
Oracle® Fusion Middleware
Integrating Big Data with Oracle Data
Integrator

14 c (14.1.2.0.0)
G10247-01
December 2024

Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator, 14 c (14.1.2.0.0)

G10247-01

Copyright © 2014, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions x

1 Big Data Integration with Oracle Data Integrator

1.1 Overview of Hadoop Data Integration 1-1

1.2 Big Data Knowledge Modules Matrix 1-2

2 Hadoop Data Integration Concepts

2.1 Hadoop Data Integration with Oracle Data Integrator 2-1

2.2 Generate Code in Different Languages with Oracle Data Integrator 2-1

2.3 Leveraging Apache Oozie to execute Oracle Data Integrator Projects 2-2

2.4 Oozie Workflow Execution Modes 2-2

2.5 Lambda Architecture 2-3

3 Setting Up the Environment for Integrating Big Data

3.1 Configuring Big Data technologies using the Big Data Configurations Wizard 3-1

3.1.1 General Settings 3-3

3.1.2 HDFS Data Server Definition 3-4

3.1.3 HBase Data Server Definition 3-4

3.1.4 Kafka Data Server Definition 3-5

3.1.5 Kafka Data Server Properties 3-6

3.2 Creating and Initializing the Hadoop Data Server 3-6

3.2.1 Hadoop Data Server Definition 3-6

3.2.2 Hadoop Data Server Properties 3-8

3.3 Creating a Hadoop Physical Schema 3-14

3.4 Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs 3-14

3.5 Configuring Oracle Loader for Hadoop 3-15

3.6 Configuring Oracle Data Integrator to Connect to a Secure Cluster 3-15

iii

3.7 Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local
Agent 3-20

4 Integrating Hadoop Data

4.1 Integrating Hadoop Data 4-1

4.2 Setting Up File Data Sources 4-2

4.3 Setting Up HDFS Data Sources 4-3

4.4 Setting Up Hive Data Sources 4-3

4.5 Setting Up HBase Data Sources 4-4

4.6 Setting Up Kafka Data Sources 4-5

4.7 Setting Up Cassandra Data Sources 4-6

4.8 Importing Hadoop Knowledge Modules 4-6

4.9 Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra
Tables, and HDFS Files 4-7

4.9.1 Creating a Model 4-7

4.9.2 Reverse-Engineering Hive Tables 4-7

4.9.3 Reverse-Engineering HBase Tables 4-11

4.9.4 Reverse-Engineering HDFS Files 4-11

4.9.5 Reverse-Engineering Cassandra Tables 4-12

4.9.6 Reverse-Engineering Support for Kafka 4-12

4.10 Password Handling in Hadoop 4-13

4.11 Loading Data from Files into Hive 4-14

4.12 Loading Data from Hive to Files 4-14

4.13 Loading Data from HBase into Hive 4-14

4.14 Loading Data from Hive into HBase 4-15

4.15 Loading Data from an SQL Database into Hive, HBase, and File using SQOOP 4-15

4.16 Loading Data from an SQL Database into Hive using SQOOP 4-16

4.17 Loading Data from an SQL Database into HDFS File using SQOOP 4-16

4.18 Loading Data from an SQL Database into HBase using SQOOP 4-17

4.19 Validating and Transforming Data Within Hive 4-17

4.20 Loading Data into an Oracle Database from Hive and File 4-18

4.21 Loading Data into an SQL Database from Hbase, Hive, and File using SQOOP 4-18

4.22 Loading Data from Kafka to Spark Processing Engine 4-19

5 Executing Oozie Workflows

5.1 Executing Oozie Workflows with Oracle Data Integrator 5-1

5.2 Setting Up and Initializing the Oozie Runtime Engine 5-1

5.2.1 Oozie Runtime Engine Definition 5-2

5.2.2 Oozie Runtime Engine Properties 5-3

5.3 Creating a Logical Oozie Engine 5-3

5.4 Executing or Deploying an Oozie Workflow 5-4

iv

5.5 Auditing Hadoop Logs 5-4

5.6 Userlib jars support for running ODI Oozie workflows 5-5

6 Using Query Processing Engines to Generate Code in Different
Languages

6.1 Query Processing Engines Supported by Oracle Data Integrator 6-1

6.2 Setting Up Hive Data Server 6-2

6.2.1 Hive Data Server Definition 6-2

6.2.2 Hive Data Server Connection Details 6-2

6.3 Creating a Hive Physical Schema 6-3

6.4 Setting Up Pig Data Server 6-3

6.4.1 Pig Data Server Definition 6-3

6.4.2 Pig Data Server Properties 6-4

6.5 Creating a Pig Physical Schema 6-5

6.6 Setting Up Spark Data Server 6-5

6.6.1 Spark Data Server Definition 6-5

6.6.2 Spark Data Server Properties 6-6

6.7 Creating a Spark Physical Schema 6-7

6.8 Generating Code in Different Languages 6-7

7 Working with Spark

7.1 Spark Usage 7-1

7.1.1 Creating a Spark Mapping 7-1

7.1.2 Pre-requisites for handling Avro and Delimited files in Spark Mappings 7-1

7.2 Spark Design Considerations 7-2

7.2.1 Batch or Streaming 7-3

7.2.2 Resilient Distributed Datasets (RDD) or DataFrames 7-3

7.2.3 Infer Schema Knowledge Module Option 7-3

7.2.4 Expression Syntax 7-4

7.3 Spark Streaming Support 7-6

7.3.1 Spark Checkpointing 7-7

7.3.2 Spark Windowing and Stateful Aggregation 7-7

7.3.3 Spark Repartitioning and Caching 7-8

7.3.4 Configuring Streaming Support 7-9

7.3.4.1 Spark Streaming DataServer Properties 7-9

7.3.4.2 Extra Spark Streaming Data Properties 7-10

7.3.5 Executing Mapping in Streaming Mode 7-11

7.4 Switching between RDD and DataFrames in ODI 7-12

7.5 Components that do not support DataFrame Code Generation 7-12

v

7.6 Adding Customized Code in the form of a Table Function 7-12

8 Working with Unstructured Data

8.1 Working with Unstructured Data 8-1

9 Working with Complex Datatypes and HDFS File Formats

9.1 HDFS File Formats 9-1

9.2 Working with Complex Datatypes in Mappings 9-2

9.3 Hive Complex Datatypes 9-3

9.3.1 Using Flatten for Complex Types in Hive Mappings 9-3

9.4 Cassandra Complex Datatypes 9-5

9.4.1 How ODI deals with Cassandra Lists and User Defined Types 9-6

9.5 Loading Data from HDFS File to Hive 9-8

9.6 Loading Data from HDFS File to Spark 9-9

A Hive Knowledge Modules

A.1 LKM SQL to Hive SQOOP A-2

A.2 LKM SQL to File SQOOP Direct A-3

A.3 LKM SQL to HBase SQOOP Direct A-5

A.4 LKM File to SQL SQOOP A-6

A.5 LKM Hive to SQL SQOOP A-8

A.6 LKM HBase to SQL SQOOP A-9

A.7 LKM HDFS File to Hive Load Data A-11

A.8 LKM HDFS File to Hive Load Data (Direct) A-11

A.9 IKM Hive Append A-11

A.10 IKM Hive Incremental Update A-12

A.11 LKM File to Hive LOAD DATA A-12

A.12 LKM File to Hive LOAD DATA Direct A-13

A.13 LKM HBase to Hive HBASE-SERDE A-15

A.14 LKM Hive to HBase Incremental Update HBASE-SERDE Direct A-15

A.15 LKM Hive to File Direct A-16

A.16 XKM Hive Sort A-16

A.17 LKM File to Oracle OLH-OSCH A-16

A.18 LKM File to Oracle OLH-OSCH Direct A-19

A.19 LKM Hive to Oracle OLH-OSCH A-21

A.20 LKM Hive to Oracle OLH-OSCH Direct A-24

A.21 RKM Hive A-27

A.22 RKM HBase A-28

A.23 IKM File to Hive (Deprecated) A-29

vi

A.24 LKM HBase to Hive (HBase-SerDe) [Deprecated] A-31

A.25 IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated] A-32

A.26 IKM SQL to Hive-HBase-File (SQOOP) [Deprecated] A-32

A.27 IKM Hive Control Append (Deprecated) A-34

A.28 CKM Hive A-35

A.29 IKM Hive Transform (Deprecated) A-35

A.30 IKM File-Hive to Oracle (OLH-OSCH) [Deprecated] A-37

A.31 IKM File-Hive to SQL (SQOOP) [Deprecated] A-40

B Pig Knowledge Modules

B.1 LKM File to Pig B-1

B.2 LKM Pig to File B-3

B.3 LKM HBase to Pig B-4

B.4 LKM Pig to HBase B-5

B.5 LKM Hive to Pig B-6

B.6 LKM Pig to Hive B-6

B.7 LKM SQL to Pig SQOOP B-7

B.8 XKM Pig Aggregate B-8

B.9 XKM Pig Distinct B-9

B.10 XKM Pig Expression B-9

B.11 XKM Pig Filter B-9

B.12 XKM Pig Flatten B-9

B.13 XKM Pig Join B-9

B.14 XKM Pig Lookup B-10

B.15 XKM Pig Pivot B-10

B.16 XKM Pig Set B-10

B.17 XKM Pig Sort B-10

B.18 XKM Pig Split B-10

B.19 XKM Pig Subquery Filter B-10

B.20 XKM Pig Table Function B-10

B.21 XKM Pig Unpivot B-10

C Spark Knowledge Modules

C.1 LKM File to Spark C-2

C.2 LKM Spark to File C-3

C.3 LKM Hive to Spark C-5

C.4 LKM Spark to Hive C-5

C.5 LKM HDFS to Spark C-7

C.6 LKM Spark to HDFS C-7

C.7 LKM Kafka to Spark C-8

vii

C.8 LKM Spark to Kafka C-9

C.9 LKM SQL to Spark C-9

C.10 LKM Spark to SQL C-10

C.11 LKM Spark to Cassandra C-11

C.12 RKM Cassandra C-12

C.13 XKM Spark Aggregate C-12

C.14 XKM Spark Distinct C-13

C.15 XKM Spark Expression C-13

C.16 XKM Spark Filter C-13

C.17 XKM Spark Input Signature and Output Signature C-13

C.18 XKM Spark Join C-13

C.19 XKM Spark Lookup C-14

C.20 XKM Spark Pivot C-14

C.21 XKM Spark Set C-15

C.22 XKM Spark Sort C-15

C.23 XKM Spark Split C-15

C.24 XKM Spark Table Function C-15

C.25 IKM Spark Table Function C-16

C.26 XKM Spark Unpivot C-16

D Component Knowledge Modules

D.1 XKM Oracle Flatten D-1

D.2 XKM Oracle Flatten XML D-1

D.3 XKM Spark Flatten D-2

D.4 XKM Jagged D-2

E Considerations, Limitations, and Issues

E.1 Considerations, Limitations, and Issues E-1

viii

Preface

This manual describes how to develop Big Data integration projects using Oracle Data
Integrator.

This preface contains the following topics:.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for anyone interested in using Oracle Data Integrator (ODI) to
develop Big Data integration projects. It provides conceptual information about the Big Data
related features and functionality of ODI and also explains how to use the ODI graphical user
interface to create integration projects.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Data Integrator Library.

• Release Notes for Oracle Data Integrator

• Understanding Oracle Data Integrator

• Developing Integration Projects with Oracle Data Integrator

• Administering Oracle Data Integrator

• Installing and Configuring Oracle Data Integrator

• Upgrading Oracle Data Integrator

• Application Adapters Guide for Oracle Data Integrator

• Developing Knowledge Modules with Oracle Data Integrator

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/middleware/12213/odi/index.html

• Connectivity and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide

• Migrating From Oracle Warehouse Builder to Oracle Data Integrator

• Oracle Data Integrator Tools Reference

• Data Services Java API Reference for Oracle Data Integrator

• Open Tools Java API Reference for Oracle Data Integrator

• Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator

• Java API Reference for Oracle Data Integrator

• Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

• Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the
JDeveloper Help Center when you press F1 or from the main menu by selecting Help, and
then Search or Table of Contents.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

x

1
Big Data Integration with Oracle Data
Integrator

This chapter provides an overview of Big Data integration using Oracle Data Integrator. It also
provides a compatibility matrix of the supported Big Data technologies.
This chapter includes the following sections:

• Overview of Hadoop Data Integration

• Big Data Knowledge Modules Matrix

1.1 Overview of Hadoop Data Integration
Oracle Data Integrator combined with Hadoop, can be used to design the integration flow to
process huge data from non-relational data sources.

Apache Hadoop is designed to handle and process data that is typically from data sources that
are non-relational and data volumes that are beyond what is handled by relational databases.

You can use Oracle Data Integrator to design the 'what' of an integration flow and assign
knowledge modules to define the 'how' of the flow in an extensible range of mechanisms. The
'how' is whether it is Oracle, Teradata, Hive, Spark, Pig, etc.

Employing familiar and easy-to-use tools and preconfigured knowledge modules (KMs), Oracle
Data Integrator lets you to do the following:

• Reverse-engineer non-relational and relational data stores like Hive, HBase, and
Cassandra.

For more information, see Creating ODI Models and Data Stores to represent Hive, HBase
and Cassandra Tables, and HDFS Files.

• Load data into Hadoop directly from Files or SQL databases.

For more information, see Integrating Hadoop Data.

• Validate and transform data within Hadoop with the ability to make the data available in
various forms such as Hive, HBase, or HDFS.

For more information, see Validating and Transforming Data Within Hive.

• Load the processed data from Hadoop into Oracle database, SQL database, or Files.

For more information, see Integrating Hadoop Data.

• Execute integration projects as Oozie workflows on Hadoop.

For more information, see Executing Oozie Workflows with Oracle Data Integrator.

• Audit Oozie workflow execution logs from within Oracle Data Integrator.

For more information, see Auditing Hadoop Logs.

• Generate code in different languages for Hadoop, such as HiveQL, Pig Latin, or Spark
Python.

For more information, see Generating Code in Different Languages

1-1

1.2 Big Data Knowledge Modules Matrix
Big Data Knowledge Modules Matrix depicts the Big Data Loading and Integration KMs that
are provided by Oracle Data Integrator.

Depending on the source and target technologies, you can use the KMs shown in the following
table in your integration projects. You can also use a combination of these KMs. For example,
to read data from SQL into Spark, you can load the data from SQL into Spark first using LKM
SQL to Spark, and then use LKM Spark to HDFS to continue.

The Big Data knowledge modules that start with LKM File for example, LKM File to SQL
SQOOP support both OS File and HDFS File, as described in this matrix. We provide
additional KMs, starting with LKM HDFS to Spark, LKM HDFS File to Hive. These support
HDFS files only, unlike the other KMs, however, they have additional capabilities, for example,
Complex Data can be described in an HDFS data store and used in a mapping using the
flatten component.

The following table shows the Big Data Loading and Integration KMs that Oracle Data
Integrator provides to integrate data between different source and target technologies.

Table 1-1 Big Data Loading and Integration Knowledge Modules

Source Target Knowledge Module

OS File HDFS File NA

Hive LKM File to Hive LOAD DATA Direct

HBase NA

Pig LKM File to Pig

Spark LKM File to Spark

SQL HDFS File LKM SQL to File SQOOP Direct

Hive LKM SQL to Hive SQOOP

HBase LKM SQL to HBase SQOOP Direct

Pig LKM SQL to Pig SQOOP

Spark LKM SQL to Spark

HDFS Kafka NA

HDFS Spark LKM HDFS to Spark

HDFS File OS File NA

SQL LKM File to SQL SQOOP

LKM File to Oracle OLH-OSCH Direct

HDFS File NA

Hive LKM File to Hive LOAD DATA Direct

LKM HDFS File to Hive Load Data

LKM HDFS File to Hive Load Data (Direct)

HBase NA

Pig LKM File to Pig

Spark LKM HDFS to Spark

Hive OS File LKM Hive to File Direct

Chapter 1
Big Data Knowledge Modules Matrix

1-2

Table 1-1 (Cont.) Big Data Loading and Integration Knowledge Modules

Source Target Knowledge Module

SQL LKM Hive to SQL SQOOP

LKM Hive to Oracle OLH-OSCH Direct

HDFS File LKM Hive to File Direct

Hive IKM Hive Append

IKM Hive Incremental Update

HBase LKM Hive to HBase Incremental Update HBASE-SERDE Direct

Pig LKM Hive to Pig

Spark LKM Hive to Spark

HBase OS File NA

SQL LKM HBase to SQL SQOOP

HDFS File NA

Hive LKM HBase to Hive HBASE-SERDE

HBase NA

Pig LKM HBase to Pig

Spark NA

Pig OS File LKM Pig to File

HDFS File LKM Pig to File

Hive LKM Pig to Hive

HBase LKM Pig to HBase

Pig NA

Spark NA

Spark OS File LKM Spark to File

SQL LKM Spark to SQL

HDFS File LKM Spark to File

LKM Spark to HDFS

Hive LKM Spark to Hive

HBase NA

Pig NA

Spark IKM Spark Table Function

Kafka LKM Spark to Kafka

Cassandra LKM Spark to Cassandra

The following table shows the Big Data Reverse Engineering KMs provided by ODI.

Table 1-2 Big Data Reverse-Engineering Knowledge Modules

Technology Knowledge Module

HBase RKM HBase

Hive RKM Hive

Chapter 1
Big Data Knowledge Modules Matrix

1-3

Table 1-2 (Cont.) Big Data Reverse-Engineering Knowledge Modules

Technology Knowledge Module

Cassandra RKM Cassandra

Chapter 1
Big Data Knowledge Modules Matrix

1-4

2
Hadoop Data Integration Concepts

The chapter provides an introduction to the basic concepts of Hadoop Data integration using
Oracle Data Integrator.
This chapter includes the following sections:

• Hadoop Data Integration with Oracle Data Integrator

• Generate Code in Different Languages with Oracle Data Integrator

• Leveraging Apache Oozie to execute Oracle Data Integrator Projects

• Oozie Workflow Execution Modes

• Lambda Architecture

2.1 Hadoop Data Integration with Oracle Data Integrator
When you implement a big data processing scenario, the first step is to load the data into
Hadoop. The data source is typically in Files or SQL databases.

When the data has been aggregated, condensed, or processed into a smaller data set, you
can load it into an Oracle database, other relational database, HDFS, HBase, or Hive for
further processing and analysis. Oracle Loader for Hadoop is recommended for optimal
loading into an Oracle database.

After the data is loaded, you can validate and transform it by using Hive, Pig, or Spark, like you
use SQL. You can perform data validation (such as checking for NULLS and primary keys),
and transformations (such as filtering, aggregations, set operations, and derived tables). You
can also include customized procedural snippets (scripts) for processing the data.

A Kafka cluster consists of one to many Kafka brokers handling and storing messages.
Messages are organized into topics and physically broken down into topic partitions. Kafka
producers connect to a cluster and feed messages into a topic. Kafka consumers connect to a
cluster and receive messages from a topic. All messages on a specific topic need not have the
same message format, it is a good practice to use only a single message format per topic.
Kafka is integrated into ODI as a new technology.

For more information, see Integrating Hadoop Data .

2.2 Generate Code in Different Languages with Oracle Data
Integrator

Oracle Data Integrator can generate code for multiple languages. For Big Data, this includes
HiveQL, Pig Latin, Spark RDD, and Spark DataFrames.

The style of code is primarily determined by the choice of the data server used for the staging
location of the mapping.

It is recommended to run Spark applications on yarn. Following this recommendation ODI only
supports yarn-client and yarn-cluster mode execution and has introduced a run-time check.

2-1

In case you are using any other Spark deployment modes, which is not supported in ODI, the
following dataserver property must be added to the Spark dataserver:

odi.spark.enableUnsupportedSparkModes = true

For more information about generating code in different languages and the Pig and Spark
component KMs, see the following:

• Pig Knowledge Modules .

• Spark Knowledge Modules .

• Using Query Processing Engines to Generate Code in Different Languages.

2.3 Leveraging Apache Oozie to execute Oracle Data Integrator
Projects

Apache Oozie is a workflow scheduler system that helps you orchestrate actions in Hadoop. It
is a server-based Workflow Engine specialized in running workflow jobs with actions that run
Hadoop MapReduce jobs.

Implementing and running Oozie workflow requires in-depth knowledge of Oozie.

However, Oracle Data Integrator does not require you to be an Oozie expert. With Oracle Data
Integrator you can easily define and execute Oozie workflows.

Oracle Data Integrator enables automatic generation of an Oozie workflow definition by
executing an integration project (package, procedure, mapping, or scenario) on an Oozie
engine. The generated Oozie workflow definition is deployed and executed into an Oozie
workflow system. You can also choose to only deploy the Oozie workflow to validate its content
or execute it at a later time.

Information from the Oozie logs is captured and stored in the ODI repository along with links to
the Oozie UIs. This information is available for viewing within ODI Operator and Console.

For more information, see Executing Oozie Workflows.

2.4 Oozie Workflow Execution Modes
You can execute Oozie workflows through Task and Session modes. Task mode is the default
mode for Oozie workflow execution.

ODI provides the following two modes for executing the Oozie workflows:

• TASK

Task mode generates an Oozie action for every ODI task. This is the default mode.

The task mode cannot handle the following:

– KMs with scripting code that spans across multiple tasks.

– KMs with transactions.

– KMs with file system access that cannot span file access across tasks.

– ODI packages with looping constructs.

• SESSION

Chapter 2
Leveraging Apache Oozie to execute Oracle Data Integrator Projects

2-2

Session mode generates an Oozie action for the entire session.

ODI automatically uses this mode if any of the following conditions is true:

– Any task opens a transactional connection.

– Any task has scripting.

– A package contains loops.

Loops in a package are not supported by Oozie engines and may not function properly
in terms of execution and/or session log content retrieval, even when running in
SESSION mode.

Note:

This mode is recommended for most of the use cases.

By default, the Oozie Runtime Engines use the Task mode, that is, the default value of the
OOZIE_WF_GEN_MAX_DETAIL property for the Oozie Runtime Engines is TASK.

You can configure an Oozie Runtime Engine to use Session mode, irrespective of whether the
conditions mentioned above are satisfied or not. To force an Oozie Runtime Engine to
generate session level Oozie workflows, set the OOZIE_WF_GEN_MAX_DETAIL property for the
Oozie Runtime Engine to SESSION.

For more information, see Oozie Runtime Engine Properties.

2.5 Lambda Architecture
Lambda architecture is a data-processing architecture designed to handle massive quantities
of data by taking advantage of both batch and stream processing methods.

Lambda architecture has the following layers:

1. Batch Layer: In this layer, fresh data is loaded into the system at regular intervals with
perfect accuracy containing complete detail. New data is processed with all available data
when generating views.

2. Speed Layer: In this layer, real-time data is streamed into the system for immediate
availability at the expense of total completeness (which is resolved in the next Batch run).

3. Serving Layer: In this layer, views are built to join the data from the Batch and Speed
layers.

With ODI Mappings, you can create a single Logical Mapping for which you can provide
multiple Physical Mappings. This is ideal for implementing Lambda Architecture with ODI.

Logical Mapping

In the following figure, the ACT datastore is defined as a Generic data store. The same applies
to the TRG node. These can be created by copying and pasting from a reverse-engineered
data store with the required attributes.

Chapter 2
Lambda Architecture

2-3

Figure 2-1 Logical Mapping in Lambda Architecture

Batch Physical Mapping

As seen in the figure below, for Batch Physical Mapping, ACT has a File Data Store and
TRG_1 has a Hive Data Store.

Figure 2-2 Batch Physical Mapping in Lambda Architecture

Streaming Physical Mapping

As seen in the figure below, Streaming Physical Mapping has a Kafka Data Store for ACT and
a Cassandra Data Store for TRG.

Chapter 2
Lambda Architecture

2-4

Figure 2-3 Streaming Physical Mapping in Lambda Architecture

Any changes made to the logical mapping will be synced to each physical mapping, thus
reducing the complexity of Lambda architecture implementations.

Chapter 2
Lambda Architecture

2-5

3
Setting Up the Environment for Integrating Big
Data

This chapter provides information on the steps you need to perform to set up the environment
to integrate Big Data.
This chapter includes the following sections:

• Configuring Big Data technologies using the Big Data Configurations Wizard

• Creating and Initializing the Hadoop Data Server

• Creating a Hadoop Physical Schema

• Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs

• Configuring Oracle Loader for Hadoop

• Configuring Oracle Data Integrator to Connect to a Secure Cluster

• Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

3.1 Configuring Big Data technologies using the Big Data
Configurations Wizard

The Big Data Configurations wizard provides a single entry point to set up multiple Hadoop
technologies. You can quickly create data servers, physical schema, logical schema, and set a
context for different Hadoop technologies such as Hadoop File System or HDFS, HBase,
Oozie, Spark, Hive, Pig, etc

The default metadata for different distributions, such as properties, host names, port numbers,
etc., and default values for environment variables are pre-populated for you. This helps you to
easily create the data servers along with the physical and logical schema, without having in-
depth knowledge about these technologies.

After all the technologies are configured, you can validate the settings against the data servers
to test the connection status.

Note:

If you do not want to use the Big Data Configurations wizard, you can set up the
data servers for the Big Data technologies manually using the information mentioned
in the subsequent sections.

To run the Big Data Configurations Wizard:

1. In ODI Studio, select File and click New... or

Select Topology tab — Topology Menu — Big Data Configurations.

2. In the New Gallery dialog, select Big Data Configurations and click OK.

3-1

The Big Data Configurations wizard appears.

3. In the General Settings panel of the wizard, specify the required options.

See General Settings for more information.

4. Click Next.

Data server panel for each of the technologies you selected in the General Settings panel
will be displayed.

5. In the Hadoop panel of the wizard, do the following:

• Specify the options required to create the Hadoop data server.

See Hadoop Data Server Definition for more information.

• In Properties section, click the + icon to add any data server properties.

• Select a logical schema, physical schema, and a context from the appropriate drop-
down lists.

6. Click Next.

7. In the HDFS panel of the wizard, do the following:

• Specify the options required to create the HDFS data server.

See HDFS Data Server Definition for more information.

• In the Properties section, click + icon to add any data server properties.

• Select a logical schema, physical schema, and a context from the appropriate drop-
down lists.

8. Click Next.

9. In the HBase panel of the wizard, do the following:

• Specify the options required to create the HBase data server.

See HBase Data Server Definition for more information.

• In the Properties section, click + icon to add any data server properties.

• Select a logical schema, physical schema, and a context from the appropriate drop-
down lists.

10. In the Spark panel of the wizard, do the following:

• Specify the options required to create the Spark data server.

See Spark Data Server Definition for more information.

• In the Properties section, click + icon to add any data server properties.

• Select a logical schema, physical schema, and a context from the appropriate drop-
down lists.

11. Click Next.

12. In the Kafka panel of the wizard, do the following:

• Specify the options required to create the Kafka data server.

See Kafka Data Server Definition for more information.

• In the Properties section, click + icon to add any data server properties.

• Select a logical schema, physical schema, and a context from the appropriate drop-
down lists.

13. Click Next.

Chapter 3
Configuring Big Data technologies using the Big Data Configurations Wizard

3-2

14. In the Pig panel of the wizard, do the following:

• Specify the options required to create the Pig data server.

See Pig Data Server Definition for more information.

• In the Properties section, click + icon to add any data server properties.

• Select a logical schema, physical schema, and a context from the appropriate drop-
down lists.

15. Click Next.

16. In the Hive panel of the wizard, do the following:

• Specify the options required to create the Hive data server.

See Hive Data Server Definition for more information.

• In the Properties section, click + icon to add any data server properties.

• Select a logical schema, physical schema, and a context from the appropriate drop-
down lists.

17. Click Next.

18. In the Oozie panel of the wizard, do the following:

• Specify the options required to create the Oozie run-time engine.

See Oozie Runtime Engine Definition for more information.

• Under Properties section, review the data server properties that are listed.

Note: You cannot add new properties or remove listed properties. However, if required,
you can change the value of listed properties.

See Oozie Runtime Engine Properties for more information.

• Select an existing logical agent and context or enter new names for the logical agent
and context.

19. Click Next.

20. In the Validate all settings panel, click Validate All Settings to initialize operations and
validate the settings against the data servers to ensure the connection status.

21. Click Finish.

3.1.1 General Settings
The following table describes the options that you need to set on the General Settings panel
of the Big Data Configurations wizard.

Table 3-1 General Settings Options

Option Description

Prefix Specify a prefix. This prefix is attached to the data server name, logical
schema name, and physical schema name.

Distribution Select a distribution, either Manual or Cloudera Distribution for
Hadoop (CDH) <version>.

Base Directory Specify the directory location where CDH is installed. This base
directory is automatically populated in all other panels of the wizard.

Note: This option appears only if the distribution is other than Manual.

Chapter 3
Configuring Big Data technologies using the Big Data Configurations Wizard

3-3

Table 3-1 (Cont.) General Settings Options

Option Description

Distribution Type Select a distribution type, either Normal or Kerberized.

Technologies Select the technologies that you want to configure.

Note: Data server creation panels are displayed only for the selected
technologies.

Configuring Big Data technologies using the Big Data Configurations Wizard.

3.1.2 HDFS Data Server Definition
The following table describes the options that you must specify to create a HDFS data server.

Note:

Only the fields required or specific for defining a HDFS data server are described.

Table 3-2 HDFS Data Server Definition

Option Description

Name Type a name for the data server. This name appears in Oracle Data
Integrator.

User/Password HDFS currently does not implement User/Password security. Leave this
option blank.

Hadoop Data Server Hadoop data server that you want to associate with the HDFS data server.

Additional Classpath Specify additional jar files to the classpath if needed.

3.1.3 HBase Data Server Definition
The following table describes the options that you must specify to create an HBase data
server.

Note: Only the fields required or specific for defining a HBase data server are described.

Table 3-3 HBase Data Server Definition

Option Description

Name Type a name for the data server. This name appears in Oracle Data
Integrator.

HBase Quorum ZooKeeper Quorum address in hbase-site.xml . For example,
localhost:2181.

User/Password HBase currently does not implement User/Password security. Leave
these fields blank.

Hadoop Data Server Hadoop data server that you want to associate with the HBase data
server.

Chapter 3
Configuring Big Data technologies using the Big Data Configurations Wizard

3-4

Table 3-3 (Cont.) HBase Data Server Definition

Option Description

Additional Classpath Specify any additional classes/jar files to be added.

The following classpath entries will be built by the Base Directory value:

• /usr/lib/hbase/*
• /usr/lib/hbase/lib

Configuring Big Data technologies using the Big Data Configurations Wizard.

3.1.4 Kafka Data Server Definition
The following table describes the options that you must specify to create a Kafka data server.

Note:

Only the fields required or specific for defining a Kafka data server are described.

Table 3-4 Kafka Data Server Definition

Option Description

Name Type a name for the data server.

User/Password User name with its password.

Hadoop Data Server Hadoop data server that you want to associate with the Kafka data server.

If Kafka is not running on the Hadoop server, then there is no need to specify
a Hadoop Data Server. This option is useful when Kafka runs on its own
server.

Additional Classpath Specify any additional classes/jar files to be added.

The following classpath entries will be built by the Base Directory value:

• /opt/cloudera/parcels/CDH/lib/kafka/libs/*
If required, you can add more additional classpaths.

If Kafka is not running on the Hadoop server, then specify the absolute path
of Kafka libraries in this field.

Note:

This field appears only when you are creating
the Kafka Data Server using the Big Data
Configuration wizard.

Chapter 3
Configuring Big Data technologies using the Big Data Configurations Wizard

3-5

3.1.5 Kafka Data Server Properties
The following table describes the Kafka data server properties that you need to add on the
Properties tab when creating a new Kafka data server.

Table 3-5 Kafka Data Server Properties

Key Value

metadata.broker.list This is a comma separated list of Kafka metadata brokers. Each broker is
defined by hostname:port. The list of brokers can be found in the
server.properties file, typically located in /etc/kafka/conf.

oracle.odi.prefer.dat
aserver.packages

Retrieves the topic and message from Kafka server. The address is scala,
kafka, oracle.odi.kafka.client.api.impl, org.apache.log4j.

security.protocol Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL,
SASL_PLAINTEXT, and SASL_SSL.

zookeeper.connect Specifies the ZooKeeper connection string in the form hostname:port, where
host and port are the host and port of a ZooKeeper server. To allow connecting
through other ZooKeeper nodes when a ZooKeeper machine is down you can
also specify multiple hosts in the form
hostname1:port1,hostname2:port2,hostname3:port3.

