——r‘—‘

Siebel

Configuring Siebel Open Ul

September 2024

Siebel
Configuring Siebel Open Ul

September 2024

Part Number: F87448-03

Copyright © 1994, 2024, Oracle and/or its affiliates.
Authors: Siebel Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Siebel
Configuring Siebel Open Ul

Contents

Preface

1 What's New in This Release 1
What's New in Configuring Siebel Open Ul, Siebel CRM 24.9 Update 1
What's New in Configuring Siebel Open Ul, Siebel CRM 24.6 Update 1
What's New in Configuring Siebel Open Ul, Siebel CRM 23.7 Update 1
What's New in Configuring Siebel Open Ul, Siebel CRM 21.7 Update 2

2 Overview of Siebel Open Ul 3
Overview of Siebel Open Ul 3
About Siebel Open Ul 3
How Siebel CRM Renders Siebel Open Ul Clients 7
About Using This Book 10

3 Architecture of Siebel Open Ul 17
Architecture of Siebel Open Ul 17
About the Siebel Open Ul Development Architecture 17
Life Cycle of User Interface Elements 34

4 Example of Customizing Siebel Open Ul a1
Example of Customizing Siebel Open Ul 41
Roadmap for Customizing Siebel Open Ul 41
Process of Customizing the Presentation Model 42
Process of Customizing the Physical Renderer 61
Process of Customizing the Plug-in Wrapper 72
Configuring the Manifest for the Recycle Bin Example 83
Configuring the Manifest for the Color Box Example 84
Testing Your Modifications 85

5 Customizing Siebel Open Ul 87
Customizing Siebel Open Ul 87

ORACLE

Siebel
Configuring Siebel Open Ul

Guidelines for Customizing Siebel Open Ul 87
Doing General Customization Tasks 91
Customizing Events 109
Managing Files 120
Configuring Manifests 124
Configuring Multiple Tab Browsing 137
Configuring Smartphone UX 138
About Preferences 139

6 Customizing Styles, Applets, Fields, and Controls 141
Customizing Styles, Applets, Fields, and Controls 141
Customizing Logos, Themes, Backgrounds, Tabs, Styles, and Fonts 141
Customizing Applets 156
Customizing Controls 222

7 Customizing Calendars and Schedulers 239
Customizing Calendars and Schedulers 239
Customizing Calendars 239
Customizing Resource Schedulers 246

8 Configuring Siebel Ul to Interact with Other Applications 283
Configuring Siebel Open Ul to Interact with Other Applications 283
Displaying Data from External Applications in Siebel Open Ul 283
Displaying Data from Siebel Open Ul in External Applications 314
Web Engine HTTP TXN Business Service 328

O Customizing Siebel Open Ul for Siebel Mobile Disconnected 341
Customizing Siebel Open Ul for Siebel Mobile Disconnected 341
Overview of Customizing Siebel Open Ul for Siebel Mobile Disconnected 341
Doing General Customization Tasks for Siebel Mobile Disconnected 344
Customizing Siebel Pharma for Siebel Mobile Disconnected Clients 357
Customizing Siebel Service for Siebel Mobile Disconnected Clients 367
Methods You Can Use to Customize Siebel Mobile Disconnected 376
10 Application Programming Interface 403
Application Programming Interface 403

ORACLE

Siebel
Configuring Siebel Open Ul

Overview of the Siebel Open Ul Client Application Programming Interface 403
Methods of the Siebel Open Ul Application Programming Interface 404
Methods for Pop-Up Objects and Property Sets 482
11 Reference Information for Siebel Open Ul 495
Reference Information for Siebel Open Ul 495
Life Cycle Flows of User Interface Elements 495
Notifications That Siebel Open Ul Supports 512
Property Sets That Siebel Open Ul Supports 527
Siebel CRM Events That You Can Use to Customize Siebel Open Ul 528
Languages That Siebel Open Ul Supports 538
Screens and Views That Siebel Mobile Uses 541
Controls That Siebel Open Ul Uses 547
Browser Script Compatibility 549
12 Post-Upgrade Configuration Tasks 555
Post-Upgrade Configuration Tasks 555
Updating Physical Renderer Customizations for Controls 555
Modifying Physical Renderer Code for Event Helper 558
Overriding Plug-In Wrappers 561
15 Glossary 567
access control 567
account 567
ActiveX 567
ActiveX control 567
activity 567
activity (Siebel CRM) 567
administrator 568
applet metadata 568
business component 568
business object 568
carouselrenderer.js file 568
client 568
client computer 569
client file 569
contact 569

ORACLE

Siebel
Configuring Siebel Open Ul

CRM (Customer Relationship Management) 569
customization 569
derive 569
focus 569
infinite scroll 570
inheritance chain 570
JQM Grid Renderer 570
jgmlistrenderer and jgmgridrenderer 570
Manifest File 570
metadata 570
metadata files 570
native mode 57
object definitions 571
object manager 571
opportunity 571
parent business component 571
physical renderer 571
physical renderer methods 572
predefined object 572
predefined Siebel Open Ul 572
Presentation Model 572
Presentation Model class 572
private field 572
proxy object 572
responsibility 573
shadow object 573
Siebel Business Application 573
Siebel CRM data 573
Siebel Open Ul 573
Siebel Property Set 573
Siebel Repository 573
Siebel Server 574
Siebel Web services 574
SWE runtime applet object 574
synchronous request 574
user 574
user interface 574

ORACLE

Siebel Preface
Configuring Siebel Open Ul

Preface

This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center at https://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions

Please give us feedback about Oracle Applications Help and guides! You can send an email to:
oracle_fusion_applications_help_ww_grp@oracle.com.

ORACLE

https://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Siebel Preface
Configuring Siebel Open Ul

ii

ORACLE

Siebel Chapter 1
Configuring Siebel Open Ul What's New in This Release

1 What's New in This Release

What's New in Configuring Siebel Open UlI, Siebel CRM
24.9 Update

The following information lists the changes in this revision of the documentation to support this release of the software.

Topic Description

Configuring List and Form Applets to New topic. Using the Applet Presentation Model (PM) user property, you can configure a list applet
display a color based on the value selected = column (s) or form applet control (s) to highlight a field with colors based on the value selected.

What's New in Configuring Siebel Open UI, Siebel CRM
24.6 Update

The following information lists the changes in this revision of the documentation to support this release of the software.

Topic Description

Customizing Applets for Homepage Views = New topic. Describes how to modify the web template to convert Homepage Views in Redwood Theme.
in Redwood Theme

Customizing the Redwood Theme New topic. Describes elements of the Redwood theme that can be customized.

What's New in Configuring Siebel Open Ul, Siebel CRM
23.7 Update

The following information lists the changes in this revision of the documentation to support this release of the software.

Topic Description

Customizing Form Applets with Icon Map New topic. Describes how to configure icon map images to customize form applets.
Images

ORACLE

Siebel

Configuring Siebel Open Ul

Topic

Chapter 1
What's New in This Release

Description

What's New in Configuring Siebel Open UI, Siebel CRM

21.7 Update

The following information lists the changes in this revision of the documentation to support this release of the software.

Topic

Various topics.

ORACLE

Description

Modified topics. As of Siebel CRM 21.2 Update, the applicationcontainer directory has been
replaced by two directories, as follows:

- applicationcontainer_external (for Siebel Application Interface)

- applicationcontainer_internal (for all other Siebel Enterprise components)

In the Siebel Application Interface installation, web artifacts for application configurations,

which were formerly located in applicationcontainer\webapps\siebel, now map to
applicationcontainer_external\siebelwebroot. This directory contains subdirectories such
as files, fonts, htmltemplates, images, migration, scripts, and smc.

For more information, see Siebel Installation Guide .

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

2 Overview of Siebel Open Ul

Overview of Siebel Open Ul

This chapter describes an overview of Oracle’s Siebel Open UL. It includes the following topics:
- About Siebel Open Ul
« How Siebel CRM Renders Siebel Open Ul Clients
« About Using This Book

About Siebel Open Ul

This topic describes Siebel Open Ul. It includes the following information:

Overview of Siebel Open Ul

« Example Customizations That You Can Make with Siebel Open Ul
Open Development Environment

« Siebel Open Ul JavaScript API Support

- Muiltiple Client Environment

« Support for More Than One Usage

- New Notification User Interfaces

« Mobile Environments

Overview of Siebel Open Ul

Siebel Open Ul is an open architecture that you can use to customize the user interface that your enterprise uses to
display Siebel CRM business process information. These processes must meet the requirements of a wide range of
employee, partner, and customer applications. You can use Siebel Tools to do these customizations, and you can also
use Web technologies, such as HTML, CSS, or JavaScript. Siebel Open Ul uses these technologies to render the Siebel
Open Ul client in the Web browser. It uses no proprietary technologies, such as browser plug-ins or ActiveX.

Siebel Open Ul can run any Siebel CRM application on any Web browser that is compliant with the World Wide Web
Consortium (W3C) standards. It can display data in Web browsers that support Web standards on various operating
systems, such as Windows, Mac OS, or Linux. For example:

Internet Explorer
- Google Chrome
Mozilla Firefox
- Apple Safari

Siebel Open Ul uses current Web design principles, such as semantic HTML and unobtrusive JavaScript. These
principles make sure configuration for the following items remains separate from one another:

Data and metadata that determines HTML content

ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

- Cascading Style Sheet configurations that determine styling and layout
- JavaScript behavior that determines client logic

You can modify each of these items separately and independently of each other. Siebel Open Ul dynamically adjusts
itself to the screen space available on the device and platform from which it is being accessed. Siebel Open Ul will hide
some of the objects that it displays on a Siebel screen when it displays Siebel CRM data in a list or form on the smaller
footprint of a mobile device. Hiding these objects, such as menus or tabs, can help to optimize mobile screen usage.
Siebel Open Ul can use swipe and zoom features that are native on a tablet for the same user interface that it uses for
keyboard and mouse events that are native on a desktop.

Siebel Open Ul can reference a third-party resource. For example, you can configure Siebel Open Ul to get data from

a supplier website, incorporate it with Siebel CRM data, and then display this data in the client. For example, it can get
literature information from a supplier, and then include this information in a detailed display that includes information
about the product, such as images, diagrams, or parts lists. It can mix this information with Siebel CRM data, such as
customers who own this product, or opportunities who might be interested in purchasing this product.

The architecture that Siebel Open Ul uses includes well-defined customization points and a JavaScript API that allow for
a wide range of customization for styling, layout, and user interface design. For more information, see Architecture of
Siebel Open Ul. For more information about the JavaScript API that Siebel Open Ul uses, see Application Programming
Interface.

For information about deploying Siebel Open Ul, including supported features, see Article ID 14998421 on My Oracle
Support. For more information about using Siebel Tools, see Using Siebel Tools .

Example Customizations That You Can Make with Siebel Open Ul

The following list describes a few of the example customizations that you can make with Siebel Open UL. You can
use JavaScript to implement most of these examples. It is often not necessary to use Siebel Tools to do these
customizations:

Refresh only the part of the screen that Siebel Open Ul modifies.
Display and hide fields.
- Configure a spell checker.
Display a list applet as a box list, carousel, or grid.
Display data from an external application in a Siebel CRM view or applet.
Display a Siebel CRM view or applet in an external application.
o Display a Google map.
o Use cascading style sheets to modify HTML elements, including position, and dimension of an element.
Use HTML to customize the logo that your company uses or to customize the background image.
Use JavaScript to configure menus, menu items, and the layout.
Display Siebel CRM data in a Google map or add maps that include location data.
- Create a custom mobile list.
- Configure scrolling, swipe, swipe scrolling, infinite scrolling, and the height of the scroll area.
- Configure a view to use landscape or portrait layout.
- Configure toggle controls and toggle row visibility.

For more information about these examples, see Customizing Siebel Open UI.

ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

Open Development Environment

You can use Siebel Tools or a development tool of your choice to customize Siebel Open Ul so that it fits in your business
environment and meets specific user requirements. You might not require Web development in many situations
because the Siebel Tools configuration works for the Siebel Open Ul client. You can use a predefined, uncustomized
deployment, or you can use Siebel Tools to customize Object Definition Htmls. You can use only Web development or
you can use Siebel Tools and Web development depending on your implementation requirements.

You can use Siebel Open Ul with the rendering environment of your choice. You can use your preferred Integrated
Development Environment (IDE) to write native JavaScript code on top of the API that Siebel CRM uses, or with the
JavaScript API that Siebel Open Ul uses. For more information, see Customizing Siebel Open Ul. For more information
about the JavaScript API that Siebel Open Ul uses, see Application Programming Interface.

You can use HTML, CSS, or JavaScript to add features. For example, you can do the following:

- Create smooth transitions between swipe, accordion, or carousel views.
- Create multifont displays.
Expand, collapse, or resize an applet.
Use open-source JavaScript code that can reuse work from the open-source development community.

Use a plug-in, proprietary development environment, or native development environment that you choose, to
create a custom rendering architecture that resides on top of the JavaScript API that Siebel Open Ul uses.

Use intraworkspace communication and DOM (Document Object Model) access and manipulation through
JavaScript.

Do a limited pilot test of your customizations in your current Siebel Server implementation.

Preserve your existing customizations.

Siebel Open Ul JavaScript APl Support

The JavaScript API that Siebel Open Ul uses is recommended over browser scripting. You can use your own Integrated
Development Environment to write JavaScript and you can customize the JavaScript API that Siebel Open Ul provides.

This JavaScript API allows you to do the following:
Include Siebel Open Ul objects, such as views or applets, in a third-party user interface.
Integrate external content in the Siebel Open Ul client.

Use public and documented JavaScript APIs that support your business logic without rendering objects that
depend on a specific or proprietary technology.

For more information about this JavaScript API, see Application Programming Interface.

ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

Multiple Client Environment

Siebel Open Ul can do the following to support different client environments:

Display data in any client that meets the World Wide Web Consortium standards. Whether a user accesses
Siebel CRM using a corporate desktop, laptop, seven-inch tablet, or ten-inch tablet, Siebel Open Ul can display a
typical Siebel CRM desktop client in the smaller footprint that a tablet provides.

Display data in a browser.
Display data simultaneously from a single Siebel business application to more than one client environment.

Siebel Open Ul works the same way for the following client types:

- Siebel Web Client
- Siebel Mobile Web Client
- Siebel Developer Web Client (also known as the Dedicated Web Client or Thick Client)

Support for More Than One Usage

Siebel Open Ul adjusts to the unique attributes that each client uses so that the user can do the same task on a variety
of client types. It can optimize the intrinsic capabilities of each client type or device so that they provide a desirable user
experience for the novice user and for the expert user. An administrator can configure Siebel Open Ul to meet some of
these individual skill levels. Siebel Open Ul can do the following:

- Support applications that you customize to meet appearance and behavior requirements or usage patterns of
various devices, such as smartphones, tablets, desktop computers, or laptop computers.

Use flexible layout options that support a tree tab layout or a custom navigation design.
- Automatically hide tabs and navigation panes when not in use to optimize space.

- Allow employees, partners, and customers to use the same business process and validation with different levels
of access.

Use user interactions that are consistent with current Web applications.
- Support layout and gesture capabilities for mobile users who use a tablet or smartphone device.

New Notification User Interfaces

Siebel Open Ul includes elements from social media and smartphones that improve user productivity, such as
notification applets. It combines these capabilities with other Siebel CRM innovations to provide the following
capabilities:

Use a notification area that displays messages. The user can access this area at any time without disrupting

current work.

Hover the mouse to toggle between summary and detail information for a record.

Use native Web browser functionality. For example, use bookmarks, zoom, swipe, printing and print preview,
and spell checker.

Use intuitive system indicators for busy events or to cancel a time-consuming operation.

ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

- Allow navigation through a wide range of data entry and navigation capabilities through the keyboard, mouse,
tablet, or gesturing.

For more information, see Notifications That Siebel Open Ul Supports.

Mobile Environments

Siebel Open Ul on a mobile interface uses the same architecture that Siebel Open Ul on a desktop application uses. For
more information, see Siebel Mobile Guide: Connected .

Siebel Open Ul architecture follows Responsive Web Design patterns, which allow the same content to be displayed
differently based on the device from which it is being accessed.

How Siebel CRM Renders Siebel Open Ul Clients

Siebel CRM does the following to render a Siebel Open Ul client:

« Uses HTML div elements and HTML tables in SWE templates to determine physical layout instead of the HTML
frames that high interactivity uses. Siebel Open Ul does not use div elements to structure a page. The entire
page hierarchy that Siebel Open Ul uses is a hierarchy of div elements. Siebel Open Ul does not use the HTML
frame.

- Uses cascading style sheets (CSS) to specify position, dimension, and styling for HTML elements, such as font
color and font type.

This configuration is more closely aligned with current guidelines for Web design than the configuration that the high
interactivity client usesd. Siebel Open Ul allows you to customize how Siebel CRM renders individual objects in the client
without having to use Siebel Tools, and it allows you use an alternative configuration, such as your custom configuration
or a third-party configuration, to bind the Siebel business layer to user interface objects. Siebel Open Ul allows you to
customize an existing ODH or create a new ODH.

How Siebel CRM Renders Div Containers on Siebel Servers

The following figure illustrates how the Siebel Server uses OD tags that reside in ODH to render div containers on the
Siebel Server. For example, it renders:

- Atag with type od-type="view" as a View container.

- Atag with type od-type="nav-control" as a Screen Tab container.

- Atag with type od-type="toolbar" as a Toolbar container.

- Atag with type od-type="menu" as an Application Menu container.

- Atag with type od-type="applet" as an Applet container.

ORACLE

Chapter 2

Siebel
Configuring Siebel Open Ul Overview of Siebel Open Ul
Siebel Siebel
Page Page
[N_I_\ 1 [V_I_T]
: . <divi> for . <divi> for
Swaview S;Er;;zll-l_ swatoolbar SWECMEnU . ﬁ{;::wfm Screan <.?.E'§h;fr Application
Tabs Menu
| |
=
swaapplet {i:\;ﬁgiur
BWE Tags In SWE Templates on Siebel Server SWE Rendering on Siebel Sarver

How Siebel CRM Handles Data in Siebel Open Ul

The following figure illustrates how Siebel CRM uses a presentation model, which is a JavaScript file that resides in the
client that specifies how to handle the metadata and data that Siebel Open Ul gets from the Siebel Server. Siebel CRM
then displays this information in a list applet or form applet in the client. The presentation model provides a logical
abstraction of the metadata, transaction data, and behavior for part of the user interface. Siebel Open Ul includes a
presentation model for each significant part of the user interface, such as the application menu, toolbars, screen tabs,
visibility drop-down lists, applet menus, different types of applets, and so on. The presentation model does not render
the HTML in the user interface.

Siebel Siebel
Page Page
[1 []
S Mo PM for PM for
View S?:;:n Toolbar Apﬂ:;_?ﬂw Rendering Screen 'I":Inr\glfb?arr Application
| for View Tabs Menu
| | |
Teolbar PM for
Applet Itesrm Applet
Repository Matadata on Siebel Server Rendering on Siebal Open Ul Client
Legend
PM Presentation Model

How Siebel CRM Renders Objects in Siebel Open Ul

The following figure illustrates how Siebel CRM uses a physical renderer, which is a JavaScript file that Siebel Open Ul
uses to render the user interface. A physical renderer contains instructions that describe how to render the physical
presentation and interaction for a user interface element, such as a grid, carousel, form, tree, tab, menu, button, and
so on. Each physical renderer references a presentation model, and it uses the metadata, data, and behavior that this
presentation model defines to render an object in the client. For more information about presentation models and
physical renders, see About the Siebel Open Ul Development Architecture.

ORACLE

Siebel Chapter 2

Configuring Siebel Open Ul Overview of Siebel Open Ul
\
TR
B Men
v
NN
Rendering on Siebel Open Ul Client

Legend
PM Presentation Model
PR Physical Renderer
— Reference

Examples of How You Can Customize Siebel Open Ul

Siebel Open Ul uses the presentation model and the physical renderer to separate the logical user interface from the
rendering. This configuration allows you to modify the user interface without having to modify the logical structure and
behavior of the client. For example, you can modify the physical renderer so that it uses a third-party, grid-to-carousel
control to display a list applet as a carousel without modifying a presentation model. For more information about this
example, see Customizing List Applets to Render as Carousels.

You can use the physical renderer of a control to implement a variety of configurations so that Siebel Open Ul can
render this control at nearly any physical location in the browser and with your custom logic. You can use the physical
renderer to display different parts of the same applet in different physical panes in a Siebel screen. For example, you can
configure Siebel Open Ul to display a temporary recycle bin that uses data from the presentation model to render data
in a pane that is physically separate from the data that the list applet displays. For more information about this example,
see Example Customizations That You Can Make with Siebel Open Ul .

You can use the presentation model to modify the logical behavior of the user interface without modifying the physical
renderer. For example, you can modify a presentation model to add a list column in a list applet so that it iterates
through list columns and renders them without modifying the physical renderer. This column can reside on the client
even if the Siebel Server contains no representation of it. You can customize at the control level writing plug-in wrappers
that govern how a control should appear and behave when a certain set of conditions are satisfied. A check box
appearing as a flipswitch on mobile devices is an example of this type of implementation.

ORACLE

Siebel

Chapter 2

Configuring Siebel Open Ul Overview of Siebel Open Ul

About Using This Book

This topic includes information about how to use this book. It includes the following information:

« Important Terms and Concepts

« How This Book Indicates Computer Code and Variables
« How This Book Describes Objects

« About Siebel CRM Releases

« Support for Customizing Siebel Open Ul

Getting Help from Oracle

Important Terms and Concepts

This book uses the following terms and concepts that you must understand before you customize Siebel Open Ul:

- A useris a person who uses the client of a Siebel business application to access Siebel CRM data.
- The user interface is the interface that the user uses in the client to access data that Siebel Open Ul displays.
- The client is the client of a Siebel business application. Siebel Call Center is an example of a Siebel business

application. Siebel Open Ul renders the user interface in this client.

- The server is the Siebel Server, unless noted otherwise.
- An administrator is anyone who uses an administrative screen in the client to configure Siebel CRM. The

Administration - Server Configuration screen is an example of an administrative screen.

- Predefined Siebel Open Ul is the ready-to-use version of Siebel Open Ul that Oracle provides to you before you

make any customization to Siebel Open UL

- A Siebel CRM object is an object that resides in the Siebel Runtime Repository. For example, a screen, view,

applet, business component, menu, or control is each an example of a Siebel object. The Contact List Applet
is an example of a Siebel CRM applet. A Siebel CRM applet is not equivalent to a Java applet. For more
information, see Configuring Siebel Business Applications .

- A predefined object is an object that comes already defined with Siebel CRM and is ready to use with no

modification. The objects that Siebel Tools displays in the Object List Editor immediately after you install Siebel
Tools are predefined objects.

- A custom object is a predefined object that you modified or a new object that you create.

- The term focus indicates the currently active object in the client. To indicate the object that is in focus, Siebel

CRM typically sets the border of this object to a solid blue line.

- To derive a value is to use one or more properties as input when calculating this value. For example, Siebel

Open Ul can derive the value of a physical renderer property from one or more other properties. For more
information, see Deriving Presentation Models, Physical Renderers, and Plug-in Wrappers.

- The term class describes a JavaScript class. It does not describe the Siebel class object type, unless noted

otherwise, or unless described in the context of the Siebel Object Hierarchy. For more information about the
Siebel class object type, see Siebel Object Types Reference .

- The term reference describes a relationship that exists between two objects, where one object gets information

from another object or sends information to this object. For example, in the Siebel Object Hierarchy, the
Opportunity List Applet references the Opportunity business component to get opportunity records from

10

ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

this business component, and the Opportunity business component references the S_OPTY table to get
opportunity records from this table.

- The term instance describes the current, run-time state of an object. For example, a business component
instance is a run-time occurrence of a business component. It includes all the run-time data that the business
component currently contains, such as the values for all fields and properties of this business component.

For example, an instance of the Contact business component includes the current, run-time value of the City
field that resides in this business component, such as San Francisco. You can configure Siebel Open Ul to get
a business component instance, and then modify this data or call the methods that this business component
references.

For more information about these terms and other background information, see the following items:

- A complete list of terms that this book uses, see the glossary.
- Using the Siebel Open Ul client, see Siebel Fundamentals for Open UL.

- Using Siebel Tools, see Using Siebel Tools .

How This Book Indicates Computer Code and Variables

Computer font indicates a value that you enter or text that Siebel CRM displays. For example:
This is computer font.

Italic text indicates a variable value. For example, the n and the method_name in the following syntax description are
variables:

Named Method n: method_name
The following is an example of this code:

Named Method 2: WriteRecord

How This Book Indicates Code That You Can Use as a Variable and Literal

You can write some code as a literal or a variable. For example, the Home method sets a record in the current set of
records as the active row. It uses the following syntax:

busComp . Home () ;
where busComp identifies the business component that contains the record that Home sets.

You can use busComp as a literal or a variable. If you declare busComp as a variable in some other section of code, and
if it contains a value of Account when you use the Home method, then Home sets a record in the Account business
component as the active record. You can also use the following code, which also sets a record in the Account business
component as the active record:

Account.Home () ;

ORACLE

1

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

Case Sensitivity in Code Examples

The code examples in this book use standard JavaScript and HTML format for uppercase and lowercase characters. It is
recommended that you use the following case sensitivity rules that this book uses:

- All code that occurs outside of a set of double quotation marks (
rule occurs with path and file names.

) is case sensitive. The only exception to this

- All code that occurs inside a set of angle brackets (<>) is case sensitive. The only exception to this rule is any
code that you enclose with a set of double quotation marks that you nest inside a set of angle brackets.

The following example is valid:

function RecycleBinPModel () {
SiebelAppFacade.RecycleBinPModel. superclass.constructor.apply (this, arguments) ;

}
The following example is not valid. Bold font indicates the code that is not valid:

function Recyclebinpmodel () {
SiebelAppFacade.RecycleBinPModel. superclass.constructor.apply(this, arguments);

}

How This Book Describes Objects

For brevity, this book describes how an object, such as a user property, does something. For example, this book might
state the following:

"The Copy Contact user property copies contacts."

In strict technical terms, the Copy Contact user property only includes information that some other Siebel CRM object
uses to copy contacts.

For brevity, to describe how Siebel CRM uses the value that a property contains, in some instances this book describes
only the property name. For example, assume Siebel CRM displays the value that the Display Name property contains.
This property is a property of a tree node object. This book only states the following: "Siebel CRM displays the Display
Name property of the tree node."

In reality, Siebel CRM displays the value that the Display Name property contains.

About Objects and Metadata

A Siebel object definition defines the metadata that Siebel Open Ul uses to run a Siebel application. The Account List
Applet that Siebel Tools displays in the Object List Editor is an example of an object definition. It includes metadata
that Siebel Open Ul uses to render the Account List Applet, such as the height and width of all controls that the applet
contains, and all the text labels that it must display on these controls. The Siebel Repository is a set of database tables
that stores these object definitions. Examples of types of objects include applets, views, business components, and
tables. You use Siebel Tools to create or modify an object definition.

The object manager hosts a Siebel application, providing the central processing for HTTP transactions, database data,
and metadata, which is data that the object definitions contain. It is different from Siebel CRM data, which is data that is
specific to your business, such as account names and account addresses.

For more information, see Configuring Siebel Business Applications .

12
ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

How This Book Describes Relationships Between Objects

An object definition includes properties and a property includes a value. For example, the Business Object property of
the Account Address view contains a value of Account. To describe this relationship, this book might state the following:
"The Account Address view references the Account business object.”

Sometimes the relationship between objects occurs through more than one object. For brevity, this book does not
always describe the entire extent of relationships that exists between objects through the entire Siebel Object Hierarchy.
For example, because the Account business object references the Account business component, and the Account
Address view references the Account business object, this book might state the following: "The Account Address view
references the Account business component.”

About Siebel CRM Releases

Before you can perform the configuration tasks described in this book, you must install Siebel CRM and perform
postinstallation tasks. For more information, see Siebel Installation Guide .

Depending on the software configuration that you purchase, your Siebel CRM products might not include all the
features that this book describes.

