
Oracle® Fusion Middleware
Using Oracle WebLogic Server Proxy Plug-
Ins

14c (14.1.2.0.0)
F87194-01
December 2024

Oracle Fusion Middleware Using Oracle WebLogic Server Proxy Plug-Ins, 14c (14.1.2.0.0)

F87194-01

Copyright © 2015, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility viii

Diversity and Inclusion viii

Conventions viii

1 Overview of Oracle WebLogic Server Proxy Plug-Ins

What are Oracle WebLogic Server Proxy Plug-Ins? 1-1

Availability of Oracle WebLogic Server Proxy Plug-Ins 1-1

New Features of the 14.1.2.0.0 Proxy Plug-Ins 1-2

Support for HTTP/2 Protocol 1-2

Support for Intelligent Load Balancing 1-3

Security Improvements 1-4

Features Inherited from Previous 12c Releases 1-5

2 Configuring the Plug-In for Oracle HTTP Server

Preparing for Configuring the WLS OHS Plug-In 2-1

Setting the WebLogic Plug-In Enabled Parameter 2-2

Understanding the WebLogic Plug-In Enabled Parameter 2-2

Configuring the WLS OHS Plug-In Using Fusion Middleware Control 2-3

Task 1: Navigate to the mod_wl_ohs Configuration Page 2-3

Task 2: Specify the Configuration Settings 2-5

Task 3: Configure Expression Overrides or Location Overrides (Optional) 2-5

Task 4: Apply Your Changes 2-6

Using the Search Function 2-6

Using the AutoFill Function 2-7

Configuring the WLS OHS Plug-In Manually 2-7

Examples of <IfModule weblogic_module> Element Configurations 2-7

Configuring IPv6 with Proxy Plug-Ins 2-10

Next Steps After Installing the 14.1.2.0.0 WLS OHS Plug-In 2-11

About HTTP Header Case Handling 2-12

Understanding WLS OHS Plug-In Performance Metrics 2-12

Configuring DMS Metrics for the WLS OHS Plug-In 2-12

iii

Viewing Performance Metrics for the WLS OHS Plug-In 2-13

DMS State Metrics 2-13

DMS Event Metrics 2-14

DMS PhaseEvent Metrics 2-15

Deprecated Directives for Oracle HTTP Server 2-16

3 Installing and Configuring the Oracle WebLogic Server Proxy Plug-In for
Apache HTTP Server

Installing the WLS Apache Plug-In 3-1

Installation Prerequisites 3-2

Obtaining the WLS Apache Plug-In 3-2

Java Requirements 3-2

Apache HTTP Server Installation 3-3

Oracle WebLogic Server Installation 3-3

Setting the Environment Variables for the WLS Apache Plug-In 3-4

Installing Microsoft Redistributable Package 2015-2022 3-5

Installing the WLS Apache Plug-In 3-5

Next Steps After Installing the WLS Apache Plug-In 3-7

Third-Party Software Dependencies 3-7

About HTTP Header Case Handling 3-8

Unsupported Use Cases 3-8

Configuring the WLS Apache Plug-In 3-8

Configuring the httpd.conf File 3-9

Task 1: Configure MIME Requests 3-9

Task 2: Define Additional Parameters for the WLS Apache Plug-In 3-10

Task 3: Enable HTTP Tunneling (Optional) 3-11

Task 4: Enable Web Services Atomic Transaction (Optional) 3-11

Task 5: Verify and Apply Your Configuration 3-11

Placing the WebLogic Properties Inside the Location or VirtualHost Blocks 3-11

Default Apache Web Server and WLS Apache Plug-In HTTP Protocol Configuration 3-12

Example: Configuring the WLS Apache Plug-In 3-12

Including a weblogic.conf File in the httpd.conf File 3-13

Rules for Creating the weblogic.conf Files 3-13

Sample weblogic.conf Configuration Files 3-15

Template for the Apache HTTP Server httpd.conf File 3-16

About WebSocket Proxy Configurations 3-17

Verifying the Log File 3-17

Clustering Failover When Using the WLS Apache Plug-In 3-18

Enable and Configure HTTP/2 Support 3-18

Enabling HTTP2 Support in the Apache Web Server 3-19

Configuring HTTP/2 Support on Front-End Connections 3-19

iv

Enabling HTTP2 Support in the WebLogic Apache Plug-In 3-19

Configuring HTTP/2 Support on Back-End Connections 3-20

Server Push Functionality 3-20

Enabling H2Push on Windows Apache 3-21

Configuring IPv6 with Proxy Plug-Ins 3-22

Understanding the DMS Metrics for the WLS Apache Plug-In 3-23

Configuring the DMS Metrics for the WLS Apache Plug-In 3-23

Viewing the Performance Metrics for the WLS Apache Plug-In 3-23

DMS State Metrics 3-24

DMS Event Metrics 3-25

DMS PhaseEvent Metrics 3-26

Support and Patching 3-26

Deprecated Directives for Apache HTTP Server 3-27

4 Configuring Security

Using SSL with Proxy Plug-Ins 4-1

Configuring Libraries for SSL 4-2

Configuring Environment Variables 4-3

Configuring a Proxy Plug-In for One-Way SSL 4-3

Configuring a Two-Way SSL Between the Proxy Plug-In and Oracle WebLogic Server 4-5

Replacing Certificates Signed Using the MD5 Algorithm 4-6

Checking the Certificate Signing Algorithm 4-6

Creating a New Wallet to Add Certificates Signed with the SHA-2 Algorithm 4-8

Replacing the Existing Certificates with SHA-2 Signed Certificates 4-14

Certificates Signed with MD5 Algorithm Not Supported 4-19

Using Certificates Signed with RSASSA-PSS Signature Algorithm 4-20

Configuring Perimeter Authentication 4-20

About Federal Information Processing Standards 4-21

5 Parameters for Oracle WebLogic Server Proxy Plug-Ins

General Parameters for Oracle WebLogic Server Proxy Plug-Ins 5-1

ConnectRetrySecs 5-2

ConnectTimeoutSecs 5-2

DebugConfigInfo 5-3

DefaultFileName 5-3

DynamicServerList 5-3

ErrorPage 5-4

FileCaching 5-4

Location of POST Data Files 5-4

Idempotent 5-5

v

KeepAliveEnabled 5-5

KeepAliveSecs 5-5

MatchExpression 5-6

MaxPostSize 5-7

MaxSkipTime 5-7

PathPrepend 5-7

PathTrim 5-7

QueryFromRequest 5-8

RoutingAlgorithm 5-8

WebLogicCluster 5-9

WebLogicHost 5-10

WebLogicPort 5-10

WeightUpdateInterval 5-10

WLCookieName 5-11

WLDNSRefreshInterval 5-11

WLExcludePathOrMimeType 5-11

WLForwardUriUnparsed 5-11

WLIOTimeoutSecs 5-11

WLLocalIP 5-12

WLMaxWebSocketClients 5-12

WLProtocol 5-12

WLProxyPassThrough 5-12

WLProxySSL 5-13

WLProxySSLPassThrough 5-13

WLRetryOnTimeout 5-13

WLRetryAfterDroppedConnection 5-14

WLServerInitiatedFailover 5-14

WLSocketTimeoutSecs 5-14

WLSRequest 5-14

WLTempDir 5-14

SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins 5-15

SecureProxy 5-15

WebLogicSSLCiphers 5-15

WebLogicSSLVersion 5-17

WLSSLCheckCn 5-17

WLSSLWallet 5-18

6 Troubleshooting and Tuning Oracle WebLogic Server Proxy Plug-Ins

Tuning Oracle HTTP Server for High Throughput for WebSocket Upgrade Requests 6-1

Understanding Connection Errors and Clustering Failover 6-2

Possible Causes of Connection Failures 6-2

vi

Tips for Reducing CONNECTION_REFUSED Errors 6-2

Failover with a Single, Non-Clustered Oracle WebLogic Server 6-3

The Dynamic Server List 6-3

Failover, Cookies, and HTTP Sessions 6-3

Failover Behavior When Using Firewalls and Load Directors 6-5

Oracle WebLogic Server Session Issues 6-5

NO_RESOURCES Errors 6-5

POST Data Files Issues 6-6

vii

Preface

This preface describes the document accessibility features and conventions used in this guide
—Using Oracle WebLogic Server Proxy Plug-Ins.

• Documentation Accessibility

• Diversity and Inclusion

• Conventions

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
Overview of Oracle WebLogic Server Proxy
Plug-Ins

Oracle provides proxy plug-ins for use with Oracle WebLogic Server.

This chapter includes the following topics:

• What are Oracle WebLogic Server Proxy Plug-Ins?
Oracle WebLogic Server proxy plug-ins (WLS proxy plug-ins) allow requests to be
proxied from an HTTP web server to Oracle WebLogic Server. In this way, proxy plug-ins
enable the HTTP server to communicate with applications deployed on Oracle WebLogic
Server.

• Availability of Oracle WebLogic Server Proxy Plug-Ins

• New Features of the 14.1.2.0.0 Proxy Plug-Ins
The Oracle WebLogic Server 14.1.2.0.0 proxy plug-ins add support for the following new
features.

• Features Inherited from Previous 12c Releases
In addition to the new features, WLS proxy plug-ins have also inherited features from the
previous 12c releases.

What are Oracle WebLogic Server Proxy Plug-Ins?
Oracle WebLogic Server proxy plug-ins (WLS proxy plug-ins) allow requests to be proxied
from an HTTP web server to Oracle WebLogic Server. In this way, proxy plug-ins enable the
HTTP server to communicate with applications deployed on Oracle WebLogic Server.

A proxy plug-in enhances an HTTP server installation by allowing Oracle WebLogic Server to
handle requests that require dynamic functionality. In other words, you typically use a proxy
plug-in where the HTTP server serves static pages such as HTML pages, while Oracle
WebLogic Server serves dynamic pages such as HTTP servlets and Jakarta Server Pages
(JSPs).

Oracle WebLogic Server may be operating in a different process, possibly on a different host.
To the end user—the browser—the HTTP requests delegated to Oracle WebLogic Server still
appear to be coming from the HTTP server.

Availability of Oracle WebLogic Server Proxy Plug-Ins
Oracle WebLogic Server 14.1.2.0.0 proxy plug-ins are available for Oracle HTTP Server and
Apache HTTP Server.
The WLS proxy plug-ins are the Oracle WebLogic Server Proxy Plug-In for Oracle HTTP
Server (WLS OHS Plug-In) and the Oracle WebLogic Server Proxy Plug-In for Apache HTTP
Server (WLS Apache Plug-In), respectively.

1-1

Table 1-1 Availability of Version 14c (14.1.2.0.0) Plug-Ins

Web Server Plug-In Availability More Information

Oracle HTTP Server 14c The WLS OHS Plug-In is included in the
Oracle HTTP Server installation.

For information about configuring
the WLS OHS Plug-In, see
Configuring the Plug-In for
Oracle HTTP Server.

Apache HTTP Server
2.4.x

The WLS Apache Plug-In is available for
download on My Oracle Support
(https://support.oracle.com/
signin) and the Software Delivery Cloud
(http://edelivery.oracle.com) web
sites as ZIP files.

Available for download is the WLS
Apache Plug-In ZIP file, compiled with
OpenSSL 1.1.1x version and OpenSSL
3.0.x.

For more information, see the Oracle
WebLogic Server (14.1.2.0.0)
Certification Matrix.

For information about installing
and configuring the WLS Apache
Plug-In, see Installing and
Configuring the Oracle WebLogic
Server Proxy Plug-In for Apache
HTTP Server.

New Features of the 14.1.2.0.0 Proxy Plug-Ins
The Oracle WebLogic Server 14.1.2.0.0 proxy plug-ins add support for the following new
features.

Table 1-2 New Features of the Oracle WebLogic Server Proxy Plug-Ins

Plug-In Functionality

WLS OHS Plug-In • Support for Intelligent Load Balancing
• Support for TLSv1.3 Protocol

WLS Apache Plug-In • Support for HTTP/2 Protocol (also provided in 14.1.1.0.0)
• Support for Intelligent Load Balancing
• Support for TLSv1.3 Protocol (also provided in 14.1.1.0.0)

• Support for HTTP/2 Protocol

• Support for Intelligent Load Balancing

• Security Improvements

Support for HTTP/2 Protocol

Note:

HTTP/2 support is for the WLS Apache Plug-In only.

The HTTP/2 protocol uses a binary framing mechanism to exchange data between the client
and the server. All HTTP/2 communication is split into smaller messages and frames, each of
which is encoded in a binary format. As a result, both client and server must use the new

Chapter 1
New Features of the 14.1.2.0.0 Proxy Plug-Ins

1-2

https://support.oracle.com/signin
https://support.oracle.com/signin
http://edelivery.oracle.com
https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html

binary encoding mechanism to understand each other. An HTTP/1.x client will not understand
an HTTP/2-only server, and vice versa.

The Apache Web Server supports the HTTP/1.1 and HTTP/2 protocols for both:

• Clients connecting to Apache Web Server (front-end connections)

• WLS Apache Plug-In connections to WebLogic Server (back-end connections)

Note:

WebSocket is not supported over HTTP/2.

Support for Intelligent Load Balancing
Intelligent load balancing enables WLS proxy plug-ins to more evenly distribute traffic across a
pool of servers according to their actual capacity, for improved reliability.

Note:

For Intelligent Load Balancing, only Oracle WebLogic Server 14.1.2.0.0 back-end
servers are supported.

The intelligent load balancing features consists of two parts:

• The calculation of the health score of a WebLogic Managed Server (Managed Server)

• The selection of a Managed Sever to route the request

Calculating the Health Score

For each Managed Server in a cluster, WebLogic Server provides a default health score
calculation. The default health score calculation is based on CPU load, heap usage, Work
Manager stuck threads count, and data source pending connection request counts. This health
score is calculated individually, by each Managed Server, and then returned to the proxy plug-
in when requested. For more information on how the health score is calculated in WebLogic
Server, see Health Score-Based Intelligent Routing in Administering Server Environments for
Oracle WebLogic Server.

WLS proxy plug-ins request the health scores of Managed Servers through the request header
X-WebLogic-Request-Server-Health-Score.

WebLogic Server sends the health score of each Managed Server through the predefined
response header X-WebLogic-Server-Health-Score.

<Location /sampleApp>
 WLSRequest On
 WebLogicCluster host1:port1,host2:port2,host3:port3
 RoutingAlgorithm Weighted-Least-Connection
 WeightUpdateInterval 7
</Location>

Chapter 1
New Features of the 14.1.2.0.0 Proxy Plug-Ins

1-3

Selecting a Managed Server

In addition to the health score, WLS proxy plug-ins also use the active connection count
parameter to select which Managed Server from the cluster to route the request.

The active connection count is stored at the proxy plug-in level. The active connection count
represents how many requests from the proxy plug-in side are currently being served by a
Managed Server.

WLS proxy plug-ins use the weighted least connection routing algorithm to select the next
server from cluster. The algorithm selects the Managed Server with the lowest ratio of active
connection count and Managed Server health score. This ensures that Managed Servers with
higher capacities receive a proportionally larger share of the workload, while preventing
overloading of less capable servers.

Configuring Intelligent Load Balancing

To enable intelligent load balancing, you must configure settings in both the WLS proxy plug-
ins and WebLogic Server. If you do not configure intelligent load balancing, the round-robin
routing algorithm is used by default.

In the proxy plug-in, set the RoutingAlgorithm directive to Weighted-Least-Connection. For
more information, see RoutingAlgorithm.

By default, WLS proxy plug-ins request the health score of a Managed Server in one second
intervals, when the request is selected to be served by a Managed Server. To reduce the
frequency, configure the WeightUpdateInterval directive.

The following module needs to be loaded.

LoadModule socache_shmcb_module "${PRODUCT_HOME}/modules/mod_socache_shmcb.so"

Sample Configuration

<Location /sampleApp>
 WLSRequest On
 WebLogicCluster host1:port1,host2:port2,host3:port3
 RoutingAlgorithm Weighted-Least-Connection
 WeightUpdateInterval 7
</Location>

For instructions for configuring WebLogic Server, see Configuring the Health Score in
Administering Server Environments for Oracle WebLogic Server.

Security Improvements
The following security enhancements have been made to the WLS proxy plug-ins.

Support for TLSv1.3 Protocol

WLS proxy plug-ins support the TLSv1.3 protocol.

Use the WebLogicSSLVersion directive to specify the SSL protocol version to be used for
communication between the proxy plug-in and Oracle WebLogic Server.

The support for TLSv1.3 protocol includes the following features:

Chapter 1
New Features of the 14.1.2.0.0 Proxy Plug-Ins

1-4

• Support for new TLSv1.3 cipher suites. See WebLogicSSLCiphers.

• Support for certificates signed with the RSASSA-PSS signature algorithm. See Using
Certificates Signed with RSASSA-PSS Signature Algorithm.

TLS Ciphers

A few ciphers were deprecated in previous releases and are removed from the list of supported
ciphers. If you want to use the deprecated ciphers for a handshake between the web server
and the Oracle WebLogic Server, you must explicitly add them to the configuration using the
WebLogicSSLCiphers directive. A warning message is generated if any cipher from the
deprecated list is used.

• Default list of ciphers for TLSv1.3:

– TLS_AES_256_GCM_SHA384

– TLS_AES_128_GCM_SHA256

– TLS_CHACHA20_POLY1305_SHA256

• Default list of ciphers for TLSv1.2:

– ECDHE-RSA-AES256-GCM-SHA384

– ECDHE-RSA-AES128-GCM-SHA256

– ECDHE-ECDSA-AES256-GCM-SHA384

– ECDHE-ECDSA-AES128-GCM-SHA256

• Deprecated list of ciphers in 14.1.2.0.0:

– AES128-GCM-SHA256

– AES256-GCM-SHA384

– AES128-SHA256

– AES256-SHA256

– AES256-SHA

– AES128-SHA

Features Inherited from Previous 12c Releases
In addition to the new features, WLS proxy plug-ins have also inherited features from the
previous 12c releases.

The inherited features include the following:

• The WLS Apache Plug-In supports Apache HTTP Server 2.4.x Web Server through the
mod_wl_24.so proxy plug-in module. So, you will need to load the mod_wl_24.so module
with Apache HTTP Server 2.4.x. This is typically done by editing the Apache HTTP Server
configuration file(s).

• The WLS Apache Plug-In does not support Apache HTTP Server 2.2.x through the
mod_wl.so Oracle WebLogic Server module. Hence, this module has been removed from
the proxy plug-in distribution.

• Oracle WebLogic Server supports deploying WebSocket applications. The WLS OHS Plug-
In can now handle WebSocket connection upgrade requests and effectively proxy to
WebSocket applications hosted within Oracle WebLogic Server 12.1.2 and later. See
About WebSocket Proxy Configurations.

Chapter 1
Features Inherited from Previous 12c Releases

1-5

• The proxy plug-in now includes the following WLS OHS Plug-In configuration parameters:

– WLMaxWebSocketClients: Limits the number of active WebSocket connections at
any instant of time. The default value is Half of MaxClients (or MaxRequestWorkers).

– WebLogicSSLVersion: Chooses the SSL protocol version to use while
communicating HTTPS requests between the WLS OHS Plug-In and WebLogic
Managed Servers and Clusters.

• The WLS proxy plug-ins provide support for monitoring the performance of the WLS proxy
plug-ins where a request is proxied to the back-end Oracle WebLogic Server. See
Understanding the DMS Metrics for the WLS Apache Plug-In.

• The WLS proxy plug-ins now log the debug information to the respective web server error
log files. Hence, the proxy plug-in parameters specific to the debug logs (Debug and
WLLogFile) have been deprecated.

• The WLS proxy plug-ins improve performance using a pool of connections from the plug-in
to Oracle WebLogic Server. The proxy plug-in implements HTTP 1.1 keep-alive
connections between the proxy plug-in and Oracle WebLogic Server by reusing the same
connection for subsequent requests from the same proxy plug-ins. If the connection is
inactive for more than 20 seconds, (or a user-defined amount of time), the connection is
closed. See KeepAliveEnabled.

Note:

The web server manages client connections.

• The WLS proxy plug-ins proxy requests to Oracle WebLogic Server based on a
configuration that you specify.

– You can proxy requests based on the URL of the request or a portion of the URL. This
is called proxying by path.

– You can also proxy a request based on the MIME type of the requested file, which is
called proxying by file extension.

You can also enable both methods. If you enable both methods and a request matches
both criteria, the request is proxied by path.

You can also specify additional parameters for each of these types of requests that define
additional behavior of the proxy plug-in.

The following features are no longer supported:

• The WLS OHS Plug-In has removed support for TLS1.0 SSL protocol. Therefore, the proxy
plug-in fails to connect to Oracle WebLogic Server when you configure TLS1.0 SSL
protocol for SSL communication.

• The WLS OHS Plug-In considers MD5 signed certificates as insecure. Therefore, support
for these certificates has been removed. If you are using SSL to connect to Oracle
WebLogic Server, and if the wallet contains any certificates signed with MD5, replace them
by SHA-2 signed certificates. Otherwise, the server fails to start. For more information
about MD5 signed certificates, see Replacing Certificates Signed Using the MD5
Algorithm.

Chapter 1
Features Inherited from Previous 12c Releases

1-6

2
Configuring the Plug-In for Oracle HTTP
Server

The Oracle WebLogic Server Proxy Plug-In (WLS OHS Plug-In) is the plug-in for proxying
requests from Oracle HTTP Server to Oracle WebLogic Server. The WLS OHS Plug-In is
included in the Oracle HTTP Server 14c (14.1.2.0.0) installation. You do not have to download
and install it separately.

You can configure the WLS OHS Plug-In either by using Fusion Middleware Control or by
editing the mod_wl_ohs.conf configuration file manually.

Note:

The WLS OHS Plug-In is now able to front-end WebSocket applications.

This chapter includes the following topics:

• Preparing for Configuring the WLS OHS Plug-In

• Configuring the WLS OHS Plug-In Using Fusion Middleware Control

• Configuring the WLS OHS Plug-In Manually

• Configuring IPv6 with Proxy Plug-Ins
The 14.1.2.0.0 WLS proxy plug-ins support IPv6. Specifically, the WebLogicHost and
WebLogicCluster configuration parameters now support IPv6 addresses.