3.2 Creating and Initializing the Hadoop Data Server
Configure the Hadoop Data Server Definitions and Properties, to create and initialize Hadoop
Data Server.

To create and initialize the Hadoop data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Hadoop and then click
New Data Server.

3. In the Definition tab, specify the details of the Hadoop data server.

See Hadoop Data Server Definition for more information.

4. In the Properties tab, specify the properties for the Hadoop data server.

See Hadoop Data Server Properties for more information.

5. Click Initialize to initialize the Hadoop data server.

Initializing the Hadoop data server creates the structure of the ODI Master repository and
Work repository in HDFS.

6. Click Test Connection to test the connection to the Hadoop data server.

3.2.1 Hadoop Data Server Definition
The following table describes the fields that you must specify on the Definition tab when
creating a new Hadoop data server.

Note: Only the fields required or specific for defining a Hadoop data server are described.

Chapter 3
Creating and Initializing the Hadoop Data Server

3-6

Table 3-6 Hadoop Data Server Definition

Field Description

Name Name of the data server that appears in Oracle Data Integrator.

Data Server Physical name of the data server.

User/Password Hadoop user with its password.

If password is not provided, only simple authentication is performed
using the username on HDFS and Oozie.

Authentication Method Select one of the following authentication methods:

• Simple Username Authentication (unsecured)
• Kerberos Principal Username/Password (secured)
• Kerberos Credential Ticket Cache (secured)

Note:

The following link helps determine if the
Hadoop cluster is secured:

https://www.cloudera.com/
documentation/cdh/5-0-x/CDH5-Security-
Guide/
cdh5sg_hadoop_security_enable.html

HDFS Node Name URI URI of the HDFS node name.

hdfs://localhost:8020
Resource Manager/Job
Tracker URI

URI of the resource manager or the job tracker.

localhost:8032
ODI HDFS Root Path of the ODI HDFS root directory.

/user/<login_username>/odi_home.

Additional Class Path Specify additional classpaths.

Add the following additional classpaths:

• /usr/lib/hadoop/*
• /usr/lib/hadoop/client/*
• /usr/lib/hadoop/lib/*
• /usr/lib/hadoop-hdfs/*
• /usr/lib/hadoop-mapreduce/*
• /usr/lib/hadoop-yarn/*
• /usr/lib/hbase/lib/*
• /usr/lib/hive/lib/*
• /usr/lib/oozie/lib/*
• /etc/hadoop/conf/
• /etc/hbase/conf
• /etc/hive/conf
• /opt/oracle/orahdfs/jlib/*

Creating and Initializing the Hadoop Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard.

Chapter 3
Creating and Initializing the Hadoop Data Server

3-7

https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hadoop_security_enable.html

3.2.2 Hadoop Data Server Properties
The following table describes the properties that you can configure in the Properties tab when
defining a new Hadoop data server.

Note:

By default, only the oracle.odi.prefer.dataserver.packages property is displayed.
Click the + icon to add the other properties manually.

These properties can be inherited by other Hadoop technologies, such as Hive or
HDFS. To inherit these properties, you must select the configured Hadoop data
server when creating data server for other Hadoop technologies.

Table 3-7 Hadoop Data Server Properties Mandatory for Hadoop and Hive

Property Group Property Description/Value

General HADOOP_HOME Location of Hadoop dir. For
example, /usr/lib/hadoop

User Defined HADOOP_CONF Location of Hadoop configuration
files such as core-default.xml,
core-site.xml, and hdfs-site.xml.
For example, /home/shared/
hadoop-conf

Hive HIVE_HOME Location of Hive dir. For
example, /usr/lib/hive

User Defined HIVE_CONF Location of Hive configuration
files such as hive-site.xml. For
example, /home/shared/hive-
conf

General HADOOP_CLASSPATH $HIVE_HOME/lib/hive-
metastore-
*.jar:$HIVE_HOME/lib/
libthrift-
*.jar:$HIVE_HOME/lib/
libfb*.jar:$HIVE_HOME/lib/
hive-exec-*.jar:$HIVE_CONF

General HADOOP_CLIENT_OPTS -Dlog4j.debug -
Dhadoop.root.logger=INFO,c
onsole -
Dlog4j.configuration=file:
/etc/hadoop/
conf.cloudera.yarn/
log4j.properties

Chapter 3
Creating and Initializing the Hadoop Data Server

3-8

Table 3-7 (Cont.) Hadoop Data Server Properties Mandatory for Hadoop and Hive

Property Group Property Description/Value

Hive HIVE_SESSION_JARS $HIVE_HOME/lib/hive-
contrib-*.jar:<ODI library
directory>/wlhive.jar
• Actual path of wlhive.jar

can be determined under
ODI installation home.

• Include other JAR files as
required, such as custom
SerDes JAR files. These JAR
files are added to every Hive
JDBC session and thus are
added to every Hive
MapReduce job.

• List of JARs is separated by
":", wildcards in file names
must not evaluate to more
than one file.

• Follow the steps for Hadoop
Security models, such as
Apache Sentry, to allow the
Hive ADD JAR call used
inside ODI Hive KMs:
– Define the environment

variable
HIVE_SESSION_JARS
as empty.

– Add all required jars for
Hive in the global Hive
configuration hive-
site.xml.

Table 3-8 Hadoop Data Server Properties Mandatory for HBase (In addition to base
Hadoop and Hive Properties)

Property Group Property Description/Value

HBase HBASE_HOME Location of HBase dir. For
example, /usr/lib/hbase

General HADOOP_CLASSPATH $HBASE_HOME/lib/hbase-
*.jar:$HIVE_HOME/lib/hive-
hbase-
handler*.jar:$HBASE_HOME/
hbase.jar

Chapter 3
Creating and Initializing the Hadoop Data Server

3-9

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In addition to
base Hadoop and Hive Properties)

Property Group Property Description/Value

Hive HIVE_SESSION_JARS $HBASE_HOME/
hbase.jar:$HBASE_HOME/lib/
hbase-sep-api-
*.jar:$HBASE_HOME/lib/
hbase-sep-impl-
hbase.jar:/$HBASE_HOME/l
ib/hbase-sep-impl-common-
*.jar:/$HBASE_HOME/lib/
hbase-sep-tools-
*.jar:$HIVE_HOME/lib/hive-
hbase-handler-*.jar

No

te:

Foll
ow
the
step
s for
Had
oop
Sec
urity
mod
els,
suc
h as
Apa
che
Sen
try,
to
allo
w
the
Hiv
e
AD
D
JAR
call
use
d
insi
de
ODI
Hiv
e
KM
s:

Chapter 3
Creating and Initializing the Hadoop Data Server

3-10

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In addition to
base Hadoop and Hive Properties)

Property Group Property Description/Value

• D
e
f
i
n
e
t
h
e
e
n
v
i
r
o
n
m
e
n
t
v
a
r
i
a
b
l
e
H
I
V
E
_
S
E
S
S
I
O
N
_
J
A
R
S
a
s
e
m
p
t
y
.

Chapter 3
Creating and Initializing the Hadoop Data Server

3-11

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In addition to
base Hadoop and Hive Properties)

Property Group Property Description/Value

• A
d
d
a
l
l
r
e
q
u
i
r
e
d
j
a
r
s
f
o
r
H
i
v
e
i
n
t
h
e
g
l
o
b
a
l
H
i
v
e
c
o
n
f
i
g
u
r
a
t
i
o

Chapter 3
Creating and Initializing the Hadoop Data Server

3-12

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In addition to
base Hadoop and Hive Properties)

Property Group Property Description/Value

n
h
i
v
e
-
s
i
t
e
.
x
m
l
.

Table 3-9 Hadoop Data Server Properties Mandatory for Oracle Loader for Hadoop (In
addition to base Hadoop and Hive properties)

Property Group Property Description/Value

OLH/OSCH OLH_HOME Location of OLH installation. For
example, /u01/
connectors/olh

OLH/OSCH OLH_FILES usr/lib/hive/lib/hive-
contrib-1.1.0-cdh5.5.1.jar

OLH/OSCH ODCH_HOME Location of OSCH installation.
For example, /u01/
connectors/osch

General HADOOP_CLASSPATH $OLH_HOME/jlib/
:$OSCH_HOME/jlib/

OLH/OSCH OLH_JARS Comma-separated list of all JAR
files required for custom input
formats, Hive, Hive SerDes, and
so forth, used by Oracle Loader
for Hadoop. All filenames have to
be expanded without wildcards.

For example:

$HIVE_HOME/lib/hive-
metastore-0.10.0-
cdh4.5.0.jar,$HIVE_HOME/li
b/libthrift-0.9.0-
cdh4-1.jar,$HIVE_HOME/lib/
libfb303-0.9.0.jar

Chapter 3
Creating and Initializing the Hadoop Data Server

3-13

Table 3-9 (Cont.) Hadoop Data Server Properties Mandatory for Oracle Loader for
Hadoop (In addition to base Hadoop and Hive properties)

Property Group Property Description/Value

OLH/OSCH OLH_SHAREDLIBS (deprecated) $OLH_HOME/lib/
libolh12.so,$OLH_HOME/lib/
libclntsh.so.12.1,$OLH_HOM
E/lib/
libnnz12.so,$OLH_HOME/lib/
libociei.so,$OLH_HOME/lib/
libclntshcore.so.12.1,$OLH
_HOME/lib/libons.so

Table 3-10 Hadoop Data Server Properties Mandatory for SQOOP (In addition to base
Hadoop and Hive properties)

Property Group Property Description/Value

SQOOP SQOOP_HOME Location of Sqoop directory. For
example, /usr/lib/sqoop

SQOOP SQOOP_LIBJARS Location of the SQOOP library
jars. For example, usr/lib/
hive/lib/hive-contrib.jar

Creating and Initializing the Hadoop Data Server

3.3 Creating a Hadoop Physical Schema
To create a physical schema for Hadoop, first create a logical schema for the same using the
standard procedure.

Create a Hadoop physical schema using the standard procedure, as described in the Creating
a Physical Schema section in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in the Creating a Logical Schema section in Administering Oracle Data Integrator and
associate it in a given context.

3.4 Configuring the Oracle Data Integrator Agent to Execute
Hadoop Jobs

You must configure the Oracle Data Integrator agent to execute Hadoop jobs.

For information on creating a physical agent, see the Creating a Physical Agent section in
Administering Oracle Data Integrator.

To configure the Oracle Data Integrator agent:

1. If the ODI agent is not installed on one of the Hadoop Cluster nodes, then you must install
the Hadoop Client libraries on that computer.

Chapter 3
Creating a Hadoop Physical Schema

3-14

For instructions on setting up a remote Hadoop client in Oracle Big Data Appliance, see
the Providing Remote Client Access to CDH section in the Oracle Big Data Appliance
Software User's Guide .

2. Install Hive on your Oracle Data Integrator agent computer.

3. Install SQOOP on your Oracle Data Integrator agent computer.

4. Set the base properties for Hadoop and Hive on your ODI agent computer.

These properties must be added as Hadoop data server properties. For more information,
see Hadoop Data Server Properties.

5. If you plan to use HBase features, set the properties on your ODI agent computer. You
must set these properties in addition to the base Hadoop and Hive properties.

These properties must be added as Hadoop data server properties. For more information,
see Hadoop Data Server Properties.

3.5 Configuring Oracle Loader for Hadoop
If you want to use Oracle Loader for Hadoop, you must install and configure Oracle Loader for
Hadoop on your Oracle Data Integrator agent computer.

Oracle Loader for Hadoop is an efficient and high-performance loader for fast loading of data
from a Hadoop cluster into a table in an Oracle database.

To install and configure Oracle Loader for Hadoop:

1. Install Oracle Loader for Hadoop on your Oracle Data Integrator agent computer.

See the Installing Oracle Loader for Hadoop section in Oracle Big Data Connectors User's
Guide.

2. To use Oracle SQL Connector for HDFS (OLH_OUTPUT_MODE=DP_OSCH or OSCH), you must
first install it.

See the Oracle SQL Connector for Hadoop Distributed File System Setup section in Oracle
Big Data Connectors User's Guide.

3. Set the properties for Oracle Loader for Hadoop on your ODI agent computer. You must
set these properties in addition to the base Hadoop and Hive properties.

These properties must be added as Hadoop data server properties. For more information,
see Hadoop Data Server Properties.

3.6 Configuring Oracle Data Integrator to Connect to a Secure
Cluster

To run the Oracle Data Integrator agent on a Hadoop cluster that is protected by Kerberos
authentication, you must configure a Kerberos-secured cluster.

To use a Kerberos-secured cluster:

1. Log in to the node of the Oracle Big Data Appliance, where the Oracle Data Integrator
agent runs.

2. Set the environment variables by using the following commands. The user name in the
following example is oracle. Substitute the appropriate values for your appliance:

$ export KRB5CCNAME=Kerberos-ticket-cache-directory

Chapter 3
Configuring Oracle Loader for Hadoop

3-15

$ export KRB5_CONFIG=Kerberos-configuration-file
$ export HADOOP_OPTS="$HADOOP_OPTS -
Djavax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.internal.
jaxp.DocumentBuilderFactoryImpl -Djava.security.krb5.conf=Kerberos-
configuration-file"
In this example, the configuration files are named krb5* and are located in /tmp/
oracle_krb/:

$ export KRB5CCNAME=/tmp/oracle_krb/krb5cc_1000
$ export KRB5_CONFIG=/tmp/oracle_krb/krb5.conf
$ export HADOOP_OPTS="$HADOOP_OPTS -
Djavax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.internal.
jaxp.DocumentBuilderFactoryImpl -Djava.security.krb5.conf=/tmp/oracle_krb/
krb5.conf"

3. Generate a new Kerberos ticket for the oracle user. Use the following command, replacing
realm with the actual Kerberos realm name.

$ kinit oracle@realm
4. ODI Studio: To set the VM for ODI Studio, add AddVMoption in odi.conf in the same

folder as odi.sh.

Kerberos configuration file location:

AddVMOption -Djava.security.krb5.conf=/etc/krb5.conf
AddVMOption -Dsun.security.krb5.debug=true
AddVMOption -Dsun.security.krb5.principal=odidemo

5. Redefine the JDBC connection URL, using syntax like the following:

Table 3-11 Kerberos Configuration for Dataserver

Technolog
y

Configuration Example

Hadoop No specific configuration to be done, general settings is
sufficient.

Chapter 3
Configuring Oracle Data Integrator to Connect to a Secure Cluster

3-16

Table 3-11 (Cont.) Kerberos Configuration for Dataserver

Technolog
y

Configuration Example

Hive $MW_HOME/oracle_common/modules/datadirect/
JDBCDriverLogin.conf
ODI Studio Configuration:

Add the following content to bin/odi.conf file:

AddVMOption -
Djava.security.auth.login.config=<ORACLE_HOME
>/oracle_common/modules/datadirect/
JDBCDriverLogin.conf
ODI J2EE Agent Configuration:

Add the following content to <DOMAIN_HOME>/bin/
setDomainEnv.sh: file:

export KRB5_CONFIG=/etc/krb5.conf
export KRB5CCNAME=/tmp/krb5cc_500
export ODI_ADDITIONAL_JAVA_OPTIONS="-
Djava.security.krb5.conf=/etc/krb5.conf
-Djava.security.auth.login.config=/scratch/
Oracle/Middleware/Oracle_Home/oracle_common/
modules/datadirect/JDBCDriverLogin.conf
-Dsun.security.jgss.debug=true -
Dsun.security.krb5.debug=true
-Djava.security.krb5.realm=SHARED.BDA.COM
-
Djava.security.krb5.kdc=scaj43bda05.us.oracl
e.com:88
-
Djavax.security.auth.useSubjectCredsOnly=fal
se"

JAVA_PROPERTIES="${JAVA_PROPERTIES} $
{WLP_JAVA_PROPERTIES}
${ODI_ADDITIONAL_JAVA_OPTIONS}"
export JAVA_PROPERTIES

JAVA_OPTIONS="${JAVA_OPTIONS} $
{JAVA_PROPERTIES}"
export JAVA_OPTIONS

Example of
configuration file

JDBC_DRIVER_01 {
com.sun.security.a
uth.module.Krb5Log
inModule required
debug=true
useTicketCache=tru
e
ticketCache="/tmp/
krb5cc_500"
doNotPrompt=true
;
};

Example of Hive URL
jdbc:weblogic:hive:/
/
<hostname>:10000;Dat
abaseName=default;Au
thenticationMethod=k
erberos;ServicePrinc
ipalName=<username>/
<fully.qualified.dom
ain.name>@<YOUR-
REALM>.COM

Chapter 3
Configuring Oracle Data Integrator to Connect to a Secure Cluster

3-17

Table 3-11 (Cont.) Kerberos Configuration for Dataserver

Technolog
y

Configuration Example

HBase export HBASE_HOME=/scratch/
fully.qualified.domain.name/etc/hbase/
conf
export HBASE_CONF_DIR = $HBASE_HOME/
conf
export HBASE_OPTS ="-
Djava.security.auth.login.config=$HBASE_CONF
_DIR/hbase-client.jaas"
export HBASE_MASTER_OPTS ="-
Djava.security.auth.login.config=$HBASE_CONF
_DIR/hbase-server.jaas"

ODI Studio Configuration:

AddVMOption -
Djava.security.auth.login.config=$HBASE_CONF_
DIR/hbase-client.jaas"

Example of Hbase
configuration file:

hbase-client.jaas
Client {
com.sun.security.a
uth.module.Krb5Log
inModule required
useKeyTab=false
useTicketCache=tru
e;
};

Spark Spark Kerberos configuration is done through spark submit
parameters

--principal // define principle name
--keytab // location of keytab file

Example of spark-
submit command:

spark-submit --
master yarn --py-
files /tmp/
pyspark_ext.py --
executor-memory
1G --driver-
memory 512M --
executor-cores 1
--driver-cores 1
--num-executors 2
--principal
fully.qualified.do
main.name@YOUR-
REALM.com --
keytab /tmp/
fully.qualified.do
main.name.tab --
queue
default /tmp/
New_Mapping_Physic
al.py

Chapter 3
Configuring Oracle Data Integrator to Connect to a Secure Cluster

3-18

Table 3-11 (Cont.) Kerberos Configuration for Dataserver

Technolog
y

Configuration Example

Kafka Kafka Kerberos configuration is done through kafka-
client.jaas file: The configuration file is placed in Kafka
configuration folder.

Example of Kafka
configuration file:

KafkaClient {

com.sun.security.a
uth.module.Krb5Log
inModule required
 useKeyTab=false

useTicketCache=tru
e

ticketCache="/tmp/
krb5cc_1500"

serviceName="kafka
";
};

The location of Kafka
configuration file is set in
ODI Studio VM option

AddVMOption -
Djava.security.auth.
login.config="/etc/
kafka-jaas.conf"

Pig/Oozie Pig and Ooize will extend the Kerberos configuration of
linked Hadoop data server and does not require specific
configuration.

For more information on these properties and settings, see "HiveServer2 Security
Configuration" in the CDH5 Security Guide at the following URL:

https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/
cdh5sg_hiveserver2_security.html

6. Renew the Kerberos ticket for the Oracle user on a regular basis to prevent disruptions in
service.

7. Download the unlimited strength JCE security jars.

For instructions about managing Kerberos on Oracle Big Data Appliance, see the About
Accessing a Kerberos-Secured Cluster section in Oracle Big Data Appliance Software
User's Guide .

Chapter 3
Configuring Oracle Data Integrator to Connect to a Secure Cluster

3-19

https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hiveserver2_security.html
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/cdh5sg_hiveserver2_security.html

3.7 Configuring Oracle Data Integrator Studio for Executing
Hadoop Jobs on the Local Agent

Perform the following configuration steps to execute Hadoop jobs on the local agent of Oracle
Data Integrator Studio.

For executing Hadoop jobs on the local agent of an Oracle Data Integrator Studio installation,
follow the configuration steps in Configuring the Oracle Data Integrator Agent to Execute
Hadoop Jobs with the following change:

Copy the following Hadoop client jar files to the local machines.

/usr/lib/hadoop/*.jar
/usr/lib/hadoop/lib/*.jar
/usr/lib/hadoop/client/*.jar
/usr/lib/hadoop-hdfs/*.jar
/usr/lib/hadoop-mapreduce/*.jar
/usr/lib/hadoop-yarn/*.jar
/usr/lib/oozie/lib/*.jar
/usr/lib/hive/*.jar
/usr/lib/hive/lib/*.jar
/usr/lib/hbase/*.jar
/usr/lib/hbase/lib/*.jar

Add the above classpaths in the additional_path.txt file under the userlib directory.

For example:

Linux: $USER_HOME/.odi/oracledi/userlib directory.

Windows: C:\Users\<USERNAME>\AppData\Roaming\odi\oracledi\userlib directory

Chapter 3
Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

3-20

4
Integrating Hadoop Data

This chapter provides information about the steps you need to perform to integrate Hadoop
data.
This chapter includes the following sections:

• Integrating Hadoop Data

• Setting Up File Data Sources

• Setting Up HDFS Data Sources

• Setting Up Hive Data Sources

• Setting Up HBase Data Sources

• Setting Up Kafka Data Sources

• Setting Up Cassandra Data Sources

• Importing Hadoop Knowledge Modules

• Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables,
and HDFS Files

• Password Handling in Hadoop

• Loading Data from Files into Hive

• Loading Data from Hive to Files

• Loading Data from HBase into Hive

• Loading Data from Hive into HBase

• Loading Data from an SQL Database into Hive, HBase, and File using SQOOP

• Loading Data from an SQL Database into Hive using SQOOP

• Loading Data from an SQL Database into HDFS File using SQOOP

• Loading Data from an SQL Database into HBase using SQOOP

• Validating and Transforming Data Within Hive

• Loading Data into an Oracle Database from Hive and File

• Loading Data into an SQL Database from Hbase, Hive, and File using SQOOP

• Loading Data from Kafka to Spark Processing Engine

4.1 Integrating Hadoop Data
To integrate Hadoop data, set up data sources, import Hadoop knowledge modules, create
oracle data integrator models and design mappings to load, validate, and transform Hadoop
data.

The following table summarizes the steps for integrating Hadoop data.

4-1

Table 4-1 Integrating Hadoop Data

Step Description

Set Up Data Sources Set up the data sources to create the data source models. You must
set up File, Hive, HDFS, and HBase data sources.

See Setting Up File Data Sources

See Setting Up Hive Data Sources

See Setting Up HBase Data Sources

See Setting Up Kafka Data Sources

See Setting Up Cassandra Data Sources

See Setting Up HDFS Data Sources

Import Hadoop Knowledge
Modules

Import the Hadoop KMs into Global Objects or a project.

See Importing Hadoop Knowledge Modules

Create Oracle Data Integrator
Models

Reverse-engineer the Hive and HBase models to create Oracle Data
Integrator models.

See Creating ODI Models and Data Stores to represent Hive, HBase
and Cassandra Tables, and HDFS Files

Configure Hadoop Credential
Provider

Configure Hadoop Credential Provider and define the password.

See Password Handling in Hadoop.

Integrate Hadoop Data Design mappings to load, validate, and transform Hadoop data.

See Loading Data from Files into Hive

See Loading Data from HBase into Hive

See Loading Data from Hive into HBase

See Loading Data from an SQL Database into Hive, HBase, and File
using SQOOP

See Validating and Transforming Data Within Hive

See Loading Data into an Oracle Database from Hive and File

See Loading Data into an SQL Database from Hbase, Hive, and File
using SQOOP

See Loading Data from Kafka to Spark Processing Engine

See Loading Data from HDFS File to Hive

See Loading Data from HDFS File to Spark

See Loading Data from Hive to Files

4.2 Setting Up File Data Sources
To setup file data sources, you need to create a data server object under File technology along
with a physical and logical schema for every directory to be accessed.

In the Hadoop context, there is a distinction between files in Hadoop Distributed File System
(HDFS) and local files (outside of HDFS).

To define a data source:

1. Create a Data Server object under File technology.

2. Create a Physical Schema object for every directory to be accessed.

3. Create a Logical Schema object for every directory to be accessed.

4. Create a Model for every Logical Schema.

Chapter 4
Setting Up File Data Sources

4-2

5. Create one or more data stores for each different type of file and wildcard name pattern.

6. HDFS Files are now created using the HDFS Technology as seen in Setting Up HDFS
Data Sources. However, for backward compatibility, there are some Big Data File
Knowledge Modules that support HDFS Files. To define HDFS files, you must select HDFS
File and define the Hadoop DataServer reference. Alternatively, you can create a Data
Server object under File technology by entering the HDFS name node in the field JDBC
URL and leave the JDBC Driver name empty. For example:

hdfs://bda1node01.example.com:8020

Test Connection is not supported for this Data Server configuration.

Integrating Hadoop Data

4.3 Setting Up HDFS Data Sources
To setup HDFS data sources, you need to create a data server object under HDFS technology
along with a physical and logical schema for every directory to be accessed.

This topic provides steps in Oracle Data Integrator that are required for connecting to a HDFS
system.

1. Create a Data Server object under HDFS technology.

Note:

HDFS data server should reference an existing Hadoop data server.

2. Create a Physical Schema object for every directory to be accessed.

3. Create a Logical Schema object for every directory to be accessed.

4. Create a Model for every Logical Schema

5. Create one or more data stores for each different type of file.

The definition tab has a Resource Name field that enables you to specify which file or files
it represents. If wildcards are used, the files must have the same schema and be of the
same format (all JSON or all Avro).

6. Select the appropriate Storage Format and the Schema File.

The contents of the schema are displayed.

7. Select the Attributes Tab to either enter, or reverse-engineer the Attributes from the
supplied schema.

4.4 Setting Up Hive Data Sources
To setup Hive data sources, you need to create a data server object under Hive technology.
Oracle Data Integrator connects to Hive by using JDBC.

The following steps in Oracle Data Integrator are required for connecting to a Hive system.

Oracle Data Integrator connects to Hive by using JDBC.

To set up a Hive data source:

1. Create a Data Server object under Hive technology.

Chapter 4
Setting Up HDFS Data Sources

4-3

2. Set the following locations under JDBC:

JDBC Driver: weblogic.jdbc.hive.HiveDriver
JDBC URL: jdbc:weblogic:hive://<host>:<port>[; property=value[;...]]
For example, jdbc:weblogic:hive://
localhost:10000;DatabaseName=default;User=default;Password=default

Note:

Usually User ID and Password are provided in the respective fields of an ODI
Data Server. In case where a Hive user is defined without password, you must
add password=default as part of the JDBC URL and the password field of Data
Server shall be left blank.

3. Set the following under on the definition tab of the data server:

Hive Metastore URIs: for example, thrift://BDA:10000
4. Ensure that the Hive server is up and running.

5. Test the connection to the Data Server.

6. Create a Physical Schema. Enter the name of the Hive schema in both schema fields of
the Physical Schema definition.

7. Create a Logical Schema object.

8. Import RKM Hive into Global Objects or a project.

9. Create a new model for Hive Technology pointing to the logical schema.

10. Perform a custom reverse-engineering operation using RKM Hive.

Reverse-engineered Hive table populates the attribute and storage tabs of the data store.

Integrating Hadoop Data

4.5 Setting Up HBase Data Sources
To setup HBase data sources, you need to create a data server object under HBase
technology along with a physical and logical schema object.

The following steps in Oracle Data Integrator are required for connecting to a HBase system.

To set up a HBase data source:

1. Create a Data Server object under HBase technology.

JDBC Driver and URL are not available for data servers of this technology.

2. Set the following under on the definition tab of the data server:

HBase Quorum: Quorum of the HBase installation. For example:
zkhost1.example.com,zkhost2.example.com,zkhost3.example.com

3. Ensure that the HBase server is up and running.

Chapter 4
Setting Up HBase Data Sources

4-4

Note:

You cannot test the connection to the HBase Data Server.

4. Create a Physical Schema.

5. Create a Logical Schema object.

6. Import RKM HBase into Global Objects or a project.

7. Create a new model for HBase Technology pointing to the logical schema.

8. Perform a custom reverse-engineering operation using RKM HBase.

Note:

Ensure that the HBase tables contain some data before performing reverse-
engineering. The reverse-engineering operation does not work if the HBase
tables are empty.

At the end of this process, the HBase Data Model contains all the HBase tables with their
columns and data types.

Integrating Hadoop Data

4.6 Setting Up Kafka Data Sources
To setup kafka data sources, you need to create a data server object under Kafka technology
along with a physical and logical schema object. Create one or more data sources for each
different topic and then test the connection to the Data Server.

This following procedure describes how to connect to a Kafka system in Oracle Data
Integrator.

1. Create a Data Server object under Kafka technology.

For information on creating a Kafka data server, see Kafka Data Server Definition and
Kafka Data Server Properties.

2. Create a Physical Schema object.

3. Create a Logical Schema object.

4. Create a Model for every Logical Schema

5. Create one or more data stores for each different topic.

Resource Name in the definition tab of data store indicates the Kafka topic . Kafka topic
name can be either entered by the user or selected from the list of available Kafka topics in
the Kafka cluster. There are two ways to load data from Kafka topics which are receiver-
based and direct and LKM Kafka to Spark supports both approaches.

6. Test the connection to the Data Server.

For information on Kafka Integration, see Hadoop Data Integration with Oracle Data
Integrator.

The Kafka data model contains all the Kafka topics with their columns and data types.

Chapter 4
Setting Up Kafka Data Sources

4-5

4.7 Setting Up Cassandra Data Sources
To setup Cassandra data sources, you need to create a data server object under Casssandra
technology. Oracle Data Integrator connects to Cassandra by using JDBC.

This following procedure describes how to connect to a Cassandra system in Oracle Data
Integrator.

1. Create a Data Server object under Cassandra technology.

2. Set the following locations under JDBC:

Add the Cassandra JDBC Driver to the Driver List.
JDBC Driver: weblogic.jdbc.cassandra.CassandraDriver
JDBC URL: jdbc:weblogic:cassandra://<host>:<port>[;property=value[:...]]
For example, jdbc:weblogic:cassandra://
cassandra.example.com:9042;KeyspaceName=mykeyspace

Note:

Latest driver uses the binary protocol and hence uses default port 9042.

3. Ensure that the Cassandra server is up and running.

4. Test the connection to the Data Server.

5. Create a Physical Schema object.

6. Create a Logical Schema object.

7. Import RKM Cassandra into Global Objects or a project.

8. Create a Model for every Logical Schema

9. Perform a custom reverse-engineering operation using RKM Cassandra.

4.8 Importing Hadoop Knowledge Modules
Unlike other built-in Big Data Knowledge Modules, you need to import RKMs and CKMs into
your project or as global objects before you use them.

Most of the Big Data Knowledge Modules are built-in the product. The exceptions are the
RKMs and CKMs, and these will need to be imported into your project or as global objects
before you use them. They are:

• CKM Hive

• RKM Hive

• RKM HBase

• RKM Cassandra

Integrating Hadoop Data

Chapter 4
Setting Up Cassandra Data Sources

4-6

4.9 Creating ODI Models and Data Stores to represent Hive,
HBase and Cassandra Tables, and HDFS Files

You must create ODI models to hold the data stores that represent HDFS files or Hive, HBase
and Cassandra tables. The reverse-engineering process creates Hive, HBase and Cassandra
data stores for the corresponding Hive, HBase and Cassandra tables. You can use these data
stores as source or target in your mappings.

This section contains the following topics:

• Creating a Model

• Reverse-Engineering Hive Tables

• Reverse-Engineering HBase Tables

• Reverse-Engineering HDFS Files

• Reverse-Engineering Cassandra Tables

• Reverse-Engineering Support for Kafka

4.9.1 Creating a Model
To create a model that is based on the technology hosting Hive, HBase, Cassandra, or HDFS
and on the logical schema created when you configured the Hive, HBase, Cassandra, HDFS
or File connection, follow the standard procedure described in Developing Integration Projects
with Oracle Data Integrator.

For backward compatibility, the Big Data LKMs reading from Files (LKM File to Hive LOAD
DATA), also support reading from HDFS, however the source data store must be from a file
model. If reading from HDFS, it is preferable to use KMs like the LKM HDFS to File LOAD
DATA . In this case, the source data store must be from an HDFS model.

