
Oracle® Fusion Middleware
Developing Oracle Coherence Applications
for Oracle WebLogic Server

14c (14.1.2.0.0)
F44682-01
December 2024

Oracle Fusion Middleware Developing Oracle Coherence Applications for Oracle WebLogic Server, 14c (14.1.2.0.0)

F44682-01

Copyright © 2007, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Documents vi

Conventions vi

1 Getting Started

Introduction to Coherence Applications 1-1

Typical Uses for Coherence 1-1

Understanding Coherence Application Configuration Files 1-2

Packaging and Deployment Overview 1-2

Main Tasks for Creating Coherence Applications 1-3

Task One: Create a Coherence Application Directory Structure 1-3

Task Two: Include the Coherence Application's Artifacts 1-3

Task Three: Package the Coherence Application for Deployment 1-4

2 Creating Coherence Applications for WebLogic Server

Packaging Coherence Applications 2-1

Directory Structure Example 2-2

Packaging a Grid Archive In an Enterprise Application 2-2

Creating a Coherence Project from a Maven Archetype 2-3

Creating a Coherence Application Deployment Descriptor 2-6

Using JNDI to Override Configuration 2-7

Defining a Data Cache 2-7

Accessing a Data Cache 2-8

Using the Coherence API 2-9

Using a Coherence Application Lifecycle Listener 2-9

Using Coherence for Session Management 2-10

Creating Extend Clients in WebLogic Server 2-10

Using a JCache Cache in WebLogic Server 2-10

iii

3 Deploying Coherence Applications in WebLogic Server

Understanding Coherence Deployment Tiers 3-1

Deploying Applications to Managed Coherence Servers 3-1

Deploying Coherence Applications as Shared Libraries 3-2

Referencing Shared Libraries from a Coherence Application 3-3

Performing a Rolling Redeploy 3-4

Loading Coherence From the Application Classloader 3-5

Securing Coherence Applications in WebLogic Server 3-6

A coherence-application.xml Deployment Descriptor Elements

coherence-application.xml Namespace Declaration and Schema Location A-1

application-lifecycle-listener A-2

cache-configuration-ref A-2

coherence-application A-2

configurable-cache-factory-config A-3

init-params A-3

pof-configuration-ref A-4

B weblogic-coh-app.xml Deployment Descriptor Elements

weblogic-coh-app.xml Namespace Declaration and Schema Location B-1

weblogic-coh-app B-1

library-ref B-2

iv

Preface

This document describes how to create, package, and deploy Coherence applications for
WebLogic Server. The content is specific to using managed Coherence servers.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This document is a resource for:

• Application developers and architects who want to develop and configure Coherence
applications for WebLogic Server.

• Administrators who want to deploy Coherence applications to WebLogic Server.

This book does not detail the Coherence API. See Developing Applications with Oracle
Coherence for details on using the Coherence API.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documents
For additional information, see the following Oracle Coherence and Oracle WebLogic Server
documents:

Oracle Coherence

• Developing Applications with Oracle Coherence

• Developing Remote Clients for Oracle Coherence

• Administering HTTP Session Management with Oracle Coherence*Web

• Oracle Coherence Integration Guide

• Managing Oracle Coherence

• Securing Oracle Coherence

Oracle WebLogic Server

• Developing Applications for Oracle WebLogic Server

• Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

• Administering Clusters for Oracle WebLogic Server

• Oracle WebLogic Remote Console Online Help

New and Changed WebLogic Server Features

For a comprehensive listing of new Oracle WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vi

1
Getting Started

This chapter introduces Coherence applications for WebLogic Server and provides an
overview of creating and packaging Coherence Applications.

This chapter includes the following sections:

• Introduction to Coherence Applications
Coherence is a distributed caching and in-memory data grid computing solution.
Applications typically use Coherence to improve scalability, availability, and performance.

• Typical Uses for Coherence
Coherence is used to provide solutions such as application data caching, data grid
computing, session state persistence and management and access Java Persistence API
(JPA) entities in the data cache.

• Understanding Coherence Application Configuration Files
Coherence applications contain the Cache Configuration, POF Configuration, and
Coherence Application Deployment Descriptor files used to configure caches, data types
and so on.

• Packaging and Deployment Overview
Coherence applications use a specific directory structure for deployment. You can deploy a
Coherence application either in an exploded directory format, or as an archived file.

• Main Tasks for Creating Coherence Applications
A Coherence application can be created both as a standalone GAR module and packaged
as part of an enterprise application.

Introduction to Coherence Applications
Coherence is a distributed caching and in-memory data grid computing solution. Applications
typically use Coherence to improve scalability, availability, and performance.

Coherence is tightly integrated with WebLogic Server. The integration aligns the lifecycle of a
Coherence cluster member with the lifecycle of a managed server: starting or stopping a
managed server JVM starts and stops a Coherence cluster member. Managed servers that are
cluster members are referred to as managed Coherence servers. Some common use cases for
Coherence include data caching, grid computing, and HTTP session replication.

Like other Java EE modules, Coherence supports its own application module, which is called a
Grid ARchive (GAR). The GAR contains the artifacts of a Coherence application and includes
a deployment descriptor. A GAR is deployed and undeployed in the same way as Java EE
modules and the application lifecycle is decoupled from the cluster service lifetime. Coherence
applications and managed Coherence servers are not mandated by the JavaEE specification
and are specific to WebLogic Server.

Typical Uses for Coherence
Coherence is used to provide solutions such as application data caching, data grid computing,
session state persistence and management and access Java Persistence API (JPA) entities in
the data cache.

1-1

This section describes typical uses for Coherence in WebLogic Server. The WebLogic Server
Coherence integration allows applications to easily use Coherence data caches and
incorporate Coherence*Web for session management.

Providing Application Data Caching and Data Grid Computing

Applications use Coherence for replicated and distributed caching. Applications access data
caches either through resource injection or component-based JNDI lookup. The WebLogic
Remote Console and Oracle WebLogic Scripting Tool are used to manage and configure
Coherence clusters. Using the Coherence integration enables you to create a data tier
dedicated to caching application data and storing replicated session state. This is separate
from the application tier—the WebLogic Server instances dedicated to running applications.

See Creating Coherence Applications for WebLogic Server.

Providing Session State Persistence and Management

Using Coherence*Web enables you to provide Coherence-based HTTP session state
persistence to applications running on WebLogic Server. Coherence*Web enables HTTP
session sharing and management across different Web applications, domains, and
heterogeneous application servers. Session data can be stored in data caches outside of the
application server, thus freeing application server heap space and enabling server restarts
without losing session data.