• Next Steps After Installing the 14.1.2.0.0 WLS OHS Plug-In

• Understanding WLS OHS Plug-In Performance Metrics

• Deprecated Directives for Oracle HTTP Server

Preparing for Configuring the WLS OHS Plug-In
You must complete some installation and verification tasks before configuring the WLS OHS
Plug-In.

• Ensure that Oracle WebLogic Server has been installed, a domain has been created, and
you can access the Oracle WebLogic Remote Console. Oracle HTTP Server and
WebLogic Server can be installed either in same domain or in separate domains.

• If OHS is being used in a WebLogic managed domain, verify that Fusion Middleware
Control has been installed and you can access the Enterprise Manager Fusion Middleware
Control Console. This is required to configure the WLS OHS Plug-In by using the graphical
interface provided by Fusion Middleware Control. The Fusion Middleware Control is
available only for WebLogic managed domains.

• To be able to test the configuration, ensure that the required Java applications are
deployed to Oracle WebLogic Server—either to a single managed server or to a cluster—
and are accessible.

2-1

See the following topics:

• Setting the WebLogic Plug-In Enabled Parameter

• Understanding the WebLogic Plug-In Enabled Parameter

Setting the WebLogic Plug-In Enabled Parameter
You must set the WebLogic Plug-In Enabled parameter.

1. Log in to the WebLogic Remote Console.

2. In the Edit Tree, go to Environment, then:

• If the server instances to which you want to proxy requests from Oracle HTTP Server
are in a cluster, select Clusters.

• Otherwise, select Servers.

3. Select the cluster or server to which you want to proxy requests from Oracle HTTP Server.

4. Click Show Advanced Fields.

5. Turn on the WebLogic Plug-In Enabled option to use WebLogic Plug-Ins with the
WebLogic Server.

If you selected Servers (and not Clusters), turn on WebLogic Plug-In Enabled for every
server to which you want to proxy requests from Oracle HTTP Servers.
See Understanding the WebLogic Plug-In Enabled Parameter.

6. Click Save.

For the change to take effect, you must restart the server instances.

Understanding the WebLogic Plug-In Enabled Parameter
The WebLogic Plug-In Enabled drop-down list contains these values:

• Yes—Yes must be selected if the WLS proxy plug-ins are used with WebLogic Server.
When set to Yes on the server, it specifies that this server uses the proprietary WL-Proxy-
Client-IP header, which is recommended if the server instance will receive requests from
a proxy plug-in.

When set to Yes on the cluster, it specifies that the cluster will receive requests from a
proxy plug-in or HttpClusterServlet. A call to getRemoteAddr will return the address of
the browser client from the proprietary WL-Proxy-Client-IP header, instead of the web
server.

• No—Selecting No for the server or cluster disables the weblogic-plugin-enabled
parameter (weblogic-plugin-enabled=false) in the config.xml file.

• Default—When Default is selected for WebLogic Plug-In Enabled in the servers page,
then the servers will inherit the value selected for WebLogic Plug-In Enabled for the
cluster. When Default is selected for WebLogic Plug-In Enabled in the clusters page,
then the clusters will inherit the value selected for WebLogic Plug-In Enabled for the
domain.

Chapter 2
Preparing for Configuring the WLS OHS Plug-In

2-2

Configuring the WLS OHS Plug-In Using Fusion Middleware
Control

If OHS is being used in a WebLogic managed domain, you may use Fusion Middleware
Control to configure the mod_wl_ohs module.

To configure the mod_wl_ohs module, complete the following tasks:

• Task 1: Navigate to the mod_wl_ohs Configuration Page

• Task 2: Specify the Configuration Settings

• Task 3: Configure Expression Overrides or Location Overrides (Optional)

• Task 4: Apply Your Changes

• Using the Search Function

• Using the AutoFill Function

Task 1: Navigate to the mod_wl_ohs Configuration Page
The mod_wl_ohs configuration page contains the parameters for configuring the WLS OHS
Plug-In.

1. Ensure that you have fulfilled the prerequisites listed in Preparing for Configuring the WLS
OHS Plug-In.

2. Select Administration from the Oracle HTTP Server menu.

3. Select mod_wl_ohs Configuration from the Administration menu. The mod_wl_ohs
Configuration page appears.

The following table describes the fields in the mod_wl_ohs page.

Field Description

Provide WebLogic Cluster
Details

List of Oracle WebLogic clusters that can be used for load
balancing. The server or cluster list is a list of host:port
entries. If a mixed set of clusters and single servers is specified,
the dynamic list returned for this parameter will return only the
clustered servers.

If you are not sure of the correct cluster, you can click the search
icon to see a list of all associated clusters. See Using the
Search Function.

The module does a simple round-robin between all available
servers. The server list specified in this property is a starting
point for the dynamic server list that the server and module
maintain. Oracle WebLogic Server and the module work
together to update the server list automatically with new, failed,
and recovered cluster members.

You can disable the use of the dynamic cluster list by disabling
the Dynamic Server List ON field. The module directs HTTP
requests containing a cookie, URL-encoded session, or a
session stored in the POST data to the server in the cluster that
originally created the cookie.

Chapter 2
Configuring the WLS OHS Plug-In Using Fusion Middleware Control

2-3

Field Description

Provide WebLogic Server Host
and Port Details

• WebLogic Host

Oracle WebLogic Server host (or virtual host name as
defined in Oracle WebLogic Server) to which HTTP
requests should be forwarded. If you are using a WebLogic
cluster, use the WebLogic Cluster parameter instead of
WebLogic Host.

If you are not sure of the correct server, you can click the
search icon to see a list of all associated clusters. See
Using the Search Function.

• WebLogic Port

Port at which the Oracle WebLogic Server host is listening
for connection requests from the module (or from other
servers). (If you are using SSL between the module and
Oracle WebLogic Server, set this parameter to the SSL
listen port.)

Dynamic Server List ON | OFF When set to OFF, the module ignores the dynamic cluster list
used for load balancing requests proxied from the module and
only uses the static list specified with the WebLogic Cluster
parameter. Normally this parameter should be set to ON.

There are some implications for setting this parameter to OFF:

• If one or more servers in the static list fails, the module
could waste time trying to connect to a terminated server,
resulting in decreased performance.

• If you add a new server to the cluster, the module cannot
proxy requests to the new server unless you redefine this
parameter. Oracle WebLogic Server automatically adds new
servers to the dynamic server list when they become part of
the cluster.

Error Page You can create your own error page to appear when your Web
server cannot forward requests to Oracle WebLogic Server.

WebLogic Temp Directory Specifies the location of the _wl_proxy directory for post data
files.

Exclude Path or MIME Type This parameter allows you exclude certain requests from
proxying.

This parameter can be defined locally at the Location tag level
and globally. When the property is defined locally, it does not
override the global property but defines a union of the two
parameters.

Match Expressions Use this region to specify any Expression overrides. For
example, if you were proxying by MIME type, you might enter:

*.jsp WebLogicHost=myHost|paramName=value

You can define a new parameter for Match Expression by using
the following syntax:

*.jsp PathPrepend=/test|PathTrim=/foo

(parameters are separated by a |)

Location Use this table to specify any location overrides. See Task 3:
Configure Expression Overrides or Location Overrides
(Optional).

Chapter 2
Configuring the WLS OHS Plug-In Using Fusion Middleware Control

2-4

Field Description

Add Cross Component Wiring This button appears only if you have installed Oracle HTTP
Server in full JRF mode (collocated) and there is a backing
database.

Selecting this button opens the Service Tables page. A service
table provides a way for service providers to publish endpoint
information about their services, and clients of these services to
query and bind to these services. A service table is a single
table in a database schema. There is one row for every endpoint
that is published to it. The service table schema is initially
created by the Repository Creation Utility.

See Wiring Components to Work Together in Administering
Oracle Fusion Middleware

Task 2: Specify the Configuration Settings
Specify the configuration settings for the WLS OHS Plug-In. In the General section, you can
configure mod_wl_ohs for a WebLogic cluster or for WebLogic servers.

• If you select the Provide WebLogic Cluster Details radio button, then provide values for
the WebLogic Cluster, Dynamic Server List ON, Error Page, WebLogic Temp Directory,
and Exclude Path or MIME Type fields.

• If you select the Provide WebLogic Server Host and Port Details radio button, then
provide values for the WebLogic Host, WebLogic Port, Dynamic Server List ON, Error
Page, WebLogic Temp Directory, and Exclude Path or MIME Type fields.

Task 3: Configure Expression Overrides or Location Overrides (Optional)
If necessary, you can add expression or location overrides to your configuration.

1. Add any expression overrides in the Match Expression field.

2. Add any location overrides in the Location table.

a. Click Add Row to create a new row.

b. Enter the base URI for which the associated directives become effective.

c. Complete the WebLogic Cluster, WebLogic Host, and WebLogic Port fields. You
can automatically complete these fields by clicking AutoFill (see Using the AutoFill
Function).

d. Complete the Path Trim field.

According to the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

Path Trim specifies the string trimmed by the module from the {PATH}/{FILENAME}
portion of the original URL, before the request is forwarded to WebLogic Server. For
example, if the URL:

http://myWeb.server.com/weblogic/foo

is passed to the module for parsing and if Path Trim has been set to strip off /weblogic
before handing the URL to WebLogic Server, the URL forwarded to WebLogic Server
is:

http://myWeb.server.com:7002/foo

Chapter 2
Configuring the WLS OHS Plug-In Using Fusion Middleware Control

2-5

Note:

If you are converting an existing third-party server to proxy requests to
WebLogic Server using the module for the first time, you must change
application paths to /foo to include weblogic/foo. You can use Path Trim and
Path Prepend in combination to change this path

e. Complete the Path Prepend field.

According to the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

Path Prepend specifies the path that the module prepends to the {PATH} portion of the
original URL, after Path Trim is trimmed and before the request is forwarded to
WebLogic Server.

Note:

If you need to append File Name, use the DefaultFileName module
parameter instead of Path Prepend.

f. Click Add Row again to save the new row.

Task 4: Apply Your Changes
Apply your changes to the mod_wl_ohs Configuration Page and restart Oracle HTTP Server.

1. If the settings are correct, click Apply to apply the changes. If the settings are incorrect or
you decide to not apply the changes, click Revert to return to the original settings.

2. Restart Oracle HTTP Server by selecting Control from the Oracle HTTP Server menu, and
then selecting Start Up.

The mod_wl_ohs module configuration is saved and displayed on the mod_wl_ohs
Configuration page.

Using the Search Function
The search function allows you to search for a particular WebLogic Cluster or WebLogic Host

that is available to the selected Oracle HTTP Server instance. By clicking the search icon ,
you can see a list of clusters or servers available to the selected Oracle HTTP Server instance.
To use the search function, do the following:

1. Click the search icon for either WebLogic Cluster or WebLogic Host. The Select WebLogic
Cluster/Server dialog box appears.

2. Select the cluster or server you want to use and click OK.

The selected cluster or server name appears in the appropriate field.

Chapter 2
Configuring the WLS OHS Plug-In Using Fusion Middleware Control

2-6

Using the AutoFill Function

Note:

The AutoFill function is available only if you are using Oracle WebLogic Server in
Full-JRF mode. It is not available if you are using Restricted-JRF.

You can easily add valid WebLogic Server and endpoint locations for a specified Base URL to
the Locations table on the Oracle WebLogic Server Proxy Plug-In Configuration screen by
using the AutoFill button. To do so:

1. Click Add to add a new location,

2. Enter a location name in the Location field.

3. Click AutoFill.

Data for any location of the same name will be updated and any new locations will be added to
the table.

Configuring the WLS OHS Plug-In Manually
When OHS has been configured in standalone mode, specify directives in the
mod_wl_ohs.conf file to manually configure the WLS OHS Plug-In.

1. Ensure that you have fulfilled the prerequisites listed in Preparing for Configuring the WLS
OHS Plug-In.

2. Open the mod_wl_ohs.conf file in a text editor.

The mod_wl_ohs.conf file is located in the following directory:

DOMAIN_HOME/config/fmwconfig/components/OHS/componentHome
3. Add directives within the <IfModule weblogic_module> element in the configuration file.

For examples, see Examples of <IfModule weblogic_module> Element Configurations.

For information about the other directives that you can specify in the mod_wl_ohs.conf file,
see Parameters for Oracle WebLogic Server Proxy Plug-Ins.

4. Restart Oracle HTTP Server by using one of the techniques described in Starting Oracle
HTTP Server in Administering Oracle HTTP Server.

• Examples of <IfModule weblogic_module> Element Configurations

Examples of <IfModule weblogic_module> Element Configurations
The configuration of the predefined <IfModule weblogic_module> element determines how
requests are sent to Oracle WebLogic Server. These examples demonstrates the different
ways in which you can configure this element.

Chapter 2
Configuring the WLS OHS Plug-In Manually

2-7

Note:

Oracle recommends that you specify directives within the predefined <IfModule
weblogic_module> element.

If you specify directives outside the predefined <IfModule weblogic_module>
element, or in additional <IfModule weblogic_module> elements, or in configuration
files other than mod_wl_ohs.conf, the Oracle WebLogic Server Proxy Plug-In might
work, but the configuration state of the module, as displayed in Fusion Middleware
Control, could be inconsistent with the directives specified in the mod_wl_ohs.conf
configuration file.

To Forward Requests to a Single Oracle WebLogic Server Instance

To forward requests to an application running on a single Oracle WebLogic Server instance,
specify the details of that destination server within a <location> element.

Syntax:

<IfModule weblogic_module>
<Location path>
WLSRequest On
WebLogicHost host
WeblogicPort port
</Location>
</IfModule>

Example:

With the following configuration, requests for the /myapp1 URI received at the Oracle HTTP
Server listen port will be forwarded to /myapp1 on the Oracle WebLogic Server with the listen
port localhost:7001
<IfModule weblogic_module>
<Location /myapp1>
WLSRequest On
WebLogicHost localhost
WeblogicPort 7001
</Location>
</IfModule>

To Forward Requests to a Cluster of Oracle WebLogic Server Instances

To forward requests to an application running on a cluster of Oracle WebLogic Server
instances, specify the details of that destination cluster within a new <location> element.

Syntax:

<IfModule weblogic_module>
<Location path>
WLSRequest On
WebLogicCluster host:port,host:port,...
</Location>
</IfModule>

Example:

Chapter 2
Configuring the WLS OHS Plug-In Manually

2-8

With the following configuration, requests for the /myapp2 URI received at the Oracle HTTP
Server listen port will be forwarded to /myapp2 on the Oracle WebLogic Server cluster
containing the Managed Servers with the listen ports localhost:8002 and localhost:8003.

<IfModule weblogic_module>
<Location /myapp2>
WLSRequest On
WebLogicCluster localhost:8002,localhost:8003
</Location>
</IfModule>

To Configure Multiple Destinations

To configure multiple destinations—say, an application running on a single Oracle WebLogic
Server instance and another application running on a cluster—you must specify each
destination in a distinct <location> child element. All the <location> child elements should be
at the same level within the <IfModule weblogic_module> element, as shown in the following
syntax:

<IfModule weblogic_module>
#For an application running on a single server instance
<Location path1>
WLSRequest On
WebLogicHost host
WeblogicPort port
</Location>

#For an application running on a cluster
<Location path2>
WLSRequest On
WebLogicCluster host:port,host:port,...
</Location>

</IfModule>

To Link to Managed Servers

To configure the WLS OHS Plug-In so that it can link to Managed Servers, for example to
enable a high availability deployment of Oracle HTTP Server, edit the mod_wl_ohs.conf file as
follows:

<IfModule mod_weblogic.c>
 WebLogicCluster apphost1.mycompany.com:7050,apphost2.mycompany.com:7050
 MatchExpression *.jsp
 </IfModule>

<Location /weblogic>
 WLSRequest On
 WebLogicCluster apphost1.mycompany.com:7050,apphost2.com:7050
 DefaultFileName index.jsp
</Location>

Chapter 2
Configuring the WLS OHS Plug-In Manually

2-9

Note:

If you are using SSL termination and routing requests to WebLogic Server, the
following additional configuration is required.

In the WebLogic console, WebLogic Plugin Enabled must be set to true, either at
the domain, cluster or Managed Server level.

In the Location block which directs requests to the WebLogic Managed Servers, one
of the following lines also must be added.

WLProxySSL ON
WLProxySSLPassThrough ON

(To help determine which parameter to use, see SSL Parameters for Oracle
WebLogic Server Proxy Plug-Ins.)

For example:

<Location /weblogic>
 WLSRequest On
 WebLogicCluster apphost1.mycompany.com:7050,apphost2.com:7050
 WLProxySSL On
 WLProxySSLPassThrough ON
 DefaultFileName index.jsp
</Location>

After enabling the WebLogic plugin, restart the Administration Server. See
Terminating SSL Requests in Administering Oracle HTTP Server.

These examples show two different ways of routing requests to Oracle WebLogic Managed
Servers:

• The <IfModule> block sends any requests ending in *.jsp to the WebLogic Managed
Server cluster located on Apphost1 and Apphost2.

• The <Location> block sends any requests with URLs prefixed by /weblogic to the
WebLogic Managed Server cluster located on Apphost1 and Apphost2.

To Configure One-way and Two-way SSL

For information about configuring the WLS OHS Plug-In to support one-way and two-way SSL
between Oracle HTTP Server and Oracle WebLogic Server, see Using SSL with Proxy Plug-
Ins.

Configuring IPv6 with Proxy Plug-Ins
The 14.1.2.0.0 WLS proxy plug-ins support IPv6. Specifically, the WebLogicHost and
WebLogicCluster configuration parameters now support IPv6 addresses.

See WebLogicCluster and WebLogicHost.

For example:

<IfModule mod_weblogic.c>
 WebLogicHost [a:b:c:d:e:f]
 WebLogicPort 7002
 ...
</IfModule>

Chapter 2
Configuring IPv6 with Proxy Plug-Ins

2-10

or

<IfModule mod_weblogic.c>
 WebLogicCluster [a:b:c:d:e:f]:<port>, [g:h:i:j:k:l]:<port>

</IfModule>

You can also use the IPv6 address mapped host name.

For example:

<IfModule mod_weblogic.c>
#hostname1 is mapped to IPv6 address in /etc/hosts file
 WebLogicHost hostname1
 WebLogicPort 7002
 ...
</IfModule>

Sample entry in the /etc/hosts file:

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
::1 hostname1

Note:

As of Windows 2008, the DNS server returns the IPv6 address in preference to the
IPv4 address. If you are connecting to a Windows 2008 (or later) system using IPv4,
the link-local IPv6 address format is tried first, which may result in a noticeable delay
and reduced performance. To use the IPv4 address format, configure your system to
instead use IP addresses in the configuration files or add the IPv4 addresses to the
etc/hosts file.

In addition, you may find that, setting the DynamicServerList property to OFF in the
configuration file also improves performance with IPv6. When set to OFF, the proxy
plug-in ignores the dynamic cluster list used for load balancing requests proxied from
the proxy plug-in and uses the static list specified with the WebLogicCluster
parameter.

Next Steps After Installing the 14.1.2.0.0 WLS OHS Plug-In
After installing the 14.1.2.0.0 WLS OHS Plug-In, to use its new features, complete its
configuration as follows.

• Review the following directives, if configured, to enable TLSv1.3:

– WebLogicSSLVersion

– WebLogicSSLCiphers

This section includes the following topic:

• About HTTP Header Case Handling

Chapter 2
Next Steps After Installing the 14.1.2.0.0 WLS OHS Plug-In

2-11

About HTTP Header Case Handling
The WLS OHS Plug-In converts the case of HTTP headers based on the HTTP protocol
version configured for the front-end and the back-end connections.

Table 2-1 shows how the case of request and response headers are modified based on the
HTTP protocol version configured for the front-end and the back-end connections.

Table 2-1 Case of HTTP Request and Response Headers

HTTP Protocol Version
for the Front-End
Connection

HTTP Protocol Version
for the Back-End
Connection

Case of Request
Header Sent to the
Back End by the
Oracle WebLogic
Server Proxy Plug-In

Case of Response
Header Sent to the
Client by the Oracle
WebLogic Server
Proxy Plug-In

HTTP/1.1 HTTP/1.1 No Conversion No Conversion

Understanding WLS OHS Plug-In Performance Metrics
Oracle HTTP Server provides performance metrics specific to the WLS OHS Plug-In
(mod_wl_ohs) module, where a request is proxied to the back-end WebLogic Server.

These metrics are provided through the Oracle Dynamic Monitoring Service (DMS) which
enables Oracle Fusion Middleware components to provide administration tools, such as Fusion
Middleware Control, with data regarding the component's performance, state and on-going
behavior. For the WLS OHS Plug-In module, for example, it could return the number of
requests proxied, the number of failed requests, and other specific metrics. For more
information on DMS, see Using the Oracle Dynamic Monitoring Service in Tuning Performance
Guide.

Note:

The WLS OHS Plug-In module metrics are available only for Oracle HTTP Server
and Apache Server plug-ins.

This section contains the following information on DMS metrics.

• Configuring DMS Metrics for the WLS OHS Plug-In

• Viewing Performance Metrics for the WLS OHS Plug-In

• DMS State Metrics

• DMS Event Metrics

• DMS PhaseEvent Metrics

Configuring DMS Metrics for the WLS OHS Plug-In
The DMS metrics for the WLS OHS Plug-In are enabled by default in the admin.conf file. They
are included as part of the regular DMS metrics collection.

Chapter 2
Understanding WLS OHS Plug-In Performance Metrics

2-12

Viewing Performance Metrics for the WLS OHS Plug-In
You can view the performance metrics by using either the administration port, WLST
commands, or Fusion Middleware Control. For details of each of the performance metrics, see
DMS State Metrics, DMS Event Metrics, and DMS PhaseEvent Metrics.

Using the Administration Port:

If administration port is configured, for example, at 127.0.0.1:9999, then you can view the raw
DMS metrics at the URL http://127.0.0.1/dms/.

The metrics under the section /WebLogicProxy [type=OHSWebLogic] are the metrics coming
from WLS OHS Plug-In.

Using WLST (Collocated Mode Only)

Use the WLST command displayMetricTables to view performance metrics, for example:

displayMetricTables(servertype="OHS", servers=<instancename>)

The metrics under the section /WebLogicProxy [type=OHSWebLogic] are the metrics coming
from Oracle WebLogic Server Proxy Plug-in.

Using Fusion Middleware Control (Collocated Mode Only)

To view performance metrics in Fusion Middleware Control, select Oracle HTTP Server, then
Monitoring, then Performance Summary. The metrics towards the bottom of this page will have
WLS OHS Plug-In specific metrics. See Viewing Performance Metrics in Administering Oracle
HTTP Server.