Support for Customizing Siebel Open Ul

Siebel CRM supports the following customizations in Siebel Open Ul. You must carefully consider the implications of
doing this customization and development:

- Siebel Open Ul allows you to use predefined or existing Siebel repository information in your deployment
without customization. Siebel Open Ul uses this repository information to render the user interface. This
rendering does require user acceptance testing.

- You can use Siebel Tools to customize Siebel Open Ul so that it works in your business environment and meets
user requirements. You configure the same Object Definition Templates.

- You can use your Web development skills and the Siebel Open Ul JavaScript API to customize Siebel Open
UL. For details about this API, see Application Programming Interface. Oracle continues to support browser
scripting in previous releases, but strongly recommends that you convert any browser script that your
deployment currently uses so that it uses the Siebel Open Ul JavaScript API.

- You can combine Siebel Tools development with development of the Siebel Open Ul JavaScript API
simultaneously, as needed.

- Siebel CRM supports including Siebel Open Ul or individual Siebel Open Ul objects in a third-party user
interface. Views and applets are examples of Siebel Open Ul objects.

- Siebel CRM supports integrating external content in the Siebel Open Ul client.

- You can modify the cascading style sheets that come predefined with Siebel Open Ul to rebrand your
deployment and customize the user experience.

- Siebel Open Ul supports usage of Siebel SmartScript to specify workflow. For more information, see Siebel
SmartScript Administration Guide .

- You can use HTML, CSS, or JavaScript to add features. For example, you can do the following:

Build user interfaces on any technology that can integrate with the Siebel Open Ul JavaScript API.

13
ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

Use your preferred, open-source JavaScript library, such as jQuery, from the open-source development
community, or you can use the environment that Siebel Open Ul provides.

Use a plug-in, proprietary development environment, or a native development environment. You can use these
environments to create a custom rendering architecture that integrates with the Siebel Open Ul JavaScript API.

Use intraworkspace communication and DOM access and manipulation through JavaScript programming.

Do a pilot user acceptance test of your Siebel Open Ul deployment that uses your current Siebel Server
implementation.

Preserve your existing configurations and customizations.

Support That Siebel Open Ul Provides

It is strongly recommended that you carefully consider the support policies that this topic describes before you
customize Siebel Open Ul. For more information about the support that Oracle provides, see Scope of Service for Siebel
Configuration and Scripting - Siebel Open Ul (Article ID 1513378.1) on My Oracle Support.

Support for the Siebel Open Ul JavaScript API

Oracle only supports usage and features of the Siebel Open Ul JavaScript API as described in Oracle’s published
documentation. This policy makes sure that your deployment properly uses this APl and helps to make sure your
deployment works successfully. You are fully responsible for support of any custom code that you write that uses this
API. For product issues that are related to this API, Oracle might request a minimal test case that exercises your API
modifications.

Oracle supports your usage of an Integrated Development Environment (IDE) of your choice that you use to write native
JavaScript code that you then deploy to work with the Siebel Open Ul JavaScript API. Oracle does not support the
features of or the quality of any third-party IDE.

Oracle supports your usage of the Siebel Open Ul JavaScript APl with a rendering environment and system integration
that you choose. Oracle has implemented Siebel Open Ul in HTML. You can use this implementation as a template

for your deployment on other technologies. This template approach allows you to expedite development. However,
Oracle can in no way support these customizations because this work is outside the scope of Oracle's support for
customizations. It is recommended that you work with Oracle's Application Expert Services on any implementation
issues you encounter that are related to the Siebel Open Ul JavaScript API. For more information, see Getting Help from
Oracle.

If your current deployment includes an integration that resides on the desktop, and if this integration does not easily
support migration to JavaScript integration, then it is recommended that you move this integration to the Siebel Server,
or use a Web service on the desktop that can integrate to this server.

Support for Code Suggestions, Examples, and Templates

Oracle provides code examples only to help you understand how to use the Siebel Open Ul JavaScript APl with Siebel
Open ULI. Oracle does not support your usage of these code examples. It only supports usage of this API as described in
Application Programming Interface.

Getting Help from Oracle

The predefined application that Oracle provides includes integration interfaces that allow you to modify or to create

a new user interface. You can use these integration interfaces to create your own presentation model or physical
renderer, at your discretion. It is your responsibility to create and maintain any customizations that you make. For more
information, see About the Presentation Model and About the Physical Renderer.

14
ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

To get help from Oracle with configuring Siebel Open Ul, you can create a service request (SR) on My Oracle Support.
Alternatively, you can phone Global Customer Support directly to create a service request or to get a status update

on your current SR. Support phone numbers are listed on My Oracle Support. You can also contact your Oracle sales
representative for Oracle Advanced Customer Services to request assistance from Oracle's Application Expert Services.

15
ORACLE

Siebel Chapter 2
Configuring Siebel Open Ul Overview of Siebel Open Ul

16
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

5 Architecture of Siebel Open Ul

Architecture of Siebel Open Ul

This chapter describes the architecture that you can use to customize Siebel Open UL. It includes the following topics:

- About the Siebel Open Ul Development Architecture
- Life Cycle of User Interface Elements

About the Siebel Open Ul Development Architecture

This topic describes the development architecture that you can use to customize Siebel Open UL. It includes the
following information:

« Overview of the Siebel Open Ul Development Architecture

« Example of How Siebel Open Ul Renders a View or Applet

« Customizing the Presentation Model and Physical Renderer

« Customizing the Physical Renderer

« Customizing a Plug-in Wrapper

- Stack That Siebel Open Ul Uses to Render Objects

- Items in the Development Architecture You Can Modify

« Example Client Customizations

- Differences in the Server Architecture Between High Interactivity and Siebel Open Ul
- Differences in the Client Architecture Between High Interactivity and Siebel Open Ul

Overview of the Siebel Open Ul Development Architecture

Siebel Open Ul uses objects to deploy each element that it displays in the client. You can customize each of these
objects. You can customize each object separately. Each object resides in a layer that implements a particular area of
customization. For example, you can customize each of the following items:

- Application

- Screen

+ View

- Applet

- Applet Control

- Menu
o Application menu

o Applet menu

- Toolbar

ORACLE

17

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

o Application toolbar
Navigation object

o Tabs at different levels

o Visibility menu

Predefined Query (PDQ) menu

Architecture You Can Use to Customize Siebel Open Ul

The following figure illustrates the basic architecture that you can use to customize Siebel Open Ul and it contains the
following key components:

1. On the Siebel Open Ul Client:

o (CSS Styling applies style to the client interface.

o The Physical Renderer renders the data (using the Template Manager, Plug-in Wrapper and Builder, and
Context Renderer).
o The Presentation Model formats the data and applies the logic.

o The Client Proxy holds runtime data and metadata.
2. The Siebel Server holds the Object Manager and Siebel CRM Metadata/Data.

18
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

55 Styling

Physical
Renderer

Presentation Model

Client Proxy

Object
Manager

For an overview of how Siebel Open Ul uses the presentation model and physical renderer, see How Siebel CRM Renders
Div Containers on Siebel Servers.

About the Presentation Model

The presentation model is a JavaScript file that specifies how to handle the metadata and data thatSiebel Open Ul
gets from the Siebel Server, and then displays this information in a list applet or form applet in the client. It allows you
to customize behavior, logic, and content. It determines the logic to apply, captures client interactions, such as the user
leaving a control, collects field values, and sets properties. A presentation model can get the following items from the
proxy, and then expose them for external use. These properties and methods are similar to the properties and methods
that most software models use:

- Properties. Contains information about the current state of each user interface element. For example, if Siebel
Open Ul currently displays or hides a field.

- Methods. Implements behavior that modifies the state of an object. For example, if the user chooses a value,
then a method can hide a field.

A presentation model can contain customization information that is separate from the predefined configuration
information that Siebel Open Ul uses for physical rendering. For example, it can display or hide a field according to a
pick value.

For more information, see Example of a Presentation Model.

19
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

About the Physical Renderer

A physical renderer is a JavaScript file that Siebel Open Ul uses to render the user interface. It binds a presentation
model to a control. It can enable different behavior between a desktop client and a mobile client. It allows the
presentation model to remain independent of the physical user interface objects layer. It allows you to use custom or
third-party JavaScript code to render the user interface. It can display the same records in the following different ways:

List Applet
- Carousel
- Calendar

Mind Map

For more information, see Example of a Physical Renderer.

About the Template Manager

The template manager is a JavaScript object that provides HTML markup as requested by a physical renderer, a plug-
in wrapper or any other active JavaScript object running in Siebel Open Ul. A template manager ensures that each
component of Siebel Open Ul generates exactly the same markup, enhanced with a predefined classname, for similar
type of Ul controls that is independent of device, browser, and resolution. For example, if a text field is being rendered
in Siebel Open UI, then it must use the same classname, for example, siebui-input, whether it is being rendered in a
browser on a desktop, or a mobile device.

About the Template Manager in Responsive Web Design

One of the most crucial aspects of responsive Web design is to have clean and virtually identical DOM elements within
a specific classname for a control. For example, an anchor can also be styled in such a way that it appears similarly to a
button in one context and in another might appear as a hyperlink.

You must, however, provide the same DOM element for a particular type consistently, coupled with a specialized
classname, when required. The template manager then acts as an HTML content provider for all types of primitives
controls.

How It Works

The template manager expects the caller, which in most cases would be renderers or plug-in wrappers, to provide
certain information on what kind of control they need. For example, does the caller need to create input element?
Depending on the type and other parameters specified by the caller, the template manager determines the control that
is required, then builds an HTML string and returns that string to the caller. The template manager also provides the
flexibility to add more DOM attributes which may or may not be standard, for example mobile specific "data-" attributes,
or automation attributes.

For more information about the template manager class, see Template Manager Class.

About Event Helper Objects

Event helper objects facilitate event binding in a physical renderer or a plug-in wrapper. They consolidate events across
platforms, most importantly standardize events such as touch and click. The differences required in rendered markup
and the behavioral aspects, if any, can be handled internally by the template manager and the even helper object
respectively.

For more information about the event helper objects, see About Event Helper Objects.

20
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

About Plug-in Wrappers

A plug-in wrapper is a complete and independent manager of an applet control and its life-cycle. It is entirely
responsible for all actions of a control, including but not limited to its showing, value management, event handling.
Plug-in wrappers cater to control level management. A plug-in wrapper allows the wrapper to handle the control of
specific functionalities. Individual renderers will delegate the control-specific-functionalities to the wrappers. The
wrappers handle the applet control level implementation.

The following figure outlines the class structure of plug-in wrappers.

Base Plug-In
Wrapper

Field Plug-In
Wrapper

Plug-In Wrapper Plug-In Wrapper Plug-In Wrapper Plug-In Wrapper
1 2 3 N

This figure contains the following elements:

1. Base Plug-In Wrapper. This is the base specification class. It defines the base properties and methods to which
every plug-in wrapper must adhere. No functionality is implemented in this class and it is not recommended
that any derivation or customization occur from this class.

2. Field Plug-In Wrapper. This is the class that defines the default functionality of a control. All APIs have a
definition, and this plug-in wrapper is a fallback class for all customizations. You may choose to derive a custom
wrapper from this class if your intention is to write a new customization.

3. Plug-In Wrapper 1, Plug-In Wrapper 2, Plug-In Wrapper 3, Plug-In Wrapper N. These are Siebel Open Ul
out-of-the-box customizations that are used to display specific types of controls. Examples of these are date
pickers, drop-down menus, flip switches and signatures. You may choose to derive a custom wrapper from one
of these classes if your intention is to slightly modify the functionality of an existing plug-in wrapper.

For more information about plug-in wrappers, including detailed instructions about creating and customizing a plug-in
wrapper, see Process of Customizing the Plug-in Wrapper and Plug-in Wrapper Class.

About the Plug-in Builder

The plug-in builder wires the physical renderer to a plug-in wrapper for a given control and a given set of conditions.
It also provides a decoupling between physical renderers, such as an applet, and plug-in wrappers for controls in that
applet.

For more information see, About Plug-in Wrappers and Plugin Builder Class.

21
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

About Context Renderers

A context renderer is a JavaScript object that Siebel Open Ul optionally uses to enhance the user interface for generic
functionality. It is an extension to the physical renderer and provides loose coupling for specific Ul operations. A physical
renderer can have one or many context renderers. In an ideal scenario, a context renderer would always be limited to
user interface operation.

For example, if all Applets in a view needs to be rendered as Accordion Panel, then it can be implemented as context
renderer. Also, the context renderer can be attached to view physical renderers without any impact on the View PR
functionality.

How Siebel Open Ul Uses the Presentation Model and the Physical Renderer

Siebel Open Ul uses presentation models and physical renderers to bind data to the user interface.
A user interface object includes a combination of the following items:

Physical presentation and interaction for a user interface element. For example, a grid, carousel, form, tree,
tab, menu, button, and so on.

Logical presentation and interaction that Siebel Open Ul can physically display in more than one way. For
example, Siebel Open Ul can display a list of records in a grid or in a carousel. The logical representation of this
data includes the metadata that Siebel Open Ul uses to determine the Siebel CRM information that this list of
records contains. It does not include information that Siebel Open Ul uses to physically display this list as a grid
or carousel.

Presentation and interaction information. Includes application metadata, transaction data, and configuration
information that determines client behavior. Siebel Open Ul binds these items to the generic presentation. For
example, it can determine whether or not a field is required, and then identify the data that it must display in a
list column, or it can identify the business service method that it binds to a button.

Siebel Open Ul can bind metadata, data, and logical behavior to a generic user interface in a highly configurable and
declarative manner. It drives a fixed set of user interface presentation and interaction options. For example, you can
configure an application so that a field is required or uses a hierarchical picklist. It also allows you to do the following
customizations:

- Add a completely new presentation or interaction feature in the user interface. For example, display or
hide a field according to a pick value.

- Create a new or modify an existing logical user interface object. For example, you can use Siebel Open Ul
to customize an object so that it displays a list of records in an infinite scroll list, which is an object that allows
the user to view these records in a sliding window that displays records over a larger list of records that already
exist in the client. It allows the user to do an infinite scroll in a mobile user interface. Note that, from a usability
standpoint, it is almost always preferable to configure Siebel Open Ul to use an interface that allows the user to
page through sets of records rather than use a scroll list. This configuration reduces uncertainty regarding the
records that Siebel Open Ul has or has not displayed in the visible portion of the client.

Modify the type of user interface element that Siebel Open Ul uses to display information. For example,
you can configure Siebel Open Ul to display a list of records in a carousel instead of on a grid. You can also
configure Siebel Open Ul to display a check box control in a grid or a form as a flip switch.

Example of How Siebel Open Ul Renders a View or Applet

The following figure illustrates how Siebel Open Ul renders the Contact Form Applet.

22
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul
Cascading Style Shast
Files o
! -
Plug-in Physical Renderer File:
Wra?:per *| partialrefreshpr.js
Y
Presentation Madal File:
partialrefreshpm js
Yy
Open Ul o
Client
? Manifest
x
Wb Template File |
Siebel Server

As shown in this figure, Siebel Open Ul does the following to render the Contact Form Applet:

9.

10.

The user attempts to navigate to the Contact Form Applet.

Siebel Open Ul creates the view that displays this applet.

Siebel Open Ul references the manifest to identify the files it must download to the client. For more information,
see Configuring Manifests.

Siebel Open Ul downloads the JavaScript files it identified in Step 3 to the client.

A presentation model formats the data and applies application logic. For more information, see About the
Presentation Model.

A physical renderer registers itself with a corresponding object. A presentation model also does this
registration. For more information, see Example of a Physical Renderer.

A physical renderer fetches and incorporates plug-in wrappers for its applet controls. For more information, see
Example of a Plug-in Wrapper.

One or many context renderers register themselves with a corresponding object. For more information, see
Example of a Context Renderer.

Siebel Open Ul loads the cascading style sheets according to the manifest configuration that it referenced in
Step 3.

Siebel Open Ul uses a presentation model, physical renderer, context renderer (optional), and cascading style
sheets to render the Contact Form Applet.

Example of a Presentation_Model

The following figure describes how the partialrefreshpm.js file does a partial refresh. It is recommended that you include
this business logic in a presentation model so that more than one modeler can reuse it. To get a copy of this file, see
Article ID 1494998.1 on My Oracle Support. To view an example that uses this file, see Displaying and Hiding Fields.

23

ORACLE

Siebel
Configuring Siebel Open Ul

Chapter 3
Architecture of Siebel Open Ul

1f{ typecf(SiebelippFacade.PartialRefreshFl) ===

“undefined” }{

SiebelJs.Namespace ["SisbelAppiacade.FarcialRerreshFM™) :

define ("siehel]l/cuatom/partialrefreshpm™ . [], fanotion ()

1

Cicbelhppracade. FozcialRelzeahll = | funccion ()|
function PartislRefreshPM(proxy) {

SiebellppFacade.FartialRefzeshPM.superclasas.conatrustor.call

{ this, pzoxy)

SicbeldS . Extend(FPartialRefreshFM, SiebelippFacade.PresentationModel):

ParzialRefreshPM.prococype. Inie = fanetion() {

this. hddMerhod | "ShewSelsszion™,
this.AddMethod("FieldChange",
):

function Selectionlhange(){
Var controls = this.Fer("Getlont
var contral = controls["JebTicle

zolEm)

this.
}

SetFr

function CnfieldChange{ control, value }{
if{ control.CecNams () === ="JobTicle®)|

SiebellppFacade . FartialRefzeshPM.superclass.Init.call
this.AddFropercy ("ShowdobTitleRelavediield”,

SelectionChange, | segquence :
tmFieldChange,

var value = this.ExecuteMethod("GetFieldValue™,
operty ("ShowdJobTitleRelatedfield”, (valus

this.SetProperty("ShowJocbTitleRelatedField™, (

{ this)

)

Ffalse, scops : this } §r
this }).

{ sequence : false, =scope:

cantrel).

¥ troe: false))

value ? true: false §),

As shown in this figure, the partialrefreshpm.js file includes the following sections:

1. Creates the JavaScript namespace.

N

Define Method.
Creates the presentation model class.

(= L I Y

Example of a Physical_Renderer

. Uses the Define method to make sure Siebel Open Ul can identify the constructor. For more information, see

Customizes a predefined presentation model to support partial refresh logic.
Includes the logic that Siebel Open Ul runs if the user changes records.
. Includes the logic that Siebel Open Ul runs if the user modifies a field value in a record.

The following figure describes how the partialrefreshpr.js file does a partial refresh for a physical renderer. To get a copy

of this file, see Article ID 1494998.1 on My Oracle
Hiding Fields.

Support. To view an example that uses this file, see Displaying and

LE{ typeof| StebelhippFacade.PaszialRefreshiffl) === “uzdefized® j
TieEalls Wamnspacal “Siebnlirplacede. SIFefcashlR" 17

define (“siebel/custon/partialreleshps™, [“order!JIrdParty/Jqaesy. signatarepad. min”, “oxder!siebel/phyenderes™].,

fanatien () |

ETSTI T

funation FartialRefreshPR{ pm }{
SiebelippFacade.FartialRefreshPR. superciass.
1

FaztialRefzeshPR.prototype. Init = Euncbion (1
Siepelapplacade.FartialRefreshPR,supercians, init. o
this. ArcachPHBinding{ [FSkowJobTitleRelatedField”

1

11{ this, pm jr

Siebells. Extend| PareialRefsestPR, SiebelippFacade. PhysizalBesdeses |:

Llqenim)
ifyLayout)7

fanarion MedsfyLagsuwe() [
var cemtrels = this.JecP¥(}.Ger{ "JecCemzrels® §.
§. leRelareaFigla

Nﬁl—

controlal “FaxP

if{ candhow)
${ "divéWorkFronedum Label™ §.akhow(hs
§({ "[name="" + WorkFhomeRum. Gecinpnthmﬂ + "
§{ "div#FawFhonelom Label®). 0
#("[name='" » FaxPhenelus. .ne'I'.J::n:NazeU LR

17 .

"diviMcEPRaaNuE Label™).hide(h:

"iname='" & HorkPhonelum Getlnputiase() + =°]").
$("diviFaxFhonelias_Label™).hi
$("(name="" & FaxFhonelis.Ge

L+
cInpatiame() + =']" }

wil 2

LI+ B

[LH

ORACLE

24

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

As shown in this figure, the partialrefreshpr.js file includes the following sections:

1. Creates the JavaScript namespace.

2. Uses the Define method to make sure Siebel Open Ul can identify the constructor. For more information, see
Define Method.

3. Creates the physical renderer class.

4. Specifies the ShowJobTitleRelatedField property.

5. Includes the logic that Siebel Open Ul runs if it modifies ShowJobTitleRelatedField.

Example of a Plug-in_Wrapper

The following figure describes how the ColorBoxPW.js file does a partial refresh for a physical renderer. To get a
copy of this file, see Article ID 14949981 on My Oracle Support. To view an example that uses this file, see Process of
Customizing the Plug-in Wrapper.

/I First, define the custom PW's namespace.

if (typeof (S5iebelippFacade.ColorBoxPW) === “"undefined”) {
I Siebells.Namespace(’ SiebelippFacade.ColorBoxPi’); I °

/f Define the module and add any dependencies (including 3rd pacamefiles the PW may use) here.
define("siebel/ColorBoxPu”, ["siebel/basepw”], function () { |
SiebelAppFacade.ColorBoxPW = (function () {

function ColorBoxPH() {
/f The constructor. Initializations and declrations go here. Just a superclass call in our case.
I SlebelAppFacade. ColorBoxPW. superclass. constructor. apply(this, arguments);
I

J// Make sure to extend from the right PH.

| SiebellS.Extend{ColorBoxPW, SiebelAppFacade.DropDownPil); o

ff That's it, that's all the customization we need.
return ColorBouPh;
Mk

ff Wow this bit governs how or where this custos PW applies. The AttachPW API attaches this PW to
ff a specific type of control, which in cur case is a cosbo box.
Siebelapp.5_App.PluginBuilder . AttachPi(consts. get("SWE_CTRL_COMBOBOX™), SiebelappFacade.ColorBowPW, function (contrel) {
/ Every combo box encountered is run against this method definition; and returning true will do the attachment.
an be as complex or simple as required.

The control object itself is at ouwr dispesal to make a sound cheice. Condition
ff In this case, we return true only if the control's repository name is “Probability2™.
return (control.GetName() === "Probability2”);

12H

return SiebelippFacade.ColorBaxPi}

i

As shown in this image, the ColorBoxPW.js file includes the following sections:

1. Creates the JavaScript namespace.
Uses the Define method to make sure Siebel Open Ul can identify the constructor. For more information, see
Define Method.

Creates the plug-in wrapper class.

Implements the Life Cycle and Interface Methods of a Plug-in Wrapper.

Implements events handlers and other methods specific to the given Plug-in Wrapper.
Wires the Plug-in Wrapper to the Physical Renderer (optionally) based on conditionals.

N

o ulhwWw

25
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

Example of a Context Renderer

The following figure describes how the controlsmenuCR.js file does the Ul transformation of button controls in a menu.
When configured as a context renderer for Contact Form Applet via Manifest, it displays the Applet Button Controls in
Menu instead of displaying them inline.

if (typeof (SiebellppFacade.ControlsMenuCR) = "undefined”™) { o

I SiebeldS.Namespace ("Sich |

F je.ControlsMe "y
I define {"siebel/controlsmenuCR", ["siebel/basecr™], function () { | °

SiebelBAppFacade.ControlsMenuCR = (function () {

function ControlsMenuCR({) {
¥

SiebeldS.Extend (ControlsMenuCR, SiebelAppFacade.BaseCR);

ControlsMenuCR.prototype.Init = function (prContext) { |

// Binding to FM Property/Method can be done via AttachPMBinding invocation.
! &
ControlsMenuCR.prototype.Execute = function (prContext) {

var pm = prContext.GetPM();

var htmlString = "<button cla "> </button>"

1f(pm) {

var btnContainer = $("#" + pm.Get("GetFullId") -btn-grp-applet™

if(btnContainer.length){
btnContainer.before(html3tring);
btnContainer
mena()
Jhide()
.bind({ "menuselect”, { ctx: this }, function (event, ui) {
£(this).hide();
1

S("$#" + pm.Get("
.find({ "button.s con-display-tile™
.click({ ctx: btnContainer }, function(evt){
var btnCotainerEl = evt.data.ctx;
if(btnCotainerEl.menu().is(":visibkble™ }){
btnCotainerEl.menu() .hide ()

}
else{
btnCotainerEl .menu() .show() .position({
my: "o "
at: "c
of: $({ this),
collision: "flipfit flipfit”

1)

1y

¥

1

return ControlsMenuCR;
O
return SiebelippFacade.ControlsMenuCR;
e

As shown in this image, the controlsmenuCR.js file includes the following sections:

1. Creates the JavaScript namespace.

2. Uses the Define method to make sure Siebel Open Ul can identify the constructor. For more information, see
Define Method.

3. Creates the context renderer class.
4. Implements the Life Cycle and Interface Methods of a context renderer.

26
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

Customizing the Presentation Model and Physical Renderer

Siebel Open Ul uses two JavaScript files to implement the presentation model and the physical renderer and plug-in
wrappers that it uses to display an applet. For example, it uses the following files to display a carousel:

ListPModel.js for the presentation model

- CarouselRenderer.js for the physical renderer
It uses the following files to display a grid:

- JQGridRenderer.js for the physical renderer
ListPModel.js for the presentation model

It uses the following concatenated file for all applet controls:

- pwinfra.js is a concatenation of all the plug-in wrapper objects used for all standard applet controls in the Siebel
application.

Customizing the Presentation Model

Siebel Open Ul considers static and dynamic values as part of the presentation model that it uses. For example, a list
applet includes columns and renders data in each column in every row. Metadata specifies the column name and other
details for each column, such as required, editable, and so on. These values are static. Siebel Open Ul does not modify
them unless you configure it to modify them as part of a customization effort.

A list applet can also include dynamic values. For example, a value that identifies the record that is in focus, or the

total number of visible records. Siebel Open Ul can modify the value of a dynamic value in reply to an external event
according to the behavior of the model. For example, if the user clicks a field in a record, and if this record is not in
focus, then Siebel Open Ul modifies the property that stores the focus information to the record that the user clicked.
You can implement this type of functionality in a presentation model. For more information, see About the Presentation
Model.

Example of Customizing the Static and Dynamic Values of a Presentation Model

You can modify a presentation model to add a list column. For example, you can modify the SIS Product List Applet so
that it displays a Select column that allows the user to choose more than one record, and then press Delete to delete
them. You only modify a presentation model to implement this example. You do not modify a physical render. Siebel
Open Ul uses the JQGridRenderer physical renderer for the grid control. JQGridRenderer is sufficiently generic that

it can iterate any list of columns that the presentation model returns. To view an example of this modification, see
Customizing List Applets to Render as Maps.

Example of Customizing the Behavior of a Presentation Model

You can add behavior to a presentation model. For example, you can configure a presentation model to display or hide
a set of fields according to the value of another field. You can configure Siebel Open Ul so that the Job Title field on the
Contacts form applet determines whether or not it displays the Work# field and the Main Fax# field of a contact. If the
Job Title includes a value, then Siebel Open Ul displays the Work# field and the Main Fax# field. A presentation model
defines this conditional display.

The physical renderer requires no configuration to implement this example. It queries the presentation model, and
then renders these fields according to the instructions that it gets from the presentation model. You can implement
this behavior on the client without modifying any configuration on the Siebel Server. For a detailed description of an
example that uses this type of configuration, see Example of Customizing Siebel Open Ul

27
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

Customizing the Physical Renderer

You can use a physical renderer to modify how Siebel Open Ul renders an object. For example, Siebel Open Ul displays
the predefined Contact Affiliations list applet as a typical Siebel CRM list. You can modify this list to display as a carousel.
You can modify how the user scrolls through a set of records, which is a physical aspect of the applet that a physical
renderer defines. But this list is still a list of records that is a logical representation of the applet that the presentation
model defines. You do not modify this logical representation. To view an example of this type of modification, see
Customizing List Applets to Render as Carousels. For more information, see About the Physical Renderer.