See Introduction to Coherence*Web.

Understanding Coherence Application Configuration Files
Coherence applications contain the Cache Configuration, POF Configuration, and Coherence
Application Deployment Descriptor files used to configure caches, data types and so on.

A typical Coherence application that is deployed to WebLogic Server contains the following
configuration files. See Developing Applications with Oracle Coherence.

• Cache Configuration File – This file is used to specify the various types of caches which
can be used within a Coherence cluster and is most often named coherence-cache-
config.xml. This file is commonly referred to as the cache configuration deployment
descriptor. The schema for this file is the coherence-cache-config.xsd file. See
Developing Applications with Oracle Coherence for a complete reference of the elements
in this file.

• POF Configuration File – This file is used to specify custom data types when using
Portable Object Format (POF) to serialize objects and is typically named pof-config.xml.
This file is commonly referred to as the POF configuration deployment descriptor. The
schema for this file is the coherence-pof-config.xsd file. See Developing Applications
with Oracle Coherence for a complete reference of the elements in this file.

• Coherence Application Deployment Descriptor – This file is used to configure a Coherence
application module that is deployed to a managed Coherence server. See coherence-
application.xml Deployment Descriptor Elements, for a complete reference of the elements
in the descriptor.

Packaging and Deployment Overview
Coherence applications use a specific directory structure for deployment. You can deploy a
Coherence application either in an exploded directory format, or as an archived file.

Chapter 1
Understanding Coherence Application Configuration Files

1-2

A Coherence application deployed as a collection of files within a specific directory structure is
known as exploded directory format. A Coherence application deployed as an archived file is
called a Grid ARchive (GAR) with a .gar extension. See Packaging Coherence Applications.
The directory structure is as follows:

MyCohApp/
 lib/
 META-INF/
 coherence-application.xml

A standalone GAR is deployed to all managed Coherence servers in a Coherence data tier. A
GAR must also be packaged within a EAR and deployed to all managed Coherence servers
that reside in an application tier. See Deploying Coherence Applications in WebLogic Server.

Main Tasks for Creating Coherence Applications
A Coherence application can be created both as a standalone GAR module and packaged as
part of an enterprise application.

The steps are detailed throughout this guide. For a complete Coherence application example,
see the WebLogic Server Code Examples that are available with the WebLogic Server
installation.

• Task One: Create a Coherence Application Directory Structure

• Task Two: Include the Coherence Application's Artifacts

• Task Three: Package the Coherence Application for Deployment

Task One: Create a Coherence Application Directory Structure
Create a staging directory that includes two subdirectories: META-INF/ and lib/:

MyCohApp/
 lib/
 META-INF/

Task Two: Include the Coherence Application's Artifacts
Include the Coherence application artifacts in the staging directory. For details on creating
Coherence applications, see Creating Coherence Applications for WebLogic Server.

1. Place the Coherence application class files in the root of the staging directory in the
appropriate package structure. For example:

MyCohApp/
 com/
 myco/
 MyClass.class
 MySerializer.class
 lib/
 META-INF/

2. Place application dependency libraries in the lib/ directory.

MyCohApp/
 com/
 myco/
 MyClass.class
 MySerializer.class

Chapter 1
Main Tasks for Creating Coherence Applications

1-3

 lib/
 dependency.jar
 META-INF/

3. Include the coherence-cache-config.xml and the pof-config.xml file in the META-INF/
directory:

MyCohApp/
 com/
 myco/
 MyClass.class
 lib/
 dependency.jar
 META-INF/
 coherence-cache-config.xml
 pof-config.xml

4. Create a coherence-application.xml file in the META-INF directory.

MyCohApp/
 com/
 myco/
 MyClass.class
 lib/
 dependency.jar
 META-INF/
 coherence-application.xml
 coherence-cache-config.xml
 pof-config.xml

5. Edit the coherence-application.xml file and include the location of the configuration files
using the <cache-configuration-ref> and <pof-configuration-ref> elements,
respectively:

<?xml version="1.0"?>
<coherence-application>
 xmlns="http://xmlns.oracle.com/coherence/coherence-application">
 <cache-configuration-ref>META-INF/coherence-cache-config.xml
 </cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
</coherence-application>

Task Three: Package the Coherence Application for Deployment
Package the Coherence application as a GAR file for deployment to a Coherence data tier.
Then, package the GAR file within an EAR for deployment to a Coherence application tier.
SeeDeploying Coherence Applications in WebLogic Server.

1. From the command line, change directories to the root of the staging directory.

2. Use the Java jar command to compress the archive with a .gar extension. For example:

jar cvf MyCohApp.gar *
3. Copy the GAR and package it within an enterprise application directory structure. See

Developing Applications for Oracle WebLogic Server for details on developing EAR. For
example:

MyEAR/
 META-INF/
 application.xml
 weblogic-application.xml
 MyWAR.war

Chapter 1
Main Tasks for Creating Coherence Applications

1-4

 MyEJB.jar
 MyCohApp.gar

The weblogic-application.xml file must contain a module reference for the GAR. For
example:

<weblogic-application>
 <module>
 <name>MyCohApp</name>
 <type>GAR</type>
 <path>MyCohApp.gar</path>
 </module>
</weblogic-application>

Chapter 1
Main Tasks for Creating Coherence Applications

1-5

2
Creating Coherence Applications for WebLogic
Server

Coherence caches can be accessed using dependency injection and JNDI. Coherence
applications can be packaged as a Grid ARchive (GAR).
This chapter includes the following sections:

• Packaging Coherence Applications
Coherence applications use a specific directory structure. You can deploy a Coherence
application as a collection of files within this directory structure, known as exploded
directory format, or as an archived file called a Grid ARchive (GAR) with a .gar extension.

• Creating a Coherence Application Deployment Descriptor
The presence of the deployment descriptor indicates a valid GAR. A GAR file must contain
a Coherence application deployment descriptor (cohererence-application.xml) located
in the META-INF directory.

• Using JNDI to Override Configuration
Coherence provides the ability to override any XML element value in a configuration file
using JNDI properties.

• Defining a Data Cache

• Accessing a Data Cache

• Using the Coherence API

• Using a Coherence Application Lifecycle Listener
The Coherence Application Lifecycle listener allows custom processing to occur before
and after the creation and destruction of Coherence caches and clustered services.

