
Siebel

Integration Platform Technologies:
Siebel Enterprise Application
Integration Guide

June 2023

Siebel
Integration Platform Technologies: Siebel Enterprise Application Integration Guide

June 2023

Part Number: F84301-01

Copyright © 1994, 2023, Oracle and/or its affiliates.

Authors: Siebel Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Contents

Preface .. i

1 What’s New in This Release 1
What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 23.6

Update .. 1

Whats New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 23.3

Update .. 1

What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 22.3

Update ... 2

What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 21.7

Update ... 2

What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 21.4

Update ... 2

2 Integration Objects 5
Integration Objects ... 5

About Integration Object Terminology .. 5

About Integration Objects .. 6

About Integration Object Base Object Types ... 7

About the Difference Between Integration Objects and Integration Object Instances ... 7

About Integration Object Wizards .. 8

About the Structure of Integration Objects .. 9

About Integration Component User Properties as Operation Controls ... 20

About EAI Siebel Adapter Access Control .. 27

3 Creating and Maintaining Integration Objects 29
Creating and Maintaining Integration Objects .. 29

About the Integration Object Builder .. 29

About the EAI Siebel Wizard Business Service ... 30

Process of Creating Integration Objects .. 31

Creating Integration Objects Using the EAI Siebel Wizard Business Service ... 31

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Creating a New Integration Object Using the Web Tools Wizard .. 34

Creating an Integration Object Based on Another Root Business Component .. 35

Creating an Integration Object with Many-To-Many Relationships .. 35

Creating Integration Object Instances Programmatically ... 36

Guidelines for Configuring Integration Objects .. 38

Validating Integration Objects ... 38

Testing Integration Objects .. 39

Deploying Integration Objects to the Run-Time Database ... 39

About Synchronizing Integration Objects ... 41

Synchronizing Integration Objects ... 46

Resolving Synchronization Conflicts for Integration Objects and User Properties ... 49

Using Formatted Values in Integration Objects .. 52

Generating Integration Object Schemas ... 53

Optimizing the Performance of Integration Objects .. 53

Picklist Validation ... 54

About Business Component Restrictions for Integration Components ... 54

Guidelines for Using Integration Components .. 55

4 Business Services 57
Business Services ... 57

About Business Services .. 57

Creating Business Services in Siebel Tools .. 60

Creating Business Services in the Siebel Application .. 62

Deploying Business Services as Web Services .. 63

Exporting and Importing Business Services in Siebel Tools .. 64

Importing Business Services into Siebel CRM .. 64

Testing Your Business Service in the Simulator .. 65

About Accessing a Business Service Using Siebel eScript or Siebel VB .. 65

Business Scenario for the Use of Business Services ... 66

Code Sample Example for Creating a Property Set ... 66

5 Web Services 69
Web Services ... 69

About Web Services .. 69

About RPC-Literal and DOC-Literal Bindings .. 70

About One-Way Operations and Web Services ... 71

Invoking Siebel Web Services Using an External System .. 71

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Consuming External Web Services Using Siebel Web Services ... 80

Using the Local Business Service .. 89

Examples of Invoking Web Services .. 93

About Web Services Security Support .. 97

About WS-Security UserName Token Profile Support .. 98

Proxy Configuration for Java Web Container .. 100

About Siebel Authentication and Session Management SOAP Headers ... 100

About Web Services and Web Single Sign-On Authentication .. 108

About SOAP Fault Schema Support .. 108

About Custom SOAP Filters .. 112

About EAI File Streaming .. 114

About Web Services Cache Refresh .. 116

Enabling Web Services Tracing .. 116

Previewing the Repository Changes Before Delivery .. 118

Configuring the No Session Preference in EAI-SOAP Parameter .. 120

Configuring the Maximum Retry for Processing EAI-SOAP Request Parameter .. 121

6 EAI Siebel Adapter Business Service 123
EAI Siebel Adapter Business Service .. 123

About the EAI Siebel Adapter Business Service .. 123

EAI Siebel Adapter Business Service Methods .. 124

About Using Effective Dating with Siebel EAI Adapter Business Service .. 149

Enabling Effective Dating on Fields ... 150

Enabling Effective Dating on Links .. 153

About Using Language-Independent Code with the EAI Siebel Adapter Business Service .. 155

About LOV Translation and the EAI Siebel Adapter Business Service .. 155

Siebel EAI and Run-Time Events .. 156

Guidelines for Using the EAI Siebel Adapter Business Service .. 157

Troubleshooting the EAI Siebel Adapter Business Service .. 157

Enabling Logging for the EAI Siebel Adapter Business Service ... 158

Enabling Siebel Argument Tracing ... 159

Configuring the EAI Siebel Adapter Business Service for Concurrency Control .. 160

7 EAI UI Data Adapter Business Service 165
EAI UI Data Adapter Business Service ... 165

About the EAI UI Data Adapter Business Service ... 165

EAI UI Data Adapter Business Service Methods ... 166

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

EAI UI Data Adapter Business Service Method Arguments ... 181

8 Siebel Virtual Business Components 183
Siebel Virtual Business Components ... 183

About Virtual Business Components ... 183

Using Virtual Business Components .. 185

XML Gateway Service .. 187

Examples of the Outgoing XML Format ... 189

Search-Spec Node-Type Values .. 192

Examples of the Incoming XML Format ... 193

External Application Setup ... 195

Custom Business Service Methods .. 195

Custom Business Service Examples .. 208

9 Siebel EAI and File Attachments 217
Siebel EAI and File Attachments ... 217

About File Attachments ... 217

Exchanging Attachments with External Applications ... 217

Using MIME Messages to Exchange Attachments ... 218

About the EAI MIME Hierarchy Converter .. 224

About the EAI MIME Doc Converter .. 226

Using Inline XML to Exchange Attachments ... 228

10 External Business Components 233
External Business Components .. 233

Process of Configuring External Business Components ... 233

Using Specialized Business Component Methods for EBCs .. 245

Usage and Restrictions for External Business Components .. 246

About Using External Business Components with the Siebel Web Clients ... 247

About Overriding Connection Pooling Parameters for the Data Source ... 247

About Joins to Tables in External Data Sources ... 247

Searching and Sorting on Fields Joined to External Tables ... 248

About Distributed Joins ... 249

Troubleshooting External Business Components .. 250

11 Predefined EAI Business Services 253
Predefined EAI Business Services .. 253

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Predefined EAI Business Services .. 253

12 Property Set Representation of Integration Objects 257
Property Set Representation of Integration Objects .. 257

Property Sets and Integration Objects .. 257

Example Instance of an Account Integration Object ... 259

13 DTDs for XML Gateway Business Service 261
DTDs for XML Gateway Business Service ... 261

Outbound DTDs for the XML Gateway Business Service .. 261

Inbound DTDs for the XML Gateway Business Service ... 263

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Preface

Preface
This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center at http://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides! You can send an email to:
oracle_fusion_applications_help_ww_grp@oracle.com.

i

http://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Preface

ii

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 1
What’s New in This Release

1 What’s New in This Release

What’s New in Integration Platform Technologies: Siebel
Enterprise Application Integration Guide, Siebel CRM
23.6 Update
The following information lists the changes in this revision of the documentation to support this release of the software.

Topic Description

Creating a New Integration Object Using
the Web Tools Wizard

New topics. As of Siebel CRM 23.6, Web Tools provide wizards that allow you to create new objects such
as Business Components, Integration Objects, and perform various other Web Tools tasks.

Whats New in Integration Platform Technologies: Siebel
Enterprise Application Integration Guide, Siebel CRM
23.3 Update
The following information lists the changes in this revision of the documentation to support this release of the software.

Topic Description

Added the following topics under Web
Services chapter:

• Configuring the No Session
Preference in EAI-SOAP Parameter

• Configuring the Maximum Retry
for Processing EAI-SOAP Request
Parameter

• Incoming Concurrent EAI Requests
and Session Management

New topics. These topics describe the parameters that you can configure in the Siebel Application
Interface Profile.

1

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 1
What’s New in This Release

What’s New in Integration Platform Technologies: Siebel
Enterprise Application Integration Guide, Siebel CRM
22.3 Update
The following information lists the changes in this revision of the documentation to support this release of the software.

Topic Description

Session and Session Token Timeout-
Related Parameters

Modified topic. Updated the description of the SessionTokenTimeout parameter.

What’s New in Integration Platform Technologies: Siebel
Enterprise Application Integration Guide, Siebel CRM 21.7
Update
No new features have been added to this guide for this release. The following topic was revised to improve the technical
accuracy of this guide:

• About Siebel Authentication and Session Management SOAP Headers

What’s New in Integration Platform Technologies: Siebel
Enterprise Application Integration Guide, Siebel CRM 21.4
Update
The following information lists the changes in this revision of the documentation to support this release of the software.

Topic Description

Configuring Siebel Server and Config
Agent for SHA2 Outbound

Modified topic. Updated the content to provide details about the EAIOutboundSubSys component
parameter.

Usage and Restrictions for External
Business Components

Modified topic. All EBCs require the Siebel S_APP_VER and S_SYS_PREF tables to be present in the
external database.

2

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 1
What’s New in This Release

3

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 1
What’s New in This Release

4

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

2 Integration Objects

Integration Objects
This chapter describes the structure of Siebel integration objects. It describes the Integration Object Builder wizard,
which assists you in building your own integration objects based on Siebel objects. This chapter contains the following
topics:

• About Integration Object Terminology

• About Integration Objects

• About Integration Object Base Object Types

• About the Difference Between Integration Objects and Integration Object Instances

• About Integration Object Wizards

• About the Structure of Integration Objects

• About Integration Component User Properties as Operation Controls

• About Integration Component Keys

• About EAI Siebel Adapter Access Control

About Integration Object Terminology
This chapter describes concepts that are often referred to using inconsistent terminology on different systems. The
following table has been included to clarify the information in this chapter by providing a standard terminology for
these concepts.

Term Description

Component

A constituent part of any generic object.

Field

A generic reference to a data structure that can contain one data element.

Integration message

A bundle of data consisting of two major parts:

• Header information that describes what will be done with or to the message itself

• Instances of integration objects; that is, data in the structure of the integration object

Integration object

An integration object of any type, including the Siebel integration object, the SAP BAPI integration
object, and the SAP IDOC integration objects.

Integration object instance

Actual data, usually the result of a query or other operation, which is passed from one business service
to another, that is structurally modeled on a Siebel integration object.

5

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Term Description

Metadata

Data that describes data. For example, the term data type describes data elements such as char, int,
 Boolean, time, date, and float.

Siebel business component

A Siebel object type that defines a logical representation of columns in one or more database tables. A
business component collects columns from the business component’s base table, its extension tables,
 and its joined tables into a single structure. Business components provide a layer of abstraction over
tables. Applets in Siebel applications reference business components; they do not directly reference the
underlying tables.

Siebel business object

A Siebel object type that creates a logical business model using links to tie together a set of interrelated
business components. The links provide the one-to-many relationships that govern how the business
components interrelate in this business object.

Siebel integration object

An object stored in the Siebel repository that represents a Siebel business object.

Siebel integration component

A constituent part of a Siebel integration object that represents a Siebel business component.

Siebel integration component field

A data structure that can contain one data element in a Siebel integration component. Represents a
Siebel business component field.

About Integration Objects
This guide can help you understand how Siebel EAI represents the Siebel business object structure. Siebel integration
objects allow you to represent integration metadata for Siebel business objects, XML, and other external data structures
as common structures that the Enterprise Application Integration (EAI) infrastructure can understand. Because these
integration objects adhere to a set of structural conventions, they can be traversed and transformed programmatically,
using Siebel eScript objects, methods, and functions, or transformed declaratively using Siebel Data Mapper.

Note: For more information on Siebel Data Mapper, see Business Processes and Rules: Siebel Enterprise Application
Integration .

The typical integration project involves transporting data from one application to another. For example, if you want to
synchronize data from a back-office system with the data in your Siebel application. You might want to generate a quote
in the Siebel application and perform a query against your Enterprise Resource Planning (ERP) system transparently. In
the context of Siebel EAI, data is transported in the form of an integration message. A message, in this context, typically
consists of header data that identifies the message type and structure, and a body that contains one or more instances
of data-for example, orders, accounts, or employee records.

When planning your integration project, consider several issues:

• How much data transformation does your message require?

• At what point in the process do you perform the data transformation?

• Is a confirmation message response to the sender required?

6

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

• Are there data items in the originating data source that will not be replicated in the receiving data source, or
that will replace existing data in the receiving data source?

About Integration Object Base Object Types
Each integration object created in Siebel Tools has to be based on one of the base object types presented in the
following table. This property is used by adapters to determine whether the object is a valid object for them to process.

Note: XML converters can work with any of the base object types.

Base Object Type Description

None

For internal use only.

SQL

Used for manually creating integration objects. Only the EAI SQL Adapter accepts integration objects
of this type.

SQL Database Wizard

Used by the Database Wizard for the integration object it creates. Only the EAI SQL Adapter accepts
integration objects of this type.

SQL Oracle Wizard

Used by the Oracle Wizard for the integration object it creates. Only the EAI SQL Adapter accepts
integration objects of this type.

Siebel Business Object

Used by the Integration Object Builder wizard for the integration object it creates. The EAI Siebel
Adapter accepts only the integration object of this type.

Table

Obsolete.

XML

Used to represent external XML Schema such as DTD or XSD. For information on DTD and XSD, see
XML Reference: Siebel Enterprise Application Integration .

About the Difference Between Integration Objects and
Integration Object Instances
Understanding the difference between integration objects and integration object instances is important, especially in
regard to the way they are discussed in this chapter.

An integration object, in the context of Siebel EAI, is metadata; that is, it is a generalized representation or model of a
particular set of data. It is a schema of a particular entity.

An integration object instance is also referred to as a Siebel Message object.

7

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

An integration object instance is actual data organized in the format or structure of the integration object. The following
table and figure illustrates a simple example of an integration object (Contact) and an integration object instance (Susan
Grant), using partial data.

Integration Object Integration Object Instance

Contact

Susan Grant

Contact_Business Address

100 Industrial Way, Pk Ave.

Contact_Position

President and CEO

Contact_Opportunity

Pentium Servers - Q3 00 - Commercial

Any discussion of integration objects in this book will include clarifying terms to help make the distinction, for example,
metadata or Siebel instance.

About Integration Object Wizards
Within Siebel Tools, there are multiple wizards associated with integration objects:

• One that creates integration objects for internal use by the Siebel application

• Others that create integration objects for external systems based on Siebel objects

The following figure shows the logic of the Integration Object Builder and Generate XML Schema wizards. The Code
Generator wizard (not shown) works in the same manner as the Generate XML Schema wizard, but it generates Java
classes.

8

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

The following are the integration object wizards:

• Integration Object Builder wizard. This wizard lets you create a new object. It supplies the functionality for
creating integration objects from Siebel business objects or integration objects, based on the representations
of external business objects using XML Schema Definition (XSD) or Document Type Definition (DTD). Access
this wizard from the New Object Wizards dialog box in Siebel Tools. After selecting the EAI tab, double-click
Integration Object to start the Integration Object Builder wizard.

• Generate XML Schema wizard. This wizard lets you choose an integration object and output XML schema
in XML Schema Definition (XSD) standard, Document Type Definition (DTD), or Microsoft’s XDR (XML Data
Reduced) format. In the Integration Objects list in Siebel Tools, select an integration object. Then click Generate
Schema to start the Generate XML Schema wizard.

• Code Generator wizard. The third wizard lets you create a set of Java class files based on any available
integration object or Siebel business service. In the Integration Objects list in Siebel Tools, select an integration
object. Then click Generate Code to start the Code Generator wizard.

Note: Specific instructions on how to use these wizards appear throughout the Siebel Enterprise Application
Integration documentation set where appropriate.

About the Structure of Integration Objects
The Siebel integration object provides a hierarchical structure that represents a complex data type. Most specifically,
prebuilt EAI integration objects describe the structure of Siebel business objects, XML, and external data. Most

9

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

integration projects require the use of an integration object that describes Siebel business objects, either in an
outbound direction such as a query operation against a Siebel integration object, or in an inbound direction such as a
synchronize operation against a Siebel integration object.

Creating and Maintaining Integration Objects describes how to create integration objects. The initial process of using
the Integration Object Builder wizard is essentially the same for every integration object type currently supported.

CAUTION: Avoid using or modifying integration objects in the EAI Design project. Using or modifying any objects
in the EAI Design project can cause unpredictable results. The best practice is to create a separate project for your
integration objects, for example, ABC Integration Objects, where ABC is the name of your company.

Siebel business objects conform to a particular structure in memory, although it is generally not necessary to consider
this structure when working with Siebel CRM. However, when you are planning and designing an integration project, it is
helpful to understand how a Siebel EAI integration object represents that internal structure.

An integration object consists of one Parent Integration Component, sometimes referred to as the root component,
or the primary integration component. The Parent Integration Component corresponds to the primary business
component of the business object you chose as the model for your integration object.

For example, assume you chose the Account business object (on the first panel of the Integration Object Builder wizard)
to base your integration object myAccount_01 on. The Account business object in Siebel Tools has an Account business
component as its primary business component. In the myAccount_01 integration object, every child component will be
represented as either a direct or indirect child of the primary business component named Account.

Each child component can have one or more child components. In Siebel Tools, if you look at the integration
components for an integration object you have created, then you see that each component can have one or more fields.
The following figure illustrates a partial view of a Siebel integration object based on the Account business object, with
the Business Address component and the Contact component activated.

The following figure represents part of the structure of the Account integration object. The Account parent integration
component can have both fields and child integration components. Each integration component can also have child
integration components and fields. A structure of this sort represents the metadata of an Account integration object.
You can choose to inactivate components and fields. By inactivating components and fields, you can define the
structure of the integration object instances entering or leaving the system.

10

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

The following topics are also discussed:

• About the Cardinality of Child Integration Components

• Custom Integration Component Fields

• Integration Components and Associations

• Multivalue Groups Within Business Components

• Setting Primaries Through Multivalue Links

• Validation of Integration Component Fields and Picklists

• Calculated Fields and Integration Objects

• Inner Joins and Integration Components

• Defining Field Dependencies

• Repository Objects

• About Integration Component User Properties as Operation Controls

• About Integration Component Keys

About the Cardinality of Child Integration Components
By default each child integration component created in Siebel Tools is assigned a cardinality value of Zero or More. The
values Zero or More, or Zero or One, mean that the corresponding integration component is optional. Setting the value
to One, or One or More, means at least one integration component instance must be included in the hierarchy. When the

11

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

cardinality value is set to One, you must have one and only one instance of the integration component in the hierarchy.
The following table information lists possible cardinality values.

Cardinality Integration Component Instance

One

An integration component is mandatory and limited to one instance.

One or more

An integration component is mandatory and must contain at least one instance.

Zero or more

An integration component is optional, and more than one instance is allowed.

Zero or one

An integration component is optional, but if there is one present, then the limit is one.

Custom Integration Component Fields
In some cases, you might want to pass custom attributes that are not necessarily part of the actual data but related to
the context of the data. You can use various means such as SOAP headers and transport headers to pass such custom
fields, or you can have them as part of the integration schema as custom integration component fields.

Custom attributes can be added manually to integration objects as integration component fields. The integration
component field type (Type property in the Object List Editor, Field Type in the Properties window) of custom attributes
must be set to Custom. XML style can be chosen as Attribute or Element, appearing in the schema as XML attributes
and XML elements, respectively.

The new custom attributes will appear in the schema generated from the integration object, like any other integration
component field.

Integration Components and Associations
Siebel business objects are made up of business components that are connected by a link. An association is a business
component that represents the intersection table that contains these links. The integration component definition of
associations is similar to that of multivalue groups (MVGs). User properties Association and MVGAssociation on the
integration component denote that the corresponding business component is an associated business component or
an associated MVG, respectively. For fields that are defined on MVG associations, External Name denotes the name of
the business component field as it appears on the parent business component, and the user property AssocFieldName
denotes the name of the business component field as it appears on the MVG business component.

For example, the Contact business object is partly made up of the Contact and Opportunity business components. The
association between these two business components is represented by the Contact/Opportunity link with a value or a
table name in the Inter Table column. The Integration Object Builder wizard creates a new integration component for
the integration object, based on the Contact business object that represents the association. As shown in the following
figure, the Opportunity integration component has one user property defined as follows: Association, set to a value of Y.

12

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Note: When building an integration object, if an integration component is an association based on an intersection
table, then the user key for this integration component can contain fields based on the same intersection table only if
the integration component has an AllowMultipleAssociations integration component user property set to Y in Siebel
Tools.

Multivalue Groups Within Business Components
Multivalue groups (MVGs) are used within Siebel business components to represent database multivalue attributes.
MVGs can be one of two types: regular MVGs or MVG Associations.

An integration object instance most often has multiple integration component instances. For example, an Account
can have multiple Business Addresses but only one of these addresses is marked as the primary address. A business
requirement might require that only the integration component instance that corresponds to the primary MVG be part
of the integration object instance. In relation to Account and Business Addresses this means that only the primary
address will be part of the Account integration object instance. The primary address can be obtained by one of the
following steps:

• Creating a new MVG on the Account business component that uses a link with a search specification only
returning the primary address record.

• Exposing the primary address information on the Account business component level using a join that has the
primary ID as source field. Note that in this case the primary address information corresponds to fields on the
Account integration component instance and not the fields on a separate Address component instance.

In Siebel Tools, if a Siebel business component contains an MVG, then the MVG is represented by several objects as
illustrated in the following topics.

Multivalue Fields in a Business Component
For example, as illustrated in the following figure, the Account business component contains a multivalue field, Address
Id. The multivalue link property of Address Id has the value Business Address.

13

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Multivalue Links in a Business Component
The Business Address multivalue link associated with the Address Id multivalue field in the previous figure has the value
Business Address as its Destination Business Component, as shown in the following figure.

Fields in a Business Component After Adding a Multivalue Link
The fact that the Business Address multivalue link has Business Address as its Destination Business Component means
that there is another business component named Business Address. The Business Address business component
contains the fields that are collectively represented by Address Id in the Account business component, as shown in the
following figure.

14

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Graphical Representation of a Business Component and a Multivalue Link
The following figure shows a graphical way to represent the relationship between Account business component and the
Business Address multivalue link.

15

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

The more table-like representation in the following figure shows how the Business Address multivalue link connects the
two business components. The child points to the Business Address business component, which contains the multiple
fields that make up the MVG.

Note: Two business components are used to represent an MVG.

Creating a Siebel Integration Component to Represent an MVG
To create a Siebel integration component to represent an MVG, it is necessary also to create two integration
components:

• The first integration component represents the parent business component. In the example, this is the Account
business component. This integration component contains only the fields that are defined in the parent
business component, but which are not based on MVGs. The Multivalue Link property and the Multivalue
property are empty for these fields.

• The second integration component represents the MVG business component. In the example, this is the
Business Address business component. The second integration component has one integration field for each
field based on the given MVG in the parent business component. An integration component user property
will be set on this integration component to tell the EAI Siebel Adapter that it is based on an MVG business
component. If the MVG is a regular MVG, then the user property is named MVG. If the MVG is an Association
MVG, then the user property is named MVGAssociation. In both cases, the value of the user property is Y.

The following figure shows an integration component based on an MVG and its user property value in Siebel Tools.

The EAI Siebel Adapter business service must know the names of the MVG fields as they are defined in the parent
business component, which in this example is Account, and also the names of the MVG fields as they are known in the
business component that represents the MVG, which in this example is Account Business Address. As shown in the
following figure, the integration component fields represent the MVG.

16

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

To represent both names, each field is assigned an integration component field user property named MVGFieldName,
or AssocFieldName if the integration component user property is MVGAssociation. The value of the integration
component field user property is the name of the field shown in the parent business component, which in this example
is Business Address.

Setting Primaries Through Multivalue Links
Primaries are set through multivalue links. However, do not use multivalue links for modifying the linked component. To
modify the linked component, use links. If you must set primaries in addition to modifying the linked component, then
use an MVG or MVGAssociation integration component user property set to Y, and an MVGLink integration component
user property whose value is the child business component. For example, the Account_Business Address integration
component of the Account IO integration object has the integration component user properties MVG (whose value is Y)
and MVGLink (whose value is Business Address).

Note: It is highly recommended that you use the EAI Siebel Wizard to create integration objects, so that the correct
integration components and user properties will also be created. For more information, see Creating Integration
Objects Using the EAI Siebel Wizard Business Service.

17

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Validation of Integration Component Fields and Picklists
If an integration component field is created for a Siebel business component field, and the business component field is
based on a picklist, then the EAI Siebel Adapter or the Object Manager validates the field. To have the validation done
using the EAI Siebel Adapter, the integration component field has a user property with the name PICKLIST and a value
of Y; otherwise, validation is done by the Object Manager.

If the EAI Siebel Adapter validates the integration component field, and if the pickmap for the picklist contains more
than one field, then, when designing the integration object, you must decide the following:

• Which of the fields to use as a search criterion

• Which fields to simply update if input values are different from those in the picklist (provided that the picklist
allows updates)

Note: Using the PICKLIST user property on an integration component field causes truncation to 30 characters (the
length of the VAL column in the S_LST_OF_VAL Table) of the input value for searching the static picklist data.

Do not use the PICKLIST property on custom integration component fields. It is designed for static picklists, based
on longer columns of the S_LST_OF_VAL table. Any input value provided in the input integration component field
for search in picklist fields based on columns such as DESC_TEXT (Description field of the Picklist Generic business
component) or NAME (Name field of the Picklist Generic business component) will deliver no result or an incorrect
result because the string in the search expression will be truncated to 30 characters.

Example of an Integration Object Based on the Order Entry Business Object
An example is an integration object based on Order Entry business object. The root component of the Order Entry
business object is Order Entry - Orders with a field Account, whose pickmap contains a large number of fields such
as Account, Account Location, Account Integration Id, Currency Code, Price List, and so on. One of the tasks the
integration object designer must perform is to determine which of these fields is used to identify the account for an
order.

If the PicklistUserKeys user property on the integration component field that is mapped to the field with the picklist (in
the previous example, Account) is not defined, then any integration component fields that are mapped to columns in
the U1 index of business component's base table, and are present in the pickmap will be used by the EAI Siebel Adapter
to find the matching record in the picklist (in the previous example, Account and Account Location).

In cases where the default user key for the picklist does not satisfy your business requirements (for example, you want
to use only Account Integration Id instead of the default user key to pick an Account), or you want to make the user key
explicit for performance reasons, then use the PicklistUserKeys user property.

The value of the PicklistUserKeys user property is a comma separated list of integration component fields that are used
to find the matching record in the picklist (for example, 'Account, Account Location' or 'Account Integration Id').

For the EAI Siebel Adapter to use the fields referenced in PicklistUserKeys user property, the fields must be included
in the pickmap of the underlying business component field. Note that if the business component field names and
integration component field names, listed in the PicklistUserKeys property, are not the same, then the picklist must
contain external names of the fields listed in the PicklistUserKeys user property.

If there is a field present in the business component and in the pickmap, and it is stored in the base table, then the
EAI Siebel Adapter can use the picklist to populate this field, only if this field is present and active in the integration
component. This field must also be present in the input property set, and cannot be empty.

18

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Calculated Fields and Integration Objects
Calculated fields are inactive in an integration object when it is created. They are inactive for the following reasons:

• Performing calculations on fields requires extra processing time.

• If the calculated field is based on a field that is not included in the integration object, then errors might arise
when the calculated field is updated but the field used for the calculation is not.

If your business needs require it, activate the calculated fields in integration objects.

Note: Calculated fields are those integration component fields that have the Calculated flag checked on the
corresponding business component field.

Inner Joins and Integration Components
When inner joins are used, records for which the inner joined field is not set are not returned in any query. By default the
wizard inactivates such fields. If your business needs require these fields, activate them.

Note: If the inner join has a join specification that is based on a required field, then the wizard does not inactivate the
fields that are using that particular join.

For example, assume that Account business component has an inner join to the S_PROJ table, with Project Id field being
the source field in the join specification, and the Project Name field being based on that join.

If an integration component, with an active Project Name field is mapped to the Account business component, then
when this integration component is queried only accounts with Project Id field populated will be considered.

Because Project Id is not a required field in the Account business component, not every account in the Siebel Database
is associated with a project. So, having Project Name active in the integration component limits the scope of the
integration component to only accounts associated with a project. This typically is not desirable, so the wizard
inactivates the Project Name field in this example.

If the business requirement is to include the Project Name field, but not to limit the integration component’s scope to
only accounts with the project, then you can change the join to S_PROJ in the Account business component to an outer
join. For information on joins, see Using Siebel Tools .

Note: Activating an inner join can cause a query on that integration component not to find existing rows.

Defining Field Dependencies
Define dependency between fields by using the user properties of the integration component field. The names of
these user properties must start with FieldDependency, and it is recommended that the value of each property contain
the name of the field on which the associated field is dependent. The EAI Siebel Adapter processes fields in the order
defined by these dependencies, and generates an error if cyclic dependencies exist.

19

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

The EAI Siebel Adapter automatically takes into account the dependencies of the fields set by a PickList on the fields
used as constraints in that PickList. For example, if a PickList on field A also sets field B, and is constrained by field C,
then this implies dependencies of both A and B on C. As a consequence, the EAI Siebel Adapter sets field C before fields
A and B.

Repository Objects
For the EAI Siebel Adapter to deal with repository objects, a user property REPOBJ must be defined on the root
integration component. If this property is set to Y, then the EAI Siebel Adapter sets a context on the repository so that
the rest of the operations are performed in that context.

About Integration Component User Properties as
Operation Controls
Each business component, link, and MVG has properties such as No Update, No Delete, and No Insert. So do integration
components, in the form of integration component user properties. These user properties, listed in the following table,
indicate the operations that can and cannot be performed on an object.

User Property Description

NoDelete, NoInsert, NoQuery,
 NoSynchronize, NoUpdate

Indicate which operations cannot be performed on the corresponding business component. Can take
the value Y or N.

If any of these user properties are set to Y, then the corresponding business component method
is used to validate the operation. When the business component attempts to perform a restricted
operation, an error is raised.

NoUpdate can also be set on integration component fields.

For more information on business component properties, see Configuring Siebel Business Applications
.

IgnorePermissionErrorsOnUpdate,
 IgnorePermissionErrorsOnInsert,
 IgnorePermissionErrorsOnDelete

Suppress the errors that arise from having the NoUpdate, NoInsert, and NoDelete user properties set
to Y, respectively. The errors are ignored and processing continues.

AdminMode

When set to Y, indicates that the update of the corresponding business component is to be performed
in Admin Mode. Admin Mode turns off all insert and update restrictions for the business components
used by a view, including those specified by business component user properties.

You can set the AdminMode user property on integration objects or integration components.

For more information on Admin Mode, see Configuring Siebel Business Applications .

For the EAI Siebel Adapter to successfully perform an operation, that operation must be allowed at all levels. If the
operation is allowed at every level except the field level, then a warning message is logged in the log file and processing
continues. Otherwise, an error message is returned, and the transaction is rolled back.

20

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Permissions on integration components are checked by the EAI Siebel Adapter, and permissions on business
components, links, and fields are checked by the Object Manager.

About Integration Component Keys
There are multiple types of integration component keys:

• User Key. See User Keys.

• Status Key. See Status Keys.

• Hierarchy Parent Key. See Hierarchy Parent Keys.

• Hierarchy Root Key. See Hierarchy Root Keys.

• Modification Key. See Configuring the EAI Siebel Adapter Business Service for Concurrency Control.

Note: It is recommended to have only one integration component key for every type of key except the user key. For
example, if there are two hierarchy parent keys defined for an integration component, then the EAI Siebel Adapter
picks the first one and ignores the second one.

User Keys
A user key is a group of fields whose values must uniquely identify a Siebel business component record. During inbound
integration, user keys are used to determine whether the incoming data updates an existing record or inserts a new
one. The Integration Object Builder wizard automatically creates some user keys based on characteristics discussed in
User Key Generation Algorithm. Make sure that the generated user keys match your business requirements; otherwise,
inactivate them or add new user keys as appropriate.

In Siebel Tools, user keys are defined as Integration Component Key objects, with the Key Type property set to User Key.

Integration component keys are built by the Integration Object Builder wizard, based on values in the underlying table
of the business component on which the integration component is based. Integration objects that represent Siebel
business objects, and that are used in insert, update, synchronize, or execute operations, must have at least one user
key defined for each integration component.

A sequence of integration component user keys is defined on each integration component definition, each of which
contains a set of fields. During processing of integration component instance, the EAI Siebel Adapter chooses to
use the first user key in the sequence that satisfies the condition that all the fields of that user key are present in an
integration component instance. The first instance of each integration component type determines the user key used
by all instances of that type.

For example, consider the Account integration object instance with only the Account Name and Account Integration Id
fields present. When the EAI Siebel Adapter performs validation, it first checks the Account Name and Account Location
fields (the first user key for the Account integration component). In this example, because the Account Location field
is missing, the EAI Siebel Adapter moves to the second user key, Account Integration Id. The Account Integration Id
field is present in the integration component instance and has a value, so the EAI Siebel Adapter uses that as the user
key to match the record. Now if the same instance also had the Account Location field present, but set to null, then the
EAI Siebel Adapter would pick the Account Name and Account Location combination as the user key. This is because
Account Location is not a required field.

21

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

A new user key is picked for each integration object instance (root component instance). However, for the child
component instances, the user key is picked based on the first child instance, and then used for matching all instances
of that integration component within the parent integration component instance.

For example, if a Siebel Message contains two orders, then the user key for order items is picked twice, once for each
order. Each time, the user key is selected based on the first order item record and then used for all the siblings.

Note: The EAI Siebel Adapter uses user keys to match integration component instances with business component
records. Because the match is case sensitive there is a chance that records are not matched if the cases of the user
key fields do not match. You can use the Force Case property on the business component field to make sure that user
key fields are always stored in one case, but only if you require case-insensitive matching for performance reasons.
Routine use of the Force Case property is not recommended.

Note: For performance reasons, user keys for child integration components are not included in the WHERE clause
of the SQL generated to query for child component records in the Siebel database. If you must query the child
component to find matching records, then consider redesigning your integration objects, such as creating a new
integration object where the child component becomes the parent. For example, if Account is the parent and Asset
the child, and you to query for specific assets, then create a new integration object where Asset is the parent and
Account is the child.

User Key Generation Algorithm
The Integration Object Builder wizard computes the user keys by traversing several Siebel objects, including the
business object, business component, table, and link. This is because not every table user key meets the requirements
to be used as the basis for integration object user keys.

To understand how the Integration Object Builder wizard determines valid integration component keys, you can
simulate the process of validating the user keys. For example, you can determine the table on which your business
component is based by looking in Siebel Tools.

To find the user keys for a table
1. Select the Business Component object in the Object Explorer.

The Business Components list appears in the Object List Editor.
2. Select a business component.
3. Click the link in the Table column.

The Tables list appears, displaying the table associated with the business component (for example
S_CONTACT).

4. Expand the Tables object in the Object Explorer, and then select User Key.

The User Keys list displays the user keys defined for that table.

For example, as shown in the following figure. the table S_CONTACT has several user keys.

22

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Not every user key will necessarily be valid for a given business component. Multiple business components can
map to the same underlying table; therefore, it is possible that a table’s user key is not valid for a particular business
component, but is specific to another business component

Each User Key Column child object defined for a given user key must be exposed to the business component in which
you are interested. For example, the following figure shows three user key columns for the user key S_CONTACT_U1.

If the columns of the user key are exposed in the business component, and those columns are not foreign keys, then the
Integration Object Builder wizard creates an integration component key based on the table’s user key. The Integration

23

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Object Builder wizard also defines one integration component key field corresponding to each of the table’s user key
columns.

The Integration Object Builder wizard builds the integration component keys based on these table user keys. As
illustrated in the following figure, the wizard defines one integration component key for each table user key column.

Each valid integration component key contains fields. For example, as shown in the following figure, for the Contact
integration component, User Key 3 is made up of five fields: CSN, First Name, Last Name, Middle Name, and Personal
Contact.

CAUTION: Only modify user keys if you have a good understanding of the business component and integration logic.

24

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

When the Integration Object Builder wizard creates these integration component keys, it attempts to use the
appropriate table user keys, that is the user keys that help to uniquely identify a given record. In some cases, you might
find that certain integration component keys created by the Integration Object Builder wizard are not useful for your
particular needs. In that case, you can manually inactivate the keys you do not want to use by checking the Inactive flag
on that particular user key in Siebel Tools. You can also inactivate user key fields within a given user key.

Note: For ease of maintenance and upgrade, inactivate unnecessary generated user keys and user key fields instead
of deleting them.

Status Keys
It is useful to know the status of your integrations. For example, if you are sending an order request, then you might
want to know the ID of the Order created so that you can query on the order in the future. You can set the StatusObject
method argument of the EAI Siebel Adapter business service to true to return an integration object instance as a status
object.

The status returned is defined in the Integration Component using Status Keys. A Status Key is an Integration
Component key of the type Status Key. Fields defined as part of the Status Key are included in the returned
StatusObject.

If a Status Key is not defined for the Integration Component then neither the component nor any of its children are
included in the returned object:

• To include descendants of an Integration Component without including any of its fields in the returned status
object, specify an empty Status Key.

• To include information about which one of the update, insert, or delete operations was performed during an
upsert request or synchronize request, include a field named Operation in the Status Key.

Status Key Examples
For example, the AccountAshish integration object has an Account integration component with an integration
component key called StatusKeyAshish, with the integration component key fields AshishName, AshishId, and
AshishHomePage (shown in the following figure).

25

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Example with No Status Object
When no StatusObject business service method argument is defined, as in this input XML file for an upsert operation
using the EAI Siebel Adapter business service

<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet>
<SiebelMessage MessageId="42-1PGR" IntObjectName="AccountAshish"
MessageType="Integration Object" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccountAshish>
<Account Main_spcPhone_spcNumber="+33123456789" Primary_spcOrganization="Default
Organization" Home_spcPage="mycompany.com" Location="France" Name="Ashish 9
Telecom"/>
 </ListOfAccountAshish>
 </SiebelMessage>
</PropertySet>

all of the fields in the integration component are returned:

<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet ErrorContextIntComp="" ErrorContextSearchSpec="" OMErrorCode=""
PrimaryRowId="42-C739Q" OMErrorSymbol="" ErrorCode="0x0" ErrorSymbol="">
<SiebelMessage MessageId="42-1PGR" MessageType="Integration Object"
IntObjectName="AccountAshish" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccountAshish>
 <Account Main_spcPhone_spcNumber="+33123456789"
 Primary_spcOrganization="Default Organization" Home_spcPage="mycompany.com"
 Location="France" Name="Ashish 9 Telecom"/>
 </ListOfAccountAshish>
</SiebelMessage>
</PropertySet>

For more information on the EAI Siebel Adapter business service, see EAI Siebel Adapter Business Service.

Example with Status Object
When the StatusObject method argument is set to true, as in this input XML file:

<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet StatusObject="true">
<SiebelMessage MessageId="42-1PGR" IntObjectName="AccountAshish"
MessageType="Integration Object" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccountAshish>
 <Account Main_spcPhone_spcNumber="+33123456789"
 Primary_spcOrganization="Default Organization" Home_spcPage="mycompany.com"
 Location="France" Name="Ashish 9 Telecom"/>
 </ListOfAccountAshish>
</SiebelMessage>
</PropertySet>

only the fields in the status key are returned:

<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet ErrorContextIntComp="" ErrorContextSearchSpec="" OMErrorCode=""
PrimaryRowId="42-C739Q" OMErrorSymbol="" ErrorCode="0x0" ErrorSymbol="">
<SiebelMessage MessageId="42-1PGR" MessageType="Integration Object"
IntObjectName="AccountAshish" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccountAshish>
 <Account Id="42-C739Q" Home_spcPage="mycompany.com" Name="Ashish 9 Telecom"/>
 </ListOfAccountAshish>
 </SiebelMessage>
</PropertySet>

26

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

Hierarchy Parent Keys
The Hierarchy Parent Key is used for integration objects that have a homogeneous hierarchy. This key must have only
the Parent Id. The Hierarchy Parent Key is used for maintaining the hierarchy and keeping the data normalized.

For example, when you insert quotes, each quote item in turn can have more quote items. In this case, the first quote
item inserted by the EAI Siebel Adapter has the Parent Id set to blank, but for each child quote item, the EAI Siebel
Adapter checks the keys to figure out which fields are to be set. If the Hierarchy Parent Key is not defined, then the child
quote item is inserted as a new quote item without a link to its parent (denormalized).

Note: You cannot rearrange the hierarchy after it has been created. For example, if A is a parent of B, and you try to
upsert B as a parent of A, then an error will occur. Instead you must delete the hierarchy and then re-create it.

Hierarchy Root Keys
The Hierarchy Root Key is an optional key that is useful only when integration objects have a homogeneous hierarchy.
You can use this key to improve performance. The Hierarchy Root Key must have only one field, Root Id, which the EAI
Siebel Adapter populates with the value of the ID field in the component instance that is in the root of the homogenous
hierarchy. For example, assume quote Q1 has quote items A, B, and C where each of the quote items has child quote
items (A1, A2, B1, B2, ...). If you want to update the quantity requested for all quote items starting with the root quote
item B, then it is faster if the data is denormalized. Using the Hierarchy Root Key, you can search for all records with Root
Id equal to the Row Id of B, and set the QuantityRequested field for each item.

Note: When the business component is hierarchy enabled, then the wizard automatically sets the Hierarchy Parent
Key for the complex integration component. To have a business component hierarchy enabled you must set the
property Hierarchy Parent Field.

About EAI Siebel Adapter Access Control
You can use the following mechanisms to control the access of the EAI Siebel Adapter to the database:

• Restricted access to a static set of integration objects. You can configure the EAI Siebel Adapter business
service, or any business service that is based on the CSEEAISiebelAdapterService class, to restrict access to
a static set of integration objects. To do this, set a business service user property called AllowedIntObjects,
which contains a comma-separated list of integration object names that this configuration of the EAI Siebel
Adapter can use. This allows you to minimize the number of integration objects your users must expose outside
of Siebel CRM through HTTP inbound or MQSeries Receiver server components. If this user property is not
specified, then the EAI Siebel Adapter uses any integration objects defined in the current Siebel Repository.

27

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 2
Integration Objects

• ViewMode. You can specify the visibility mode of business components that the EAI Siebel Adapter uses. This
mode is specified as the integration object user property ViewMode. This user property can take different
values, as defined by LOV type REPOSITORY_BC_VIEWMODE_TYPE.

Note: For information on ViewMode, see Siebel Tools Online Help .

28

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

3 Creating and Maintaining Integration
Objects

Creating and Maintaining Integration Objects
This chapter describes how to use the Integration Object Builder wizard in Siebel Tools to create new Siebel integration
objects. This wizard guides you through the process of selecting objects (either from the Siebel repository or from an
external system) on which you can base your new Siebel integration object. This chapter also describes how to fine-tune
and refine the integration object you have created. It includes the following topics:

• About the Integration Object Builder

• About the EAI Siebel Wizard Business Service

• Process of Creating Integration Objects

• Creating Integration Objects Using the EAI Siebel Wizard Business Service

• Creating a New Integration Object Using the Web Tools Wizard

• Creating an Integration Object Based on Another Root Business Component

• Creating an Integration Object with Many-To-Many Relationships

• Creating Integration Object Instances Programmatically

• Guidelines for Configuring Integration Objects

• Validating Integration Objects

• Testing Integration Objects

• Deploying Integration Objects to the Run-Time Database

• About Synchronizing Integration Objects

• Synchronizing Integration Objects

• Resolving Synchronization Conflicts for Integration Objects and User Properties

• Using Formatted Values in Integration Objects

• Generating Integration Object Schemas

• Optimizing the Performance of Integration Objects

• Picklist Validation

• About Business Component Restrictions for Integration Components

• Guidelines for Using Integration Components

About the Integration Object Builder
The Integration Object Builder wizard in Siebel Tools builds a list of valid components from which you can choose the
components to include in your Siebel integration object.

29

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Note: The Integration Object Builder provides a partial rendering of your data in the integration object format. You
must review the integration object definition and complete the definition of your requirements. In particular, confirm
that the user key definitions are defined properly. You might have to enter keys and user properties manually or
inactivate unused keys and fields in Siebel Tools. Do not expect to use the integration object without modification.

About the EAI Siebel Wizard Business Service
You can use the Integration Object Builder to create integration objects that represent Siebel business objects. During
the process of creating a new integration object, described in Creating Integration Objects Using the EAI Siebel Wizard
Business Service, you can choose the EAI Siebel Wizard as the business service to help create the object. This wizard
understands the structure of Siebel business objects. It returns a list of the available business objects on which you can
choose to base your integration object.

The wizard also returns a list of the available components contained within the object you have chosen, shown in the
following figure. When you select certain components in the wizard, you are activating those components in your
integration object. Your integration object contains the entire structural definition of the business object you selected
in the first wizard dialog box. Only the components you checked, or left selected, are active within your integration
object. That means any instances you retrieve of that integration object contains only data represented by the selected
components.

After the wizard creates your integration object, you can edit the object in Siebel Tools, as shown in the following figure.
You might choose to drill down into the integration components and activate or inactivate particular components or
even particular fields within one or more components.

Note: Always inactivate the fields rather than delete them. When you execute the synchronization task, using the
Integration Object Synchronize wizard in Siebel Tools, inactivated fields remain inactive, while the deleted fields are
created as active fields in the integration object.

30

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Process of Creating Integration Objects
Perform the following tasks to create an integration object:

1. Log in to Siebel Tools or Web Tools as an administrator (see Using Siebel Tools).
2. Create a workspace.
3. Creating Integration Objects Using the EAI Siebel Wizard Business Service
4. (Optional) Configuring the integration object (see Guidelines for Configuring Integration Objects)
5. Validating Integration Objects
6. Deliver the changes to the Integration Branch.
7. Testing Integration Objects
8. (Optional) Deploying Integration Objects to the Run-Time Database

Creating Integration Objects Using the EAI Siebel Wizard
Business Service
Siebel Tools provides the EAI Siebel Wizard business service to walk you through creating an integration object. Use this
wizard to create your integration object.

You can also use the wizard to deploy integration objects to the run-time database.

Note: If you deploy integration objects while the Siebel Server is running, then you must subsequently clear the Web
services cache in the Administration - Web Services screen, Inbound (or Outbound) Web Services view.

This task is a step in Process of Creating Integration Objects.

31

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

To create a new Siebel integration object
1. In Siebel Tools, create a new project and lock it, or lock an existing project in which you want to create your

integration object.
2. From the File menu, choose New Object to display the New Object Wizards dialog box.
3. Select the EAI tab, and then double-click Integration Object.

The Integration Object Builder wizard appears.
4. On the first page of the Integration Object Builder wizard:

a. Select the project you locked in Step 1.
b. For the source system, select the EAI Siebel Wizard business service.

5. Click Next.

The second page of the Integration Object Builder wizard appears.

a. Select the source object (business object). This is the object model for the new Siebel integration object.
Only business objects with Primary Business Components appear on this picklist.

b. Select the source root (business object component).
c. Type a unique name in the field for the new Siebel integration object and click Next.

Note: The name of an integration object must be unique among other integration objects. There will
be an error if the name already exists.

The next page of the wizard, the Integration Object Builder - Choose Integration Components page,
displays the available components of the object you chose.

32

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

6. Deselect the components you want the wizard to ignore. This means you cannot integrate data for that
component between the Siebel application and another system.

Note: Any component that has a plus sign (+) next to it is a parent in a parent-child relationship with
one or more child components. If you deselect the parent component, then the children following that
component are deselected as well. You cannot include a child component without also including the parent.
The Integration Object Builder enforces this rule by automatically selecting the parent of any child you choose
to include.

For example, assume you have chosen to build your Siebel integration object on the Siebel Account business
object, and you want to create an integration component based on the Account and Contact business
components:

a. Deselect the Account integration component at the start of the scrolling list. This action deselects the
entire tree after Account.

b. Select the Contact component. When selecting a child component, its parent component is also selected,
but none of the components after the child component are selected. You must individually select the
ones you want.

7. From the Container Naming Convention drop-down menu, choose either List Of Prefix or Suffix s.

This allows flexibility when generating XML Schema Definition (XSD) files from integration objects. For
example, rather than generating container elements such as xsd:ListOfContact, you can choose to have
elements generated named xsd:Contacts.

8. Select the Lower CamelCase for XML Tags check box to use this convention for naming XML tags.

CamelCase is a naming convention in which a name is formed of multiple words that are joined together as a
single word, with the first letter of each of the multiple words capitalized so that each word that makes up the
name can easily be read. The name derives from the hump or humps that seem to appear in any Camel Case
name. In Lower CamelCase, the first letter of the name is lowercase, for example myNewIntegrationObject.

The default convention is Upper CamelCase, for example MyNewIntegrationObject.
9. Click Next. The next page displays error or warning messages generated during the process. Review the

messages, and take the appropriate actions to address them.
10. (Optional) Select the Deploy the Integration Object check box to deploy the integration object to the run-time

database.

For more information, see Deploying Integration Objects to the Run-Time Database.
11. Click Finish.

Your new Siebel integration object appears in the list of integration objects in Siebel Tools.

On the Integration Components screen, the Account integration component is the only component that
has a blank field in the Parent Integration Component column. The blank field identifies Account as the root
component. The Siebel integration object also contains the other components selected, such as Contact and its
child components.

Note: When you create your integration object based on a Siebel business object, do not change its
integration component’s External Name Context; otherwise, the synchronization process will not recognize
the integration component, and will remove it from the integration object.

33

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

12. To view the fields that make up each integration component, select a component from the integration
component list in Siebel Tools.

The Integration Component Fields list displays the list of fields for that component. Note the system fields
Conflict Id, Created, Id, Mod Id, Updated, operation, and searchspec in the list. This setting prevents the EAI
Siebel Adapter Query and QueryPage method from outputting these fields. For more details, see About Using
Language-Independent Code with the EAI Siebel Adapter Business Service.

13. When finished, compile the locked project.

Creating a New Integration Object Using the Web Tools
Wizard

To create a new integration object using the web tools wizard
1. Log into the Web Tools client.
2. Open an editable Development Workspace.
3. Click the New Object Wizard button. It has a magic wand icon.
4. Choose the Integration Object icon and click Start.
5. In the first view there are two fields.

a. Project (Required): This is the Project in which to put your new Integration Object.
b. Type: Choose the Business Service to use to build the Integration Object. The EAI Siebel Wizard Business

Service is the only choice in this feature’s initial release.
6. Click the Next button.
7. The next view has three fields to configure.

a. Business Object (Required): This is the Business Object to use for your Integration Object.
b. Name (Required): This is the unique name for your new Integration Object.
c. Primary Business Component (Required): This will be the Root Business Component for your

Integration Object.
8. Once you have configured the three fields, click the Next button.
9. In the next view you choose all the Integration Components that you wish to create in your Integration Object.

These are taken from the child Business Components in the Business Object you specified. You can select them
individually or select the check box at the top to select them all.

Note: Selecting all the Integration Components will create a very large Integration Object. Only choose the
Integration Components needed.

a. Include length information for String type: If checked the External Length property for the Integration
Component Field will be populated with the column length.

b. Container Naming Convention : The two choices are List Of Prefix (wraps Integration Component
instances with ListOf in messages) and Suffix which will not wrap the Integration Component instance in
the ListOf string.

c. Lower CamelCase for XML Tags : If checked, will make the XML Tag field value’s first letter lower
case instead of upper case as is the norm in camel case. For instance MyXMLString would become
myXMLString if you check this box.