DMS State Metrics
A State metric tracks system status information or to track a metric that is not associated with
an event. For a description of the State metrics, see Table 3-4.

Table 2-2 State Metrics for the WLS OHS Plug-In Module

Metric Name Description

totalDeclines The total number of requests declined (not processed by mod_wl_24).
This number indicates the requests that are not configured, and/or
rejected by the proxy plug-in (for example, custom HTTP methods are
always rejected by the proxy plug-in)

totalErrors Number of requests that could not be processed successfully. See
Event Metrics for errors.

totalHandled The total number of requests serviced by the mod_wl_24 proxy plug-in.

totalRequests The total number of requests received by mod_wl_24. The number
includes all the requests that are targeted to the proxy plug-in, plus the
requests that are not targeted to any module (not configured).

totalRetries Number of times a request was retried. Requests are generally retried
on failure (depending on configuration). If a request is ever retried, this
metric will increment (once per request, irrespective of how many times
the request was retried).

totalSuccess The number of requests successfully processed. If the requests are
processed successfully (proxied to Oracle WebLogic Server, and sent
the response back to client), then this metric will be incremented.

Chapter 2
Understanding WLS OHS Plug-In Performance Metrics

2-13

Table 2-2 (Cont.) State Metrics for the WLS OHS Plug-In Module

Metric Name Description

websocketActive Number of WebSocket upgrade requests currently active.

websocketClose Number of WebSocket upgrade requests closed. If the WebSocket
session is terminated (for any reason), then this metric is updated.

websocketMax Maximum number of simultaneous WebSocket requests that can be
active.

If the WLMaxWebSocketClients parameter is configured, the value will
be the lower of these:

• The configured value, OR
• 0.75 of the value of MaxRequestWorkers (Apache 2.4)

If WLMaxWebSocketClients parameter is not configured, the value will
be 0.5 of the value of MaxRequestWorkers (Apache 2.4).

For more information about the WLMaxWebSocketClients parameter,
see Tuning Oracle HTTP Server for High Throughput for WebSocket
Upgrade Requests.

websocketPercent This value is defined by the number of active WebSockets
(websocketActive) divided by the maximum number of simultaneous
WebSocket requests (websocketMax) multiplied by 100:

(websocketActive/webocketMax)*100.

websocketRequests The number of WebSocket upgrade requests made. If the request URI
is an WebSocket upgrade request, this metric will be incremented.

websocketSuccess Number of WebSocket upgrade requests completed successfully. If
Oracle WebLogic Server responds to a WebSocket upgrade request
with 101 Switching Protocols, then this metric is updated.

DMS Event Metrics
A DMS Event metric counts system events. A DMS event tracks system events that have a
short duration, or where the duration of the event is not of interest but the occurrence of the
event is of interest. For a description of the Event metrics, see Table 3-5.

Table 2-3 Event Metrics for the WLS OHS Plug-In.

Metric Name Description

errConnRefused The number of CONNECTION_REFUSED errors. Indicates the number of
times the configured WebLogicHost and/or WebLogicPort is either
not reachable or not listening.

errNoResources The number of NO_RESOURCES errors. One scenario where this
exception can occur is when SSL is configured in the proxy plug-in, but
the corresponding SSL configuration is not defined in the managed
server.

errOthers The number of any other errors. For example, POST data size is greater
than the value of MaxPostSize.

errReadClient The number of READ_ERROR_FROM_CLIENT errors. Indicates the
number of times that the proxy plug-in could not read from the client
(browser).

Chapter 2
Understanding WLS OHS Plug-In Performance Metrics

2-14

Table 2-3 (Cont.) Event Metrics for the WLS OHS Plug-In.

Metric Name Description

errReadServer The number of READ_ERROR_FROM_SERVER errors. Indicates the
number of times a read operation could not be successfully performed
on Oracle WebLogic Server.

errReadTimeout The number of READ_TIMEOUT errors. An example is Oracle WebLogic
Server not responding within WLIOTimeoutSecs.

errWriteClient The number of WRITE_ERROR_TO_CLIENT errors. Indicates the number
of times that the proxy plug-in could not write to client. This can be
seen when the client sends a request but closes the connection before
receiving the response.

errWriteWLS The number of WRITE_ERROR_TO_SERVER errors. Indicates the number
of times that the proxy plug-in could not write to Oracle WebLogic
Server.

wsClientClose Number of WebSocket upgrade requests closed by client. If the client
sends a WebSocket upgrade request, and client closes the connection,
then this metric is updated.

wsErrorClose Number of WebSocket sessions terminated due to error. If there is any
error which causes the WebSocket connection to close, then this metric
is updated.

wsNoUpgrade The number of times the WebSocket upgrade request was rejected.
The response to WebSocket upgrade request is not "101 Switching
Protocols". This can happen when the upgrade request is sent to
Oracle WebLogic Server that does not support WebSockets (Oracle
WebLogic Server version 12.1.2 or earlier).

wsServerClose Number of WebSocket upgrade requests closed by server. If Oracle
WebLogic Server initiates a close of WebSocket communication, then
this metric is updated. For example, timeout or no communication (by
default, 5 minutes) after upgrading the request.

DMS PhaseEvent Metrics
A DMS PhaseEvent metric measures the time spent in a specific section of code that has a
beginning and an end. A PhaseEvent tracks time in a method or in a block of code. For each
phase event, an "active count", "completed count", "total time", "min time", "max time", and
"average time" value is included. For a description of the PhaseEvent metrics, see Table 3-6.

Table 2-4 PhaseEvent Metrics for the WLS OHS Plug-In

Metric Name Description

websocketPhase WebSocket communication in progress. The phase (time) between
"WebSocket upgrade succeeded" and "WebSocket connection closed"

wlsWait The phase (time) between "the request sent to Oracle WebLogic
Server" and "Waiting for response".

Chapter 2
Understanding WLS OHS Plug-In Performance Metrics

2-15

Deprecated Directives for Oracle HTTP Server
The WebLogic Server plug-in logs for the WLS OHS Plug-In are now part of the Web Server
error log mechanism. References can be identified with module name as weblogic. For
example:

[2015-05-14T00:43:27.8355-06:00] [OHS] [TRACE:16] [OH99999] [weblogic] [client_id: ::1]
[host_id: XXXXXXXX] [host_addr: XX.XXX.XXX.XXX] [pid: 1240] [tid: 2424] [user: sramavan]
[ecid: 00iT9hK4DrhFw0zobn063z0BvEE3zsYyk0000JO00000H] [rid: 0] [VirtualHost: main]
================New Request: [GET /favicon.ico HTTP/1.1] =================

The WLLogFile and Debug directives are deprecated. If the configuration uses these
directives, the following note appears in the node manager plug-in log file (ohs_nm.log):

<2015-05-14 00:36:25> <INFO> <OHS-0> <[Thu May 14 00:36:25.723286 2015] [weblogic:warn]
[pid 5084:tid 668] The Debug directive is ignored. The web server log level is used
instead.>

<2015-05-14 00:36:25> <INFO> <OHS-0> <[Thu May 14 00:36:25.724263 2015] [weblogic:warn]
[pid 5084:tid 668] The WLLogFile directive is ignored. The web server log file is used
instead.>

To enable plug-in logs:

• If OraLogMode is set to ODL-text, set OraLogSeverity to TRACE:16. The logs appear in
the directory OraLogDir (instance-name.log). This is the default.

• If OraLogMode is set to apache, set LogLevel to debug. The directive ErrorLog points to
the file where the errors are logged.

See Managing Oracle HTTP Server Logs in Administering Oracle HTTP Server guide.

Chapter 2
Deprecated Directives for Oracle HTTP Server

2-16

3
Installing and Configuring the Oracle
WebLogic Server Proxy Plug-In for Apache
HTTP Server

To install and configure the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server
(WLS Apache Plug-In), Oracle recommends that you read the information included in this
section.

This section includes the following topics:

• Installing the WLS Apache Plug-In

• Configuring the WLS Apache Plug-In
Edit the httpd.conf file to proxy requests by path or by MIME type, to enable HTTP
tunneling and to use the other WLS Apache Plug-In parameters.

• Enable and Configure HTTP/2 Support
To leverage the benefits of the HTTP/2 protocol, HTTP/2 must be used for both front-end
connections and back-end connections.

• Configuring IPv6 with Proxy Plug-Ins
The 14.1.2.0.0 WLS proxy plug-ins support IPv6. Specifically, the WebLogicHost and
WebLogicCluster configuration parameters now support IPv6 addresses.

• Understanding the DMS Metrics for the WLS Apache Plug-In
The performance metrics for the WLS Apache Plug-In are provided through the Oracle
Dynamic Monitoring Service (DMS). For example, it can fetch the number of requests
proxied, the number of failed requests, and other specific metrics.

• Support and Patching

• Deprecated Directives for Apache HTTP Server

Installing the WLS Apache Plug-In
After you download the WLS Apache Plug-In, you can load it as a module in your Apache
HTTP Server installation.
To download the WLS Apache Plug-In, see Availability of Oracle WebLogic Server Proxy Plug-
Ins.

This section includes the following topics:

• Installation Prerequisites
Review and ensure that you meet the necessary prerequisites.

• Installing the WLS Apache Plug-In

• Next Steps After Installing the WLS Apache Plug-In
After installing the 14.1.2.0.0 WLS Apache Plug-In, to be able to use its new features,
complete its configuration as follows.

3-1

Installation Prerequisites
Review and ensure that you meet the necessary prerequisites.

This section includes the following topics:

• Obtaining the WLS Apache Plug-In

• Java Requirements

• Apache HTTP Server Installation

• Oracle WebLogic Server Installation

• Setting the Environment Variables for the WLS Apache Plug-In

• Installing Microsoft Redistributable Package 2015-2022

Obtaining the WLS Apache Plug-In
To obtain the WLS Apache Plug-In:

1. Download the WLS Apache Plug-In, as described in Availability of Oracle WebLogic Server
Proxy Plug-Ins.

2. Extract the proxy plug-in ZIP distribution to PLUGINS_HOME. For example, /home/myhome/
weblogic-plugins-14.1.2.0.0/. This is the directory to which the proxy plug-in is
extracted.

Table 3-1 lists the files included in the distribution.

Table 3-1 Files Included in the WLS Apache Plug-In Zip File for Linux

(Path)/File Name Description

README.txt The README file for the proxy plug-in.

THIRD_PARTY_LICENSES.txt The file containing the third-party license related information.

bin/orapki The orapki tool for configuring Oracle wallets.

bin/export_wallet The executable file for exporting Oracle wallet to PEM formatted files.

jlib/*.jar The helper Java libraries for orapki and the export_wallet
program.

lib/mod_wl_24.so The Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server
2.4.

lib/*.so The helper libraries.

lib/nghttp2/* The HTTP/2 C library for nghttp2.

Java Requirements
Install the required version of Java (JDK). Table 3-2 lists the minimum JDK versions required
for certain features when using the 14.1.2.0.0 proxy plug-in for Apache HTTP Server.

Chapter 3
Installing the WLS Apache Plug-In

3-2

Table 3-2 Minimum JDK Requirements

Host on Which JDK
Must be Installed

Feature that Requires
JDK

Minimum JDK Version
Required

Description

Machine on which the
Apache HTTP Server is
installed.

To use for managing
Oracle wallet.

Oracle JDK 17 and 21 JDK is required for using
the orapki tool (located
at $PLUGINS_HOME/
bin) to work with Oracle
wallets configured for the
web server.
JDK is also required for
export_wallet
program (located
at $PLUGINS_HOME/
bin) that exports the
content of the Oracle
wallets to PEM formatted
files on the file system.

Apache HTTP Server Installation
Ensure that you have a supported Apache HTTP Server installation. See Oracle Fusion
Middleware Supported System Configurations.

Ensure that you are using Apache Portable Runtime 1.7.0 (apr-1.7.0). Add the path of
apr-1.7.0 to the LD_LIBRARY_PATH using the following command:

export LD_LIBRARY_PATH=<absolute_path_to_the_directory_containing_apr-1.7.0>/
lib:${LD_LIBRARY_PATH}

Note:

The 14.1.2.0.0 WLS Apache Plug-In has been tested with Apache Portable Runtime
1.7.0 (apr-1.7.0). Therefore, it is recommended that you use this version of APR at a
minimum. It is not known if using earlier versions of the APR with the proxy plug-in
will result in the correct behavior.

You can download the APR from https://apr.apache.org/.

Oracle WebLogic Server Installation
Ensure that a supported version of Oracle WebLogic Server is configured and running on a
target system. This server does not need to be running on the system on which you extracted
the proxy plug-in ZIP distribution.

For the list of supported Oracle WebLogic Server versions, see https://www.oracle.com/
technetwork/middleware/ias/downloads/fusion-certification-100350.html.

For information about configuring Oracle WebLogic Server, see Planning the Oracle WebLogic
Server Installation in Installing and Configuring Oracle WebLogic Server and Coherence.

Chapter 3
Installing the WLS Apache Plug-In

3-3

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://apr.apache.org/
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Setting the Environment Variables for the WLS Apache Plug-In

Note:

Oracle recommends that you set the environment variables, such as PLUGINS_HOME,
JAVA_HOME, and LD_LIBRARY_PATH.
For example:

PLUGINS_HOME=<absolute_path_to_the_directory_where_plugin_zip_is
extracted_to>
export PLUGINS_HOME

You can use the variables set at the time of starting the Apache HTTP Server in the
httpd.conf file by using the ${VAR_NAME} syntax. For example:

LoadModule weblogic_module ${PLUGINS_HOME}/lib/mod_wl_24.so

Set the following environment variables:

• Set PLUGINS_HOME to point to the directory where the proxy plug-ins ZIP file is extracted to,
using the following command:

export PLUGINS_HOME=<absolute_path_to_the_directory_where_plugin_zip_is
extracted_to>

For example:

export PLUGINS_HOME=/home/myhome/weblogic-plugins-14.1.2.0.0/

• Set JAVA_HOME to point to the JDK present on the host where Apache HTTP Server is
installed, using the following command:

Note:

Relative path is not allowed for JAVA_HOME.

export JAVA_HOME=<absolute_path_to_the_JDK_installation_directory>

For example:

export JAVA_HOME=/home/myhome/JDK_installation_path

Chapter 3
Installing the WLS Apache Plug-In

3-4

Note:

JAVA_HOME is required only when implementing SSL for managing the Oracle
wallet.

For information about the supported JDK versions, see Table 3-2.

• Ensure that $PLUGINS_HOME/lib appears in the LD_LIBRARY_PATH on UNIX systems. To
add $PLUGINS_HOME/lib to the LD_LIBRARY_PATH, use the command:

export LD_LIBRARY_PATH=$PLUGINS_HOME/lib:$LD_LIBRARY_PATH

• Review the Third-Party Software Dependencies to determine if additional steps are needed
to satisfy the dependency on the nghttp2 library.

Installing Microsoft Redistributable Package 2015-2022
You must install the Microsoft Redistributable Package 2015-2022 on Windows. For more
information, see Microsoft Visual C++ Redistributable latest supported downloads.

Note:

If this package is not installed, the Apache Web Server startup fails on Windows after
configuring the mod_wl_24.so module, with the following error:

CANNOT LOAD MODULES/MOD_WL_24.SO

.

Installing the WLS Apache Plug-In
The WLS Apache Plug-In is distributed as a shared object (.so) file. You can obtain the proxy
plug-in from My Oracle Support (https://support.oracle.com/signin) or the Software
Delivery Cloud.
To install the WLS Apache Plug-In:

1. Verify that the mod_so.c module is enabled.

If you installed Apache HTTP Server using the script supplied by Apache, mod_so.c is
already enabled. Verify that mod_so.c is enabled by running the following command:

UNIX/Linux:

APACHE_HOME/bin/apachectl -l

(APACHE_HOME is the directory that contains the Apache HTTP Server installation.)

Chapter 3
Installing the WLS Apache Plug-In

3-5

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://support.oracle.com/signin
http://edelivery.oracle.com
http://edelivery.oracle.com

This command lists all enabled modules. If mod_so.c is not listed, you must rebuild your
Apache HTTP Server, ensuring that the following configuration option is specified:

...
--enable-module=so
...

The output appears as follows:

apachectl -l
Compiled in modules:
...
 mod_so.c
...

2. Make a copy of the APACHE_HOME/conf/httpd.conf file for backup.

3. Open the httpd.conf file.

4. Verify the syntax of the httpd.conf file by running the following command:

UNIX/Linux:

> APACHE_HOME/bin/apachectl -t

If the httpd.conf file contains any errors, the output of this command shows the errors;
ensure that you get a clean output before continuing. If there are no errors, the command
returns the following:

Syntax OK

Note:

Ensure that you have resolved all the configuration errors from Steps 1 through 4
before contacting Oracle Support.

5. The WLS Apache Plug-In modules for Apache 2.4.x are shipped with the 14.1.2.0.0 proxy
plug-in distributions. Apache 2.2.x is no longer supported. Therefore, the WLS Apache
Plug-In module for Apache 2.2.x is no longer supported. Use the WLS Apache Plug-In
module for Apache 2.4.x which continues to be supported.

Note:

If you are using Apache 2.2.x version of the web server, migrate to the Apache
2.4.x version, and then install the Oracle WebLogic Server Proxy Plug-in module
for Apache 2.4.x.

Install the WLS Apache Plug-In module for Apache 2.4.x by adding the following line:

LoadModule weblogic_module /home/myhome/weblogic-plugins-14.1.2.0.0/lib/mod_wl_24.so
6. After installing the WLS Apache Plug-In module, verify the syntax of the httpd.conf file by

running the following command:

Chapter 3
Installing the WLS Apache Plug-In

3-6

UNIX/Linux:

> APACHE_HOME/bin/apachectl -t

If the httpd.conf file contains any errors, the output of this command shows the errors.
Contact Oracle Support for resolving the errors. If there are no errors, the command
returns the following:

Syntax OK

Next Steps After Installing the WLS Apache Plug-In
After installing the 14.1.2.0.0 WLS Apache Plug-In, to be able to use its new features,
complete its configuration as follows.

1. Review the minimum JDK requirements and install the supported version of JDK. See
Installation Prerequisites.

2. Set the following environment variables:

• JAVA_HOME
• PLUGINS_HOME
• LD_LIBRARY_PATH
See Installation Prerequisites.

To use the new features of the 14.1.2.0.0 WLS Apache Plug-In, do the following:

• Configuring HTTP/2 Support on Back-End Connections.

• Review the following directives, if configured, to enable TLSv1.3:

– WebLogicSSLVersion

– WebLogicSSLCiphers

This section includes the following topics:

• Third-Party Software Dependencies

• About HTTP Header Case Handling

• Unsupported Use Cases

Third-Party Software Dependencies
The 14.1.2.0.0 WLS Apache Plug-In depends on the following third-party software:

• OpenSSL, version 1.1.1x or 3.0.x

• nghttp2, version 1.58.0

Note:

For Windows OpenSSL version, by default, the Windows environment latest Apache
2.4 builds come with OpenSSL version 3.x.

Libraries from the above third-party software must be available on the system where the
Apache Web Server process (that loads the 14.1.2.0.0 WLS Apache Plug-In module) runs.
These libraries are a prerequisite for the Apache Web Server process to start.

Chapter 3
Installing the WLS Apache Plug-In

3-7

There are two flavors of the 14.1.2.0.0 WLS Apache Plug-In which are supported for both
OpenSSL 1.1.1x and OpenSSL 3.0.x. For more information, see the Oracle Fusion Middleware
Supported System Configurations page. When the Apache Web Server process loads the
14.1.2.0.0 WLS Apache Plug-In module, the OpenSSL libraries provided by the operating
system are also loaded into the process address space.

About HTTP Header Case Handling
The WLS Apache Plug-In converts the case of HTTP headers based on the HTTP protocol
version configured for the front-end and the back-end connections.

Table 2-1 shows how the case of request and response headers are modified based on the
HTTP protocol version configured for the front-end and the back-end connections.

Table 3-3 Case of HTTP Request and Response Headers

HTTP Protocol Version
for the Front-End
Connection

HTTP Protocol Version
for the Back-End
Connection

Case of Request
Header Sent to the
Back End by the
Oracle WebLogic
Server Proxy Plug-In

Case of Response
Header Sent to the
Client by the Oracle
WebLogic Server
Proxy Plug-In

HTTP/2 HTTP/2 Lower Case Lower Case

HTTP/1.1 HTTP/2 Lower Case Camel Case

HTTP/2 HTTP/1.1 Camel Case Lower Case

HTTP/1.1 HTTP/1.1 No Conversion No Conversion

Unsupported Use Cases
The 14.1.2.0.0 WLS Apache Plug-In is loaded in an Apache Web Server process that loads
open source modules such as mod_ssl.so, mod_http2, and so on, so that they depend on
OpenSSL libraries. The 14.1.2.0.0 WLS Apache Plug-In also depends on the OpenSSL
libraries. There are two flavors of the proxy plug-ins, which are supported for both OpenSSL
1.1.1 and OpenSSL 3.0.X.

To ensure the current functioning of the Apache Web Server process, Oracle recommends that
you ensure that the versions of OpenSSL that different modules within an Apache Web Server
process use are binary compatible to prevent symbol version conflicts.

The following use cases are not supported because these lead to an incorrect runtime
behavior (process crash) that occurs due to symbol conflicts at runtime:

• Using the 14.1.2.0.0 WLS Apache Plug-In in an Apache Web Server process that uses
open source Apache modules statically linked with a version of OpenSSL that is binary
incompatible with OpenSSL version used by the 14.1.2.0.0 WLS Apache Plug-In.

• Using the 14.1.2.0.0 WLS Apache Plug-In in an Apache Web Server process that uses the
open source Apache modules dynamically linked with a version of OpenSSL that is binary
incompatible with OpenSSL version and the OpenSSL library does not support symbol
versioning.

Configuring the WLS Apache Plug-In
Edit the httpd.conf file to proxy requests by path or by MIME type, to enable HTTP
tunneling and to use the other WLS Apache Plug-In parameters.