• Using Coherence for Session Management

• Creating Extend Clients in WebLogic Server

• Using a JCache Cache in WebLogic Server

Packaging Coherence Applications
Coherence applications use a specific directory structure. You can deploy a Coherence
application as a collection of files within this directory structure, known as exploded directory
format, or as an archived file called a Grid ARchive (GAR) with a .gar extension.

A GAR module includes the artifacts that comprise a Coherence application. The /META-INF
directory contains the deployment descriptor for the Coherence application (cohererence-
application.xml). The presence of the deployment descriptor indicates a valid GAR. An
additional subdirectory, the /lib directory, is used for storing dependency JAR files. Compiled
Java classes that make up a Coherence application (entry processors, aggregators, filters, and
so on) are placed in the root directory in the appropriate Java package structure.

A GAR module can also contain a cache configuration file (coherence-cache-config.xml) and
a Portable Object Format (POF) serialization configuration file (pof-config.xml). The location
of these files is defined within the Coherence application deployment descriptor. Typically, the

2-1

files are placed in the /META-INF directory; however, they can be located anywhere in the GAR
relative to the root or even at a URL-accessible network location.

Note:

• If the configuration files are not found at runtime, then the default configuration
files that are included in the coherence.jar, which is located in the system
classpath, are used.

• If the configuration files are located in the root directory of the GAR, then they
must not use the default file names; otherwise, the configuration files that are
included in the coherence.jar file are found first and the configuration files in the
GAR are never loaded.

The entire directory, once staged, is bundled into a GAR file using the jar command. GAR files
are deployed as standalone archives to managed Coherence servers that are configured to
store cached data.

Client applications that rely on the caches and resources in a GAR module must be packaged
within an EAR that includes the dependent GAR. An EAR cannot contain multiple GAR
modules. Multiple GAR modules must be merged into a single GAR. That is, a GAR must
contain one application deployment descriptor, one cache configuration file, and one POF
configuration file.

• Directory Structure Example

• Packaging a Grid Archive In an Enterprise Application

• Creating a Coherence Project from a Maven Archetype
You can create a new Coherence project using the Coherence Maven archetype.

Directory Structure Example
The following is an example of a Coherence application directory structure, in which myCohApp/
is the staging directory:

Example 2-1 Coherence Application Directory Structure

MyCohApp/
 lib/
 META-INF/
 coherence-application.xml
 coherence-cache-config.xml
 pof-config.xml
 com/myco/
 MyClass.class

Packaging a Grid Archive In an Enterprise Application
A GAR must be packaged in an EAR to be referenced by other JavaEE modules. See
Developing Applications for Oracle WebLogic Server for details on creating an EAR. The
following is an example of a Coherence application that is packaged within an EAR:

Chapter 2
Packaging Coherence Applications

2-2

Example 2-2 Coherence Application Packaged in an EAR

MyEAR/
 META-INF/
 application.xml
 weblogic-application.xml
 MyWAR.war
 MyEJB.jar
 MyGAR.gar

Edit the META-INF/weblogic-application.xml descriptor and include a reference to the GAR
using the <module> element. The reference is required so that the GAR is deployed when the
EAR is deployed. For example:

<?xml version="1.0"?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-application
 http://xmlns.oracle.com/weblogic/weblogic-application/1.6/
 weblogic-application.xsd"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-application">
 <module>
 <name>MyGAR</name>
 <type>GAR</type>
 <path>MyGAR.gar</path>
 </module>
</weblogic-application>

Creating a Coherence Project from a Maven Archetype
You can create a new Coherence project using the Coherence Maven archetype.

1. To create a new Coherence project using the Coherence Maven archetype, run a
command similar to the following:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.coherence.archetype
 -DarchetypeArtifactId=gar-maven-archetype
 -DarchetypeVersion=14.1.2-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-gar-project
 -Dversion=1.0-SNAPSHOT

This command runs Maven's archetype:generate goal which lets you create a new
project from an archetype. Table 2-1 describes the parameters.

Table 2-1 Parameters for the Coherence Projects

Parameter Purpose

archetypeGroupId The group ID of the archetype that you want to use to create the
new project. This must be com.oracle.coherence.archetype.

archetypeArtifactId The artifact ID of the archetype that you want to use to create the
new project. This must be gar-maven-archetype.

archetypeVersion The version of the archetype that you want to use to create the new
project. This must be 14.1.2-0-0.

groupId The group ID for your new project. This usually starts with your
organization's domain name in reverse format.

Chapter 2
Packaging Coherence Applications

2-3

Table 2-1 (Cont.) Parameters for the Coherence Projects

Parameter Purpose

artifactId The artifact ID for your new project. This is usually an identifier for
this project.

version The version for your new project. This is usually 1.0-SNAPSHOT for
a new project.

You can also run the command without any arguments, as shown in the following example.
In this case, Maven displays a list of available archetypes and prompts you to enter the
required information.

mvn archetype:generate

After you create the project, the following files get included in it:

Figure 2-1 Maven Project Files

Table 2-2 describes the files included in the project.

Table 2-2 Files Created for the Coherence Project

File Purpose

pom.xml The Maven Project Object Model (POM) file that describes your new
project. It includes the Maven coordinates that you specified for your
project and the appropriate plug-in definitions to use the Coherence
Maven plug-in to build your project into a gar file.

coherence-
application.xml

A starter Coherence GAR deployment descriptor for your GAR file.

Chapter 2
Packaging Coherence Applications

2-4

Table 2-2 (Cont.) Files Created for the Coherence Project

File Purpose

pof-config.xml A starter Coherence Portable Object Format (POF) configuration
file. The POF configuration file is processed and inserted into the
final GAR file if the plug-in option generatePof is set to true. By
default, POF configuration metadata will not be generated.

Here are the samples of the generated files listed in the above table:

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.mycompany</groupId>
 <artifactId>my-gar-project2</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>gar</packaging>
 <dependencies>
 <dependency>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>coherence</artifactId>
 <version>[14.1.2-0,14.1.2-1)</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>gar-maven-plugin</artifactId>
 <version>12.2.1-3-23</version>
 <extensions>true</extensions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <forceCreation>true</forceCreation>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

coherence-application.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<coherence-application xmlns="http://xmlns.oracle.com/weblogic/coherence-
application">
 <cache-configuration-ref>META-INF/cache-config.xml</cache-configuration-

Chapter 2
Packaging Coherence Applications

2-5

ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
</coherence-application>

pof-config.xml

<?xml version="1.0"?>
<!-- Note: To add custom types, create a new 'pof-config.xml' file
 containing your custom user-type elements, and place it at the
 beginning of the class path. -->

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-
config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
coherence-pof-config coherence-pof-config.xsd">
 <user-type-list>
 <!-- by default just include coherence POF user types -->
 <include>coherence-pof-config.xml</include>
 </user-type-list>
</pof-config>

2. If you are using POF in your project, you must add the following parameter into your
project's POM file:

Parameter Purpose

generatePof The POF configuration file is generated and inserted into the final GAR
file if this plug-in option is true. The configuration file is generated by
scanning all classes in the GAR's classpath annotated with the class
com.tangosol.io.pof.annotation.Portable. By default, POF
configuration metadata is not generated.