Customizing a Plug-in Wrapper

You can use a plug-in wrapper to modify how Siebel Open Ul renders an Applet Control object. For example, Siebel
Open Ul displays all fields with boolean values as Check Boxes. You can modify this to display them as flip switch
controls. You can modify how the user sets and resets the value of the boolean field, which is a physical aspect of the
applet control that a plugin wrapper defines. But this control is still a boolean field: the logical representation of the
applet control that the presentation model defines. You do not modify this logical representation. To view an example of
this type of modification, Customizing a Plug-in Wrapper. For more information, see About Plug-in Wrappers.

Stack That Siebel Open Ul Uses to Render Objects

The following figure describes the stack that Siebel Open Ul uses to render objects. It uses the applet object as an
example.

28
ORACLE

Siebel

Chapter 3

Configuring Siebel Open Ul Architecture of Siebel Open Ul

Siebel Open Ul Client

Physical Layout
and Styling o

T

Pug.in | Physical
Wrapper | Renderer 9

X

Presentation
Madel o

F

Proxy Objects o

A

Siebel Property
Set o

F

Siebel Server

SWE Runtime
Applet Object e

[

Applet Metadata o

A

Business
Component
Metadata

As shown in this figure, the stack that Siebel Open Ul uses to render objects includes the following:

1.

W

Physical layout and styling. Allows you to use HTML to display content, JavaScript to customize logic, and
cascading style sheets to customize layout and styling in the client. You can position or hide controls to achieve
almost any layout requirement.

Physical renderer. For more information, see About the Physical Renderer and About Plug-in Wrappers.
Presentation model. For more information, see About the Presentation Model.

Proxy objects. Includes object instances for the client proxy. Each of these instances represents an instance

of a corresponding repository object that resides on the Siebel Server. Example objects include a view, applet,
business object, or business component. A proxy object includes only enough logic to allow the client to use the
same functionality that the server object uses, including the data and metadata that the server object requires.
A proxy object exposes the interface for scripting in the client, but it does not allow you to significantly modify
the physical user interface. You can customize only the information that flows from the Siebel Server to the
client. You cannot customize how Siebel Open Ul uses the metadata or data in the proxy object to render the
physical user interface. In this example, proxy objects include the applet proxy and business component proxy
that contain data and metadata from the Server Response property set. For more information, see Browser
Script Compatibility.

Siebel Property Set. A hierarchy that Siebel Open Ul uses to communicate between objects that reside on the
Siebel Server and the proxies that reside in the client.

SWE runtime applet object. Exposes scripting interfaces that allow you to modify the applet so that it can
control the business component or business service that this applet references. The applet that resides on the
Siebel Server gets a request from the proxy applet instance that resides in the client. If necessary, it sends the

29

ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 3
Architecture of Siebel Open Ul

request to a business component or business service. Siebel Open Ul does not currently include a scripting
interface that allows you to modify the property set that the applet sends to the client.

7. Applet metadata. The applet object in the Siebel Runtime Repository that contains information that Siebel
Open Ul uses to bind the user interface to the business component. Siebel Open Ul maps this information
through business component fields. This binding can include only a one-to-one mapping between one applet
control and one business component field. Siebel Open Ul does not allow more complex bindings. You can
configure Siebel Open Ul to get data through a presentation model in the client to develop functionality that is
similar to the functionality that a more complex binding provides. For more information, see About Objects and
Metadata.

Example Stack That Siebel Open Ul Uses to Render Objects

This topic describes a typical example of how Siebel Open Ul uses a presentation model and physical renderer for

an applet that it displays in a view. Every object that Siebel Open Ul renders uses this same object stack. You can
customize objects in this stack to modify rendering and behavior. For example, you can customize the presentation
model and physical renderers that implement view navigation to use tree navigation instead of the predefined nested
tab navigation.

The following figure describes an example stack that Siebel Open Ul uses to display a calendar applet.

Siebel Open Ul Client

Jguery Full
Calendar

F Y

[fullcalrenderar js

&

calpmodel js

[

Praxies for
Activities

&

Siebel Property
Set

&

CSSSWEFrameCa
1Grid

[

Activity HI
Calendar Applet

&

Siebel Server

Activity Business
Component

ORACLE

30

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

As shown in this figure, Siebel Open Ul uses the following to display a calendar applet:

1. Jquery FullCalendar. The physical JavaScript control. A third-party typically provides this control.

2. jgfullcalrenderer.js. Binds the CallPresentationModel object that the calpmodel.js file contains with the third-
party calendar control.

3. calpmodel.js. Describes the logical behavior for the calendar user interface that Siebel Open Ul displays on a
list applet.

4. Activity proxies. Includes proxies for the Activity Calendar Applet and the Activity business component.

Items in the Development Architecture You Can Modify

The following figure indicates the predefined items in the development architecture that Siebel CRM provides and the
items that you can modify. It delineates areas where you can customize Siebel Open UL.

Siebel Open Ul Client Rendering

Customized HTML Created
Mash-Up or .| Customized CS5 and arﬂm%iﬁ' from Siebel
External Data JavaScript JavaScript Cantral meP‘ Web
Control Library i Templates

L L] 4
Slebel JavaScript Client from Slebel Metadata

L2

Siebel Server |
C e
Object Repository File
Sisbel CRM Manager Modified by
Data Sisbal Toolks

Legend
[Oracle provides, nat customizable
[Joracle provides, customizable

[Ccusiomer provides

As shown in this figure:

1. The Siebel Open Ul Client Rendering side contains the following:

o Oracle provided, non-customizable components: Siebel JavaScript Client from Siebel Metadata, Siebel
CSS and JavaScript Control Library.

o Oracle provided, customizable components: HTML Created from Web Templates.

o Customer provided components: Customized JavaScript, Customized CSS and JavaScript Control Library,
Mash-up of External Data.

2. The Siebel Server side contains the following:

o Oracle provided, non-customizable components: Object Manager.
o Oracle provided, customizable components: Siebel Repository File (modified by Siebel Tools/Web Tools.

o Customer provided components: Siebel CRM Data.

Example Client Customizations

The following table describes some example client customizations you can do in Siebel Open Ul. For detailed examples,
see Customizing Siebel Open UI.

31
ORACLE

Siebel
Configuring Siebel Open Ul

Customization

Customize a list applet or form applet.

Add custom client behavior.

Add generic client behavior.

Add specific applet control-level behavior
and rendering.

Position controls and customize style.

Chapter 3
Architecture of Siebel Open Ul

Work You Must Do

You can use Siebel Tools to customize a list or form applet in the Siebel Repository. This work
completes the basic binding to the Siebel object layer and displays a list or form in the client. No client
customization is required. For more information, see Using Siebel Tools .

You modify a presentation model. For example:

Display or hide a control. For example, show a control if the user chooses a value from a drop down
list. You add the required logic to a presentation model. You add or remove the control from the set
of controls that Siebel Open Ul already displays in the applet proxy in the client. For example, to add a
local control in the client, you add this control in the presentation model to the set of controls that the
proxy already contains.

Some configuration requirements do not require you to modify the physical renderer. For example,
it is not necessary to modify the physical renderer to display a control because the predefined
implementation for getting all fields from the client is already available.

Modify the theme of a page. For example, you can configure Siebel Open Ul to modify the theme of
a page if the user changes the orientation of a tablet device. You add the logic that modifies styles that
the user interface elements use when Siebel Open Ul modifies the orientation state in the presentation
model.

You use a control to render the presentation model. For example, to render a list applet as a carousel,
you use the appropriate third-party control.

For example, you can customize plug-in wrappers to make a boolean field render and behave like a flip
switch, rather than a check box.

You can modify CSS files.

Differences in the Server Architecture Between High Interactivity

and Siebel Open Ul

The following figure compares the server architecture between the old high interactivity client and Siebel Open UI.

ORACLE

32

Siebel
Configuring Siebel Open Ul

High Interactivity Architecture

Siebel Open Ul Architecture

. Presantaticn Physical
Aol Model Gontrol
Client
SWE Frame o Custom ~ Prasentation
Custamization Renderer Model
View Business - '
Object Clustom 0\
% Renderer
‘ ‘ '
\ Business LA SWE Frame
~ Aplet g Component Applet Customization
T
|
|
4 :
| Prasentation Control
| g Modael Customization
|
| ¥ T
Region |+ |
| Custom Vi
i % Renderer
Invoke
s Control Method
Customization
Siebel Server

Chapter 3

Architecture of Siebel Open Ul

As shown in this figure, the things to note when comparing the Server architecture that high interactivity uses and the
Server architecture that Siebel Open Ul uses include the following:

1. Rendering customization in high interactivity requires you to use a SWEFrame customization at the applet level.

2. Rendering customization in Siebel Open Ul allows you to use SWEFrame customization, an equivalent
customization, or to customize the physical renderer independently at any level of the object hierarchy,
including at the subapplet level for an applet control.

3. High interactivity always starts rendering at the view level. It uses predefined code in the user interface
hierarchy, from a request processing perspective.

4. Siebel Open Ul uses objects, so rendering can occur at the screen, view, applet, or control level.

Differences in the Client Architecture Between High Interactivity

and Siebel Open Ul

The following figure compares the ActiveX Ul architecture that the old high interactivity client used to the architecture

that Siebel Open Ul uses.

ORACLE

33

Siebel Chapter 3

Configuring Siebel Open Ul Architecture of Siebel Open Ul
High Interactivity Architecture Siebel Open Ul Architecture
ript Ul P
Javcﬁjsu JavaScript Library
JQuery Library
Data Layout and JavaScript
ActiveX Ul Controls Data Bindings Customization AP
Custom Custom
Browser ActiveX Proxy Browser JavaSeript Proxy
Script Script
Client
Siebe High Interaclivity Client Siebel Open Ul Client Envionment @
n . Style
Styling Styling Layout Sheets o
Layout, HTML HTML Compositicn :
Composition, and [—— — and Conditional ?:E:I :\::sb
Condilional Rendering l l’ Rendering Pl
Legend
Siebel Object
I:d:nagé: [Predefined Objects
T [Design-time Configurable Objects
Siabel Tools [Run-tima Configurable Objects
RE:S:‘E::[&;:;B. [Other Customizations.

As shown in this figure, things to note when comparing the client architecture between high interactivity and Siebel
Open Ul include the following:

1. Client Environment. The Siebel Open Ul client environment allows you to customize run-time configurable
objects to meet a wide range of rendering requirements, from supporting more than one Web browser type to
deploying to various client form factors.

2. Style sheets. The Siebel application or Application Interface serves static style sheets.

3. Object Definition Html. The Siebel application serves dynamic Object Definition Htmls.

Life Cycle of User Interface Elements

This topic describes how Siebel Open Ul uses presentation model methods and physical renderer methods, and the
methods that the presentation model and physical renderer call during the life cycle of a user interface element.

The presentation model uses the following sequence of methods:

1. Init

2. Setup
The presentation model processes the events that it receives from the physical renderer during the life cycle. It also
processes the replies for requests that the Siebel Server sends. Siebel Open Ul can make the following calls to the
presentation model during a life cycle:

- Call from the physical renderer because of a user action.
- Notification that the Siebel Server sends. For more information, see Notifications That Siebel Open Ul Supports.
- Process property set that the Siebel Server sends.

- Completion request to get a follow-up request after the proxy finishes processing a reply from the Siebel
Server.

34
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

The physical renderer continues to render each modification that occurs in the presentation model, and the
AttachPMBinding method binds each of these modifications during the Init call to the physical renderer. One of the
following items then signals these modifications:

- Siebel Open Ul runs a presentation model method.
- Siebel Open Ul modifies the value of a presentation model property.

For more information about the methods that this topic describes, see Application Programming Interface.

Summary of Presentation Model Methods

This topic summarizes some of the methods that a presentation model uses during the life cycle of a user interface
element.

How Siebel Open Ul Uses the Init Method of the Presentation Model

The Init method uses the following methods to configure the properties, methods, and bindings of the presentation
model. For an example that uses Init, see Creating the Presentation Model:

- AddProperty. Adds a property to a presentation model. This property can be simple or derived. If you use
AddProperty to define a derived property, then Siebel Open Ul uses the Get method on the presentation
model to calculate and return the property value. For more information about deriving values, see Deriving
Presentation Models, Physical Renderers, and Plug-in Wrappers. For more information, see Get Method.

- AddMethod. Adds a method to the presentation model. For more information, see AddMethod Method.

- AttachEventHandler. Attaches a method that handles the logical event. Siebel Open Ul calls this method when
it sends an event to the presentation model through the OnControlEvent method. For more information, see
OnControlEvent Method and AttachEventHandler Method.

- AttachNotificationHandler. Attaches a method that handles the notification that Siebel Open Ul calls when
the Siebel Server sends a notification to an applet. A notification is a message that Siebel Open Ul sends to
the client when this client requests Siebel Open Ul to modify a business component. For example, to create or
delete a business component record. For more information, see Notifications That Siebel Open Ul Supports.

- AttachPSHandler. Handles other incoming property sets that the Siebel Server sends to the client. It can
extract the values that a property set contains to individual properties or do other processing.

- AttachPreProxyExecuteBinding. Attaches a method to the presentation model. Siebel Open Ul calls
AttachPreProxyExecuteBinding before it processes the reply that it receives from the Siebel Server, but after
it receives a reply from this server to the method that Siebel Open Ul supplies as an argument. For more
information, see Customizing Events.

- AttachPostProxyExecuteBinding. Attaches a method to the presentation model. Siebel Open Ul calls
AttachPostProxyExecuteBinding after it processes the reply from the Siebel Server.

The physical renderer calls the following presentation model methods:

- Get. Gets the value of a property that resides in a presentation model.

- ExecuteMethod. Runs a method that the AddMethod method calls. For more information, see ExecuteMethod
Method.

- OnControlEvent. Calls an event. The physical renderer uses the OnControlEvent method to call the
presentation model and send an event. To call the method, the presentation model uses a binding that exists
between the event and the presentation model method and the AttachEventHandler method. For more
information, see OnControlEvent Method and AttachEventHandler Method.

- SetProperty. Sets the value of a presentation model property. The physical renderer can set this value directly
in some situations. For more information, see SetProperty Method.

35
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

How Siebel Open Ul Uses the Setup Method of the Presentation Model

The Setup method extracts the values that a property set contains. If Siebel Open Ul creates an object on the Siebel
Server, such as a frame, then this server sends the property set that describes this object to the client. Siebel Open Ul
uses this property set to set up the presentation model properties in the client. The Setup method uses the AddProperty
method to extract this property set into presentation model properties. It does this work the first time Siebel Open Ul
creates the user interface object in the client. For more information, see Methods That Manipulate Property Sets. For an
example that uses Setup, see Customizing the Setup Logic of the Presentation Model.

Life Cycle of a Physical Renderer

The following figure illustrates the life cycle of a physical renderer. For examples of various life cycle flows, see Life Cycle
Flows of User Interface Elements.

1 _
> Renderer
e Init
3 :
— R — —— » Context Renderer.Init
il
----------------------- —» ShowUl * PluginWrapper.ShowUI
Calls from Siebel BT i BindEvents * PluginWrapper.BindEvents
Open Ul framework
6 S
e BindData PluginWrapper.SetValue
7
I " ContextRenderer.Execute
8 AttachPMBinding
9
EndLife

As shown in this figure, the physical renderer uses methods in the following sequence:

1. Renderer. Creates the renderer.
2. |Init. Initializes and sets up the AttachPMBinding method. For more information, see Init Method.

3. The Open Ul framework makes a call to the context renderer's Init function after instantiating it. Siebel Open
Ul adds the corresponding physical renderer's instance to this function and the implementation can use the
physical renderer or presentation model's interface.

36
ORACLE

Siebel

Chapter 3

Configuring Siebel Open Ul Architecture of Siebel Open Ul

4.

9.

ShowUL. Displays a physical control that corresponds to an applet control. It renders the container for the
metadata, data, and event bindings. For example, when Siebel Open Ul renders a list applet as a grid, ShowUl
renders the third-party grid control that it uses for the applet. Also, ShowUI calls all of the plug-in wrappers of
the associated applet controls. For more information, see ShowUI Method.

BindEvents. Sets up the user interface binding of events to the physical user interface, represented as HTML
elements. It captures the user actions, and then translates these actions to logical events in the physical
renderer before Siebel Open Ul sends them to the presentation model for processing. Also, BindEvents calls all
of the plug-in wrappers of the associated applet controls. For more information, see BindEvents Method.
BindData. Downloads metadata and data from the Siebel Server to the client proxy, and then binds this data
to the user interface. The list columns that a list applet uses is an example of metadata, and the record set that
this list applet uses is an example of data. Also, BindData calls all of the plug-in wrappers of the associated
applet controls. For more information, see BindData Method.

The context renderer's Execute method is called by the framework immediately after the physical renderer's
lifeCycle method execution, that is, after the ShowUI, BindData, BindEvents functions. OpenUl also adds the
corresponding physical renderer's instance to this function and the implementation can use the physical
renderer or presentation model's interface.

AttachPMBinding. Attaches handlers to notifications that occur during the life cycle. For more information,
see AttachPMBinding Method. For more information about notifications that can occur during the life cycle, see
Notifications That Siebel Open Ul Supports.

GetPM. Calls a method that the presentation model contains. It is recommended that you use GetPM only to
call the following presentation model methods:

o ExecuteMethod

o OnControlEvent

o Get

o SetProperty
You can use ExecuteMethod or OnControlEvent to call a method that modifies the state of the presentation

model or to call a method that reads this state. You can use the Get method to get the value of a presentation
model property. You can use SetProperty to set the value of a presentation model property.

For more information, see GetPM Method for Physical Renderers and OnControlEvent Method.
EndLife. Ends the life of the physical renderer. For more information, see EndLife Method.

Life Cycle of a Plug-in Wrapper

The plug-in wrapper uses methods in the following sequence:

1.

ShowUl. Performs show related activities for a control. For more information see ShowUI Method.

2. BindEvents. Attaches events to the DOM instance of the control. For more information see BindEvents Method.
3.
4. EndLife. Ends the life of the Plug-in Wrapper. For more information see EndLife Method.

BindData. Initializes data to the DOM instance of the control. For more information see BindData Method.

Example of the Life Cycle of a User Interface Element

The following figure describes the life cycle of the calendar user interface element.

37

ORACLE

Siebel

Chapter 3

Configuring Siebel Open Ul Architecture of Siebel Open Ul

Siebel Open Ul Client

Presentation Model
= e
0

Button Click

¥

* Physical Renderar

(3] ;

Activity HI
Calandar Applat
Proxy

Siebel Server

Activity HI Calendar
Applet

As shown in this figure, the following sequence of events occurs during the life cycle of a calendar user interface object:

1
2,

The user clicks a button that refreshes the calendar.
The Init method adds the following items to the physical renderer:

AttachPMBinding ("ProcessCalendarData", RefreshUI)

The physical renderer sends the following method to the presentation model:

OnControlEvent ("Refresh Calendar",RequestCalendarData)

For more information, see OnControlEvent Method.

The Init method adds the following items to the presentation model:
AddProperty (MeetingDates, list of dates)

AddMethod (RequestCalendarData, implementation)
AttachEventHandler ("Refresh Calendar", RequestCalendarData)

AttachNotificationHandler ("GetCalendarOUIData'", ProcessCalendarData)
AttachPostProxyExecute ("GetCalendarOUIData",6 SetDefaultFocus)

For more information, see AttachEventHandler Method.

The presentation model sends the RequestCalendarData method to the Activity Calendar Applet proxy.

The Activity Calendar Applet proxy sends a request to the Siebel Server to call the RequestCalendarData
method.

The Siebel Server gets metadata from the Activity Calendar Applet that resides on this server, and then sends
the GetCalendarOUIData notification method to the presentation model. For more information, see About
Objects and Metadata.

The presentation model does the following:

a. Runs the ProcessCalendarData method and the SetDefaultFocus method.

38

ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

b. Sends the RefreshUl method to the physical renderer. This method gets the relevant properties from the
presentation model.

9. The physical renderer refreshes the calendar.

39
ORACLE

Siebel Chapter 3
Configuring Siebel Open Ul Architecture of Siebel Open Ul

40
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

4 Example of Customizing Siebel Open Ul

Example of Customizing Siebel Open Ul

This chapter includes a detailed example that describes the typical tasks that you can do to customize Siebel Open UL. It
includes the following topics:

« Roadmap for Customizing Siebel Open Ul

« Process of Customizing the Presentation Model

« Process of Customizing the Physical Renderer

« Process of Customizing the Plug-in Wrapper
Configuring the Manifest for the Recycle Bin Example
Configuring the Manifest for the Color Box Example

Testing Your Modifications

Roadmap for Customizing Siebel Open Ul

You do the following tasks to customize Siebel Open Ul:

« Process of Customizing the Presentation Model

« Process of Customizing the Physical Renderer

« Process of Customizing the Plug-in Wrapper
Configuring the Manifest for the Recycle Bin Example
Configuring the Manifest for the Color Box Example
Testing Your Modifications

You can use this sequence as a general guideline to create your own customizations. To summarize, you do the
following work:

Modify a presentation model. You customize the presentation model that implements the recycle bin that
contains the records that a user deletes in a view. You add a Select list column and modify the Delete button so
that the user can choose more than one record, and then delete them from the server database. You configure
Siebel Open Ul to do a local backup on the client of the chosen records.

This configuration requires you to modify the metadata that Siebel Open Ul uses in the client and to modify
client behavior. It does not require you to modify rendering. So, you only modify the presentation model. You
do not modify the physical renderer to implement this part of the example.

Modify a physical renderer. You customize a physical renderer for a third-party carousel control that displays
the recycle bin contents and that allows the user to restore deleted records. You modify the physical renderer so
that Siebel Open Ul displays a local back up copy of the deleted records in a carousel control, and then allows
the user to choose and restore each of these records.

A1
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

This configuration modifies the physical representation of the records so that Siebel Open Ul displays themin a
modified grid. It also modifies the physical interactivity that allows the user to choose records in the carousel.

Modify a plug-in wrapper. You customize a specific control by writing a plug-in wrapper (PW). In this example,
if the customization is on the Opportunity List applet, a custom PW will be written for the probability field which
will add a colorbox to the field, which will then change colors based on the value in the probability field. Also,
clicking on the box will open a legend that explains the colors.

For background information about the architecture that this example uses, see Stack That Siebel Open Ul Uses to
Render Objects and Life Cycle of User Interface Elements.

Process of Customizing the Presentation Model

This task is a step in Roadmap for Customizing Siebel Open UI.
To customize the presentation model, do the following tasks:

Creating the Presentation Model

Customizing the Setup Logic of the Presentation Model

Customizing the Presentation Model to Identify the Records to Delete
Customizing the Presentation Model to Delete Records

Overriding Predefined Methods in Presentation Models

Customizing the Presentation Model to Handle Notifications

Attaching an Event Handler to a Presentation Model

Customizing Methods in the Presentation Model to Store Field Values
Customizing the Presentation Model to Call the Siebel Server and Delete a Record

Creating the Presentation Model

VOITUAUWNA

This task is a step in Process of Customizing the Presentation Model.

The presentation model uses the Init method to configure the properties, methods, and bindings of the presentation
model, and the Setup method to extract the values that a property set contains. For more information about these
methods, see Life Cycle of User Interface Elements.

The following figure illustrates the code you use to create the presentation model. Each number in this figure identifies
the corresponding step number in the numbered task list that this book includes immediately after this figure.

|ife typeof(SisbslAppFacads.RecyclaBinbModel) mws "undefined®)|

SiebelJS.Nameapace | "SiebelippFacade.RecyeleBinbHadel® § ;

define ("siebel/custom/recyclebinpmodel™, [1, functisn(){

:a:el.s‘-.pp!acaﬂe.Re:',w:-.eﬁ;r.?.‘{nde-_ = [funotion ()|

TEY COnET = SIEBEIUS. DEREROENEY] L o e L e e
function RecycleBinPHodel () {
SiebelippFacade.RecyeleBinFMadel . superclass, conscruscer, apply { this, argumencs o
1

siebeldS.Extend{ RecyclelinFlodel, SiebelippFacade.listFressntatloniodel }! 8

retorn RecycleBinFModel:
botyks
retorn "SishelippFacade.RecyclaBinPMadel

b
]

To create the presentation model

1. Create the custom presentation model file:

42
ORACLE

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

10.

a. Download a copy of the recyclebinpmodel.js file to the following folder:
AI INSTALL DIR\applicationcontainer external\siebelwebroot\scripts\siebel\custom
This topic describes how to modify code that resides in the recyclebinpmodel.js file. It is recommended
that you get a copy of this file to assist in your understanding of how to implement the example that this

topic describes. This file includes all the code that this example uses. It also includes more comments that
describe code functionality. To get a copy of this file, see Article ID 1494998.1 on My Oracle Support.

For more information about the folders you can use to store your customizations, see Organizing Files
That You Customize. For more information about the language_code, see Languages That Siebel Open Ul
Supports.

b. Use a JavaScript editor to open the recyclebinpmodel.js file that you downloaded in Step a.

Make sure the RecycleBinPModel class does not exist and that you do not configure Siebel Open Ul to override
this class. You add the following code:

if (typeof (SiebelAppFacade.RecycleBinPModel) === "undefined") {

Make sure a namespace exists that Siebel Open Ul can use to prevent conflicts:

SiebelJs.Namespace ("SiebelAppFacade.RecycleBinPModel") ;

Use the Define method to identify the presentation model file:

define ("siebel/custom/recyclebinpmodel”, [], function(){

You must use the Define method to make sure Siebel Open Ul can identify the constructor. You must include
the relative path and the name of the presentation model file without the file name extension. For more

information, see Define Method.
Define the class:

SiebelAppFacade.RecycleBinPModel = (function() {

Load the SiebelApp.Constants namespace that defines the constants that Siebel Open Ul uses:
var consts = SiebelJS.Dependency ("SiebelApp.Constants") ;

Define the class constructor:

function RecycleBinPModel () {
SiebelAppFacade.RecycleBinPModel. superclass.constructor.apply (this, arguments);

}

Set up the injected dependency:

SiebelJS.Extend (RecycleBinPModel, SiebelAppFacade.ListPresentationModel) ;

For more information about injected dependency, see About Dependency Injection.
Return the constructor:

return RecycleBinPModel;

}O):

return "SiebelAppFacade.RecycleBinPModel";
I

Save the recyclebinpmodel.js file.

43

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

Customizing the Setup Logic of the Presentation Model

This task is a step in Process of Customizing the Presentation Model.

In this topic, you customize the setup logic of the presentation model so that it adds the Selected list column to an
applet. You add the control that you configure for this example to the ListColumns list that resides in the client.

The following figure illustrates the code you use to customize the setup logic of the presentation model. Each number in
this figure identifies the corresponding step number in the numbered task list that this book includes immediately after
this figure.

FECyCleEPinPHOOE . L oL e . SECUp = TUNCEion] proposec)l
YA NYControl = ishelApp. 5 App.Gechppleclontrollnacance {
"Client Select™
conaca.get|"SWE_CTRL_CHECEBOX") ,
"Select”, - -
Toelect™,
n50r §;
this.Get{"GetlistOfColumna”) ["SelectionBox™] = mycontrol: o
JisbelippFacads,RecyclebinPlodel superclass, 3ecup.call{ this, prop3sc)

To customize the setup logic of the presentation model

1. In the recyclebinpmodel.js file, identify the property or method of the object that you must modify.

To do this identification, you can examine the JavaScript APl methods to identify the method that most
closely matches the behavior that your example requires. For more information about this JavaScript API, see
Application Programming Interface

You can use the following list as a guide to get you started, depending on the area of the Siebel application that
your customization must modify:

o Application methods. For more information, see Application Model Class.
o Applet methods. For more information, see Presentation Model Class for Applets.
o List applet methods. For more information, see Presentation Model Class for List Applets.
o Applet control methods. For more information, see Applet Control Class.
o Menu methods. For more information, see Presentation Model Class for Menus.
o Siebel business service methods. For more information, see Business Service Class.
In this example, you can examine the presentation model that Siebel Open Ul uses for list applets to identify

the property or method that the object you must modify uses. To identify this property, see Properties of the
Presentation Model That Siebel Open Ul Uses for Applets.