This section includes the following topics:

Chapter 3
Configuring the WLS Apache Plug-In

3-8

https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html

• Configuring the httpd.conf File

• Placing the WebLogic Properties Inside the Location or VirtualHost Blocks

• Default Apache Web Server and WLS Apache Plug-In HTTP Protocol Configuration

• Example: Configuring the WLS Apache Plug-In

• Including a weblogic.conf File in the httpd.conf File

• About WebSocket Proxy Configurations

• Verifying the Log File

• Clustering Failover When Using the WLS Apache Plug-In

Configuring the httpd.conf File
To configure the WLS Apache Plug-In, edit the httpd.conf file in your Apache HTTP Server
installation. Complete the following tasks:

• Task 1: Configure MIME Requests

• Task 2: Define Additional Parameters for the WLS Apache Plug-In

• Task 3: Enable HTTP Tunneling (Optional)

• Task 4: Enable Web Services Atomic Transaction (Optional)

• Task 5: Verify and Apply Your Configuration

Task 1: Configure MIME Requests
You can proxy requests by MIME type and/or by path. Open the httpd.conf file in a text
editor and complete the following steps:

Note:

If both MIME type and proxying by path are enabled, proxying by path takes
precedence over proxying by MIME type.

• Configuring Proxy Requests by MIME Type

• Configuring Proxy Requests by Path

Configuring Proxy Requests by MIME Type
To configure MIME requests by MIME type in the httpd.conf file, add a MatchExpression
line to the <IfModule> block:

• For a non-clustered Oracle WebLogic Server: Define the WebLogicHost and
WebLogicPort parameters with the MatchExpression directive.
In the example below, a non-clustered Oracle WebLogic Server specifies that all files with
MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
 WebLogicHost my-weblogic.server.com
 WebLogicPort 7001

Chapter 3
Configuring the WLS Apache Plug-In

3-9

 MatchExpression *.jsp
</IfModule>

You can use multiple MatchExpression as well. For example:

<IfModule mod_weblogic.c>
 WebLogicHost my-weblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
 MatchExpression *.xyz
</IfModule>

• For a cluster of Oracle WebLogic Servers: Define the WebLogicCluster parameter with
the MatchExpression directive.
In the example below, a clustered Oracle WebLogic Server specifies that all files with
MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 MatchExpression *.jsp
</IfModule>

See MatchExpression.

Configuring Proxy Requests by Path
To configure MIME requests by path in the httpd.conf file, configure the PathTrim
parameter inside the <Location> tag. The PathTrim parameter specifies a string trimmed from
the beginning of the URL before the request is passed to the Oracle WebLogic Server
instance. See PathTrim.

For example, the following Location block proxies all requests that contain /weblogic in the
URL:

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
</Location>

The <Location> directive limits the scope of the enclosed directives by URL. See Apache
Location Directive.

Task 2: Define Additional Parameters for the WLS Apache Plug-In
Define any additional parameters for the WLS Apache Plug-In.

The WLS Apache Plug-In recognizes the parameters listed in General Parameters for Oracle
WebLogic Server Proxy Plug-Ins. To modify the behavior of your WLS Apache Plug-In, define
these parameters either:

• In a <Location> block, for parameters that apply to proxying by path, or

• At global or virtual host scope, for parameters that apply to proxying by MIME type.

Chapter 3
Configuring the WLS Apache Plug-In

3-10

https://httpd.apache.org/docs/2.4/mod/core.html#location
https://httpd.apache.org/docs/2.4/mod/core.html#location

Task 3: Enable HTTP Tunneling (Optional)
You can enable HTTP tunneling for the T3 protocol by configuring the <Location> blocks.

To enable HTTP tunneling if you are using the T3 protocol and weblogic.jar, add the
following <Location> block to the httpd.conf file:

<Location /bea_wls_internal>
 WLSRequest On
</Location>

Task 4: Enable Web Services Atomic Transaction (Optional)
You can enable Web Services Atomic Transaction (WS-AT) by configuring the
<Location> blocks. The <wls-wsat> parameter applies to proxying by path. You can optionally
define the parameter to modify the behavior of the Oracle WebLogic Server Proxy Plug-in for
Apache HTTP Server.

<Location /wls-wsat>
 WLSRequest On
</Location>

WebLogic web services enable interoperability with other external transaction processing
systems, such as IBM WebSphere, JBoss, Microsoft .NET. For more information about Web
Services Atomic Transaction (WS-AtomicTransaction), see https://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=ws-tx.

Task 5: Verify and Apply Your Configuration
Follow these steps to verify the httpd.conf configuration and apply it to the Apache HTTP
Server.

1. Verify the syntax of the httpd.conf file by running the following command (UNIX/Linux):

> APACHE_HOME/bin/apachectl -t

If the httpd.conf file contains any errors, the output of this command shows the errors;
otherwise, the command returns the following:

Syntax OK
2. Start the Apache HTTP Server (for UNIX/Linux):

> APACHE_HOME/bin/apachectl start
3. Send a request to http://apache-host:apache-port/mywebapp/my.jsp from the browser.

Validate the response.

Placing the WebLogic Properties Inside the Location or VirtualHost Blocks
If you choose to not use the <IfModule>, you can instead directly place the WebLogic
properties inside the Location or <VirtualHost> blocks. Consider the following examples of
the <Location> and <VirtualHost> blocks:

<Location /weblogic>
WLSRequest On

Chapter 3
Configuring the WLS Apache Plug-In

3-11

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx

WebLogicHost myweblogic.server.com
WebLogicPort 7001
</Location>

<Location /weblogic>
WLSRequest On
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
</Location>

<VirtualHost apachehost:80>
WLSRequest On
WebLogicServer weblogic.server.com
WebLogicPort 7001
</VirtualHost>

Default Apache Web Server and WLS Apache Plug-In HTTP Protocol
Configuration

In the default Apache Web Server configuration, Apache Web Server supports HTTP/1.1
protocol (only) for both front-end connections and back-end connections. In this default Apache
Web Server configuration:

• Clients will create HTTP/1.1 front-end connections to Apache Web Server:

– Clients that support HTTP/1.1 only will create HTTP/1.1 front-end connections.

– Clients that support HTTP/2 will negotiate HTTP/1.1 front-end connections.

• WLS Apache Plug-In will create HTTP/1.1 back-end connections to WebLogic Server:

– If WebLogic Server supports HTTP/1.1 only, then Apache Web Server will create
HTTP/1.1 back-end connections.

– If WebLogic Server supports HTTP/2, then Apache Web Server will negotiate
HTTP/1.1 back-end connections.

Example: Configuring the WLS Apache Plug-In
This example demonstrates basic instructions for quickly setting up the WLS Apache Plug-In to
proxy requests to a back-end Oracle WebLogic Server.

1. Make a copy of $APACHE_HOME/conf/httpd.conf file.

2. Edit the file to add the following code:

...
LoadModule weblogic_module /home/myhome/weblogic-plugins-14.1.2.0.0/lib/mod_wl_24.so

<IfModule mod_weblogic.c>
 WebLogicHost wls-host
 WebLogicPort wls-port
</IfModule>

<Location /mywebapp>
 WLSRequest On
</Location>
...

Chapter 3
Configuring the WLS Apache Plug-In

3-12

3. Include $PLUGINS_HOME/lib in the LD_LIBRARY_PATH, using the following command:

$ export LD_LIBRARY_PATH=/home/myhome/weblogic-plugin-14.1.2.0.0/
lib:$LD_LIBRARY_PATH

Note:

You can also update the LD_LIBRARY_PATH by copying the 'lib' contents to
APACHE_HOME/lib or by editing the APACHE_HOME/bin/apachectl to update the
LD_LIBRARY_PATH.

4. Set PLUGINS_HOME to point to the directory where the proxy plug-ins zip file is extracted to,
using the following command:

export PLUGINS_HOME=/home/myhome/weblogic-plugins-14.1.2.0.0/

5. Include the path containing the OpenSSL libraries in the LD_LIBRARY_PATH, using the
following command:

export LD_LIBRARY_PATH=/home/myhome/openssl_installation/
lib:$LD_LIBRARY_PATH

6. At the prompt, start the Apache HTTP Server by entering:

$ ${APACHE_HOME}/bin/apachectl start

7. Send a request to http://apache-host:apache-port/mywebapp/my.jsp from the browser
and validate the response

Including a weblogic.conf File in the httpd.conf File
To keep several separate configuration files, you can define parameters in a separate
configuration file called weblogic.conf, by using the Apache HTTP Server Include directive in
an <IfModule> block in the httpd.conf file.

<IfModule mod_weblogic.c>
 # Config file for Oracle WebLogic Server that defines the parameters
 Include conf/weblogic.conf
</IfModule>

The syntax of weblogic.conf files is the same as that for the httpd.conf file.

The following sections describe how to create the weblogic.conf files, and include the
sample weblogic.conf files:

• Rules for Creating the weblogic.conf Files

• Sample weblogic.conf Configuration Files

• Template for the Apache HTTP Server httpd.conf File

Rules for Creating the weblogic.conf Files
Be aware of the following rules and best practices for constructing a weblogic.conf file.

Chapter 3
Configuring the WLS Apache Plug-In

3-13

• Enter each parameter on a new line. Do not put "=" between a parameter and its value. For
example:

PARAM_1 value1
PARAM_2 value2
PARAM_3 value3

• If a request matches both a MIME type specified in a MatchExpression in an <IfModule>
block and a path specified in a Location block, the behavior specified by the <Location>
block takes precedence.

• If you use an Apache HTTP Server <VirtualHost> block, you must include all
configuration parameters (MatchExpression, for example) for the virtual host within the
<VirtualHost> block (see Apache Virtual Host documentation at http://
httpd.apache.org/docs/vhosts/).

• You should use the MatchExpression statement instead of the <Files> block.

Here is sample of the weblogic.conf file:

Global configuration:

<IfModule mod_weblogic.c>
 WebLogicCluster johndoe02:8005,johndoe:8006
 WLTempDir "/tmp"
 DebugConfigInfo ON
 KeepAliveEnabled ON
 KeepAliveSecs 15
</IfModule>

Location configuration:

• All the requests that match /jurl/* will have the POST data files in /tmp/jurl and will
reverse proxy the request to myCluster and port 7001.

<Location /jurl>
 WLSRequest On
 WebLogicCluster myCluster:7001
 WLTempDir "/tmp/jurl"
</Location>

• All the requests that match /web/* will have the POST data files in /tmp/web and will
reverse proxy the request to myhost and port 8001.

<Location /web>
 WLSRequest On
 PathTrim /web
 WebLogicHost myhost
 WebLogicPort 8001
 WLTempDir "/tmp/web"
</Location>

Chapter 3
Configuring the WLS Apache Plug-In

3-14

http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/vhosts/

• All the requests that match /foo/* will have the POST data files written to /tmp/foo and
will reverse proxy the request to myhost02 and port 8090.

<Location /foo>
 WLSRequest On
 WebLogicHost myhost02
 WebLogicPort 8090
 WLTempDir "/tmp/foo"
 PathTrim /foo
</Location>

Sample weblogic.conf Configuration Files
These examples of weblogic.conf files may be used as templates that you can modify to suit
your environment and server. Lines beginning with # are comments.

Example 3-1 Using WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 ErrorPage http://myerrorpage.mydomain.com
 MatchExpression *.jsp
</IfModule>
##

In the example, the MatchExpression parameter syntax for expressing the filename pattern,
the Oracle WebLogic Server host to which HTTP requests should be forwarded, and various
other parameters are as follows:

MatchExpression [filename pattern] [WebLogicHost=host] | [paramName=value]

The first MatchExpression parameter below specifies the filename pattern *.jsp, and then
names the single WebLogicHost. The paramName=value combinations following the pipe symbol
specify the port at which Oracle WebLogic Server is listening for connection requests, and also
activate the Debug option. The second MatchExpression specifies the filename pattern *.html
and identifies the WebLogic Cluster hosts and their ports. The paramName=value combination
following the pipe symbol specifies the error page for the cluster.

Example 3-2 Using Multiple WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>
 MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=7001|Debug=ON
 MatchExpression *.html WebLogicCluster=myHost1:7282,myHost2:7283|ErrorPage=
 http://www.xyz.com/error.html
</IfModule>

Chapter 3
Configuring the WLS Apache Plug-In

3-15

Example 3-3 Without WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>
 WebLogicHost myweblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
</IfModule>

Example 3-4 Configuring Multiple Name-Based Virtual Hosts

VirtualHost1 = localhost:80
<VirtualHost 127.0.0.1:80>
DocumentRoot "/test/VirtualHost1"
ServerName localhost:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
</IfModule>
</VirtualHost>

VirtualHost2 = 127.0.0.2:80
<VirtualHost 127.0.0.2:80>
DocumentRoot "/test/VirtualHost1"
ServerName 127.0.0.2:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
#... WLS parameter ...
</IfModule>
</VirtualHost>

You must define a unique value for ServerName or some proxy plug-in parameters will not work
as expected.

Template for the Apache HTTP Server httpd.conf File
This section contains a sample httpd.conf file for Apache HTTP Server. You can use this
sample as a template and modify it to suit your environment and server. Lines beginning with #
are comments.

Note:

Apache HTTP Server is not case sensitive.

Chapter 3
Configuring the WLS Apache Plug-In

3-16

Sample httpd.conf file for Apache HTTP Server

##
APACHE-HOME/conf/httpd.conf file
##
LoadModule weblogic_module /home/myhome/weblogic-plugins-12.2.1/lib/mod_wl_24.so

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<Location /servletimages>
 WLSRequest On
 PathTrim /something
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<IfModule mod_weblogic.c>
 MatchExpression *.jsp
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 ErrorPage http://myerrorpage.mydomain.com
</IfModule>

About WebSocket Proxy Configurations
The 14.1.2.0.0 WLS Apache Plug-In for Apache HTTP Server 2.4.x can handle WebSocket
connection upgrade requests and effectively proxy to WebSocket applications hosted within
Oracle WebLogic Server 14c (14.1.1.0.0) and later.

Review following timeout setting for the WebSocket connection:

• If you use the mod_reqtimeout module within the Apache HTTP Server, then set the
configured client timeout value appropriately to consider for the WebSocket
connections.

• The default timeout value for HTTP requests in the mod_reqtimeout module has changed
between Apache HTTP Server 2.2 and 2.4. This change can cause the WebSocket
connections to break. Therefore, you will need to use an appropriate client timeout
value.

• You should configure appropriate client timeout values for the WebSocket connections
to avoid malicious attacks such as a Denial of Service attack.

Note:

WebSocket is not supported over HTTP/2.

Verifying the Log File

The Oracle WebLogic Server Proxy Plug-in logs are now part of the Apache HTTP Server error
log. You can easily identify the references with the prefix weblogic:

[weblogic:debug] [pid 6571:tid 139894556022528] ApacheProxy.cpp(875): [client
10.184.61.77:53634] <657114316705052> =========New Request: [GET /weblogic/index.html
HTTP/1.1] ======

Chapter 3
Configuring the WLS Apache Plug-In

3-17

To enable the proxy plug-in logs, set the Apache web server directive LogLevel to debug. The
logs are included in the file pointed to by the Apache web server ErrorLog directive.

config file name: httpd.conf
setting: LogLevel debug

Additionally, a new log file named wl_exportwallet_log is created in the same file system
path where the web server's log file exists. In case of the Apache web server process, this file
is located at $SERVER_ROOT/logs/.

The Oracle wallets used in the web server configuration must be exported to PEM formatted
files on the file system to enable OpenSSL APIs to access the key and certificates present in
the Oracle wallet. This is done by forking a separate process called export_wallet from the
main web server process. The export_wallet process writes to the wl_exportwallet_log,
and not to the web server's log.

Clustering Failover When Using the WLS Apache Plug-In
When using the WLS Apache Plug-In as the front-end for a cluster, the plug-in uses several
configuration parameters to determine how long to wait for connections to the WebLogic
Server host and, after a connection is established, how long the plug-in waits for a response:

• Verify the setting of the Apache idempotent flag. When idempotent is set to ON, and if the
servers do not respond within the specified WLIOTimeoutSecs value, the plug-ins fail over.
The plug-ins also fail over if idempotent is set to ON and the servers respond with an error
such as READ_ERROR_FROM_SERVER. If set to OFF, the plug-ins do not fail over. See
Parameters for Web Server Plug-Ins in Using Web Server 1.1 Plug-Ins with Oracle
WebLogic Server.

• Verify the setting of WebLogic Proxy Plug-in retry mechanism; for example, whether the
maximum number of retries allowed is equal to the ConnectTimeoutSecs value divided by
the ConnectRetrySecs value. See Failover, Cookies, and HTTP Sessions in Using Web
Server 1.1 Plug-Ins with Oracle WebLogic Server.

Enable and Configure HTTP/2 Support
To leverage the benefits of the HTTP/2 protocol, HTTP/2 must be used for both front-end
connections and back-end connections.

To support the use of the HTTP/2 protocol for both front-end and back-end connections, all the
following are required:

• Apache Web Server must be configured to support HTTP/2 front-end connections.

• WLS Apache Plug-In must be configured to support HTTP/2 back-end connections.

• You must use a version of WebLogic Server that supports HTTP/2, and WebLogic Server
must be configured to support HTTP/2.

Note:

Both WebLogic Server 14.1.1 and WebLogic Server 14.1.2 support HTTP/2 and
are configured, by default, to support HTTP/2.

In HTTP/2 configurations:

Chapter 3
Enable and Configure HTTP/2 Support

3-18

• Clients will create HTTP/2 front-end connections to Apache Web Server, if possible:

– Clients that support HTTP/1.1 only will negotiate HTTP/1.1 front-end connections.

– Clients that support HTTP/2 will create HTTP/2 front-end connections.

• WLS Apache Plug-In will create HTTP/2 back-end connections to WebLogic Server.
HTTP/2 back-end connections will be used, regardless of whether HTTP/1.1 or HTTP/2
front-end connections are being used.

When used with clients that support HTTP/2, such configurations support “end to end” use of
HTTP/2 – from clients to Apache Web Server to WebLogic Server. Such configurations will
also support HTTP/1.1 front-end connections from clients that support HTTP/1.1 only - the use
of HTTP/2 back-end connections is transparent to clients using HTTP/1.1 front-end
connections.

The following sections describe how to enable and configure Apache Web Server and the WLS
Apache Plug-In to support HTTP/2:

• Enabling HTTP2 Support in the Apache Web Server

• Configuring HTTP/2 Support on Front-End Connections

• Enabling HTTP2 Support in the WebLogic Apache Plug-In

• Configuring HTTP/2 Support on Back-End Connections

• Server Push Functionality

Enabling HTTP2 Support in the Apache Web Server
Use the mod_http2 module to enable HTTP/2 for front-end connections. mod_http2 uses the
nghttp2 library (libnghttp2.so) as its implementation base. For more information, see the
Apache Web Server guide for the HTTP/2 implementation in Apache httpd.

Configuring HTTP/2 Support on Front-End Connections
Use the following steps to configure HTTP/2 support in the Apache Web Server:

1. Load the http2_mod module:

LoadModule http2_module modules/mod_http2.so

2. The second directive you need to add to your server configuration is:

Protocols h2 http/1.1

3. This allows h2, the secure variant, to be the preferred protocol on your server connections.
When you want to enable all HTTP/2 variants, you write:

Protocols h2 h2c http/1.1

Enabling HTTP2 Support in the WebLogic Apache Plug-In
WLS Apache Plug-In requires the nghttp2 library (libnghttp2.so) for HTTP/2 support to back-
end connections. For details, see Enabling HTTP2 Support in the Apache Web Server.

Chapter 3
Enable and Configure HTTP/2 Support

3-19

https://httpd.apache.org/docs/2.4/howto/http2.html

Configuring HTTP/2 Support on Back-End Connections
To configure HTTP/2 on back-end connections, you must set the WLProtocol directive in the
weblogic.conf file.

Example With HTTP/2 Protocol Configured

Copy
LoadModule weblogic_module modules/mod_wl_24.so
Listen 4455
<VirtualHost *:4455>
 ServerName vh1.com
 WLSSLWallet /scratch/user/temp/server
 SecureProxy ON
 WLProtocol http/2
 <Location /myApp>
 WLSRequest On
 WebLogicCluster ns1.example.com:7011,ns2.example.com:7011,ns3.example.com:7011
 </Location>
 <Location /myApp2>
 WebLogicHost example.com
 WLSRequest On
 WebLogicPort 7025
 </Location>
</VirtualHost>

Note:

When the HTTP/2 protocol is configured, the following directives are ignored:

• KeepAliveEnabled

• KeepAliveSecs

• WLMaxWebSocketClients

Server Push Functionality
The server push functionality is one of the key features of the HTTP/2 protocol.

Accessing websites follows the request and response pattern. A user sends a request to a
remote server. The server responds with the requested content with some delay. The initial
request to a web server is generally for an HTML document. In this scenario, the server replies
with the requested HTML resource. The HTML is then parsed by the browser, where
references to other assets are discovered, such as style sheets, scripts, and images. Upon
their discovery, the browser makes separate requests for those assets, which are then
responded to by the server. The problem with this mechanism is that it forces the user to wait
for the browser to discover and retrieve critical assets until after an HTML document has been
downloaded. This delays rendering time and increases load time.

The server push functionality is a solution to this problem. It lets the server preemptively push
website assets to the client without the user having explicitly asked for them.

For example, consider a website where all pages rely on styles defined in an external style
sheet named styles.css. When the user requests index.html from the server, the
styles.css is sent to the user just after the server starts sending the response for index.html.

Chapter 3
Enable and Configure HTTP/2 Support

3-20

Rather than waiting for the server to send index.html and then waiting for the browser to
request and receive styles.css, the user only has to wait for the server to respond with both
index.html and styles.css on the initial request. This decreases the rendering time of the
page.

To enable the server push functionality, configure the H2Push directive and use link headers
either in the web server configuration file or in the response. For configuring the H2Push
directive, see H2Push Directive in the Apache HTTP Server Documentation.

The WLS Apache Plug-In supports link headers created using the Link.Builder API.

Example of a link header in the web server configuration file:

H2Push on
<Location /xxx.html>
 Header add Link "</xxx.css>;rel=preload"
 Header add Link "</xxx.js>;rel=preload"
</Location>

Example of a link header in the response:

</xxx.css>;rel="preload";type="text/css"

To enable the server push functionality, set H2Push to on in the httpd.conf file if link header
is sent in the response, as given below:

-----config section---
H2Push on

Note:

PushBuilder from HTTPServeletRequest, and using 103 early hints along with the
link headers are NOT supported.

• Enabling H2Push on Windows Apache
On the Windows Apache Server, you must ensure that the headers_module is loaded
which is required for the H2Push to function correctly.