3. To generate a GAR with correctly generated pof-config.xml, add the following to your
GAR plug-in configuration in the POM:

<build>
<plugins>
…
 <plugin>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>gar-maven-plugin</artifactId>
 <version>14.1.2-0-0</version>
 <extensions>true</extensions>
 <configuration>
 <generatePof>true</generatePof>
 </configuration>
 </plugin>
…
 </plugins>
</build>

Creating a Coherence Application Deployment Descriptor
The presence of the deployment descriptor indicates a valid GAR. A GAR file must contain a
Coherence application deployment descriptor (cohererence-application.xml) located in the
META-INF directory.

Chapter 2
Creating a Coherence Application Deployment Descriptor

2-6

For a detailed reference of all the available elements in the descriptor, see coherence-
application.xml Deployment Descriptor Elements. The following is an example of a Coherence
deployment descriptor that declares a cache configuration file and a POF configuration file that
is located in the META-INF directory of the GAR.

<?xml version="1.0"?>
<coherence-application
 xmlns="http://xmlns.oracle.com/coherence/coherence-application">
 <cache-configuration-ref>META-INF/coherence-cache-config.xml
 </cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
</coherence-application>

Using JNDI to Override Configuration
Coherence provides the ability to override any XML element value in a configuration file using
JNDI properties.

The use of JNDI properties allows a single version of a configuration file to be used for
deployment and then altered as required at runtime.

To define a JNDI property, add an override-property attribute to an XML element with a value
set to a JNDI context. The following example defines a JNDI property with a cache-config/
MyGar context for the <cache-configuration-ref> element in a coherence-application.xml
deployment descriptor. The JNDI property is used at runtime to override the cache
configuration reference and specify a different cache configuration file. The JNDI context of
cache-config is a well known context used and registered by a managed Coherence server.

<?xml version="1.0"?>
<coherence-application
 xmlns="http://xmlns.oracle.com/coherence/coherence-application">
 <cache-configuration-ref override-property="cache-config/MyGar">
 META-INF/coherence-cache-config.xml</cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
</coherence-application>

Defining a Data Cache
Data caches are defined in a coherence-cache-config.xml file that is packaged in a GAR file.
See Developing Applications with Oracle Coherence for details on Coherence caches and their
configuration.

The following example creates a distributed cache named myCache. As an alternative, a cache
mapping may be defined with the asterisk (*) wildcard, which allows an application to use the
distributed cache by specifying any name.

<?xml version="1.0" encoding="windows-1252"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">

 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>myCache</cache-name>
 <scheme-name>distributed</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

Chapter 2
Using JNDI to Override Configuration

2-7

 <caching-schemes>
 <distributed-scheme>
 <scheme-name>distributed</scheme-name>
 <service-name>DistributedService</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

Coherence does not support the use of a replicated cache scheme if a GAR module is used in
multiple EAR modules (packaged either individually or as a shared GAR) on a managed
Coherence server. Additionally, the replicated cache type is deprecated. View, Near, or
Distributed/Partitioned Cache types should be used instead. The read and write performance
and memory usage characteristics described in Table 12-1 Summary of Cache Types and
Characteristics can be used to determine which cache type to use.

Accessing a Data Cache
Applications use the Coherence NamedCache API to interact with a Coherence cache.
The Coherence cache holds resources that are shared among members of a Coherence
cluster. An application can obtain a NamedCache object either by dependency injection or by
using a JNDI lookup.

To Obtain a Cache by Dependency Injection

An @Resource annotation can be used in a servlet or an EJB to dynamically inject the
NamedCache. This annotation cannot be used in a JSP. The name of the cache used in the
annotation must be defined in the application's coherence-cache-config.xml file.

Example 2-3 illustrates using dependency injection to get a cache named myCache. See
Developing Applications for Oracle WebLogic Server for details on JavaEE annotations and
dependency injection.

Example 2-3 Obtaining a Cache Resource by Dependency Injection

...
@Resource(mappedName="MyCache")
com.tangosol.net.NamedCache nc;
...

To Obtain the NamedCache by JNDI Lookup

A component-scoped JNDI tree can be used in EJBs, servlets, or JSPs to get a NamedCache
reference.

To use a JNDI lookup, define a resource-ref of type com.tangosol.net.NamedCache in either
the web.xml or ejb-jar.xml file. Example 2-4 illustrates a <resource-ref> element that
identifies myCache as the NamedCache. See Developing JNDI Applications for Oracle WebLogic
Server for details on using JNDI in Oracle WebLogic Server.

Chapter 2
Accessing a Data Cache

2-8

Note:

The <res-auth> and <res-sharing-scope> elements do not appear in the example.
The <res-auth> element is ignored because currently no resource sign-on is
performed to access data caches. The <res-sharing-scope> element is ignored
because data caches are sharable by default and this behavior cannot be overridden.

Example 2-4 Defining a NamedCache as resource-ref for JNDI Lookup

...
<resource-ref>
 <res-ref-name>coherence/myCache</res-ref-name>
 <res-type>com.tangosol.net.NamedCache</res-type>
 <mapped-name>MyCache</mapped-name>
</resource-ref>
...

The following example performs a JNDI lookup to get a NamedCache reference that is defined in
Example 2-4:

try {
 Context ctx = new InitialContext();
 cache = (NamedCache) ctx.lookup("java:comp/env/coherence/myCache");
 cache.put(key, value);
}
catch (NamingException ne)

Using the Coherence API
Coherence provides a full-featured API for interacting with a cache and for performing data grid
operations.
Some of the features of the Coherence API include:

• basic get, put, and putAll operations

• querying a cache

• processing data in a cache using entry processors and aggregators

• event notifications

See Developing Applications with Oracle Coherence for details on using the API to develop
applications. See Java API Reference for Oracle Coherence for a reference of the Coherence
API.

