
Oracle® Fusion Middleware
Developing CommonJ Applications for Oracle
WebLogic Server

14c (14.1.2.0.0)
F61350-01
December 2024

Oracle Fusion Middleware Developing CommonJ Applications for Oracle WebLogic Server, 14c (14.1.2.0.0)

F61350-01

Copyright © 2007, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Resources v

Conventions vi

1 Using the Timer and Work Manager API

Overview 1-1

Timer API Overview 1-2

TimerManager Interface 1-2

Creating and Configuring a TimerManager 1-2

Suspending a TimerManager 1-2

Stopping a TimerManager 1-3

The TimerListener Interface 1-3

The Timer Interface 1-3

Using the Timer API 1-3

Implementing the Timer API 1-3

Timer Manager Example 1-4

Using the Job Scheduler 1-5

Life Cycle of Timers 1-5

Implementing and Configuring Job Schedulers 1-6

Database Configuration 1-6

Data Source Configuration 1-6

Leasing 1-7

JNDI Access within a Job Scheduler 1-7

Canceling Jobs 1-7

Debugging 1-7

Unsupported Methods and Interfaces 1-7

Work Manager API 1-8

Work Manager Interfaces 1-8

Work Manager Deployment 1-9

Automatic Binding of the Default CommonJ Work Manager 1-10

iii

Work Manager Example 1-10

iv

Preface

This document describes the Timer and Work Manager API and demonstrates how to
implement it within an application.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
This document is a resource for system administrators and operators responsible for
monitoring and managing a WebLogic Server installation. It is relevant to all phases of a
software project, from development through test and production phases.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
New and Changed WebLogic Server Features

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Using the Timer and Work Manager API

This chapter provides an overview of the Timer and Work Manager API and demonstrates how
to implement it within an application.
This chapter includes the following sections:

• Overview

• Timer API Overview

• Using the Timer API

• Using the Job Scheduler

• Work Manager API

• Work Manager Example

Overview
The Timer and Work Manager API is defined in a specification created jointly by Oracle and
IBM. This API enables concurrent programming of EJBs and Servlets within a Jakarta EE
application. This API is often referred to as CommonJ.

The CommonJ API contains the following components:

• Timer API

The Timer API allows applications to schedule and receive timer notification callbacks for a
specific listener defined within an application. Timers allow you to schedule and perform
work at specific times or intervals. See Timer API Overview.

You implement this API by importing the commonj.timer package.

• Work Manager API

The Work Manager API allows an application to prioritize work within an EJB or servlet.
Applications can programmatically execute multiple work items within a container. See
Work Manager API.

You implement this API by importing the commonj.work package.

In addition to the CommonJ Work Manager API, WebLogic Server includes server-level
Work Managers that provide prioritization and thread management. These can be
configured globally or for a specific module in an application.

Although commonj.timer and commonj.work are part of the same API, each provides different
functionality. Which one you implement depends on the specific needs of your application. The
CommonJ Timer API is ideal for scheduling work at specific intervals; for example, when you
know that a certain job should run at a specific time. The CommonJ Work API is ideal for
handling work based on priority. For example, you may not be able to predict exactly when a
specific job will occur, but when it does you want it to be given a higher (or lower) priority.

The following sections describe the CommonJ APIs in detail.

1-1

Timer API Overview
The Timer API consist of three interfaces:

• TimerManager
• TimerListener
• Timer
The TimerManager interface provides the framework for creating and using timers within a
managed environment. The TimerListener receives timer notifications. The
TimerManager.schedule method is used to schedule the TimerListener to run at a specific
time or interval.

For a detailed description of how to implement Timers, see Using the Timer API.

• TimerManager Interface

• The TimerListener Interface

• The Timer Interface

TimerManager Interface
The TimerManager interface provides the general scheduling framework within an application.
A managed environment can support multiple TimerManager instances. Within an application
you can have multiple instances of a TimerManager.