Enabling H2Push on Windows Apache
On the Windows Apache Server, you must ensure that the headers_module is loaded which is
required for the H2Push to function correctly.

Perform the following steps to enable H2Push:

1. Open the httpd.conf file located in your Apache installation. For example,
C:\Apache2\conf.

2. Uncomment the following line in the httpd.conf file by removing #:

#LoadModule headers_module modules/mod_headers.so
3. Save the httpd.conf file.

Chapter 3
Enable and Configure HTTP/2 Support

3-21

https://httpd.apache.org/docs/2.4/mod/mod_http2.html#h2push

4. Restart the Apache Server.

Configuring IPv6 with Proxy Plug-Ins
The 14.1.2.0.0 WLS proxy plug-ins support IPv6. Specifically, the WebLogicHost and
WebLogicCluster configuration parameters now support IPv6 addresses.

See WebLogicCluster and WebLogicHost.

For example:

<IfModule mod_weblogic.c>
 WebLogicHost [a:b:c:d:e:f]
 WebLogicPort 7002
 ...
</IfModule>

or

<IfModule mod_weblogic.c>
 WebLogicCluster [a:b:c:d:e:f]:<port>, [g:h:i:j:k:l]:<port>

</IfModule>

You can also use the IPv6 address mapped host name.

For example:

<IfModule mod_weblogic.c>
#hostname1 is mapped to IPv6 address in /etc/hosts file
 WebLogicHost hostname1
 WebLogicPort 7002
 ...
</IfModule>

Sample entry in the /etc/hosts file:

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
::1 hostname1

Chapter 3
Configuring IPv6 with Proxy Plug-Ins

3-22

Note:

As of Windows 2008, the DNS server returns the IPv6 address in preference to the
IPv4 address. If you are connecting to a Windows 2008 (or later) system using IPv4,
the link-local IPv6 address format is tried first, which may result in a noticeable delay
and reduced performance. To use the IPv4 address format, configure your system to
instead use IP addresses in the configuration files or add the IPv4 addresses to the
etc/hosts file.

In addition, you may find that, setting the DynamicServerList property to OFF in the
configuration file also improves performance with IPv6. When set to OFF, the proxy
plug-in ignores the dynamic cluster list used for load balancing requests proxied from
the proxy plug-in and uses the static list specified with the WebLogicCluster
parameter.

Understanding the DMS Metrics for the WLS Apache Plug-In
The performance metrics for the WLS Apache Plug-In are provided through the Oracle
Dynamic Monitoring Service (DMS). For example, it can fetch the number of requests proxied,
the number of failed requests, and other specific metrics.

You can configure and view the DMS performance metrics for Oracle WebLogic Server
14.1.2.0.0 Proxy Plug-in.

The DMS metrics that can be returned are described in DMS State Metrics, DMS Event
Metrics, and DMS PhaseEvent Metrics.

This section includes the following topics:

• Configuring the DMS Metrics for the WLS Apache Plug-In

• Viewing the Performance Metrics for the WLS Apache Plug-In

• DMS State Metrics

• DMS Event Metrics

• DMS PhaseEvent Metrics

Configuring the DMS Metrics for the WLS Apache Plug-In
To configure the DMS metrics for the WLS Apache Plug-In, add the following code to the
httpd.conf file:

Add the following LoadModule only if it is not already present
Use mod_wl_24.so for Apache 2.4
LoadModule weblogic_module $PLUGINS_HOME/mod_wl_24.so

<Location /metrics>
 SetHandler dms-handler
</Location>

Viewing the Performance Metrics for the WLS Apache Plug-In
You can view the raw metrics using the following URL:

Chapter 3
Understanding the DMS Metrics for the WLS Apache Plug-In

3-23

http://apachehost:apacheport/metrics

Where, apachehost is the host name of the Apache server and apacheport is the port number.

The metrics that are coming from the WLS Apache Plug-In can be found under the /
WebLogicProxy [type=WebLogicProxy] section.

DMS State Metrics
A State metric tracks system status information or to track a metric that is not associated with
an event. For a description of the State metrics, see Table 3-4.

Table 3-4 State Metrics for the WLS OHS Plug-In Module

Metric Name Description

totalDeclines The total number of requests declined (not processed by mod_wl_24).
This number indicates the requests that are not configured, and/or
rejected by the proxy plug-in (for example, custom HTTP methods are
always rejected by the proxy plug-in)

totalErrors Number of requests that could not be processed successfully. See
Event Metrics for errors.

totalHandled The total number of requests serviced by the mod_wl_24 proxy plug-in.

totalRequests The total number of requests received by mod_wl_24. The number
includes all the requests that are targeted to the proxy plug-in, plus the
requests that are not targeted to any module (not configured).

totalRetries Number of times a request was retried. Requests are generally retried
on failure (depending on configuration). If a request is ever retried, this
metric will increment (once per request, irrespective of how many times
the request was retried).

totalSuccess The number of requests successfully processed. If the requests are
processed successfully (proxied to Oracle WebLogic Server, and sent
the response back to client), then this metric will be incremented.

websocketActive Number of WebSocket upgrade requests currently active.

websocketClose Number of WebSocket upgrade requests closed. If the WebSocket
session is terminated (for any reason), then this metric is updated.

websocketMax Maximum number of simultaneous WebSocket requests that can be
active.

If the WLMaxWebSocketClients parameter is configured, the value will
be the lower of these:

• The configured value, OR
• 0.75 of the value of MaxRequestWorkers (Apache 2.4)

If WLMaxWebSocketClients parameter is not configured, the value will
be 0.5 of the value of MaxRequestWorkers (Apache 2.4).

For more information about the WLMaxWebSocketClients parameter,
see Tuning Oracle HTTP Server for High Throughput for WebSocket
Upgrade Requests.

websocketPercent This value is defined by the number of active WebSockets
(websocketActive) divided by the maximum number of simultaneous
WebSocket requests (websocketMax) multiplied by 100:

(websocketActive/webocketMax)*100.

Chapter 3
Understanding the DMS Metrics for the WLS Apache Plug-In

3-24

Table 3-4 (Cont.) State Metrics for the WLS OHS Plug-In Module

Metric Name Description

websocketRequests The number of WebSocket upgrade requests made. If the request URI
is an WebSocket upgrade request, this metric will be incremented.

websocketSuccess Number of WebSocket upgrade requests completed successfully. If
Oracle WebLogic Server responds to a WebSocket upgrade request
with 101 Switching Protocols, then this metric is updated.

DMS Event Metrics
A DMS Event metric counts system events. A DMS event tracks system events that have a
short duration, or where the duration of the event is not of interest but the occurrence of the
event is of interest. For a description of the Event metrics, see Table 3-5.

Table 3-5 Event Metrics for the WLS OHS Plug-In.

Metric Name Description

errConnRefused The number of CONNECTION_REFUSED errors. Indicates the number of
times the configured WebLogicHost and/or WebLogicPort is either
not reachable or not listening.

errNoResources The number of NO_RESOURCES errors. One scenario where this
exception can occur is when SSL is configured in the proxy plug-in, but
the corresponding SSL configuration is not defined in the managed
server.

errOthers The number of any other errors. For example, POST data size is greater
than the value of MaxPostSize.

errReadClient The number of READ_ERROR_FROM_CLIENT errors. Indicates the
number of times that the proxy plug-in could not read from the client
(browser).

errReadServer The number of READ_ERROR_FROM_SERVER errors. Indicates the
number of times a read operation could not be successfully performed
on Oracle WebLogic Server.

errReadTimeout The number of READ_TIMEOUT errors. An example is Oracle WebLogic
Server not responding within WLIOTimeoutSecs.

errWriteClient The number of WRITE_ERROR_TO_CLIENT errors. Indicates the number
of times that the proxy plug-in could not write to client. This can be
seen when the client sends a request but closes the connection before
receiving the response.

errWriteWLS The number of WRITE_ERROR_TO_SERVER errors. Indicates the number
of times that the proxy plug-in could not write to Oracle WebLogic
Server.

wsClientClose Number of WebSocket upgrade requests closed by client. If the client
sends a WebSocket upgrade request, and client closes the connection,
then this metric is updated.

wsErrorClose Number of WebSocket sessions terminated due to error. If there is any
error which causes the WebSocket connection to close, then this metric
is updated.

Chapter 3
Understanding the DMS Metrics for the WLS Apache Plug-In

3-25

Table 3-5 (Cont.) Event Metrics for the WLS OHS Plug-In.

Metric Name Description

wsNoUpgrade The number of times the WebSocket upgrade request was rejected.
The response to WebSocket upgrade request is not "101 Switching
Protocols". This can happen when the upgrade request is sent to
Oracle WebLogic Server that does not support WebSockets (Oracle
WebLogic Server version 12.1.2 or earlier).

wsServerClose Number of WebSocket upgrade requests closed by server. If Oracle
WebLogic Server initiates a close of WebSocket communication, then
this metric is updated. For example, timeout or no communication (by
default, 5 minutes) after upgrading the request.

DMS PhaseEvent Metrics
A DMS PhaseEvent metric measures the time spent in a specific section of code that has a
beginning and an end. A PhaseEvent tracks time in a method or in a block of code. For each
phase event, an "active count", "completed count", "total time", "min time", "max time", and
"average time" value is included. For a description of the PhaseEvent metrics, see Table 3-6.

Table 3-6 PhaseEvent Metrics for the WLS OHS Plug-In

Metric Name Description

websocketPhase WebSocket communication in progress. The phase (time) between
"WebSocket upgrade succeeded" and "WebSocket connection closed"

wlsWait The phase (time) between "the request sent to Oracle WebLogic
Server" and "Waiting for response".

Support and Patching
When you encounter issues with a proxy plug-in, always report the version of the proxy plug-in
you are using. You can find this information in the Apache log.

The version information looks like the following snippet:

WebLogic Server Plugin version 14.1.2.0.0 <WLSPLUGINS_XXXX_XXXX_XXXXX.XXXX>

Note:

On the Apache Web Server for Linux, you can also obtain the proxy plug-in version
by issuing the following command:

$ strings ${PLUGINS_HOME}/lib/mod_wl_24.so | grep -i wlsplugins

A patch for a proxy plug-in will typically contain one or more shared objects to be replaced.
Ensure to backup your original files as you replace them with those in the patch. Validate that
the patch has been correctly updated by checking the version string in the logs.

You can obtain the latest updates for security fixes from the Critical Patch Update (CPU) Patch
Advisor for Oracle Fusion Middleware (Doc ID 2806740.2).

Chapter 3
Support and Patching

3-26

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2806740.2#WLPROXY

Deprecated Directives for Apache HTTP Server
The WLLogFile and Debug directives are deprecated. If the configuration uses these directives,
a note appears during startup.

[Thu May 14 23:22:19 2015] [warn] weblogic: The Debug directive is ignored. The web
server log level is used instead.

For information about log files, see Verifying the Log File.

Chapter 3
Deprecated Directives for Apache HTTP Server

3-27

4
Configuring Security

This chapter describes how to work with security for proxy plug-ins.
This chapter includes the following topics:

• Using SSL with Proxy Plug-Ins
You can use the Transport Layer Security (TLS) or Secure Sockets Layer (SSL) protocols
to protect the connection between the proxy plug-in and Oracle WebLogic Server. The
TLS/SSL protocol provides confidentiality and integrity to the data passed between the
proxy plug-in and Oracle WebLogic Server.

• Configuring Perimeter Authentication
Use perimeter authentication to secure Oracle WebLogic Server applications that are
accessed by using the proxy plug-in.

• About Federal Information Processing Standards
Federal Information Processing Standards (FIPS) is not supported in the 14.1.2.0.0 WLS
proxy plug-ins.

Using SSL with Proxy Plug-Ins
You can use the Transport Layer Security (TLS) or Secure Sockets Layer (SSL) protocols to
protect the connection between the proxy plug-in and Oracle WebLogic Server. The TLS/SSL
protocol provides confidentiality and integrity to the data passed between the proxy plug-in and
Oracle WebLogic Server.

The proxy plug-in does not use the transport protocol (HTTP or HTTPS) specified in the HTTP
request (usually by the browser) to determine whether to use TLS/SSL to protect the
connection between the proxy plug-in and Oracle WebLogic Server; that is, the proxy plug-in is
in no way dependent on whether the HTTP request (again, usually from the browser) uses
HTTPS (TLS/SSL).

Instead, the proxy plug-in uses TLS/SSL parameters that you configure for the proxy plug-in,
as described in SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins, to determine
when to use SSL:

• WebLogicSSLVersion - Specifies the TLS/SSL protocol version to use for communication
between the proxy plug-in and Oracle WebLogic Server.

• WLSSLWallet - The Oracle WebLogic Server 14.1.2.0.0 Proxy Plug-ins use Oracle wallets
to store SSL configuration information.

– Use the WLSSLWallet TLS/SSL configuration parameter to configure the wallets. The
orapki utility is provided in the proxy plug-in distribution for this purpose.

– The orapki utility manages public key infrastructure (PKI) elements, such as wallets
and certificate revocation lists, on the command line so the tasks it performs can be
incorporated into scripts. This enables you to automate many of the routine tasks of
maintaining a PKI. See Using the orapki Utility for Certificate Validation and CRL
Management.

• SecureProxy - The SecureProxy parameter determines whether SSL is enabled.

4-1

Note:

For information about configuring earlier versions of SSL/TLS on the Oracle
WebLogic Server side, see Using the weblogic.security.SSL.protocolVersion System
Property in Administering Security for Oracle WebLogic Server.

In the case of two-way TLS/SSL, the proxy plug-in (the TLS/SSL client) automatically uses
two-way TLS/SSL when Oracle WebLogic Server is configured for two-way TLS/SSL and
requests a client certificate. For more information about configuring TLS/SSL in Oracle
WebLogic Server, see Set Up TLS in Oracle WebLogic Remote Console Online Help.

If a client certificate is not requested, the proxy plug-ins default to one-way SSL.

Note:

If an Oracle WebLogic Server 14.1.2.0.0 product is installed on the same system as
the WLS OHS Plug-In, the ORACLE_HOME variable must point to a valid installation;
otherwise, the proxy plug-in fails to initialize SSL.

For example, if ORACLE_HOME is invalid because the product was not cleanly removed,
the proxy plug-in fails to initialize TLS/SSL.

This section includes the following topics:

• Configuring Libraries for SSL

• Configuring a Proxy Plug-In for One-Way SSL

• Configuring a Two-Way SSL Between the Proxy Plug-In and Oracle WebLogic Server

• Replacing Certificates Signed Using the MD5 Algorithm

• Certificates Signed with MD5 Algorithm Not Supported

• Using Certificates Signed with RSASSA-PSS Signature Algorithm

Configuring Libraries for SSL
WLS proxy plug-ins have been rewritten to use OpenSSL libraries and removed the
dependency on Oracle's NZ libraries. Therefore, some minor changes are necessary for the
existing deployments to use SSL for communication with Oracle WebLogic Server as
described in Configuring Environment Variables.

Note:

The current implementation of the WLS OHS Plug-In does not support the use of
multiple certificate files.

• Configuring Environment Variables

Chapter 4
Using SSL with Proxy Plug-Ins

4-2

Configuring Environment Variables
The WLS proxy plug-ins use an Oracle Wallet to store SSL information such as private key,
user certificate chain, and the list of trusted certificates. OpenSSL APIs cannot read the
content of such wallets. Therefore, it is necessary to export the content of a user-supplied
wallet to a format that OpenSSL APIs can read. The content of the wallet will be exported as
PEM formatted files on the file system. For each user-supplied wallet, three files may be
created in the same file system path where the auto-login wallet is present:

• key.pem: A pass-phrase protected file containing the private key in PEM format, if a private
key is present in the wallet.

• user.crt: User certificate in PEM format, if a user certificate is present in the wallet.

• trusted_certs.crt: Chain of trusted certificates in PEM format.

Configuring a Proxy Plug-In for One-Way SSL
Perform the following steps to configure one-way SSL.

In these steps, you run the keytool commands on the system on which Oracle WebLogic
Server is installed, and you run the orapki commands on the system on which the 14.1.2.0.0
WLS proxy plug-ins are installed.

Note:

The examples in this section use the Oracle WebLogic Server demo CA. If you are
using the proxy plug-in a production environment, ensure that trusted CAs are
properly configured for the proxy plug-in and for Oracle WebLogic Server.

1. Configure Oracle WebLogic Server for SSL. See Configuring SSL in Administering
Security for Oracle WebLogic Server.

2. Create an Oracle Wallet, by using the orapki utility.

orapki wallet create -wallet mywallet -auto_login_only

See Using the orapki Utility for Certificate Validation and CRL Management in the
Administering Oracle Fusion Middleware.

Chapter 4
Using SSL with Proxy Plug-Ins

4-3

Note:

Only the user who creates the wallet (or for Windows, the account SYSTEM) has
access to the wallet.

This is typically sufficient for the WLS Apache Plug-In because Apache HTTP
Server runs as the account SYSTEM on Windows, and as the user who creates it
on UNIX.

If the user who runs the WLS Apache Plug-In is different from the user who
creates the wallet (or for Windows, the account SYSTEM), you need to grant the
user access to the wallet by running the command cacls (Windows) or chmod
(UNIX) after you create the wallet. For example:

cacls <wallet_path>\cwallet.sso /e /g IUSR:R

3. Import the Oracle WebLogic Server trust certificate into the Oracle Wallet.

orapki wallet add -wallet mywallet -trusted_cert -cert <cert_file_name> -
auto_login_only

4. Complete these steps if the version of the Oracle WebLogic Server instances in the back
end.

a. Open the WebLogic Remote Console.

b. In the Edit Tree, go to Environment, then:

• If the server instances to which you want to proxy requests from Apache HTTP
Server or Oracle HTTP Server are in a cluster, select Clusters.

• Otherwise, select Servers.

c. Select the server or cluster to which you want to proxy requests from Apache HTTP
Server or Oracle HTTP Server.

d. Click Show Advanced Fields.

e. Do one of the following:

To... Turn on...

Enable one-way SSL WebLogic Plug-In Enabled

Enable two-way SSL where client certificates are used to
authenticate

Client Cert Proxy Enabled

Enable two-way SSL with client certificates. Both

If you selected Servers (and not Clusters), repeat this step for every server to which
you want to proxy requests from Apache HTTP Server or Oracle HTTP Server.

f. Click Save.

For the change to take effect, you must restart the server instances.

5. Send a request to http://host:port/mywebapp/my.jsp from the browser and validate the
response.

Chapter 4
Using SSL with Proxy Plug-Ins

4-4

Configuring a Two-Way SSL Between the Proxy Plug-In and Oracle
WebLogic Server

When Oracle WebLogic Server is configured for a two-way SSL, the proxy plug-in forwards the
user certificate to Oracle WebLogic Server. A two-way SSL can be established as long as
Oracle WebLogic Server can validate the user certificate.

In these steps, you run the keytool commands on the system on which Oracle WebLogic
Server is installed. You run the orapki commands on the system on which the 14.1.2.0.0
proxy plug-ins are installed.

To configure a two-way SSL:

1. Perform the steps described in Configuring a Proxy Plug-In for One-Way SSL.

2. Set the Oracle WebLogic Server SSL configuration options that require the presentation of
client certificates (for two-way SSL).

3. From the Oracle wallet, generate a certificate request:

a. Add the certificate request to the Oracle wallet.

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|1024|
2048

b. Export the certificate request from Oracle wallet:

orapki wallet export -wallet wallet_location -dn certificate_request_dn
-request certificate_request_filename

See Exporting Certificates and Certificate Requests from Oracle Wallets with orapki in
Administering Oracle Fusion Middleware.

4. Use the certificate request exported in Step 3 to create a certificate by using a certificate
authority (CA) or some other mechanism.

5. Import all trusted certificates in the certificate chain of a user certificate before adding a
user certificate. The certificate chain includes the intermediate certificate authorities and
the root certificate authority.

Import the root CA certificate as a trusted certificate by using the following command:

orapki wallet add -wallet wallet_location -trusted_cert -cert
root_certificate_location

Import the intermediate CA certificate as a trusted certificate. If there are more than one
intermediate CA certificate, execute the following command by changing the location for
the -cert option for each intermediate CA.

orapki wallet add -wallet wallet_location -trusted_cert -cert
intermediate_certificate_location

See Adding Certificates and Certificate Requests to Oracle Wallets with orapki in the
Database Security Guide.

Chapter 4
Using SSL with Proxy Plug-Ins

4-5

6. Import the certificate signed by CA as a user certificate to Oracle wallet.

orapki wallet add -wallet wallet_location -user_cert -cert
certificate_location

7. Import the CA certificate as a trusted certificate in the WebLogic trust store. Oracle
WebLogic Server needs to trust the certificate.

keytool -file certificate_location -importcert -trustcacerts -keystore
DemoTrust.jks -storepass <passphrase>

Replacing Certificates Signed Using the MD5 Algorithm
When using SSL to connect to Oracle WebLogic Server, ensure that any certificate request or
certificates signed with MD5 are replaced by SHA-2 signed certificates in the wallet; otherwise,
the server fails to start.

This section includes the following topics:

• Checking the Certificate Signing Algorithm

• Creating a New Wallet to Add Certificates Signed with the SHA-2 Algorithm

• Replacing the Existing Certificates with SHA-2 Signed Certificates

Checking the Certificate Signing Algorithm
To check the certificate signing algorithm:

1. Use the orapki command to obtain the Distinguished Name (DN) for an SSL certificate.

${PLUGINS_HOME}/bin/orapki wallet display -wallet <wallet__location>

For example:

• Content of the wallet with a CA-signed user certificate:

${PLUGINS_HOME}/bin/orapki wallet display -wallet /tmp/test_wallet

Sample output:

Oracle PKI Tool: Version 23.0.0.0.0
Copyright (c) 2004, 2024, Oracle and/or its affiliates. All rights reserved.

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=FOR TESTING ONLY
Subject: CN=root_ca,OU=O,O=FOR TESTING ONLY

In this example, the user certificate is siged with an intermediate CA. Hence, you see a
complete trust chain in the trusted certificate.

– The Distinguished Name for user certificates is "CN=localhost,O=FOR TESTING
ONLY"

Chapter 4
Using SSL with Proxy Plug-Ins

4-6

– The Distinguished Name for intermediate certificates is "CN=im_ca,OU=O,O=FOR
TESTING ONLY"

– The Distinguished Name for root certificates is: "CN=root_ca,OU=O,O=FOR TESTING
ONLY"

• Content of the wallet with a self-signed user certificate:

${PLUGINS_HOME}/bin/orapki wallet display -wallet /tmp/test_wallet

Sample output:

Oracle PKI Tool : Version 23.0.0.0.0
Copyright (c) 2004, 2024, Oracle and/or its affiliates. All rights reserved.