After examining these properties, assume that you determine that Siebel Open Ul uses the GetListOfColumns
method that the presentation model references. In general, when you examine a property or method in a list
applet, it is recommended that you first examine the list presentation model that a list uses, and then the applet
presentation model that a form applet uses.

You must add the Selected list column to a list applet. The Selected list column is a control that Siebel Open Ul
displays in the client. So, you add it to the list of listOfColumns that Siebel Open Ul already uses.
2. Specify the method that the presentation model runs as part of the Setup life cycle:

RecycleBinPModel .prototype.Setup = function (propSet) {

44
ORACLE

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

In this example, you configure Siebel Open Ul to create a control that it displays only in the client, and then
insert it into the GetListOfColumns property of the applet. You add this code in the Setup life cycle method of
the presentation model because this logic is related to the work that Siebel Open Ul does to create the applet.
Siebel Open Ul must create the applet first, and then insert the control. For more information, see Summary of
Presentation Model Methods.

. Create a new instance of the AppletControl object:

var mycontrol = SiebelApp.S_App.GetAppletControlInstance

This example requires Siebel Open Ul to create a new listOfColumns and to add it to the GetListOfColumns
array. You can use the GetAppletControlinstance method to create a new instance of the AppletControl object.
For more information, see GetAppletControllnstance Method.

Name the instance:

"Client_ Select",

You must specify a unique name for the instance. This example uses Client_Select, which is a unique value that
Siebel Open Ul can use to determine the operation that it must perform.

. Specify the control type:

consts.get ("SWE_CTRL CHECKBOX"),

"Select",

"Select",

"50") ;

this.Get ("GetListOfColumns") ["SelectionBox"] = mycontrol;
SiebelAppFacade.RecycleBinPModel. superclass.Setup.call (this, propSet) ;
}i

where:

o consts.get("SWE CTRL CHECKBOX") specifies the control as a check box.
o select specifies the display name. You can specify any display name.

o 50 specifies the width of the column.

For more information about control types, see Applet Control Class.

. Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Identify the Records to
Delete

This task is a step in Process of Customizing the Presentation Model.

In this topic, you modify the list column control that you created in Step 3. This control uses a check box, so you must
make sure that Siebel Open Ul stores the value of this check box when the user toggles it.

The following figure illustrates the code that you use to customize the presentation model logic to identify the records
to delete. Each number in this figure identifies the corresponding step number in the numbered task list that this book
includes immediately after this figure.

45

ORACLE

Siebel Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul
FecycleBinPHodel.prototype. Init = functiond){
SiebellippFacade.PecycleBinFlodel.superclas=s. Init.call{ this }):
I thisg. AddFechod{ "LeaveField"™, FreleavelField, { sequence : true, scop thisz } ’
| this. AddFropercy| "DeletionFendingset™, LI »:
function PreleaveField{ contral, wvalus, notlLeave, returnScruccure){

| if (control.Getlame() === "Client Select™){
| this.Executelethod{ "SetictiveControl™, null };:
var delCh] = this.Get{ "DeletionPendingZet™) :
var currentfelection = this.Get{ "GetZelection"™ }):
if({ value === "YT"){

delOb] [current3election] = this,.Get("GetRecordSec”) [currentielection] ;
¥
else{

deldb]j[current3election] = null:;
}
| returnStructure] "CancelCperation™] = true:
| returnStructure| "ReturnValue™] = true;

H

To customize the presentation model to identify the records to delete
1. In the recyclebinpmodel.js file, add the method that Siebel Open Ul must call:

this.AddMethod ("LeaveField", PrelLeaveField, {sequence:true, scope:this});

where:

o AddMethod adds the LeaveField method. To identify the method that you must add when you do your own
customization work, you can examine the life cycles that Siebel Open Ul uses that most closely meets
your business requirement. To view these life cycles, see Life Cycle Flows of User Interface Elements.

o Inthis example, the business requirement is to save the value in a control. Siebel Open Ul saves the value
of a control when the user navigates away from the control, so it calls the LeaveField method to handle
this requirement. For more information, see Leavefield Method and Flow That Handles Focus Changes in
List Applets.

o PreLeaveField, {sequence : true, scope : this} configures Siebel Open Ul to call your custom
LeaveField method before it calls the predefined LeaveField method. It does this during the Init life
cycle when it runs the AddMethod method. It is recommended that you set up the presentation model
methods at the beginning of the Init life cycle call that contains most of the properties and dependency
injections, including predefined and custom methods. For more information about Init, see Life Cycle of
User Interface Elements. For more information, see About Dependency Injection.

It is recommended that you use a named method to specify the Prexxx customization method, such as
PreLeaveField. This configuration makes sure that Siebel Open Ul uses the same method for all presentation
model instances. It is not recommended that you specify the Prexxx customization method as an anonymous
method in the AddMethod call because Siebel Open Ul creates this anonymous method for every presentation
model instance that resides in memory, possibly for more than one applet in the same view. Defining an
anonymous method in this situation might cause a conflict.

2. Create the condition:

if (ctrl.GetName() === "Client_Select"){

The Setup method uses the GetName method with a literal return value of Client_Select. It identifies the
method that Siebel Open Ul uses for your custom control. For more information, see GetName Method for
Applets.

46
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

3. Make sure Siebel Open Ul returns your custom logic after it sets the CancelOperation part of the return value to
true:
returnStructure["CancelOperation"] = true;
This configuration overrides the predefined code when Siebel Open Ul calls LeaveField for your new list column.
In this example, you must implement LeaveField for the control, so it is not desirable to call the predefined code
for this control after Siebel Open Ul finishes running your customization of the LeaveField method. For more
information about using ReturnStructure when you modify a method, see AddMethod Method.

4. Configure Siebel Open Ul to return a value of true after it sets the CancelOperation part of returnStructure to
true:
returnStructure["ReturnValue"] = true;
The LeaveField method returns a value of true to indicate success in this example, so you must make sure
Siebel Open Ul uses the same logic after your customization finishes running and returns a value. This
configuration makes sure the Init life cycle continues on the success path after the custom LeaveField
method runs. You can use ReturnValue to make sure Siebel Open Ul sets the return value of your custom
implementation to the required value. In this example, you set this value to true.

5. Disable the processing that Siebel Open Ul does for the control that is in focus:
this.ExecuteMethod ("SetActiveControl", null);
This code sets the active control to null. For more information, see Disabling Automatic Updates and
SetActiveControl Method.

6. Add the property that Siebel Open Ul uses to store the set of records that are pending deletion:
this.AddProperty ("DeletionPendingSet", []);
The set of records that are pending deletion represent the state of your custom presentation model, so you add
the DeletionPendingSet property to store the field values for this set of records.

7. Identify the records that Siebel Open Ul must delete:

var delObj = this.Get("DeletionPendingSet") ;
var currentSelection = this.Get("GetSelection") ;
if (value === "Y"){
delObj[currentSelection] = this.Get ("GetRecordSet") [currentSelection];
}

else({
delObj[currentSelection] = null;
}

Siebel Open Ul must identify the records that the user chooses to delete so that it can populate a value into the
DeletionPendingSet property. To identify this property, you can examine the properties that the presentation
model uses for the applet. This work is similar to the work you do in Step 1to identify the property in the
presentation model that Siebel Open Ul uses for lists, except in this topic you examine the properties described
in Properties of the Presentation Model That Siebel Open Ul Uses for List Applets.

After examining these properties, assume you determine that Siebel Open Ul uses the GetSelection property
to get the index of the record that the user has chosen from among all the records that Siebel Open Ul displays.
You also determine that you can use the GetRecordSet property to get this full set of records.

8. Save the recyclebinpmodel.js file.

47

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

About Dependency Injection

Dependency injection is a software development technique that Siebel Open Ul uses to create a dependency between
a presentation model and a physical renderer. If Siebel Open Ul modifies a method or property that resides in the
presentation model, then it also modifies a method or property that resides in the physical renderer. It allows Siebel
Open Ul to implement logic at run-time rather than during a compile. These dependency injections allow it to use an
injected dependency chain, which is a series of two or more dependency injections.

You can modify Siebel Open Ul to make this chaining depend on conditions that Siebel Open Ul modifies at run time.
It can use all the methods that the Init method references in Summary of Presentation Model Methods for dependency
injection. For an example that uses dependency injection, see Customizing the Physical Renderer to Refresh the
Carousel.

Disabling Automatic Updates

Siebel Open Ul sends updated field values to the Siebel Server for any fields that the user has modified in the client. In
this example, you must disable this update functionality for the current control. You can reference the documentation
for the predefined applet to identify the presentation model property that you must modify. In this situation, the
documentation indicates that you can configure Siebel Open Ul to use the SetActiveControl property of the active
control on the applet and set it to null. For more information, see Disabling Automatic Updates, SetProperty Method,
and SetActiveControl Method.

ExecuteMethod calls a method that the presentation model references. It makes sure that Siebel Open Ul runs all
injected dependency chains that the method requires when it runs. You must use ExecuteMethod to call any predefined
or custom method that a presentation model references. For more information, see About Dependency Injection and
ExecuteMethod Method.

Customizing the Presentation Model to Delete Records

This task is a step in Process of Customizing the Presentation Model.

The following figure illustrates the code you use to configure the presentation model to delete records. In this topic, you
configure Siebel Open Ul to customize and conditionally override the InvokeMethod method. Each number in this figure
identifies the corresponding step number in the numbered task list that this book includes immediately after this figure.

48
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul
RecycleBinPHodel . procacype.Inie = fonetiend) {

SiebelippFacade. BecycleBinPHodel.superclass. Init.call{ this)
[this. hddlethodi{ “InvokeMethod”™, PrelnvokeMethod, { sequence : true, scope : this }) ey
| this. kddProparty ("ObjectslnderDelacion™, [V u
i! ’

function PrelnvokeMethod({ methodName, psInputArgs, lp, returnStructured{

if{ mathodNamé === "DelsteRecord” && Ithig.Gec("InDelscion” } }{

thig.SecFroperty("InDeletion™, true):

var delecionPending = this.Gee{ "DeletionPendingzec”)

if{ delecionPending.lengeoh > 0) {

for{ var counter = deletionPending.length - 1; counter >= 0; counter-- }{
var currentfio) = delecionPending[counter]
if{ currencoo)) {

this.ExecuteMethodi{ "SetictiveControl™, null }:

this.Executelethod]{ "HandleFowSelece™, counter, false, false)

if{ this.ExecuteHechod("CanInvokeMethod™, "DeleteRecord™)) {

this.Get{ "ObjectsUnderDeletion™) [this.Get{ “GetSelection®)] = cuccent
war inputPS = Sisbelkpp.S App.NewPropertySec():
this.Executelechod {"InvokeHerhod™, "DeleteRecord™, inputPs)»

¥
H
1

1]

Siebelipp.5_App.uiStatus.Free():

this.ZetPropecty| "DeletionPendingZec™, []):
returnitructure ["CancelOpararion™] = true;

| thig.ZecPropeecy("Inlelecion”, false):

To customize the presentation model to delete records

1.

In the recyclebinpmodel.js file, add the method that Siebel Open Ul uses to delete a record:

this.AddMethod ("InvokeMethod", PrelInvokeMethod, {sequence:true, scope:this});

You must identify the method that Siebel Open Ul uses when the user clicks Delete. To do this identification, it
is recommended that you examine the flowchart that Siebel Open Ul uses during a typical life cycle when it calls
methods that reside on the Siebel Server. For this example, the life cycle flowchart indicates that Siebel Open Ul
calls the DeleteRecord method when it calls the InvokeMethod method. You add this code in the Init method.
For more information, see Life Cycle Flows That Create New Records in List Applets and DeleteRecord Method.

This configuration is similar to the configuration you added in Step 1in the topic Creating the Presentation
Model that includes the AddMethod method and the sequence statement.

Call the custom logic only if Siebel Open Ul calls the DeleteRecord method:

if ((methodName === "DeleteRecord") && !this.Get("InDeletion")) {

This code examines the value of the InDeletion property.
Set the InDeletion property to true only if Siebel Open Ul starts the deletion process:

this.SetProperty ("InDeletion", true);

This code determines whether or not Siebel Open Ul is already running an instance of your custom delete
process, and then makes sure that no more than one of these instances runs at the same time. The InDeletion
property determines whether or not the deletion process is currently running.

You could use the following code in the Init method to add this property:

this.AddProperty ("inDeletion", false)

This example demonstrates how you can use SetProperty to use a property temporarily so that it is similar to a
conditional flag. This example uses SetProperty to create this property only when necessary. If Siebel Open Ul

49

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul
calls the Get method before it calls the SetProperty method, then the JavaScript returns a value of undefined,
which is the default value that JavaScript assigns to any variable that is not defined.
4. Get the set of records where the Selected value of each of these records includes a check mark:

var deletionPending = this.Get("DeletionPendingSet") ;

This code gets the state of the set of records before the user clicks Delete. Siebel Open Ul stores this
information in the DeletionPendingSet property in the LeaveField customization that you added in Step 6.

Determine whether or not the user has chosen at least one record for deletion:

if (deletionPending.length > 0) {

This code represents this condition as > 0, where O indicates the number of records chosen.
lterate through all the records that the user has chosen to delete:

for (var counter = deletionPending.length - 1; counter >= 0; counter--){
var currentObj = deletionPending[counter];

if (currentObj) {

}

}

Disable the processing that Siebel Open Ul does for the control that is in focus:
For more information, see Disabling Automatic Updates and SetActiveControl Method.

this.ExecuteMethod ("SetActiveControl", null);

Modify the application state so that Siebel Open Ul references the record that it must delete:

this.ExecuteMethod ("HandleRowSelect", counter, false, false);

To identify this code when you customize Siebel Open Ul it is recommended that you examine Flow That
Handles Navigation to Another Row in List Applets. In this example, this flow indicates that you must use

the HandleRowSelect method. The presentation model that Siebel Open Ul uses for list applets references
HandleRowsSelect, so you can configure Siebel Open Ul to use ExecuteMethod to call it. For more information,
see HandleRowSelect Method.

Make sure that Siebel Open Ul can call the DeleteRecord method:

if (this.ExecuteMethod ("CanInvokeMethod", "DeleteRecord")) {

It is recommended that you configure Siebel Open Ul to call Caninvoke before it calls another method to make
sure that it can call this other method in the context of the object that is currently in scope. Siebel Open Ul can
use the Canlnvoke method to model complex logic for any record that exists in the Siebel Database that resides
on the Siebel Server. This logic can determine whether or not Siebel Open Ul can call an operation according to
the scope that it applies to the current object, such as a record that is in scope. In this example, it determines
whether or not it can call the DeleteRecord method.

You can use the method descriptions in Application Programming Interface to identify the method that you
must use in your customization work.

For more information about the method that this example uses, see CanlnvokeMethod Method for Presentation
Models.

50

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul
10. Add a property that Siebel Open Ul can use to store information about the records that it sends to the Siebel

Server for deletion:
this.AddProperty ("ObjectsUnderDeletion", []):
11. Delete the record:
this.Get ("ObjectsUnderDeletion") [this.Get ("GetSelection")] = currentObj;
var inputPS = SiebelApp.S_App.NewPropertySet();
this.ExecuteMethod ("InvokeMethod", "DeleteRecord", inputPS);
where:

o ObjectsUnderDeletion inserts the record into a backed up record set, and if this insert occurs at an index
location that is equal to the index of the selected row, then Siebel Open Ul can reference the selected row
to identify the correct index to use when processing the NotifyDeleteNotification reply. The Siebel Server
sends this reply. Siebel Open Ul must identify the record where it set the notification when it handles the
NotifyDeleteNotifications notification. You can configure Siebel Open Ul to call HandleRowSelect to select
the row before it sends the request to delete the record.

o GetSelection is @ property of the applet presentation model that includes an index that identifies the
chosen record. This record resides in the record set that resides in the client. When you develop your own
customization, you can reference the documentation to identify the property that your customization
requires. For more information, see Properties of the Presentation Model That Siebel Open Ul Uses for
Applets.

o InvokeMethod is @ method that resides in the presentation model that Siebel Open Ul uses for a list applet.
You can use ExecuteMethod to call it.

12. Set the DeletionPendingSet property to zero:
this.SetProperty ("DeletionPendingSet", []);
This code sets the DeletionPendingSet property to zero after Siebel Open Ul finishes running all the
DeleteRecord calls on the Siebel Server.

13. Set the CancelOperation member of the returnStructure to true:
returnStructure ["CancelOperation"] = true;
You configure Siebel Open Ul to set this member before it exits the outer loop that processes the
deletionPending records. You do this so that Siebel Open Ul does not use the DeleteRecord argument to
make another call to the predefined InvokeMethod method. For more information about ReturnStructure, see
AddMethod Method.

14. Set the InDeletion flag to false:

this.SetProperty ("InDeletion", false);

false configures Siebel Open Ul to make a synchronous request to the Siebel Server. A synchronous request
makes sure that Siebel Open Ul sends all DeleteRecord requests to the server before it exits the loop. If it exits
the loop during a synchronous request, then it sends all DeleteRecord requests sequentially. In this situation, it
sends the requests to the server so that the server can process a reply for the previous request, including the
delete completion notifications. The server does this processing during a synchronous request before it sends
the next DeleteRecord request.

You configure Siebel Open Ul to set this property before it exits the conditional block that does the
InvokeMethod processing for the DeleteRecord method.

51

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

15. Save the recyclebinpmodel.js file.

About Synchronous Requests

A synchronous request is a type of request that Siebel Open Ul sends to the Siebel Server, and then waits for a reply to
this request before it continues any other processing.

The GetSelection request is synchronous, so Siebel Open Ul cannot send another request to move the selection to a
different record before the Siebel Server sends a reply notification that indicates a successful deletion. When processing
this notification, the intended row is the same row that Siebel Open Ul most recently selected. Siebel Open Ul can use
the selected row as a common index that it can use to reference the record.

Overriding Predefined Methods in Presentation Models

This task is a step in Process of Customizing the Presentation Model.

If Siebel Open Ul calls the GetFormattedFieldValue method for a control that it only displays in the Siebel Open Ul client,
then this client cannot not find the field in the list of fields that it uses, and the client creates an error. To avoid this
situation, in this topic you customize Siebel Open Ul to override the predefined GetFormattedFieldValue method so
that it does not create an error when it calls GetFormattedValue for your new list column. For more information, see
GetFormattedFieldValue Method.

To override predefined methods in presentation models
1. Use the flowcharts to identify the method that you must modify.

Siebel Open Ul displays values for applet controls and list columns after it gets these values from the client.

It caches these values in the client after it downloads them from the Siebel Server. To identify the method
that handles these values, you can examine the flowchart that describes how Siebel Open Ul creates a new
record in a list applet, and then updates the client. In this example, the flowchart indicates that it calls the
GetFormattedFieldValue method. If the physical renderer requires the ShowControlValue method, then it calls
the presentation model to run the GetFormattedFieldValue method. For more information, see Flows That
Create New Records in List Applets, Updating the User Interface.

2. Inthe recyclebinpmodel.js file, configure Siebel Open Ul to conditionally override and customize the method:

RecycleBinPModel .prototype.Init = function() {
SiebelAppFacade.RecycleBinPModel. superclass.Init.call (this);
this.AddMethod ("GetFormattedFieldValue", PreGetFormattedFieldvValue,
{sequence:true,scope: this}) ;

function PreGetFormattedFieldValue (control, bUseWS, recIndex, returnStructure) {
if (control.GetName() === "Client Select"){

returnStructure['"CancelOperation"] = true;

returnStructure["ReturnValue"] = "";

}

}

where:

o this.AddMethod adds the PreGetFormattedFieldValue method in the Init life cycle and specifies
PreGetFormattedFieldValue as the customization.

52
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

o sequence: true specifies to call the custom PreGetFormattedFieldValue before it calls the predefined
GetFormattedFieldValue method.

o The following code in the custom method determines whether or not the control that Siebel Open Ul is
currently examining is the client-only control:

if (control.GetName () === "Client Select")

If it is, then Siebel Open Ul sets the CancelOperation member of the returnStructure to true and the
ReturnValue to null. For more information about returnStructure, see AddMethod Method.

3. Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Handle Notifications

This task is a step in Process of Customizing the Presentation Model.

The Siebel Server sends a record deletion confirmation when it receives the InvokeMethod request for the DeleteRecord
method. You can write a handler for the NotifyDeleteRecord notification to process this confirmation in the client. For
more information, see DeleteRecord Method.

Siebel Open Ul packages the notification that it gets from the Siebel Server in the business component layer as part of
a reply property set. This property set includes information about server state modifications or replies to requests for
state information. For example, if Siebel Open Ul deletes a record that resides on the server, then the following work
occurs:

Siebel Open Ul sends a NotifyDeleteRecord notification to the client.
The client sends a request to the server.
The server processes the request.

Siebel Open Ul examines the relevant modifications that exist on the server, and then collects and packages
notifications that are ready to communicate to the client.

5. If the client sends an InvokeMethod call for the DeleteRecord method to the server, then the Siebel Web Engine
sends a NotifyDeleteRecord notification from the business component layer to the client.

For more information about the business component layer, see Configuring Siebel Business Applications .

PUWNa

The following figure illustrates the code you use to customize the presentation model to handle notifications. Each
number in this figure identifies the corresponding step number in the numbered task list that this book includes
immediately after this figure.

RecycleBinPModel. protorype., Intt = functiond) |
Siebe lhppFacade . RecycleBinPlodel. superclass. Init.call{ this }:
this.Aetachilorificationtandler{ const=. { "ENUE PROP BC HNOTI DELETE RECORDF), Handl:ﬂeleteﬂutlﬂlcatm
thig. AddHechod("Fefreshlizt®, function(i{} b’
this. AddFroperry("DelecionCompleceSec?,)
Tunction HandleDeleteRotilicationfpropiet)
VA OB JeCLEUBGRELeleCion = CNLE. eL| oD]ecLALNGeE e LeTions §:
if{ objecralnderDelecion. length > O) {
war activeRow = propSet.GetPropertyl(consta.ge=t{ "SWE FROFP BC NOTI ACTIVE ROW™ })}
if{ activeRow == this.Get{ "GetSelection™) &k ochijectslnderDelecion activeRow]) { ol
this, Gee{"DaletionCompletadae™), pushi objectslnderDelecion] aceiveRow]): 1
chiecealnderDe lecion] activefow] = null: =
this. ExgcucsMechod("Refresbligc™):

53
ORACLE

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

To customize the presentation model to handle notifications

1.

Identify the notification type that Siebel Open Ul must handle.

Examine the notification types in the Notifications That Siebel Open Ul Supports topic. Look for a notification
type that indicates it might include the information that your customization requires. For this example, the
notification type for the NotifyDeleteRecord notification is SWE_PROP_BC_NOTI_DELETE_RECORD.

Examine the methods that the presentation model references that indicate they might be useful for your
customization.

The AttachNotificationHandler method is the appropriate method to use for this example. For more
information, see AttachNotificationHandler Method.

In the recyclebinpmodel.js file, add the AttachNotificationHandler to the Init method of the presentation model:

this.AttachNotificationHandler (consts.get ("SWE_PROP_BC_NOTI_DELETE_RECORD"),
HandleDeleteNotification) ;

Add the custom method that Siebel Open Ul uses to handle replies from NotifyDeleteRecord and to populate
the recycle bin:

function HandleDeleteNotification (propSet) {

Get the property that you use to identify the objects that Siebel Open Ul has flagged for deletion:

var objectsUnderDeletion = this.Get("ObjectsUnderDeletion") ;

You configured this property in Step 10 in the topic Customizing the Presentation Model to Delete Records to
back up the records that Siebel Open Ul is in the process of deleting.

Determine whether or not any records exist in the In Progress list:

if (objectsUnderDeletion.length > 0) {

Siebel Open Ul must process these records, and then move them to the recycle bin. In this step and in several
subsequent steps, you do more than one examination to make sure the notification instance that Siebel Open
Ul is handling is the instance that it requires for the notification handler. Some repeating notifications might
exist that you must process to avoid duplication.

Identify the row that is involved with the NotifyDeleteRecord notification:

var activeRow = propSet.GetProperty (consts.get ("SWE_PROP_BC_NOTI_ACTIVE_ROW"));

In this example, you use the SWE_PROP_BC_NOTI_ACTIVE_ROW property. For more information about this
property, see Summary of Notifications That Siebel Open Ul Supports.

54

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul
8. Make sure that this notification confirms the deletion, and make sure that this notification is not a duplicate:
if (activeRow == this.Get ("GetSelection") && objectsUnderDeletion[activeRow]) {
where:
o The following code determines whether or not the record that the NotifyDeleteRecord method references
is the currently selected record:
activeRow == this.Get ("GetSelection")
This example uses a synchronous request, so Siebel Open Ul selects the record that the DeleteRecord
method references in the context of PrelnvokeMethod. It selects no other record after it makes this
initial selection while the Siebel Server sends the delete confirmation notification to the client. For more
information, see About Synchronous Requests.
o The following code makes sure that this notification is not a duplicate:
objectsUnderDeletion[activeRow]
It determines whether or not Siebel Open Ul has already removed the record that it is examining in a previous
instance of handling the same notification for the same record.
9. Add a property that Siebel Open Ul can use to store the list of records that the user deletes but might retrieve
from the recycle bin:
this.AddProperty ("DeletionCompleteSet", []):;
10. Store the deleted record:
this.Get ("DeletionCompleteSet") .push (objectsUnderDeletion[activeRow]) ;
The conditional block where this code resides determines that this notification is not a duplicate
NotifyDeleteRecord notification for the record that the DeleteRecord method requests deletion. So, this push
statement pushes the deleted record into the DeletionCompletedSet property that you defined in Step 9.
11. Remove the record from the Deletion in Progress list:
objectsUnderDeletion[activeRow] = null;
12. Add the RefreshList method:
this.AddMethod ("RefreshList", function(){}):;
Siebel Open Ul must refresh the recycle bin after Step 11 adds a record to this recycle bin. You can use
dependency injection through the AttachPMBinding method to inform the physical renderer that the recycle
bin requires a refresh. For more information, see About Dependency Injection. For more information, see How
Siebel Open Ul Uses Nondetailed Data to Indicate Modifications That Occur in Detailed Data.
13. Run the RefreshList method:
this.ExecuteMethod ("RefreshList") ;
14. Save the recyclebinpmodel.js file.

How Siebel Open Ul Uses Nondetailed Data to Indicate Modifications

Siebel Open Ul uses the dependency that exists between the presentation model and the physical renderer to indicate
a high-level modification in a property or method, such as a modifying the list of records that it must display. This

55

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

dependency configures Siebel Open Ul to run a high-level renderer method, such as a method that repopulates

the entire physical markup of columns and data in the grid container. The renderer method then gets the detailed
presentation model attributes, such as columns and data, through properties or methods that the presentation model
contains.

This example uses the RefreshList method as an indicator that Siebel Open Ul modified something in the
DeletionCompletedSet property. When you configure the physical renderer in Customizing the Physical Renderer to
Refresh the Carousel, you configure Siebel Open Ul to use the AttachPMBinding method to bind a physical renderer
method to the RefreshList method. You also configure it to use this physical renderer method to get the detailed data
that the DeletionCompletedSet method references. Siebel Open Ul gets this data from the presentation model so that
the physical renderer can render it. For more information, see AttachPMBinding Method.

Attaching an Event Handler to a Presentation Model

This task is a step in Process of Customizing the Presentation Model.

At this point in this example, you have set up and customized the presentation model to choose records to delete, to
delete them, and then to move them to the recycle bin. In this topic, you modify the presentation model to allow the
user to click an item in the carousel, and then click the plus sign (+) to restore the record.

The following figure illustrates the code you use to attach an event handler to a presentation model. Each number in
this figure identifies the corresponding step number in the numbered task list that this book includes immediately after
this figure.