• Creating and Configuring a TimerManager

• Suspending a TimerManager

• Stopping a TimerManager

Creating and Configuring a TimerManager
A TimerManager is configured during deployment by means of deployment descriptors. The
TimerManager definition may also contain additional implementation-specific configuration
information.

Once a TimerManager is defined in a deployment descriptor, instances of it can be accessed
using a JNDI lookup in the local Java environment. Each invocation of the JNDI lookup() on a
TimerManager returns a new logical instance of a TimerManager.

The TimerManager interface is thread-safe.

For more information about using JNDI, see Developing JNDI Applications for Oracle
WebLogic Server.

Suspending a TimerManager
You can suspend and resume a TimerManager using the suspend and resume methods. When
a TimerManager is suspended, all pending timers are deferred until the TimerManager is
resumed.

Chapter 1
Timer API Overview

1-2

Stopping a TimerManager
You can stop a TimerManager using the stop method. After the stop method is invoked, all
active Timers are stopped and the TimerManager instance stops monitoring all TimerListener
instances.

The TimerListener Interface
All applications using the commonj.timers package are required to implement the
TimerListener interface.

The Timer Interface
Instances of the Timer interface are returned when timers are scheduled through the
TimerManager.

Using the Timer API
This section explains the steps required for using the Timer API within an application.

Before deploying your application, ensure that you have created a deployment descriptor that
contains a resource reference for the Timer Manager.

This allows the TimerManager to be accessed using JNDI. For more information about JNDI
lookup, see Developing JNDI Applications for Oracle WebLogic Server.

• Implementing the Timer API

• Timer Manager Example

Implementing the Timer API
To implement the Timer API, complete the following steps:

1. Import the commonj.timers.* packages.

2. Create an InitialContext that allows the TimerManager to be looked up in JNDI. For
example:

InitialContext inctxt = new InitialContext();

See Developing JNDI Applications for Oracle WebLogic Server for more information about
JNDI lookup.

3. Create a new TimerManager based on the JNDI lookup of the TimerManager. For example:

TimerManager mgr = (TimerManager)ctx.lookup('java:comp/env/timer/MyTimer');

In this statement, the result of the JNDI lookup is cast to a TimerManager.

4. Implement a TimerListener to receive timer notifications. For example:

TimerListener listener = new StockQuoteTimerListener('abc', 'example');
5. Invoke the TimerManager.schedule method. For example:

mgr.schedule(listener, 0, 1000*60)

Chapter 1
Using the Timer API

1-3

The schedule method returns a Timer object.

6. Implement the timerExpired method. For example:

public void timerExpired(Timer timer) {
 //Business logic is executed
 //in this method
}

Implementing the Timer API for cluster-wide timers has additional requirements, described in
Life Cycle of Timers.

Timer Manager Example
package examples.servlets;
import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import commonj.timers.*;

/**
* TimerServlet demonstrates a simple use of commonj timers
*/
public class TimerServlet extends HttpServlet {

/**
 * A very simple implementation of the service method,
 * which schedules a commonj timer.
 */
 public void service(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 try {
 InitialContext ic = new InitialContext();
 TimerManager tm = (TimerManager)ic.lookup
 ("java:comp/env/tm/default");
 // Execute timer every 10 seconds starting immediately
 tm.schedule (new MyTimerListener(), 0, 10*1000);
 out.println("<h4>Timer scheduled!</h4>");
 } catch (NamingException ne) {
 ne.printStackTrace();
 out.println("<h4>Timer schedule failed!</h4>");
 }
 }

 private static class MyTimerListener implements TimerListener {
 public void timerExpired(Timer timer) {
 System.out.println("timer expired called on " + timer);
 // some useful work here ...
 // let's just cancel the timer
 System.out.println("cancelling timer ...");
 timer.cancel();
 }

Chapter 1
Using the Timer API

1-4

 }
}

Using the Job Scheduler
This section explains how to use the Job Scheduler functionality. The Job Scheduler allows
you to implement the commonj.timer API within a clustered environment.

