obtain the URL to the Shared Component Exchange that you can use to configure Oracle
JET tooling.

a. From the Shared Component Exchange that you created, copy the URL that you
would use to clone the GIT repository. The URL will look similar to this.

https://john.doe@example.org@xxxxx-
cloud01.developer.ocp.oraclecloud.com/xxxxx-cloud01/s/xxxxx-
cloud01_sharedcomponentcatalog_8325/scm/sharedcomponentcatalog.git

b. Using the copied URL, remove the user name prefix (for example,
john.doe@example.org@) and remove elements from /scm onwards to obtain a root of
just the project, similar to this.

https://xxxxx-cloud01.developer.ocp.oraclecloud.com/xxxxx-cloud01/s/
xxxxx-cloud01_sharedcomponentcatalog_8325

c. Next, append /compcatalog/0.2.0.

In this example, the Exchange URL that you need for the Oracle JET tooling looks like
this.

https://xxxxx-cloud01.developer.ocp.oraclecloud.com/xxxxx-cloud01/s/
xxxxx-cloud01_sharedcomponentcatalog_8325/compcatalog/0.2.0

2. Configure Oracle JET tooling to access the Component Exchange project by running the
ojet configure command in the Oracle JET CLI. Set the --exchange-url flag on the
command to pass the Component Exchange URL you obtained.

ojet configure --exchange-url=https://xxxxx-
cloud01.developer.ocp.oraclecloud.com/xxxxx-cloud01/s/xxxxx-
cloud01_sharedcomponentcatalog_8325/compcatalog/0.2.0

Tip:

You can use the JET CLI to define an Exchange URL that is global to all projects
for your user:

ojet configure --global --exchange-url=myExchange.org

The URL that you pass to the ojet configure command at the project level,
overrides the global definition.

Chapter 8
Publish Web Components to Oracle Component Exchange

8-59

3. In the Oracle JET CLI, publish a component to the configured Component Exchange by
running the publish component command.

ojet publish component my-demo-card

Optionally, you can supply Component Exchange login user name and password with the
publish command. For more information, enter ojet help publish in the CLI.

Oracle JET tooling supports searching the configured Component Exchange by running the
search exchange command with a keyword, such as the component name. Additionally, you
can add components to your web app by running the add component command for the
configured Component Exchange. For more information, use ojet help in the JET CLI.

Upload and Consume Web Components on a CDN
You can package a Web Component to make it available on a Content Delivery Network (CDN)
and you can reuse the component in your app.

You can include the CDN location of the component in the component metadata as defined in
the component's component.json file. By doing this, tools such as Oracle JET tooling and
Oracle Visual Builder will be able to point to the CDN location when you build your apps in
release mode.

CDN information is encoded by using the paths attribute in the component.json file. A typical
example looks similar to this.

{
 "name": “demo-samplecomponent",
 "displayName": “Sample component",
 "version": "1.0.0",
 "paths": {
 "cdn": {
 "min": "https://static.example.com/cdn/jet/components/demo-
samplecomponent/1.0.0/min",
 "debug": "https://static.example.com/cdn/jet/components/demo-
samplecomponent/1.0.0"
 }
 },
...

The following notes apply to the paths attribute that you specify:

• The exact CDN root location will depend on your CDN provider, and it is the final part of
the location that is needed.

• The location has a folder with the same name as the component (in this example demo-
samplecomponent) followed by the version number of the component (1.0.0). As you
release new versions of the component, you will create a new version-number folder under
the component root.

• You can provide both a min and debug path for the component, where the debug path is
optional.

To prepare for CDN distribution, package the component by running the package component
command in the Oracle JET Command-Line Interface. This will produce a zip file with the
same name as the component (for example, demo-samplecomponent.zip) in the /dist folder of

Chapter 8
Upload and Consume Web Components on a CDN

8-60

the containing Oracle JET app. This zip file will contain both the specified component and a
minified version of that component in a /min subfolder.

Unpack the zip file that you created under the /<component-name>/<version> folder for your
CDN as identified in the component.json file.

After a component is available on a CDN, you can then use it in your JET app by pointing the
requireJS path for the component to the CDN location that you identified for the component. If
you use Oracle JET tooling, this will be done for you; however, if you need to define the
requireJS paths manually, such a mapping will look similar to this in main.js file:

requirejs.config(
 {
 baseUrl: 'js',
 paths:
 {
 'demo-samplecomponent': '"https://static.example.com/cdn/jet/
components/demo-samplecomponent/1.0.0/min',
 ...

References to the component can be made using the path <component-name>/loader.

Chapter 8
Upload and Consume Web Components on a CDN

8-61

9
Use Oracle JET REST Data Provider APIs

Use Oracle JET's REST Data Provider APIs (RESTDataProvider and RESTTreeDataProvider)
to send queries to JSON-based REST services and fetch the resulting data to your app.

The RESTDataProvider implements Oracle JET’s DataProvider interface while the
RESTTreeDataProvider implements the TreeDataProvider interface. We’ll first describe
RESTDataProvider as it is the foundation API to fetch data from JSON-based REST services
using the Fetch API. The RESTTreeDataProvider builds on the RESTDataProvider to retrieve
hierarchical data.

About the Oracle JET REST Data Provider
Use RESTDataProvider when you want to send query parameters to the JSON-based REST
service so that the subset of data that matches your query is returned to the JET app rather
than all data.

Use it, if, for example, you want to display a list of employees in your app who match a certain
criterion, such as members of a department. You could fetch the full list of employees to your
JET app where you query the returned data before you display the data rows that match your
criterion. This is inefficient because you send a request for data that you don’t need. Instead,
using an instance of RESTDataProvider, you construct a request to the REST service that
returns the appropriate subset of data.

RESTDataProvider accomplishes this through the use of transforms, which is a property
option that you specify when you initialize a RESTDataProvider instance. RESTDataProvider
has three transforms property options. These are fetchFirst, fetchByOffset and
fetchByKeys. These correspond to the three available fetch methods on data providers. Each
property option defines the following functions:

• request: A function that creates a Request object to use for the Fetch API call to the the
REST API. This is where any required query parameters for paging, filtering, and sorting
can be applied to the URL which can then be used to create a request. Other request
options, such as headers, body and method can also be added to the request if needed.

• response: A function that extracts the data and other relevant values from the response
body. The function must, at a minimum, return an object with a data property that is an
array of items of type D (generic passed into RESTDataProvider class). The generic type D
corresponds to the type of the entries in the loaded data. For example, for personal
information data, you may have entries of type string and number, as in the following
entries: { name: string, age: number }.

The Oracle JET Cookbook includes a series of demos that show usage of the
RESTDataProvider. The Overview demo shows you how to initialize an instance of
RESTDataProvider using the fetchFirst method that includes request and response functions.
See REST Data Provider in the Oracle JET Cookbook and REST Data Provider in the Oracle®
JavaScript Extension Toolkit (JET) API Reference for Oracle JET.

9-1

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=restDataProvider&demo=overview
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/RESTDataProvider.html

About the Oracle JET REST Tree Data Provider
Use RESTTreeDataProvider when you want to retrieve hierarchical data from JSON-based
REST services.

The main difference between RESTDataProvider and RESTTreeDataProvider is that
RESTTreeDataProvider exposes an additional instance method, getChildDataProvider, and a
constructor option that is also named getChildDataProvider. They have different signatures.

• Instance method's signature is getChildDataProvider(parentKey: K):
TreeDataProvider<K, D> | null

• Constructor option's signature is getChildDataProvider(item: Item<K, D>):
DataProvider<K, D> | null

The getChildDataProvider method takes as an argument the key of the parent node to create
a child data provider for. It then returns a RESTTreeDataProvider instance that loads the
children of the parent node or null if the node is a leaf node. A leaf node is a node that cannot
have child nodes.

If the key of the parent node that you pass to getChildDataProvider does not correspond to a
previously fetched item or is an item that metadata identifies as a leaf node,
getChildDataProvider returns null. Note that calls to getChildDataProvider(parentKey: K)
internally call getChildDataProvider(item: Item<K, D>) after retrieving the item
corresponding to parentKey. Therefore, it is the constructor option that accesses the metadata
of the item corresponding to a node's key. Since the constructor option is defined by the JET
app, it is the JET app, and not RESTTreeDataProvider, that decides whether to return null or a
DataProvider instance. This whole flow, which starts from the JET app returning metadata
through the fetch response transform, is a mechanism to give apps enough information to
determine whether a node has children or not.

Note too that in the Oracle JET Cookbook the leaf field name is based on the metadata
provided by the cookbook’s mock server through the response transform. Your REST service is
likely to use a different field name.

The metadata used by the Oracle JET Cookbook’s mock server is of type { key: K, leaf:
boolean}[]. This indicates whether the corresponding node is a leaf node. This is useful when
invoking getChildDataProvider. It returns null when the parent node is a leaf node.
Otherwise, the node renders with an expansion arrow in the oj-tree-view component even
though it cannot have child nodes.

One other thing to note is that create operations for the RESTTreeDataProvider need to use
the parentKeys option. This can be seen in the addChildNode method of the Events demo in
the Oracle JET Cookbook entry for REST Tree Data Provider. See more detail about the
parentKeys option in Data Provider Add Operation Event Detail of the Oracle® JavaScript
Extension Toolkit (JET) API Reference for Oracle JET.

The Oracle JET Cookbook includes a series of demos that show usage of the
RESTTreeDataProvider API. The Overview demo shows you how to create an instance of
RESTTreeDataProvider using the getChildDataProvider method. See REST Tree Data
Provider. In addition to the demos in the Oracle JET Cookbook, see also the entry for the
REST Tree Data Provider in the Oracle® JavaScript Extension Toolkit (JET) API Reference for
Oracle JET.

Chapter 9
About the Oracle JET REST Tree Data Provider

9-2

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=restTreeDataProvider&demo=overview
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/DataProviderAddOperationEventDetail.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=restTreeDataProvider&demo=overview
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=restTreeDataProvider&demo=overview
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/RESTTreeDataProvider.html

Create a CRUD App Using Oracle JET REST Data Providers
Use the Oracle JET REST Data Provider APIs to create apps that perform CRUD (Create,
Read, Update, Delete) operations on data returned from a REST Service API.

Unlike the Common Model and Collection APIs that we recommended you to use prior to
release 11, RESTDataProvider and RESTTreeDataProvider do not provide methods such as
Collection.remove or Model.destroy. Instead you use the Fetch API and the appropriate
HTTP request method to send a request to the REST service to perform the appropriate
operation. In conjunction with this step, you use the data provider's mutate method to update
the data provider instance.

Note:

The steps that follow make specific reference to RESTDataProvider, but the general
steps also apply to RESTTreeDataProvider. View the Events demo in the Oracle JET
Cookbook entry for REST Tree Data Provider to see an implementation of CRUD-
type functionality that uses RESTTreeDataProvider. Note that the demos in the
Oracle JET Cookbook use a mock REST server, so operations and responses in an
actual REST service may differ from Cookbook demonstration.

Define the Data Model for REST Data Provider
Identify the data source for your app and create the data model.

1. Identify your data source and examine the data. For data originating from a REST service,
identify the service URL and navigate to it in a browser.

The following example shows a sample of the response body for a request sent to a REST
service for department data.

[
 {
 "DepartmentId": 20,
 "DepartmentName": "HR",
 "LocationId": 200,
 "ManagerId": 300,
 "Date": "01 Oct 2015"
 },
 {
 "DepartmentId": 100,
 "DepartmentName": "Facility",
 "LocationId": 200,
 "ManagerId": 300,
 "Date": "13 Oct 2002"
 }
]

In this example, each department is identified by the DepartmentId attribute.

Chapter 9
Create a CRUD App Using Oracle JET REST Data Providers

9-3

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=restTreeDataProvider&demo=overview

2. Add code to your app that creates an instance of the REST data provider and fetches data
from the REST service.

import { RESTDataProvider } from "ojs/ojrestdataprovider";
import "ojs/ojtable";

type D = { DepartmentId: number; DepartmentName: string; Date: string };
type K = D["DepartmentId"];

class ViewModel {

 dataprovider: RESTDataProvider<K, D>;
 keyAttributes = "DepartmentId";
 url = "https://restServiceURL/departments";

 constructor() {
 this.dataprovider = new RESTDataProvider({
 keyAttributes: this.keyAttributes,
 url: this.url,

 transforms: {
 fetchFirst: {
 request: async (options) => {
 const url = new URL(options.url);
 const { size, offset } = options.fetchParameters;
 url.searchParams.set("limit", String(size));
 url.searchParams.set("offset", String(offset));
 return new Request(url.href);
 },
 response: async ({ body }) => {
 const { items } = body;
 // If the response body returns, for example,
"items".
 // We need to assign "items" to "data"
 return { data: items };
 },
 },
 },
 });
 }
}

export = ViewModel;

Read Records
To read the records, define the Oracle JET elements that will read the records in your app's
page.

The following sample code shows a portion of the html file that displays a table of records
using the oj-table element and the data attribute that references the dataprovider. In this
example, the table element creates columns for Department Id, Department Name, and so on.

<oj-table id="table" data="[[dataprovider]]"
 columns='[{"headerText": "Department Id",

Chapter 9
Create a CRUD App Using Oracle JET REST Data Providers

9-4

 "field": "DepartmentId"},
 {"headerText": "Department Name",
 "field": "DepartmentName"},
 {"headerText": "Location Id",
 "field": "LocationId"},
 {"headerText": "Manager Id",
 "field": "ManagerId"}]'>
</oj-table>

Create Records
To add the ability to create new records, add elements to your HTML page that accept input
from the user and create a function that sends the new record to the REST service.

1. Add elements to the app's HTML page that accept input from the user.

The code in the following example adds oj-input-* elements to an HTML page to allow a
user to create a new entry for a department.

<oj-form-layout readonly="false" colspan-wrap="wrap" max-columns="1">
 <div>
 <oj-input-number id="departmentIdInput" label-hint="Department Id"
value="{{inputDepartmentId}}"></oj-input-number>
 <oj-input-text id="departmentNameInput" label-hint="Department Name"
value="{{inputDepartmentName}}"></oj-input-text>
 <oj-input-number id="locationIdInput" label-hint="Location Id"
value="{{inputLocationId}}const addedRowKey =
addedRow[this.keyAttributes]"></oj-input-number>
 <oj-input-number id="managerIdInput" label-hint="Manager Id"
value="{{inputManagerId}}"></oj-input-number>
 </div>
 <div>
 <oj-button id="addButton" on-oj-action="[[addRow]]"
disabled="[[disabledAdd]]">Create</oj-button>
 . . .
 </div>
</oj-form-layout>

The oj-button's on-oj-action attribute is bound to the addRow function which is defined in
the next step.

2. Add code to the ViewModel to send the user’s input as a new request to the REST service
and update the RESTDataProvider instance using the mutate method.

// add to the observableArray
 addRow = async () => {
 // Create row object based on form inputs
 const row = {
 DepartmentId: this.inputDepartmentId(),
 DepartmentName: this.inputDepartmentName(),
 LocationId: this.inputLocationId(),
 ManagerId: this.inputManagerId(),
 };
 // Create and send request to REST service to add row
 const request = new Request(this.restServerUrl, {

Chapter 9
Create a CRUD App Using Oracle JET REST Data Providers

9-5

 headers: new Headers({
 "Content-type": "application/json; charset=UTF-8",
 }),
 body: JSON.stringify(row),
 method: "POST",
 });
 const response = await fetch(request);
 const addedRow = await response.json();
 // Create add mutate event and call mutate method
 // to notify dataprovider consumers that a row has been
 // added
 const addedRowIndex = addedRow.index;
 delete addedRow.index;
 const addedRowKey = addedRow[this.keyAttributes];
 const addedRowMetaData = { key: addedRowKey };
 this.dataprovider.mutate({
 add: {
 data: [addedRow],
 indexes: [addedRowIndex],
 keys: new Set([addedRowKey]),
 metadata: [addedRowMetaData],
 },
 });
 };

Update Records
To add the ability to update records, add elements to your HTML page that accept input from
the user and create a function that sends the updated record to the REST service.

1. Add elements to the app page that identify updatable elements and enables the user to
perform an action to update them.

The code in the following example adds oj-input-* elements to an HTML page to allow a
user to update a selected entry for a department.

<oj-form-layout readonly="false" colspan-wrap="wrap" max-columns="1">
 <div>
 <oj-input-number id="departmentIdInput" label-hint="Department Id"
value="{{inputDepartmentId}}"></oj-input-number>
 <oj-input-text id="departmentNameInput" label-hint="Department Name"
value="{{inputDepartmentName}}"></oj-input-text>
 <oj-input-number id="locationIdInput" label-hint="Location Id"
value="{{inputLocationId}}"></oj-input-number>
 <oj-input-number id="managerIdInput" label-hint="Manager Id"
value="{{inputManagerId}}"></oj-input-number>
 </div>
 <div>
 <oj-button id="addButton" on-oj-action="[[updateRow]]"
disabled="[[disabledUpdate]]">Update</oj-button>
 . . .
 </div>
</oj-form-layout>

Chapter 9
Create a CRUD App Using Oracle JET REST Data Providers

9-6

The oj-button's on-oj-action attribute is bound to the updateRow function which is
defined in the next step.

2. Add code to the ViewModel to send the user's update as a new request to the REST
service and update the RESTDataProvider instance using the mutate method.

// used to update the fields based on the selected row
 updateRow = async () => {
 const currentRow = this.selectedRow;
 if (currentRow != null) {
 // Create row object to update based on form inputs
 const row = {
 DepartmentId: this.inputDepartmentId(),
 DepartmentName: this.inputDepartmentName(),
 LocationId: this.inputLocationId(),
 ManagerId: this.inputManagerId(),
 };
 // Create and send request to update row on the REST service
 const request = new Request(
 `${this.restServerUrl}/${this.selectedKey}`,
 {
 headers: new Headers({
 "Content-type": "application/json; charset=UTF-8",
 }),
 body: JSON.stringify(row),
 method: "PUT",
 }
);
 const response = await fetch(request);
 const updatedRow = await response.json();
 const updatedRowIndex = updatedRow.index;
 delete updatedRow.index;
 // Create update mutate event and call mutate method
 // to notify dataprovider consumers that a row has been
 // updated
 const updatedRowKey = this.selectedKey;
 const updatedRowMetaData = { key: updatedRowKey };
 this.dataprovider.mutate({
 update: {
 data: [updatedRow],
 indexes: [updatedRowIndex],
 keys: new Set([updatedRowKey]),
 metadata: [updatedRowMetaData],
 },
 });
 }
 };

Delete Records
To add the ability to delete records, add elements to your HTML that accept input from the user
and create a function that sends the record for deletion to the REST service.

1. Add elements to the app page that identifies records marked for deletion and enables the
user to perform an action to delete them.

Chapter 9
Create a CRUD App Using Oracle JET REST Data Providers

9-7

The oj-button's on-oj-action attribute in the following example is bound to the
removeRow function which is defined in the next step.

<oj-button id="removeButton" on-oj-action="[[removeRow]]"
disabled="[[disabledRemove]]">Remove</oj-button>

2. Add code to the ViewModel to delete the record or records submitted by the user.

// used to remove the selected row
removeRow = async () => {
 const currentRow = this.selectedRow;
 if (currentRow != null) {
 // Create and send request to delete row on REST server
 const request = new Request(
 `${this.restServerUrl}/${this.selectedKey}`,
 { method: "DELETE" }
);
 const response = await fetch(request);
 const removedRow = await response.json();
 const removedRowIndex = removedRow.index;
 delete removedRow.index;
 // Create remove mutate event and call mutate method
 // to notify dataprovider consumers that a row has been
 // removed
 const removedRowKey = removedRow[this.keyAttributes];
 const removedRowMetaData = { key: removedRowKey };
 this.dataprovider.mutate({
 remove: {
 data: [removedRow],
 indexes: [removedRowIndex],
 keys: new Set([removedRowKey]),
 metadata: [removedRowMetaData],
 },
 });
 }
 this.disabledUpdate(true);
 this.disabledRemove(true);
};

Chapter 9
Create a CRUD App Using Oracle JET REST Data Providers

9-8

10
Validate and Convert Input

Oracle JET includes validators and converters on a number of Oracle JET editable elements,
including oj-combobox, oj-input*, and oj-text-area. You can use them as is or customize
them for validating and converting input in your Oracle JET app.
Some editable elements such as oj-checkboxset, oj-radioset, and oj-select have a simple
attribute for required values that implicitly creates a built-in validator.

Note:

The oj-input* mentioned above refers to the family of input components such as
oj-input-date-time, oj-input-text, and oj-input-password, among others.

About Oracle JET Validators and Converters
Oracle JET provides converter classes that convert user input strings into the data type
expected by the app and validator classes that enforce a validation rule on those input strings.

For example, you can use Oracle JET's IntlDateTimeConverter to convert a user-entered
date to a Date object for use by the app's ViewModel and then use DateTimeRangeValidator
to validate that input against a specified time range. You can also use converters to convert
Date or Number objects to a string suitable for display or convert color object formats.

To retrieve the converter or validator factory for a registered type, Oracle JET provides the
Validation class which includes methods to register and retrieve converter and validator
factories.

If the converters or validators included in Oracle JET are not sufficient for your app, you can
create custom converters or validators. Optionally, you can provide a custom factory that
implements the contract for a converter using ConverterFactory or a validator using
ValidatorFactory and register the converter or validator with the Validation class. The
Validation class enables you to access your custom converter or validator using the same
mechanisms as you would use with the Oracle JET standard converters and validators.

About Validators
All Oracle JET editable elements support a value attribute and provide UI elements that allow
the user to enter or choose a value. These elements also support other attributes that page
authors can set that instruct the element how it should validate its value.

An editable element may implicitly create a built-in converter and/or built-in validators for its
normal functioning when certain attributes are set.

For example, editable elements that support a required property create the required validator
implicitly when the property is set to true. Other elements like oj-input-date, oj-input-
date-time, and oj-input-time create a datetime converter to implement its basic functionality.

10-1

About the Oracle JET Validators
The following table describes the Oracle JET validators and provides links to the API
documentation:

Validator Description Link to API Module

DateTimeRangeValida
tor

Validates that the input date is
between two dates, between
two times, or within two date
and time ranges

DateTimeRangeValidator ojvalidation-
datetimerange

DateRestrictionVali
dator

Validates that the input date is
not a restricted date

DateRestrictionValidator ojvalidation-
daterestriction

LengthValidator Validates that an input string is
within a specified length

LengthValidator ojvalidation-length

NumberRangeValidato
r

Validates that an input number
is within a specified range

NumberRangeValidator ojvalidation-numberrange

RegExpValidator Validates that the regular
expression matches a
specified pattern

RegExpValidator ojvalidation-regexp

RequiredValidator Validates that a required entry
exists

RequiredValidator ojvalidation-required

About Oracle JET Component Validation Attributes
The attributes that a component supports are part of its API, and the following validation
specific attributes apply to most editable elements.

Element Attribute Description

converter When specified, the converter instance is used over any internal converter the element might
create. On elements such as oj-input-text, you may need to specify this attribute if the
value must be processed to and from a number or a date value.

countBy When specified on LengthValidator, countBy enables you to change the validator’s default
counting behavior. By default, this property is set to codeUnit, which uses JavaScript's String
length property to count a UTF-16 surrogate pair as length === 2. Set this to codePoint to
count surrogate pairs as length ===1.

max When specified on an Oracle JET element like oj-input-date or oj-input-number, the
element creates an implicit range validator.

min When specified on an Oracle JET element like oj-input-date or oj-input-number, the
component creates an implicit range validator.

pattern When specified on an Oracle JET element like oj-input-text, oj-input-password, or oj-
text-area, the component creates an implicit regExp validator using the pattern specified. If
the regular expression pattern requires a backslash, while specifying the expression within an
Oracle JET element, you need to use double backslashes. For more information, see Use
Oracle JET Validators with Oracle JET Components.

placeholder When specified, it displays placeholder values in most elements.

required When specified on an Oracle JET element, the element creates an implicit required validator.

validators When specified, the element uses these validators along with the implicit validators to validate
the UI value. Can be implemented with Validators or AsyncValidators to validate the user
input on the server asynchronously.

Chapter 10
About Oracle JET Validators and Converters

10-2

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.DateTimeRangeValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.DateRestrictionValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.LengthValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.NumberRangeValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.RegExpValidator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.RequiredValidator.html

Some editable elements do not support specific validation attributes as they might be irrelevant
to its intrinsic functioning. For example, oj-radioset and oj-checkboxset do not support a
converter attribute since there is nothing for the converter to convert. For an exact list of
attributes and how to use them, refer to the Attributes section in the element’s API
documentation. For Oracle JET API documentation, see API Reference for Oracle® JavaScript
Extension Toolkit (Oracle JET). Select the component you're interested in viewing from the API
list.

About Oracle JET Component Validation Methods
Oracle JET editable elements support the following methods for validation purposes. For
details on how to call this method, its parameters and return values, refer to the component’s
API documentation.

Element Method Description

refresh() Use this method when the DOM the element relies on changes, such as the help attribute tooltip
on an oj-label changing due to a change in locale.

reset() Use this method to reset the element by clearing all messages and messages attributes -
messagesCustom - and update the element’s display value using the attribute value. User entered
values will be erased when this method is called.

validate() Use this method to validate the component using the current display value.

For details on calling a element's method, parameters, and return values, See the Methods
section of the element's API documentation in API Reference for Oracle® JavaScript Extension
Toolkit (Oracle JET). You can also find detail on how to register a callback for or bind to the
event and for information about what triggers the events. Select the component you're
interested in viewing from the API list.

About Converters
The Oracle JET converters include date, date-time, number, and color converters and are
described in the following table.

Converter Description Link to API

ColorConverter Converts Color object formats ColorConverter

IntlDateTimeConverter Converts a string to a Date or a Date to a
string

IntlDateTimeConverter

IntlNumberConverter Converts a string to a number or formats a
number or Number object value to a string

IntlNumberConverter

LocalDateConverter Converts a date-only ISO string to a
formatted string or a string to a date-only
ISO string

LocalDateConverter

About Oracle JET Component Converter Options
Oracle JET Converters use the options attribute to allow a range of formatting options for
color, number, date, and date-time values.

Color Converters

Color converters support the following options.

Chapter 10
About Oracle JET Validators and Converters

10-3

https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Color.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ColorConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlDateTimeConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlNumberConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/LocalDateConverter.html

Option Name Description

format Sets the format of the converted color specification. Allowed
values are "rgb" (default), "hsl", "hsv" "hex", and "hex3" (3
digit hex code).

For an exact list of options and methods and how to use them, refer to API documentation of
the ColorConverter class. See ColorConverter.

Number Converters

Number converters support a number of options that can be used to format decimal numbers,
currency, percentages, or units. Some of the important options are:

Option Name Description

style Sets the style of number formatting. Allowed values are "decimal" (default), "currency",
"percent" or "unit".

For decimals, percentages, and units, the locale-appropriate symbols are used for decimal
characters (point or comma) and grouping separators (if grouping is enabled).

currency Mandatory when style is "currency". Specifies the currency that will be used when
formatting the number. The value should be a ISO 4217 alphabetic currency code (such as
USD or EUR).

currencyDisplay Allowed values are "code", "name", and "symbol" (default). When style is currency, this
option specifies if the currency is displayed as its name (such as Euro) an ISO 4217
alphabetic currency code (such as EUR), or the commonly recognized symbol (such as €).

unit Mandatory when style is "unit". Allowed values are "byte" or "bit". This option is used for
formatting only and cannot be used for parsing.

Use this option to format digital units like 10Mb for bit unit or 10MB for byte unit. Note that
scale is formatted automatically. For example, 1024 (with the byte unit set) is interpreted as
1 KB.

minimumIntegerDigits Sets the minimum number of digits before the decimal place. The number is padded with
leading zeros if it would not otherwise have enough digits. Allowed values are any integer
from 1 to 21.

minimumFractionDigits Sets the minimum number of digits after the decimal place. The number is padded with
trailing zeros if it would not otherwise have enough digits. Allowed values are any integer
from 0 to 20.

maximumFractionDigits Sets the maximum number of digits after the decimal place. The number is rounded if it has
more than the set maximum number of digits. Allowed values are any integer from 0 to 20.

pattern Sets a pattern to use for the number, overriding other options. The pattern uses the symbols
specified in the Unicode CLDR for numbers, percent, and currency formats.

For the currency format, the currency option must be set. Use of the currency symbol (¤)
indicates whether it will be displayed or not. For example, {pattern: '¤#,##0', currency:
'USD'}.

For the percentage format, if the style option is set to 'percent', use of the percentage
symbol (%) indicates whether it will be displayed or not. If the style option is not set to
percent, the percentage symbol is required. For example, {style: 'percent', pattern: "#,##0"}.

For the decimal or exponent patterns, the example is {pattern: "#,##0.00"} or {pattern:
"0.##E+0"}.

roundingMode Specifies the rounding behavior. Allowed values are HALF_UP, HALF_DOWN, and HALF_EVEN.

roundDuringParse Specifies whether or not to round during parse. Defaults to false; the number converter
rounds during format but not during parse.

Chapter 10
About Oracle JET Validators and Converters

10-4

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ColorConverter.html

For an exact list of options and methods and how to use them, refer to API documentation of
the IntlNumberConverter class. See IntlNumberConverter.

The Oracle JET Cookbook includes implementations of the options discussed here. See
Number Converter.

DateTime Converters

DateTime converters support a wide array of options that can be used to format date and time
values in all common styles across locales. Some of the important options are:

Option Name Description

year Allowed values are the strings "2–digit" (00–99) and "numeric" (full year value, default).

month Allowed values are the strings "2–digit" (01–12), "numeric" (variable digit value such as
1 or 11, default), "narrow" (narrow name such as J for January), "short" (abbreviated
name such as Jan), and "long" (wide name such as January).

day Allowed values are the strings "2–digit" (01–31) and "numeric" (variable digit value
such as 1 or 18, default).

formatType Determines the standard date and/or time format lengths to use. Allowed values are "date",
"time", "datetime". When set, a value for dateFormat or timeFormat must be specified
where appropriate.

dateFormat Specifies the standard date format length to use when formatType is set to "date" or
"datetime". Allowed values are "short" (default), "medium", "long", "full".

timeFormat Specifies the standard time format length to use when formatType is set to "time" or
"datetime". Allowed values are "short" (default), "medium", "long", "full".

hour Allowed values are the strings "2–digit" (01–12 or 01–24) and "numeric" (variable digit
value such as 1 or 23).

minute Allowed values are the strings "2–digit" and "numeric". This value is always displayed
as 2 digits (00–59).

second Allowed values are the strings "2–digit" and "numeric". This value is always displayed
as 2 digits (00–59).

For an exact list of options and methods and how to use them, refer to API documentation of
the IntlDateTimeConverter class. See IntlDateTimeConverter.

The Oracle JET Cookbook includes implementations of the options discussed here. See
DateTime Converter.

Date Converters

Date converters support options that can be used to format date-only values in all common
styles across locales. The LocalDateConverter has fewer options than the
IntlDateTimeConverter, with no options related to time or timezone; however, it is efficient
and flexible when parsing user input into formatted date strings.

Option Name Description

dateStyle Specifies the standard date format length to use. Allowed values are: short (9/20/15),
medium (Sep 20, 2015), long (September 20, 2015), and full (Sunday, September 20,
2015). If left unspecified, the default is dateStyle: short.

locale Specifies a locale to be used by this converter instance. If this option is not provided, the
converter will call Config.getLocale() to determine the current JET page locale.

Chapter 10
About Oracle JET Validators and Converters

10-5

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlNumberConverter.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=converters&demo=numberConverter
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlDateTimeConverter.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=converters&demo=dateTimeConverter

For an exact list of options and methods and how to use them, refer to API documentation of
the LocalDateConverter class. See LocalDateConverter.

About Oracle JET Converters
The Oracle JET color, date, date-time, and number converters, ColorConverter,
LocalDateConverter, IntlDateTimeConverter, and IntlNumberConverter, extend the
Converter object which defines a basic contract for converter implementations.

The converter API is based on the ECMAScript Internationalization API specification
(ECMA-402 Edition 1.0) and uses the Unicode Common Locale Data Repository (CLDR) for its
locale data. Both converters are initialized through their constructors, which accept options
defined by the API specification. For additional information about the ECMA-402 API
specification, see https://www.ecma-international.org/publications-and-standards/standards/
ecma-402/. For information about the Unicode CLDR, see http://cldr.unicode.org.

The Oracle JET implementation extends the ECMA-402 specification by introducing additional
options, including an option for user-defined patterns. For the list of additional options, see the
ColorConverter, IntlDateTimeConverter, IntlNumberConverter, and LocalDateConverter API
documentation.

Note:

The bundles that hold the locale symbols and data used by the Oracle JET
converters are downloaded automatically based on the locale set on the page when
using RequireJS and the ojs/ojvalidation-datetime or ojs/ojvalidation-number
module. If your app does not use RequireJS, the locale data will not be downloaded
automatically.

You can use the converters with an Oracle JET component or instantiate and use them directly
on the page.

The Oracle JET Cookbook includes implementations of the options discussed here. See:

• Converters

• Color Palette

• Color Spectrum

Use Oracle JET Converters with Oracle JET Components
Oracle JET elements that accept user input, such as oj-input-date, already include an
implicit converter that is used when parsing user input. However, you can also specify an
explicit converter on the element that will be used instead when converting data from the
model for display on the page, and vice versa. An explicit converter is required if you want to
include timezone data.

For example, the following code sample shows a portion of a form containing an oj-input-
date component that uses the default converter supplied by the component implicitly. The
highlighted code shows the oj-input-date component.

<oj-form-layout id="datetime-converter-example">
 <oj-input-date id="date1" value="{{date}}"

Chapter 10
About Oracle JET Converters

10-6

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/LocalDateConverter.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-402/
https://www.ecma-international.org/publications-and-standards/standards/ecma-402/
http://cldr.unicode.org
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ColorConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlDateTimeConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlNumberConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/LocalDateConverter.html
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=converters&demo=dateTimeConverter
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=colorPalette&demo=paletteGridSwatchSizes
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=colorSpectrum&demo=spectrum

 label-hint="input date with no converter"
 help.instruction="enter a date in your preferred format and
we
 will attempt to figure it out">
 </oj-input-date>
</oj-form-layout>

The script to create the view model for this example is shown below.

• TypeScript

• JavaScript

TypeScript

import * as ko from 'knockout';
import 'ojs/ojformlayout';
import 'ojs/ojdatetimepicker';
import { IntlConverterUtils } from 'ojs/ojconverterutils-i18n';

class DemoViewModel {

 date: ko.Observable<string>;

 constructor() {

 this.date = ko.observable
 (IntlConverterUtils.dateToLocalIsoDateString(new Date()));

 }
}

export = IncidentsViewModel;

JavaScript

define(['knockout', 'ojs/ojconverterutils-i18n', 'ojs/ojknockout',
 'ojs/ojdatetimepicker', 'ojs/ojformlayout'],

 function (ko, ConverterUtilsI18n) {

 function DemoViewModel() {

 const date = new Date();
 this.value = ko.observable
 (ConverterUtilsI18n.IntlConverterUtils.dateToLocalIso(date));
 }

 return DemoViewModel;
 }
);

Chapter 10
About Oracle JET Converters

10-7

When the user runs the page, the oj-input-date element displays an input field with the
expected date format. In this example, the element also displays a hint when the user hovers
over the input field, and it displays a calendar when the user clicks in the input field. If the user
inputs data that is not in the expected format, the built-in converter displays an error message
with the expected format.

The error that the converter throws when there are errors during parsing or formatting
operations is represented by the ConverterError object, and the error message is represented
by an object that duck-types Message. The messages that Oracle JET converters use are
resources that are defined in the translation bundle included with Oracle JET. For more
information about messaging in Oracle JET, see Work with User Assistance.

You can also specify the converter directly on the element's converter attribute, if it exists. The
code excerpt below defines another oj-input-date element on the sample form and specifies

Chapter 10
About Oracle JET Converters

10-8

the IntlDateTimeConverter converter with options that will convert the user's input to a
numeric year, long month, and numeric day according to the conventions of the locale set on
the page. The options parameter is an object literal that contains the ECMA-402 options as
name-value pairs.