4.9.2 Reverse-Engineering Hive Tables
RKM Hive is used to reverse-engineer Hive tables and views. To perform a customized
reverse-engineering of Hive tables with RKM Hive, follow the usual procedures, as described
in Developing Integration Projects with Oracle Data Integrator. This topic details information
specific to Hive tables.

The reverse-engineering process creates the data stores for the corresponding Hive table or
views. You can use the data stores as either a source or a target in a mapping.

For more information about RKM Hive, see RKM Hive.

Hive data stores contain a storage tab allowing you to see how data is stored and formatted
within Hive. If the Hive table has been reverse-engineered, then these fields will be
automatically populated. If you created this data store from the beginning, with the intention of
creating the table when running a mapping (using create target table), then you can choose
how the data is formatted by editing these fields.

The target Hive table is created based on the data provided in the Storage and Attribute panels
of the Hive data store as shown in Table 4-2 and Table 4-3.

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

4-7

Table 4-2 Hive Data Store Storage Panel Properties

Property Description

Table Type Select one of the following as the type of Hive table
to be created:

• Managed
• External
• <Undefined>

Storage Type Select one of the following as the type of Data
storage:

• Native
• Non-Native
• <Undefined>

Row Format This property appears when Native is selected as
the Storage Type.

Select one of the following as the Row Format:

• Built-In
• Delimited
• SerDe
• <Undefined>

Record Separator This property appears when Delimited is selected
as the Row Format.

Fill in the following fields:

• Fields Terminated By
• Fields Escaped By
• Collection Items Terminated By
• Map Keys Terminated By
• Lines Terminated By
• File Null Value

SerDe This property appears when SerDe is selected as
the Row Format.

Fill in the SerDe Class field.

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

4-8

Table 4-2 (Cont.) Hive Data Store Storage Panel Properties

Property Description

Storage Format This longer Storage Format section appears when
Native is selected as the Storage Type.

It contains the following properties:

• Predefined File Format
• Input Format (appears when INPUTFORMAT

is selected as the Predefined File Format.)
• Output Format (appears when

INPUTFORMAT is selected as the Predefined
File Format.)

• Location (appears when External is selected
as the Table Type.)

Select one of the following as the Predefined File
Format:

• INPUTFORMAT
• SEQUENCEFILE
• PARQUET
• TEXTFILE
• ORC
• JSON
• RCFILE
• AVRO
• <Undefined>

Storage Handler This property appears when Non-Native is
selected as the Storage Type.

Fill in the Storage Handler Class field.

Storage Format This shorter Storage Format section appears when
Non-Native is selected as the Storage Type.

Fill in the Location field.

Table 4-3 Hive Data Store Attribute Panel Properties

Property Description

Order Order in which attributes are sequenced.

Name Name of the attribute.

Type Data type of the attribute.

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

4-9

Table 4-3 (Cont.) Hive Data Store Attribute Panel Properties

Property Description

Data Format Data Format of the attribute.

Note:

This field is only used
for attributes with a
data type of
"Complex". The
content is populated
during reverse-
engineering and will
contain a definition of
the Complex Type.

Length Physical length of the attribute.

Scale Scale of the numeric attribute.

Not Null Specifies if the attribute can be null or not.

SCD Behavior This is not used for Hive data stores.

Partition By Select if it is a partition column.

Cluster By Select if it is a bucketed column.

Sort By Select to sort data on this column within the bucket.

Note:

You must set the
position of this
column in the
SORTED BY clause.
The column whose
Sort By value is
smaller will get the
higher priority. For
example, consider
three columns, C1
with Sort By = 5, C2
with Sort By = 2, C3
with Sort By = 8. The
SORTED BY clause
will be SORTED BY
(C2, C1, C3).

Sort Direction Select to sort data in the ascending (ASC) or
descending (DESC) order.

The data provided above can also be used to create a Hive DDL when the
CREATE_TARG_TABLE option is selected in the LKMs and IKMs.

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

4-10

To fully use the Hive format and storage information, one or more of the following KMs must be
used:

• IKM Hive Append

• IKM Hive Incremental Update

• LKM File to Hive LOAD DATA Direct

• LKM HDFS File to Hive LOAD DATA Direct

4.9.3 Reverse-Engineering HBase Tables
RKM HBase is used to reverse-engineer HBase tables. To perform a customized reverse-
engineering of HBase tables with RKM HBase, follow the usual procedures, as described in
Developing Integration Projects with Oracle Data Integrator. This topic details information
specific to HBase tables.

The reverse-engineering process creates the data stores for the corresponding HBase table.
You can use the data stores as either a source or a target in a mapping.

Note:

Ensure that the HBase tables contain some data before performing reverse-
engineering. The reverse-engineering operation does not work if the HBase tables
are empty.

For more information about RKM HBase, see RKM HBase.

4.9.4 Reverse-Engineering HDFS Files
HDFS files are represented using data stores based on HDFS technology. The HDFS data
stores contain the storage format (JSON, Delimited, etc.), attributes, datatypes, and datatype
properties.

In previous versions of ODI, File technology was used to represent HDFS Files, but the
storage format information was specified in the mappings. If you have existing mappings that
use Knowledge Modules such as LKM File to Hive or LKM File to Spark, then you should
continue to represent your HDFS files with File technology.

Note:

The preferred method of representing HDFS files is by using the HDFS technology.

Reverse-Engineering HDFS Files into HDFS Data Stores

To reverse-engineer an HDFS file, perform the following steps:

1. Create a HDFS data store.

2. From the Storage Tab, select the Storage Format from the Storage Format drop-down list
and specify the complete path of the schema file in the Schema File field.

The schema file should be located in the local file system.

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

4-11

3. Click Reverse Engineer operation from the Attributes Tab of the HDFS data store.

Note:

• There is no need to import an RKM into the project.

• HDFS reverse-engineering requires a Schema (JSON, Parquet, or Avro), hence
HDFS files with a Delimited format cannot be reverse-engineered.

For more information, see the Reverse-engineer a File Model section in Connectivity and
Knowledge Modules Guide for Oracle Data Integrator Developer's Guide .

Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and
HDFS Files

Reverse-Engineering HDFS Files in File Data Stores

HDFS files can be reverse-engineered like regular files. To reverse-engineer HDFS files, you
must copy them to your File System and follow the same process as that to reverse-engineer
regular files.

Note:

If the file is large for your local File System, retrieve the first N records from HDFS
and place them in a local file.

4.9.5 Reverse-Engineering Cassandra Tables
RKM Cassandra is used to reverse-engineer Cassandra tables. To perform a customized
reverse-engineering of Cassandra tables with RKM Cassandra, follow the usual procedures,
as described in Developing Integration Projects with Oracle Data Integrator.

The reverse-engineering process creates the data stores for the corresponding Cassandra
table. For more information about RKM Cassandra, see RKM Cassandra.

4.9.6 Reverse-Engineering Support for Kafka
Reverse-engineering for Kafka is very similar to reverse-engineering HDFS files.

Create a model based on Kafka technology. Create a data store in that model as mentioned
below:

1. Go to the Definition panel and enter Name and Resource Name.

2. Go to the Storage panel, select the Storage Format and specify the path of the Schema
File.

The Schema File has to be locally accessible.

Chapter 4
Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files

4-12

Note:

The Storage Format can be AVRO, JSON, or PARQUET. The DELIMITED
Storage Format is not supported for reverse-engineering. Use Data Store Editor
to create a Kafka data store with DELIMITED Storage format.

3. Go to the Attribute panel and click Reverse Engineer.

All the attributes specified in the Schema File are listed here.

4.10 Password Handling in Hadoop
Before using LKM SQL to Spark, LKM Spark to SQL, and LKM Spark to Cassandra, the
Hadoop Credential Provider has to be configured and the password has to be defined.

To use these KMs, it is mandatory to follow the below procedure:

1. Configure the Hadoop Credential Provider.

JDBC connection passwords are stored using the Hadoop Credential API. This requires
the Hadoop cluster to be configured with at least one Credential Provider.

Below is an example:

<property>
<name>hadoop.security.credential.provider.path</name>
<value>user:///,jceks://file/tmp/test.jceks,jceks://hdfs@cluster1-ns/my/path/
test.jceks</value>
</property>

Note:

The property in the example above should be defined in core-site.xml or its
equivalent.

For the proper configuration applicable to your system and security configuration/needs,
see CredentialProvider API Guide.

2. Create a password alias in Hadoop Credential Provider.

Once the Hadoop cluster is configured, you must create a credential for each password
that Spark will be using to connect to the SQL source or target. ODI will assume the
following format for credential alias names:

odi.<user_name>.<dataserver_name>.password
The user_name and dataserver_name are obtained from the ODI topology DataServer
properties.

The example below shows the creation of a password alias in Hadoop Credential Provider
where the user name is oracle and dataserver is Hadoop_CDH5_5.

hadoop credential create odi.oracle.Hadoop_CDH5_5.password

Chapter 4
Password Handling in Hadoop

4-13

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CredentialProviderAPI.html

4.11 Loading Data from Files into Hive
To load data from files into Hive, create data stores for local and HDFS files and create a
mapping after which you can select the option LKM file to Hive Load data, to load data from flat
files to Hive.

The LKM File to Hive KMs support loading data from HDFS Files and, also local Files.
However, if you are using HDFS files, the preferred way is to use the HDFS KMs, as described
in Loading Data from HDFS into Hive.

1. Create the data stores for local files and HDFS files.

For information on reverse-engineering and configuring local file data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide.

2. Create a mapping using the file data store as the source and the corresponding Hive table
as the target.

3. Use the LKM File to Hive LOAD DATA or the LKM File to Hive LOAD DATA Direct
knowledge module specified in the physical diagram of the mapping.

These integration knowledge modules load data from flat files into Hive, replacing or
appending any existing data.

For more information about the KMs, see the following sections:

• LKM File to Hive LOAD DATA

• LKM File to Hive LOAD DATA Direct

4.12 Loading Data from Hive to Files
To load data from Hive tables to local file system or HDFS files, create data store for the Hive
tables and create a mapping after which you can select the option LKM Hive to File Direct
Knowledge module, to load data from Hive to flat files.

To load data from Hive tables to a local file system or a HDFS file:

1. Create a data store for the Hive tables that you want to load in flat files.

For information about reverse-engineering and configuring Hive data sources, see Setting
Up Hive Data Sources.

2. Create a mapping using the Hive data store as the source and the corresponding File data
source as the target.

3. Use the LKM Hive to File Direct knowledge module, specified in the physical diagram of
the mapping.

This integration knowledge module loads data from Hive into flat Files.

For more information about LKM Hive to File Direct, see LKM Hive to File Direct.

4.13 Loading Data from HBase into Hive
To load data from HBase table into Hive, create data store for the HBase table and create a
mapping after which you can select the option LKM HBase to Hive HBASE-SERDE knowledge
module, to load data from HBase table into Hive.

To load data from an HBase table into Hive:

Chapter 4
Loading Data from Files into Hive

4-14

1. Create a data store for the HBase table that you want to load in Hive.

For information about reverse-engineering and configuring HBase data sources, see
Setting Up HBase Data Sources.

2. Create a mapping using the HBase data store as the source and the corresponding Hive
table as the target.

3. Use the LKM HBase to Hive HBASE-SERDE knowledge module, specified in the physical
diagram of the mapping.

This knowledge module provides read access to an HBase table from Hive.

For more information about LKM HBase to Hive HBASE-SERDE, see LKM HBase to Hive
HBASE-SERDE.

4.14 Loading Data from Hive into HBase
To load data from Hive to HBase table, create data store for the Hive tables and create a
mapping after which you can select the option LKM Hive to HBase Incremental Update
HBASE-SERDE Direct knowledge module, to load data from Hive table into HBase.

To load data from a Hive table into HBase:

1. Create a data store for the Hive tables that you want to load in HBase.

For information about reverse-engineering and configuring Hive data sources, see Setting
Up Hive Data Sources.

2. Create a mapping using the Hive data store as the source and the corresponding HBase
table as the target.

3. Use the LKM Hive to HBase Incremental Update HBASE-SERDE Direct knowledge
module, specified in the physical diagram of the mapping.

This integration knowledge module loads data from Hive into HBase and supports inserting
new rows and, also updating existing data.

For more information about LKM Hive to HBase Incremental Update HBASE-SERDE Direct,
see LKM Hive to HBase Incremental Update HBASE-SERDE Direct.

4.15 Loading Data from an SQL Database into Hive, HBase, and
File using SQOOP

To load data from an SQL Database into Hive, HBase, and File using SQOOP create a data
store for the SQL source and create a mapping after which you can select the option IKM SQL
to Hive-HBase-File (SQOOP) knowledge module, to load data from a SQL source into Hive,
HBase, or Files target using SQOOP.

To load data from an SQL Database into a Hive, HBase, and File target:

1. Create a data store for the SQL source that you want to load into Hive, HBase, or File
target.

For information about reverse-engineering and configuring SQL data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide.

2. Create a mapping using the SQL source data store as the source and the corresponding
HBase table, Hive table, or HDFS files as the target.

Chapter 4
Loading Data from Hive into HBase

4-15

3. Use the IKM SQL to Hive-HBase-File (SQOOP) knowledge module, specified in the
physical diagram of the mapping.

Note:

The IKM SQL to Hive-HBase-File (SQOOP) is not seeded and has to be
manually imported.

This integration knowledge module loads data from a SQL source into Hive, HBase, or
Files target. It uses SQOOP to load the data into Hive, HBase, and File targets. SQOOP
uses parallel JDBC connections to load the data.

For more information about IKM SQL to Hive-HBase-File (SQOOP), see IKM SQL to Hive-
HBase-File (SQOOP) [Deprecated].

4.16 Loading Data from an SQL Database into Hive using
SQOOP

To load data from an SQL Database into Hive using SQOOP create a data store for the SQL
source and create a mapping after which you can select the option LKM SQL to Hive SQOOP
knowledge module, to load data from a SQL source into Hive using SQOOP.

To load data from an SQL Database into a Hive target:

1. Create a data store for the SQL source that you want to load into Hive target.

For information about reverse-engineering and configuring SQL data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide.

2. Create a mapping using the SQL source data store as the source and the corresponding
Hive table as the target.

3. Use the LKM SQL to Hive SQOOP knowledge module, specified in the physical diagram of
the mapping.

This KM loads data from a SQL source into Hive. It uses SQOOP to load the data into
Hive. SQOOP uses parallel JDBC connections to load the data.

For more information about LKM SQL to Hive SQOOP, see LKM SQL to Hive SQOOP.

4.17 Loading Data from an SQL Database into HDFS File using
SQOOP

To load data from an SQL Database into a HDFS File target:

1. Create a data store for the SQL source that you want to load into HDFS File target.

For information about reverse-engineering and configuring SQL data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide.

2. Create a mapping using the SQL source data store as the source and the corresponding
HDFS files as the target.

3. Use the LKM SQL to File SQOOP Direct knowledge module, specified in the physical
diagram of the mapping.

Chapter 4
Loading Data from an SQL Database into Hive using SQOOP

4-16

This integration knowledge module loads data from a SQL source into HDFS Files target. It
uses SQOOP to load the data into File targets. SQOOP uses parallel JDBC connections to
load the data.

For more information about IKM SQL to Hive-HBase-File (SQOOP), see IKM SQL to Hive-
HBase-File (SQOOP) [Deprecated].

4.18 Loading Data from an SQL Database into HBase using
SQOOP

To load data from an SQL Database into a HBase target:

1. Create a data store for the SQL source that you want to load into HBase target.

For information about reverse-engineering and configuring SQL data sources, see
Connectivity and Knowledge Modules Guide for Oracle Data Integrator Developer's Guide.

2. Create a mapping using the SQL source data store as the source and the corresponding
HBase table as the target.

3. Use the LKM SQL to HBase SQOOP Direct knowledge module, specified in the physical
diagram of the mapping.

This integration knowledge module loads data from a SQL source into HBase target. It
uses SQOOP to load the data into HBase targets. SQOOP uses parallel JDBC
connections to load the data.

For more information about LKM SQL to HBase SQOOP Direct, see LKM SQL to HBase
SQOOP Direct.

4.19 Validating and Transforming Data Within Hive
After loading data into Hive, you can validate and transform the data using the following
knowledge modules.

Note:

IKM Hive Control Append, CKM Hive, and IKM Hive Transform have to be imported.

• IKM Hive Control Append

For more information, see IKM Hive Append.

• IKM Hive Append

For more information, see IKM Hive Append.

• IKM Hive Incremental Update

For more information, see IKM Hive Incremental Update.

• CKM Hive

For more information, see CKM Hive.

• IKM Hive Transform

For more information, see IKM Hive Transform (Deprecated).

Chapter 4
Loading Data from an SQL Database into HBase using SQOOP

4-17

4.20 Loading Data into an Oracle Database from Hive and File
Use the knowledge modules listed in the following table to load data from an HDFS file or Hive
source into an Oracle database target using Oracle Loader for Hadoop.

Table 4-4 Knowledge Modules to load data into Oracle Database

Knowledge Module Use To...

IKM File-Hive to Oracle (OLH-
OSCH)

Load data from an HDFS file or Hive source into an Oracle database
target using Oracle Loader for Hadoop.

For more information, see IKM File-Hive to Oracle (OLH-OSCH)
[Deprecated].

Note:

This KM has to be imported.

LKM File to Oracle OLH-OSCH Load data from an HDFS file into an Oracle staging table using Oracle
Loader for Hadoop.

For more information, see LKM File to Oracle OLH-OSCH.

LKM File to Oracle OLH-OSCH
Direct

Load data from an HDFS file into an Oracle database target using
Oracle Loader for Hadoop.

For more information, see LKM File to Oracle OLH-OSCH Direct.

LKM Hive to Oracle OLH-
OSCH

Load data from a Hive source into an Oracle staging table using Oracle
Loader for Hadoop.

For more information, see LKM Hive to Oracle OLH-OSCH.

LKM Hive to Oracle OLH-
OSCH Direct

Load data from a Hive source into an Oracle database target using
Oracle Loader for Hadoop.

For more information, see LKM Hive to Oracle OLH-OSCH Direct.

4.21 Loading Data into an SQL Database from Hbase, Hive, and
File using SQOOP

Use the knowledge modules listed in the following table to load data from a HDFS file, HBase
source, or Hive source into an SQL database target using SQOOP.

Chapter 4
Loading Data into an Oracle Database from Hive and File

4-18

Table 4-5 Knowledge Modules to load data into SQL Database

Knowledge Module Use To...

IKM File-Hive to SQL (SQOOP) Load data from an HDFS file or Hive source into an SQL database
target using SQOOP.

For more information, see IKM File-Hive to SQL (SQOOP)
[Deprecated].

Note:

This KM has to be imported.

LKM HBase to SQL SQOOP Load data from an HBase source into an SQL database target using
SQOOP.

For more information, see LKM HBase to SQL SQOOP.

LKM File to SQL SQOOP Load data from an HDFS file into an SQL database target using
SQOOP.

For more information, see LKM File to SQL SQOOP.

LKM Hive to SQL SQOOP Load data from a Hive source into an SQL database target using
SQOOP.

For more information, see LKM Hive to SQL SQOOP.

4.22 Loading Data from Kafka to Spark Processing Engine
Loading data from Kafka to Spark.

1. Create a data store for the Kafka tables that you want to load in Spark.

For configuring Kafka data sources, see Setting Up Kafka Data Sources.

2. Create a mapping using the Kafka data store as the source and the File/HDFS/SQL/Hive/
Kafka data store as the target. Use Spark Python Physical Schema as the staging location.

For more information, see Creating a Spark Physical Schema.

3. Use the Storage function KM option with the value createStream for a receiver-based
connection or the value createDirectStream for a direct connection as specified in the
physical diagram of the mapping.

Set the zookeeper.connect and metadata.broker.list Kafka data server
properties for the appropriate connection.

This knowledge module loads data from Kafka into the Spark processing engine. You can
use other knowledge modules to load data from Spark into File/HDFS/SQL/Hive/Kafka.

Note:

Every Kafka source in an ODI mapping allocates a Spark executor. A Spark
Kafka mapping hangs if the number of available executors is low. The number of
executors must be atleast n+1 where n is the number of Kafka sources in the
mapping. For additional information, refer to Spark Documentation.

Chapter 4
Loading Data from Kafka to Spark Processing Engine

4-19

https://spark.apache.org/documentation.html

For more information about LKM Kafka to Spark, see LKM Kafka to Spark.

Chapter 4
Loading Data from Kafka to Spark Processing Engine

4-20

5
Executing Oozie Workflows

This chapter provides information about how to set up the Oozie Engine and explains how to
execute Oozie Workflows using Oracle Data Integrator. It also explains how to audit Hadoop
logs.
This chapter includes the following sections:

• Executing Oozie Workflows with Oracle Data Integrator

• Setting Up and Initializing the Oozie Runtime Engine

• Creating a Logical Oozie Engine

• Executing or Deploying an Oozie Workflow

• Auditing Hadoop Logs

• Userlib jars support for running ODI Oozie workflows

5.1 Executing Oozie Workflows with Oracle Data Integrator
To execute oozie workflows with oracle data integrator, setup the Oozie runtime engine,
execute or deploy an Oozie workflow and then audit the Hadoop Logs.

The following table summarizes the steps you need to perform to execute Oozie Workflows
with Oracle Data Integrator.

Table 5-1 Executing Oozie Workflows

Step Description

Set up the Oozie runtime
engine

Set up the Oozie runtime engine to configure the connection to the
Hadoop data server where the Oozie engine is installed. This Oozie
runtime engine is used to execute ODI Design Objects or Scenarios on
the Oozie engine as Oozie workflows.

See Setting Up and Initializing the Oozie Runtime Engine .

Execute or deploy an Oozie
workflow

Run the ODI Design Objects or Scenarios using the Oozie runtime
engine created in the previous step to execute or deploy an Oozie
workflow.

See Executing or Deploying an Oozie Workflow.

Audit Hadoop Logs Audit the Hadoop Logs to monitor the execution of the Oozie workflows
from within Oracle Data Integrator.

See Auditing Hadoop Logs.

5.2 Setting Up and Initializing the Oozie Runtime Engine
Before you set up the Oozie runtime engine, ensure that the Hadoop data server where the
Oozie engine is deployed is available in the topology. The Oozie engine must be associated
with this Hadoop data server.

To set up the Oozie runtime engine:

5-1

1. In the Topology Navigator, right-click the Agents Tree node in the Physical Architecture
navigation tree and click New Oozie Engine.

2. In the Definition tab, specify the values in the fields for the defining the Oozie runtime
engine.

See Oozie Runtime Engine Definition for the description of the fields.

3. In the Properties tab, specify the properties for the Oozie Runtime Engine.

See Oozie Runtime Engine Properties for the description of the properties.

4. Click Test to test the connections and configurations of the actual Oozie server and the
associated Hadoop data server.

5. Click Initialize to initialize the Oozie runtime engine.

Initializing the Oozie runtime engine deploys the log retrieval workflows and coordinator
workflows to the HDFS file system and starts the log retrieval coordinator and workflow
jobs on the actual Oozie server. The log retrieval flow and coordinator for a repository and
oozie engine will have the names OdiRetrieveLog_<EngineName>_<ReposId>_F and
OdiLogRetriever_<EngineName>_<ReposId>_C respectively.

It also deploys the ODI libraries and classes.

6. Click Save.

Executing Oozie Workflows with Oracle Data Integrator

5.2.1 Oozie Runtime Engine Definition
The following table describes the fields that you need to specify on the Definition tab when
defining a new Oozie runtime engine. An Oozie runtime engine models an actual Oozie server
in a Hadoop environment.

Table 5-2 Oozie Runtime Engine Definition

Field Values

Name Name of the Oozie runtime engine that appears in Oracle Data
Integrator.

Host Name or IP address of the machine on which the Oozie runtime agent
has been launched.

Port Listening port used by the Oozie runtime engine. Default Oozie port
value is 11000.

Web application context Name of the web application context. Type oozie as the value of this
field, as required by the Oozie service process running in an Hadoop
environment.

Protocol Protocol used for the connection. Possible values are http or https.
Default is http.

Hadoop Server Name of the Hadoop server where the oozie engine is installed. This
Hadoop server is associated with the oozie runtime engine.

Poll Frequency Frequency at which the Hadoop audit logs are retrieved and stored in
ODI repository as session logs.

The poll frequency can be specified in seconds (s), minutes (m), hours
(h), days (d), and years (d). For example, 5m or 4h.

Chapter 5
Setting Up and Initializing the Oozie Runtime Engine

5-2

Table 5-2 (Cont.) Oozie Runtime Engine Definition

Field Values

Lifespan Time period for which the Hadoop audit logs retrieval coordinator stays
enabled to schedule audit logs retrieval workflows.

Lifespan can be specified in minutes (m), hours (h), days (d), and years
(d). For example, 4h or 2d.

Schedule Frequency Frequency at which the Hadoop audit logs retrieval workflow is
scheduled as an Oozie Coordinator Job.

Schedule workflow can be specified in minutes (m), hours (h), days (d),
and years (d). For example, 20m or 5h.

Setting Up and Initializing the Oozie Runtime Engine

Configuring Big Data technologies using the Big Data Configurations Wizard

5.2.2 Oozie Runtime Engine Properties
The following table describes the properties that you can configure on the Properties tab when
defining a new Oozie runtime engine.

Table 5-3 Oozie Runtime Engine Properties

Field Values

OOZIE_WF_GEN_MAX_DETA
IL

Limits the maximum detail (session level or fine-grained task level)
allowed when generating ODI Oozie workflows for an Oozie engine.

Set the value of this property to TASK to generate an Oozie action for
every ODI task or to SESSION to generate an Oozie action for the
entire session.

Setting Up and Initializing the Oozie Runtime Engine

Configuring Big Data technologies using the Big Data Configurations Wizard

5.3 Creating a Logical Oozie Engine
To create a logical oozie agent:

1. In Topology Navigator, right-click the Agents node in the Logical Architecture navigation
tree.

2. Select New Logical Oozie Engine.

3. Fill in the Name.

4. For each Context in the left column, select an existing Physical Agent in the right column.
This Physical Agent is automatically associated to the Logical Oozie Engine in this context.

5. From the File menu, click Save.

Setting Up and Initializing the Oozie Runtime Engine

Chapter 5
Creating a Logical Oozie Engine

5-3

5.4 Executing or Deploying an Oozie Workflow
You can run an ODI design-time object such as a Mapping or a runtime object such as a
Scenario using an Oozie Workflow. When running the ODI design object or scenario, you can
choose to only deploy the Oozie workflow without executing it.

Note:

To enable SQOOP logging when executing an Oozie workflow, add the below
property to the data server –
HADOOP_CLIENT_OPTS="-Dlog4j.debug -Dhadoop.root.logger=INFO,console -
Dlog4j.configuration=file:/etc/hadoop/conf.cloudera.yarn/
log4j.properties"

To execute an ODI Oozie workflow:

1. From the Projects menu of the Designer navigator, right-click the mapping that you want to
execute as an Oozie workflow and click Run.

2. From the Logical Agent drop-down list, select the Oozie runtime engine.

3. Click OK.

The Information dialog appears.

4. Check if the session started and click OK on the Information dialog.

To deploy an ODI Oozie workflow:

1. From the Load Plans and Scenarios menu of the Designer navigator, right-click the
scenario that you want to deploy as an Oozie workflow and click Run.

2. From the Logical Agent drop-down list, select the Oozie runtime engine.

3. Select Deploy Only to process the scenario, generate the Oozie workflow, and deploy it to
HDFS.

4. Click OK.

The Information dialog appears.

5. Check if the session started and click OK on the Information dialog.

Executing Oozie Workflows with Oracle Data Integrator

5.5 Auditing Hadoop Logs
When the ODI Oozie workflows are executed, log information is retrieved and captured
according to the frequency properties on the Oozie runtime engine. This information relates to
the state, progress, and performance of the Oozie job.

You can retrieve the log data of an active Oozie session by clicking the Retrieve Log Data in
the Operator menu. Also, you can view information regarding the oozie session in the oozie
webconsole or the MapReduce webconsole by clicking the URL available in the Definition tab
of the Session Editor.

Chapter 5
Executing or Deploying an Oozie Workflow

5-4

The Details tab in the Session Editor, Session Step Editor, and Session Task Editor provides a
summary of the oozie and MapReduce job.

Executing Oozie Workflows with Oracle Data Integrator

5.6 Userlib jars support for running ODI Oozie workflows
Support of userlib jars for ODI Oozie workflows allows a user to copy jar files into a userlib
HDFS directory, which is referenced by ODI Oozie workflows that are generated and submitted
with the oozie.libpath property.

This avoids replicating the libs/jars in each of the workflow app's lib HDFS directory. The
userlib directory is located in HDFS in the following location:

<ODI HDFS Root>/odi_<version>/userlib
Executing Oozie Workflows with Oracle Data Integrator

Chapter 5
Userlib jars support for running ODI Oozie workflows

5-5

6
Using Query Processing Engines to Generate
Code in Different Languages

This chapter describes how to set up the query processing engines that are supported by
Oracle Data Integrator to generate code in different languages.
This chapter includes the following sections:

• Query Processing Engines Supported by Oracle Data Integrator

• Setting Up Hive Data Server

• Creating a Hive Physical Schema

• Setting Up Pig Data Server

• Creating a Pig Physical Schema

• Setting Up Spark Data Server

• Creating a Spark Physical Schema

• Generating Code in Different Languages

6.1 Query Processing Engines Supported by Oracle Data
Integrator

Hadoop provides a framework for parallel data processing in a cluster. There are different
languages that provide a user front-end. Oracle Data Integrator supports the following query
processing engines to generate code in different languages:

• Hive

The Apache Hive warehouse software facilitates querying and managing large datasets
residing in distributed storage. Hive provides a mechanism to project structure onto this
data and query the data using a SQL-like language called HiveQL.

• Pig

Pig is a high-level platform for creating MapReduce programs used with Hadoop. The
language for this platform is called Pig Latin.

• Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in
Hadoop clusters through YARN or Spark's standalone mode, and it can process data in
HDFS, HBase, Cassandra, Hive, and any Hadoop Input Format.

To generate code in these languages, you need to set up Hive, Pig, and Spark data servers in
Oracle Data Integrator. These data servers are to be used as the staging area in your
mappings to generate HiveQL, Pig Latin, or Spark code.

Generate Code in Different Languages with Oracle Data Integrator

6-1

6.2 Setting Up Hive Data Server
To set up the Hive data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Hive and then click New
Data Server.

3. In the Definition tab, specify the details of the Hive data server.

See Hive Data Server Definition for more information.

4. In the JDBC tab, specify the Hive data server connection details.

See Hive Data Server Connection Details for more information.

5. Click Test Connection to test the connection to the Hive data server.

6.2.1 Hive Data Server Definition
The following table describes the fields that you need to specify on the Definition tab when
creating a new Hive data server.

Note: Only the fields required or specific for defining a Hive data server are described.

Table 6-1 Hive Data Server Definition

Field Description

Name Name of the data server that appears in Oracle Data Integrator.

Data Server Physical name of the data server.

User/Password Hive user with its password.

Metastore URI Hive Metastore URIs: for example, thrift://BDA:10000.

Hadoop Data Server Hadoop data server that you want to associate with the Hive data
server.

Additional Classpath Additional classpaths.

Setting Up Hive Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

6.2.2 Hive Data Server Connection Details
The following table describes the fields that you need to specify on the JDBC tab when
creating a new Hive data server.

Note: Only the fields required or specific for defining a Hive data server are described.

Table 6-2 Hive Data Server Connection Details

Field Description

JDBC Driver Apache Hive DataDirect Driver
Use this JDBC driver to connect to the Hive Data Server.

Chapter 6
Setting Up Hive Data Server

6-2

Table 6-2 (Cont.) Hive Data Server Connection Details

Field Description

JDBC URL jdbc:weblogic:hive://<host>:<port>[;
property=value[;...]]
For example, jdbc:weblogic:hive://
localhost:10000;DatabaseName=default;User=default;Passw
ord=default
Kerberized: jdbc:weblogic:hive://
<host>:<port>;DatabaseName=<value>;AuthenticationMethod
=kerberos;ServicePrincipalName=<value>
For example, jdbc:weblogic:hive://
localhost:10000;DatabaseName=default;AuthenticationMeth
od=kerberos;ServicePrincipalName=hive

Setting Up Hive Data Server

6.3 Creating a Hive Physical Schema
Create a Hive physical schema using the standard procedure, as described in the Creating a
Physical Schema section in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in the Creating a Logical Schema section in Administering Oracle Data Integrator and
associate it in a given context.