The Job Scheduler is essentially an implementation of the commonj.timer API package that
can be used within a cluster. In this context, a job is defined as a
commonj.timers.TimerListener instance that is submitted to the Job Scheduler for execution.

This section includes the following topics:

• Life Cycle of Timers

• Implementing and Configuring Job Schedulers

• Unsupported Methods and Interfaces

Life Cycle of Timers
When you implement the commonj.timer API within an application, you can configure two
possible life cycles for a timer:

• Local timer

A local timer is scheduled within a single server JVM and is handled within this JVM
throughout its life cycle. The timer continues running as long as the JVM is running and
fails when the JVM exits. The application is responsible for rescheduling the timer after
server startup.

This is the basic implementation of the commonj.timers package.

• Cluster-wide timer

A cluster-wide timer is aware of the other JVMs containing each server within the cluster
and is therefore able to perform load balancing and failover. The life cycle of a cluster-wide
timer is not bound to the server that created it, but continues to function throughout the life
cycle of the cluster. If at least one cluster member is alive, the timer continues to function.
This functionality is referred to as the Job Scheduler.

Implementing the Timer API for a Job Scheduler has the following requirements in addition
to those listed in Implementing the Timer API:

– The Timer Listener class must be serializable.

– The Timer Listener class must be present in the server system classpath.

– The minimum time for recurring execution of a timer is 30 seconds because Job
Schedulers pick up timers for execution every 30 seconds.

Each timer has its own advantages and disadvantages. Local timers can process jobs with
much smaller time intervals between jobs. Due to the persistence requirements within a
cluster, Job Schedulers cannot handle jobs with as much precision. On the other hand, Job
Schedulers are better suited for tasks that must be performed even if the initial server that
created the task has failed.

Chapter 1
Using the Job Scheduler

1-5

Implementing and Configuring Job Schedulers
This section describes the basic procedure for implementing Job Schedulers within an
application and for configuring your WebLogic Server environment to utilize them. The
following topics are included:

• Database Configuration

• Data Source Configuration

• Leasing

• JNDI Access within a Job Scheduler

• Canceling Jobs

• Debugging

Database Configuration
To maintain persistence and make timers cluster-aware, Job Schedulers require a database
connection. The Job Scheduler functionality supports the same databases that are supported
by server migration. For convenience, you can use the same database used for session
persistence, server migration, and so on.

In the database, you create a table named WEBLOGIC_TIMERS. Schemas for creating this table
are in the following location:

WL_HOME/server/db/dbname/scheduler.ddl

In the preceding path, dbname represents the name of the database.

Note:

WEBLOGIC_TIMERS table can also be configured by using ClusterMBean attribute
jobSchedulerTableName.

Data Source Configuration
After you create a table with the required schema, you must define a data source that is
referenced from within the cluster configuration. Job Scheduler functionality is available only if
a valid data source is defined in the ClusterMBean.DataSourceForJobScheduler attribute.

The following config.xml excerpt shows how this is defined:

<domain>
...
 <cluster>
 <name>Cluster-0</name>
 <multicast-address>239.192.0.0</multicast-address>
 <multicast-port>7466</multicast-port>
 <data-source-for-job-scheduler>JDBC Data Source-0</data-source-for-job-scheduler>
 </cluster>
...
 <jdbc-system-resource>
 <name>JDBC Data Source-0</name>
 <target>myserver,server-0</target>

Chapter 1
Using the Job Scheduler

1-6

 <descriptor-file-name>jdbc/JDBC_Data_Source-0-3407-jdbc.xml</descriptor-file-name>
 </jdbc-system-resource>
</domain>

Leasing
Leasing must be enabled for Job Schedulers. You can use either high-availability database
leasing or non-database consensus leasing. When using high-availability database leasing,
you must create the leasing table in the database.