<div class="oj-flex">
 <div class="oj-flex-item">
 <oj-label for="date2">input date</oj-label>
 </div>
 <div class="oj-flex-item">
 <oj-input-date
 id="date2"
 value="{{date}}"
 help.instruction="enter a date in your preferred format and we will
attempt
 to figure it out"
 converter='{ "type":"datetime",
 "options": {"year": "numeric", "month": "long",
 "day": "numeric"}}'>
 </oj-input-date>
 </div>
</div>

When the user runs the page in the en-us locale, the oj-input-date element displays an input
field that expects the user's input date to be in the mmmm d, yyyy format. The converter will
accept alternate input if it makes sense, such as 18/07/17 (MM/dd/yy), and perform the
conversion, but it will throw an error if it cannot parse the input. For details about Oracle JET
converters and lenient parsing support, see About Oracle JET Converters Lenient Parsing.

Parsing of narrow era, weekday, or month name is not supported because of ambiguity in
choosing the right value. For example, if you initialize the date-time converter with options
{weekday: 'narrow', month: 'narrow', day: 'numeric', year: 'numeric'}, then for the
en-US locale, the converter will format the date representing May 06, 2014 as T, M 6, 2014,
where T represents Tuesday. If the user inputs T, M 6, 2014, the converter can't determine
whether the user meant Thursday, March 6, 2014 or Tuesday, May 6, 2014. Therefore,
Oracle JET expects that user input be provided in either their short or long forms, such as
Tues, May 06, 2014.

For additional details about the IntlDateTimeConverter and IntlNumberConverter component
options, see IntlDateTimeConverter and IntlNumberConverter.

About Oracle JET Converters Lenient Parsing
The Oracle JET converters support lenient number and date parsing when the user input does
not exactly match the expected pattern. The parser does the lenient parsing based on the
leniency rules for the specific converter.

IntlDateTimeConverter provides parser leniency when converting user input to a date and
enables the user to:

• Input any character as a separator irrespective of the separator specified in the associated
pattern. For example, if the expected date pattern is set to y-M-d, the date converter will
accept the following values as valid: 2020-06-16, 2013/06-16, and 2020aaa06xxx16.
Similarly, if the expected time pattern is set to HH:mm:ss, the converter will accept the
following values as valid: 12.05.35.

Chapter 10
About Oracle JET Converters

10-9

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlDateTimeConverter.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlNumberConverter.html

• Specify a 4-digit year in any position relative to day and month. For example, both
11-2013-16 and 16-11-2013 are valid input values.

• Swap month and day positions, as long as the date value is greater than 12 when working
with the Gregorian calendar. For example, if the user enters 2020-16-06 when y-M-d is
expected, the converter will autocorrect the date to 2020-06-16. However, if both date and
month are less or equal to 12, no assumptions are made about the day or month, and the
converter parses the value against the exact pattern.

• Enter weekday and month names or mix short and long names anywhere in the string. For
example, if the expected pattern is E, MMM, d, y, the user can enter any of the following
dates:

Tue, Jun 16 2020
Jun, Tue 2020 16
2020 Tue 16 Jun

• Omit weekdays. For example, if the expected pattern is E, MMM d, y, then the user can
enter Jun 16, 2020, and the converter autocorrects the date to Tuesday, Jun 16, 2020.
Invalid weekdays are not supported. For instance, the converter will throw an exception if
the user enters Wednesday, Jun 16, 2020.

IntlNumberConverter supports parser leniency as follows:

• If the input does not match the expected pattern, Oracle JET attempts to locate a number
pattern within the input string. For instance, if the pattern is #,##0.0, then the input string
abc-123.45de will be parsed as -123.45.

• For the currency style, the currency symbol can be omitted. Also, the negative sign can be
used instead of a negative prefix and suffix. As an example, if the pattern option is
specified as "\u00a4#,##0.00;(\u00a4#,##0.00)", then ($123), (123), and -123 will be
parsed as -123.

• When the style is percent, the percent sign can be omitted. For example, 5% and 5 will both
be parsed as 0.05.

Understand Time Zone Support in Oracle JET
By default, the oj-input-date-time and oj-input-time elements and
IntlDateTimeConverter support only local time zone input. You can add time zone support by
including the ojs/ojtimezonedata module and creating a converter with the desired pattern.

Oracle JET supports time zone conversion and formatting using the following patterns:

Token Description Example

z, zz, zzz Abbreviated time zone name, format
support only

PDT, PST

zzzz Full time zone name, format support only Pacific Standard Time, Pacific Daylight Time

Z, ZZ, ZZZ Sign hour minutes -0800

X Sign hours -08

XX Sign hours minutes -0800

XXX Sign hours:minutes -08:00

VV Time Zone ID America/Los Angeles

Chapter 10
About Oracle JET Converters

10-10

The image below shows the basic oj-input-date-time element configured for time zone
support. In this example from the Oracle JET Cookbook the component is converted using the
Z pattern.

The oj-input-date-time element is initialized with its converter attribute, in this case a
method named dateTimeConverter.

<oj-input-date-time
 id="timezone"
 value="{{dateTimeValue}}"
 converter="[[dateTimeConverter]]">
</oj-input-date-time>

The viewModel contains the dateTimeConverter() definition. Note that you must also add the
ojs/ojconverter-datetime module to use its DateTimeConverter API. The Oracle JET
Cookbook includes implementations of the options discussed here. See Input Date and Time -
Time Zone.

Use Custom Converters in Oracle JET
You can create custom converters in Oracle JET by extending Converter or by duck typing it.
You can also create a custom converter factory to register the converter with Oracle JET and
make it easier to instantiate the converter.

Custom converters can be used with Oracle JET components, provided they don't violate the
integrity of the component. As with the built-in Oracle JET converters, you can also use them
directly on the page.

The following image shows an implementation of a custom converter that converts the current
date to a relative term. The Schedule For column uses a RelativeDateTimeConverter to
convert the date that the page is run in the en-US locale to display Today, Tomorrow, and the
date in two days.

Chapter 10
About Oracle JET Converters

10-11

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=dateTime&demo=timeZone
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=dateTime&demo=timeZone

To create and use a custom converter in Oracle JET:

1. Define the custom converter.

The Oracle JET Cookbook’s Custom Converter sample uses RelativeDateTimeConverter
to wrap the Oracle JET IntlDateTimeConverter by providing a specialized format()
method that turns dates close to the current date into relative terms for display. For
example, in the en-US locale, the relative terms display Today, Yesterday, and Tomorrow. If
a relative notation for the date value does not exist, then the date is formatted using the
regular Oracle JET format() method supported by the Oracle JET
IntlDateTimeConverter.

The custom converter relies on the IntlDateTimeConverter converter's formatRelative()
method. For additional details about the IntlDateTimeConverter converter's supported
methods, see the IntlDateTimeConverter API documentation.

2. Add code to your app that uses the custom converter, as in the following example.

The code sample below shows how you could add code to your script to use the custom
converter.

let rdConverter = new RelativeDateTimeConverter(relativeDayOptions);

3. Add the Oracle JET element or elements that will use the custom converter to your page.

Chapter 10
About Oracle JET Converters

10-12

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.IntlDateTimeConverter.html

The Oracle JET Cookbook includes implementations of the options discussed here. See
Converters (Custom).

Use Oracle JET Converters Without Oracle JET Components
If you want to use a converter without binding it to an Oracle JET component, create the
converter using the constructor for the converter of your choice.

The Oracle JET Cookbook includes a demo that shows how to use the number and date time
converters directly in your pages without binding them to an Oracle JET component. In the
demo image, the salary is a number formatted as currency, and the start date is an ISO string
formatted as a date.

The viewModel defines a salaryConverter method to format a number as currency and a
dateConverter that formats the start date using the date format style and medium date format
while the view HTML binds to the returned values, as shown in the following snippet for Amy
Flanagan’s salary and start date.

. . .
<p>Product Manager</p>
 Salary:

 <oj-bind-text value="[[amySalary]]"></oj-bind-text>

 Joined:

 <oj-bind-text value="[[amyStartDate]]"></oj-bind-text>

. . .

The Oracle JET Cookbook includes implementations of the options discussed here. See
Converters Factory.

About Oracle JET Validators
Oracle JET validators provide properties that allow callers to customize the validator instance.
The properties are documented as part of the validators’ API. Unlike converters where only
one instance of a converter can be set on an element, page authors can associate one or more
validators with an element.

Chapter 10
About Oracle JET Validators

10-13

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=converters&demo=customConverters
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=converters&demo=converterFactory

When a user interacts with the element to change its value, the validators associated with the
element are run in order. When the value violates a validation rule, the value attribute is not
populated, and the validator highlights the element with an error.

You can use the validators with an Oracle JET element or instantiate and use them directly on
the page.

Use Oracle JET Validators with Oracle JET Components
Oracle JET editable elements, such as oj-input-text and oj-input-date, set up validators
both implicitly, based on certain attributes they support such as required, min, max, and so on,
and explicitly by providing a means to set up one or more validators using the component's
validators attribute. As with the Oracle JET converters, the validators attribute can be
specified either using JSON array notation or can be an array of actual validator instances.

For example, the following code sample shows a portion of a form containing an oj-input-
date element that uses the default validator supplied by the component implicitly. The
highlighted code shows the HTML5 attribute set on the oj-input-date element. When the oj-
input-date reads the min attribute, it creates the implicit DateTimeRangeValidator.

<oj-form-layout id="validator-example">
 <oj-input-date
 id="dateTimeRange1"
 value="{{dateValue1}}"
 min="2000-01-01T08:00:00.000"
 help.instruction="enter a date that falls in the current
 millenium and not greater than today's date."
 max="[[todayIsoDate]]"
 label-hint="'min' attribute and 'max' option">
 </oj-input-date>
</oj-form-layout>

The script to create the view model for this example is shown below.

• TypeScript

• JavaScript

TypeScript

import * as ko from "knockout";
import * as ConverterUtilsI18n from "ojs/ojconverterutils-i18n";
import "ojs/ojknockout";
import "ojs/ojformlayout";
import "ojs/ojdatetimepicker";

class DemoViewModel {

 dateValue1: ko.Observable<string>;
 dateValue2: ko.Observable<string>;
 todayIsoDate: ko.Observable<string>;
 milleniumStartIsoDate: ko.Observable<string>;

Chapter 10
About Oracle JET Validators

10-14

constructor() {

 this.dateValue1 = ko.observable("");
 this.dateValue2 = ko.observable("");
 this.todayIsoDate = ko.observable(
 ConverterUtilsI18n.IntlConverterUtils.dateToLocalIso(new Date())
);
 this.milleniumStartIsoDate = ko.observable(
 ConverterUtilsI18n.IntlConverterUtils.dateToLocalIso(new Date(2000, 0, 1))
);
 }
}

export = DemoViewModel;

JavaScript

define([
 "knockout",
 "ojs/ojconverterutils-i18n",
 "ojs/ojknockout",
 "ojs/ojdatetimepicker",
 "ojs/ojformlayout",
], function (
 ko,
 ConverterUtilsI18n
) {
 function DemoViewModel() {

 this.dateValue1 = ko.observable();
 this.dateValue2 = ko.observable();
 this.todayIsoDate = ko.observable(
 ConverterUtilsI18n.IntlConverterUtils.dateToLocalIso(new Date())
);
 this.milleniumStartIsoDate = ko.observable(
 ConverterUtilsI18n.IntlConverterUtils.dateToLocalIso(new Date(2000, 0, 1))
);
 }
 return DemoViewModel;
});

When the user runs the page, the oj-input-date element displays an input field with a
calendar icon. The help.instruction attribute set on the element displays below the input
field when you click on the input field. If you input data that is not within the expected range,
the built-in validator displays an error message with the expected range.

Chapter 10
About Oracle JET Validators

10-15

The error thrown by the Oracle JET validator when validation fails is represented by the
ValidatorError object, and the error message is represented by an object of type Message.
The messages and hints that Oracle JET validators use when they throw an error are
resources that are defined in the translation bundle included with Oracle JET. For more
information about messaging in Oracle JET, see Work with User Assistance.

You can also specify the validator on the element's validators attribute, if it exists. The code
sample below adds another oj-input-date element to the sample form and calls a function

Chapter 10
About Oracle JET Validators

10-16

which specifies the DateTimeRangeValidator validator (dateTimeRange) in the validators
attribute.

<oj-form-layout id="validator-example">
 <oj-input-date
 id="dateTimeRange2"
 value="{{dateValue2}}"
 validators="[[validators]]"
 help.instruction="enter a date that falls in the current millenium and
 not greater than today's date."
 label-hint="'dateTimeRange' type in 'validators' option">
 </oj-input-date>
</oj-form-layout>

The code below shows the additions to the viewModel with options that set the valid minimum
and maximum dates and a hint that displays when the user sets the focus in the field.

• TypeScript

• JavaScript

TypeScript

import * as ko from "knockout";
import * as ConverterUtilsI18n from "ojs/ojconverterutils-i18n";
import AsyncDateTimeRangeValidator
 = require("ojs/ojasyncvalidator-datetimerange");
import * as DateTimeConverter from "ojs/ojconverter-datetime";
import "ojs/ojknockout";
import "ojs/ojformlayout";
import "ojs/ojdatetimepicker";

class DemoViewModel {
 dateValue1: ko.Observable<string>;
 dateValue2: ko.Observable<string>;
 todayIsoDate: ko.Observable<string>;
 milleniumStartIsoDate: ko.Observable<string>;
 validators: ko.Computed<AsyncDateTimeRangeValidator<string>[]>;

 constructor() {
 this.dateValue1 = ko.observable("");
 this.dateValue2 = ko.observable("");
 this.todayIsoDate = ko.observable(
 ConverterUtilsI18n.IntlConverterUtils.dateToLocalIso(new Date())
);
 this.milleniumStartIsoDate = ko.observable(
 ConverterUtilsI18n.IntlConverterUtils.
 dateToLocalIso(new Date(2000, 0, 1))
);

 this.validators = ko.computed(() => {
 return [
 new AsyncDateTimeRangeValidator({

Chapter 10
About Oracle JET Validators

10-17

 max: this.todayIsoDate(),
 min: this.milleniumStartIsoDate(),
 hint: {
 inRange: "Enter a date that falls in the
 current millennium.",
 },
 converter: new DateTimeConverter.IntlDateTimeConverter({
 day: "2-digit",
 month: "2-digit",
 year: "2-digit",
 }),
 }),
];
 });
 }
}

export = DemoViewModel;

JavaScript

define([
 "knockout",
 "ojs/ojconverterutils-i18n",
 "ojs/ojasyncvalidator-datetimerange",
 "ojs/ojconverter-datetime",
 "ojs/ojknockout",
 "ojs/ojdatetimepicker",
 "ojs/ojformlayout",
], function (
 ko,
 ConverterUtilsI18n,
 AsyncDateTimeRangeValidator,
 DateTimeConverter
) {
 function DemoViewModel() {

 this.dateValue1 = ko.observable();
 this.dateValue2 = ko.observable();
 this.todayIsoDate = ko.observable(
 ConverterUtilsI18n.IntlConverterUtils.
 dateToLocalIso(new Date())
);
 this.milleniumStartIsoDate = ko.observable(
 ConverterUtilsI18n.IntlConverterUtils.
 dateToLocalIso(new Date(2000, 0, 1))
);

 this.validators = ko.computed(
 function () {
 return [
 new AsyncDateTimeRangeValidator({
 max: this.todayIsoDate(),
 min: this.milleniumStartIsoDate(),
 hint: {

Chapter 10
About Oracle JET Validators

10-18

 inRange: "Enter a date that falls
 in the current millennium.",
 },
 converter: new DateTimeConverter.
 IntlDateTimeConverter({
 day: "2-digit",
 month: "2-digit",
 year: "2-digit",
 }),
 }),
];
 }.bind(this)
);
 }

 return DemoViewModel;
});

When the user runs the page for the en-US locale, the oj-input-date element displays an
input field that expects the user's input date to be between 01/01/2000 and the current date.
When entering a date value into the field, the date converter will accept alternate input as long
as it can parse it unambiguously. This offers end users a great deal of leniency when entering
date values. For example, typing 1-2-3 will convert to a Date that falls on the 2nd day of
January, 2003. If the Date value also happens to fall in the expected Date range set in the
validator, then the value is accepted. If validation fails, the component displays an error.

Oracle JET elements can also use a regExp validator. If the regular expression pattern requires
a backslash, while specifying the expression within an Oracle JET element, you need to use
double backslashes. The options that each validator accepts are specified in API Reference for
Oracle® JavaScript Extension Toolkit (Oracle JET).

The Oracle JET Cookbook contains the complete example discussed in this section as well as
examples that show the built-in validators for date restrictions, length, number range, regular
expression, and required fields. For details, see Validators.

For more information about Oracle JET component validation, see Understand How Validation
and Messaging Works in Oracle JET Editable Components.

Use Custom Validators in Oracle JET
You can create custom validators in Oracle JET by extending Validator or by duck typing it.

Custom validators can be used with Oracle JET components, provided they don't violate the
integrity of the component. As with the built-in Oracle JET validators, you can also use them
directly on the page. For information about messaging in Oracle JET, see Use the messages-
custom Attribute. The following image shows a custom validator that displays an error
message if the user’s password doesn’t match.

Chapter 10
About Oracle JET Validators

10-19

https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validators&demo=dateTimeRangeValidator

To create and use a custom validator in Oracle JET:

1. Define the custom validator.

The Oracle JET Cookbook sample defines an equalToPassword custom validator of type
Validator. Because the custom validator provides the methods expected of a Validator
instance, Oracle JET accepts it.

2. Add code to your app that uses the custom validator.

The code sample below shows how you could add code to your view page to use the
custom validator. In this example, both input fields are defined as oj-c-input-password
elements. The first instance validates that the user entered a password that meets the
app's password requirements. The second instance uses the equalToPassword validator to
verify that the password in the second field is equal to the password entered in the first
field.

<oj-form-layout id="custom-validator-example">
 <oj-c-input-password
 id="password"
 required
 value="{{password}}"
 validators="[[validators]]"
 label-hint="Password"
 mask-icon="visible"></oj-c-input-password>
 <oj-c-input-password
 id="cpassword"
 value="{{passwordRepeat}}"
 validators="[[[equalToPassword]]]"
 label-hint="Confirm Password"
 mask-icon="visible"></oj-c-input-password>
</oj-form-layout>

The Oracle JET Cookbook contains the complete code sample discussed in this section.
See Validators (Custom).

About Asynchronous Validators
Oracle JET input components support asynchronous server-side validation via the validators
attribute. That means you can check input values against server data without the need to
submit a form or refresh a page.

Chapter 10
About Oracle JET Validators

10-20

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validators&demo=customValidators

Two example scenarios illustrate where you can use asynchronous server-side validation:

• In a form that collects new user data, you validate input in an email field to check if the
input value has been registered previously.

• Set number range validators that check against volatile data. For example, on an e-
commerce website, you can check the user’s cart against the available inventory and
inform the user if the goods are unavailable without them submitting the cart for checkout.

The Oracle JET Cookbook has a sample that uses the validators attribute and dummy data
to simulate server-side validation.

The following code shows an oj-input-text element with the validators attribute set to
validators and asyncValidator observables in the viewModel code. The validators attribute
must be of type AsyncValidator to fulfill the API contract required to create the asynchronous
validator.

<oj-form-layout id="fl1">
 <oj-c-input-text
 id="input-text"
 required
 label-hint="Quantity Limit"
 on-valid-changed="[[validChangedListener]]"
 validators="[[[validators, asyncValidator]]]"
 value="{{quantityLimit}}"
 converter="[[currencyConverter]]">
 </oj-c-input-text>
</oj-form-layout>

The viewModel code includes a number range validator created in the asyncValidator object
that returns a Promise. A Promise object represents a value that may not be available yet, but
will be resolved at some point in the future. In asynchronous validation, the
AsyncValidator.validate() function returns a Promise that evaluates to Boolean true if
validation passes and if validation fails, it returns an Error. For more information, see the
validators attribute section of ojInputText or see Promise (MDN).

The Oracle JET Cookbook includes implementations of the options discussed here. See Async
Validators.

Chapter 10
About Oracle JET Validators

10-21

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojInputText.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationUsecases&demo=asyncValidators
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationUsecases&demo=asyncValidators

11
Work with User Assistance

The Oracle JET user assistance framework includes support for user assistance on the
editable components in the form of help, hints, and messaging that you can customize as
needed for your app. Editable components include oj-checkboxset, oj-color*, oj-combobox*,
oj-input*, oj-radioset, oj-select*, oj-slider, oj-switch, and oj-text-area.

Note:

The oj-input* mentioned above refers to the family of input components such as
oj-input-date-time, oj-input-text, and oj-input-password, among others. oj-
color*, oj-combobox*, and oj-select* each represent two components.

Tip:

To add tooltips to plain text or other non-editable components, use oj-popup. See the
Tooltip example in the Oracle JET Cookbook at Popups.

Understand Oracle JET's Messaging APIs on Editable
Components

Oracle JET provides a messaging API to support messaging on Oracle JET editable
components.

Editable components include the following:

• oj-checkboxset
• oj-color-palette
• oj-color-spectrum
• oj-combobox-many
• oj-combobox-one
• oj-input-date
• oj-input-date-time
• oj-input-number
• oj-input-password
• oj-input-text
• oj-input-time
• oj-radioset

11-1

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=popup&demo=popup

• oj-select-many
• oj-select-one
• oj-slider
• oj-switch
• oj-text-area
The Oracle JET Cookbook also includes descriptions and examples for working with each
component at: Form Controls.

About Oracle JET Editable Component Messaging Attributes
The following attributes impact messaging on editable elements.

Element Attribute Description

converter Default converter hint displayed as placeholder text when a placeholder attribute is not
already set.

display-options JSON object literal that specifies the location where the element should display auxiliary
content such as messages, converterHint, validatorHint, and helpInstruction in
relation to itself. Refer to the element's API documentation for details.

help Help message displayed on an oj-label element when the user hovers over the Help icon. No
formatted text is available for the message. The oj-label has two exclusive attributes,
help.definition and help.source.

The help.definition attribute's value appears and the attribute's value is read by a screen
reader when you hover with a mouse, when you tab into the Help icon, or when you press and
hold on a device. The default value is null.

The help.source attribute’s value is a link, which is opened when you click with a mouse or
tap on a device. The default value is null.

help.instruction Displays text in a note window that displays when the user sets focus on the input field. You can
format the text string using standard HTML formatting tags.

messages-custom List of messages that the app provides when it encounters business validation errors or
messages of other severity type.

placeholder The placeholder text to set on the element.

translations Object containing all translated resources relevant to the component and all its superclasses.
Use sub-properties to modify the component's translated resources.

validators List of validators used by element when performing validation. Validator hints are displayed in a
note window by default.

See the Attributes section of the element's API documentation in API Reference for Oracle®
JavaScript Extension Toolkit (Oracle JET) for additional details about its messaging properties.
Select the component you're interested in viewing from the API list.

About Oracle JET Component Messaging Methods
Editable value components support the following method for messaging purposes.

Component Event Description

showMessages Takes all deferred messages and shows them. If there were no deferred messages this method
simply returns. When the user sets focus on the component, the deferred messages will display
inline.

Chapter 11
Understand Oracle JET's Messaging APIs on Editable Components

11-2

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=controlcombos&demo=forminputs
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

See the Methods section of the component's API documentation in the API Reference for
Oracle® JavaScript Extension Toolkit (Oracle JET) for details on how to call the method, its
parameters, and return value. Select the component you're interested in viewing from the list.

Understand How Validation and Messaging Works in Oracle JET
Editable Components

The actions performed on an Oracle JET component, the properties set on it, and the methods
called on it, all instruct the component on how it should validate the value and what content it
should show as part of its messaging.

Editable components always perform either normal or deferred validation in some situations. In
other situations, the editable component decides to perform either normal or deferred
validation based on the component's state. Understanding the normal and deferred validation
process may be helpful for determining what message properties to set on your components.

• Normal Validation: During normal validation, the component clears all messages properties
(messages-custom), parses the UI value, and performs validation. Validation errors are
reported to the user immediately. If there are no validation errors, the value attribute is
updated, and the value is formatted and pushed to the display.

The editable component always runs normal validation when:

– The user interacts with an editable component and changes its value in the UI.

– The app calls validate() on the component.

Note:

When the app changes certain properties, the component might decide to run
normal validation depending on its current state. See Mixed Validation below for
additional details.

• Deferred Validation: Uses the required validator to validate the component's value. The
required validator is the only validator that participates in deferred validation. During
deferred validation all messages properties are cleared unless specified otherwise. If the
value fails deferred validation, validation errors are not shown to the user immediately.

The editable component always runs deferred validation when:

– A component is created. None of the messages properties are cleared.

– The app calls the reset() method on the component.

– The app changes the value property on the component programmatically.

Note:

When the app changes certain properties programmatically, the component might
decide to run deferred validation depending on its current state. See Mixed
Validation below for additional details.

• Mixed Validation: Runs when the following properties are changed or methods are called
by the app. Either deferred or normal validation is run based on the component's current

Chapter 11
Understand How Validation and Messaging Works in Oracle JET Editable Components

11-3

https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

state, and any validation errors are either hidden or shown to the user. Mixed validation
runs when:

– converter property changes

– disabled property changes

– readOnly properties change

– required property changes

– validators property changes

– refresh() method is called

The Oracle JET Cookbook includes additional examples that show normal and deferred
validation at Validators (Component). For additional information about the validators and
converters included with Oracle JET, see Validate and Convert Input.

Understand How an Oracle JET Editable Component Performs Normal
Validation

An Oracle JET editable component runs normal validation when the user changes the value in
the UI or when the app calls the component's validate() method. In both cases, error
messages are displayed immediately.

About the Normal Validation Process When User Changes Value of an Editable
Component

When a user changes an editable value:

1. All messages-custom messages are cleared. An onMessagesCustomChanged event is
triggered if applicable and if the change in value is obvious.

2. If a converter is set on the component, the UI value is parsed. If there is a parse error, then
processing jumps to step 5.

3. If one or more validators are set on the component:

a. The parsed (converted) value is validated in sequence using the specified validators,
with the implicit required validator being the first to run if present. The value that is
passed to the implicit required validator is trimmed of white space.

b. If the validator throws an error, the error is remembered, and the next validator runs if it
exists.

After all validators complete, if there are one or more errors, processing jumps to step
5.

4. If all validations pass:

a. The parsed value is written to the component's value attribute, and an
onValueChanged event is triggered for the value attribute.

b. The new value is formatted for display using the converter again and displayed on the
component.

Chapter 11
Understand How Validation and Messaging Works in Oracle JET Editable Components

11-4

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationUsecases&demo=showMessagesMethod

Note:

If the component's value property happens to be bound to a Knockout
observable, then the value is written to the observable as well.

5. If one or more errors occurred in an earlier step:

a. The component's value property remains unchanged.

b. Errors are displayed by default inline with the component. The user can also view the
details of the error by setting focus on the component.

6. When the user fixes the error, the validation process begins again.

About the Normal Validation Process When Validate() is Called on Editable
Component

The validate() method validates the component's current display value using the converter
and all validators registered on the component and updates the value attribute if validation
passes.

The method is only available on editable components where it makes sense, for example, oj-
input-number. For details about the validate() method, see validate().

Understand How an Oracle JET Editable Component Performs Deferred
Validation

An Oracle JET editable component runs deferred validation when the component is created,
when its value or required property is changed programmatically, or when the component's
reset() method is called. This section provides additional detail about the deferred validation
process when an Oracle JET editable component is created and when the value property is
changed programmatically.

You can also find additional detail in the API Reference for Oracle® JavaScript Extension
Toolkit (Oracle JET). Select the component you’re interested in from the navigation list.

About the Deferred Validation Process When an Oracle JET Editable Component is
Created

When an editable element is created, as one of the last steps, it runs deferred validation on the
component's initialized value.

1. The required validator is run, and a validation error raised if the value is empty or null.

2. If a validation error is raised, the component updates the messaging framework. No
messaging themes are applied on the component nor does it show the error message in
the note window because the validation error message is deferred.

Note:

Page authors can call showMessages() at any time to reveal deferred messages.

Chapter 11
Understand How Validation and Messaging Works in Oracle JET Editable Components

11-5

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojInputNumber.html#validate
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

About the Deferred Validation Process When value Property is Changed
Programmatically

An Oracle JET editable element’s value property can change programmatically if:

• The page has code that changes the element's value attribute, or

• The page author refreshes the ViewModel observable with a new server value.

In both cases, the element will update itself to show the new value as follows:

1. All messages properties are cleared on the editable element and
onMessagesCustomChanged events triggered if applicable.

2. An onValueChanged event is triggered for the value attribute if applicable.

3. If a converter is set on the element, the value attribute is retrieved and formatted before it's
displayed. If there is a format error, then processing jumps to step 5. Otherwise the
formatted value is displayed on the element.

4. Deferred validators are run on the new value. Any validation errors raised are
communicated to the messaging framework, but the errors themselves are not shown to
the user.

5. If there was a formatting error, the validation error message is processed and the
component's messages-custom attribute updated. Formatting errors are shown right away.

Note:

Page authors should ensure that the value you set is the expected type as defined by
the component's API and that the value can be formatted without any errors for
display.

Use Oracle JET Messaging
Use the Oracle JET messaging framework to notify an Oracle JET app of a component's
messages and validity as well as notify an Oracle JET component of a business validation
failure.

Notify an Oracle JET Editable Component of Business Validation Errors
You can notify Oracle JET editable elements of business validation errors using the messages-
custom attribute and the showMessages() method.

Use the messages-custom Attribute
Your app can use this attribute to notify Oracle JET components to show new or updated
custom messages. These could be a result of business validation that originates in the
viewModel layer or on the server. When this property is set, the message shows to the user
immediately. The messages-custom attribute takes an Object that duck-types Message with
detail, summary, and severity fields.

In this example, the severity type button is toggled and a message of the selected severity type
is pushed onto the messages-custom array. The messages-custom attribute is set on every form

Chapter 11
Use Oracle JET Messaging

11-6

control in this example. When the messages-custom attribute is changed, it is shown
immediately. In this example, the user selected the Error severity type, and the associated
messages are shown for the various text input and selection components.

In this example an observable, appMessages, is declared and is bound to the messages-custom
attribute for various elements. The following code describes how you can associate the
observable with the messages-custom attribute for the oj-switch element .

<oj-switch id="switch" value="{{switchValue}}"
 messages-custom="{{appMessages}}">
</oj-switch>

In the corresponding JavaScript file, set the severity type and pass it to the observable,
appMessages, to display associated messages.

if (summary && detail)
{
 msgs.push({summary: summary, detail: detail, severity: type});
}
self.appMessages(msgs);

In the example below, an instance of a cross-field custom validator is associated with the
emailAddress observable, ensuring that its value is non-empty when the user chooses Email
as their contact preference.

Chapter 11
Use Oracle JET Messaging

11-7

In the corresponding JavaScript file you must set the messages-custom attribute as
emailAddressMessages.

<oj-input-text id="emailId" type="email" name="emailId"
 placeholder="john_doe@example.com" value="{{emailAddress}}"
 messages-custom="{{emailAddressMessages}}"
 disabled="[[contactPref() !== 'email']]">
</oj-input-text>

For the complete example and code used to create the custom validator, see Cross-Field
Validation. The demo uses a custom validator to validate an observable value against another.
If validation fails the custom validator updates the messages-custom attribute.

Use the showMessages() Method on Editable Components
Use this method to instruct the component to show its deferred messages. When this method
is called, the Oracle JET editable component automatically takes all deferred messages and
shows them. This causes the component to display the deferred messages to the user.

For an example, see Show Deferred Messages.

Understand the oj-validation-group Component
The oj-validation-group component is an Oracle JET element that tracks the validity of a
group of components and allows a page author to enforce validation best practices in Oracle
JET apps.

Apps can use this component to:

• Determine whether there are invalid components in the group that are currently showing
messages using the invalidShown value of the valid property.

• Determine whether there are invalid components that have deferred messages, such as
messages that are currently hidden in the group, using the invalidHidden value of the
valid property.

• Set focus on the first enabled component in the group using the focusOn() method. They
can also focus on the first enabled component showing invalid messages using
focusOn("@firstInvalidShown").

• Show deferred messages on all tracked components using the showMessages() method.

Chapter 11
Use Oracle JET Messaging

11-8

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationGroup&demo=crossFieldValidation
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationGroup&demo=crossFieldValidation
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationUsecases&demo=showMessagesMethod

For details about the oj-validation-group component's attributes and methods, see oj-
validation-group.

Track the Validity of a Group of Editable Components Using oj-validation-group
You can track the validity of a group of editable components by wrapping them in the oj-
validation-group component.

The oj-validation-group searches all its descendants for a valid property, and adds them to
the list of components it is tracking. When it adds a component, it does not check the tracked
component’s children since the component’s valid state should already be based on the valid
state of its children, if applicable.

When it finds all such components, it determines its own valid property value based on all the
enabled (including hidden) components it tracks. Any disabled or readonly components are
ignored in calculating the valid state.

The most invalid component's valid property value will be the oj-validation-group element’s
valid property value. When any of the tracked component's valid value changes, oj-
validation-group will be notified and will update its own valid value if it has changed.

The following code sample shows how an oj-validation-group can be used to track the
overall validity of a typical form.

<div id="validation-usecase">
 <oj-validation-group id="tracker" valid="{{groupValid}}">
 <oj-form-layout label-edge="inside" id="fl1">

 <oj-input-text id="firstname" required
 autocomplete="off"
 label-hint="First Name"
 name="firstname" >
 </oj-input-text>
 <oj-input-text id="lastname" required
 value="{{lastName}}"
 autocomplete="off"
 label-hint="Last Name">
 </oj-input-text>
 <oj-input-text id="email"
 on-value-changed="[[firstEmailValueChanged]]"
 autocomplete="off"
 label-hint="Email"
 value="{{email}}" >
 </oj-input-text>
 <oj-input-text id="email2"
 autocomplete="off"
 label-hint="Confirm Email"
 validators="[[emailMatchValidator]]"
 value="{{email2}}">
 </oj-input-text>
 <oj-checkboxset id="colors" label-hint="Favorite Colors">
 <oj-option id="blueopt" value="blue">Blue</oj-option>
 <oj-option id="greenopt" value="green">Green</oj-option>
 <oj-option id="pinkopt" value="pink">Pink</oj-option>
 </oj-checkboxset>
 </oj-form-layout>
 </oj-validation-group>
 <hr/>
 <div class="oj-flex">
 <div class="oj-flex-item"> </div>
 <div class="oj-flex-item">

Chapter 11
Use Oracle JET Messaging

11-9

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojValidationGroup.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojValidationGroup.html

 <oj-button id="submitBtn"
 on-oj-action="[[submit]]">Submit</oj-button>
 </div>
 </div>
 <hr/>
 oj-validation-group valid property:

 <oj-bind-text value="[[groupValid]]"></oj-bind-text>

</div>

A portion of the script to create the view model for this example is shown below. This portion
pertains to the oj-validation-group used above. The full script is contained in the Cookbook
sample linked below.

require(['knockout', 'ojs/ojbootstrap', 'ojs/ojknockout', 'ojs/ojbutton', 'ojs/
ojcheckboxset', 'ojs/ojformlayout', 'ojs/ojinputtext', 'ojs/ojvalidationgroup'],
 function (ko, Bootstrap)
 // this callback gets executed when all required modules
 // for validation are loaded
 {
 function DemoViewModel() {
 var self = this;
 self.tracker = ko.observable();

 ...

 // to show the oj-validation-group's valid property value
 self.groupValid = ko.observable();

 // User presses the submit button
 self.submit = function () {

 var tracker = document.getElementById("tracker");

 if (tracker.valid === "valid") {
 // submit the form would go here
 alert("everything is valid; submit the form");
 }
 else {
 // show messages on all the components that have messages hidden.
 tracker.showMessages();
 tracker.focusOn("@firstInvalidShown");
 }
 };
 };

 Bootstrap.whenDocumentReady().then(
 function ()
 {
 ko.applyBindings(new DemoViewModel(), document.getElementById('validation-
usecase'));
 }
);
 });

The figure below shows the output for the code sample. The status text at the bottom of each
instance shows the valid state of the oj-validation-group, and by extension, the form.

Chapter 11
Use Oracle JET Messaging

11-10

The Oracle JET Cookbook contains the complete example used in this section. See Form
Fields.

For an example showing the oj-validation-group used for cross-field validation, see Cross-
Field Validation.

Create Page and Section Level Messaging
Oracle JET includes a Message Banner (oj-message-banner) element. Use it to display brief,
medium disruption, semi-permanent messages on your app page or on sections within a page
that communicate relevant and useful information to your app users.