10. Click the Next button.

34

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

11. The next view displays a summary of your choices.
12. When done click the Finish button to create the Integration Object.

Creating an Integration Object Based on Another Root
Business Component
The Integration Object Builder wizard, using the EAI Siebel Wizard, allows you to choose which business object to use.
However, the Integration Object Builder wizard will generate the Primary Business Component as the root Integration
Component. If it happens that the business object contains multiple root business components (note the difference
between root and primary business component), and that the user requires the Integration Object to be created based
on another root business component, then you perform the following procedure.

To create an integration object based on another root business component
1. In Siebel Tools, lock the project containing the business object you want to modify.
2. Modify the business object definition to have that particular root business component as the Primary Business

Component.
3. Run the Integration Object Builder wizard and choose the business object you want to use.
4. Undo the changes to the business object definition that you made in Step 2.

Note: This is necessary because unless you are certain about what you are doing in terms of changing the
Primary Business Component of the business object, it is recommended that you roll back the changes so
that they do not affect any business logic.

5. Compile the locked project.

Creating an Integration Object with Many-To-Many
Relationships
The following is an example of how to create an integration object with two components that have a many-to-many
(M:M) relationship. In this example, an integration object uses the Contact business object and the Contact and
Opportunity business components.

To create an integration object with a many-to-many business component
1. In Siebel Tools, create a new project and lock it, or lock an existing project in which you want to create your

integration object.
2. From the File menu, choose New Object to display the New Object Wizards dialog box.
3. Select the EAI tab, and then double-click the Integration Object icon.
4. In the Integration Object Builder wizard:

a. Select the project you locked in Step 1.
b. Select the EAI Siebel Wizard business service.

35

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

5. Click Next and in the second page of the Integration Object Builder wizard:

a. Select the source object Contact to be the base for the new Siebel integration object.
b. Type a unique name in the field for the new Siebel integration object, for example Sample Contact M:M,

and then click Next.
c. Select the source root for the new integration object from the list.

6. From the list of components, select Contact and Opportunity.

Note: There is also a component named Contact_Opportunity in the list. This component is an
MVGAssociation component, and you pick it only if you need this integration object to set the primary
opportunity for contact. For information on multivalue groups, see About the Search Spec Input Method
Argument.

7. Inactivate all integration component fields in the Contact integration component except First Name, Last Name,
Login Name, and Comment. (In this example, these are the only fields you need for Contact.)

8. Inactivate all integration component fields in the Opportunity integration component except Account,
Account Location, Budget Amt, Name, and Description. (In this example, these are the only fields you need for
Opportunity.)

9. Compile the locked project.

Creating Integration Object Instances Programmatically
Because integration objects adhere to a set of structural conventions, they can be traversed and transformed
programmatically, using Siebel eScript objects, methods, and functions, or transformed declaratively using the Siebel
Data Mapper.

This topic outlines the steps required to create an integration object instance programmatically, using the EAI Account
integration object as an example.

To create the correct integration object instance programmatically, follow these rules:

• The root property set must have its type set to ListOf concatenated with the integration object name
(ListOfIOName).

• The next property set of the hierarchy must have the root integration component name as its type. The root
integration component is the one that has no Parent Integration Component set (RootICName).

• All other integration components must have the Parent Integration Component set. For those integration
components, create a property set with type set to ListOf concatenated with the integration component
name (ListOfICName) and then add as child to this property set another one with type set to the integration
component name.

The following hierarchy demonstrates the rules:

 ListOfIOName
 RootICName
 ListOfICName1
 ICName1
 ListOfICName1_1
 ICName1_1
 ListOfICName2
 ICName2

The following figure shows some of the integration components in the hierarchy of the EAI Account integration object.

36

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Based on its hierarchy, the integration object instance will have the following property set hierarchy:

 ListOfEAI Account
 Account
 ListOfAccount_Business Address
 Account_Business Address
 ListOfContact
 Contact
 ListOfContact_Alternate Phone
 Contact_Alternate Phone

The following Siebel eScript example creates an instance of the hierarchy shown in the previous figure:

// Local variable creation, error handling, and object destruction are omitted for
clarity.
psConAltPhone.SetType("Contact_Alternate Phone");
psConAltPhone.SetProperty("Alternate Phone #", "555-5555");
psListOfConAltPhone.SetType("ListOfContact_Alternate Phone");
psListOfConAltPhone.AddChild(psConAltPhone);

psContact.SetType("Contact");
psContact.SetProperty("First Name", "John");
psContact.SetProperty("Last Name", "Smith");
psContact.AddChild(psListOfConAltPhone);

psListOfContact.SetType("ListOfContact");
psListOfContact.AddChild(psContact);

psAccBusAdd.SetType("Account_Business Address");
psAccBusAdd.SetProperty("Email Address", "john.smith@email.com");

psListOfAccBusAdd.SetType("ListOfAccount_Business Address");
psListOfAccBusAdd.AddChild(psAccBusAdd);

psAccount.SetType("Account");
psAccount.SetProperty("Name", "MyAccount");

// Add the children to the Account IC.
psAccount.AddChild(psListOfAccBusAdd);
psAccount.AddChild(psListOfContact);

37

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

psListOfEAIAccount.SetType("ListOfEAI Account");
psListOfEAIAccount.AddChild(psAccount);

...

Guidelines for Configuring Integration Objects
After you create your integration object you can configure it based on your business requirements. The following is a list
of guidelines for configuring an integration object:

• In Siebel Tools, inactivate the fields that do not apply to your business requirements.

• If necessary, activate the fields that have been inactivated by the Siebel Wizard. For information, see Integration
Objects.

• Add the fields that have not been included by the Siebel Wizard, including custom integration component fields.
For information on the implications of adding or activating such fields, see Custom Integration Component
Fields, Calculated Fields and Integration Objects, and Inner Joins and Integration Components.

• Validate the user keys. For information, see Integration Objects.

• Update the user properties for your integration object to reflect your business requirements. For information,
see:

◦ Resolving Synchronization Conflicts for Integration Objects and User Properties

◦ Using Formatted Values in Integration Objects

This task is a step in Process of Creating Integration Objects.

Validating Integration Objects
When you have created your integration object and made the necessary modifications to meet your business
requirements, you must validate it.

This task is a step in Process of Creating Integration Objects.

To validate your integration object
1. In Siebel Tools, select your integration object.
2. Right-click the integration object and select Validate.
3. Review the report, and modify your integration object as needed.

Note: Before creating or modifying any integration object, you need to create and open a workspace. After validation,
the integration objects you create in Siebel Tools must be delivered.

38

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Testing Integration Objects
After validating and compiling integration objects, test them using the Workflow Simulator. For information on creating,
modifying, and simulating workflows, see Siebel Business Process Framework: Workflow Guide .

This task is a step in Process of Creating Integration Objects.

To test a newly created integration object
1. In Siebel Tools, select the Workflow Process object in the Object Explorer.
2. Create a new workflow that runs the EAI Siebel Adapter business service against the new integration object.

For example, create a workflow to query with the new integration object and write the output message to an
XML file, as in the following:

3. Test the workflow using the Workflow Simulator.

Deploying Integration Objects to the Run-Time Database

You can deploy integration objects, which you have created in Siebel Tools, to the Siebel run-time database. Siebel
object manager processes build a cache of the deployed integration objects to improve performance. These deployed
integration objects are read from the cache at run time.

This saves time by allowing you to modify integration object definitions without having to shut down your production
environment, create and open a workspace in Siebel Tools or Web Tools, edit integration objects in Siebel Tools, and
deliver the changes to the Integration Branch.

Integration objects are read first from the cache and then from the runtime repository. The deployed integration objects
are maintained in the object manager cache so that performance is not slowed by rereading these integration objects
from the run-time database.

This task is a step in Process of Creating Integration Objects.

This topic includes the following information:

• Deploying an Integration Object to the Run-Time Database

• Removing an Integration Object from the Run-Time Database

39

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Deploying an Integration Object to the Run-Time Database
The following procedure is used to deploy integration objects that have already been created in Siebel Tools. To deploy
an integration object while creating it with the Integration Object Builder wizard, see Creating Integration Objects Using
the EAI Siebel Wizard Business Service.

If you make changes in Siebel Tools to a deployed integration object, then you must redeploy it. If you do not redeploy
it, then the object definitions will differ between Siebel Tools and your production environment, which can cause
unexpected application behavior.

To deploy an integration object to the run-time database
1. In the Object Explorer in Siebel Tools, select Integration Object.

The Integration Objects list appears.
2. Right-click the integration object to deploy, and then choose Deploy to Runtime Database.

The integration object is deployed.
3. In the Siebel client, navigate to the Administration- Web Services screen, Inbound (or Outbound) Web Services

view.
4. Click Clear Cache to invalidate the integration object and Web services definitions in the run-time database.

Note: Object definitions are reloaded when requested in the client.

Deployed integration objects are shown in the Administration - Web Services screen, Deployed Integration Objects view
in the Siebel client.

Removing an Integration Object from the Run-Time Database
You can also remove deployed integration objects.

To remove a deployed integration object from the run-time database
1. In the Object Explorer in Siebel Tools, select Integration Object.

The Integration Objects list appears.
2. Right-click the integration object to remove, and then choose Undeploy.

The integration object is removed from the run-time database.
3. In the Siebel client, navigate to the Administration- Web Services screen, Inbound (or Outbound) Web Services

view.
4. Click Clear Cache to invalidate the integration object and Web services definitions in the run-time database.

Note: Object definitions are reloaded when requested in the client.

40

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

About Synchronizing Integration Objects
Business objects often require updates to their definitions to account for changes in data type, length, edit format,
or other properties. It is common to want to alter database metadata, but if you do so you have to also update your
integration objects to account for these updates. Otherwise, you can cause undesirable effects on your integration
projects.

Some examples of these changes are:

• A field removed

• A new required field

• A new picklist for a field

• A change of relationship from one-to-many to many-to-many

• An upgrade to a new version of Siebel CRM

To help simplify the synchronization task, Siebel EAI provides the Integration Object Synchronize wizard. Although
the process of synchronizing your integration object with its underlying business object is straightforward, review the
integration objects you have modified to make sure that you have not inadvertently altered them by performing a
synchronization. After synchronization, validate your integration object.

Note: If business object changes are minor, such as adding a new single-value field, then it is best to synchronize the
integration object. However, if business object changes are extensive, such as creating a new multivalue group, then it
might be better to delete and re-create the integration object.

The following topics are also covered:

• Synchronization Rules

• Updating the Entire Integration Object

• Deleting a Component from the Integration Object

• Guidelines for Maintaining Integration Objects

Synchronization Rules
During the synchronization process, the wizard follows particular update rules. Consider a simple example involving
the Siebel Account integration object with only Contact and its child components marked as active in the object. The
following figure helps you to visualize this example.

41

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Because the Account component is the parent of Contact, it is also selected, even though you cannot see it in the
previous figure.

Updating the Entire Integration Object
Either the business object or the integration object might have changed since the integration object was first created.
The Synchronization wizard creates a new object that takes into account any business object and integration object
changes.

The following example and figure illustrates how the Synchronization wizard takes into account any changes:

// Business Object/New In-Memory // Existing Integration Object
// Integration Object // in Database
// ----------------------------- // ---------------------------
 Account --> Account
 Business Address -->
 Contact --> Contact
 Contact_Business Address --> Contact_Business Address
 Contact_Position --> Contact_Position
 Contact_Opportunity --> Contact_Opportunity
 Contact_Personal Address --> Contact_Personal Address
 Contact_Contact Relationship --> Contact_Contact Relationship
 Opportunity -->

42

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

The following example and figure shows how the resulting integration object is structured after the synchronization.

// Synchronization Integration Object in Database
 Account (UPDATED)
 Business Address (NEW)
 Contact (UPDATED)
 Contact_Business Address (UPDATED)
 Contact_Position (UPDATED)
 Contact_Opportunity (UPDATED)
 Contact_Personal Address (UPDATED)
 Contact_Contact Relationship (UPDATED)
 Opportunity (NEW)

43

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

The integration object now contains two new components, Business Address and Opportunity. Other components are
updated with the definitions of the corresponding components in the business object.

Deleting a Component from the Integration Object
If you choose to deselect a component in the Synchronization wizard, then you specify to the wizard to delete the
component in the integration object with the matching External Name Context property. The integration object that
exists in the database has a component with the same External Name, External Name Sequence, and External Name
Context as the unchecked component in the component selection tree.

In the following figure, the Contact_Personal Address in the existing Account integration object is unchecked in the
Synchronization wizard tree. This is represented by an X in the figure.

44

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

The following figure shows the integration object after synchronization.

As shown in this figure, the component Contact_Personal Address has been deleted. When you use the updated
integration object, you cannot pass data for that component between a Siebel application and an external application.
This example shows you how you might cause unexpected results by deselecting components. However, if you do want
to delete a particular component from the integration object, then deleting a component from the integration object
method accomplishes that goal.

Guidelines for Maintaining Integration Objects
The following figure shows the Integration Components list with the following Integration Component User Properties
set to Y: NoUpdate, NoDelete, MVG.

The following figure shows that the user properties for the Contact_Personal Address in the Account integration object
have been updated to NoDelete/NoUpdate.

45

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

The following image shows that the Contact_Personal Address in the (Account) synchronized integration object is
unchanged.

As the examples illustrate, you must be aware of the possible changes that can occur when you synchronize business
objects and integration objects. The Integration Objects Synchronize wizard can provide assistance in managing your
integration objects, but you must have a clear understanding of your requirements, your data model, and the Siebel
business object structure before undertaking a task as important as synchronization.

To make maintenance of integration objects easier, adhere to the following guidelines when creating or editing your
integration objects:

• Use a meaningful name for any user key you have added that is different from the generated user keys. Using
meaningful names helps with debugging.

• Inactivate user keys instead of deleting them.

• Inactivate fields instead of deleting them.

Synchronizing Integration Objects
You use the Integration Object Synchronize wizard in Siebel Tools to update and synchronize integration objects.

Note: The update process overrides the integration object and deletes user keys, user properties, and so on. You can
use the copy of the integration object made by the Synchronization wizard to see how you have modified the object.

46

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

To update an integration object with updated business object definitions
1. In Siebel Tools, select the integration object you want to update.
2. Click Synchronize in the Integration Objects list.

The Integration Object Synchronize wizard appears.
3. Click on the plus sign to list all the related integration components, as shown in the following figure.

The process of retrieving Siebel integration objects and Siebel business object definitions can take varying
amounts of time, depending on the size of the selected objects.

4. Uncheck the boxes beside the objects and components you do not want to include in the synchronization of
your Siebel integration object. Note that only the objects that are included in the new integration object are
marked.

5. Choose to add new fields as active or inactive and click Next. Inactive is the default.

The process of performing the synchronization can take some time, depending on the complexity of the
selected objects.

The Integration Object Synchronize Summary screen appears, providing feedback from the synchronization.

Each added field is checked as to whether or not it is required for use with the integration object.
6. Review the summary. If changes are needed, then click Back and make the needed changes.

47

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

7. If no changes are needed, then click Finish to synchronize the Siebel integration object and the Siebel business
object.

The Compare Objects dialog box appears. This tool allows you to move properties and objects between
versions using the arrow (forward and back) buttons.

When you synchronize the Siebel integration object and the Siebel business object, the Synchronization
wizard performs update, insert, and delete operations on the existing integration object definition. The
Synchronization wizard selects or deselects components to make the Siebel integration object look like the
definition of the Siebel business object you chose.

The wizard generally updates the Siebel integration object either by updating the object and its components or
by updating some components and deleting others. For information, see Updating the Entire Integration Object
and Deleting a Component from the Integration Object.

8. Copy custom properties and custom user keys as needed. The wizard includes any new fields added to the
business object in your integration object for the new version of your Siebel application. All these fields are set
to active.

48

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

9. Inactivate any new fields that you do not need in a component of your updated integration object.
10. Right-click on your integration object, and select the Validate option to validate your integration object.

Note: If you want to synchronize any of the external integration objects, then follow this general procedure to
perform a synchronization operation.

Resolving Synchronization Conflicts for Integration
Objects and User Properties
This topic serves as a guide to resolving synchronization conflicts if any arise.

Merging Logic for Synchronizing Integration Objects
The following table illustrates the behavior of the merging logic for each of the integration object parts that have to be
synchronized.

Integration Object Metadata Merging Rules

Objects

Validate that Business Object still exists.

Components

Present the tree of components based on current business object definition. The components present
in the current integration object are checked in the UI tree, other components presented as Inactive.
User decides which components to add or delete. This is done by the Synchronization wizard UI.

Fields

Keep the current integration component fields if still present in the business component, otherwise
delete. Add new fields in a way that does not conflict with existing ones (see the row about External
Sequence for more information).

System fields are created when appropriate (for example, searchspec, IsPrimaryMVG, and operation). If
the system field is inconsistent with the integration component definition, then delete it.

Active/Inactive. Preserve the current integration component field value unless Business Component
Field is Required (field must be present during Insert). Otherwise, new fields are created Inactive.

XML Properties

Preserve the current integration object values to keep XML compatible. Add new components/fields
properties avoiding conflict with existing XML.

XML Properties are processed according to the XML sequence. New components/fields that sequence
within the parent component element will be higher than current.

Reuse existing processing code (and check for correct behavior).

External Sequence

(on components or fields)

Preserve the component or field sequence within the parent component. Set the sequence on new
components or fields higher than the existing ones.

Name

Preserve Names in the current integration object.

49

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Integration Object Metadata Merging Rules

User key, Hierarchy key, Other keys (for
example, Status Key)

Existing Keys:

• Keep existing keys as Active if all the key fields are Active.

• Keep existing keys Inactive if Inactive already or make Inactive if any of the fields are Inactive.

• If a field is Inactive in an integration component, then make it Inactive in the key. Make the key
Inactive.

• If a field is not present in an integration component, then delete it from the key. Make the key
Inactive.

New Keys:

• Create new keys as Inactive.

• If any of the key fields are Inactive, then either:

• Do not create the key.

• Make fields Active in the integration component.

User Properties

Preserve valid cases, remove invalid ones, and generate warnings. See the following table for more
information.

Logic for Synchronizing User Properties
The following table shows the logic that is used when synchronizing user properties.

User Property Name Values (Default
is in italics)

Level (Object,
 Component, or
Field)

Merging Rules

AdminMode

Y, N

C, O

Entered by the user; if the value exists, then keep it.
Otherwise, the wizard sets the value to N.

AllLangIndependentVals

Y,N

O

Entered by the user; if the value exists, then keep it.
Otherwise, the wizard sets the value to N.

AssocFieldName

Any valid field
name in the
Association
business
component

F

Siebel Wizard generates the value based on current
business component definition. The Wizard overwrites
the user change, because in order for the integration
component to be functional, the User Property
has to be consistent with the business component.
(component MVGAssociation is set to Y)

Association

Y, N

C

Siebel Wizard generates the value based on current
business component definition. The Wizard overwrites
the user change, because in order for the integration
component to be functional, the User Property has to
be consistent with the business component.

EDEnabled

Y, N

F

For each integration component field, the Synchronize
wizard adds an integration component field user
property named EDEnabled with the value set to Y
if the corresponding business component field is

50

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

User Property Name Values (Default
is in italics)

Level (Object,
 Component, or
Field)

Merging Rules

effective dating enabled. The wizard will not overwrite
user changes.

FieldDependencyFieldName

Any active
integration
component
name within the
same integration
component

F

Entered by the user. Keep the current value if valid (if
FieldName field is Active).

ForceUpdate

Y, N

O

Entered by the user. Keep the current value.

Ignore Bounded Picklist

Y, N

O, C, F

Entered by user, keep if valid (if component Picklist is
set to Y).

IgnorePermissionErrorsOnUpdate,
 IgnorePermissionErrorsOnInsert,
 IgnorePermissionErrorsOnDelete

Y, N

C

Entered by the user. Keep the current value.

MVG

Y, N

C

Siebel Wizard generates the value based on the current
business component definition. The Wizard overwrites
the user change, because in order for integration
component to be functional, the User Property has to
be consistent with the business component.

IsPrimaryMVG system field is created in the merged
integration object.

MVGAssociation

Y, N

C

Siebel Wizard generates the value based on the current
business component definition. The Wizard overwrites
the user change, because in order for integration
component to be functional, the User Property has to
be consistent with the business component.

IsPrimaryMVG system field is created in merged
integration object.

MVGFieldName

Any valid field
name in the
MVG business
component

F

Siebel Wizard generates the value based on current
business component definition. The Wizard overwrites
the user change, because in order for integration
component to be functional, the User Property
has to be consistent with the business component.
(component MVG is set to Y)

NoInsert, NoDelete, NoUpdate, NoQuery,
 NoSynchronize

Y, N

C, F (NoUpdate)

Entered by the user. Keep the current value.

Picklist

Y, N

F

Siebel Wizard generated. The user change is kept if
valid (if Picklist component).

Review the input object for a user property of
PICKLIST. Copy from the current field.

51

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

User Property Name Values (Default
is in italics)

Level (Object,
 Component, or
Field)

Merging Rules

PicklistUserKeys

Any active fields

F

Entered by user, keep only Active fields. User property
is valid only if PICKLIST is set to Y on the integration
component.

If no Active fields left, then remove the user property.

SuppressQueryOnInsert

Y, N

C

Entered by the user. Keep the current value.

When using the Insert method for the EAI Siebel
Adapter, if this integration component user property is
defined, then the EAI Siebel Adapter will not perform a
query before inserting a record.

ViewMode

All, Manager,
 Sales Rep, and
any others

O

Entered by the user; if the value exists, then keep it.
Otherwise, the wizard sets the value to All.

Using Formatted Values in Integration Objects
The UseFormattedValues integration object user property allows you to configure the EAI Siebel Adapter to use
formatted values.

The Siebel application stores a phone number’s format as well as the phone number itself in the Siebel Database to
display the phone number in the GUI. How a phone number displays is dependent on the preconfigured format for a
specific country.

For example, a +55 555 5555 phone number in an English - ENU database is stored as +555555555 000 0000, where
000 0000 is the formatting mask.

By default, the value of the UseFormattedValues user property is set to N, indicating no formatted values are used.
However, you can use scripting or a workflow to configure the EAI Siebel Adapter to force the use of formatted values by
setting an integration object’s UseFormattedValues user property to Y. In the previous example, the EAI Siebel Adapter
will then return the phone number as +55 555 5555, ignoring the zeroes.

Note: UseFormattedValues is set at the integration object level and applies to all formattable fields in the integration
object.

52

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Generating Integration Object Schemas
At certain points in your integration project, you might want to generate schemas from an integration object. If you
export Siebel integration objects as XML to other applications, then you might have to publish the schemas of such
objects so that other applications can learn about the structure of the XML to expect.

To generate an integration object schema
1. In Siebel Tools, select the integration object for which you want to generate a schema.
2. Click Generate Schema to access the Generate XML Schema wizard.
3. Choose the business service to use to generate the schema:

◦ EAI XML DTD Generator. Generates a Document Type Definition (DTD).

◦ EAI XML XDR Generator. Generates an XML-Data Reduced (XDR) schema.

◦ EAI XML XSD Generator. Generates an XML Schema Definition (XSD).

4. Choose an envelope type to use in the schema, either none or Siebel Message Envelope.
5. Choose a location where you want to save the resulting schema file.
6. (Optional) Select the Include length information for String type check box to generate simple types for all string

elements in the integration object schema.
7. Click Finish.

The wizard generates the selected type of schema for the integration object. Use this to help you map external data
directly to the integration object. The schema serves as the definition for the XML elements you can create using an
external application or XML editing tool.

Note: With the EAI XML DTD Generator, elements that appear more than once in the integration object structure are
forward declared in the schema. A list of shared elements is generated, for example:

<!-- Shared Element List. These elements are guarenteed -->
<!-- to have the same datatype, length, precision, and scale.-->
<!ELEMENT ErrorMessage (#PCDATA) >
<!ELEMENT ErrorCode (#PCDATA) >

Optimizing the Performance of Integration Objects
To optimize your integration object performance, you might want to consider the following:

• Size of integration object. The size of an integration object and its underlying business components can have
an impact on the latency of the EAI Siebel Adapter operations. Inactivate unnecessary fields and components in
your integration objects.

• Force-active fields. Reexamine any fields in the underlying business component that have the force-active
specification. Such fields are processed during the integration even if they are not included in the integration
component. Consider removing the force-active specification from such fields, unless you absolutely need
them.

• Picklist validation. See Picklist Validation.

53

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Picklist Validation
Siebel CRM has two classes of picklists: static picklists based on lists of values and dynamic picklists based on joins.

Setting the property PICKLIST to Y in the integration object field directs the EAI Siebel Adapter to validate that all
operations conform to the picklist specified in the field. For dynamic picklists, this setting is essential to make sure the
joins are resolved properly. However, for unbounded static picklists, this validation might be unnecessary and can be
turned off by setting the PICKLIST property to N. Even for bounded static picklists, you can turn off validation in the
adapter, because the Object Manager can perform the validation. Turning off the validation at the EAI Siebel Adapter
level means that picklist-related warnings and debugging messages do not show up along with other EAI Siebel Adapter
messages. This also means that bounded picklist errors will not be ignored, even if Ignore Bounded Picklist is set to Y.

As well as certain warnings and messages not appearing, setting the integration component field user property
PICKLIST to N can also cause fields to be auto-completed. Providing only part of the value for a particular field causes
the field to be auto-filled with the first matching entry in the picklist. This occurs especially when the picklist is based on
a multilingual list of values (MLOV). For example, if the incoming message contains the string "On-" and there exists an
entry "On-Hold," then the field will be set to "On-Hold."

If the EAI Siebel Adapter performs the validation (PICKLIST is set to Y), auto-filling of the field does not occur. In this
case, the EAI Siebel Adapter supports only an exact match for the particular field (in the previous example, the value
"On-" will fail; only "On-Hold" will pass).

Note: Performing the validation of a bounded picklist in the EAI Siebel Adapter is about 10% faster than performing
the validation in the Object Manager.

About Business Component Restrictions for Integration
Components
The business components underlying the Integration Components might have certain restrictions. For example, only
an administrator can modify the Internal Product. The same restrictions apply during integration. In many cases, the
Siebel Integration Object Builder wizard detects the restrictions, and sets properties such as No Insert or No Update on
the integration components.

Integration object fields marked as System are not exported during a query operation. This setting prevents the EAI
Siebel Adapter from treating the field as a data field, which means for the Query and QueryPage method the EAI
Siebel Adapter do not write to the field. For the Synchronize and Update method, the field will not be directly set in the
business component unless the ISPrimaryMVG is set to Y. If you want to include System fields in the exported message,
then change the Integration Component field type to Data.

Note: System fields are read-only. If you attempt to send a message with the value set for a System field, then the
setting will be ignored and a warning message will be logged. However, in order to permit updates for the System
field SSA Primary Field, change the field type from System to Data. (SSA Primary Field is a pseudo-field that is used to
mark the current instance of the child Integration Component to be a primary on the link from the parent component.)

54

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

Guidelines for Using Integration Components
The following are the guidelines for using integration components:

• Familiarize yourself with the business logic in the business components. Integration designers must use the
presentation layer, or the user interface, to get a good sense of how the business component behaves, and
what operations are allowed and not allowed.

• Design with performance in mind. For more information on performance and using integration objects, see
Optimizing the Performance of Integration Objects.

• Design with maintenance in mind. For more information on maintenance, see Guidelines for Maintaining
Integration Objects.

• Resolve configuration conflicts. During the development of your integration points, you might encounter issues
with the configuration of business components that are configured to support interactive GUI usage, but do not
satisfy your integration requirements.

The following scenarios demonstrate two situations in which you might encounter such conflicts, and a
possible solution for each case:

Scenario 1. A business component such as Internal Product is made read-only for regular GUI usage, but you
want your integration process to be able to update the Internal Product business component.

Solution. Set the AdminMode user property on the integration object to Y. This allows the EAI Siebel Adapter to
use the business component in an administrator mode.

Scenario 2. Similar to scenario 2, a business component such as Internal Product is made read-only for
regular GUI usage, but you want your integration process to be able to update the Internal Product business
component. The only difference in this scenario is that the business component is used through a link that has
NoUpdate property set to Y.

Solution. Because there is a link with NoUpdate property set to Y, setting the AdminMode user property on the
integration object to Y is not going to help. You must create the following exclusively for integration purposes:

◦ A new link based on the original link with NoUpdate property Set to N.

◦ A copy of the original business object referencing the new link instead of the original. Note that both links
must use the same business component.

Note: Customized configurations are not automatically upgraded during the Siebel Repository upgrade, so
use this option as a last resort.

55

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 3
Creating and Maintaining Integration Objects

56

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

4 Business Services

Business Services
This chapter outlines the basic concepts of a business service, its structure and purpose, and how you can customize
and create your own business service. This chapter also describes how to test your business service before it is
implemented. This chapter includes the following topics:

• About Business Services

• Creating Business Services in Siebel Tools

• Creating Business Services in the Siebel Application

• Deploying Business Services as Web Services

• Exporting and Importing Business Services in Siebel Tools

• Importing Business Services into Siebel CRM

• Testing Your Business Service in the Simulator

• About Accessing a Business Service Using Siebel eScript or Siebel VB

• Business Scenario for the Use of Business Services

• Code Sample Example for Creating a Property Set

About Business Services
A business service is an object that encapsulates and simplifies the use of some set of functionality. Business
components and business objects are objects that are typically tied to specific data and tables in the Siebel data model.
Business services, on the other hand, are not tied to specific objects, but rather operate or act upon objects to achieve a
particular goal.

Business services can simplify the task of moving data and converting data formats between the Siebel application and
external applications. Business services can also be used outside the context of Siebel EAI to accomplish other types of
tasks, such as performing a standard tax calculation, a shipping rate calculation, or other specialized functions.

The business service can be assessed either directly by way of workflows (business processes) or by way of a scripting
service written in Siebel VB or Siebel eScript.

The following topics are also covered:

• About Creating Business Services

• Business Service Structure

• Property Sets

57

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

About Creating Business Services
A Siebel application provides a number of prebuilt business services to assist you with your integration tasks. These
services are based on specialized classes and are called Specialized Business Services. Many of these are used internally
to manage a variety of tasks.

CAUTION: As with other specialized code such as Business Components, use only the specialized services that are
documented in the Siebel Bookshelf . The use of undocumented services is not supported and can lead to undesired
and unpredictable results.

Note: The Siebel Bookshelf is available on Oracle Technology Network (OTN), Oracle Software Delivery Cloud, or it
might be installed locally on your intranet, or on a network location.

In addition to the prebuilt business services, you can build your own business service and its functionality in two
different ways to suit your business requirements:

• In Siebel Tools. Created at design time in Siebel Tools using Siebel VB or Siebel eScript. Design-time business
services are stored in the Siebel design time repository, so you have to compile the repository before testing
them. When your test is completed, deliver the changes. The business services stored in the repository
automatically come over to the new repository during the upgrade process. General business services are based
on the class CSSService. However, for the purposes of Siebel EAI, you base your data transformation business
services on the CSSEAIDTEScriptService class. For information, see Creating Business Services in Siebel Tools.

• In Siebel client. Created at run time in the Siebel client using the Business Service Administration screens.
Run-time business services are stored in the Siebel run-time database, so they can be tested right away. The
run-time business services have to be migrated manually after an upgrade process. For information, see
Creating Business Services in the Siebel Application.

Note: To use the DTE scripts, write your business service in Siebel eScript; otherwise, you can write them in Siebel VB.

Business Service Structure
Business services allow developers to encapsulate business logic in a central location, abstracting the logic from the
data it might act upon. A business service is much like an object in an object-oriented programming language.

A business service has properties and methods, and maintains a state. Methods take arguments that can be passed into
the object programmatically or, in the case of Siebel EAI, declaratively by way of workflows.

Note: For more information on business service methods and method arguments, see Siebel Object Interfaces
Reference .

Property Sets
Property sets are used internally to represent Siebel EAI data. A property set is a logical memory structure that is used to
pass the data between business services. The following figure illustrates the concept of a property set.

58

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

As shown in this figure, the property set consists of four parts:

• Type. Used to describe what type of object is being represented.

• Value. Used to hold serialized data, such as a string of XML data.

Note: In Siebel Tools, a Value argument to a method is shown with the name of <Value> , including the angle
brackets. You can also define a Display Name for the Value argument in Siebel Tools. This Display Name
appears in the Siebel Business Process Designer when you are building integration workflows. In this guide,
the Display Name Message Text is shown when referring to the Value argument, and the Name <Value> is
shown when referring to the Value of the Value argument.

• Properties. A table containing name-value pairs. You can use the properties to represent column names and
data, field names and data, or other types of name-value pairs.

• Children. An array of child-level property sets. You can use the array to represent instances of integration
objects. For example, a result set might contain an Account with some set of contact records from the
database. Each contact record is represented as a child property set.

It is recommended that you treat input property sets in business services as constants. If you must modify the inputs,
then make a copy first. Otherwise, there might be interference between business service scripts and workflows that also
modify the inputs, leading to unpredictable application behavior.

For example, when creating the XMLHierarchy property set using a custom business service in a workflow, if the input
property set is modified without making a copy, then the following error occurs:

Argument 'XMLHierarchy' in step 'Convert XMLHierarchy' is not correctly initialized
or does not return valid data.(SBL-BPR-00107)

Note: For more information on property sets and their methods, see Siebel Object Interfaces Reference .

59

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

Creating Business Services in Siebel Tools
The following procedures explain how to create business services and business service scripts in Siebel Tools:

• Defining a Business Service in Siebel Tools.

• Defining Business Service Methods

• Defining Business Service Method Arguments

• Writing Business Service Scripts

• Defining Business Service User Properties

Note: Business services you create in Siebel Tools must be delivered.

Defining a Business Service in Siebel Tools
You declaratively define the business service in Siebel Tools, and then add your scripts to the business service in the
Siebel Script Editor within Siebel Tools.

To define a business service in Siebel Tools
1. In Siebel Tools, select and lock the project with which you want to associate your business service.

Note: Each business service must belong to a project, and the project must be locked. For more information,
see Using Siebel Tools .

2. Select the Business Services object in the Tools Object Explorer.

The list of predefined business services appears in the farthest panel.
3. Right-click, and then choose New Record.
4. Type a name in the Name field of the new business service.
5. From the pull-down menu in the Project field, pick the project you locked in Step 1.
6. Choose the appropriate class for your business service from the Class picklist:

◦ Data transformation business services must use the CSSEAIDTEScriptService class.

◦ Other business services will typically use the CSSService class.

7. Step off the current record to save your changes.

Defining Business Service Methods
Business services contain related methods that provide the ability to perform a particular task or set of tasks.

Note: For information on business service methods, see Siebel Object Interfaces Reference .

60

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

To define a business service method
1. With your business service selected in Siebel Tools, expand the Business Service tree in the Object Explorer, and

then select Business Service Method.

The Business Service Methods list appears in the Object List Editor. If you have already defined methods for the
selected business service, they appear in the Business Services Methods list.

2. Right-click, and then choose New Record.
3. Type the name of the method in the Name field of the new method.

Defining Business Service Method Arguments
Each method can take one or more arguments. The argument is passed to the method and consists of some data or
object that the method processes to complete its task.

To define business service method arguments
1. With your business service method selected in Siebel Tools, expand the Business Service Method tree in the

Object Explorer, and then select Business Service Method Args.

The Business Service Methods Args list appears in the Object List Editor.
2. Right-click, and then choose New Record.
3. Type the name of the argument in the Name field of the new method argument record.

Note: If you plan to use this business service in a Siebel CRM application, then specify the Display Name as
well.

4. Enter the data type in the Data Type field.
5. Check the Optional check box if you do not want the argument to be required for the method.
6. Choose a Type for the argument. Refer to the following table for a list of different types and their descriptions.

Argument Description

Input

This type of argument serves as input to the method.

Input/Output

This type of argument serves as both input to the method and output from the method.

Output

This type of argument serves as output from the method.

Writing Business Service Scripts
Business service scripts supply the actual functionality of the business service in either Siebel VB or Siebel eScript. As
with any object, the script you provide is attached to the business service.

61

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

To write business service scripts
1. In Siebel Tools, select the business service for which you want to write a script.
2. Right-click, and then choose Edit Server Scripts.

The Siebel Script Editor appears.
3. Select either Siebel eScript or Visual Basic for your scripting language.
4. Select Service_PreInvokedMethod as the event handler.

Note: To write any Siebel VB script in the Business Services, the operating system you are using must
support Siebel VB. Siebel VB is not supported in the UNIX environments.

5. Type your script into the Script Editor.

Note: Write your business service in Siebel eScript if you want to use the DTE scripts. For information on
scripting, see Using Siebel Tools .

Defining Business Service User Properties
User properties are optional variables that you can use to define default values for your business services in Siebel
Tools. When a script or control calls your business service, one of the first tasks the service performs is to check the user
properties to gather any default values that will become input arguments to the service’s methods.

To define business service user properties
1. With your business service selected in Siebel Tools, expand the Business Service tree in the Object Explorer, and

then select Business Service User Prop.
The Business Service User Props list appears in the Object List Editor.

2. Right-click, then choose New Record.
3. Type the name of the user property in the Name field of the new record.
4. Type a value in the Value field.

The value can be an integer, a string, or a Boolean.

Creating Business Services in the Siebel Application
You can define business services in the Siebel application using the Business Service Administration screens. The
business services you create in the client are stored in the Siebel Database. This topic illustrates the creation of business
services using the Business Service Methods view, which includes applets to create and display the business service.

To define a business service in the Siebel application
1. Navigate to the Administration - Business Service screen, Methods view.
2. Click New to create a new record in the Methods form applet:

◦ Name. Name of the business service.

62

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

◦ Cache. If checked then the business service instance remains in existence until the user’s session is
finished; otherwise, the business service instance will be deleted after it finishes executing.

◦ Inactive. Check if you do not want to use the business service.

3. Define methods for the business service in the Methods list applet:

◦ Name. Name of the method.

◦ Inactive. Check if you do not want to use the method.

4. Define method arguments for the methods in the Method Arguments list applet:

◦ Name. Name of the method argument.

◦ Type. The type of the business service method argument. Valid values are Output, Input, and Input/
Output.

◦ Optional. Check if you do not want this argument to be optional.

◦ Inactive. Check if you do not want to use the argument.

5. From the link bar, select Scripts.
6. Write your Siebel eScript or VB code in the Business Service Scripts list applet.

Note: To write any Siebel VB script in the Business Services, the operating system you are using must
support Siebel VB. Siebel VB is not supported in UNIX environments.

7. Click Check Syntax to check the syntax of the business service script.

Deploying Business Services as Web Services
You can deploy business services, which you have created in Siebel Tools, as Web services. The Web services can then
be consumed by other applications.

To be deployed, a business service must have at least one accessible method that is supported in Siebel inbound Web
services. The business service must include a valid integration object name for any hierarchical argument.

Note: The Hierarchy type is not supported unless a valid integration object name is specified.

For more information on Web services, see Web Services.

To deploy a business service as a Web service
1. In the Object Explorer in Siebel Tools, select the Business Service object.

The Business Services list appears.
2. In the Object List Editor, right-click the business service to deploy, and then choose Deploy as Web Service.

The Expose Business Service as Web Service dialog box appears.
3. Specify the following in the dialog box, and then click Finish:

◦ Business service methods to expose. The operation names for the business service methods are
system generated. To edit an operation name, click it in the list.

◦ URL for the Web service. Replace <webserver> with a valid host name and <lang> with a valid language
code, such as enu.

63

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

◦ Generate WSDL check box. To generate a Web Services Description Language (WSDL) file, select the
check box, and then choose a location to save the WSDL file.

The business service is deployed. Deployed business services are shown in the Administration - Business Services
screen in the Siebel client. Deployed Web services are shown in the Administration - Web Services screen, Inbound Web
Services view.

You can also remove (undeploy) deployed business services from the Siebel run-time database.

To undeploy a business service
1. In the Siebel client, navigate to the Administration - Business Services screen.

The Details list appears.
2. Query for the deployed business service, and then select it.
3. Click Delete.

The business service is undeployed.

Exporting and Importing Business Services in Siebel
Tools
You can export business services into an XML file by clicking Export in the Business Services list in the Object List Editor.
This writes the definition of the business service, including every method, method argument, and script, into the XML
file.

You can import a business service from an external XML file by clicking Import in the Business Services list in the Object
List Editor.

Importing Business Services into Siebel CRM
You can import business services, which you have created in Siebel Tools and exported as XML files, into the Siebel
run-time database. This saves time by allowing you to modify business service definitions without having to shut down
your production environment, edit the business services in workspace of Siebel Tools or Web Tools, and then deliver the
workspace.

To import a business service into Siebel CRM
1. Navigate to the Administration - Business Service screen, Details view.
2. From the Menu pull-down, choose Import Service.
3. The Business Service Import dialog appears.
4. Browse for a business service XML file, and then click Import.

64

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

Testing Your Business Service in the Simulator
You can use the Business Service Simulator to test your business services in an interactive mode.

To run the Business Service Simulator
1. Navigate to the Administration - Business Service screen, Simulator view.

Note: The contents of the Simulator view are not persistent. To save the data entered in the applets, click the
Save To File button. This will save the data for the active applet in an XML file. The data can then be loaded
into the next session from an XML file by clicking on the Load From File button.

2. In the Simulator list applet, click New to add the business service you want to test.
3. Specify the Service Name and the Method Name.
4. Enter the number of iterations you want to run the business service:

◦ Specify the input parameters for the Business Service Method in the Input Property Set applet. Multiple
input property sets can be defined and are identified by specifying a Test Case #.

◦ If the Input Property Set has multiple properties, then these can be specified by clicking on the glyph in
the Property Name field. Hierarchical property sets can also be defined by clicking on the glyph in the
Child Type field.

5. Click Run to run the business service.

The Simulator runs the specified number of iterations and loops through the test cases in order. If you have
defined multiple input arguments, then you can choose to run only one argument at a time by clicking Run On
One Input.

The result appears in the Output Property Set applet.

Note: When the Output arguments are created, you can click Move To Input to test the outputs as inputs to
another method.

About Accessing a Business Service Using Siebel eScript
or Siebel VB
In addition to accessing a business service through a workflow, you can use Siebel VB or eScript to call a business
service. The following Siebel eScript code calls the business service EAI XML Read from File to read an XML file, and
produces a property set as an output. The EAI Siebel Adapter uses the output property set to insert a new account into
the Siebel application:

var svcReadFile = TheApplication().GetService("EAI XML Read from File") ;
var svcSaveData = TheApplication().GetService("EAI Siebel Adapter");
var child = TheApplication().NewPropertySet();
var psInputs = TheApplication().NewPropertySet();
var psOutputs = TheApplication().NewPropertySet();
var psOutputs2 = TheApplication().NewPropertySet();

65

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

var svcSaveData = TheApplication().GetService("EAI Siebel Adapter");
psInputs.SetProperty("FileName", "c:\\NewAccount.xml");
psOutputs.SetType "SiebelMessage";
psOutputs.SetProperty "IntObjectName","Sample Account";
psOutputs.SetProperty "MessageId", "";
psOutputs.SetProperty "MessageType", "Integration Object";
svcReadFile.InvokeMethod("ReadEAIMsg",psInputs, psOutputs);
svcSaveData.InvokeMethod("Upsert",psOutputs,psOutputs2);

The following Siebel VB sample code shows how to call the EAI File Transport business service to read an XML file. It
also shows how to use the XML Converter business service to produce a property set:

Set Inp = TheApplication.NewPropertySet
Inp.SetProperty "FileName", "c:\test.xml"
Inp.SetProperty "DispatchService", "XML Converter"
Inp.SetProperty "DispatchMethod" , "XMLToPropSet"
Set svc = theApplication.GetService("EAI File Transport")
Set XMLOutputs = theApplication.NewPropertySet
svc.InvokeMethod "ReceiveDispatch", Inp, XMLOutputs
TheApplication.RaiseErrorText Cstr(XMLOutputs.GetChildCount)

Business Scenario for the Use of Business Services
Consider an example of a form on a corporate Web site. Many visitors during the day enter their personal data into
the fields on the Web form. The field names represent arguments, whereas the personal data represent data. When
the visitor clicks Submit on the form, the form’s CGI script formats and sends the data by way of the HTTP transport
protocol to the corporate Web server. The CGI script can be written in JavaScript, Perl, or another scripting language.

The CGI script might have extracted the field names and created XML elements from them to resemble the following
XML tags:

First Name = <FirstName></FirstName>

Last Name = <LastName></LastName>

The CGI script might then have wrapped each data item inside the XML tags:

<FirstName>Hector</FirstName>

<LastName>Alacon</LastName>

To insert the preceding data into the Siebel Database as a Contact, your script calls a business service that formats the
XML input into a property set structure that the Siebel application recognizes.

For an example, see Code Sample Example for Creating a Property Set.

Code Sample Example for Creating a Property Set
The following is an example of the Siebel eScript code that you must write to create the property set described in
Business Scenario for the Use of Business Services:

x = TheApplication.InvokeMethod("WebForm", inputs, outputs);
var svc; // variable to contain the handle to the Service
var inputs; // variable to contain the XML input
var outputs; // variable to contain the output property set

66

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

svc = TheApplication().GetService("EAI XML Read from File");
 inputs = TheApplication().ReadEAIMsg("webform.xml");
 outputs = TheApplication().NewPropertySet();
svc.InvokeMethod("Read XML Hierarchy", inputs, outputs);

The following functions could be called from the preceding code. You attach the function to a business service in Siebel
Tools:

Note: You cannot pass a business object as an argument to a business service method.

Function Service_PreInvokeMethod(MethodName, inputs, outputs)
 {
 if (MethodName=="GetWebContact")
 {
 fname = inputs.GetProperty("<First Name>");
 lname = inputs.GetProperty("<Last Name>");
 outputs.SetProperty("First Name",fname);
 outputs.SetProperty("Last Name", lname);
 return(CancelOperation);
 }
return(ContinueOperation);
}
Function Service_PreCanInvokeMethod(MethodName, CanInvoke)

{
 if (MethodName="GetWebContact")
 {
 CanInvoke ="TRUE";
 return (CancelOperation);
 }
 else
 {
 return (ContinueOperation);

 }
}

67

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 4
Business Services

68

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

5 Web Services

Web Services
This chapter describes Web services, their uses, and how to create, implement, and publish Siebel Web services. This
chapter also provides examples of how to invoke an external Web service and a Siebel Web service. It contains the
following topics:

• About Web Services

• About RPC-Literal and DOC-Literal Bindings

• About One-Way Operations and Web Services

• Invoking Siebel Web Services Using an External System

• Consuming External Web Services Using Siebel Web Services

• Using the Local Business Service

• Using the Local Business Service in an Outbound Web Service

• Examples of Invoking Web Services

• About Web Services Security Support

• About Siebel Authentication and Session Management SOAP Headers

• About Web Services and Web Single Sign-On Authentication

• About SOAP Fault Schema Support

• About Custom SOAP Filters

• About EAI File Streaming

• About Web Services Cache Refresh

• Enabling Web Services Tracing

• Previewing the Repository Changes Before Delivery

• Configuring the No Session Preference in EAI-SOAP Parameter

• Configuring the Maximum Retry for Processing EAI-SOAP Request Parameter

About Web Services
Web services combine component-based development and Internet standards and protocols that include HTTP, XML,
Simple Object Access Protocol (SOAP), and Web Services Description Language (WSDL). You can reuse Web services
regardless of how they are implemented. Web services can be developed on any platform and in any development
environment as long as they can communicate with other Web services using these common protocols.

Business services or workflows in Siebel CRM can be exposed as Web services to be consumed by an application.
Siebel Web Services framework has an ability to generate WSDL files to describe the Web services hosted by the
Siebel application. Also, the Siebel Web Services framework can invoke external Web services. This is accomplished by
importing a WSDL document, described as an external Web service, using the WSDL Import Wizard in Siebel Tools.

69

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

To specify the structure of XML used in the body of SOAP messages, Web services use an XML Schema Definition (XSD)
standard. The XSD standard describes an XML document structure in terms of XML elements and attributes. It also
specifies abstract data types, and defines and extends the value domains.

Users or programs interact with Web services by exchanging XML messages that conform to Simple Object Access
Protocol (SOAP). For Web services support, SOAP provides a standard SOAP envelope, standard encoding rules that
specify mapping of data based on an abstract data type into an XML instance and back, and conventions for how to
make remote procedure calls (RPC) using SOAP messages.

Supported Web Services Standards
For information on the Web services standards supported with Siebel CRM, see the Certifications tab on My Oracle
Support.

About RPC-Literal and DOC-Literal Bindings
In Siebel CRM, publishing a Siebel Web service as a Document-Literal (DOC-Literal) or RPC-Literal bound Web service
partly conforms to the specification as defined by the Web Services Interoperability Organization’s (WS-I) Basic Profile
specification. Adherence to this specification makes sure that Siebel CRM can interoperate with external Web service
providers.

WS-I is a trademark of the Web Services Interoperability Organization in the United States and other countries.

RPC-Literal Support
RPC allows the use of transports other than HTTP (for example, MQ and MSMQ), because you do not have to use the
SOAPAction header to specify the operation.

For information on the Web services standards supported with Siebel CRM, see the Certifications tab on My Oracle
Support.

Making a Web Service an RPC-Literal Web Service
RPC literal processing is enabled by rendering a Web service as an RPC-literal Web service, and choosing the correct
binding on the Inbound Web Services view.

To make a Web service an RPC-literal Web service
1. Navigate to the Administration - Web Services screen, Inbound Web Services view.
2. Select or add a new namespace from the Inbound Web Services list following the instructions in Invoking Siebel

Web Services Using an External System.
3. Create a new inbound service port record in the Service Ports list, as indicated in Invoking Siebel Web Services

Using an External System
4. In the Binding column, select SOAP_RPC_LITERAL from the drop-down list.

70

https://support.oracle.com/epmos/faces/CertifyHome
https://support.oracle.com/epmos/faces/CertifyHome

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

DOC-Literal Support
When a SOAP DOC-literal binding is used, the SOAP envelope (the Body element) will contain the document WSDL part
without any wrapper elements. The SOAP operation is determined by way of a SOAPAction HTTP header.

Note: SOAP:Body is in the instance SOAP message, but soapbind:body is the attribute in the WSDL document.

For information on the Web services standards supported with Siebel CRM, see the Certifications tab on My Oracle
Support.

About One-Way Operations and Web Services
One-Way operations provide a means of sending a request to a Web service with the expectation that a SOAP response
will not be returned. The Siebel application provides the ability to publish and consume Web services that implement
one-way operations.

One-way operations come into play in both inbound and outbound scenarios:

• Inbound. If the Business Service Workflow method does not have any output arguments, then it is a one-way
operation.

• Outbound. If the service proxy method has no output arguments, then it is a one-way operation.

Consider using one-way operations when data loss is tolerable. In cases involving one-way operations, you send a SOAP
request and do not receive a SOAP response. The provider receives the SOAP request and processes it.

Note: It is important to note that SOAP faults, if any, are not returned as well.

Defining Support for One-Way Operations
For information on the Web services standards supported with Siebel CRM, see the Certifications tab on My Oracle
Support.

Invoking Siebel Web Services Using an External System
The Siebel application allows enterprises to publish any business service or business process as a Web service. This
process is also known as creating an inbound Web service. When the business service or business process is defined,
a Siebel administrator navigates to the Administration - Web Services screen, Inbound Web Services view in the Siebel
Web Client, and publishes it as a Web service. When the business service or business process is published as a Web
service, the administrator generates the Web Service Definition Language (WSDL) document for the newly created Web
service. The resulting WSDL document is consumed by an external application to invoke this Web service.