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY

The Distinguished Name for the self-singed user certificates is "CN=localhost,O=FOR
TESTING ONLY"

2. Export the certificates present in the wallet.

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location> -dn
'DN_string' -cert <certificate_file>

For example:

• Export the user certificate.

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location> -dn
'CN=localhost,O=FOR TESTING ONLY' -cert user.crt

For more information about this step, see orapki wallet export in the Database Security
Guide.

• Export the intermediate and root CA certificates.

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location> -dn
'CN=im_ca,OU=O,O=FOR TESTING ONLY' -cert im_ca.crt

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location> -dn
'CN=root_ca,OU=O,O=FOR TESTING ONLY' -cert root_ca.crt

3. Check the signature algorithm used to sign <certificate_file> using the keytool:

$JAVA_HOME/bin/keytool -printcert -file <certificate_file>

For example, if the certificate is signed with MD5, the Signature algorithm name is set to
MD5withRSA, as shown in the following sample command output:

$JAVA_HOME/bin/keytoolkey -printcert -file user.crt

Chapter 4
Using SSL with Proxy Plug-Ins

4-7

Sample output:

Owner: CN=localhost,OU=O,O=FOR TESTING ONLY
Issuer: CN=localhost,OU=O,O=FOR TESTING ONLY
Serial number: –--
Valid from: –--
Certificate fingerprints:
 MD5: –--
 SHA1: –--
 SHA256: –--
 Signature algorithm name: MD5withRSA
 Version: 1

Note:

If any of the user and trusted certificates in the chain are signed with the MD5
algorithm, you can either create a new wallet with new certificates signed with the
SHA-2 algorithm or replace the existing certificates with certificates signed with
the SHA-2 signed algorithm.

The list of parameters used in the orapki commands:

Table 4-1 Command Parameters

Parameter Description

-wallet Specifies the wallet location.

-dn Specifies the distinguished name of the certificate.

-cert Specifies the directory location where the tool
places the exported certificate.

Creating a New Wallet to Add Certificates Signed with the SHA-2 Algorithm
To create a new wallet:

1. Create a wallet.

${PLUGINS_HOME}/bin/orapki orapki wallet create -wallet
<wallet_location> -auto_login_only

For example:

${PLUGINS_HOME}/bin/orapki wallet create -wallet test_wallet -
auto_login_only

Sample output:

Operation is successfully completed.

Check the content of test_wallet:

$ls test_wallet

Chapter 4
Using SSL with Proxy Plug-Ins

4-8

cwallet.sso

For more information about creating wallets with orapki, see Creating and Viewing
Oracle Wallets with orapki in Administering Oracle Fusion Middleware.

2. Add the user certificate to the wallet. User certificates can be self-signed or CA-signed. For
production, Oracle recommends to use a CA-signed certificate.

a. Add a self-signed user certificate.

i. Run the following command:

${PLUGINS_HOME}/bin/orapki wallet add -wallet <wallet_Location> -dn
'DN_string' -keysize 512|1024|2048|4096|8192|16384 -sign_alg sha256
-self_signed -validity 9125 [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -dn
'CN=localhost,O=FOR TESTING ONLY' -keysize 2048 -sign_alg sha256 -
self_signed -validity 9125 -auto_login_only

Sample output:

Operation is successfully completed.
ii. List the content of the wallet after adding self-signed certificate to the wallet:

${PLUGINS_HOME}/bin/orapki wallet display -wallet <wallet_location>

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY

For more information about adding certificates to a wallet, see Adding a Root
Certificate to an Oracle Wallet in Administering Oracle Fusion Middleware.

b. Add a CA-signed user certificate.

i. Add the certificate request to the Oracle wallet.

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|
1024|2048 [-pwd <pwd>] | [-auto_login_only]

Chapter 4
Using SSL with Proxy Plug-Ins

4-9

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -dn
"CN=localhost,O=testing_only" -keysize 2048 -auto_login_only

Sample output:

Operation is successfully completed

Wallet content after adding certificate request
${PLUGINS_HOME}/bin/orapki wallet display -wallet /scratch/shichoud/
test_wallet

Requested Certificates:
Subject: CN=localhost,O=testing_only
User Certificates:
Trusted Certificates:
...

ii. Export the certificate request from Oracle wallet:

orapki wallet export -wallet wallet_location -dn
certificate_request_dn -request certificate_request_filename

For example:

${PLUGINS_HOME}/bin/orapki wallet export -wallet test_wallet -dn
"CN=localhost,O=testing_only" -request user.csr

Sample output:

Operation is successfully completed.

To view the content of the certificate, run the following command:

cat user.csr

Sample output:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIICcDCCAVgCAQAwKzEVMBMGA1UECgwMdGVzdGluZ19vbmx5MRIwEAYDVQQDEwls
...
...
WnDd1cweMAH+1/D1C4Gi7Gvhi2Axw18H60lmZcU3JXv2bhu8QxZI9N6sI1DjU2Mg
l6EH2w==

See Exporting Certificates and Certificate Requests from Oracle Wallets with
orapki in Administering Oracle Fusion Middleware.

iii. Use the certificate request exported in Step 3 to create a certificate by using a
certificate authority (CA) or some other mechanism.

iv. Import all the trusted certificates in the certificate chain of a user certificate before
adding a user certificate. The certificate chain includes the intermediate certificate
authorities and the root certificate authority.

Chapter 4
Using SSL with Proxy Plug-Ins

4-10

• Import the root CA certificate as a trusted certificate by using the following
command:

orapki wallet add -wallet wallet_location -trusted_cert -cert
root_certificate_location [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert Root_CA.crt -auto_login_only

Sample output:

Operation is successfully completed.
• Import the intermediate CA certificate as a trusted certificate. If there are more

than one intermediate CA certificate, execute the following command by
changing the location for the -cert option for each intermediate CA.

orapki wallet add -wallet wallet_location -trusted_cert -cert
intermediate_certificate_location [-pwd <pwd>] | [-
auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert IM_CA.crt -auto_login_only

Sample output:

Operation is successfully completed.
Display the wallet after importing the root CA and the intermediate CA:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
Subject: CN=localhost,O=testing_only
User Certificates:
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

v. Import the certificate signed by CA as a user certificate to the Oracle wallet.

orapki wallet add -wallet wallet_location -user_cert -cert
certificate_location [-pwd <pwd>] | [-auto_login_only]

Chapter 4
Using SSL with Proxy Plug-Ins

4-11

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
user_cert -cert user_1.crt -auto_login_only

Sample output:

Operation is successfully completed.

Wallet content after adding the user certificate signed from the intermediate CA:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=testing_only
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

3. Add the back-end server certificate as a trusted certificate.

a. If the back-end server certificate is a self-singed certificate, then import it as a trusted
certificate.

i. View the back-end server certificate:

${PLUGINS_HOME}/bin/orapki cert display -cert
<backend_server_certificate> -complete

For example:

${PLUGINS_HOME}/bin/orapki cert display -cert backend.crt -complete

Sample output:

{ fingerprint = ... holder = ... CN=Backend_Server,O=testing_only, issuer =
CN=Backend_Server,O=testing_only, ...
]} } }

ii. Import the back-end server certificate as a trusted certificate to the wallet:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet --
trusted_cert -cert <back_end_sever_crt> -auto_login_only

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet --
trusted_cert -cert <back_end_sever_crt> -auto_login_only

Sample output:

Chapter 4
Using SSL with Proxy Plug-Ins

4-12

Operation is successfully completed.
iii. Display the wallet content after adding the back-end server certificate as a trusted

certificate:

${PLUGINS_HOME}/bin/orapki wallet display -wallet <wallet_path>

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
User Certificates:
...
Trusted Certificates:
...
Subject: CN=Backend_Server,O=testing_only

b. If the back-end server certificate is signed with a CA authority, then import the trust
chain:

i. If the back-end server certificate is signed by the intermediate CA, then import the
root CA and the intermediate CA certificates as trusted certificates to the wallet:

${PLUGINS_HOME}/bin/orapki wallet add -wallet <wallet_Location> -
trusted_cert -cert <CA_certificate> -auto_login_only

• Example 1:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert Root_CA.crt -auto_login_only

Sample output:

Operation is successfully completed.
• Example 2:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert IM_CA.crt -auto_login_only

Sample output:

Operation is successfully completed.
ii. Display the wallet content after adding the back-end server trust chain:

${PLUGINS_HOME}/bin/orapki wallet display -wallet <wallet_location>

Chapter 4
Using SSL with Proxy Plug-Ins

4-13

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
User Certificates:
...
Trusted Certificates:
...
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

The list of parameters used in the orapki commands:

Table 4-2 Command Parameters

Parameter Description

-wallet Specifies the wallet location.

-dn Specifies the distinguished name of the certificate.

-trusted_cert Specifies that it is a trusted certificate.

-user_cert Specifies that it is a user certificate.

-pwd Specifies the wallet password if the wallet is
password protected.

-auto_login_only Specifies if the wallet is auto_login_only or not.

-request Specifies the location of the certificate request for
the certificate you are creating.

-cert Specifies the directory location of the certificate.

-keysize Specifies the key size for the certificate.

-self_signed Causes the tool to create a root certificate.

-validity Specifies the number of days, starting from the
current date, that the root certificate will be valid.

-sign_alg Specifies the sign algorithm to be used.

Replacing the Existing Certificates with SHA-2 Signed Certificates
If the wallet has a mix of certificates which are signed either with the MD5 or the SHA-2
algorithm, you may want to remove only those certificates which are signed with the MD5
algorithm and keep the certificates that are signed with the SHA-2 algorithm.

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:

Chapter 4
Using SSL with Proxy Plug-Ins

4-14

Subject: CN=localhost,O=FOR TESTING ONLY
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN
Subject: CN=test_SHA2_signed_cert,OU=O,O=oracle,C=IN

test_wallet contains following certificates signed with MD5 algorithm :
Self-signed user certificate : Subject: CN=localhost,O=FOR TESTING ONLY
Trusted certificates :
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

After you have identified the certificate request by which the user and trusted certificates are
signed with MD5, complete the following steps to remove them from wallet:

1. Remove the CA-signed or the self-signed user certificate:

a. Check whether the certificate is self-signed or CA-signed:

i. Display the wallet content and get the Distinguished Name:

${PLUGINS_HOME}/bin/orapki wallet display -wallet
<wallet_location>

For example:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Trusted Certificates:
Subject: CN=localhost,O=FOR TESTING ONLY
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN
Subject: CN=test_SHA2_singed_cert,OU=O,O=oracle,C=IN

The Distinguished Name for the user certificates is "CN=localhost,O=FOR TESTING
ONLY"

The display -wallet command shows the user certificate and the trusted
certificate present in the wallet.

ii. Export the user certificate to a file.

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location>
-dn 'DN_string' -cert <certificate_file>

For example:

${PLUGINS_HOME}/bin/orapki wallet export -wallet <wallet_Location>
-dn 'CN=localhost,O=FOR TESTING ONLY' -cert user.crt

iii. View the user certificate.

${PLUGINS_HOME}/bin/orapki cert display -cert <user_cert>

Chapter 4
Using SSL with Proxy Plug-Ins

4-15

For example:

• For a self-signed certificate, the Subject and Issuer names are same, as
given below:

${PLUGINS_HOME}/bin/orapki cert display -cert user.crt

Sample output:

Subject: CN=localhost,O=FOR TESTING ONLY
Issuer: CN=localhost,O=FOR TESTING ONLY
Valid Until: Thu Oct 07 15:15:55 UTC 2117

• For a CA-signed certificate, the Subject and Issuer names are different, as
given below:

${PLUGINS_HOME}/bin/orapki cert display -cert user.crt

Sample output:

Subject: CN=localhost,O=FOR TESTING ONLY
Issuer: CN=im_ca,OU=O,O=FOR TESTING ONLY
Valid Until: Thu Oct 07 15:15:55 UTC 2117

b. Remove the self-signed certificate from the trusted and user certificate lists and also
remove the certificate request associated with the self-signed certificate:

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -trusted_cert [-pwd <pwd>] | [-auto_login_only]

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -user_cert [-pwd <pwd>] | [-auto_login_only]

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -cert_req [-pwd <pwd>] | [-auto_login_only]

c. If a user certificate is CA-signed, then remove the user certificate:

${PLUGINS_HOME}/bin/orapki wallet remove -wallet <wallet_location> -dn
'DN_string' -user_cert [-pwd <pwd>] | [-auto_login_only]

d. Remove the trusted certificate signed using the MD5 algorithm:

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -trusted_cert [-pwd < pwd >] | [-auto_login_only]

e. Remove the certificate request signed using the MD5 algorithm:

${PLUGINS_HOME}/bin/orapki wallet remove -wallet < wallet_location > -
dn 'DN_string' -cert_req [-pwd <pwd>] | [-auto_login_only]

2. Create and import the certificates to the wallet:

Chapter 4
Using SSL with Proxy Plug-Ins

4-16

a. Add a self-signed user certificate signed with the SHA-2 algorithm:

${PLUGINS_HOME}/bin/orapki wallet add -wallet <wallet_Location> -dn
'DN_String' -keysize 2048 -sign_alg sha256 -self_signed -validity 9125
[-pwd <pwd>] | [-auto_login_only]

b. Add a CA-signed user certificate signed with the SHA-2 algorithm:

i. Add the certificate request to the Oracle wallet.

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|
1024|2048 [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -dn
"CN=localhost,O=testing_only" -keysize 2048 -auto_login_only

Sample output:

Operation is successfully completed

Wallet content after adding certificate request
${PLUGINS_HOME}/bin/orapki wallet display -wallet /scratch/shichoud/
test_wallet
Requested Certificates:
Subject: CN=localhost,O=testing_only
User Certificates:
Trusted Certificates:

ii. Export the certificate request from Oracle wallet:

orapki wallet export -wallet wallet_location -dn
certificate_request_dn -request certificate_request_filename

For example:

${PLUGINS_HOME}/bin/orapki wallet export -wallet test_wallet -dn
"CN=localhost,O=testing_only" -request user.csr

Sample output:

Operation is successfully completed.

To view the content of the certificate, run the following command:

cat user.csr

Sample output:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIICcDCCAVgCAQAwKzEVMBMGA1UECgwMdGVzdGluZ19vbmx5MRIwEAYDVQQDEwls
...
...
WnDd1cweMAH+1/D1C4Gi7Gvhi2Axw18H60lmZcU3JXv2bhu8QxZI9N6sI1DjU2Mg
l6EH2w==

Chapter 4
Using SSL with Proxy Plug-Ins

4-17

See Exporting Certificates and Certificate Requests from Oracle Wallets with
orapki in Administering Oracle Fusion Middleware.

iii. Use the certificate request exported in Step 3 to create a certificate by using a
certificate authority (CA) or some other mechanism.

iv. Import all trusted certificates in the certificate chain of a user certificate before
adding a user certificate. The certificate chain includes the intermediate certificate
authorities and the root certificate authority.

• Import the root CA certificate as a trusted certificate by using the following
command:

orapki wallet add -wallet wallet_location -trusted_cert -cert
root_certificate_location [-pwd <pwd>] | [-auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert Root_CA.crt -auto_login_only

Sample output:

Operation is successfully completed.
• Import the intermediate CA certificate as a trusted certificate. If there are more

than one intermediate CA certificate, execute the following command by
changing the location for the -cert option for each intermediate CA.

orapki wallet add -wallet wallet_location -trusted_cert -cert
intermediate_certificate_location [-pwd <pwd>] | [-
auto_login_only]

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
trusted_cert -cert IM_CA.crt -auto_login_only

Display the wallet after importing the root CA and the intermediate CA:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
Subject: CN=localhost,O=testing_only
User Certificates:
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

v. Import the certificate signed by CA as a user certificate to the Oracle wallet.

orapki wallet add -wallet wallet_location -user_cert -cert
certificate_location [-pwd <pwd>] | [-auto_login_only]

Chapter 4
Using SSL with Proxy Plug-Ins

4-18

For example:

${PLUGINS_HOME}/bin/orapki wallet add -wallet test_wallet -
user_cert -cert user_1.crt -auto_login_only

Sample output:

Operation is successfully completed.

Wallet content after adding the user certificate signed from the intermediate CA:

${PLUGINS_HOME}/bin/orapki wallet display -wallet test_wallet

Sample output:

Requested Certificates:
User Certificates:
Subject: CN=localhost,O=testing_only
Trusted Certificates:
Subject: CN=im_ca,OU=O,O=oracle,C=IN
Subject: CN=root_ca,OU=O,O=oracle,C=IN

The list of parameters used in the orapki commands:

Table 4-3 Command Parameters

Parameter Description

-wallet Specifies the wallet location.

-dn Specifies the distinguished name of the certificate.

-trusted_cert Specifies that it is a trusted certificate.

-user_cert Specifies that it is a user certificate.

-cert_req Specifies that it is a certificate request.

-pwd Specifies the wallet password if the wallet is
password protected.

-auto_login_only Specifies if the wallet is auto_login_only or not.

-request Specifies the location of the certificate request for
the certificate you are creating.

-cert Specifies the directory location of the certificate.

-keysize Specifies the key size for the certificate.

-self_signed Causes the tool to create a root certificate.

-validity Specifies the number of days, starting from the
current date, that the root certificate will be valid.

-sign_alg Specifies the sign algorithm to be used.

Certificates Signed with MD5 Algorithm Not Supported
Certificates signed using MD5 algorithm are not recommended due to compromised security.

These certificates are no longer supported with the 14.1.2.0.0 WLS proxy plug-ins. The proxy
plug-ins refuse to start if MD5 certificates are present in the Oracle Wallet.

Chapter 4
Using SSL with Proxy Plug-Ins

4-19

Using Certificates Signed with RSASSA-PSS Signature Algorithm
Certificates signed with RSASSA-PSS signature algorithm are very secure and are supported
in the Oracle WebLogic Server 14.1.2.0.0 Proxy Plug-ins.

Certificates signed with RSASSA-PSS signature algorithm and private keys generated using
the RSASSA-PSS algorithm can be deployed when using TLSv1.3 for communication between
the web server and the back-end Oracle WebLogic Server.

With Oracle WebLogic Server 14.1.2.0.0 Proxy Plug-ins, you can configure an RSA certificate
with a signature algorithm of RSASSA-PSS as a user certificate for the Apache Web Server.
You can then use this certificate to function as a client certificate when the Oracle WebLogic
Server requires one for client authentication.

If you have configured Oracle WebLogic Server to use a certificate with RSASSA-PSS
signature, the Oracle WebLogic Server 14.1.2.0.0 Proxy Plug-ins support such certificates
during an SSL handshake.

Configuring Perimeter Authentication
Use perimeter authentication to secure Oracle WebLogic Server applications that are accessed
by using the proxy plug-in.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access
your Oracle WebLogic Server application, including users who access your Oracle WebLogic
Server application through the proxy plug-in. Create an Identity Assertion Provider that will
safely secure your proxy plug-in as follows:

1. Create a custom Identity Assertion Provider on your Oracle WebLogic Server application.
See How to Develop a Custom Identity Assertion Provider in Developing Security
Providers for Oracle WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the Cert token type and make
Cert the active token type. See How to Create New Token Types in Developing Security
Providers for Oracle WebLogic Server.

3. Set clientCertProxy to True in the web.xml deployment descriptor file for the Web
application.

The clientCertProxy attribute can be used with a third party proxy server, such as a load
balancer or an SSL accelerator, to enable 2-way SSL authentication. For more information
about the clientCertProxy attribute, see context-param in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure that
Oracle WebLogic Server accepts connections only from the machine on which the proxy
plug-in is running. See Using Network Connection Filters in Developing Applications with
the WebLogic Security Service.

5. The Oracle WebLogic Server Proxy Plug-ins require a trusted Certificate Authority file to
use SSL between the proxy plug-in and Oracle WebLogic Server. See Using SSL with
Proxy Plug-Ins for the steps you need to perform to configure SSL.

See Identity Assertion Providers in Developing Security Providers for Oracle WebLogic Server.

Chapter 4
Configuring Perimeter Authentication

4-20

About Federal Information Processing Standards
Federal Information Processing Standards (FIPS) is not supported in the 14.1.2.0.0 WLS proxy
plug-ins.

If FIPS is configured directly at the Oracle WebLogic Server side, and if a request is made
through the WLS proxy plug-in with a front-end Apache HTTP Server, the request will fail.

Chapter 4
About Federal Information Processing Standards

4-21

5
Parameters for Oracle WebLogic Server Proxy
Plug-Ins

Learn about the parameters that you can use to configure Oracle HTTP Server.

Note:

The parameters for the WLS proxy plug-ins should be specified in special
configuration files, which are named and formatted uniquely for each web server. For
information about the configuration files specific to the proxy plug-ins for Oracle
HTTP Server, see Configuring the Plug-In for Oracle HTTP Server.

• General Parameters for Oracle WebLogic Server Proxy Plug-Ins
The names of the general parameters for the WLS proxy plug-ins are case sensitive.

• SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins
The names of the SSL parameters for WLS proxy plug-ins are case sensitive.

General Parameters for Oracle WebLogic Server Proxy Plug-Ins
The names of the general parameters for the WLS proxy plug-ins are case sensitive.

This section includes the following topics:

• ConnectRetrySecs

• ConnectTimeoutSecs

• DebugConfigInfo

• DefaultFileName

• DynamicServerList

• ErrorPage

• FileCaching

• Idempotent

• KeepAliveEnabled

• KeepAliveSecs

• MatchExpression

• MaxPostSize

• MaxSkipTime

• PathPrepend

• PathTrim

• QueryFromRequest

5-1

• RoutingAlgorithm

• WebLogicCluster

• WebLogicHost

• WebLogicPort

• WeightUpdateInterval

• WLCookieName

• WLDNSRefreshInterval

• WLExcludePathOrMimeType

• WLForwardUriUnparsed

• WLIOTimeoutSecs

• WLLocalIP

• WLMaxWebSocketClients

• WLProtocol

• WLProxyPassThrough

• WLProxySSL

• WLProxySSLPassThrough

• WLRetryOnTimeout

• WLRetryAfterDroppedConnection

• WLServerInitiatedFailover

• WLSocketTimeoutSecs

• WLSRequest

• WLTempDir

ConnectRetrySecs
Default: 2

To specify no retries, set ConnectRetrySecs equal to ConnectTimeoutSecs. However, the proxy
plug-in attempts to connect at least twice.