Schemas for creating this table are in the following location:

WL_HOME/server/db/dbname/leasing.ddl

In the preceding path, dbname represents the name of the database.

See Leasing in Administering Clusters for Oracle WebLogic Server.

JNDI Access within a Job Scheduler
The procedure for performing JNDI lookup within a clustered timer is different from that used in
the general commonj.timer API. The following code snippet shows how to cast a JNDI lookup
to a TimerManager.

InitialContext ic = new InitialContext();
commonj.timers.TimerManager jobScheduler =(common.timers.TimerManager)ic.lookup
 ("weblogic.JobScheduler");
commonj.timers.TimerListener timerListener = new MySerializableTimerListener();
jobScheduler.schedule(timerListener, 0, 30*1000);
// execute this job every 30 seconds

Canceling Jobs
You can cancel jobs programmatically.

To cancel a job programmatically, invoke the cancel method of the job's corresponding
JobRuntimeMBean. You can access a JobRuntimeMBean using either of the following ways:

• Invoke JobSchedulerRuntimeMBean.getJob(id) with the ID of a scheduled job. To get the
ID, invoke the JobScheduler.schedule method to return a Timer object, then use the
Timer's toString method to return the ID.

• Invoke JobSchedulerRuntimeMBean.getExecutedJobs() to return an array of JobRunTimes
for all jobs that have been executed at least once.

You cannot invoke the cancel method to cancel a scheduled job that has not executed at least
once.

Debugging
The following debugging flags enable more verbose output:

-Dweblogic.debug.DebugSingletonServices=true -Dweblogic.JobScheduler=true

Unsupported Methods and Interfaces
The following methods and interfaces in the commonj.timer package are not supported in the
Job Scheduler environment:

Chapter 1
Using the Job Scheduler

1-7

• CancelTimerListener interface

• StopTimerListener interface

• The following methods of the TimerManager interface:

– suspend
– resume
– scheduleAtFixedRate
– stop
– waitForStop
– waitForSuspend

Work Manager API
The Work Manager API, commonj.work, provides a set of interfaces that allows an application
to execute multiple work items concurrently within a container.

Essentially this API provides a container-managed alternative to the java.lang.Thread API.
The latter should not be used within applications that are hosted in a managed Jakarta EE
environment. In such environments, the Work Manager API is a better choice because it allows
the container to have full visibility and control over all executing threads.

Note:

The Work Manager API provides no failover or persistence mechanisms. If the
Managed Server environment fails or is shut down, any current work is lost.

• Work Manager Interfaces

• Work Manager Deployment

• Automatic Binding of the Default CommonJ Work Manager

Work Manager Interfaces
This section summarizes the interfaces in the Work Manager API. For details about using
these interfaces, see commonj.work in the Java API Reference for Oracle WebLogic Server.

The Work Manager API contains the following interfaces:

• WorkManager - Provides a set of scheduling methods that are used to schedule work for
execution.

A WorkManager is defined by system administrators at the server level. A WorkManager
instance is obtained by performing a JNDI lookup. A managed environment can support
multiple WorkManager instances. You configure WorkManagers during deployment as
resource-refs. See Work Manager Deployment.

At the application level, each instance of WorkManager returns a WorkItem. For more
information about implementing a WorkManager within an application, see WorkManager in
the Java API Reference for Oracle WebLogic Server.

Chapter 1
Work Manager API

1-8

For information about JNDI, see Developing JNDI Applications for Oracle WebLogic
Server.

• Work - Allows you to run application code asynchronously. By creating a class that
implements this interface, you can create blocks of code that can be scheduled to run at a
specific time or at defined intervals. In other words, this is the "work" that is handled within
the Work Manager API.

• WorkItem - Determines the status of a completed Work instance. A WorkItem is returned
by a WorkManager after a Work instance has been submitted to that WorkManager.

See Work in the Java API Reference for Oracle WebLogic Server.

• WorkListener - Provides communication between the WorkManager and the scheduled
work defined within the Work instance. WorkListener is a callback interface.