Setting Up Hive Data Server

6.4 Setting Up Pig Data Server
To set up the Pig data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Pig and then click New
Data Server.

3. In the Definition tab, specify the details of the Pig data server.

See Pig Data Server Definition for more information.

4. In the Properties tab, add the Pig data server properties.

See Pig Data Server Properties for more information.

5. Click Test Connection to test the connection to the Pig data server.

6.4.1 Pig Data Server Definition
The following table describes the fields that you need to specify on the Definition tab when
creating a new Pig data server.

Note: Only the fields required or specific for defining a Pig data server are described.

Chapter 6
Creating a Hive Physical Schema

6-3

Table 6-3 Pig Data Server Definition

Field Description

Name Name of the data server that will appear in Oracle Data Integrator.

Data Server Physical name of the data server.

Process Type Choose one of the following:

• Local Mode
Select to run the job in local mode.

In this mode, pig scripts located in the local file system are
executed. MapReduce jobs are not created.

• MapReduce Mode
Select to run the job in MapReduce mode.

In this mode, pig scripts located in the HDFS are executed.
MapReduce jobs are created.

Note: If this option is selected, the Pig data server must be
associated with a Hadoop data server.

Hadoop Data Server Hadoop data sever that you want to associate with the Pig data server.

Note: This field is displayed only when the MapReduce Mode option is
set to Process Type.

Additional Classpath Specify additional classpaths.

Add the following additional classpaths:

Local Mode

• /<dir name>/pig/pig.jar
MapReduce Mode

• /etc/hbase/conf
• /usr/lib/pig/lib
• /usr/lib/pig/pig-0.12.0-cdh<version>.jar

Replace <version> with the Cloudera version you have. For
example, /usr/lib/pig/pig-0.12.0-cdh5.10.0.jar.

• /usr/lib/hive-hcatalog/share/hcatalog
• /usr/lib/hbase/lib
• /usr/lib/hbase
For pig-hcatalog-hive, add the following classpath in addition to the
ones mentioned above:

/usr/lib/hive-hcatalaog/share/hcatalog
User/Password Pig user with its password.

Setting Up Pig Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

6.4.2 Pig Data Server Properties
The following table describes the Pig data server properties that you need to add on the
Properties tab when creating a new Pig data server.

Chapter 6
Setting Up Pig Data Server

6-4

Table 6-4 Pig Data Server Properties

Key Value

hive.metastore.uris thrift://bigdatalite.localdomain:9083
pig.additional.jars /usr/lib/hive-hcatalog/share/hcatalog/*.jar:/usr/lib/

hive/
hbase.defaults.for.version.ski
p

Set to true to skip the hbase.defaults.for.version check. Set this
boolean to true to avoid seeing the RuntimException issue.

hbase.zookeeper.quorum Quorum of the HBase installation. For example, localhost:2181.

Setting Up Pig Data Server

6.5 Creating a Pig Physical Schema
Create a Pig physical schema using the standard procedure, as described in the Creating a
Physical Schema section in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in the Creating a Logical Schema section in Administering Oracle Data Integrator and
associate it in a given context.

Setting Up Pig Data Server

6.6 Setting Up Spark Data Server
To set up the Spark data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Spark Python and then
click New Data Server.

3. In the Definition tab, specify the details of the Spark data server.

See Spark Data Server Definition for more information.

4. In the Properties tab, specify the properties for the Spark data server.

See Spark Data Server Properties for more information.

5. Click Test Connection to test the connection to the Spark data server.

Note:

The test connection button is disabled because Spark and Pig are not testable.

6.6.1 Spark Data Server Definition
The following table describes the fields that you need to specify on the Definition tab when
creating a new Spark Python data server.

Note: Only the fields required or specific for defining a Spark Python data server are
described.

Chapter 6
Creating a Pig Physical Schema

6-5

Table 6-5 Spark Data Server Definition

Field Description

Name Name of the data server that will appear in Oracle Data Integrator.

Master Cluster (Data Server) Physical name of the master cluster or the data server.

User/Password Spark data server or master cluster user with its password.

Hadoop DataServer Hadoop data server that you want to associate with the Spark data
server.

Note: This field appears only when you are creating the Spark Data
Server using the Big Data Configurations wizard.

Additional Classpath The following additional classpaths are added by default:

• /usr/lib/spark/*
• /usr/lib/spark/lib/*
If required, you can add more additional classpaths.

Note: This field appears only when you are creating the Spark Data
Server using the Big Data Configuration wizard.

Setting Up Spark Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

6.6.2 Spark Data Server Properties
The following table describes the properties that you can configure on the Properties tab when
defining a new Spark data server.

Note: Other than the properties listed in the following table, you can add Spark configuration
properties on the Properties tab. The configuration properties that you add here are applied
when mappings are executed. For more information about the configuration properties, refer to
the Spark documentation available at the following URL:

http://spark.apache.org/docs/latest/configuration.html

Table 6-6 Spark Data Server Properties

Property Description

archives Comma separated list of archives to be extracted into the working
directory of each executor.

deploy-mode Whether to launch the driver program locally (client) or on one of the
worker machines inside the cluster (cluster).

driver-class-path Classpath entries to pass to the driver. Jar files added with --jars are
automatically included in the classpath.

driver-cores Number of cores used by the driver in Yarn Cluster mode.

driver-java-options Extra Java options to pass to the driver.

driver-library-path Extra library path entries to pass to the driver.

driver-memory Memory for driver, for example, 1000M, 2G. The default value is 512M.

executor-cores Number of cores per executor. The default value is 1 in YARN mode, or
all available cores on the worker in standalone mode.

executor-memory Memory per executor, for example, 1000M, 2G. The default value is
1G.

Chapter 6
Setting Up Spark Data Server

6-6

http://spark.apache.org/docs/latest/configuration.html

Table 6-6 (Cont.) Spark Data Server Properties

Property Description

jars Comma-separated list of local jars to include on the driver and executor
classpaths.

num-executors Number of executors to launch. The default value is 2.

odi-execution-mode ODI execution mode, either SYNC or ASYNC.

properties-file Path to a file from which to load extra properties. If not specified, this
will look for conf/spark-defaults.conf.

py-files Additional python file to execute.

queue The YARN queue to submit to. The default value is default.

spark-home-dir Home directory of Spark installation.

spark-web-port Web port of Spark UI. The default value is 1808.

spark-work-dir Working directory of ODI Spark mappings that stores the generated
python file.

supervise If configured, restarts the driver on failure (Spark Standalone mode).

total-executor-cores Total cores for all executors (Spark Standalone mode).

yarn-web-port Web port of yarn, the default value is 8088.

principal Kerberized User name.

keytab Kerberized Password.

Setting Up Spark Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

6.7 Creating a Spark Physical Schema
Create a Spark physical schema using the standard procedure, as described in the Creating a
Physical Schema section in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as described
in the Creating a Logical Schema section in Administering Oracle Data Integrator and
associate it in a given context.

Setting Up Spark Data Server

6.8 Generating Code in Different Languages
Oracle Data Integrator can generate code for multiple languages. For Big Data, this includes
HiveQL, Pig Latin, Spark RDD, and Spark DataFrames. The style of code is primarily
determined by the choice of the data server used for the staging location of the mapping.

Before you generate code in these languages, ensure that the Hive, Pig, and Spark data
servers are set up.

For more information see the following sections:

Setting Up Hive Data Server

Setting Up Pig Data Server

Chapter 6
Creating a Spark Physical Schema

6-7

Setting Up Spark Data Server

To generate code in different languages:

1. Open your mapping.

2. To generate HiveQL code, run the mapping with the default staging location (Hive).

3. To generate Pig Latin or Spark code, go to the Physical diagram and do one of the
following:

a. To generate Pig Latin code, set the Execute On Hint option to use the Pig data server
as the staging location for your mapping.

b. To generate Spark code, set the Execute On Hint option to use the Spark data server
as the staging location for your mapping.

4. Execute the mapping.

Query Processing Engines Supported by Oracle Data Integrator

Generate Code in Different Languages with Oracle Data Integrator

Chapter 6
Generating Code in Different Languages

6-8

7
Working with Spark

This chapter describes the various concepts involved in working with Spark.

This chapter includes the following sections:

• Spark Usage

• Spark Design Considerations

• Spark Streaming Support

• Switching between RDD and DataFrames in ODI

• Components that do not support DataFrame Code Generation

• Adding Customized Code in the form of a Table Function

7.1 Spark Usage
To use Spark engines, a Staging Execution Unit must be created in the Physical Mapping and
the EU execution location must be set to Spark Schema.

7.1.1 Creating a Spark Mapping
To create a Spark mapping, ensure the Spark Logical and Physical Schemas are already
created, and follow the procedure below:

1. Select Mappings > New Mapping.

2. Drag the file_src and hdfs_tgt Data Stores from the Models tree onto the Logical
Diagram.

3. Link the mapping connectors together and choose map columns by position.

This will map the columns.

4. Set the Staging Location Hint to your Spark Logical Schema.

5. Go to the Physical Diagram and select the white space on the canvas. Ensure that the
Optimization Context is set to the correct Context for running against your cluster, and
that the Preset Staging Location is set to Spark.

6. Click the SPARKLS_STAGING_NODE node and set the Loading Knowledge Module to LKM
File to Spark.

7. Click the FIL_AP node in the Target Group and set the Loading Knowledge Module to
LKM Spark to File.

8. Click the HDF node and ensure that the Integration Knowledge Module is set to
<Default>.

7.1.2 Pre-requisites for handling Avro and Delimited files in Spark Mappings
You must install external libraries before using Spark mappings with Avro or Delimited files.

7-1

Avro files

For using Avro files in Spark mappings, the Avro .egg file has to be added to the ODI
installation. The .egg file for Avro cannot be downloaded directly, and has to be generated from
the Avro package.

To add the Avro .egg file to the ODI installation:

1. Generate the .egg file from the Avro Package

a. Download avro-1.8.0.tar.gz from avro 1.8.2 : Python Package Index or Apache
Avro™ Releases.

b. Unzip it, and install the Avro Python library as shown below.

$ tar xvf avro-1.8.1.tar.gz
$ cd avro-1.8.1
$ sudo python setup.py install
Installed /usr/lib/python2.6/site-packages/avro-_AVRO_VERSION_-py2.6.egg
Processing dependencies for avro===-AVRO-VERSION-
Finished processing dependencies for avro===-AVRO-VERSION-

The avro-_AVRO_VERSION_-py2.6.egg file can now be found in the Python installed
directory.

For more information, see Apache Avro™ 1.8.0 Getting Started (Python).

2. Copy the .egg file to a specific location in ODI

For ODI Agent, copy the .egg file to $DOMAIN_HOME_PROPERTY/lib/spark.

For ODI Studio, copy the .egg file to $HOME/.odi/oracledi/userlib/spark.

Delimited files

For using Delimited files in Spark mappings, external jar files must be added to the ODI
installation.

To add the CSV jar files to the ODI installation:

1. Download the CSV jar files

Download the following jar files from their corresponding links:

• spark-csv_2.10-1.5.0.jar from spark-csv

• commons-csv-1.2.jar from Commons CSV – Download Apache Commons CSV

2. Copy the jar file to a specific location in ODI

For ODI Agent, copy the jar files to $DOMAIN_HOME_PROPERTY/lib/spark.

For ODI Studio, copy the jar files to $HOME/.odi/oracledi/userlib/spark.

7.2 Spark Design Considerations
If you have chosen to use Spark as your Transformation Engine, you must take the following
design decisions before writing your Mappings:

• Batch or Streaming

• Resilient Distributed Datasets (RDD) or DataFrames

• Infer Schema Knowledge Module Option

Chapter 7
Spark Design Considerations

7-2

https://pypi.python.org/pypi/avro/
http://avro.apache.org/releases.html
http://avro.apache.org/releases.html
https://avro.apache.org/docs/1.8.0/gettingstartedpython.html
https://spark-packages.org/package/databricks/spark-csv
https://commons.apache.org/proper/commons-csv/download_csv.cgi

• Expression Syntax

7.2.1 Batch or Streaming
Spark supports two modes of operation — Batch and Streaming. In Streaming mode, you can
ingest data from Kafka Topics, or Files/HDFS Files added to a specified location. To get the
most out of Streaming, see Spark Checkpointing and Spark Windowing and Stateful
Aggregation.

To set the Streaming flag, select Physical Design, click the blank canvas, and select the
Streaming checkbox on the property panel. If the Streaming flag is not set, the mappings will
execute in Batch mode (default).

7.2.2 Resilient Distributed Datasets (RDD) or DataFrames
Spark has more than one set of APIs that can be used to transform data. Resilient Distributed
Datasets (RDD) and DataFrames are APIs that ODI can generate code for.

Resilient Distributed Datasets (RDD)

RDDs are the primary data abstraction in Apache Spark. They are fault tolerant (Resilient)
collections of partitioned data (Dataset) with data residing on multiple nodes in a cluster
(Distributed). The data resides in memory and is cached where necessary. RDDs are read-
only, but can have transformations applied that will create other RDDs. Lazy evaluation is
used, where the data is only available or transformed when triggered. RDD partitions are the
unit of parallelism.

DataFrames

A DataFrame is a read-only distributed collection of data, that (unlike RDDs) is organized into
named columns. The abstraction level is higher, making the processing of large datasets even
easier, such as in allowing the use of SparkSQL queries. DataFrames are built on top of the
Spark SQL engine, allowing for much better performance and space optimization.

Note:

If Streaming is used, RDD is the only option available.

7.2.3 Infer Schema Knowledge Module Option
Spark can infer or deduce the Schema of a dataset by looking at the data. Although this can be
advantageous, there are some circumstances where datatypes may not be mapped as
expected. If this happens, there is an inferSchema option on applicable Spark KMs that can be
set to False, turning off this functionality. If you see runtime errors related to datatype
mismatches, you may need to adjust the value of the Infer Schema option. This option can be
set on reading or writing LKMs.

Note:

Spark uses this option only while creating DataFrames. If inferSchema is set to
False, ODI will generate a schema definition based on mapping data store metadata
and this structure will be used to create DataFrame API.

Chapter 7
Spark Design Considerations

7-3

The Infer Schema option can be seen in the figure below.

Figure 7-1 Physical Mapping with InferSchema KM Option

7.2.4 Expression Syntax
When you need to write expressions, for example, in a Join or Filter condition, or an Attribute
expression, you have options that can be used for the Expression Syntax. If you have decided
to have ODI generate RDD code, then your expressions must be written in Python. If, however,
you have decided to generate DataFrames, then you can choose to write your expressions in
SQL or Python. You can specify your chosen syntax by setting SQL_EXPRESSIONS to True/False.

The combinations of possible code generation style are:

• RDD with Python expressions

• DataFrames with Python expressions

• DataFrames with SQL expressions

Since Python expressions are defined differently in RDD and DataFrames, the Python syntax
for these two styles of code generation can be different. Therefore, not all Python expressions
will work for both RDD and DataFrame code generation styles.

RDD with Python expressions

For information on the syntax and functions that can be used in Python expressions, see The
Python Standard Library.

DataFrames with Python expressions

For information on the list of Python functions available to Column objects, see
pyspark.sql.Column.

DataFrames with SQL expressions

The generic SQL functions and operators can be viewed in the Expression editor on selecting
generic SQL language.

Consider an example that shows multiple expressions being used in mappings.

Mapping Description

In this example, a source (REA) containing Real Estate Transactions is combined with a second
source (REA2) containing City and Population data. A filter is then applied to select only large

Chapter 7
Spark Design Considerations

7-4

https://docs.python.org/2.7/library/index.html
https://docs.python.org/2.7/library/index.html
https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.Column.html

transactions. This creates a target file (REA1) which contains the combined and filtered
information as shown in the figure below.

Figure 7-2 Mapping with Multiple Expressions

Mapping Definitions

The mapping is defined as follows:

• JOIN: Joins the Real Estate Transaction Table (REA) with the City Population table (REA2)
using City as the Key. The City names in REA1 are in uppercase, whereas in REA2 they are
in lowercase.

• FILTER: Selects rows that have a price greater or equal to $500,000, and ignores
transactions where Type is Multi-Family.

• City: City names should be in lowercase except for the first letter of each word.

• GeoLocation: This should be in the form "<longitude>, <latitude>". The quotes should be
included in the string.

• Population: Rounds off to the nearest thousand.

Mapping Expressions for each Codegen Style

The following table describes the mapping expressions for each codegen style.

Chapter 7
Spark Design Considerations

7-5

Table 7-1 Mapping Expressions for each Codegen Style

Mapping Expression
for the Codegen Style

RDD with Python
Expressions

DataFrames with
Python Expressions

DataFrames with SQL
Expressions

Join Condition REA.City ==
(REA2.City).upper()

REA.City ==
upper(REA2.City)

REA.City =
UPPER(REA2.City)

Filter Syntax REA.Type<>'Multi-
Family'
and REA.Price
>=500000

REA.Type<>'Multi-
Family' and
REA.Price >=500000

REA.Type<>'Multi-
Family' and
REA.Price >=500000

Target Column Syntax # City - note: this
only capitalizes the
first word!
(REA.City).capitaliz
e()
GeoLocation
REA.geolat + ", " +
REA.geolong
Population
int(round(REA2.Popula
tion,-3))

City
initcap(lower(REA.Cit
y))
GeoLocation
concat(REA.geolat ,li
t(", "),REA.geolong)
Population
round(REA2.Population
,-3)

-- City
INITCAP(LOWER(REA.Cit
y))
-- GeoLocation
CONCAT(REA.geolat,',
', REA.geolong)
Population
ROUND(REA2.Population
,-3)

Importing Libraries

As you'll see from this example, not all the same built-in functions are available across these
differing styles. In this case, the initcap built-in function is not available in RDD. The
capwords() function does what is required, but it requires import statements to be added to the
script. The Spark EKM has a multi line option called customPythonImports that lets you specify
the Import Statements for the script, thereby allowing extra functions to be available in the
expressions.

To contain the list of imports, the customPythonImports EKM option will be written as

from string import *
from time import localtime

The Target Column expression would then be written as

#City
capwords(REA.City)

7.3 Spark Streaming Support
This section provides information about streaming modes of operation on data sets. It also
provides information on Checkpointing.

Note:

Spark 2.0 Streaming using Kafka is no longer supported for Data Platforms such as
Cloudera CDH 6.0, Hortonworks 3.1 and later.

Chapter 7
Spark Streaming Support

7-6

This section includes the following sub-sections:

• Spark Checkpointing

• Spark Windowing and Stateful Aggregation

• Spark Repartitioning and Caching

• Configuring Streaming Support

• Executing Mapping in Streaming Mode

7.3.1 Spark Checkpointing
A streaming application must operate 24/7 and hence should be resilient to failures. Spark
Streaming needs to checkpoint information to a fault tolerant storage system so that it can
recover from failures.

Checkpointing is enabled for applications recovering from failures of the driver running the
application. Checkpointing only ensures that the Spark application will restart from where it left
if a checkpoint is found.

For additional information on checkpointing, refer to Spark Streaming Programming Guide.

7.3.2 Spark Windowing and Stateful Aggregation
Spark's Windowing feature allows aggregation (and other transformations) to be applied not
just to the current RDD, but also include data from several previous RDDs (window duration).

The Spark KMs support batch and, also streaming transformations. While the Python code for
non-streaming operates on RDD or DataFrame objects, the streaming code works on DStream
objects. Aggregation in batch mode is simple: there is a single set of input records (RDD),
which are aggregated to form the output data, which is then written into some target. In
streaming mode the continuously incoming data is discretized into a flow of RDDs. By default
each RDD is aggregated independently.

Spark windowing works well for calculating things like running sum or running averages. But it
comes with two restrictions:

• Older RDDs must be retained

• Data falling into the window is recalculated for every new RDD.

This is the reason why windowing is not suitable for aggregation across an entire data stream.
This can only be achieved by stateful aggregation.

Windowing enabled KMs have the following optional KM Options:

• Window Duration: Duration of window defined in number of batch intervals.

• Sliding Interval: Interval at which the window operation is performed defined in number of
batch intervals.

Windowing is supported by:

• XKM Spark Aggregation

• XKM Spark Join

• XKM Spark Set

• XKM Spark Distinct

For additional information, refer to Spark Streaming Programming Guide.

Chapter 7
Spark Streaming Support

7-7

http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
https://spark.apache.org/docs/latest/streaming-programming-guide.html#window-operations

Stateful Aggregation

When data must be aggregated across all data of a stream, stateful aggregation is required. In
stateful aggregation Spark builds called state stream containing the aggregated values for all
keys. For every incoming RDD this state is updated, for example aggregated sums are
updated based on new incoming data.

By default a state stream will output all stored values for every incoming RDD. This is useful in
case the stream output is a file and the file is expected to always hold the entire set of
aggregate values.

Stateful processing is supported by:

• XKM Spark Aggregate

• XKM Spark Lookup

7.3.3 Spark Repartitioning and Caching
Caching

In ODI, the Spark caching mechanism is leveraged by providing two additional Spark base KM
options.

• Cache data: If this option set to true a storage invocation is added to the generated
pyspark code of the component.

• Cache storage level: This option is hidden if cache data is set to false.

Repartitioning

If the source is a HDFS file, the number of partitions is initially determined by the data block of
the source HDFS system. The platform resource is not fully used if the platform that runs the
Spark application has more available slots for running tasks than the number of partitions
loaded. In such cases, the RDD.repartition() api can be used to change the number of
partitions.

Repartitioning can be done in any step of the whole process, even immediately after data is
loaded from source or after processing the filter component. ODI has Spark base KM options
which let you decide whether and where to do repartitioning.

• Repartition: If this option is set to true, repartition is applied after the transformation of
component.

• Level of Parallelism: Number of partitions and the default is 0. When the default value is
set, spark.default.parallelism will be used to invoke the repartition() function.

• Sort Partitions: If this option is set to true, partitions are sorted by key and the key is
defined by a Lambda function.

• Partitions Sort Order: Ascending or descending. Default is ascending.

• Partition Keys: User defined partition keys represented as a comma separated column
list.

• Partition Function: User defined partition Lambda function. Default value is a pyspark
defined hash function portable_hash, which simply computes a hash base on the entire
RDD row.

Chapter 7
Spark Streaming Support

7-8

7.3.4 Configuring Streaming Support
Configuring Streaming Support is performed in two parts:

1. Topology

a. Click the Topology tab.

b. In the Physical Architecture tree, under Technologies, right-click Spark Python and
then click New Data Server.

c. In the Definition tab, specify the details of the Spark data server.

See Spark Data Server Definition for more information.

d. In the Properties tab, specify the properties for the Spark data server.

See Spark Data Server Properties for more information.

e. Click Test Connection to test the connection to the Spark data server.

2. Mapping Design

• To edit your mapping, select Physical Design, click the blank canvas, and select the
Streaming checkbox on the property panel.

ODI generates code that allows the mapping to run in Streaming mode, instead of
Batch mode.

7.3.4.1 Spark Streaming DataServer Properties
Provides the Spark Technology-specific streaming properties that are default for the Spark
Execution Unit properties.

Table 7-2 Spark Streaming DataServer Properties

Key Value

spark.checkpo
intingBaseDir

This property defines the base directory for checkpointing. Every mapping under this
base directory will create a sub-directory.
Example: hdfs://cluster-ns1/user/oracle/spark/checkpoints

spark.checkpo
intingInterval

Displays the time in seconds

spark.restartF
romCheckpoin
t

• If set to true, the Spark Streaming application will restart from an existing
checkpoint.

• If set to false, the Spark Streaming application will ignore any existing checkpoints.
• If there is no checkpoint, it will start normally.

spark.batchD
uration

Displays the duration in seconds of a streaming interval.

spark.rememb
erDuration

Displays the time in seconds and sets the Spark Streaming context to remember RDDs
for this duration.

spark.checkpo
inting

Enables Spark checkpointing.

spark.streami
ng.timeout

Displays the timeout in seconds before stopping a Streaming application.
Default is 60.

Chapter 7
Spark Streaming Support

7-9

Table 7-2 (Cont.) Spark Streaming DataServer Properties

Key Value

odi-execution-
mode

• SYNCHRONOUS: Spark application is submitted and monitored through
OdiOSCommand.

• ASYNCHRONOUS: Spark application is submitted asynchronously through
OdiOSCommand and then monitored through Spark REST APIs.

spark.ui.enabl
ed

Enables the Spark Live REST API.

Note:

Set to true for asynchronous execution.

spark.eventLo
g.enabled

Enables Spark event logs. This allows the logs to be accessible by the Spark History
Server.

Note:

Set to true for asynchronous execution.

principal Kerberized User name.

keytab The location of the keytab file that contains pairs of kerberos principal and encrypted
keys.
Example: /tmp/oracle.keytab

odi.spark.ena
bleUnsupport
edSparkMode
s

This check is introduced, as only yarn-client and yarn-cluster are supported.

7.3.4.2 Extra Spark Streaming Data Properties
Provides the extra spark streaming properties that are specific to Spark technology that are
added to the asynchronous Spark execution unit.

Table 7-3 Extra Spark Streaming Properties

Key Value

spark-webui-
startup-
polling-retries

Maximum number of retries while waiting for the Spark WebUI to come-up.

spark-webui-
startup-
polling-interval

Displays the time in seconds between retries.

spark-webui-
startup-
polling-
persist-after-
retries

Chapter 7
Spark Streaming Support

7-10

Table 7-3 (Cont.) Extra Spark Streaming Properties

Key Value

spark-webui-
rest-timeout

Timeout in second used for REST calls on Spark WebUI.

spark-webui-
polling-interval

Time in seconds between two polls on the Spark WebUI.

spark-webui-
polling-
persist-after-
retries

spark-history-
server-rest-
timeout

Timeout in seconds used for REST calls on Spark History Server.

spark-history-
server-polling-
retries

Maximum number of retries while waiting for the Spark History Server to make the Spark
Event Logs available.

spark-history-
server-polling-
interval

Time in seconds between retries.

spark-history-
server-polling-
persist-after-
retries

spark-submit-
shutdown-
polling-retries

Maximum number of retries while waiting for the spark-submit OS process to complete.

spark-submit-
shutdown-
polling-interval

Time in seconds between retries.

spark-submit-
shutdown-
polling-
persist-after-
retries

7.3.5 Executing Mapping in Streaming Mode
This topic provides the steps to enable executing the mapping in the streaming mode.
Streaming needs checkpointing information for a fault-tolerant storage system to recover from
failures.

1. To enable streaming support, see Configuring Streaming Support.

2. In physical design of the mapping, select staging execution unit, and enable checkpointing
options on the EKM. Enable checkpointing by setting the value of spark.checkpointing to
True and set the Checkpointing directory in the spark.checkpointingBaseDir property.

Every mapping will have its unique checkpointing directory.

3. Execute the mapping and set the context for physical design.

Chapter 7
Spark Streaming Support

7-11

Note:

In the User Interface Designer by default, the Last executed physical
design in the mapping execution dialog is pre-selected.

7.4 Switching between RDD and DataFrames in ODI
You can switch between generating DataFrame code and RDD code by setting the EKM option
spark.useDataFrames to either True or False on the Spark Execution Unit.

7.5 Components that do not support DataFrame Code
Generation

Some components do not support DataFrame code generation. If even a single mapping
component does not support DataFrames, a validation error is shown (asking you to set the
Spark Execution Unit property spark.useDataFrames to false) and you will need to switch back
to RDD.

The following components do not support DataFrame code generation:

• Pivot

• Unpivot

• Input Signature

• Output Signature

7.6 Adding Customized Code in the form of a Table Function
The TableFunction component allows you to add your own code segment into the mapping in
the form of a reference to an external script, or some inline code.

Consider an example where the TABLEFUNCTION component is utilized to parse and
transform a source log file. The mapping will produce a target file with data as-is from the
source file, modified data, and new data such as timestamps.

To build the mapping containing a table function and add input and output attributes to it, follow
the below procedure:

1. Create a mapping by adding the source and target data stores along with a table function
component named 'TABLEFUNCTION'.

Chapter 7
Switching between RDD and DataFrames in ODI

7-12

Figure 7-3 Mapping with Source, Target, and Table Function

2. Connect the source data store’s output connector to the input connector of the
TABLEFUNCTION component.

Input attributes will now be added directly to TABLEFUNCTION.

Note:

• An input group 'INPUT1' is created automatically containing all the attributes
from the source data store as shown in the figure below.

• For each additional source data store, a new input group will be added.

Figure 7-4 Input Group added to TABLEFUNCTION

Chapter 7
Adding Customized Code in the form of a Table Function

7-13

3. Connect the target data store’s input connector to the output connector of the
TABLEFUNCTION component.

Output attributes will now be added directly to TABLEFUNCTION.

Note:

• An output group 'OUTPUT1' is created automatically containing all the
attributes from the target data store as shown in the figure below.

• The output attributes in 'OUTPUT1' can be renamed or deleted.

• The expression for each output attribute will be set grammatically by the
script embedded in the TABLEFUNCTION component and doesn’t need to
be set individually.

Figure 7-5 Mapping with Source, Target, and Table Function connected

Configure the mapping by following the procedure below:

1. Go to the Logical tab and select Spark-Local_Default as the Staging Location Hint.

2. Go to the Physical tab. Under Extract Options, specify the script to use for the
TABLEFUNCTION component by entering /tmp/xkmtf.py as the value for the
SPARK_SCRIPT_FILE KM option. The xmktf.py script contains the following content:

import sys
import datetime

#get the upstream object using the input connector point name
upstream=sys.argv[0]['INPUT1']

#A value must be calculated for every TF output attribute
TABLEFUNCTION = upstream.map(lambda input:Row(**{"visitorId":input.visitorId,
"channel":input.channel, "clientCountry":input.clientCountry,

Chapter 7
Adding Customized Code in the form of a Table Function

7-14

"newSessionId":'Prefix'+input.sessionId, "timeStamp":now.strftime("%Y-%m-%d
%H:%M")}))

Here, the input group 'INPUT1' of the TABLEFUNCTION component is passed through
sys.argv to the Spark-Python script xkmtf.py.

Alternatively, you can directly specify the script to use for the TABLEFUNCTION
component by entering the following content as the value for the SPARK_SCRIPT KM
option:

import datetime

now = datetime.datetime.now()

#A value must be calculated for every TF output attribute
TABLEFUNCTION = ACT.map(lambda input:Row(**{"visitorId":input.visitorId,
"channel":input.channel, "clientCountry":input.clientCountry,
"newSessionId":'Prefix'+input.sessionId, "timeStamp":now.strftime("%Y-%m-%d
%H:%M")}))

There are two types of Spark Scripts for TableFunction:

• External TableFunction Script

• Inline TableFunction Script

External TableFunction Script

This can be dynamically executed from within ODI mapping code. If necessary, use sys.argv to
send in RDDs/DataFrames for processing with the external script.

For example, consider a TableFunction component inserted with the following properties:

• Name – TABLEFUNCTION

• Input connector - INPUT1

• Input fields - IN_ATTR_1 and IN_ATTR_2

• Output attributes - OUT_ATTR_1, OUT_ATTR_2, and OUT_ATTR_3

As seen in the external script below, the upstream RDD/DataStream object is obtained using
the input connector point name. The resulting RDD/DStream is then calculated, where a value
is calculated for every TableFunction output attribute name.

import sys
import datetime
upstream=sys.argv[0]['INPUT1']
now = datetime.datetime.now()
TABLEFUNCTION = upstream.map(lambda input:Row(**{"OUT_ATTR_1":input.sessionId,
"OUT_ATTR_2":input.customerId, "OUT_ATTR_3":now.strftime("%Y-%m-%d %H:%M")}))

To dynamically execute this external script, ODI generates the following mapping code. The
result of the external script execution is stored as TABLEFUNCTION.

sys.argv=[dict(INPUT1=ACT)]
execfile('/tmp/xkmtf_300.py')
TABLEFUNCTION = TABLEFUNCTION.toDF(...)

Inline TableFunction Script

In inline mode, the actual TableFunction script is stored as an XKM option. You don’t need to
use sys.argv to send in any source objects for processing the script.