You can customize the error response by using the ErrorPage parameter.

ConnectTimeoutSecs
Default: 10

Maximum time in seconds that the proxy plug-in should attempt to connect to the Oracle
WebLogic Server host. Make the value greater than ConnectRetrySecs. If ConnectTimeoutSecs
expires without a successful connection, even after the appropriate retries (see
ConnectRetrySecs), an HTTP 503/Service Unavailable response is sent to the client.

You can customize the error response by using the ErrorPage parameter.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-2

DebugConfigInfo
Default: OFF

Enables the special query parameter "__WebLogicBridgeConfig". Use it to get details about
configuration parameters from the proxy plug-in.

For example, if you enable "__WebLogicBridgeConfig" by setting DebugConfigInfo and then
send a request that includes the query string ?__WebLogicBridgeConfig, then the proxy plug-in
gathers the configuration information and run-time statistics and returns the information to the
browser. The proxy plug-in does not connect to Oracle WebLogic Server in this case.

This parameter is strictly for debugging and the format of the output message can change with
releases. For security purposes, keep this parameter turned OFF in production systems.

DefaultFileName
Default: none

If the URI is "/" then the proxy plug-in performs the following steps:

1. Trims the path specified with the PathTrim parameter.

2. Appends the value of DefaultFileName.

3. Prepends the value specified with PathPrepend.

This procedure prevents redirects from Oracle WebLogic Server.

Set the DefaultFileName to the default welcome page of the Web application in Oracle
WebLogic Server to which requests are being proxied. For example, If the DefaultFileName is
set to welcome.html, an HTTP request like "http://somehost/weblogic" becomes "http://
somehost/weblogic/welcome.html". For this parameter to function, the same file must be
specified as a welcome file in all the Web Applications to which requests are directed. See
Configuring Welcome Files in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

Note for Apache users: If you are using Stronghold or Raven versions, define this parameter
inside of a Location block, and not in an IfModule block.

DynamicServerList
Default: ON

When set to OFF, the proxy plug-in ignores the dynamic cluster list used for load balancing
requests proxied from the proxy plug-in and only uses the static list specified with the
WebLogicCluster parameter. Normally this parameter should remain set to ON.

There are some implications for setting this parameter to OFF:

• If one or more servers in the static list fails, the proxy plug-in could waste time trying to
connect to a terminated server, resulting in decreased performance.

• If you add a new server to the cluster, the proxy plug-in cannot proxy requests to the new
server unless you redefine this parameter. Oracle WebLogic Server automatically adds
new servers to the dynamic server list when they become part of the cluster.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-3

ErrorPage
Default: none

You can create your own error page that is displayed when your Web server cannot forward
requests to Oracle WebLogic Server.

The proxy plug-in redirects to an error page when the back-end server returns an HTTP 503/
Service Unavailable response and there are no servers for failover.

FileCaching
Default: ON

When set to ON, and the size of the POST data in a request is greater than 2048 bytes, the
POST data is first read into a temporary file on disk and then forwarded to Oracle WebLogic
Server in chunks of 8192 bytes. This preserves the POST data during failover, allowing all
necessary data to be repeated to the secondary if the primary goes down.

When FileCaching is ON, any client that tracks the progress of the POST will see that the
transfer has completed even though the data is still being transferred between the WebServer
and WebLogic. So, if you want the progress bar displayed by a browser during the upload to
reflect when the data is actually available on the Oracle WebLogic Server, you might not want
to have FileCaching ON.

When set to OFF and the size of the POST data in a request is greater than 2048 bytes, the
reading of the POST data is postponed until an Oracle WebLogic Server cluster member is
identified to serve the request. Then the proxy plug-in reads and immediately sends the POST
data to Oracle WebLogic Server in chunks of 8192 bytes.

Turning FileCaching OFF limits failover. If the Oracle WebLogic Server primary server goes
down while processing the request, the POST data already sent to the primary cannot be
repeated to the secondary.

Finally, regardless of how FileCaching is set, if the size of the POST data is 2048 bytes or less
the proxy plug-in will read the data into memory and use it if needed during failover to repeat to
the secondary.

• Location of POST Data Files

Location of POST Data Files
When the FileCaching parameter is set to ON and the size of the POST data in a request is
greater than 2048 bytes, the POST data is first read into a temporary file on disk, and then
forwarded to Oracle WebLogic Server in chunks of 8192 bytes. This preserves the POST data
during failover.
The temporary POST file is located under /tmp/_wl_proxy for UNIX. For Windows it is located
as follows (if WLTempDir is not specified):

• Environment variable TMP
• Environment variable TEMP
• C:\Temp

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-4

Idempotent
Default: ON

Applies to: Oracle HTTP Server, Apache HTTP Server, Microsoft IIS

Prior to WebLogic Plug-in 14.1.2.0.0, when Idempotent parameter is set to ON and if the back-
end server do not respond within WLIOTimeoutSecs, the proxy plug-ins failover if the method is
Idempotent. However, from WebLogic Plug-in version 14.1.2 for Oracle HTTP Server and
Apache HTTP Server, if the back-end server do not respond within WLIOTimeoutSecs, the
failover is controlled by WLRetryOnTimeout parameter.

The proxy plug-ins also failover if Idempotent is set to ON and the servers respond with an error
such as READ_ERROR_FROM_SERVER.

If Idempotent is set to OFF, the proxy plug-ins do not failover. If you are using the Apache HTTP
Server, you can set this parameter differently for different URLs or MIME types.

Idempotent only takes effect if the request is successfully sent to Oracle WebLogic Server and
the proxy plug-in is now waiting for a response from the back-end server.

POST requests are not retried even if marked as Idempotent.

KeepAliveEnabled
Default: ON
This directive enables pooling of connections between the proxy plug-in and Oracle WebLogic
Server. Valid values are ON and OFF.

While using Apache prefork mpm, Apache web server might fail. Set KeepAliveEnabled to OFF
when using prefork mpm or use worker mpm in Apache.

Note:

If both KeepAliveEnabled and HTTP/2 are configured for a back-end connection, the
following message is generated:
KeepAliveEnabled option will be ignored since HTTP/2 connection is
enabled

KeepAliveSecs
Default: 20
The length of time after which an inactive connection between the proxy plug-in and Oracle
WebLogic Server is closed. You must set KeepAliveEnabled to true (ON when using the
Apache HTTP Server) for this parameter to be effective.

The value of this parameter must be less than or equal to the value of the Duration field set in
the Remote Console on the Server > Protocols > HTTP page, or the value set on the server
MBean with the KeepAliveSecs attribute.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-5

MatchExpression
Default: none

Use this parameter to modify the values of existing parameters or add a new parameter for a
particular configuration.

The MatchExpression parameter supports only the * and ? regular expressions

• * which matches 0 or more characters

• ? which matches exactly one character

This parameter can be configured for two scenarios.

Proxying by MIME type:

You can use this parameter in the following format to set other parameters for a particular
MIME type.

Syntax:

MatchExpression <file_extension> <param=value>|<param-value>|…

For example, the following configuration proxies *.jsp to myHost:8080:

<IfModule weblogic_module>
MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=8080
</IfModule>

Proxying by path:

You can also use this parameter in the following format to set other parameters for a particular
path.

Syntax:

MatchExpression <path> <param=value>|<param-value>|…

For example, the following configuration proxies the URIs beginning with /weblogic to
myHost:9090:

<IfModule weblogic_module>
MatchExpression /weblogic WebLogicHost=myHost|WebLogicPort=9090
</IfModule>

You can also use MatchExpression to override the parameter values, as shown above. It can
also be used to define new parameters (this is, those that have not been used in the
configuration).

For example, the configuration below proxies all the requests to myHost:8080. The URIs that
match the type jpg will be proxied to myHost:8080/images and others will be proxied to
myHost:8080.

<IfModule weblogic_module>
WLSRequest On
WebLogicHost myHost
WebLogicPort 8080
MatchExpression *.jpg PathPrepend=/images
</IfModule>

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-6

MaxPostSize
Default: 0

Maximum allowable size of POST data, in bytes. If the content-length exceeds MaxPostSize,
the proxy plug-in returns an error message. If set to 0, the size of POST data is not checked.
This is useful for preventing denial-of-service attacks that attempt to overload the server with
POST data.

MaxSkipTime
Default: 10

If Oracle WebLogic Server listed in either the WebLogicCluster parameter or a dynamic cluster
list returned from Oracle WebLogic Server fails, the failed server is marked as "bad" and the
proxy plug-in attempts to connect to the next server in the list.

MaxSkipTime sets the amount of time after which the proxy plug-in will retry the server marked
as "bad." The proxy plug-in attempts to connect to a new server in the list each time a unique
request is received (that is, a request without a cookie).

Note:

If the weighted least connection routing algorithm is chosen, Oracle recommends the
value of MaxSkipTime to be the "no of servers" times ConnectRetrySecs as shown
below:

MaxSkipTime = (no of servers) * ConnectRetrySecs

PathPrepend
Default: null

As per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

PathPrepend specifies the path that the proxy plug-in prepends to the {PATH} portion of the
original URL, after PathTrim is trimmed and before the request is forwarded to Oracle
WebLogic Server.

If you must append a File Name, use DefaultFileName parameter instead of PathPrepend.

PathTrim
Default: null

As per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

PathTrim specifies the string trimmed by the proxy plug-in from the {PATH}/{FILENAME} portion
of the original URL, before the request is forwarded to Oracle WebLogic Server. For example, if
the http://myWeb.server.com/weblogic/foo URL is passed to the proxy plug-in for parsing

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-7

and if PathTrim has been set to strip off /weblogic, before handing the URL to Oracle
WebLogic Server, the URL forwarded to Oracle WebLogic Server is http://
myWeb.server.com:7001/foo.

If you are newly converting an existing third-party server to proxy requests to Oracle WebLogic
Server using the proxy plug-in, you will need to change application paths to /foo to include
weblogic/foo. You can use PathTrim and PathPrepend in combination to change this path.

Configure the PathTrim parameter inside the <Location> tag.

The following configuration is incorrect because the PathTrim parameter is not configured
inside the <Location> tag:

<Location /weblogic>
WLSRequest On
</Location>

<IfModule mod_weblogic.c>
WebLogicHost localhost
WebLogicPort 7001
PathTrim /weblogic
</IfModule>

The following configuration is correct:

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
</Location>

The <Location> directive limits the scope of the enclosed directives by URL. See Apache
Location Directive.

QueryFromRequest
Default: OFF

When set to ON, specifies that the Apache HTTP Server use

(request_rec *)r->the_request

to pass the query string to Oracle WebLogic Server. (For more information, see the Apache
documentation.) This behavior is desirable when a Netscape version 4.x browser makes
requests that contain spaces in the query string

When set to OFF, the Apache HTTP Server uses (request_rec *)r->args to pass the query
string to Oracle WebLogic Server.

RoutingAlgorithm
Specifies how new requests are routed to Oracle WebLogic Server back-end servers.

Default: Round-Robin
Supported Values:

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-8

https://httpd.apache.org/docs/2.4/mod/core.html#location
https://httpd.apache.org/docs/2.4/mod/core.html#location

• Round-Robin - Select this algorithm to route new requests to the next server in a cluster.

• Weighted-Least-Connection - Select this algorithm to route new requests according to
intelligent load balancing which is based on the weighted least connection algorithm. This
algorithm selects the next server based on its current load capacity as determined by a
health score provided by WebLogic Server. For more information, see Support for
Intelligent Load Balancing.

Sample configuration:

<Location /app>
 WLSRequest On
 WebLogicCluster <Weblogic Managed Server 1>,<Weblogic Managed Server
2>,<Weblogic Managed Server 3> ...
 RoutingAlgorithm Weighted-Least-Connection
</Location>

Note:

Configure the WeightUpdateInterval directive to specify how frequently the
WebLogic Server Proxy Plug-in requests health scores from the back-end server.

WebLogicCluster
Required when proxying to a cluster of Oracle WebLogic Servers, or to multiple non-clustered
servers.

Default: none

The WebLogicCluster parameter is required to proxy a list of back-end servers that are
clustered, or to perform load balancing among non-clustered managed server instances.

List of Oracle WebLogic Servers that can be used for load balancing. The server or cluster list
is a list of host:port entries. If a mixed set of clusters and single servers is specified, the
dynamic list returned for this parameter will return only the clustered servers.

For the syntax for specifying the value of this parameter for Oracle HTTP Server, see
Configuring the Plug-In for Oracle HTTP Server.

If you are using SSL between the proxy plug-in and Oracle WebLogic Server, set the port
number to the SSL listen port and set the SecureProxy parameter to ON.

The proxy plug-in does a simple round-robin between all available servers. The server list
specified in this property is a starting point for the dynamic server list that the server and proxy
plug-in maintain. Oracle WebLogic Server and the proxy plug-in work together to update the
server list automatically with new, failed, and recovered cluster members.

You can disable the use of the dynamic cluster list by setting the DynamicServerList parameter
to OFF.

The proxy plug-in directs HTTP requests containing a cookie, URL-encoded session, or a
session stored in the POST data to the server in the cluster that created the cookie.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-9

WebLogicHost
Required when proxying to a single Oracle WebLogic Server.

Default: none

Oracle WebLogic Server host (or virtual host name as defined in Oracle WebLogic Server) to
which HTTP requests should be forwarded. If you are using a Oracle WebLogic cluster, use the
WebLogicCluster parameter instead of WebLogicHost.

WebLogicPort
Required when proxying to a single Oracle WebLogic Server.

Default: none

The port at which Oracle WebLogic Server host is listening for connection requests from the
proxy plug-in (or from other servers). (If you are using SSL between the proxy plug-in and
Oracle WebLogic Server, set this parameter to the SSL listen port and set the SecureProxy
parameter to ON).

If you are using a Oracle WebLogic Cluster, use the WebLogicCluster parameter instead of
WebLogicPort.

WeightUpdateInterval
Specifies how often (in seconds) the Oracle WebLogic Server Proxy Plug-in requests updates
on server weight to determine a server's capacity for new traffic.

Default: 1
When intelligent load balancing is enabled, the WeightUpdateInterval directive determines
how frequently Oracle WebLogic Server Proxy Plug-in requests updates from WebLogic Server
on the weight of each server in a cluster through the header, X-WebLogic-Request-Server-
Health-Score.

To enable intelligent load balancing, set the RoutingAlgorithm directive to Weighted-Least-
Connection .

The weight of the servers are updated when one of the following conditions is satisfied:

• The time elapsed between now and the previous weight update exceeds the value set by
WeightUpdateInterval

• The entire cluster of servers is changed

Sample configuration:

<Location /app>
 WLSRequest On
 WebLogicCluster <Weblogic Managed Server 1>,<Weblogic Managed Server
2>,<Weblogic Managed Server 3> ...
 RoutingAlgorithm Weighted-Least-Connection
 WeightUpdateInterval 3
</Location>

For improved performance, consider lowering the frequency of weight update requests.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-10

WLCookieName
Default: JSESSIONID
If you change the name of the Oracle WebLogic Server session cookie in the Oracle WebLogic
Server Web application, then you must change the WLCookieName parameter in the proxy plug-
in to the same value. The name of the Oracle WebLogic session cookie is set in the WebLogic-
specific deployment descriptor, in the <session-descriptor> element in weblogic.xml.

WLDNSRefreshInterval
Default: 0 (Lookup once, during startup)

If defined in the proxy configuration, specifies number of seconds interval at which Oracle
WebLogic Server refreshes DNS name to IP mapping for a server. This can be used if an
Oracle WebLogic Server instance is migrated to a different IP address, but the DNS name for
that server's IP remains the same. In this case, at the specified refresh interval the DNS<->IP
mapping will be updated.

WLExcludePathOrMimeType
Default: none

This parameter allows you to exclude certain requests from proxying.

This parameter can be defined locally at the Location tag level and globally. When the property
is defined locally, it does not override the global property but defines a union of the two
parameters.

WLForwardUriUnparsed
Default: OFF

When set to ON, the Oracle WebLogic Server Proxy Plug-in will forward the original URI from
the client to Oracle WebLogic Server. When set to OFF (default), the URI sent to Oracle
WebLogic Server is subjected to modification by mod_rewrite or other Web Server Plug-in
modules.

WLIOTimeoutSecs
New name for HungServerRecoverSecs.

Default: 120

Defines the amount of time the proxy plug-in waits for a response to a request from Oracle
WebLogic Server. The proxy plug-in waits for WLIOTimeoutSecs for the server to respond, and
then declares that the server is dead, and fails over to the next server. You must set the value
to a large value. If the value is less than the time the servlets take to process, you might see
unexpected results.

Minimum value: 10

Maximum value: 2147483647

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-11

WLLocalIP
Default: none

Defines the IP address (on the proxy plug-in's system) to bind to when the proxy plug-in
connects to an Oracle WebLogic Server instance running on a multihomed machine.

If WLLocalIP is not set, the TCP/IP stack will choose the source IP address.

WLMaxWebSocketClients
Default: Windows: Half of ThreadsPerChild, Non-Windows: Half of MaxRequestWorkers
Limits the number of active WebSocket connections at any instant of time.

Note:

The maximum value you can set for this parameter is 75 percent of ThreadsPerChild
(Windows) or 75 percent of MaxRequestWorkers (non-Windows). If the value specified
for this parameter is greater than the maximum allowed, it will be automatically
lowered to that maximum.

WLProtocol

Default: http/1.1
Applies to: Apache HTTP Server

Scope: Location, Server context

Supported Values:

• http/2 - for HTTP/2 protocol

Note:

WLS Apache Plug-In only.

• http/1.1 - for HTTP/1.1 protocol

This directive specifies the protocol to be used by the WLS Apache Plug-In to communicate
with the back-end server.

If the WLProtocol directive is not configured, then the WLS Apache Plug-In sends requests to
the back-end server over HTTP/1.1. If the WLProtocol is configured as HTTP/2 and the back-
end server does not support the HTTP/2 protocol, the WLS Apache Plug-In does not fallback
to HTTP/1.1 and the 503 error is returned.

WLProxyPassThrough
Default: OFF

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-12

If you have a chained proxy setup, where a proxy plug-in is running behind some other proxy
or load balancer, you must explicitly enable the WLProxyPassThrough parameter. This
parameter allows the header to be passed through the chain of proxies.

WLProxySSL
Default: OFF

Set this parameter to ON to maintain SSL communication between the proxy plug-in and Oracle
WebLogic Server when the following conditions exist:

• An HTTP client request specifies the HTTPS protocol.

• The request is passed through one or more proxy servers (including the Oracle WebLogic
Server Proxy Plug-in).

• The connection between the proxy plug-in and Oracle WebLogic Server uses the HTTP
protocol.

When WLProxySSL is set to ON, the location header returned to the client from Oracle WebLogic
Server specifies the HTTPS protocol.

WLProxySSLPassThrough
Default: OFF

If a load balancer or other software deployed in front of the web server and proxy plug-in is the
SSL termination point, and that product sets the WL-Proxy-SSL request header to true or
false based on whether the client connected to it over SSL, set WLProxySSLPassThrough to ON
so that the use of SSL is passed on to the Oracle WebLogic Server.

If the SSL termination point is in the web server where the proxy plug-in operates, or the load
balancer does not set WL-Proxy-SSL, set WLProxySSLPassThrough to OFF (default).

WLRetryOnTimeout
Default: IDEMPOTENT

Applies to: Oracle HTTP Server, Apache HTTP Server

Tells the WebLogic Plug-in whether to retry requests (including POST requests) when a
timeout occurs before the WebLogic server sends the status line. Valid arguments are:

• ALL: All requests are retried.

• IDEMPOTENT: Only requests that use idempotent methods are retried.

• NONE: No requests are retried.

• ALL_NOREAD: All requests are retried, where after sending the request nothing has been
received.

• IDEMPOTENT_NOREAD: Only requests that use idempotent methods are retried, where after
sending the request nothing has been received.

Prior to Oracle HTTP Server 14.1.2.0.0, the parameter Idempotent played a role where
IDEMPOTENT ON caused a retry in case of response timeout. However, from Oracle HTTP
Server 14.1.2.0.0 the retry due to response timeout is controlled only by the parameter
WLRetryOnTimeout.

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-13

WLRetryAfterDroppedConnection
Default: ALL

Tells the Oracle WebLogic Server Proxy Plug-ins which requests to retry when a connection is
lost before Oracle WebLogic Server sends the status line. Valid arguments are:

• ALL: All requests will be retried.

• IDEMPOTENT: Only requests using idempotent methods will be retried.

• NONE: No requests will be retried.

WLServerInitiatedFailover
Default: ON

This controls whether a 503 error response from Oracle WebLogic Server triggers a failover to
another server. Normally, the proxy plug-in will attempt to failover to another server when a 503
error response is received. When WLServerInitiatedFailover is set to OFF, the 503 error
response will be returned to the client immediately.

WLSocketTimeoutSecs
Default: 2 (must be greater than 0)

Set the timeout for the socket while connecting, in seconds. See ConnectTimeoutSecs and
ConnectRetrySecs for additional details.

WLSRequest
Default: OFF

This is an alternative to the WLSRequest On mechanism of identifying requests to be
forwarded to Oracle WebLogic Server. For example,

<Location /weblogic>
 WLSRequest ON
 PathTrim /weblogic
</Location>

The use of WLSRequest ON instead of SetHandler weblogic-handler has the following
advantages:

• Lower web server processing overhead in general

• Resolves substantial performance degradation when the web server DocumentRoot is on a
slow filesystem

• Resolves 403 errors for URIs which cannot be mapped to the filesystem due to the
filesystem length restrictions

WLTempDir
Default: /tmp

Chapter 5
General Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-14

For Apache HTTP Server, this directive specifies the location of the _wl_proxy directory for the
POST data files.

SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins
The names of the SSL parameters for WLS proxy plug-ins are case sensitive.

Note:

The SCG certificates are not supported for use with WLS proxy plug-ins. The non-
SCG certificates work appropriately and allow SSL communication between Oracle
WebLogic Server and the proxy plug-in.

KeyStore-related initialization parameters are not supported for use with Oracle
WebLogic Server Proxy Plug-in.