71

https://support.oracle.com/epmos/faces/CertifyHome
https://support.oracle.com/epmos/faces/CertifyHome
https://support.oracle.com/epmos/faces/CertifyHome
https://support.oracle.com/epmos/faces/CertifyHome

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Note: You can deploy business services and workflows as Web services and generate WSDL files directly from
Siebel Tools. For information on deploying business services, see Deploying Business Services as Web Services. For
information on deploying workflows as Web services, see Siebel Business Process Framework: Workflow Guide .

The following inbound Web services topics are covered:

• Publishing Inbound Web Services

• Generating a WSDL File

• About the Relationship of Port Types and Operations

• About Defining the Web Service Inbound Dispatcher

• Invoking Web Services on the Siebel Mobile Web Client

Publishing Inbound Web Services
You can create and publish an inbound Web service using the Inbound Web Services view, as illustrated in the following
procedure. You can then use the new inbound Web service when generating a WSDL document.

Note: If publishing an ASI as an inbound Web service, then make sure that the ASI is enabled for external use in Siebel
Tools.

To create an inbound Web service
1. Navigate to the Administration - Web Services screen, Inbound Web Services view.
2. In the Inbound Web Services list, create a new record:

a. Enter the namespace for your organization’s Web services in the Namespace column.

Note: This step is required for generating various XML documents.

b. Enter the name of the inbound Web service in the Name column.
c. Select Active in the Status field to enable external applications to invoke the Web service.

Note: If the Web service is inactive, then the external applications cannot invoke the Web service
without clearing the cache.

d. (Optional) Enter a description of the Web service in the Comment column.
3. Create an inbound service port record in the Service Ports list:

a. Click New and enter the name of the port in the Name column.
b. Pick the type of object published. If the required type is not available, then add a new type following Step

c through Step f; otherwise, move to Step g.
c. Click New and select the implementation type (Business Service or Workflow Process).
d. Select the implementation name (the business service or workflow that implements the port type).
e. Enter a name for the new type in the Name field and click Save.
f. Click Pick in the Inbound Web Services Port Type Pick Applet to complete the process of adding a new

Type.
g. Select the protocol or transport that will publish the Web service.
h. Enter the address appropriate for the transport chosen:

72

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

- For the HTTP transport, enter an HTTP address of the Web service to be invoked, such as:

http://mycompany.com/webservice/orderservice

- For the JMS transport, enter the following:

jms://YourQueueName@YourConnectionFactory

- For the Local Web Service transport, enter the name of the inbound port.
- For the EAI MSMQ Server transport, enter one of the following:

mq://YourQueueName@YourQueueManagerName
msmq://YourQueueName@YourQueueMachineName

Note: With the EAI MQSeries, EAI MSMQ, and EAI JMS transports, the request and response
must be in the same queue. When publishing using EAI MQSeries, EAI MSMQ, or EAI JMS, you
cannot generate WSDL files.

i. Select the binding that will publish the Web service.

Note: RPC_Encoded, RPC_Literal, and DOC_Literal styles of binding are supported for publishing Web
services.

j. Enter a description of the Port in the Comment column.
4. In the Operations list, create a new operation record for the new service port:

Note: Only the operations created in this step will be published and usable by applications calling the Web
service. Other business service methods will not be available to external applications and can only be used for
internal business service calls.

a. Enter the name of the Web service operation.
b. Select the name of the business service method in the Method Display Name column.

Note: The Method Display Name column displays RunProcess by default if you chose Workflow
Process as the type for your service port. However, you can change this to another name.

c. Select the authentication type from the drop-down list.

For more information on using the Username/Password Authentication Type, see About RPC-Literal and
DOC-Literal Bindings.

Generating a WSDL File
The WSDL file specifies the interface to the inbound Web service. This file is used by Web service clients to support
creation of code to call the Siebel Web service.

When you have created a new inbound Web service record you can generate a WSDL document, as described in the
following procedure.

73

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

To generate a WSDL file
1. In the Inbound Web Services view, choose the inbound Web services you want to publish, and then click

Generate WSDL.

A WSDL file is generated that describes the Web service.
2. Save the generated file.
3. Import the WSDL to the external system using one of the following utilities:

◦ In Microsoft VisualStudio.Net, use the wsdl.exe utility, for example:

wsdl.exe /l:CS mywsdlfile.wsdl

◦ In Apache AXIS, use the wsdl2java utility, for example:

java org.apache.axis.wsdl.WSDL2Java mywsdlfile.wsdl

◦ In IBM WSADIE, depending on the version, add the WSDL file to the Services perspective and then run
the Create Service Proxy wizard.

◦ In Oracle JDeveloper, use the Java Web Service from WSDL wizard.

Note: These utilities only generate proxy classes. Developers are responsible for writing code that uses
the proxy classes.

About the Relationship of Port Types and Operations
Port types are defined in the Inbound Web Services view, in the Service Ports applet. The Type and Business Service/
Business Process Name fields are based on the same dynamic picklist. Opening it displays all the port types. Here you
can create or delete port types.

After a port type has been created, you can create the operations that the port type will define. This is done in the
Operations applet. Clicking the New button displays any operations that are currently defined for the specified port type.
You can expose as many business service methods as you want, but once defined they cannot be deleted or modified
through the picklist or through the Operations applet. You can only delete the link between the specified port and
operation.

The business service methods are read from the runtime repository. When an operation is defined, a new record is
added to the S_WS_OPERATION table, with the Method Display Name field set to the business service method.

Subsequent attempts to add new operations display the dynamic picklist of operations stored in the S_WS_OPERATION
table. Any changes to the business service definition made after the Web service operation was created are not
reflected, because operations are read from the database.

When generating a WSDL, the generator reads the port type definition from the database and retrieves all associated
operations. It processes the operations and then checks them against the business service methods in the runtime
repository. Any discrepancy causes an error to be thrown.

This design allows port types to be shared across Web services. Changes to a port type (including the associated
operations) made in one Web service definition do not affect other Web services. You can only make changes to a port
type (such as deletion) after no Web services are pointing to it.

74

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Deleting Operations by Deleting the Port Type
Operations themselves cannot be deleted after being created. The only way to delete an operation is to delete the
associated port type.

Note: Deleting a port type will cause all associated operations to be deleted.

To delete a port type and its operations

1. Delete all Service Port records that use this port type.
2. Click New to display the picklist.
3. Delete the port type, which will trigger the deletion of all associated operations.

About Defining the Web Service Inbound Dispatcher
The Web Service Inbound Dispatcher is a business service that is called by an inbound transport server component (or
an outbound Web service dispatcher locally). This business service analyzes input SOAP messages containing XML
data, converts the XML data to an XML hierarchy, maps the XML hierarchy to business service method arguments, and
calls the appropriate method for the appropriate service (business service or process). After the called method finishes
its execution, the Web Service Inbound Dispatcher converts the output arguments to XML data, and returns the XML
embedded in the SOAP envelope. During this process, any errors are returned as SOAP fault messages.

SOAP Fault Message Example
When the code within a Web service raises an exception anywhere in the Web services stack, the exception is caught
and transformed into a SOAP fault message.

For instance, the following example illustrates a particular case where mustUnderstand has been set to 1; and therefore,
the header is interpreted as being mandatory. However, the corresponding filter and handler to process the header was
not defined. This causes a SOAP fault message to be returned.

The format of the Siebel SOAP fault message for this example follows:

 <?xml version="1.0" encoding="UTF-8" ?>
 - <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 - <SOAP-ENV:Body>
 - <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:MustUnderstand</faultcode>
 <faultstring>Unable to process SOAP Header child element
 'newns:AnotherUselessHeader' with 'mustUnderstand="1"'(SBL-EAI-08000)
 </faultstring>
 - <detail>
 - <siebelf:errorstack xmlns:siebelf="http://www.siebel.com/ws/fault">
 - <siebelf:error>
 <siebelf:errorsymbol />
 <siebelf:errormsg>Unable to process SOAP Header child element
 'newns:AnotherUselessHeader' with 'mustUnderstand="1"'(SBL-EAI-08000)
 </siebelf:errormsg>
 </siebelf:error>
 </siebelf:errorstack>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

75

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

For more information on SOAP fault handling, see About SOAP Fault Schema Support.

Invoking Web Services on the Siebel Mobile Web Client
The Siebel Mobile Web Client can serve the same Web services as those deployed on the Siebel Server, while protecting
access through simple authentication. This feature allows developers to integrate external applications with Siebel CRM
and test their integrations, without having to install an entire Siebel Enterprise.

Note: All information provided in this topic for the Siebel Mobile Web Client also applies to the Siebel Developer Web
Client.

The Web service functionality is an extension of the Siebel Mobile Web Client, and runs as a separate siebel.exe process.
This second siebel.exe process is started by the Siebel Mobile Web Client as its child process. The child process listens
on the specified port for all Web service requests. The Web service requests are processed and sent to the EAI Inbound
Dispatch Service, and then the response is sent back to the Siebel Mobile Web Client. The child process exits when the
Siebel Mobile Web Client exits.

Note: If any changes are made to Web services in the run time, then these will not be available to the child process.
You must restart the Siebel Mobile Web Client; you cannot clear the Web services cache.

Exceptions to Web Service Support
The Siebel Mobile Web Client provides the same Web service support as an EAI-enabled Siebel Server, with the following
exceptions:

• The Web service consumer, such as soapUI, must be on the same computer as the Siebel Mobile Web Client.

• HTTPS is not supported.

• The Stateless, Stateful, and ServerDetermine session types are not supported. Only the None session type is
supported.

• Concurrent requests are not serviced in parallel. There is only one siebel.exe process that serves Web services,
so concurrent requests are queued.

Note: When multiple Siebel Mobile Web Client instances are running, there will not be multiple processes
serving Web services. However, if the port number is modified in the application configuration file, then with
the next Siebel Mobile Web Client instance a new siebel.exe process will start and listen to requests on the
new port specified in the configuration file.

• Anonymous Web service requests are not supported.

• Chunked HTTP requests and responses are not supported.

Supported Authentication Formats
User authentication is the same as for the Siebel Mobile Web Client. The following authentication formats are
supported:

• Username and password in the URL

• Username and password inside the SOAP header

76

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

• Username and password inside the Web Services-Security (WS-Security) header

Authentication Formats That Are Not Supported
The following authentication formats are not supported:

• Single sign-on (SSO)

• Stateful Web services using separate login and logout requests

• Stateless Web services using a session token

Enabling Web Services on the Siebel Mobile Web Client
Two new parameters have been added to the application configuration file to enable the Web service functionality:
EnableWebServices and WebServicesPort.

To enable Web services on the Siebel Mobile Web Client

• Set the following parameters in the [Siebel] section of the application configuration file, such as uagent.cfg:

Parameter Value

EnableWebServices

TRUE

WebServicesPort

Port number on which to listen. The default is 2330.

The next time the Siebel Mobile Web Client starts, it will start the siebel.exe child process. After the process has started,
it can send requests and receive responses.

Starting the siebel.exe Process From the Command Line
When it is not required to start a Siebel Mobile Web Client instance, you can start the siebel.exe process independently
using the command line.

To start the siebel.exe process from the command line

• Enter the following command:

 SIEBEL_CLIENT_ROOT\bin\siebel.exe /l <language_code> /c <configuration_file> /u
<username> /p <password> /d <datasource_in_cfg> /webservice <port_number>

For example:

C:\Siebel\client\bin\siebel.exe /l enu /c enu\uagent.cfg /u SADMIN /p SADMIN /d
Sample /webservice 2330

Note: To stop a siebel.exe process started from the command line, you must end the process from the Windows Task
Manager.

77

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Confirming that the siebel.exe Process Is Listening
You can use the netstat utility from the DOS prompt to determine whether the siebel.exe child process is listening for
Web service calls.

To confirm that the siebel.exe process is listening

1. From the DOS prompt, type the following:

netstat -a -p TCP

2. Examine the output for the port number you set in the application configuration file, for example:

TCP mycomputer:2330 mycomputer.mycompany.com:0 LISTENING

LISTENING indicates that the siebel.exe process is listening for Web service calls.

Invoking Web Services on the Siebel Mobile Web Client
You can invoke Web services on the Siebel Mobile Web Client by passing credentials in the URL, in the SOAP header, or
in the WS-Security header.

Example of Passing User Credentials in the URL
The URL format is:

http://<host>:<port>?SWEExtSource=WebService&Username=<username>
&Password=<password>

For example:

http://localhost:2330?SWEExtSource=WebService&Username=<username>
&Password=<password>

The following is an example of a request:

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://siebel.com/asi/">
 <soapenv:Header/>
 <soapenv:Body>
<asi:SiebelAccountQueryById>
 <PrimaryRowId>99-28B0A</PrimaryRowId>
 </asi:SiebelAccountQueryById>
 </soapenv:Body>
</soapenv:Envelope>

Example of Passing User Credentials in the SOAP Header
The URL format is:

http://<host>:<port>?SWEExtSource=WebService&WSSOAP=1

For example:

http://localhost:2330?SWEExtSource=WebService&WSSOAP=1

The following is an example of a request:

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://siebel.com/asi/">
 <soapenv:Header>
 <UsernameToken xmlns="http://siebel.com/webservices">SADMIN</UsernameToken>

78

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

 <PasswordText xmlns="http://siebel.com/webservices">SADMIN</PasswordText>
 <SessionType xmlns="http://siebel.com/webservices">None</SessionType>
 </soapenv:Header>
 <soapenv:Body>
<asi:SiebelAccountQueryById>
 <PrimaryRowId>99-28B0A</PrimaryRowId>
 </asi:SiebelAccountQueryById>
 </soapenv:Body>
</soapenv:Envelope>

Example of Passing User Credentials in the WS-Security Header
The URL format is:

http://<host>:<port>?SWEExtSource=SecureWebService&WSSOAP=1

For example:

http://localhost:2330?SWEExtSource=SecureWebService&WSSOAP=1

The following is an example of a 2002 request:

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soapenv="http://
schemas.xmlsoap.org/soap/envelope/" xmlns:asi="http://siebel.com/asi/">
 <soapenv:Header>
 <wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">
 http://schemas.xmlsoap.org/ws/2002/07/secext
 <wsse:UsernameToken xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
 <wsse:Username>SADMIN</wsse:Username>
 <wsse:Password Type="wsse:PasswordText">SADMIN</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
<asi:SiebelContactQueryById soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/">
 <PrimaryRowId xsi:type="xsd:string">04-LLSQ5</PrimaryRowId>
 </asi:SiebelContactQueryById>
 </soapenv:Body>
</soapenv:Envelope>

The following is an example of a 2004 request:

<wsse:Security mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-wssecuritysecext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-zsXRc97TujDINUug8ibD2Q22"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity-
utility-1.0.xsd">
 <wsse:Username>SADMIN</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
usernametoken-profile-1.0#PasswordText">SADMIN</wsse:Password>
 <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0#Base64Binary">f61vAYvDD0t2sUFEmXSVU+FlOvA=</
wsse:Nonce>
 <wsu:Created>2014-05-13T17:27:33Z</wsu:Created>
 </wsse:UsernameToken>
</wsse:Security>

79

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Consuming External Web Services Using Siebel Web
Services
An outbound Web service acts as a proxy to a Web service published by an external application. This process creates
services that you can then use in a business process, virtual business component (VBC), run-time event, or any other
mechanism within the Siebel application that can call a business service.

Consumption of external Web services is a two-step process:

• A WSDL file is imported using Siebel Tools.

• The consumed Web service is published for run-time clients to use.

Additional steps can involve defining VBCs based on the Web service.

The following outbound Web services topics are covered:

• Creating an Outbound Web Service Based on a WSDL File

• Creating an Outbound Web Service Manually

• Integration Objects as Input Arguments to Outbound Web Services

• Web Services Support for Transport Headers

• Web Services Support for Transport Parameters

• SHA2 Support for Outbound Web Service

Creating an Outbound Web Service Based on a WSDL File
Consumption of external Web services is accomplished using the WSDL Import Wizard in Siebel Tools. The procedure in
this topic describes how to use this wizard to read an external WSDL document. You can import the following kinds of
cyclic WSDL:

• Different namespace for same type and same element name

• Different element name for same type and same namespace

• Indirect cycle

• Direct cycle with same element name, type, and namespace

Note the following restrictions on WSDL import:

• The WSDL Import Wizard expects each schema to have a unique target namespace. Using the same
namespace for more than one schema will generate an error.

• Importing a WSDL with a mix of different SOAP operation styles (for example, RPC and Document) within one
service port binding is not supported. Modify the WSDL to have a service port binding defined for each SOAP
operation style.

To create an outbound Web service based on a WSDL file
1. In Siebel Tools, create a new project and lock the project, or lock an existing project.
2. From the File menu, choose New Object to display the New Object Wizards dialog box.

80

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

3. Click the EAI tab, and then double-click Web Service.

The WSDL Import Wizard appears.

a. Select the project where you want the objects to be held after they are created from the WSDL document.
b. Specify the WSDL document that contains the Web service or Web services definition that you want to

import.
c. Specify the file where you want to store the run-time data extracted from the WSDL document or accept

the default.
d. Specify the log file where you want errors, warnings, and other information related to the import process

to be logged or accept the default.
e. (Optional) Select the Process Fault Schema checkbox, and specify an existing Fault Integration Object

Name, to create and reuse SOAP fault integration objects.

Note: SOAP fault integration objects are prepended with Fault_.

For more information on SOAP fault integration objects, see About SOAP Fault Schema Support.
4. Click Next.

A summary of your import information, as well as any errors, appears.
5. (Optional) Select the Deploy the Integration Object(s) and the Proxy Business Service(s) checkbox to deploy

these objects to the Siebel run-time database.

Deployed integration objects are shown in the Administration - Web Services screen, Deployed Integration
Objects view in the Siebel client. Deployed business services are shown in the Administration - Business
Services screen in the Siebel client.

Note: If you deploy integration objects while the Siebel Server is running, then you must subsequently clear
the Web services cache in the Administration - Web Services screen, Inbound (or Outbound) Web Services
view.

6. Click Finish to complete the process of importing the business service into the Siebel repository.

This procedure generates three objects in the Siebel repository:

• An outbound proxy business service of CSSWSOutboundDispatcher class. This service acts as a client-side
implementation of the Web service and includes the operations and the arguments to the operations defined in
the WSDL document.

Note: For RPC services, the order of input arguments is important. You can set the order through the
Preferred Sequence property of the business service method argument in Siebel Tools. By specifying this
parameter, the outbound dispatcher makes sure that the sequence parameters for an operation are in the
correct order. The Preferred Sequence property is only supported with outbound services.

• Integration objects, representing input and output parameters of the service methods, if any of the operations
require a complex argument (XML Schema) to be passed. If the service does not use complex arguments, then
no integration object definitions will be created.

• A Web service administration document (XML file) containing the run-time Web service administration data
to be imported into the Siebel Web Client, using the Outbound Web Services view of the Administration - Web
Services screen.

Note: This is applicable only for the DR environment.

81

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

The purpose of the document is to allow administrators to modify run-time parameters such as the URL and
encoding rules. The data contained within the document is used by the Web Services Dispatcher to assemble
the SOAP document, to set any HTTP headers required (for example, soapAction), and to route the request
to the correct URL. For information on how to migrate to runtime environment, see Migrating Outbound Web
Services.

Migrating Outbound Web Services
You can migrate outbound web services to a run-time environment.

To migrate outbound web services, perform the following tasks

1. Create migration rules with the following tables:

◦ S_WS_WEBSERVICE

◦ S_WS_OPERATION

◦ S_WS_BNDNG_DTL

◦ S_WS_PORT

◦ S_WS_PORT_TYPE

◦ S_WS_PORT_OPER
For more information about creating migration rules, see Siebel Database Upgrade Guide .

2. Export the created rules to generate the datamig.inp and datamig.rul files.
3. Create a migration plan for export and import using Application Data Service. For more information about

creating a Migration plan, see Siebel Database Upgrade Guide .

Note: You must select the Migration Application Data Service as a resource while creating a Migration plan.
To migrate the outbound web services, you must execute this Migration Plan. For more information about
executing a Siebel Migration plan, see Siebel Database Upgrade Guide .

Creating an Outbound Web Service Manually
WSDL does not provide native bindings for EAI MQSeries and EAI MSMQ transports. If your business requires you to
pick up messages using these transports, then you can manually create an outbound Web service definition and update
a corresponding business service in Siebel Tools to point to that Web service. The following procedure describes this
process.

To manually create a new outbound Web service
1. Navigate to the Administration - Web Services screen, Outbound Web Services view.

82

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

2. In the Outbound Web Services list applet, create a new record:

a. Enter the namespace of the Web service in the Namespace column.
b. Enter the name of the Web service in the Name column.
c. Select Active or Inactive in the Status field.
d. Enter a description of the Web service in the Comment column.

Note: When importing an external Web service, you do not have to specify the proxy business service,
integration objects, or the run-time parameters.

3. In the Service Ports list applet, create a new outbound service ports record:

a. Enter the name of the Web service port in the Name column.
b. Select a transport name for the protocol or queuing system for the Transport.

4. Enter the address for the transport chosen to publish the Web service:

◦ The URL format to publish using HTTP is:

http://webserver/eai_anon_lang/
start.swe?SWEExtSource=SecureWebService&SWEExtCmd=Execute

where:

webserver is the name of computer where the Siebel Web Server is installed

lang is the default language of the Object Manager that handles the request

◦ The format to publish using the EAI JMS Transport is:

jms://queue name@connection factory

where:

queue name is the Java Naming and Directory Interface (JNDI) name of the queue

connection factory is the JNDI name of the JMS connection factory

Note: The JNDI name varies depending upon the JMS provider and your implementation.

- The format to publish over the EAI MQSeries or EAI MSMQ transport is:

mq://queue name@queue manager namemsmq://queue name@queue machine name

83

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

where:

queue name is the name of the queue that is specified by either the EAI MQ Series or the EAI
MSMQ transport at the time of its design

queue manager name is the name of the EAI MQSeries Transport queue manager

queue machine name is the name of the computer that owns the queue specified by the physical
queue name for the EAI MSMQ Transport

Note: When publishing using EAI MQSeries or EAI MSMQ, you cannot generate WSDL files.

◦ For the Local Workflow Process or Local Business Service transport, enter the name of the workflow or
business service to be called.

◦ For the Local Web Service transport, enter the name of the inbound port.

5. Select the binding that will publish the Web service.

Note: RPC_Encoded, RPC_Literal, DOC_Literal, and Property Set styles of binding are supported for
publishing Web services.

Use the Property Set binding when the input property set to the proxy service is forwarded without changes to
the destination address. This is intended primarily for use in combination with the Local Workflow Process or
Local Business Service transport to avoid the overhead of processing XML.

6. Enter a description of the port in the Comment column.
7. In the Operations list applet, create a new operation record for the new service port you created in Step 3:

a. Select the name of the business service method in the Method Display Name column to complete the
process.

b. Select the authentication type from the drop-down list.

Note: For more information on using the Username/Password Authentication Type, see About Web
Services Security Support.

8. Generate the WSDL file. For information, see Generating a WSDL File.

Updating the Outbound Proxy Business Service
When you have created your outbound Web service, update a corresponding outbound proxy business service in Siebel
Tools to point to that Web service. This associates the outbound proxy business service and the outbound Web service.
The following procedure outlines the steps you take to accomplish this task.

To update an outbound Web service proxy business service to point to an outbound Web service

1. In Siebel Tools, select the outbound Web service proxy business service you want to use to call your outbound
Web service.

84

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

2. Add the following user properties for this business service and set their values based on the outbound service
port of your Web service:

◦ siebel_port_name

◦ siebel_web_service_name

◦ siebel_web_service_namespace

Integration Objects as Input Arguments to Outbound Web Services

It is recommended that the property set used as an input argument to the outbound Web service have the same name
as the input argument's outbound Web service proxy.

You can do this using one of the following options:

• Change the output from all your business services that provide the input to the outbound Web service from
SiebelMessage to the actual outbound Web service argument name specified in Siebel Tools.

Change the output from your business services in Siebel Tools, as well as the name of the property set child
that contains the integration object instance.

• Change the property set type name from SiebelMessage to the actual outbound Web service argument name
by using Siebel eScript on a business service before calling the outbound Web service.

The following Siebel eScript example shows how to pass an integration object and a session token to a proxy business
service using the integration object as an input argument. The script is written on the Service_PreInvokeMethod event
of the proxy business service.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs) {
var childPS;
var newInputPS;
var svc;

for (var i = 0; i < Inputs.GetChildCount(); i++) {
 if(Inputs.GetChild(i).GetType() == "SiebelMessage") {
childPS = Inputs.GetChild(i);
 }
}
childPS.SetType("myBusSvcMethod:myIntegrationObject");
newInputPS = TheApplication().NewPropertySet();
newInputPS.SetProperty("myBusSvcMethod:sessionToken:string",
Inputs.GetProperty("token"));
newInputPS.AddChild(childPS);

svc = TheApplication().GetService("myBusSvc");
svc.InvokeMethod("myBusSvcMethod", newInputPS, Outputs);
return (CancelOperation); // must use CancelOperation with custom methods

}

Web Services Support for Transport Headers
The outbound Web service dispatcher supports input arguments for user-defined (or standard) transport headers.

85

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

The following is the format for the outbound Web service dispatcher input arguments:

• Name: siebel_transport_header:headerName

• Value: Header value

The following table shows examples of input arguments for transport headers.

Parameter Name Value

siebel_transport_
header:UserDefinedHeader

myData

siebel_transport_header:Authorization

0135DFDJKLJ

Web Services Support for Transport Parameters
The outbound Web service dispatcher supports input arguments for transport parameters defined in proxy business
services such as EAI HTTP Transport.

The following is the format for the outbound Web service dispatcher input arguments:

• Name: siebel_transport_param:parameterName

• Value: Parameter value

The following table shows examples of input arguments for transport parameters.

Parameter Name Value

siebel_transport_
param:HTTPRequestMethod

HTTP method to use with the data request, such as Post or Get

siebel_transport_
param:HTTPRequestURLTemplate

Template for the request URL, which is the address to which the data is sent or from which a response
is requested, for example:

http://mycompany.com/*

For more information on transport parameters, see the topic on EAI HTTP Transport business service method
arguments in Transports and Interfaces: Siebel Enterprise Application Integration .

SHA2 Support for Outbound Web Service
Starting with Monthly Update 23.11 we have one solution for SHA2 support for Outbound Web Services that works in
both Windows and non-Windows environments as illustrated below.

Siebel supports SHA2 for outbound Web Service calls through the framework described here. This support for SHA2
is through the introduction of a Config Agent between the Siebel Server and the external Web Server. The Config

86

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Agent accepts local requests from a Siebel Object Manager and transfers the request to the external Web Server using
SHA2 as seen in the following figure To configure the external applications certificates for the Config Agent, follow the
details. For additional details, see the chapter on communications and data encryption in the Siebel Security Guide. To
configure SHA2 support follow the following steps in 23.11 and onward.

Siebel CRM supports SHA2 for outbound calls through the framework described here. This support for SHA2 is through
the Config Agent between the Siebel Server and the external Web Server. The Config Agent accepts local requests from
Mainwin within the Siebel Server and transfers the same to the external Web Server in SHA2, as shown in the following
figure. To configure certificates for the Config Agent, see the chapter on communications and data encryption in the
Siebel Security Guide .

The transfer is made possible by a servlet named outboundeai that resides on the Config Agent. This servlet copies the
outbound request body and Siebel Server header information and transfers it to the external Web Server. The servlet
also collects the response from the Web Server and transfers it back to the Siebel Server, as shown in the following
figure.

87

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Configuring Siebel Server and Config Agent for SHA2 Outbound
SHA2 support for HTTP outbound is achieved via configuring a named subsystem of type JavaContainerSubSys. The
name of this named subsystem is then set to the value of the EAIOutboundSubSys component parameter, as described
in the following procedure.

To configure the named subsystem for SHA2 support in outbound

1. Go to the Siebel Server Manager and search on OUTBOUNDSHA2 as follows:

list param for named subsystem OUTBOUNDSHA2

where OUTBOUNDSHA2 is the name of the new named subsytem.
2. Set the name of this named subsystem as the value of the EAIOutboundSubSys component parameter:

change param EAIOutboundSubSys=OUTBOUNDSHA2 for comp SCCObjMgr_enu

where SCCObjMgr_enu is the Siebel Object Manager component.

Note: If the object manager component you are trying to use does not support the EAIOutboundSubSys
component parameter, then send the EAIOutboundSubSys component parameter to the EAI HTTP Transport
or outbound proxy business service method.

◦ To send the EAIOutboundSubSys component parameter to any method of the EAI HTTP Transport
business service:

EAIOutBoundSubSys=OUTBOUNDSHA2

◦ To send the EAIOutboundSubSys component parameter to any method of the outbound proxy business
service:

siebel_transport_param:EAIOutBoundSubSys=OUTBOUNDSHA2

3. When the user makes an outbound call, the EAI Outbound Dispatcher checks for the value of the component
parameter.

a. If the value is present, the dispatcher will make a http call to the servlet hosted in the Config Agent
specified in CONTAINERURL and the Config Agent will make the https call to the external Web Server.

b. If the value is not present for the component parameter or the named subsystem parameter, the
dispatcher makes a direct HTTPS call to the external Web Server.

4. Restart the component.

stop comp sccobjmgr_enu
start comp sccobjmgr_enu

Trust Store– Import external applications CA certificates into Config Agent trust store.

Key Store– Import external applications client certificates into Config Agent key store if client certificate based
authentication is required.

Parameters for the Named Subsystem
The named subsystem has three parameters as seen in the following table.

88

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Note: Only CONTAINERURL should be used for this configuration.

Property Value

CLASSPATH

Not applicable.

OPTIONS

Not applicable.

CONTAINERURL

URL for siebel-eaioutbound.war hosted on the Config Agent.

Using the Local Business Service
In many instances, Web services use specialized SOAP headers for common tasks such as authentication, authorization,
and logging. To support this common Web service extensibility mechanism, the Local Business Service transport for
outbound Web services can be used. When specified as a transport, the Web services infrastructure will route the
message to the specified business service for additional processing and delivery to the Web service endpoint as shown
in the first part of the following figure.

If the Web service to be invoked is within the sample application, then no need exists to call such a Web service by using
HTTP (or anything else).

An example of using a local business service is a department store developing a workflow in Siebel Tools to perform
credit card checks before purchases. The purchase is entered into the sales register along with the credit card
information (the outbound Web service proxy). If the credit card is issued by the department store, then the information
can be checked using the internal database (a local business service). The send request stays within the department
store’s own computer network. An approval or denial is the output (the Web service endpoint). If the credit card is a
MasterCard or a Visa card, then the card information is passed over the Internet for verification. No local business
service would be involved.

The input to the local business service is a property set representation of the SOAP request. Once within the local
business service, additional SOAP headers can be added to address infrastructure requirements by direct modification
of the input property set by using Siebel eScript or Siebel VB.

89

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

The following local business service topics are also discussed:

• Script Example for a Local Business Service

• SOAP Document Generated by the Local Business Service

• Using the Local Business Service in an Outbound Web Service

Script Example for a Local Business Service
A portion of the sample script for a local business service used to add a custom SOAP header to an outbound Web
service request is shown in the following example. Local variables, error handling, and object destruction are omitted for
clarity.

// Create the SOAP header.
soapHdr.SetType("SOAP-ENV:header");

// Populate the SOAP header elements.
appId.SetType("ns1:ApplicationID");
appId.SetValue("Siebel");
pwd.SetType("ns1:PWS");
pwd.SetValue("123456789");
langCd.SetType("ns1:Lang");
langCd.SetValue("ENU");
uName.SetType("ns1:userID");
uName.SetValue("first.last@mycompany.com");

// Populate the profileHeader element.
profileHeader.SetType("authHeader");
profileHeader.SetProperty("xmlns:ns1", "http://siebel.com/authHeaders");
profileHeader.AddChild(appId);
profileHeader.AddChild(pwd);
profileHeader.AddChild(langCd);
profileHeader.AddChild(uName);

// SOAP header property set. Once this is complete, add the SOAP header as a child
of the Input property set (which contains the SOAP:body).

soapHdr.InsertChildAt(profileHeader, 0)

Inputs.InsertChildAt(soapHdr, 0);

// Convert the property set to a well-defined XML document.
// Using the XML Hierarchy Converter: must add a child element of type XMLHierarchy.
childPS.SetType("XMLHierarchy");
childPS.AddChild(Inputs);
inPs.AddChild(childPS);
inPs.SetProperty("EscapeNames", "FALSE");
inPs.SetProperty("GenerateProcessingInstructions", "FALSE");
xmlSvc.InvokeMethod("XMLHierToXMLDoc", inPs, outPs);

// Proxy the request through a trace utility to view the SOAP document.
// Set custom HTTP header - SOAPAction
outPs.SetProperty("HTTPRequestURLTemplate", "http://localhost:9000/search/beta2");
outPs.SetProperty("HTTPRequestMethod", "POST");
outPs.SetProperty("HTTPContentType", "text/xml; charset=UTF-8");
outPs.SetProperty("HDR.SOAPAction","customSOAPActionValue");

// Invoke the Web service using the standard HTTP protocol.
httpSvc.InvokeMethod("SendReceive", outPs, hpOut);
// Convert the SOAP document to a property set using the XML Converter, returning
the SOAP header and SOAP body.
xmlCtr.InvokeMethod("XMLToPropSet", hpOut, Outputs);

90

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

…

After you have created your business service, deliver its workspace.

SOAP Document Generated by the Local Business Service
The following example displays the resulting SOAP document generated by the Script Example for a Local Business
Service. The addition of the authHeader element to the SOAP header corresponds to the structure defined in the
sample code sections that populate the SOAP header and profileHeader elements.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:header>
 <authHeader xmlns:ns1="http://siebel.com/authHeaders">
 <ns1:ApplicationID>Siebel</ns1:ApplicationID>
 <ns1:PWS>123456789</ns1:PWS>
 <ns1:Lang>ENU</ns1:Lang>
 <ns1:userID>first.last@mycompany.com</ns1:userID>
 </authHeader>
 </SOAP-ENV:header>
 <SOAP-ENV:Body>
 …
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Using the Local Business Service in an Outbound Web Service
You use the Outbound Web Services view in the Administration - Web Services screen to configure an outbound Web
service to use the local business service created by Script Example for a Local Business Service.

To use the local business service in an outbound Web service
1. In the Siebel client, navigate to the Administration - Web Services screen, Outbound Web Services view.
2. In the Outbound Web Services list, select the desired outbound Web service.
3. In the Service Ports list, set the following properties:

Name Value

Transport

Local Business Service

Address

Name of the local business service

4. Restart the Siebel Server component to allow the changes to take effect.

91

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Mapping the xsd:any Tag in the WSDL Import Wizard
In the current framework, WSDL Import Wizard makes use of the XML Schema Import Wizard to create integration
objects to represent hierarchical data. Integration objects are meant to be strongly typed in the Siebel application. You
are now able to import a schema that uses the xsd:any tag, which indicates a weakly typed data representation, and to
possibly create an integration object from it.

In the WSDL Import Wizard, two possible mappings exist for the xsd:any tag. The tag can be mapped as an integration
component or as an XMLHierarchy on the business service method argument.

The xsd:any tag can contain a namespace attribute. If the value for that attribute is known, then one or more integration
components or even an integration object can be created. If the value for that attribute is not known, then the business
service method argument for that particular wsdl:part tag is changed to data type Hierarchy, consequently losing any
type information.

The value for the attribute being known refers to the following situations:

• A schema of targetNamespace value, being the same as that of the namespace attribute value, is imported by
way of the xsd:import tag.

• A schema of targetNamespace value, being the same as that of the namespace attribute value, is a child of the
wsdl:types tag.

For the case of being known, all the global elements belonging to the particular schema of that targetNamespace will be
added in place of the tag. One or more integration components can potentially be created.

Another tag similar to the xsd:any tag is the xsd:anyAttribute tag. The mapping is similar to that of the xsd:any tag. In
this case, one or more integration component fields can be created.

The xsd:anyAttribute tag has a namespace attribute. If the namespace value is known (the conditions for being known
were previously noted in this topic), then all the global attributes for that particular schema will be added in place of this
tag. Therefore, one or more integration component fields can potentially be created.

In the case where the namespace value is not known, then the wsdl:part tag that is referring to the schema element and
type will be created as data type Hierarchy.

Mapping the xsd:any Tag in the XML Schema Wizard
For the case of the XML Schema Wizard, there is only one possible mapping for the xsd:any tag, namely as an
integration component.

The xsd:any tag can contain a namespace attribute. If the value for that attribute is known, then one or more integration
components or even an integration object can be created. If the value for that attribute is not known, then an error will
be returned to the user saying that the integration object cannot be created for a weakly typed schema.

The value for the attribute being known refers to the situation of the XML Schema Wizard where a schema of
targetNamespace value, being the same as that of the namespace value, has been imported by way of the xsd:import
tag.

For the case of being known, all the global elements belonging to the particular schema of that targetNamespace will be
added in place of the tag. So, one or more integration components can potentially be created.

92

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

The mapping of the xsd:anyAttribute is similar to that of the xsd:any tag. In this case, one or more integration
component fields can be created.

The xsd:anyAttribute tag has a namespace attribute. If the namespace value is known (the condition for being known
was previously noted in this topic), then all the global attributes for that particular schema will be added in place of this
tag. Therefore, one or more integration component fields can potentially be created.

In the case where the namespace value is not known, then an error is returned to the user stating that an integration
object cannot be created for a weakly typed schema.

Examples of Invoking Web Services
The following two examples show sample flows of how to call an external Web service from a Siebel application, or how
to call a Siebel Web service from an external application.

Invoking an External Web Service Using Workflow or Scripting
As illustrated in the following figure, the following steps are executed to call an external Web service:

1. The developer obtains the Web service description as a WSDL file.
2. The WSDL Import Wizard is called.
3. The WSDL Import Wizard generates definitions for outbound proxy, integration objects for complex parts, and

administration entries.
4. The Outbound Web Service proxy is called with the request property set.
5. The request is converted to an outbound SOAP request and sent to the external application.
6. The external application returns a SOAP response.

93

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

7. The SOAP response is converted to a property set that can be processed by the caller, for example, Calling
Function.

8. The following example shows how to invoke Web services using Siebel eScript:
function Service_PreCanInvokeMethod (MethodName, &CanInvoke) {
if (MethodName == "invoke") {
CanInvoke = "TRUE";
return (CancelOperation);
}
else
return (ContinueOperation);
}

function Service_PreInvokeMethod (MethodName, Inputs, Outputs) {
if (MethodName == "invoke") {
var svc = TheApplication().GetService("CustomerDBClientSimpleSoap");
var wsInput = TheApplication().NewPropertySet();
var wsOutput = TheApplication().NewPropertySet();
var getCustInput = TheApplication().NewPropertySet();
var listOfGetCustomerName = TheApplication().NewPropertySet();
var getCustomerName = TheApplication().NewPropertySet();
try {

// obtain the customer ID to query on. This value will be provided in the input property set
 var custId = Inputs.GetProperty("custId");

// set property to query for a customer ID with a value of '1'

94

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

 getCustomerName.SetType("getCustomerName");
 getCustomerName.SetProperty("custid", custId);

// set Type for listOfGetCustomerName
 listOfGetCustomerName.SetType("ListOfgetCustomerName");

// set Type for getCustInput
 getCustInput.SetType("getCustomerNameSoapIn:parameters");

// assemble input property set for the service.
 listOfGetCustomerName.AddChild(getCustomerName);
 getCustInput.AddChild(listOfGetCustomerName);
 wsInput.AddChild(getCustInput);
 invoke the getCustomerName operation
 svc.InvokeMethod("getCustomerName", wsInput, wsOutput);

// parse the output to obtain the customer full name check the type element on each PropertySet
 (parent/child) to make sure we are at the element to obtain the customer name

if (wsOutput.GetChildCount() > 0) {
 var getCustOutput = wsOutput.GetChild(0);
 if (getCustOutput.GetType() == "getCustomerNameSoapOut:parameters") {
 if (getCustOutput.GetChildCount() > 0) {
 var outputListOfNames = getCustOutput.GetChild(0);
 if (outputListOfNames.GetType() == "ListOfgetCustomerNameResponse") {
 if (outputListOfNames.GetChildCount() > 0) {
 var outputCustName = outputListOfNames.GetChild(0);
 if (outputCustName.GetType() == "getCustomerNameResponse") {
 var custName = outputCustName.GetProperty("getCustomerNameResult");
 Outputs.SetProperty("customerName", custName);
 }
 }
 }
 }
 }
}

return (CancelOperation);
}
 catch (e) {
 TheApplication().RaiseErrorText(e);
 return (CancelOperation);
}
}
else
return (ContinueOperation);
}

Invoking a Siebel Web Service from an External Application
As illustrated in the following figure, the following steps are executed to invoke a Siebel Web service from an external
application:

1. The WSDL document for an active Web service is published in the Siebel Inbound Web Services view. To allow
processing of the Web service requests, the developer has to make sure:

a. The Web Server and the Siebel Server are up and running.
b. The appropriate setup is done in the Siebel Server.

95

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

2. In the external application, the WSDL document is imported to create a proxy that can be used to invoke the
Siebel Web service from Step 1.

3. The external application sends the SOAP request into the Siebel application.
4. The Web Service Inbound Dispatcher converts the SOAP request to a property set. Depending on the inbound

Web service configuration, the property set is passed to a business service or a business process.
5. The property set is returned from the business service or business process to the Web Service Inbound

Dispatcher.
6. Response is converted to a SOAP message and sent back to the invoking external application.

The following is an example of invoking a Siebel-published Web service using .NET.

// Removed using declaration
namespace sieOppClnt {
public class sieOppClnt : System.Web.Services.WebService {
public siebOptyClnt() {
InitializeComponent();
}
// WEB SERVICE CLIENT EXAMPLE
/* The optyQBE returns a list of opty based upon the required input params. Because
the input to the Siebelopty.QueryByExample method uses an Input/Output param,
ListOfInterOptyIntfaceTopElmt will be passed by ref to Siebel. To add the Siebel
Opportunity Web Service definition to the project, the wsdl.exe utility was run
to generate the necessary helper C# class for the service definition. */
[WebMethod]
public ListOfInterOptyIntfaceTopElmt optyQBE(string acctName, string acctLoc,
string salesStage) {
 Siebelopty svc = new Siebelopty();
 ListOfInterOptyIntfaceTopElmt siebelMessage = new
 ListOfInterOptyIntfaceTopElmt();
 ListOfInteroptyInterface optyList = new ListOfInteroptyInterface();
 opty[] opty = new opty[1];
 opty[0] = new opty();

96

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

 opty[0].Account = acctName;
 opty[0].AccountLocation = acctLoc;
 opty[0].SalesStage = salesStage;

 /* Assemble input to be provided to the Siebel Web service. For the sake of
 simplicity the client will query on the Account Name, Location, and Sales
 Stage. Ideally, also check to make sure that correct data is entered. */

 optyList.opty = opty;
 siebelMessage.ListOfInteroptyInterface = optyList;

 // Invoke the QBE method of the Siebel Opportunity business service
 svc.SiebeloptyQBE(ref siebelMessage);

 /* Return the raw XML of the result set returned by Siebel. Additional
 processing could be done to parse the response. */

 return siebelMessage;
 }
 }
}

About Web Services Security Support
Oracle endorses the industry standard known as the Web Services Security (WS-Security) specification. The WS-
Security specification is a Web services standard that supports, integrates, and unifies multiple security models and
technologies, allowing a variety of systems to interoperate in a platform- and language-independent environment.

By conforming to industry standard Web service and security specifications, secure cross-enterprise business processes
is supported. You can deploy standards-based technology solutions to solve specific business integration problems.

For security support, you can also apply access control to business services and workflows. For more information on
configuring access control, see Siebel Security Guide .

Configuring the Siebel Application to Use the WS-Security
Specification
To use the WS-Security specification in the Siebel application, two parameters, UseAnonPool and Impersonate, must be
set. An example of configuring WS-Security for Siebel inbound Web services follows.

To configure the Siebel application to use the WS-Security specification
1. Check Configure Anonymous Pool parameter in the basic information section of the eai_anon application in the

Application Interface profile.

For more information about configuring the anonymous pool, see Siebel Performance Tuning Guide .
2. Start the Siebel Server.
3. Navigate to the Administration - Server Configuration screen, Enterprises view, and then Profile Configuration.
4. In the Profile Configuration list, query the Alias field for SecureWebService.

97

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

5. Make sure that the SecureWebService profile (named subsystem) has parameters with the following values:

Parameter Alias Value

Service Method to Execute

DispatchMethod

Dispatch

Service to Execute

DispatchService

Web Service Inbound Dispatcher

Impersonate

Impersonate

True

6. When the client makes a call to the Web service, make sure that SWEExtSource points to the correct application
name and named subsystem, for example:

http://myserver/siebel/app/eai_anon/enu/?SWEExtCmd=Execute
&SWEExtSource=SecureWebService

About WS-Security UserName Token Profile Support
Siebel CRM supports the WS-Security UserName token mechanism, which allows for the sending and receiving of
user credentials in a standards-compliant manner. The UserName token is a mechanism for providing credentials to a
Web service where the credentials consist of the UserName and Password. The password must be passed in clear text.
The UserName token mechanism provides a Web service with the ability to operate without having the username and
password in its URL or having to pass a session cookie with the HTTP request.

Note: Using WS-Security is optional. If it is critical that the password not be provided in clear text, then use HTTPS.

The following is an example of a UserName token showing the username and password:

<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">
 <wsse:UsernameToken xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
 <wsse:Username>WKANDINSKY</wsse:Username>
 <wsse:Password Type="wsse:PasswordText">AbstractArt123</wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

Note: If you are using Web single sign-on (SSO), then use the Siebel trust token value in wsse:Password instead of the
password.

About Support for the UserName Token Mechanism
Support for the UserName Token mechanism includes the following:

• Allows an inbound SOAP request to contain user credentials that can be provided to the inbound SOAP
dispatcher to perform the necessary authentication

98

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

• Allows an inbound SOAP dispatcher to perform the necessary authentication on an inbound SOAP request that
contains user credentials

• Allows an outbound SOAP request to contain user credentials that can be utilized by the external application

Note: Passing user credentials in the URL is not supported in the current release of Siebel CRM.

Using the User Name Token for Inbound Web Services
The Inbound Web Services view provides an interface for associating operations with authentication types. The names
of the operations must be globally unique. The operation selected in the following figure can be described as requiring a
UserName Token with username and password provided in clear text.

Note: If you want to use Siebel Authentication and Session Management SOAP headers, then set the authentication
type to None. For more information, see About Siebel Authentication and Session Management SOAP Headers.

Using the UserName Token for Outbound Web Services
Each Web service operation in the Outbound Web Services list applet (shown in the following figure) can be tied to an
authentication type by selecting from the Authentication Type picklist in the Operations picklist.

99

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Proxy Configuration for Java Web Container
If your enterprise network is connected to the Internet through a proxy Internet server then configure the Java Web
Container to route its traffic through the enterprise proxy server. To do so, apply the following proxy configuration:

HTTP Proxy Configuration
In the <installation_root>\ses\siebsrvr\javacontainer\javacontainer1\bin\setenv.bat file, add after line:

set CATALINA_OPTS=-Dhttp.proxyHost=<proxy_server_name> -Dhttp.proxyPort=<port_num>

HTTPS Proxy Configuration
In the <installation_root>\ses\siebsrvr\javacontainer\javacontainer1\bin\setenv.bat file, add after line:

set CATALINA_OPTS=-Dhttps.proxyHost=<proxy_server_name> -Dhttps.proxyPort=<port_num>

To configure MainWin and import certificates in to it, see the chapter on communications and data encryption in the
Siebel Security Guide .

About Siebel Authentication and Session Management
SOAP Headers
You can use Siebel Authentication and Session Management SOAP headers to send and receive user credentials and
session information. You can send a username and password for login that calls one of the following sessions:

• One that closes after the outbound response is sent.

• One that remains open after the response is sent.

For example, a custom Web application can send a request that includes a username and password, and calls a stateless
session, one that remains open after the outbound response is sent. The Siebel Server generates an encrypted session
token that contains user credentials and a session ID. The Siebel Server includes the session token in the SOAP header
of the outbound response. The client application is responsible for capturing the returned session token and including it
in the SOAP header of the next request.

The Session Manager on the Siebel Application Interface (AI) extracts the user credentials and session ID from the
session token and reconnects to the session on the Siebel Server. If the original session has been closed, then a new
session is created.

You can use the SOAP headers listed in the following table to call different types of sessions and pass authentication
credentials.

Note: The values entered are case insensitive.

100

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

SOAP Header Block Description

SessionType

You use the SessionType SOAP header to define the type of session. Valid values are None, Stateless,
 Stateful, and ServerDetermine:

• None. A new session is opened for each request and then closed after a response is sent out. The
SessionType none might or might not include UsernameToken and PasswordText SOAP headers.
When UsernameToken and PasswordText SOAP headers are included, these credentials are used
for authentication.

If the UsernameToken and PasswordText SOAP headers are excluded from the SOAP header,
 then anonymous login is assumed. The anonymous login requires additional configuration in the
Application Interface profile and Named Subsystem configuration (AllowAnonymous equals (=)
True, Impersonate equals (=) False).

For more information about configuring anonymous login, see Siebel Security Guide .

• Stateless. A new session is opened for an initial request and the session remains open for
subsequent requests. Relogin occurs automatically (transparent to the user) if the session is
closed. UsernameToken and PasswordText must be included as SOAP headers in the initial
request to open a stateless session.

Stateless session management is the best method to use for high-load Web service applications.
Using Stateless mode, the application provides the username and password only once, that is for
the initial request. A session is opened on the server and is dedicated for this user.

In the response Siebel CRM returns the session token, which is an encrypted string containing the
information about username, password, and timestamp. For subsequent requests the application
must use the session token to reuse the session. For security reasons, the session token is
returned for each response. The application must provide the last received session token for the
next request.

The session token-Siebel session map is maintained in the Application Interface (AI); based on
the SessionToken value, AI sends the request to the correct Siebel session (task).

Although the session is persistent, authentication happens for each request (AI decrypts the
UserName and Password from the session token).

• Stateful. A new, dedicated session is opened for an initial request and the session remains
open for subsequent requests. Relogin does not occur automatically if the session is closed.
UsernameToken and PasswordText must be included as SOAP headers in the initial request to
open a stateful session.

As with Stateless sessions, Siebel CRM returns the session token in the response. For subsequent
requests the application must use the session token to reuse the session.

Unlike Stateless sessions, transparent failover (automatic relogin) is not supported. This is
because Stateful sessions might have state information stored that makes it mandatory to
connect to the same task for each request.

• ServerDetermine. A new session is established to Siebel CRM, and a series of subsequent
requests is served. The Siebel Server is free to multiplex the session to serve other users if
possible, but the client is free to make stateful calls to Siebel CRM. Failover is not supported for
this mode.

ServerDetermine provides the most flexibility: the session can be dedicated or not. If the number
of users increases and resources must be recovered, then the session state is written to the
database so that it can be restored. The session can then serve other users.

If SessionType is absent, then the default value is None, and the session will be closed after the request
is processed.

UsernameToken

You use the UsernameToken SOAP header to send the login ID to the Siebel Server.

101

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

SOAP Header Block Description

PasswordText

You use the PasswordText SOAP header to send the password used by the login ID to the Siebel Server.

If using Web single sign-on (SSO), then use the Siebel trust token value in PasswordText instead of the
password.