The Cookbook contains various examples that showcase usage of the oj-message-banner
element and the API doc provides details about its attributes and methods. See Message
Banner demo in the Oracle JET Cookbook and the Message Banner entry in the Oracle®
JavaScript Extension Toolkit (JET) API Reference for Oracle JET.

Chapter 11
Use Oracle JET Messaging

11-11

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationGroup&demo=formFieldsValidation
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationGroup&demo=formFieldsValidation
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationGroup&demo=crossFieldValidation
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validationGroup&demo=crossFieldValidation
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=messagebanner&demo=simple
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=messagebanner&demo=simple
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojMessageBanner.html

Configure an Editable Component's oj-label Help Attribute
Configure an oj-label element's help attribute to add a Help icon that displays descriptive
text, includes a clickable link to a URL for additional information, or displays both the help text
and clickable link when the user hovers over it.

The help attribute includes two sub-properties that control the help definition text and help
icon:

• definition: Contains the help definition text that displays when the user does one of the
following:

– hovers over the help icon

– tabs into the help icon with the keyboard

– presses and holds the help icon on a mobile device

• source: Contains the URL to be used in the help icon's link

The following image shows three oj-label components configured to use the help attribute.
The top component is configured with both a definition and source help sub-property, and
the image shows the text and clickable pointer that displays when the user hovers over the
help icon. In the middle image, the oj-label component includes a help icon that links to a
URL when the user clicks it. In the bottom image, the oj-label displays custom help text when
the user hovers over the label or help icon.

Before you begin:

• Familiarize yourself with the process of adding an Oracle JET element to your page. See
Add an Oracle JET Component to Your Page.

To configure an oj-label element's help property:

1. Add the oj-label element to your page.

2. In the markup, add the help attribute and the definition or source sub-property.

The markup for the ojInputText components is shown below. Each ojInputText
component uses the ojComponent binding to define the component and set the help sub-
properties. In this example, the user will be directed to http://www.oracle.com after
clicking Help.

<div id="form-container" class="oj-form">
 <h3 class="oj-header-border">Help Definition and Source</h3>
 <oj-label id="ltext10" for="text10" help.definition="custom help text"

Chapter 11
Configure an Editable Component's oj-label Help Attribute

11-12

 help.source="http://www.oracle.com">'help' property with 'source' and
'definition'</oj-label>
 <oj-input-text id="text10" name="text10" value="{{text}}"></oj-input-
text>

 <oj-label id="ltext11" for="text11"
 help.source="http://www.oracle.com">'help' property with 'source'</oj-label>
 <oj-input-text id="text11" name="text11" value="{{text}}"></oj-input-text>

 <oj-label id="ltext12" for="text12"
 help.definition="custom help text">'help' property with 'definition'</oj-
label>
 <oj-input-text id="text12" name="text12" value="{{text}}"></oj-input-text>
</div>

See the Oracle JET Cookbook at Help and Title for the complete example to configure the help
property on the ojInputText component.

Configure an Editable Component's help.instruction Attribute
Configure an editable component's help text using the help.instruction attribute. This will
display a note window with advisory text (often called a tooltip) when the input component has
focus.

The following image shows two oj-input-text elements configured to display text when the
user sets focus in the input field. In the first example, the help.instruction attribute is defined
for the oj-input-text element without formatting. In the second example, the attribute value
has HTML formatting added to the advisory text.

Before you begin:

• Familiarize yourself with the process of adding an Oracle JET element to your page. See
Add an Oracle JET Component to Your Page.

To configure an editable element's help.instruction attribute:

1. Add the editable element to your page.

2. In the markup, add the help.instruction attribute in the element tag.

The following code sample shows the markup for defining the three oj-input-text
components.

<div id="form-container" class="oj-form">
 <h3 class="oj-header-border">Help Instruction</h3>

Chapter 11
Configure an Editable Component's help.instruction Attribute

11-13

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=helpHintsMessaging&demo=helpTitle
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojInputText.html

 <oj-label for="text20">input with 'help.instruction' attribute</oj-label>
 <oj-input-text id="text20" name="text20" autocomplete="off"
validators="[[validators]]"
 help.instruction="enter at least 3 alphanumeric characters"
value="{{text}}"></oj-input-text>

 <oj-label for="text21">input with 'help.instruction' attribute with binding</oj-
label>
 <oj-input-text id="text21" name="text21" autocomplete="off"
validators="[[validators]]"
 help.instruction="{{helpInstruction}}" value="{{text}}"></oj-input-text>

 <oj-label for="text22">input with formatted text in 'help.instruction'
attribute</oj-label>
 <oj-input-text id="text22" name="text22" autocomplete="off"
validators="[[validators]]"
 help.instruction="<html>enter at least 3
alphanumeric characters</html>"
 value="{{text}}"></oj-input-text>
</div>

3. In your app script, bind the component's value to a Knockout observable.

In this example, each oj-input-text element's value attribute is defined as text which is
set to a Knockout observable in the following script. The script also defines regular
expression validators to ensure that the user enters at least three letters or numbers.

require(['knockout', 'ojs/ojbootstrap, 'ojs/ojknockout', 'ojs/ojinputtext', 'ojs/
ojlabel'],
 function(ko, Bootstrap)
 {
 function MemberViewModel()
 {
 var self = this;
 self.text = ko.observable();

 self.validators = ko.computed(function()
 {
 return [{
 type: 'regExp',
 options: {
 pattern: '[a-zA-Z0-9]{3,}',
 messageDetail: 'You must enter at least 3 letters or
numbers'}}];
 });
 self.helpInstruction = "enter at least 3 alphanumeric characters";
 };

 Bootstrap.whenDocumentReady().then(
 function ()
 {
 ko.applyBindings(new MemberViewModel(), document.getElementById('form-
container'));
 }
);
 });

For the complete example, see Help and Title in the Oracle JET Cookbook. For additional
detail about the oj-input-text component, see the ojInputText API documentation.

For additional information about the regular expression validator, see About Oracle JET
Validators and Converters.

Chapter 11
Configure an Editable Component's help.instruction Attribute

11-14

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=helpHintsMessaging&demo=helpTitle
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojInputText.html

Control the Display of Hints, Help, and Messages
Use the display-options attribute to control the placement and visibility of converter and
validator hints, messages, and help instructions.

The following image shows the default placement and visibility of help, converter and validator
hints, and messages. This example uses the oj-input-date component, but the behavior is
the same on all editable components where it makes sense:

• validator hint: Displays in a note window on focus

• converter hint: Used as the input field's placeholder, or displays in a note window if the
placeholder attribute is defined.

• messages: Displays inline on error

• help.instruction: Displays in a note window on focus

The oj-label exclusive attribute help.definition displays in a note window on hover.

The code sample below shows the markup for the oj-input-date component used in this
example. The example includes definitions for help.instruction, validator hints, and a data
value for custom messages on validation failure. The sample also shows the markup for a oj-
label element with the help attribute.

<div id="form-container" class="oj-form">
 <h3 class="oj-header-border">Default Display of Messages, Hints, Help Instruction</h3>
 <oj-label for="date10" help.definition="custom help text"> Input Date</oj-label>
 <oj-input-date id="date10" size="30" name="date10" required placeholder="month day,
year"

Chapter 11
Control the Display of Hints, Help, and Messages

11-15

 help.instruction='enter a date in your preferred format and we
will attempt to figure it out'
 converter="[[longDateConverter]]"
 value="{{birthdate}}" validators="[[validators]]"
 translations='{
 "required": {
 "hint": "validator hint: required",
 "messageSummary": "<html>custom summary: {label}
Required</html>",
 "messageDetail": "<html>custom detail: A value is required for
this field</html>"}}'>
 </oj-input-date>

The code sample below shows the custom messages on validation failure set in the app’s
script.

function MemberViewModel()
{
 var self = this;
 self.validators = ko.computed(function()
 {
 return [{
 type: 'datetimeRange',
 options: {
 min: ValidationBase.IntlConverterUtils.dateToLocalIso(new Date(1930, 00,
01)),
 max: ValidationBase.IntlConverterUtils.dateToLocalIso(new Date(1995, 11,31)),
 hint: {
 inRange: 'Validator hint: datetimeRange: January 1, 1930 - November
30, 1995 years'},
 messageSummary:{
 rangeOverflow: 'Date later than max.',
 rangeUnderflow: 'Date earlier than min.'},
 messageDetail: {
 rangeOverflow: 'The value \'{value}\' is not in the expected range;
it is too high.',
 rangeUnderflow: 'The value \'{value}\' is not in the expected
range; it is too low.'}
 }}];
 });
 //...Contents Omitted

}

Bootstrap.whenDocumentReady().then(
 function ()
 {
 ko.applyBindings(new MemberViewModel(), document.getElementById('form-container'));
 }
);
});

Using the display-options element attribute in your markup, you can change the default
behavior of the hints, help, and messaging properties of a single editable component on your
page. To control the behavior of all editable components on the page, you can use the
Component.setDefaultOptions() method in your app script to set displayOptions values.

display-options allows you to change the default behavior as follows:

• helpInstruction: Set to none to turn off the help instruction display.

Chapter 11
Control the Display of Hints, Help, and Messages

11-16

• converterHint: Set to none to turn off the display or set to notewindow to change the
default placement from placeholder text to a note window.

• validatorHint: Set to none to turn off the display.

• messages: Set to none to turn off the display or set to notewindow to change the default
placement from inline to a note window.

Before you begin:

• Familiarize yourself with the process of adding an Oracle JET element to your page. See
Add an Oracle JET Component to Your Page.

To change the default display type (inline or note window) and display options for hints, help,
and messages:

1. Add the editable element to your page.

2. To change the default display type (inline or note window) for an individual editable
component, add the display-options attribute to your component definition and set it as
needed.

For example, to turn off the display of hints and help.instruction and to display
messages in a note window, add the highlighted markup to your component definition:

<oj-input-date id="date12" required value="{{birthdate}}"
 converter="[[longDateConverter]]" validators="[[validators]]"
 help.instruction="enter a date in your preferred format and we will attempt to
figure it out"
 display-options='{"converterHint": "none", "validatorHint": "none",
"helpInstruction": "none", "messages": "notewindow"}'
 ... contents omitted
}"

3. To change the default display and location for all editable components in your app, add the
Component.setDefaultOptions() method to your app's script and specify the desired
displayOptions.

For example, to turn off the display of hints and help and to display messages in a note
window, add the ojComponent.setDefaultOptions() method with the arguments shown
below.

Components.setDefaultOptions({
 'editableValue':
 {
 'displayOptions':
 {
 'converterHint': ['none'],
 'validatorHint': ['none'],
 'messages': ['notewindow'],
 'helpInstruction': ['none']
 }
 }});

The Oracle JET cookbook contains the complete code for this example at User Assistance.
You can also find additional examples that illustrate hints, help, and messaging configuration.

Chapter 11
Control the Display of Hints, Help, and Messages

11-17

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=helpHintsMessaging&demo=helpTitle

12
Develop Accessible Oracle JET Apps

Oracle JET and Oracle JET components have built-in accessibility features for people with
disabilities. Use these features to create accessible Oracle JET web app pages.

About Oracle JET and Accessibility
Oracle JET components have built-in accessibility support that conforms with the Web Content
Accessibility Guidelines version 2.1 at the AA level (WCAG 2.1 AA), developed by the World
Wide Web Consortium (W3C).

Accessibility involves making your app usable for people with disabilities such as low vision or
blindness, deafness, or other physical limitations. This means, for example, creating apps that
can be:

• Used without a mouse (keyboard only).

• Used with assistive technologies such as screen readers and screen magnifiers.

• Used without reliance on sound, color, animation, or timing.

Oracle JET components provide support for:

• Keyboard and touch navigation

Oracle JET components follow the Web Accessibility Initiative - Accessible Rich Internet
Application (WAI-ARIA) Developing a Keyboard Interface guidelines. Follow these
guidelines when using Oracle JET components in your app. For example, avoid setting
tabindex to values greater than 0. The API documentation for each Oracle JET
component lists its keyboard and touch end user information when applicable, including a
few deviations from the WAI-ARIA guidelines.

• Zoom

Oracle JET supports browser zooming up to 400%. For example, on the Firefox browser,
you can choose View -> Zoom -> Zoom In.

• Screen reader

Oracle JET supports screen readers such as JAWS, Apple VoiceOver, and Google
TalkBack by generating content that complies with WAI-ARIA standards, and no special
mode is needed.

• Oracle JET component roles and names

Each Oracle JET component has an appropriate role, such as button, link, and so on,
and each component supports an associated name (label), if applicable.

• Sufficient color contrast

Oracle JET provides the Redwood theme, starting in Oracle JET release 9.0.0, which is
designed to provide a luminosity contrast ratio of at least 4.5:1.

Oracle JET does not support the use of access keys due to their negative impact on assistive
tooling and accessibility.

12-1

https://www.w3.org/TR/wai-aria-practices/#keyboard

Oracle documents the degree of conformance of each product with the applicable accessibility
standards using the Voluntary Product Accessibility Template (VPAT). You should review the
appropriate VPAT for the version of Oracle JET that you are using for important information
including known exceptions and defects, if any.

While Oracle JET is capable of rendering an app that conforms to WCAG 2.1 AA to the degree
indicated by the VPAT, it is the responsibility of the app designer and developer to understand
the applicable accessibility standards fully, use JET appropriately, and perform accessibility
testing with disabled users and assistive technology.

About the Accessibility Features of Oracle JET Components
Oracle JET components are designed to generate content that conforms to the WCAG 2.1 AA
standards. In most cases, you don't need to do anything to add accessibility to the Oracle JET
component. However, there are some components where you may need to supply a label or
other property.

For those components, the component's API documentation contains an Accessibility section
that provides the information you need to ensure the component's accessibility.

Note:

Some Oracle products have run-time accessibility modes that render content
optimized for certain types of users, such as users of screen readers. For the most
part, Oracle JET renders all accessibility-related content all of the time. There is only
a mode for users that rely on the operating system's high contrast mode, which is
described in Create Accessible Oracle JET Pages.

Oracle JET components that provide keyboard and touch navigation list the keystroke and
gesture end user information in their API documentation. Since the navigation is built into the
component, you do not need to do anything to configure it.

You can access an individual Oracle JET component's accessibility features and requirements
in the API Reference for Oracle® JavaScript Extension Toolkit (Oracle JET). Select the
component you're interested in from the list on the left. You can also find the list of supported
keystrokes and gestures for each Oracle JET component that supports keystrokes and
gestures in the Oracle® JavaScript Extension Toolkit (JET) Keyboard and Touch Reference.

Create Accessible Oracle JET Pages
Content generated by Oracle JET is designed to conform to the WCAG 2.1 AA standards.
However, many standards are not under the complete control of Oracle JET, such as overall UI
consistency, the use of color, the quality of on-screen text and instructions, and so on.

A complete product development plan that addresses accessibility should include proper UI
design, coding, and testing with an array of tools, assistive technology, and disabled users.

Note:

In most cases, end-user documentation for your app must describe information about
accessibility, such as example keystrokes needed to operate certain components.

Chapter 12
About the Accessibility Features of Oracle JET Components

12-2

https://www.oracle.com/us/corporate/accessibility/index.html
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJACC

Configure WAI-ARIA Landmarks
WAI-ARIA landmarks provide navigational information to assistive technology users. Landmark
roles identify the purpose of a page region and allow the user to navigate directly to a desired
region. Without landmarks, assistive technology users must use the TAB key to navigate
through a page.

The Oracle JET team recommends the use of WAI-ARIA landmarks to ensure page
accessibility and provides examples you can use in the Oracle JET Starter Template collection.
The following figure shows the run-time view of the Oracle JET Web Nav Drawer Starter
Template. In this example, the page is organized into regions compatible with WAI-ARIA
landmark regions, including regions for the banner, navigation, main, and contentinfo
landmarks.

The highlighted code in the following example shows the landmarks for the Web Nav Drawer
Starter Template. Each landmark is placed on the HTML element that defines the landmark
region: div for the navigation regions, header for the banner region, oj-module for the main
region, and footer for the contentinfo region.

<!DOCTYPE html>
<html lang="en-us">

 <head>
 <title>Oracle JET Starter Template - Web Nav Drawer</title>
 ...contents omitted
 </head>

 <body class="oj-web-applayout-body">
 ...contents omitted

 <div id="globalBody" class="oj-offcanvas-outer-wrapper oj-offcanvas-page">
 <div id="navDrawer" role="navigation" class="oj-contrast-marker oj-web-applayout-
offcanvas oj-offcanvas-start">
 <oj-navigation-list id="navDrawerList" data="[[navDataProvider]]"
 edge="start"

item.renderer="[[KnockoutTemplateUtils.getRenderer('navTemplate', true)]]"
 on-click="[[toggleDrawer]]"
 selection="{{selection.path}}">

Chapter 12
Create Accessible Oracle JET Pages

12-3

 </oj-navigation-list>
 </div>

 <div id="pageContent" class="oj-web-applayout-page">

 <header role="banner" class="oj-web-applayout-header">
 <div class="oj-web-applayout-max-width oj-flex-bar oj-sm-align-items-center">
 ...contents omitted
 </div>
 <div role="navigation" class="oj-web-applayout-max-width oj-web-applayout-
navbar">
 <oj-navigation-list id="navTabBar" class="oj-sm-only-hide oj-md-condense oj-
md-justify-content-flex-end"
 data="[[navDataProvider]]"
 edge="top"

item.renderer="[[KnockoutTemplateUtils.getRenderer('navTemplate', true)]]"
 selection="{{selection.path}}">
 </oj-navigation-list>
 </div>
 </header>

 <oj-module role="main" class="oj-web-applayout-max-width oj-web-applayout-
content" config="[[moduleAdapter.koObservableConfig]]">
 </oj-module>

 <footer class="oj-web-applayout-footer" role="contentinfo">
 ...contents omitted
 </footer>
 </div>
 </div>
 <!-- This injects script tags for the main javascript files -->
 <!-- injector:scripts -->
 <!-- endinjector -->
 </body>
</html>

If your app includes a complementary region, add role="complementary" to the HTML div
element:

<div role="complementary"></div>

For additional information about WAI-ARIA landmark roles, see landmark_roles.

Configure High Contrast Mode
High contrast mode is for people who require a very high level of contrast in order to
distinguish components on the page. Operating systems such as Microsoft Windows and
macOS provide methods for users to run in high contrast mode.

The graphic below shows the effect of changing to high contrast mode on Oracle JET icon font
images.

Chapter 12
Create Accessible Oracle JET Pages

12-4

https://www.w3.org/TR/wai-aria-practices/#landmark-roles

Oracle JET provides the oj-hicontrast class that you can use to configure high contrast
mode in your app.

Understand Color and Background Image Limitations in High Contrast Mode
There are color and background image limitations in high contrast mode that your app may
need to work around.

In high contrast mode the colors in the CSS may be ignored or overridden, including
background, border, and text colors. Therefore, in high contrast mode you may need to find an
alternative way to show state. For example, you might need to add or change the border to
show that something is selected. Also, your app may need to show alternate high contrast
images that work on dark or light background color. Some operating systems, like Microsoft
Windows, offer multiple display profiles for high contrast mode, including a black-on-white and
white-on-black mode.

Consider providing an image that includes a background, so either black on a white
background or white on a black background. That way it won’t matter what the background
color is on the page since the contrast is in the image itself.

Add High Contrast Mode to Your Oracle JET App
In most cases, you do not need to do anything to enable high contrast mode in your Oracle
JET app. If you're using RequireJS to load Oracle JET component modules, Oracle JET loads
a script that attempts to detect if a user is running in high contrast mode. If the script succeeds
at detection, it places the oj-hicontrast class on the body element.

There is a limitation to this method, however. There is no standard way to detect high contrast
mode, and we can't guarantee that the script works in all cases on all browsers. To guarantee
that the .oj-hicontrast styles are applied, add a user preference setting for high contrast to
your app and configure the app to add the oj-hicontrast class to the body element when the
preference is set. When the class is added, the .oj-hicontrast CSS styles are applied to the
page where defined. The code below shows an excerpt from the Redwood CSS which
changes the outline-width to 3 on the ojButton component when the button has focus.

Chapter 12
Create Accessible Oracle JET Pages

12-5

.oj-hicontrast .oj-button.oj-focus .oj-button-button {
 outline-width: 3px; }

Note:

For disabled content, JET supports an accessible luminosity contrast ratio, as
specified in WCAG 2.1 - Success Criterion 1.4.3 Contrast (Minimum), in the themes
that are accessible.

Section 1.4.3 says that text or images of text that are part of an inactive user
interface component have no contrast requirement. Because disabled content may
not meet the minimum contrast ratio required of enabled content, it cannot be used to
convey meaningful information. For example, a checkbox may still appear checked in
disabled mode, but since the colors may not pass contrast ratio, you cannot rely on
all users being able to see that it's checked. If the information is needed to interact
with the page correctly, you must convey it using a different method, for example as
plain text.

Add High Contrast Images or Icon Fonts
To support high contrast image files, Oracle JET provides Sass mixins that you can use to
generate the correct CSS in high contrast mode to:

• Use an alternate image.

• Use images without using background images.

The Oracle JET Cookbook provides examples that you can use at: CSS Images.

You can also use icon fonts instead of image files to support high contrast mode. The limitation
is that icon fonts use a single color. Since these icons are text, they will be guaranteed to
contrast against the background color on systems that ignore colors in the CSS. However, if
you use color to show state (for example, changing an icon to blue when selected), the colors
may be ignored in high contrast modes. You may need to find an alternative like setting a
border instead. The Oracle JET cookbook provides icon font demos at: Icon Fonts.

Test High Contrast Mode
The recommended way to test high contrast mode in Oracle JET app is to set high contrast
mode at the operating system level and test your app in browsers that support high contrast
mode, such as Google Chrome, Microsoft Edge, and Mozilla Firefox.

For information about enabling high contrast mode, see the documentation for your computer’s
operating system. For example, to turn high contrast mode on and off in Microsoft Windows,
use the following key combination: Left Alt+Left Shift+PrtScn. You may need to refresh your
browser to see the new mode.

Hide Screen Reader Content
Sometimes you want to have some text on the page that is read to the screen reader user, but
the sighted user doesn't see. Oracle JET provides the oj-helper-hidden-accessible class
that you can use to hide content.

Chapter 12
Create Accessible Oracle JET Pages

12-6

https://www.w3.org/TR/WCAG21/#contrast-minimum
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=imagecss&demo=imageHiContrast
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=iconfont&demo=iconfont

You can find the .oj-helper-hidden-accessible style defaults in the Redwood theme CSS file
(web/css/redwood/x.x.x/web/redwood.css). For additional information about theming and
Oracle JET, see Use CSS and Themes in Oracle JET Apps.

Use ARIA Live Region
An ARIA live region is a mechanism to notify assistive technologies when a web page content
is updated.

When using a single page app, if there are any changes to the page or the page region, the
user of assistive technologies, such as screen readers, is not notified about the changes in the
page content since the URL of the app has not changed. To help provide a notification to the
screen readers when a page or segments of a page change, an ARIA live region announces
the dynamic changes within a web page. When the update takes place within an ARIA live
region, a screen reader is automatically notified, wherever its focus is at the time, and it
announces the updated content to the user. This can be achieved by using the aria-live
attribute.

The aria-live attribute identifies an element as a live region. It takes three possible values:

• off: No notification

• polite: Screen reader notifies user once the current task is complete

• assertive: Screen reader interrupts the current task to notify user

If the value of the aria-live attribute defined for an element is set to polite, your screen
reader will not be interrupted and will announce the changes in the ARIA live region when the
user has no activity on the screen. If the value is set to assertive, the new information has
high priority and should be notified or announced to the user immediately.

You can also use some of the advanced ARIA live region attributes to communicate
information about the entire live region or a portion of the live region to assistive technologies.
Some of the advanced live region attributes to use are:

• aria-atomic: The aria-atomic attribute is used along with aria-live attribute when the
page contains live regions. This attribute is used to set whether the assistive technologies
should present the entire live region as a single unit or to only announce the regions that
have been changed. The possible values are true or false. The default value is false.

• aria-relevant: This attribute is used in conjunction with the aria-live attribute to
describe the types of changes that have occurred within a given live region that should be
announced to the user. The possible settings are additions, removals, text, and all. The
default setting is additions text.

The following example shows a sample of the ARIA live region defined in the index.html file of
an app. In this example, the aria-live attribute is set to assertive and the aria-atomic
attribute is set to true:

<div id="globalBody" class="oj-offcanvas-outer-wrapper oj-offcanvas-page">
 <!-- Region for announcing messages to Screen Readers -->
 <div id="announce" class="sendOffScreen" :aria-live="[[manner() ?
manner() : 'assertive']]" aria-atomic="true">
 <p id="ariaLiveMessage"><oj-bind-text value="[[message]]"></oj-bind-
text>
 </div>
 <div id="navDrawer" role="navigation" class="oj-contrast-marker oj-web-
applayout-offcanvas oj-offcanvas-start">
 <oj-navigation-list id="navDrawerList" data="[[navDataProvider]]"

Chapter 12
Create Accessible Oracle JET Pages

12-7

edge="start"
item.renderer="[[KnockoutTemplateUtils.getRenderer('navTemplate', true)]]"
 on-click="[[toggleDrawer]]" selection="{{selection.path}}">
 </oj-navigation-list>
 </div>
 <div id="pageContent" class="oj-web-applayout-page">
 ... contents omitted

The following example shows how to set up the observables and event listeners in the
appController.js file of the app.

define(['knockout', 'ojs/ojresponsiveutils', 'ojs/ojresponsiveknockoututils',
'ojs/ojcorerouter', 'ojs/ojarraydataprovider', 'ojs/ojknockout', 'ojs/
ojoffcanvas'],
 function (ko, ResponsiveUtils, ResponsiveKnockoutUtils, CoreRouter,
ArrayDataProvider) {
 function ControllerViewModel() {
 var self = this;

 self.manner = ko.observable('assertive');
 self.message = ko.observable();
 function announcementHandler(event) {
 self.message(event.detail.message);
 self.manner(event.detail.manner);
 };

 document.getElementById('globalBody').addEventListener('announce',
announcementHandler, false);

 var smQuery =
ResponsiveUtils.getFrameworkQuery(ResponsiveUtils.FRAMEWORK_QUERY_KEY.SM_ONLY)
;
 self.smScreen =
ResponsiveKnockoutUtils.createMediaQueryObservable(smQuery);
 var mdQuery =
ResponsiveUtils.getFrameworkQuery(ResponsiveUtils.FRAMEWORK_QUERY_KEY.MD_UP);
 self.mdScreen =
ResponsiveKnockoutUtils.createMediaQueryObservable(mdQuery);

 let navData = [
 { path: '', redirect: 'dashboard' },
 { path: 'dashboard', detail: { label: 'Dashboard', iconClass: 'oj-ux-
ico-bar-chart' } },
 { path: 'incidents', detail: { label: 'Incidents', iconClass: 'oj-ux-
ico-fire' } },
 { path: 'customers', detail: { label: 'Customers', iconClass: 'oj-ux-
ico-contact-group' } },
 { path: 'about', detail: { label: 'About', iconClass: 'oj-ux-ico-
information-s' } }
];

 // Router setup
 let router = new CoreRouter(navData, {
 urlAdapter: new UrlParamAdapter()

Chapter 12
Create Accessible Oracle JET Pages

12-8

 });
 router.sync();

 this.moduleAdapter = new ModuleRouterAdapter(router);

 this.selection = new KnockoutRouterAdapter(router);

 // Setup the navDataProvider with the routes, excluding the first
redirected
 // route.
 this.navDataProvider = new ArrayDataProvider(navData.slice(1),
{keyAttributes: "path"});
 ... contents omitted

To send the announcement, you can use a dispatcher that can be defined within the page
viewModel files or in the router enter method. The following example shows a page viewModel
file that fires a dispatch in the self.transitionCompleted lifecycle method.

define(['knockout','ojs/ojpopup'],
 function (ko) {

 function DashboardViewModel() {
 var self = this;

 self.transitionCompleted = function (info) {
 var message = "Loaded Dashboard page"
 var params = {
 'bubbles': true,
 'detail': { 'message': message, 'manner': 'assertive' }
 };
 document.getElementById('globalBody').dispatchEvent(new
CustomEvent('announce', params));
 };

For more information on using an ARIA live region, see ARIA Live Regions.

Chapter 12
Create Accessible Oracle JET Pages

12-9

https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Live_Regions

13
Internationalize and Localize Oracle JET Apps

Oracle JET includes support for internationalization (I18N), localization (L10N), and use of
Oracle National Language Support (NLS) translation bundles in Oracle JET apps. Configure
your Oracle JET app so that the app can be used in a variety of locales and international user
environments.

About Internationalizing and Localizing Oracle JET Apps
Internationalization (I18N) is the process of designing software so that it can be adapted to
various languages and regions easily, cost effectively, and, in particular, without engineering
changes to the software. Localization (L10N) is the use of locale-specific language and
constructs at runtime.

Oracle has adopted the industry standards for I18N and L10N, such as World Wide Web
Consortium (W3C) recommendations, Unicode technologies, and Internet Engineering Task
Force (IETF) specifications to enable support for the various languages, writing systems, and
regional conventions of the world. Languages and locales are identified with a standard
language tag and processed as defined in BCP 47. Oracle JET includes Oracle National
Language Support (NLS) translation support for the languages listed in the following table.

Language Language Tag

Arabic ar
Brazilian Portuguese pt
Bulgarian bg-BG
Canadian French fr-CA
Chinese (Simplified) zh-Hans (or zh-CN)

Chinese (Traditional) zh-Hant (or zh-TW)

Croatian hr
Czech cs
Danish da
Dutch nl
Estonian et
Finnish fi
French fr
German de
Greek el
Hebrew he
Hungarian hu
Icelandic is
Italian it
Japanese ja

13-1

https://tools.ietf.org/html/bcp47

Language Language Tag

Korean ko
Latin_Serbian sr-Latn
Latvian lv
Lithuanian lt
Malay ms-MY
Norwegian no
Polish pl
Portuguese pt-PT
Romania ro
Russian ru
Serbian sr
Slovak sk
Slovenian sl
Spanish es
Swedish sv
Thai th
Turkish tr
Ukrainian uk-UA
Vietnamese vi

Oracle JET translations are stored in a resource bundle. You can add your own translations to
the bundles. For additional information, see Add Translation Bundles to Oracle JET.

Oracle JET also includes formatting support for over 196 locales. Oracle JET locale elements
are based upon the Unicode Common Locale Data Repository (CLDR) and are stored in locale
bundles. For additional information about Unicode CLDR, see http://cldr.unicode.org. You can
find the supported locale bundles in the Oracle JET distribution:

js/libs/oj/17.1.0/resources/nls

It is the app's responsibility to determine the locale used on the page. Typically, the app
determines the locale by calculating it on the server side from the browser locale setting or by
using the user locale preference stored in an identity store and the supported translation
languages of the app.

Once the locale is determined, your app must communicate this locale to Oracle JET for its
locale-sensitive operations, such as loading resource bundles and formatting date-time data.
Oracle JET determines the locale for locale-sensitive operations in the following order:

1. Locale specification in the ojL10n plugin of the RequireJS configuration.

2. lang attribute of the html tag.

3. navigator.language browser property.

If your app will not provide an option for users to change the locale dynamically, then setting
the lang attribute on the html tag is the recommended practice because, in addition to setting
the locale for Oracle JET, it sets the locale for all HTML elements as well. Oracle JET
automatically loads the translations bundle for the current language and the locale bundle for
the locale that was set. If you don't set a locale, Oracle JET will default to the browser property.

Chapter 13
About Internationalizing and Localizing Oracle JET Apps

13-2

http://cldr.unicode.org

If, however, your app provides an option to change the locale dynamically, we recommend that
you set the locale specification in the ojL10n plugin if your app uses RequireJS. Oracle JET
loads the locale and resource bundles automatically when your app initializes.

If you use Webpack rather than RequireJS as the module bundler for your Oracle JET app, we
recommend that you generate one code bundle for each locale that you want to support and
deploy each bundle to a different URL for the locale that you want to support. If, for example,
your app URL is https://www.oracle.com/index.html and you want to support the French and
Spanish locales, deploy the bundles for these locales to https://www.oracle.com/fr/index.html
and https://www.oracle.com/es/index.html respectively.

Finally, Oracle JET includes validators and converters that use the locale bundles. When you
change the locale on the page, an Oracle JET component has built-in support for displaying
content in the new locale. For additional information about Oracle JET's validators and
converters, see Validate and Convert Input.

Internationalize and Localize Oracle JET Apps
Configure your app to use Oracle JET's built-in support for internationalization and localization.

Use Oracle JET's Internationalization and Localization Support
To use Oracle JET's built-in internationalization and localization support, you can specify one of
the supported languages or locales on the lang attribute of the html element on your page. For
example, the following setting will set the language to the French (France) locale.

<html lang="fr-FR">

If you want to specify the French (Canada) locale, you would specify the following instead:

<html lang="fr-CA">

Tip:

The locale specification isn’t case sensitive. Oracle JET will accept FR-FR, fr-fr,
and so on, and map it to the correct resource bundle directory.

When you specify the locale in this manner, any Oracle JET component on your page will
display in the specified language and use locale constructs appropriate for the locale.

If the locale doesn’t have an associated resource bundle, Oracle JET will load the lesser
significant language bundle. If Oracle JET doesn’t have a bundle for the lesser significant
language, it will use the default root bundle. For example, if Oracle JET doesn’t have a
translation bundle for fr-CA, it will look for the fr resource bundle. If the fr bundle doesn’t
exist, Oracle JET will use the default root bundle and display the strings in English.

In the image below, the page is configured with the oj-input-date-time component. The
image shows the effect of changing the lang attribute to fr-FR.

Chapter 13
Internationalize and Localize Oracle JET Apps

13-3

https://www.oracle.com/index.html
https://www.oracle.com/fr/index.html
https://www.oracle.com/es/index.html

Chapter 13
Internationalize and Localize Oracle JET Apps

13-4

If you type an incorrect value in the oj-input-date-time field, the error text displays in the
specified language. In this example, the error displays in French.

Enable Bidirectional (BiDi) Support in Oracle JET
If the language you specify uses a right-to-left (RTL) direction instead of the default left-to-right
(LTR) direction, such as Arabic and Hebrew, you must specify the dir attribute on the html tag.

<html dir="rtl">

The image below shows the oj-input-date-time field that displays if you specify the Arabic
(Egypt) language code and change the dir attribute to rtl.

Chapter 13
Internationalize and Localize Oracle JET Apps

13-5

Once you have enabled BiDi support in your Oracle JET app, you must still ensure that your
app displays properly in the desired layout and renders strings as expected.

Note:

Oracle JET does not support the setting of the dir attribute on individual HTML
elements which would cause a page to show mixed directions. Also, if you
programmatically change the dir attribute after the page has been initialized, you
must reload the page or refresh each JET component.

Set the Locale and Direction Dynamically
You can configure your app to change its locale and direction dynamically by setting a key-
value pair in the app’s local storage that your app’s RequireJS ojL10n plugin reads when you
reload the app URL.

The image below shows an Oracle JET app configured to display a menu that displays a
department list when clicked and a date picker. By default, the app is set to the en-US locale.
Both the menu and date picker display in English.

You can run the Oracle JET app shown in the image if you download the JET-Localization.zip
and run the Oracle JET CLI ojet restore and ojet serve commands in the directory where
you extract the ZIP file.

Chapter 13
Internationalize and Localize Oracle JET Apps

13-6

https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Localization.zip

The app also includes a button set that shows the United States of America, France, Czech
Republic, and Egypt flags. When the user clicks one of the flags, the app locale is set to the
locale represented by the flag: en-US, fr-FR, cs-CZ, or ar-EG.

Note:

The flags used in this example are for illustrative use only. Using national flags to
select a UI language is strongly discouraged because multiple languages are spoken
in one country, and a language may be spoken in multiple countries as well. In a real
app, you can use clickable text instead that indicates the preferred language to
replace the flag icons.

The image below shows the updated page after the user clicks the Egyptian flag.

Implementing this behavior requires you to make changes in the view, the viewModel, and the
appRootDir/src/main.js file of your app. In the view code of the app, the on-value-changed
property change listener attribute specifies a setLang function that is called when a user
changes the selected button.