Using POF for Serialization

Objects that are placed in a cache must be serializable. The Portable Object Format (also
referred to as POF) is a language agnostic binary format. POF is designed to be efficient in
both space and time and is the recommended serialization option in Coherence. See
Developing Applications with Oracle Coherence for details on using POF in your applications.

Using a Coherence Application Lifecycle Listener
The Coherence Application Lifecycle listener allows custom processing to occur before and
after the creation and destruction of Coherence caches and clustered services.

Chapter 2
Using the Coherence API

2-9

https://docs.oracle.com/en/middleware/fusion-middleware/coherence/12.2.1.4/java-reference/index.html

Coherence applications support the use of an application lifecycle listener. The listener class
must implement the com.tangosol.application.LifecycleListener interface. See the Java
API Reference for Oracle Coherence for details on the interface.

Override the following methods provided in the LifecycleListener interface and add any
required functionality:

• preStart(Context) – called before the application is activated

• postStart(Context) – called after the application is started

• preStop(Context) – called before the application stops its services

• postStop(Context) – called after the application is stopped

To use an application lifecycle listener class, declare the fully qualified name of the class within
the <application-lifecycle-listener> element in the coherence-application.xml
deployment descriptor and include the class in the /lib directory of the GAR. The following is
an example of declaring an application lifecycle listener class that is named
MyAppLifecycleListener.

<?xml version="1.0"?>
<coherence-application
 xmlns="http://xmlns.oracle.com/coherence/coherence-application">
 <cache-configuration-ref>META-INF/coherence-cache-config.xml
 </cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>
 <application-lifecycle-listener>
 <class-name>package.MyAppLifecycleListener</class-name>
 </application-lifecycle-listener>
</coherence-application>

Using Coherence for Session Management
Web applications can chose to use Coherence for storing and replicating session state.
The session management features of Coherence are implemented by the Coherence*Web
component. See Administering HTTP Session Management with Oracle Coherence*Web for
details on setting up, configuring, and using Coherence*Web in WebLogic Server.

Creating Extend Clients in WebLogic Server
Client applications can chose to use Coherence*Extend to interact with Coherence caches
without becoming members of a Coherence cluster.
Client applications connect to managed Coherence proxy servers and are unaware that cache
and invocation service requests are being executed remotely. Remote clients may be deployed
within a WebLogic Server domain or may be external to WebLogic Server. See Administering
Clusters for Oracle WebLogic Server for details on setting up a Coherence proxy server tier in
WebLogic Server to allow remote connections. See Developing Remote Clients for Oracle
Coherence in for details on creating Coherence*Extend client applications.

Using a JCache Cache in WebLogic Server
Applications that are deployed to a managed Coherence container can use the JCache API
and JCache provider that is implemented by Coherence.

See Developing Applications with Oracle Coherence for details on using JCache with
Coherence.

Chapter 2
Using Coherence for Session Management

2-10

https://docs.oracle.com/en/middleware/fusion-middleware/coherence/12.2.1.4/java-reference/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/coherence/12.2.1.4/java-reference/index.html

1. Add the COHERENCE_HOME/lib/cache-api.jar and COHERENCE_HOME/lib/
coherence-jcache.jar libraries to the /lib directory in a GAR file.

2. Edit the cache configuration file that is referenced in the coherence-application.xml file
to include either the JCache namespace or JCacheExtend namespace. For example:

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xmlns:jcache="class://com.tangosol.coherence.jcache.JCacheNamespace"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-
config
 coherence-cache-config.xsd">
 ...

3. Use the JCahe API to create and use a JCache cache. For example within a servlet:

static private Cache<ContactId, Contact> getCache(String cacheName)
 {
 CachingProvider provider = Caching.getCachingProvider();
 CacheManager mgr = Caching.getCachingProvider().getCacheManager();

 Cache<ContactId, Contact> cache = null;

 try {
 cache = mgr.getCache(cacheName, ContactId.class, Contact.class);
 }

 catch (IllegalStateException e) {

 if (cache == null) {
 PartitionedCacheConfiguration config = new
 PartitionedCacheConfiguration<ContactId, Contact>();
 config.setTypes(ContactId.class, Contact.class);
 config.setStatisticsEnabled(true); config.setManagementEnabled(true);
 cache = mgr.createCache(cacheName, config);
 }
 return cache;
}

Chapter 2
Using a JCache Cache in WebLogic Server

2-11

3
Deploying Coherence Applications in
WebLogic Server

To manage Coherence servers in a WebLogic Server domain, you must deploy Coherence
applications packaged as a Grid ARchive (GAR).
See Packaging Coherence Applications for details on creating a GAR.

This chapter includes the following sections:

• Understanding Coherence Deployment Tiers

• Deploying Applications to Managed Coherence Servers

• Deploying Coherence Applications as Shared Libraries

• Referencing Shared Libraries from a Coherence Application

• Performing a Rolling Redeploy

• Loading Coherence From the Application Classloader

• Securing Coherence Applications in WebLogic Server

Understanding Coherence Deployment Tiers
Coherence is setup in tiers within a WebLogic Server domain. The tiers often include: a data
tier for storing data; an application tier for consuming cached data; and a proxy tier for allowing
remote clients (non cluster members) to use a cluster.
The use of a dedicated storage tier that is separate from the application tier and proxy tier is a
best practice that ensures optimal performance of a Coherence cluster.

The deployment tiers contain managed servers that are part of a Coherence cluster. Managed
servers that are part of a Coherence cluster are referred to as managed Coherence servers.
Coherence tiers are typically associated with respective WebLogic Server clusters. The use of
WebLogic Server clusters simplifies the deployment of an application and the management of
the deployment topology, especially in large clusters. However, managed Coherence servers in
each tier can be individually managed as required.

During development and simple testing, setting up Coherence deployment tiers may be
impractical. In this case, a Coherence application can be deployed to a single managed server
and a single-server cluster is automatically created using default cluster settings.

See Administering Clusters for Oracle WebLogic Server.

Deploying Applications to Managed Coherence Servers
Coherence application GAR contains the artifacts of a Coherence application and includes a
deployment descriptor. A GAR can be deployed as a standalone module or as a part of an
EAR using any WebLogic Server deployment tool.
Coherence application GAR modules get deployed the same way as JavaEE modules and can
be deployed using any WebLogic Server deployment tool: the WebLogic Remote Console, the
Oracle WebLogic Scripting Tool (WLST), the WebLogic Server Deployer class, and the
WebLogic Server <wldeploy> ANT target.

3-1

See Oracle WebLogic Remote Console Online Help.