SessionToken

Session tokens are used with stateless requests. They are sent and received using the SessionToken
SOAP header. After receiving an initial request with valid authentication credentials and a session
type set to Stateless, the Siebel Server generates a session token and includes it in the SOAP header
of the outbound response. The session token is encrypted and consists of a session ID and user
credentials. The custom Web application uses the session token for subsequent requests. The Session
Manager on the AI extracts a session ID and user credentials from the session token, and then passes
the information to the Siebel Server. The session ID is used to reconnect to an existing session or
automatically log in again if the session has been terminated.

Note: Reconnecting or automatic logging in again will only happen if the token has not timed out. If
it times out, then the user must manually log in again. Token timeout must be greater than or equal
to session timeout. For more information on session token timeout, see Session and Session Token
Timeout-Related Parameters.

However, the session token must be changed to the new one sent on every response. The session
token has a maximum time to live, which can invalidate it even if its timeout (for being inactive) has not
been reached. Always get the newest session token returned by the response and use it on the next
request.

The same session token must not be used by concurrent requests, because having multiple requests
point to the same session token can cause errors.

For examples of using SOAP headers for session management and authentication, see Examples of Using SOAP
Headers for Siebel Authentication and Session Management.

The namespace used with Siebel Authentication and Session Management SOAP headers is:

 xmlns="http://siebel.com/webservices"

Note: The Siebel Authentication and Session Management SOAP headers are different from the SOAP headers used
for WS-Security. Do not use the two types of header together.

Combinations of Session Types and Authentication Types
The following table summarizes the combinations of authentication types and session types.

Authentication Type Session Type Description

None

None

A single request is sent with an anonymous user login, and
the session is closed after the response is sent out.

In order for the anonymous session to be identified by the
AI, UsernameToken and PasswordText must be excluded in
the SOAP headers.

102

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Authentication Type Session Type Description

Username and password

None

A single request is sent with the username and password
used to log in, and the session is closed after the response is
sent out.

Username and password

Stateless

The initial request to log in establishes a session that is
to remain open and available for subsequent requests.
The username and password are used to log in and a
session token is returned in a SOAP header included in the
outbound response. The session remains open.

Session token (stateless)

Stateless

Request to reconnect to an established session, using the
information contained in the session token. If the session
has been closed, then automatic relogin occurs. The Siebel
servers include the session token in the SOAP header of the
response. The session remains open.

Session token (stateless)

None

When a SOAP header carries a session token and has the
session type set to None, then the Session Manager on
the AI closes (logs out) of this session, and invalidates
the session token. The session token is not used after the
session is invalidated.

For examples that illustrate some of these combinations, see Examples of Using SOAP Headers for Siebel Authentication
and Session Management.

Enabling Session Management on Siebel Application Interface
To enable Session Management on the Application Interface (AI) for SOAP header handling, the Web service request
must include the following URL parameter: WSSOAP=1. For example:

http://mywebserver/siebel/app/eai/enu/
swe?SWEExtSource=CustomUI&SWEExtCmd=Execute&WSSOAP=1

Note: When using Siebel Session Management and Authentication SOAP headers, then the WS-Security
authentication types for all Web service operations must be set to None. You set the WS-Security authentication types
in the Operations applets of the Inbound Web Services or Outbound Web Services views in the Administration - Web
Services screen.

Incoming Concurrent EAI Requests and Session Management
When an external application sends a SOAP request to the Siebel EAI Object Manager and it uses a Session Token, the
Siebel application uses the information in that token to find the EAI Server Task that created that Session Token if the
Application Interface Profile parameter, No Session Preference in EAI-SOAP is set to FALSE.

103

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Note: No Session Preference in EAI-SOAP is set to FALSE by default and can be found in the Application Interface
Profile in the Siebel Management Console (SMC).

Note: When the No Session Preference in EAI-SOAP is set to TRUE, incoming requests are not tied to a specific EAI
Server Task and will use any that are available. If no Server Task is available, a new one will be created and used.
Having this parameter set to TRUE will not use session management.

A Session Token will route the incoming request to a specific EAI Server Task. If that Server Task is unavailable for any
reason the Siebel Server returns an error response.

"Token might have been expired or logged out by the user. (SBL-UIF-00880)."

If an external server spawns multiple, simultaneous requests that use the same Siebel Session Token and they all reach
the Siebel Server at the same time, one will be processed, and the others will receive the previous error because the EAI
Server Task is unavailable as it is processing a request.

You cannot expect to have all the requests using the same Session Token to process simultaneously. One will process,
the others will fail.

Note: You can also set the Maximum Retry for Processing EAI-SOAP Request parameter to a number greater than zero
to get the server to retry and process the request again. If the EAI Server Task completes processing the request that
caused it to be unavailable to the other requests, this parameter may get the request processed when the EAI Server
Task becomes available for retry. This parameter is co-located with the No Session Preference in EAI-SOAP parameter
in the Application Interface Profile.

Session and Session Token Timeout-Related Parameters
You control the session timeout length and session token timeout length and maximum age by setting the parameters
listed in the following table. These parameters are set in the eai application section of the AI profile.

Parameter Name Parameter Value Description

SessionTimeout

Number in seconds

The total number of seconds a session can remain inactive
before the user is logged out and the session is closed.

The default value is 900 seconds (15 minutes).

GuestSessionTimeout

Number in seconds

The total number of seconds a guest session can remain inactive
before the guest is logged out and the session is closed.

The default value is 300 seconds (5 minutes).

SessionTokenTimeout

Number in seconds

The Siebel Application Interface (AI) rejects the session token
if the token is inactive for more than the SessionTokenTimeout
value. Whenever the token is used, this value is refreshed.

You typically set SessionTokenTimeout to the same length of
time as the global parameter SessionTimeout, whose default is
900 seconds (15 minutes).

104

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Parameter Name Parameter Value Description

The default value is 900 seconds (15 minutes).

SessionTokenMaxAge

Number in minutes

The SessionTokenMaxAge parameter will make the AI reject the
token if it has been used for more than the SessionTokenMaxAge
value (for example, 240 minutes, or 4 hours). This is different
from the SessionTokenTimeout because it does not refresh every
time the token is used.

The default value is 2880 minutes (two days).

Note: If you set the value of SessionTokenTimeout longer than the value of SessionTimeout and send a Web service
request after the session times out, then a relogin occurs and the request is executed.

For information on SessionTimeout, see Siebel Security Guide . For information on application configuration
parameters in general, see Siebel System Administration Guide .

Examples of Using SOAP Headers for Siebel Authentication and
Session Management
The following examples illustrate using Siebel Authentication and Session Management SOAP headers. These examples
use various authentication and session type combinations. For more information, see Combinations of Session Types
and Authentication Types.

Anonymous Request No Session
This example illustrates an anonymous request and a session type of None, which closes the session after the response
is sent out:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
 <SessionType xmlns="http://siebel.com/webservices">None</SessionType>
</soap:Header>
<soap:Body>
 <!-- data goes here -->
</soap:Body>
</soap:Envelope>

Siebel Authorization No Session
This example illustrates a request that includes authentication credentials (username and password) and a session type
of None, which closes the session after the response is sent out:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
 <UsernameToken xmlns="http://siebel.com/webservices">user</UsernameToken>
 <PasswordText xmlns="http://siebel.com/webservices">hello123</PasswordText>
 <SessionType xmlns="http://siebel.com/webservices">None</SessionType>
</soap:Header>
<soap:Body>
 <!-- data goes here -->
</soap:Body>

105

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

</soap:Envelope>

Siebel Authorization Stateless Session
The following examples illustrate a request, response, and subsequent request for a session type set to Stateless, which
keeps the session open after the initial response is sent out.

Initial Request
This example illustrates the initial request that includes authentication credentials (username and password) needed to
log in:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
 <UsernameToken xmlns="http://siebel.com/webservices">user</UsernameToken>
 <PasswordText xmlns="http://siebel.com/webservices">hello123</PasswordText>
 <SessionType xmlns="http://siebel.com/webservices">Stateless</SessionType>
</soap:Header>
<soap:Body>
 <!-- data goes here -->
</soap:Body>
</soap:Envelope>

Response
This example illustrates the session token (encrypted) generated by the Siebel Server and sent back in the SOAP header
of the response:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
 <siebel-header:SessionToken xmlns:siebel-header="http://siebel.com/
 webservices">2-r-JCunnMN9SxI9Any9zGQTOFIuJEJfCXjfI0G-9ZOOH4lJjbSd2P.G7vySzo07sFeJxUA0WhdnK_
 </siebel-header:SessionToken>
</soap:Header>
<soap:Body>
 <!-- data goes here -->
</soap:Body>
</soap:Envelope>

Subsequent Request Using Session Token
This example illustrates a subsequent request that includes the encrypted session token that was generated by
the Siebel Server and passed in a previous response. The session token includes the user credentials and session
information needed to reconnect to an existing session, or log in to a new one if the initial session has been closed:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
 <SessionType xmlns="http://siebel.com/webservices">Stateless</SessionType>
 <SessionToken xmlns="http://siebel.com/webservices">
 2-r-JCunnMN9SxI9Any9zGQTOFIuJEJfCXjfI0G-9ZOOH4lJjbSd2P.G7vySzo07sFeJxUA0WhdnK_
</SessionToken>
</soap:Header>
<soap:Body>
 <!-- data goes here -->
</soap:Body>
</soap:Envelope>

Siebel Authorization Stateful Session
The following examples illustrate a request, response, and subsequent request for a session type set to Stateful, which
keeps the session open after the initial response is sent out.

106

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Initial Request
This example illustrates the initial request that includes authentication credentials (username and password) needed to
log in:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
 <UsernameToken xmlns="http://siebel.com/webservices">user</UsernameToken>
 <PasswordText xmlns="http://siebel.com/webservices">hello123</PasswordText>
 <SessionType xmlns="http://siebel.com/webservices">Stateful</SessionType>
</soap:Header>
<soap:Body>
 <!-- data goes here -->
</soap:Body>
</soap:Envelope>

Response
This example illustrates the session token (encrypted) generated by the Siebel Server and sent back in the SOAP header
of the response:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
 <siebel-header:SessionToken xmlns:siebel-header="http://siebel.com/
 webservices">Q7ABhvXBNUX5qTIoKJ9hZjhMzJ6lfTPa0oUDYxOBHkmOXB7j
 </siebel-header:SessionToken>
</soap:Header>
<soap:Body>
 <!-- data goes here -->
</soap:Body>
</soap:Envelope>

Subsequent Request Using Session Token
This example illustrates a subsequent request that includes the encrypted session token that was generated by
the Siebel Server and passed in a previous response. The session token includes the user credentials and session
information needed to reconnect to an existing session:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
 <SessionType xmlns="http://siebel.com/webservices">Stateful</SessionType>
 <SessionToken xmlns="http://siebel.com/
 webservices">Q7ABhvXBNUX5qTIoKJ9hZjhMzJ6lfTPa0oUDYxOBHkmOXB7j
 </SessionToken>
</soap:Header>
<soap:Body>
 <!-- data goes here -->
</soap:Body>
</soap:Envelope>

Simple Query Starting With <soap:body>
This example illustrates data for a simple query starting with the <soap:body> element:

<soap:body>
 <Account_spcService_Account_spcServiceQueryPage_Input
 xmlns="http://siebel.com/CustomUI">
 <ListOfTestAccount
 xmlns="http://www.siebel.com/xml/Test%20Account/Query">
 <Account>
 <Name>A*</Name>
 </Account>
 </ListOfTestAccount>

107

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

 </Account_spcService_Account_spcServiceQueryPage_Input>
</soap:body>

About Web Services and Web Single Sign-On
Authentication
Siebel Web services support Web single sign-on (SSO) deployment scenarios in which third-party applications handle
authentication, and then pass authentication information to the Siebel application. When the third-party application
authenticates it, users do not have to explicitly log in to the Siebel application. The following illustrates a Web single SSO
deployment scenario using Siebel Web services. For more information about Web SSO, see Siebel Security Guide .

As shown in this figure, the components in an SSO scenario include the following:

• SSO Access Manager. SSO Access Manager, configured in front of the Java EE server, challenges user login,
authenticates user credentials with LDAP, and sets a security token in the browser (http header), which is
forwarded to the Java EE server.

• Java EE Server. This server extracts user credentials from the security token in the request. The Session
Manager Login method takes the request as an argument and forwards it to the AI. The request contains the
security token in the header.

• Siebel Application Interface (replaced SWSE). AI extracts the user credentials from the security token and
sends user credentials and the trust token to the Siebel Server.

• Siebel Server. The Siebel Server validates user credentials with LDAP and validates the trust token with security
settings.

About SOAP Fault Schema Support
Service-Oriented Architecture (SOA) applications typically use Web services to expose functionality. The application
describes a Web service through a WSDL document that is published. This WSDL document carries information about
the input and output schema for each operation.

A client that invokes the Web service can use this WSDL document to determine the format of the request and response
messages. Request and response messages are in SOAP format.

Siebel CRM consumes external Web services by processing the WSDL document and creating proxy business services.
These proxy business services send requests to the external application and receive responses in a SOAP format. The
responses are presented to the caller as Siebel property sets.

108

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

The WSDL document can optionally give a list of named faults (and their schema) that can occur for each operation.
If an application error occurs, then the SOAP Fault element is used to capture it. The SOAP Fault element in the SOAP
response body defines the following four subelements:

• faultcode. Identifies the fault.

• faultstring. Displays text that describes the fault.

• faultactor. Indicates the source of the fault.

• detail. Encodes application-specific errors.

The following WSDL example, which shows named faults, is from

http://www.gridlab.org:

 <?xml version="1.0" encoding="UTF-8"?>
 <definitions name="MyService" targetNamespace="urn:myuri:1.0"
xmlns:tns="urn:myuri:1.0"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="urn:myuri:1.0"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
 <schema targetNamespace="urn:myuri:1.0"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="urn:myuri:1.0"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<!-- fault element -->
<element name="MyFirstException">
 <complexType>
<sequence>
 <element name="text" type="xsd:string" minOccurs="1" maxOccurs="1"
 nillable="false"/>
</sequence>
 </complexType>
</element>
<!-- fault element -->
<element name="MySecondException">
 <complexType>
<sequence>
 <element name="number" type="xsd:int" minOccurs="1" maxOccurs="1"/>
</sequence>
 </complexType>
</element>
<!-- operation request element -->
<element name="myOperation">
 <complexType>
<sequence>
 <element name="myInput" type="xsd:string" minOccurs="0" maxOccurs="1"
 nillable="true"/>
</sequence>
 </complexType>
</element>

109

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

<!-- operation response element -->
<element name="myOperationResponse">
 <complexType>
<sequence>
 <element name="myOutput" type="xsd:string" minOccurs="0" maxOccurs="1"
 nillable="true"/>
</sequence>
 </complexType>
</element>
 </schema>
</types>
<message name="myOperationRequest">
<part name="parameters" element="ns1:myOperation"/>
</message>
<message name="myOperationResponse">
<part name="parameters" element="ns1:myOperationResponse"/>
</message>
<message name="MyFirstExceptionFault">
<part name="fault" element="ns1:MyFirstException"/>
</message>
<message name="MySecondExceptionFault">
<part name="fault" element="ns1:MySecondException"/>
</message>
<portType name="MyType">
 <operation name="myOperation">
<documentation>Service definition of function ns1__myOperation</documentation>
<input message="tns:myOperationRequest"/>
<output message="tns:myOperationResponse"/>
<fault name="MyFirstException" message="tns:MyFirstExceptionFault"/>
<fault name="MySecondException" message="tns:MySecondExceptionFault"/>
 </operation>
</portType>
<binding name="MyService" type="tns:MyType">
 <SOAP:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="myOperation">
<SOAP:operation soapAction=""/>
<input>
<SOAP:body use="literal"/>
</input>
<output>
<SOAP:body use="literal"/>
</output>
<fault name="MyFirstException">
<SOAP:fault name="MyFirstException" use="literal"/>
</fault>
<fault name="MySecondException">
<SOAP:fault name="MySecondException" use="literal"/>
</fault>
 </operation>
</binding>
<service name="MyService">
 <documentation>gSOAP 2.7.1 generated service definition</documentation>
 <port name="MyService" binding="tns:MyService">
<SOAP:address location="http://localhost:10000"/>
 </port>
</service>
 </definitions>

The following SOAP message shows the first named fault from the example WSDL:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:myuri:1.0">
 <SOAP-ENV:Body>
<SOAP-ENV:Fault>

110

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

 <faultcode>SOAP-ENV:Client</faultcode>
 <faultstring>Deliberately thrown exception.</faultstring>
 <detail>
<ns1:MyFirstException>
 <text>Input values are wrong.</text>
</ns1:MyFirstException>
 </detail>
</SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For more information on fault handling in Web services, see the SOAP and WSDL standards listed in the Certifications
tab on My Oracle Support.

Handling SOAP Faults in Siebel CRM
The fault schemas described in the WSDL are accepted and modeled in Siebel CRM as integration objects. This is similar
to how other input and output messages are modeled as strings (simple type) or integration objects (complex type).
These named faults are available as output parameters.

Having named faults available as output parameters is useful in SOA environments. For example, Business Process
Execution Language (BPEL) can only send named faults.

Handling SOAP Messages
SOAP messages are handled as follows:

1. An end user calls a proxy business service, for example, by clicking a button.
2. The proxy business service reads the input parameters and invokes the external Web service.
3. The proxy business service reads the SOAP response and checks for a SOAP Fault element.
4. If no SOAP fault is found, then the message is handled as normal.
5. If a SOAP fault is found, then the proxy business service tries to match the fault with a SOAP fault integration

object.
a. If a match is found, then Siebel CRM converts the fault into a fault integration object instance and sets it

in the output parameter.
b. Whether or not a match is found, Siebel CRM puts the fault into the XML Hierarchy (for backward

compatibility).

Handling WSDL Imports
The handling of SOAP faults while importing WSDL files into Siebel CRM is as follows:

1. A developer uses the WSDL Import Wizard in Siebel Tools to import a WSDL document for creating proxy
business services.

2. If the operation has a named fault that is not defined in the WSDL, then it is put into the XML Hierarchy.
3. If the operation has a named fault defined in the WSDL:

a. If the Process Fault Schema check box is not selected, the named fault is ignored.
b. If the Process Fault Schema check box is selected and an existing fault integration object is specified,

then that fault integration object is added as an output parameter.
c. If the Process Fault Schema check box is selected and an existing fault integration object is not specified,

then a new fault integration object is added as an output parameter. The integration object name is
prepended with Fault_.

For information on using the WSDL Import Wizard, see Creating an Outbound Web Service Based on a WSDL
File.

111

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

About Custom SOAP Filters
Headers represent SOAP's extensibility mechanism and provide a flexible and standards-based mechanism of adding
additional context to a request or response. Custom SOAP header support provides a flexible extensibility mechanism
when integrating with external Web services, and a means of providing additional context as required by the Web
service implementation.

Handling Custom Headers Using Filters
SOAP headers provide the option of providing optional or mandatory processing information. To process optional
custom headers that are provided by external applications, a special business service known as a filter might be defined.
Filters can process both request and response headers. A special attribute, mustUnderstand, is used to indicate whether
or not the custom header is to be processed:

• If mustUnderstand equals 1, then the custom header is interpreted as being mandatory and the custom header
is processed by the filter defined for this purpose.

• If mustUnderstand equals 1 and a filter is not specified, then the custom header is not read and a
SOAP:MustUnderstand fault is generated.

• If mustUnderstand equals 0, then no processing of the custom header is attempted.

You must keep SOAP body and header processing isolated. The inbound dispatcher and outbound proxy can process
the SOAP body, but cannot set or consume headers. Headers are application-specific. Some customization is needed
to set and consume custom headers. To process optional custom headers that are provided by external applications,
a special business service, a filter, is defined. You can configure the Web service outbound proxy and the Web service
inbound dispatcher to call specific filters for the processing of individual (custom) headers.

Note: The SOAP header will not be passed to the underlying business service or workflow of the inbound Web
service. Any processing that must be done with the SOAP header must be done on the filter business service.

Enabling SOAP Header Processing Through Filters
For each operation, you can set the inbound and outbound filters to be run. You can also define the methods you want
to call on the filter.

The following code sample illustrates a filter that has been written for the handling of custom SOAP headers. The
interface provided by this code sample lets you define the method on the filter that you want to call, as well as the
corresponding input and output parameters.

 function Service_PreInvokeMethod (MethodName, Inputs, Outputs) {
if(MethodName == "StripHeader") {
 if(Inputs.GetChildCount() > 0) {
 // Set the input SOAP message property set as the output.
 Outputs.InsertChildAt(Inputs.GetChild(0), 0);
 var soapEnv = Outputs.GetChild(0);
 if(soapEnv.GetChildCount() == 2) // headers and body {
// Here is where the header is found and processed.
var count = soapEnv.GetChildCount();
var i = 0;

112

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

var headerParam1;
var headerParam2;
var headerParam3;
// Use a loop just in case the header is not the first hierarchy.
for (; i < count; i++) {
 // For simplicity, the string comparison must be done using the exact same value

 // as the SOAP message tag name.
 if (soapEnv.GetChild(i).GetType() == "soapenv:Header") {
// Found the header. Now it is processed.
var soapHeader = soapEnv.GetChild(i);
// This example assumes that the following header hierarchy is received:
// <soapEnv:Header>
// <headerParam1>Value1</headerParam1>
// <headerParam2>Value2</headerParam2>
// <headerParam3>Value3</headerParam3>
// </soapEnv:Header>
// The parameters headerParam1, headerParam2, and headerParam3
// are saved into variables. Nothing further done with them.
headerParam1 = soapHeader.GetChild(0);
headerParam2 = soapHeader.GetChild(1);
headerParam3 = soapHeader.GetChild(2);
break; // Stop the loop after the header is found.
}
 }
 // Must remove the header from the SOAP property set.
 soapEnv.RemoveChild(i);
 }
}
 }
else if(MethodName == "AddHeader") {
 if(Inputs.GetChildCount() > 0) {
// Create the SOAP header hierarchy with the desired data.
var soapHeader = TheApplication().NewPropertySet();
soapHeader.SetType("soapEnv:Header");
soapHeader.SetProperty("xmlns:soapEnv",

"http://schemas.xmlsoap.org/soap/envelope/");
// These will be created as property sets because we want the following header:
// <soapEnv:Header>
// <headerParam1>Value1</headerParam1>
// <headerParam2>Value2</headerParam2>
// <headerParam3>Value3</headerParam3>
// </soapEnv:Header>
var param1PS = TheApplication().NewPropertySet();
var param2PS = TheApplication().NewPropertySet();
var param3PS = TheApplication().NewPropertySet();
param1PS.SetType("headerParam1");
param1PS.SetValue("Value1");
param2PS.SetType("headerParam2");
param2PS.SetValue("Value2");
param3PS.SetType("headerParam3");
param3PS.SetValue("Value3");
// Add the data to the SOAP header.
soapHeader.AddChild(param1PS);
soapHeader.AddChild(param2PS);
soapHeader.AddChild(param3PS);
// Get the SOAP envelope from the SOAP hierarchy.
var soapEnv = Inputs.GetChild(0);
// Add the header to the SOAP envelope.
soapEnv.InsertChildAt(soapHeader, 0);
Outputs.InsertChildAt(soapEnv, 0);
}
}
return(CancelOperation);

113

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

 }

Inputting a SOAP Envelope to a Filter Service
Using a SOAP envelope as the input to a filter service is the property set representation of an XML document. For
example, each tag in the XML document is a property set. Each attribute on the tag is a property in the property set.

To pass the information in the headers further down the stack to the actual business service method or workflow being
called, the HeaderContext property set is passed to the business service or workflow that is called. For example, on a call
to an inbound Web service, if there are a couple of headers in the SOAP message, the filter service extracts the header
information. To use this information in the business service or workflow execution call, it has to be contained in the
HeaderContext. Internally, the Siebel Web services infrastructure passes HeaderContext to the eventual business service
or workflow that is called.

About EAI File Streaming
Siebel CRM supports streaming of EAI requests and responses encountered. This feature allows the Siebel Web Engine
(SWE) and the EAI Object Manager (OM) to process Web service calls that involve large requests or responses. Large
requests and responses can occur when inserting or querying file attachments by way of a Web service. By transferring
data internally in 100-KB chunks, the memory footprints of the Siebel Web Engine and EAI Object Manager processes
are reduced and system scalability is improved.

This topic describes the streaming process for inbound EAI requests and outbound responses.

About Inbound EAI Streaming Requests
The following figure provides an overview of the components and process flow used for streaming an inbound request.

As shown in this figure, the process flow for streaming an inbound request is as follows:

1. When the Application Interface (AI) receives the request from the HTTP client by way of the Web Server, it
determines that this request must be chunked based on the HTTP request body size, embeds streaming
information in the request, and then sends the first chunk of the request body to the SWE Server.

2. The SWE Server extracts the streaming information from the request, determines it is a streaming request,
and then writes the first chunk to the file system and sends a response to the AI indicating that the request has

114

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

been processed. The AI sends the next chunk and the cycle continues until the last chunk has been written to
the file system.

3. After the entire body of the HTTP request has been written to a file on the disk, the SWE Server calls the Web
service method on EAI Object Manager, passing the name of the file as an input argument.

About Outbound EAI Streaming Responses
The following figure provides an overview of the components and process flow used for streaming an outbound
response.

As shown in this figure, the process flow for streaming an outbound response is as follows:

1. An EAI request from the HTTP client is received by the AI.
2. The AI forwards the request to the SWE Server.
3. The SWE Server then performs one of the following actions:

a. If the request is not a streaming request, the SWE Server calls the EAI Object Manager method.
b. If the request is a streaming request, then the file is first written to disk before the SWE Server calls the

EAI Object Manager method.
4. The EAI Object Manager forwards the response to the SWE Server, and SWE queries the output arguments.
5. If a file reference is found, then the SWE Server transmits the file to the client.

Whether multiple chunks will be sent or not depends upon the size of the file. If chunking is needed, then the
SWE Server sends the first chunk to the AI, also embedding the streaming information in the response.

6. The AI sends the chunk to the client including the HTTP headers in the response, and then it requeries the SWE
Server to get the next chunk.

Note: The AI sends the HTTP response headers only for the first chunk.

The cycle continues until the entire file has been transmitted to the HTTP client.

115

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

About EAI Streaming Criteria
The following criteria are used internally to decide whether a particular request or response is streamed:

1. The Application Interface initiates chunking of an inbound EAI request only if the following conditions are met:

a. The Configure EAI HTTP Inbound Transport parameter is selected in the basic information section of the
AI profile of the eai application.

b. The size of the body of the inbound HTTP request is greater than 100 KB.

If these conditions are not met, then the AI does not stream the contents of the EAI request, and the request is
processed as one chunk.

2. The SWE server initiates outbound chunking only if the following conditions are met:

a. The SWE finds a property named ExtSvcFileName in the output arguments after calling the EAI Object
Manager method.

The value of this property must be a fully qualified path, and the name of the response file is written to
disk by EAI.

b. The file size is greater than 100 KB.

If these conditions are not met, then the AI does not stream the contents of the EAI response, and the request
is processed as one chunk.

About Web Services Cache Refresh
Both Siebel inbound and outbound Web services are typically cached into memory on the Siebel Server. At times,
administrators must update the definitions of these services to provide more current or correct functionality.
Administrators have the ability to directly refresh the memory cache in real time, without stopping and restarting the
Siebel Server.

The Web services cache is used to store all the global administration information that can be manipulated in the
Inbound and Outbound Web Service administration views.

The Clear Cache feature is a button on the Administration - Web Services screen. This feature is available for inbound
and outbound Web services. Upon deciding that the Web service configuration must be refreshed, the administrator
clicks Clear Cache.

When Clear Cache is clicked, the integration object and Web services definitions in the run-time database are
invalidated. Object definitions are reloaded when requested in the client.

Enabling Web Services Tracing
You can enable Web services tracing on the Siebel Server to write all inbound and outbound SOAP documents to a log
file.

116

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

To enable Web services tracing
1. Navigate to the Administration - Server Configuration screen, Servers view.

The view that appears displays three different list applets. The first applet lists the Siebel Servers for the
enterprise. The middle applet has three tabs: Components, Parameters and Events. The last applet has two
tabs: Events and Parameters.

2. In the first list applet, select the Siebel Server that you want to configure.
3. In the middle applet, click the Components tab.

This list applet contains the components for the Siebel Server selected in the first applet.

Choose the relevant application object manager.
4. In the last applet, click the Parameters tab.

This list applet contains the parameters for the Component selected in the middle applet.
5. Set the Log Level to 4 for any or all of the following Event Types.

Event Type Alias Description Comment

Web Service Performance

WebSvcPerf

Web Service Performance
Event Type

Used for performance
logging

Web Service Outbound
Argument Tracing

WebSvcOutboundArgTrc

Web Service Outbound Run-
time Argument Tracing

Used for logging
arguments to the outbound
dispatcher

Web Service Outbound

WebSvcOutbound

Web Service Outbound Run-
time Event Type

Used for run-time logging
of outbound Web services

Web Service Loading

WebSvcLoad

Web Service Configuration
Loading Event Type

Used for logging of the
loading of Web services

Web Service Inbound
Argument Tracing

WebSvcInboundArgTrc

Web Service Inbound Run-
time Argument Tracing

Used for logging
arguments to the inbound
dispatcher

Web Service Inbound

WebSvcInbound

Web Service Inbound Run-
time Event Type

Used for logging at Web
service inbound run time.
Information is logged to
the inbound dispatcher

Web Service Design

WebSvcDesign

Web Service Design-time
Event Type

Used for logging at Web
service design time. For
example, at the time
of WSDL import and
generation

117

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

Event Type Alias Description Comment

6. In the middle applet, click the Components tab.
7. Select the EAI Object Manager component, and then click the Parameters tab.

The Component Parameters list appears.
8. Click Advanced to see the advanced parameters. (Click Reset to hide them again.)
9. Query for Enable Business Service Argument Tracing.

10. Set its Value and Value on Restart fields to True.
11. Restart or reconfigure the server component.

For information on restarting server components and on advanced and hidden parameters, see Siebel System
Administration Guide .

Previewing the Repository Changes Before Delivery
You can preview changes to a developer or integration workspace before you deliver them. This is due to the
Workspace&Version parameter, which helps preview changes specific to an object in a developer branch and/or its
version. To learn more about using this parameter, see Siebel REST API Guide .

This topic gives an example of a SOAP request and response before and after changes to the Related Contact
integration component (IC) in a developer workspace.

SOAP URI:

https://<host_name>:<port_number>/siebel/app/eai/enu?SWEExtSource=WebService&SWEExtCmd=Execute&WSSOAP=1

SOAP Body:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:asi="http://siebel.com/
asi/">
 <soapenv:Header>
 <ns1:SessionType xmlns:ns1="http://siebel.com/webservices">Nonens1:SessionType xmlns:ns1="http://
siebel.com/webservices">None</ns1:SessionType>
 <ns2:UsernameToken xmlns:ns2="http://siebel.com/webservices"><username>:UsernameToken xmlns:ns2="http://
siebel.com/webservices"><username></ns2:UsernameToken>
 <ns3:PasswordText xmlns:ns3="http://siebel.com/webservices"><password>:PasswordText xmlns:ns3="http://
siebel.com/webservices"><password></ns3:PasswordText>
 </soapenv:Header>
 <soapenv:Body>
 <asi:SiebelAccountQueryById_Input>
 <asi:PrimaryRowId><Primary Row Id></asi:PrimaryRowId>
 </asi:SiebelAccountQueryById_Input>
 </soapenv:Body>
</soapenv:Envelope>

When you request details, the Related Contacts IC displays along with other objects in the workspace:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns:SiebelAccountQueryById_Output xmlns:ns="http://siebel.com/asi/">
 <ListOfAccountInterface xmlns="http://www.siebel.com/xml/Account%20Interface">
 <Account>
 .

118

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

 .
 .
 <ListOfRelatedSalesRep>
 .
 .
 .
 </ListOfRelatedSalesRep>
 <ListOfRelatedContact>
 <RelatedContact>
 <ContactId><Contact IdContact Id>ContactId>
 <FirstName>JohnFirstName>John>
 <ContactIntegrationId/>
 <LastName>Smith FINSLastName>Smith FINS>
 <MiddleName/>
 <PersonUId>Contact IdPersonUId>Contact Id>
 <PrimaryOrganization>ABC Insurance IN ENUPrimaryOrganization>ABC Insurance IN ENU>
 </RelatedContact>
 <RelatedContact>
 .
 .
 .
 </RelatedContact>
 </ListOfRelatedContact>
 <ListOfRelatedOrganization>
 .
 .
 .
 </ListOfRelatedOrganization>
 .
 .

 </Account>
 </ListOfAccountInterface>
 </ns:SiebelAccountQueryById_Output>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You can modify the object definition and then preview the changes before delivery of workspace. In the following
example, Related Contact is no longer a child component of the base List of Related Contact integration object (IO). This
change to the structure of the IO is seen by passing the workspace name and its version as query parameters in the
request. The response fetches other objects but not the Related Contacts IC and its IO due to inactivation of the IC.

For more information about how to inactivate an object in Web Tools, see Using Siebel Tools . For more information on
how to activate a web service, see Invoking Siebel Web Services Using an External System.

SOAP URI:

https://<host_name>:<port_number>/siebel/app/eai/enu?
SWEExtSource=WebService&SWEExtCmd=Execute&WSSOAP=1&Workspace=<Workspace_<workspace_name>&Version=<ver_num>>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 </soapenv:Body>
 <ns:SiebelAccountQueryById_Output xmlns:ns="http://siebel.com/asi/">
 <ListOfAccountInterface xmlns="http://www.siebel.com/xml/Account%20Interface">
 <Account>
 .
 .
 .
 <ListOfRelatedSalesRep>
 .
 .
 .
 </ListOfRelatedSalesRep>
 <ListOfRelatedOrganization>

119

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

 .
 .
 .
 </ListOfRelatedOrganization>
 </Account>
 </ListOfAccountInterface>
 </ns:SiebelAccountQueryById_Output>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Configuring the No Session Preference in EAI-SOAP
Parameter
During an Inbound SOAP call, a Siebel Session Token passed in the header of the SOAP request is used to start a EAI
Server Task to handle the request. The Server Task is tied to the Session Token by default so that once that Server Task
completes or is stopped in any way, any subsequent inbound SOAP request that uses the same Session Token will fail
because the Session Token has affinity to the completed Server Task. It cannot be re-used for other Server Tasks.

The error returned to the requesting process will be:

"Token might have been expired or logged out by the user. (SBL-UIF-00880)."

To break the tie between the Session Token and the EAI Server Task, use the No Session Preference in EAI-SOAP
parameter in the Basic Information section of the EAI application in Application Interface Profile in SMC. Selecting the
check box breaks the tie.

The No Session Preference in EAI-SOAP option behaves as follows:

• When No Session Preference in EAI-SOAP = FALSE (deselected, which is the default setting), there is affinity
between the Session Token and the EAI task.

◦ When an EAI Server Task is still available, incoming requests with the original Session Token will get
executed by the original EAI Server Task.

◦ When an EAI Server Task is no longer available, incoming requests with the original Session Token will
get routed to original EAI Server Task, but since that task is no longer available, it generates the error:

"Token might have been expired or logged out by the user. (SBL-UIF-00880)."

• When No Session Preference in EAI-SOAP = TRUE (selected), there is no affinity between the Session Token
and the EAI Server Task.

◦ When an EAI task is still available, incoming requests with the original Session Token will not have any
affinity with the original EAI Server Task and can be executed by any available EAI Server Task.

◦ If the original EAI Server Task is not available, a new EAI Server Task is created for the request. The token
expired error does not occur.

Use these steps to set this parameter:

1. Log into the Siebel Management Console.
2. Find the Application Interface Profile that you wish to update.
3. Edit the Application Interface Profile.
4. Go to the Applications section of the Profile.
5. Expand the EAI application section of the Profile

120

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

6. Expand the Basic section of EAI application.
7. If the Configure EAI HTTP Inbound Transport check box is not selected, select it.

This will cause the No Session Preference in EAI-SOAP check box to appear.
8. Do one of the following:

◦ If you wish to break the one-to-one correspondence between the Session Token and the EAI Server Task,
select the check box.

◦ If you wish to leave the correspondence intact, do not select the check box.

9. Click Submit.

Note: Selecting/deselecting (changing the value) for the No Session Preference in EAI-SOAP check box does not
require a restart of the Application Interface, the EAI Component, or the Siebel Server. It takes effect when the next
Session Token is generated.

Note: Anonymous Pool Connections are not affected by the No Session Preference in EAI-SOAP check box. Only
requests using Session Management respond to this parameter.

Configuring the Maximum Retry for Processing EAI-
SOAP Request Parameter
When the server or network is busy, a SOAP request may not be handled immediately, returning an error. This
parameter ensures a reasonable number of subsequent attempts to handle the request by the Siebel Server, in the case
of a failure.

Note: The recommended value is 5 (the default setting). But a value of 0 (zero) is not allowed because this would
cause the server to not attempt to handle incoming requests at all.

Use these steps to set this parameter:

1. Log into the Siebel Management Console.
2. Find the Application Interface Profile that you wish to update.
3. Edit the Application Interface Profile.
4. Go to the Applications section of the Profile.
5. Expand the EAI application section of the Profile.
6. Expand the Basic section of EAI application.
7. If the Configure EAI HTTP Inbound Transport checkbox is not selected, select it.

This will cause the Maximum Retry for Processing EAI-SOAP Request field to appear.
8. Set the value of the Maximum Retry for Processing EAI-SOAP Request field to a valid integer between 1 and

5. You can use more than 5, but the default and recommended value is 5.
9. Click Submit.

121

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 5
Web Services

122

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

6 EAI Siebel Adapter Business Service

EAI Siebel Adapter Business Service
EAI Siebel Adapter is a preconfigured business service that is used with any integration process that runs through
the Siebel business object layer. Integration objects are used to update data in business objects and are used when
retrieving data from business objects. These integration objects are configurable and can be used during an integration
process (for example, entering and retrieving data from Siebel CRM).

This chapter describes the functionality of the EAI Siebel Adapter business service, and the different methods and
arguments you can use with it to manipulate the data in the Siebel Database. It contains the following topics:

• About the EAI Siebel Adapter Business Service

• EAI Siebel Adapter Business Service Methods

• Skipnode Operation

• About the Search Spec Input Method Argument

• About Using Effective Dating with Siebel EAI Adapter Business Service

• Enabling Effective Dating on Fields

• Enabling Effective Dating on Links

• About Using Language-Independent Code with the EAI Siebel Adapter Business Service

• About LOV Translation and the EAI Siebel Adapter Business Service

• Siebel EAI and Run-Time Events

• Guidelines for Using the EAI Siebel Adapter Business Service

• Troubleshooting the EAI Siebel Adapter Business Service

• Enabling Logging for the EAI Siebel Adapter Business Service

• Enabling Siebel Argument Tracing

• Configuring the EAI Siebel Adapter Business Service for Concurrency Control

About the EAI Siebel Adapter Business Service
EAI Siebel Adapter is a general-purpose integration business service that allows you to:

• Read Siebel business objects from the Siebel Database into integration objects.
Note: When called locally, the EAI Siebel Adapter business service creates an additional database connection.
If this second connection times out, then further transactions will not be processed. To prevent this from
happening, add the TrxDbConnReconnectIntervalSeconds parameter to the [ServerDataSrc] section of the
application configuration (CFG) file. A typical value is 120.

• Write an integration object instance whose data originates externally in a Siebel business object.

• Update multiple corresponding top-level (highest-level) parent business component records with data from
one XML file, for an example, see Update Method.

123

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Note: The Siebel Message is considered to be one transaction. The transaction is committed when there is
no error. If there is an error, then the transaction is aborted and rolled back.

Node Types and the EAI Siebel Adapter Business Service
In an integration object hierarchy, nodes with at least one child are called internal nodes and nodes without children
are called leaf nodes. When either the insert or update method is called on the EAI Siebel Adapter business service, the
adapter performs the operation on both internal nodes and leaf nodes. When the insert or update method is called on
the EAI UI Data Adapter business service, the adapter performs insert on leaf nodes only.

For more information on node types, see About the EAI UI Data Adapter Business Service.

EAI Siebel Adapter Business Service Methods
The EAI Siebel Adapter supports the following methods:

• Query Method

• QueryPage Method

• Synchronize Method

• Insert Method

• Upsert Method

• Update Method

• Delete Method

• Execute Method

About the Examples in the EAI Siebel Adapter Business Service
Methods Sections
The following information is true for the examples used for the EAI Siebel Adapter methods:

• The business object data is represented as integration object data in XML format.

• The XML document or integration object instance might also be referred to as a Siebel Message.

• Fields that contain null values are not included in the XML examples.
However, these fields might be revealed when you use EAI XML Write to File.WriteEAIMsg() to print out the
XML.

Query Method
You can use a combination of input arguments when using the Query Business Service Method of the EAI Siebel
Adapter. The input arguments are as follows:

1. Query By Example (QBE). Pass in an integration object instance represented as a property set.

124

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Note: EAI queries on integration objects do not use a search specification for child integration components
when the query obtains the parent integration component.

2. Primary Row Id. Pass in a string to the Object Id input argument. The string can be the row_id of the primary
business component of the Output Integration Object Name.

3. Output Integration Object Name. See the Primary Row Id for information.
4. Search Specification. Pass in a String expression.

The input arguments can be used in one of the following combinations:

• 1

• 2 and 3

• 4

• 3 and 4

• 2, 3, and 4

The EAI Siebel Adapter uses this input as criteria to query the base business object and to return a corresponding
integration object instance.

For an example of using the search specification method argument to limit the scope of your query, see About Using
Language-Independent Code with the EAI Siebel Adapter Business Service.

When using the EAI Siebel Adapter to query all the business component records, you are not required to specify any
value in the Object Id process property of the workflow. In this case, not specifying an Object Id or a Search Specification
works as a wildcard.

If you want to query Siebel data using the EAI Siebel Adapter with the Query method and an integration object instance
(property set) containing a query by example (QBE) search criterion, then all the fields present in the QBE will be used in
the query. To retrieve a unique record, include the fields that make up the user key for the underlying integration object
component instance to ensure you retrieve a unique record. You can use an asterisk (*) as a wildcard for each one of the
fields.

For example, the following is your QBE:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2IOY" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <CSN>*</CSN>
 <HomePage>*</HomePage>
 <Location>H*</Location>
 <Name>A*</Name>
 <Type>*</Type>
 </Account>
 </ListOfAccount>
</SiebelMessage>

You would receive all of the Accounts with names that start with A* and have locations that start with H*. The CSN,
HomePage, and Type fields cannot be blank because they are used in the query.

The EAI Siebel Adapter converts the QBE into a user Search Expression of the following:

[CSN] ~ LIKE "*" AND [Home Page] ~ LIKE "*" AND [Location] ~ LIKE "H*" AND [Name] ~
LIKE "A*" AND [Type] ~ LIKE "*"

You can run this example and review the output XML generated.

125

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

When using search expressions that contain an apostrophe ('), you must use two apostrophes ('') or the search will fail.

For example, you are searching for the string LUKE’S. The following search expression will fail in the EAI Siebel Adapter:

[Account.Name] LIKE "*LUKE'S*"

Use the following search expression instead:

[Account.Name] LIKE "*LUKE''S*"

Note: The EAI Siebel Adapter explicitly overrides any Object Manager settings for the MaxCursorSize parameter.
The EAI Siebel Adapter uses a MaxCursorSize of -1. If you want to limit the number of results received when using the
Query method, then use the QueryPage Method. You can combine the Object Id and Search Specification together to
query for parent and child data.

Note: The EAI Siebel Adapter returns the output of the Query() method as one Siebel Message. This integration
object instance is stored in the process memory. If your query returns a large number of records, this will result in your
Siebel component's memory consumption being high.

QueryPage Method
This method is useful when the search specification retrieves a large number of records at the root component. To
avoid returning one huge Siebel Message, you can specify the number of records to be returned using the PageSize
argument, as presented in Skipnode Operation. You can also use method arguments such as OutputIntObjectName,
SearchSpec, SortSpec, ViewMode, and StartRowNum to dictate which records to return.

Even though the QueryPage method returns a limited number of records, it keeps the data in the cache, which you can
then retrieve by calling the EAI Siebel Adapter with a new value for the StartRowNum method argument. Note that this
is only possible if the method arguments OutputIntObjectName, PageSize, SearchSpec, SortSpec, and ViewMode are
not changed and the NewQuery method argument is set to False.

Note: The EAI Siebel Adapter returns the output of the QueryPage() method as one Siebel Message. This integration
object instance is stored in the process memory. If your query returns a large number of records, this will result in your
Siebel component’s memory consumption being high.

The QueryPage method precedes each integration object instance. It is provided through the SiebelMessage input
argument when performing a query by example. Parameters such as StartRowNum, PageSize, and others are applied to
each integration object instance.

For example, a Siebel database contains four account records with the Name field set to: a1, a2, b1, b2. An input
SiebelMessage has two instances of the Account integration object, with the first instance’s name set to "a*" and
the second instance’s name set to "b*". The result for StartRowNum=0 is all four records (a1, a2, b2, b4) and for
StartRowNum=1 only two records (a2 and b2). This example illustrates that the StartRowNum method argument counts
records within each single integration object instance of the query by example input SiebelMessage: once for "a*" (a1,
a2) and once for "b*" (b1, b2).

The following is an example of using the QueryPage() method in a business service.

var EAIService = TheApplication().GetService("EAI Siebel Adapter");
var writeSvc = TheApplication().GetService("EAI XML Write to File");
var EAIin = TheApplication().NewPropertySet();

126

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

var ResultSet= TheApplication().NewPropertySet();
var moreRecords = true;
var countOfObjects = 0;
var i = 1;

// set up input arguments, get 10 at a time
EAIin.SetProperty("OutputIntObjectName", "EAI Account");
EAIin.SetProperty("PageSize", "10");
EAIin.SetProperty("SearchSpec", "[Account.Name] LIKE '3*'");
EAIin.SetProperty("StartRowNum", i);
EAIin.SetProperty("NewQuery", "true");

// retrieve the business component data
EAIService.InvokeMethod("QueryPage", EAIin, ResultSet);

// loop through cached data
while ((ResultSet.GetChildCount() > 0) && (moreRecords)) {
countOfObjects = countOfObjects + ResultSet.GetProperty("NumOutputObjects");

// write out first chunk of data retrieved
ResultSet.SetProperty("FileName", "d:\\temp\\EAIaccount$$.xml");
writeSvc.InvokeMethod("WriteEAIMsg", ResultSet, Outputs);

// reuse the existing input property set, except don't reissue query
EAIin.SetProperty("NewQuery", "false");
i= i+10; // get next 10 records
EAIin.SetProperty("StartRowNum", i);

ResultSet.Reset(); // clear previous result set
EAIService.InvokeMethod("QueryPage", EAIin, ResultSet);
if (ResultSet.GetProperty("LastPage") == "true")
moreRecords = false;
}

Synchronize Method
You can use the Synchronize method to make the values in a business object instance match those of an integration
object instance. This operation can result in updates, insertions, or deletions in the business components. The following
rules apply to the results of this method:

• If a child component is not present in the integration object instance, then the corresponding child business
component rows are left untouched.

• If the integration object instance’s child component has an empty container, then all child records in the
corresponding business component are deleted.

• For a particular child component, records that exist in both the integration object instance and business
component are updated. Records that exist in the integration object hierarchy and not in the business
component are inserted. Records in the business component and not in the integration object instance are
deleted.

• Only the fields specified in the integration component instance are updated.

Note: When the EAI Siebel Adapter starts a database transaction (initiated to allow updates to the Siebel database)
it must ensure the data queried is committed and consistent. The results of these queries dictate what changes are
applied, so if reads that contain uncommitted data (dirty reads) were enabled, it could cause incorrect updates by the
EAI Siebel Adapter. Therefore, dirty reads are disabled during database transactions started by the EAI Siebel Adapter.

127

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Example of Synchronize Method on Deleted Unmatched Children
This first example demonstrates deleting unmatched children when using the Synchronize method.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
<Account>
<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>Test</Location>
<Name>ABC Corp</Name>
<ListOfAccount_BusinessAddress>
 <Account_BusinessAddress IsPrimaryMVG = "Y">
 <AddressActiveStatus>Y</AddressActiveStatus>
 <BillAddressFlag>Y</BillAddressFlag>
 <City>ATown</City>
 <Country>USA</Country>
 <MainAddressFlag>Y</MainAddressFlag>
 <ShipAddressFlag>Y</ShipAddressFlag>
 <StreetAddress>123 Main St</StreetAddress>
 </Account_BusinessAddress>
 <Account_BusinessAddress IsPrimaryMVG = "N">
 <AddressActiveStatus>Y</AddressActiveStatus>
 <BillAddressFlag>Y</BillAddressFlag>
 <City>BTown</City>
 <Country>USA</Country>
 <MainAddressFlag>Y</MainAddressFlag>
 <ShipAddressFlag>Y</ShipAddressFlag>
 <StreetAddress>456 Oak St</StreetAddress>
 </Account_BusinessAddress>
</ListOfAccount_BusinessAddress>
<ListOfContact>
 <Contact>
 <ActiveStatus>Y</ActiveStatus>
 <FirstName>User1</FirstName>
 <LastName>User1</LastName>
 <Organization>Default Organization</Organization>
 <ListOfContact_Organization>
 <Contact_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationIntegrationId/>
 </Contact_Organization>
 </ListOfContact_Organization>
 <ListOfContact_AlternatePhone/>
 </Contact>
 <Contact>
 <ActiveStatus>Y</ActiveStatus>
 <FirstName>User2</FirstName>
 <LastName>User2</LastName>
 <Organization>Default Organization</Organization>
 <ListOfContact_Organization>
 <Contact_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationIntegrationId/>
 </Contact_Organization>
 </ListOfContact_Organization>
 <ListOfContact_AlternatePhone/>
 </Contact>
 </ListOfContact>
 <ListOfAccount_Organization>

128

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

 <Account_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </Account_Organization>
</ListOfAccount_Organization>
</Account>
 </ListOfAccount>
</SiebelMessage>

Then the following XML (integration object instance) is submitted with Synchronize:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
<Account>
<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<Competitor>Y</Competitor>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>CHS</LanguageCode>
<Location>test</Location>
<Name>ABC Corp</Name>
<ListOfContact>
 <Contact>
 <ActiveStatus>N</ActiveStatus>
 <FirstName>User1</FirstName>
 <LastName>User1</LastName>
 <MiddleName></MiddleName>
 <Organization>Default Organization</Organization>
 </Contact>
 <Contact>
 <FirstName>User3</FirstName>
 <LastName>User3</LastName>
 <MiddleName></MiddleName>
 <Organization>Default Organization</Organization>
 </Contact>
</ListOfContact>
</Account>
 </ListOfAccount>
</SiebelMessage>

The following is the result you will receive. Because the contact information is included in the integration object
instance, User2 in the database is deleted because it was an unmatched node. User1 is updated because it is a matched
node. User3 is inserted because it is a new node. Because Business Address was not included in the integration object
instance, it is left in the business object.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
<Account>
<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>CHS</LanguageCode>
<Location>Test</Location>
<Name>ABC Corp</Name>
<ListOfAccount_BusinessAddress>
 <Account_BusinessAddress IsPrimaryMVG = "Y">
 <AddressActiveStatus>Y</AddressActiveStatus>
 <BillAddressFlag>Y</BillAddressFlag>

129

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

 <City>ATown</City>
 <Country>USA</Country>
 <MainAddressFlag>Y</MainAddressFlag>
 <ShipAddressFlag>Y</ShipAddressFlag>
 <StreetAddress>123 Main St</StreetAddress>
 </Account_BusinessAddress>
 <Account_BusinessAddress IsPrimaryMVG = "N">
 <AddressActiveStatus>Y</AddressActiveStatus>
 <BillAddressFlag>Y</BillAddressFlag>
 <City>BTown</City>
 <Country>USA</Country>
 <MainAddressFlag>Y</MainAddressFlag>
 <ShipAddressFlag>Y</ShipAddressFlag>
 <StreetAddress>456 Oak St</StreetAddress>
 </Account_BusinessAddress>
 </ListOfAccount_BusinessAddress>
 <ListOfContact>
 <Contact>
 <ActiveStatus>N</ActiveStatus>

 <FirstName>User1</FirstName>

 <LastName>User1</LastName>
 <Organization>Default Organization</Organization>
 <ListOfContact_Organization>
 <Contact_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationIntegrationId/>
 </Contact_Organization>
 </ListOfContact_Organization>
 <ListOfContact_AlternatePhone/>
 </Contact>
 <Contact>
 <ActiveStatus>N</ActiveStatus>
 <FirstName>User3</FirstName>
 <LastName>User3</LastName>
 <Organization>Default Organization</Organization>
 <ListOfContact_Organization>
 <Contact_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationIntegrationId/>
 </Contact_Organization>
 </ListOfContact_Organization>
 <ListOfContact_AlternatePhone/>
 </Contact>
</ListOfContact>
</Account>
 </ListOfAccount>
</SiebelMessage>

The following table is a high level representation of the previous example.