RecycleBinPModel. prototype. Init = functiond}{
FiepelAppFacade, RecysleBinPHodel, auperclazss . Inic.call{ this)7

[this. httachEventHandler{ "RESTOREY, OmClickRestore j 2
| thig, AddPropercy{ “cescoracionIndes™ =1 }z

Tunction oneliCKEESCOLEe] Ln0ex) g
if{ this.ExecuteMethod{ "CanlnvokelMethod"™, "NewRecord™)}){
thig.JecFropercy{ "inRestoration”, true §:
this.SetProperey({ “resctorationIndex®™, index)
thig.ExecuceMechod{ "InvokeMethod”, "HewRecord™, null, false):
this.ExecuteMethod{ "InvokeMethod”, "WriteRecord”™, mull, false):

To attach an event handler to a presentation model
1. Inthe recyclebinpmodel.js file, add the method that handles the event:

function OnClickRestore (index) {

The name of an event handler typically starts with the following prefix:

On

Siebel Open Ul calls this method when the user clicks the plus sign (+).
2. Bind the OnClickRestore method to the RESTORE custom event:

this.AttachEventHandler ("RESTORE", OnClickRestore) ;

This code adds the RESTORE custom event. The physical renderer sends this event to the presentation model,
and then this presentation model runs OnClickRestore. The AttachEventHandler method sets up a dependency

56
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

injection, so you add it in the Init method. For more information, see AttachEventHandler Method and About
Dependency Injection.

3. Identify the method that Siebel Open Ul uses when a user creates a record.

Examine the Flow That Creates New Records in List Applets, Calling the Siebel Server. Note that Siebel Open
Ul uses the NewRecord method, and then uses the WriteRecord method as an input argument for the
InvokeMethod method when it runs InvokeMethod in the presentation model. For more information, see
NewRecord Method.

4. Determine how Siebel Open Ul stores the field values of a new record that a user creates.

Examine Flow That Handles Focus Changes in Form Applets. This flow describes the process that occurs
between the initial NewRecord call and the WriteRecord call when Siebel Open Ul creates a record in the client.
It stores the field values in the client while the user enters these values and navigates from one field to another
field. For more information, see WriteRecord Method.

Siebel Open Ul can do the following to create a record that it restores through the OnClickRestore event
handler:

o Run the InvokeMethod method for the NewRecord.
o Store values that the user enters in each field, and use values from the records that Siebel Open Ul stores
in the recycle bin.

o Run the InvokeMethod method for WriteRecord with the client already configured to include the field
values for the record.

5. Make sure Siebel Open Ul can use the NewRecord method in the applet:

if (this.ExecuteMethod ("CanInvokeMethod", "NewRecord")) {

If Siebel Open Ul cannot run the NewRecord method, then it exits this conditional statement.
6. Add the property that Siebel Open Ul uses to store the index that identifies the record it must restore:

this.AddProperty ("restorationIndex", -1);

The physical renderer must specify the record to restore. To do this, it uses the DeletionCompletedSet
property to get the restorationindex of this record from the client and store it. It then sends this index to the
presentation model as part of a request to restore the record. The restorationindex is an index that resides in
the DeletionCompletedSet property of the record.

Siebel Open Ul sends this value from the recycle bin record that the user chooses to restore. The
OnClickRestore method receives this property, and then Siebel Open Ul stores this value in the restorationindex
property of the presentation model.

7. Configure the OnClickRestore method:

this.SetProperty ("inRestoration", true);
this.SetProperty ("restorationIndex", index);
this.ExecuteMethod ("InvokeMethod", "NewRecord", null, false);

57
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

this.ExecuteMethod ("InvokeMethod", "WriteRecord", null, false);

where:

o NewRecord and WriteRecord are input arguments to the InvokeMethod method. In Step 3 you
determined that Siebel Open Ul uses the NewRecord method or the WriteRecord method as an input
argument for the InvokeMethod, so you specify these methods in this code.

Siebel Open Ul stores the field values of a record in the WriteRecord request before it sends this request to the
Siebel Server. It stores these values differently depending on whether it creates a record from the recycle bin or
whether the user creates a new record. The physical user interface layer does not store these values if the user
attempts to restore a record from the recycle bin. It stores these values only if the user creates a new record.
You write this customization in the next topic in this example, Customizing Methods in the Presentation Model
to Store Field Values.

This customization runs only while WriteRecord is running to restore a record from the recycle bin. It does not
run when the user creates a new record and Siebel Open Ul calls WriteRecord. When you start this restoration
logic in the OnClickRestore method, you set a presentation model property that serves as a flag that indicates
that a recycle bin restoration is in progress. An explicit AddProperty call does not exist for this property, so
Siebel Open Ul creates this property only if the user uses the recycle bin.

8. Save the recyclebinpmodel.js file.

Customizing Methods in the Presentation Model to Store Field
Values

This task is a step in Process of Customizing the Presentation Model.

In this topic, you use the ExecuteMethod method to store the values of the record that the user is attempting to restore
from the recycle bin.

The following figure illustrates the code you use to customize a method in the presentation model to store the field
values of records. Each number in this figure identifies the corresponding step number in the numbered task list that
this book includes immediately after this figure.

funotion PrelnvokeHsthod({ mechodName, paslnputirgs, lp, revurnScructure){

if{ merhodName === "[&lesteaRecord” Bk Ithis.Gecf "InDelecion™) §{

ELEE 1I{ WECHOUNEDE === "WLICERECOLA” hk THi®.UGeL| IORESLOEALICHTF JL
var recordiéet = this.Get{ "beletionCompleteSetr™)»
var record = record3ec[thig.Gec{ "rescoracionlndex™)]:
var listOfColumns = this Get{ "ListOfColumns™ };
FAP Ccontrols = this Gerti Foscoonrrola™)
for{ var i = 0, len = liscdfColumns. lengrhy 1 <€ len; i++) o
var control = controla[liscOfColumna[i J.nmme J:
if{ control »{
this. Executelethod{ "LeaveField”, control, recordlcontrol.GecFicldNlemei}], true):

]

58
ORACLE

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

To customize methods in the presentation model to store field values

1

In the recyclebinpmodel.js file, add a condition that makes sure Siebel Open Ul runs the customization logic
only if the user is restoring a record from the recycle bin, and not adding a new record:

else if (methodName === "WriteRecord" && this.Get ("inRestoration")) {

This i£ statement examines the value of the methodName in the WriteRecord argument and the value of the
inRestoration property. For more information, see WriteRecord Method.
Get the set of records for the recycle bin:

var recordSet = this.Get("DeletionCompleteSet") ;

In Step 10 in the topic Customizing the Presentation Model to Handle Notifications, you configured the
DeletionCompletedSet property of the presentation model to store each record that the user adds to the recycle
bin.

Get the back up copy of the record that the physical renderer requests to restore:

var record = recordSet[this.Get ("restorationIndex")];

To get this value, you access the restorationindex property that you added in Step 6 in the topic Attaching an
Event Handler to a Presentation Model.

Identify the method that Siebel Open Ul uses to indicate that the user navigated away from an applet.

To do this, you can examine Flow That Handles Focus Changes in List Applets. Note that Siebel Open Ul calls the
LeaveField method as the last step in the flow. This method determines whether or not Siebel Open Ul removed
the focus from a field in an applet, so Siebel Open Ul uses this step in the flow as a flag to signal that it must
store the field values. To get information about the methods that the flowcharts describe when you develop
your own customization, you can use the descriptions in Application Programming Interface

Get the list of columns that the list applet contains. This list is identical to the list of columns that the
DeletionCompleteSet property contains:

var listOfColumns = this.Get("ListOfColumns") ;

Get the list of controls that the list applets contains:

var controls = this.Get ("GetControls") ;

For more information about the GetControls property, see Properties of the Presentation Model That Siebel
Open Ul Uses for Applets.
Store the field values:
for(var i = 0, len = listOfColumns.length; i < len; i++){

var control = controls[listOfColumns[i] .name];

if (control) {

this.ExecuteMethod ("LeaveField", control, record[control.GetFieldName ()],

true) ;}

}

}

where:

o The following code iterates through the applet controls that correspond to the list columns of that the
record that the DeletionCompleteSet property identifies:

59

ORACLE

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

for(var i = 0, len = listOfColumns.length; i < len; i++)

this.ExecuteMethod Calls the LeaveField method that you identified in Step 4. It calls this method

one time for each iteration. It sends the field value from the corresponding control of the record that
DeletionCompleteSet identifies. It sends this value to an argument. When this code iterates, it runs the
LeaveField method for every control that Siebel Open Ul must populate in the new record that it is using
to restore the deleted record from the recycle bin.

Siebel Open Ul must send the LeaveField method as a control and store a value for this control. In

this example, it iterates through each control that the list applet contains, and sends the value of the
corresponding list column that it uses for the control from the record that the DeletionCompleteSet
property gets in Step 2.

For a description of the arguments that LeaveField uses, Summary of Methods That You Can Use with the
Presentation Model for Applets.

record stores the field value of the record that Siebel Open Ul is restoring. The subsequent WriteRecord
call packages and sends these values to the Siebel Server.

Siebel Open Ul stores these values when it runs the LeaveField method. For more information about this
flow, see Flow That Handles Focus Changes in List Applets.

8. Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Call the Siebel Server and
Delete a Record

This task is a step in Process of Customizing the Presentation Model.

In this topic, you configure the presentation model to remove the record from the recycling bin. You use a dependency
injection to call a method on the Siebel Server after the stack that Siebel Open Ul uses to call the server has finished
processing. For more information, see About Dependency Injection and Customizing Events.

To customize the presentation model to call the Siebel Server and delete a record

1.

In the recyclebinpmodel.js file, add the following code to the Init method:

this.AttachPostProxyExecuteBinding ("WriteRecord", PostWriteRecord) ;

You use the Init method to send a WriteRecord call to the Siebel Server. For more information, see WriteRecord
Method and AttachPostProxyExecuteBinding Method.

Add the following code anywhere in the recyclebinpmodel.js file:

function PostWriteRecord (methodName, inputPS, outputPS) {

if (this.Get ("inRestoration")) {

this.Get ("DeletionCompleteSet") [this.Get ("restorationIndex")] = null;
this.ExecuteMethod ("RefreshList") ;

this.SetProperty ("inRestoration", false);

60

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

}

where:
PostWriteRecord does the following work:

o Removes the record that Siebel Open Ul restored in Step 7 in the topic Customizing Methods in the
Presentation Model to Store Field Values. It removes this record from the DeletionCompleteSet property.

o Calls the RefreshList method to start another round of binding to the physical renderer. In the next topic
in this example, you configure Siebel Open Ul to call the HandleDeleteNotification method to refresh the
list and to remove the record from the recycle bin in the client.

o Sets the inRestoration property of the presentation model to faise. You set this property to true in Step
7 in the topic Customizing Methods in the Presentation Model to Store Field Values to indicate that Siebel
Open Ul is restoring a record. The restoration is now finished, so you can configure Siebel Open Ul to set
inRestoration to false.

3. Save the recyclebinpmodel.js file.

Process of Customizing the Physical Renderer

This task is a step in Roadmap for Customizing Siebel Open UI.

To customize the physical renderer, do the following tasks:

Setting Up the Physical Renderer

Customizing the Physical Renderer to Render the Carousel
Customizing the Physical Renderer to Bind Events
Customizing the Physical Renderer to Bind Data
Customizing the Physical Renderer to Refresh the Carousel
6. Modifying CSS Files to Support the Physical Renderer

A WN

In this topic, you customize the JQGridRenderer physical renderer that Siebel Open Ul uses with a presentation model
for a typical Siebel list applet so that it renders this applet as a grid. You add the rendering capabilities for the carousel
that Siebel Open Ul uses to render the recycle bin. You also modify the grid style to accommodate the carousel control.
You use methods in the physical renderer to do this work. For a description of these methods, including the sequence
you use to configure them, see Life Cycle of a Physical Renderer.

Setting Up the Physical Renderer

This task is a step in Process of Customizing the Physical Renderer.

The following figure illustrates the code that you use to set up the physical renderer. Each number in this figure
identifies the corresponding step number in the numbered task list that this book includes immediately after this figure.

61
ORACLE

Siebel Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul
if{ typeoi{ Siebelhpplacade.RecyclebinRenderer) === “undefined™ j{
sasbelJS Mamsaacel sSichelbnnlacads RecyclelinRenderens o
define ("siecbel/custom/recyclebinrenderer™
["3zdParty/dcarcusel/lib/jquery.jcarcusel.min®, "aisbel/dqoridrenderer®], function () {

I CifEEInprecede.HecyclEBL Hefer = | rancEion(]l
var siebConsts = SiesbelJS.Dependency{ "Sishelinp.Constants”) T
fonetion RecycleBinRendarar{ pm) {

SiebelippFacade .RecycleBinRenderer. superclass, construstor, { this, pm) 8
this.lisc0fCols = ["Name", "Locacion®™]:

}

SiebelJ5.Excend{ RecycleBinRenderer, SiebelippFacade.JQGridRenderer) : 9

return RecycleBinRenderez:;

To set up the physical renderer
1. Download a copy of the recyclebinrenderer.js file to the following folder:

AI INSTALL DIR\applicationcontainer externall\siebelwebroot\scripts\siebel\custom

It is recommended that you get a copy of this file to assist in your understanding of how to implement the
example that this topic describes. This file includes all the code that this example uses. It also includes more
comments that describe code functionality. To get a copy of this file, see Article ID 1494998.1 on My Oracle
Support.

For more information about the folders you can use to store your customizations, see Organizing Files That You
Customize. For more information about the language_code, see Languages That Siebel Open Ul Supports.

2. Use a JavaScript editor to open the recyclebinpmodel.js file that you downloaded in Step 1.

3. Verify that the RecycleBinRenderer class does not exist, and that you do not configure Siebel Open Ul to
override this class:

if (typeof (SiebelAppFacade.RecycleBinRenderer) === "undefined") {

4. To prevent potential conflicts, create a namespace that Siebel Open Ul can use:
SiebelJS.Namespace ("SiebelAppFacade.RecycleBinRenderer") ;

5. Use the Define method to identify the physical renderer file:

define ("siebel/custom/recyclebinrenderer", ["3rdParty/jcarousel/lib/
jquery.jcarousel.min", "siebel/jggridrenderer"], function () {

You must use the Define method to make sure Siebel Open Ul can identify the constructor. You must include
the relative path and the name of the presentation model file without the file name extension. For more
information, see Define Method.

6. Define the class:
SiebelAppFacade.RecycleBinRenderer = (function() {
7. Declare the variables that Siebel Open Ul uses throughout the physical renderer code:
var siebConsts = SiebelJS.Dependency ("SiebelApp.Constants") ;
8. Create the class constructor:
function RecycleBinRenderer (pm) {
SiebelAppFacade.RecycleBinRenderer. superclass.constructor.call (this, pm);

this.listOfCols = ["Name", "Location"];

}

62
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul
9. Define the inheritance:
SiebelJS.Extend (RecycleBinRenderer, SiebelAppFacade.JQGridRenderer) ;

For more information about inheritance, see About Dependency Injection.
10. Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Render the Carousel

This task is a step in Process of Customizing the Physical Renderer.

The ShowUI method of the JQGridRenderer physical renderer renders a list applet in the JQGrid control. This method
places the third-party JCarousel control next to the grid. For more information, see ShowU! Method.

The following figure illustrates the code you use to customize the physical renderer to render a list applet. Each number
in this figure identifies the corresponding step number in the numbered task list that this book includes immediately
after this figure.

RecycleBinRenderer.prototype.Showll = function(){ o
SiebelAppFacade.RecycleBinRenderer.superclass.ShowUI.call({ this });

/* HNow, 1ist has shown in UI. Let's show carousel =7

var pm = this.GetPM({); |
var placeHolder = "s_" + pm.Get("GetFullId™) + “_div";

var carouselHtml = “<div class="siebui-jcarousel-wrapper'> " %
"¢div class="siebui-jcarousel’ id=\"" + placeHolder + "_recycle\"> " +
"<ul class="siebui-list-carousel’ >" +

"elix<flix" 4
“fulx" o+ o
" fdive" #
"ca href="#' class='sicbui-jcarousel-prev'>‹ " +
"<& href="#"' class="siebul-jcarousel-next'>&rzaquo;" +
“efdive";

$("#" + placeHolder)
~BddC 1855] Siebui-Iist-recyclebin’ } m
m .atter{ carcuselHtml)
nextAll({“div.siebui-jcarousel-wrapper™)
.eq(@)
-hide()
o .children{ "div.siebui-jcarcusel™)
-jcarousel({

N

To customize the physical renderer to render list applets
1. Inthe recyclebinrenderer.js file, call the ShowUI method of the physical renderer:

SiebelAppFacade.RecycleBinRenderer.superclass.ShowUI.call (this) ;

If you customize a physical renderer, then it is recommended that you call each life cycle method of the
predefined renderer before you run any custom logic.
2. Get the presentation model instance:

var pm = this.GetPM() ;
For more information, see GetPM Method for Physical Renderers.

3. Calculate the placeholder ID of the HTML node that Siebel Open Ul uses as the container for the predefined
applet:

63
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

var placeHolder = "s_" + pm.Get("GetFullId") + "_div";

You use this ID to modify the HTML Document Object Model (DOM). For example, to position the carousel in
the recycle bin. The GetFullld property gets the unique ID of each applet that is in scope in a view. It is uses the
following format:

s_FullID div

where:

o Fullld in this example is S_A1. The entire ID in this example is s_S_A1_div. Fullld is not a complete ID. It is a
part of the ID string template named s_Fullld_div.

For more information, see Properties of the Presentation Model That Siebel Open Ul Uses for Applets.
4. Build the HTML for the third-party carousel plug-in:

var carouselHtml = "<div class='siebui-jcarousel-wrapper'> " +
"<div class='siebui-jcarousel' id=\"" + placeHolder + "_recycle\"> " +
"<ul class='siebui-list-carousel' >" +
"<1i></1i>" +
"" +
"</div>" +
"‹ " +
"›" +
"</div>";

5. Add a CSS class:

.addClass ("siebui-list-recyclebin")

6. Add the constructed HTML for the carousel after the carousel container:
.after (carouselHtml)

7. Modify the existing jcarousel div container, to make it a carousel:

a. Locate the jcarousel div container in the first child of the parent container. The container will look similar
to the following:

.eq(0)
.hide()
.children("div.siebui-jcarousel")

b. Make a carousel out of the jcarousel that you located in Step a:

.jcarousel ({

})

8. Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Bind Events

This task is a step in Process of Customizing the Physical Renderer.

64
ORACLE

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

In this topic, you add the following functionality to the carousel:

- If the user hovers the mouse over a record in the carousel, then display a restore button as a plus sign (+).

- If the user removes the hover, then hide the restore button.

- If the user clicks the plus sign (+), then call the presentation model to restore the record.

- To the HTML node that Siebel Open Ul uses for the restore button.
- Styling changes that affect the appearance of the carousel based on user actions.

The following figure illustrates the code you use to customize the physical renderer to bind events to the carousel.
Each number in this figure identifies the corresponding step number in the numbered task list that this book includes

immediately after this figure.

RecycleBinRenderer. prototype.BindEvents = function () { o
SiebelappFacade.RecycleBinRenderer. superclass, BindEvents . call(this);
vEr PIBCEMeIder = "2 " T TRIz CetDN] Get Ll T~ an a
earh Fupnte IO [ACOLISE e wnensusr TRy AnasAr 0 snn el Wag oD
$("=" + placetiolder)
Jparent()
Jdelegate(
“div.siebui-carousel-ites”, "mouseenter”, { ctx: this }, ShowRestoreButton)
delegate(
"div.siebui-carousel-item™, "mouseleave™, { ctx: this }, HideRestoreButton)
.delegate]

“m.siebul-cites-add®, “click®, { ctx: this }, AddFrosRecycleBin);

(72" + placetolder + " _recycle”)
parent()
LfFind(".siebui-jcarousel-prev')
Jon{ " jcarouselcontroliactive”, function () {
S{this).removeClass(' siebul-jearousel-ctrl-innctive®);
hn
on{ "jcarouselcontrol:inactive”, function () {
${this).addClass(siebui-jcarousel-ctrl-inactive);

B
»jearcuselContral({ o

target: "-=1’
hi:

$("s" + placetiolder + " _recycle”)
Jparent()
find(. siebui-jearcusel-next’)
on("jearouselcontrol:active”, function () {
${this).removeClass(' siebui-jcarousel-ctrl-inactive™);

-on{ "jcarouselcontrol: dnactive’, function () {
${this).addClass(siebui-jearousel-corl-inactive');
h
-jcarcuselContral({
target: “+el’

Hi

To add this functionality, you must customize Siebel Open Ul to attach an event handler to each of the following items:

- The carousel item, for every hover activity.
- The HTML node that Siebel Open Ul uses for the Restore button.
- The Next and Previous icons in the carousel.

To customize the physical renderer to bind events

1. In the recyclebinrenderer.js file, call the BindEvents method of the physical renderer:

SiebelAppFacade.RecycleBinRenderer. superclass.BindEvents.call (this) ;

For more information, see BindEvents Method.
2. Identify the placeholder:

var placeHolder = "s_" + this.GetPM() .Get ("GetFullId") + "_div";

3. Attach three event handlers for hover and click:

ORACLE

65

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

4.

$("#" + placeHolder)

.parent ()

.delegate("div.siebui-carousel-item", "mouseenter", { ctx: this },
ShowRestoreButton)

.delegate("div.siebui-carousel-item", "mouseleave", { ctx: this },
HideRestoreButton)

.delegate("a.siebui-citem-add", "click", { ctx: this }, AddFromRecycleBin) ;

ShowRestoreButton is called when a user hovers on a carousel item, and HideRestoreButton is called when the
hovering ends. If the user clicks the Add button, then AddFromRecycleBin is called.

Attach styling events to the Previous and Next buttons of the carousel:

$("#" + placeHolder + "_recycle")

.parent ()

.find (' .siebui-jcarousel-prev')
.on('jcarouselcontrol:active', function () {

$ (this) .removeClass ('siebui-jcarousel-ctrl-inactive');
b

.on('jcarouselcontrol:inactive', function () {

$ (this) .addClass('siebui-jcarousel-ctrl-inactive');
b

.jcarouselControl ({

target: '-=1'

3

$("#" + placeHolder + "_recycle")

.parent ()

.find('.siebui-jcarousel-next')
.on('jcarouselcontrol:active', function () {

$ (this) .removeClass ('siebui-jcarousel-ctrl-inactive');
19}

.on('jcarouselcontrol:inactive', function () {

$ (this) .addClass ('siebui-jcarousel-ctrl-inactive');
19}

.jcarouselControl ({

target: '+=1'

)

In this example, the first part of the code is finding the Previous button in the carousel container, and then

attaching jcarousel:active and jcarousel:inactive events to it. When these events are triggered by the third-

party plug-in, we call methods that set and unset styling classes on the buttons. Similarly, the styling classes are
attached and removed for the Next button.

5. Define the handler methods:

ORACLE

a. Use the following code to find the child for the add button and show it:

function ShowRestoreButton (evt) {
if (evt && evt.currentTarget) ({
$ (evt.currentTarget) .children("a.siebui-citem-add") .show() ;

}
}
b. Use the following code to find the child for the add button and hide it:

function HideRestoreButton (evt) {
if (evt && evt.currentTarget) {
$ (evt.currentTarget) .children ("a.siebui-citem-add") .hide() ;

}

66

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

}

c. Use the following code to call the Restore method on the PM with the relevant index parameter

function AddFromRecycleBin (evt) {

var pm = evt.data.ctx.GetPM() ;

if (evt && evt.currentTarget) ({

pm.OnControlEvent ("RESTORE", $(evt.currentTarget).parent().data("index"));

}
}

6. Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Bind Data

This task is a step in Process of Customizing the Physical Renderer.

The carousel in this example does not render data. Siebel Open Ul only renders data in this example if it adds a record to
or deletes a record from the recycle bin.

To customize the physical renderer to bind data
1. Inthe recyclebinrenderer.js file, add the following code to siebelappFacade.RecycleBinRenderer = (function() {:

RecycleBinRenderer.prototype.BindData = function() {
SiebelAppFacade.RecycleBinRenderer. superclass.BindData.apply(this, arguments) ;

}i

For more information, see BindData Method.
2. Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Refresh the Carousel

This task is a step in Process of Customizing the Physical Renderer.

At this point in this example, you have configured the ShowUl, BindData, and BindEvents methods of the physical
renderer, and this renderer displays the carousel with no records. To display deleted records in the carousel, you
customize Siebel Open Ul to bind the data from these deleted records to the carousel control. To do this, you use
dependency injection through the AttachPMBinding method. For more information, see About Dependency Injection
and AttachPMBinding Method.

Siebel Open Ul includes the AttachPMBinding method in the presentation model, but it is recommended that you
configure Siebel Open Ul to call it from the physical renderer so that the presentation model remains independent

of methods that you declare in the physical renderer. AttachPMBinding adds a dependency from a physical renderer
method to a presentation model method or property. If Siebel Open Ul modifies a property value or runs a method in
the presentation model, then it uses this dependency to call a method that resides in the physical renderer.

The following figure illustrates the code you use to customize the physical renderer to refresh the carousel. Each
number in this figure identifies the corresponding step number in the numbered task list that this book includes
immediately after this figure.

67
ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 4

Example of Customizing Siebel Open Ul

function HecycleBinRenderar({ pm) {

SiebelhAppFacade.RecycleBinRenderer.superclass.constructor.cally{ this, pm):

this.liacOfCols = ["Name™, "Location®™]

}

slebelJs.Extend(RecycleDinRenderer, JiebelApplacade.JQGridRendererxr):
RecycleBinRenderer.prototype.Init = fanction () { o
SiebelippFacade.RecycleBinRenderer.superclass,Initc.call(this):

this.AttachPMBinding{ "Refreshlist", RefreshCarousel):

function RefreshCarcusel () {

var pm = this.GetFH{) .,
recordSet = pmw.Get("DeletionCompleteSec™), o
el = §{ "§s " + pw.Gec| "GetFulllId™)} + " div" + " recycle”),
carcusel = el.data("jcarousel'),
count =0
carousel.resec () 2 ﬂ
for(var i = 0, len = recordSet.lesngth: i < len: i++){
if(recordSec[i]){
carousel
Ladd{ count, o
"£1lix" + GetCurrentCarcuselltems.call(this, recordSet[i],
this.liscOfCols, 1) + "</1li>"™);
count++;
1]
1
cargusel.size{ count) 8
el.find{ "a.siebui-citem-add") .hide(): 9
el = carousel = nnll; 10

To customize the physical renderer to refresh the recycle bin

1.

In the recyclebinrenderer.js file, bind the RefreshCarousel method that the physical renderer contains to the
RefreshList method that the presentation model contains:

this.AttachPMBinding ("RefreshList", RefreshCarousel) ;

In this example, you implemented the RefreshList method in the presentation model in Step 12 in the topic
Customizing the Presentation Model to Handle Notifications. This presentation model calls the RefreshList
method when the user adds a record or removes a record from the recycle bin. AttachPMBinding configures
Siebel Open Ul to call RefreshCarousel when the presentation model runs the RefreshList method. You must
configure your custom physical renderer to call the AttachPMBinding method so that it overrides the Init
function. You must make sure you configure Siebel Open Ul to call the Init function of the superclass before it
creates or attaches a modification in your custom physical renderer.

You must specify all AttachPMBinding calls in the Init function in the physical renderer.
Configure the RefreshCarousel to read the value of the DeletionCompleteSet property in the physical renderer:

var pm = this.GetPM(),

placeHolder = "s_" + pm.Get("GetFullId") + "_div",
recordSet = pm.Get("DeletionCompleteSet"),

Calculate the container in the HTML DOM that hosts the carousel:

el = $("#" + placeHolder + "_recycle"),

68

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

4. Construct the new mark-up:

for (var i = 0, len = recordSet.length; i < len; i++) {

if (recordSet[i]) {

markUp += "<1i>" + GetCurrentCarousellItems.call (this, recordSet[i],
this.listOfCols, i) + "</1li>";

count++;

}

}

This code does the following work:

o Loops through the set of records that the DeletionCompleteSet property contains.
o Adds the records and the separate items.

o Sends the index of the record that resides in the DeletionCompleteSet property to the
GetCurrentCarouselltems method.

o Uses the GetCurrentCarouselltems method to create the markup for each carousel item.

o Uses GetCurrentCarouselltems to add the index to the markup for the individual item. This configuration
makes sure the item is available if the user chooses to restore the record.