<oj-buttonset-one . . . on-value-changed="[[setLang]]">

Chapter 13
Internationalize and Localize Oracle JET Apps

13-7

In the viewModel code of the app, this setLang function determines what locale the user
selected and sets entries in window.localStorage so that a user’s selection persists across
browser sessions. The final step in the function is to reload the current URL using the
location.reload() method.

setLang = (evt) => {
 let newLocale = "";
 let lang = evt.detail.value;
 switch (lang) {
 case "Čeština":
 newLocale = "cs-CZ";
 break;
 case "Français":
 newLocale = "fr-FR";
 break;
 case "عربي":
 newLocale = "ar-EG";
 break;
 default:
 newLocale = "en-US";
 }
 window.localStorage.setItem('mylocale',newLocale);
 window.localStorage.setItem('mylang',lang);
 location.reload();
 };

To set the newly-selected locale in the ojL10n plugin of our app’s appRootDir/src/main.js file,
we write the following entries that read the updated locale value from local storage, and set it
on the locale specification in the ojL10n plugin. We also include a check that sets the direction
to rtl if the specified locale is Egyptian Arabic (ar-EG).

(function () {
 ...
const localeOverride = window.localStorage.getItem("mylocale");
 if (localeOverride) {
 // Set dir attribute on <html> element.
 // Note that other Arabic locales and Hebrew also use the rtl direction.
 // Include a check here for other locales that your app must support.
 if(localeOverride === "ar-EG"){
 document.getElementsByTagName('html')[0].setAttribute('dir','rtl');
 } else {
 document.getElementsByTagName('html')[0].setAttribute('dir','ltr');
 }
 requirejs.config({
 config: {
 ojL10n: {
 locale: localeOverride,
 },
 },
 });
 }
})();
...

Chapter 13
Internationalize and Localize Oracle JET Apps

13-8

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Location/reload

For information about defining your own translation strings and adding them to the Oracle JET
resource bundle, see Add Translation Bundles to Oracle JET.

When you use this approach to internationalize and localize your app, you must consider every
component and element on your page and provide translation strings where needed. If your
page includes a large number of translation strings, the page can take a performance hit.

Also, if SEO (Search Engine Optimization) is important for your app, be aware that search
engines normally do not run JavaScript and access static text only.

Tip:

To work around issues with performance or SEO, you can add pages to your app that
are already translated in the desired language. When you use pages that are already
translated, the Knockout bindings are executed only for truly dynamic pieces.

Work with Currency, Dates, Time, and Numbers
When you use the converters included with Oracle JET, dates, times, numbers, and currency
are automatically converted based on the locale settings. You can also provide custom
converters if the Oracle JET converters are not sufficient for your app. For additional
information about Oracle JET converters, see About Oracle JET Converters. For information
about adding custom converters to your app, see Use Custom Converters in Oracle JET.

Work with Oracle JET Translation Bundles
Oracle JET includes a translation bundle that translates strings generated by Oracle JET
components into all supported languages. Add your own translation bundle by merging it with
the Oracle JET bundle.

About Oracle JET Translation Bundles
Oracle JET includes a translation bundle that translates strings generated by Oracle JET
components into all supported languages. You can add your own translation bundle following
the same format used in Oracle JET.

The Oracle JET translation bundle follows a specified format for the content and directory
layout but also allows some leniency regarding case and certain characters.

Translation Bundle Location

The location of the Oracle JET translation bundle, which is named ojtranslations.js, is in
the following directory:

libs/oj/v17.1.0/resources/nls/ojtranslations

Each supported language is contained in a directory under the nls directory. The directory
names use the following convention:

• lowercase for the language sub-tag (zh, sr, and so on.)

• title case for the script sub-tag (Hant, Latn, and so on.)

• uppercase for the region sub-tag (HK, BA, and so on.)

Chapter 13
Work with Oracle JET Translation Bundles

13-9

The language, script, and region sub-tags are separated by hyphens (-). The following image
shows a portion of the directory structure.

Top-Level Module

The ojtranslations.js file contains the strings that Oracle JET translates and lists the
languages that have translations. This is the top-level module or root bundle. In the root
bundle, the strings are in English and are the runtime default values when a translation isn’t
available for the user’s preferred language.

Translation Bundle Format

Oracle JET expects the top-level root bundle and translations to follow a specified format. The
root bundle contains the Oracle JET strings with default translations and the list of locales that
have translations.

define({
// root bundle
 root: {
 "oj-message":{
 fatal:"Fatal",
 error:"Error",
 warning:"Warning",
 info:"Info",
 confirmation:"Confirmation",
 "compact-type-summary":"{0}: {1}"
 },
 // ... contents omitted
 },

// supported locales.
 "fr-CA":1,
 ar:1,
 ro:1,

Chapter 13
Work with Oracle JET Translation Bundles

13-10

 "zh-Hant":1,
 nl:1,
 it:1,
 fr:1,
 // ... contents omitted
 tr:1,fi:1
});

The strings are defined in nested JSON objects so that each string is referenced by a name
with a prefix: oj-message.fatal, oj-message.error, and so on.

The language translation resource bundles contain the Oracle JET string definitions with the
translated strings. For example, the following code sample shows a portion of the French
(Canada) translation resource bundle, contained in nls/fr-CA/ojtranslations.js.

define({
 "oj-message":{
 fatal:"Fatale",
 error:"Erreur",
 warning:"Avertissement",
 info:"Infos",
 confirmation:"Confirmation",
 "compact-type-summary":"{0}: {1}"
 },
 // ... contents omitted
});

When there is no translation available for the user's dialect, the strings in the base language
bundle will be displayed. If there are no translations for the user's preferred language, the root
language bundle, English, will be displayed.

Named Message Tokens

Some messages may contain values that aren't known until runtime. For example, in the
message "User foo was not found in group bar", the foo user and bar group is
determined at runtime. In this case, you can define {username} and {groupname} as named
message tokens as shown in the following code.

"MyUserKey":"User {username} was not found in group {groupname}."

At runtime, the actual values are replaced into the message at the position of the tokens by
calling the Translations.applyParameters() method with the key of the message as the first
argument and the parameters to be inserted into the translated pattern as the second
argument.

let parMyUserKey = { 'username': 'Foo', 'groupname': 'Test' };
let tmpString = Translations.applyParameters(MenuBundle.MyUserKey,
parMyUserKey);
this.MyUserKey = Translations.getTranslatedString(tmpString);

Numeric Message Tokens

Alternatively, you can define numeric tokens instead of named tokens. For example, in the
message "This item will be available in 5 days", the number 5 is determined at

Chapter 13
Work with Oracle JET Translation Bundles

13-11

runtime. In this case, you can define the message with a message token of {0} as shown in
the following code.

"MyKey": "This item will be available in {0} days."

A message can have up to 10 numeric tokens. For example, the message "Sales order {0}
has {1} items" contains two numeric tokens. When translated, the tokens can be reordered
so that message token {1} appears before message token {0} in the translated string, if
required by the target language grammar. The code that calls the applyParameters() and
getTranslatedString() methods remains the same no matter how the tokens are reordered
in the translated string.

Tip:

Use named tokens instead of numeric tokens to improve readability and reuse.

Escape Characters in Resource Bundle Strings

The dollar sign, curly braces and square brackets require escaping if you want them to show
up in the output. Add a dollar sign ($) before the characters as shown in the following table.

Escaped Form Output

$$ $

${ {

$} }

$[[

$]]

For example, if you want your output to display [Date: {01/02/2020}, Time: {01:02 PM},
Cost: $38.99, Book Name: JET developer's guide], enter the following in your resource
bundle string:

"productDetail": "$[Date: ${01/02/2020$}, Time: ${01:02 PM$}, Cost: $$38.99,
Book Name: {bookName}$]"

You then use the Translations.applyParameters() method to return the string with the
escaped characters and substituted tokens, if any, to display in the UI, as shown in the
following example:

let parProductDetail = { bookName: "JET developer's guide"};
this.productDetail = Translations.applyParameters(MenuBundle.productDetail,
parProductDetail);

Format Translated Strings

In some situations, you may want to apply formatting to strings in the resource bundle to
appear in the UI. Take, for example, a book title to which we may want to apply the <i> tag so

Chapter 13
Work with Oracle JET Translation Bundles

13-12

that the book title renders using italics in the HTML output. In this scenario, you might define
the following entry in the resource bundle(s):

// root bundle
"FormatTranslatedString": "The <i>{booktitle}</i> describes how to develop
Oracle JET apps"

And then use Oracle JET’s oj-bind-dom element to render the string in the UI, as in the
following example:

<p>
 <oj-bind-dom config="{{ formatTranslatedString() }}"></oj-bind-dom>
</p>

Caution:

The oj-bind-dom element does not validate HTML input provided by an app for
integrity or security violations. It is the app's responsibility to sanitize the input to
prevent unsafe content from being added to the page.

In our viewModel, we use Oracle JET’s HtmlUtils utility class to parse the string from the
resource bundle.

. . .
import * as HtmlUtils from "ojs/ojhtmlutils";
import "ojs/ojbinddom";
. . .
class DashboardViewModel {
 . . .
 FormatTranslatedString: String;
 . . .
 formatTranslatedString = () => {

 var parBookTitle = { 'booktitle': 'Oracle JET Developer Guide' };
 let strTitle =
Translations.applyParameters(MenuBundle.FormatTranslatedString, parBookTitle);
 this.FormatTranslatedString = Translations.getTranslatedString(strTitle);

 return {
 view: HtmlUtils.stringToNodeArray(
 `${this.FormatTranslatedString}`,
),
 };
 };
. . .

Add Translation Bundles to Oracle JET
You can add a translation bundle to your Oracle JET app with the custom strings that your app
UI needs and the translations that you want your app to support.

To add translation bundles to Oracle JET:

Chapter 13
Work with Oracle JET Translation Bundles

13-13

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojBindDom.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/HtmlUtils.html

1. Define the translations.

For example, the following code defines a translation set for a menu containing a button
label and three menu items. The default language is set to English, and the default label
and menu items will be displayed in English. The root object in the file is the default
resource bundle. The other properties list the supported locales, fr, cs, and ar.

define({
 "root": {
 "label": "Select a department",
 "menu1": "Sales",
 "menu2": "Human Resources",
 "menu3": "Transportation"
},
 "fr": true,
 "cs": true,
 "ar": true
});

To add a prefix to the resource names (for example, department.label,
department.menu1, and so on), add it to your bundles as shown below.

define({
 "root": {
 "department": {
 "label": "Select a department",
 "menu1": "Sales",
 "menu2": "Human Resources",
 "menu3": "Transportation"
 }
 }
},
 "fr": true,
 "cs": true,
 "ar": true
});

When the locale is set to a French locale, the French translation bundle is loaded. The
code below shows the definition for the label and menu items in French.

define({
 "label": "Sélectionnez un département",
 "menu1": "Ventes",
 "menu2": "Ressources humaines",
 "menu3": "Transports"
})

You can also provide regional dialects for your base language bundle by just defining what
you need for that dialect.

define({
 "label": "Canadian French message here"
});

Chapter 13
Work with Oracle JET Translation Bundles

13-14

When there is no translation available for the user's dialect, the strings in the base
language bundle will be displayed. In this example, the menu items will be displayed using
the French translations. If there are no translations for the user's preferred language, the
root language bundle, whatever language it is, will be displayed.

2. Include each definition in a file located in a directory named nls.

For example, the default translation in the previous step is placed in a file named menu.js
in the appRootDir/src/ts/resources/nls directory. The supported translations are
located in a file named menu.js in child sub-directories that use the name of the locale:

appRootDir/src/ts/resources/nls
| menu.js
|
+---ar
| menu.js
|
+---cs
| menu.js
|
+---fr
 menu.js

The directory name examples use ts as the examples assume that the Oracle JET app is
a TypeScript-based app. If the app is JavaScript-based, then the directory name is js, as
in appRootDir/src/js/resources/nls.

3. You need to configure changes in the view and viewModel code of your app to make sure
that it retrieves the appropriate translation.

If, for example, you want to implement the following UI where the menu labels change to
English or French depending on the locale, you need to reference btnLocaleLabel and
menuNames Knockout variables in the view code, as follows:

<oj-menu-button id="menuButton1">

 <oj-bind-text value="[[btnLocaleLabel]]"></oj-bind-text>

<oj-menu id="myMenu1" slot="menu" on-oj-action="[[changeLabel]]">
 <oj-bind-for-each data="[[menuNames]]">
 <template>
 <oj-option
value="[[$current.data.itemName]]" :id="[[$current.data.id]]">

 <oj-bind-text value="[[$current.data.itemName]]"></oj-bind-text>

 </oj-option>
 . . .

Chapter 13
Work with Oracle JET Translation Bundles

13-15

4. In the viewModel code, you first import the translation bundles where you defined the
default and translated strings:

import * as MenuBundle from "ojL10n!../resources/nls/menu";
5. You then declare the Knockout observables that reference the imported translation bundle

(MenuBundle) for the appropriate value to use, as demonstrated by the following excerpts
from the viewModel file:

import * as MenuBundle from "ojL10n!../resources/nls/menu";

class DashboardViewModel {
 btnLocaleLabel: ko.Observable<string>;
 menuNames: ko.ObservableArray<object>;

 constructor() {
 // setting up knockout observables for the
 // button label and the menu items
 this.btnLocaleLabel = ko.observable();
 this.menuNames = ko.observableArray([{}]);
 . . .
 }

 loadMenu = () => {
 // These lines pull the translated values for the menu items
 // from the appropriate resource file in the /resources/nls directory
 this.menuNames([
 { itemName: MenuBundle.menu1, id:'menu1' },
 { itemName: MenuBundle.menu2, id: 'menu2' },
 { itemName: MenuBundle.menu3, id: 'menu3' },
]);
 this.btnLocaleLabel(MenuBundle.label);
 };

 /**
 * Optional ViewModel method invoked after transition to the new View is
complete.
 * That includes any possible animation between the old and the new View.
 */
 transitionCompleted(): void {
 // Call the function that pulls the translated values.
 this.loadMenu();
 }

Chapter 13
Work with Oracle JET Translation Bundles

13-16

}

export = DashboardViewModel;

6. If the strings from your resource bundle include message tokens or reserved characters ($,
{, }, [,]) that need to be escaped, you must use Oracle JET's
Translation.applyParameters API.

The following code demonstrates how to render characters that must be escaped and a
string that requires a parameter value (also referred to as a token value).

// // App UI is going to render the following strings:
$ { } []
[The Oracle JET Developer's Guide costs $38.99]

// To accomplish this, we enter the following entries in the app's
resource bundle(s):
(appRootDir/src/ts/resources/nls/menu.js)
. . .
 "EscapeChar": "$$ ${ $} $[$]",
 "EscapeCharToken": "$[The {bookName} costs $$38.99$]"
 },
. . .

// appRoot/src/ts/viewModels/dashboard.ts includes the following entries:
// Import the Translations module that includes the applyParameters() API
import * as Translations from "ojs/ojtranslation";

// Define types:
. . .
 EscapeChar: String;
 EscapeCharToken: String;

constructor() {

. . .

// Escape characters in resource bundle strings
let parEscapeChar = { };
this.EscapeChar = Translations.applyParameters(MenuBundle.EscapeChar,
parEscapeChar)

// Substitute a token and escape a character
let parEscapeCharToken = { bookName: "Oracle JET Developer's Guide"};
this.EscapeCharToken =
Translations.applyParameters(MenuBundle.EscapeCharToken,
parEscapeCharToken)

// appRoot/src/ts/views/dashboard.html includes the following entries to
render the final string
. . .
<oj-bind-text value="[[EscapeChar]]"></oj-bind-text>
. . .
<oj-bind-text value="[[EscapeCharToken]]"></oj-bind-text>

Chapter 13
Work with Oracle JET Translation Bundles

13-17

You can run an Oracle JET app that includes these code snippets if you download the JET-
Localization.zip and run the Oracle JET CLI ojet restore and ojet serve commands in
the directory where you extract the ZIP file.

Chapter 13
Work with Oracle JET Translation Bundles

13-18

https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Localization.zip
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Localization.zip

14
Use CSS and Themes in Oracle JET Apps

Oracle JET includes the Redwood theme that provides styling across web apps and
implements Oracle Redwood Design System. The Redwood theme provides hundreds of
custom properties (also called CSS variables) to achieve its look and feel. You can use the
Redwood theme as provided, or you can customize the custom properties manually.

Note:

Starting in Oracle JET release 9.0.0, the Redwood theme is the default theme for all
new JET web apps.

About the Redwood Theme Included with Oracle JET
Oracle Redwood Design System is the Oracle standard for app look and feel. It is being
implemented company-wide to unify the user interface of all Oracle product offerings and is
implemented in Oracle JET as the Redwood theme.

Oracle JET takes this opportunity to refresh the toolkit look and feel with this dynamic, forward
thinking design system and also to introduce all new components that rely on the user
experience of Oracle Redwood Design System, such as JET waterfall layout and JET stream
list component.

All starter templates use the Redwood theme. Because all apps will be created with the
Redwood theme by default, you no longer need to specify the theme type when using the JET
Tooling create and serve commands. There are no theme variations specific to the mobile
platforms. For details, see Create an App with the Redwood Theme.

If you have an existing app that you want to migrate from the Alta theme, you can migrate to
the current JET release and configure the app to run with the out-of-the-box CSS for the
Redwood theme. For details, see Migrate to the Redwood Theme CSS.

Customizing Redwood theme is supported by working with CSS variables. For details, see
About CSS Variables and Custom Themes in Oracle JET.

CSS Files Included with the Redwood Theme
Oracle JET includes CSS files designed for display on web browsers that implement Oracle
Redwood Design System. In JET, the Redwood theme includes minified and readable versions
of the CSS.

Starting in Oracle JET release 9.0.0, app themes are based on Redwood theme, a theme for
both mobile and browser apps that replaces the multiple themes needed in prior releases.

The Redwood CSS is included with the Oracle JET distribution and is located in the /
<app_root>/node_modules/@oracle/oraclejet/dist/css/redwood folder. The Redwood CSS
distribution contains the following files:

• oj-redwood.css: Readable version of the CSS for the out-of-the-box Redwood theme

14-1

• oj-redwood-min.css: Minified version of the CSS for the out-of-the-box Redwood theme

In addition, the Redwood theme includes the following CSS:

• oj-redwood-notag.css: Readable version of the CSS without tag selectors

• oj-redwood-notag-min.css: Minified version of the CSS without tag selectors.

For additional details about Oracle JET theming and tag selectors, see Disable JET Styling of
Base HTML Tags.

Always use the recommended standards to work with your CSS and themes. For more
information, see Best Practices for Using CSS and Themes.

Important:

Do not override the style classes in the Oracle JET CSS distribution. The CSS files
shipped with Oracle JET are considered private and must not be modified. Such
modifications may prevent you from migrating your theme to a future release.

Create an App with the Redwood Theme
The Redwood theme is the Oracle JET implementation of Oracle Redwood Design System
and is the default theme for apps that you create in JET release 9.0.0 and later.

Oracle Redwood Design System is the new Oracle user experience design language, and
Redwood theme is the recommended theme if you are creating a new JET web app.

You use the ojet create command to scaffold an app that by default uses the Redwood CSS
files provided with the Redwood theme distribution. When you build the app, the JET Tooling
loads redwood.css.

When you create your app, JET Tooling will use the out-of-the-box Redwood theme file as
configured by the property defaultTheme=redwood in the oraclejetconfig.json file. There are
no other configuration settings needed for the tooling to use the redwood.css when you build
and run the app.

{
 "paths": {
 ...
 },
 "defaultBrowser": "chrome",
 "sassVer": "8.0.0",
 "defaultTheme": "redwood",
 "architecture": "mvvm",
 "generatorVersion": "17.1.0"
}

Customization of the theme and styling of individual JET components is supported by
overriding JET CSS variables. For details about overriding CSS variables, see Work with
Custom Themes and Component Styles.

To create an app with the Redwood theme:

Chapter 14
Create an App with the Redwood Theme

14-2

1. Create the app.

ojet create my-web-app

The tooling creates the index.html file in the src folder with an injector token that will load
the CSS for the out-of-the-box Redwood theme.

<!-- This is the main css file for the default theme -->
<!-- injector:theme -->
<!-- endinjector -->

2. Build a development version of your app.

ojet build

The tooling outputs the built app source to the web build folder in the app's root and
populates the /web/css/redwood/17.1.0/web folder with the set of available Redwood
theme files, including the default theme redwood.css, as well as fonts and images.

AppRootDir/web/css/redwood/17.1.0/web
 fonts
 images
 redwood-notag-min.css
 redwood-notag.css
 redwood.css
 redwood.min.css

Theme files with the oj- prefix and -notag suffix provide alternatives to the out-of-the-box
Redwood theme that allow you to work with custom themes, as described in Work with
Custom Themes and Component Styles.

Note that index.html in the build output folder by default loads the expanded CSS from
redwood.css. To load minified CSS from redwood-min.css, build the app in release mode.

ojet build --release

3. Run the app to view the out-of-the-box Redwood theme in the browser.

ojet serve

Adjust the Scale of the Redwood Theme
Apps and their users have different scale needs and requirements. The Redwood theme
supports three different scale sizes.

The Redwood theme by default uses a large scale size. The large scale is recommended for
lower-density pages and is optimized for readability and human scale.

The medium scale is more compact than Redwood's default scale and is designed to increase
efficiency by allowing more data to be shown above the page's fold.

Chapter 14
Adjust the Scale of the Redwood Theme

14-3

The small scale has highly compact proportions and is designed for canvas-style tools with a
high level of information and UI density. This scale is not touch-friendly and should therefore
only be used on desktop apps.

To change the Redwood theme to use a small or medium scale, use the Oracle JET scale
classes oj-scale-sm or oj-scale-md, respectively. Add these classes to the html element in
your app's index.html file.

<html class="oj-scale-md">
 <!-- content -->
</html>

The entire page must be one of these scales—specifying different scales on a single page is
not supported.

Best Practices for Using CSS and Themes
Use the recommended styling standards for creating CSS and themes in your web app. These
practices apply to all themes in Oracle JET.

Standard Details Example

Never
override
Oracle JET
classes

While there are ways to override Oracle JET CSS style classes
containing the oj- prefix, none of them is allowed, whether
public or private.

 Here is one example of an overridden
Oracle JET class that is not allowed:

.acme-branding-header .oj-
button{
 color: white;
 background: blue;
}

Use mobile-
first design

Apps should be mobile first, meaning that they should work on a
phone and tablet. This means they must be touch friendly,
including sizing tap targets appropriately. There is no hover in
mobile, so the design should not rely on the use of hover.

Chapter 14
Best Practices for Using CSS and Themes

14-4

https://developers.google.com/speed/docs/insights/SizeTapTargetsAppropriately

Standard Details Example

Follow
naming
conventions

Use the .namespace-block-element naming convention for
your CSS file.

For example, if you are writing a branding bar that contains a
header element for your company acme, then choose acme as
the namespace, branding as the block, and header as the
element. So, the selector name will be .acme-branding-
header. Oracle JET uses dashes in their selector names, but
you may use other naming conventions such as Block, Element,
Modifier (BEM).

Including a namespace is important in order to minimize the
chances of your base CSS (for example, one provided by a
client) on the page affecting your app's CSS and vice-versa. For
example, if your CSS and the client-provided CSS both have a
class named branding-header as seen below, your branding
header text color will be red.

Client CSS:
.branding-header{color: red}

Your CSS:
.branding-header{background-color: blue}
Using .acme-branding-header rather than just .branding-
header will greatly reduce the chance that your client will use a
class with the same name.

.acme-branding-header

Use only
Oracle JET
public
classes

Use only the public classes documented in the Oracle®
JavaScript Extension Toolkit (JET) Styling Reference. All other
Oracle JET classes are considered private and subject to change
without notice.

Chapter 14
Best Practices for Using CSS and Themes

14-5

https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

Standard Details Example

Minimize
custom CSS

Oracle JET has CSS Utility classes that help you minimize
custom CSS. The following list identifies the JET’s CSS Utility
classes that can assist you:

• Font-size and font-weight: use JET's Typography classes
• Color: use JET's Text Colors or icon font color classes
• Background-color: use JET's Background Colors classes
• Border: use JET's Divider or Panel classes
• Padding and margins: use JET's Spacing classes
• Display none: use If Binding (oj-bind-if). JET also has

Hide classes (to always hide use oj-sm-hide, that hides on
all screen sizes), but these can cause issues in components
that need to be notified when made visible, so use of oj-
bind-if is safer.

• Display inline-block: use oj-helper-inline-block
• Text-align: use JET's Text Align classes
• Text-overflow: ellipsis use the Line Clamp (oj-line-

clamp-1) class instead

• Breaking long words
• Flex: use JET's Flex Layouts classes
• Widths: use JET's Responsive Width or Responsive Grids

classes
• Float: use JET's Float Start and Float End classes
• White-space: use JET's White-Space classes
When you use Oracle JET CSS utility classes in your app, you
also ensure compatibility with the Oracle JET-provided theme.
For more details see the CSS Utility classes demos in the Oracle
JET Cookbook and the API Reference for Oracle® JavaScript
Extension Toolkit (Oracle JET) .

Don’t set the
font family in
the CSS

The app should set the font family for text once on the root of the
page which allows the app to change the font family as needed.
In order to blend in with the font family chosen by the app, do not
set the font family in the CSS.

 Do not set the font family like this:

.acme-branding-header {
 font-family: arial;
}

Use REM for
font sizes
and CSS
styles

Consider using REM (root em) for font sizes and other CSS style
properties where relative sizing allows your app to scale based
on the root html element font size. Oracle JET components rely
on REM, which allows your app to adjust to any changes to the
underlying CSS font sizes for the themes included with Oracle
JET. Likewise, your app can benefit by working with rem units
instead of pixels or some other absolute unit. You can use rem
units where ever an HTML style can benefit from scalable length
units, such as the CSS properties for line-height, width, height,
padding, margin, and so on. If you do not want to set a style
directly on the html tag, you can reference the oj-html class.

.acme-branding-header {
 font-size: 1.2rem;
}

Chapter 14
Best Practices for Using CSS and Themes

14-6

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=text&demo=typography
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=text&demo=text
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=colors&demo=bgcolors
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=dividers&demo=divider
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=panel&demo=paneloverview
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=spacing&demo=spacingvariants
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=binding&demo=if
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=display&demo=visibility
https://www.oracle.com/webfolder/technetwork/jet/jsdocs/Helpers.html#display
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Helpers.html#text-align
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=text&demo=lineclamping
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=text&demo=wrap
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=flex&demo=basics
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=sizing&demo=width
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=grid&demo=gridresponsive
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=display&demo=floatstart
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=display&demo=floatend
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/Helpers.html#white-space
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootFramework_utilitycss
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET

Standard Details Example

Add bi-
directional
(BIDI) styling
support

Oracle JET apps are expected to set dir="rtl" for right-to-left
(RTL) languages as described in Set the Text Direction. You can
use this setting to support both left-to-right (LTR) and RTL
languages in your CSS. To minimize the need to use dir,
consider using CSS logical properties in your CSS.

html:not([dir="rtl"]) .acme-
branding-header {
 right: 0; }

html[dir="rtl"] .acme-branding-
header {
 left: 0; }

Use oj-
hicontrast
for high
contrast
styling

When Oracle JET detects high contrast mode, it places the oj-
hicontrast selector on the body element which you can use to
change the CSS as needed. See Configure High Contrast Mode.

.acme-branding-header {
 border: 1px;
}

.oj-hicontrast .acme-branding-
header {
 border: 2px;
}

Avoid !
important

Avoid the use of !important in your CSS as it makes it
problematic to override the value. Where possible, use higher
specificity instead. See the Mozilla specificity page for more
information.

 Avoid using !important.

.acme-branding-header {
 font-size: 1.2rem !important;
}

Optimize
image use

All image systems have advantages and disadvantages. See
Work with Images to decide if icon fonts are right for you.

Always consider performance when using images. For tips, see
Add Performance Optimization to an Oracle JET App

DOCTYPE Requirement
In order for Oracle JET's theming to work properly, you must include the following line at the
top of all HTML5 pages:

<!DOCTYPE html>

If you don't include this line, the CSS in your app may not function as expected. For example,
you may notice that some elements aren't properly aligned.

Tip:

If you create an Oracle JET app using the tooling or one of the sample apps, this line
is already added for you, and you do not need to add it yourself.

Chapter 14
Best Practices for Using CSS and Themes

14-7

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Logical_Properties
https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity

Set the Text Direction
If the language you specify uses a right-to-left (RTL) direction instead of the default left-to-right
(LTR) direction, such as Arabic and Hebrew, you must specify the dir attribute on the html tag:
<html lang=name dir="rtl">.

For example, the following code specifies the Hebrew Israel (he-IL) locale with right-to-left
direction enabled:

<html lang="he-IL" dir="rtl">

Oracle JET does not support multiple directions on a page. The reason this is not supported is
that the proximity of elements in the document tree has no effect on the CSS specificity, so
switching directions multiple times in the page may not work the way you might expect. The
code sample below shows an example.

<style>
 [dir=ltr] .foo {color: blue}
 [dir=rtl] .foo {color: red}
</style>

 You might think I will be blue because dir=ltr is on,
 a closer ancestor than dir=rtl. But css doesn't care
 about proximity, so instead I am red
 (because [dir=rtl] .foo {color: red} was defined last).
 Isn't that surprising?

For more information about localizing your app and adding bidirectional support, see Enable
Bidirectional (BiDi) Support in Oracle JET. For more information about CSS specificity, see
https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity.

Work with Images
Oracle JET uses icon fonts whenever possible to render images provided by the Redwood
theme. When icon fonts are not possible, Oracle JET uses SVG images.

You may also find the following topics helpful when working with images.

Image Considerations
There are a variety of ways to load icons, such as sprites, data URIs, icon fonts, and so on.
Factors to consider when choosing an image strategy include:

• Themable: Can you use CSS to change the image? Can you replace a single image
easily?

• High contrast mode: Does the image render properly in high contrast mode for
accessibility?

• High resolution support: Does the image look acceptable on high resolution (retina)
displays?

Chapter 14
Work with Images

14-8

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity

• Image limitations: Are there limitations that impact your use case? For example, icon fonts
are a single color, and small SVG images often do not render well.

• Performance: Is image size a factor? Do you need alternate versions of an image for
different resolutions or states such as disabled, enabled, hover, and active?

Icon Font Considerations
Oracle JET uses icon fonts whenever possible because icon fonts have certain advantages
over other formats.

• Themable: You can use style classes to change their color instead of having to replace the
image, making them very easy to theme.

• High contrast mode: Icon fonts are optimal for high contrast mode as they are considered
text. However, keep in mind that you can't rely on color in high contrast mode, and you
may need to indicate state (active, hover, and so on) using another visual indicator. For
example, you can add a border or change the icon font's size. For additional information
about Oracle JET and high contrast mode, see Configure High Contrast Mode.

• High resolution: Icon fonts look good on a high resolution (retina) display without providing
alternate icons.

• Performance: You can change icon font colors using CSS so alternate icons are not
required to indicate state changes. Alternate images are also not required for high
resolution displays.

Icon fonts also have disadvantages. It can be difficult to replace a single image, and they only
show one color. You can use text shadows to provide some depth to the icon font.

Work with Custom Themes and Component Styles
When you add a custom theme to your scaffolded app, Oracle JET adds CSS variable
definition files that you can modify to customize your app’s look and feel.

About CSS Variables and Custom Themes in Oracle JET
JET introduced the Redwood theme in release 9.0.0. In release 10.0.0, support for theming
based on the out-of-the-box Redwood theme with CSS variables instead of Sass variables was
introduced. Starting with JET release 11.0.0, you can also create a custom theme based on
another out-of-the-box theme, Stable, that JET provides. We refer to these two themes
(Redwood and Stable) as base themes.

Choose the Stable theme as the base theme for your custom theme if you want to reduce the
likelihood that future updates to the Redwood theme affect the custom theme that you develop.
Use Redwood as the base theme for your custom theme if you want to inherit future updates to
the Redwood theme. Redwood theme implements the look and feel for Oracle apps, and future
changes will be made to address Oracle’s requirements. The Stable theme, as the name
suggests, intends to be stable and unlikely to change frequently. That said, Oracle cannot
guarantee that the Stable theme will remain unchanged. We may, for example, need to change
the Stable theme to incorporate component enhancements. As of its initial release (JET
release 11.0.0), Stable theme implements the same component behavior as the Redwood
theme.

Options to theme your app using CSS variables include:

Chapter 14
Work with Custom Themes and Component Styles

14-9

• Add variable overrides in your app's /appRootDir/src/css/app.css file while your app
continues to use the Redwood or Stable CSS file. Choose this option if you want to add a
limited number of app-specific overrides to the base theme.

• Use the JET CLI to create a new custom theme that your app will use. Choose this option
if you want to make extensive changes, or you want to make changes that will be reused
by a variety of apps.

Use the Theme Builder app (links below) to assist you with these tasks as it contains a variety
of JET components that allow you to preview the affect of changes to CSS variables.

Note that Sass is not completely eliminated in JET; JET continues to use Sass when you work
with the Redwood theme for bundling and there are a few cases, for example in media queries,
where CSS variables aren't supported. For the few exceptions, Sass variables are needed
(such as $screenSmallMinWidth and $screenSmallMaxWidth). Therefore Sass is still part of
the theming toolchain when you use ojet add theming in the JET CLI. If you use Sass to
generate your own styles and don't rely on any JET Sass variables, then you can continue to
use Sass as before. However, if you do rely on JET Sass variables, then most of those Sass
variables will no longer be available, see the Sass-based Theme Builder - Migration tab for
information about how to migrate JET Sass variables to CSS variables.

Use these links to view Theme Builder pages:

• CSS Variable Theme Builder

• CSS Variable Theme Builder - Instruction Tab

• Sass-based Theme Builder - Migration Tab

Here are some recent significant updates in JET's support of theming.

Release Event

JET 9.0.0 You can use the Redwood CSS out of the box, without any changes.

JET 10.0.0 • You can customize the Redwood theme using CSS variable overrides.
• Alta themes have been deprecated in JET release 10.0.0. If you have an existing theme

that extends Alta and you want to migrate it to extend the Redwood theme (and use
CSS variables), it is a manual process. There is information on variable migration on the
Theme Builder - Migration tab. More information about migrating your app to a Redwood
theme can also be found in Migrate to the Redwood Theme CSS. Note that Alta themes
will continue to use Sass, and they will not switch to use CSS variables.

JET 11.0.0 You can choose between adding a custom theme to your JET app based on the Stable
theme or the Redwood theme. Choose the Stable theme as the base theme for your custom
theme if you want to reduce the likelihood that future updates to the Redwood theme affect
the custom theme that you develop. Use Redwood as the base theme for your custom theme
if you want your custom theme to inherit future updates to the Redwood theme.

Add Custom Theme Support with the JET CLI
You can use Oracle JET Tooling to add a custom theme to your app.

When you use the JET Tooling to add theming support to your app, it adds the theme definition
files. Adding theming support is a prerequisite step to performing any modifications to the out-
of-the-box Redwood or Stable themes.

Creation of the theme generates these theme definition files in the app /src/themes folder.
To add theming support:

Chapter 14
Work with Custom Themes and Component Styles

14-10

https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder-CSS-Vars/public_html/index.html
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder-CSS-Vars/public_html/index.html?_ojCoreRouter=library
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder/public_html/index.html?root=migration

1. In your app’s top-level directory, enter the following command at a terminal prompt to install
the theming toolchain.

ojet add theming

2. Create the custom theme. This adds the custom theme settings files to your app in a folder
named for your custom theme. You must choose between the stable or the redwood
theme as the base theme for your custom theme. Choose stable as the base theme if you
want to reduce the likelihood that future updates to the Redwood theme affect the custome
theme that you develop. Use redwood if you want your custom theme to inherit future
updates to the Redwood theme.

ojet create theme themeName --basetheme=stable|redwood

For example, the following command creates a custom theme named myTheme that uses
the stable theme as the base theme.

ojet create theme myTheme --basetheme=stable

The command creates a folder with the custom theme name in the app /src/themes
directory.

src
| index.html
|
+---css
|
+---themes
|
| \---myTheme
| | theme.json
| |
| \---web
| myTheme.scss
| _myTheme.cssvars.settings.scss
| _myTheme.optimize-components.scss
| _myTheme.sass.settings.scss

In the directory listing above, the web folder shows the .scss custom theme settings files
that you can modify. You’ll find out how to work with these files at the end of this section.