Record in Database Integration Object
Instance

Record After Synchronize

Account: ABC Corp

• Business Address: 123 Main St

• Business Address: 456 Oak St

Account: ABC Corp

• Contact: User1

• Contact: User3

Account: ABC Corp

• Business Address: 123 Main St

• Business Address: 456 Oak St

130

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Record in Database Integration Object
Instance

Record After Synchronize

• Contact: User1

◦ Organization: Default Org.

• Contact: User2

◦ Organization: Default Org.

• Organization: Default Org.

• Contact: User1

• Organization: Default Org

• Contact: User3

• Organization: Default Org.

• Organization: Default Org.

This second example demonstrates how all records with an empty container are deleted when using the Synchronize
method.

If you start with this business component data:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
<Account>
<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>test</Location>
<Name>ABC Corp</Name>
<ListOfAccount_BusinessAddress>
 <Account_BusinessAddress IsPrimaryMVG = "Y">
 <AddressId>1-3JGOA</AddressId>
 <AddressActiveStatus>Y</AddressActiveStatus>
 <BillAddressFlag>Y</BillAddressFlag>
 <City>MyTown</City>
 <Country>Canada</Country>
 <MainAddressFlag>Y</MainAddressFlag>
 <ShipAddressFlag>Y</ShipAddressFlag>
 <StreetAddress>123 Main St</StreetAddress>
 </Account_BusinessAddress>
 <Account_BusinessAddress IsPrimaryMVG = "N">
 <AddressActiveStatus>Y</AddressActiveStatus>
 <BillAddressFlag>Y</BillAddressFlag>
 <AddressId>1-3JGOB</AddressId>
 <City>YourTown</City>
 <Country>Canada</Country>
 <MainAddressFlag>Y</MainAddressFlag>
 <ShipAddressFlag>Y</ShipAddressFlag>
 <StreetAddress>456 Oak St</StreetAddress>
 </Account_BusinessAddress>
 </ListOfAccount_BusinessAddress>
 <ListOfContact>
 <Contact>
 <ActiveStatus>Y</ActiveStatus>
 <FirstName>User1</FirstName>
 <LastName>User1</LastName>
 <MiddleName/>
 <Organization>Default Organization</Organization>
 <ListOfContact_Organization>
 <Contact_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationIntegrationId/>

131

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

 </Contact_Organization>
 </ListOfContact_Organization>
 <ListOfContact_AlternatePhone/>
 </Contact>
 <Contact>
 <ActiveStatus>Y</ActiveStatus>
 <FirstName>User2</FirstName>
 <LastName>User2</LastName>
 <MiddleName/>
 <Organization>Default Organization</Organization>
 <ListOfContact_Organization>
 <Contact_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationIntegrationId/>
 </Contact_Organization>
 </ListOfContact_Organization>
 <ListOfContact_AlternatePhone/>
 </Contact>
 </ListOfContact>
 <ListOfAccount_Organization>
 <Account_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </Account_Organization>
</ListOfAccount_Organization>
</Account>
 </ListOfAccount>
</SiebelMessage>

And the following integration object instance is passed in:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <AccountStatus>Active</AccountStatus>
 <CSN>1-3JGO7</CSN>
 <Competitor>Y</Competitor>
 <CurrencyCode>USD</CurrencyCode>
 <LanguageCode>CHS</LanguageCode>
 <Location>test</Location>
 <Name>ABC Corp</Name>
<ListOfContact/>
</Account>
 </ListOfAccount>
</SiebelMessage>

Then, after the sync operation, all the child contacts are deleted because none of the nodes match.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
<Account>
 <AccountStatus>Active</AccountStatus>
 <CSN>1-3JGO7</CSN>
 <CurrencyCode>USD</CurrencyCode>
 <LanguageCode>ENU</LanguageCode>
 <Location>test</Location>
 <Name>ABC Corp</Name>
 <ListOfAccount_BusinessAddress>
 <Account_BusinessAddress IsPrimaryMVG = "Y">

132

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

 <AddressId>1-3JGOA</AddressId>
 <AddressActiveStatus>Y</AddressActiveStatus>
 <BillAddressFlag>Y</BillAddressFlag>
 <City>MyTown</City>
 <Country>Canada</Country>
 <MainAddressFlag>Y</MainAddressFlag>
 <ShipAddressFlag>Y</ShipAddressFlag>
 <StreetAddress>123 Main St</StreetAddress>
 </Account_BusinessAddress>
 <Account_BusinessAddress IsPrimaryMVG = "N">
 <AddressActiveStatus>Y</AddressActiveStatus>
 <BillAddressFlag>Y</BillAddressFlag>
 <AddressId>1-3JGOB</AddressId>
 <City>YourTown</City>
 <Country>Canada</Country>
 <MainAddressFlag>Y</MainAddressFlag>
 <ShipAddressFlag>Y</ShipAddressFlag>
 <StreetAddress>456 Oak St</StreetAddress>
 </Account_BusinessAddress>
 </ListOfAccount_BusinessAddress>
 <ListOfAccount_Organization>
 <Account_Organization IsPrimaryMVG = "Y">
 <Organization>Default Organization</Organization>
 <OrganizationId>0-R9NH</OrganizationId>
 <OrganizationIntegrationId/>
 </Account_Organization>
 </ListOfAccount_Organization>
</Account>
 </ListOfAccount>
</SiebelMessage>

The following table is a high level representation of the operation.

This second example demonstrates how all records with an empty container are deleted when using the Synchronize
method.

Record in Database Integration Object
Instance

Record After Synchronize Operation

Account: ABC Corp

• Business Address: 123 Main St

• Business Address: 456 Oak St

• Contact: User1

◦ Organization: Default Org.

• Contact: User2

◦ Organization: Default Org.

• Organization: Default Org.

Account: ABC Corp

• Contact:

Account: ABC Corp

• Business Address: 123 Main St

• Business Address: 456 Oak St

• Organization: Default Org.

133

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Insert Method
This method is also similar to the Synchronize method with the exception that the EAI Siebel Adapter generates an error
if a matching root component is found; otherwise, it inserts the root component and synchronizes all the children. It is
important to note that when you insert a record, there is a possibility that the business component would create default
children for the record, which will be removed by the Insert method. The Insert method synchronizes the children, which
deletes all the default children. For example, if you insert an account associated with a specific organization, then it
will also be automatically associated with a default organization. As part of the Insert method, the EAI Siebel Adapter
deletes the default association, and associates the new account with only the organization that was originally defined in
the input integration object instance. The EAI Siebel Adapter achieves this by synchronizing the children.

Example of Using the Insert Method
If you use the Insert method with the example of the integration object instance represented in XML that follows, then a
new service request is created with two activities.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2R6E" IntObjectName = "Sample Service Request"
MessageType = "Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfSampleServiceRequest>
<ServiceRequest>
 <Account>Genesys Communications</Account>
 <AccountLocation>San Francisco, CA</AccountLocation>
 <Area>Network</Area>
 <ClosedDate/>
 <CommitTime/>
 <ContactBusinessPhone>4155551100</ContactBusinessPhone>
 <ContactLastName>Kastrup-Larsen</ContactLastName>
 <Description>Setting up Router services<Description>
 <Priority>3-Medium</Priority>
 <SRNumber>1-MYUNIQUEVALUE</SRNumber>
 <ServiceRequestType>External</ServiceRequestType>
 <ListOfAction>
 <Action>
 <BillableFlag>N</BillableFlag>
 <Description2>test activity1</Description2>
 <EstWorkTimeRemaining>8</EstWorkTimeRemaining>
 <Planned/>
 <PrimaryOwnedBy>SADMIN</PrimaryOwnedBy>
 <RowStatusOld>N</RowStatusOld>
 <Status>Unscheduled</Status>
 <Type>Appointment</Type>
 </Action>
 <Action>
 <BillableFlag>N</BillableFlag>
 <Description2>test activity2</Description2>
 <EstWorkTimeRemaining>8</EstWorkTimeRemaining>
 <Planned/>
 <PrimaryOwnedBy>SADMIN</PrimaryOwnedBy>
 <Status>Unscheduled</Status>
 <Type>Appointment</Type>
 </Action>
 </ListOfAction>
 </ServiceRequest>
 </ListOfSampleServiceRequest>
</SiebelMessage>

134

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

For this example to work, you must have the contact, Kastrup-Larsen, in the database. If you try the Insert method
against a server database where the contact does not exist, then you will receive the following error:

Picklist validation of field 'Contact Last Name' in integration component 'Service
Request' did not find any matches satisfying the query '[Last Name] = "Kastrup-
Larsen"', and an attempt to create a new record through the picklist failed (SBL-
EAI-04186)

Also, if you try to insert the previous instance a second time, then you will receive the following error message:

IDS_ERR_EAI_SA_INSERT_MATCH_FOUND. Insert operation on integration component
'Service Request' failed because a matching record in business component 'Service
Request' with search specification '[SR Number] = "1-MYUNIQUEVALUE" was found.(SBL-
EAI-04383).

Upsert Method
The Upsert method is similar to the Synchronize method with one exception; the Upsert method does not delete any
records.

The Upsert method results in insert or update operations. If the record exists, then it will be updated. If the record does
not exist, then it will be inserted. Unlike the Synchronize method, upsert will not delete any children.

To determine if an update or insert is performed, the EAI Siebel Adapter runs a query using user keys fields or the
search specifications to determine if the parent or primary record already exists. If the parent record exists, it will be
updated. If no matching parent record is found, then the new record will be inserted. Once again, upsert will not delete
any children. If existing children are found, then they are updated.

You can update multiple corresponding top-level (highest-level) parent business component records using one XML file,
as in the following example:

<SiebelMessage MessageId="" MessageType="Integration Object"
 IntObjectName="Transaction">
 <ListofTransaction>
 <Transaction>
 <Field1>xxxx</Field1>
 <Field2>yyyy</Field2>
 ...
 </Transaction>
 <Transaction>
 <Field1>aaaa</Field1>
 <Field2>bbbb</Field2>
 ...
 </Transaction>
 ...
 </ListofTransaction>
 </SiebelMessage>

Update Method
This method is similar to the Synchronize method, except that the EAI Siebel Adapter returns an error if no match is
found for the root component; otherwise, it updates the matching record and synchronizes all the children.

135

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Note: During an update operation, the EAI Siebel Adapter expects a single record to be returned from the user key
search. If more than one record is returned, then EAI Siebel Adapter throws an error.

For example, if you send an order with one order item to the EAI Siebel Adapter, then it will take the following actions:

1. Queries for the order, and if it finds a match, then it updates the record.
2. Updates or inserts the new order item depending on whether a match was found for the new order item.
3. Deletes any other order items associated with that order.

Delete Method
You can delete one or more records in a business component that is mapped to the root integration component, given
an integration object instance. A business component record is deleted as specified by an integration object instance.
The integration component instance fields are used to query the corresponding business component and any records
retrieved will be deleted. You call the Delete method using only one of the following method arguments:

• A Query By Example (QBE) integration object instance.

• A Primary Row Id and Output Integration Object Name.

• A Search Specification.

Note: To have the EAI Siebel Adapter perform a delete operation, define an integration object that contains the
minimum fields on the primary business component for the business object. The EAI Siebel Adapter attempts to
delete matching records in the business component before deleting the parent record.

For example, if you pass in this XML document, then the Test Account account is deleted.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2IOY" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Name>Test Account</Name>
 <Location>EMV</Location>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Any child contacts that once belonged to the account will still remain in the database, but will not be associated with this
Account.

Execute Method
The Execute method can be specified on the EAI Siebel Adapter to perform combinations of various operations on
components in an integration object instance. This method uses the following operations:

• query

• querypage (same as query when used as children operation)

• sync (the same method as Synchronize and is the default operation)

• upsert

136

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

• update

• updatesync

• insert

• insertsync

• delete

• skipnode

• skiptree

• none

Note: A none operation is equivalent to operation sync.

These operations perform the same tasks as the related methods. For example, the delete operation makes the EAI
Siebel Adapter delete the business component record matched to the particular integration component instance.
However, what will be done to the children depends on the combination of the parent operation and the child operation.
For information, see About Execute Method Operations.

Note: The operation method names are case sensitive. If you misspell an operation method, then the EAI Siebel
Adapter assumes the default operation.

An XML document sent to a Siebel application can include operations that describe whether a particular data element
must be inserted, updated, deleted, synchronized, and so on. These operations can be specified as an attribute at the
component level. They cannot be specified for any other element.

The following XML example demonstrates using the upsert and delete operation to delete a particular child record
without updating the parent:

<SiebelMessage MessageId="" MessageType="Integration Object" IntObjectName="Sample
Account">
 <ListofSampleAccount>
 <Account operation="upsert">
 <Name>A. K. Parker Distribution</Name>
 <Location>HQ-Distribution</Location>
 <Organization>North American Organization</ Organization>
 <Division/>
 <CurrencyCode>USD</CurrencyCode>
 <Description>This is the key account in the AK Parker Family</
Description>
 <HomePage>www.parker.com</HomePage>
 <LineofBusiness>Manufacturing</LineofBusiness>
 <ListOfContact>
 <Contact operation="delete">
 <FirstName>Stan</FirstName>
 <JobTitle>Senior Mgr of MIS</JobTitle>
 <LastName>Graner</LastName>
 <MiddleName>A</MiddleName>
 <PersonalContact>N</PersonalContact>
 <Account>A. K. Parker Distribution</Account>
 <AccountLocation>HQ-Distribution</AccountLocation>
 </Contact>
 </ListOfContact>
 </Account>
 </ListofSampleAccount>
</SiebelMessage>

137

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

About Execute Method Operations
Specify an attribute named operation, in lowercase, to the component’s XML element. The legal values for this attribute
are upsert, sync, delete, query, update, insert, updatesync, insertsync, skipnode, skiptree, and none. If the operation is
not specified on the root component, then the sync operation is used as the default.

Note: Specifying an operation within the ListOf tag is not supported. For information on the ListOf tag, see XML
Reference: Siebel Enterprise Application Integration .

Each child node inherits the operation from the parent if another operation is not explicitly specified. If another
operation is explicitly specified, then the following table represents the results of the operation on the current node.

Operation What Happens to the Current Node What Happens to Unmatched Children
of Current Node

upsert

Update or insert

Leave alone

sync

Update or insert

Delete

update

Update

Delete

updatesync

Update

Delete

insert

Insert

Leave alone

insertsync

Insert

Delete

skipnode

Skip this node

Leave alone

skiptree

Skip the tree

Not applicable

Example of a Parent Node Using a Sync Operation
This example demonstrates the effects of records after a sync operation is performed. The following table is a high level
representation of a parent node using the sync operation of the Execute method.

Record in Database Integration Object Instance Record After Execute Operation

Account1

Contact0

Contact1

Account1 operation=sync

Contact1

Contact2

Account1

Contact1

Contact2

138

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Record in Database
The following code represents GENCOMM0 and GENCOMM1 being retrieved as the contacts for this example:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
<Account>
 <AccountStatus>Active</AccountStatus>
 <CurrencyCode>USD</CurrencyCode>
 LanguageCode>ENU</LanguageCode>
 <Location>San Francisco, CA</Location>
 <Name>GenComm</Name>
 <ListOfContact>
 <Contact>
 <FirstName>GENCOMM0</FirstName>
 <LastName>GENCOMM0</LastName>
 <MiddleName/>
 <Organization>Default Organization</Organization>
 </Contact>
 <Contact>
 <FirstName>GENCOMM1</FirstName>
 <LastName>GENCOMM1</LastName>
 <MiddleName/>
 <Organization>Default Organization</Organization>
 </Contact>
 </ListOfContact>
 /Account>
 </ListOfAccount>
</SiebelMessage>

Integration Object Instance
The following code represents the sync operation acting on the contacts from the database.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
<Account operation="sync">
 <AccountStatus>Inactive</AccountStatus>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>San Francisco, CA</Location>
<Name>GenComm</Name>
<ListOfContact>
 <Contact>
 <FirstName>GENCOMM1</FirstName>
 <LastName>GENCOMM1</LastName>

 <MiddleName/>
 <Organization>Default Organization</Organization>
 </Contact>
 <Contact>
 <FirstName>GENCOMM2</FirstName>
 <LastName>GENCOMM2</LastName>
 <MiddleName/>
 <Organization>Default Organization</Organization>
 </Contact>
</ListOfContact>
</Account>
 </ListOfAccount>

139

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

</SiebelMessage>

Result Record in Database
The following code represents the results of the sync operation after acting on the two contacts from the database.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">
 <ListOfAccount>
<Account>
<AccountStatus>Inactive</AccountStatus>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>San Francisco, CA</Location>
<Name>GenComm</Name>
<ListOfContact>
 <Contact>
 <FirstName>GENCOMM1</FirstName>
 <LastName>GENCOMM1</LastName>
 <MiddleName/>
 <Organization>Default Organization</Organization>
 </Contact>
 <Contact>
 <FirstName>GENCOMM2</FirstName>
 <LastName>GENCOMM2</LastName>
 <MiddleName/>
 <Organization>Default Organization</Organization>
 </Contact>
</ListOfContact>
</Account>
 </ListOfAccount>
</SiebelMessage>

In this case, if a matching Account1 exists in the database, then the EAI Siebel Adapter will perform an update of that
record. If no record matching Account1 exists, then the EAI Siebel Adapter will insert a new account.

For all the matching child contacts, the sync operation is inherited. Therefore, if the child exists, then it will be updated.
If the child does not exist, then it is inserted. Any child contacts that exist in the database but do not match the
integration object instance (unmatched children) are deleted.

The reason for this logic is that the sync operation makes the record in the database look like the integration object
instance.

Example of a Parent Node Using an Update Operation
This example demonstrates the effects of records after an update operation is performed. the following table is a high
level representation of a parent node using the update operation of the Execute method.

Note: The examples represented by the following table, second table in this topic and the fourth table in this topic
basically have the same result. However, as reflected in the third table in this topic, the children do not automatically
inherit Update if it is only set for the root.

Record in Database Integration Object Instance Record After Execute Operation

Account1

Contact0

Account1 operation=update

Contact1

Account1

Contact1

140

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Record in Database Integration Object Instance Record After Execute Operation

Contact1

Contact2

Contact2

In this case, if a record matching Account1 exists in the database, then the EAI Siebel Adapter updates that specific
record. If no matching account exists, then the result of the EAI Siebel Adapter is an error with this message:

Insert operation on integration component 'Account' failed because a matching record
in business component 'Account' with search specification '[Name] = "GenComm" AND
[Location] = "San Francisco, CA"' was found (SBL-EAI-04383)

For all the matching child contacts, the update operation is inherited. Therefore, if the child exists, then it will be
updated. If the child does not exist, then it is inserted. For child contacts that exist in the database but do not match the
integration object instance, they will be deleted. These might be child contacts created or associated with the Account
by default.

This is very similar to the previous example, except that the record must exist in the database.

Example of a Parent Using an Update Operation and One More Child Using an Insert
Operation
This example demonstrates the effects on records after an update operation acts on the parent, and an insert operation
acts on one of the children records. The following table is a high level representation of this example.

Record in Database Integration Object Instance Record After Execute Operation

Account1

Contact0

Contact1

Account1 operation=update

Contact1

Contact2 operation=insert

Account1

Contact1

Contact2

In this case, if a record matching Account1 exists in the database, then the EAI Siebel Adapter updates that record. If no
record matching Account1 exists, then the result from the EAI Siebel Adapter is an error.

You can also override the parent operation as in the case for Contact2. Since Contact2 does not exist, and there is an
explicit insert operation, it will be inserted. Any unmatched children will be deleted as part of the parent operation
(update). This is the reason why Contact0 is deleted.

If you are explicitly overriding the parent operation, then you must make sure the operation applies. For example, the
two combinations in the following table and the second table in this topic will fail. In the following table, it fails because
an insert is attempted when Contact1 already exists in the database.

Record in Database Integration Object Instance Record After Execute Operation

Account1

Contact0

Contact1

Account1 operation=update

Contact1 operation=insert

Contact2 operation=insert

None

141

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

In the following table, the update fails because SubContact3 inherits from Contact2's operation, and Subcontact3 does
not exist in the database.

Record in Database Integration Object Instance Record After Execute Operation

Account1

Contact1

Contact2

SubContact1

SubContact2

Account1

Contact1

Contact2 operation=update

SubContact1

SubContact3

None

Example of a Parent Using the Update Operation and One More Child Using the
Upsert Operation
This example demonstrates the effects of records after an update operation acts on the parent, and an upsert operation
acts on one of the children records. The following table is a high level representation of this example.

Record in Database Integration Object Instance Record After Execute Operation

Account1

Contact0

Contact1

Account1 operation=update

Contact1

Contact2 operation=upsert

Account1

Contact1

Contact2

In this case, if a record matching Account1 exists in the database, then the EAI Siebel Adapter updates that record. If no
record matching Account1 exists, then the result of the EAI Siebel Adapter is an error.

For a record matching Contact2, the upsert operation overrides the update operation. Therefore, if Contact2 exists, then
it is updated. If no record matching Contact2 is found, then it is inserted. Unmatched child contacts are deleted.

Example of a Parent Using the Upsert Operation and One More Child Using the Sync
Operation
This example demonstrates the effects of records after an update operation acts on the parent, and a sync operation
acts on one of the children records. The following table is a high level representation of this example.

Record in Database Integration Object Instance Record After Execute Operation

Account1

Contact0

Organization2

Contact1

Organization2

Account1 operation=upsert

Contact1

Organization1

Contact2 operation=sync

Organization3

Account1

Contact0

Organization2

Contact1

Organization1

142

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Record in Database Integration Object Instance Record After Execute Operation

Contact2

Organization2

Organization2

Contact2

Organization3

In this case, if a record matching Account1 exists in the database, then the EAI Siebel Adapter updates that record. If no
record matching Account1 exists, then the EAI Siebel Adapter inserts the record.

For all child contacts, the upsert operation applies. Therefore, if the child exists, then it is updated. If the child does not
exist, then it is inserted. For child contacts that exist in the database, but do not match the integration object instance,
they will remain unchanged because upsert does not delete children.

In the case of Contact2, which has the sync operation overriding the upsert operation, it is updated, and its children are
synchronized.

Skiptree Operation
The whole sub tree rooted at this node is not processed. It is the same as that whole sub tree not existing in the
integration object instance. Operations specified in child nodes do not affect processing in any way since the EAI Siebel
Adapter does not act on the child.

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId="1-2RE" MessageType="Integration Object"
IntObjectName="Sample Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfSampleAccount>
 <Account operation="upsert">
 <Name>foo </Name>
 <Location>cold storage</Location>
 <ListOfContact>
 <Contact operation="skiptree">
 <FirstName>firstname</FirstName>
 <LastName>contact1</LastName>
 <Organization>Default Organization</Organization>
 <PersonalContact>N</PersonalContact>
 <ListOfBusinessAddress>
 <BusinessAddress operation="insert">
 <City>San Mateo</City>
 <Zip>94402</Zip>
 <AddressName>primary address</AddressName>
 </BusinessAddress>
 </ListOfBusinessAddress>
 </Contact>
 <Contact>
 <FirstName>firstname</FirstName>
 <LastName>contact2</LastName>
 <Organization>Default Organization</Organization>
 <PersonalContact>N</PersonalContact>
 </Contact>
 </ListOfContact>
 </Account>
 </ListOfSampleAccount>
</SiebelMessage>

Based on this example, the account is upserted. The processing of the first contact is completely skipped although the
business address child has an insert operation set. Also, the second contact is upserted.

143

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

If the skiptree operation is specified for the account integration component, then the EAI Siebel Adapter skips
processing the complete account. This results in no operation. It is possible to have many accounts with some having
skiptree specified as shown in the following example. The EAI Siebel Adapter processes the trees that do not have
skiptree specified.

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId="1-2RE" MessageType="Integration Object"
IntObjectName="Sample Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfSampleAccount>
 <Account operation="skiptree">
 <Name>foo</Name>
 <Location>cold storage<Location/>
 </Account>
 <Account operation="upsert">
 <Name>bar</Name>
 <Location>cold storage<Location/>
 </Account>
 </ListOfSampleAccount>
</SiebelMessage>

Skipnode Operation
Similar to all other Execute operations, the children nodes inherit the semantics of the operation from the parent nodes.
If a node has the skipnode operation set, then the EAI Siebel Adapter will skip setting field values for all children unless a
child has an explicit operation set that will override.

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId="1-2RE" MessageType="Integration Object"
IntObjectName="EAI Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account operation="skipnode">
 <Name>foo</Name>
 <Location>cold storage</Location>
 <ListOfContact>
 <Contact operation="upsert">
 <IntegrationId>1-123</IntegrationId>
 <FirstName>firstname</FirstName>
 <LastName>contact1</LastName>
 <ListOfContact_Organization>
 <Contact_Organization>
 <Organization operation="insert">MyOrganization</Organization>
 </Contact_Organization>
 </ListOfContact_Organization>
 </Contact>
 <Contact operation="upsert">
 <IntegrationId>2-123</IntegrationId>
 <FirstName>firstname</FirstName>
 <LastName>contact2</LastName>
 </Contact>
 </ListOfContact>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Based on this example, the account is skipped. However, the EAI Siebel Adapter will attempt to insert the two contacts.

EAI Siebel Adapter Business Service Method Arguments

144

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Each of the EAI Siebel Adapter methods takes arguments that allow you to specify required and optional information to
the adapter. You can locate the arguments for each method (and whether it can be used as an input argument, output
argument, or both) in the following table.

Argument Query Query Page Sync Upsert Update Insert Delete Execute

BusObjCacheSize

Input

Input

Input

Input

Input

Input

Input

Input

DeleteByUserKey

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

Input

ErrorOnNonExisting
Delete

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

Input

ExecutionMode

Input

Input

not
applicable

Input

Input

Input

not
applicable

Input

IntObjectName

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

Input

LastPage

not
applicable

Output

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Output

MessageId

Input

Input

Input

Input

Input

Input

Input

Input

NewQuery

not
applicable

Input

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

NumOutputObjects

Output

Output

Output

Output

Output

Output

Output

Output

OutputIntObject Name

Input

Input

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

PageSize

not
applicable

Input

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

PrimaryRowId

Input

not
applicable

Output

Output

Output

Output

Input

Input/
Output

QueryByUserKey

Input

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

SearchSpec

Input

Input

not
applicable

not
applicable

not
applicable

not
applicable

Input

Input

SiebelMessage

Input/
Output

Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

145

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Argument Query Query Page Sync Upsert Update Insert Delete Execute

SortSpec

not
applicable

Input

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

StartRowNum

not
applicable

Input

not
applicable

not
applicable

not
applicable

not
applicable

not
applicable

Input

StatusObject

not
applicable

not
applicable

Input

Input

Input

Input

Input

Input

ViewMode

Input

Input

Input

Input

Input

Input

Input

Input

The following table presents each argument of the EAI Siebel Adapter business service methods.

Argument Display Name Description

BusObjCacheSize

Business Object Cache
Size

Default is 5. Maximum number of Business Objects instances cached
by the current instance of the EAI Siebel Adapter. If set to zero, then
the EAI Siebel Adapter does not use the cache.

DeleteByUserKey

Delete By User Key

A Boolean argument. Forces the EAI Siebel Adapter to use only the
user keys to identify a record.

ErrorOnNonExisting Delete

Error On Non Existing
Delete

A Boolean argument. Determines whether or not the EAI Siebel
Adapter aborts the operation if no match is found.

ExecutionMode

Execution Mode

Used to set the direction of a query on a business component. Valid
values are ForwardOnly and Bidirectional. The default is Bidirectional.

ForwardOnly is more efficient than Bidirectional, and is
recommended in cases where you must process a large number of
records in the forward direction only (such as for report generation).
For operations that are likely to return more than 10000 records, use
ForwardOnly to avoid errors.

For more information on executing queries, see the topic on the
ExecuteQuery business component method in Siebel Object
Interfaces Reference .

IntObjectName

Integration Object
Name

Name of the integration object to delete.

LastPage

Last Page

Boolean indicating whether or not the last record in the query result
set has been returned.

MessageId

Message Id

The MessageId can be used to specify the ID for the generated
message. By default, the EAI Siebel Adapter generates a unique ID for
each message. However, if you want to use the workflow instance ID,
 then you can use this argument to specify the ID.

146

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Argument Display Name Description

NewQuery

New Query

Default is False. Boolean indicating whether a new query will be
executed. If set to True, a new query is executed flushing the cache
for that particular integration object.

NumOutputObjects

Number of Output
Integration Objects

Number of output integration objects.

OutputIntObjectName

Output Integration
Object Name

The name of the integration object that is to be output.

PageSize

Page Size

Default is 10. Indicates the maximum number of integration object
instances to be returned.

PrimaryRowId

Object Id

The PrimaryRowId refers to the Id field in the Business Component,
 Row_Id at the table level.

PrimaryRowId is only returned as an output argument if you are
passing in one integration object instance. If you are passing multiple
integration object instances, then this argument is not returned as
an output argument. To obtain the ID field when multiple integration
objects are processed, use the StatusObject argument.

QueryByUserKey

Query By Key

A Boolean argument. Forces the EAI Siebel Adapter to use only the
user keys to perform a query.

SearchSpec

Search Specification

This argument allows you to specify complex search specifications
as free text in a single method argument. For information, see About
Using Language-Independent Code with the EAI Siebel Adapter
Business Service.

SiebelMessage

Siebel Message

The input or the output integration object instance.

SortSpec

Sort Specification

Default is the SortSpec of the underlying business component. This
argument allows you to specify complex sort criteria as a free text in
a single method argument, using any business component fields and
standard Siebel sort syntax. For examples, see Using Siebel Tools .

StartRowNum

Starting Row Number

Default is 0 (first page). Indicates the row in the result set for the
QueryPage method to start retrieving a page of records.

StatusObject

Status Object

This argument tells the EAI Siebel Adapter whether or not to return a
status message.

ViewMode

View Mode

Default is All. Visibility mode to be applied to the Business Object.
Valid values are: Manager, Sales Rep, Personal, Organization, Sub-
Organization, Group, Catalog, and All. Note that the ViewMode user
property on the integration object has priority over the ViewMode
method argument.

147

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

About the SearchSpec Input Method Argument
The SearchSpec input method argument is applicable to the QueryPage, Query, Delete, and Execute methods. This
method argument allows you to specify complex search specifications as free text in a single method argument.
Expressions within a single integration component are restricted only by the Siebel Query Language supported by the
Object Manager. Integration components and fields are referenced using the following notation:

[IntCompName.IntCompFieldName]

For example, given an integration object definition with two integration components, Account as the root component
and Contact as the child component, the following search specification is allowed:

([Account.Site] LIKE "A*" OR [Account.Site] IS NULL) AND [Contact.PhoneNumber] IS
NOT NULL

This search specification queries accounts that either have a site that starts with the character A, or do not have a site
specified. In addition, for the queried accounts, it queries only those associated contacts who have a phone number.

Note: The operator between fields for a particular integration component instance can be AND unless between the
same field. You use the DOT notation to refer to integration components and their fields.

You can include the child integration component in a search specification only if its parent components are also
included.

About Multivalue Groups in the EAI Siebel Adapter Business Service
You have a contact with multiple contact positions in a Siebel application. None of these positions are marked as the
primary position for the contact, and you want to select one of them as the primary position.

Multivalue groups (MVGs) in the business components are mapped to separate integration components. Such
integration components are denoted by setting a user property MVG on the integration component to Y. For
information on MVGs, see Integration Objects.

An integration component instance that corresponds to a primary MVG is denoted by the attribute IsPrimaryMVG set to
Y. This attribute is a hidden integration component field and does not have a corresponding business component field.

Each MVG that appears on the client UI is mapped to a separate integration component. For example, in the Orders
Entry - Orders screen, there is an account address, a bill-to address, and a ship-to address. Each of these MVGs needs
a separate integration component definition. Each field defined for an integration component (represented by the class
CSSEAIIntCompFieldDef) maps to a field in the MVG. For such fields, External Name denotes the name of the business
component field as it appears on the master business component, and the user property MVGFieldName denotes the
name of the business component field as it appears on the MVG business component.

Note: Setting a primary record in an MVG is supported when the Auto Primary property of the underlying multivalue
link is specified as Selected, None, or Default.

Setting a Primary Position for a Contact
You have a contact with multiple contact positions in a Siebel application. None of these positions are marked as the
primary position for the contact, and you want to select one of them as the primary position.

148

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

To specify a contact position as a primary

1. Create your XML file and insert <IsPrimaryMVG= 'Y'> before the contact position you want to identify as the
primary position for the contact as follows:

<?xml version="1.0" encoding="UTF-8" ?>
 <?Siebel-Property-Set EscapeNames="false"?>
- <SiebelMessage MessageId="1-69A" IntObjectFormat="Siebel Hierarchical"
MessageType="Integration Object" IntObjectName="Sample Contact">
- <ListOfSampleContact>
- <Contact>
 <FirstName>Pal888</FirstName>
 <IntegrationId>65454398</IntegrationId>
 <JobTitle>Manager</JobTitle>
 <LastName>John888</LastName>
 <MiddleName />
 <PersonUId>1-Y88H</PersonUId>
 <PersonalContact>N</PersonalContact>
- <ListOfContact_Position>
- <Contact_Position IsPrimaryMVG="Y">
 <EmployeeFirstName>Siebel</EmployeeFirstName>
 <EmployeeLastName>Administrator</EmployeeLastName>
 <Position>Siebel Administrator</Position>
 <RowStatus>N</RowStatus>
 <SalesRep>SADMIN</SalesRep>
 </Contact_Position>
 </ListOfContact_Position>
 </Contact>
 </ListOfSampleContact>
 </SiebelMessage>.

2. Use the Upsert or Sync method to update the account.

About Using Effective Dating with Siebel EAI Adapter
Business Service
The Siebel EAI Adapter allows you to access effective dating data, which means the start date and end date for a given
field or link. Third-party applications can request and receive effective dating data from the Siebel application.

To view XML samples for effective dating functionality see Enabling Effective Dating on Fields.

You specify effective dating on fields of a given business component through a Siebel Web Client administration screen.
For more information, see Enabling Effective Dating on Fields. Two integration component fields attributes allow you to
set effective dating: EDStartDate and EDEndDate. Standard querying techniques, such as query, insert, update, sync can
be used to request effective dating-enabled data.

As the following figure shows, the Siebel Object Manager framework features APIs which are called by the Siebel EAI
Adapter when an integration object with effective dating enabled fields or links is read by the XML Converter.

149

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

The following two topics explain how effective dating works:

• Enabling Effective Dating on Fields

• Enabling Effective Dating on Links

Enabling Effective Dating on Fields
This topic explains how effective dating works on fields. It contains the following topics:

• Configuring Integration Components for Effective Dating on Fields

• How the XML Converter Reads Effective Dating Data from Fields

• WSDL Schema Generation for Effective Dating on Fields

Configuring Integration Components for Effective Dating on Fields

You can enable effective dating on a field in an existing integration object if the corresponding field in the business
component is effective dating-enabled. You enable fields for effective dating through the Siebel Web Client
administration Effective Dating screen.

To enable effective dating on fields
1. In the Siebel Web Client, navigate to Administration - Effective Dating, then Field.

150

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

2. In the Effective Dating Buscomp list, select the required business component.

The list displays the fields already enabled for ED.
3. If you want enable effective dating field not present in this list, click New, then in the Field field click the Select

button.
4. In the Business Component Fields window select the required field, then click OK.

This enables the fields for ED.

You use Siebel Tools to synchronize the object from your current repository, with its underlying business object in the
Siebel database which contains the new EDEnabled user property. For more information on synchronizing integration
objects, see Synchronizing Integration Objects.

To enable effective dating on an integration object
1. In Siebel Tools, select the integration object you want to enable for effective dating.
2. Click the Synchronize button in the Integration Objects list.

The Integration Object Synchronize wizard appears.
3. Click the plus symbol to display all the related integration components.
4. Uncheck the boxes beside the objects and components you do not want to include in the synchronization of

your Siebel integration object.
5. Locate the integration component containing the effective dating-enabled fields and drill down on it.
6. Click the plus symbol to display all the user properties of the field.
7. Locate the EDEnabled user property from the list and add it to the repository side.
8. Review the summary, and if changes are needed, click Back and make the needed changes.
9. If no changes are needed, click Finish to synchronize the Siebel integration object and the Siebel business

object.

How the XML Converter Reads Effective Dating Data from Fields
The XML converter reads effective dating attributes contained in an XML file, maps them to a property set, and converts
the property set to an integration object instance by embedding the EDStartDate and EDEndDate attributes inside the
field name.

For example: If a SOAP request contains the following query for an effective dating field:

<acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/01/2012" EDEndDate=">James</acc:FirstName>
</acc:EDListOfFirstName>

The data will be converted into a child property set of the integration component instance as follows:

c[0] CCFPropertySet@1DA79960 p#0 c#1 type="ListOfRelated Contact" vt=0 value="
{
 c[0] CCFPropertySet@1D9FD870 p#1 c#2 type="Related Contact" vt=0 value="
 {
 p["Contact Id"] = "Contact1";
 c[0] CCFPropertySet@1FD92BB0 p#0 c#1 type="EDListOfFirst Name" vt=0 value="
 {
 c[0] CCFPropertySet@13258470 p#2 c#0 type="First Name" vt=3 value="James"
 {
 ["EDEndDate"] = ";
 ["EDStartDate"] = "04/25/2012";
 }
 }

151

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

 }
}

The dates are now embedded into the field name.

WSDL Schema Generation for Effective Dating on Fields
Effective dating requires two complex type attributes StartDate and EndDate for each effective dating-enabled field.
In the following schema example, the location field is enabled for effective dating, as shown by the two additional
attributes EDStartDate and EDEndDate. Historical data can be retrieved by setting the cardinality of the effective dating-
enabled XSD element to unbounded.

WSDL Schema Example
<xsd:complexType name="RelatedContact">
 <xsd:sequence>
 <xsd:element name="ContactId" maxOccurs="1" minOccurs="0" type="xsd:string"/>
 <xsd:element name="EDListOfFirstName" maxOccurs="1" minOccurs="0"
 type="xsdLocal1:EDListOfFirstName"/>
 <xsd:element name="ContactIntegrationId" maxOccurs="1" minOccurs="0"
 type="xsd:string"/>
 <xsd:element name="EDListOfLastName" maxOccurs="1" minOccurs="0"
 type="xsdLocal1:EDListOfLastName"/>

 </xsd:sequence>
 </xsd:complexType>

<xsd:complexType name="EDListOfFirstName">
 <xsd:sequence>
 <xsd:element name="FirstName" maxOccurs="unbounded" minOccurs="0"
 type="xsdLocal1:FirstName"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="FirstName">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="EDStartDate" type="xsd:string"/>
 <xsd:attribute name="EDEndDate" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

SOAP Query Example
The previous WSDL schema example allows you to generate the following SOAP query:

<ElementName EDStartDate=dd1/mm1/yyyy1, EDEndDate = dd2/mm2/yyy2>value</ElementName>

For example:

<acc:RelatedContact>
 <acc:ContactId>88-30ARL</acc:ContactId>
 <acc:EDListOfFirstName>
 <acc:FirstName EDStartDate="04/01/2012" EDEndDate=">James</acc:FirstName>
 </acc:EDListOfFirstName>
 <acc:EDListOfLastName>
 <acc:LastName EDStartDate="04/01/2012" EDEndDate=">Bond</acc:LastName>
 </acc:EDListOfLastName>
</acc:RelatedContact>

152

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Similarly, you can perform insert, update, and synchronize operations on data using the WSDL Schema in the previous
example.

Enabling Effective Dating on Links
This topic explains how to enable effective dating on links. It contains the following topics:

• Enabling Effective Dating on Links

• Siebel EAI Adapter Operations for Effective Dating on Links

Enabling Effective Dating on Links
You can enable effective dating on a link in an existing integration object if the corresponding link in the business
component is effective dating-enabled. You enable link for effective dating through the Siebel Web Client administration
Effective Dating screen.

To enable effective dating on links
1. In the Siebel Web Client, navigate to Administration - Effective Dating, then Child Buscomp.
2. In the Effective Dating Buscomp list, select the required business component, then in the Child Buscomp view

select the required link if it is shown.
If you need to create a new link, see Step 3.

3. Click New, then in the Link Name field click the Select button.
4. In the Link window select the required link, then click OK.

Web Service Schema Example
The following Web service schema example shows a link between the Household and Related Contact business
components which have been enabled for effective dating. The effective dating attributes are displayed in bold text.

<xsd:complexType name="Household">

 <xsd:complexType name="RelatedContact">
 <xsd:attribute name="EDStartDate" type="xsd:string" />
 <xsd:attribute name="EDEndDate" type="xsd:string" />
<xsd:sequence>
 <xsd:element name="ContactIntegrationId" maxOccurs="1" minOccurs="0"
 type="xsd:string" />
 <xsd:element name="EDListOfFirstName" maxOccurs="1" minOccurs="0"
 type="xsdLocal1:EDListOfFirstName"/>
 <xsd:element name="EDListOfLastName" maxOccurs="1" minOccurs="0"
 type="xsdLocal1:EDListOfLastName"/>
 <xsd:element name="MiddleName" maxOccurs="1" minOccurs="0" type="xsd:string"
 />
 <xsd:element name="PersonUId" maxOccurs="1" minOccurs="0" type="xsd:string" /
 >
 <xsd:element name="PersonalContact" maxOccurs="1" minOccurs="0"
 type="xsd:string" />
 <xsd:element name="ContactId" maxOccurs="1" minOccurs="0" type="xsd:string" /
 >
 <xsd:element name="DateEnteredHousehold" maxOccurs="1" minOccurs="0"
 type="xsd:string" />
 <xsd:element name="DateExitedHousehold" maxOccurs="1" minOccurs="0"
 type="xsd:string" />

153

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

 <xsd:element name="PrimaryOrganizationId" maxOccurs="1" minOccurs="0"
 type="xsd:string" />
 <xsd:element name="Relationship" maxOccurs="1" minOccurs="0"
 type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="IsPrimaryMVG" type="xsd:string" />
 </xsd:complexType>
</xsd:complexType>

This will produce the following XML:

<hous:Household>

 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="1/1/2003" EDEndDate="">

 <hous:ContactId>88-30KSP</hous:ContactId>

 < hous:EDListOfFirstName>
 < hous:FirstName EDStartDate="04/01/2012" EDEndDate="">SF1N6</acc:James>
 </ hous:EDListOfFirstName>
 < hous:EDListOfLastName>
 < hous:LastName EDStartDate="04/01/2012" EDEndDate=">SL1N6</acc:Bond>
 </ hous:EDListOfLastName>
 < hous:MiddleName>MN1</hous:MiddleName>

 </hous:RelatedContact>

 </hous:ListOfRelatedContact>
 </hous:Household>

Siebel EAI Adapter Operations for Effective Dating on Links
The Siebel EAI Adapter receives the integration object in the format described in the Enabling Effective Dating on Links .
Depending on the specified operations the effective dates are used as described in the following:

• Insert operation. Once the record is inserted into the parent and child business component, the Siebel EAI
Adapter reads the EDStartDate and the EDEndDate from the integration object and inserts these values into the
corresponding effective dating business component.

• Update operation. Once the record is inserted into the parent and child business component, the Siebel EAI
Adapter removes all history records from the effective dating enabled business component and then reads the
EDStartDate and EDEndDate values from the integration object and inserts these dates as fresh records into the
business component.

Note: The Update operation is only possible for currently active links (in other words, update is not possible if
a link has been soft deleted by giving a end date value for most recent history record).

• Upsert and Synchronize operations. If the upsert attribute is specified for the operation in the integration
component then no history records are deleted, instead the history given in the XML input is inserted into the
history table.

The synchronize operation can result in the insert, update or deletion of the child integration component as
specified in the conditions set in the Synchronize Method.

XML Example
This example illustrates what is required if you want to perform an insert or upsert operation to insert or update
multiple history records for the same child business component.

154

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Note: Multiple entries must be specified in the input XML code with the same user key.

<hous:Household>
 <hous:ListOfRelatedContact>
 <hous:RelatedContact EDStartDate="1/1/2003" EDEndDate=">
 <hous:ContactId>88-30KSP</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="1/1/2002"
 EDEndDate="12/31/2002">
 <hous:ContactId>88-30KSP</hous:ContactId></hous:RelatedContact>
 <hous:RelatedContact EDStartDate="1/1/2001"
 EDEndDate="12/31/2001">
 <hous:ContactId>88-30KSP</hous:ContactId>
 </hous:RelatedContact>
 <hous:RelatedContact EDStartDate="1/1/2000"
 EDEndDate="12/31/2000">
 <hous:ContactId>88-30KSP</hous:ContactId>
 </hous:RelatedContact>
 <hous:ListOfRelatedContact>
 </hous:Household>

About Using Language-Independent Code with the EAI
Siebel Adapter Business Service
If the user property AllLangIndependentVals is set to Y at the integration object level, then the EAI Siebel Adapter uses
the language-independent code for its LOVs.

In the outbound direction, for example, using the Query method, if the AllLangIndependentVals is set to Y, then the
EAI Siebel Adapter translates the language-dependent values in the Siebel Database to their language-independent
counterpart based on the List Of Values entries in the database.

In the inbound direction, for example, using the Synchronize method, if the AllLangIndependentVals is set to Y, then
the EAI Siebel Adapter expects language-independent values in the input message, and translates them to language-
dependent values based on the current language setting and the entries in the List Of Values in the database.

Note: The LOV-based fields are always validated using language-dependent values. Using language independent
values for LOVs and MLOVs increases the EAI Siebel Adapter CPU usage by about five percent, but allows easier
communication between systems that operate on different languages.

About LOV Translation and the EAI Siebel Adapter
Business Service
The Siebel application distinguishes two types of lists of values (LOV):

• Multilingual LOV (MLOV). Stores a language-independent code (LIC) in the Siebel Database that is translated
to a language-dependent value (LDV) for active language by Object Manager. MLOVs are distinguished by
having the Translation Table specified in the Column definition.

155

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

• Single-language LOV. Stores the LDV for the current language in the Siebel Database. The Boolean integration
object user property AllLangIndependentVals determines whether the EAI Siebel Adapter will use LDV (No = no
translation necessary) or LIC (Yes = translation needed) for such LOVs.

Translating to LIC affects performance, but allows easier cooperation between systems that operate on different
languages. This option is especially used by various import and export utilities.

The AllLangIndependentVals integration object user property is undefined for integration objects when the base object
type is not Siebel Business Object. When the base object is Siebel Business Object, AllLangIndependentVals is defined
with a default value of N.

The following table explains the behavior of the EAI Siebel Adapter according to the AllLangIndependentVals integration
object user property values.

AllLangIndependentVals Yes No Undefined

LOV

LIC

LDV

LDV

MLOV

LIC

LDV

LIC

Siebel EAI and Run-Time Events
The Siebel application allows triggering workflows based on run-time events or workflow policies.

• Run-Time Events. Siebel EAI supports triggering workflows based on run-time events such as Write Record,
which is triggered whenever a record is written. If you use the EAI Siebel Adapter to import data into Siebel
CRM, and use run-time events, then consider the following:
For the EAI Siebel Adapter, one call to the EAI Siebel Adapter with an input message is a transaction. Within
a transaction, the EAI Siebel Adapter makes multiple Write Record calls. At any point in the transaction, if the
EAI Siebel Adapter encounters a problem the transaction is rolled back entirely. However, if you have specified
events to trigger at Write Record, such events are called as soon as the EAI Siebel Adapter makes Write Record
calls even though the EAI Siebel Adapter might be in the middle of a transaction. If you have export data
workflows triggered on such events, this might lead to exporting data from Siebel CRM that is not committed
and might be rolled back. It is also possible that your events are triggered when the record is not completely
populated, which leads to situations that are not handled by your specified event processing workflow.
To avoid the effects of this interaction between the EAI Siebel Adapter and run-time events use the business
service EAI Transaction Service to figure out if a transaction (typically, the EAI Siebel Adapter) is in progress.
You might then want to skip processing that is not desirable when the EAI Siebel Adapter is in progress.
For example, suppose you have a workflow to export orders from Siebel CRM, which is triggered whenever the
order record is written. You also import orders into Siebel CRM using EAI. In such a situation, you do not want to
export orders while they are being imported, because the import might be aborted and rolled back. You achieve
this using the EAI Transaction Service business service as the first step of the export workflow. If you find that a
transaction is in process you can branch directly to the end step.

• Workflow Policies. In addition to Run-Time Events, Siebel CRM also supports Workflow Policies as a triggering
mechanism for workflows. You can use workflow policies instead of run-time events to avoid the situation
discussed in this topic. Use Workflow Policies instead of Run-Time Events when possible.

156

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Guidelines for Using the EAI Siebel Adapter Business
Service
The following guidelines are to be considered when using the EAI Siebel Adapter:

• Keep the integration objects small. Basically, inactivate any unused fields in the integration component. Avoid
creating large integration object instances.

• Test the developed object definitions using the EAI Siebel Adapter before adding to production. You must test
your input and output using working and negative scenarios. Also do performance testing to make sure you are
satisfied with the performance of the input and the output.

• Oracle does not support the use of EAI to update data that is based on administration-type business
components such as Client - Mobile or Position. Only the System Administrator updates these types of data.

• Always use a search specification with the Query() method to avoid receiving every object when run.

• To optimize database performance, you can explicitly specify that the EAI Siebel Adapter use only user key
fields. This feature is available for the methods Query, Delete, and Execute. To use it, set the input property
QueryByUserKey to True for the EAI Siebel Adapter business service and pass an integration object instance
(for example, a Siebel Message) as an input as well. By default, the Siebel adapter uses all the fields in the input
integration object instance.

Troubleshooting the EAI Siebel Adapter Business Service

The EAI Siebel Adapter natively accesses Siebel objects definitions using the business objects, integration objects,
and business component classes. Because of this design, you might get an EAI Siebel Adapter error that contains an
error message from the Siebel Object Manager. See the figure in About the Difference Between Integration Objects and
Integration Object Instances for a logical overview of the Siebel architectural layers. The figure in that topic also shows
the component events that will help you determine in which layer of the application the problem is occurring.