5. Determine the space that should be occupied by the grid, based on whether the carousel contains any records:
if (count > 0) {
$("#" + placeHolder) .addClass ("siebui-span-md-10") ;

el.parent () .show() .addClass ("siebui-span-md-2") ;

}
else {

$("#" + placeHolder) .removeClass ("siebui-span-md-10") ;
el.parent () .hide() .removeClass ("siebui-span-md-2") ;

}

This step adds classes that decide the width of the original grid, effectively creating a fluid grid.
6. Add the newly constructed markup in Step 4, to the appropriate container:

el.children("ul.siebui-list-carousel"”) .html (markUp) ;
7. Indicate to the plug-in that the content requires a reload:
el.jcarousel('reload') ;
8. Hide the restore button in the carousel:
el.find("a.siebui-citem-add") .hide() ;
9. Remove the DOM references:
el = null;

It is recommended that you remove any DOM references that you create.
10. Save the recyclebinrenderer.js file.

Modifying CSS Files to Support the Physical Renderer

This task is a step in Process of Customizing the Physical Renderer.

69
ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 4
Example of Customizing Siebel Open Ul

In this topic, you modify the CSS files so that they support the CSS classes that the physical renderer uses.

To modify CSS files to support the physical renderer

1. Open the CSS file, add the following code, and then save your changes:

.siebui-list-recyclebin {
margin : Opx;

}

.siebui-jcarousel-wrapper {
position: relative;

height: 450px;

}

.siebui-jcarousel {

position: relative;

overflow: hidden;

height: 100% !important;
margin: 5px;

width : 80%;

border: 10px solid #fff;
-webkit-border-radius: 5px;
-moz-border-radius: 5px;
border-radius: 5px;
-webkit-box-shadow: 0 0 2px #999;
-moz-box-shadow: 0 0 2px #999;
box-shadow: 0 0 2px #999;

.siebui-jcarousel ul {
width: 98%;

position: relative;
list-style: none;

margin: O0;

padding: 0;

}

.siebui-jcarousel ul 1i {
margin-bottom : 5px;

}

.siebui-jcarousel-prev,
.siebui-jcarousel-next {
transform: rotate(90deg) ;
transform-origin: left top 0;
float : left;

position: absolute;
width: 30px;

height: 30px;

text-align: center;
background: #4E443C;
color: #fff;
text-decoration: none;
text-shadow: 0 0 1lpx #000;

font: 24px/27px Arial, sans-serif;

-webkit-border-radius: 30px;
-moz-border-radius: 30px;
border-radius: 30px;
-webkit-box-shadow: 0 0 2px #999;
-moz-box-shadow: 0 0 2px #999;
box-shadow: 0 0 2px #999;
}

.siebui-jcarousel-prev {

top : Opx;

left : 45%;
}

.siebui-jcarousel-next {

top : 450px;

ORACLE

70

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

left:
}

45%;

.siebui-jcarousel-prev:hover span,
.siebui-jcarousel-next:hover span {
display: block;

}

.siebui-jcarousel-prev.inactive,
.siebui-jcarousel-next.inactive {
opacity: .5;

cursor: default;

}

div.siebui-carousel-col{
display : block;

}

div.siebui-carousel-item{
height : 75px;

padding : 5px;

border : 1lpx solid #acacac;
text-align : center;
padding-top: 20px;
word-wrap : break-word;
-webkit-border-radius: 5px;
-moz-border-radius: 5px;
border-radius: 5px;

}

a.siebui-citem-add{
display : block;

top :

2px;

right : 2px;

float : right;

width : 1l6px;

height : 16px;

background: url(../images/plus.png) no-repeat center center;

}

2. Add the CSS files that the third-party uses:

a.

In Windows Explorer, navigate to the following folder:

AI_ INSTALL DIR\applicationcontainer external\siebelwebroot\scripts\3rdParty

Add the following subfolder hierarchy to the 3rdararty folder:

\jcarousel\skins\tango\

Save the following files to the tango folder that you added in Step b:

next-horizontal.png
next-vertical.png
prev-horizontal.png
prev-vertical.png
skin.css

To get a copy of these files, see Article ID 14949981 on My Oracle Support. For more information about
the CSS files and renderers that Siebel Open Ul uses to render a list applet as a carousel, see Customizing
List Applets to Render as Carousels.

7

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

3. Save the jquery.jcarousel.js file to the following folder:

AI_INSTALL DIR\applicationcontainer_external\siebelwebroot\scripts\3rdParty

Siebel Open Ul uses this file to render a carousel. To get a copy of this file, see Article ID 14949981 on My Oracle
Support.

Process of Customizing the Plug-in Wrapper

This task is a step in Roadmap for Customizing Siebel Open UI.

To customize a plug-in wrapper, do the following tasks:

Creating the Plug-in Wrapper

Customizing the Plug-in Wrapper to Display the Control Differently
Customizing the Plug-in Wrapper to Bind Custom Events to a Control
Customizing the Plug-in Wrapper to Define Custom Events

Customizing the Plug-in Wrapper to React to Value Changes of a Control
Attaching the Plug-in Wrapper to a Control Conditionally

cCUuAUNRA

Creating the Plug-in Wrapper

This task is a step in Process of Customizing the Plug-in Wrapper.

The plug-in wrapper uses the Init method to configure the properties, methods, and bindings. For more information
about these methods, see Life Cycle of User Interface Elements.

The following figure illustrates the code you use to create the plug-in wrapper. Each number in this figure identifies the
corresponding step number in the numbered task list that this book includes immediately after this figure.

72
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

// First, define the custom PW's namespace.
|if (typeof (SiebelAppFacade.ColorBoxPi) === “undefined") {

Siebells.Namespace(’SiebelappFacade.ColorBoxPel’); o

// Define the module and add any

-

dependencies (including 3rd party files the PW may use) here. °

SiebelAppFacade.ColorBoxPW = (function () {

function ColorBoxPH() {
// The constructor. Initializations and declrations go here. Just a superclass call in our case.
SiebelAppFacade.ColorBoxPW. superclass.constructor.apply(this, arguments);

}

/7 Make sure to extend from the right PH.

Siebells.Extend(ColorBoxPw, SiebelAppFacade.DropDownPi);

Jf That's it, that's all the customization we need.

return ColorBoxPW;
YO o

ff Now this bit governs how or where this custom PW applies. The AttachPW API attaches this PW to
¥ if: LS £ ool aaick i i o

Siebelipp.S App.PluginBuilder. AttachPi{consts.get("SWE CTRL COMBOBOX"), SiebelippFacade.ColorBoxPd, function (control) { e:

/{ Every combo box encountered is run against this sethod definition, and returning true will do the attachsent.
/I The control object itself is at cur disposal to make a sound choice. Conditions can be as complex er simple as required.

AL In thi ase, we retyrn true ooly if the ntrol s regository o jeaProbabilityd”
| return (control.Gethame() === “Probability2™); % |

E
return SiebelAppfacade.ColorBoxPi;
13 H

This topic describes how to modify code that resides in the ColorBoxPW.js file. It is recommended that you get a copy of
this file to assist in your understanding of how to implement the example that this topic describes. This file includes all
the code in this example. It also includes more comments that describe code functionality. To get a copy of this file, see
Article1494998.1 on My Oracle Support.

For more information about the folders you can use to store your customizations, see Organizing Files That You
Customize. For more information about the language_code, see Languages That Siebel Open Ul Supports.

To create the plug-in wrapper
1. Create the plug-in wrapper file:
a. Download a copy of the ColorBox.js file to the following folder:

AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\scripts\siebel\custom

b. Use a JavaScript editor to open the ColorBoxPW.js file that you downloaded in Step a.

2. Make sure the ColorBoxPW class does not exist and that you do not configure Siebel Open Ul to override this
class. You add the following code:

if (typeof (SiebelAppFacade.ColorBoxPW) === "undefined") {

3. Make sure a namespace exists that Siebel Open Ul can use to prevent conflicts:

SiebelJS.Namespace ("SiebelAppFacade.ColorBoxPW") ;

73
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

4. Use the Define method to identify the presentation model file:
define ("siebel/custom/ColorBoxPW", [siebel/basePW], function() {
You must use the Define Method to ensure that Siebel Open Ul can identify the constructor. You must include
the relative path and the name of the presentation model file without the file name extension. For more
information, see Define Method.

Note: Any third-party files that the plug-in wrapper uses must be mentioned in the dependencies section of
the define statement.

5. Define the class:
SiebelAppFacade.ColorBoxPW = (function() {

6. Define the class constructor:
function ColorBoxPW () {
SiebelAppFacade.ColorBoxPW. superclass.constructor.apply (this,
arguments) ;
}

7. Set up the injected dependency:
SiebelJS.Extend (ColorBoxPW, SiebelAppFacade.DropDownPW) ;
For more information about injected dependency, see About Dependency Injection.

8. Return the constructor:
return ColorBoxPW;
} O)
return SiebelAppFacade.ColorBoxPW;
3

9. Attach the plug-in wrapper:
SiebelApp.S_App.PluginBuilder.AttachPW (consts.get ("SWE_CTRL COMBOBOX"),
SiebelAppFacade.ColorBoxPW, function (control) {

10. Write the condition for which the plug-in wrapper should kick in:

return (control.GetName () === "Probability2")

11. Save the ColorBoxPW.js file.

Customizing the Plug-in Wrapper to Display the Control Differently

This task is a step in Process of Customizing the Plug-in Wrapper.

In this step, you customize the setup logic of the plug-in wrapper so that it adds a color-box to the control.

In this example, the ShowUl method is overridden to add a different element on to the DOM as a part of this control.
The functionality of the control remains unaffected. Effectively, you will be decorating it with a new element.

74

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

This is an optional step: the base functionality of how a control looks and behaves can be completely changed based
on your requirements. An out-of-the-box example of this type of modification is a flip switch that appears instead of a
check box on touch devices in Siebel Open Ul, which is accomplished using a plug-in wrapper.

The following figure illustrates the code you use to customize the ShowUI method of the plug-in wrapper. Each number
in this figure identifies the corresponding step number in the numbered task list that this book includes immediately
after this figure.

that gets called when the PW is being instantiated.
tructing the DOM that corresponds to t
unction (contral) {
nction, 5o that the arop

e, we are only trying to decorate, not override how the d

Her tr ; ot e how the dropdown is shown.
SiebelippFacade.ColorBouPW,. superclass.ShowlI.call(this, contrel); o

Get the original element - which is an input type. We'll decorate it.
war el = this.GetEl();
if (el 88 el.length) {

parent = el parent{};
L & Z1TINg and \.'L..'\."i'l{: properties and attach it after the or '.|_;,'."\\'. contral (ie, inside the :.l"."".:'c
lorbox ™ + el.attr("name™) + "" »</divs");
parent.Tind(div]i

%]). €881
“width™: “inhe

“height™: “2epx",
“background-color™: “inherit”

£ Create a div
parent.append(”

Hi
i

tH

To customize the plug-in wrapper to display the control differently

1. Inthe colorboxpw.js file, introduce the ShowUI method that is a part of the life cycle of rendering a control.
ColorBoxPW.prototype.ShowUI = function (control) {

2. Call the superclass method to get the dropdown to appear:
SiebelAppFacade.ColorBoxPW. superclass.ShowUI.call (this, control);

This will call the ShowUI method of the DropDownPW class, which is responsible for showing the drop down
field in the Siebel Open Ul client.
3. Get a reference to the existing element, and if it exists, get the parent element:

var el = this.GetEl();
if (el && el.length) {
parent = el.parent();

Note: This step is required to position the new DOM element as a sibling to the current element.

The GetEl() API framework method is a plug-in wrapper space that retrieves the jQuery element representing
the control. parent() is a jQuery call which retrieves the parent node of the element in the DOM. For more
information about the GetEl() APl method, see Architecture of Siebel Open UI.

4. Add anew HTML div, which will serve as our color box:

parent.append("<div id='colorbox_ " + el.attr("name") + "' ></div>") ;

You must specify a unique name for the element. In this example, colorbox_is added to the existing name of
the original element. The append() and attr() specifications are both jQuery APIs. The former adds DOM
elements at the end of a given element and the latter extracts the specified attribute.

5. Style the newly created div. This will serve as our colorbox:

parent.find("div[id”*=colorbox]") .css ({

75
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

"width": "inherit",
"height": "20px",
"background-color": "inherit"

3

The ess ()is a JQuery API that applies CSS styles to the given element. In this example, the colorbox gets the
same width as the original dropdown and a height of 20 pixels. The original background color is inherited from
the dropdown.

6. Save the ColorBoxPW js file.

Customizing the Plug-in Wrapper to Bind Custom Events to a
Control

This task is a step in Process of Customizing the Plug-in Wrapper.
In this topic, you attach behavioral methods to the colorbox element that you created in Creating the Plug-in Wrapper.

In this example, the BindEvent method is overridden to attach custom handlers to a new element. The event handlers of
the control remain unaffected, and the new element is decorated with some events.

This is an optional step: the base functionality of how a control looks and behaves can be completely changed based
on your requirements. An out-of-the-box example of this type of modification is a flip switch that appears instead of a
check box on touch devices in Siebel Open Ul, which is accomplished using a plug-in wrapper.

The following figure illustrates the code you use to customize the BindEvents method of the plug-in wrapper. Each
number in this figure identifies the corresponding step number in the numbered task list that this book includes
immediately after this figure.

[Again, we only want to attach some events to the new box, Not affect the original dropdown itself
Isiehel.d.ppFa:ade.calorsaxp‘.—.‘.s..uper'clas.s..ﬂindfuents.call(:his};

(f_Get the g bo e haye cepated. and the Event Helpsr ohiscts
var colorbox = this.GetELl().parent().find{"div[id*=colorbox]™},
evHelper = this, Helper("EventHelper™); o

if {colorbox 8& colorbox.length 88 svHelper) {
ff We will attach three event handlers. Using the Event Helper homogenizes events between different platforms.
f/ For example, "click”™ event will work as “"touchend™ for touch devices.
ff Custom handlers are methods that are defined in the PW itself.
evHeIper
-Manage(colorbox, "mouseenter”, { ctx: this }, OnMoussEnter)
.Managel:colrbo:, “mouseleave”, { ctx: this }, OnMouseleave) o
Manage(colorbox, "click™, { ctx: this }, OnClick)

r

To customize the plug-in wrapper to bind custom events to a control
1. Inthe colorboxpw.js file, introduce the BindEvents method that is a part of the life cycle of rendering a control.

ColorBoxPW.prototype.BindEvents = function () {

2. Callthe superclass method to attach the event handlers from the dropdown element:

SiebelAppFacade.ColorBoxPW. superclass.BindEvents.call (this) ;

This step calls the BindEvents of the DropDownPW class, which is responsible for attaching the events that the
drop down field requires to operate correctly.

76
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

3. Get the element that was created and attached as a sibling to the actual dropdown element, and the Event
Helper object:

var colorbox = this.GetEl () .parent().find("div[id*=colorbox]"),
evHelper = this.Helper ("EventHelper") ;
if (colorbox && colorbox.length && evHelper) ({

The Helper APl is the framework method in the plug-in wrapper space that enables retrieving helper objects by
name. For more information about the Helper API, see Architecture of Siebel Open UI.

4. Attach the required events to the new DOM element that was created. In this example, three handlers are
attached to one element:

evHelper

.Manage (colorbox, "mouseenter", { ctx: this }, OnMouseEnter)
.Manage (colorbox, "mouseleave", { ctx: this }, OnMouseLeave)
.Manage (colorbox, "click", { ctx: this }, OnClick)

The Helper APl is a method in the Event Helper object that takes the following four elements: the DOM element
to which events should be attached, the event to be attached, the handler to be run, and other arguments.

In this case, you are attaching one event for the each user hovering over the element, exiting the hover, and
clicking on the element. For more information about the Helper API, see Architecture of Siebel Open UI.

Customizing the Plug-in Wrapper to Define Custom Events

This task is a step in Process of Customizing the Plug-in Wrapper.

In this topic, you define the behavioral methods that have been attached to the colorbox element that you created in
you created in Creating the Plug-in Wrapper.

The following figure illustrates the code you use to define the handlers of the plug-in wrapper. Each number in this
figure identifies the corresponding step number in the numbered task list that this book includes immediately after this
figure.

77
ORACLE

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

function OnMouseEnter() {
[Thiz is our handler for when the user hovers on the box. Let's inform them that it's clickable

$(this).append(“<div id='info'>Click for Info...</div>"); o

function OnMouseleave() {
ff This is our handler for when the user stops the hovering. Resove the information!
$(this).find("2info™).remowe();

Tunction OnLiick() {
ff This iz our handler for when the user takes the bait and clicks on the box.
ff We're going to construct a dialog that tells the user what the colors mean.

first create 5 div with the correct html aod attach it to the osrent
var parent = §(this).parent(),
html = “<div id="legend’ title="Legend'>"

+ “<hbrachbrs®
+ “odiv style='width: 20@px; height: 20px; background-color: rgh(235, @, @); ' >SemspiBemsp;Do Not Pursued/diva<bra” °
+ “¢div style=width: 288px; height: 28px; background-color: orange;’»SemspilemspiPursue If Time Permitsc/divi<br:”
+ “adiv style="width: 288px; height: 20px; background-color: rgh(255, 255, @); ' »Remsp;lessp;Pursued/divi<bre”
+ “odiv style='width: 200px; height: 2@px; background-color: rgh(@, 128, @);'>Bemsp;lemsp;Pursue Aggressivelyd/divacbes”
+ "ofdivaT;
parent . append(html);

ff Then we make the div into a jQuery-UL dialog; which puts the content into modal & popup.
[} More documentation about this api can be found in jOuery-ul docs,
parent.find(“#legend”).dialog({

resizeable: false,

height: 275,

width: 225, o
modal: true,

buttons: {

Cancel: function ()

${this).dialog(“close™);

} T

To define the event handlers for the plug-in wrapper

1. Inthe colorboxpw.js file, introduce the following private methods that will get called when the attached events

occur on the element:
a. The OnMouseEnter handler:

function OnMouseEnter () {
$ (this) .append ("<div id='info'>Click for Info...</div>");

}

In this example, OnMouseEnter gets called when the mouseenter event occurs on the color box piece
of the DOM. The context passed during the attachment of the events will be passed on to the handler
method. Consequently, the this definition refers to the plug-in wrapper. In this example, a div is attached

with an id of info that displays the following text: click for Info..
b. The OnMouselLeave handler:

function OnMouseleave () {
$(this) .find ("#info") .remove () ;
}

This is the complementary method to the OnMouseEnter handler, and gets called when the onmouseleave

event occurs on the color box DOM. This method removes the aiv that was previously added,

consequently removing the display text.

| Note: The two events will not run on touch devices, since they have no equitable actions.

2. Introduce the OnClick handler.

Click is standardized by the event helper object to achieve uniformity across different devices. Consequently, it
may be translated to different events based on the user’s device. The click handler shows a popup that defines

ORACLE

78

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

the meaning of the different colors that the box can take on. In the first piece of the handler in this example,
HTML built of a few styled divs and some corresponding text that forms the content of the information we are
trying to show in the popup is constructed. The handler, and the content that is attached to the parent element
are displayed here:

var parent = $(this) .parent(),

html = "<div id='legend' title='Legend'>"

+ "

"

+ "<div style='width: 200px; height: 20px; background-color: rgb (255, O,
0) ; '>  &emsp ;Do Not Pursue</div>
"

+ "<div style='width: 200px; height: 20px; background-color:

orange; '>    Pursue If Time Permits</div>
"

+ "<div style='width: 200px; height: 20px; background-color: rgb (255, 255,
0) ; '>  &emsp ; Pursue</div>
"

+ "<div style='width: 200px; height: 20px; background-color: rgb(0, 128,
0) ; '>  &emsp ; Pursue Aggressively</div>
"

+ "</div>";
parent.append (html) ;

3. Make the section into a popup.

For this, use the jQuery-Ul provided dialog() API. In this example, the element is located by id using find, and
converted to a modal dialog box:

parent.find ("#legend") .dialog ({
resizeable: false,

height: 275,

width: 225,

modal: true,

buttons: {

Cancel: function () {

$ (this) .dialog("close") ;

}

}

})

This sets properties for the popup and adds a cancel button that closes the popup.

4. Attach the required events to the new DOM element that we have created. Here we will attach three handlers on
to this element.

evHelper
.Manage (colorbox, "mouseenter", { ctx: this }, OnMouseEnter)
.Manage (colorbox, "mouseleave", { ctx: this }, OnMouseLeave)
.Manage (colorbox, "click", { ctx: this }, OnClick)

The Helper APl is a method in the Event Helper object that takes the DOM element in order to attach events.
The attached event and the handler are deployed, along with other arguments.n this case, we are attaching
one event each for the user hovering over the element, exiting the hover, and clicking on the element. For more
information about the Helper API, see Architecture of Siebel Open UI.

Customizing the Plug-in Wrapper to React to Value Changes of a
Control

This task is a step in Process of Customizing the Plug-in Wrapper.

79
ORACLE

Siebel
Configuring Siebel Open Ul

In this topic, you define behavioral customizations when changes occur in a control value. These changes affect the
appearance of the colorbox element that you created in Creating the Plug-in Wrapper.

Chapter 4
Example of Customizing Siebel Open Ul

The following figure illustrates the code you use to style the color box based on the value that is being set on a control.
Each number in this figure identifies the corresponding step number in the numbered task list that this book includes

immediately after this figure.

Icolorsoxm.prototyge.Setvalue = function (value, index) { o
/f As usual, let the actual dropdown do its job.
I SiebelippFacade.ColorBoxP. superclass.SetValue.call{this, value, index); °

var colorbox = this.GetEl(index).parent().find("div[id*=colorbox]");

if (colorbox 88 colorbox.length) { °

£/ "walue' is a string, we need to first convert it to a number.
var val = parseInt{value);

f/ As long as it's a wvalid number...

)

if (!isMaN{val)) {

e._ls.e {

f/ Let's give it different colers based on the value.

/f .css() is a jQuery API that sets styling on DOM elements.

if (val >= & 88 wal < 25) {
culorbox.css(_hackg'cund-colcr", “red”);

}
else if (val < 5@) {

culor‘box.cs.sl["hafkg'cund-colcr" “orange”);

}
else if (val < 75) { o
colorbox.css("background-color”™, "yellow™);

else {
colorbox.css("background-color™, “green™);

}

-

If mot, it's probably a string?! or it's blank. Color color go away!

colorbox.css("background-coler™, "inherit™);

H
}
¥

To define the value based modifications in the plug-in wrapper

1

In the colorboxpw.js file, introduce the SetValue method that is a part of the life cycle of a control's existence.

ColorBoxPW.prototype.SetValue = function (value, index) {

The SetValue APl is called as part of a control life cycle when a value change occurs on the control, either
directly by the user, or by the Siebel application. This call is responsible for the value change to appear in the
DOM. In this example, SetValue is overridden in order to read into the value change that is happening on the
control, and consequently makes modifications to the color box based on the value. For more information
about the SetVAlue API, see Architecture of Siebel Open UI.

Call the superclass method to make sure that the dropdown receives the intended value:

SiebelAppFacade.ColorBoxPW. superclass.SetValue.call (this);

This will call the SetValue of the DropDownPW class, which is responsible for applying the correct value on to
the dropdown field itself.

Get the new DOM element and the value that is being set:

var colorbox = this.GetEl (index) .parent() .find("div[id*=colorbox]") ;
if (colorbox && colorbox.length) {

ORACLE

80

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

var val = parselnt(value);

Because the value is in string form, and our future actions on this value involve treating it as a number, we need
to convert it into a number form. The standard JavaScript method that is used for the purpose is parseint.

4. Validate the value and specify values that modify the color box in different ways:

if (!'isNaN(val)) {
if (val >= 0 && val < 25) {
colorbox.css ("background-color", "red");
}
else if (val < 50) {
colorbox.css ("background-color", "orange");
}
else if (val < 75) {
colorbox.css ("background-color", "yellow") ;
}
else {
colorbox.css ("background-color", "green");
}
}
else {
colorbox.css ("background-color", "inherit");

}

In this example, the value is verified to ensure that it is a number. If it is not, the background color is set to
inherit, Which sets the color to the same color as the dropdown element. This behavior would be applicable,
for example, in cases where the user has entered a blank value, or inadvertently provided a string. If the value
is a number, then use an if-else construct to define ranges and apply different colors on to the color box DOM
element.

Attaching the Plug-in Wrapper to a Control Conditionally

This task is a step in Process of Customizing the Plug-in Wrapper.
This topic describes how to attach the plug-in wrapper you created in Creating the Plug-in Wrapper to a control.

The following figure illustrates the code you use to attach the plug-in wrapper to a control conditionally. Each number in
this figure identifies the corresponding step number in the numbered task list that this book includes immediately after

this figure.
), SiebelippFacade.ColorBoxPW, function (contrel) { °:|

[Sitbe].-'tpp.‘_i Apo.PluginBuilder. AttachPi(consts. get(SWE CTRL COM
PP - N ke makhe

Every combo boot encountered is run agains

, and re & ATtAChEBENT.

be as complex or simple as required.
In this case

l return (control.GetName() === "Probability2”); o |
m:

To attach the plug-in wrapper to a control conditionally

1. Inthe colorboxpw.js file, introduce the AttachPW method from the PluginBuilder namespace that attaches the
presently defined plug-in wrapper to a given type of control:

SiebelApp.S_App.PluginBuilder.AttachPW (consts.get ("SWE_CTRL COMBOBOX"),

81
ORACLE

Siebel

Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

SiebelAppFacade.ColorBoxPW, function (control) {

In this customization, the intention is to apply the plug-in wrapper to a dropdown type of control. To achieve
this customization the SWE_CTRL_COMBOBOX is used for the dropdown type. All controls are customizable.
With this customization, every dropdown encountered by the Siebel Open Ul client will use this method.
Define the condition under which the attachment should occur, and to which specific instance of the control.
The return value of the method used in Step 1 decides whether the plug-in wrapper attaches to a particular
control. Returning true will mean a positive attachment.

return (control.GetName () === "Probability2");

Use the control object to create this condition. Since the intention is to attach the plug-in wrapper for all
repository controls that have a name of probability2, true will be returned when the name of the condition
matches.

Note: Plug-in wrappers are not restricted to any Presentation Model or Physical Renderer. Also, a
customization defined on a plug-in wrapper will be applicable throughout the Siebel Open Ul client, as long as
the condition is satisfied. In this example, any control having a repository name of "Probability2" in any screen
or view will be attached to this plug-in wrapper.

Define conditions for plug-in wrapper attachments. Conditions used can be as complex as necessary, based on
the requirements. Use following examples as guidance for defining conditions:

Attach a plug-in wrapper to all TextArea fields in Opportunity List applet:
SiebelApp.S App.PluginBuilder.AttachPW(consts.get ("SWE_CTRL TEXTAREA"),
SiebelAppFacade.CustomPW, function (control) ({

return (control.GetAppplet().GetName () === "Opportunity List Applet");

I

a. Attach a plug-in wrapper to all Date Fields in Contact Form applet and Account Form Applet:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get ("SWE _CTRL DATE_PICK"),
SiebelAppFacade.CustomPW, function (control) ({

var appletName = control.GetAppplet () .GetName () ;

return (appletName === "Contact Form Applet" || appletName === "Account Form
Applet");

b

b. Attach a plug-in wrapper to a specific Text Box in a specific applet only:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get ("SWE_CTRL TEXT"),
SiebelAppFacade.CustomPW, function (control) ({

var appletName = control.GetAppplet () .GetName () ;

return (appletName === "Contact Form Applet" && control.GetName() === "Last
Name") ;

b
c. Attach a plug-in wrapper to all Dropdowns in a particular application:

SiebelApp.S_App.PluginBuilder.AttachPW (consts.get ("SWE_CTRL COMBOBOX"),
SiebelAppFacade.CustomPW, function (control) ({

return (SiebelApp.S_ App.GetName () === "Siebel EPharma")

})

d. Attach a plug-in wrapper to all check boxes in a view when they are accessed on touch devices:
SiebelApp.S_App.PluginBuilder.AttachPW (consts.get ("SWE_CTRL CHECKBOX"),

SiebelAppFacade.CustomPW, function (control) {
return (SiebelAppFacade.DecisionManager.IsTouch() &&

82

ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

control.GetApplet () .GetView () .GetName === "Opportunity Detail View")
})

Configuring the Manifest for the Recycle Bin Example

This task is a step in Roadmap for Customizing Siebel Open UI.