You can use WorkListener to determine the current status of the Work item. See
WorkListener in the Java API Reference for Oracle WebLogic Server.

Note:

WorkListener instances are always executed in the same JVM as the original
thread used to schedule the Work by means of the WorkManager.

• WorkEvent - A WorkEvent is sent to a WorkListener as Work is processed by a
WorkManager.

See WorkEvent in the Java API Reference for Oracle WebLogic Server.

• RemoteWorkItem - The RemoteWorkItem interface is an extension of the WorkItem
interface that allows work to be executed remotely. This interface allows serializable work
to be executed on any member of a cluster.

See RemoteWorkItem in the Java API Reference for Oracle WebLogic Server.

Work Manager Deployment
Work Managers are defined at the server level by means of a resource-ref in the appropriate
deployment descriptor. This can be web.xml or ejb-jar.xml, among others.

The following deployment descriptor snippet shows the configuration of a WorkManager:

...
<resource-ref>
 <res-ref-name>wm/MyWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
...

Note:

The recommended prefix for the JNDI namespace for WorkManager objects is
java:comp/env/wm.

Chapter 1
Work Manager API

1-9

Automatic Binding of the Default CommonJ Work Manager
Automatic binding of the default CommonJ Work Manager to java:comp/env/wm/default has
been removed in WebLogic Server 12.2.1.

If you have an application that attempts to use the default CommonJ Work Manager, you can
either:

• Add a resource-ref entry for wm/default in a deployment descriptor. For example:

<resource-ref>
 <res-ref-name>wm/default</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

• Have the CommonJ Work Manager injected into the application component. For example:

@Resource commonj.work.WorkManager myWorkManager;

Work Manager Example
The following example shows using a CommonJ Work Manager within an HTTP servlet.

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import weblogic.work.ExecuteThread;
import commonj.work.WorkManager;
import commonj.work.Work;
import commonj.work.WorkException;

public class HelloWorldServlet extends HttpServlet {

 public void service(HttpServletRequest req, HttpServletResponse res)
 throws IOException
 {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 try {
 InitialContext ic = new InitialContext();
 System.out.println("## [servlet] executing in: " +
 ((ExecuteThread)Thread.currentThread()).getWorkManager()
 .getName());
 WorkManager wm = (WorkManager)ic.lookup
 ("java:comp/env/foo-servlet");
 System.out.println("## got Java EE work manager !!!!");
 wm.schedule(new Work(){
 public void run() {
 ExecuteThread th = (ExecuteThread) Thread.currentThread();
 System.out.println("## [servlet] self-tuning workmanager: " +
 th.getWorkManager().getName());
 }

Chapter 1
Work Manager Example

1-10

 public void release() {}

 public boolean isDaemon() {return false;}
 });
}
catch (NamingException ne) {
 ne.printStackTrace();}

catch (WorkException e) {
 e.printStackTrace();
}

out.println("<h4>Hello World!</h4>");
// Do not close the output stream - allow the servlet engine to close it
// to enable better performance.
System.out.println("finished execution");}

}

Chapter 1
Work Manager Example

1-11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Using the Timer and Work Manager API
	Overview
	Timer API Overview
	TimerManager Interface
	Creating and Configuring a TimerManager
	Suspending a TimerManager
	Stopping a TimerManager

	The TimerListener Interface
	The Timer Interface

	Using the Timer API
	Implementing the Timer API
	Timer Manager Example

	Using the Job Scheduler
	Life Cycle of Timers
	Implementing and Configuring Job Schedulers
	Database Configuration
	Data Source Configuration
	Leasing
	JNDI Access within a Job Scheduler
	Canceling Jobs
	Debugging

	Unsupported Methods and Interfaces

	Work Manager API
	Work Manager Interfaces
	Work Manager Deployment
	Automatic Binding of the Default CommonJ Work Manager

	Work Manager Example