This section includes the following topics:

• SecureProxy

• WebLogicSSLCiphers

• WebLogicSSLVersion

• WLSSLCheckCn

• WLSSLWallet

SecureProxy
Default: OFF

Set this parameter to ON to enable the use of the SSL protocol for all communication between
the proxy plug-in and Oracle WebLogic Server. Remember to configure a port on the
corresponding Oracle WebLogic Server for the SSL protocol before defining this parameter.

This parameter may be set at two levels: in the configuration for the main server and—if you
have defined any virtual hosts—in the configuration for the virtual host. The configuration for
the virtual host inherits the SSL configuration from the configuration of the main server if the
setting is not overridden in the configuration for the virtual host.

WebLogicSSLCiphers

Ciphers Supported:

• TLSv1.3 ciphers:

– TLS_AES_256_GCM_SHA384
– TLS_AES_128_GCM_SHA256
– TLS_CHACHA20_POLY1305_SHA256

• TLSv1.2 ciphers:

– ECDHE-RSA-AES256-GCM-SHA384

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-15

– ECDHE-RSA-AES128-GCM-SHA256
– ECDHE-ECDSA-AES256-GCM-SHA384
– ECDHE-ECDSA-AES128-GCM-SHA256
Deprecated (yet available) TLSv1.2 ciphers:

– AES128-GCM-SHA256
– AES256-GCM-SHA384
– AES128-SHA256
– AES256-SHA256
– AES256-SHA
– AES128-SHA

Default: All supported ciphers

Scope: Server, VirtualHost

Applies to: Apache HTTP Server, Oracle HTTP Server

This directive accepts a space separated list of ciphers to be used between Oracle WebLogic
Server Proxy Plug-in and Oracle WebLogic Server.

Note:

• If WebLogicSSLCiphers is set to TLSv1.3 ciphers and WebLogicSSLVersion is set
to TLSv1.2, or vice versa, the following error message is thrown during the server
startup:

Error: No available SSL version. Possible Mismatch between the
configured protocol(s) and cipher(s)

• If WebLogicSSLCiphers is omitted, then the default list of ciphers is selected (that
is, all supported ciphers).

• If WebLogicSSLVersion is omitted, then the default list of protocols is selected,
which is TLSv1.2 and TLSv1.3.

• If you want to remove a particular cipher, you must explicitly set a list of ciphers
by omitting that cipher. Only the ciphers specified with the WebLogicSSLCiphers
directive will be enabled.

• A web server starts if there is at least one supported cipher in the list of ciphers
configured with the WebLogicSSLCiphers directive. If the list contains any
unsupported cipher, a warning message is displayed and the unsupported cipher
is ignored.

• Both TLSv1.2 (and below) and TLSv1.3 ciphers can be configured using the
WebLogicSSLCiphers directive. For example:

WebLogicSSLCiphers TLS_AES_256_GCM_SHA384 ECDHE-ECDSA-AES128-GCM-
SHA256

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-16

WebLogicSSLVersion
Default: TLSv1.2, TLSv1.3

Specifies the SSL protocol version to use for communication between the proxy plug-in and the
Oracle WebLogic Server. This setting need not match that of the web server's ssl.conf file.
The proxy plug-in can have its own SSL version to communicate with Oracle WebLogic Server.

The following values are accepted:

• TLSv1_2 or TLSv1.2: Uses TLS v1.2

• TLSv1_3 or TLSv1.3: Uses TLS v1.3

For example:

WebLogicSSLVersion TLSv1_2 TLSv1_3

You can define multiple protocols by using a space-separated list. The SSL protocol version
chosen is used for all the connections from the proxy plug-in to Oracle WebLogic Server.
Hence, define this parameter at the global scope.

If not configured, the proxy plug-in uses the best protocol supported by both the proxy plug-in
and Oracle WebLogic Server.

Note:

• The default minimum version of the Transport Layer Security (TLS) protocol
configured is TLSv1.2. Oracle recommends that you use TLS v1.2 or later in a
production environment.

• If WebLogicSSLCiphers is set to TLSv1.3 ciphers and WebLogicSSLVersion is set
to TLSv1.2, or vice versa, the following error message is thrown during the server
startup:

Error: No available SSL version. Possible Mismatch between the
configured protocol(s) and cipher(s)

WLSSLCheckCn

Default: OFF

Scope: Location, Server context

Set this parameter to ON to enable the host name verification. Before you do that, ensure that
the certificate meets the following requirement:

• The host name configured using the WebLogicHost or WebLogicCluster directive must
match the Common Name attribute of the SSL certificate's Distinguished Names or the
subjectAltName extension.

• The SSL certificate referred to here is the certificate configured for the Oracle WebLogic
Server Managed Server serving the request.

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-17

WLSSLWallet
Default: none

Scope: Server context, Virtual Host context

The WLSSLWallet performs one-way or two-way SSL based on how SSL is configured for
Oracle WebLogic Server. The export_wallet program exports the wallet into PEM formatted
files on the file system. For each user-supplied wallet, three files may be created in the same
file system path where only auto_login_only wallet is supported.

• key.pem: A pass-phrase protected file containing the private key in PEM format, if a private
key is present in the wallet.

• user.crt: User certificate in PEM format, if a user certificate is present in the wallet.

• trusted_certs.crt: Chain of trusted certificates in PEM format.

Set the path of an Oracle Wallet (containing an SSO wallet file) as an argument. For example:

WLSSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/
instances/${COMPONENT_NAME}/keystores/default"
The WLSSLWallet directive is allowed in the Global Server context and <VirtualHost> context
but not allowed in <Location> context. For example,

<IfModule weblogic_module>
 WLSSLWallet [Directory_Path_Of_Wallet]
...
</IfModule>
...
<Location /console>
 WLSRequest ON
 WebLogicHost [HOSTNAME]
 WebLogicPort [PORT]
 SecureProxy On
</Location>

Chapter 5
SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins

5-18

6
Troubleshooting and Tuning Oracle WebLogic
Server Proxy Plug-Ins

You might encounter some problems when using the WLS proxy plug-ins. Descriptions of how
to solve these problems are provided.

This chapter includes the following topics:

• Tuning Oracle HTTP Server for High Throughput for WebSocket Upgrade Requests
Oracle WebLogic Server 14c (14.1.2.0.0) supports deploying WebSocket applications. The
14.1.2.0.0 WLS OHS Plug-In can handle such WebSocket connection upgrade requests
and effectively proxy to WebSocket applications hosted within Oracle WebLogic Server
14c (14.1.1.0.0) and later.

• Understanding Connection Errors and Clustering Failover
When the proxy plug-in attempts to connect to Oracle WebLogic Server, the proxy plug-in
uses several configuration parameters to determine how long to wait for connections to the
Oracle WebLogic Server host and, after a connection is established, how long the proxy
plug-in waits for a response.

• Oracle WebLogic Server Session Issues

• NO_RESOURCES Errors
Occasionally, under stress conditions, a few requests might fail with the error logged in the
error log file.

• POST Data Files Issues

Tuning Oracle HTTP Server for High Throughput for WebSocket
Upgrade Requests

Oracle WebLogic Server 14c (14.1.2.0.0) supports deploying WebSocket applications. The
14.1.2.0.0 WLS OHS Plug-In can handle such WebSocket connection upgrade requests and
effectively proxy to WebSocket applications hosted within Oracle WebLogic Server 14c
(14.1.1.0.0) and later.

As a result of adding this support, a new configuration parameter WLMaxWebSocketClients
is introduced.

The WLMaxWebSocketClients parameter limits the number of active WebSocket
connections at any instant of time. The maximum value you can set for this parameter is 75
percent of ThreadsPerChild (Windows) or 75 percent of MaxRequestWorkers (non-
Windows). Hence, to tune your HTTP Server for maximum WebSocket connection upgrade
requests, set MaxRequestWorkers/ThreadsPerChild to a value that can accommodate
WebSocket connections as well. Also, ensure that WLMaxWebSocketClients is set to 75
percent of MaxRequestWorkers/ThreadsPerChild.

6-1

Understanding Connection Errors and Clustering Failover
When the proxy plug-in attempts to connect to Oracle WebLogic Server, the proxy plug-in uses
several configuration parameters to determine how long to wait for connections to the Oracle
WebLogic Server host and, after a connection is established, how long the proxy plug-in waits
for a response.

If the proxy plug-in cannot connect or does not receive a response, the proxy plug-in attempts
to connect and send the request to the other Oracle WebLogic Server instances in the cluster.
If the connection fails or there is no response from any Oracle WebLogic Server in the cluster,
an error message is sent. For an illustration of how the proxy plug-in handles failover, see
Figure 6-1.

This section includes the following topics:

• Possible Causes of Connection Failures

• Tips for Reducing CONNECTION_REFUSED Errors

• Failover with a Single, Non-Clustered Oracle WebLogic Server

• The Dynamic Server List

• Failover, Cookies, and HTTP Sessions

• Failover Behavior When Using Firewalls and Load Directors

Possible Causes of Connection Failures
Failure of the Oracle WebLogic Server host to respond to a connection request could indicate
the following problems:

• Physical problems with the host machine (such as power outages, hardware malfunction,
operating system crash, and so on).

• Network problems.

• Other server failures.

Failure of a Oracle WebLogic Server instance to respond could indicate the following problems:

• Oracle WebLogic Server is not running or is unavailable.

• A hung server.

• A database problem.

• An application-specific failure.

Tips for Reducing CONNECTION_REFUSED Errors
Under load, a proxy plug-in may receive CONNECTION_REFUSED errors from a back-end
Oracle WebLogic Server instance. For example, the following error is logged in the log file:

weblogic: Trying GET /uri at backend host 'xx.xx.xx.xx/port; got exception
'CONNECTION_REFUSED [os error=xxx, line xxxx of URL.cpp]: apr_socket_connect call failed
with error=xxx, host=xx.xx.xx.xx, port=xxxx'

Oracle WebLogic Server might have reached the maximum allowed backlog connections.
Follow these tuning tips to reduce CONNECTION_REFUSED errors:

Chapter 6
Understanding Connection Errors and Clustering Failover

6-2

• Increase the AcceptBackLog setting in the configuration of your Oracle WebLogic Server
domain.

• Decrease the time wait interval. This setting varies according to the operating system you
are using. For example, on Linux, set the net.ipv4.tcp_fin_timeout parameter to a lower
value in the /etc/sysctl.conf file.

• Increase the open file descriptor limit on your machine. This limit varies by operating
system. Using the limit (.csh) or ulimit (.sh) directives, you can make a script to increase
the limit.

Failover with a Single, Non-Clustered Oracle WebLogic Server
If you run only a single Oracle WebLogic Server instance, the proxy plug-in only attempts to
connect to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP
503 error message is returned. The proxy plug-in continues trying to connect to that same
Oracle WebLogic Server instance for the maximum number of retries as specified by the ratio
of ConnectTimeoutSecs and ConnectRetrySecs.

The Dynamic Server List
The WebLogicCluster parameter is required to proxy to a list of back-end servers that are
clustered, or to perform load balancing among non-clustered managed server instances.

In the case of proxying to clustered managed servers, when you use the WebLogicCluster
parameter to specify a list of Oracle WebLogic Servers, the proxy plug-in uses that list as a
starting point for load balancing among the members of the cluster. After the first request is
routed to one of these servers, a dynamic server list is returned containing an updated list of
servers in the cluster.

The updated list adds any new servers in the cluster and deletes any that have been shut
down, or are being suspended, or are no longer part of the cluster or that have failed to
respond to requests. This feature can be controlled by using DynamicServerList. For example,
to disable this feature, set DynamicServerList to OFF.

DynamicServerList ON is a preferred performance tuning parameter. It is useful, for example, if
a member of a cluster is temporarily down for maintenance or if administrators decide they
want to add another member, and not need to restart the web server.

Note:

If DynamicServerList is set to ON, and the list of the back-end Oracle WebLogic
Servers specified in WebLogicCluster is not in a cluster, then the behavior would be
undefined.

Failover, Cookies, and HTTP Sessions
When a request contains session information stored in a cookie or in the POST data, or
encoded in a URL, the session ID contains a reference to the specific server instance in which
the session was originally established (called the primary server). A request containing a
cookie attempts to connect to the primary server. If that attempt fails, the proxy plug-in
attempts to make a connection to the next available server in the list in a round-robin fashion.

Chapter 6
Understanding Connection Errors and Clustering Failover

6-3

That server retrieves the session from the original secondary server and makes itself the new
primary server for that same session. See Figure 6-1.

Note:

If the POST data is larger than 64K, the proxy plug-in will not parse the POST data to
obtain the session ID. Therefore, if you store the session ID in the POST data, the
proxy plug-in cannot route the request to the correct primary or secondary server,
resulting in possible loss of session data.

Figure 6-1 Connection Failover

Chapter 6
Understanding Connection Errors and Clustering Failover

6-4

In this figure, the Maximum number of retries allowed in the red loop is equal to
ConnectTimeoutSecs/ConnectRetrySecs.

Failover Behavior When Using Firewalls and Load Directors
In some configurations that use combinations of firewalls and load-directors, any one of the
servers (firewall or load-directors) can accept the request and return a successful connection
while the primary instance of Oracle WebLogic Server is unavailable. After attempting to direct
the request to the primary instance of Oracle WebLogic Server (which is unavailable), the
request is returned to the proxy plug-in as "connection reset."

Requests running through combinations of firewalls (with or without load-directors) are handled
by Oracle WebLogic Server. In other words, responses of connection reset fail over to a
secondary instance of Oracle WebLogic Server. Because responses of connection reset fail
over in these configurations, servlets must be idempotent. Otherwise duplicate processing of
transactions may result.

Oracle WebLogic Server Session Issues
The WLS proxy plug-in routes the requests to back-end Oracle WebLogic Server or cluster.
Oracle WebLogic Server maintains sessions so that subsequent requests from the same client
are routed to the same server. However, due to various reasons, if the WLS proxy plug-in
cannot communicate with the Oracle WebLogic Server server, the request is handled in the
following ways:

• If the request is routed to a single Oracle WebLogic Server instance, the WLS proxy plug-
in continues trying to connect to that same Oracle WebLogic Server instance for the
maximum number of retries as specified by the ratio of ConnectTimeoutSecs and
ConnectRetrySecs. If all attempts fail, an HTTP 503 error message is returned back to the
client.

• If the request is routed to the WebLogic cluster, the current Oracle WebLogic Server is
marked as bad, and the request is routed to the next available Oracle WebLogic Server. If
all attempts fail, an HTTP 503 error message is returned back to the client.

In addition to sending a HTTP 503 error message, the following is displayed as a response in
the HTTP client:

Failure of Web Server bridge:
No backend server available for connection: timed out after xx seconds or idempotent set
to OFF or method not idempotent.

NO_RESOURCES Errors
Occasionally, under stress conditions, a few requests might fail with the error logged in the
error log file.

The following error is logged in the log file:

weblogic: *******Exception type [NO_RESOURCES] (apr_socket_connect call failed with
error=70007, host=xx.xx.xx.xx, port=xxxx) raised at line xxxx of URL.cpp

This usually occurs if Oracle WebLogic Server is too busy to respond to the connect request
from the WLS proxy plug-in. This can be resolved by setting WLSocketTimeoutSecs to a higher
value. This allows the WLS proxy plug-in to wait longer for the connect request to be
responded to by the Oracle WebLogic Server.

Chapter 6
Oracle WebLogic Server Session Issues

6-5

POST Data Files Issues
The temporary POST file is located under /tmp/_wl_proxy for UNIX. For Windows it is located
as follows (if WLTempDir is not specified):

• Environment variable TMP
• Environment variable TEMP
• C:\Temp
The /tmp/_wl_proxy is a fixed directory and is owned by the HTTP Server user. When there
are multiple HTTP Servers installed by different users, some HTTP Servers might not be able
to write to this directory. This condition results in an error.

To correct this condition, use the WLTempDir parameter to specify a different location for the
_wl_proxy directory for POST data files.

Chapter 6
POST Data Files Issues

6-6

	Contents
	Preface
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	1 Overview of Oracle WebLogic Server Proxy Plug-Ins
	What are Oracle WebLogic Server Proxy Plug-Ins?
	Availability of Oracle WebLogic Server Proxy Plug-Ins
	New Features of the 14.1.2.0.0 Proxy Plug-Ins
	Support for HTTP/2 Protocol
	Support for Intelligent Load Balancing
	Security Improvements

	Features Inherited from Previous 12c Releases

	2 Configuring the Plug-In for Oracle HTTP Server
	Preparing for Configuring the WLS OHS Plug-In
	Setting the WebLogic Plug-In Enabled Parameter
	Understanding the WebLogic Plug-In Enabled Parameter

	Configuring the WLS OHS Plug-In Using Fusion Middleware Control
	Task 1: Navigate to the mod_wl_ohs Configuration Page
	Task 2: Specify the Configuration Settings
	Task 3: Configure Expression Overrides or Location Overrides (Optional)
	Task 4: Apply Your Changes
	Using the Search Function
	Using the AutoFill Function

	Configuring the WLS OHS Plug-In Manually
	Examples of <IfModule weblogic_module> Element Configurations

	Configuring IPv6 with Proxy Plug-Ins
	Next Steps After Installing the 14.1.2.0.0 WLS OHS Plug-In
	About HTTP Header Case Handling

	Understanding WLS OHS Plug-In Performance Metrics
	Configuring DMS Metrics for the WLS OHS Plug-In
	Viewing Performance Metrics for the WLS OHS Plug-In
	DMS State Metrics
	DMS Event Metrics
	DMS PhaseEvent Metrics

	Deprecated Directives for Oracle HTTP Server

	3 Installing and Configuring the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server
	Installing the WLS Apache Plug-In
	Installation Prerequisites
	Obtaining the WLS Apache Plug-In
	Java Requirements
	Apache HTTP Server Installation
	Oracle WebLogic Server Installation
	Setting the Environment Variables for the WLS Apache Plug-In
	Installing Microsoft Redistributable Package 2015-2022

	Installing the WLS Apache Plug-In
	Next Steps After Installing the WLS Apache Plug-In
	Third-Party Software Dependencies
	About HTTP Header Case Handling
	Unsupported Use Cases

	Configuring the WLS Apache Plug-In
	Configuring the httpd.conf File
	Task 1: Configure MIME Requests
	Configuring Proxy Requests by MIME Type
	Configuring Proxy Requests by Path

	Task 2: Define Additional Parameters for the WLS Apache Plug-In
	Task 3: Enable HTTP Tunneling (Optional)
	Task 4: Enable Web Services Atomic Transaction (Optional)
	Task 5: Verify and Apply Your Configuration

	Placing the WebLogic Properties Inside the Location or VirtualHost Blocks
	Default Apache Web Server and WLS Apache Plug-In HTTP Protocol Configuration
	Example: Configuring the WLS Apache Plug-In
	Including a weblogic.conf File in the httpd.conf File
	Rules for Creating the weblogic.conf Files
	Sample weblogic.conf Configuration Files
	Template for the Apache HTTP Server httpd.conf File

	About WebSocket Proxy Configurations
	Verifying the Log File
	Clustering Failover When Using the WLS Apache Plug-In

	Enable and Configure HTTP/2 Support
	Enabling HTTP2 Support in the Apache Web Server
	Configuring HTTP/2 Support on Front-End Connections
	Enabling HTTP2 Support in the WebLogic Apache Plug-In
	Configuring HTTP/2 Support on Back-End Connections
	Server Push Functionality
	Enabling H2Push on Windows Apache

	Configuring IPv6 with Proxy Plug-Ins
	Understanding the DMS Metrics for the WLS Apache Plug-In
	Configuring the DMS Metrics for the WLS Apache Plug-In
	Viewing the Performance Metrics for the WLS Apache Plug-In
	DMS State Metrics
	DMS Event Metrics
	DMS PhaseEvent Metrics

	Support and Patching
	Deprecated Directives for Apache HTTP Server

	4 Configuring Security
	Using SSL with Proxy Plug-Ins
	Configuring Libraries for SSL
	Configuring Environment Variables

	Configuring a Proxy Plug-In for One-Way SSL
	Configuring a Two-Way SSL Between the Proxy Plug-In and Oracle WebLogic Server
	Replacing Certificates Signed Using the MD5 Algorithm
	Checking the Certificate Signing Algorithm
	Creating a New Wallet to Add Certificates Signed with the SHA-2 Algorithm
	Replacing the Existing Certificates with SHA-2 Signed Certificates

	Certificates Signed with MD5 Algorithm Not Supported
	Using Certificates Signed with RSASSA-PSS Signature Algorithm

	Configuring Perimeter Authentication
	About Federal Information Processing Standards

	5 Parameters for Oracle WebLogic Server Proxy Plug-Ins
	General Parameters for Oracle WebLogic Server Proxy Plug-Ins
	ConnectRetrySecs
	ConnectTimeoutSecs
	DebugConfigInfo
	DefaultFileName
	DynamicServerList
	ErrorPage
	FileCaching
	Location of POST Data Files

	Idempotent
	KeepAliveEnabled
	KeepAliveSecs
	MatchExpression
	MaxPostSize
	MaxSkipTime
	PathPrepend
	PathTrim
	QueryFromRequest
	RoutingAlgorithm
	WebLogicCluster
	WebLogicHost
	WebLogicPort
	WeightUpdateInterval
	WLCookieName
	WLDNSRefreshInterval
	WLExcludePathOrMimeType
	WLForwardUriUnparsed
	WLIOTimeoutSecs
	WLLocalIP
	WLMaxWebSocketClients
	WLProtocol
	WLProxyPassThrough
	WLProxySSL
	WLProxySSLPassThrough
	WLRetryOnTimeout
	WLRetryAfterDroppedConnection
	WLServerInitiatedFailover
	WLSocketTimeoutSecs
	WLSRequest
	WLTempDir

	SSL Parameters for Oracle WebLogic Server Proxy Plug-Ins
	SecureProxy
	WebLogicSSLCiphers
	WebLogicSSLVersion
	WLSSLCheckCn
	WLSSLWallet

	6 Troubleshooting and Tuning Oracle WebLogic Server Proxy Plug-Ins
	Tuning Oracle HTTP Server for High Throughput for WebSocket Upgrade Requests
	Understanding Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Tips for Reducing CONNECTION_REFUSED Errors
	Failover with a Single, Non-Clustered Oracle WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions
	Failover Behavior When Using Firewalls and Load Directors

	Oracle WebLogic Server Session Issues
	NO_RESOURCES Errors
	POST Data Files Issues