Chapter 7
Adding Customized Code in the form of a Table Function

7-15

As seen in the internal script below, the result of the external script execution is directly
referenced.

ACT=ACT.filter("ACT_customerId = '5001'")
TABLEFUNCTION = ACT.toDF(...)

Chapter 7
Adding Customized Code in the form of a Table Function

7-16

8
Working with Unstructured Data

This chapter provides an overview of the Jagged component and the Flatten component.
These components help you to process unstructured data.
This chapter includes the following section:

• Working with Unstructured Data

8.1 Working with Unstructured Data
Oracle Data Integrator provides a Jagged component that can process unstructured data.
Source data from sources such as social media or e-commerce businesses is represented in a
key-value free format. Using the jagged component, this data can be transformed into
structured entities that can be loaded into database tables.

For more information using the Jagged component and KMs associated with it, see the
following sections:

• Creating Jagged Components in Developing Integration Projects with Oracle Data
Integrator.

• XKM Jagged.

8-1

9
Working with Complex Datatypes and HDFS
File Formats

This chapter provides an overview of extended data format support and complex type support.

This chapter includes the following sections:

• HDFS File Formats

• Working with Complex Datatypes in Mappings

• Hive Complex Datatypes

• Cassandra Complex Datatypes

• Loading Data from HDFS File to Hive

• Loading Data from HDFS File to Spark

9.1 HDFS File Formats
Supported Formats

ODI can read and write HDFS file data in a variety of formats. The HDFS file formats
supported are Json, Avro, Delimited, and Parquet. The format is specified on the Storage Tab
of the HDFS data store. When you reverse-engineer Avro, JSON, or Parquet files, you are
required to supply a Schema in the Storage Tab. The reverse-engineer process will only use
the Schema, and not access the HDFS files themselves. Delimited HDFS files cannot be
reverse-engineered, the Attributes (in the Attributes tab of the HDFS data store) will have to be
added manually and the parameters, such as field separator should be defined on the Storage
Tab.

If you are loading Avro files into Hive, then you will need to copy the Avro Schema file (.avsc)
into the same HDFS location as the Avro HDFS files (using the same file name that you
specified for the Schema in the Storage Panel).

Complex Types

JSON, Avro, and Parquet formats can contain complex data types, such as array or
Object. During the Reverse-Engineering phase, the Datatype field for these Attributes is set to
"Complex" and the definition of the complex type is stored in the Data Format field for the
Attribute. The Syntax of this definition is the same as Avro uses for its Schema definitions. This
information is used by ODI in the Mapping Editor when the flatten component is added to the
Mapping.

Table 9-1 HDFS File Formats

File Format Reverse-
Engineer

Complex
Type
Support

Load into Hive Load into
Spark

Write from Spark

Avro Yes (Schema
required)

Yes Yes (Schema
required)

Yes (Batch
mode only)

Yes

9-1

Table 9-1 (Cont.) HDFS File Formats

File Format Reverse-
Engineer

Complex
Type
Support

Load into Hive Load into
Spark

Write from Spark

Delimited No No Yes Yes Yes

JSON Yes (Schema
required)

Yes Yes Yes Yes

Parquet Yes (Schema
required)

Yes Yes Yes (Batch
mode only)

Yes (Batch and
Streaming)

Table 9-2 Complex Types

Avro Json Hive Parquet

Record Object Struct Record

enum NA NA enum

array array array array

map NA map map

union NA union union

fixed NA NA fixed

9.2 Working with Complex Datatypes in Mappings
Provides information on working with complex, nested, and user defined metadata that drives
the Flatten component.

Oracle Data Integrator provides a Flatten component that can process input data with a
Complex structure and produce a flattened representation of the same data using standard
data types. The input data may be in various formats, such as a Hive table or a JSON HDFS
file.

When you add a Flatten component into a Mapping, you choose the attribute to Flatten from
the component upstream.

The Flatten components for Spark and Hive have some advanced usability features that do not
exist in the other implementations. Namely, once you've chosen the attribute to flatten from the
upstream node, the flattened attributes will be created automatically. The reason this is
possible is that the Reverse-Engineering process for Hive and HDFS capture the Complex
Type definition in the Attribute's "Data Format" property. You can view this property in the
Attribute tab of the Hive or HDFS Data Store. The Flatten component's Collection and
Structure properties are also set automatically based on the Attribute definition. That leaves
just the "Include Nulls" property to be set manually, based on whether null complex data should
be processed. Some technologies, particularly Spark, can drop records containing null
complex attributes.

Chapter 9
Working with Complex Datatypes in Mappings

9-2

Table 9-3 Properties for Flatten Component

Flatten Property Description Automatically detected for
Hive and HDFS (if reverse-
engineering was used)

Include Nulls Indicates whether null complex
data should be processed.

No

Collection Indicates whether the Complex
Type attribute is a collection such
as an array.

Yes

Structure Indicates whether the Complex
Type is an object, record, or
structure, and not just a collection
of scalar types.

Yes

Each Flatten component can flatten only one Complex Type attribute. You can chain Flatten
components together to flatten more than one attribute, or where nested datatypes are
concerned, to access the next level of nesting.

For more information using the Flatten component and the KMs associated with it, see the
following sections:

• Creating Flatten Components in Developing Integration Projects with Oracle Data
Integrator.

• XKM Oracle Flatten.

The example in Using Flatten for Complex Types in Hive Mappings shows an example of
chaining Flatten components. The Flatten_Director Complex Type Attribute is set to the
upstream MOVIE_DIRECTOR attribute from the MOV node. At that point, NAME and AGE are created
in Flatten_Director automatically. Flatten_Ratings follows Flatten_Director and uses
Flatten_Director.RATINGS as the Complex Type Attribute, after which rating and info
attributes are automatically added.

9.3 Hive Complex Datatypes
Hive has the following complex data types:

• Arrays

• Maps

• Structs

• Union

9.3.1 Using Flatten for Complex Types in Hive Mappings
The Flatten component is used to handle Complex Types in Hive mappings.

Consider the JSON snippet below which is a source with two Complex Types:

• A MOVIE_DIRECTOR field which is a structure consisting of Name and Age.

• A RATINGS field which is an array of ratings, with each rating comprising a rating and an
info field.

Chapter 9
Hive Complex Datatypes

9-3

{"MOVIE_ID":11,"MOVIE_NAME":"The Lobster","MOVIE_DIRECTOR":{"NAME":"Yorgos
Lanthimos","AGE":43},"RATINGS":[{"rating":7,"info":"x"},{"rating":5,"info":"x"}]}
{"MOVIE_ID":12,"MOVIE_NAME":"Green Room","MOVIE_DIRECTOR":{"NAME":"Jeremy
Saulnier","AGE":40},"RATINGS":[{"rating":4,"info":"x"},{"rating":3,"info":"x"}]}
{"MOVIE_ID":13,"MOVIE_NAME":"Louder Than Bombs","MOVIE_DIRECTOR":{"NAME":"Joachin
Trier","AGE":42},"RATINGS":[{"rating":1,"info":"x"},{"rating":2,"info":"x"}]}
...

The Hive table that is to be populated requires the NAME to be extracted from the
MOVIE_DIRECTOR complex structure along with the average of the rating values from the
RATINGS array.

To accomplish this, a mapping is required which flattens the

• MOVIE_DIRECTOR field so that the NAME can be extracted.

• RATINGS array so that the average of the individual ratings for each row can be
calculated.

The mapping is as shown in the figure below.

Figure 9-1 Mapping to flatten Complex Types

The populated Hive table appears as shown in the figure below.

Chapter 9
Hive Complex Datatypes

9-4

Figure 9-2 Populated Hive Table

9.4 Cassandra Complex Datatypes
Cassandra has the following complex data types:

• Map

• Set

• List

• Tuple

• User-Defined Type

Map

A map is a set of key-value pairs, where the keys are unique. The map is sorted by its keys.

Set

A set is a collection of unique values. The set is sorted based on the values.

List

A list is a collection of non-unique values which are ordered by their position in the list.

Tuple

A Tuple comprises fixed-length sets of typed positional fields. It can accommodate 32768
fields, and can be used as an alternative to a User-Defined Type.

Chapter 9
Cassandra Complex Datatypes

9-5

User-Defined Type

User-Defined Type (UDT) is a complex data type that can be created, updated, and deleted.

Cassandra can be used with LKM Spark to Cassandra and generic SQL KMs.

The Apache Cassandra DataDirect JDBC Driver handles Complex Types differently compared
to the Hive JDBC Driver. Due to this, mappings that use Cassandra Complex Types are written
slightly differently compared to Hive mappings. To demonstrate this, consider a table defined in
Cassandra with the use of UDTs and Lists.

• You can access UDTs through the Apache Cassandra DataDirect JDBC Driver because
the JDBC Driver flattens the UDTs and projects the scalar types as regular columns of the
table. This negates the need to use the Flatten Component on the mapping. You will see
that the extra columns have been flattened automatically in the Cassandra Data Stores,
and can be used directly in mappings.

• You can access collections of values (Lists in Cassandra; Arrays in Hive) through the
Apache Cassandra DataDirect JDBC Driver. The Apache Cassandra DataDirect JDBC
Driver normalizes the structure and projects the collection type through a child table. When
you reverse-engineer the original table, additional data stores will be created for the
collections. The mapping then needs to join these two tables.

• You cannot access Nested Types in ODI.

9.4.1 How ODI deals with Cassandra Lists and User Defined Types
This is an example that shows how ODI deals with Cassandra Lists and User Defined Types.

Consider a schema, movieRating2 containing a UDT and a List:

• A movie_director attribute which is a UDT consisting of Name and Age.

• A ratings attribute which is a list of integers.

create type director_object (name text, age int);

create table movieRating2 (movie_name text, movie_id int PRIMARY KEY, movie_director
frozen<director_object>, ratings list<int);

INSERT INTO movierating2 (movie_id, movie_name, movie_director, ratings)
VALUES (1,'Lord of the Rings',('Peter Jackson',32),[1,2]);
INSERT INTO movierating2 (movie_id, movie_name, movie_director, ratings)
VALUES (2,'King Kong',('Peter Jackson',32),[1,2]);
INSERT INTO movierating2 (movie_id, movie_name, movie_director, ratings)
VALUES (3,'District 9',('Peter Jackson',32),[1,3]);
INSERT INTO movierating2 (movie_id, movie_name, movie_director, ratings)
VALUES (4,'The Birds',('Alfred Hitchcock',140),[1,4]);
INSERT INTO movierating2 (movie_id, movie_name, movie_director, ratings)
VALUES (5,'Psycho',('Alfred Hitchcock',140),[1,2,8]);
INSERT INTO movierating2 (movie_id, movie_name, movie_director, ratings)
VALUES (6,'Local Hero',('Bill Forsyth',56),[1,9]);
INSERT INTO movierating2 (movie_id, movie_name, movie_director, ratings)
VALUES (7,'Restless Natives',('Michael Hoffman',45),[1]);
INSERT INTO movierating2 (movie_id, movie_name, movie_director, ratings)
VALUES (8,'Trainspotting',('Danny Boyle',12),[1,4]);

On reverse-engineering the movierating2 table in ODI, it appears as shown in the figure
below.

Chapter 9
Cassandra Complex Datatypes

9-6

Figure 9-3 Reverse-engineered movierating2 table

This table does not contain the ratings attribute. However, the JDBC driver exposes a virtual
table called movierating2_ratings.

On reverse-engineering this virtual table in ODI, it appears as shown in the figure below.

Figure 9-4 Reverse-engineered movierating2_ratings table

In this example, the target HDFS file requires that the name is extracted from the
movie_director UDT along with the average of the values from the ratings list.

To accomplish this, a mapping is required which joins the movierating2 and
movierating2_ratings tables, and averages the ratings for each movie.

The mapping is as shown in the figure below:

Chapter 9
Cassandra Complex Datatypes

9-7

Figure 9-5 Mapping to join movierating2 and movierating2_ratings tables

The key point here is that for Cassandra Complex Types, the Flatten component is not
required to access the complex fields in the mapping. You'll notice that the similar Hive
mapping in Using Flatten for Complex Types in Hive Mappings is designed differently.

After running the mapping, the target HDFS file looks like this:

hdfs dfs -cat AvgRating.json/part-r-00000-4984bb6c-dacb-4ce1-a474-dc5641385e9f
{"MOVIE_NAME":"District 9","MOVIE_ID":3,"DIRECTOR_NAME":"Peter Jackson","AVG_RATINGS":2}
{"MOVIE_NAME":"Lord of the Rings","MOVIE_ID":1,"DIRECTOR_NAME":"Peter
Jackson","AVG_RATINGS":1}
{"MOVIE_NAME":"The Birds","MOVIE_ID":4,"DIRECTOR_NAME":"Alfred
Hitchcock","AVG_RATINGS":2}
{"MOVIE_NAME":"Restless Natives","MOVIE_ID":7,"DIRECTOR_NAME":"Michael
Hoffman","AVG_RATINGS":1}

hdfs dfs -cat AvgRating.json/part-r-00001-4984bb6c-dacb-4ce1-a474-dc5641385e9f
{"MOVIE_NAME":"Psycho","MOVIE_ID":5,"DIRECTOR_NAME":"Alfred Hitchcock","AVG_RATINGS":3}
{"MOVIE_NAME":"Trainspotting","MOVIE_ID":8,"DIRECTOR_NAME":"Danny Boyle","AVG_RATINGS":2}
{"MOVIE_NAME":"King Kong","MOVIE_ID":2,"DIRECTOR_NAME":"Peter Jackson","AVG_RATINGS":1}
{"MOVIE_NAME":"Local Hero","MOVIE_ID":6,"DIRECTOR_NAME":"Bill Forsyth","AVG_RATINGS":5}

9.5 Loading Data from HDFS File to Hive
Provides the steps to load data from HDFS file to Hive load data.

1. Create a HDFS Data Model.

2. Create a HDFS Data Store.

See HDFS Data Server Definition for additional information.

3. In the Storage panel, set the Storage Format.

A Schema is required for all except for delimited.

Chapter 9
Loading Data from HDFS File to Hive

9-8

Note:

• If the Row format is set to Delimited, set the Fields Terminated By,
Collection Items Terminated By, and Map Keys Terminated By.

• If the HDFS file is Avro, then the Avro schema must exist in the same HDFS
directory as the HDFS files.

4. Create a mapping with HDFS file as source and Hive file as target.

5. Use the LKM HDFS File to Hive Load Data and IKM Hive specified in the physical diagram
of the mapping.

Note:

Refer to Reverse-Engineering Hive Tables for information on Reverse-
Engineering.

9.6 Loading Data from HDFS File to Spark
Provides the steps to load data from HDFS file to Spark.

1. Create a Data Model for complex file.

2. Create a HIVE table Data Store.

3. In the Storage panel, set the Storage Format.

4. Create a mapping with HDFS file as source and target.

5. Use the LKM HDFS to Spark or LKM Spark to HDFS specified in the physical diagram of
the mapping.

Note:

For AVRO format, you can specify the schema file location. Refer to Reverse-
Engineering Hive Tables for information on Reverse-Engineering. There are two
ways of loading Avro file to Spark either with AVSC file or without AVSC file.

Chapter 9
Loading Data from HDFS File to Spark

9-9

A
Hive Knowledge Modules

This appendix provides information about the Hive knowledge modules.

This appendix includes the following sections:

• LKM SQL to Hive SQOOP

• LKM SQL to File SQOOP Direct

• LKM SQL to HBase SQOOP Direct

• LKM File to SQL SQOOP

• LKM Hive to SQL SQOOP

• LKM HBase to SQL SQOOP

• IKM Hive Append

• LKM File to Hive LOAD DATA

• LKM File to Hive LOAD DATA Direct

• LKM HBase to Hive HBASE-SERDE

• LKM Hive to HBase Incremental Update HBASE-SERDE Direct

• LKM Hive to File Direct

• XKM Hive Sort

• LKM File to Oracle OLH-OSCH

• LKM File to Oracle OLH-OSCH Direct

• LKM Hive to Oracle OLH-OSCH

• LKM Hive to Oracle OLH-OSCH Direct

• RKM Hive

• RKM HBase

• IKM File to Hive (Deprecated)

• LKM HBase to Hive (HBase-SerDe) [Deprecated]

• IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]

• IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

• IKM Hive Control Append (Deprecated)

• CKM Hive

• IKM Hive Transform (Deprecated)

• IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

• IKM File-Hive to SQL (SQOOP) [Deprecated]

A-1

A.1 LKM SQL to Hive SQOOP
This KM integrates data from a JDBC data source into Hive.

1. Create a Hive staging table.

2. Create a SQOOP configuration file, which contains the upstream query.

3. Execute SQOOP to extract the source data and import into Hive

4. Drop the Hive staging table.

This is a direct load LKM and will ignore any of the target IKM.

The following table descriptions the options for LKM SQL to Hive SQOOP.

Table A-1 LKM SQL to Hive SQOOP

Option Description

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging. Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for splitting
the source data into n chunks for parallel extraction, where n is
SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should contain
homogeneously distributed values.

For calculating the data chunk boundaries a query similar to SELECT
MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP is used. To avoid
an extra full table scan the split column should be backed by an index.

BOUNDARY_QUERY Query to retrieve min/max value for calculating data chunks using
SPLIT_BY column.

For splitting the source data into chunks for parallel extraction the
minimum and maximum value of the split column is retrieved (KM
option SPLIT-BY). In certain situations this may not be the best
boundaries or not the most performant way to retrieve the boundaries.
In such cases this KM option can be set to a SQL query returning one
row with two columns, lowest value and highest value to be used for
split-column. This range will be divided into SQOOP_PARALLELISM
chunks for parallel extraction.

Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names should be
inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM
<%=odiRef.getObjectName(EMP")%>"

Appendix A
LKM SQL to Hive SQOOP

A-2

Table A-1 (Cont.) LKM SQL to Hive SQOOP

Option Description

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

USE_GENERIC_JDBC_CONN
ECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors. These
connectors take care of SQL-dialects and optimize performance. When
there is a connector for the respective target technology, this connector
should be used. If not, the generic JDBC connector may provide a
solution.

EXTRA_HADOOP_CONF_PR
OPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop properties.

EXTRA_SQOOP_CONF_PRO
PERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP properties.

EXTRA_SQOOP_CONNECTO
R_CONF_PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP connector
properties.

A.2 LKM SQL to File SQOOP Direct
This KM extracts data from a JDBC data source into an HDFS file

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOP to extract the source data and store it as an HDFS file

This is a direct load LKM and must be used without any IKM.

Note:

The entire target directory will be removed before extraction.

The following table descriptions the options for LKM SQL to File SQOOP Direct.

Appendix A
LKM SQL to File SQOOP Direct

A-3

Table A-2 LKM SQL to File SQOOP Direct

Option Description

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging. Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for splitting
the source data into n chunks for parallel extraction, where n is
SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should contain
homogeneously distributed values.

For calculating the data chunk boundaries a query similar to SELECT
MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP is used. To avoid
an extra full table scan the split column should be backed by an index.

BOUNDARY_QUERY Query to retrieve min/max value for calculating data chunks using
SPLIT_BY column.

For splitting the source data into chunks for parallel extraction the
minimum and maximum value of the split column is retrieved (KM
option SPLIT-BY). In certain situations this may not be the best
boundaries or not the most performant way to retrieve the boundaries.
In such cases this KM option can be set to a SQL query returning one
row with two columns, lowest value and highest value to be used for
split-column. This range will be divided into SQOOP_PARALLELISM
chunks for parallel extraction.

Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names should be
inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM
<%=odiRef.getObjectName(EMP")%>"

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

USE_GENERIC_JDBC_CONN
ECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors. These
connectors take care of SQL-dialects and optimize performance. When
there is a connector for the respective target technology, this connector
should be used. If not, the generic JDBC connector may provide a
solution.

Appendix A
LKM SQL to File SQOOP Direct

A-4

Table A-2 (Cont.) LKM SQL to File SQOOP Direct

Option Description

EXTRA_HADOOP_CONF_PR
OPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop properties.

EXTRA_SQOOP_CONF_PRO
PERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP properties.

EXTRA_SQOOP_CONNECTO
R_CONF_PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP connector
properties.

A.3 LKM SQL to HBase SQOOP Direct
This KM extacts data from a JDBC data source and imports the data into HBase.

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOP to extract the source data and import into HBase.

This is a direct load LKM and must be used without any IKM.

The following table descriptions the options for LKM SQL to HBase SQOOP Direct.

Table A-3 LKM SQL to HBase SQOOP Direct

Option Description

CREATE_TARG_TABLE Create target table?

Check this option, to create the target table.

TRUNCATE Replace existing target data?

Set this option to true, to replace any existing target table content with
the new data.

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging. Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for splitting
the source data into n chunks for parallel extraction, where n is
SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should contain
homogeneously distributed values.

For calculating the data chunk boundaries a query similar to SELECT
MIN(EMPNO), MAX(EMPNO) from EMPLOYEE EMP is used. To avoid
an extra full table scan the split column should be backed by an index.

Appendix A
LKM SQL to HBase SQOOP Direct

A-5

Table A-3 (Cont.) LKM SQL to HBase SQOOP Direct

Option Description

BOUNDARY_QUERY Query to retrieve min/max value for calculating data chunks using
SPLIT_BY column.

For splitting the source data into chunks for parallel extraction the
minimum and maximum value of the split column is retrieved (KM
option SPLIT-BY). In certain situations this may not be the best
boundaries or not the most performant way to retrieve the boundaries.
In such cases this KM option can be set to a SQL query returning one
row with two columns, lowest value and highest value to be used for
split-column. This range will be divided into SQOOP_PARALLELISM
chunks for parallel extraction.

Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names should be
inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM
<%=odiRef.getObjectName(EMP")%>"

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

USE_GENERIC_JDBC_CONN
ECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors. These
connectors take care of SQL-dialects and optimize performance. When
there is a connector for the respective target technology, this connector
should be used. If not, the generic JDBC connector may provide a
solution.

EXTRA_HADOOP_CONF_PR
OPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop properties.

EXTRA_SQOOP_CONF_PRO
PERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP properties.

EXTRA_SQOOP_CONNECTO
R_CONF_PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP connector
properties.

A.4 LKM File to SQL SQOOP
This KM integrates data from HDFS files into a JDBC target.

It executes the following steps:

1. Create a SQOOP configuration file

2. Load data using SQOOP into a work table on RDBMS

Appendix A
LKM File to SQL SQOOP

A-6

3. Drop the work table.

The following table descriptions the options for LKM File to SQL SQOOP.

Table A-4 LKM File to SQL SQOOP

Option Description

SQOOP_PARALLELISM Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

WORK_TABLE_OPTIONS Work table options.

Use this option to override standard technology specific work table
options. When left blank, these options values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal

TERADATA_WORK_TABLE_T
YPE

Teradata work table type.

Use SET or MULTISET table for work table.

TERADATA_OUTPUT_METHO
D

Teradata Load Method.

Specifies the way the Teradata Connector will load the data. Valid
values are:

• batch.insert: multiple JDBC connections using batched prepared
statements (simplest to start with)

• multiple.fastload: multiple FastLoad connections
• internal.fastload: single coordinated FastLoad connections (most

performant)
Please see Cloudera's Teradata Connectors User Guide for more
details.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

USE_GENERIC_JDBC_CONN
ECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors. These
connectors take care of SQL-dialects and optimize performance. When
there is a connector for the respective target technology, this connector
should be used. If not, the generic JDBC connector may provide a
solution.

EXTRA_HADOOP_CONF_PR
OPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop properties.

EXTRA_SQOOP_CONF_PRO
PERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP properties.

Appendix A
LKM File to SQL SQOOP

A-7

Table A-4 (Cont.) LKM File to SQL SQOOP

Option Description

EXTRA_SQOOP_CONNECTO
R_CONF_PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP connector
properties.

A.5 LKM Hive to SQL SQOOP
This KM integrates data from Hive into a JDBC target.

It executes the following steps:

1. Unload data into HDFS

2. Create a SQOOP configuration file

3. Load data using SQOOP into a work table on RDBMS

4. Drop the work table

The following table descriptions the options for LKM Hive to SQL SQOOP.

Table A-5 LKM Hive to SQL SQOOP

Option Description

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging.

SQOOP_PARALLELISM Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

WORK_TABLE_OPTIONS Work table options.

Use this option to override standard technology specific work table
options. When left blank, these options values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal

TERADATA_WORK_TABLE_T
YPE

Teradata work table type.

Use SET or MULTISET table for work table.

TERADATA_OUTPUT_METHO
D

Teradata Load Method.

Specifies the way the Teradata Connector will load the data. Valid
values are:

• batch.insert: multiple JDBC connections using batched prepared
statements (simplest to start with)

• multiple.fastload: multiple FastLoad connections
• internal.fastload: single coordinated FastLoad connections (most

performant)
Please see Cloudera's Teradata Connectors User Guide for more
details.

Appendix A
LKM Hive to SQL SQOOP

A-8

Table A-5 (Cont.) LKM Hive to SQL SQOOP

Option Description

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

USE_GENERIC_JDBC_CONN
ECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors. These
connectors take care of SQL-dialects and optimize performance. When
there is a connector for the respective target technology, this connector
should be used. If not, the generic JDBC connector may provide a
solution.

EXTRA_HADOOP_CONF_PR
OPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop properties.

EXTRA_SQOOP_CONF_PRO
PERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP properties.

EXTRA_SQOOP_CONNECTO
R_CONF_PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP connector
properties.

A.6 LKM HBase to SQL SQOOP
This KM integrates data from HBase into a JDBC target.

It executes the following steps:

1. Create a SQOOP configuration file

2. Create a Hive table definition for the HBase table

3. Unload data from Hive (HBase) using SQOOP into a work table on RDBMS

4. Drop the work table.

The following table descriptions the options for LKM HBase to SQL SQOOP.

Table A-6 LKM HBase to SQL SQOOP

Option Description

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging. Default: true.

HIVE_STAGING_LSCHEMA Logical schema name for Hive-HBase-SerDe table.

The unloading from HBase data is done through Hive. This KM option
defines the Hive database, which will be used for creating the Hive
HBase-SerDe table for unloading the HBase data.

Appendix A
LKM HBase to SQL SQOOP

A-9

Table A-6 (Cont.) LKM HBase to SQL SQOOP

Option Description

SQOOP_PARALLELISM Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number of
mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

WORK_TABLE_OPTIONS Work table options.

Use this option to override standard technology specific work table
options. When left blank, these options values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal

TERADATA_WORK_TABLE_T
YPE

Teradata work table type.

Use SET or MULTISET table for work table.

TERADATA_OUTPUT_METHO
D

Teradata Load Method.

Specifies the way the Teradata Connector will load the data. Valid
values are:

• batch.insert: multiple JDBC connections using batched prepared
statements (simplest to start with)

• multiple.fastload: multiple FastLoad connections
• internal.fastload: single coordinated FastLoad connections (most

performant)
Please see Cloudera's Teradata Connectors User Guide for more
details.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

USE_GENERIC_JDBC_CONN
ECTOR

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors. These
connectors take care of SQL-dialects and optimize performance. When
there is a connector for the respective target technology, this connector
should be used. If not, the generic JDBC connector may provide a
solution.

EXTRA_HADOOP_CONF_PR
OPERTIES

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop properties.

EXTRA_SQOOP_CONF_PRO
PERTIES

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP properties.

EXTRA_SQOOP_CONNECTO
R_CONF_PROPERTIES

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP connector
properties.

Appendix A
LKM HBase to SQL SQOOP

A-10

A.7 LKM HDFS File to Hive Load Data
This KM will load data only from HDFS file into Hive. The file can be in the format of JSON,
Avro, Parquet, Delimited with complex data.

Table A-7 LKM HDFS File to Hive Load Data

Option Description

STOP_ON_FILE_NOT_
FOUND

This checkbox option defines whether the KM should stop, if no input file is
found.

OVERRIDE_ROW_FOR
MAT

This option allows to override the entire Hive row format definition of the
staging table or the target table.

DELETE_TEMPORARY
_OBJECTS

Set this option to No, to retain the temporary objects (tables, files and scripts)
post integration.

A.8 LKM HDFS File to Hive Load Data (Direct)
This KM will load data only from HDFS file into Hive Data Direct directly into hive target table,
bypassing the staging table for better performance.

Table A-8 LKM HDFS to Hive Load Data (Direct)

Option Description

STOP_ON_FILE_NOT_
FOUND

This checkbox option defines whether the KM should stop, if no input file is
found.

OVERRIDE_ROW_FOR
MAT

This option allows to override the entire Hive row format definition of the
staging table or the target table.

DELETE_TEMPORARY
_OBJECTS

Set this option to No, to retain the temporary objects (tables, files and scripts)
post integration.

CREATE_TARG_TABLE Create target table?

Check this option, to create the target table.

TRUNCATE Replace existing target data?

Set this option to true, to replace any existing target table content with the
new data.

A.9 IKM Hive Append
This KM integrates data into a Hive target table in append or replace (truncate) mode.

The following table descriptions the options for IKM Hive Append.

Table A-9 IKM Hive Append

Option Description

CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.

Appendix A
LKM HDFS File to Hive Load Data

A-11

Table A-9 (Cont.) IKM Hive Append

Option Description

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table content
with the new data.

Note:

If there is a column containing a Complex Type in the target Hive table, this must not
be left unmapped. Hive does not allow setting null values to complex columns.

A.10 IKM Hive Incremental Update
This IKM integrates data incrementally into a Hive target table. The KM should be assigned on
Hive target node.

Target data store integration type needs to be defined as Incremental Update to get this KM on
the list of available KMs for assignment.

Table A-10 IKM Hive Incremental Update

Option Description

CREATE_TARG_TAB
LE

Create target table.

Select this option to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, to replace the target table content with the new data.

A.11 LKM File to Hive LOAD DATA
Integration from a flat file staging area to Hive using Hive's LOAD DATA command.

This KM executes the following steps:

1. Create a flow table in Hive

2. Declare data files to Hive (LOAD DATA command)

3. Load data from Hive staging table into target table

The KM can handle filename wildcards (*, ?).">

The following table describes the options for LKM File to Hive LOAD DATA.

Table A-11 LKM File to Hive LOAD DATA

Option Description

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects (tables,
files and scripts) after integration. Useful for debugging.

Appendix A
IKM Hive Incremental Update

A-12

Table A-11 (Cont.) LKM File to Hive LOAD DATA

Option Description

EXTERNAL_TABLE Preserve file in original location?

Defines whether to declare the target/staging table as externally
managed.

Default: false

For non-external tables Hive manages all data files. That is, it will
move any data files into <hive.metastore.warehouse.dir>/
<table_name>. For external tables Hive does not move or delete any
files. It will load data from the location given by the ODI schema.

If EXTERNAL_TABLE is set to true:

All files in the directory given by the physical data schema will be
loaded. So any filename or wildcard information from the source data
store's resource name will be ignored.

The directory structure and file names must follow Hives directory
organization for tables, for example, for partitioning and clustering.

The directory and its files must reside in HDFS.

No Hive LOAD-DATA-statements are submitted and thus loading of
files to a specific partition (using a target-side expression) is not
possible.

FILE_IS_LOCAL Is this a local file?

Defines whether the source file is to be considered local (= outside of
the current Hadoop cluster).

Default: true

If FILE_IS_LOCAL is set to true, the data file(s) are copied into the
Hadoop cluster first.

If FILE_IS_LOCAL is set to false, the data file(s) are moved into the
Hadoop cluster and therefore will no longer be available at their source
location. If the source file is already in HDFS, FILE_IS_LOCAL=false
results in just a file rename and therefore very fast operation. This
option only applies, if EXTERNAL_TABLE is set to false.

STOP_ON_FILE_NOT_FOUN
D

Stop if no input file was found?

This checkbox option defines whether the KM should stop, if no input
file has been found.

OVERRIDE_ROW_FORMAT Custom row format clause.

This option allows to override the entire Hive row format definition of
the staging table (in case USE_STAGE_TABLE is set to true) or the
target table (in case USE_STAGE_TABLE is set to false). It contains
the text to be used for row format definition.

Example for reading Apache Combined WebLog files:

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' <EOL>WITH
SERDEPROPERTIES (<EOL> input.regex" = "([^]*) ([^]*) ([^]*) (-|\\
[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")"

A.12 LKM File to Hive LOAD DATA Direct
Direct integration from a flat file into Hive without any staging using Hive's LOAD DATA
command.