• _<themeName>.cssvars.settings.scss is the primary file that you will use to create
your custom theme. You edit this file to set CSS variable values that are then used by
JET components, app-wide. So, for example, to change the primary text color for JET
as a whole, you can edit this file by uncommenting and setting the value for --oj-
core-text-color-primary.

• _<themeName>.optimize-components.sccs allows you to tune the overall CSS size of
your theme by specifying styling of specific JET components. You do not need to edit
this file if you are styling the entire JET component set.

• _<themeName>.sass.settings.scss defines other customizable aspects of the theme
that are not yet supported by CSS variables. This includes media queries and
responsive screen sizes. For most theming needs, you will not need to edit this file.

Chapter 14
Work with Custom Themes and Component Styles

14-11

• <themeName>.scss is the main aggregating file for the theme and is the one the JET
Tooling uses to generate the custom CSS at build time. By default it is configured to
apply your CSS overrides to all JET components. You may need to edit this file when
you minimize the JET component CSS that you want to load or you can specify not to
load the CSS for base HTML tags.

In the myTheme folder, the theme.json file contains the version number of the theme,
starting with 0.0.1.

3. Optionally, in the app root, edit the oraclejetconfig.json file and set the defaultTheme
property to the custom theme name that you specified with the ojet create theme
command.

{
 "paths": {
 ...
 },
 "defaultBrowser": "chrome",
 "sassVer": "8.0.0",
 "defaultTheme": "myTheme",
 "architecture": "mvvm",
 "generatorVersion": "17.1.0"
}

In this sample, myTheme is the name of the custom theme shown in the previous step.
When you edit the oraclejetconfig.json file, each time you build or serve the app, you
can omit the --theme=<themeName> build command option, and the tooling loads your
custom theme.

After you add support for custom theming to your app, when you build and run the app, the
CSS will load the out-of-the-box Redwood or Stable theme that you specified as the value
for the --basetheme argument.

To work with the settings files to customize the theme, you can perform these additional
tasks:

• Modify the Custom Theme with the JET CLI

• Optimize the CSS in a Custom Theme

• Disable JET Styling of Base HTML Tags

Additionally, the CSS Variables section in the Oracle JET Cookbook includes examples of
the type of look and feel customizations described in the above list of topics.

Modify the Custom Theme with the JET CLI
You can override CSS variables defined by the base theme in the custom theme that you add
to your JET app.

You modify the generated file _<themeName>.cssvars.settings.scss located in the /src/
themes/<themeName>/web folder. This file contains the list of available JET CSS variables
in :root where you set values for the variables to apply application-wide to the JET
components.

Before you begin:

Chapter 14
Work with Custom Themes and Component Styles

14-12

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=home&demo=rootFramework_childtheming

• Install the theming toolchain and configure a custom theme, as described in Add Custom
Theme Support with the JET CLI. The themes folder with custom theme settings files are
added to your application source.

• Examine the App Wide Theming section in the Oracle JET Cookbook for examples.

• Refer to the JET CSS Variables section of the JET API reference doc for an overview of
the CSS variables and their values.

• Optionally, download and install the Theme Builder app. The Theme Builder app uses the
CLI and shows various JET components to easily see the effect of a creating a theme. See
CSS Variable Theme Builder - Instruction Tab.

To override base theme CSS variables in your application CSS:

1. In the /src/themes/<themeName>/web folder, edit the generated
_<themeName>.cssvars.settings.scss theme file and modify the CSS variables
under :root that you want to override.

For example, to change the height of all JET buttons in your application, you can override
the JET CSS variable --oj-button-height, like this:

:root {
 ...
 --oj-button-height: 4rem;
 ...
 }

2. In the /src/themes/<themeName> folder, edit the generated theme.json configuration file
and set the generatedFileType property to the appropriate value:

• "generatedFileType": "combined"
Use when you need to change the value of CSS breakpoints, or you want to optimize
performance by only downloading the CSS you need. With this option the JET CSS
and the customizations are combined into one custom theme file. This custom theme
file needs to be regenerated every time that you upgrade the JET version of your app.
The following entry appears in the index.html page when you serve your app with this
option:

<!-- injector:theme -->
 <link rel="stylesheet" href="css/myStableTheme/0.0.1/web/
myStableTheme.css" id="css" />
<!-- endinjector -->

If you use combined because you need to change the value of CSS breakpoints, you
also need to uncomment the following entry in the aggregating file for the theme
(appRootDir/src/themes/<themeName>/web/myStableTheme.scss in our example):

//@import "_myStableTheme.sass.settings.scss";

You must then uncomment one of the following files:

// @import "oj/all-components/themes/stable/_oj-all-components.scss";
or:
// @import "_myStableTheme.optimize-components.scss";

Chapter 14
Work with Custom Themes and Component Styles

14-13

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=theming&demo=themepalette
https://docs.oracle.com/en/middleware/developer-tools/jet/10/reference-api/CssVariablesOverview.html
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder-CSS-Vars/public_html/index.html?_ojCoreRouter=library

If you use combined to optimize performance by only downloading the CSS you need,
you must uncomment the following line in the aggregating file for the theme:

// @import "_myStableTheme.optimize-components.scss";

• "generatedFileType": "add-on"
This is the default value. Leave unchanged if you don't need to change the value of
CSS breakpoints or optimize performance by only downloading the CSS you need.
With this option the theme file just contains the CSS variable overrides, so it can be
loaded separately after the base Stable or Redwood CSS file. You do not need to
regenerate this theme file every time that you upgrade to a new JET release. The
following entries appear in the index.html page when you serve your app if your app
uses a custom theme (myStableTheme) that uses the Stable theme as the base theme.

<!-- injector:theme -->
 <link rel="stylesheet" href="css/stable/11.0.0/web/stable.css"
id="css" />
 <link rel="stylesheet" href="css/myStableTheme/0.0.1/web/
myStableTheme.css" id="css" />
<!-- endinjector -->

3. Build a development version of your application.

ojet build --theme=<themeName>

You can omit the --theme option if you set the defaultTheme property in the
oraclejetconfig.json file.

The tooling outputs the built application source to the web build folder in the application's
root and populates the /web/css folder with the CSS from the theme that you specified as
the base theme when creating a custom theme (Redwood or Stable) and the CSS with
your overrides, such as the generated myTheme.css file. The following directory listing
shows the generated entries for a theme, myStableTheme, that uses the Stable theme as its
base theme. The directory listing includes stable.css and stable.min.css files because
the app uses "generatedFileType": "add-on" in the appRootDir/src/themes/
myStableTheme/theme.json file.

web
|
+---css
| +---fonts
| +---images
| +---myThemeStable
| | \---0.0.1
| | +---common
| | \---web
| | myThemeStable.css
| |
| +---redwood
| | \---11.0.0
| | \---web
| | +---fonts
| | | internal_iconfont.woff2
| | |

Chapter 14
Work with Custom Themes and Component Styles

14-14

| | \---images
| | avatar-pattern1.png
| | ...
| | spinner_full.gif
| |
| \---stable
| \---11.0.0
| \---web
| | stable.css
| | stable.min.css
| |
| +---fonts
| \---images
|
+---js
\---themes
 \---myThemeStable
 | theme.json
 |
 \---web
 myThemeStable.scss
 _myThemeStable.cssvars.settings.scss
 _myThemeStable.optimize-components.scss
 _myThemeStable.sass.settings.scss

Theme files with the oj- prefix and -notag suffix provide alternatives to the out-of-the-box
Redwood theme that allow you to work with a reduced CSS, as described in Work with
Custom Themes and Component Styles.

To load minified CSS, build the application in release mode.

ojet build --release

4. Run your application.

ojet serve --theme=<themeName>

Again, you can omit the --theme option if you set the defaultTheme property in the
oraclejetconfig.json file.

5. Optionally, to refine the theme, modify CSS variables in your application's
_<themeName>.cssvars.settings.scss theme file.

The Oracle JET serve process will immediately reload the running application in the
browser where you can observe the effect of any CSS variable overrides.

6. To exit the application, press Ctrl+C at the terminal prompt.

Modify the Custom Theme with Theme Builder
You can use the JET Theme Builder application to override CSS variables defined by the
Redwood or Stable theme and reuse the generated theme definition files to theme your own
application.

Theme Builder is a JET application that contains a variety of JET components that allow you to
visualize look and feel changes that you make by overriding CSS variable values. Because

Chapter 14
Work with Custom Themes and Component Styles

14-15

Theme Builder is a JET application, the process of theming uses the same theme definition
files that your application relies on when you create a custom theme. This allows you to use
the Theme Builder application to create a custom theme and then reuse those generated
theme definition files in your own application. Alternatively, you can use Theme Builder strictly
as a tool to learn the names of the CSS variables, and then work with JET Tooling to create a
custom theme in your own application, as described in Modify the Custom Theme with the JET
CLI.

To work with Theme Builder, you download the application as described in the Theme Builder -
Instruction tab. You then use the ojet add theming and ojet create theme commands in the
JET CLI to generate the needed theme definition files that allow you to override CSS variables
and create a custom theme CSS. When you are satisfied with the custom CSS in Theme
Builder, you will then prepare your own application to generate CSS from theme definition files
before copying over the theme definition files you modified in Theme Builder.

Before you begin:

• Download and install the CSS Variable Theme Builder - Instruction Tab application. You will
modify the generated theme definition files to override Redwood CSS variables and reuse
the modified files in your application.

• In the application that you want to reuse the Theme Builder generated CSS, install the
theming toolchain and configure a custom theme, as described in Add Custom Theme
Support with the JET CLI. The themes folder with custom theme definition files is added to
your application source. This is the folder that you will copy Theme Builder theme definition
files into.

To reuse a Theme Builder generated CSS in your application:

1. After you have downloaded Theme Builder and run the commands to support theming, in
Theme Builder edit the generated /src/themes/<themeName>/web/
_<themeName>.cssvars.settings.scss theme file and begin modifying the Redwood CSS
variables under :root that you want to override.

2. While the Theme Builder application is running, modify CSS variables and visualize the
changes in the running application until you are satisfied with the look and feel that you
have created.

3. When you are satisfied with the look and feel in Theme Builder and have no further
customizations, press Ctrl+C at the terminal prompt to exit the application.

4. In the Theme Builder application copy all theme definition files in the /src/themes/
<themeName>/web folder and paste them into the /src/themes/<themeName>/web folder of
the target application that you have already prepared to work with theming.

5. Build a development version of the application where you added the theme definition files.

ojet build --theme=<themeName>

You can omit the --theme option if you set the defaultTheme property in the
oraclejetconfig.json file.

6. Run your application.

ojet serve --theme=<themeName>

Again, you can omit the --theme option if you set the defaultTheme property in the
oraclejetconfig.json file.

Chapter 14
Work with Custom Themes and Component Styles

14-16

https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder-CSS-Vars/public_html/index.html?_ojCoreRouter=library

7. Optionally, to refine the theme, modify CSS variables in your target application's
_<themeName>.cssvars.settings.scss theme file.

The Oracle JET serve process will immediately reload the running application in the
browser where you can observe the effect of any CSS variable overrides.

8. To exit the application, press Ctrl+C at the terminal prompt.

Optimize the CSS in a Custom Theme
By default when you build the application, JET Tooling loads CSS with all Redwood style
classes enabled. You can configure the CSS to use just the styles required by the components
of your application.

With the custom theme settings files added to the /src/themes folder of your project by the
JET Tooling, you can reduce the size of the Redwood CSS by commenting and uncommenting
import statements in the settings files for specific JET component style classes. With the
appropriate import settings completed, JET Tooling will process the CSS settings files and load
CSS for only the JET components you specified.

Before you begin:

• Install the theming toolchain and configure a custom theme, as described in Add Custom
Theme Support with the JET CLI. The themes folder with custom theme settings files are
added to your application source.

To reduce CSS by limiting component CSS:

1. In the /src/themes/themeName/web folder of your application, edit the aggregating
themeName.scss file, and comment out the import statement that by default imports all JET
component styles.

// The import statement contains redwood or stable, depending on the value
that you
// supplied to the --basetheme argument when you created the custom theme.
//@import "oj/all-components/themes/redwood/_oj-all-components.scss";
or:
//@import "oj/all-components/themes/stable/_oj-all-components.scss";

And, then uncomment the import statement to enable compiling with the file that controls
the CSS to include.

@import "_themeName.optimize-components.scss";

2. Edit the _themeName.optimize-components.scss file and uncomment the import
statements for the JET components in your application. Note that the following example
demonstrates a theme that uses redwood as the value for the --basetheme argument.

...
//@import "oj/avatar/themes/redwood/oj-avatar.scss";
//@import "oj/badge/themes/redwood/oj-badge.scss";
@import "oj/button/themes/redwood/oj-button.scss";
@import "oj/buttonset-one/themes/redwood/oj-buttonset-one.scss";
@import "oj/buttonset-many/themes/redwood/oj-buttonset-many.scss";
//@import "oj/card/themes/redwood/oj-card.scss";
//@import "oj/chart/themes/redwood/oj-chart.scss";
...

Chapter 14
Work with Custom Themes and Component Styles

14-17

In this example, only the import statement for buttons and button sets are uncommented to
include the CSS for those components. All import statements in the
_themeName.omptimize-components.scss file remain commented out, by default.

3. If your application is already running, you can immediately observe the effect of
commenting and uncommenting import statements, after you save the changes in the
_themeName.optimize-components.scss file. Otherwise, serve your application to enable
live reload.

ojet serve

4. To exit the application, press Ctrl+C at the terminal prompt.

Style Component Instances with CSS Variables
When you want to customize the appearance of a component instance, you create style
classes that override the CSS variables at the selector level and then apply the style classes to
the component instance in your app’s HTML.

You can define style classes in your app.css file in the /src/css folder or, when you theme
your application, in the generated _<themeName>.cssvars.settings.scss theme file located in
the /src/themes/<themeName>/web folder. The _<themeName>.cssvars.settings.scss file
contains the list of available CSS variables in :root, where you can set values for the variables
to apply application-wide to the JET components. When you want to define a style class to
customize individual component instances, you must add your style class definitions with CSS
overrides so they appear at the end of the file, after all CSS variables and they must not be
contained within :root.

Note that while most customization is done with CSS variables, but in a few cases, such as for
media queries, Sass variables are needed.

Before you begin:

• Examine the Component Styling section in the Oracle JET Cookbook for examples.

• Refer to the JET CSS Variables section of the JET API reference doc for an overview of
the CSS variables and their values.

• Optionally, download and install the CSS Variable Theme Builder - Instruction Tab
application when you want to learn about the available CSS variables in this interactive
demo application. Follow the instructions online to modify the theme definition files to learn
how CSS variable overrides change the demo tool UI.

To override JET CSS variables to style component instances:

1. If you have not added theming support to the application, open the /src/css folder of your
application and edit the application CSS that you maintain. You can add a style class that
defines the CSS variable overrides that you intend to apply to certain components.

For example, to change the height of certain buttons in your application, you can create a
style class .demo-jumbo-button and override the JET CSS variable --oj-button-height
in the class, like this:

.demo-jumbo-button {
 --oj-button-height: 4rem;
 }

And then, in your application HTML, you can style buttons with the class as needed.

<oj-button class="demo-jumbo-button"></button>

Chapter 14
Work with Custom Themes and Component Styles

14-18

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=custominstance&demo=themeinstance
https://docs.oracle.com/en/middleware/developer-tools/jet/10/reference-api/CssVariablesOverview.html
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder-CSS-Vars/public_html/index.html?_ojCoreRouter=library

2. Alternatively, if you are theming your application, you can add the style class to the
generated _<themeName>.cssvars.settings.scss theme file located in the /src/themes/
<themeName>/web folder.

When you edit the generated file, you must add your style class definitions with JET CSS
overrides so they appear at the end of the file, after all JET CSS variables and they must
not be contained within :root.

3. To run your application with live reload enabled, enter ojet serve with the --theme option
to specify the CSS that you maintain for your application.

ojet serve --theme=themeName

You can omit the --theme option if you set the defaultTheme property in the
oraclejetconfig.json file.

4. Use Oracle JET live reload to immediately observe the effect of any CSS variable
overrides.

5. To exit the application, press Ctrl+C at the terminal prompt.

Disable JET Styling of Base HTML Tags
By default, Oracle JET applies styles to HTML tag elements such as a, h1, h2, and so on. This
feature makes it easier to code a page since you do not have to apply selectors to each
occurrence of the element.

If you do not want to apply styles to all base HTML tags by default in your custom theme, you
can specify that Oracle JET generate style classes that can be placed on tags. The base
theme CSS styles loaded at build time are controlled by import statements in custom theme
settings files that you can optionally add to your project. To work with the CSS settings files in
your project, you need to add theming support to the app and then create a custom theme.

With the custom theme settings files added to the /src/themes folder of your project, you can
comment out an import statement that by default enables importing all JET component styles
and add in its place the no-tag version of the import statement. With the appropriate import
setting completed, when you build your app, JET Tooling will process the CSS settings files
and load CSS for all JET components, but without the JET style classes for HTML base tags.
To apply JET style to the HTML tags with the no-tag import enabled, you must explicitly set the
JET style class on the desired HTML tag. For example, you can apply the JET style for links on
the HTML anchor tag, like this .

The following table lists the HTML tags with default Oracle JET tag styles and the
corresponding Oracle JET style class that you can optionally apply when you enable the no-tag
import statement.

HTML Tag Oracle JET Style Class

html oj-html
body oj-body
a oj-link
h1, h2, h3, h4 oj-header
hr oj-hr
p oj-p
ul, ol oj-ul, oj-ol

Chapter 14
Work with Custom Themes and Component Styles

14-19

Before you begin:

• Install the theming toolchain and configure a custom theme, as described in Add Custom
Theme Support with the JET CLI. The themes folder with custom theme settings files are
added to your app source.

To disable JET styling of base HTML tag:

1. In the /src/themes/themeName/web folder of your app, edit the aggregating
themeName.scss file, and comment out the import statement that enables importing all JET
component styles.

// The import statement contains redwood or stable, depending on the value
that you
// supplied to the --basetheme argument when you created the custom theme.
//@import "oj/all-components/themes/redwood/_oj-all-components.scss";
or:
//@import "oj/all-components/themes/stable/_oj-all-components.scss";

And, then add the import statement to enable compiling with Oracle JET style classes that
you can optionally apply to HTML tags.

@import "oj/all-components/themes/redwood/_oj-all-components-notag.scss";
or:
@import "oj/all-components/themes/stable/_oj-all-components-notag.scss";

This will generate style classes that you can apply to HTML tags, for example .

2. If your app is already running, you can immediately observe the styling changes.
Otherwise, serve your app to enable live reload.

ojet serve

3. To exit the app, press Ctrl+C at the terminal prompt.

Chapter 14
Work with Custom Themes and Component Styles

14-20

15
Secure Oracle JET Apps

Oracle JET follows security best practices for Oracle JET components and provides the OAuth
class to help you manage access to users' private data.

About Securing Oracle JET Apps
Oracle JET apps are client-side HTML apps written in JavaScript, and you should follow best
practices for securing your Oracle JET apps.

There are a number of Internet resources available that can assist you, including the Open
Web Application Security Project (OWASP), Web Application Security Project (WASP), Web
Application Security Working Group (WASWG), and various commercial sites.

Oracle JET Components and Security
Oracle JET components follow best practices for security. In particular:

• All JavaScript code is executed in strict mode using the use strict directive.

Strict mode changes warnings about poor syntax, such as using undeclared variables, into
actual errors that you must correct. For more information, see http://
www.w3schools.com/js/js_strict.asp.

• Oracle JET code does not use inline script elements.

Because browsers can't tell where the inline script originated, the World Wide Web
Consortium (W3C) Content Security Policy prohibits the use of inline scripts. For additional
information, see https://w3c.github.io/webappsec/specs/content-security-policy.

• Oracle JET code does not generate random numbers.

• Any HTML generated by an Oracle JET component is either escaped or sanitized.

Oracle JET Security and Developer Responsibilities
Oracle JET components follow established security guidelines and ensure that strings provided
as options and user input will never be executed as JavaScript to prevent XSS attacks.
However, Oracle JET does not include a mechanism for sanitizing strings, and you should
consult established guidelines for dealing with XSS attacks in your own code and content.

You can find more information about securing JavaScript apps in the DOM based XSS
Prevention Cheat Sheet.

Oracle JET Security Features
The Oracle JET API provides the OAuth authorization plugin which supports the OAuth 2.0
open protocol. OAuth standardizes the way desktop and web apps access a user's private
data. It provides a mechanism for users to grant access to private data without sharing their
private username and password credentials.

OAuth 2.0 defines the following roles:

15-1

https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
http://www.webappsec.org
http://www.w3.org/2011/webappsec/
http://www.w3.org/2011/webappsec/
http://www.w3schools.com/js/js_strict.asp
http://www.w3schools.com/js/js_strict.asp
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html#Guidelines_for_Developing_Secure_Applications_Utilizing_JavaScript
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html#Guidelines_for_Developing_Secure_Applications_Utilizing_JavaScript

• Resource owner: An entity that can grant access to a protected resource, such as the end
user.

• Client: app making protected and authorized resource requests on behalf of the resource
owner.

• Resource server: Server hosting the protected resources that can accept and respond to
protected resource requests using access tokens.

• Authorization server: Server that issues access tokens to the client after it successfully
authenticates the resource owner and obtains authorization. The authorization server can
be the same server as the resource server. In addition, an authorization server can issue
access tokens accepted by multiple resource servers.

OAuth 2.0 Request for Comments (RFC) 6749 describes the interaction between the four roles
as an abstract flow.

1. The client requests authorization from the resource owner, either directly or through the
authorization server. Note that the RFC specifies that the authorization server is preferred.

2. The client receives an authorization grant, which is defined as the credential representing
the resource owner's authorization.

3. The client requests an access token from the authorization server by authenticating with
the server and presenting the authorization grant.

4. The authorization server issues the access token after authenticating the client and
validating the authorization grant.

5. The client presents the access token to the resource server and requests the protected
resource.

6. The resource server validates the access token and serves the request if validated.

The access token is a unique identifier issued by the server and used by the client to associate
authenticated requests with the resource owner whose authorization is requested or has been
obtained by the client.

The Oracle JET OAuth plugin provides functions for the following tasks:

Chapter 15
About Securing Oracle JET Apps

15-2

https://tools.ietf.org/html/rfc6749

• Getting access token credentials if initialized by client credentials.

• Caching access token credentials.

• Creating the header array with bearer token.

For details about using the OAuth plugin, see Use OAuth in Your Oracle JET App. For
additional information about OAuth 2.0, see https://tools.ietf.org/html/rfc6749.

Oracle JET Secure Response Headers
Oracle JET recommends the usage of HTTP response headers to securely host your JET web
application. These response headers protect your web applications from cross scripting attacks
(XSS) attacks, packet sniffing, and clickjacking.

You must configure these response headers on the server where the JET application is hosted.
As the configuration of these response headers is dependent on the type of server, you must
refer to the documentation of your server for configuration steps.

You must use the secure response headers to notify the user agent to only connect to a given
site over HTTPS and load all resources over secure channels to control XSS attacks and
packet sniffing. You can configure the response header in the server to specify the protocols
that are allowed to be used; for example, a server can specify that all content must be loaded
using HTTPS protocol.

It is highly recommended to host your JET app using the HTTPS protocol to reduce the cross
scripting attacks or packet sniffing. Also some of the new browser features only work under
HTTPS protocol. The below table lists some of the secure response headers along with the
HTTPS column that indicates which of these headers are specific for HTTPS based
configuration.

Table 15-1 Secure Response Header Options

Option Value HTTPS
Related

Description

Content-Security-
Policy

See Table 15-2, Content-
Security-Policy Header
Options.

No Specifies fine-grained resource access.

X-XSS-Protection 1; mode=block No Blocks a page when cross site scripting attempt is
detected.

NOTE:

• The X-XSS-Protection directive is a
defense-in-depth mechanism to mitigate the
effect of reflected XSS vulnerabilities and does
not detect or block persistent or DOM based
XSS attacks. Apps must still perform proper
input validation on the server and output
encoding as the primary defense against XSS.

• Mozilla Firefox does not implement cross site
scripting protection.

X-Permitted-Cross-
Domain-Policies

none No Cross-domain policy file is an XML document that
grants a web client permission to handle data
across domains.

Chapter 15
About Securing Oracle JET Apps

15-3

https://tools.ietf.org/html/rfc6749

Table 15-1 (Cont.) Secure Response Header Options

Option Value HTTPS
Related

Description

X-Frame-Options deny No Prevents clickjacking for browsers. This directive
can only be set using an HTTP response header.
To frame your content from the same origin,
use sameorigin. If hosted by known host(s),
specify allow-frame hostname.

NOTE:

• If a request contains both a CSP frame-
ancestors and X-Frame-Options directive,
browsers that support both will ignore the X-
Frame-Options directive in favor of the
standardized CSP frame-ancestors
directive.

• The allow-frame directive does not support
wildcards.

X-Content-Type-
Options

nosniff No Ensures browser uses MIME type to determine the
content type. Use of this directive with images
requires the image format to match its specified
MIME type. Use of this directive on JavasSript files
requires the MIME type to be set to text/
javascript.

Strict-Transport-
Security

max-age=<secs>;
includeSubDomains

Yes Tells the browser to communicate only with the
specified site (and any subdomains) over HTTPS
and prevents the user from overriding an invalid or
self-signed certificate.

Referrer-Policy no-referrer No Tells the browser to include referrer information on
outbound link requests.

Public-Key-Pins pin-
sha256="<sha256>"; max-
age=<secs>

Yes Prevents use of incorrect or fraudulent certificates.

Expect-CT max-age=86400, enforce Yes Signals to the browser that compliance to
the Certificate Transparency Policy should be
enforced.

Content Security Policy Headers
Content Security Policy (CSP) is delivered through an HTTP response header and controls the
resources that an Oracle JET web app can use.

The CSP header provides a mechanism to restrict the locations from which JavaScript running
in a browser can load the required resources, restrict the execution of JavaScript, and control
situations in which a page can be framed. This can mitigate Cross Site Scripting (XSS)
vulnerabilities as well as provide protection against clickjacking attacks.

You should enable CSP for browsers to help the server administrators reduce or eliminate the
attacks by specifying the domains that the browser should consider to be valid sources for
loading executable scripts, stylesheets, images, fonts, and so on. See the Browser
Compatibility Matrix for the browser versions that support CSP.

Configuring CSP involves adding the Content-Security-Policy HTTP header to a web page
and giving it values to control resources the user agent is allowed to load for that page. To add

Chapter 15
About Securing Oracle JET Apps

15-4

https://www.certificate-transparency.org/
https://owasp.org/www-project-secure-headers/#div-compatibility
https://owasp.org/www-project-secure-headers/#div-compatibility

Content-Security-Policy HTTP header to a web page, configure your web server to return
the Content-Security-Policy HTTP response header. For example, here is a basic CSP
response header, where script-src directive specifies an executable script as the resource
type and 'self' is a constant that specifies the current domain as the approved source that
the browser may load script from:

Content-Security-Policy: script-src 'self'

CSP has some of the following commonly used constants:

• 'none': Blocks the use of certain resource type.

• 'self': Matches the current origin (but not subdomains).

• 'unsafe-eval': Allows the use of mechanisms like eval().

Note as an alternative to the unsafe-eval CSP domain, JET provides an expression
evaluator that allows JET expression syntax to be evaluated in a way that is compliant with
Content Security Policies that prohibit unsafe evaluations. The default CSP use of the
unsafe-eval domain remains unchanged, but apps can opt into the JET behavior with
some restrictions on the types of expressions that are supported. See details on creation,
usage, supported expressions and limitations in the CspExpressionEvaluator API
documentation.

Alternatively, you can also use the HTML meta tags to configure CSP. For example:

<meta http-equiv="Content-Security-Policy" content="default-src 'self'; img-
src https://*; frame-src 'none';">

Note that some of the CSP directives do not work with the HTML meta tags, for example
frame-ancestors.

The below table describes the out-of-box settings required by a JET web app to run in its most
secure mode without changing the JET functionality. The JET web app may need to modify
these settings for additional resource origins. The table lists the different response header
directives that can be used while enabling CSP based on the two following scenarios:

• Co-Hosted: When the JET and the app source codes are hosted on the same server

• Content Delivery Network (CDN): When the JET code is from the JET CDN and the app
code is from a different server

Table 15-2 Content-Security-Policy Header Options

CSP Version Header Options Co-Hosted CDN Description

CSP 1.0 default-src 'none' 'none' Serves as a default
setting that ensures
resource loading is
blocked if the
resource type is not
specified. All other
settings need to be
explicitly enabled
for specific
resource origins.

Chapter 15
About Securing Oracle JET Apps

15-5

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.CspExpressionEvaluator.html

Table 15-2 (Cont.) Content-Security-Policy Header Options

CSP Version Header Options Co-Hosted CDN Description

CSP 1.0 connect-src 'self' 'self' Manages the REST
and Web Sockets
to be accessed.

CSP 1.0 font-src 'self' 'self'
static.oracle.c
om

Specifies valid
sources for fonts.

CSP 1.0 img-src data: 'self' 'self' data:
static.oracle.c
om

Specifies valid
sources for images.
Allows JET inline
images.

CSP 1.0 media-src 'none' 'none' Specifies valid
sources for loading
media using the
<audio>,
<video>, and
<track> elements.

CSP 1.0 object-src 'none' 'none' Specifies valid
sources for the
<object>,
<embed>, and
<applet>
elements.

CSP 1.0 script-src 'self' 'unsafe-
eval'

'self'
static.oracle.c
om 'unsafe-
eval';

Specifies valid
sources for
JavaScript. This
directive is used for
knockout
expressions and
JET function
creation.

Note: The use of
unsafe-eval is
currently required
by Knockout to
resolve
expressions, but
JET provides an
alternative
expression
evaluator when you
require your app to
run in a strict
Content Security
Policy environment.
For usage
information, see the
CspExpressionEval
uator API
documentation.

CSP 1.0 sandbox - - Runs the page as
in a sandboxed
iframe.

Chapter 15
About Securing Oracle JET Apps

15-6

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.CspExpressionEvaluator.html
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.CspExpressionEvaluator.html

Table 15-2 (Cont.) Content-Security-Policy Header Options

CSP Version Header Options Co-Hosted CDN Description

CSP 2.0 form-action - - This directive is
used for form
submits. Not
applicable for JET.

CSP 2.0 frame-ancestors 'none' 'none' Specifies valid
sources for nested
browsing contexts
loading using
elements such
as <frame> and
<iframe> and
prevents
clickjacking for
browsers. This
directive can only
be set using an
HTTP response
header. To frame
your content from
the same origin,
use 'self'. If
hosted by known
host(s), specify the
hosts.

When default-src is set to none, you must explicitly enable all the other needed settings for
specific resource origins.

The following example shows how to set up CSP if a website administrator wants to allow
content from a trusted domain and all its subdomains:

Content-Security-Policy: default-src 'self' *.trusted.com

The following example shows how to set up CSP if a website administrator wants to allow
users of a web app to include images from any origin in their own content, but to restrict audio
or video media to trusted providers, and all scripts only to a specific server that hosts trusted
code.

Content-Security-Policy: default-src 'self'; img-src *; media-src media1.com
media2.com; script-src userscripts.example.com

Use OAuth in Your Oracle JET App
You can use the OAuth plugin to manage access to client (end user) private data. The Oracle
JET API includes the OAuth class which provides the methods you can use to initialize the
OAuth object, verify initialization, and calculate the authorization header based on client
credentials or access token.

Chapter 15
Use OAuth in Your Oracle JET App

15-7

Initialize OAuth
You can create an instance of a specific OAuth object using the OAuth constructor:

new OAuth(header, attributes)

The attributes and header parameters are optional.

Parameter Type Description

header String MIME Header name. Defaults to Authorization
attributes Object Contains client credentials or access/bearer token.

Client credentials contain:

• client_id (required): public client Credentials

• client_secret (required): secret client credentials

• bearer_url (required): URL for token bearer and refresh credentials

• Additional attributes as needed (optional)
Access/bearer tokens contain:

• access_token (required): Bearer token

• Additional attributes as needed (optional)

The code sample below shows three examples for initializing OAuth.

// Initialize OAuth with client credentials
var myOAuth = new OAuth('X-Header', {...Client credentials...});

// Initialize OAuth with token credentials
var myOAuth = new OAuth('X-Header', {...Access/Bearer token...});

// Initialize OAuth manually
var myOAuth = new OAuth();

If you choose to initialize OAuth manually, you can add the client credentials or access/bearer
token using methods shown in the following code sample.

// Initializing client credentials manually
myOAuth.setAccessTokenRequest({...Client Credentials ...});
myOAuth.clientCredentialGrant();

// Initializing access bearer token manually
myOAuth.setAccessTokenResponse({...Access Token...});

The OAuth API also includes methods for getting and cleaning the client credentials or access
tokens. For additional information, see the OAuth API documentation.

Verify OAuth Initialization
Use the isInitialized() method to verify that the initialization succeeded.

var initFlag = myOAuth.isInitialized();

Obtain the OAuth Header
Use the getHeader() method to get the OAuth header. The method calculates the
authorization header based on the client credentials or access token.

Chapter 15
Use OAuth in Your Oracle JET App

15-8

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/OAuth.html

// Client credentials
var myOAuth = new OAuth('New-Header', {...Client credentials...});
var myHeaders = myOAuth.getHeader();

// Access token
var myOAuth = new OAuth('New-Header', {...Access/Bearer token...});
var myHeaders = myOAuth.getHeader();

// Manual initialization, client credentials
var myOAuth = new OAuth();
myOAuth.setAccessTokenRequest({...Client credentials...});
var myHeaders = myOAuth.getHeader();

// Manual initialization, access token
var myOAuth = new OAuth('New-Header', {...Access/Bearer token...});
var myHeaders = myOAuth.getHeader();

About Cross-Origin Resource Sharing (CORS)
CORS is a mechanism that allows restricted resources on a web page to be requested from
another domain outside the domain from which the first resource was served. The same-origin
security policy of JavaScript forbids certain cross-domain requests, notably Ajax requests, by
default.

Rejected resource requests due to CORS can affect web apps. Apps that encounter a rejection
receive messages such as the following example in response to resource requests:

No 'Access-Control-Allow-Origin' header is present on the requested resource.
Server-side administrators can specify the origins allowed to access their resources by
modifying the policy used by their remote server to allow cross-site requests from trusted
clients. For example, to access a remote service managed by Oracle’s Mobile Cloud Service
(MCS), an MCS administrator configures MCS’s Security_AllowOrigin environment policy
with a comma-separated list of URL patterns that identify the remote services that serve
resources from different domains.

If you serve your web app to the local browser for testing, you may encounter CORS
rejections. Some browsers provide options to disable CORS, such as Chrome's --disable-
web-security and Firefox's security.fileuri.strict_origin_policy and some browsers
support plugins that work around CORS.

Only use these options when testing your app and ensure that you complete further testing in a
production-like environment without these options to be sure that your app will not encounter
CORS issues in production.

Chapter 15
About Cross-Origin Resource Sharing (CORS)

15-9

16
Configure Data Cache and Offline Support

Use the Oracle Offline Persistence Toolkit to enable data caching and offline support within
your Oracle JET app.

About the Oracle Offline Persistence Toolkit
The toolkit is a client-side JavaScript library that Oracle maintains as an open-source project.
The toolkit provides caching and offline support at the HTTP request layer.

This support is transparent to the user and is done through the Fetch API and an XHR adapter.
HTTP requests made while the client or client device is offline are captured for replay when
connection to the server is restored. Additional capabilities include a persistent storage layer,
synchronization manager, binary data support and various configuration APIs for customizing
the default behavior. This toolkit can be used in both ServiceWorker and non-ServiceWorker
contexts within web apps.

Using the toolkit, you can configure your app to:

• Download content for offline reading where connectivity isn’t available.

For example, an app could include product inventory data that a salesperson could
download and read at customer sites where connectivity isn’t available.

• Cache content for improved performance.

• Perform transactions on the downloaded content where connectivity isn’t available and
upload the transactions when connectivity returns.

For example, the salesperson could visit a site with no Internet access and enter an order
for some number of product items. When connectivity returns, the app can automatically
send the transaction to the server.

• Provide conflict resolution when the offline data can’t merge with the server.

If the salesperson’s request exceeds the amount of available inventory, the app can
configure a message asking the salesperson to cancel the order or place the item on back
order.