See Understanding the WebLogic Scripting Tool.

See Deploying Applications to Oracle WebLogic Server.

Note:

Production redeployment of an EAR containing a GAR is only supported for storage-
disabled cluster clients. In addition, any changes to the code in the GAR must be
backward compatible with the existing deployment. For example, entity classes that
are changing must implement the Evolvable interface. See Deploying Applications to
Oracle WebLogic Server.

GAR modules should be deployed as standalone modules and also as part of an EAR. The
following list describes how GAR modules are deployed in a WebLogic Server domain that
uses Coherence tiers. See Administering Clusters for Oracle WebLogic Server.

• Data Tier – Deploy a standalone GAR to each managed Coherence server of the data tier.
If the data tier is setup as a WebLogic Server cluster, deploy the GAR to the cluster and
have the module copied to each managed Coherence server.

• Application Tier – Deploy the EAR that contains both the client implementation (Web
Application, EJB, and so on) and the GAR to each managed Coherence server in the
cluster. If the application tier is setup as a WebLogic Server cluster, deploy the EAR to the
cluster and have the module copied to each managed Coherence server.

• Proxy Tier – Deploy the standalone GAR to each managed Coherence server of the proxy
tier. The cache configuration file packaged in the GAR must include a proxy service
definition. If the application tier is setup as a WebLogic Server cluster, deploy the GAR to
the cluster and have the module copied to each managed Coherence server.

• Extend Client Tier – Deploy the EAR that contains the extend client implementation (Web
Application, EJB, and so on) as well as the GAR to each managed server that hosts the
extend client. The client's cache configuration file must include a remote cache service
definition that defines the address of a proxy server. If the extend client tier is setup as a
WebLogic Server cluster, deploy the EAR to the cluster and the WebLogic deployment
infrastructure copies the module to each managed Coherence server.

Deploying Coherence Applications as Shared Libraries
Coherence applications are packaged as Grid ARchive (GAR) and deployed as shared
libraries in a single-tier or multi-tier domain.
A standalone GAR can be deployed as a shared library and referenced by multiple EAR files.
For general information about shared libraries and their deployment, see Creating Shared Java
EE Libraries and Optional Packages in Developing Applications for Oracle WebLogic Server.

To use the GAR at runtime, the weblogic-application.xml deployment descriptor in an EAR
must contain a reference to the GAR. For example:

<weblogic-application>
 <library-ref>
 <library-name>ExampleGAR</library-name>
 </library-ref>
</weblogic-application>

Chapter 3
Deploying Coherence Applications as Shared Libraries

3-2

The above configuration works in single-tier domain where both the application tier and data
tier are on a single managed Coherence server. However, in a multi-tiered domain, additional
configuration is required to ensure that a GAR that is deployed as a shared library results in
storage-enabled members starting as expected.

To deploy a GAR as shared library in multi-tiered domain:

1. Edit the cache configuration file in the GAR and explicitly set the <scope-name> element to
the GAR name. For details about configuring the scope name, see Administering Oracle
Coherence.

For example, if the GAR is named ExampleGAR.gar, the <scope-name> element is defined
as follows:

<cache-config>
 <defaults>
 <scope-name>ExampleGAR</scope-name>
 </defaults>
 ...

2. Deploy the GAR to the application (storage-disabled) tier as a shared library and specify
the GAR name as the application name. For example, if the GAR is named
ExampleGAR.gar, then the GAR name is specified as ExampleGAR.

3. Edit the weblogic-application.xml deployment descriptor in the EAR and include a
reference for the GAR. For example:

<weblogic-application>
 <library-ref>
 <library-name>ExampleGAR</library-name>
 </library-ref>
</weblogic-application>

4. Deploy the EAR to the application tier.

5. Deploy the same GAR to the data (storage-enabled) tier and modify the name. For
example, ExampleGAR-DataTier. If a name is not specified, a -1 is appended to the
deployment name because the GAR already exists as a shared library.

6. After the deployment completes, the GARs that are deployed to both tiers (for example,
ExampleGAR and ExampleGAR-DataTier) join the same services and client request
processing and data storage are separated as expected.

Referencing Shared Libraries from a Coherence Application
A GAR module can use shared libraries that are deployed to WebLogic Server.

To use a shared library, reference the shared library within a <library-ref> node in the
weblogic-coh-app.xml deployment descriptor and package the deployment descriptor in the /
META-INF directory of the GAR module.
For a detailed reference of the available elements in the descriptor, see weblogic-coh-app.xml
Deployment Descriptor Elements. For example:

<?xml version="1.0"?>
<weblogic-coh-app
 xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-coh-app">
 <library-ref>
 <library-name>mySharedLibrary</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>8.1beta</implementation-version>
 <exact-match>false</exact-match>

Chapter 3
Referencing Shared Libraries from a Coherence Application

3-3

 </library-ref>
</weblogic-coh-app>

Performing a Rolling Redeploy
GAR modules that are targeted to a WebLogic Server cluster are simultaneously redeployed to
all managed Coherence servers.
There are no provisions that guard against in-memory cache data loss when utilizing
simultaneous redeployment across all managed Coherence servers.

Note:

To ensure there is no persistence or write-through cache data loss during a
simultaneous redeployment of GAR modules to all managed Coherence servers, you
can leverage the service suspend feature. A service is considered suspended only
after all the data is fully written, including active persistence mode, asynchronous
persistence tasks, entries in the write-behind queue of a read-write backing map, and
other asynchronous operations. Outstanding operations are completed and no new
operations are allowed against the suspended services. Thus, for a controlled
complete redeploy of GAR modules to all managed Coherence servers, Oracle
recommends executing the Coherence ClusterMBean operation
suspendService("impactedService") which suspends each service with potential
asynchronous operations gracefully before undeploying GAR modules from all
managed Coherence servers.

A rolling redeploy is a technique for updating a GAR across a WebLogic Server cluster by
individually redeploying the GAR on each managed Coherence server and cycling through all
servers. A rolling redeploy allows cached data to be redistributed while the GAR is redeployed.
Only in-memory cache data is otherwise lost if a GAR is redeployed to all cache servers
simultaneously.

Note:

Always check the StatusHA metric on the partitioned service between server-targeted
deployments to ensure MACHINE_SAFE status. See Managing Oracle Coherence for
details on this metric.

To perform a rolling redeploy, a GAR must be deployed using the specifiedtargetsonly
option, which ensures that subsequent updates to the GAR results in a deployment on the
current target and not on all targets that contain the GAR. The specifiedtargetsonly option is
not available through the WebLogic Remote Console and must be specified using either WLST,
weblogic.Deployer, or the <wldeploy> ANT target.