This is a direct load LKM and must be used without any IKM.

Appendix A
LKM File to Hive LOAD DATA Direct

A-13

The KM can handle filename wildcards (*, ?).

The following table describes the options for LKM File to Hive LOAD DATA Direct.

Table A-12 LKM File to Hive LOAD DATA Direct

Option Description

CREATE_TARG_TABLE Create target table.

Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table content
with the new data.

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects (tables,
files and scripts) after integration. Useful for debugging.

EXTERNAL_TABLE Preserve file in original location?

Defines whether to declare the target/staging table as externally
managed.

Default: false

For non-external tables Hive manages all data files. That is, it will
move any data files into <hive.metastore.warehouse.dir>/
<table_name>. For external tables Hive does not move or delete any
files. It will load data from the location given by the ODI schema.

If EXTERNAL_TABLE is set to true:

All files in the directory given by the physical data schema will be
loaded. So any filename or wildcard information from the source data
store's resource name will be ignored.

The directory structure and file names must follow Hives directory
organization for tables, for example, for partitioning and clustering.

The directory and its files must reside in HDFS.

No Hive LOAD-DATA-statements are submitted and thus loading of
files to a specific partition (using a target-side expression) is not
possible.

FILE_IS_LOCAL Is this a local file?

Defines whether the source file is to be considered local (= outside of
the current Hadoop cluster).

Default: true

If FILE_IS_LOCAL is set to true, the data file(s) are copied into the
Hadoop cluster first.

If FILE_IS_LOCAL is set to false, the data file(s) are moved into the
Hadoop cluster and therefore will no longer be available at their source
location. If the source file is already in HDFS, FILE_IS_LOCAL=false
results in just a file rename and therefore very fast operation. This
option only applies, if EXTERNAL_TABLE is set to false.

STOP_ON_FILE_NOT_FOUN
D

Stop if no input file was found?

This checkbox option defines whether the KM should stop, if no input
file has been found.

Appendix A
LKM File to Hive LOAD DATA Direct

A-14

Table A-12 (Cont.) LKM File to Hive LOAD DATA Direct

Option Description

OVERRIDE_ROW_FORMAT Custom row format clause.

This option allows to override the entire Hive row format definition of
the staging table (in case USE_STAGE_TABLE is set to true) or the
target table (in case USE_STAGE_TABLE is set to false). It contains
the text to be used for row format definition.

Example for reading Apache Combined WebLog files:

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' <EOL>WITH
SERDEPROPERTIES (<EOL> input.regex" = "([^]*) ([^]*) ([^]*) (-|\\
[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")"

A.13 LKM HBase to Hive HBASE-SERDE
This LKM provides read access to a HBase table from the Hive.

This is achieved by defining a temporary load table definition on Hive which represents all
relevant columns of the HBase source table.

A.14 LKM Hive to HBase Incremental Update HBASE-SERDE
Direct

This LKM loads data from Hive into HBase and supports inserting new rows and, also updating
existing data.

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to HBase Incremental Update HBASE-
SERDE Direct.

Table A-13 LKM Hive to HBase Incremental Update HBASE-SERDE Direct

Option Description

CREATE_TARG_TABLE Create target table.

Check this option to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, to replace the target table content with the new
data.

HBASE_WAL Disable Write-Ahead-Log.

HBase uses a Write-Ahead-Log to protect against data loss. For better
performance, WAL can be disabled. This setting applies to all Hive
commands executed later in this session.

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging.

Appendix A
LKM HBase to Hive HBASE-SERDE

A-15

A.15 LKM Hive to File Direct
This LKM unloads data from Hive into flat files.

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to File Direct.

Table A-14 LKM Hive to File Direct

Option Description

FILE_IS_LOCAL Is this a local file?

Defines whether the target file is to be considered local (outside of the
current Hadoop cluster).

STORED_AS File format.

Defines whether the target file is to be stored as plain text file
(TEXTFILE) or compressed (SEQUENCEFILE).

A.16 XKM Hive Sort
This XKM sorts data using an expression.

The following table describes the options for XKM Hive Sort.

Table A-15 XKM Hive Sort

Option Description

SORT_MODE Select the mode the SORT operator will generate code for.

A.17 LKM File to Oracle OLH-OSCH
This KM integrates data from an HDFS file into an Oracle staging table using Oracle Loader for
Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH).

The KM can handle filename wildcards (*, ?).

The following table describes the options for LKM File to Oracle OLH-OSCH.

Table A-16 LKM File to Oracle OLH-OSCH

Option Description

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging.

Appendix A
LKM Hive to File Direct

A-16

Table A-16 (Cont.) LKM File to Oracle OLH-OSCH

Option Description

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and OSCH.

• JDBC output mode: The data is inserted using several direct insert
JDBC connections.

In very rare cases JDBC mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

• OCI output mode: The data is inserted using several direct insert
OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_OPTIONS must
explicitly specify partitioning: for example, PARTITION BY
HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

• DP_COPY output mode: OLH creates several DataPump export
files. These files are transferred by a "Hadoop fs -copyToLocal"
command to the local path specified by
EXT_TAB_DIR_LOCATION. - Please note that the path must be
accessible by the Oracle Database engine. Once the copy job is
complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file. Examples:
UNLIMITED to except all errors. Integer value (10 to allow 10
rejections).

This value is used in OLH job definitions and, also in external table
definitions.

EXT_TAB_DIR_LOCATION Directory for ext tab data files.

File system path of the external table.

Note:
• Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH
• For OLH_OUTPUT_MODE = DP_*: this path must be accessible

both from the ODI agent and from the target database engine.
• For OLH_OUTPUT_MODE = DP_*: the name of the external

directory object is the I$ table name.
• For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use

hadoop-fs command to copy dp files into this directory.
• For OLH_OUTPUT_MODE = DP_*|OSCH: this path will contain

any external table log/bad/dsc files.
• ODI agent will remove any files from this directory during clean up

before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table at
create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

Appendix A
LKM File to Oracle OLH-OSCH

A-17

Table A-16 (Cont.) LKM File to Oracle OLH-OSCH

Option Description

OVERRIDE_INPUTFORMAT Class name of InputFormat.

By default the InputFormat class is derived from the source Data Store/
Technology (DelimitedTextInputFormat or HiveToAvroInputFormat).
This option allows the user to specify the class name of a custom
InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=OSCH.

For example, for reading custom file formats like web log files the OLH
RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details on how
to specify the regular expression.

EXTRA_OLH_CONF_PROPE
RTIES

Optional extra OLH properties.

Allows adding extra parameters to OLH. For example, for changing the
default OLH date format:

<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>

<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may require
additional configuration parameters. These are provided in the OLH
configuration file. This KM option allows adding extra properties to the
OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file formats,
this KM option specified the regular expression and other parsing
details:

<property>

<name>oracle.hadoop.loader.input.regexPattern</name>

<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)
(\".*?\") (\".*?\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout, and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

Appendix A
LKM File to Oracle OLH-OSCH

A-18

A.18 LKM File to Oracle OLH-OSCH Direct
This KM integrates data from an HDFS file into an Oracle target using Oracle Loader for
Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH)

The KM can handle filename wildcards (*, ?).

This is a direct load LKM (no staging) and must be used without any IKM.

The following table describes the options for LKM File to Oracle OLH-OSCH Direct.

Table A-17 LKM File to Oracle OLH-OSCH Direct

Option Description

CREATE_TARG_TABLE Create target table.

Check this option to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, to replace the target table content with the new
data.

DELETE_ALL Delete all rows.

Set this option to true, to replace the target table content with the new
data.

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and OSCH.

• JDBC output mode: The data is inserted using several direct insert
JDBC connections.

In very rare cases JDBC mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

• OCI output mode: The data is inserted using several direct insert
OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_OPTIONS must
explicitly specify partitioning: for example, PARTITION BY
HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

• DP_COPY output mode: OLH creates several DataPump export
files. These files are transferred by a "Hadoop fs -copyToLocal"
command to the local path specified by
EXT_TAB_DIR_LOCATION. - Please note that the path must be
accessible by the Oracle Database engine. Once the copy job is
complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file. Examples:
UNLIMITED to except all errors. Integer value (10 to allow 10
rejections).

This value is used in OLH job definitions and, also in external table
definitions.

Appendix A
LKM File to Oracle OLH-OSCH Direct

A-19

Table A-17 (Cont.) LKM File to Oracle OLH-OSCH Direct

Option Description

EXT_TAB_DIR_LOCATION Directory for ext tab data files.

File system path of the external table.

Note:
• Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH
• For OLH_OUTPUT_MODE = DP_*: this path must be accessible

both from the ODI agent and from the target database engine.
• For OLH_OUTPUT_MODE = DP_*: the name of the external

directory object is the I$ table name.
• For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use

hadoop-fs command to copy dp files into this directory.
• For OLH_OUTPUT_MODE = DP_*|OSCH: this path will contain

any external table log/bad/dsc files.
• ODI agent will remove any files from this directory during clean up

before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table at
create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

OVERRIDE_INPUTFORMAT Class name of InputFormat.

By default the InputFormat class is derived from the source Data Store/
Technology (DelimitedTextInputFormat or HiveToAvroInputFormat).
This option allows the user to specify the class name of a custom
InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=OSCH.

For example, for reading custom file formats like web log files the OLH
RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details on how
to specify the regular expression.

Appendix A
LKM File to Oracle OLH-OSCH Direct

A-20

Table A-17 (Cont.) LKM File to Oracle OLH-OSCH Direct

Option Description

EXTRA_OLH_CONF_PROPE
RTIES

Optional extra OLH properties.

Allows adding extra parameters to OLH. For example, for changing the
default OLH date format:

<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>

<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may require
additional configuration parameters. These are provided in the OLH
configuration file. This KM option allows adding extra properties to the
OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file formats,
this KM option specified the regular expression and other parsing
details:

<property>

<name>oracle.hadoop.loader.input.regexPattern</name>

<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)
(\".*?\") (\".*?\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout, and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

A.19 LKM Hive to Oracle OLH-OSCH
This KM integrates data from a Hive query into an Oracle staging table using Oracle Loader for
Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH).

The following table describes the options for LKM Hive to Oracle OLH-OSCH.

Appendix A
LKM Hive to Oracle OLH-OSCH

A-21

Table A-18 LKM Hive to Oracle OLH-OSCH

Option Description

USE_HIVE_STAGING_TABLE Use intermediate Hive staging table?

By default the Hive source data materializes in a Hive staging table
before extraction by OLH. If USE_HIVE_STAGING_TABLE is set to
false, OLH directly accesses the Hive source data.

USE_HIVE_STAGING_TABLE=0 is only possible, if all these conditions
are true.

• Only a single source table
• No transformations, filters, joins.
• No datasets
• USE_HIVE_STAGING_TABLE=0 provides better performance by

avoiding an extra data transfer step.

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and OSCH.

• JDBC output mode: The data is inserted using several direct insert
JDBC connections.

In very rare cases JDBC mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

• OCI output mode: The data is inserted using several direct insert
OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_OPTIONS must
explicitly specify partitioning: for example, PARTITION BY
HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

• DP_COPY output mode: OLH creates several DataPump export
files. These files are transferred by a "Hadoop fs -copyToLocal"
command to the local path specified by
EXT_TAB_DIR_LOCATION. The path must be accessible by the
Oracle Database engine. Once the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file. Examples:
UNLIMITED to except all errors. Integer value (10 to allow 10
rejections).

This value is used in OLH job definitions and, also in external table
definitions.

Appendix A
LKM Hive to Oracle OLH-OSCH

A-22

Table A-18 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

EXT_TAB_DIR_LOCATION Directory for ext tab data files.

File system path of the external table.

Note:
• Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH
• For OLH_OUTPUT_MODE = DP_*: this path must be accessible

both from the ODI agent and from the target database engine.
• For OLH_OUTPUT_MODE = DP_*: the name of the external

directory object is the I$ table name.
• For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use

hadoop-fs command to copy dp files into this directory.
• For OLH_OUTPUT_MODE = DP_*|OSCH: this path will contain

any external table log/bad/dsc files.
• ODI agent will remove any files from this directory during clean up

before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table at
create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

OVERRIDE_INPUTFORMAT Class name of InputFormat.

By default the InputFormat class is derived from the source Data Store/
Technology (DelimitedTextInputFormat or HiveToAvroInputFormat).
This option allows the user to specify the class name of a custom
InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=OSCH.

For example, for reading custom file formats like web log files the OLH
RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details on how
to specify the regular expression.

Appendix A
LKM Hive to Oracle OLH-OSCH

A-23

Table A-18 (Cont.) LKM Hive to Oracle OLH-OSCH

Option Description

EXTRA_OLH_CONF_PROPE
RTIES

Optional extra OLH properties.

Allows adding extra parameters to OLH. For example, for changing the
default OLH date format:

<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>

<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may require
additional configuration parameters. These are provided in the OLH
configuration file. This KM option allows adding extra properties to the
OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file formats,
this KM option specified the regular expression and other parsing
details:

<property>

<name>oracle.hadoop.loader.input.regexPattern</name>

<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)
(\".*?\") (\".*?\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout, and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

A.20 LKM Hive to Oracle OLH-OSCH Direct
This KM integrates data from a Hive query into an Oracle target using Oracle Loader for
Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH)

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to Oracle OLH-OSCH.

Table A-19 LKM Hive to Oracle OLH-OSCH Direct

Option Description

CREATE_TARG_TABLE Create target table.

Check this option to create the target table.

Appendix A
LKM Hive to Oracle OLH-OSCH Direct

A-24

Table A-19 (Cont.) LKM Hive to Oracle OLH-OSCH Direct

Option Description

TRUNCATE Replace all target table data.

Set this option to true, to replace the target table content with the new
data.

DELETE_ALL Delete all rows.

Set this option to true, to replace the target table content with the new
data.

USE_HIVE_STAGING_TABLE Use intermediate Hive staging table?

By default the Hive source data materializes in a Hive staging table
before extraction by OLH. If USE_HIVE_STAGING_TABLE is set to
false, OLH directly accesses the Hive source data.

USE_HIVE_STAGING_TABLE=0 is only possible, if all these conditions
are true.

• Only a single source table
• No transformations, filters, joins.
• No datasets
• USE_HIVE_STAGING_TABLE=0 provides better performance by

avoiding an extra data transfer step.

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Set this option to NO, to retain temporary objects (tables, files and
scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY|DP_OSCH, and OSCH.

• JDBC output mode: The data is inserted using several direct insert
JDBC connections.

In very rare cases JDBC mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

• OCI output mode: The data is inserted using several direct insert
OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading, FLOW_TABLE_OPTIONS must
explicitly specify partitioning: For example, PARTITION BY
HASH(COL1) PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records in
target table due to Hadoop trying to restart tasks.

• DP_COPY output mode: OLH creates several DataPump export
files. These files are transferred by a "Hadoop fs -copyToLocal"
command to the local path specified by
EXT_TAB_DIR_LOCATION. - Please note that the path must be
accessible by the Oracle Database engine. Once the copy job is
complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file. Examples:
UNLIMITED to except all errors. Integer value (10 to allow 10
rejections).

This value is used in OLH job definitions and, also in external table
definitions.

Appendix A
LKM Hive to Oracle OLH-OSCH Direct

A-25

Table A-19 (Cont.) LKM Hive to Oracle OLH-OSCH Direct

Option Description

EXT_TAB_DIR_LOCATION Directory for ext tab data files.

File system path of the external table.

Note:
• Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH
• For OLH_OUTPUT_MODE = DP_*: this path must be accessible

both from the ODI agent and from the target database engine.
• For OLH_OUTPUT_MODE = DP_*: the name of the external

directory object is the I$ table name.
• For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use

hadoop-fs command to copy dp files into this directory.
• For OLH_OUTPUT_MODE = DP_*|OSCH: this path will contain

any external table log/bad/dsc files.
• ODI agent will remove any files from this directory during clean up

before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table at
create time and used for increasing performance.

This option is set by default to NOLOGGING.

This option may be left empty.

OVERRIDE_INPUTFORMAT Class name of InputFormat.

By default the InputFormat class is derived from the source Data Store/
Technology (DelimitedTextInputFormat or HiveToAvroInputFormat).
This option allows the user to specify the class name of a custom
InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=OSCH.

For example, for reading custom file formats like web log files the OLH
RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details on how
to specify the regular expression.

Appendix A
LKM Hive to Oracle OLH-OSCH Direct

A-26

Table A-19 (Cont.) LKM Hive to Oracle OLH-OSCH Direct

Option Description

EXTRA_OLH_CONF_PROPE
RTIES

Optional extra OLH properties.

Allows adding extra parameters to OLH. For example, for changing the
default OLH date format:

<property>

<name>oracle.hadoop.loader.defaultDateFormat</name>

<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may require
additional configuration parameters. These are provided in the OLH
configuration file. This KM option allows adding extra properties to the
OLH configuration file. Default: <empty>

Cannot be used with OLH_OUTPUT_MODE=OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file formats,
this KM option specified the regular expression and other parsing
details:

<property>

<name>oracle.hadoop.loader.input.regexPattern</name>

<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)
(\".*?\") (\".*?\") (\".*?\")</value>

<description>RegEx for Apache WebLog format</description>

</property>"

MAPRED_OUTPUT_BASE_DI
R

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will create
subdirectories for temporary files. A subdirectory called like the work
table will be created here to hold the temporary data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script, stdout, and
stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

A.21 RKM Hive
RKM Hive reverses these metadata elements:

• Hive tables and views as data stores.

Specify the reverse mask in the Mask field, and then select the tables and views to
reverse. The Mask field in the Reverse Engineer tab filters reverse-engineered objects
based on their names. The Mask field cannot be empty and must contain at least the
percent sign (%).

• Hive columns as attributes with their data types.

• Information about buckets, partitioning, clusters, and sort columns are set in the respective
flex fields in the data store or column metadata.

Appendix A
RKM Hive

A-27

A.22 RKM HBase
RKM HBase reverses these metadata elements:

• HBase tables as data stores.

Specify the reverse mask in the Mask field, and then select the tables to reverse. The
Mask field in the Reverse Engineer tab filters reverse-engineered objects based on their
names. The Mask field cannot be empty and must contain at least the percent sign (%).

• HBase columns as attributes with their data types.

• HBase unique row key as attribute called key.

Note:

This RKM uses the oracle.odi.km logger for logging. You can enable logging by
changing log level for oracle.odi.km logger to TRACE:16 in ODI-logging-
config.xml as shown below:

<logger name="oracle.odi.km" level="TRACE:16" useParentHandlers="true"/>
<logger name="oracle.odi.studio.message.logger.proxy" level="TRACE:16"
useParentHandlers="false"/>

For more information about logging configuration in ODI, see the Runtime Logging for
ODI components section in Administering Oracle Data Integrator.

The following table describes the options for RKM HBase.

Table A-20 RKM HBase Options

Option Description

SCAN_MAX_ROWS Specifies the maximum number of rows to be scanned during reversing
of a table. The default value is 10000.

SCAN_START_ROW Specifies the key of the row to start the scan on. By default the scan
will start on the first row. The row key is specified as a Java
expressions returning an instance of
org.apache.hadoop.hbase.util.Bytes. Example:
Bytes.toBytes(?EMP000001?).

SCAN_STOP_ROW Specifies the key of the row to stop the scan on? By default the scan
will run to the last row of the table or up to SCAN_MAX_ROWS is reached.
The row key is specified as a Java expressions returning an instance of
org.apache.hadoop.hbase.util.Bytes. Example:
Bytes.toBytes(?EMP000999?).

Only applies if SCAN_START_ROW is specified.

SCAN_ONLY_FAMILY Restricts the scan to column families, whose name match this pattern.
SQL-LIKE wildcards percentage (%) and underscore (_) can be used.
By default all column families are scanned.

Appendix A
RKM HBase

A-28

A.23 IKM File to Hive (Deprecated)
Note: This KM is deprecated and only used for backward compatibility.

IKM File to Hive (Load Data) supports:

• One or more input files. To load multiple source files, enter an asterisk or a question mark
as a wildcard character in the resource name of the file data store (for example,
webshop_*.log).

• File formats:

– Fixed length

– Delimited

– Customized format

• Loading options:

– Immediate or deferred loading

– Overwrite or append

– Hive external tables

The following table describes the options for IKM File to Hive (Load Data). See the knowledge
module for additional details.

Table A-21 IKM File to Hive Options

Option Description

CREATE_TARG_TABLE Check this option, if you wish to create the target table. In case
USE_STAGING_TABLE is set to false, the data will only be read
correctly, if the target table definition, particularly the row format and file
format details, are correct.

TRUNCATE Set this option to true, if you wish to replace the target table/partition
content with the new data. Otherwise the new data will be appended to
the target table. If TRUNCATE and USE_STAGING_TABLE are set to
false, all source file names must be unique and must not collide with
any data files already loaded into the target table.

FILE_IS_LOCAL Defines whether the source file is to be considered local (outside of the
current Hadoop cluster). If this option is set to true, the data file(s) are
copied into the Hadoop cluster first. The file has to be accessible by the
Hive server through the local or shared file system. If this option is set
to false, the data file(s) are moved into the Hadoop cluster and
therefore will no longer be available at their source location. If the
source file is already in HDFS, setting this option is set to false
results in just a file rename, and therefore the operation is very fast.

This option only applies, if EXTERNAL_TABLE is set to false.

Appendix A
IKM File to Hive (Deprecated)

A-29

Table A-21 (Cont.) IKM File to Hive Options

Option Description

EXTERNAL_TABLE Defines whether to declare the target/staging table as externally
managed. For non-external tables Hive manages all data files. That is,
it will move any data files into <hive.metastore.warehouse.dir>/
<table_name>. For external tables Hive does not move or delete any
files. It will load data from the location given by the ODI schema.

If this option is set to true:

• All files in the directory given by the physical data schema will be
loaded. So any filename or wildcard information from the source
data store's resource name will be ignored.

• The directory structure and file names must several Hives
directory organization for tables, for example, for partitioning and
clustering.

• The directory and its files must reside in HDFS.
• No Hive LOAD-DATA-statements are submitted and thus loading of

files to a specific partition (using a target-side expression) is not
possible.

USE_STAGING_TABLE Defines whether an intermediate staging table will be created.

A Hive staging table is required if:

• Target table is partitioned, but data spreads across partitions
• Target table is clustered
• Target table (partition) is sorted, but input file is not
• Target table is already defined and target table definition does not

match the definition required by the KM
• Target column order does not match source file column order
• There are any unmapped source columns
• There are any unmapped non-partition target columns
• The source is a fixed length file and the target has non-string

columns
In case none of the above is true, this option can be turned off for
better performance.

DELETE_TEMPORARY_OBJECTS Removes temporary objects, such as tables, files, and scripts after
integration. Set this option to No if you want to retain the temporary
files, which might be useful for debugging.

DEFER_TARGET_LOAD Defines whether the file(s), which have been declared to the staging
table should be loaded into the target table now or during a later
execution. Permitted values are START, NEXT, END or <empty>.

This option only applies if USE_STAGE_TABLE is set to true.

The typical use case for this option is when there are multiple files and
each of them requires data redistribution/sorting and the files are
gathered by calling the interface several times. For example, the
interface is used in a package, which retrieves (many small) files from
different locations and the location, stored in an Oracle Data Integrator
variable, is to be used in a target partition column. In this case the first
interface execution will have DEFER_TARGET_LOAD set to START, the
next interface executions will have DEFER_TARGET_LOAD set to NEXT
and set to END for the last interface. The interfaces having DEFER_
TARGET _LOAD set to START/NEXT will just load the data file into
HDFS (but not yet into the target table) and can be executed in parallel
to accelerate file upload to cluster.

Appendix A
IKM File to Hive (Deprecated)

A-30

Table A-21 (Cont.) IKM File to Hive Options

Option Description

OVERRIDE_ROW_FORMAT Allows to override the entire Hive row format definition of the staging
table (in case USE_STAGE_TABLE is set to true) or the target table (in
case USE_STAGE_TABLE is set to false). It contains the text to be
used for row format definition.Example for reading Apache Combined
WebLog files:

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' WITH
SERDEPROPERTIES ("input.regex" = "([^]*) ([^]*)
([^]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|
[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\") (\".*?\")",
"output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s
%7$s %8$s %9$s %10$s") STORED AS TEXTFILE
The list of columns in the source data store must match the list of input
groups in the regular expression (same number of columns and
appropriate data types). If USE_STAGE_TABLE is set to false, the
number of target columns must match the number of columns returned
by the SerDe, in the above example, the number of groups in the
regular expression. The number of source columns is ignored (At least
one column must be mapped to the target.). All source data is mapped
into the target table structure according to the column order, the
SerDe's first column is mapped to the first target column, the SerDe's
second column is mapped to the second target column, and so on. If
USE_STAGE_TABLE is set to true, the source data store must have as
many columns as the SerDe returns columns. Only data of mapped
columns will be transferred.

STOP_ON_FILE_NOT_FOUND Defines whether the KM should stop, if input file is not found.

HIVE_COMPATIBILE Specifies the Hive version compatibility. The values permitted for this
option are 0.7 and 0.8.

• 0.7: Simulates the append behavior. Must be used for Hive 0.7
(CDH3).

• 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

A.24 LKM HBase to Hive (HBase-SerDe) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

LKM HBase to Hive (HBase-SerDe) supports:

• A single source HBase table.

The following table describes the options for LKM HBase to Hive (HBase-SerDe). See the
knowledge module for additional details.

Table A-22 LKM HBase to Hive (HBase-SerDe) Options

Option Description

DELETE_TEMPORARY_OBJECTS Deletes temporary objects such as tables, files, and scripts post data
integration. Set this option to NO, to retain the temporary objects, which
might be useful for debugging.

Appendix A
LKM HBase to Hive (HBase-SerDe) [Deprecated]

A-31

A.25 IKM Hive to HBase Incremental Update (HBase-SerDe)
[Deprecated]

Note: This KM is deprecated and only used for backward compatibility.

IKM Hive to HBase Incremental Update (HBase-SerDe) supports:

• Filters, Joins, Datasets, Transformations and Aggregations in Hive

• Inline views generated by IKM Hive Transform

• Inline views generated by IKM Hive Control Append

The following table describes the options for IKM Hive to HBase Incremental Update (HBase-
SerDe). See the knowledge module for additional details.

Table A-23 IKM Hive to HBase Incremental Update (HBase-SerDe) Options

Option Description

CREATE_TARG_TABLE Creates the HBase target table.

TRUNCATE Replaces the target table content with the new data. If this option is set
to false, the new data is appended to the target table.

DELETE_TEMPORARY_OBJECTS Deletes temporary objects such as tables, files, and scripts post data
integration. Set this option to NO, to retain the temporary objects, which
might be useful for debugging.

HBASE_WAL Enables or disables the Write-Ahead-Log (WAL) that HBase uses to
protect against data loss. For better performance, WAL can be
disabled.

A.26 IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

IKM SQL to Hive-HBase-File (SQOOP) supports:

• Mappings on staging

• Joins on staging

• Filter expressions on staging

• Datasets

• Lookups

• Derived tables

The following table describes the options for IKM SQL to Hive-HBase-File (SQOOP). See the
knowledge module for additional details.

Table A-24 IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

CREATE_TARG_TABLE Creates the target table. This option is applicable only if the target is
Hive or HBase.

Appendix A
IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]

A-32

Table A-24 (Cont.) IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

TRUNCATE Replaces any existing target table content with the new data. For Hive
and HBase targets, the target data is truncated. For File targets, the
target directory is removed. For File targets, this option must be set to
true.

SQOOP_PARALLELISM Specifies the degree of parallelism. More precisely the number of
mapper processes used for extraction.

If SQOOP_PARALLELISM option is set to greater than 1, SPLIT_BY
option must be defined.

SPLIT_BY Specifies the target column to be used for splitting the source data into
n chunks for parallel extraction, where n is SQOOP_PARALLELISM. To
achieve equally sized data chunks the split column should contain
homogeneously distributed values. For calculating the data chunk
boundaries a query similar to SELECT MIN(EMP.EMPNO),
MAX(EMP.EMPNO) from EMPLOYEE EMP is used. To avoid an extra full
table scan the split column should be backed by an index.

BOUNDARY_QUERY For splitting the source data into chunks for parallel extraction the
minimum and maximum value of the split column is retrieved (KM
option SPLIT-BY). In certain situations this may not be the best
boundaries or not the most optimized way to retrieve the boundaries. In
such cases this KM option can be set to a SQL query returning one
row with two columns, lowest value and highest value to be used for
split-column. This range will be divided into SQOOP_PARALLELISM
chunks for parallel extraction. Example for hard-coded ranges for an
Oracle source:

SELECT 1000, 2000 FROM DUAL
For preserving context independence, regular table names should be
inserted through odiRef.getObjectName calls. For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM
<%=odiRef.getObjectName("EMP")%>

TEMP_DIR Specifies the directory used for storing temporary files, such as sqoop
script, stdout and stderr redirects. Leave this option blank to use
system's default temp directory:

<?=System.getProperty("java.io.tmp")?>
MAPRED_OUTPUT_BASE_DIR Specifies an hdfs directory, where SQOOP creates subdirectories for

temporary files. A subdirectory called like the work table will be created
here to hold the temporary data.

DELETE_TEMPORARY_OBJECTS Deletes temporary objects such as tables, files, and scripts after data
integration. Set this option to NO, to retain the temporary objects, which
might be useful for debugging.

USE_HIVE_STAGING_TABLE Loads data into the Hive work table before loading into the Hive target
table. Set this option to false to load data directly into the target table.

Setting this option to false is only possible, if all these conditions are
true:

• All target columns are mapped
• Existing Hive table uses standard hive row separators (\n) and

column delimiter (\01)
Setting this option to false provides better performance by avoiding
an extra data transfer step.

This option is applicable only if the target technology is Hive.

Appendix A
IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

A-33

Table A-24 (Cont.) IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

USE_GENERIC_JDBC_CONNECT
OR

Specifies whether to use the generic JDBC connector if a connector for
the target technology is not available.

For certain technologies SQOOP provides specific connectors. These
connectors take care of SQL-dialects and optimize performance. When
there is a connector for the respective target technology, this connector
should be used. If not, the generic JDBC connector can be used.

EXTRA_HADOOP_CONF_PROPER
TIES

Optional generic Hadoop properties.

EXTRA_SQOOP_CONF_PROPERT
IES

Optional SQOOP properties.

EXTRA_SQOOP_CONNECTOR_CO
NF_PROPERTIES

Optional SQOOP connector properties.

A.27 IKM Hive Control Append (Deprecated)
Note: This KM is deprecated and only used for backward compatibility.

This knowledge module validates and controls the data, and integrates it into a Hive target
table in truncate/insert (append) mode. Invalid data is isolated in an error table and can be
recycled. IKM Hive Control Append supports inline view mappings that use either this
knowledge module or IKM Hive Transform.

The following table describes the options for IKM Hive Control Append.

Table A-25 IKM Hive Control Append Options

Option Description

FLOW_CONTROL Activates flow control.

RECYCLE_ERRORS Recycles data rejected from a previous control.

STATIC_CONTROL Controls the target table after having inserted or updated target data.

CREATE_TARG_TABLE Creates the target table.

TRUNCATE Replaces the target table content with the new data. Setting this option
to true provides better performance.

DELETE_TEMPORARY_OBJECTS Removes the temporary objects, such as tables, files, and scripts after
data integration. Set this option to NO, to retain the temporary objects,
which might be useful for debugging.

HIVE_COMPATIBILE Specifies the Hive version compatibility. The values permitted for this
option are 0.7 and 0.8.

• 0.7: Simulates the append behavior. Must be used for Hive 0.7
(CDH3).

• 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

Appendix A
IKM Hive Control Append (Deprecated)

A-34

A.28 CKM Hive
This knowledge module checks data integrity for Hive tables. It verifies the validity of the
constraints of a Hive data store and diverts the invalid records to an error table. You can use
CKM Hive for static control and flow control. You must also define these constraints on the
stored data.

The following table describes the options for this check knowledge module.

Table A-26 CKM Hive Options

Option Description

DROP_ERROR_TABLE Drops error table before execution. When this option is set to YES, the
error table will be dropped each time a control is performed on the
target table. This means that any rejected records, identified and stored
during previous control operations, will be lost. Otherwise previous
rejects will be preserved. In addition to the error table, any table called
<error table>_tmp will also be dropped.