The architecture diagram illustrates the major components of the toolkit and how an app
interacts with it.

16-1

Install the Offline Persistence Toolkit
Use npm to install the offline persistence toolkit. After installation, you must update your
application’s src/js/path_mapping.json file to recognize the new package.

1. Change to your application’s top level directory and open a terminal window.

2. At the terminal prompt, enter the following command to install the toolkit: npm install
@oracle/offline-persistence-toolkit --save.

3. Change to your app’s src/js directory and open path_mapping.json for editing.

4. Add the persistence toolkit to the "libs" entry.

The easiest way to add the toolkit is to copy an existing entry that’s similar to your library
and modify as needed. A sample entry for offline-persistence-toolkit, which started
with a copy of the "ojs" entry, is shown below.

"libs": {

 "offline-persistence-toolkit": {
 "cdn": "",
 "cwd": "node_modules/@oracle/offline-persistence-toolkit/dist",
 "debug": {
 "cwd": "debug",
 "src": ["**"],
 "path": "libs/offline-persistence-toolkit/debug",
 "cdn": ""
 },
 "release": {
 "cwd": "min",

Chapter 16
Install the Offline Persistence Toolkit

16-2

 "src": ["**"],
 "path": "libs/offline-persistence-toolkit/min",
 "cdn": ""
 }
},

For information about using the toolkit once you have it installed in your Oracle JET app, see
the README.md and Wiki for the persistence toolkit on Github at https://github.com/oracle/offline-
persistence-toolkit.

Chapter 16
Install the Offline Persistence Toolkit

16-3

17
Optimize Performance of Oracle JET Apps

Oracle JET applications are client-side HTML5 applications. Most performance optimization
recommendations relating to client-side HTML applications also apply to applications
developed using Oracle JET or to Oracle JET components. In addition, some Oracle JET
components have performance recommendations that are specific to the component.

About Performance and Oracle JET Apps
In general, you can optimize an Oracle JET app the same way that you would optimize
performance for any client-side HTML5 app.

There are many online resources that provide tips for performance optimization. For example,
the Google Developers website describes their tools for improving the performance of the app.

Most of the recommendations made by the Google tools are up to you to implement, but
Oracle JET includes features that can reduce the payload size and the number of trips to
retrieve the Oracle JET app's CSS. In general, strive to follow these guidelines.

1. Always minify and bundle app resources to reduce the number of requests from the server.

2. Configure the app to load resources from Oracle CDN to minimize network usage.

3. Configure the app to use the Oracle JET library on CDN so that the bundles-config.js
script will load minified bundles and modules by default.

4. Compress the app with gzip to reduce the size (and enable compression on the web
server.)

5. Enable HTTP caching on web server so that some requests can be served from the cache
instead of from the server. Use ETags on files that should always be served from the
server.

6. Take advantage of HTTP/2 to serve page resources faster than is possible with HTTP/1.1.

7. Use a single page app, so that the browser isn’t forced to tear down and rebuild the whole
app.

8. Avoid putting too many data-centric components into a single page.

9. Optimize graphic images: prefer vector format; choose the appropriate image format based
on the best overall compression available.

For more information about these optimization tips and others, see Add Performance
Optimization to an Oracle JET App.

17-1

https://developers.google.com/web/tools/lighthouse

Add Performance Optimization to an Oracle JET App
Most tips for optimizing performance of web apps also apply to Oracle JET apps. However,
there are some steps you can take that apply specifically to Oracle JET apps to optimize
JavaScript, CSS, Oracle JET components, REST calls, and images.

JavaScript Performance Tips

Performance Tip Details

Maintain the expected JavaScript
folder structure

Use folder organization generated by the Oracle JET tooling and maintain all
JavaScript files inside the js folder of the app root directory.

Send only the JavaScript code that
your app needs.

Oracle JET includes modules that you can load with RequireJS. For additional
information, see Use RequireJS for Modular Development. One approach is to
preload the JavaScript modules that your app will use. The following sample shows
how to modify the require function in the app main.js.

require(['ojs/ojbootstrap', 'knockout', 'ojs/ojknockout'],
 function (Bootstrap) {
 Bootstrap.whenDocumentReady().then(
 function () {
 function init() {
 }

 // If running in a hybrid (e.g. Cordova) environment,
we need to wait for the deviceready
 // event before executing any code that might interact
with Cordova APIs or plugins.
 if (document.body.classList.contains('oj-hybrid')) {
 document.addEventListener('deviceready', init);
 } else {
 init();
 }

 //after main doc is done preload some js
 require(['ojs/ojbutton', 'ojs/ojdvt-base', 'ojs/
ojtree', 'ojs/ojaccordion', 'ojs/ojtreemap'], //example of what
can be preloaded
 function()
 {
 }
);
 }
);
 }
);

Chapter 17
Add Performance Optimization to an Oracle JET App

17-2

Performance Tip Details

Send minified/obfuscated
JavaScript.

Oracle JET provides minified versions of the Oracle JET library as well as third-party
libraries when available. By default, the path mappings for the minified versions of
these libraries in path_mapping.json will be injected into the Oracle JET RequireJS
bootstrap file included with all Oracle JET distributions when you build a release
version of the app. The following sample shows a single library from
path_mappings.json where the minified library is available for release mode.

"jquery": {
 "cdn": "3rdparty",
 "cwd": "node_modules/jquery/dist",
 "debug": {
 "src": "jquery.js",
 "path": "libs/jquery/jquery-#{version}.js",
 "cdnPath": "jquery/jquery-3.x.x"
 },
 "release": {
 "src": "jquery.min.js",
 "path": "libs/jquery/jquery-#{version}.min.js",
 "cdnPath": "jquery/jquery-3.x.x.min"
 }
},

For additional information about using the RequireJS bootstrap file in your Oracle JET
app, see About RequireJS in an Oracle JET App.

Minimize the number of trips to
retrieve the JavaScript.

Oracle JET doesn't provide support for minimizing the number of trips, but RequireJS
has an optimization tool that you can use to combine modules. For additional detail,
see the documentation for the RequireJS optimizer. Alternatively, use a JavaScript
code minifier, such as Terser to bundle and minify the JavaScript source.

Use lazy loading for JavaScript not
needed on first render.

You can lazy load content that is not needed on first render. For example, you can
configure the oj-film-strip component to retrieve child node data only when
requested. For an example, see the Lazy Loading (oj-film-strip) Oracle JET Cookbook
example.

Compress or zip the payload. Oracle JET has no control over the server, and this recommendation is up to you to
implement. For some additional information and tips, see https://
developers.google.com/speed/docs/best-practices/payload#GzipCompression.

Set cache headers. JET has no control over the server, and this recommendation is up to you to
implement. For additional information about cache optimization, see https://
developers.google.com/speed/docs/best-practices/caching.

CSS Performance Tips

Performance Tip Details

Maintain the expected CSS folder
structure

Use folder organization generated by the Oracle JET tooling and maintain all CSS files
inside the css folder of the app root directory.

Render pages for all the needed
CSS once

Link to style sheets inside the HEAD section of the HTML page and do not use CSS
links in the page body to avoid rerendering an already loaded page.

Send only the CSS that your app
needs.

To control the CSS content that goes into your app, create a custom theme and limit
what it includes to the CSS that your app needs. See Optimize the CSS in a Custom
Theme.

Also, if you're using the Oracle JET grid system, you can also control which
responsive classes get included in the CSS. For details, see Control the Size and
Generation of the CSS.

Chapter 17
Add Performance Optimization to an Oracle JET App

17-3

http://requirejs.org/docs/optimization.html
https://www.npmjs.com/package/terser
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=filmStrip&demo=filmStripLazyRendering
https://developers.google.com/speed/docs/best-practices/payload#GzipCompression
https://developers.google.com/speed/docs/best-practices/payload#GzipCompression
https://developers.google.com/speed/docs/best-practices/caching
https://developers.google.com/speed/docs/best-practices/caching

Performance Tip Details

Send minified/obfuscated CSS. By default, Oracle JET includes minified CSS. However, if you want to modify the CSS
to send only what your app needs, you can use Sass to minimize your output. For
additional information, see the :compressed option at: http://sass-lang.com/
documentation/file.SASS_REFERENCE.html#output_style.

Oracle JET App and Component Performance Tips

Performance Tip Details

Configure your app to load bundled
JET modules and libraries using
Oracle CDN and the bundle
configuration support it provides for
JET.

Leveraging the Oracle Content Delivery Network (CDN) and bundle configuration
support optimizes the app startup performance of enterprise apps and also ensures
that your app builds with the module and library versions required for a particular
Oracle JET release. Referring directly to the bundles within the app is not
recommended and that includes adding or modifying links that make direct reference
to the configuration of the bundles. For additional information, see About Configuring
the App for Oracle CDN Optimization.

Consider using plain HTML
components were possible.

For stamping components (like Table or ListView) or declarative components (like a
composite component), if you embed a simple Oracle JET component like a read-only
input component or button, consider using a plain HTML component instead. The plain
HTML component can be lighter weight (less DOM), and if the component is stamped
that can add up. However, note that with plain HTML, you also won't have access to
any built-in accessibility support, such as converters and validators, which the Oracle
JET component provides.

Follow Oracle JET component best
practices.

Consult the API documentation for the Oracle JET component. The API Reference for
Oracle® JavaScript Extension Toolkit (Oracle JET) includes a performance section for
a component when applicable. For example, see the ojDataGrid—Performance
section.

Limit number of Oracle JET
components per page.

The number of components on the page will impact the page load time. If you want to
reduce the load time, place fewer data-centric components in the page.

Use the oj-defer element to delay
binding execution

When a component contains hidden content to display, the oj-defer element delays
the process of applying bindings to the child components until the hidden content
becomes visible. For additional information on oj-defer, see the oj-defer API
documentation.

Limit the fetch size for collection
components

Set the collection component scroll-policy-options.fetch-size attribute equal
to the number the number of items to display in the component viewport. Also set
scroll-policy="loadMoreOnScroll" to ensure that the fetch for additional items
occurs only when the user scrolls toward the end of the fetched list.

Chapter 17
Add Performance Optimization to an Oracle JET App

17-4

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#output_style
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#output_style
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://www.oracle.com/pls/topic/lookup?ctx=jetlatest&id=OJSET
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojDataGrid.html#perf-section
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.ojDefer.html

REST Request Performance Tips

Performance Tip Details

Reduce the number of roundtrips
between client and server.

There are a number of techniques that you can use to reduce the number of
roundtrips, and here are some examples:

• The number of REST requests on the page will impact the page load time. If you
need to reduce the load time, simplify your page and make fewer REST requests.

• A REST call that needs data from a previous REST call creates a dependency
that triggers serialization and increases the data fetch response time. To reduce
response time, minimize the number of dependent REST calls by redefining your
REST calls to fetch only the data your UI requires. Ideally, the REST endpoint
supports fetching of the exact data or can be redesigned as needed.

• All REST operations should be executed asynchronously. To manage async state,
invoke REST endpoints with a method to return a Promise from the start.

• If the REST endpoint is slow to respond, and the data is essential to the app,
consider prefetching the data in a non-blocking REST endpoint invocation.

• The REST endpoint should be designed to support pagination.

Image Optimization

Performance Tip Details

Maintain the expected images folder
structure

Use folder organization generated by the Oracle JET tooling and maintain all image
files inside the images folder of the app root.

Reduce image size. Reducing the size of the images will result in faster downloads and reduce the time it
takes to render the content on the screen. For example, Scalable Vector Graphics
(SVG) images are usually smaller than Portable Network Graphics (PNG) images and
scale on high resolution devices.

There are also a number of third-party tools that you can use to reduce the size of
your images. The tool that you select will depend on the image type, for example:

• imagemin: Utility to compress PNG images
• svgomg: Utility to compress SVG images. You can use this tool online or

download svgo to work with the images on your own system.

Reduce the number of roundtrips
between client and server.

There are a number of techniques that you can use to reduce the number of
roundtrips, and here are some examples:

• Icon fonts

Icon fonts are useful when your icon uses a single color.

Oracle JET uses icon fonts, and you can see examples of them at: Icon Fonts.

You can find utilities on the Internet such as IcoMoon that you can use to
generate icon fonts.

• Image Sprites

An image sprite is a collection of images combined into a single image, reducing
the number of server requests. You can find examples of them at http://
www.w3schools.com/css/css_image_sprites.asp.

• Lazy loading

You can use lazy loading to defer the loading of images not in the user’s viewport.
You can find many examples and utilities on the Internet that use this technique.

• Base64 Encoding

You can use Base64 Encoding to inline image data. They are commonly used in
data Uniform Resource Indicators (URIs), and you can find additional information
about them at https://developer.mozilla.org/docs/Web/HTTP/data_URIs.

For additional performance tips, see the Google Developers documentation for improving the
quality of web pages, including how to audit for performance.

Chapter 17
Add Performance Optimization to an Oracle JET App

17-5

https://github.com/imagemin/imagemin
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=iconfont&demo=iconfont
https://icomoon.io/
http://www.w3schools.com/css/css_image_sprites.asp
http://www.w3schools.com/css/css_image_sprites.asp
https://developer.mozilla.org/docs/Web/HTTP/data_URIs
https://developers.google.com/web/tools/lighthouse

About Configuring the App for Oracle CDN Optimization
You can configure an Oracle JET app to minimize the network load at app startup through the
use of the Oracle Content Delivery Network (CDN) and the Oracle JET distributions that the
CDN supports.

The local loading of the required Oracle JET libraries and modules, which is configured by
default when you create the app, is not recommended for a production app because it does not
use the Oracle CDN and requires each app running in the browser to load libraries and
modules in a standalone manner. This default configuration can be used when you build and
serve the app locally until you need to stage the app in a test environment to simulate network
access.

To enable Oracle CDN optimization, configure the path_mapping.json file in your app. The
options configured in the path mapping file determine the library and module settings for the
entire app. With the path_mapping.json file, you do not need to edit the path URL of the
required libraries and modules in any other app file. When you configure path mapping for
CDN optimization, you will determine how the tooling updates the require block of the main.js
file and how the app will load modules and libraries as follows:

• If you configure the path mappings to use the CDN without accessing the bundles
configuration, such that modules and libraries will be loaded individually from the CDN, the
tooling injects the URLs from the path mapping file into the require block of the main.js
file.

• If you configure the path mappings to use CDN bundle loading, the tooling updates the
index.html file to execute the bundles configuration script file (bundles-config.js) from
the following script reference:

<body>
 <script type="text/javascript" src="https://static.oracle.com/cdn/jet/
17.1.0/default/js/bundles-config.js"></script>
..
</body>

Note:

Starting in JET release 9.0.0, the convention of using the leading character "v" to
identify the release number has changed. As the above sample shows, the
release identifier is now a semver value specified as 17.1.0 with no leading
character.

The bundles configuration file specifies its own require block that the app executes to load as
a set of bundled modules and libraries from the CDN. When you configure the app this way,
the main.js file is updated by the tooling to display only a URL list comprising third-party
libraries. In the bundles configuration scenario, the injected require block in the main.js file
becomes a placeholder for any app-specific libraries that you want to add to the list. Where
URL duplications may occur between the require block of the bundles configuration file and
the app's main.js file, the bundles configuration takes precedence to ensure bundle loading
from the CDN has priority.

Chapter 17
About Configuring the App for Oracle CDN Optimization

17-6

Tip:

Configuring your app to reference the bundles configuration script file on the Oracle
CDN is recommended because Oracle maintains the configuration for each release.
By pointing your app to the current bundles configuration, you will ensure that your
app runs with the latest supported library and module versions.

Configure Bundled Loading of Libraries and Modules
For Oracle CDN optimization, you may use the bundles configuration script that loads a set of
bundled libraries and modules from the CDN.

To configure bundle loading of the libraries and modules using the bundles configuration script,
perform the following steps.

1. Open the path_mapping.json file in the appRootDir/src/js directory of your app and
change the use element's value to cdn:

"use": "cdn"

2. Leave the cdns element unchanged. It should show the following as the default path
definitions for Oracle JET and third-party libraries:

"cdns": {
 "jet": {
 "prefix": "https://static.oracle.com/cdn/jet/17.1.0/default/js",
 "css": "https://static.oracle.com/cdn/jet/17.1.0/default/css",
 "config": "bundles-config.js"
 },
 "3rdparty": "https://static.oracle.com/cdn/jet/17.1.0/3rdparty"
},

Note:

Starting in JET release 9.0.0, the convention of using the leading character "v" to
identify the release number has changed. As the above sample shows, the
release identifier is now a semver value specified as 17.1.0 with no leading
character.

3. Optionally, in the case of bundle loading, for each third-party library, update the value of
the cdn element from 3rdparty to jet. For example, this Knockout library path definition
shows "cdn": "jet" to prevent the Knockout library's URL from being injected into the
main.js file:

"libs": {

 "knockout": {
 "cdn": "jet",
 "cwd": "node_modules/knockout/build/output",
 ...
 },

Chapter 17
About Configuring the App for Oracle CDN Optimization

17-7

Setting "cdn": "jet" for each third-party library prevents the libraries’ URLs from being
injected into the require block of the main.js file. This update is not necessary to ensure
bundle loading of third-party libraries because the bundles configuration script overrides
duplicate URL paths that appear in the main.js file.

4. Save the file and either build or serve the app to complete the bundle loading
configuration.

Configure Individual Loading of Libraries and Modules
You can configure path mappings to use the CDN without accessing the bundles configuration
script, so that modules and libraries are loaded individually from the CDN.

To configure individual loading of the libraries and modules based on the require block of the
main.js file (without the use of the bundles configuration script), perform the following steps.

1. Open the path_mapping.json file in the appRootDir/src/js directory of your app and
change the use element's value to cdn.

"use": "cdn"

2. Edit the cdns element to remove the config element so that the cdns path definitions for
Oracle JET and third-party libraries are formatted as follows:

"cdns": {
 "jet": "https://static.oracle.com/cdn/jet/17.1.0/default/js",
 "css": "https://static.oracle.com/cdn/jet/17.1.0/default/css",
 "3rdparty": "https://static.oracle.com/cdn/jet/17.1.0/3rdparty"
}

3. Save the file and either build or serve the app to complete the main.js file's require block
configuration.

When you need to make a change to the list of required libraries (for example, to specify a
different release version), do not edit the main.js file; instead, edit the path_mapping.json file
and, in the case of bundle loading, also edit the bundles-config.js URL in your app’s
index.html file. You will need to rebuild the app to apply the changes. For details about the
path_mapping.json file and the configuration updates performed by the tooling, see
Understand the Path Mapping Script File and Configuration Options.

Understand the Path Mapping Script File and Configuration
Options

You may need to integrate additional functionality into your apps using libraries and modules
that are not provided by Oracle JET. Apps built using Oracle JET's command-line interface
(CLI) have a mechanism that helps with this process: the path_mapping.json file.

When you build or serve your app, Oracle JET tooling invokes the appRootDir/src/js/
path_mapping.json configuration file and determines the URI path for the Oracle JET modules
and libraries based on the settings you configured for the path mapping use attribute.

The use attribute, set to local by default, specifies the location of required libraries including
core Oracle JET libraries (such as ojs, ojL10n, and ojtranslations) and third-party
dependency libraries (such as knockout, jquery, and hammerjs).

Chapter 17
Understand the Path Mapping Script File and Configuration Options

17-8

When you build your app, Oracle JET defines load paths for each library specified in the
path_mapping.json file using the requirejs.config() function of the app's main.js file. Each
library path URI is determined based on the path or cdnPath attribute of the library listed in the
libs map.

For example, the path mapping entry for the Knockout library shows the following details.

"libs": {
 "knockout": {
 "cdn": "3rdparty",
 "cwd": "node_modules/knockout/build/output",
 "debug": {
 "src": "knockout-latest.debug.js",
 "path": "libs/knockout/knockout-#{version}.debug.js",
 "cdnPath": "knockout/knockout-3.x.x.debug"
 },
 "release": {
 "src": "knockout-latest.js",
 "path": "libs/knockout/knockout-#{version}.js",
 "cdnPath": "knockout/knockout-3.x.x"
 }
},

After building or serving the app, the main.js file's requirejs.config() paths map contains
the following path mapping:

"knockout":"libs/knockout/knockout-x.x.x.debug"
For more information on the path_mapping.json configuration file and how to use it, see Add
Third-Party Tools or Libraries to Your Oracle JET App.

Work with Libraries and Modules on Content Delivery Networks
The following list includes common scenarios encountered in working with libraries and
modules hosted on CDNs and your Oracle JET apps.

When configured for the Oracle CDN, the main.js file's require block is determined either
entirely by the path mapping file local to the app or, in the case of the bundle loading
optimization, partially from the path mapping file and partially from the require block of the
bundles-config.js file maintained by Oracle on the Oracle CDN. Path injector markers in the
main.js file indicate where the release-specific URLs appear.

• CDN Scenario 1: To load libraries and modules as bundles from the Oracle CDN, by
default only the path mappings for third-party libraries will appear in the URL library list in
the require block of the main.js file.

For example, the path mapping definition for the Knockout library shows the following
details. Note that the config attribute specifies the name of the bundles configuration
script file as bundles-config.js.

"baseUrl": "js" <==ignored
"use": "cdn"

"cdns": {
 "jet": {
 "prefix": "https://static.oracle.com/cdn/jet/17.1.0/default/js",

Chapter 17
Work with Libraries and Modules on Content Delivery Networks

17-9

 "css": "https://static.oracle.com/cdn/jet/17.1.0/default/css",
 "config": "bundles-config.js"
 },
 "3rdparty": "https://static.oracle.com/cdn/jet/17.1.0/3rdparty"
},

"libs": {
 ...
 "cdnPath": "knockout/knockout-3.x.x"
}

After building or serving your app, the main.js file's require block contains a list of third-
party library URLs as a placeholder.

Note that loading libraries and module as specified in the bundles-config.js file's
require block takes precedence over any duplicate libraries that may appear in the
main.js file's require block. However, if you prefer, you can configure the third-party
library path mapping so that their URLs do not appear in the main.js file's require block.
To accomplish this, edit "cdn": "3rdparty" in the path_mapping.json file to "cdn":
"jet" for each third-party library path definition.

• CDN Scenario 2: To load libraries individually from the Oracle CDN using the path
mapping URLs to specify the location, the list of library URLs will appear entirely in the
main.js file's require block.

For example, the path mapping definition for the Knockout library shows the following
details after you edit the cdns element to remove the bundles configuration script
reference.

"baseUrl": "js" <==ignored
"use": "cdn"

"cdns": {
 "jet": "https://static.oracle.com/cdn/jet/17.1.0/default/js",
 "css": "https://static.oracle.com/cdn/jet/17.1.0/default/css",
 "3rdparty": "https://static.oracle.com/cdn/jet/17.1.0/3rdparty"
}

"libs": {
 ...
 "cdnPath": "knockout/knockout-3.x.x"
}

After a build or serve, the main.js file's require block contains the following URL (along
with the URLs for all other base libraries and modules):

"knockout": "https://static.oracle.com/cdn/jet/17.1.0/3rdparty/knockout/
knockout-3.x.x"

• CDN Scenario 3: If your app needs to access libraries that reside on a non-Oracle CDN,
you can update the path_mapping.json file to specify your own CDN endpoint and library
definition.

Depending on whether you use the bundles configuration script, add your CDN name and
endpoint URI to the cdns definition as follows.

Chapter 17
Work with Libraries and Modules on Content Delivery Networks

17-10

When using the bundles configuration script to load libraries and modules:

"cdns": {
 "jet": {
 "prefix": "https://static.oracle.com/cdn/jet/17.1.0/default/js",
 "css": "https://static.oracle.com/cdn/jet/17.1.0/default/css",
 "config": "bundles-config.js"
 },
 "3rdparty": "https://static.oracle.com/cdn/jet/17.1.0/3rdparty"
 "yourCDN": "endPoint to your own CDN"
},
...

Or, when loading libraries and modules individually (not using the bundles configuration
script):

"cdns": {
 "jet": "https://static.oracle.com/cdn/jet/17.1.0/default/js",
 "css": "https://static.oracle.com/cdn/jet/17.1.0/default/css",
 "3rdparty": "https://static.oracle.com/cdn/jet/17.1.0/3rdparty",
 "yourCDN": "endPoint to your own CDN"
},
...

Then, in the list of libraries, define your library entry similar to the following sample.

"yourLib": {
 "cdn": "yourCDN",
 "cwd": "node_modules/yourLib",
 "debug": {
 "src": "yourLib.js",
 "path": "libs/yourLib/yourLib.js",
 "cdnPath": "yourLib/yourLib.js"
 },
 "release": {
 "src": "yourLib.min.js",
 "path": "libs/yourLib/yourLib.min.js",
 "cdnPath": "yourLib/yourLib.min.js"
 }
},

Chapter 17
Work with Libraries and Modules on Content Delivery Networks

17-11

18
Audit Oracle JET App Files

An Oracle JET audit runs against the app files of your JET project and performs a static
analysis of the source code from an Oracle JET perspective. Audit diagnostic messages result
from an invocation of the Oracle JET Audit Framework (JAF) command-line utility and are
governed by rules that are specific to a JET release version.
Oracle JET Audit Framework (JAF) relies on the configuration file created by the JET tooling
when you invoke the JAF initialization command ojaf --init in a Command Prompt window
on the JET app.

The oraclejafconfig.json file that you create when you initialize Oracle JAF the first time
defines the properties that you can use to control many aspects of your JET app audit. For
example, by configuring the JAF audit, you can perform the following.

• Specify the JET version when you want to use audit rules that are specific to a JET
version. This is configured by default as the JET version of the app to be audited.

• Specify the file set when you want to exclude app directories and file types. This is
configured by default to include all files of the app to be audited.

• Invoke custom audit rules that are user-defined and assembled as a JAF rule pack for
distribution.

• Prevent specific audit rules from running in the audit or limiting the audit to only rules of a
certain severity level.

• Include the metadata of Oracle JET Web Components to audit the HTML files of your app's
custom components.

• Control the JavaScript source code to audit based on JAF comments that you embed in
your source files.

• Work with the output of the audit to customize the presentation of audit messages or to
suppress audit messages.

The properties in the oraclejafconfig.json file configuration settings are up to you to specify.
By doing so, you can fine-tune the audit to focus audit results on only the source that you
intend. Multiple configuration files can created for specific runtime criteria or projects. The
configuration files are JSON format, but JavaScript style comments are permitted for
documentation purposes. The configuration file to be used can be specified on the command-
line.

Each time you run the audit from a Command Prompt window, Oracle JAF searches the
directory in which you initiated the audit for the JAF configuration file oraclejafconfig.json. If
no configuration file is found there, then JAF processes only HTML files found in the current
directory. In that case, the default JAF configuration settings are used for the audit.

If the built-in audit rules provided with the JAF installation do not meet all the diagnostic
requirements of your app, you can write custom audit rules to extend JAF. You implement user-
defined audit rules as JavaScript files. The JAF API allows you to register event listeners and
handle the audit context created by JAF on the file set of your JET projects. Custom audit rules
can be assembled into distributable rule packs and invoked by developers on any Oracle JET
app.

For more information about JAF, see Using and Extending the Oracle JET Audit Framework.

18-1

19
Test and Debug Oracle JET Apps

Test and debug Oracle JET web apps using a recommended set of testing and debugging
tools for client-side apps.

Test Oracle JET Apps
Tests help you build complex Oracle JET apps quickly and reliably by preventing regressions
and encouraging you to create apps that are composed of testable functions, modules,
classes, and components.

We recommend that you write tests as early as possible in your app’s development cycle. The
longer that you delay testing, the more dependencies the app is likely to have, and the more
difficult it will be to begin testing.

Testing Types
There are three main testing types that you should consider when testing Oracle JET apps.

1. Unit Testing

• Unit testing checks that all inputs to a given function, class, or component are
producing the expected output or response.

• These tests are typically applied to self-contained business logic, components,
classes, modules, or functions that do not involve UI rendering, network requests, or
other environmental concerns.

Note that REST service APIs should be tested independently.

• Unit tests are aware of the implementation details and dependencies of a component
and focus on isolating the tested component.

2. Component Testing

• Component testing checks that individual components can be interacted with and
behave as expected. These tests import more code than unit tests, are more complex,
and require more time to execute.

• Component tests should catch issues related to your component's properties, events,
the slots that it provides, styles, classes, lifecycle hooks, and more.

• These tests are unaware of the implementation details of a component; they mock up
as little as possible in order to test the integration of your component and the entire
system.

You should not mock up child components in component tests but instead check the
interactions between your component and its children with a test that interacts with the
components as a user would (for example, by clicking on an element).

3. End-to-End Testing

• End-to-end testing, which often involves setting up a database or other backend
service, checks features that span multiple pages and make real network requests
against a production-built JET app.

19-1

End-to-end testing is meant to test the functionality of an entire app, not just its individual
components. Therefore, use unit tests and component tests when testing specific components
of your Oracle JET apps.

Unit Testing

Unit testing should be the first and most comprehensive form of testing that you perform.

The purpose of unit testing is to ensure that each unit of software code is coded correctly,
works as expected, and returns the expected outputs for all relevant inputs. A unit can be a
function, method, module, object, or other entity in an app’s source code.

Unit tests are small, efficient tests created to execute and verify the lowest-level of code and to
test those individual entities in isolation. By isolating functionality, we remove external
dependencies that aren't relevant to the unit being tested and increase the visibility into the
source of failures.

Unit tests should interact with the component's public application programming interface (API)
and pass the API as many different combinations of test data as necessary to exercise as
much of the component's code paths as possible. This includes testing the component's
properties, events, methods, and slots.

Unit tests that you create should adhere to the following principles:

• Easy to write: Unit testing should be your main testing focus; therefore, tests should
typically be easy to write because many will be written. The standard testing technology
stack combined with recommended development environments ensures that the tests are
easily and quickly written.

• Readable: The intent of each test should be clearly documented, not just in comments, but
the code should also allow for easy interpretation of what its purpose is. Keeping tests
readable is important should someone need to debug when a failure occurs.

• Reliable: Tests should consistently pass when no bugs are introduced into the component
code and only fail when there are true bugs or new, unimplemented behaviors. The tests
should also execute reliably regardless of the order in which they’re run.

• Fast: Tests should be able to execute quickly and report issues immediately to the
developer. If a test runs slowly, it could be a sign that it is dependent upon an external
system or interacting with an external system.

• Discrete: Tests should exercise the smallest unit of work possible, not only to ensure that
all units are properly verified but also to aid in the detection of bugs when failures occur. In
each unit test, individual test cases should independently target a single attribute of the
code to be verified.

• Independent: Above all else, unit tests should be independent of one another, free of
external dependencies, and be able to run consistently irrespective of the environment in
which they’re executed.

To shield unit tests from external changes that may affect their outcomes, unit tests focus
solely on verifying code that is wholly owned by the component and avoid verifying the
behaviors of anything external to that component. When external dependencies are needed,
consider using mocks to stand in their place.

Component Testing

The purpose of component testing is to establish that an individual component behaves and
can be interacted with according to its specifications. In addition to verifying that your
component accepts the correct inputs and produces the right outputs, component tests also

Chapter 19
Test Oracle JET Apps

19-2

include checking for issues related to your component's properties, events, slots, styles,
classes, lifecycle hooks, and so on.

A component is made up of many units of code, therefore component testing is more complex
and takes longer to conduct than unit testing. However, it is still very necessary; the individual
units within your component may work on their own, but issues can occur when you use them
together.

Component testing is a form of closed-box testing, meaning that the test evaluates the
behavior of the program without considering the details of the underlying code. You should
begin testing a component in its entirety immediately after development, though the tested
component may in part depend on other components that have not yet been developed.
Depending on the development lifecycle model, component testing can be done in isolation
from other components in the system, in order to prevent external influences.

If the components that your component depends on have not yet been developed, then use
dummy objects instead of the real components. These dummy objects are the stub (called
function) and the controller (called function).

Depending on the depth of the test level, there are two types of component tests: small
component tests and large component tests.

When component testing is done in isolation from other components, it is called "small
component testing." Small component tests do not consider the component's integration with
other components.

When component testing is performed without isolating the component from other components,
it is called "large component testing", or "component testing" in general. These tests are done
when there is a dependency on the flow of functionality of the components, and therefore we
cannot isolate them.

End-to-End Testing

End-to-end testing is a method of evaluating a software product by examining its behavior from
start to finish. This approach verifies that the app operates as intended and confirms that all
integrated components function correctly in relation to one another. Additionally, end-to-end
testing defines the system dependencies of the product to ensure optimal performance.

The primary goal of end-to-end testing is to replicate the end-user experience by simulating
real-world scenarios and evaluating the system and its components for proper integration and
data consistency. This approach allows for the validation of the system's performance from the
perspective of the user.

End-to-end testing is a widely adopted and reliable technique that provides the following
advantages.

• Comprehensive test coverage

• Assurance of app's accuracy

• Faster time to market

• Reduced costs

• Identification of bugs

Modern software systems are increasingly interconnected, with various subsystems that can
cause adverse effects throughout the entire system if they fail. End-to-end testing can help
prevent these risks by:

• Verifying the system's flow

• Increasing the coverage of testing areas

Chapter 19
Test Oracle JET Apps

19-3

• Identifying issues related to subsystems

End-to-end testing is beneficial for a variety of stakeholders:

• Developers appreciate end-to-end testing as it allows them to offload testing
responsibilities.

• Testers find it useful as it enables them to write tests that simulate real-world scenarios and
avoid potential problems.

• Managers benefit from end-to-end testing as it allows them to understand the impact of a
failing test on the end-user.

The end-to-end testing process comprises four stages:

1. Test Planning: Outlining key tasks, schedules, and resources required

2. Test Design: Creating test specifications, identifying test cases, assessing risks, analyzing
usage, and scheduling tests

3. Test Execution: Carrying out the test cases and documenting the results

4. Results Analysis: Reviewing the test results, evaluating the testing process, and
conducting further testing as required

There are two approaches to end-to-end testing:

• Horizontal Testing: This method involves testing across multiple apps and is often used in
a single ERP (Enterprise Resource Planning) system.

• Vertical Testing: This approach involves testing in layers, where tests are conducted in a
sequential, hierarchical order. This method is used to test critical components of a complex
computing system and does not typically involve users or interfaces.

End-to-end testing is typically performed on finished products and systems, with each review
serving as a test of the completed system. If the system does not produce the expected output
or if a problem is detected, a second test will be conducted. In this case, the team will need to
record and analyze the data to determine the source of the issue, fix it, and retest.

While testing your app end-to-end, consider the following metrics:

• Test Case Preparation Status: This metric is used to track the progress of test cases that
are currently being prepared in comparison to the planned test cases.

• Test Progress Tracking: Regular monitoring of test progress on a weekly basis to provide
updates on test completion percentage and the status of passed/failed, executed/
unexecuted, and valid/invalid test cases.

• Defects Status and Details: Provides a weekly percentage of open and closed defects
and a breakdown of defects by severity and priority.

• Environment Availability: Information on the number of operational hours and hours
scheduled for testing each day.

Composite Component Unit Testing
Composite components comprise a few different pieces, including the view, the viewModel,
and the bindings that connect them. The view is the visible part of the component and the
means by which the user interacts with it, whereas the viewModel controls the behavior of the
component in response to some stimulus. The view-to-viewModel bindings tie together the
view and its user interactions and the viewModel behaviors that are run in response.

There are generally two approaches to unit testing components:

Chapter 19
Test Oracle JET Apps

19-4

1. View testing, or DOM (Document Object Model) testing, interacts with the component's UI
in much the same way that a user would: by clicking, typing, and generally interacting with
the component through its visible elements. While it may invoke actions in the controller
due to bindings written into the view, the purpose is to verify not the behavior but rather
that the bindings themselves call the correct actions.

2. ViewModel testing focuses solely on the controller layer of the component. This type of
testing instantiates the controller class and calls its public functions to assert behavior. Any
dependencies that the controller may have on external modules are mocked out so that the
test can be concerned with only the viewModel code. This testing is done independently of
the view. The test is not interacting with the view to call the controller functions; rather, it
calls the functions directly and performs assertions on the results from the call.

Note:

The view-to-viewModel bindings are the key to interactions; they define what is called
for each stimulus. However, they are usually only tested during integration, not during
unit testing.