The EAI Siebel Adapter functionality must be considered in light of the entire application functionality. For example,
the Siebel Communications product line provides preconfigured Asset Based Ordering functionality that uses Siebel
workflows and business services. The workflows use the EAI Siebel Adapter business service to extract data from the
database and to update the database.

When using this functionality, the possibility exists that you might get an error in a step of the workflow that indicates a
problem with the EAI Siebel Adapter, such as the asset you want to insert already exists in the system. In this case, first
verify that you are not inserting a duplicate asset. If you have validated that the asset is new and not a duplicate, then
you must research the specifics as to why the EAI Siebel Adapter failed to insert the new asset or attempted to insert a
duplicate asset.

If you have modified the preconfigured Asset integration object or business object, it could be one of your
customizations. For example, perhaps your asset requires additional fields, and you are not providing those fields in
your inbound integration object instance. Therefore, it uses any default values, thus creating a potential duplicate asset.

157

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Enabling Logging for the EAI Siebel Adapter Business
Service
Using component events, logging can be done in the Siebel application. Components are used to assist with the
debugging of problems in the Siebel application. A list of useful and relevant component events for debugging EAI
Siebel Adapter problems are listed in the following table. These components events can be enabled on any server
component that is capable of running an EAI process and on the Siebel client. You might want to enable other events
not listed in the following table.

Event Alias Name Logging Level Description

EAISiebAdpt

4 or 5

Captures EAI Siebel Adapter related events, including integration
component and integration component fields accessed and the values
for the fields; business components and business component fields
accessed and the values for the fields.

This is the main event to enable for EAI Siebel Adapter troubleshooting.

EAISiebAdptPerf

4

Captures EAI Siebel Adapter performance related events, including
operation performed and time for the operation in milliseconds.

This event summarizes the result of the EAI Siebel Adapter operation.
For more information on performance logging, see Troubleshooting the
EAI Siebel Adapter Business Service and Doc ID 476905.1 on My Oracle
Support. This document was previously published as Siebel FAQ 1840.

EAISiebAdptSvcArgTrc

3 or 4

Dumps the inputs and output arguments for the EAI Siebel Adapter
when EnableServiceArgTracing=true.

For more information on argument tracing, see Enabling Siebel
Argument Tracing.

EAITransaction

4

Captures when an EAI Transaction starts.

EAIInfra

4

Output Message: IntObjType=Contact Interface

Format=Siebel Hierarchical

EAIQrySpec

4

Captures the search specification if one is specified.

SQL

4

Captures SQL executed against the database.

SQLParseAndExecute

4

Captures SQL statements and shows SQL bind parameters executed.
Shows SQL executed against the database. Might sometimes be
different than the SQL show in ObjMgrSQLLog.

ObjMgrLog

4 or 5

Logs error code and error message encountered by various Siebel
objects.

158

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Event Alias Name Logging Level Description

ObjMgrDataLog

4

Logs the beginning of a transaction for the database connection.

ObjMgrBusServiceLog

4

Captures creation, deletion and invocation of a Business Service.

ObjMgrBusCompLog 4

4 or 5

Captures the beginning and end of the Business Component creation
and deletion.

For all the events listed in the previous table, setting the logging level to level 4 is sufficient for most types of testing.
You can set the component event to level 5 if you want to see debug level output, but it is not generally recommended
as it adds more lines of data to the log file that might or might not be helpful. Logging level 4/5 represents that a
logging level of 4 or 5 is supported.

To enable EAI Siebel Adapter logging
1. Navigate to the Administration - Server Configuration screen, Servers view.
2. In the starting applet, select the Siebel Server that you want to enable EAI Siebel Adapter logging.
3. In the middle applet, select the Components tab, and highlight the component.
4. In the lower applet, select the Events tab, and set component events.

When you enable the component event logging, make sure you select the appropriate server component or
components involved in the process. For example, if you are testing receiving XML data in the MQSeries Server
Receiver, then you would enable logging on the MQSeriesSrvRcvr component.

You can also use the same srvrmgr command to turn on the component event logging. You will use the "%" shortcut
syntax to enable events. An example of this syntax is "change evtloglvl EAISIEB%=4 for comp BusIntMgr".

Enabling Siebel Argument Tracing
You can also export input and output arguments in XML format to a file for the EAI Siebel Adapter. These XML files
represent the input and output arguments integration object instances. This is a useful technique as it writes to a file the
integration object instances in the directory where your Siebel process is running. For example, in the Siebel Developer
Web Client, it might be c:/siebel/bin.

To enable output arguments tracing
1. Set the server parameter EnableServiceArgTracing to True:

◦ If you are running the Siebel Developer Web Client, then add the following to your .cfg file:

[EAISubsys]

EnableServiceArgTracing = TRUE

159

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

◦ If you are running the Siebel Web Client, modify the following Siebel Server parameter for your object
manager:

"EnableServiceArgTracing" = true

2. Set the appropriate component event level on your server component through the server manager on the
server or SIEBEL_LOG_EVENTS in the Siebel Developer Web Client.

If you set event to:

=3, then input arguments will be written out to a file when an error happens.

=4, then input and output arguments will be written to a file.

Configuring the EAI Siebel Adapter Business Service for
Concurrency Control
The EAI Siebel Adapter supports concurrency control to guarantee data integrity and avoid overriding data by
simultaneous users or integration processes. To do so, the EAI Siebel Adapter uses the Integration Component Key
called the Modification Key. This topic includes the following information:

• Modification Key

• Modification IDs

• About MVG and MVGAssociation Integration Components

• Status IDs

Modification Key
A Modification Key is an Integration Component Key of the type Modification Key. A Modification Key is a collection
of fields that together are used to verify the version of an integration component instance. Typically, Modification
Key fields are Mod Id fields for the tables used. Multiple Modification Key fields might be needed, because a business
component might be updating multiple tables, either as extension tables, or through implicit or explicit joins.

The EAI Siebel Adapter methods (Insert, Update, Synchronize, Upsert) check for the existence of a Modification Key. If
no Modification Key is specified in the integration component definition, or if Modification Key fields are not included
in the XML request, then the EAI Siebel Adapter does not check for the record version and proceeds with the requested
operation. If a valid Modification Key is found, but the corresponding record cannot be found, then the EAI Siebel
Adapter assumes that the record has been deleted by other users and returns the error SSASqlErrWriteConflict.

If a valid Modification Key as well as the corresponding record can be found, then the EAI Siebel Adapter checks
if the Modification Key fields in the XML request and the matched record are consistent. If any of the fields are
inconsistent, then the EAI Siebel Adapter assumes that the record has been modified by other users and returns the
error SSASqlErrWriteConflict. If all the fields are consistent, then the EAI Siebel Adapter proceeds with the requested
operation.

160

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Modification IDs
To determine which Mod Id fields must be used as part of a Modification Key, you expose Mod Id fields for tables
whose columns might be updated by that integration object. In some situations you might have to add corresponding
integration component fields as well as business component fields.

Note: The EAI Siebel Adapter can update base and extension tables. It might even update joined table columns
through picklists that allow updates.

When using Modification IDs, the following behaviors are present:

• All fields must be present in the integration object instance for the Mod Key to be used.

• Only one defined Modification Key is present for each integration component. Unlike for User Keys, multiple
Mod Keys are not allowed.

About the Modification ID for a Base Table
The integration component field Mod Id for a base table is created by the Integration Object Builder Wizard, but you
must make sure it is active if it is needed for your business processes.

About the Modification ID for an Extension Table
An extension table’s Mod Id field is accessible as extension table name.Mod Id in the business component, for example,
S_ORG_EXT_X.Mod Id. However, if your business processes require this field, then you must manually add it to the
integration object definition by copying the Mod Id field and changing the properties.

About the Modification ID for a Joined Table
A joined table’s Mod Id field must be manually added in both business component and integration object definitions.
Business component Mod Id fields for joined tables must:

• Be prefixed with CX string and preferably followed by the name of the join

• Be Joined over the correct join

• Have MODIFICATION_NUM specified as underlying column of type DTYPE_INTEGER

About MVG and MVGAssociation Integration Components
See About MVG and MVGAssociation Integration Components.

About MVG and MVGAssociation Integration Components
For integration components that are of type MVG or MVGAssociation, in addition to the preceding steps, you must
create user properties MVGFieldName and AssocFieldName for each Modification ID integration component field,
respectively, and set the name of the field shown in the parent business component as the value.

To configure the EAI Siebel Adapter business service for concurrency control
1. For each integration component, identify all needed Modification IDs:

161

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

Note: In addition to the Modification ID for the base table, Modification IDs for tables that are used through
one-to-one extension as well as through implicit joins are relevant. For example, on modifying an account
record MODIFICATION_NUM column on S_ORG_EXT is updated, not the MODIFICATION_NUM column on
S_PARTY.

a. Identify all active fields in an integration component that will be updated and have to be concurrency
safe.

b. Select the corresponding business component, the value in the External Name property of the
integration component.

c. For each field identified in Step a, check the value of the Join property of the field. If the join is not
specified, then the field belongs to the base table; otherwise, note the name of the join.

d. In the Object Explorer, select Business Component, then Join, and query for the business component
from Step b. Search whether there is an entry whose Alias property matches the name of the join from
Step c:

- If a matching Alias is found, then this field belongs to a Joined Table. The name of the join in Step c
is the join name, and the value of the Table property is the joined table.

- If no Alias matches, then this is an implicit join to an Extension Table. The name of the join in Step
cis the name of the extension table.

2. Create business component fields for Mod Ids of Joined Tables. For the previous example, create a new field in
the business component Account with the following settings:

◦ Name. CX_Primary Organization-S_BU.Mod Id

◦ Join. Primary Organization-S_BU

◦ Column. MODIFICATION_NUM

◦ Type. DTYPE_INTEGER

3. Expose all Modification IDs identified in Step 1 as integration component fields.
4. For MVG and MVG Association integration components, add user property MVGFieldName and

AssocFieldName respectively, on all Modification ID fields as follows:

a. Check the Integration Component User Prop sub type for user properties of the integration component.
b. If there is a user property called MVGAssociation, then the integration component is a MVG Association,

but if there is a user property called Association then the integration component is a MVG.

Note: If the integration component is neither an MVG nor an MVG Association, then nothing is
required to be done.

5. Repeat the following steps for each Modification ID field on the integration component:

a. Add user property MVGFieldName if MVG, or AssocFieldName if MVG Association.
b. Set the value of the user property to the same as the field name, for example, Mod Id, extension table

name.Mod Id, or CX_join.Mod Id.
6. Create Modification Key.

Define a new integration component key of type Modification Key, and include all the integration component
fields exposed in Step 3 to this key.

7. Validate integration objects and deliver the workspace.

162

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

8. Modify client program to use the Modification Key mechanism:
a. The client program must store the value of the Modification IDs when it queries data from the Siebel

Database.
b. The client program must send exactly the same values of the Modification IDs that it retrieved from the

Siebel Database when sending an update.
c. The client program must not send any Modification IDs when sending a new record to the Siebel

application. If this is violated, then the client program generates an error indicating that the record has
been deleted by another user.

Integration Component Account Example
Consider an integration component Account of the business component Account:

• Field Home Page has property Join set to S_ORG_EXT. This is an implicit join, because it is not listed in the
joins; therefore, this field belongs to Extension Table S_ORG_EXT.

• Field Primary Organization has property Join set to Primary Organization-S_BU. This is an explicit join, because
it is listed in the joins. The value of Table property is S_BU; therefore, this field belongs to Joined Table S_BU
joined over Primary Organization-S_BU.

• Activate integration component field Mod Id:

◦ Set Name, External Name, XML Tag properties to Mod Id

◦ Set External Data Type property to DTYPE_NUMBER

◦ Set External Length property to 30

◦ Set Type property to System

• Add integration component field S_ORG_EXT.Mod Id:

◦ Set Name, External Name, XML Tag properties to S_ORG_EXT.Mod Id

◦ Set External Data Type property to DTYPE_NUMBER

◦ Set External Length property to 30

◦ Set Type property to System

• Add integration component field CX_Primary Organization-S_BU.Mod Id:

◦ Set Name, External Name, XML Tag properties to CX_Primary Organization-S_BU.Mod Id

◦ Set External Data Type property to DTYPE_NUMBER

◦ Set External Length property to 30

◦ Set Type property to System

Integration Component Account_Organization Example
Consider the integration component Account_Organization of the Sample Account integration object.
Account_Organization is an MVG Association as denoted by the presence of the user property MVGAssociation.
Assume two Modification IDs, Mod Id and S_ORG_EXT.Mod Id, were exposed on this integration component:

• For field Mod Id create a new user property with the name of AssocFieldName with a value of Mod Id.

• For field S_ORG_EXT.Mod Id create a new user property with the name of AssocFieldName with a value of
S_ORG_EXT.Mod Id.

163

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 6
EAI Siebel Adapter Business Service

In this integration component example, Account of the Sample Account integration object, takes the following action:

• Create a new Integration Component key called Modification Key.

• Set the type of the key as Modification Key.

• Add integration component fields Mod Id, S_ORG_EXT.Mod Id, and S_BU.Mod Id to the Modification Key.

Status IDs
When using Status IDs with Modification IDs, the following behavior can be present:

• All fields must be present in the integration object instance for the Modification Key to be used.

• Only one defined Modification Key is present for each integration component. Unlike User Keys, multiple
Modification Keys are not used with Status IDs.

164

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

7 EAI UI Data Adapter Business Service

EAI UI Data Adapter Business Service
This chapter provides information about the EAI UI Data Adapter business service, which is used for exposing Siebel
data to external user interfaces. It includes the following topics:

• About the EAI UI Data Adapter Business Service

• EAI UI Data Adapter Business Service Methods

• EAI UI Data Adapter Business Service Method Arguments

About the EAI UI Data Adapter Business Service
The EAI UI Data Adapter business service exposes an interface with weakly typed arguments that can query and update
data in the Siebel database. The EAI UI Data Adapter service is called indirectly by UI Data Sync Services, which are
published externally as Web services.

The EAI UI Data Adapter is similar to the EAI Siebel Adapter business service, but contains key differences that make it
more suitable for UI rendering by custom Web applications. The differences are summarized as follows:

• Row Id as User Key. Unlike the EAI Siebel Adapter, the EAI UI Data Adapter does not use user keys defined in
the integration object. It uses an implicit, hard-coded user key, which comprises the Row Id field.

For more information about how User Keys are used with the EAI Siebel Adapter, see About Integration
Component Keys.

• Row Id and Mod Id as Status Key. Unlike the EAI Siebel Adapter, the EAI UI Data Adapter does not use status
keys defined in the integration object. It uses an implicit, hard-coded status key, which comprises the fields Row
Id and Mod Id.

For more information about how Status Keys are used with the EAI Siebel Adapter, see About Integration
Component Keys.

• Operation Semantics on Leaf Nodes. In an integration object hierarchy, nodes with at least one child are
called internal nodes and nodes without children are called leaf nodes. When either the insert or update
method is called on the EAI Siebel Adapter, the adapter performs the operation on both internal nodes and leaf

165

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

nodes. When the insert or update method is called on the EAI UI Data Adapter, the adapter performs insert on
leaf nodes only as represented in the following figure.

The match nodes in the following figure reflects that the database contains a record with the same user keys as
the integration object instance.

• Predefined Queries. The EAI UI Data Adapter extends the Query Page functionality of the EAI Siebel Adapter.
The EAI UI Data Adapter can take the name of a predefined query and execute the query.

• Child Pagination. The EAI UI Data Adapter supports child pagination, enabling custom UIs to render one page
of data at a time.

For detailed information about the QueryPage method, see QueryPage Method.

For more information, see Root and Child Pagination.

• Strongly Typed Data. Unlike the EAI Siebel Adapter, the EAI UI Data Adapter supports the exchange of strongly
typed data.

The EAI UI Data Adapter is most suitable for use in custom UI development where the service is called indirectly by Web
services. In other types of integration scenarios, the EAI Siebel Adapter is a more suitable choice. For more information
about the EAI Siebel Adapter, see EAI Siebel Adapter Business Service.

EAI UI Data Adapter Business Service Methods
The EAI UI Data Adapter service provides access to the following methods:

• QueryPage Method

• UpdateLeaves Method

• InitLeaves Method

• InsertLeaves Method

• DeleteLeaves Method

• Execute Method

166

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

QueryPage Method
Custom UIs can use the QueryPage method to query data in the Siebel database one page at a time. QueryPage
supports both query-by-example (QBE) and predefined queries (PDQ). However, it is recommended that you use either
QBE or a PDQ, but not both at the same time. If both QBE and PDQ are specified, then PDQ overrides QBE. In this case,
the EAI UI Data Adapter executes the PDQ, ignores the QBE, and does not generate an error.

QueryPage Method Arguments
The following table lists the method arguments used with the QueryPage method. For a description of the arguments,
see EAI UI Data Adapter Business Service Method Arguments.

Method Argument Name Type

ExecutionMode

Input

LOVLanguageMode

Input

NamedSearchSpec

Input

NewQuery

Input

NumOutputObjects

Output

OutputIntObjectName

Input

SiebelMessage

Input / Output

ViewMode

Input

Root and Child Pagination
The EAI UI Data Adapter supports pagination for both root and child components. To support root and child pagination,
the EAI UI Data Adapter requires that you set the attributes listed in the following table as part of the integration
component instance.

Note: Pagination over root components benefits performance because, as long as the search specification, sort
specification, and view mode remain the same, the business component is not re-executed with each invocation
of QueryPage. However, for pagination over child components, the component is reexecuted every time you call
QueryPage.

167

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

Attribute Description

pagesize

The number of records to be returned for a component. The default page size is 10. Note that there is a
server parameter that controls the maximum page size (MaximumPageSize). If the pagesize attribute is
greater than the maximum pagesize defined in the server parameter, then an error occurs.

startrownum

Determines the starting point for record retrieval. The 0-based index of the record within the recordset.

lastpage

Indicates whether the record being returned is the last record in the record set. The value is set by the
EAI UI Data Adapter. Valid values are true or false.

recordcountneeded

When set to true, indicates that a record count is needed for this component. Valid values are true or
false.

recordcount

Value set by the EAI UI Data Adapter indicating the approximate record count provided by the object
manager based on the search specification.

child pagination

When set to true, enables pagination of child records. Valid values are true or false.

Example of QueryPage on Parent and Child Components
This example demonstrates querying on both parent and child components. In this example, the query is for
accounts that begin with ‘A’ and any associated contacts (First Name and Last Name). Note that pagesize is 10 and an
approximate record count is requested and returned in the response.

Request
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount pagesize="10" startrownum="0" recordcountneeded = "true">
 <Account>
 <Name>='A'</Name>
 <ListOfContact>
 <Contact>
 <FirstName></FirstName>
 <LastName></LastName>
 </Contact>
 </ListOfContact>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Response
SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount recordcount="2" lastpage="true">
 <Account>
 <Name>Adams Tech</Name>
 <ListOfContact lastpage="true">
 <Contact>
 <FirstName>Sally</FirstName>
 <LastName>Brown</LastName>
 </Contact>
 <Contact>
 <FirstName>Terry</FirstName>
 <LastName>Smith</LastName>

168

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

 </Contact>
 </ListOfContact>
 </Account>
 <Account>
 <Name>Aleph Inc.</Name>
 <ListOfContact lastpage="true">
 <Contact>
 <FirstName>Bill</FirstName>
 <LastName>Jones</LastName>
 <Contact>
 <Contact>
 <FirstName>Roland</FirstName>
 <LastName>Smith</LastName>
 </Contact>
 </ListOfContact>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Example of QueryPage Using Child Pagination
This example demonstrates querying using child pagination. In this example, the query is for account with name as ABC
Mart #18 and any associated contacts (First Name and Last Name). Note that only 10 records are retrieved though there
are 4999 records. This is because the page size is 10 and child pagination parameters is also set.

Request
<SiebelMessage MessageId="" IntObjectName="EAI Account" MessageType="Integration
Object" IntObjectFormat="Siebel Hierarchical">
 <ListOfEAI_spcAccount>
 <Account Name="ABC Mart #18">
 <ListOfContact recordcountneeded="true" startrownum="0"
ChildPagination="true" pagesize="10">
 <Contact>
 </Contact>
 </ListOfContact>
 </Account>
 <ListOfEAI_spcAccount>
</SiebelMessage>

Response
<SiebelMessage MessageId="" MessageType="Integration Object" IntObjectName="EAI
Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfEAI_spcAccount lastpage="true">
 <Account Name="ABC Mart #18">
 <ListOfContact recordcount="4999" lastpage="false">
 <Contact First_spcName="M*" Last_spcName="A*"></Contact>
 <Contact First_spcName="MAYA" Last_spcName="ANDERSON"></Contact>
 <Contact First_spcName="ABS_ADMIN_EMP1"
Last_spcName="ABS_ADMIN_EMP1"></Contact>
 <Contact First_spcName="ABS_ADMIN_EMP2"
Last_spcName="ABS_ADMIN_EMP2"></Contact>
 <Contact First_spcName="ABS_ADMIN_EMP3"
Last_spcName="ABS_ADMIN_EMP3"></Contact>
 <Contact First_spcName="ABS_ADMIN_EMP4"
Last_spcName="ABS_ADMIN_EMP4"></Contact>
<Contact First_spcName="HARRY" Last_spcName="ADAMS"></Contact>
 <Contact First_spcName="VERNON" Last_spcName="AJAX" ></Contact>
 <Contact First_spcName="THOMAS" Last_spcName="ALEX" ></Contact>
 <Contact First_spcName="MAY" Last_spcName="ALLISON" ></Contact>
 </ListOfContact>
 </Account>
 </ListOfEAI_spcAccount>

169

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

</SiebelMessage>

Sort Specification
You can specify a sort specification on one or more integration component fields of an integration component. For each
field you want sort on, you must define the attributes listed in the following table. If both attributes are not specified,
then the field is not considered as a sort field.

Attribute Description

sortorder

Determines whether the sort order is ascending or descending. Valid values are ASC or DEC.

sortsequence

Determines the order in which the sort specification is applied. Valid values are integer numbers.

Example of Sort Specification
This example demonstrates using the QueryPage method with an ascending sort order.

Request
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Row_Id>2-1111</Row_Id>
 <ListOfContact pagesize="40" startrownum="0" recordcountneeded="true">
 <Contact>
 <FirstName sortorder="ASC" sortsequence="1"></FirstName>
 </Contact>
 </ListOfContact>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Response
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount lastpage="true">
 <Account>
 <Row_ID>2-1111</Row_ID>
 <ListOfContact recordcount="3" lastpage="true">
 <Contact>
 <FirstName>Alice</FirstName>
 </Contact>
 <Contact>
 <FirstName>Bill</FirstName>
 </Contact>
 <Contact>
 <FirstName>Casey</FirstName>
 </Contact>
 </ListOfContact>
 </Account>
 </ListOfAccount>
</SiebelMessage>

170

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

Predefined Query
You can specify the name of a PDQ using the method argument NamedSearchSpec. The EAI UI Data Adapter uses this
value to set the search specification at the business object level.

Search Specification
You can use the searchspec attribute on a component instance for complicated queries.

For example, query by example (QBE) uses AND as the implicit operator between fields. You could implement OR
semantics by using multiple integration component instances, but this would result in a query for each integration
component instance and might result in duplicate records being returned. Using the searchspec attribute could avoid
this problem.

The syntax for the searchspec attribute is as follows:

• Expression: Expression [Binary Operator Expression]

• Expression: [Field XML tag] Operator 'Value'

• Expression: (Expression)

Note: Parentheses can be nested.

• Expression: [Field XML tag] IS NULL | [Field XML tag] IS NOT NULL

• Expression: EXISTS(Expression) | NOT EXISTS(Expression)

Note: In EXISTS and NOT EXISTS expressions, use the business component field names of multivalue group
(MVG) fields, not the integration component XML tag names.

• Operator: = | ~= | < | <= | > | >= | <> | LIKE | ~LIKE

• Binary Operator: AND | OR

The EAI UI Data Adapter parses the searchspec (unlike the EAI Siebel Adapter) and performs the following operations
before setting the search specification on the business component:

• Converts Field XML tags into business component field names. For example, assume two business component
fields, First Name and Last Name, have XML tags FirstName and LastName respectively. The EAI UI Data
Adapter converts the XML tags as shown in the following table.

This Search Spec Will be converted to this

[FirstName] LIKE '*Jon*' AND
[LastName] = 'Doe'

[First Name] LIKE '*Jon*' AND [Last
Name] = 'Doe'

[FirstName] LIKE '*Jon*' OR
[LastName] LIKE 'Doe*'

[First Name] LIKE '*Jon*' OR [Last
Name] LIKE 'Doe'

• If the input argument LOVLanguageMode is set to LIC, then LOV values are converted to language dependent
codes. See EAI UI Data Adapter Business Service Method Arguments.

• Validates operators, binary operators, and the syntax of the searchspec.

For more information about query language, see Siebel Developer's Reference .

171

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

Example of Using the searchspec Attribute
This example demonstrates using the searchspec attribute for the QueryPage method.

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>2-1111</Id>
 <ListOfContact pagesize="10" startrownum="0">
 <Contact searchspec="[FirstName] LIKE '*Jon*' AND [LastName] = 'Doe'">
 <FirstName></FirstName>
 <LastName></LastName>
 </Contact>
 </ListOfContact>
 </Account>
 </ListOfAccount>
</SiebelMessage>

UpdateLeaves Method
Use UpdateLeaves to update existing records in the Siebel database. When UpdateLeaves is called on an integration
object hierarchy, the EAI UI Data Adapter updates leaf nodes only and uses internal nodes for maintaining parent-child
relationships.

Both internal nodes and leaf nodes must have Row Ids specified or the EAI UI Data Adapter generates an error. The EAI
UI Data Adapter also generates an error if it does not find a match for the internal node and leaf node for a given Row Id.

UpdateLeaves Method Arguments
The following table lists the method arguments used with UpdateLeaves. For a complete description of the method
arguments, see EAI UI Data Adapter Business Service Method Arguments.

Method Argument Name Type

BusObjCacheSize

Input

LOVLanguageMode

Input

SiebelMessage

Input / Output

Example of Updating Root Component
The following example demonstrates updating a root component.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>1-1-1111</Account>

172

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

 <Employees>4900</Employees>
 </ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITT" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>1-1-1111</Id>
 <Mod_Id>2</Mod_Id>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Example of Updating Child Component
This example demonstrates updating a child component.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>1-1-1111</Id>
 <Employees>5000</Employees>
 <ListOfBusiness_Address>
 <Business_Address>
 <Id>2-2-2222</Id>
 <Postal_Code>94404</Postal_Code>
 </Business_Address>
 </ListOfBusiness_Address>
 </Account>
 <ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITW" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>1-1-1111</Id>
 <Mod_Id>2</Mod_Id>
 <ListOfAccount_Business_Address>
 <Business_Address>
 <Id>2-2-2222</Id>
 <Mod_Id>2</Mod_Id>
 </Business_Address>
 </ListOfAccount_Business_Address>
 </Account>
 </ListOfAccount>
</SiebelMessage>

173

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

InitLeaves Method
Use InitLeaves to retrieve pre-default values. When InitLeaves is called on an integration object hierarchy, it retrieves the
pre-default values for all leaf nodes. All internal nodes must exist in the database and Row Id must be specified.

InitLeaves Method Arguments
The following table lists the method arguments used with the InitLeaves Method. For a complete description of the
method arguments, see EAI UI Data Adapter Business Service Method Arguments.

Method Argument Type

BusObjCacheSize

Input

LOVLanguageMode

Input

SiebelMessage

Input / Output

ViewMode

Input

Example of Using InitLeaves on a Root Component
The following code snippet demonstrates using InitLeaves to retrieve default values for a root component. In this
example the root component is Account.

Request
The following is an example of a request:

<?xml version="1.0" encoding="UTF-8"?>

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Currency_Code></Currency_Code>
 <Account_Status></Account_Status>
 <Location_Type></Location_Type>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Account_Status>Active</Account_Status>

174

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

 <Currency_Code>USD</Currency_Code>
 <Location_Type>Corporate Training Center</Location_Type>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Example of Using InitLeaves on a Child Component
The following code snippets demonstrate using InitLeaves to retrieve pre-default values for a child component. In this
example the parent component is Account and the child component is Business Address.

Request
The following is an example of a request:

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>1-111112</Id>
 <ListOfBusiness_Address>
 <Business_Address>
 <Active_Status></Active_Status>
 <Main_Address_Flag></Main_Address_Flag>
 </Business_Address>
 </ListOfBusiness_Address>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <ListOfBusiness_Address>
 <Business_Address>
 <Active_Status>Y</Active_Status>
 <Main_Address_Flag>Y</Main_Address_Flag>
 </Business_Address>
 </ListOfBusiness_Address>
 </Account>
 </ListOfAccount>
</SiebelMessage>

InsertLeaves Method
Use InsertLeaves to insert records into the Siebel database. When InsertLeaves is called on an integration object
hierarchy, the EAI UI Data Adapter inserts leaf nodes only and uses internal nodes for maintaining parent-child
relationships:

• Internal Nodes. All internal nodes must already exist in the database and Row Id must be specified (Row Id is
the implicit, hard-coded user key used by the EAI UI Data Adapter). If the internal node does not exist or Row Id

175

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

is not specified, then the EAI UI Data Adapter returns an error. For more information about user keys, see About
the EAI UI Data Adapter Business Service.

• Leaf Nodes. Whether or not Row Id must be specified for leaf nodes depends on the type of integration
component:

◦ If the integration component represents a normal business component or MVG business component,
Row Id must not be defined, because records for these components are being inserted.

◦ If the integration component represents an association business component or an MVG association
business component, leaf nodes might or might not have Row Ids defined. If Row Ids are specified, then
the EAI UI Data Adapter creates an association record only. If Row Ids are not specified, then both a child
record and an association record are created.

InsertLeaves returns an integration object hierarchy. Each integration component instance in the hierarchy has two
fields: Row Id and Mod Id (implicit status keys used by the EAI UI Data Adapter). You can use these fields to retrieve the
Row Id of the newly created record.

InsertLeaves Method Arguments
The following table lists the method arguments used with the InsertLeaves method. For descriptions of the methods,
see EAI UI Data Adapter Business Service Method Arguments.

Method Argument Name Type

BusObjCacheSize

Input

LOVLanguageMode

Input

SiebelMessage

Input / Output

Example of Inserting a Root Component
This example code snippet demonstrates inserting a non-existing account.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Type>Competitor</Type>
 <Name>Dixon Inc.</Name>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITI" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>

176

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

 <Account>
 <Id>P-5NA84</Id>
 <Mod_Id>0</Mod_Id>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Example of Inserting a Child Component
The code snippets in this example demonstrate inserting a non-existing business address for an existing account.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>P-5NA84</Id>
 <ListOfBusiness_Address>
 <Business_Address>
 <City>San Carlos</City>
 <Street_Address>1145 laurel street</Street_Address>
 <State>CA</State>
 <Country>USA</Country>
 <Postal_Code>94063</Postal_Code>
 </Business_Address>
 </ListOfBusiness_Address>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITJ" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>P-5NA84</Id>
 <Mod_Id>1</Mod_Id>
 <ListOfBusiness_Address>
 <Business_Address>
 <Id>P-5NA8B</Id>
 <Mod_Id>0</Mod_Id>
 </Business_Address>
 </ListOfBusiness_Address>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Example of Inserting an Association Child Component
This example demonstrate inserting an existing organization for an existing account. This operation associates the
organization with the account. If the organization does not exist, then the EAI UI Data Adapter generates an error.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

177

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

 <ListOfAccount>
 <Account>
 <Id>P-5NA84</Id>
 <ListOfAccount_Organization>
 <Account_Organization>
 <Id>1-123</Id>
 </Account_Organization>
 </ListOfAccount_Organization>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITL" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>P-5NA84</Id>
 <Mod_Id>1</Mod_Id>
 <ListOfAccount_Organization>
 <Account_Organization IsPrimaryMVG="Y">
 <Id>0-R9NH</Id>
 <ModId>9</ModId>
 </Account_Organization>
 <Account_Organization IsPrimaryMVG="N">
 <Id>1-123</Id>
 <ModId>0</ModId>
 </Account_Organization>
 </ListOfAccount_Organization>
 </Account>
 </ListOfAccount>
</SiebelMessage>

DeleteLeaves Method
The DeleteLeaves method deletes leaf nodes only. If the Cascade Delete on the Link object is set to TRUE, then child
records are also deleted. Row Ids are required for both internal nodes and leaf nodes. DeleteLeaves does not return a
value when the operation is successful.

Method Arguments for DeleteLeaves
The following table lists the method arguments used with DeleteLeaves. For descriptions of the arguments, see EAI UI
Data Adapter Business Service Method Arguments.

Method Argument Name Type

IntObjectName

Input

LOVLanguageMode

Input

SiebelMessage

Input / Output

178

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

Example of Deleting a Root Component
This example demonstrates deleting a root component.

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>P-5NA84</Id>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Example of Deleting a Child Component
This example demonstrates deleting a child component.

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>P-5NA84</Id>
 <ListOfBusiness_Address>
 <Business_Address>
 <Id>P-5NA8B</Id>
 </Business_Address>
 </ListOfBusiness_Address>
 </Account>
 </ListOfAccount>
</SiebelMessage>

Execute Method
The Execute method allows you to perform multiple operations on multiple business components. It is the only method
that operates on internal nodes. The Execute method returns the same kind of object that the InsertLeaves method
returns. For more information, see InsertLeaves Method.

Note: the Execute method requires a status object only when it contains an insert operation on a child integration
component instance. However, because the EAI UI Data Adapter processes in a top-down fashion, it adds a status
object to the integration object instance even if an insert operation is not present.

The operations are defined by the operation attribute on the integration component instance. An integration
component instance can have the following operations as defined in the following table.

Operation Description

update

Updates the integration component instance

insert

Inserts the integration component instance

delete

Deletes the integration component instance

179

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

Operation Description

skipnode

Matches integration component instances and process children

CAUTION: Operations must be specified on every integration component instance. If an operation is not specified,
then an implicit Synchronize operation will be performed, which will delete all unmatched child integration component
instances.

Execute Method Arguments
The following table lists the method arguments used with the Execute method. For a description of the methods, see
EAI UI Data Adapter Business Service Method Arguments.

Method Argument Name Type

BusObjCacheSize

Input

LOVLanguageMode

Input

SiebelMessage

Input / Output

Example of Using the Execute Method
The following example demonstrates using the Execute method to perform update, insert, and delete operations on
child object. Note that the skipnode operation is defined on the parent object.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account operation="skipnode">
 <Id>1-1-1111</Id>
 <ListOfBusiness_Address>
 <Business_Address operation="update">
 <Id>2-2-2222</Id>
 <Postal_Code>94402</Postal_Code> <!--Postal Code changed-->
 </Business_Address>
 <Business_Address operation="insert">
 <Postal_Code>94402</Postal_Code>
 <City>San Mateo</City>
 <Street_Address>2215 Bridgepointe Parkway</Street_Address>
 <State>CA</State>
 <Country>USA</Country>
 </Business_Address>
 </ListOfBusiness_Address>
 <ListOfContact>
 <Contact operation="delete">
 <Id>4-4-4444</Id>
 </Contact>
 </ListOfContact>

180

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

 </Account>
 </ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="42-21YQ" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">
 <ListOfAccount>
 <Account>
 <Id>1-1-1111</Id>
 <Mod_Id>3</Mod_Id>
 <ListOfBusiness_Address>
 <Business_Address>
 <Id>2-2-2222</Id>
 <Mod_Id>1</Mod_Id>
 </Business_Address>
 <Business_Address>
 <Id>42-53Q2W</Id>
 <Mod_Id>0</Mod_Id>
 </Business_Address>
 </ListOfBusiness_Address>
 </Account>
 </ListOfAccount>
</SiebelMessage>

EAI UI Data Adapter Business Service Method
Arguments
The methods exposed in the EAI UI Data Adapter business service take arguments that you use to specify information
that the adapter uses when processing the request. The following table summarizes these method arguments.

Argument Display Name Description

BusObjCacheSize

Business Object Cache
Size

Maximum Number of Business Objects that can be cached at one
time.

ExecutionMode

Execution Mode

Used to set the direction of a query on a business component.
Valid values are ForwardOnly and Bidirectional. The default is
Bidirectional.

ForwardOnly is more efficient than Bidirectional, and is
recommended in cases where you must process a large number
of records in the forward direction only (such as for report
generation). For operations that are likely to return more than
10000 records, use ForwardOnly to avoid errors.

For more information on executing queries, see the topic on the
ExecuteQuery business component method in Siebel Object
Interfaces Reference .

LOVLanguageMode

LOV Language Mode

Indicates whether the EAI UI Data Adapter must translate the
LOV value before sending it to the object manager. Valid values

181

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 7
EAI UI Data Adapter Business Service

Argument Display Name Description

are LIC or LDC. If LIC is specified, then the EAI UI Data Adapter
expects language independent values in the input message and
translates them to language dependent values (based on the
current language setting) before the request is sent to the object
manager. If LDC is specified, then the EAI UI Data Adapter does
not translate the value before sending it to the object manager.

NamedSearchSpec

Predefined Query

Name of a PDQ. The EAI UI Data Adapter sets the name of the
PDQ on the business object instance. If NamedSearchSpec and
QBE are specified, then NamedSearchSpec is used.

NewQuery

New Query

Default is False. Boolean indicating whether a new query will be
executed. If set to True, then a new query is executed flushing the
cache for that particular integration object.

NumOutputObjects

Number of Output
Integration Objects

Number of Integration Objects output

OutputIntObjectName

Not applicable

The name of the integration object that will be sent in the output.

SiebelMessage

Siebel Message

Input or output integration object instance.

ViewMode

View Mode

Visibility algorithm used in addition to a search specification
to determine which records will be retrieved. The ViewMode
method argument is used to set the View Mode property for all
business components corresponding to the integration object.
Valid values are Manager, Sales Rep, Personal, Organization, Sub-
Organization, Group, Catalog, and All.

182

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

8 Siebel Virtual Business Components

Siebel Virtual Business Components
This chapter describes the virtual business component (VBC), its uses, and restrictions. This chapter also describes how
you can create a new VBC in Siebel Tools. It contains the following topics:

• About Virtual Business Components

• Using Virtual Business Components

• XML Gateway Service

• Examples of the Outgoing XML Format

• Search-Spec Node-Type Values

• Examples of the Incoming XML Format

• External Application Setup

• Custom Business Service Methods

• Custom Business Service Examples

About Virtual Business Components
A virtual business component (VBC) provides a way to access data that resides in an external data source using a Siebel
business component. The VBC does not map to an underlying table in the Siebel Database. You create a new VBC
in Siebel Tools workspace and deliver the workspace. The VBC calls a Siebel business service to provide a transport
mechanism.

You can take two approaches to using VBCs, as shown in the following figure:

• Use the XML Gateway business service to pass data between the VBC and one of the Siebel transports, such as
the EAI HTTP Transport or the EAI MSMQ Transport.

• Write your own business service in Siebel eScript or in Siebel VB to implement the methods described in this
chapter.

183

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Using VBCs for Your Business Requirements
The following features enhance the functionality of VBCs to better assist you in meeting your business requirements:

• VBCs support drilldown behavior:

◦ You can drill down on a VBC to a standard business component, another VBC, or the same VBC.

◦ You can drill down onto a VBC from a standard business component, another VBC, or the same VBC.

• A parent applet can be based on a VBC.

• You can define VBCs that can participate as a parent in a business object. The VBC you define can be a parent
to a standard BC or a VBC.

• You still can use an older version of the XML format or property set by setting the VBC Compatibility Mode
parameter to the appropriate version. For information, see the table in the topic Setting User Properties for the
Virtual Business Component .

• You can pass search and sort specifications to the business service used by a VBC.

• You can use the Validation, Pre Default Value, Post Default Value, Link Specification, and No Copy attributes of
the VBC fields.

• You can use predefined queries with VBCs.

• You can have picklists based on VBCs, and use picklist properties such as No Insert, No Delete, No Update, No
Merge, Search Specification, and Sort Specification.

• You can use the Cascade Delete, Search Spec, Sort Spec, No Insert, No Update, and No Delete link properties
when a VBC is the child business component on the link.

184

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

• You can use the No Insert, No Update, No Delete, Search Spec, Sort Spec, and Maximum Cursor Size business
component properties.

Usage and Restrictions for Virtual Business Components
The following are the uses and restrictions of VBCs:

• You can define a business object as containing both standard business components and VBCs.

• When configuring applets based on VBCs, use CSSFrame (Form) and CSSFrameList (List) instead of specialized
applet classes.

• (Optional) Using the same name for the VBC field names and the remote data source field names can reduce
the amount of required programming.

• VBCs cannot be docked, so they do not apply to remote users.

• VBCs cannot contain a multivalue group (MVG).

• VBCs do not support many-to-many relationships.

• A pick applet based on a VBC instantiates the VBC without any parent reference (no link is used). As result, the
VBC business service does not receive the source field value from the parent component If the VBC business
service must access the current parent business component context, then you can use the ActiveBusObject
method of the TheApplication object in a business service server script to do the following:

◦ Obtain the current business object instance (assuming this is the instance with this VBC).

◦ Instantiate the parent business component (assuming the name of the parent BC is known).

◦ Obtain the parent business component field for referencing it as a source (the field must be active in the
current parent business component).

• VBCs cannot be loaded using Enterprise Integration Manager.

• Standard business components cannot contain multivalue groups based on VBCs.

• VBCs cannot be implemented using any business component class other than CSSBCVExtern. This means
specialized business components such as Quotes and Forecasts cannot be implemented as VBCs.

• You cannot use Workflow Monitor to monitor VBCs.

• You cannot execute queries against VBCs when the search specification uses a function that is normally
supported for Query mode against regular business components, such as ParentFieldValue().

Using Virtual Business Components
To use VBCs to share data with an external application, perform the following high-level tasks:

• Creating a New Virtual Business Component

• Setting User Properties for the Virtual Business Component

• Configuring your VBC business service:

◦ Configure your XML Gateway Service or write your own business service.
For information, see XML Gateway Service and Custom Business Service Methods.

◦ Configure your external application.

185

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

For information, see External Application Setup.

Creating a New Virtual Business Component
You create a new VBC in Siebel Tools.

To create a new virtual business component
1. In Siebel Tools, lock the appropriate project.
2. In the Object Explorer, select the Business Component object.
3. Right-click, and then choose New Record.
4. Name the business component.
5. Select the project you locked in Step 1.
6. Set the class to CSSBCVExtern. This class provides the VBC functionality.

Setting User Properties for the Virtual Business Component
When defining the VBC, you must provide the user properties shown in the following table.

User Property Description

Service Name

The name of the business service.

Service Parameters

(Optional) Any parameters required by the business service. The Siebel application passes this user
property, as an input argument, to the business service.

Remote Source

(Optional) External data source that the business service is to use. This property allows the VBC to pass
a root property argument to the underlying business service, but it does not allow a connection directly
to the external datasource. The Siebel application passes only this user property as an input argument.

VBC Compatibility Mode

(Optional) Determines the format of the property set passed from a VBC to a business service, or the
format in which the outgoing XML from the XML Gateway will be. A valid value is Siebel xxx, where xxx
can be any Siebel release number. Some examples would be Siebel 6 or Siebel 7.0.4. If xxx is less than
7.5, the format will be in a release that is earlier than release 7.5. Otherwise, a new property set, and the
XML format will be passed.

If you are creating a VBC in version 7.5 or higher, then it is not necessary to define this new user
property, because the default is to use the new PropertySet from a VBC and the new outgoing XML
from the XML Gateway.

For your existing VBC implementation, update your VBC definition by adding this new user property,
 and setting it to Siebel xxx, where xxx is the version number that you want.

To define user properties for a virtual business component
1. In the Object List Editor in Siebel Tools, select the virtual business component for which you want to define user

properties.
2. In the Object Explorer, expand the Business Component tree, and then select Business Component User Prop.

186

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

3. In the Object List Editor, click in the Business Component User Props list, right-click, and then choose New
Record.

4. Type the name of the user property, such as Service Name, in the Name field.
5. Type the value of the user property, such as a business service name, in the Value field.
6. Repeat the process for every user property you want to define for this VBC.

Note: For the list of different property sets and their format, see Examples of the Outgoing XML Format and Examples
of the Incoming XML Format.

XML Gateway Service
The XML Gateway business service communicates between Siebel CRM and external data sources using XML as the
data format. For information on XML format, see Examples of the Outgoing XML Format and Examples of the Incoming
XML Format. The XML Gateway business service can be configured to use one of the following transports:

• EAI MQSeries Server Transport

• EAI HTTP Transport

• EAI MSMQ Transport

You can configure the XML Gateway by specifying the transport protocol and the transport parameters you use in the
Service Parameters User Property of the VBC, as shown in the following table. When using the XML Gateway, specify the
following user properties for your VBC.

Name Value

Service Name

XML Gateway

Service Parameters

variable1 name=variable1 value; variable2 name=variable2 value>;...

Remote Source

External Data Source

VBC Compatibility Mode

Siebel xxx, where xxx can be any Siebel release number.

Note: You can concatenate multiple name-value pairs using a semicolon (;), but do not use any spaces between the
name, the equal sign, the value, and the semicolon.

For example, if you want to specify the EAI HTTP Transport, then you can use something like the following:

"Transport=EAI HTTP Transport;HTTPRequestURLTemplate=<your
URL>;HTTPRequestMethod=POST"

You can also implement a VBC with MQSeries. The following procedure lists the steps you take to implement this.

To implement a VBC with MQSeries
1. Call the EAI Business Integration Manager (Server Request) business service.

187

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

2. Define another service parameter for the name of a workflow to run, with the following user properties on the
VBC:

◦ Service Name. XML Gateway.

◦ Service Parameters. Transport=EAI Business Integration Manager (Server
Request);ProcessName=EAITEST.

3. Define a workflow, EAITEST, to call the EAI MQSeries Server Transport with the SendReceive method.
4. Define a new process property, <Value>, on the workflow, and use it as an output argument on the EAI

MQSeries Server Transport step in the workflow.

XML Gateway Methods
The XML Gateway provides the methods presented in the following table.

Method Description

Init

Initializes the XML Gateway business service for every business component.

Delete

Deletes a given record in the remote data source.

Insert

Inserts a record into a remote data source.

PreInsert

Performs an operation that tests for the existence of the given business component. Only default
values are returned from the external application.

Query

Queries the given business component from the given data source.

Update

Updates a record in the remote data source.

XML Gateway Method Arguments
The XML Gateway init, delete, insert, preInsert, query, and update methods take the arguments presented in the
following table.

Argument Description

Remote Source

The VBC Remote Source user property. The remote source from which the service is to retrieve data
for the business component. This must be a valid connect string. When configuring the repository
business component on top of the specialized business component class CSSBCVExten, you can define
a user property Remote Source to allow the Transport Services to determine the remote destination
and any connect information. If this user property is defined, then it is passed to every request as the
remote-source tag.

Business Component Id

Unique key for the given business component.

188

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Argument Description

Business Component Name

Name of the business component or its equivalent, such as a table name.

Parameters

The VBC Service Parameters user property. A set of string parameters required for initializing the XML
Gateway.

About Handling White Space
White space is handled by the XML parser while processing the request from the XML Gateway business service. When
the white space is part of the XML syntax, it must be discarded by the XML parser and not preserved (passed on to the
processing application). If the white space is in any other location (such as in element content within a document), then
it must be preserved according to the XML specification, because it might have some meaning.

For example:

<mydata>
<mytag>stuff</mytag>
</mydata>

and

<mydata><mytag>stuff</mytag></mydata>

are different to an XML parser.

To preserve white space, use the xml:space attribute with the value preserve, for example:

<mydata xml:space="preserve">
<mytag>stuff and more stuff</mytag>
</mydata>

The value of xml:space applies to all children of the element containing the attribute unless overridden by one of the
children.

For more information on white space handling and the xml:space attribute, see Microsoft Developer Network (http://
msdn.microsoft.com).

Examples of the Outgoing XML Format
Examples of the XML documents generated and sent by the XML Gateway to the external system are presented in the
following table. These examples are based on the Siebel eScript example in Custom Business Service Examples. See
DTDs for XML Gateway Business Service for examples of the DTDs that correspond to each of these methods.

Note: The XML examples in this chapter have extraneous carriage returns and line feeds for ease of reading. Delete
all the carriage returns and line feeds before using any of the examples.

189

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Method Format of the XML Stream Description

Delete Request

<siebel-xmlext-delete-req>

<buscomp id="1">Contact</buscomp>

<remote-source>http://throth/
servlet/VBCContacts</remote-source>

<row>

<value field="AccountId">146</value>

<value field="Name">Max Adams</value>

<value field="Phone">(408)234-1029</
<value>

<value field="Location">San Jose</
value>

<value field="AccessId">146</value>

</row>

</siebel-xmlext-delete-req>

siebel-xmlext-delete-req

This tag requests removal of a single record in
the remote system.

Init Request

<siebel-xmlext-fields-req>

<buscomp id="1">Contact</buscomp>

<remote-source>http://throth/
servlet/VBCContacts</remote-source>

</siebel-xmlext-fields-req>

• siebel-xmlext-fields-req

This tag fetches the list of fields supported by
this instance.

• buscomp Id

The business component ID.

• remote-source

The remote source from which the service is to
retrieve data for the business component.

Insert Request

<siebel-xmlext-insert-req>

<buscomp id="1">Contact</buscomp>

<remote-source>http://throth/
servlet/VBCContacts</remote-source>

<row>

<value field="AccountId">1-6</value>

<value field="Name">Max Adams</value>

<value field="Phone">(398)765-1290</
value>

<value field="Location">Troy</value>

<value field="AccessId"></value>

</row>

</siebel-xmlext-insert-req>

siebel-xmlext-insert-req

This tag requests the commit of a new record in
the remote system.

The insert-req XML stream contains values for
fields entered through the business component.

190

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Method Format of the XML Stream Description

PreInsert Request

<siebel-xmlext-preinsert-req>

<buscomp id="1">Contact</buscomp>

<remote-source>http://throth/
servlet/VBCContacts</remote-source>

</siebel-xmlext-preinsert-req>

siebel-xmlext-preinsert-req

This tag allows the connector to provide default
values. This operation is called when a new row
is created, but before any values are entered
through the business component interface.

Query Request

<siebel-xmlext-query-req>

<buscomp id="1">Contact</buscomp>

<remote-source>http://throth/
servlet/VBCContacts</remote-source>

<max-rows>6/max-rows>

<search-string>=([Phone] IS NOT NULL)
AND ([AccountId] = "1-6")</search-
string>

<search-spec>

<node node-type="Binary Operator">AND

<node node-type="Unary Operator">IS
NOT NULL

<node node- type="Identifier">Phone</
node></node>

<node node-type="Binary Operator">=

<node node-
type="Identifier">AccountId</node>

<node value-type="TEXT" node-
type="Constant">1-6</node>

</node>

</node>

</search-spec>

<sort-spec>

<sort field="Location">ASCENDING</
sort>

<sort field="Name">DESCENDING</sort>

</sort-spec>

</Siebel-xmlext-query-req>

• siebel-xmlext-query-req

This tag queries by example. The query-req XML
stream contains parameters necessary to set up
the query. In this example, the query requests
that record information be returned from the
remote system.

• max-rows

Maximum number of rows to be returned. The
value is the Maximum Cursor Size defined at
the VBC plus one. If the Maximum Cursor Size
property is not defined at the VBC, then the max-
rows property is not passed.

• search-string

The search specification used to query and filter
the information.

• search-spec

Hierarchical representation of the search-string.
For information, see Search-Spec Node-Type
Values.

• sort-spec

List of sort fields and sort order.