HIVE_COMPATIBILE Specifies the Hive version compatibility. The values permitted for this
option are 0.7 and 0.8.

• 0.7: Simulates the append behavior. Must be used for Hive 0.7
(CDH3).

• 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

A.29 IKM Hive Transform (Deprecated)
Note: This KM is deprecated and only used for backward compatibility.

This knowledge module performs transformations. It uses a shell script to transform the data,
and then integrates it into a Hive target table using replace mode. The knowledge module
supports inline view mappings and can be used as an inline-view for IKM Hive Control Append.

The transformation script must read the input columns in the order defined by the source data
store. Only mapped source columns are streamed into the transformations. The transformation
script must provide the output columns in the order defined by the target data store.

The following table describes the options for this integration knowledge module.

Table A-27 IKM Hive Transform Options

Option Description

CREATE_TARG_TABLE Creates the target table.

DELETE_TEMPORARY_OBJECTS Removes the temporary objects, such as tables, files, and scripts post
data integration. Set this option to NO, to retain the temporary objects,
which might be useful for debugging.

Appendix A
CKM Hive

A-35

Table A-27 (Cont.) IKM Hive Transform Options

Option Description

TRANSFORM_SCRIPT_NAME Defines the file name of the transformation script. This transformation
script is used to transform the input data into the output structure. Both
local and HDFS paths are supported, for example:

Local script location: file:///tmp/odi/script1.pl
HDFS script location: hdfs://namenode:nnPort/tmp/odi/
script1.pl
Ensure that the following requirements are met:

• The path/file must be accessible by both the ODI agent and the
Hive server. Read access for the Hive server is required as it is the
Hive server, which executes the resulting MR job invoking the
script.

• If TRANSFORM_SCRIPT is set (ODI creates the script file during
mapping execution), the path/file must be writable for the ODI
agent, as it is the ODI agent, which writes the script file using the
HDFS Java API.

When the KM option TRANSFORM_SCRIPT is set, the following
paragraphs provide some configuration help:

• For HDFS script locations:
The script file created is owned by the ODI agent user and
receives the group of the owning directory. See Hadoop Hdfs
Permissions Guide for more details. The standard configuration to
cover the above two requirements for HDFS scripts is to ensure
that the group of the HDFS script directory includes the ODI agent
user (let's assume oracle) and, also the Hive server user (let's
assume hive). Assuming that the group hadoop includes oracle
and hive, the sample command below adjusts the ownership of the
HDFS script directory:

logon as hdfs user hdfs dfs -chown
oracle:hadoop /tmp/odi/myscriptdir

• For local script locations:
The script file created is owned by the ODI agent user and
receives the ODI agent user's default group, unless SGID has
been set on the script directory. If the sticky group bit has been
set, the file will be owned by the group of the script directory
instead. The standard configuration to cover the above two
requirements for local scripts is similar to the HDFS configuration
by using the SGID:

chown oracle:hadoop /tmp/odi/myscriptdir chmod
g+s /tmp/odi/myscriptdir

TRANSFORM_SCRIPT Defines the transformation script content. This transformation script is
then used to transform the input data into the output structure. If left
blank, the file given in TRANSFORM_SCRIPT_NAME must already exist. If
not blank, the script file is created.

Script example (1-to-1 transformation): #! /usr/bin/csh -f cat
All mapped source columns are spooled as tab separated data into this
script through stdin. This unix script then transforms the data and
writes out the data as tab separated data on stdout. The script must
provide as many output columns as there are target columns.

Appendix A
IKM Hive Transform (Deprecated)

A-36

Table A-27 (Cont.) IKM Hive Transform Options

Option Description

TRANSFORM_SCRIPT_MODE Unix/HDFS file permissions for script file in octal notation with leading
zero. For example, full permissions for owner and group: 0770.

Warning: Using wider permissions like 0777 poses a security risk.

See also KM option description for TRANSFORM_SCRIPT_NAME for
details on directory permissions.

PRE_TRANSFORM_DISTRIBUTE Provides an optional, comma-separated list of source column names,
which enables the knowledge module to distribute the data before the
transformation script is applied.

PRE_TRANSFORM_SORT Provides an optional, comma-separated list of source column names,
which enables the knowledge module to sort the data before the
transformation script is applied.

POST_TRANSFORM_DISTRIBUT
E

Provides an optional, comma-separated list of target column names,
which enables the knowledge module to distribute the data after the
transformation script is applied.

POST_TRANSFORM_SORT Provides an optional, comma-separated list of target column names,
which enables the knowledge module to sort the data after the
transformation script is applied.

A.30 IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

IKM File-Hive to Oracle (OLH-OSCH) integrates data from an HDFS file or Hive source into an
Oracle database target using Oracle Loader for Hadoop. Using the mapping configuration and
the selected options, the knowledge module generates an appropriate Oracle Database target
instance. Hive and Hadoop versions must follow the Oracle Loader for Hadoop requirements.

See Also:

• Oracle Loader for Hadoop Setup in Oracle Big Data Connectors User's Guide for
the required versions of Hadoop and Hive.

• Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs for
required environment variable settings.

The following table describes the options for this integration knowledge module.

Appendix A
IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

A-37

Table A-28 IKM File - Hive to Oracle (OLH-OSCH)

Option Description

OLH_OUTPUT_MODE Specifies how to load the Hadoop data into Oracle. Permitted values
are JDBC, OCI, DP_COPY, DP_OSCH, and OSCH.

• JDBC output mode: The data is inserted using several direct
insert JDBC connections. In very rare cases JDBC mode may
result in duplicate records in target table due to Hadoop trying to
restart tasks.

• OCI output mode: The data is inserted using several direct insert
OCI connections in direct path mode. If USE_ORACLE_STAGINGis
set to false, target table must be partitioned. If
USE_ORACLE_STAGING is set to true, FLOW_TABLE_OPTIONS
must explicitly specify partitioning, for example, "PARTITION BY
HASH(COL1) PARTITIONS 4". In very rare cases OCI mode may
result in duplicate records in target table due to Hadoop trying to
restart tasks.

• DP_COPY output mode: OLH creates several DataPump export
files. These files are transferred by a "Hadoop fs -
copyToLocal" command to the local path specified by
EXT_TAB_DIR_LOCATION. The path must be accessible by the
Oracle Database engine. Once the copy job is complete, an
external table is defined in the target database, which accesses
the files from EXT_TAB_DIR_LOCATION.

• DP_OSCH output mode: OLH creates several DataPump export
files. After the export phase an external table is created on the
target database, which accesses these output files directly through
OSCH. The path must be accessible by the Oracle Database
engine. Once the copy job is complete, an external table is defined
in the target database, which accesses the files from
EXT_TAB_DIR_LOCATION.

• OSCH output mode: In OSCH mode loading, OLH is bypassed.
ODI creates an external table on the target database, which
accesses the input files through OSCH. Please note that only
delimited and fixed length files can be read. No support for loading
from Hive or custom Input Formats such as RegexInputFormat, as
there is no OLH pre-processing.

REJECT_LIMIT Specifies the maximum number of errors for Oracle Loader for Hadoop
and external table. Examples: UNLIMITED to except all errors. Integer
value (10 to allow 10 rejections) This value is used in Oracle Loader for
Hadoop job definitions and, also in external table definitions.

CREATE_TARG_TABLE Creates the target table.

TRUNCATE Replaces the target table content with the new data.

DELETE_ALL Deletes all the data in target table.

USE_HIVE_STAGING_TABLE Materializes Hive source data before extraction by Oracle Loader for
Hadoop. If this option is set to false, Oracle Loader for Hadoop
directly accesses the Hive source data. Setting this option to false is
only possible, if all these conditions are true:

• Only a single source table
• No transformations, filters, joins
• No datasets
Setting this option to false provides better performance by avoiding
an extra data transfer step.

This option is applicable only if the source technology is Hive.

Appendix A
IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

A-38

Table A-28 (Cont.) IKM File - Hive to Oracle (OLH-OSCH)

Option Description

USE_ORACLE_STAGING_TABLE Uses an intermediate Oracle database staging table.

The extracted data is made available to Oracle by an external table. If
USE_ORACLE_STAGING_TABLE is set to true (default), the external
table is created as a temporary (I$) table. This I$ table data is then
inserted into the target table. Setting this option to false is only
possible, if all these conditions are true:

• OLH_OUTPUT_MODE is set to JDBC or OCI
• All source columns are mapped
• All target columns are mapped
• No target-side mapping expressions
Setting this option to false provides better performance by avoiding
an extra data transfer step, but may lead to partial data being loaded
into the target table, as Oracle Loader for Hadoop loads data in
multiple transactions.

EXT_TAB_DIR_LOCATION Specifies the file system path of the external table. Please note the
following:

• Only applicable, if OLH_OUTPUT_MODE = DP_*|OSCH
• For OLH_OUTPUT_MODE = DP_*: this path must be accessible both

from the ODI agent and from the target database engine.
• For OLH_OUTPUT_MODE = DP_*: the name of the external directory

object is the I$ table name.
• For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use hadoop-

fs command to copy dp files into this directory.

• For OLH_OUTPUT_MODE = DP_*|OSCH: this path will contain any
external table log/bad/dsc files.

• ODI agent will remove any files from this directory during clean up
before launching OLH/OSCH.

TEMP_DIR Specifies the directory used for storing temporary files, such as sqoop
script, stdout and stderr redirects. Leave this option blank to use
system's default temp directory:

<?=System.getProperty("java.io.tmp")?>
MAPRED_OUTPUT_BASE_DIR Specifies an HDFS directory, where the Oracle Loader for Hadoop job

will create subdirectories for temporary files/datapump output files.

FLOW_TABLE_OPTIONS Specifies the attributes for the integration table at create time and used
for increasing performance. This option is set by default to NOLOGGING.
This option may be left empty.

DELETE_TEMPORARY_OBJECTS Removes temporary objects, such as tables, files, and scripts post data
integration. Set this option to NO, to retain the temporary objects, which
might be useful for debugging.

OVERRIDE_INPUTFORMAT By default the InputFormat class is derived from the source Data Store/
Technology (DelimitedTextInputFormat or HiveToAvroInputFormat).
This option allows the user to specify the class name of a custom
InputFormat. Cannot be used with OLH_OUTPUT_MODE=OSCH.

Example, for reading custom file formats like web log files the OLH
RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat
See KM option EXTRA_OLH_CONF_PROPERTIES for details on how
to specify the regular expression.

Appendix A
IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

A-39

Table A-28 (Cont.) IKM File - Hive to Oracle (OLH-OSCH)

Option Description

EXTRA_OLH_CONF_PROPERTIE
S

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may require
additional configuration parameters. These are provided in the OLH
configuration file. This KM option allows adding extra properties to the
OLH configuration file. Cannot be used with OLH_OUTPUT_MODE=OSCH.

Example, (loading apache weblog file format): When OLH
RegexInputFormat is used for reading custom file formats, this KM
option specifies the regular expression and other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([^]*) ([^]*) ([^]*) (-|\[[^\]]*\]) ([^ \"]*|
\"[^\"]*\") (-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\")
(\".*?\")</value> <description>RegEx for Apache WebLog
format</description> </property>

A.31 IKM File-Hive to SQL (SQOOP) [Deprecated]
Note: This KM is deprecated and only used for backward compatibility.

IKM File-Hive to SQL (SQOOP) supports:

• Filters, Joins, Datasets, Transformations and Aggregations in Hive

• Inline views generated by IKM Hive Control Append

• Inline views generated by IKM Hive Transform

• Hive-HBase source tables using LKM HBase to Hive (HBase SerDe)

• File source data (delimited file format only)

The following table describes the options for this integration knowledge module.

Table A-29 IKM File-Hive to SQL (SQOOP)

Option Description

CREATE_TARG_TABLE Creates the target table.

TRUNCATE Replaces the target data store content with new data. If this option is
set to false, the new data is appended to the target data store.

DELETE_ALL Deletes all the rows in the target data store.

SQOOP_PARALLELISM Specifies the degree of parallelism. More precisely the number of
mappers used during SQOOP export and therefore the number of
parallel JDBC connections.

Appendix A
IKM File-Hive to SQL (SQOOP) [Deprecated]

A-40

Table A-29 (Cont.) IKM File-Hive to SQL (SQOOP)

Option Description

USE_TARGET_STAGING_TABLE By default the source data is staged into a target-side staging table,
before it is moved into the target table. If this option is set to false,
SQOOP loads the source data directly into the target table, which
provides better performance and less need for tablespace in target
RDBMS by avoiding an extra data transfer step.

For File sources setting this option to false is only possible, if all these
conditions are met:

• All source columns must be mapped
• Source and target columns have same order
• First file column must map to first target column
• no mapping gaps
• only 1-to-1 mappings (no expressions)
Please note the following:

• SQOOP uses multiple writers, each having their own JDBC
connection to the target. Every writer uses multiple transactions for
inserting the data. This means that in case
USE_TARGET_STAGING_TABLE is set to false, changes to the
target table are no longer atomic and writer failures can lead to
partially updated target tables.

• The Teradata Connector for SQOOP always creates an extra
staging table during load. This connector staging table is
independent of the KM option.

USE_GENERIC_JDBC_CONNECT
OR

Specifies whether to use the generic JDBC connector if a connector for
the target technology is not available.

For certain technologies SQOOP provides specific connectors. These
connectors take care of SQL-dialects and optimize performance. When
there is a connector for the respective target technology, this connector
should be used. If not, the generic JDBC connector can be used.

FLOW_TABLE_OPTIONS When creating the target-side work table, RDBMS-specific table
options can improve performance. By default this option is empty and
the knowledge module will use the following table options:

• For Oracle: NOLOGGING
• For DB2: NOT LOGGED INITIALLY
• For Teradata: no fallback, no before journal, no after

journal
Any explicit value overrides these defaults.

TEMP_DIR Specifies the directory used for storing temporary files, such as sqoop
script, stdout and stderr redirects. Leave this option blank to use
system's default temp directory:

<?=System.getProperty("java.io.tmp")?>
MAPRED_OUTPUT_BASE_DIR Specifies an HDFS directory, where SQOOP creates subdirectories for

temporary files. A subdirectory called like the work table will be created
here to hold the temporary data.

DELETE_TEMPORARY_OBJECTS Deletes temporary objects such as tables, files, and scripts after data
integration. Set this option to NO, to retain the temporary objects, which
might be useful for debugging.

Appendix A
IKM File-Hive to SQL (SQOOP) [Deprecated]

A-41

Table A-29 (Cont.) IKM File-Hive to SQL (SQOOP)

Option Description

TERADATA_PRIMARY_INDEX Primary index for the target table. Teradata uses the primary index to
spread data across AMPs. It is important that the chosen primary index
has a high cardinality (many distinct values) to ensure evenly spread
data to allow maximum processing performance. Please follow
Teradata's recommendation on choosing a primary index.

This option is applicable only to Teradata targets.

TERADATA_FLOW_TABLE_TYPE Type of the Teradata flow table, either SET or MULTISET.

This option is applicable only to Teradata targets.

TERADATA_OUTPUT_METHOD Specifies the way the Teradata Connector will load the data. Valid
values are:

• batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

• multiple.fastload: multiple FastLoad connections

• internal.fastload: single coordinated FastLoad connections
(most performant)

This option is applicable only to Teradata targets.

EXTRA_HADOOP_CONF_PROPER
TIES

Optional generic Hadoop properties.

EXTRA_SQOOP_CONF_PROPERT
IES

Optional SQOOP properties.

EXTRA_SQOOP_CONNECTOR_CO
NF_PROPERTIES

Optional SQOOP connector properties.

Appendix A
IKM File-Hive to SQL (SQOOP) [Deprecated]

A-42

B
Pig Knowledge Modules

This appendix provides information about the Pig knowledge modules.

This appendix includes the following sections:

• LKM File to Pig

• LKM Pig to File

• LKM HBase to Pig

• LKM Pig to HBase

• LKM Hive to Pig

• LKM Pig to Hive

• LKM SQL to Pig SQOOP

• XKM Pig Aggregate

• XKM Pig Distinct

• XKM Pig Expression

• XKM Pig Filter

• XKM Pig Flatten

• XKM Pig Join

• XKM Pig Lookup

• XKM Pig Pivot

• XKM Pig Set

• XKM Pig Sort

• XKM Pig Split

• XKM Pig Subquery Filter

• XKM Pig Table Function

• XKM Pig Unpivot

B.1 LKM File to Pig
This KM loads data from a file into Pig.

The supported data formats are:

• Delimited

• JSON

• Pig Binary

• Text

• Avro

B-1

• Trevni

• Custom

Data can be loaded and written to local file system or HDFS.

The following table describes the options for LKM File to Pig.

Table B-1 LKM File to Pig

Option Description

Storage Function The storage function to be used to load data.

Select the storage function to be used to load data.

Schema for Complex Fields The pig schema for simple/complex fields separated by comma (,).

Redefine the datatypes of the fields in pig schema format. This option
primarily allows to overwrite the default datatypes conversion for data
store attributes, for example: PO_NO:int,PO_TOTAL:long
MOVIE_RATING:{(RATING:double,INFO:chararray)}, where the names
of the fields defined here should match with the attributes names of the
data store.

Function Class Fully qualified name of the class to be used as storage function to load
data.

Specify the fully qualified name of the class to be used as storage
function to load data.

Function Parameters The parameters required for the custom function.

Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be specified
as -rootElement MovieStore -tableName movie -schema

where,

MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id, name,
etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Options Additional options required for the storage function

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace com.imdb -
encoding utf8

Jars The jar containing the storage function class and dependent libraries
separated by colon (:).

Specify the jar containing the storage function class and dependent
libraries separated by colon (:).

Storage Convertor The converter that provides functions to cast from bytearray to each of
Pig's internal types.

Specify the converter that provides functions to cast from bytearray to
each of Pig's internal types.

The supported converter is Utf8StorageConverter.

Appendix B
LKM File to Pig

B-2

B.2 LKM Pig to File
This KM unloads data to file from pig.

The supported data formats are:

• Delimited

• JSON

• Pig Binary

• Text

• Avro

• Trevni

• Custom

Data can be stored in local file system or in HDFS.

The following table describes the options for LKM Pig to File.

Table B-2 LKM Pig to File

Option Description

Storage Function The storage function to be used to load data.

Select the storage function to be used to load data.

Store Schema If selected, stores the schema of the relation using a hidden JSON file.

Record Name The Avro record name to be assigned to the bag of tuples being stored.

Specify a name to be assigned to the bag of tuples being stored.

Namespace The namespace to be assigned to Avro/Trevni records, while storing
data.

Specify a namespace for the bag of tuples being stored.

Delete Target File Delete target file before Pig writes to the file.

If selected, the target file is deleted before storing data. This option
effectively enables the target file to be overwritten.

Function Class Fully qualified name of the class to be used as storage function to load
data.

Specify the fully qualified name of the class to be used as storage
function to load data.

Appendix B
LKM Pig to File

B-3

Table B-2 (Cont.) LKM Pig to File

Option Description

Function Parameters The parameters required for the custom function.

Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be specified
as -rootElement MovieStore -tableName movie -schema

where,

MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id, name,
etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Options Additional options required for the storage function

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace com.imdb -
encoding utf8

Jars The jar containing the storage function class and dependent libraries
separated by colon (:).

Specify the jar containing the storage function class and dependent
libraries separated by colon (:).

Storage Convertor The converter that provides functions to cast from bytearray to each of
Pig's internal types.

Specify the converter that provides functions to cast from bytearray to
each of Pig's internal types.

The supported converter is Utf8StorageConverter.

B.3 LKM HBase to Pig
This KM loads data from a HBase table into Pig using HBaseStorage function.

The following table describes the options for LKM HBase to Pig.

Table B-3 LKM HBase to Pig

Option Description

Storage Function The storage function to be used to load data.

HBaseStorage is used to load from a HBase table into pig.

Load Row Key Load the row key as the first value in every tuple returned from HBase.

If selected, Loads the row key as the first value in every tuple returned
from HBase. The row key is mapped to the 'key' column of the HBase
data store in ODI.

Appendix B
LKM HBase to Pig

B-4

Table B-3 (Cont.) LKM HBase to Pig

Option Description

Greater Than Min Key Loads rows with key greater than the key specified for this option.

Specify the key value to load rows with key greater than the specified
key value.

Less Than Min Key Loads rows with row key less than the value specified for this option.

Specify the key value to load rows with key less than the specified key
value.

Greater Than Or Equal Min Key Loads rows with key greater than or equal to the key specified for this
option.

Specify the key value to load rows with key greater than or equal to the
specified key value.

Less Than Or Equal Min Key Loads rows with row key less than or equal to the value specified for
this option.

Specify the key value to load rows with key less than or equal to the
specified key value.

Limit Rows Maximum number of row to retrieve per region

Specify the maximum number of rows to retrieve per region.

Cached Rows Number of rows to cache.

Specify the number of rows to cache.

Storage Convertor The name of Caster to use to convert values.

Specify the class name of Caster to use to convert values. The
supported values are HBaseBinaryConverter and
Utf8StorageConverter. If unspecified, the default value is
Utf8StorageConverter.

Column Delimiter The delimiter to be used to separate columns in the columns list of
HBaseStorage function.

Specify the delimiter to be used to separate columns in the columns list
of HBaseStorage function. If unspecified, the default is whitespace.

Timestamp Return cell values that have a creation timestamp equal to this value.

Specify a timestamp to return cell values that have a creation
timestamp equal to the specified value.

Min Timestamp Return cell values that have a creation timestamp less than to this
value.

Specify a timestamp to return cell values that have a creation
timestamp less than to the specified value.

Max Timestamp Return cell values that have a creation timestamp less than this value.

Specify a timestamp to return cell values that have a creation
timestamp greater than or equal to the specified value.

B.4 LKM Pig to HBase
This KM stores data into a HBase table using HBaseStorage function.

The following table describes the options for LKM Pig to HBase.

Appendix B
LKM Pig to HBase

B-5

Table B-4 LKM Pig to HBase

Option Description

Storage Function The storage function to be used to store data. This is a read-only
option, which cannot be changed.

HBaseStore function is used to load data into HBase table.

Storage Convertor The name of Caster to use to convert values.

Specify the class name of Caster to use to convert values. The
supported values are HBaseBinaryConverter and
Utf8StorageConverter. If unspecified, the default value is
Utf8StorageConverter.

Column Delimiter The delimiter to be used to separate columns in the columns list of
HBaseStorage function.

Specify the delimiter to be used to separate columns in the columns list
of HBaseStorage function. If unspecified, the default is whitespace.

Disable Write Ahead Log If it is true, write ahead log is set to false for faster loading into HBase.

If selected, write ahead log is set to false for faster loading into HBase.
This must be used in extreme caution, since this could result in data
loss. Default value is false.

B.5 LKM Hive to Pig
This KM loads data from a Hive table into Pig using HCatalog.

The following table describes the options for LKM Hive to Pig.

Table B-5 LKM Hive to Pig

Option Description

Storage Function The storage function to be used to load data. This is a read-only option,
which cannot be changed.

HCatLoader is used to load data from a hive table.

B.6 LKM Pig to Hive
This KM stores data into a hive table using HCatalog.

The following table describes the options for LKM Pig to Hive.

Table B-6 LKM Pig to Hive

Option Description

Storage Function The storage function to be used to load data. This is a read-only option,
which cannot be changed.

HCatStorer is used to store data into a hive table.

Appendix B
LKM Hive to Pig

B-6

Table B-6 (Cont.) LKM Pig to Hive

Option Description

Partition The new partition to be created.

Represents key/value pairs for partition. This is a mandatory argument
when you are writing to a partitioned table and the partition column is
not in the output column. The values for partition keys should NOT be
quoted.

B.7 LKM SQL to Pig SQOOP
This KM integrates data from a JDBC data source into Pig.

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOP to extract the source data and import into Staging file in csv format.

3. Runs LKM File To Pig KM to load the Staging file into PIG.

4. Drop the Staging file.

The following table describes the options for LKM SQL to Pig SQOOP.

Table B-7 LKM SQL to Pig SQOOP

Option Description

STAGING_FILE_DELIMITER Sqoop uses this delimiter to create the temporary file. If not specified, \
\t will be used.

Storage Function The storage function to be used to load data.

Select the storage function to be used to load data.

Schema for Complex Fields The pig schema for simple/complex fields separated by comma (,).

Redefine the datatypes of the fields in pig schema format. This option
primarily allows to overwrite the default datatypes conversion for data
store attributes, for example: PO_NO:int,PO_TOTAL:long
MOVIE_RATING:{(RATING:double,INFO:chararray)}, where the names
of the fields defined here should match with the attributes names of the
data store.

Function Class Fully qualified name of the class to be used as storage function to load
data.

Specify the fully qualified name of the class to be used as storage
function to load data.

Appendix B
LKM SQL to Pig SQOOP

B-7

Table B-7 (Cont.) LKM SQL to Pig SQOOP

Option Description

Function Parameters The parameters required for the custom function.

Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be specified
as -rootElement MovieStore -tableName movie -schema

where,

MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id, name,
etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Options Additional options required for the storage function.

Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace com.imdb -
encoding utf8

Jars The jar containing the storage function class and dependent libraries
separated by colon (:).

Specify the jar containing the storage function class and dependent
libraries separated by colon (:).

Storage Convertor The converter that provides functions to cast from bytearray to each of
Pig's internal types.

Specify the converter that provides functions to cast from bytearray to
each of Pig's internal types.

The supported converter is Utf8StorageConverter.

B.8 XKM Pig Aggregate
Summarize rows, for example using SUM and GROUP BY.

The following table describes the options for XKM Pig Aggregate.

Table B-8 XKM Pig Aggregate

Option Description

USING_ALGORITHM Aggregation type; collected or merge.

PARTITION_BY Specify the Hadoop partitioner.

PARTITIONER_JAR Increase the parallelism of this job.

PARALLEL_NUMBER Increase the parallelism of this job.

Appendix B
XKM Pig Aggregate

B-8

Note:

When mapping has Pig staging, i.e when processing is done with Pig, and there is
aggregator component in the Pig staging area, the clause must be set differently than
in regular mappings for SQL based technologies.

B.9 XKM Pig Distinct
Eliminates duplicates in data.

B.10 XKM Pig Expression
Define expressions to be reused across a single mapping.

B.11 XKM Pig Filter
Produce a subset of data by a filter condition.

B.12 XKM Pig Flatten
Un-nest the complex data according to the given options.

The following table describes the options for XKM Pig Flatten.

Table B-9 XKM Pig Flatten

Option Description

Default Expression Default expression for null nested table objects, for example,
rating_table(obj_rating('-1', 'Unknown')).

This is used to return a row with default values for each null nested
table object.

B.13 XKM Pig Join
Joins more than one input sources based on the join condition.

The following table describes the options for XKM Pig Join.

Table B-10 XKM Pig Join

Option Description

USING_ALGORITHM Join type; replicated or skewed or merge.

PARTITION_BY Specify the Hadoop partitioner.

PARTITIONER_JAR Increase the parallelism of this job.

PARALLEL_NUMBER Increase the parallelism of this job.

Appendix B
XKM Pig Distinct

B-9

B.14 XKM Pig Lookup
Lookup data for a driving data source.

The following table describes the options for XKM Pig Lookup.

Table B-11 XKM Pig Lookup

Option Description

Jars The jar containing the Used Defined Function classes and dependant
libraries separated by colon (:).

B.15 XKM Pig Pivot
Takes data in separate rows, aggregates it, and converts it into columns.

B.16 XKM Pig Set
Perform UNION, MINUS or other set operations.

B.17 XKM Pig Sort
Sort data using an expression.

B.18 XKM Pig Split
Split data into multiple paths with multiple conditions.

B.19 XKM Pig Subquery Filter
Filter rows based on the results of a subquery.

B.20 XKM Pig Table Function
Pig table function access.

The following table descriptions the options for XKM Pig Table Function.

Table B-12 XKM Pig Table Function

Option Description

PIG_SCRIPT_CONTENT User specified pig script content.

B.21 XKM Pig Unpivot
Transform a single row of attributes into multiple rows in an efficient manner.

Appendix B
XKM Pig Lookup

B-10

C
Spark Knowledge Modules

This appendix provides information about the Spark knowledge modules.

This appendix includes the following sections:

• LKM File to Spark

• LKM Spark to File

• LKM Hive to Spark

• LKM Spark to Hive

• LKM HDFS to Spark

• LKM Spark to HDFS

• LKM Kafka to Spark

• LKM Spark to Kafka

• LKM SQL to Spark

• LKM Spark to SQL

• LKM Spark to Cassandra

• RKM Cassandra

• XKM Spark Aggregate

• XKM Spark Distinct

• XKM Spark Expression

• XKM Spark Filter

• XKM Spark Flatten

• XKM Spark Input Signature and Output Signature

• XKM Spark Join

• XKM Spark Lookup

• XKM Spark Pivot

• XKM Spark Set

• XKM Spark Sort

• XKM Spark Split

• XKM Spark Table Function

• IKM Spark Table Function

• XKM Spark Unpivot

C-1

C.1 LKM File to Spark
This KM will load data from a file into a Spark Python variable and can be defined on the AP
between the execution units, source technology File, target technology Spark Python.

Note:

This KM also supports loading HDFS files, although it's preferable to use LKM HDFS
to Spark for that purpose.

The following tables describe the options for LKM File to Spark.

Table C-1 LKM File to Spark

Option Description

Storage Function The storage function to be used to load/store data.

Choose one of the following storage functions to load data:

• textFile is used to load data from HDFS, a local file system or
any Hadoop-supported file system URI.

• jsonFile is used to load data from a JSON file where each line of
the files is a JSON object.

• newAPIHadoopFile is used to load data from a Hadoop file with
an arbitrary new API InputFormat.

• newAPIHadoopRDD is used to load data from Hadoop-readable
dataset with an arbitrary new API InputFormat.

• hadoopFile is used to load data from a Hadoop file with an
arbitrary InputFormat.

• hadoopRDD is used to load data from a Hadoop-readable dataset.

• sequenceFile is used to load data from an RDD of key-value
pairs to Spark.

streamingContext Name of Streaming Context.

InputFormatClass Class for reading the format of input data.

For example,

• org.apache.hadoop.mapreduce.lib.input.TextInputFormat (default)
• org.apache.hadoop.mapred.TextInputFormat (hadoopFile and

hadoopRDD)

KeyClass Fully qualified classname for keys.

For example,

• org.apache.hadoop.io.LongWritable (default)
• org.apache.hadoop.io.Text

ValueClass Fully qualified classname for values.

For example,

• org.apache.hadoop.io.Text (default)
• org.apache.hadoop.io.LongWritable

KeyConverter Fully qualified classname of key converter class.

ValueConverter Fully qualified classname of value converter class.

Appendix C
LKM File to Spark

C-2

Table C-1 (Cont.) LKM File to Spark

Option Description

Job Configuration Hadoop configuration.

For example, {'hbase.zookeeper.quorum': 'HOST',
'hbase.mapreduce.inputtable': 'TAB'}

inferSchema Infer DataFrame schema from data.

If set to True (default), the column names and types will be inferred
from source data and DataFrame will be created with default options.

If set to False, the DataFrame schema will be specified based on the
source data store definition.

dateFormat Format for Date or Timestamp input fields.

Delete Spark Mapping Files Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this
component.

Level of Parallelism Number of partitions.

Sort Partitions Sort partitions by a key function when repartitioning.

Partition Sort Order Sort partitions order.

Partition Keys Define keys for partitions.

Partition Function Customized partitioning function.

This LKM uses StreamingContext.textFileStream() method to transfer file context as data
stream. The directory is monitored while the Spark application is running. Any files copied from
other locations into this directory is detected.

Table C-2 LKM File to Spark for Streaming

Option Description

Storage
Function

If STREAMING_MODE is set to true, the load function is changed to textFileStream
automatically.

Default is textFile.

Source Data
store

Source data store is a directory and field separator should be defined.

C.2 LKM Spark to File
This KM will store data into a file from a Spark Python variable and can be defined on the AP
between the execution units, source technology Spark Python, target technology File.

Note:

This KM also supports writing to an HDFS File, although the LKM Spark to HDFS is
preferable.

Appendix C
LKM Spark to File

C-3

The following tables describes the options for LKM Spark to File.