The full path and name to the GAR file must match exactly the path and name that was used to
originally deploy the GAR. If a different path or name is used, then a -1, -2, or, -1 and -2 is
appended to the GAR name and the rolling redeploy will not work correctly. In addition, if the
GAR was originally deployed using the upload=true option, then you must redeploy using the
upload=true option; otherwise, the rolling redeploy will not work correctly.

Chapter 3
Performing a Rolling Redeploy

3-4

For a complete example (including a WLST script) of redeploying Coherence applications
(including ensuring MACHINE_SAFE status), see the Coherence examples that are part of the
WebLogic Server examples. The examples are available by performing a custom WebLogic
Server installation and selecting to install the Server Examples. See Understanding Oracle
WebLogic Server.

WLST

deploy('MyCohApp', '/myapps/MyCohApp.gar', 'server1', specifiedTargetsOnly='true')

<wldeploy> ANT Target

<wldeploy
 user="${admin.username}"
 password="${admin.password}"
 adminurl="t3://${admin.host}:${admin.port}"
 debug="false"
 action="deploy"
 name="Coherence GAR"
 source="${gar.filename}"
 targets="ms3"
 specifiedtargetsonly="true"
 failonerror="true"/>

weblogic.Deployer

java weblogic.Deployer -adminurl t3://localhost:7001 -username username -password
password -targets ms3 -deploy -name MyCohApp /myapps/MyCohApp.gar -specifiedtargetsonly

Loading Coherence From the Application Classloader
The Coherence library (coherence.jar) is included in the system classpath of WebLogic
Server. It is a best practice to always use this library and not include the coherence.jar library
within the /lib directory of a Web application.
For advanced use cases that include the coherence.jar library in a Web application, the
Coherence resources must be defined in the weblogic.xml file using the <prefer-
application-packages> and <prefer-application-resources> elements. For example:

<container-descriptor>
 <prefer-application-packages>
 <package-name>com.tangosol.*</package-name>
 <package-name>com.oracle.coherence.common.**</package-name>
 </prefer-application-packages>

 <prefer-application-resources>
 <resource-name>com.tangosol.*</resource-name>
 <resource-name>com.oracle.coherence.common.*</resource-name>
 <resource-name>coherence-*.xml</resource-name>
 <resource-name>coherence-*.xsd</resource-name>
 <resource-name>tangosol-*.xml</resource-name>
 <resource-name>tangosol.properties</resource-name>
 <resource-name>tangosol.cer</resource-name>
 <resource-name>tangosol.dat</resource-name>
 <resource-name>internal-txn-cache-config.xml</resource-name>
 <resource-name>txn-pof-config.xml</resource-name>
 <resource-name>pof-config.xml</resource-name>
 <resource-name>management-config.xml</resource-name>
 <resource-name>processor-dictionary.xml</resource-name>
 <resource-name>reports/*</resource-name>

Chapter 3
Loading Coherence From the Application Classloader

3-5

 </prefer-application-resources>
 </container-descriptor>

Securing Coherence Applications in WebLogic Server
Coherence applications that are deployed to managed Coherence servers can be secured.
See Securing Oracle Coherence for details on securing the Coherence applications.

Chapter 3
Securing Coherence Applications in WebLogic Server

3-6

A
coherence-application.xml Deployment
Descriptor Elements

This appendix provides a complete reference for the elements in the Coherence application
deployment descriptor coherence-application.xml.
This appendix includes the following sections:

• coherence-application.xml Namespace Declaration and Schema Location

• application-lifecycle-listener
The application-lifecycle-listener elements specify the fully qualified name of a class or the
initialization parameter that is required by the implementation.

• cache-configuration-ref

• coherence-application
The coherence-application element is the root element of the Coherence application
deployment descriptor.

• configurable-cache-factory-config
The configurable-cache-factory-config element specifies the fully qualified name of a
class that implements the com.tangosol.net.ConfigurableCacheFactory interface. The
default implementation is the com.tangosol.net.ExtensibleConfigurableCacheFactory
class.

• init-params
The init-params element specifies an initialization parameter. Any number of init-
params elements may be defined.

• pof-configuration-ref

coherence-application.xml Namespace Declaration and Schema
Location

The Coherence application deployment descriptor schema is defined in the coherence-
application.xsd file, which is located in the root of the coherence.jar library. The web URL is
http://xmlns.oracle.com/coherence/coherence-application/1.0/coherence-application.xsd
The <coherence-application> element is the root element of the descriptor and includes the
XSD reference, the namespace reference, and the location of the coherence-application.xsd
file. For example:

<?xml version='1.0'?>
<coherence-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-application"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-application
 coherence-application.xsd">

A-1

http://xmlns.oracle.com/coherence/coherence-application/1.0/coherence-application.xsd

application-lifecycle-listener
The application-lifecycle-listener elements specify the fully qualified name of a class or the
initialization parameter that is required by the implementation.

The application-lifecycle-listener element specifies the fully qualified name of a class
that implements the com.tangosol.application.LifeCycleListener interface. The class
allows custom processing before and after the creation and destruction of Coherence cache
and clustered services.

The following table describes the elements you can define within an application-lifecycle-
listener element.

Table A-1 application-lifecycle-listener Elements

Element Required/
Optional

Description

class-name Required Specifies the fully qualified name of a class that implements the
com.tangosol.application.LifeCycleListener interface.

init-params Optional Specifies an initialization parameter that is required by the
implementation. Any number of init-params elements may be
defined.

cache-configuration-ref
The cache-configuration-ref element specifies the name and location of a Coherence cache
configuration file. The location of the file is relative to the root directory within a Coherence Grid
Archive (GAR). A URL may also be specified. If the file is not found, or if this element is not
specified, then the predefined cache configuration file (coherence-cache-config.xml) that is
located in the coherence.jar library on the system classpath is used by default.

Note:

If the configuration file is located in the root directory of the GAR, then it must not use
the default file name (coherence-cache-config.xml); otherwise, the configuration file
that is included in the coherence.jar file which is located in the system classpath is
found first and the configuration file in the GAR is never loaded. An alternative to
renaming the file is to place the configuration file in the META-INF directory of the
GAR.

coherence-application
The coherence-application element is the root element of the Coherence application
deployment descriptor.

The following table describes the elements you can define within a coherence-application
element.