This topic describes how to configure the manifest for the recycle bin example. For more information, see Configuring
Manifests.

To configure the manifest for the recycle bin example

1. Make sure your presentation model and physical renderer use the define method.

You do this in Step 4 in the topic Creating the Presentation Model for the presentation model and in Step 5 in
the topic Setting Up the Physical Renderer for the physical renderer.
2. Login to a Siebel client with administrative privileges.
3. Navigate to the Administration - Application screen, and then the Manifest Files view.
4. Inthe Files list, add the following files:
siebel/custom/recyclebinrenderer.js
siebel/custom/recyclebinpmodel. js
siebel/custom/carouselrenderer. js

3rdParty/jcarousel/skins/tango/skin.css
files/theme-aurora.css

The file that resides in the files folder is the predefined file that you use in this example.
5. Administer the manifest for the physical renderer:
a. Navigate to the Administration - Application screen, and then the Manifest Administration view.
b. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Physical Renderer
Name SIS Account List Applet

c. Inthe Object Expression list, add the following expression. The physical renderer uses this expression to
render the applet in a desktop platform.

Field Value

Expression Desktop

83
ORACLE

Siebel

Configuring Siebel Open Ul

Field Value

Level 1

d. Inthe Files list, add the following files:

siebel/custom/recyclebinrenderer.js

e. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Presentation Model
Name SIS Account List Applet

Chapter 4
Example of Customizing Siebel Open Ul

f. In the Object Expression list, add a record with no value in the Expression field.

g. Inthe Files list, add the following file:

siebel/custom/recyclebinpmodel. js

Configuring the Manifest for the Color Box Example

This task is a step in Roadmap for Customizing Siebel Open UI.

In this topic, you will configure the manifest for the color box plug-in wrapper example. For more information, see
Configuring Manifests.

To configure the manifest for the color box example

P UWNA

Verify that your plug-in wrapper uses the define method.
Log in to the Siebel Open Ul client with administrative privileges.

Navigate to the Administration - Application screen, and then the Manifest Files view.

In the Files list, add the following file:

siebel/custom/colorboxpw. js

Modify the manifest for the physical renderer:

a. Navigate to the Administration - Application screen, and then the Manifest Administration view.

b. Inthe Ul Objects list, add a new record with the following values:

ORACLE

84

Siebel Chapter 4

Configuring Siebel Open Ul Example of Customizing Siebel Open Ul
Field Value
Type Application
Usage Type Common
Name PLATFORM INDEPENDENT

c. Inthe Object Expression list, add the following subexpression.

Field Value

Group Name Leave empty
Expression Desktop
Level 1

Operator Leave empty
Web Template Name Leave empty

d. Inthe Files list, add the file that you created in Step 4.

siebel/custom/colorboxpw.js

Testing Your Modifications

This task is a step in Roadmap for Customizing Siebel Open UI.

In this topic, you test your modifications.

To test your modifications

1. Login to the Siebel Open Ul client, and then navigate to the Accounts screen.
2. Use the Select column to choose five account records, and then click Delete.
3. Siebel Open Ul deletes the records and adds them to the carousel recycle bin.

85
ORACLE

Siebel Chapter 4
Configuring Siebel Open Ul Example of Customizing Siebel Open Ul

4. To restore a record, click the plus (+) icon in the carousel recycle bin (as shown in the following image).

[+

Sunget
Tanning
Bedsactive(
415) 329-
£500HO

Hibbing
Manufacturin
ACtive(413)
H0-200HG

Kimial Dry
CleanersActi
ve(BES) 565-
TTasBerkele

\ 4

5. Verify that Siebel Open Ul recreates the record on the Siebel Server and adds it back to the Account list.
Navigate to the Opportunities screen, then to the Opportunities List view

7. Verify that the Probability field in the Opportunity form applet displays the color box and exhibits the correct
behavior based on changes to values and clicks.

o

ORACLE

86

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

5 Customizing Siebel Open Ul

Customizing Siebel Open Ul

This chapter describes how to customize Siebel Open UL. It includes the following topics:

- Guidelines for Customizing Siebel Open Ul
« Doing General Customization Tasks

» Customizing Events

« Managing Files

« Configuring Manifests

- About Preferences

Guidelines for Customizing Siebel Open Ul

This topic describes guidelines for configuring Siebel Open Ul. It includes the following information:

« Guidelines for Customizing Presentation Models

« Guidelines for Customizing Physical Renderers

« Guidelines for Customizing Plug-in Wrappers

- Guidelines for Customizing Presentation Models, Physical Renderers, and Plug-in Wrappers

Some Siebel Open Ul customizations use the same configuration that a Siebel CRM application uses. For example, you
can use the information that Configuring Siebel Business Applications describes to configure the following items in
Siebel Open Ul:

List applets
Form applets
- Views that contain more than one applet

- Applet controls and list columns

Guidelines for Customizing Presentation Models

It is recommended that you apply the following guidelines if you configure a presentation model:

Make sure you customize Siebel Open Ul so that the user-interface state is separate from the rendering of this
state. The guidelines in this topic describe how to do this.

- Add a new presentation model only after you consider all other customization options, such as modifying code
in a Object Definition Html or using Siebel Tools to modify an object. To examine some examples that do not
modify the presentation model, see Customizing Siebel Open UI.

A presentation model implements the entire abstraction of the user interface content, so the predefined
implementation of a presentation model implements the predefined abstraction. There are only a few types of

87
ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

basic user interface abstractions, such as single record, list, tree, and so on. It is recommended that you use a
predefined presentation model for each of these basic abstractions that Oracle provides you.

Make sure Siebel Open Ul models all the state variables that it requires to achieve a rich client behavior, and
that it models these state variables as presentation model properties. These properties can reside in the
presentation model on the client, or the Siebel Server can provide them from an applet. You can add methods
that modify these properties and that manage the state changes after you configure Siebel Open Ul to add
them. Siebel Open Ul typically calls these methods due to a user action, or if the server sends a notification.

If a method modifies the logical state of the user interface, then Siebel Open Ul uses the AttachPMBinding
method to add a binding trigger to the physical renderer. This trigger binds the modified state to the physical
user interface. For more information, see AttachPMBinding Method.

Siebel Open Ul strictly defines each life cycle method. To help make sure your implementation is clean and readable, it is
recommended that you use the following guidelines:

- Make sure Siebel Open Ul uses all presentation model state variables as properties. You must use the

AddProperty method to create these properties. You must not use ordinary JavaScript variables to create these
properties.

Use methods to implement all state changes of the presentation model. Use the AddMethod method to create
these methods.

Make sure Siebel Open Ul uses the AttachEventHandler method to bind each method that the presentation
model contains to an event that the physical renderer contains. Each event occurs as the result of some
physical user action. This configuration makes sure Siebel Open Ul binds each user action to the required logic
and modifies the user interface state. For more information, see AttachEventHandler Method.

When Siebel Open Ul sends a reply, it includes all modifications that occur in the business component layer.

It includes these modifications in the reply that it sends in a Notification property set. You must use the
AttachNotificationHandler method to add this notification. For more information, see Notifications That Siebel
Open Ul Supports:

o Siebel Open Ul packages a reply from the server for any predefined type of request. It includes this
package in a predefined reply property set. You must use the AttachPSHandler method to add the
handler for any property set type that the server sends.

o You must use the AttachPostProcessingHandle method to add any post-processing handler that does
follow up logic on a server request, such as a NewRecord request. You can add this logic after Siebel
Open Ul finishes processing the reply for this request. Setting the focus for a control is an example of this
kind of configuration.

Siebel Open Ul does the initial setup of the presentation model when it initializes the Siebel view or application,
depending on whether the user interface object resides inside or outside of the view. The server sends a
property set that includes all the initialization attributes. The proxy uses most of these attributes, but you must
use the AddProperty method to get the values that the presentation model requires to set and store the state.

You must use the following methods in the physical renderer the first time Siebel Open Ul renders the user
interface:

o BindEvents. Binds the presentation model methods to the appropriate events on a control. For more
information, see BindEvents Method.

o BindData. Accesses the presentation model properties, and then sends them to the control through the
methods that this control exposes. For more information, see BindData Method.

You must configure Siebel Open Ul to bind any state changes to the presentation model that occur after

the physical renderer finishes the initial rendering. To do this, you configure Siebel Open Ul to call the
AttachPMBinding method on the physical renderer. This configuration specifies the method that the physical
renderer must call or the properties that it must access so that it can send data back to the control. This
configuration allows Siebel Open Ul to render the user interface after it modifies the presentation model state.

88

ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

Guidelines for Customizing Physical Renderers

It is recommended that you apply the following guidelines if you configure a physical renderer:

Use a physical renderer only to implement methods that render the presentation model state:

o Do notinclude any other logic in a physical renderer.
o Do not include business logic that modifies the user interface state.

o Do not include manipulations or life cycle control of individual controls or fields. It is recommended that
those types of customizations should be maintained separately, in the plug-in wrapper.

o Only use a physical renderer to send user action events to the presentation model, and use the
presentation model to do all the work that is necessary to modify a state.

o Allow the physical renderer to rebind the new presentation model state to the rendered user interface
only after the presentation model finishes modifying the state of the logical user interface.

Do not use a physical renderer to add any presentation attributes to the Document Object Model (DOM).
Example attributes include position, color, or any other styling. To modify a presentation attribute, you must
attach or detach a style that you define in a CSS file.

- Configure Siebel Open Ul to do all rendering only in physical renderers or plug-in wrappers. It is strongly

recommended that you do not configure Siebel Open Ul to do direct DOM manipulation. If you cannot avoid
direct DOM manipulation, then you must do this manipulation in a physical renderer or in a plug-in wrapper.
Configure Siebel Open Ul to send data, metadata, or state information to controls only from a physical renderer.
For more information, see About Objects and Metadata.

In most situations, if you add a presentation model, then you must also add a corresponding physical renderer.
You typically use a presentation model to add custom logic in the client. This logic typically determines a
physical behavior that requires a physical renderer to do the rendering. For example, in most situations,

you cannot configure a predefined applet that also renders custom logic. Siebel Open Ul structures custom
JavaScript logic in the presentation model and physical renderer as a customization of predefined Siebel Open
UL. This structure allows Siebel Open Ul to use JavaScript and to use other logic that a predefined Siebel Open
Ul implementation provides, such as events, Siebel arrays, and so on. It is not recommended that you configure
JavaScript that is independent of Siebel Open Ul, and that also modifies Siebel CRM data or physical behavior.

Guidelines for Customizing Plug-in Wrappers

It is recommended that you apply the following guidelines when configuring a plug-in wrapper:

Use a plug-in wrapper exclusively to implement methods that manage the life cycle of an individual control or

field.

Do not include any other logic in a plug-in wrapper.
Do not include business logic that modifies the user interface state.

Use a physical renderer, exclusively, to send user action events on a field to the presentation model. Use the
presentation model to do all the actions that require modifying a state.

- Allow the plug-in wrapper to rebind the new presentation model state to the rendered control only after the

presentation model finishes modifying the state of the logical user interface.

89

ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

Do not use a plug-in wrapper to add presentation attributes to the Document Object Model (DOM). Examples
of these types of attributes include: position, color, or any other styling attribute. To modify a presentation
attribute, you must attach or detach a style that you define in a CSS file.

In most situations, if you add a plug-in wrapper, then you must also add a corresponding physical renderer that
interacts with the plug-in wrapper. Typically a plug-in wrapper is used to add custom logic to controls in the
client. This logic determines a physical behavior that requires a physical renderer to do the handling for this
wrapper.

Guidelines for Customizing Context Renderer

It is recommended that you apply the following guidelines if you configure a context renderer:

Use a context renderer exclusively to implement methods that only modify the Ul. For example, a context
renderer for a view can rearrange all the applets in the view as an Accordion panel.

Do not include business logic that modifies the user interface state.

- A context renderer must not try to alter the life cycle of an individual control or field. If required, a plug-in

wrapper must be implemented.

- A context renderer for an applet must not try to alter the Document Object Model (DOM) for the other applets

in a view. Similarly, the view based context renderer must not alter the DOM outside of the view container.

- A context renderer is not an alternative for the physical renderer or plug-in wrapper. It can be used for a Ul

operation that can be leveraged by multiple Physical Renderers. For example, in the case of an accordion panel
for an applet in a view, you can attach the same context renderer with different custom physical renderer for the
view to take advantage of the accordion panel in all views, irrespective of the custom physical renderer.

Guidelines for Customizing Presentation Models, Physical
Renderers, and Plug-in Wrappers

It is recommended that you apply the following guidelines if you configure the presentation model, physical renderer, or
plug-in wrapper for a client object:

Determine the following items for any element that you intend to customize:

o The presentation model you must use

o The plug-in wrapper you must use and the physical renderer that you must use with the presentation
model

o The context renderer you must use.

o Configure the manifest so that Siebel Open Ul can identify the JavaScript files it must download to the
client so that it can render the user interface element. For more information, see Configuring Manifests.

o Modify the physical renderer and presentation model for user interface objects that do not reside in a
view, such as navigation tabs. Only one of these elements resides on a single Siebel page, and they do
not vary during a Siebel session. So, you can configure the physical renderer and the presentation model
for each of these elements in the manifest.

o You must place all custom presentation models, physical renderers, plug-in wrappers, and context
renderers in the custom folder. For more information about this folder, see Organizing Files That You
Customize.

90

ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

Doing General Customization Tasks

This topic describes some of the general customization tasks that you can do in Siebel Open UL. It includes the following
information:

« Preparing Siebel Tools to Customize Siebel Open Ul

- Modifying the Application Configuration File

« Deriving Presentation Models, Physical Renderers, and Plug-in Wrappers

- Adding Presentation Model Properties That Siebel Servers Send to Clients
« Configuring Siebel Open Ul to Bind Methods
« Calling Methods for Applets and Business Services

« Using the Base Physical Renderer Class With Nonapplet Objects

« Creating Components

« Customizing How Siebel Open Ul Displays Error Messages

« Customizing Navigation Options

« Example of Restricting Navigation Options

Preparing Siebel Tools to Customize Siebel Open Ul

This topic describes how to prepare Siebel Tools so that you can use it to customize Siebel Open Ul. For more
information, see Using Siebel Tools .

To prepare Siebel Tools to customize Siebel Open Ul

1.

Open Siebel Tools.

For more information, see Using Siebel Tools .

Choose the View menu, and then the Options menu item.

Click the Object Explorer tab.

Scroll down through the Object Explorer Hierarchy window to locate the object type you must display

It is recommended that you set up Siebel Tools to display all object types. To display an object type and all child
object types of an object type, make sure the parent includes a check mark with a white background.
Click OK.

Modifying the Application Configuration File

You can use the configuration file to specify parameters that determine how a specific Siebel application runs. For more
information about the application configuration file, see Configuring Siebel Business Applications .

To modify the application configuration file

1.

Open Windows Explorer, and then navigate to the following folder:

91

ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

INSTALL DIR\eappweb\bin\language_code

For more information about the language_code, see Languages That Siebel Open Ul Supports.
2. Use a text editor to open the application configuration file that you must modify.

Each Siebel application uses a different configuration file. For example, Siebel Call Center uses the uagent.cfg
file. The application configuration file uses the .cfg file extension.

3. Locate the section that you must modify.
Each application configuration file uses brackets to indicate a section. For example:
[InfraUIFramework]

4. Modify an existing parameter or add a separate line for each parameter that you must specify.
Use the following format:

parameter name = "<paraml param2>"

where:

o paramland param?2 are the names of the parameters.

For example:

TreeNodeCollapseCaption = "<img src='images/tree collapse.gif' alt='-' border=0
align=left vspace=0 hspace=0>"

Deriving Presentation Models, Physical Renderers, and Plug-in
Wrappers

Deriving is a coding technique that you can use with Siebel Open Ul to create a reference between two presentation
models, physical renderers, or plug-in wrappers. Where Siebel Open Ul derives one presentation model, physical
renderer or plug-in wrapper from another presentation model, physical renderer or plug-in wrapper. This referencing
can make sure that the derived object uses the same logic as the source object. It also helps to reduce the amount of
coding you must perform.

The following code includes all the code required to derive one presentation model from another presentation model:

Note: The same methodology can be applied for physical renderers and plug-in wrappers.

if (typeof(SiebelAppFacade.derived PM name) === "undefined") {
SiebelJS.Namespace("SiebelAppFacade.derived PM name") ;
define("siebel/custom/derived PM name", ["siebel/custom/source PM"], function() {

SiebelJs.Extend(derived PM name, SiebelAppFacade.source PM) ;

})
}

92
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

where:

- derived_PM_name is the name of a presentation model that references another presentation model.

- source_PM is the name of a presentation model that provides the code that derived_PM_name uses. The
source_PM must already exist.

You must include the define and Extend Statements.

For example, the following code derives a presentation model named derivedpm2 from another presentation model,
named derivedpml:
if (typeof(SiebelAppFacade.derivedpm2) === "undefined") {
SiebelJS.Namespace ("SiebelAppFacade.derivedpm2") ;

define("siebel/custom/derivedpm2", ["siebel/custom/derivedpml”], function() {

SiebelJS.Extend(derivedpm2, SiebelAppFacade.derivedpml) ;
b
}

Adding Presentation Model Properties That Siebel Servers Send to
Clients

This topic describes how to add presentation model properties that the Siebel Server sends to the client.

It is strongly recommended that you configure custom presentation model properties only if the predefined
presentation model properties do not meet your requirements.

Adding Presentation Model Properties That Siebel Servers Send for Applets

This topic describes a general approach to customizing applet user properties for presentation models. The Siebel
Server sends these properties to the client.

To add presentation model properties that Siebel Servers send for applets
1. Add user properties to the applet:
a. Open Siebel Tools.

For more information, see Using Siebel Tools .
b. Inthe Object Explorer, click Applet.
c. Inthe Applets list, query the Name property for the applet that you must modify.

For example, query the Name property for Contact List Applet.
d. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.
e. Inthe Applet User Props list, add the following applet user property.

Name Value
ClientPMUserPropn user_property_name
For example, ClientPMUserProp1 You can specify one or more user properties. Siebel Open Ul sends these user properties

to the presentation model that it uses in the client to display the applet. To specify more

93
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Name Value

than one user property, use a comma and a space to separate each user property name.
For example:

User Property1, User Property2

Each user property that you specify must exist in the Siebel repository, and each of these
user properties must contain a value in the Value property.

f. (Optional) Specify more ClientPMUserPropn user properties, as necessary.

You can specify more than one ClientPMUserPropn user property, as necessary. Repeat Step e for each
ClientPMUserPropn user property that you require.

g. Compile your modifications.
2. Modify the presentation model:

a. Use a JavaScript editor to open your custom presentation model file that Siebel Open Ul will use to
display the applet that you modified in Step 1.

b. If your custom presentation model does not override the Setup method, then configure Siebel Open Ul to
do this override.

For more information about how to configure an override, see Process of Customizing the Presentation
Model.

c. Locate the following section of code:

presentation_model.Setup (propSet)

For example, if the class name is CustomPM, then locate the following code:

CustomPM.prototype.Setup = function (propSet)

d. Add the following code to the section that you located in Step c:

var consts = SiebelJS.Dependency ("SiebelApp.Constants") ;

94
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

var apm = propSet.GetChildByType (consts.get ("SWE_APPLET PM PS")) ;

where:

- swWE_APPLET PM_Ps iS a predefined constant that Siebel Open Ul uses to get the presentation model
properties that it uses to display the applet. The Siebel Server sends these properties in a property
set.

e. Add the following code anywhere in the presentation model:

var value = apm.GetProperty ("user property name")

For example:

var value = apm.GetProperty ("User Propertyl")

You must configure Siebel Open Ul so that it runs the Setup method that you specify in Step c before it
encounters the code that you add in Step e.

Adding Presentation Model Properties That Siebel Servers Send for_Views

This topic describes how to customize view user properties for presentation models. The Siebel Server sends these
properties to the client.

To add presentation model properties that Siebel Servers send for views

1. Add user properties to the view:
a. Open Siebel Tools.

For more information, see Using Siebel Tools .
In the Object Explorer, click View.
c. Inthe Views list, query the Name property for the view that you must modify.

For example, query the Name property for Contact List View.
d. Inthe Object Explorer, expand the View tree, and then click View User Prop.

e. Do Step 1, Step e through Step g, in the topic Adding Presentation Model Properties That Siebel Servers
Send for Applets, except add view user properties to a view instead of adding applet user properties to an
applet.
2. If your custom view presentation model does not override the Setup method, then configure Siebel Open Ul to
do this override:

a. Do Step 2 in the topic Adding Presentation Model Properties That Siebel Servers Send for Applets except
use vpm instead of apm:

b. Use a JavaScript editor to open the presentation model file that Siebel Open Ul uses to display the view
that you modified in Step 1in the topic Adding Presentation Model Properties That Siebel Servers Send for
Applets.

c. Add the following code:

var consts = SiebelJS.Dependency ("SiebelApp.Constants") ;

95
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

var vpm = propSet.GetChildByType (consts.get ("SWE_VIEW _PM PS"));

where:

- sweE_vIEW_PM Psis a predefined constant that Siebel Open Ul uses to get the presentation model
properties that it uses to display the view. The Siebel Server sends these properties in a property
set.

d. Add the following code:

var value = vpm.GetProperty ("user property name")

For example:

var value = vpm.GetProperty ("User Propertyl")

For more information about how to configure an override, see Process of Customizing the Presentation
Model.

Customizing Control User Properties for Presentation Models
This topic describes how to customize control user properties for a presentation model.

To customize control user properties for presentation models

1. Add user properties to the control:
a. Open Siebel Tools.

For more information, see Using Siebel Tools .
In the Object Explorer, click Applet.
c. Inthe Applets list, query the Name property for the applet that you must modify.

For example, query the Name property for Contact List Applet.
d. Inthe Object Explorer, expand the Applet tree, and then Control.
e. Inthe Controls list, query the Name property for the control that you must modify.

For example, query the Name property for NewRecord.
f. Inthe Object Explorer, expand the Control tree, and then click Control User Prop.

g. Inthe Control User Props list, do Step 1, Step e through Step g, in the topic Adding Presentation Model
Properties That Siebel Servers Send for Applets, except add control user properties to the control instead
of adding applet user properties to an applet.

2. Modify the custom presentation model of the applet where the control resides:

Note: This step can also be accomplished using a plug-in wrapper written for customizing the control.
a. Configure Siebel Open Ul to get the control object. You can do one of the following:
- Use the following code to get the control object from the GetControls presentation model property:

var controls = this.Get("GetControls") ;

for (var control in controls) {

var cpm = control.GetPMPropSet (consts.get("SWE_CTRL_PM PS")) ;
// Do something with cpm

96
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

}

- Use the following the GetControl method to get an instance of the Account Name control:

SiebelApp.S_App.GetActiveView () .GetApplet (<Name of the Applet>).GetControl (<Control Name>) ;
var cpm = myControl.GetPMPropSet (consts.get ("SWE_CTRL_PM PS")) ;

b. Add the following code:

var consts = SiebelJS.Dependency ("SiebelApp.Constants") ;
var cpm = control.GetPMPropSet (consts.get ("SWE_CTRL_PM PS"));

where:

- GetPMPropset is @ method that gets the property set for this control. For more information, see
GetPMPropSet Method.

- sweE_cTRL_PM_Ps is a predefined constant that Siebel Open Ul uses to get the presentation model
that it uses for the control object. The Siebel Server sends these properties in a property set.

c. Add the following code:

var value = cpm.GetProperty ("user_ property name")

For example:

var value = cpm.GetProperty ("User Propertyl")

Configuring Siebel Open Ul to Bind Methods

This topic includes some examples that describe how to bind methods. For other examples that bind methods, see the
following topics:

- Example of the Life Cycle of a User Interface Element
Customizing the Physical Renderer to Refresh the Carousel

See also Text Copy of Code That Does a Partial Refresh for the Presentation Model.

Binding Methods That Reside in the Physical Renderer

You can use the AttachPMBinding method to bind a method that resides in a physical renderer and that Siebel Open Ul
must call when the presentation model finishes processing.

To bind methods that reside in the physical renderer

1. Add the method reference in the physical renderer.
2. Configure Siebel Open Ul to send the scope in the binderConfig argument of the AttachPMBinding method as a
scope property.

For more information, see AttachPMBinding Method.
Conditionally Binding Methods

The example in this topic conditionally binds a method.

97
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

To conditionally bind methods

- Add the following code:
this.AttachPMBinding ("DoSomething", function () {SiebelJS.Log ("After
DoSomething") ;}, {when: function(function_name) {return false;}})
where:

o function_name identifies the name of a function.

In this example, if Siebel Open Ul calls DoSomething, then the presentation model calls the function_name that the when
condition specifies, and then tests the return value. If function_name returns a value of:

- true. Then Siebel Open Ul calls the AttachPMBinding method.
- false. Then Siebel Open Ul does not call the AttachPMBinding method.

If you do not include the when condition, then Siebel Open Ul runs the DoSomething method, and then calls the
AttachPMBinding method. For more information, see AttachPMBinding Method.

Calling Methods for Applets and Business Services

This topic includes some examples that describe how to call methods for applets and business services. For other
examples that call methods, see the following topics:

Customizing the Presentation Model to Delete Records
- Attaching an Event Handler to a Presentation Model
Using Custom JavaScript Methods
Using Custom Siebel Business Services
Customizing Siebel Pharma for Siebel Mobile Disconnected Clients

Calling Methods

The example in this topic describes how to call a method when the user clicks a button.

To call methods for buttons

1. Modify the plug-in wrapper:
a. Use a JavaScript editor to open the plug-in wrapper for the button.
b. Locate the click handler for the button.
c. Add the following code to the code you located in Step b:

var inPropSet = CCFMiscUtil CreatePropSet() ;

//Define the inPropSet property set with the information that InvokeMethod sends
as input to the method that it calls.

var ai= {};

ai.async = true;

ai.selfbusy = true;

ai.scope = this;

ai.mask = true;

ai.opdecode = true;

98
ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

ai.errcb = function() {
//Code occurs here for the method that Siebel Open UI runs if the AJAX call fails
}i
ai.cb = function(){
//Code occurs here for the method that Siebel Open UI runs if the AJAX call is
successful
}i
this.GetPM() .ExecuteMethod ("InvokeMethod",input arguments, ai);

where:
- input arguments lists the arguments that InvokeMethod sends as input to the method that it calls.

For example, the following code specifies to use the InvokeMethod method to call the NewRecord
method, using the properties that the inPropSet variable specifies for the ai argument:

this.GetPM() .ExecuteMethod ("InvokeMethod", "NewRecord", inPropSet, ai)

For more information, see InvokeMethod Method for Application Models and NewRecord Method.

2. Modify the presentation model:

a.

Use a JavaScript editor to open the presentation model for the applet that you must modify.
Locate the code that calls the Init method.
Add the following code to the code that you located in Step b:

this.AttachPreProxyExecuteBinding ("method name", function(methodName, inputPS,
outputPS) {// Include code here that Siebel Open UI runs before the applet proxy
sends a reply.});

this.AttachPostProxyExecuteBinding ("method name", function(methodName, inputPS,

outputPS) {// Include code here that Siebel Open UI runs after the applet proxy
sends a reply.});

where:

- method_name identifies the name of the method that InvokeMethod calls. Note that Siebel Open
Ul comes predefined to set the value of the methodName argument in the following code to
WriteRecord, by default. You must not modify this argument:

function (methodName, inputPS, outputPS)

For example:

this.AttachPreProxyExecuteBinding ("WriteRecord", function(methodName, inputPS,
outputPS) {// Include code here that Siebel Open UI runs before the applet proxy
sends a reply.});

this.AttachPostProxyExecuteBinding ("WriteRecord", function (methodName, inputPS,

outputPS) {// Include code here that Siebel Open UI runs after the applet proxy
sends a reply.});

For more information, see WriteRecord Method, AttachPostProxyExecuteBinding Method, and
AttachPreProxyExecuteBinding Method.