Note: In some cases you might retrieve
external data for display in a child list applet,
using a link to a parent business component.
If the parent business component field on
which the link is based is empty, then the
query request is sent without a search-spec
tag, but instead with the following tag: match
field=" Child BC Fieldname "/>

Update Request

<buscomp id="2">Contact</buscomp>

siebel-xmlext-update-req

191

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Method Format of the XML Stream Description

<remote-source>http://throth/
servlet/VBCContacts</remote-source>

<row>

<value changed="false"
field="AccountId">1-6</value>

<value changed="false"
field="Name">Max Adams</value>
<value changed="true"
field="Phone">(408)234-1029</value>

<value changed="true"
field="Location">San Jose</value>

<value changed="false"
field="AccessId">146</value>

</row>

</siebel-xmlext-update-req>

This tag requests changes to the field values for
an existing row.

All values for the record are passed with the value
tags, and with the changed attribute identifying
the ones that have been changed through the
Siebel application.

Search-Spec Node-Type Values
The search-string is in the Siebel query language format. The search-string is parsed by the Siebel query object and
then turned into the hierarchical search-spec. The following table shows the different search-spec node-types and their
values.

Node-Type PropertySet and XML Representation

Constant

Example: <node node-type = "Constant"

value-type="NUMBER">1000</node>

The valid value-types are TEXT, NUMBER, DATETIME, UTCDATETIME, DATE, and TIME.

Identifier

Example: <node node-type="Identifier">Name</node>

The value Name is a valid business component field name.

Unary Operator

Example: <node node-type="Unary Operator">NOT</node>

The valid values are NOT, EXISTS, IS NULL, IS NOT NULL.

Binary Operator

Example: <node node-type= "Binary Operator" >AND</node>

The valid values are LIKE, NOT LIKE, SOUNDSLIKE, =, <>, <=, <, >=, >, AND, OR, +, -, *, /, ^.

192

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Examples of the Incoming XML Format
The following table contains examples of XML documents that are sent from an external system to the XML Gateway in
response to a request. These examples are based on the Siebel eScript example in Custom Business Service Examples.
See DTDs for XML Gateway Business Service for examples of the DTDs that correspond to each of these methods.

Method Format of the XML Stream Description

Delete Return

<siebel-xmlext-delete-ret/>

siebel-xmlext-delete-ret

Only the XML stream tag is returned.

Error

<siebel-xmlext-status>

<status-code>4</code>

<error-field>Name</error-field>

<error-text>Name must not be empty</
error-text>

</siebel-xmlext-status>

Format of the XML stream expected by the Siebel
application in case of an error in the external
application. If the error is specific to a field, then the
field name must be specified.

The tags for this XML stream, and the entire XML
stream, are optional:

• siebel-xmlext-status

This tag is used to check the status returned by
the external system.

• status-code

This tag overrides the return value.

• error-text

This tag specifies textual representation of
the error, if it is available. This tag appears in
addition to the standard error message. For
example, if the Siebel application attempts to
update a record in the external system with
a NULL Name, and this is not allowed in the
external system, then the error text is set to:
"Name must not be empty."

Init Return

<siebel-xmlext-fields-ret>

<support field="AccountId"/>

<support field="Name"/>

<support field="Phone"/>

<support field="Location"/>

<support field="AccessId"/>

</siebel-xmlext-fields-ret>

siebel-xmlext-fields-ret

The fields-ret XML stream return contains the list of
VBC fields supported by the external application for
this instance.

The following field names are reserved by the Siebel
application, and must not appear in this list:

• Id

• Created

• Created By

• Updated

• Updated By

193

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Method Format of the XML Stream Description

Insert Return

<siebel-xmlext-insert-ret>

<row>

<value field="AccountId">1-6</value>

<value field="Name">Max Adams</value>

<value field="Phone">(398)765-1290</
value>

<value field="Location">Troy</value>

<value field="AccessId">146</value>

</row>

</siebel-xmlext-insert-ret>

siebel-xmlext-insert-ret

If the remote system has inserted records, then
they can be returned to be reflected in the business
component in an insert-ret XML stream in the row
tag format as the insert-ret stream.

PreInsert Return

<siebel-xmlext-preinsert-ret>

<row>

<value field="Location">San Jose</
value>

</row>

</siebel-xmlext-preinsert-ret>

siebel-xmlext-preinsert-ret

Returns default values for each field, if there is any
default value.

Query Return

<siebel-xmlext-query-ret>

<row>

<value field="AccountId">1-6</value>

<value field="Name">Sara Chen</value>

<value field="Phone">(415)298-7890</
value>

<value field="Location">San Francisco</
value>

<value field="AccessId">128</value>

</row>

<row>

<value field="AccountId">1-6</ value>

<value field="Name">Eric Brown</value>

<value field="Phone">(650)123-1000</
value>

<value field="Location">Palo Alto </
value>

<value field="AccessId">129</value>

• siebel-xmlext-query-ret

The query-ret XML stream contains the result
set that matches the criteria of the query.

• row

This tag indicates the number of rows returned
by the query. Each row must contain one or
more value tags. The attributes that appear in
row tags must be able to uniquely identify the
rows. If there is a unique key in the remote data
source, then it appears in the result set. If not,
 a unique key is generated. It is necessary to
identify specific rows for DML operations.

• value

This tag specifies the field and value pairs and
must be the same for each row in the set.

194

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Method Format of the XML Stream Description

</row>

</siebel-xmlext-query-ret>

Update Return

<siebel-xmlext-update-ret>

<row>

<value field="Location">San Jose</
value>

<value field="Phone">(408)234-1029</
value>

</row>

</siebel-xmlext-update-ret>

siebel-xmlext-update-ret

If the remote system updated fields, then the fields
can be returned to be reflected in the business
component in an update-ret XML stream in the row
tag format as the update-ret stream.

External Application Setup
When you have your XML Gateway Service configured, set up your external application accordingly to receive and
respond to the requests. At a minimum, the external application must support the Init() and Query() methods, and
depending upon the functionality provided by the VBC, the remaining methods might or might not be necessary.

Custom Business Service Methods
Your business service must implement the Init and Query methods as described in this topic. The Delete, PreInsert,
Insert, and Update methods are optional, and depend on the functionality required by the VBC.

Note: Custom business services can be based only on the CSSService class, as specified in Siebel Tools.

These methods pass property sets between the VBC and the business service. VBC methods take property sets as
arguments. Each method takes two property sets: an Inputs property set and an Outputs property set. The methods are
called by the CSSBCVExtern class in response to requests from other objects that refer to, or are based on the VBC.

If VBCs are used, then custom business services are written to access external relational databases. However, it is
recommended that you use external business components (EBCs) to access these databases instead of writing custom
business services. For more information on EBCs, see External Business Components.

Common Method Parameters
The following table shows the input parameters common to every method. Note that all these parameters are at the
root property set.

195

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Parameter Description

Remote Source

(Optional) Specifies the name of an external data source. This is the VBC’s Remote Source user
property, if defined. For information, see the table in topic Setting User Properties for the Virtual
Business Component.

Business Component Name

Name of the active VBC.

Business Component Id

Internally generated unique value that represents the VBC.

Parameters

(Optional) The VBC’s Service Parameters user property, if defined. For information, see the table in
topic Setting User Properties for the Virtual Business Component. A set of parameters required by the
business service.

VBC Compatibility Mode

(Optional) This is the VBC’s Compatibility Mode user property, if defined. For information, see the table
in topic Setting User Properties for the Virtual Business Component.

When a response has been received, the method packages the response from the external data source into the output’s
property set.

Business Services Methods and Their Property Sets
The following examples display each method's input and output property sets for a VBC Contact that displays simple
contact information for a given account. These examples are based on the example in the Custom Business Service
Examples.

The output property set of the Insert and Update methods for VBC does not affect the data in the business component,
unlike the Query method, which uses the output property set to populate the business component. The output property
set for Insert and Update is used to indicate that what fields or record has been changed.

Note: All the optional parameters have been omitted from these examples to simplify them.

Delete Method
The Delete method is called when a record is deleted. The following figure illustrates the property set for the Delete
input.

196

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 Business_spcComponent_spcId="1"
 Business_spcComponent_spcName="Contact">
 <PropertySet
 AccountId="1-6"
 Name="Max Adams"
 Phone="(408)234-1029"
 Location="San Jose"
 AccessId="146" />
 </PropertySet>

The following figure illustrates the property set for the Delete output: Type and Value are Null.

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet />

197

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Error Return Method
The following figure illustrates the property set for the Error Return method, when an error is detected.

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet>
 <Status Status="4"
 Error_spcField="Name"
 Error_spcText="Name must not be empty"/>
</PropertySet>

Init Method
The Init method is called when the VBC is first instantiated. It initializes the VBC. It expects to receive the list of fields
supported by the external system.

Note: When a field is not initialized in the Init method of the VBC, the Update method is not fired when the field gets
updated.

198

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

The following figure illustrates the property set for the Init input.

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 Business_spcComponent_spcId="1"
 Business_spcComponent_spcName="Contact"/>

The following figure illustrates the property set for the Init output.

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 AccountId=""
 Name=""
 Phone=""
 Location=""
 AccessId="" />

Insert Method
The Insert method is called when a New Record is committed. The following figure illustrates the property set for the
Insert input.

199

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 Business_spcComponent_spcId="1"
 Business_spcComponent_spcName="Contact">
 <PropertySet
 AccountId="1-6"
 Name="Max Adams"
 Phone="(398)765-1290"
 Location="Troy"
 AccessId="" />
</PropertySet>

The following figure illustrates the property set for the Insert output.

Note: The property set for the Insert output does not affect the data in the business component. The output property
set for Insert is used to indicate what fields or records were changed.

200

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 <PropertySet
 AccountId="1-6"
 Name="Max Adams"
 Phone="(398)765-1290"
 Location="Troy"
 AccessId="146" />
</PropertySet>

PreInsert Method
The PreInsert method is called when a New Record operation is performed. It supplies default values. The following
figure illustrates the property set for the PreInsert input.

201

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 Business_spcComponent_spcId="1"
 Business_spcComponent_spcName="Contact"/>

The following figure illustrates the property set for the PreInsert output.

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet>
 <PropertySet Location="San Jose" />
</PropertySet>

202

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Query Method
The Query method is called when a search is performed. The Query method must be supported by every VBC. Each
record that matches the query is represented as a property set. For example, if 5 records match the query, then there
will be 5 child property sets. Each property set contains a list of field names, that is field value pairs representing the
values of each field for that particular record. The following figure illustrates the property set for the Query input and is
followed by its XML representation.

203

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

204

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 max-rows="6"
 search-string="([Phone] IS NOT NULL) AND ([AccountId] = "1-6")"
 Business_spcComponent_spcId="1"
 Business_spcComponent_spcName="Contact">
 <PropertySet AccountId="1-6" />
 <search-spec>
 <node node-type="Binary Operator">AND
 <node node-type="Unary Operator">IS NOT NULL
 <node node-type="Identifier">Phone</node>
 </node>
 <node node-type="Binary Operator">=
 <node node-type="Identifier">AccountId</node>
 <node value-type="TEXT" node-type="Constant">1-6</node>
 </node>
 </node>
</search-spec>
<sort-spec>
 <sort field="Location">ASCENDING</sort>
 <sort field="Name">DESCENDING</sort>
 </sort-spec>
</PropertySet>

The following figure illustrates the property set for the Query output.

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet>
 <PropertySet
 AccountId="1-6"
 Name="Sara Chen"
 Phone="(415)298-7890"

205

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

 Location="San Francisco"
 AccessId="128" />
<PropertySet
 AccountId="1-6"
 Name="Eric Brown"
 Phone="(650)123-1000"
 Location="Palo Alto"
 AccessId="129" />
</PropertySet>

Update Method
The Update method is called when a record is modified. The following figure illustrates the property set for the Update
input.

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 Business_spcComponent_spcId="1"
 Business_spcComponent_spcName="Contact">
<PropertySet
 Field_spcName="AccountId"

206

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

 Changed="false"
 Field_spcValue="1-6"/>
<PropertySet
 Field_spcName="Name"
 Changed="false"
 Field_spcValue="MaxAdams"/>
<PropertySet
 Field_spcName="Phone"
 Changed="true"
 Field_spcValue="(408)234-1029"/>
<PropertySet
 Field_spcName="Location"
 Changed="true"
 Field_spcValue="SanJose"/>
<PropertySet
 Field_spcName="AccessId"
 Changed="false"
 Field_spcValue="146" />
</PropertySet>

The following figure illustrates the property set for the Update output.

Note: The property set for Update output does not affect the data in the business component. The output property
set for Update is used to indicate what fields or records were changed.

The following is the XML representation of the property set shown in the previous figure:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="true"?>
<PropertySet
 <PropertySet
 Phone=="(408)234-1029"
 Location="San Jose" />
</PropertySet>

207

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Custom Business Service Examples
These examples show the implementation of a business service for a VBC in both Siebel eScript and Siebel VB:

• Siebel eScript Business Service Example for a VBC

• Siebel VB Business Service Example for a VBC

Siebel eScript Business Service Example for a VBC
The following is an example of Siebel eScript implementation of a business service for a VBC. The fields configured for
this simple VBC are AccountId, Name, Phone, Location, and AccessId. AccessId is the primary key in the external data
source. AccessId is included in the VBC fields to make updating and deleting the fields simple and is configured as a
hidden field.

CAUTION: Do not use Siebel CRM system fields, such as Id, as output properties. Undesired application behavior
might result.

 function Service_PreInvokeMethod (MethodName, Inputs, Outputs) {
 if (MethodName == "Init") {
 return(Init(Inputs, Outputs));
 }
 else if (MethodName == "Query") {
 return(Query(Inputs, Outputs));
 }
 else if (MethodName == "PreInsert") {
 return(PreInsert(Inputs, Outputs));
 }
 else if (MethodName == "Insert") {
 return(Insert(Inputs, Outputs));
 }
 else if (MethodName == "Update") {
 return(Update(Inputs, Outputs));
 }
 else if (MethodName == "Delete") {
 return(Delete(Inputs, Outputs));
 }
 else {
 return (ContinueOperation);
 }
 }
 function Init (Inputs, Outputs) {
 // For debugging purposes...
 logPropSet(Inputs, "InitInputs.xml");
 Outputs.SetProperty("AccountId", "");
 Outputs.SetProperty("Name", "");
 Outputs.SetProperty("Phone", "");
 Outputs.SetProperty("AccessId", "");
 Outputs.SetProperty("Location", "");
 // For debugging purposes...
 logPropSet(Outputs, "InitOutputs.xml");
 return (CancelOperation);
 }
 function Query(Inputs, Outputs) {
 // For debugging purposes...
 logPropSet(Inputs, "QueryInputs.xml");
 var selectStmt = "select * from Contacts ";

208

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

 var whereClause = "";
 var orderbyClause = "";
 // You have the following properties if you want to use them
 // Inputs.GetProperty("Business Component Name")
 // Inputs.GetProperty("Business Component Id")
 // Inputs.GetProperty("Remote Source")
 // If you configured Maximum Cursor Size at the buscomp,
 // get max-rows property
 var maxRows = Inputs.GetProperty("max-rows");
 // get search-string
 var searchString = Inputs.GetProperty("search-string");
 if (searchString != "")
 {
 // convert the search-string into a where clause
 searchString = stringReplace(searchString, '*', '%');
 searchString = stringReplace(searchString, '[', ' ');
 searchString = stringReplace(searchString, ']', ' ');
 searchString = stringReplace(searchString, '~', ' ');
 searchString = stringReplace(searchString, '"', "'");
 whereClause = " where ";
 whereClause = whereClause + searchString;
 }
 // match, search-spec, sort-spec
 var childCount = Inputs.GetChildCount();
 var child, sortProp;
 for (var i = 0; i < childCount; i++)
 {
 child = Inputs.GetChild(i);
 if (child.GetType() == "")
 {
 // Use this child property set if you want to use the old match field list.
 // We are not using this in this example. We'll use search-string instead.
 }
 else if (child.GetType() == "search-spec")
 {
 // Use this child property set if you want to use the hierarchical
 // representation of the search-string.
 // We are not using this in this example. We'll use search-string instead.
 }
 else if (child.GetType() == "sort-spec")
 {
 // This child property set has the sort spec. We'll use this in this example
 orderbyClause = " order by ";
 var sortFieldCount = child.GetChildCount();
 for (var j = 0; j < sortFieldCount; j++)
 {
 // Compose the order by clause.
 sortProp = child.GetChild(j);
 orderbyClause += sortProp.GetProperty("field");
 var sortOrder = sortProp.GetValue();
 if (sortOrder == "DESCENDING")
 orderbyClause += " desc";
 if (j < sortFieldCount-1)
 orderbyClause += ", ";
 }
 }
 }
 // Now, our complete select statement is...
 selectStmt += whereClause + orderbyClause;
 // Now, query the data source.
 var conn = getConnection();
 var rs = getRecordset();
 rs.Open(selectStmt, conn);
 // We will return no more than maxRows of records.
 var count = rs.RecordCount;
 if (maxRows != "")

209

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

 if (count > maxRows)
 count = maxRows
 // Iterate through the record set and add them to the Outputs PropertySet.
 var fcount, fields, row;
 for (i = 0; i < count; i++)
 {
 row = TheApplication().NewPropertySet();
 fields = rs.Fields();
 fcount = fields.Count;
 for (j = 0; j < fcount; j++)
 {
 var fieldValue = fields.Item(j).Value;
 if (fieldValue == null)
 row.SetProperty(fields.Item(j).Name, "");
 else
 row.SetProperty(fields.Item(j).Name, fieldValue);
 }
 Outputs.AddChild(row);
 rs.MoveNext();
 }
 // For debugging purposes...
 logPropSet(Outputs, "QueryOutputs.xml");
 // clean up
 child = null;
 sortProp = null;
 row = null;
 rs.Close();
 rs = null;
 conn.Close();
 conn = null;
 return (CancelOperation);
 }
 function PreInsert (Inputs, Outputs) {
 // For debugging purposes...
 logPropSet(Inputs, "PreInsertInputs.xml");
 var defaults = TheApplication().NewPropertySet();
 defaults.SetProperty("Location", "KO");
 Outputs.AddChild(defaults);
 // For debugging purposes...
 logPropSet(Outputs, "PreInsertOutputs.xml");
 // Cleanup
 defaults = null;
 return (CancelOperation);
 }
 function Insert (Inputs, Outputs) {
 // For debugging purposes...
 logPropSet(Inputs, "InsertInputs.xml");
 var fieldList = "";
 var valueList = "";
 // Inputs must have only 1 child property set.
 var child = Inputs.GetChild(0);
 var fieldName = child.GetFirstProperty();
 var fieldValue;
 while (fieldName != "")
 {
 fieldValue = child.GetProperty(fieldName);
 if (fieldValue != "")
 {
 if (fieldList != "")
 {
 fieldList += ", ";
 valueList += ", ";
 }
 fieldList += fieldName;
 valueList += "'" + fieldValue + "'";
 }

210

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

 fieldName = child.GetNextProperty();
 }
 // The insert statement is...
 var insertStmt = "insert into Contacts (" + fieldList + ") values (" + valueList + ")";
 // Now, inserting into the data source...
 var conn = getConnection();
 conn.Execute (insertStmt);
 // In this example, we must query back the record just inserted to get
 // the value of its primary key. We made this primary key part of the buscomp
 // to make update and delete easy. The primary key is "AccessId".
 var selectStmt = "select * from Contacts where ";
 var whereClause = "";
 child = Inputs.GetChild(0)
 fieldName = child.GetFirstProperty();
 while (fieldName != "")
 {
 fieldValue = child.GetProperty(fieldName);
 if (fieldName != "AccessId")
 {
 if (whereClause != "")
 whereClause += " and ";
 if (fieldValue == "")
 whereClause += fieldName + " is null";
 else
 whereClause += fieldName + "='" + fieldValue + "'";
 }
 fieldName = child.GetNextProperty();
 }
 // The select statement is...
 selectStmt += whereClause;
 // Now, let's select the new record back
 var rs = getRecordset();
 rs.Open(selectStmt, conn);
 // We're expecting only one row back in this example.
 var fcount, fields, row, fieldValue;
 row = TheApplication().NewPropertySet();
 fields = rs.Fields();
 fcount = fields.Count();
 for (var j = 0; j < fcount; j++)
 {
 fieldValue = fields.Item(j).Value();
 if (fieldValue == null)
 row.SetProperty(fields.Item(j).Name(), "");
 else
 row.SetProperty(fields.Item(j).Name(), fieldValue);
 }
 Outputs.AddChild(row);
 // For debugging purpose...
 logPropSet(Outputs, "InsertOutputs.xml");
 // Cleanup
 child = null;
 row = null;
 rs.Close();
 rs = null;
 conn.Close();
 conn = null;
 return (CancelOperation);
 }
 function Update (Inputs, Outputs) {
 // For debugging purposes...
 logPropSet(Inputs, "UpdateInputs.xml");
 var child;
 var childCount = Inputs.GetChildCount();
 var fieldName, fieldValue;
 var updateStmt = "update Contacts set ";
 var setClause = "";

211

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

 var whereClause;
 // Go through each child in Inputs and construct the
 // necessary sql statements for update and query
 for (var i = 0; i < childCount; i++)
 {
 child = Inputs.GetChild(i);
 fieldName = child.GetProperty("Field Name");
 fieldValue = child.GetProperty("Field Value");
 // We only have to update changed fields.
 if (child.GetProperty("Changed") == "true")
 {
 if (setClause != "")
 setClause += ", ";
 if (fieldValue == "")
 setClause += fieldName + "=null";
 else
 setClause += fieldName + "='" + fieldValue + "'";
 }
 if (fieldName == "AccessId")
 whereClause = " where AccessId = " + fieldValue;
 }
 // The update statement is...
 updateStmt += setClause + whereClause;
 // Now, updating the data source...
 var conn = getConnection();
 conn.Execute (updateStmt);
 // How to construct the Outputs PropertySet can vary, but in this example
 // We'll query back the updated record from the data source.
 var selectStmt = "select * from Contacts" + whereClause;
 // Now, let's select the updated record back
 var rs = getRecordset();
 rs.Open(selectStmt, conn);
 // We expect only one row back in this example.
 // In this example, we're returning all the fields and not just
 // the updated fields. You can only return those updated
 // fields with the new value in the Outputs property set.
 var fcount, fields, row, fieldValue;
 row = TheApplication().NewPropertySet();
 fields = rs.Fields();
 fcount = fields.Count();
 for (var j = 0; j < fcount; j++)
 {
 fieldValue = fields.Item(j).Value();
 if (fieldValue == null)
 row.SetProperty(fields.Item(j).Name(), "");
 else
 row.SetProperty(fields.Item(j).Name(), fieldValue);
 }
 Outputs.AddChild(row);
 // For debugging purposes...
 logPropSet(Outputs, "UpdateOutputs.xml");
 // Cleanup
 child = null;
 row = null;
 rs.Close();
 rs = null;
 conn.Close();
 conn = null;
 return (CancelOperation);
 }
 function Delete (Inputs, Outputs) {
 // For debugging purposes...
 logPropSet(Inputs, "DeleteInputs.xml");
 // Inputs must have only 1 child property set.
 var child = Inputs.GetChild(0);
 // In this example, we're only using the AccessId

212

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

 // (it is the primary key in the Contacts db)
 // for the delete statement for simplicity.
 var deleteStmt = "delete from Contacts where AccessId = " +
child.GetProperty("AccessId");
 // Now, delete the record from the data source.
 var conn = getConnection();
 conn.Execute(deleteStmt);
 // For debugging purposes...
 logPropSet(Outputs, "DeleteOutputs.xml");
 // Returning empty Outputs property set.
 // clean up
 conn.Close();
 conn = null;
 return (CancelOperation);
 }

The following functions are helper functions:

 function getConnection () {
 // VBCContact is the ODBC data source name
 var connectionString = "DSN=VBCContact";
 var uid = "";
 var passwd = "";
 var conn = COMCreateObject("ADODB.Connection");
 conn.Mode = 3;
 conn.CursorLocation = 3;
 conn.Open(connectionString , uid, passwd);
 return conn;
 }
 function getRecordset() {
 var rs = COMCreateObject("ADODB.Recordset");
 return rs;
 }
 function logPropSet(inputPS, fileName) {
 // Use EAI XML Write to File business service to write
 // inputPS property set to fileName file in c:\temp directory.
 var fileSvc = TheApplication().GetService("EAI XML Write to File");
 var outPS = TheApplication().NewPropertySet();
 var fileLoc = "c:\\temp\\" + fileName;
 var tmpProp = inputPS.Copy();
 tmpProp.SetProperty("FileName", fileLoc);
 fileSvc.InvokeMethod("WritePropSet", tmpProp, outPS);
 // clean up
 outPS = null;
 fileSvc = null;
 tmpProp = null;
 }
 function stringReplace (string, from, to) {
 // Replaces from with to in string
 var stringLength = string.length;
 var fromLength = from.length;
 if ((stringLength == 0) || (fromLength == 0))
 return string;
 var fromIndex = string.indexOf(from);
 if (fromIndex < 0)
 return string;
 var newString = string.substring(0, fromIndex) + to;
 if ((fromIndex + fromLength) < stringLength)
 newString += stringReplace(string.substring(fromIndex+fromLength, stringLength),
from, to);
 return newString;
 }

213

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Siebel VB Business Service Example for a VBC
The following is an example of Siebel VB implementation of a business service for a VBC. The fields configured for this
simple VBC are AccountId, Name, Phone, and Location.

CAUTION: Do not use Siebel CRM system fields, such as Id, as output properties. Undesired application behavior
might result.

(declarations)
Option Explicit
Declare Function stringReplace(mystr As String, fromchar As String, tochar As
String) As String
Declare Function getData(execSQL As String, Results As PropertySet) As Integer
Function getData(execSQL As String, Results As PropertySet) As Integer
Dim sSrv As String, sDbn As String
Dim sUsr As String, sPsw As String
Dim oCon As Object, oRec As Object
Dim Row As PropertySet
Dim FileName, TextToSave
' *** SQL Server connectivity parameters
sSrv = "v817.siebel.com" '*** Oracle tns
sUsr = "system" '*** SQL Server: a user's login Id
sPsw = "manager" '*** SQL Server: a user's password
' *** Create SQL Server ADODB connection dynamically
Set oCon = CreateObject("ADODB.Connection")
oCon.Open "Provider=MSDAORA;" & _
"Data Source=" & sSrv & ";" & _
"User ID=" & sUsr & ";" & "Password=" & sPsw & ";"
' *** Perform SQL query
Set oRec = oCon.Execute(execSQL)
' *** Process SQL query result and save into file
While Not oRec.Eof
 Set Row=TheApplication.NewPropertySet()
 Row.SetProperty "AccountId", oRec.Fields.Item("AccountId").Value
 Row.SetProperty "Name", oRec.Fields.Item("Name").Value
 Row.SetProperty "Location", oRec.Fields.Item("Location").Value
 Row.SetProperty "Phone", oRec.Fields.Item("Phone").Value
 Results.AddChild Row
 Set Row = Nothing
 oRec.MoveNext
Wend
' *** Object cleanup
Set oRec = Nothing
Set oCon = Nothing
getData = 0
End Function
Sub Init(Inputs As PropertySet, Outputs As PropertySet)
Outputs.SetProperty "AccountId", ""
Outputs.SetProperty "Name", ""
Outputs.SetProperty "Phone", ""
Outputs.SetProperty "Location", ""
End Sub
Sub Query(Inputs As PropertySet, Outputs As PropertySet)
Dim sselectStmt As String
Dim swhereClause As String
Dim sorderbyClause As String
Dim ssearchstring As String
Dim child As PropertySet
Dim sortProp As PropertySet
Dim childCount As Integer

214

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

Dim i As Integer
Dim ret As Integer
Dim FileName, TextToSave
sselectStmt = "select * from siebel.Contact2 "
swhereClause = "where "
sorderbyClause= "order by "
ssearchstring = Inputs.GetProperty("search-string")
If Len(ssearchstring) > 0 Then
 ssearchstring = stringReplace(ssearchString, "*", "%")
 ssearchstring = stringReplace(ssearchString, "[", " ")
 ssearchstring = stringReplace(ssearchString, "]", " ")
 ssearchstring = stringReplace(ssearchString, "~", " ")
 ssearchstring = stringReplace(ssearchString, chr$(34), "'")
 sselectStmt = sselectStmt & swhereClause & ssearchstring
End If
' Write select statement to this file
FileName = "C:\Test.txt"
TextToSave = "select is " & sselectStmt
Open FileName For Append As #1
Print #1, TextToSave
Close #1
ret = getData(sselectStmt, Outputs)
End Sub
Function stringReplace(mystr As String, fromchar As String, tochar As String) As
String
'Replace all occurrences of fromchar in mystr with tochar
Dim i As Long
If Len(mystr) = 0 Or Len(fromchar) = 0 Then
stringReplace = mystr
Else
i = InStr(1, mystr, fromchar)
Do While i > 0
mystr = Left(mystr, i - 1) & tochar & Mid(mystr, i + Len(fromchar))
i = i + Len(fromchar)
i = InStr(i, mystr, fromchar)
Loop
stringReplace = mystr
End If
End Function
Function Service_PreInvokeMethod (MethodName As String, Inputs As PropertySet,
Outputs As PropertySet) As Integer
Service_PreInvokeMethod = ContinueOperation
If MethodName = "Init" Then
Service_PreInvokeMethod = CancelOperation
Init Inputs, Outputs
Exit Function
End If
If MethodName = "Query" Then
Service_PreInvokeMethod = CancelOperation
Query Inputs, Outputs
Exit Function
End If
End Function

215

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 8
Siebel Virtual Business Components

216

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

9 Siebel EAI and File Attachments

Siebel EAI and File Attachments
Siebel EAI supports file attachments for exchanging business documents such as sales literature, activity attachments,
and product defect attachments with another Siebel instance or an external system such as Oracle Applications. This
chapter includes the following topics:

• About File Attachments

• Exchanging Attachments with External Applications

• Using MIME Messages to Exchange Attachments

• About the EAI MIME Hierarchy Converter

• About the EAI MIME Doc Converter

• Using Inline XML to Exchange Attachments

About File Attachments
For example, if you are exchanging service requests with another application or partner, then you can include
attachments such as screen captures, email, log files, and contract agreements that are associated with the service
request in the information being exchanged. Siebel EAI support for file attachments allows comprehensive integration.

To use file attachments you first must create integration objects. For information, see Integration Objects, and Creating
and Maintaining Integration Objects.

Siebel EAI offers the choice of integrating file attachments using MIME (the industry standard for exchanging multipart
messages), or including the attachment within the body of the XML document, referred to as an inline XML attachment.
Consider using inline XML attachments when integrating two instances of Siebel CRM using file attachments.

Exchanging Attachments with External Applications
Siebel EAI supports bidirectional attachment exchange with external applications using the following two message
types:

• MIME (Multipurpose Internet Mail Extensions). MIME is the industry standard for exchanging multipart
messages. The first part of the MIME message is an XML document representing the business object being
exchanged and attachments to the object are included as separate parts of the multipart message. MIME is the
recommended choice for integrating Siebel CRM with other applications. For more information, see Using MIME
Messages to Exchange Attachments.

• Inline XML attachments (Inline Extensible Markup Language). With inline XML attachments, the entire
business object you are exchanging, including any attachments, is sent as a single XML file. Consider using
inline XML attachments when integrating two instances of Siebel CRM using file attachments. For more
information, see Using Inline XML to Exchange Attachments.

217

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Using MIME Messages to Exchange Attachments
To send or receive file attachments using MIME messages, Siebel EAI uses the MIME Hierarchy Converter and MIME Doc
Converter.

You must perform the following procedures to use MIME to exchange attachments between Siebel CRM and another
external system:

• Create an attachment integration object using the EAI Siebel Wizard business service.

For information, see Creating an Attachment Integration Object.

• Create an inbound or outbound workflow.

For information, see Creating Workflow Examples.

• Test your workflow using the Workflow Simulator.

For information, see Business Processes and Rules: Siebel Enterprise Application Integration .

Creating an Attachment Integration Object
The following procedure guides you through the steps of creating an attachment integration object.

To create a new attachment integration object
1. In Siebel Tools or Web Tools, create a new workspace.
2. From the File menu, choose New Object to display the New Object Wizards dialog box.
3. Select the EAI tab, and then double-click Integration Object.

The Integration Object Builder wizard appears.

218

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

4. Follow the procedure in Creating Integration Objects Using the EAI Siebel Wizard Business Service to create the
new integration object, for example SourceObject Attachment.

Note: When creating your integration object you must select the Attachment integration component. The
following figure illustrates this when the source object is Account.

5. In the Object Explorer, select Integration Object, and then select your new integration object in the Object List
Editor.

6. In the Object Explorer, expand the Integration Object tree to show the Integration Component object.
7. Select the SourceObject Attachment integration component, and set its External Sequence and XML Sequence

properties so that they are greater than those of the other integration components (that is, last in sequence), if
not already set.

If they are not last, the situation can arise where the attachment is processed successfully (and the file system
is physically updated). Then a subsequent integration component causes a failure (for example, an attempt to
insert to the database causes a duplicate error). In this case, the database transaction is rolled back, but the file
system is not restored.

8. With the SourceObject Attachment integration component selected, expand the Integration Component object,
and then select the Integration Component Field object.

The Integration Components and Integration Component Fields lists appear.
9. Inactivate all integration component fields except the following:

◦ SourceObject Attachment Id, for example, Accnt Attachment Id

◦ SourceObjectFileExt, for example, AccntFileExt

◦ SourceObjectFileName, for example, AccntFileName

◦ Comment

10. Select the SourceObject Attachment Id component field, and then verify that its Data Type property is set to
DTYPE_ATTACHMENT.

11. Deliver the workspace.

219

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Creating Workflow Examples
Depending on whether you are preparing for an outbound or an inbound attachment exchange, design different
workflows as described in the following two procedures.

For more information on creating workflows, see Siebel Business Process Framework: Workflow Guide .

Outbound Workflow
To process the attachment for an outbound request you must create a workflow to query the database, convert the
integration object and its attachments into a MIME hierarchy, and then create a MIME document to send to the File
Transport business service.

To create an outbound workflow

1. In Siebel Tools, select the Workflow Process object in the Object Explorer.
2. Right-click, then choose New Record.
3. Give the new workflow a name and associate it with a locked project.
4. Right-click, and then choose Edit Workflow Process.

The Workflow Process Designer appears.
5. Create a workflow consisting of Start, End, and four Business Services. Set up each Business Service according

to the task it must accomplish.
6. Define your process properties.

Set process properties when you need global properties for the entire workflow.

Name Data Type Default String

SiebelMessage

Hierarchy

Leave blank.

Error Message

String

Leave blank.

Error Code

String

Leave blank.

Object Id

String

Leave blank.

Process Instance Id

String

Leave blank.

Siebel Operation Object Id

String

Leave blank.

MIMEHierarchy

Hierarchy

Leave blank.

SearchSpec String [Account.Name] = 'Sample Account'

220

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Name Data Type Default String

<Value>

String

Default output is binary.

7. The first business service queries the Account information from the database using the EAI Siebel Adapter
business service with the Query method. This step requires the following input and output arguments.

Input Argument Type Value Property Name Property Data Type

Output Integration
Object Name

Literal

Sample Account

not applicable

not applicable

SearchSpec

Process Property

not applicable

SearchSpec

String

Property Name Type Output Argument

SiebelMessage

Output Argument

Siebel Message

Note: For more information on using the EAI Siebel Adapter, see EAI Siebel Adapter Business Service.

8. The second business service in the workflow converts the Account integration object and its attachments to
a MIME hierarchy using the EAI MIME Hierarchy Converter business service with the SiebelMessage to MIME
Hierarchy method. This step requires the following input and output arguments.

Input Argument Type Property Name Property Data Type

Siebel Message

Process Property

SiebelMessage

Hierarchy

Note: For more information on the EAI MIME Hierarchy Converter, see About the EAI MIME Hierarchy
Converter.

9. The third business service of the workflow converts the MIME hierarchy to a document to be sent to File
Transport business service. This step uses the EAI MIME Doc Converter business service with the MIME
Hierarchy To MIME Doc method. This step requires the following input and output arguments.

Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy

221

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Property Name Type Output Argument

Input Argument Type Property Name Property Data Type

MIME Hierarchy

Process Property

MIMEHierarchy

Hierarchy

Property Name Type Output Argument

<Value>

Output Argument

MIME Message

Note: For more information on the EAI MIME Doc Converter, see About the EAI MIME Doc Converter.

10. For the final step, set up the last business service of the workflow to write the information into a file using the
EAI File Transport business service with the Send method. This step requires the following input arguments.

Input Argument Type Value Property Name Property Data
Type

Message Text

Process Property

not applicable

<Value>

String

File Name

Literal

c:\temp\account.txt

not applicable

not applicable

Note: For information on File Transport, see Transports and Interfaces: Siebel Enterprise Application
Integration .

Inbound Workflow Example
To process the attachment for an inbound request, you must create a workflow to read the content from a file, convert
the information into a Siebel Message, and send to the EAI Siebel Adapter to update the database accordingly.

Note: When passing the process property value for a workflow from an external application (or another business
service) as the input property set, the corresponding property name in the input property set must be same name as
the process property and is case sensitive.

To create an inbound workflow

1. In Siebel Tools, select the Workflow Process object in the Object Explorer.
2. Right-click, and then choose New Record.
3. Give the new workflow a name and associate it with a locked project.
4. Right-click, then choose Edit Workflow Process.

222

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

The Workflow Process Designer appears.
5. Create a workflow consisting of Start, End and four Business Services. Set up each Business Service according

to the task it must accomplish.
6. Define your process properties.

Set process properties when you need global properties for the entire workflow:

Name Data Type

SiebelMessage

Hierarchy

Error Message

String

Error Code

String

Object Id

String

Siebel Operation Object Id

String

MIMEHierarchy

Hierarchy

MIMEMsg

Binary

7. The first business service in the workflow reads the Account information from a file using the EAI File Transport
business service with Receive method. This step requires the following input and output arguments.

Input Argument Type Value

File Name

Literal

c:\temp\account.txt

Property Name Type Output Argument

<Value>

Output Argument

Message Text

Note: For information on File Transport, see Transports and Interfaces: Siebel Enterprise Application
Integration .

8. The second business service of the workflow converts the Account information to a MIME hierarchy using the
EAI MIME Doc Converter business service with the MIME Doc to MIME Hierarchy method. This step requires the
following input and output arguments.

223

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Input Argument Type Property Name Property Data Type

MIME Message

Process Property

<Value>

Binary

Property Name Type Output Argument

MIMEHierarchy

Output Argument

MIME Hierarchy

9. The third business service of the workflow converts the MIME hierarchy to a document, and sends it to the EAI
Siebel Adapter business service. This step uses the EAI MIME Hierarchy Converter business service with the
MIME Hierarchy to Siebel Message method. This step requires the following input and output arguments.

Input Argument Type Property Name Property Data Type

MIME Hierarchy

Process Property

MIMEHierarchy

Hierarchy

Property Name Type Output Argument

SiebelMessage

Output Argument

Siebel Message

10. The last step of the workflow writes the information into the database using the EAI Siebel Adapter business
service with the Insert or Update method. This step requires the following input argument.

Input Argument Type Property Name Property Data Type

Siebel Message

Process Property

SiebelMessage

Hierarchy

About the EAI MIME Hierarchy Converter
The EAI MIME Hierarchy Converter transforms the Siebel Message into a MIME (Multipurpose Internet Mail Extensions)
hierarchy for outbound integration. For inbound integration, it transforms the MIME Hierarchy into a Siebel Message.

224

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Outbound Integration
The EAI MIME Hierarchy Converter transforms the input Siebel Message into a MIME Hierarchy. The following figure
illustrates the Siebel Message of a sample Account with attachments. This figure represents both input and output to
the MIME Hierarchy Converter.

The output of this process is illustrated in the following figure.

The first child of a MIME Hierarchy is the XML format of the Sample Account Integration Object instance found in the
Siebel Message. The remaining two children are the corresponding children found after Attachments. If there is no child
of type Attachments in the Siebel Message, then the output is just a MIME Hierarchy with a child of type Document. This
document will contain the XML format of the Sample Account integration object instance.

Inbound Integration
The MIME Hierarchy Converter transforms a MIME Hierarchy input into a Siebel Message. For the inbound process,
the first child of the MIME Hierarchy has to be the XML format of the Integration Object instance; otherwise, an error is
generated. The following figure illustrates the incoming hierarchy.

225

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

The output of this process is illustrated in the figure in the previous topic. The output for this process is the same as the
input.

About the EAI MIME Doc Converter
The MIME Doc Converter converts a MIME Hierarchy into a MIME Message and a MIME Message into a MIME Hierarchy.
A MIME Hierarchy consists of two different types of property sets, as shown in the following table.

Property Description

MIME Hierarchy

Mapping to a MIME multi-part

Document

Mapping to MIME basic-part

EAI MIME Doc Converter Properties
The following table illustrates some examples of how a MIME Message maps to a MIME Hierarchy.

MIME Message MIME Hierarchy

MIME-Version: 1.0

Content-Type: application/xml

Content-Transfer-Encoding: 7bit

This is a test.

Type: Document

Value: This is a test

MIME-Version: 1.0

Content-Type: multipart/related;
type="application/xml"; boundary=--abc

----abc

Content-Type: application/xml

Content-Transfer-Encoding: 7bit

This is test2.

----abc--

Type: MIMEHierarchy

Type: Document

Value: This is a test2

The business service needs the following properties on the child property set as shown in the following table. These
properties reflect the most accurate information on the data contained in the child property set.

226

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Property Possible Values Type Description

ContentId

Any value

Document

No Default. The ContentId is the value used to identify
the file attachment when the receiver parses the MIME
message. When importing attachments, use a unique
value for this property and not repeat it for the rest
of the file attachments. This is required in the actual
document. This property is automatically populated
when you are exporting an attachment from a Siebel
application.

Extension

txt, java, c, C, cc, CC, h, hxx,
 bat, rc, ini, cmd, awk, html,
 sh, ksh, pl, DIC, EXC, LOG,
 SCP, WT, mk, htm, xml, pdf,
 AIF, AIFC, AIFF, AU, SND,
 WAV. gif, jpg, jpeg, tif, XBM,
 avi, mpeg, ps, EPS, tar, zip,
 js, doc, nsc, ARC, ARJ, B64,
 BHX, GZ, HQX

Document

No Default. If ContentType and ContentSubType
are not defined, then Extension is used to retrieve
the appropriate values from this property. If all
three values are specified, then ContentType and
ContentSubType values override the values retrieved
from the Extension. If either the Extension or both
ContentType and ContentSubType are not specified,
then ContentType will be set to application and
ContentSubType will have the value of octet-stream.

ContentType

application, audio, image,
 text, video

Document

Default is application. The ContentType value has to
be specified if you want to set the content type of
the document instead of using the extension to get
a value from the MIME utility function. If the value
is not provided, then the default value is used. The
ContentType of multipart is used to represent file
attachments in a MIME message. Other values to
describe a multipart message are not supported.

ContentSubType

plain, richtext, html, xml
(used with ContentType of
Text)

octet-stream, pdf,
postscript, x-tar, zip, x-
javascript, msword, x-
conference, x-gzip (used
with ContentType of
application)

aiff, basic, wav (used with
ContentType of audio)

gif, jpeg, tiff, x-xbitmap
(used with ContentType of
image)

avi, mpeg (used with
ContentType of video)

Document

Default is octet-stream. The ContentSubType value
has to be specified if you want to set the content
subtype of the document instead of using the
extension to get a value from the MIME utility
function. If the value is not provided, then the default
value is used.

Note: Octet-stream is transparent and uses
nonencoded 8-bit bytes. The MIME message will
contain the binary file data as is, which might cause
issues in data transmission over networks that
remove bit number 8 (the hi-bit) for special needs.

Note: On the inbound direction, the business service is independent of the transport. It assumes that the input
property set contains the MIME message, and writes a property set representation of the MIME message. A property
set is used to represent each part of the MIME message. When decoding the MIME message, the business service
automatically sets the properties based on the values in the MIME message.

227

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Using Inline XML to Exchange Attachments
To exchange attachments between applications, you use the EAI Siebel Adapter business service:

• To send a message to an external application, call the EAI Siebel Adapter with an integration object that has
an integration component from an attachment business component. The EAI Siebel Adapter generates the
integration object hierarchy and then converts it to an XML document. The attachment is included in the XML
in the SourceObjectFileBuffer element.

• To insert an attachment into a Siebel CRM application, the external application uses the same integration
object hierarchy, making sure the required fields are present, and puts the base64 string corresponding to the
attachment into this message. The XML converter converts the message into an integration object hierarchy,
and the EAI Siebel Adapter inserts the attachment.

Note: Attachments must be in base64 format.

Perform the following tasks to create and test inline XML attachments using an integration object and a workflow:

• Creating an attachment integration object using the EAI Siebel Wizard business service

For information, see Creating an Attachment Integration Object.

CAUTION: To avoid SQL errors, you must inactivate all integration component fields in the integration object
except those in Step 9.

• Creating an Attachment

• Creating a Test Workflow

• Testing your workflow using the Workflow Simulator

For information, see Business Processes and Rules: Siebel Enterprise Application Integration .

Creating an Attachment
You create an attachment to a record in the Siebel client whose row ID you know.

To create the attachment
1. In the Siebel client, navigate to a record that can take an attachment, for example, an account.
2. Choose Help, then About Record from the application-level menu to obtain the row ID of the record.
3. Drill down on the record, then select the Attachments tab.
4. Add an attachment to the record if none exists.

Creating a Test Workflow
You create a workflow in Siebel Tools to do the following:

• Query the Siebel database for the record with the attachment.

228

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

• Convert the integration object and its attachment into a Siebel Message.

• Read an external XML file (containing an attachment) and convert it into a Siebel Message.

Note: The XML file must use the exact integration object hierarchy as the attachment integration object you
created.

• Insert the record into the Siebel database.

To create a test workflow to exchange attachments
1. Create the following workflow:

2. Define the process properties as shown in the following table.

Name Data Type

Error Code

String

Error Message

String

Object Id

String

Process Instance Id

String

Siebel Operation Object Id

String

SiebelMessage

Hierarchy

3. The first business service step queries the database using the EAI Siebel Adapter business service with the
Query method. This step requires the following input and output arguments:

Input Argument Type Value

OutputIntObjectName

Literal

Attachment integration object you created, for example, Account
Attachment

229

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Input Argument Type Value

PrimaryRowId

Literal

Row ID of the record to which you added an attachment

Property Name Type Output Argument

SiebelMessage

Output Argument

SiebelMessage

4. The second business service step writes the integration object hierarchy to an XML file using the EAI XML Write
to File business service with the WriteEAIMsg method. This step requires the following input arguments:

Input Argument Type Value

FileName

Literal

File to write, for example, d:\temp
\AttachmentTest_write.xml

SiebelMessage

Process Property

SiebelMessage

5. The third business service step reads an XML hierarchy and converts it into a Siebel Message using the EAI
XML Read From File business service with the ReadEAIMsg method. This step requires the following input and
output arguments:

Input Argument Type Value

FileName

Literal

File to read, for example, d:\temp\AttachmentTest_read.xml

Note: For testing purposes, you can use a modified form of the file written in the
second business step, which will automatically have the correct hierarchy.

6. The fourth business service step reads the Siebel Message and inserts the record into the Siebel database
using the EAI Siebel Adapter business service with the Insert method. This step requires the following input
argument:

Property Name Type Output Argument

SiebelMessage Output Argument SiebelMessage

230

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

Property Name Type Output Argument

Input Argument Type Value

SiebelMessage

Process Property

SiebelMessage

231

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 9
Siebel EAI and File Attachments

232

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

10 External Business Components

External Business Components
The external business component feature provides a way to access data that resides in a non-Siebel table or view, using
a Siebel business component. This chapter contains the following topics:

• Process of Configuring External Business Components

• Using Specialized Business Component Methods for EBCs

• Usage and Restrictions for External Business Components

• About Using External Business Components with the Siebel Web Clients

• About Overriding Connection Pooling Parameters for the Data Source

• About Joins to Tables in External Data Sources

• Searching and Sorting on Fields Joined to External Tables

• About Distributed Joins

• Troubleshooting External Business Components

Before continuing with configuring and implementing external business components (EBCs), review the following books
on the Siebel Bookshelf :

• Configuring Siebel Business Applications

• Siebel Developer's Reference

• Siebel Tools Online Help

• Using Siebel Tools

Process of Configuring External Business Components
Before proceeding, review Configuring the External Business Component. To configure EBCs, you perform the following
high-level tasks:

1. Creating the External Table Definition.

Import the external table definition into Siebel Tools using the External Table Schema Import Wizard.

This wizard creates a new Table object definition in the Siebel Repository, based upon the contents of a DDL
(data definition language) file, or from an Open Database Connectivity (ODBC) data source.

2. Mapping External Columns to Siebel CRM System Fields.

Map columns in the external table or view to Siebel CRM system fields.

Note: One column in the external table or view must be mapped to the Id system field by setting the System
Field Mapping property for the column.

3. Specifying the Data Source Object.

233

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

Configure the table definition and specify the data source object.

The Data Source object is a child object of the Table Object in Siebel Tools and will have to be exposed in the
Object Explorer if not already visible. For information on exposing objects in the Object Explorer of Siebel Tools,
see Using Siebel Tools .

This object tells the object manager which data source to use to access the object.
4. Specifying Any Optional Table Properties.

When the table is imported, specify additional table properties for the corresponding external table.
5. Configuring the External Business Component.

Configure the EBC and specify the data source object. This data source name will be the same as that specified
for the Table object.

6. Specifying Run-Time Parameters.

After the data source definition is named in Siebel Tools, specify the run-time parameters by completing the
following:

◦ Configure the data source definition.

◦ Update the server component definition.

Creating the External Table Definition
You use Siebel Tools and the External Table Schema Import Wizard to import your external table definition into the
Siebel Repository.

You can create the table definition in one of two ways:

• Creating the External Table Definition from a DDL File

• Creating the External Table Definition from an ODBC Data Source

For more information about using Siebel Tools, see Using Siebel Tools .

This task is a step in Process of Configuring External Business Components.

Creating the External Table Definition from a DDL File
You can use the External Table Schema Import Wizard to create the table definition from a data definition language
(DDL) file.

It is possible to import an external view definition rather than a table definition. When a view rather than a table
definition is imported, it is necessary to amend the Type property of the created Table definition to reflect External View.

Note: You can import a database view definition as well as a table definition here. While no difference exists in the
resulting Siebel Table object, if it references an external database view, only read access from the Siebel Application is
supported.

To create the external table definition from a DDL file

1. In Siebel Tools, check out and lock the appropriate project.
2. From the File menu, choose New Object to display the New Object Wizards dialog box.
3. Click the General tab, then double-click External Table Schema Import.

234

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

4. In the External Table Schema Import Wizard, specify the following values, then click Next:
a. Choose the project with which the new Table object definition will be associated.
b. Specify DDL/Analytics as the schema source type.
c. Choose the three-digit group code for table name generation. For example, if you choose AXA, then the

format of the table names generated will be:
EX_AXA_00000001

5. In the Import External Schema - DDL dialog box, specify the following, then click Next:
a. Specify the database where the external table resides. The value specified must correspond to the

database used by the Siebel schema, for example, Oracle Server Enterprise Edition.
b. Provide the full path for the location of the SQL/DDL file that contains the external table definition.

6. Confirm the entries, then click Finish to import the DDL file.
A Table object definition is added to the Siebel Repository, corresponding to the external table.