Appendix A
application-lifecycle-listener

A-2

Table A-2 coherence-application Elements

Element Required/
Optional

Description

cache-configuration-ref Optional Specifies the name and location of the Coherence
cache configuration file.

pof-configuration-ref Optional Specifies the name and location of the Coherence
Portable Object Format (POF) configuration file.

application-lifecycle-listener Optional Specifies the fully qualified name of a class that
implements the
com.tangosol.application.LifeCycleListe
ner interface.

configurable-cache-factory-config Optional Specifies the fully qualified name of a class that
implements the
com.tangosol.net.ConfigurableCacheFacto
ry interface.

configurable-cache-factory-config
The configurable-cache-factory-config element specifies the fully qualified name of a class
that implements the com.tangosol.net.ConfigurableCacheFactory interface. The default
implementation is the com.tangosol.net.ExtensibleConfigurableCacheFactory class.

Using a custom ConfigurableCacheFactory implementation is an advanced use case and is
typically used to allow applications that are scoped by different class loaders to use separate
cache configuration files.

The following table describes the elements you can define within a configurable-cache-
factory-config element.

Table A-3 configurable-cache-factory-config Elements

Element Required/
Optional

Description

class-name Required Specifies the fully qualified name of a class that implements the
com.tangosol.net.ConfigurableCacheFactory interface.

init-params Optional Specifies an initialization parameter that is required by the
implementation. Any number of init-params elements may be
defined.

init-params
The init-params element specifies an initialization parameter. Any number of init-params
elements may be defined.

The following table describes the elements you can define within an init-params element.

Appendix A
configurable-cache-factory-config

A-3

Table A-4 init-params Elements

Element Required/
Optional

Description

param-type Optional Specifies the Java type of the initialization parameter. The following
standard types are supported:

• java.lang.String (string)

• java.lang.Boolean (boolean)

• java.lang.Integer (int)

• java.lang.Long (long)

• java.lang.Double (double)

• java.math.BigDecimal
• java.io.File
• java.sql.Date
• java.sql.Time
• java.sql.Timestamp

param-value Optional Specifies the value of the initialization parameter. The value is in
the format specific to the Java type of the parameter.

For example:

<init-params>
 <param-type>java.lang.String</param-type>
 <param-value>EmployeeTable</param-value>
</init-params>

pof-configuration-ref
The pof-configuration-ref element specifies the name and location of a Coherence POF
configuration file. The location of the file is relative to the root directory within a Coherence Grid
Archive (GAR). A URL may also be specified. If the file is not found, or if this element is not
specified, then the predefined POF configuration file (pof-config.xml) that is located in the
coherence.jar library on the system classpath is used by default.

Note:

If the configuration file is located in the root directory of the GAR, then it must not use
the default file name (pof-config.xml); otherwise, the configuration file that is
included in the coherence.jar file which is located in the system classpath is found
first and the configuration file in the GAR is never loaded. An alternative to renaming
the file is to place the configuration file in the META-INF directory of the GAR.

Appendix A
pof-configuration-ref

A-4

B
weblogic-coh-app.xml Deployment Descriptor
Elements

This appendix provides a complete reference for the elements in the WebLogic Coherence
application deployment descriptor weblogic-coh-app.xml.

This appendix includes the following sections:

• weblogic-coh-app.xml Namespace Declaration and Schema Location
Learn the correct text for the namespace declaration and schema location for the
weblogic-coh-app.xml deployment descriptor file.

• weblogic-coh-app
The weblogic-coh-app element is the root element of the WebLogic Coherence application
deployment descriptor.

• library-ref
The library-ref element specifies a shared library module that is intended to be used as
a library in a Coherence application.

weblogic-coh-app.xml Namespace Declaration and Schema
Location

Learn the correct text for the namespace declaration and schema location for the weblogic-
coh-app.xml deployment descriptor file.

The correct text is as follows.

<weglogic-coh-app
 xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-coh-app">

weblogic-coh-app
The weblogic-coh-app element is the root element of the WebLogic Coherence application
deployment descriptor.

Table B-1 weblogic-coh-app Elements

Element Required/ Optional Description

description Optional Specifies a description.

library-ref Optional Specifies a shared library module that is intended
to be used as a library in a Coherence application.

B-1

library-ref
The library-ref element specifies a shared library module that is intended to be used as a
library in a Coherence application.

The following table describes the elements you can define within a library-ref element.

Table B-2 library-ref Elements

Element Required/
Optional

Description

library-
name

Required Specifies the name of the referenced shared library.

specificati
on

Optional Specifies the minimum specification-version required.

implementat
ion-version

Optional Specifies the minimum implementation-version required.

exact-match Optional Specifies whether there must be an exact match between the
specification and implementation version that is specified and that of the
referenced library. Default value is false.

Appendix B
library-ref

B-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Getting Started
	Introduction to Coherence Applications
	Typical Uses for Coherence
	Understanding Coherence Application Configuration Files
	Packaging and Deployment Overview
	Main Tasks for Creating Coherence Applications
	Task One: Create a Coherence Application Directory Structure
	Task Two: Include the Coherence Application's Artifacts
	Task Three: Package the Coherence Application for Deployment

	2 Creating Coherence Applications for WebLogic Server
	Packaging Coherence Applications
	Directory Structure Example
	Packaging a Grid Archive In an Enterprise Application
	Creating a Coherence Project from a Maven Archetype

	Creating a Coherence Application Deployment Descriptor
	Using JNDI to Override Configuration
	Defining a Data Cache
	Accessing a Data Cache
	Using the Coherence API
	Using a Coherence Application Lifecycle Listener
	Using Coherence for Session Management
	Creating Extend Clients in WebLogic Server
	Using a JCache Cache in WebLogic Server

	3 Deploying Coherence Applications in WebLogic Server
	Understanding Coherence Deployment Tiers
	Deploying Applications to Managed Coherence Servers
	Deploying Coherence Applications as Shared Libraries
	Referencing Shared Libraries from a Coherence Application
	Performing a Rolling Redeploy
	Loading Coherence From the Application Classloader
	Securing Coherence Applications in WebLogic Server

	A coherence-application.xml Deployment Descriptor Elements
	coherence-application.xml Namespace Declaration and Schema Location
	application-lifecycle-listener
	cache-configuration-ref
	coherence-application
	configurable-cache-factory-config
	init-params
	pof-configuration-ref

	B weblogic-coh-app.xml Deployment Descriptor Elements
	weblogic-coh-app.xml Namespace Declaration and Schema Location
	weblogic-coh-app
	library-ref