We recommend unit testing composite components using direct viewModel testing, which
focuses on the smallest pieces of the code that are public, namely, the API. For composite
components, the public API is defined by the viewModel and surfaced on the custom web
element. This makes it possible to test the viewModel methods without running the entire
component through the browser and rendering a UI. ViewModel testing allows inputs to
methods to be supplied by the test, and the output can be examined for correctness. This form
of testing discourages direct UI interactions and instead prefers to simulate the environment in
which the component would run.

Unit tests should verify the public aspects of your component, and those exposed in the API
include:

• Properties

• Events

• Methods

• Slots

In addition to the API, other aspects of composites include:

• Accessibility

• Security

• Localization

• User Interaction

These aren't typically defined as part of the public API, but they should also be verified through
testing.

There are circumstances where viewModel testing alone isn't sufficient to cover all aspects of
the component, such as simulating user events to ensure that bindings are correctly applied.
For these scenarios, view testing via the DOM or WebDriver can be used.

About the Oracle JET Testing Technology Stack
The recommended technology stack for testing Oracle JET apps includes Karma, Mocha,
Chai, and Sinon.

Chapter 19
Test Oracle JET Apps

19-5

To aid developers in testing their apps and leveraging these technologies, the ojet add
testing command was added to the Oracle JET CLI with the release of JET 15. The
command configures an app's testing environment and sets up a framework for testing JET
components. Once an app is configured for testing, you can use the recommended testing
technology stack to write and run your tests.

1. Karma is a test runner for JavaScript that runs on NodeJS. It runs an HTTP server to make
project files available to browser instances that it launches and manages. Karma loads the
necessary files into the browsers, executing source code against test code.

Note:

Since different browsers can have different DOM implementations, testing
against most of the major browsers is essential if you want to ensure that your
app will behave properly for the majority of its users.

Karma monitors files specified in its main configuration file, karma.conf.js, for changes,
triggering test runs by sending a signal to the testing server to inform all connected
browsers to run the test code again. The server collects the test results against each
browser and presents them to the developer in the CLI.

Essentially, Karma starts both the browsers and Mocha. Mocha in turn executes the tests.

2. Mocha is a JavaScript testing framework, the library against which tests are written; it
allows for the declaration of test suites and cases. It can be installed globally and set as a
development dependency for your project, or you can set it up to run test cases directly on
the web browser.

Mocha tests run serially, allowing for flexible and accurate reporting while mapping
uncaught exceptions to the correct test cases. Mocha simplifies asynchronous testing with
features that invoke the callback once the test is finished; it enables synchronous testing
by omitting the callback.

3. Chai is an assertion library for NodeJS and the browser that can be paired with any
JavaScript testing framework. It has several interfaces that a developer can choose from,
and tests that you write in Chai resemble English sentence construction.

4. Where mocks are required, we recommend using Sinon, a library that enables the mocking
of objects and functions to allow the tests to run without requiring external dependencies.

For UI automation testing, we recommend using Selenium WebDriver in conjunction with the
Oracle® JavaScript Extension Toolkit (Oracle JET) WebDriver.

Configure Oracle JET Apps for Testing
The ojet add testing Command

Use the ojet add testing CLI command to add testing capability to your Oracle JET app by
setting up the framework and libraries required for testing for JET components.

Run the command from a terminal window in your app's root directory. After it configures your
app's testing environment, you can proceed with testing your app by using Karma as a test
runner and Mocha and Chai to write your tests. You can also use Sinon to include spies, stubs,
and mocks for your tests.

The configuration performed by the ojet add testing command also creates some essential
testing directories and files within your app.

Chapter 19
Test Oracle JET Apps

19-6

https://github.com/karma-runner/karma
https://mochajs.org/
https://github.com/chaijs/chai
https://sinonjs.org/releases/latest/mocks/
https://sinonjs.org/
https://www.npmjs.com/package/selenium-webdriver
https://www.oracle.com/webfolder/technetwork/jet/wdtsdoc/index.html

The test-config folder is added to your app's root directory. It contains three configuration
files that are required for testing: karma.conf.js, test-main.js, and tsconfig.json. The
Karma configuration file karma.conf.js is the main configuration file for your tests, test-
main.js is the RequireJS configuration file that is loaded by Karma, and tsconfig.json is the
TypeScript configuration file for the test files.

Additionally, existing components are checked for test files. The extension for files containing
tests, known as "spec files," should be .spec.ts so that tooling recognizes them. If spec files
are missing from a component, then they are injected. Spec files are located within a
__tests__ folder inside the component folder, such as /src/ts/jet-composites/oj-
calculate-value/__tests__ . This folder holds the test files you write for your component
and, by default, is created with three test files containing dummy tests: oj-calculate-value-
knockout.spec.ts, oj-calculate-value-ui.spec.ts, and oj-calculate-value-
viewmodel.spec.ts.

Note:

If you create a new component or pack from the command line after running the ojet
add testing command on your project, then the __tests__ folder and files are
injected by default.

Testing Demo

Here we will use the ojet add testing command to configure a testing environment for an
Oracle JET app. The app used in this testing demo contains a calculator component that takes
two user-submitted numbers, calculates their sum, and displays the result in the app's
dashboard. Once the app's testing environment is set up, we will run tests on the calculator
component.

1. First, download the JET-Test-Example.zip and unzip it to your working directory. Open a
terminal window in your app's root directory and run the ojet restore command.

2. Observe the app's directory structure. In the /src/ts/jet-composites directory is the oj-
calculate-value component. The tests you will run on the calculator component, after you
have configured your app for testing, are included in the app's root directory as the text file
oj-calculate-value-viewmodel-spec-ts.txt.
Use the ojet serve command to run the app and manually test that the calculator
component works as expected.

Chapter 19
Test Oracle JET Apps

19-7

https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Test-Example.zip

Note:

Before running tests in your project, you must first run ojet build or ojet
serve, or the tests will fail.

3. Run the ojet add testing command from a terminal window in your app's root directory.
In your app's directory structure, you can see that the test-config folder was added to
your app's root directory and the __tests__ folder was added to the /src/ts/jet-
composites/oj-calculate-value directory.

4. Rename the file oj-calculate-value-viewmodel-spec-ts.txt in your app's root directory
to oj-calculate-value-viewmodel.spec.ts and replace the file with the same name in
the \src\ts\jet-composites\oj-calculate-value__tests__ directory. The file contains
three sample unit tests written in Chai for the oj-calculate-value component's
viewModel.

Chapter 19
Test Oracle JET Apps

19-8

5. Run the tests. Enter the script npm run test in the command line and observe the results
in the terminal window.

6. Note the coverage directory that was created in the root directory of your app, after running
the tests. It contains the oj-calculate-value-viewModel.js.html file, which you can
open in your browser to view more information about the test run.

Use BusyContext API in Automated Testing
Use BusyContext to wait for a component or other condition to complete some action before
interacting with it.

The purpose of the BusyContext API is to accommodate sequential dependencies of
asynchronous operations. Typically, you use BusyContext in test automation when you want to
wait for an animation to complete, a JET page to load, or a data fetch to complete.

Note:

Animations should not be disabled during testing. Tests should run on what the user
sees and encounters in your app. For example, by turning off animations, you
remove the possibility of finding race conditions that would only appear with the
animations enabled.

Wait Scenarios

The Busy Context API will block until all the busy states resolve or a timeout period lapses.
There are four primary wait scenarios:

• Components that implement animation effects

• Components that fetch data from a REST endpoint

• Pages that load bootstrap files, such as the Oracle JET libraries loaded with RequireJS

• Customer-defined scenarios that are not limited to Oracle JET, such as blocking conditions
associated with app domain logic

Chapter 19
Test Oracle JET Apps

19-9

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.BusyContext.html

Determining the Busy Context’s Scope

The first step for waiting on a busy context is to determine the wait condition. You can scope
the granularity of a busy context for the entirety of the page or limit the scope to a specific
DOM element. Busy contexts have hierarchical dependencies mirroring the document's DOM
structure, with the root being the page context. Depending on your particular scenario, target
one of the following busy context scopes:

• Scoped for the page

Choose the page busy context to represent the page as a whole. Automation developers
commonly need to wait until the page is fully loaded before starting automation. Also,
automation developers are usually interested in testing the functionality of an app that has
multiple Oracle JET components rather than a single component.

var busyContext = Context.getPageContext().getBusyContext();

• Scoped for the nearest DOM element

Choose a busy context scoped for a DOM node when your app must wait until a specific
component’s operation completes. For example, you may want to wait until an ojPopup
completes an open or close animation before initiating the next task in the app flow. Use
the data-oj-context marker attribute to define a busy context for a DOM subtree.

<div id="mycontext" data-oj-context>
 ...
 <!-- JET content -->
 ...
</div>

var node = document.querySelector("#mycontext");
var busyContext = Context.getContext(node).getBusyContext();

Determining the Ready State

After obtaining a busy context, the next step is to inquire the busy state. BusyContext has two
operations for inquiring the ready state: isReady() and whenReady(). The isReady() method
immediately returns the state of the busy context. The whenReady() method returns a Promise
that resolves when the busy states resolve or a timeout period lapses.

The following example shows how you can use isReady() with WebDriver.

public static void waitForJetPageReady(WebDriver webDriver, long
timeoutInMillis)
{
 try
 {
 final WebDriverWait wait = new WebDriverWait(webDriver, timeoutInMillis /
_THOUSAND_MILLIS);
 // Eat any WebDriverException
 // "ExpectedConditions.jsReturnsValue" will continue to be called if it
doesn't return a value.
 // /ExpectedConditions.java#L1519
 wait.ignoring(WebDriverException.class);
 wait.until(ExpectedConditions.jsReturnsValue(_PAGE_WHEN_READY_SCRIPT));
 }

Chapter 19
Test Oracle JET Apps

19-10

https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.BusyContext.html#isReady
https://docs.oracle.com/en/middleware/developer-tools/jet/17.1/reference-api/oj.BusyContext.html#whenReady

 catch (TimeoutException toe)
 {
 String evalString = "return
Context.getPageContext().getBusyContext().getBusyStates().join('\\n');";
 Object busyStatesLog =
((JavascriptExecutor)webDriver).executeScript(evalString);
 String retValue = "";
 if (busyStatesLog != null){
 retValue = busyStatesLog.toString();
 Assert.fail("waitForJetPageReady failed - !
Context.getPageContext().getBusyContext().isReady() - busyStates: " +
 retValue); }
}

// The assumption with the page when ready script is that it will continue to
execute until a value is returned or
// reached the timeout period.
//
// There are three areas of concern:
// 1) Has the app opt'd in on the whenReady wait for bootstrap?
// 2) If the app has opt'd in on the jet whenReady strategy for bootstrap
"('oj_whenReady' in window)",
// wait until jet core is loaded and have a ready state.
// 3) If not opt-ing in on jet whenReady bootstrap, make the is ready check
if jet core has loaded. If jet core is
// not loaded, we assume it is not a jet page.

// Check to determine if the page is participating in the jet whenReady
bootstrap wait period.

static private final String _BOOTSTRAP_WHEN_READY_EXP = "(('oj_whenReady' in
window) && window['oj_whenReady'])";

// Assumption is we must wait until jet core is loaded and the busy state is
ready.
static private final String _WHEN_READY_WITH_BOOTSTRAP_EXP =
"(window['oj'] && window['oj']['Context'] &&
Context.getPageContext().getBusyContext().isReady() ?" +
" 'ready' : '')";

// Assumption is the jet libraries have already been loaded. If they have
not, it's not a Jet page.
// Return jet missing in action "JetMIA" if jet core is not loaded.
static private final String _WHEN_READY_NO_BOOTSTRAP_EXP =
"(window['oj'] && window['oj']['Context'] ? " +
"(Context.getPageContext().getBusyContext().isReady() ? 'ready' : '') :
'JetMIA')";

// Complete when ready script
static private final String _PAGE_WHEN_READY_SCRIPT =
"return (" + _BOOTSTRAP_WHEN_READY_EXP + " ? " +
_WHEN_READY_WITH_BOOTSTRAP_EXP + " : " +
_WHEN_READY_NO_BOOTSTRAP_EXP + ");";

Chapter 19
Test Oracle JET Apps

19-11

The following example shows how you can use whenReady() with QUnit.

// Utility function for creating a promise error handler
function getExceptionHandler(assert, done, busyContext)
{
 return function (reason)
 {
 if (reason && reason['busyStates'])
 {
 // whenReady timeout
 assert.ok(false, reason.toString());
 }
 else
 {
 // Unhandled JS Exception
 var msg = reason ? reason.toString() : "Unknown Reason";
 if (busyContext)
 msg += "\n" + busyContext;
 assert.ok(false, msg);
 }

 // invoke done callback
 if (done)
 done();
 };
};

QUnit.test("popup open", function (assert)

{
 // default whenReady timeout used when argument is not provided
 Context.setBusyContextDefaultTimeout(18000);

 var done = assert.async();
 assert.expect(1);

 var popup = document.getElementById("popup1");

 // busy context scoped for the popup
 var busyContext = Context.getContext(popup).getBusyContext();
 var errorHandler = getExceptionHandler(assert, done, busyContext);

 popup.open("#showPopup1");

 busyContext.whenReady().then(function ()
 {
 assert.ok(popup.isOpen(), "popup is open");
 popup.close();
 busyContext.whenReady().then(function ()
 {
 done();
 }).catch(errorHandler);
 }).catch(errorHandler);
});

Chapter 19
Test Oracle JET Apps

19-12

Creating Wait Conditions

JET components use the busy context to communicate blocking operations. You can add busy
states to any scope of the busy context to block operations such as asynchronous data fetch.

The following high-level steps describe how to add a busy context:

1. Create a Scoped Busy Context.

2. Add a busy state to the busy context. You must add a description that describes the
purpose of the busy state. The busy state returns a resolve function that is called when it’s
time to remove the busy state.

Busy context dependency relationships are determined at the point the first busy state is
added. If the DOM node is re-parented after a busy context was added, the context will
maintain dependencies with any parent DOM contexts.

3. Perform the operation that needs to be guarded with a busy state. These are usually
asynchronous operations that some other app flow depends on for its completion.

4. Resolve the busy state when the operation completes.

The app is responsible for releasing the busy state. The app must manage a reference to the
resolve function associated with a busy state, and it must be called to release the busy state. If
the DOM node that the busy context is applied to is removed in the document before the busy
state is resolved, the busy state will be orphaned and will never resolve.

Debug Oracle JET Apps
Since Oracle JET web apps are client-side HTML5 apps written in JavaScript or Typescript,
you can use your favorite browser's debugging facilities.

Debug Web Apps
Use your source code editor and browser's developer tools to debug your Oracle JET app.

Developer tools for widely used browsers like Chrome, Edge, and Firefox provide a range of
features that assist you in inspecting and debugging your Oracle JET app as it runs in the
browser. Read more about the usage of these developer tools in the documentation for your
browser.

By default, the ojet build and ojet serve commands use debug versions of the Oracle JET
libraries. If you build or serve your Oracle JET app in release mode (by appending the --
release parameter to the ojet build or ojet serve command), your app uses minified
versions of the Oracle JET libraries. If you choose to debug an Oracle JET app that you built in
release mode, you can use the --optimize=none parameter to make the minified output more
readable by preserving line breaks and white space:

ojet build --release --optimize=none
ojet serve --release --optimize=none

Note that browser developer tools offer the option to "pretty print" minified source files to make
them more readable, if you choose not to use the --optimize=none parameter.

You may also be able to install browser extensions that further assist you in debugging your
app.

Chapter 19
Debug Oracle JET Apps

19-13

Finally, if you use a source code editor, such as Visual Studio Code, familiarize yourself with
the debugging tools that it provides to assist you as develop and debug your Oracle JET app.

Chapter 19
Debug Oracle JET Apps

19-14

20
Package and Deploy Oracle JET Apps

If you used Oracle JET tooling to create your Oracle JET app, you can package web apps for
deployment to a web or app server.

Package Web Apps
If you created your app using the tooling, use the Oracle JET command-line interface (CLI) to
create a release version of your app containing your app scripts and applicable Oracle JET
code in minified format.

1. From a terminal prompt in your app’s root directory, enter the following command: ojet
build --release.

The command will take some time to complete. When it’s successful, you’ll see the
following message: Build finished!.

The command replaces the development version of the libraries and scripts in web/js/
with minified versions where available.

2. To verify that the app still works as you expect, run ojet serve with the release option.

The ojet serve --release command takes the same arguments that you used to serve
your web app in development mode.

ojet serve --release [--serverPort=server-port-number --serverOnly]

Tip:

For a complete list of options, type ojet help serve at the terminal prompt.

Deploy Web Apps
Oracle JET is a collection of HTML, JavaScript, and CSS files that you can deploy to any type
of web or app server. There are no unique requirements for deploying Oracle JET apps.

Deployment methods are quite varied and depend upon the type of server environment your
app is designed to run in. However, you should be able to use the same method for deploying
Oracle JET apps that you would for any other client interface in your specific environment.

For example, if you normally deploy apps as zip files, you can zip the web directory and use
your normal deployment process.

Remove and Restore Non-Source Files from Your JET App
The Oracle JET CLI provides commands (clean, strip, and restore) that manage the source
code of your JET app by removing extraneous files, such as the build output for the platforms
your JET app supports or npm modules installed into your project.

20-1

Consider using these commands when you want to package your source code for distribution
to colleagues or others who may work on the source code with you. Use of these commands
may not be appropriate in all circumstances. Use of the clean and strip commands will, for
example, remove the content in the web directory that is created when you run ojet build or
ojet serve.

ojet clean

Use the ojet clean command to clean the build output of your JET app. Specify the web
parameter with the ojet clean command (ojet clean web) to remove the contents of your
app’s root directory’s web directory.

ojet strip

Use ojet strip when you want to remove all non-source files from your JET app. In addition
to the build output removed by the ojet clean command, ojet strip removes additional
dependencies, such as npm modules installed into your project. A typical usage scenario for
the ojet strip command is when you want to distribute the source files of your JET app to a
colleague and you want to reduce the number of files to transmit to the minimum.

The ojet strip command relies on the presence of the .gitignore file in the root directory of
your app to determine what to remove. The file lists the directories that are installed by the
tooling and can therefore be restored by the tooling. Only those directories and files listed will
be removed when you run ojet clean on the app folder.

If you do not use Git and you want to run ojet strip to make a project easier to transmit, you
can create the .gitignore file and add it to your app's root folder with a list of the folders and
files to remove, like this:

#List of web app folders to remove
/node_modules
/bower_components
/themes
/web

As an alternative to the .gitignore file, you can include a stripList property that takes an
array of glob pattern values in your app's oraclejetconfig.json file. When you specify the
stripList parameter in the oraclejetconfig.json file, Oracle JET ignores the .gitignore
file and its entries. Specify the list of directories and file types that you want to remove when
you run ojet strip, as demonstrated by the following example.

{
. . .
 "generatorVersion": "17.1.0",
 "stripList": [
 "jet_components",
 "node_modules",
 "bower_components",
 "dist",
 "web",
 "staged-themes",
 "themes",
 "myfiles/*.txt"
]
}

Chapter 20
Remove and Restore Non-Source Files from Your JET App

20-2

ojet restore

Use the ojet restore command to restore the dependencies, plugins, libraries, and Web
Components that the ojet strip command removes. After the ojet restore command
completes, use the ojet build and/or ojet serve commands to build and serve your JET
app.

The ojet restore command supports a number of additional parameters, such as ojet
restore --ci that invokes the npm ci command instead of the default npm install command.
This option (ojet restore --ci) fetches the dependencies specified in the package-
lock.json file, and can be useful in CI/CD pipelines.

For additional help with CLI commands, enter ojet help at a terminal prompt.

Chapter 20
Remove and Restore Non-Source Files from Your JET App

20-3

A
Troubleshooting

Follow the same procedure for troubleshooting your Oracle JET app that you would follow for
any client-side JavaScript app.

If you're having issues troubleshooting a specific Oracle JET component or toolkit feature, see
Oracle JET Support. Before requesting support, be sure to check the product Release Notes.

A-1

https://www.oracle.com/webfolder/technetwork/jet/index.html?_ojCoreRouter=help
https://www.oracle.com/webfolder/technetwork/jet/index.html?ojr=releasenotes

B
Oracle JET App Migration for Release 17.1.0

If you used Oracle JET tooling to scaffold your app with Oracle JET version 5.x.0 or later, you
can migrate your app manually to version 17.1.0.

Before you migrate your app, be sure to check the Oracle JET Release Notes for any
component, framework, or other change that could impact your app.

Important:

This process is not supported for Oracle JET releases prior to version 5.0.0.

Note:

The Alta theme was deprecated in release 10.0.0 and will be supported through the
12.x releases. In release 13.0.0 and later, Oracle JET will provide "best effort"
support for Alta. No bug fixes or new features will be provided for Alta-only issues.
For more information about Oracle JET's release schedule, see What is the release
schedule for Oracle JET?

The content that described how to use the Alta theme in an Oracle JET app has been
removed from the documentation and it has been removed from the Oracle JET
Cookbook. If you want to refer to the documentation, consult release 11.1.0 of the
documentation that last published Alta Theme in Oracle JET v9.0.0 and Later.

Migrate Redwood-themed Apps from Releases 9.x.0 or Later to
Release 17.1.0

To migrate your Oracle JET app source from version 9.x.0 or later to the latest version 17.1.0,
you must upgrade NPM packages, update theme and library reference paths, and replace the
path_mapping.json file. Additionally, you replace references to the oj-redwood-cssvars*.css
files that introduced CSS variables as a preview feature in JET release 9.0.0. CSS variables
were a production feature in JET release 10.0.0. Finally, you include script injector tokens in
appDirRoot/src/index.html that will automatically be replaced with the required scripts tags
at build time.

Before You Begin:

• Oracle strongly recommends that you audit your app with Oracle JET Audit Framework
(JAF) before any migration. The built-in audit rules provided with JAF will help you to
identify and fix invalid functionality, including deprecated components and APIs. Implement
the audit results with some attention to detail to ensure a successful migration to JET
release 17.1.0.

B-1

https://www.oracle.com/webfolder/technetwork/jet/index.html?ojr=releasenotes
https://www.oracle.com/webfolder/technetwork/jet/index.html?_ojCoreRouter=faq
https://www.oracle.com/webfolder/technetwork/jet/index.html?_ojCoreRouter=faq
https://docs.oracle.com/en/middleware/developer-tools/jet/11.1/develop/alta-theme-oracle-jet-v9.0.0-and-later.html

As Administrator on Windows or using sudo as needed on Macintosh and Linux systems,
enter the following command in a terminal window:

npm install -g @oracle/oraclejet-audit

On your app root, run the following JAF command to initialize the audit of your app.

ojaf --init

In the generated AppRootDir/oraclejafconfig.json file, set the value of the jetVer
property to the release to which you are migrating your app. For example, "jetVer":
"17.1.0".

Run the following command to audit your app and review any issues that the audit
identifies.

ojaf

For more details about JAF, see Initialize Oracle JAF and Run an Audit in Using and
Extending the Oracle JET Audit Framework.

• A maintenance or active long-term support (LTS) version of Node.js is required. Open a
Command Prompt window as an administrator and check your Node.js version.

node -v

If your Node.js version is earlier than the versions listed as maintenance or active LTS on
the Releases page of the Nodejs.org website, download a newer LTS version. Go to the
Nodejs.org website. Under LTS Version (Recommended for Most Users), download the
installer for your system. In the Download dialog box, choose a location for the file and
click Save. Run the downloaded installer as an administrator and follow the steps in the
installation wizard to install Node.js.

One additional caveat is that if you install version 16 or higher of Node.js, change the value
of sassVer in your appRootDir/oraclejetconfig.json file to a version of node-sass that is
compatible with the Node.js version that you have installed. Oracle JET installs the version
of node-sass specified by sassVer when you run the ojet add theming command to use
custom themes in your Oracle JET app. For example, if you installed v16.17.1 of Node.js,
set "sassVer": "7.0.0" in your appRootDir/oraclejetconfig.json file.

• Starting in JET release 9.0.0, apps configured for TypeScript development require a local
installation of the TypeScript library to perform compilation. To ensure that your app, if
configured for TypeScript development, has a local installation, run the following command
from the root of your app.

ojet add typescript

The JET Tooling installs the latest supported version of the TypeScript language: 5.4.5.

To migrate your app:

1. Remove the existing version of the ojet-cli tooling package and install the latest version.

Appendix B
Migrate Redwood-themed Apps from Releases 9.x.0 or Later to Release 17.1.0

B-2

https://nodejs.org/en/about/releases/
https://nodejs.org/en/download/

As Administrator on Windows or using sudo as needed on Macintosh and Linux systems,
enter the following commands in a terminal window:

[sudo] npm uninstall -g ojet-cli
npm install -g @oracle/ojet-cli@~17.1.0

2. Enter the following commands to change to the app’s top-level directory and upgrade local
NPM dependencies:

cd appDir
npm uninstall @oracle/oraclejet @oracle/oraclejet-tooling
npm install @oracle/oraclejet@~17.1.0 @oracle/oraclejet-tooling@~17.1.0 --
save

3. In the app’s src directory, replace any hardcoded references to a previous version.

a. If CSS references to Redwood, similar to the following, appear in the src/index.html
file:

<!-- This is the main css file for the default theme -->
 <!-- injector:theme -->
 <link rel="stylesheet" href="css/libs/oj/v9.0.0/redwood/oj-redwood-
min.css"
 type="text/css"/>
 <!-- endinjector -->

Remove the <link> tag so that only the injector:theme entry remains:

<!-- This is the main css file for the default theme -->
 <!-- injector:theme -->
 <!-- endinjector -->

b. Search for hardcoded references to a previous release version that may appear
in .html and .js files and replace those with the current release version.

4. If present in the src/index.html file, replace the following script tags:

. . .
 <script type="text/javascript" src="js/libs/require/require.js"></
script>
 <script type="text/javascript" src="js/main.js"></script>
 </body>
</html>

With these script tag injector tokens:

 . . .
 <!-- This injects script tags for the main javascript files -->
 <!-- injector:scripts -->
 <!-- endinjector -->
 </body>
</html>

Appendix B
Migrate Redwood-themed Apps from Releases 9.x.0 or Later to Release 17.1.0

B-3

At build time, these tokens will automatically be replaced with the required scripts tags.
During debug builds, the tokens will be replaced with script tags that load the require.js
and main.js files. During release builds, the tokens will be replaced with script tags that
load the require.js and bundle.js files. Because it is no longer used during release
builds, the main.js file will be deleted at the end of the build. This means that if your app
does not use the script tag injector tokens, it will have to include a script tag in the
appRootDir/src/index.html file that loads bundle.js instead of main.js.

5. At a terminal prompt, create a temporary app with the navdrawer template specified to
obtain the files that you will copy to your migrating app.

ojet create tempApp --template=navdrawer

6. Review the entries in the package.json and oraclejetconfig.json files of the temporary
app to ensure that release 17.1.0 of JET does not include new or modified entries that you
should make in the app that you are migrating to release 17.1.0.

In particular, pay attention to the version numbers referenced by the various *Libraries
properties in the oraclejetconfig.json file for optional features that your Oracle JET app
may use. These properties (typescriptLibraries, webpackLibraries,
mochaTestingLibraries, and jestTestingLibraries) reference additional packages that
your Oracle JET app requires if it uses TypeScript, Webpack, or the testing libraries.

7. Update the Oracle JET library configuration paths to reference the 17.1.0 versions of
Oracle libraries by copying the path_mappings.json file from the temporary app.

a. Rename your migrating app’s src/js/path_mapping.json as migrating-
path_mapping.json.

b. Copy tempApp/src/js/path_mapping.json to your migrating app’s src/js directory.

c. If you added any third-party libraries to your app, open path_mapping.json for editing
and add an entry for each library that appears in migrating-path_mapping.json,
copying an existing entry and modifying as needed. The code sample below shows the
addition you might make for a third-party library named my-library.

"libs": {

 "my-library": {
 "cdn": "3rdparty",
 "cwd": "node_modules/my-library/build/output",
 "debug": {
 "src": "my-library.debug.js",
 "path": "libs/my-library/my-library.debug.js",
 "cdnPath": ""
 },
 "release": {
 "src": "my-library.js",
 "path": "libs/my-library/my-library.js",
 "cdnPath": ""
 }
 },
...

8. Update the app script templates by copying from the temporary app.

a. Copy any new script template files from the tempApp/scripts/hooks directory to your
migrating app’s scripts/hooks directory.

Appendix B
Migrate Redwood-themed Apps from Releases 9.x.0 or Later to Release 17.1.0

B-4

b. Copy the hooks.json scripting configuration file from the tempApp/scripts/hooks
directory to your migrating app’s scripts/hooks directory. The updated configuration
file associates any new script template files with their corresponding build system hook
point and allows the Oracle JET CLI to call your scripts.

9. In your app, open the main.js app bootstrap file and verify that it contains the following
code.

a. Verify that the paths property of the requirejs.config definition includes the opening
and closing //injector and //endinjector comments. If the comments were
removed, add them to your requirejs.config() definition, as shown.

 requirejs.config(
 {
 baseUrl: 'js',

 paths:
 /* DO NOT MODIFY
 ** All paths are dynamicaly generated from the
path_mappings.json file.
 ** Add any new library dependencies in path_mappings json file.
 */
 //injector:mainReleasePaths
 {
 ...no need to revise...
 }
 //endinjector
 }
);

When you build or serve the app, the tooling relies on the presence of these injector
comments to inject release-specific library paths in main.js. The updated
path_mapping.json file (from the previous migration step) ensures that the migrated
app has the correct library configuration paths for this release.

b. Verify that any modifications you made to app.loadModule() in your main.js file
appear.

Starting in JET release 9.0.0, app.loadModule() is deprecated and has been removed
from main.js, but your bootstrap code may continue to use the function, for example
to change a path. Because migrating apps created prior to release 9.x.0 rely on
loadModule(), the function should remain in your migrated main.js file, and your
migrated appController.js file should contain the loadModule() definition.

In new apps that you create, starting in JET release 9.0.0, the loadModule()
observable dependency is no longer used to support the deprecated ojRouter for use
with the oj-module element. Starter app templates now use CoreRouter and work with
oj-module though the ModuleRouterAdapter.

c. Remove the private function _ojIsIE11, if it appears in the main.js app bootstrap file.
This function was included previously to detect whether an app was running in the IE11
web browser in order to load the required polyfills and the transpiled to ES5 version of
Oracle JET. Starting in JET release 11.0.0, JET removed support for IE11 and no

Appendix B
Migrate Redwood-themed Apps from Releases 9.x.0 or Later to Release 17.1.0

B-5

longer distributes the polyfills and other resources to run JET apps in the IE11 web
browser. As a result, the _ojIsIE11 function serves no purpose, and can be removed.

(function () {

 function _ojIsIE11() {
 var nAgt = navigator.userAgent;
 return nAgt.indexOf('MSIE') !== -1 || !!nAgt.match(/
Trident.*rv:11./);
 };
 var _ojNeedsES5 = _ojIsIE11();

 requirejs.config(
 {
 ...
 }
);
}());

10. Open the oraclejetconfig.json file in your app root folder and ensure it contains the
following properties and settings for sassVer and defaultTheme. The following example
specifies redwood so that the app uses the Redwood theme. If your app uses a custom
theme, specify the name of the custom theme. For example, "defaultTheme":
"myCustomTheme",

{
 "paths": {
 "source": {
 "common": "src",
 "web": "src-web",
 "hybrid": "src-hybrid",
 "javascript": "js",
 "typescript": "ts",
 "styles": "css",
 "themes": "themes"
 },
 "staging": {
 "web": "web",
 "hybrid": "hybrid",
 "themes": "staged-themes"
 }
 },
 "defaultBrowser": "chrome",
 "sassVer": "8.0.0",
 "defaultTheme": "redwood",
 "typescriptLibraries": "...",
 "webpackLibraries": "...",
 "mochaTestingLibraries": "...",
 "jestTestingLibraries": "...",
 "architecture": "mvvm"
}

If your app uses TypeScript, Webpack or testing libraries, ensure that the *Libraries
properties for these features are up-to-date by reviewing the entries in the temporary app
that you created earlier (./tempApp/oraclejetconfig.json).

Appendix B
Migrate Redwood-themed Apps from Releases 9.x.0 or Later to Release 17.1.0

B-6

11. Test the migration and verify the look and feel.

a. If your app uses a custom theme, you may encounter the following console error
message if you not recompile the custom theme after you update it from the previous
to the current release:
"Your CSS file is incompatible with this version of JET (17.1.0)"

b. To make your custom theme compatible with the new JET version, run ojet add sass
to enable Sass processing.

c. Run ojet build and ojet serve with appropriate options to build and serve the app.

For a list of available options, enter the following command at a terminal prompt in
your app’s top-level directory: ojet help.

If your app uses a custom theme, be sure to include the --theme option to recompile
the CSS:

ojet build [options] --theme=myTheme

To specify multiple custom themes, use:

ojet build [options] --theme=myTheme --themes=myTheme,myTheme1,myTheme2

12. Optional: When you are satisfied that your app has migrated successfully, remove the
temporary app and delete the renamed migrating-path_mapping.json and migrating-
main.js files from your migrated app. Should you find issues, you can re-run the JAF audit
tool for an audit report.

Migrate to the Redwood Theme CSS
Redwood theme is the Oracle JET standard for app look and feel and is available when you
want to migrate your app to the Redwood theme.

If you have an existing app that you want to migrate from the Alta theme, you can migrate to
JET release 17.1.0 and configure the app to run with the Redwood CSS included with Oracle
JET. You obtained the Redwood CSS distribution when you completed the app source
migration process.

Migrating your app's Alta theme to Redwood theme requires making a change at the app level.
You edit the oraclejetconfig.json file to control whether JET Tooling builds with the
Redwood or Alta CSS. With the setting configured, you can rebuild your app and all the pages
will use the appropriate CSS, as specified by the stylesheet injector in your app's index.html
file.

After you set the Redwood theme as the new default and run your app, you will find the look
and feel of your app changes considerably. To adjust to the Redwood theme, you will need to
make manual updates to app layout for new fonts, sizes, and patterns.

CSS variables, which are supported by the Redwood theme, were introduced in the oj-
redwood-cssvars*.css files as a preview feature in JET release 9.0.0. In JET release 10.0.0,
CSS variables became a production feature and are now included in the oj-redwood*.css
files. Replace references to the oj-redwood-cssvars*.css files with references to the oj-
redwood*.css files in your migrated apps. Be aware of this change if you migrated your app to
use the Redwood theme and started to use CSS variables in JET releases prior to release
10.0.0.

Before You Begin:

Appendix B
Migrate to the Redwood Theme CSS

B-7

• Complete migration of your app source files before attempting to migrate to the Redwood
theme. First migrate with the Alta theme preserved and then migrate to the Redwood
theme. This way you can test your app with the Redwood theme and easily revert back to
the Alta theme, if desired. See Migrate Alta-themed Apps from Releases Prior to 8.3.0 to
Release 17.1.0 for details.

• If you use a custom theme, review the Theme Changes section in the release notes and
update your custom theme manually.

Be aware that Sass variables that you may have overridden in an Alta theme will need to
be migrated to CSS variables in the Redwood theme. For more information about
migrating a custom theme, please see About CSS Variables and Custom Themes in
Oracle JET.

• Review app images and consider how you will replace images that belong to the
deprecated Oracle JET framework images library with public domain images, such as
those found on Oracle Apex Universal Theme and on Font Awesome. The Oracle JET
framework image classes are no longer shown in JET Cookbook, starting in release 9.0.0.

To migrate to the Redwood theme CSS:

1. Configure the app to load the Redwood CSS.

Edit the <app_root>/oraclejetconfig.json file and change the property defaultTheme to
redwood.

{
 "paths": {
 ...
 }
 },
 "defaultBrowser": "chrome",
 "sassVer": "8.0.0",
 "defaultTheme": "redwood",
 "architecture": "mvvm"
}

This configures JET Tooling to inject oj-redwood-min.css into the stylesheet link in your
app's index.html file.

2. Test the migration and verify the look and feel.

Run ojet build and ojet serve with appropriate options to build and serve the app.

For a list of available options, enter the following command at a terminal prompt in your
app’s top level directory: ojet help.