7. Repeat Step 2 through Step 6 for every external table definition you want to import.

Creating the External Table Definition from an ODBC Data Source
You can use the External Table Schema Import Wizard to create the table definition from an Open Database
Connectivity (ODBC) data source.

To create the external table definition from an ODBC data source

1. In Siebel Tools, check out and lock the appropriate project.
2. From the File menu, choose New Object to display the New Object Wizards dialog box.
3. Click the General tab, then double-click External Table Schema Import.
4. In the External Table Schema Import Wizard, specify the following values, then click Next:

a. Choose the project with which the new Table object definition will be associated.
b. Specify ODBC as the schema source type.
c. Choose the three-digit group code for table name generation. For example, if you choose AXA, then the

format of the table names generated will be:
EX_AXA_00000001

5. In the next dialog box, click Select Data Source.
The Select Data Source dialog box appears.

6. Click the Machine Data Source tab, select the appropriate data source name, and then click OK.
7. In the Connect to Database Type dialog box, on the Login tab enter the database user ID and password, then

click OK.
8. Enter the table owner for the data source, then click Next.
9. Select the tables to import, then click Next.

10. Confirm the entries, then click Finish.
A Table object definition is added to the Siebel Repository for each external table selected.

Deploying a Table for an External Business Component
Once you import the table definition for your external business component, you must publish the table. Publishing a
table for an external business component is no different than publishing any other table. See the section Publishing
Tables in the Using Siebel Tools guide.

235

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

About Data Type Mappings for Importing Table Definitions
When importing table definitions, certain data type mappings are supported for use with the Siebel application. The
following table contains the data type mappings you can use when importing table definitions.

Supported Data Type Siebel Data Type

Microsoft SQL Server Data Types

int

Numeric with scale of 0

bigint

Numeric with scale of 0

smallint

Numeric with scale of 0

tinyint

Numeric with scale of 0

float

Numeric

real

Numeric

decimal

Numeric

money

Numeric

smallmoney

Numeric

bit

Numeric with a value of 0 or 1

char

Character

nchar

Character

varchar

Varchar

nvarchar

Varchar

text

Long

ntext

Long

datetime

Date Time

smalldatetime Date Time

236

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

Supported Data Type Siebel Data Type

IBM DB2 UDB Data Types

UINT

Numeric with scale of 0

BIGUINT

Numeric with scale of 0

SMALLUINT

Numeric with scale of 0

FLOAT

Numeric

REAL

Numeric

DECIMAL

Numeric

NUMERIC

Numeric

CHAR

Character

VARGRAPHIC

Varchar

LONG VARGRAPHIC

Long

CLOB

CLOB

DATE

Datetime

TIME

Datetime

TIMESTAMP

Datetime

Oracle Database Data Types

Number

Numeric

TIMESTAMP WITH TIME ZONE

Numeric

TIMESTAMP WITH LOCAL TIME ZONE

Numeric

Char

Character

Nchar Character

237

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

Supported Data Type Siebel Data Type

varchar2

Varchar

nvarchar2

Varchar

Long

Long

CLOB

CLOB

date

Datetime

Oracle Business Intelligence (BI) Server Data Types

Integer

Numeric with scale of 0

Smallint

Numeric with scale of 0

Tinyint

Numeric with scale of 0

Float

Numeric

Double

Numeric

Bit

Character (1)

Boolean

Character (1)

Char

Character

Varchar

Varchar

Longvarchar

Long

Datetime

Datetime

Date

Datetime

Time

Datetime

The following table contains the data types that are not supported for importing table definitions.

238

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

Database Unsupported Data Types

timestamp

varbinary

binary

image

cursor

Microsoft SQL Server

uniqueidentifier

DBCLOB

IBM DB2 UDB

BLOB

TIMESTAMP

NCLOB

BLOB

BFILE

ROWID

UROWID

RAW

LONG RAW

INTERVAL YEAR TO MONTH

Oracle Database

INTERVAL DAY TO SECOND

Timestamp

Varbinary

Oracle BI Server

Longvarbinary

239

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

Database Unsupported Data Types

Binary

Object

Unknown

About the New Imported Table Definition
After the table definition is imported using the External Table Schema Import Wizard, the external table and the external
column names are generated.

The external table name is stored in the Table object’s Alias property. This external table name consists of the following:

• An EX prefix (for external table)

• A three-digit batch code specified in the External Table Schema Import Wizard

• An automatically generated seven-digit number

An example of the Table name is EX_ABC_0000001.

The external column name is stored in the Column child object’s Alias property. An X is added as the prefix and a four-
digit number is added as the suffix for the external column name, for example, X_ABC_0000001_0001.

The Table object’s Type property is set to External or External View (if a view was imported). This column denotes that
the table resides outside of the Siebel database.

Mapping External Columns to Siebel CRM System Fields
This task is a step in Process of Configuring External Business Components.

When the EBC is defined, you must map the Siebel CRM system fields to the corresponding external table column.
System field mapping is accomplished at the column level, rather than using business component user properties.
Specify the System Field Mapping column attribute if you want to map a Siebel system field to a column.

Note: At a minimum, the Id field must be mapped to a unique column defined in the external table and in the Table
object definition, which is specified in the business component’s Table property.

By default, the Siebel CRM system fields are not included in the generated SQL for external tables.

System Field Mapping is used to specify the mapping between table columns and Siebel CRM system fields. The
following is a list of the system fields that can be mapped to external table columns:

• Conflict Id. (Optional).

• Created. (Optional) Datetime corresponding to when the record was created.

• Created By. (Optional) String containing the user name of the person and the system that created the records.

• Extension Parent Id. (Optional).

• Mod Id. (Optional).

240

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

• Non-system. (Optional).

• Updated. (Optional) Datetime corresponding to when the record was last updated.

• Updated By. (Optional) String containing the user name of the person and system that last updated the record.

• Id. Mandatory. The single column unique identifier of the record. A column in the external table must be
mapped to the Id field.

Note: The System Field Mapping property must be used in conjunction with external tables only.

Specifying the Data Source Object
This task is a step in Process of Configuring External Business Components.

When the external table has been defined, specify the data source for the corresponding external table. The Data
Source child object of the Table object specifies the data source for the corresponding external table:

• The Data Source child object corresponds to a data source defined in the application configuration file (.cfg) or
in the Application - Server Configuration screen, Profile Configuration view.

• The Data Source child object instructs the Application Object Manager to use the data source for a specific
table. If a Data Source child object is not specified, then the default data source for the application will be used.

Note: The Data Source child object is specified for external tables only.

For more information about the Data Source child object, see Siebel Tools Online Help .

Specifying Any Optional Table Properties
When the table is imported, you can specify additional table properties for the corresponding external table:

• External API Write. Allows you to perform reads directly from the database and have write operations
processed by way of a script.

A Boolean property is used to indicate whether or not inserts, updates, or deletes to external tables will be
handled by an external API. If this property is set to TRUE, then add scripts to the BusComp_PreWriteRecord
and BusComp_PreDeleteRecord events to publish the insert, update, or delete operation to an external API.

• Key Generation Business Service. Allows a business service to generate a primary key (Id field) for a business
component. If this is not specified, then the Siebel application will generate a row_id value for the column that
corresponds to the Id system field.

• Key Generation Service Method. Allows a business service method to be called when generating a primary
key for a business component.

This method returns a property with the name set to the external table's key column name, and the value set to
the generated key:

Outputs.SetProperty(<my_external_key_column_name>, <generated_key>);

For more information about these table properties, see Siebel Tools Online Help .

241

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

This task is a step in Process of Configuring External Business Components.

Configuring the External Business Component
When a Table object definition corresponding to the external table exists in the repository, you can configure a business
component to use the new Table object definition.

In general, configuring an EBC is similar to configuring a standard business component with the following exceptions:

• Data Source business component property. Specify the Data Source business component property. Set the
value for this property to the name of the corresponding Table Data Source.

• Log Changes property. Set the Log Changes property to False (unchecked). This will prevent Siebel Remote or
Replication transactions from being created. (The default is true.)

• Intersection table. When configuring a many-to-many relationship, the intersection table resides in the same
database instance as the child table.

• CSSBusComp class. It is recommended that all EBCs use the CSSBusComp class.

Note: Substituting a Siebel-provided table with an external table can result in significant downstream configuration
work, and in some cases can restrict or prevent the use of standard functionality provided for Siebel CRM.

This task is a step in Process of Configuring External Business Components.

Specifying Run-Time Parameters
After the data source definition is named in Siebel Tools, you specify the run-time parameters by configuring the data
source definition, and updating the server component definition.

If you are testing by using the Siebel Developer Web Client, then add a [DataSource] section to the client .cfg file.

This task is a step in Process of Configuring External Business Components.

Configuring the Data Source Definition
As part of specifying the run-time parameters, configure the data source definition.

To configure the data source definition

1. Navigate to the Administration - Server Configuration screen, Enterprises view, then Profile Configuration.
2. Copy an existing InfraDatasources named subsystem type.
3. Change the Profile and Alias properties to the Data Source name configured in Siebel Tools.
4. Update the profile parameters to correspond to the external RDBMS:

◦ DSConnectString = data source connect string

- For Microsoft SQL Server or IBM DB2, create an ODBC or equivalent connection and input the
name of this in the parameter.

- For Oracle Database, this value must specify the TNS name associated with the database and not
an ODBC or other entry.

242

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

◦ DSSQLStyle = database SQL type
See the following table for a listing of the supported SQL types.

◦ DSDLLName = DLL or library name corresponding to the SQL type
See the following table for a listing of the supported connector Dynamic Link Library (DLL, Windows) or
library (shared object, UNIX) names and SQL styles.

◦ DSTableOwner = data source table owner

◦ DSUsername = default username used for connections (Optional)

◦ DSPassword = default password used for connections (Optional)

Note: The DSUsername and the DSPassword parameters are optional. However, to avoid receiving a login
prompt when accessing the external data source, specify DSUsername and DSPassword. If specified, they will
override the default username and password.

The DSUsername and the DSPassword parameters are activated only when using the Database Security Adapter. For
more information, see Configuring a User in LDAP or ADSI Security Adapter to Access EBCs.

Configuring a User in LDAP or ADSI Security Adapter to Access EBCs
For External Business Components (EBC’s) to work with LDAP, a shared database user connects to the database in SSO
mode for all Siebel users. It works with simple database authentication where the EBC is trying to connect to an external
data source using the user ID provided.

Following are the steps:

1. Database related changes:

◦ Check that your EBC is properly setup and is working.

◦ Check the DSN and UID with your Database Administrator to make sure you can connect using the DSN.

Note: In the database where the data originates, you must have some USER that the EBC can use to log into
the database to retrieve the data. It does not have to be the LDAP user.

2. Siebel related LDAP changes:

◦ In your /LDAP security adapter profile administration, for the CredentialAttributeType parameter use a
multiline fields like URL and not single line fields as this causes the EBC to fail. Use multiline fields such as
URL as CredentialAttributeType for passing the two separate values for serverdatasrc and EBC_Dsn.

3. LDAP related changes:

◦ Work with the LDAP Administrator to make sure that a multiline field like URL, that is used in the
CredentialAttributeType parameter, is populated as below.

- type=ServerDataSrc username=sadmin password=[password]

- type=MyExtDataSrc username=mmay password=[password]

A restart of Siebel enterprise is needed. No restarts are needed in LDAP. After adding the new value for the
external data source to the URL attribute, you can access EBCs.

Configuring the Data Source Definition for the Siebel Developer Web Client
If testing using the Siebel Developer Web Client, then add a [DataSource] section to the client .cfg file for the data source
definition named in Siebel Tools. In this example, WindyCity is the data source being added.

243

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

To configure the data source definition in the Siebel Developer Web Client

1. Add the data source definition named in Siebel Tools. In this example, the data source definition named is
WindyCity:

[DataSources]
Local = Local
Sample = Sample
ServerDataSrc = Server
GatewayDataSrc = Gateway
WindyCity = WindyCity

2. In the data source section of the application’s .cfg file, add the following parameters (for the supported SQL
types and connector DLL names, see the following table):

[WindyCity]
Docked = TRUE
ConnectString = data source connect string
SqlStyle = database SQL type
TableOwner = data source table owner

 DLL =
 DLL Name corresponding to the SQL type
DSUsername = user id (Optional)
DSPassword = password (Optional)

Supported Connector Names and SQL Styles
When defining the DLL (Windows) or library (UNIX) and SQL files for importing the external schema, the external
database being used might not be the same as the Siebel database. The following table contains the supported
connector DLL and library names and their corresponding SQL styles. The extension for the DLL or library name is
optional.

External Database DLL Name
(Windows)

Library Name (UNIX) SQL Style

IBM DB2

sscddcli.dll

sscddcli.so

DB2

Microsoft SQL Server

sscdms80.dll

Not supported

MSSqlServer

Oracle Database

sscdo90.dll

sscdo90.so

OracleCBO

Updating the Server Component to Use the New Data Source
As part of specifying the run-time parameters, update the server component to use the new data source.

To update the server component to use the new data source

1. Navigate to the Administration - Server Configuration screen, Enterprises view, then Component Definitions.
2. In the Component Definitions list applet, select your Application Object Manager Component. For example,

select the Call Center Object Manager (ENU).

244

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

3. Choose Start Reconfiguration from the Menu drop-down list on the Component Definitions list applet.

The Definition State of the component will be set to Reconfiguring. Reselect your application component after
selecting the Start Reconfiguring menu item.

4. In the Component Parameters list applet, query for OM - Named Data Source name, and update the Value by
adding the alias name of the data source specified in Specifying Run-Time Parameters.

The format of the OM - Named Data Source name parameter is a comma-delimited list of data source aliases.
It is recommended that you do not modify the default values, and that you add their new data sources to the
preexisting list.

5. After the parameter values are reconfigured, commit the new configuration by selecting Commit
Reconfiguration from the Menu drop-down list on the Component Definitions list applet.

The new parameter values are merged at the enterprise level.

To cancel the reconfiguration before it has been committed, select Cancel Reconfiguration from the Menu
drop-down list on the Component Definitions list applet.

Using Specialized Business Component Methods for
EBCs
The following are the specialized business component methods that are supported for use with EBCs.

IsNewRecordPending Business Component Method
This method can be called by using a script in the PreWriteRecord event to determine if the current record is newly
created. If the record is a new record, then this method returns the value TRUE.

An example script for the use of this method follows:

var isNewRecord = this.InvokeMethod("IsNewRecordPending");

GetOldFieldValue Business Component Method
This method can be called by using a script in the PreWriteRecord event to retrieve an old field value if needed. This
method takes an input parameter, which must be a valid field name, and returns a string containing the old field value.

An example script for the use of this method follows:

var oldLoc = this.InvokeMethod("GetOldFieldValue", "Location");

SetRequeryOnWriteFlag (PreWriteRecord event) Business Component
Method
In the PreWriteRecord event, this method can be used to put the business component into a mode where the current
record refreshes from the data source after the write operation. EBCs typically use this method to refresh database
sequencing column values on new record operations. This method takes an input parameter of TRUE or FALSE.

An example script for the use of this method follows:

var requery = this.InvokeMethod("SetRequeryOnWriteFlag", "TRUE");

245

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

SetRequeryOnWriteFlag (WriteRecord event) Business Component Method
In the WriteRecord event, this method informs the object manager that the write operation to the data source is
processed by using a script rather than a database connector. At the end of the operation, the business component
method, SetRequeryOnWriteFlag, can be called again with the FALSE parameter to reset the requery on write mode, if
needed.

An example script for the use of this method follows:

var extWrite = this.InvokeMethod("SetRequeryOnWriteFlag", "TRUE");
// insert script here to commit the record via an mechanism channel
var resetWrite = this.InvokeMethod("SetRequeryOnWriteFlag", "FALSE");

Usage and Restrictions for External Business
Components
The following usage guidelines and restrictions apply to EBCs:

• Creating and populating the external table is the responsibility of the customer. Consult your database
administrator for the appropriate method to use.

• EBCs cannot be docked, so they do not apply to mobile users on the Siebel Mobile Web Client. Siebel Remote is
not supported.

• EBCs support many-to-many relationships with the limitation that for such relationships the intersection table
must be from the same data source as the child business component.

• EBCs cannot be loaded using the Enterprise Integration Manager.

• EBCs rely on the Business Object Layer of the Siebel Architecture. Therefore, EBCs are used only in Siebel
Server components using this layer such as the Application Object Manager (for example, the Call Center
Object Manager), Workflow Process Manager, and so on. EBCs are not used on components not using this layer,
such as Workflow Policies (the Workflow Monitor agent) and Assignment Manager.

• The Id field must be mapped to an underlying column in the external table to support insert, update, delete,
and query operations.

• Using the Oracle Sequence Object to populate the Id system field is not supported. The value of the Id system
field has to be known by the object manager at the record commit time, while the Oracle Sequence Object value
is populated by the database server when the change is being processed inside the database.

• If the column that was mapped to the Id system field has Primary Key checked, then row ID values are
generated by the object manager. Otherwise, a user-entered row ID value is assumed, and the object manager
does not generate a row ID value for it.

However, in either configuration, the Primary Key column must not use the Oracle Sequence Object.

• All EBCs require the Siebel S_APP_VER and S_SYS_PREF tables to be present in the external database.

Siebel CRM uses the UNICD_DATATYPS_FLG column of the S_APP_VER table to indicate whether the database
is a Unicode database. A value of 8 means UTF-8, and Y means UTF-16. For Non-Unicode databases, the
Enterprise DB Server Code Page system preference is also required to have the correct setting.

For help with creating and populating these tables, contact your Oracle sales representative for Oracle
Advanced Customer Services to request assistance from Oracle’s Application Expert Services.

246

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

• For EBCs that contain multivalue groups, if a primary join is enabled, then both the parent and the child
business components must be from the same data source. Multivalue groups are also supported as long as
such configuration does not require that a distributed join or a subquery be performed.

• Siebel visibility control (for example, ViewMode) is not supported for EBCs.

• An external join alias must have the same name as the name used for the external table.

• EBCs based on Database views can be used for queries only; updates are not supported.

• For EBCs that have a parent-child relationship, their related external tables must not have a foreign key
constraint set between them on the external database. If they do have a foreign key constraint, then Copy and
Deep Copy functionality will not work.

Note: Significant configuration effort and changes might be required if you choose to reconfigure a standard
Siebel business component on an external table. For example, existing join and link definitions are unlikely to
function, because the source fields and underlying columns might not exist in the external table.

About Using External Business Components with the
Siebel Web Clients
If EBCs are used with the Siebel Web or Mobile Web Clients, then new data sources corresponding to the data sources
specified for the external tables must be added to the specific Siebel application configuration file. If the user name
and password for the external data source are different from the current data source, then a log-in window appears to
initiate logging into the external data source.

About Overriding Connection Pooling Parameters for the
Data Source
Overriding the connection pooling parameters for the data source is supported. If connection pooling is enabled for the
component but not for the data source, then set to zero (0) the following:

• DB Multiplex - Max Number of Shared DB Connections (DSMaxSharedDbConns)

• DB Multiplex - Min Number of Shared DB Connections (DSMinSharedDbConns)

• DB Multiplex - Min Number of Dedicated DB Connections (DSMinTrxDbConns) parameters for the data source

About Joins to Tables in External Data Sources
Joins from business components, based on the default data source to a table in an external data source, are supported
in the Siebel application.

Like other joined fields, the fields based on the join to the EBC are read-only.

247

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

The limitations for joining business components to tables in an external data source are as follows:

• The source field for the join must be based on a table in the default data source.

• The destination column of the join must be the column mapped to System Field Id.

• Multiple single join specifications are not supported for the join to the external table.

• Reverse navigation (for example, a call to go to the last record) is not supported when fields from multiple data
sources are active.

Join Constraints are supported. Joins to more than one external table might be specified. However, increasing the
number of external joined data sources can cause degradation in performance.

See also Searching and Sorting on Fields Joined to External Tables.

Searching and Sorting on Fields Joined to External
Tables
Fields based on a join to an external table, as described in About Joins to Tables in External Data Sources, can be
searched and sorted. However, limitations do exist. The limitations for searching and sorting on fields joined to an
external table follow:

• All fields in the sort specification must either be based on columns in the same external table, or be based on
columns in the default data source.

• Named search specifications cannot be set on fields from an external data source.

For information on named search specifications, see the topic on the SetNamedSearch method in Siebel Object
Interfaces Reference .

Performance tests are recommended if searching and sorting are permitted on fields based on joins to the external
tables. The Siebel application does not have information on the data shape in the external tables. The Siebel application
follows a rule-based approach to decide the order in which to query the external tables.

For example, consider the case where there are search and sort specifications on the fields in the Siebel Data Source but
none on the fields from the external data source. The Siebel application decides to query the Siebel tables first. Only the
rows matching the query specification in the current workset are retrieved from the external data source. As more rows
are retrieved from the tables in the Siebel Data Source, the rows from the external data source are also retrieved.

The rules become complex when Search and Sort Specifications are applied to multiple data sources. The rules followed
are based on the following requirements:

1. Retrieving the first few rows quickly
2. Shipping the least amount of data between the Siebel and external data sources
3. Eliminating a sort step

Step 2 and Step 3 might produce competing results. In that case, Step 2 takes precedence.

If, as result of the search and sort specifications in effect, then the external table on which the Sort is based is not the
driving table, the Siebel application raises an error if more than 1000 rows are retrieved. Refine the query specification in
the event of this error.

Directives specified using the Business Component User property External DataSource Field Priority On Search to
allow hinting of the order in which the tables in the data sources will be queried are supported. These directives can be
applied based on a knowledge of the data shape in the Siebel and external tables.

248

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

For example, using the following property values:

Property Value

External DataSource Field Priority On
Search: FieldA

1

External DataSource Field Priority On
Search: FieldB

2

A query on Field A is likely to be selective. If there is a search specification on Field A, then the table that field A is based
on is considered the driving table.

A query on Field B is likely to be selective. If there is a search specification on Field B and none on Field A, then the table
that field B is based on is considered the driving table.

About Distributed Joins
Just as join objects can be configured in Siebel Tools and represent a 1:1 relationship between tables resident within
the Siebel data model, join objects can be configured to represent a 1:1 relationship with tables external to the Siebel
database. A distributed join is a 1:1 relationship between tables that spans two relational data sources. This allows a
single, logical record to span multiple data sources. In using distributed joins, the join fields are read-only, and the join
specification can consist only of a single field. This federated field support provides the ability for the Object Manager to
perform the cross-database join.

Distributed joins are configured the same as standard joins. The query is distributed when the Data Source child object
of the table provides a hint to the Object Manager (OM) to federate the query.

This topic includes the following information:

• Configuring Distributed Joins and Federated Fields

• Usage and Restrictions for Distributed Joins

Configuring Distributed Joins and Federated Fields
To configure distributed joins, you perform the following high-level tasks:

• Implement the external data source (similar to what was done for EBCs).

• The Datasource child object of the Table provides a hint to the object manager to federate the query.

• Create the Join.

• Add the fields to the business component.

To configure distributed joins and federated fields
1. Create the Join point to your external table.
2. Create the Join Specification.

This is similar to what you do when creating a standard Siebel join.

249

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

3. Add Field to Business Component.

Add the fields from the external table to the business component using the join specified.

Usage and Restrictions for Distributed Joins
The following usage guidelines and restrictions apply to distributed joins:

• The source field for the distributed join must be based on a table in the business component’s data source.

• The destination column of the distributed join must be a column mapped to the Id System Field.

• Multiple join specifications are not supported for a distributed join. However, join constraints are supported.

• Inner join is not supported for a distributed join.

• Reverse navigation (for example, a call to go to the last record) is not supported when the fields from multiple
data sources are active.

• All fields in the sort specification must be from the same data source.

• All fields in the named search specifications must be from the default data source.

Troubleshooting External Business Components
As you create EBCs, it is recommended that you consider the following steps:

1. Configure EBCs for read and make sure that the data is displayed correctly in the application.

If the development team feels that some fields require script in order to display correctly then defer the
implementation of these fields until testing is complete for a simple read.

2. Add any data transformation script or configuration required in order to provide read access to the more
complex fields for display.

3. Configure EBCs for update and make sure that the data is stored correctly in the external database(s) and
displayed correctly in the Siebel application.

Do not add any validation logic to the EBC at this time.
4. Once testing of data update is complete, establish any data transformation configuration or script required to

update the fields.

Make sure that the configuration uses script, which is preferred. However, it is recommended that any data
transformation scripts be written on the Pre event.

Data manipulation configuration and scripts must be attached to Post events.
As part of the troubleshooting process associated with EBCs, increasing the tracing level for a number of component
events is suggested.

To increase the tracing level of component events
1. Navigate to the Administration - Server Configuration screen, Servers view, Components, Events, and then

select the object manager being used.
2. Change the Log Level for the following Event Types to a higher value (the default is 1).

250

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

Initially a value of 4 is recommended.

◦ Task Configuration

◦ DBC Log

◦ SQL

◦ Object Manager DB Connection Operation Log

◦ General Object Manager Log

◦ Object Manager Session Operation and SetErrorMsg Log

◦ Object Manager runtime repository Operation and SetErrorMsg Log

◦ Security Adapter Log

Following this change, restarting the affected components is recommended. With the increase log level, more
information is stored in the relevant log files. Reset these values back to 1 when troubleshooting is completed.

251

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 10
External Business Components

252

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 11
Predefined EAI Business Services

11 Predefined EAI Business Services

Predefined EAI Business Services
This chapter lists the business services provided for Siebel EAI. Siebel CRM provides a number of business services.
These services do not require any modification, but they do require that you choose and configure them to suit your
requirements. This chapter contains the following topic:

• Predefined EAI Business Services

For general information on using business services, see Business Services.

Predefined EAI Business Services
The following table presents the predefined Siebel EAI business services.

Business Service Class Description

EAI BTS COM Transport

CSSEAIBtsComService

EAI Siebel to BTS COM Transport.

EAI Data Transformation
Engine

CSSDataTransformationEngine

EAI Data Transformation Engine (DTE). For
information, see Business Processes and Rules:
Siebel Enterprise Application Integration .

The display name for this business service is EAI
Data Mapping Engine.

EAI Dispatch Service

CSSEAIDispatchService

Dispatch Service. For information, see Business
Processes and Rules: Siebel Enterprise Application
Integration .

EAI DLL Transport

CSSDllTransService

EAI DLL Transport. For information, see
Transports and Interfaces: Siebel Enterprise
Application Integration .

EAI HTTP Transport

CSSHTTPTransService

EAI HTTP Outbound Transport. For information,
 see Transports and Interfaces: Siebel Enterprise
Application Integration .

EAI Import Export

CSSEAIImportExportService

EAI Import Export Service. Imports integration
objects from, or exports them to, XML files.

253

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 11
Predefined EAI Business Services

Business Service Class Description

Note: This business service is intended only
for Siebel user interface sessions in the Siebel
Web Client or Siebel Mobile Web Client. For
information on converting integration objects
to and from XML files, see the chapter on
Siebel XML converters in XML Reference:
Siebel Enterprise Application Integration .

EAI Integration Object to XML
Hierarchy Converter

CSSEAIIntObjHierCnvService

EAI Integration Object Hierarchy (also known
as SiebelMessage) to XML hierarchy converter
service. For information, see XML Reference:
Siebel Enterprise Application Integration .

EAI MIME Doc Converter

CSSEAIMimeService

MIME Document Conversion Service. For
information, see Siebel EAI and File Attachments.

EAI MIME Hierarchy Converter

CSSEAIMimePropSetService

EAI MIME Hierarchy Conversion Service. For
information, see Siebel EAI and File Attachments.

EAI MQSeries Server Transport

CSSMqSrvTransService

EAI MQSeries Server Transport.

EAI MSMQ Transport

CSSMsmqTransService

EAI MSMQ Transport.

EAI Null Envelope Service

CSSEAINullEnvelopeService

EAI Null Envelope Service. For information, see
XML Reference: Siebel Enterprise Application
Integration .

EAI Query Spec Service

CSSEAIQuerySpecService

Used internally by the EAI Siebel Adapter to
convert the SearchSpec method argument as
a string to an Integration Object Instance that
the EAI Siebel Adapter can use as a Query By
Example object.

EAI Siebel Adapter

CSSEAISiebelAdapterService

EAI Siebel Adapter. For information, see EAI
Siebel Adapter Business Service.

EAI Transaction Service

CSSBeginEndTransactionService

EAI Transaction service for working with Siebel
transactions, such as begin and end, to find out
whether in transaction.

EAI UI Data Adapter

CSSEAIUDAdapterService

EAI UI Data Adapter. For information, see EAI UI
Data Adapter Business Service.

EAI XML Converter

CSSEAIXMLCnvService

Converts between XML and EAI messages. For
information, see XML Reference: Siebel Enterprise
Application Integration .

EAI XML Read from File

CSSEAIXMLPrtService

Reads an XML file and parses to a property set.
For information, see XML Reference: Siebel
Enterprise Application Integration .

254

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 11
Predefined EAI Business Services

Business Service Class Description

EAI XML Write to File

CSSEAIXMLPrtService

Prints a property set to a file as XML. For
information, see XML Reference: Siebel Enterprise
Application Integration .

EAI XML XSD Generator

CSSEAISchXSDService

Used to generate an XSD file from an integration
object.

EAI XSD Wizard

CSSXMLSchemaWizard

Used to create integration objects based on XSD
files.

EAI XSLT Service

CSSXSLTService

EAI XSL Transformation Service.

Supports the Apache Xalan API as the XLST
processor and Xerces as the XML parser.

Read CSV File

CSSCsvParserService

Converts a CSV file to a property set, and can
then convert the property set to XML.

Siebel Message Envelope

CSSEAISMEnvelopeService

EAI Siebel Message Envelope Service. For
information, see XML Reference: Siebel Enterprise
Application Integration .

XML Converter

CSSXMLCnvService

Converts between XML documents and
arbitrary Property Sets. For information, see
XML Reference: Siebel Enterprise Application
Integration .

XML Hierarchy Converter

CSSXMLCnvService

Converts between XML documents and XML
Property Set or Arbitrary Property Set. For
information, see XML Reference: Siebel Enterprise
Application Integration .

255

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 11
Predefined EAI Business Services

256

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 12
Property Set Representation of Integration Objects

12 Property Set Representation of Integration
Objects

Property Set Representation of Integration Objects
This chapter describes the relationship between property sets and integration objects. Property sets are in-memory
representations of integration objects. For an overview of property sets, see Using Siebel Tools . This chapter contains
the following topics:

• Property Sets and Integration Objects

• Example Instance of an Account Integration Object

Property Sets and Integration Objects
Many EAI business services operate on integration object instances. Because business services take property sets as
inputs and outputs, it is necessary to represent integration objects as property sets. The mapping of integration objects,
components, and fields to property sets is known as the Integration Object Hierarchy.

Using this representation, you can pass a set of integration object instances of a specified type to an EAI business
service. You pass the integration object instances as a child property set of the business service method arguments.
This property set always has a type of SiebelMessage. You can pass the SiebelMessage property set from one business
service to another in a workflow without knowing the internal representation of the integration objects.

Property Set Node Types
When passing integration object instances as the input or output of a business service, you can use property sets to
represent different node types, as presented in the following table.

Name Parent Value of Type Attribute Properties Description

Service Method
Arguments

Not applicable

Ignored

The properties of this
property set contain
the service specific
parameters, such as
PrimaryRowId for the EAI
Siebel Adapter.

This is the top-level
(highest-level) property
set of a business
service’s input or output.
The properties of this
property set contain
the service-specific
parameters (for example,
PrimaryRowId for the EAI
Siebel Adapter).

SiebelMessage

Service Method
Arguments

SiebelMessage

The properties of this
property set contain
header attributes
associated with the

This property set is a
wrapper around a set
of integration object
instances of a specified

257

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 12
Property Set Representation of Integration Objects

Name Parent Value of Type Attribute Properties Description

integration object, for
example, IntObjectName.

type. To pass integration
objects between two
business services
in a workflow, this
property set is copied
to and from a workflow
process property of type
Hierarchy.

Object List

SiebelMessage

ListOfObjectType

Not used.

This property set
identifies the object
type that is being
represented. The root
components of the
object instances are
children of this property
set.

Root Component

Object List

Root Component Name

The property names
of the property
set represent the
field names of the
component, and the
property values are the
field values.

This property set
represents the root
component of an
integration object
instance.

Child Component
Type

Root Component or
Component

ListOfComponent Name

Not used.

An integration
component can have
a number of child
component types, each
of which can have zero
or more instances.
The Integration Object
Hierarchy format groups
the child components
of a given type under
a single property set.
This means that child
components are actually
grandchildren of their
parent component’s
property set.

Child Components

Child Component
Type

Component Name

The property names
of the property
set represent the
field names of the
component, and the
property values are the
field values.

This property set
represents a component
instance. It is a
grandchild of the parent
component’s property
set.

258

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 12
Property Set Representation of Integration Objects

Example Instance of an Account Integration Object
This example shows an Account integration object in which the object has two component types: Account and Business
Address (which is a child of Account). The hierarchy of component types, from the perspective of Oracle’s Siebel Tools,
looks like that shown in the following figure.

The following figure shows an example instance of this object type, using the Integration Object Hierarchy
representation. There are two Sample Account instances. The first object instance has an Account component and
two Business Address child components. The second object instance has only an Account component with no child
components.

259

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 12
Property Set Representation of Integration Objects

260

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 13
DTDs for XML Gateway Business Service

13 DTDs for XML Gateway Business Service

DTDs for XML Gateway Business Service
This chapter lists the various inbound and outbound Document Type Definitions (DTDs) for the XML Gateway business
service. It contains the following topics:

• Outbound DTDs for the XML Gateway Business Service

• Inbound DTDs for the XML Gateway Business Service

Outbound DTDs for the XML Gateway Business Service
The following sections contain examples of DTDs representing the %methodName% request sent from the XML
Gateway to the external application.

Delete
The following DTD is for the Delete request:

<!ELEMENT siebel-xmlext-delete-req (buscomp, remote-source, row)>
<!ELEMENT buscomp (#PCDATA)>
<!ATTLIST buscomp id NMTOKEN #REQUIRED>
<!ELEMENT remote-source (#PCDATA)*>
<!ELEMENT row (value+)>
<!ELEMENT value (#PCDATA)*>
<!ATTLIST value field CDATA #REQUIRED>

Init
The following DTD is for the Init request:

<!ELEMENT siebel-xmlext-fields-req (buscomp, remote-source?)>
<!ELEMENT buscomp (#PCDATA)>
<!ATTLIST buscomp id NMTOKEN #REQUIRED >
<!ELEMENT remote-source (#PCDATA)*>

Insert
The following DTD is for the Insert request:

<!ELEMENT siebel-xmlext-insert-req (buscomp, remote-source?, row)>
<!ELEMENT buscomp (#PCDATA)>
<!ATTLIST buscomp id NMTOKEN #REQUIRED>
<!ELEMENT remote-source (#PCDATA)*>
<!ELEMENT row (value+)>

261

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 13
DTDs for XML Gateway Business Service

<!ELEMENT value (#PCDATA)*>
<!ATTLIST value field CDATA #REQUIRED>

PreInsert
The following DTD is for the PreInsert request:

<!ELEMENT siebel-xmlext-preinsert-req (buscomp, remote-source?)>
<!ELEMENT buscomp (#PCDATA)>
<!ATTLIST buscomp id NMTOKEN #REQUIRED >
<!ELEMENT remote-source (#PCDATA)*>

Query
The following DTD is for the Query request:

<!ELEMENT siebel-xmlext-query-req (buscomp , remote-source?, max-rows?, search-
string?, match?, search-spec?, sort-spec?)>
<!ELEMENT buscomp (#PCDATA)>
<!ATTLIST buscomp id NMTOKEN #REQUIRED>
<!ELEMENT remote-source (#PCDATA)*>
<!ELEMENT max-rows (#PCDATA)>
<!ELEMENT search-string (#PCDATA)>
<!ELEMENT match (#PCDATA)>
<!ATTLIST match field CDATA #REQUIRED>
<!ELEMENT search-spec (node)>
<!ELEMENT node (#PCDATA | node)*>
<!ATTLIST node node-type (Constant | Identifier | Unary Operator | Binary Operator)
#REQUIRED>
<!ATTLIST node value-type (TEXT | NUMBER | DATETIME | UTCDATETIME | DATE | TIME)
#IMPLIED>
<!ELEMENT sort-spec (sort+)>
<!ELEMENT sort (#PCDATA)>
<!ATTLIST sort field CDATA #REQUIRED>

Update
The following DTD is for the Update request:

<!ELEMENT siebel-xmlext-update-req (buscomp, remote-source?, row)>
<!ELEMENT buscomp (#PCDATA)>
<!ATTLIST buscomp id NMTOKEN #REQUIRED>
<!ELEMENT remote-source (#PCDATA)*>
<!ELEMENT row (value+)>
<!ELEMENT value (#PCDATA)*>
<!ATTLIST value changed (true | false) #REQUIRED>
<!ATTLIST value field CDATA #REQUIRED>

262

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 13
DTDs for XML Gateway Business Service

Inbound DTDs for the XML Gateway Business Service
The following sections contain examples of DTDs representing the %methodName% response sent from the external
application to the XML Gateway.

Delete Response
The following DTD is for the Delete response:

<!ELEMENT siebel-xmlext-dekete-ret EMPTY >

Init Response
The following DTD is for the Init response:

<!ELEMENT siebel-xmlext-fields-ret (support+)>
<!ELEMENT support EMPTY >
<!ATTLIST support field CDATA #REQUIRED>

Insert Response
The following DTD is for the Insert response:

<!ELEMENT siebel-xmlext-preinsert-ret (row)>
<!ELEMENT row (value+)>
<!ELEMENT value (#PCDATA)*>
<!ATTLIST value field CDATA #REQUIRED >

PreInsert Response
The following DTD is for the PreInsert response:

<!ELEMENT siebel-xmlext-preinsert-ret (row)>
<!ELEMENT row (value)*>
<!ELEMENT value (#PCDATA)*>
<!ATTLIST value field CDATA #REQUIRED >

Query Response
The following DTD is for the Query response:

<!ELEMENT siebel-xmlext-query-ret (row*)>
<!ELEMENT row (value+)>
<!ELEMENT value (#PCDATA)*>

263

Siebel
Integration Platform Technologies: Siebel Enterprise
Application Integration Guide

Chapter 13
DTDs for XML Gateway Business Service

<!ATTLIST value field CDATA #REQUIRED >

Update Response
The following DTD is for the Update response:

<!ELEMENT siebel-xmlext-update-ret (row)>
<!ELEMENT row (value+)>
<!ELEMENT value (#PCDATA)>
<!ATTLIST value field CDATA #REQUIRED >

264

	Integration Platform Technologies: Siebel Enterprise Application Integration Guide
	Preface
	Using Oracle Applications
	Documentation Accessibility
	Contacting Oracle

	What’s New in This Release
	What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 23.6 Update
	Whats New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 23.3 Update
	What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 22.3 Update
	What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 21.7 Update
	What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration Guide, Siebel CRM 21.4 Update

	Integration Objects
	Integration Objects
	About Integration Object Terminology
	About Integration Objects
	About Integration Object Base Object Types
	About the Difference Between Integration Objects and Integration Object Instances
	About Integration Object Wizards
	About the Structure of Integration Objects
	About the Cardinality of Child Integration Components
	Custom Integration Component Fields
	Integration Components and Associations
	Multivalue Groups Within Business Components
	Multivalue Fields in a Business Component
	Multivalue Links in a Business Component
	Fields in a Business Component After Adding a Multivalue Link
	Graphical Representation of a Business Component and a Multivalue Link
	Creating a Siebel Integration Component to Represent an MVG

	Setting Primaries Through Multivalue Links
	Validation of Integration Component Fields and Picklists
	Example of an Integration Object Based on the Order Entry Business Object

	Calculated Fields and Integration Objects
	Inner Joins and Integration Components
	Defining Field Dependencies
	Repository Objects

	About Integration Component User Properties as Operation Controls
	About Integration Component Keys
	User Keys
	User Key Generation Algorithm
	Status Keys
	Status Key Examples
	Hierarchy Parent Keys
	Hierarchy Root Keys

	About EAI Siebel Adapter Access Control

	Creating and Maintaining Integration Objects
	Creating and Maintaining Integration Objects
	About the Integration Object Builder
	About the EAI Siebel Wizard Business Service
	Process of Creating Integration Objects
	Creating Integration Objects Using the EAI Siebel Wizard Business Service
	Creating a New Integration Object Using the Web Tools Wizard
	Creating an Integration Object Based on Another Root Business Component
	Creating an Integration Object with Many-To-Many Relationships
	Creating Integration Object Instances Programmatically
	Guidelines for Configuring Integration Objects
	Validating Integration Objects
	Testing Integration Objects
	Deploying Integration Objects to the Run-Time Database
	Deploying an Integration Object to the Run-Time Database
	Removing an Integration Object from the Run-Time Database

	About Synchronizing Integration Objects
	Synchronization Rules
	Updating the Entire Integration Object
	Deleting a Component from the Integration Object
	Guidelines for Maintaining Integration Objects

	Synchronizing Integration Objects
	Resolving Synchronization Conflicts for Integration Objects and User Properties
	Using Formatted Values in Integration Objects
	Generating Integration Object Schemas
	Optimizing the Performance of Integration Objects
	Picklist Validation
	About Business Component Restrictions for Integration Components
	Guidelines for Using Integration Components

	Business Services
	Business Services
	About Business Services
	About Creating Business Services
	Business Service Structure
	Property Sets

	Creating Business Services in Siebel Tools
	Defining a Business Service in Siebel Tools
	Defining Business Service Methods
	Defining Business Service Method Arguments
	Writing Business Service Scripts
	Defining Business Service User Properties

	Creating Business Services in the Siebel Application
	Deploying Business Services as Web Services
	Exporting and Importing Business Services in Siebel Tools
	Importing Business Services into Siebel CRM
	Testing Your Business Service in the Simulator
	About Accessing a Business Service Using Siebel eScript or Siebel VB
	Business Scenario for the Use of Business Services
	Code Sample Example for Creating a Property Set

	Web Services
	Web Services
	About Web Services
	About RPC-Literal and DOC-Literal Bindings
	RPC-Literal Support
	DOC-Literal Support

	About One-Way Operations and Web Services
	Invoking Siebel Web Services Using an External System
	Publishing Inbound Web Services
	Generating a WSDL File
	About the Relationship of Port Types and Operations
	Deleting Operations by Deleting the Port Type

	About Defining the Web Service Inbound Dispatcher
	SOAP Fault Message Example

	Invoking Web Services on the Siebel Mobile Web Client
	Exceptions to Web Service Support
	Enabling Web Services on the Siebel Mobile Web Client
	Starting the siebel.exe Process From the Command Line
	Confirming that the siebel.exe Process Is Listening
	Invoking Web Services on the Siebel Mobile Web Client

	Consuming External Web Services Using Siebel Web Services
	Creating an Outbound Web Service Based on a WSDL File
	Migrating Outbound Web Services

	Creating an Outbound Web Service Manually
	Updating the Outbound Proxy Business Service

	Integration Objects as Input Arguments to Outbound Web Services
	Web Services Support for Transport Headers
	Web Services Support for Transport Parameters
	SHA2 Support for Outbound Web Service
	Configuring Siebel Server and Config Agent for SHA2 Outbound

	Using the Local Business Service
	Script Example for a Local Business Service
	SOAP Document Generated by the Local Business Service
	Using the Local Business Service in an Outbound Web Service
	Mapping the xsd:any Tag in the WSDL Import Wizard
	Mapping the xsd:any Tag in the XML Schema Wizard

	Examples of Invoking Web Services
	Invoking an External Web Service Using Workflow or Scripting
	Invoking a Siebel Web Service from an External Application

	About Web Services Security Support
	Configuring the Siebel Application to Use the WS-Security Specification

	About WS-Security UserName Token Profile Support
	About Support for the UserName Token Mechanism
	Using the User Name Token for Inbound Web Services
	Using the UserName Token for Outbound Web Services

	Proxy Configuration for Java Web Container
	About Siebel Authentication and Session Management SOAP Headers
	Combinations of Session Types and Authentication Types
	Enabling Session Management on Siebel Application Interface
	Incoming Concurrent EAI Requests and Session Management
	Session and Session Token Timeout-Related Parameters
	Examples of Using SOAP Headers for Siebel Authentication and Session Management
	Anonymous Request No Session
	Siebel Authorization No Session
	Siebel Authorization Stateless Session
	Siebel Authorization Stateful Session
	Simple Query Starting With <soap:body>

	About Web Services and Web Single Sign-On Authentication
	About SOAP Fault Schema Support
	Handling SOAP Faults in Siebel CRM
	Handling SOAP Messages
	Handling WSDL Imports

	About Custom SOAP Filters
	Handling Custom Headers Using Filters
	Enabling SOAP Header Processing Through Filters
	Inputting a SOAP Envelope to a Filter Service

	About EAI File Streaming
	About Inbound EAI Streaming Requests
	About Outbound EAI Streaming Responses
	About EAI Streaming Criteria

	About Web Services Cache Refresh
	Enabling Web Services Tracing
	Previewing the Repository Changes Before Delivery
	Configuring the No Session Preference in EAI-SOAP Parameter
	Configuring the Maximum Retry for Processing EAI-SOAP Request Parameter

	EAI Siebel Adapter Business Service
	EAI Siebel Adapter Business Service
	About the EAI Siebel Adapter Business Service
	Node Types and the EAI Siebel Adapter Business Service

	EAI Siebel Adapter Business Service Methods
	About the Examples in the EAI Siebel Adapter Business Service Methods Sections
	Query Method
	QueryPage Method
	Synchronize Method
	Example of Synchronize Method on Deleted Unmatched Children

	Insert Method
	Example of Using the Insert Method

	Upsert Method
	Update Method
	Delete Method
	Execute Method
	About Execute Method Operations
	Example of a Parent Node Using a Sync Operation
	Example of a Parent Node Using an Update Operation
	Example of a Parent Using an Update Operation and One More Child Using an Insert Operation
	Example of a Parent Using the Update Operation and One More Child Using the Upsert Operation
	Example of a Parent Using the Upsert Operation and One More Child Using the Sync Operation
	Skiptree Operation
	Skipnode Operation
	About the SearchSpec Input Method Argument
	About Multivalue Groups in the EAI Siebel Adapter Business Service
	Setting a Primary Position for a Contact

	About Using Effective Dating with Siebel EAI Adapter Business Service
	Enabling Effective Dating on Fields
	Configuring Integration Components for Effective Dating on Fields
	How the XML Converter Reads Effective Dating Data from Fields
	WSDL Schema Generation for Effective Dating on Fields

	Enabling Effective Dating on Links
	Enabling Effective Dating on Links
	Siebel EAI Adapter Operations for Effective Dating on Links

	About Using Language-Independent Code with the EAI Siebel Adapter Business Service
	About LOV Translation and the EAI Siebel Adapter Business Service
	Siebel EAI and Run-Time Events
	Guidelines for Using the EAI Siebel Adapter Business Service
	Troubleshooting the EAI Siebel Adapter Business Service
	Enabling Logging for the EAI Siebel Adapter Business Service
	Enabling Siebel Argument Tracing
	Configuring the EAI Siebel Adapter Business Service for Concurrency Control
	Modification Key
	Modification IDs
	About MVG and MVGAssociation Integration Components
	Status IDs

	EAI UI Data Adapter Business Service
	EAI UI Data Adapter Business Service
	About the EAI UI Data Adapter Business Service
	EAI UI Data Adapter Business Service Methods
	QueryPage Method
	QueryPage Method Arguments
	Root and Child Pagination
	Sort Specification
	Predefined Query
	Search Specification

	UpdateLeaves Method
	UpdateLeaves Method Arguments
	Example of Updating Root Component
	Example of Updating Child Component

	InitLeaves Method
	InitLeaves Method Arguments
	Example of Using InitLeaves on a Root Component
	Example of Using InitLeaves on a Child Component

	InsertLeaves Method
	InsertLeaves Method Arguments
	Example of Inserting a Root Component
	Example of Inserting a Child Component
	Example of Inserting an Association Child Component

	DeleteLeaves Method
	Method Arguments for DeleteLeaves
	Example of Deleting a Root Component
	Example of Deleting a Child Component

	Execute Method
	Execute Method Arguments
	Example of Using the Execute Method

	EAI UI Data Adapter Business Service Method Arguments

	Siebel Virtual Business Components
	Siebel Virtual Business Components
	About Virtual Business Components
	Using VBCs for Your Business Requirements
	Usage and Restrictions for Virtual Business Components

	Using Virtual Business Components
	Creating a New Virtual Business Component
	Setting User Properties for the Virtual Business Component

	XML Gateway Service
	XML Gateway Methods
	XML Gateway Method Arguments
	About Handling White Space

	Examples of the Outgoing XML Format
	Search-Spec Node-Type Values
	Examples of the Incoming XML Format
	External Application Setup
	Custom Business Service Methods
	Common Method Parameters
	Business Services Methods and Their Property Sets
	Delete Method
	Error Return Method
	Init Method
	Insert Method
	PreInsert Method
	Query Method
	Update Method

	Custom Business Service Examples
	Siebel eScript Business Service Example for a VBC
	Siebel VB Business Service Example for a VBC

	Siebel EAI and File Attachments
	Siebel EAI and File Attachments
	About File Attachments
	Exchanging Attachments with External Applications
	Using MIME Messages to Exchange Attachments
	Creating an Attachment Integration Object
	Creating Workflow Examples
	Outbound Workflow
	Inbound Workflow Example

	About the EAI MIME Hierarchy Converter
	Outbound Integration
	Inbound Integration

	About the EAI MIME Doc Converter
	EAI MIME Doc Converter Properties

	Using Inline XML to Exchange Attachments
	Creating an Attachment
	Creating a Test Workflow

	External Business Components
	External Business Components
	Process of Configuring External Business Components
	Creating the External Table Definition
	Creating the External Table Definition from a DDL File
	Creating the External Table Definition from an ODBC Data Source
	About Data Type Mappings for Importing Table Definitions
	About the New Imported Table Definition

	Mapping External Columns to Siebel CRM System Fields
	Specifying the Data Source Object
	Specifying Any Optional Table Properties
	Configuring the External Business Component
	Specifying Run-Time Parameters
	Configuring the Data Source Definition
	Configuring a User in LDAP or ADSI Security Adapter to Access EBCs
	Configuring the Data Source Definition for the Siebel Developer Web Client
	Supported Connector Names and SQL Styles
	Updating the Server Component to Use the New Data Source

	Using Specialized Business Component Methods for EBCs
	Usage and Restrictions for External Business Components
	About Using External Business Components with the Siebel Web Clients
	About Overriding Connection Pooling Parameters for the Data Source
	About Joins to Tables in External Data Sources
	Searching and Sorting on Fields Joined to External Tables
	About Distributed Joins
	Configuring Distributed Joins and Federated Fields
	Usage and Restrictions for Distributed Joins

	Troubleshooting External Business Components

	Predefined EAI Business Services
	Predefined EAI Business Services
	Predefined EAI Business Services

	Property Set Representation of Integration Objects
	Property Set Representation of Integration Objects
	Property Sets and Integration Objects
	Property Set Node Types

	Example Instance of an Account Integration Object

	DTDs for XML Gateway Business Service
	DTDs for XML Gateway Business Service
	Outbound DTDs for the XML Gateway Business Service
	Delete
	Init
	Insert
	PreInsert
	Query
	Update

	Inbound DTDs for the XML Gateway Business Service
	Delete Response
	Init Response
	Insert Response
	PreInsert Response
	Query Response
	Update Response