Table C-3 LKM Spark to File

Option Description

Storage Function Storage function to be used to load/store data.

Choose one of the following storage functions to store data:

• saveAsTextFile is used to store the data into HDFS, a local file
system or any Hadoop-supported file system URI.

• saveAsJsonFile is used to store the data in JSON format into
HDFS, a local file system or any Hadoop-supported file system
URI.

• saveAsNewAPIHadoopFile is used to store the data to a Hadoop
file with an arbitrary new API InputFormat.

• saveAsHadoopFile is used to store data to a Hadoop file with an
arbitrary InputFormat.

• saveAsSequenceFile is used to store data into key-value pairs.

Note:

When spark.useDataFrames is set to
True, the data will be saved as RDD of
JSON strings for
saveAsNewAPIHadoopFile,
saveAsHadoopFile, and
saveAsSequenceFile.

OutputFormatClass Fully qualified classname for writing the data.

For example,

• org.apache.hadoop.mapreduce.lib.input.TextOutputFormat
(default)

• org.apache.hadoop.mapred.TextOutputFormat
(saveAsHadoopFile)

KeyClass Fully qualified class for keys.

For example,

• org.apache.hadoop.io.NullWritable (default)
• org.apache.hadoop.io.Text

ValueClass Fully qualified class for values.

For example,

• org.apache.hadoop.io.NullWritable
• org.apache.hadoop.io.Text (default)

KeyConverter Fully qualified classname of key converter class.

ValueConverter Fully qualified classname of value converter class.

Job Configuration Allows adding or overriding Hadoop configuration properties.

For example, {'hbase.zookeeper.quorum': 'HOST',
'hbase.mapreduce.inputtable': 'TAB'}

SQL_EXPRESSIONS Use SQL Expressions.

Delete Spark Mapping Files Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after computation.

Appendix C
LKM Spark to File

C-4

Table C-3 (Cont.) LKM Spark to File

Option Description

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this
component.

Level of Parallelism Number of partitions.

Sort Partitions Sort partitions by a key function when repartitioning.

Partition Sort Order Sort partitions order.

Partition Keys Define keys for partitions.

Partition Function Customized partitioning function.

Table C-4 LKM Spark to File for streaming

Option Description

Storage
Function

If STREAMING_MODE is set to true, the load function is changed to textFileStream
automatically.

Default is textFile.

C.3 LKM Hive to Spark
This KM will load data from a Hive table into a Spark Python variable and can be defined on
the AP between the execution units, source technology Hive, target technology Spark Python.

The following table describes the options for LKM Hive to Spark:

Table C-5 LKM Hive to Spark

Option Description

Delete Spark Mapping Files Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after
computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after
transformation of this component.

Level of Parallelism Number of partitions.

Sort Partitions Sort partitions by a key function when
repartitioning.

Partition Sort Order Sort partitions order.

Partition Keys Define keys for partitions.

Partition Function Customized partitioning function.

C.4 LKM Spark to Hive
This KM will store data into a Hive table from a Spark Python variable and can be defined on
the AP between the execution units, source technology Spark, target technology Hive.

Appendix C
LKM Hive to Spark

C-5

The following table describes the options for LKM Spark to Hive.

Table C-6 LKM Spark to Hive

Option Description

OVERWRITE_TARGET_TABL
E

Overwrite the target table.

INFER_SCHEMA Infer target DataFrame schema from RDD data.

Note:

This option is set to True by default.
When set to True, the column names and
types will be inferred from RDD data and
DataFrame will be created with default
options. If it is set to False, DataFrame
schema will be specified based on target
datastore definition. Set this option to
False if, you are getting errors such as :
ValueError: Some types cannot be
determined by the first X rows,
please try again with sampling.
This usually happens if, one or more
target columns receive NULL values.
When using False there might be
execution errors if source column
datatype is different from target column
datatype. In such a case it is
recommended to add conversion function
to attribute mapping.

SAMPLING_RATIO The sample ratio of rows used for inferring.

SQL_EXPRESSIONS Use SQL Expressions.

Delete Spark Mapping Files Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this
component.

Level of Parallelism Number of partitions.

Sort Partitions Sort partitions by a key function when repartitioning.

Partition Sort Order Sort partitions order.

Partition Keys Define keys for partitions.

Partition Function Customized partitioning function.

Appendix C
LKM Spark to Hive

C-6

C.5 LKM HDFS to Spark
This KM will load data from HDFS file to Spark.

Table C-7 LKM HDFS to Spark

Option Description

streamingContext Name of Streaming Context.

inferSchema Infer DataFrame schema from data.

Delete Spark Mapping Files Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this component.

Level of Parallelism Number of partitions.

Sort Partitions Sort partitions by a key function when repartitioning.

Partition Sort Order Sort partitions order.

Partition Keys Define keys for partitions.

Partition Function Customized partitioning function.

Note:

Streaming is enabled when the streaming check box is selected in the physical
schema. Streaming is only supported for the Delimited and JSON formats.

C.6 LKM Spark to HDFS
This KM will load data from Spark to HDFS file.

Table C-8 LKM Spark to HDFS

Option Description

SQL_EXPRESSIONS Use SQL Expressions.

Delete Spark Mapping
Files

Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this component.

Level of Parallelism Number of partitions.

Sort Partitions Sort partitions by a key function when repartitioning.

Partition Sort Order Sort partitions order.

Partition Keys Define keys for partitions.

Partition Function Customized partitioning function.

Appendix C
LKM HDFS to Spark

C-7

Note:

Streaming is enabled when the streaming check box is selected in the physical
schema. Streaming is supported for all formats.

C.7 LKM Kafka to Spark
This KM will load data with Kafka source and Spark target and can be defined on the AP node
that exist in Spark execution unit and have Kafka upstream node.

Table C-9 LKM Kafka to Spark for streaming

Option Description

Storage
Function

The storage function to be used to load data.

fromOffsets Per-topic/partition Kafka offsets defining the (inclusive) starting point of the stream.

KeyDecoder Converts message key.

ValueDecoder Converts message value.

groupId The group id for this consumer.

storageLevel RDD Storage level.

numPartitions Number of partitions for each consumer.

offsetRanges List of offsetRange to specify topic:partition:[start, end) to consume.

leaders Kafka brokers for each TopicAndPartition in offsetRanges.

messageHan
dler

A function used to convert KafkaMessageAndMetadata.

avroSchema avroSchema have the content of .avsc file. This file is associated with .avro Data file.

Delete Spark
Mapping Files

Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this component.

Level of
Parallelism

Number of partitions.

Sort Partitions Sort partitions by a key function when repartitioning.

Partition Sort
Order

Sort partitions order.

Partition Keys Define keys for partitions.

Partition
Function

Customized partitioning function.

Appendix C
LKM Kafka to Spark

C-8

C.8 LKM Spark to Kafka
LKM Spark to Kafka works in both streaming and batch mode and can be defined on the AP
between the execution units and have Kafka downstream node.

Table C-10 LKM Spark to Kafka

Option Description

avroSchema Has the content of .avsc file. This file is associated with .avro Data file.

Delete Spark
Mapping
Files

Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this component.

Level of
Parallelism

Number of partitions.

Sort
Partitions

Sort partitions by a key function when repartitioning.

Partition Sort
Order

Sort partitions order.

Partition Keys Define keys for partitions.

Partition
Function

Customized partitioning function.

C.9 LKM SQL to Spark
This KM is designed to load data from Cassandra into Spark, but it can work with other JDBC
sources. It can be defined on the AP node that have SQL source and Spark target.

To use this KM, it is mandatory to configure the Hadoop Credential Provider and define the
password. For more information, see Password Handling in Hadoop.

Table C-11 LKM SQL to Spark

Option Description

PARTITION_
COLUMN

Column used for partitioning.

LOWER_BOU
ND

Lower bound of the partition column.

UPPER_BOU
ND

Upper bound of the partition column.

NUMBER_PA
RTITIONS

Number of partitions.

PREDICATES List of predicates.

Delete Spark
Mapping Files

Delete temporary objects at end of mapping.

Appendix C
LKM Spark to Kafka

C-9

Table C-11 (Cont.) LKM SQL to Spark

Option Description

Cache Cache RDD/DataFrame across operations after computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this component.

Level of
Parallelism

Number of partitions.

Sort Partitions Sort partitions by a key function when repartitioning.

Partition Sort
Order

Sort partitions order.

Partition Keys Define keys for partitions.

Partition
Function

Customized partitioning function.

C.10 LKM Spark to SQL
This KM will load data from Spark into JDBC targets and can be defined on the AP node that
have Spark source and SQL target.

To use this KM, it is mandatory to the configure the Hadoop Credential Provider and define the
password. For more information, see Password Handling in Hadoop.

Table C-12 LKM Spark to SQL

Option Description

CREATE_TAR
G_TABLE

Create target table.

TRUNCATE_T
ARG_TABLE

Truncate target table.

DELETE_TAR
G_TABLE

Delete target table.

Appendix C
LKM Spark to SQL

C-10

Table C-12 (Cont.) LKM Spark to SQL

Option Description

INFER_SCHE
MA

Infer target DataFrame schema from RDD data.

Note:

This option is set to True by default. When set to True, the
column names and types will be inferred from RDD data
and DataFrame will be created with default options. If it is
set to False, DataFrame schema will be specified based on
target datastore definition. Set this option to False if you
are getting errors such as : ValueError: Some types
cannot be determined by the first X rows,
please try again with sampling. This usually
happens if, one or more target columns receive NULL
values. When using False there might be execution errors
if source column datatype is different from target column
datatype. In such a case it is recommended to add
conversion function to attribute mapping.

SAMPLING_R
ATIO

The sample ratio of rows used for inferring.

SQL_EXPRE
SSIONS

Use SQL Expressions.

Delete Spark
Mapping Files

Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after computation.

Storage Level The storage level is used to cache data.

Repartition Repartition the RDD/DataFrame after transformation of this component.

Level of
Parallelism

Number of partitions.

Sort Partitions Sort partitions by a key function when you repartition RDD/DataFrame.

Partition Sort
Order

Sort partition order.

Partition Keys Define keys of partition.

Partition
Function

Customized partitioning function.

C.11 LKM Spark to Cassandra
To use this KM, it is mandatory to configure the Hadoop Credential Provider and define the
password. For more information, see Password Handling in Hadoop.

Table C-13 LKM Spark to Cassandra

Option Description

CREATE_TARG_TABLE Create target table.

Appendix C
LKM Spark to Cassandra

C-11

Table C-13 (Cont.) LKM Spark to Cassandra

Option Description

TRUNCATE_TARG_TABLE Truncate target table.

DELETE_TARG_TABLE Delete target table.

INFER_SCHEMA Infer target DataFrame schema from RDD data.

SAMPLING_RATIO The sample ratio of rows used for inferring.

SQL_EXPRESSIONS Use SQL Expressions.

Delete Spark Mapping Files Delete temporary objects at end of mapping.

Cache Cache RDD/DataFrame across operations after
computation.

Storage Level The storage level to be used to cache data.

Repartition Repartition the RDD/DataFrame after
transformation of this component.

Level of Parallelism Number of partitions.

Sort Partitions Sort partitions by a key function when
repartitioning.

Partition Sort Order Sort partitions order.

Partition Keys Define keys for partitions.

Partition Function Customized partitioning function.

C.12 RKM Cassandra
RKM Cassandra reverses these metadata elements:

• Cassandra tables as data stores.

The Mask field in the Reverse Engineer tab filters reverse-engineered objects based on
their names. The Mask field cannot be empty and must contain at least the percent sign
(%).

• Cassandra columns as attributes with their data types.

C.13 XKM Spark Aggregate
Summarize rows, for example, using SUM and GROUP BY.

The following tables describes the options for XKM Spark Aggregate.

Table C-14 XKM Spark Aggregate

Option Description

CACHE_DATA Persist the data with the default storage level.

NUMBER_OF_TASKS Task number.

Appendix C
RKM Cassandra

C-12

Table C-15 XKM Spark Aggregate for streaming

Option Description

WINDOW_AG
GREGATION

Enable window aggregation.

WINDOW_LE
NGTH

Number of batch intervals.

SLIDING_INT
ERVAL

The interval at which the window operation is performed.

STATEFUL_A
GGREGATIO
N

Enables stateful aggregation.

STATE_RETE
NTION_PERI
OD

Time in seconds to retain a key or value aggregate in the Spark state object.

FORWARD_O
NLY_UPDATE
D_ROWS

Modified aggregate values forwarded to downstream components.

C.14 XKM Spark Distinct
Eliminates duplicates in data and functionality is identical to the existing batch processing.

C.15 XKM Spark Expression
Define expressions to be reused across a single mapping.

C.16 XKM Spark Filter
Produce a subset of data by a filter condition.

The following tables describes the options for XKM Spark Filter.

Table C-16 XKM Spark Filter

Option Description

CACHE_DATA Persist the data with the default storage level.

C.17 XKM Spark Input Signature and Output Signature
Supports code generation for reusable mapping.

C.18 XKM Spark Join
Joins more than one input sources based on the join condition.

The following tables describes the options for XKM Spark Join.

Appendix C
XKM Spark Distinct

C-13

Table C-17 XKM Spark Join

Option Description

CACHE_DATA Persist the data with the default storage level.

NUMBER_OF_TASKS Task number.

C.19 XKM Spark Lookup
Lookup data for a driving data source.

The following tables describes the options for XKM Spark Lookup.

Table C-18 XKM Spark Lookup

Option Description

CACHE_DATA Persist the data with the default storage level.

NUMBER_OF_TASKS Task number.

MAP_SIDE Defines whether the KM will do a map-side lookup or a reduce-side
lookup and significantly impacts lookup performance.

KEY_BASED_LOOKUP Only data corresponding to the lookup keys are retrieved.

Table C-19 XKM Spark Lookup for streaming

Option Description

MAP_SIDE MAP_SIDE=true : Suitable for small lookup data sets fitting into memory. This setting
provides better performance by broadcasting the lookup data to all Spark tasks.

KEY_BASED
_LOOKUP

For any incoming lookup key a Spark cache is checked.

• If the lookup record is present and not expired, the lookup data is served from the
cache.

• If the lookup record is missing or expired, the data is re-loaded from the SQL
source.

CACHE_REL
OAD

This option defines when the lookup source data is loaded and refreshed and here are
the corresponding values:
• NO_RELOAD: The lookup source data is loaded once on Spark application startup.
• RELOAD_EVERY_BATCH: The lookup source data is reloaded for every new Spark

batch.
• RELOAD_BASE_ON_TIME: The lookup source data is loaded on Spark application

startup and refreshed after the time interval provided by KM option
CacheReloadInterval.

CACHE_REL
OAD_INTERV
AL

Defines the time data to be retained in the Spark cache. After this time the expired data
or records are removed from cache.

C.20 XKM Spark Pivot
Take data in separate rows, aggregates it and converts it into columns.

The following tables describes the options for XKM Spark Pivot.

Appendix C
XKM Spark Lookup

C-14

Table C-20 XKM Spark Pivot

Option Description

CACHE_DATA Persist the data with the default storage level.

Note:

XKM Spark Pivot does not support streaming.

C.21 XKM Spark Set
Perform UNION, MINUS or other set operations.

C.22 XKM Spark Sort
Sort data using an expression.

The following tables describes the options for XKM Spark Sort.

Table C-21 XKM Spark Sort

Option Description

CACHE_DATA Persist the data with the default storage level.

NUMBER_OF_TASKS Task number.

C.23 XKM Spark Split
Split data into multiple paths with multiple conditions.

The following tables describes the options for XKM Spark Split.

Table C-22 XKM Spark Split

Option Description

CACHE_DATA Persist the data with the default storage level.

C.24 XKM Spark Table Function
This KM allows applying custom transformation by executing arbitrary Spark/Python
transformations as part of the overall Spark Python script.

The following table describes the options for XKM Spark Table Function.

Appendix C
XKM Spark Set

C-15

Table C-23 XKM Spark Table Function

Option Description

SPARK_SCRIPT User specifies the customized code content.

SPARK_SCRIPT_FILE User specifies the path of spark script file.

CACHE_DATA Persist the data with the default storage level.

Note:

Only one of the options, either SPARK_SCRIPT or SPARK_SCRIPT_FILE must be
set.

• If SPARK_SCRIPT_FILE is set, then the specified file will be dynamically
executed.

• If SPARK_SCRIPT is set, its content will be inserted into the main Spark script.

• If neither SPARK_SCRIPT nor SPARK_SCRIPT_FILE is set, a validation error is
generated stating that at least one of the options must be specified.

• If both SPARK_SCRIPT and SPARK_SCRIPT_FILE are set, a validation error is
generated stating that only one of the options must be specified.

C.25 IKM Spark Table Function
Spark table function as target.

The following tables describes the options for IKM Spark Table Function.

Table C-24 IKM Spark Table Function

Option Description

SPARK_SCRIPT_FILE User specifies the path of spark script file.

CACHE_DATA Persist the data with the default storage level.

C.26 XKM Spark Unpivot
Transform a single row of attributes into multiple rows in an efficient manner.

The following tables describes the options for XKM Spark Pivot.

Table C-25 XKM Spark Unpivot

Option Description

CACHE_DATA Persist the data with the default storage level.

Appendix C
IKM Spark Table Function

C-16

Note:

XKM Spark Unpivot does not support streaming.

Appendix C
XKM Spark Unpivot

C-17

D
Component Knowledge Modules

This appendix provides information about the knowledge modules for the Flatten and the
Jagged component.

This appendix includes the following sections:

• XKM Oracle Flatten

• XKM Oracle Flatten XML

• XKM Spark Flatten

• XKM Jagged

D.1 XKM Oracle Flatten
Un-nest the complex data according to the given options.

Note:

Flatten component is supported only with Spark 1.3.

The following tables describes the options for XKM Oracle Flatten.

Table D-1 XKM Oracle Flatten

Option Description

NESTED_TABLE_ALIAS Alias used for nested table expression.

Default is NST.

DEFAULT_EXPRESSION Default expression for null nested table objects. For example,
rating_table(obj_rating('-1', 'Unknown')).

D.2 XKM Oracle Flatten XML
Un-nest the complex data in an XML file according to the given options.

The following tables describes the options for XKM Oracle Flatten XML.

Table D-2 XKM Oracle Flatten XML

Option Description

XML_XPATH Specify XML path for XMLTABLE function. For example, '/ratings/
rating'.

XML_IS_ATTRIBUTE Set to True when data is stored as attribute values of record tag. For
example, <row attribute1=..." /> "

D-1

Table D-2 (Cont.) XKM Oracle Flatten XML

Option Description

XML_TABLE_ALIAS Alias used for XMLTABLE expression.

Default is XMLT.

DEFAULT_EXPRESSION Default expression for null XMLTYPE objects. For example, <row> <
attribute1/><row/>

This is used to return a row with default values for each null XMLTYPE
object.

D.3 XKM Spark Flatten
Un-nest the complex data according to the given options.

The following tables describes the options for XKM Spark Flatten.

Table D-3 XKM Spark Flatten

Option Description

Default Expression Default expression for null nested table objects. For example,
rating_table(obj_rating('-1', 'Unknown')).

This is used to return a row with default values for each null nested
table object.

CACHE_DATA When set to TRUE, persist the results with Spark default storage level.

Default is FALSE.

D.4 XKM Jagged
Jagged component KMs process unstructured data using meta pivoting. Source data,
represented as key-value free format, will be transformed into more structured entities in order
to be loaded into database tables or file structures. Jagged component has one input group
and one or multiple output groups based on the configuration of the component. Input group is
connected to a source component, which has e key-value or id-key-value structure. Output
groups are connected to the target components where data is stored in more structured way,
that is, keys become column names and values are stored as table rows. Jagged KM is
parsing the source data and is looking for key data matching the output group attributes. Once
the relevant keys are identified the corresponding data is stored into a row. In case of key-
value source each incoming record is delimited by a key marked as End of Data Indicator. In
case of id-key-value source incoming records are delimited by a new value of the sequence
defined as id. Target records can be consolidated by removing duplicates based on Unique
Index attribute property. Some attributes can be labeled as required, meaning no new record is
stored if any of the required keys is missing. Default values can be defined for some missing
keys.

The following tables describes the options for XKM Jagged.

Table D-4 XKM Jagged

Option Description

TMP_DIR Directory for temporary files.

Appendix D
XKM Spark Flatten

D-2

Table D-4 (Cont.) XKM Jagged

Option Description

FIELD_DELIMITER Field delimiter for temporary files.

DELETE_TEMPORARY_OBJE
CTS

Delete temporary objects at end of mapping.

Appendix D
XKM Jagged

D-3

E
Considerations, Limitations, and Issues

This appendix lists the considerations, limitations, and issues that you must be aware of while
working on Big Data integration projects in ODI.
This appendix includes the following section:

• Considerations, Limitations, and Issues

E.1 Considerations, Limitations, and Issues
Please note the following when working on Big Data integration projects:

• Before ODI 12c (12.2.1.1) any Groovy, Jython, Beanshell code in ODI Procedures/Custom
KMs were not able to access Hadoop/Pig classes, unless these JARs were added to ODI
class path.

Starting with ODI 12c (12.2.1.1), the ODI Procedures/Custom KMs can access Hadoop/Pig
classes if they exist in the paths configured on Hadoop/Pig data servers.

• A new property oracle.odi.prefer.dataserver.packages is exposed on Hadoop and Pig
data servers, and, also Hive data servers. This property lets you specify which packages
are loaded child-first rather than parent-first.

Note: Upgraded repositories will not show this property on upgraded Hadoop/Pig data
servers. Only new data servers will show this property.

• In JEE environment, Agent application may be redeployed. However due to Pig's
shutdown hook, Logging leak, and other undiscovered leaks, the execution classloader
created will not get GC'd. Hence, in ODI 12c (12.2.1), if using Big Data features, the JEE
Agent application must not be re-deployed, instead a server restart is required.

• Any package filter applied to a data server must be as specific as possible. Do not try to
make things easier by specifying the widest possible filter. For example, if you specify
org.apache as a filter element, you will get ClassCastException on Beanshell instantiation,
XML parsers instantiation, and so on. This happens because according to Java Language
Specification two class instances are castable only if they are same type declaration and
are loaded by the same classloader. In this example, your interface will be under some
sub-package of org.apache, for example, org.apache.util.IMyInterface. The interface
class loaded by the Studio classloader/web application classloader is the casting target.
When the implementation class is instantiated through reflection, the instance class's
interface class is also loaded by the execution classloader. When JNIEnv code does the
checking to see if the caster and castee share the same type declaration, it will turn out to
be false since the LHS has Studio/web-application classloader and RHS has execution
classloader.

• Execution classloader instances are cached. Changing the data server package filter or
data server classpath results in the creation of a new classloader instance. The old
classloader may not be GC'd immediately (or even ever). This can lead to running out of
heap space. The only solution is a JVM restart.

• When using SDK to create Pig, Hadoop, or any other data server having package filtering
property set on it, adding more data server properties requires attention to one detail. You
must retrieve the current set of properties, add your properties to it and then set it on the
data server. Otherwise, the filtering property will be lost.

E-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Big Data Integration with Oracle Data Integrator
	1.1 Overview of Hadoop Data Integration
	1.2 Big Data Knowledge Modules Matrix

	2 Hadoop Data Integration Concepts
	2.1 Hadoop Data Integration with Oracle Data Integrator
	2.2 Generate Code in Different Languages with Oracle Data Integrator
	2.3 Leveraging Apache Oozie to execute Oracle Data Integrator Projects
	2.4 Oozie Workflow Execution Modes
	2.5 Lambda Architecture

	3 Setting Up the Environment for Integrating Big Data
	3.1 Configuring Big Data technologies using the Big Data Configurations Wizard
	3.1.1 General Settings
	3.1.2 HDFS Data Server Definition
	3.1.3 HBase Data Server Definition
	3.1.4 Kafka Data Server Definition
	3.1.5 Kafka Data Server Properties

	3.2 Creating and Initializing the Hadoop Data Server
	3.2.1 Hadoop Data Server Definition
	3.2.2 Hadoop Data Server Properties

	3.3 Creating a Hadoop Physical Schema
	3.4 Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs
	3.5 Configuring Oracle Loader for Hadoop
	3.6 Configuring Oracle Data Integrator to Connect to a Secure Cluster
	3.7 Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

	4 Integrating Hadoop Data
	4.1 Integrating Hadoop Data
	4.2 Setting Up File Data Sources
	4.3 Setting Up HDFS Data Sources
	4.4 Setting Up Hive Data Sources
	4.5 Setting Up HBase Data Sources
	4.6 Setting Up Kafka Data Sources
	4.7 Setting Up Cassandra Data Sources
	4.8 Importing Hadoop Knowledge Modules
	4.9 Creating ODI Models and Data Stores to represent Hive, HBase and Cassandra Tables, and HDFS Files
	4.9.1 Creating a Model
	4.9.2 Reverse-Engineering Hive Tables
	4.9.3 Reverse-Engineering HBase Tables
	4.9.4 Reverse-Engineering HDFS Files
	4.9.5 Reverse-Engineering Cassandra Tables
	4.9.6 Reverse-Engineering Support for Kafka

	4.10 Password Handling in Hadoop
	4.11 Loading Data from Files into Hive
	4.12 Loading Data from Hive to Files
	4.13 Loading Data from HBase into Hive
	4.14 Loading Data from Hive into HBase
	4.15 Loading Data from an SQL Database into Hive, HBase, and File using SQOOP
	4.16 Loading Data from an SQL Database into Hive using SQOOP
	4.17 Loading Data from an SQL Database into HDFS File using SQOOP
	4.18 Loading Data from an SQL Database into HBase using SQOOP
	4.19 Validating and Transforming Data Within Hive
	4.20 Loading Data into an Oracle Database from Hive and File
	4.21 Loading Data into an SQL Database from Hbase, Hive, and File using SQOOP
	4.22 Loading Data from Kafka to Spark Processing Engine

	5 Executing Oozie Workflows
	5.1 Executing Oozie Workflows with Oracle Data Integrator
	5.2 Setting Up and Initializing the Oozie Runtime Engine
	5.2.1 Oozie Runtime Engine Definition
	5.2.2 Oozie Runtime Engine Properties

	5.3 Creating a Logical Oozie Engine
	5.4 Executing or Deploying an Oozie Workflow
	5.5 Auditing Hadoop Logs
	5.6 Userlib jars support for running ODI Oozie workflows

	6 Using Query Processing Engines to Generate Code in Different Languages
	6.1 Query Processing Engines Supported by Oracle Data Integrator
	6.2 Setting Up Hive Data Server
	6.2.1 Hive Data Server Definition
	6.2.2 Hive Data Server Connection Details

	6.3 Creating a Hive Physical Schema
	6.4 Setting Up Pig Data Server
	6.4.1 Pig Data Server Definition
	6.4.2 Pig Data Server Properties

	6.5 Creating a Pig Physical Schema
	6.6 Setting Up Spark Data Server
	6.6.1 Spark Data Server Definition
	6.6.2 Spark Data Server Properties

	6.7 Creating a Spark Physical Schema
	6.8 Generating Code in Different Languages

	7 Working with Spark
	7.1 Spark Usage
	7.1.1 Creating a Spark Mapping
	7.1.2 Pre-requisites for handling Avro and Delimited files in Spark Mappings

	7.2 Spark Design Considerations
	7.2.1 Batch or Streaming
	7.2.2 Resilient Distributed Datasets (RDD) or DataFrames
	7.2.3 Infer Schema Knowledge Module Option
	7.2.4 Expression Syntax

	7.3 Spark Streaming Support
	7.3.1 Spark Checkpointing
	7.3.2 Spark Windowing and Stateful Aggregation
	7.3.3 Spark Repartitioning and Caching
	7.3.4 Configuring Streaming Support
	7.3.4.1 Spark Streaming DataServer Properties
	7.3.4.2 Extra Spark Streaming Data Properties

	7.3.5 Executing Mapping in Streaming Mode

	7.4 Switching between RDD and DataFrames in ODI
	7.5 Components that do not support DataFrame Code Generation
	7.6 Adding Customized Code in the form of a Table Function

	8 Working with Unstructured Data
	8.1 Working with Unstructured Data

	9 Working with Complex Datatypes and HDFS File Formats
	9.1 HDFS File Formats
	9.2 Working with Complex Datatypes in Mappings
	9.3 Hive Complex Datatypes
	9.3.1 Using Flatten for Complex Types in Hive Mappings

	9.4 Cassandra Complex Datatypes
	9.4.1 How ODI deals with Cassandra Lists and User Defined Types

	9.5 Loading Data from HDFS File to Hive
	9.6 Loading Data from HDFS File to Spark

	A Hive Knowledge Modules
	A.1 LKM SQL to Hive SQOOP
	A.2 LKM SQL to File SQOOP Direct
	A.3 LKM SQL to HBase SQOOP Direct
	A.4 LKM File to SQL SQOOP
	A.5 LKM Hive to SQL SQOOP
	A.6 LKM HBase to SQL SQOOP
	A.7 LKM HDFS File to Hive Load Data
	A.8 LKM HDFS File to Hive Load Data (Direct)
	A.9 IKM Hive Append
	A.10 IKM Hive Incremental Update
	A.11 LKM File to Hive LOAD DATA
	A.12 LKM File to Hive LOAD DATA Direct
	A.13 LKM HBase to Hive HBASE-SERDE
	A.14 LKM Hive to HBase Incremental Update HBASE-SERDE Direct
	A.15 LKM Hive to File Direct
	A.16 XKM Hive Sort
	A.17 LKM File to Oracle OLH-OSCH
	A.18 LKM File to Oracle OLH-OSCH Direct
	A.19 LKM Hive to Oracle OLH-OSCH
	A.20 LKM Hive to Oracle OLH-OSCH Direct
	A.21 RKM Hive
	A.22 RKM HBase
	A.23 IKM File to Hive (Deprecated)
	A.24 LKM HBase to Hive (HBase-SerDe) [Deprecated]
	A.25 IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]
	A.26 IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]
	A.27 IKM Hive Control Append (Deprecated)
	A.28 CKM Hive
	A.29 IKM Hive Transform (Deprecated)
	A.30 IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]
	A.31 IKM File-Hive to SQL (SQOOP) [Deprecated]

	B Pig Knowledge Modules
	B.1 LKM File to Pig
	B.2 LKM Pig to File
	B.3 LKM HBase to Pig
	B.4 LKM Pig to HBase
	B.5 LKM Hive to Pig
	B.6 LKM Pig to Hive
	B.7 LKM SQL to Pig SQOOP
	B.8 XKM Pig Aggregate
	B.9 XKM Pig Distinct
	B.10 XKM Pig Expression
	B.11 XKM Pig Filter
	B.12 XKM Pig Flatten
	B.13 XKM Pig Join
	B.14 XKM Pig Lookup
	B.15 XKM Pig Pivot
	B.16 XKM Pig Set
	B.17 XKM Pig Sort
	B.18 XKM Pig Split
	B.19 XKM Pig Subquery Filter
	B.20 XKM Pig Table Function
	B.21 XKM Pig Unpivot

	C Spark Knowledge Modules
	C.1 LKM File to Spark
	C.2 LKM Spark to File
	C.3 LKM Hive to Spark
	C.4 LKM Spark to Hive
	C.5 LKM HDFS to Spark
	C.6 LKM Spark to HDFS
	C.7 LKM Kafka to Spark
	C.8 LKM Spark to Kafka
	C.9 LKM SQL to Spark
	C.10 LKM Spark to SQL
	C.11 LKM Spark to Cassandra
	C.12 RKM Cassandra
	C.13 XKM Spark Aggregate
	C.14 XKM Spark Distinct
	C.15 XKM Spark Expression
	C.16 XKM Spark Filter
	C.17 XKM Spark Input Signature and Output Signature
	C.18 XKM Spark Join
	C.19 XKM Spark Lookup
	C.20 XKM Spark Pivot
	C.21 XKM Spark Set
	C.22 XKM Spark Sort
	C.23 XKM Spark Split
	C.24 XKM Spark Table Function
	C.25 IKM Spark Table Function
	C.26 XKM Spark Unpivot

	D Component Knowledge Modules
	D.1 XKM Oracle Flatten
	D.2 XKM Oracle Flatten XML
	D.3 XKM Spark Flatten
	D.4 XKM Jagged

	E Considerations, Limitations, and Issues
	E.1 Considerations, Limitations, and Issues