If your app uses a custom theme, be sure to include the --theme option to regenerate the
CSS:

ojet build [options] --theme=myTheme

To specify multiple custom themes, use:

ojet build [options] --theme=myTheme --themes=myTheme,myTheme1,myTheme2

Appendix B
Migrate to the Redwood Theme CSS

B-8

https://www.oracle.com/webfolder/technetwork/jet/index.html?_ojCoreRouter=releasenotes#themeChanges
https://apex.oracle.com/pls/apex/f?p=42:icons
https://fontawesome.com/icons?d=gallery

Migrate Alta-themed Apps from Releases Prior to 8.3.0 to
Release 17.1.0

To migrate your Oracle JET app source from version 5.x.0 through version 8.3.0 to the latest
version 17.1.0, you must upgrade npm packages, update theme and library reference paths,
and replace the path_mapping.json file. Additionally, you must update the
oraclejetconfig.json file to enable Alta CSS support in JET release 17.1.0. Migration to the
Redwood CSS theme, if desired, should be performed only after successful migration of the
app source has been verified. Finally, you include script injector tokens in appDirRoot/src/
index.html that will automatically be replaced with the required scripts tags at build time.

Before You Begin:

• Due to potential incompatibilities with releases prior to JET version 9.0.0, Oracle strongly
recommends that you audit your app with Oracle JET Audit Framework (JAF). The built-in
audit rules provided with JAF will help you to identify and fix invalid functionality, including
deprecated components and APIs. Implement the audit results with some attention to
detail to ensure a successful migration to JET release 17.1.0.

As Administrator on Windows or using sudo as needed on Macintosh and Linux systems,
enter the following command in a terminal window:

npm install -g @oracle/oraclejet-audit

On your app root, run the following JAF command to initialize the audit of your app.

ojaf --init

In the generated AppRootDir/oraclejafconfig.json file, set the value of the jetVer
property to the release to which you are migrating your app. For example, "jetVer":
"17.1.0".

Run the following command to audit your app and review any issues that the audit
identifies.

ojaf

For more details about JAF, see Initialize Oracle JAF and Run an Audit in Using and
Extending the Oracle JET Audit Framework.

• A maintenance or active long-term support (LTS) version of Node.js is required. Open a
Command Prompt window as an administrator and check your Node.js version.

node -v

If your Node.js version is earlier than the versions listed as maintenance or active LTS on
the Releases page of the Nodejs.org website, download a newer LTS version. Go to the
Nodejs.org website. Under LTS Version (Recommended for Most Users), download the
installer for your system. In the Download dialog box, choose a location for the file and
click Save. Run the downloaded installer as an administrator and follow the steps in the
installation wizard to install Node.js.

Appendix B
Migrate Alta-themed Apps from Releases Prior to 8.3.0 to Release 17.1.0

B-9

https://nodejs.org/en/about/releases/
https://nodejs.org/en/download/

One additional caveat is that if you install version 16 or higher of Node.js, change the value
of sassVer in your appRootDir/oraclejetconfig.json file to a version of node-sass that is
compatible with the Node.js version that you have installed. Oracle JET installs the version
of node-sass specified by sassVer when you run the ojet add theming command to use
custom themes in your Oracle JET app. For example, if you installed v16.17.1 of Node.js,
set "sassVer": "7.0.0" in your appRootDir/oraclejetconfig.json file.

• Starting in JET release 9.0.0, apps configured for TypeScript development require a local
installation of the TypeScript library to perform compilation. To ensure that your app, if
configured for TypeScript development, has a local installation, run the following command
from the root of your app.

ojet add typescript

The JET Tooling installs the latest supported version of the TypeScript language: 5.4.5.

To migrate your app:

1. Remove the existing version of the ojet-cli tooling package and install the latest version.

As Administrator on Windows or using sudo as needed on Macintosh and Linux systems,
enter the following commands in a terminal window:

[sudo] npm uninstall -g ojet-cli
npm install -g @oracle/ojet-cli@~17.1.0

2. Enter the following commands to change to the app’s top level directory and upgrade local
npm dependencies:

cd appDir
npm uninstall @oracle/oraclejet @oracle/oraclejet-tooling
npm install @oracle/oraclejet@~17.1.0 @oracle/oraclejet-tooling@~17.1.0 --
save

3. In the app’s src directory, replace any hardcoded references to a previous version.

a. Edit the src/index.html file and replace the existing CSS reference with version
v17.1.0.

<link rel="stylesheet" href="css/libs/oj/v17.1.0/alta/oj-alta-min.css"
id="css" />

b. Search for other hardcoded references to a previous release version that may appear
in .html and .js files and replace those with the current release version.

4. If present in the src/index.html file, replace the following script tags:

. . .
 <script type="text/javascript" src="js/libs/require/require.js"></
script>
 <script type="text/javascript" src="js/main.js"></script>
 </body>
</html>

Appendix B
Migrate Alta-themed Apps from Releases Prior to 8.3.0 to Release 17.1.0

B-10

With these script tag injector tokens:

 . . .
 <!-- This injects script tags for the main javascript files -->
 <!-- injector:scripts -->
 <!-- endinjector -->
 </body>
</html>

At build time, these tokens will automatically be replaced with the required scripts tags.
During debug builds, the tokens will be replaced with script tags that load the require.js
and main.js files. During release builds, the tokens will be replaced with script tags that
load the require.js and bundle.js files. Because it is no longer used during release
builds, the main.js file will be deleted at the end of the build. This means that if your app
does not use the script tag injector tokens, it will have to include a script tag in the
appRootDir/src/index.html file that loads bundle.js instead of main.js.

5. At a terminal prompt, create a temporary app with the navdrawer template specified to
obtain the files that you will copy to your migrating app.

ojet create tempApp --template=navdrawer

6. Review the entries in the package.json and oraclejetconfig.json files of the temporary
app to ensure that release 17.1.0 of JET does not include new or modified entries that you
should make in the app that you are migrating to release 17.1.0.

In particular, pay attention to the version numbers referenced by the various *Libraries
properties in the oraclejetconfig.json file for optional features that your Oracle JET app
may use. These properties (typescriptLibraries, webpackLibraries,
mochaTestingLibraries, and jestTestingLibraries) reference additional packages that
your Oracle JET app requires if it uses TypeScript, Webpack, or the testing libraries.

7. Update the Oracle JET library configuration paths to reference the 17.1.0 versions of
Oracle libraries by copying the path_mappings.json file from the temporary app.

a. Rename your migrating app’s src/js/path_mapping.json as migrating-
path_mapping.json.

b. Copy tempApp/src/js/path_mapping.json to your migrating app’s src/js directory.

c. If you added any third-party libraries to your app, open path_mapping.json for editing
and add an entry for each library that appears in migrating-path_mapping.json,
copying an existing entry and modifying as needed. The code sample below shows the
addition you might make for a third-party library named my-library.

"libs": {

 "my-library": {
 "cdn": "3rdparty",
 "cwd": "node_modules/my-library/build/output",
 "debug": {
 "src": "my-library.debug.js",
 "path": "libs/my-library/my-library.debug.js",
 "cdnPath": ""
 },
 "release": {
 "src": "my-library.js",

Appendix B
Migrate Alta-themed Apps from Releases Prior to 8.3.0 to Release 17.1.0

B-11

 "path": "libs/my-library/my-library.js",
 "cdnPath": ""
 }
 },
...

8. Update the app script templates by copying from the temporary app.

a. Copy any new script template files from the tempApp/scripts/hooks directory to your
migrating app’s scripts/hooks directory.

b. Copy the hooks.json scripting configuration file from the tempApp/scripts/hooks
directory to your migrating app’s scripts/hooks directory. The updated configuration
file associates any new script template files with their corresponding build system hook
point and allows the Oracle JET CLI to call your scripts.

9. In your app, open the main.js app bootstrap file and verify that it contains the following
code.

a. Verify that the paths property of the requirejs.config definition includes the opening
and closing //injector and //endinjector comments. If the comments were
removed, add them to your requirejs.config() definition, as shown.

 requirejs.config(
 {
 baseUrl: 'js',

 paths:
 /* DO NOT MODIFY
 ** All paths are dynamicaly generated from the
path_mappings.json file.
 ** Add any new library dependencies in path_mappings json file.
 */
 //injector:mainReleasePaths
 {
 ...no need to revise...
 }
 //endinjector
 }
);

When you build or serve the app, the tooling relies on the presence of these injector
comments to inject release-specific library paths in main.js. The updated
path_mapping.json file (from the previous migration step) ensures that the migrated
app has the correct library configuration paths for this release.

b. Verify that any modifications you made to app.loadModule() in your main.js file
appear.

Starting in JET release 9.0.0, app.loadModule() is deprecated and has been removed
from main.js, but your bootstrap code may continue to use the function, for example
to change a path. Because migrating apps rely on loadModule(), the function should
remain in your migrated main.js file, and your migrated appController.js file should
contain the loadModule() definition.

In new apps that you create, starting in JET release 9.0.0, the loadModule()
observable dependency is no longer used to support the deprecated ojRouter for use

Appendix B
Migrate Alta-themed Apps from Releases Prior to 8.3.0 to Release 17.1.0

B-12

with the oj-module element. Starter app templates now use CoreRouter and work with
oj-module though the ModuleRouterAdapter.

c. Remove the private function _ojIsIE11, if it appears in the main.js app bootstrap file.
This function was included previously to detect whether an app was running in the IE11
web browser in order to load the required polyfills and the transpiled to ES5 version of
Oracle JET. Starting in JET release 11.0.0, JET removed support for IE11 and no
longer distributes the polyfills and other resources to run JET apps in the IE11 web
browser. As a result, the _ojIsIE11 function serves no purpose, and can be removed.

(function () {

 function _ojIsIE11() {
 var nAgt = navigator.userAgent;
 return nAgt.indexOf('MSIE') !== -1 || !!nAgt.match(/
Trident.*rv:11./);
 };
 var _ojNeedsES5 = _ojIsIE11();

 requirejs.config(
 {
 ...
 }
);
}());

10. Open the oraclejetconfig.json file in your app root folder and ensure it contains the
following properties and settings for sassVer and defaultTheme. If your app uses a
custom theme, specify the name of the custom theme instead. For example,
"defaultTheme": "myCustomTheme",

{
 "paths": {
 "source": {
 "common": "src",
 "web": "src-web",
 "hybrid": "src-hybrid",
 "javascript": "js",
 "typescript": "ts",
 "styles": "css",
 "themes": "themes"
 },
 "staging": {
 "web": "web",
 "hybrid": "hybrid",
 "themes": "staged-themes"
 }
 },
 "defaultBrowser": "chrome",
 "sassVer": "8.0.0",
 "defaultTheme": "alta",
 "typescriptLibraries": "...",
 "webpackLibraries": "...",
 "mochaTestingLibraries": "...",
 "jestTestingLibraries": "...",

Appendix B
Migrate Alta-themed Apps from Releases Prior to 8.3.0 to Release 17.1.0

B-13

 "architecture": "mvvm"
}

The setting "defaultTheme": "alta" enables your app to migrate and remain on the Alta
theme. This property supports migrating to the Redwood theme in a later migration
process. If your app uses a custom theme, specify the name of the custom theme instead.
For example, "defaultTheme": "myCustomTheme",
If your app uses TypeScript, Webpack or testing libraries, ensure that the *Libraries
properties for these features are up-to-date by reviewing the entries in the temporary app
that you created earlier (./tempApp/oraclejetconfig.json).

11. Test the migration and verify the look and feel.

a. If your app uses a custom theme, run ojet add sass to enable Sass processing.

b. Run ojet build and ojet serve with appropriate options to build and serve the app.

For a list of available options, enter the following command at a terminal prompt in
your app’s top level directory: ojet help.

If your app uses a custom theme, be sure to include the --theme option to regenerate
the CSS:

ojet build [options] --theme=myTheme

To specify multiple custom themes, use:

ojet build [options] --theme=myTheme --themes=myTheme,myTheme1,myTheme2

12. Optional: When you are satisfied that your app has migrated successfully, remove the
temporary app and delete the renamed migrating-path_mapping.json and migrating-
main.js files from your migrated app. Should you find issues, you can re-run the JAF audit
tool for an audit report.

After you migrate your app and ensure it runs with the Alta theme, you can follow an additional,
separate process to migrate to the Redwood theme, as described in Migrate to the Redwood
Theme CSS.

Appendix B
Migrate Alta-themed Apps from Releases Prior to 8.3.0 to Release 17.1.0

B-14

C
Oracle JET References

Oracle JET includes third-party libraries and tools that are referenced throughout the guide.
Oracle also provides optional tools and libraries to assist with app development.

Oracle Libraries and Tools
Oracle provides optional tools and libraries to use in conjunction with Oracle JET. Use this
reference to locate additional information about the Oracle products referenced throughout the
guide.

Name Description Additional Information

Voluntary Product
Accessibility Template
(VPAT)

Documentation of Oracle’s degree of conformance with
applicable accessibility standards

Voluntary Product
Accessibility Template
(VPAT)

CSS Variable Theme Builder An interactive demo app that you can use to try out custom
Redwood themes by downloading the sample app.

CSS Variable Theme Builder

Third-Party Libraries and Tools
Use this reference to locate additional information about the third-party libraries and tools used
by Oracle JET and referenced throughout the guide.

Name Description Additional Information

Third-party licenses A list of the third party libraries that Oracle JET uses
can be obtained in the THIRDPARTYLICENSE.txt file
that Oracle JET includes with its distribution.

https://github.com/oracle/oraclejet/blob/
master/THIRDPARTYLICENSE.txt

Chai An assertion library for NodeJS and the browser. https://www.chaijs.com/

CSS (Cascading Style
Sheets)

Used for adding style to web apps http://www.w3.org/Style/CSS

HTML (Hypertext Markup
Language)

Core language of the World Wide Web http://www.w3.org/TR/html5

JavaScript Scripting language used in client-side apps https://developer.mozilla.org/en-US/
docs/Web/JavaScript/About_JavaScript

Jest A testing framework that you can use to test Oracle
JET VComponent-based web components.

https://jestjs.io/

jQuery JavaScript library designed for HTML document
traversal and manipulation, event handling, animation,
and Ajax

http://jquery.com

jQuery UI JavaScript library built on top of jQuery for UI
development. Oracle JET includes the UI Core
download only.

http://www.jqueryui.com

Karma Test runner that runs the code against code browsers. https://karma-runner.github.io/latest/
index.html

Knockout JavaScript library used for two-way data binding http://www.knockoutjs.com

C-1

https://www.oracle.com/us/corporate/accessibility/index.html
https://www.oracle.com/us/corporate/accessibility/index.html
https://www.oracle.com/us/corporate/accessibility/index.html
https://www.oracle.com/webfolder/technetwork/jet/public_samples/JET-Theme-Builder-CSS-Vars/public_html/index.html
https://github.com/oracle/oraclejet/blob/master/THIRDPARTYLICENSE.txt
https://github.com/oracle/oraclejet/blob/master/THIRDPARTYLICENSE.txt
https://www.chaijs.com/
http://www.w3.org/Style/CSS
http://www.w3.org/TR/html5
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://jestjs.io/
http://jquery.com
http://www.jqueryui.com
https://karma-runner.github.io/latest/index.html
https://karma-runner.github.io/latest/index.html
http://www.knockoutjs.com

Name Description Additional Information

Mocha Test framework running on Node.js and in the
browser, making asynchronous.

https://mochajs.org/

Node.js Open source, cross-platform runtime environment for
developing server-side web apps, used by Oracle JET
for package management.

https://nodejs.org

Preact The JavaScript library that Oracle JET uses to
manage the virtual DOM and update the live DOM of
apps and web components that you develop using
Oracle JET.

https://preactjs.com/

proj4js JavaScript library designed for transforming point
coordinates from one coordinate system to another,
including datum transformations.

http://proj4js.org/

RequireJS JavaScript file and module loader used for managing
library references and lazy loading of resources

http://www.requirejs.org

RequireJS CSS RequireJS CSS plugin that allows to load CSS files. http://requirejs.org/docs/faq-
advanced.html

Selenium WebDriver A tool that drives a browser natively, as a real user
would, either locally or on remote machines, to
automate web app testing.

http://docs.seleniumhq.org/projects/
webdriver

TypeScript A strongly typed programming language that builds
on JavaScript.

https://www.typescriptlang.org/

Visual Studio Code Microsoft Integrated Development Environment (IDE)
with available Oracle JET Core Components
extension for app development.

https://marketplace.visualstudio.com/
items?itemName=Oracle.oracle-jet-core

Appendix C
Third-Party Libraries and Tools

C-2

https://mochajs.org/
https://nodejs.org/
https://preactjs.com/
http://proj4js.org/
http://www.requirejs.org
http://requirejs.org/docs/faq-advanced.html
http://requirejs.org/docs/faq-advanced.html
http://docs.seleniumhq.org/projects/webdriver
http://docs.seleniumhq.org/projects/webdriver
https://www.typescriptlang.org/
https://marketplace.visualstudio.com/items?itemName=Oracle.oracle-jet-core
https://marketplace.visualstudio.com/items?itemName=Oracle.oracle-jet-core

D
Properties in the oraclejetconfig.json File

The oraclejetconfig.json file supports a range of properties that you can configure to
determine the behavior of your Oracle JET project.

Note:

Where Property is <prop>.<subprop> it indicates that <subprop> is a subproperty of
<prop>. For example, paths.components means "paths": { "components":
"value" }.

Table D-1 Properties in the oraclejetconfig.json File

Property Value
Type

Valid Values Default Notes

architecture String mvvm or vdom mvvm Type of app architecture.

components Object component
name/version
value pairs

Component name/version value pairs for components to
be restored from the component exchange upon ojet
restore. Similar format to a package.json. For
example:

"components": { "oj-doceg-double-picker":
"^2.0.0" }

bundleName String simple file
name with a .JS
extension

bundle.js Allows an override of the default name used for an
optimized app.

bundler String webpack |
<any>

In release 11.0.0, JET introduced bundler-only support
for Webpack. If webpack was specified as the value for
the bundler property, the before_webpack hook was
used to bundle the app. Otherwise, the
before_optimize hook managed the RequireJS-
based app bundling. Webpack-based bundler applied
only to the app bundling. Custom component
optimization continued to use RequireJS-based
bundling, and could be configured with the
before_component_optimize hook.

In release 12.0.0, JET introduced end-to-end Webpack
support. With the --webpack argument in an ojet
create command, Oracle JET creates an
ojet.config.js file where you configure Webpack
usage. No bundler property is configured in the
oraclejetconfig.json file.

defaultBrowser String browser name chrome Sent to Apache Cordova when serving hybrid mobile
apps as --target when the destination is browser.

defaultTheme String redwood,
redwood-notag,
stable

redwood Name of theme to use as the default in the app.

D-1

Table D-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value
Type

Valid Values Default Notes

dependencies Object component
name/object or
version number
pairs

Names of potential component or pack dependencies
used to check whether certain pre-minified components
should be excluded from the ojet build --release
bundling process. For example:

"dependencies": { "oj-pack-comp":
{ "version": "2.0.0"} }
Or

"oj-comp": "2.0.0"
exchange-url String URL Component exchange instance for publishing

components. For example:

https://exchange.url.com/api/0.2.0

Note:

This setting can also be
inherited (if not present)
from a global value
defined through ojet
configure --
exchange-url=<addr>
--global which will be
stored centrally (for
example, .ojet/
exchange-url.json)

generatorVersion String Oracle JET CLI
version

Deprecated. Historical information about the version of
JET that was first used to create the project. Not used
by the CLI.

installer String yarn or npm npm If specified, an alternate installer to run instead of the
default npm for npm install type commands.

localComponents
Support

boolean true/false Indicates whether the component exchange backend
supports the local components extension. The value
will be recorded by the CLI in oraclejetconfig.json.
If a user wants to opt out of the local components
support, they can set this value to false deliberately.

Appendix D

D-2

Table D-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value
Type

Valid Values Default Notes

paths.components String path jet-composites Path where locally-created components are stored
relative to a root that is dependent on the scaffolded
project type:

1. Project created with --vdom or --
template=basic-vdom template. Root will be
src/ .

2. Project created with --typescript. Root will be
src/ts/ .

3. Default project. Root will be src/js.

Note:

In a a project created with
the vdom basic template
or --vdom option, this
value will be pre-set to just
components rather than
the default jet-
composites.

paths.exchangeCo
mponents

String path exchange_compo
nents

Folder where components added from the exchange are
stored for new virtual DOM apps. Non-virtual DOM apps
(MVVM) use the older jet_components when this is
not set. This path must be a simple folder name which
will be created in the root of the project as a peer of the
src/ folder.

paths.source.com
mon

String path src Simple folder name relative to the project root. A folder
hierarchy cannot be used here. Other settings such as
paths.components will be relative to this location.

paths.source.hybri
d

String path src-hybrid Simple folder name relative to the project root. A folder
hierarchy cannot be used here.

paths.source.javas
cript

String path js Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here. Other settings
such as paths.components may be relative to this
location in the relevant project type.

paths.source.style
s

String path css Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here.

paths.source.them
es

String path themes Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here.

paths.source.tsco
nfig

String path If specified, this subproperty enables the relocation of
the tsconfig.json file from its default location at the
app root. Simple folder name relative to the defined src
folder. A folder hierarchy cannot be used here.

paths.source.type
script

String path ts Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here. Other settings
such as paths.components may be relative to this
location in the relevant project type.

Appendix D

D-3

Table D-1 (Cont.) Properties in the oraclejetconfig.json File

Property Value
Type

Valid Values Default Notes

paths.source.web String path src-web Simple folder name relative to the defined src folder. A
folder hierarchy cannot be used here.

paths.staging.hybr
id

String path hybrid Path where the hybrid build products are generated.

paths.staging.the
mes

String path staged-themes Path where themes are staged.

paths.staging.web String path web Path where the web build products are generated.

sassVer String semver-style
version number

5.0.0 node-sass npm package version that will be installed if
sass is added

stripList Array of
strings

path strings List of .gitignore-style paths to strip when ojet
strip is executed. This bypasses the list in
the .gitignore file.

unversioned boolean true/false false When true, Oracle JET generates components in a
directory path without the component version number
when you run ojet build or ojet serve. For
example:

appRootDir/web/ts/jet-composites/my-cca-
component-pack/my-widget-1
Without the unversioned property or with
"unversioned": false (the default), the output path
is:

appRootDir/web/ts/jet-composites/1.0.0/my-
cca-component-pack/my-widget-1
The unversioned entry in the
oraclejetconfig.json file takes precedence over
the Oracle JET command-line argument (--omit-
component-version). That is, if the
oraclejetconfig.json file includes
"unversioned": false (include component version
number in the directory path) and you build your Oracle
JET app using the following command, Oracle JET
includes the component version in the generated
directory path:

ojet build --omit-component-version
watchInterval String Number of

milliseconds
1000 Configure the interval at which the live reload feature

polls the Oracle JET project for updates by configuring a
value for this property. The default value is 1000
milliseconds.

Appendix D

D-4

E
Oracle JET CLI API for CI/CD

Oracle JET provides a public, programmatic API for the Oracle JET CLI.
This API enables execution of the following tasks in CI/CD pipelines, such as the pipelines
provided by Oracle Visual Builder Studio.

Note:

In most circumstances calling the Oracle JET CLI as a shell task in the pipeline
should provide sufficient functionality, but this API is available for advanced use
cases.

1. ojet build
2. ojet restore
3. ojet strip
4. ojet package
5. ojet publish
You create a new instance of the API as follows:

const Ojet = require("@oracle/ojet-cli");
const ojet = new Ojet({ cwd: "path/to/invoke/ojet/from" });

Note:

Use npm link @oracle/ojet-cli from your project if you are using a globally-
installed Oracle JET CLI (npm install -g @oracle/ojet-cli).

The following options are supported when you create a new instance of the API.

Option Type Description

cwd string Path from where you invoke the
Oracle JET CLI.

logs boolean Controls ojet logging.

Properties

Name Type Description

version string Version of @oracle/ojet-cli

E-1

Method
The Oracle JET CLI API for CI/CD pipelines exposes one method, execute, that executes a
CLI task and returns a promise which resolves to undefined on success and failure. The
execute method supports the following options.

Option Type Description

task "build" | "restore" | "strip" | "package"
| "publish"

Name of the task to execute.

scope "app" | "component" | "pack" Scope of the task to execute.

parameters string[] Parameters of the task to execute.

options object Options to execute the task with.

Examples

Example Code

ojet build
try {
 await ojet.execute({ task: "build" });
} catch {}

ojet build --release
try {
 await ojet.execute({
 task: "build",
 options: {
 release: true
 }
 });
} catch {}

ojet restore
try {
 await ojet.execute({ task: "restore" });
} catch {}

ojet strip
try {
 await ojet.execute({ task: "strip" });
} catch {}

Appendix E
Method

E-2

Example Code

ojet package component <component>
try {
 await ojet.execute({
 task: "package",
 scope: "component"
 parameters: ["<component>"]
 options: {
 "pack": "<pack>"
 }
 });
} catch {}

ojet package pack <pack>
try {
 await ojet.execute({
 task: "package",
 scope: "pack"
 parameters: ["<pack>"]
 });
} catch {}

ojet publish component <component> --
username=<username> --password=<password> --
secure=<true|false> --path=<path>

try {
 await ojet.execute({
 task: "publish",
 scope: "component"
 parameters: ["<component>"],
 options: {
 username: "<username>",
 password: "<password>",
 secure: <true|false>,
 path: "<path>
 }
 });
} catch {}

Appendix E
Examples

E-3

Example Code

ojet publish pack <pack> --username=<username>
--password=<password> --secure=<true|false> try {

 await ojet.execute({
 task: "publish",
 scope: "pack"
 parameters: ["<pack>"],
 options: {
 username: "<username>",
 password: "<password>",
 secure: <true|false>
 }
 });
} catch {}

Appendix E
Examples

E-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Get Started with Oracle JavaScript Extension Toolkit (JET)
	The Oracle JET Model-View-ViewModel Architecture
	What's Included in Oracle JET
	Third Party Libraries Used by Oracle JET
	Create a Development Environment for Oracle JET
	Choose a Development Editor
	Install Oracle JET Tooling
	Install Node.js
	Use the npx Node.js Package Runner
	Install the Oracle JET Command-Line Interface
	Yarn Package Manager
	Configure Oracle JET Apps for TypeScript Development

	Work with the Oracle JET Starter Templates
	About the Starter Templates
	About Modifying Starter Templates
	Modify Starter Template Content

	Work with the Oracle JET Cookbook
	Optimize App Startup Using Oracle CDN and Oracle JET Libraries

	2 Understand the Web App Workflow
	Scaffold a Web App
	About ojet create Command Options for Web Apps
	About Scaffolding a Web App
	About the Web App File Structure
	Modify the Web App’s File Structure
	Add Progressive Web App Support to Web Apps

	Build a Web App
	About ojet build Command Options for Web Apps

	Serve a Web App
	About ojet serve Command Options and Express Middleware Functions
	Serve a Web App to a HTTPS Server Using a Self-signed Certificate
	Serve a Web App Using Path-based Routing

	Customize the Web App Tooling Workflow
	About the Script Hook Points for Web Apps
	About the Process Flow of Script Hook Points
	Change the Hooks Subfolder Location
	Create a Hook Script for Web Apps
	Pass Arguments to a Hook Script for Web Apps

	Use Webpack in Oracle JET App Development
	Configure Oracle JET's Default Webpack Configuration

	3 Design Responsive Apps
	Oracle JET and Responsive Design
	Media Queries
	Oracle JET Flex, Grid, Form, and Responsive Helper Class Naming Convention
	Oracle JET Flex Layouts
	About Modifying the flex Property
	About Wrapping Content with Flex Layouts
	About Customizing Flex Layouts

	Oracle JET Grids
	About the Grid System
	The Grid System and Printing
	Grid Convenience Classes

	Responsive Form Layouts
	Add Responsive Design to Your App
	Use Responsive JavaScript
	The Responsive JavaScript Classes
	Change a Custom Element’s Attribute Based on Screen Size
	Conditionally Load Content Based on Screen Size
	Create Responsive Images

	Use the Responsive Helper Classes
	Create Responsive CSS Images
	Change Default Font Size
	Change Default Font Size Across the App
	Change Default Font Size Based on Device Type

	Control the Size and Generation of the CSS

	4 Use RequireJS for Modular Development
	About Oracle JET and RequireJS
	About Oracle JET Module Organization
	About RequireJS in an Oracle JET App

	Use RequireJS in an Oracle JET App
	Add Third-Party Tools or Libraries to Your Oracle JET App
	Troubleshoot the Addition of Third-Party Tools and Libraries
	Troubleshoot RequireJS in an Oracle JET App
	About JavaScript Partitions and RequireJS in an Oracle JET App

	5 Create Single-Page Apps
	Design Single-Page Apps Using Oracle JET
	Understand Oracle JET Support for Single-Page Apps
	Create a Single-Page App in Oracle JET

	Use the oj-module Element
	Work with oj-module’s ViewModel Lifecycle

	6 Understand Oracle JET User Interface Basics
	About the Oracle JET User Interface
	Identify Oracle JET UI Components, Patterns, and Utilities
	About Common Functionality in Oracle JET Components
	About Oracle JET Reserved Namespaces and Prefixes

	About Binding and Control Flow
	Use oj-bind-text to Bind Text Nodes
	Bind HTML Attributes
	Use oj-bind-if to Process Conditionals
	Use oj-bind-for-each to Process Loop Instructions
	Bind Style Properties
	Bind Event Listeners to JET and HTML Elements
	Bind Classes

	Add an Oracle JET Component to Your Page
	Add Animation Effects
	Manage the Visibility of Added Component

	7 Work with Oracle JET User Interface Components
	About Oracle JET User Interface Components
	Work with Collections
	Choose a Table, Data Grid, or List View
	About DataProvider Filter Operators

	Work with Controls
	Work with Forms
	Work with Layout and Navigation
	Work with Visualizations
	Choose a Data Visualization Component for Your App
	Use Attribute Groups With Data Visualization Components

	8 Work with Oracle JET Web Components
	Design Custom Web Components
	About Web Components
	Web Component Files
	Web Component Slotting
	Web Component Template Slots
	Web Component Events
	Web Component Examples

	Best Practices for Web Component Creation
	Recommended Standard Patterns and Coding Practices
	CSS and Theming Standards
	Version Numbering Standards

	Create Web Components
	Create Standalone Web Components
	Create JET Packs
	Create Resource Components for JET Packs
	Create Reference Components for Web Components

	Theme Web Components
	About Web Component Theming
	Guidelines for Web Component Theming
	Theme a Web Component
	Consolidate CSS for JET Packs
	Optimize CSS to Allow Consuming Apps to Provide Styles
	Incorporate Themed Components into a Consuming App

	Test Web Components
	Add Web Components to Your Page
	Build Web Components
	Generate API Documentation for VComponent-based Web Components
	Package Web Components
	Create a Project to Host a Shared Oracle Component Exchange
	Publish Web Components to Oracle Component Exchange
	Upload and Consume Web Components on a CDN

	9 Use Oracle JET REST Data Provider APIs
	About the Oracle JET REST Data Provider
	About the Oracle JET REST Tree Data Provider
	Create a CRUD App Using Oracle JET REST Data Providers
	Define the Data Model for REST Data Provider
	Read Records
	Create Records
	Update Records
	Delete Records

	10 Validate and Convert Input
	About Oracle JET Validators and Converters
	About Validators
	About the Oracle JET Validators
	About Oracle JET Component Validation Attributes
	About Oracle JET Component Validation Methods

	About Converters
	About Oracle JET Component Converter Options

	About Oracle JET Converters
	Use Oracle JET Converters with Oracle JET Components
	About Oracle JET Converters Lenient Parsing
	Understand Time Zone Support in Oracle JET
	Use Custom Converters in Oracle JET
	Use Oracle JET Converters Without Oracle JET Components

	About Oracle JET Validators
	Use Oracle JET Validators with Oracle JET Components
	Use Custom Validators in Oracle JET
	About Asynchronous Validators

	11 Work with User Assistance
	Understand Oracle JET's Messaging APIs on Editable Components
	About Oracle JET Editable Component Messaging Attributes
	About Oracle JET Component Messaging Methods

	Understand How Validation and Messaging Works in Oracle JET Editable Components
	Understand How an Oracle JET Editable Component Performs Normal Validation
	About the Normal Validation Process When User Changes Value of an Editable Component
	About the Normal Validation Process When Validate() is Called on Editable Component

	Understand How an Oracle JET Editable Component Performs Deferred Validation
	About the Deferred Validation Process When an Oracle JET Editable Component is Created
	About the Deferred Validation Process When value Property is Changed Programmatically

	Use Oracle JET Messaging
	Notify an Oracle JET Editable Component of Business Validation Errors
	Use the messages-custom Attribute
	Use the showMessages() Method on Editable Components

	Understand the oj-validation-group Component
	Track the Validity of a Group of Editable Components Using oj-validation-group

	Create Page and Section Level Messaging

	Configure an Editable Component's oj-label Help Attribute
	Configure an Editable Component's help.instruction Attribute
	Control the Display of Hints, Help, and Messages

	12 Develop Accessible Oracle JET Apps
	About Oracle JET and Accessibility
	About the Accessibility Features of Oracle JET Components
	Create Accessible Oracle JET Pages
	Configure WAI-ARIA Landmarks
	Configure High Contrast Mode
	Understand Color and Background Image Limitations in High Contrast Mode
	Add High Contrast Mode to Your Oracle JET App
	Add High Contrast Images or Icon Fonts
	Test High Contrast Mode

	Hide Screen Reader Content
	Use ARIA Live Region

	13 Internationalize and Localize Oracle JET Apps
	About Internationalizing and Localizing Oracle JET Apps
	Internationalize and Localize Oracle JET Apps
	Use Oracle JET's Internationalization and Localization Support
	Enable Bidirectional (BiDi) Support in Oracle JET
	Set the Locale and Direction Dynamically
	Work with Currency, Dates, Time, and Numbers

	Work with Oracle JET Translation Bundles
	About Oracle JET Translation Bundles
	Add Translation Bundles to Oracle JET

	14 Use CSS and Themes in Oracle JET Apps
	About the Redwood Theme Included with Oracle JET
	CSS Files Included with the Redwood Theme
	Create an App with the Redwood Theme
	Adjust the Scale of the Redwood Theme
	Best Practices for Using CSS and Themes
	DOCTYPE Requirement
	Set the Text Direction

	Work with Images
	Image Considerations
	Icon Font Considerations

	Work with Custom Themes and Component Styles
	About CSS Variables and Custom Themes in Oracle JET
	Add Custom Theme Support with the JET CLI
	Modify the Custom Theme with the JET CLI
	Modify the Custom Theme with Theme Builder
	Optimize the CSS in a Custom Theme
	Style Component Instances with CSS Variables
	Disable JET Styling of Base HTML Tags

	15 Secure Oracle JET Apps
	About Securing Oracle JET Apps
	Oracle JET Components and Security
	Oracle JET Security and Developer Responsibilities
	Oracle JET Security Features
	Oracle JET Secure Response Headers
	Content Security Policy Headers

	Use OAuth in Your Oracle JET App
	Initialize OAuth
	Verify OAuth Initialization
	Obtain the OAuth Header

	About Cross-Origin Resource Sharing (CORS)

	16 Configure Data Cache and Offline Support
	About the Oracle Offline Persistence Toolkit
	Install the Offline Persistence Toolkit

	17 Optimize Performance of Oracle JET Apps
	About Performance and Oracle JET Apps
	Add Performance Optimization to an Oracle JET App
	About Configuring the App for Oracle CDN Optimization
	Configure Bundled Loading of Libraries and Modules
	Configure Individual Loading of Libraries and Modules

	Understand the Path Mapping Script File and Configuration Options
	Work with Libraries and Modules on Content Delivery Networks

	18 Audit Oracle JET App Files
	19 Test and Debug Oracle JET Apps
	Test Oracle JET Apps
	Testing Types
	Composite Component Unit Testing
	About the Oracle JET Testing Technology Stack
	Configure Oracle JET Apps for Testing
	Use BusyContext API in Automated Testing

	Debug Oracle JET Apps
	Debug Web Apps

	20 Package and Deploy Oracle JET Apps
	Package Web Apps
	Deploy Web Apps
	Remove and Restore Non-Source Files from Your JET App

	A Troubleshooting
	B Oracle JET App Migration for Release 17.1.0
	Migrate Redwood-themed Apps from Releases 9.x.0 or Later to Release 17.1.0
	Migrate to the Redwood Theme CSS
	Migrate Alta-themed Apps from Releases Prior to 8.3.0 to Release 17.1.0

	C Oracle JET References
	Oracle Libraries and Tools
	Third-Party Libraries and Tools

	D Properties in the oraclejetconfig.json File
	E Oracle JET CLI API for CI/CD
	Properties
	Method
	Examples