99

ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Calling Methods for Business Services
The example in this topic describes how to call a method for a business service when the user clicks a button.

To call methods for buttons

1. Use a JavaScript editor to open the plug-in wrapper for the button.
2. Locate the click handler for the button.
3. Add the following code to the code that you located in Step 2:

var service = SiebelApp.S App.GetService ("business_service_name") ;
if (service) {

var inPropSet = CCFMiscUtil CreatePropSet();

//Code occurs here that sets the inPropSet property set with all information that
Siebel Open UI must send as input to the method that it calls.

var ai = {};

ai.async = true;

ai.selfbusy = true;

ai.scope = this;

ai.mask = true;

ai.opdecode = true;

ai.errcb = function() {

//Code occurs here for the method that Siebel Open UI runs if the AJAX call fails
}i

ai.cb = function() {

//Code occurs here for the method that Siebel Open UI runs if the AJAX call
is successful

}i

service.InvokeMethod ("method name", "input arguments", ai);

}

For more information, see InvokeMethod Method for Presentation Models.

Using the Base Physical Renderer Class With Nonapplet Objects

This topic describes how to use the Base Physical Renderer class with nonapplet objects that you customize.

The BasePhysicalRenderer class simplifies calls that Siebel Open Ul makes to the AttachPMBinding method for
nonapplet objects. You can configure Siebel Open Ul to use the BasePhysicalRenderer class to identify the physical
renderer, call AttachPMBinding, and specify the configuration for the scope of a nonapplet object. You can then use a
custom physical renderer to call AttachPMBinding with the appropriate handler.

Siebel Open Ul uses the PhysicalRenderer class to interface with and to render applets. It uses the BasePhysicalRenderer
class to render nonapplet objects. Using this class separates the interface to the physical renderer from the physical
renderer. Siebel Open Ul uses the BasePhysicalRenderer class only with nonapplet objects, such as the toolbar or
predefined query bar.

Siebel Open Ul defines the BasePhysicalRenderer class in the basephyrenderer.js file.

100
ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 5
Customizing Siebel Open Ul

Hierarchy That the Base Physical Renderer Class Uses

The following figure illustrates the hierarchy that the BasePhysicalRenderer class uses for non-mobile applications,
which is as follows:

- BasePhysicalRenderer

-PhysicalRenderer

-JQGridRenderer

- BasePhysicalRenderer

-PDQRenderer

BasePhysicalRenderer has a Member Variable (m_PM) and Methods (Init, GetPM, ShowUI, BindEvents, BindData,
AttachPMBinding, EndLife). The member variable is a variable that is associated with the class. All methods can access
this member variable.

BasePhysicalRenderer

m_pm

Imit

GetPM

Showll
BindEvents
BindDaia
AttachPMBinding
EndLife

& Y

| PhysicalRenderer

[

PDQRenderer

| JOGridRendsrer

[Member Variable
[Methads

Using Methods with the Base Physical Renderer Class

The following table describes how to use methods with the BasePhysicalRenderer class.

Method

Init

GetPM

ShowUlI

ORACLE

Description

Use this method to initialize the BasePhysicalRenderer class. For more information, see /nit Method.

Use this method to retrieve the presentation model object on which the base physical renderer is
running. For more information, see GetPM Method for Physical Renderers.

Use this method to display the DOM area corresponding to this physical renderer. Any customization
on rendering of controls owned by this applet should be left to the respective plug-in wrappers. For
more information, see ShowU! Method and Deriving Presentation Models, Physical Renderers, and
Plug-in Wrappers.

101

Siebel
Configuring Siebel Open Ul

Method

BindEvents

BindData

AttachPMBinding

EndLife

Chapter 5
Customizing Siebel Open Ul

Description

Use this method to attach event handlers to the applet area that runs on this physical renderer. Any
customizations relating to event attachment to controls owned by this applet should be left to the
respective plug-in wrappers. For more information, see BindEvents Method.

Use this method to bind data attributes to the applet area that runs on this physical renderer. Any
customizations relating to event attachment to controls owned by this applet should be left to the
respective plug-in wrappers. For more information, see BindData Method and Deriving Presentation
Models, Physical Renderers, and Plug-in Wrappers.

Use this method to configure Siebel Open Ul to do the same work that the AttachPMBinding method
does in a presentation model. You can use the following argument to call the AttachPMBinding
method: scope.

You can use the following arguments with the AttachPMBinding method:

- methodName. Identifies the method that the BasePhysicalRenderer class binds.
- handler. Identifies the handler method that Siebel Open Ul uses for this binding.

- handlerScope. Identifies the scope where the BasePhysicalRenderer class runs the handler. If you
do not specify the handlerScope, then the BasePhysicalRenderer class uses the default scope.

For more information, see AttachPMBinding Method.

Use this method to end the life of the physical renderer. It is recommended that you use the EndLife
method to clean up the custom event handler. This clean up includes releasing events, deleting unused
variables, and so on. For more information, see EndLife Method.

Declaring the AttachPMBinding Method When Using the Base Physical

If you configure Siebel Open Ul to use the BasePhysicalRenderer class, then you must declare the AttachPMBinding

method.

To declare the AttachPMBinding method when using the Base Physical Renderer class

1. Use a JavaScript editor to open your custom physical renderer.

2. Locate the Init method.

3. Add the following code to the Init method that you located in Step 2:

CustomPhysicalRenderer.prototype.Init = function() {
// Be a good citizen. Call Superclass first
SiebelAppFacade.CustomPhysicalRenderer.superclass.Init.call (this);
// Call AttachPMBinding here.

}

For example:

CustomPhysicalRenderer.prototype.Init = function() {
SiebelAppFacade.CustomPhysicalRenderer.superclass.Init.call (this);
this.AttachPMBinding ("EndQueryState", EndQueryState);

}

ORACLE

102

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Sending an Arbitrary Scope

An arbitrary scope is any scope other than the scope that calls the handler. You can configure Siebel Open Ul to send to
the AttachPMBinding method any scope that is available in the physical renderer. You can use the BasePhysicalRenderer
class to send an arbitrary scope that identifies the handler method that Siebel Open Ul must use.

To send an arbitrary scope

1. Use a JavaScript editor to open your custom physical renderer.
2. Add the following code to send an arbitrary scope as an argument:

this.AttachPMBinding ("FocusOnApplet", FocusOnApplet, arbitrary scope);

For example:

this.AttachPMBinding ("FocusOnApplet", FocusOnApplet, SiebelAppFacade.S_App) ;

where:

o SiebelAppFacade.S_App IS an arbitrary scope because it is not the calling scope that the this statement
identifies, which Siebel Open Ul assumes in BasePR, by default. In this example, the FocusOnApplet
handler must exist in the SiebelAppFacade.S_App scope.

Accessing Proxy Objects

If you must write code that accesses a proxy object, then it is strongly recommended that you access this proxy object
through a physical renderer. The physical renderer typically exposes the interfaces that allow access to operations that
Siebel Open Ul performs on the proxy object. The example in this topic accesses a proxy object for an active control.
To access proxy objects

1. Use a JavaScript editor to open your custom physical renderer.
2. Add the following code:

this.ExecuteMethod ("SetActiveControl", control) ;

This example code accesses a proxy object so that Siebel Open Ul can modify an active control.

It is recommended that you do not write code that directly accesses a proxy object from a physical renderer. In the
following example, Siebel Open Ul might remove the GetProxy method from the presentation model, and any code that
references GetProxy might fail. It is recommended that you do not use the following code:

this.GetProxy () .SetActiveControl (control) ;

Creating Components

The example in this topic configures Siebel Open Ul to attach a local component as the child of a view component. This
example uses the property set that Siebel Open Ul uses to create this component to specify the name of the module.

Siebel Open Ul uses this module for the presentation model and the physical renderer.

103
ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

To create components

1.

Create the property set. Use the following code:

var psInfo = CCFMiscUtil CreatePropSet();
psInfo.SetProperty (consts.get ("SWE_UIDEF_PM CTR"), " siebel/custom/customPM") ;
psInfo.SetProperty (consts.get ("SWE_UIDEF PR CTR"), " siebel/custom/customPR") ;

where:

o siebel/custom/custompM is the module name that identifies the siebel/custom/customPM.js presentation
model

o siebel/custom/customPR is the module name that identifies the siebel/custom/customPR.js physical
renderer

Create the dependency object. Use the following code:

var dependency = {};
dependency.GetName = function() {return "custom Dependency object";}

This example assumes that it is not necessary that this component references an applet, so the code limits the
scope to a view.

Call the MakeComponent method. Use the following code:

SiebelAppFacade.ComponentMgr .MakeComponent (SiebelApp.S_App.GetActiveView(),
psInfo, dependency) ;

For more information, see MakeComponent Method and GetActiveView Method.

Customizing How Siebel Open Ul Displays Error Messages

Prior to Siebel CRM release 8.1.1.13, Siebel Open Ul used the ErrorObject method to display the error dialog box. This
method calls a browser alert method that displays the dialog box as a browser notification. Beginning with Siebel CRM
release 81113, you can modify this configuration so that Siebel Open Ul displays the notification in a status bar orin a
custom dialog box.

Siebel Open Ul uses the following rendering files to display error messages:

- errorobjectrenderer.js. Displays an error alert or SWEAlert message.
- errorstatusbarrenderer.js. Displays an error message in a custom error status bar in the browser.

- errorpopuprenderer.js. Displays a custom dialog box that includes an error message.

Note the following:

« The errorobjectrenderer. js file is the only file that comes predefined with Siebel Open Ul and does not require

you to configure the manifest or to modify a method. You must not modify this file.

o The errorpopuprender. js file is in the sample folder and must be moved to the custom folder.

- The manifest does not come predeﬁned to use the errorstatusbarrenderer. is file or the errorpopuprenderer. js

file. If your customization requires one of these files, then you must add it to the manifest. Create a manifest
files entry with the name Siebel/custom.errorpopuprenderer.js

104

ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

- Siebel Open Ul renders only one of these files at a time. If you add errorstatusbarrenderer.js
Or errorpopuprenderer.js to the manifest, then Siebel Open Ul uses one of these files instead of

errorobjectrenderer. js

- Create a platform independent entry in the Manifest Administration view with type=Application and level=
Common and add the siebel/custom/errorpopuprenderer. js file.

- Clear the cache and start the application to get errorpopuprenderer.js loaded to the application.

- Use #_sweview_popup in the CSS file to customize error messages. For example:

#_sweview_popup {

color: red !important;
font-style: italic;
height: 300px !important;
}

- These files reference the following method. For more information about this method, see ShowErrorMessage
Method:

ShowErrorMessage (message)

- Each file uses the typical sequence that a physical renderer uses. For example, each file calls the following
methods in the following sequence. You must not modify this sequence. For more information, see Life Cycle of
a Physical Renderer:

o ShOWUl
o BindData
o BindEvents

For more information about configuring error messages in Siebel Open Ul, see Configuring Error Messages for
Disconnected Clients.

To customize how Siebel Open Ul displays error messages
1. Optional. Modify the style that Siebel Open Ul uses when it displays the error status bar.

If your customization uses the errorstatusbarrenderer.js file, then you can style the status bar by adding style
rules for the siebui-statusbar class in a custom cascading style sheet and place it in following folder:

files\custom\my-style.css

You must add the style sheet to the manifest by following the steps outlined in Configuring Manifests.
2. Configure the manifest. For more information about how to do this step, see Configuring Manifests:

a. Login to a Siebel client with administrative privileges.
Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Add one of the following files, depending on your customization requirements:

custom/errorstatusbarrenderer. js

105
ORACLE

Siebel
Configuring Siebel Open Ul

custom/errorpopuprenderer.js

d. Navigate to the Manifest Administration view.
e. Inthe Ul Objects list, specify the following object.

Type Application
Usage Type Theme
Name PLATFORM INDEPENDENT

f. Inthe Object Expression list, add the following subexpression.

Field Value

Group Name Leave empty.
Expression Desktop
Level 1

Chapter 5
Customizing Siebel Open Ul

Siebel Open Ul only uses the renderer whose level is set to 1.

Operator Leave empty.

Web Template Name Leave empty.

In the Files list, click Add.
In the Files dialog box, click Query.

= q

i. Inthe Name field, enter the path and file name that you added in Step c:

files/custom/my-style.css

j. Click Go.
3. Test your work:

a. Log out of, and then log back into the client.
b. Do something that results in an error.

c. Verify that the client displays an error message according to your modifications.

ORACLE

106

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Customizing Navigation Options

The Siebel Open Ul client can be configured to control the navigation options available to users. By default, the Side
Menu icon is used to control navigation. Without configuration, two additional options are available for navigation: Tab
and Tree.

In some deployments, you might want to restrict the use of a navigation option to a predefined group. This topic
explains how to control which navigation options are available to which users.

To customize the available navigation options

1. Create an expression for the navigation option that you want to restrict:
a. Login to a Siebel client with administrative privileges.
b. Navigate to the Administration - Application screen, and then the Manifest Expressions view.
c. Click the plus (+) icon to create a new expression.
d. Specify a name for the expression.
e. Specify the restrictive expression.
2. Create a copy of the navigation type that you want to restrict:
a. Navigate to the Administration - Application screen, and then the Manifest Administration view.
b. Inthe Ul Objects list, search with the following specifications:

Field Value

Type Navigation

Usage Type Physical Renderer
Name NAVIGATION

You can reference any navigation option.

c. Select the navigation option that you want to modify. The three available options are NAVIGATION_SIDE,
NAVIGATION_TAB, and NAVIGATION_TREE.
d. Take note of the exact file name that is listed in Files applet, you will need this information in a later step.
e. Select the Edit menu, then Copy Record.
3. Edit the navigation type:
a. Select the copy of the navigation type that you created in Step 2.
b. Click the plus (+) icon in Object Expression applet.
c. Inthe Expression field, specify the expression that you created in Step 1.
d. Click the plus (+) icon in the Files applet and add the file that you noted in Step 2, Step d.
4. Verify your work:
a. Logout of the client, and then log back into the client.

107
ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

This step refreshes the manifest.

Navigate to the User Preferences screen, then the Behavior view.

Verify that the correct options are available in the Navigation Control drop-down menu for the user with
which you are logged in.

Example of Restricting Navigation Options

The example in this topic describes how to restricts the Tree navigation option to only the ADMIN user in Siebel Open

ul.

This topic gives one example of restricting navigation options. You might use this feature differently, depending on your
business model.

To restrict the Tree navigation option to only the ADMIN user

1. Create an expression that restricts availability to administrator only:

angouow

Log in to a Siebel client with administrative privileges.

Navigate to the Administration - Application screen, and then the Manifest Expressions view.
Click the plus (+) icon create a new expression.

Specify the following in the Name field:

Admin Only
Specify the following in the Expression field:

GetProfileAttr ('Login Name') = 'ADMIN'

2. Create a copy of the NAVIGATION_TREE object:

a.
b.

Navigate to the Administration - Application screen, and then the Manifest Administration view.
In the Ul Objects list, search with the following specifications:

Field Value

Type Navigation

Usage Type Physical Renderer
Name NAVIGATION_TREE

c. Select the NAVIGATION_TREE record.

d.

Select the Edit menu, then Copy Record.

108

ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

3. Edit the new NAVIGATION_TREE record:

Select the copy of the NAVIGATION _TREE record.

Click the plus (+) icon in Object Expression applet.

In the Expression field, specify the expression Admin Only.

Click the plus (+) icon in the Files applet to add the following file:

angoo

jsTreeCtrl. js
4. Verify your work:

a. Log out of the client, and then log back into the client as a user other than ADMIN.

b. Navigate to the User Preferences screen, then the Behavior view.

c. Verify that the only the following two options are available in the Navigation Control drop-down menu:
- Side Menu
- Tab

d. Log out of the client, and then log back into the client as the ADMIN user.
e. Navigate to the User Preferences screen, then the Behavior view.
f. Verify that the only the following three options are available in the Navigation Control drop-down menu:

- Side Menu
- Tab
- Tree

Customizing Events

This topic includes some examples that describe how to customize the way Siebel Open Ul uses events. It includes the
following information:

« Refreshing Custom Events
Overriding Event Handlers

« Attaching an Event Handler to an Event

« Attaching More Than One Event Handler to an Event

« Stopping Siebel Open Ul From Calling Event Handlers

- Attaching and Validating Event Handlers in Any Sequence
Customizing the Sequence that Attaches and Validates Event Handlers
Using AttachEventHandler Prior to Siebel CRM Release 8.1.1.13

« Overriding the OnControlEvent Method and Then Calling a Superclass

« Allowing Blocked Methods for HTTP GET Access

For more information about how Siebel Open Ul uses events and examples that configure them, see the following
topics:

- Summary of Presentation Model Methods

- Life Cycle of a Physical Renderer

109
ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

Attaching an Event Handler to a Presentation Model
Customizing the Physical Renderer to Bind Events
Modifying CSS Files to Support the Physical Renderer
Presentation Model Class

Siebel CRM Events That You Can Use to Customize Siebel Open Ul

Refreshing Custom Events

Siebel Open Ul does not come predefined to refresh a custom event. The example in this topic describes how to modify
this behavior.

To refresh custom events

1.

3.

Add the following code:

this.AddMethod ("RefreshHandler", function(x, y, 2z){
// Add code here that does processing for RefreshHandler.
})

This code adds the RefreshHandler custom event handler.

Add the following code in the presentation model so that it is aware of the event that the RefreshEventHandler
specifies:

this.AttachEventHandler ("Refresh", "RefreshHandler");

For more information, see AttachEventHandler Method.
Add the following code in the bindevents method of the plug-in wrapper:

this.Helper ("EventHelper") .Manage (buttonkEl, "click", { ctx: this },
function (event) {
event.data.ctx.GetPM() .OnControlEvent ("Refresh", valuel, value2, valueN);

This code binds the event to the presentation model. For more information, see OnControlEvent Method.

Overriding Event Handlers

The example in this topic configures Siebel Open Ul to override an event handler that the predefined presentation
model references.

To override event handlers

1.

2.

Configure Siebel Open Ul to refresh a custom event.

For more information, see Customizing Events.
Add the following code to your custom presentation model:

this.AddMethod (SiebelApp.Constants.get (" PHYEVENT INVOKE CONTROL"),
function (controlName) {
// Process button click

10

ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

return false;

});

This code configures Siebel Open Ul to return the following value from the event handler. It makes sure this
presentation model does not continue processing:

false

Attaching an Event Handler to an Event

This topic describes how to attach an event handler to an event.

To attach an event handler to an event

Use the following code:

this.AddMethod ("custom method", function(){}):;
this.AttachEventHandler ("custom_event", "custom method") ;

The physical renderer or the plug-in wrapper triggers these handlers when the following code is executed:

this.GetPM() .OnControlEvent ("custom event", paraml, param2)

The presentation model uses the custom_method to identify the function that it must call and when to call it.
The presentation model also sends the parameters that OnControlEvent provides. For more information, see
AttachEventHandler Method.

Attaching More Than One Event Handler to an Event

This topic describes how to attach more than one event handler to an event.

To attach more than one event handler to an event

Use the following code:

this.AttachEventHandler ("custom event", "custom method 1");
this.AttachEventHandler ("custom event", "custom method 2");
this.AttachEventHandler ("custom event", "custom method 3");

The physical renderer or the plug-in wrapper triggers these handlers when the following code is executed:
this.GetPM() .OnControlEvent("custom event", paraml, param2)

The presentation model determines that it must handle three events, and it handles them in the reverse order
that you specify them. In this example, it uses the following sequence when it handles the event:

1. custom_method_3

2. custom_method_2

m
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

3. custom_method_1

The presentation model sends the same values for the parameters that OnControlEvent specifies for each
event handler.

For more information, see AttachEventHandler Method.

Stopping Siebel Open Ul From Calling Event Handlers

You can configure the AttachEventHandler method to stop calling event handlers at any point during the event handling
process. The example in this topic assumes your configuration includes one predefined event handler and three custom
event handlers, and that custom_event_handler_2 stops the processing according to a condition.

To stop Siebel Open Ul from calling event handlers

Use the following code:

this.AddMethod ("custom_event_handler 2", function(paraml, param2, returnStructure) {
if (condition) {

returnStructure[consts.get ("SWE_EXTN CANCEL ORIG OP")] = true;
returnStructure[consts.get ("SWE_EXTN_STOP_PROP OP")] = true;

returnStructure[consts.get ("SWE_EXTN RETVAL")] = return_value ;
}
H:
this.AttachEventHandler ("event name", "custom_ event_handler 2");
where:

o consts references SiebelApp.Constants.
o return_value contains a value that Siebel Open Ul returns to the object that called OnControlEvent.

This code does the following work:

- Sets the SWE_EXTN_CANCEL_ORIG_OP and SWE_EXTN_STOP_PROP_OP properties according to a condition.
- Stops event handlers from running.
Uses SWE_EXTN_RETVAL to return a value to the object that called OnControlEvent.

For more information, see AttachEventHandler Method.

Attaching and Validating Event Handlers in Any Sequence

You can configure Siebel Open Ul to attach and validate an event handler in any sequence, depending on your
requirements. The example in this topic does some custom validation, and then runs an event handler in a custom
presentation model named derivedpm2.js. If the user triggers a control focus event, then Siebel Open Ul runs the
validator before it calls the event. Siebel Open Ul uses the value that the validator returns to determine whether or
not to run the custom event handler and the predefined event handler. This predefined event handler is the default
event handler that the predefined presentation model uses for the event. This topic describes the derivedpm1.js and
derivedpm2.js files. To get a copy of these files, see Article ID 1494998.1 on My Oracle Support.

12
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

To attach and validate event handlers in any sequence

1. Use a JavaScript editor to create a custom presentation model that Siebel Open Ul derives from a predefined
presentation model:

a. Create a new file named derivedpm?.js. Save this file in the following folder:

siebel\custom

For more information about:

- This file, see Complete Contents of the derivedpm1 Presentation Model
- This folder, see Organizing Files That You Customize.

b. Configure the custom derivedpm1 presentation model that you created in Step a so that Siebel Open Ul
derives it from the predefined ListPresentationModel. You add the following code:

if(typeof(SiebelAppFacade.derivedpml) === "undefined") {
SiebelJS.Namespace ("SiebelAppFacade.derivedpml") ;
define("siebel/custom/derivedpml", [], function() {
SiebelAppFacade.derivedpml = (function() {

var siebConsts = SiebelJS.Dependency("SiebelApp.Constants"),

CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG OP"),

STOP_PROP = consts.get("SWE _EXTN STOP_PROP_OP") ;

function derivedpml () {
SiebelAppFacade.derivedpml.superclass.constructor.apply(this, arguments);
}

SiebelJS.Extend(derivedpml, SiebelAppFacade.ListPresentationModel) ;
derivedpml .prototype.Init = function() {
SiebelAppFacade.derivedpml.superclass.Init.call(this);

For more information, see Deriving Presentation Models, Physical Renderers, and Plug-in Wrappers.

c. Make sure the derivedpm?1 presentation model includes a handler for the PHYEVENT_COLUMN_FOCUS
event. You add the following code:

this.AttachEventHandler(siebConsts.get ("PHYEVENT COLUMN_ FOCUS"),
function ()

{

SiebelJS.Log("Control focus 1");

arguments[arguments.length - 1] [consts.get("SWE_EXTN CANCEL_ORIG_OP"
)] = false;

})

For more information about the method that this code uses, see AttachEventHandler Method.
d. Validate the handler that you added in Step c. You add the following code:

this.AddValidator (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function() {
return true;

})

}s

For more information about the method that this code uses, see AddValidator Method.
e. Finish the setup that you started in Step b. You add the following code:

derivedpml.prototype.Setup = function (propSet) {
SiebelAppFacade.derivedpml.superclass.Setup.call(this, propSet);
}i

13
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

return derivedpml;

POy

return "SiebelAppFacade.derivedpml";
})
}
f. Save your changes, and then close the derivedpm.js file.

2. Use a JavaScript editor to create another custom presentation model that Siebel Open Ul derives from the
custom presentation model that you created in Step 1:

a. Create a new file named derivedpmzZ.js. Save this file in the following folder:

siebel\custom

For more information about this file, see Complete Contents of the derivedpm1 Presentation Model.

b. Configure the custom derivedpm?2 presentation model that you created in Step a so that Siebel Open Ul
derives it from the derivedpm?1 presentation model. You add the following code:

if (typeof(SiebelAppFacade.derivedpm2) === "undefined") {
SiebelJS.Namespace ("SiebelAppFacade.derivedpm2") ;

define("siebel/custom/derivedpm2", ["siebel/custom/derivedpml”], function/() {
SiebelAppFacade.derivedpm2 = (function() {

var siebConsts = SiebelJS.Dependency("SiebelApp.Constants"),

CANCEL OPR = consts.get("SWE_EXTN CANCEL_ORIG OP"),

STOP_PROP = consts.get("SWE_EXTN STOP_PROP_OP");

function derivedpm2 () {
SiebelAppFacade.derivedpm2.superclass.constructor.apply(this, arguments);
}

SiebelJS.Extend(derivedpm2, SiebelAppFacade.derivedpml) ;
derivedpm2.prototype.Init = function() {
SiebelAppFacade.derivedpm2.superclass.Init.call(this);

c. Make sure the derivedpm?2 presentation model includes a handler for the PHYEVENT_COLUMN_FOCUS
event. You add the following code:

this.AttachEventHandler (siebConsts.get ("PHYEVENT COLUMN_ FOCUS"), function()

{
SiebelJS.Log("Control focus 2");

})

d. Validate the handler that you added in Step c. You add the following code:

this.AttachEventHandler (siebConsts.get ("PHYEVENT COLUMN_ FOCUS"), function()

{
SiebelJS.Log("Control focus 2");

})
this.AddValidator (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function(row, ctrl,
val) {
//custom validation
}
3

where:
- custom validation validates the values.
For example, the following code validates that the handler handles the Hibbing Mfg account:

this.AttachEventHandler (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function()
{

14
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

SiebelJS.Log("Control focus 2");
})
this.AddValidator (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function(row, ctrl,
val) {
if (ctrl.GetDisplayName () === "Account" && val === "Hibbing Mfg") {
return true;
}
})

e. Finish the setup that you started in Step b. You add the following code:

};

derivedpm?2.prototype.Setup = function (propSet) {
SiebelAppFacade.derivedpm?.superclass.Setup.call(this, propSet);
};

return derivedpm?2;

FO):

return "SiebelAppFacade.derivedpm2";
})
}
f. Save your changes, and then close the derivedpm2.js file.

3. Configure the manifest. For more information about how to do this step, see Adding Custom Manifest
Expressions:

a. Login to a Siebel client with administrative privileges.
. Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Add the file that you created in Step 2.

For this example, you add the following file:

custom/derivedpm2. s

Note that your configuration derives the derivedpm?2.js from the derivedpm?.js file, so it is not necessary
to add derivedpm?.js to the manifest.

d. Navigate to the Manifest Administration view.
e. Inthe Ul Objects list, specify the following object.

Field Value

Type Applet

Usage Type Presentation Model
Name Opportunity List Applet

You can reference any list applet. For this example, use Opportunity List Applet.

15
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Field Value

f. Inthe Object Expression list, add the following subexpression.

Field Value

Group Name Leave empty.
Expression Desktop
Level 1

Operator Leave empty.
Web Template Name Leave empty.

g. Inthe Files list, add the following file:
custom/derivedpm2.ijs
4. Log out of the client, and then log back into the client.

This step refreshes the manifest.
5. Verify your work:

a. Navigate to the Opportunity List Applet.
Click anywhere in the Account field.
c. Verify that the browser console log displays the following text:

Control Focus 2

The handler that you specified in the derivedpm2.js file in Step 2 specifies this text.
d. Verify that the browser console log displays the following text:

Control Focus 1
The handler that you specified in the derivedpmd.js file in Step 1 specifies this text.

Complete Contents of the derivedpm1 Presentation Model
The following code is the complete contents of the derivedpm?1 presentation model:

if(typeof(SiebelAppFacade.derivedpml) === "undefined") {
SiebelJS.Namespace ("SiebelAppFacade.derivedpml") ;

define("siebel/custom/derivedpml"”, [], function() {
SiebelAppFacade.derivedpml = (function() {

var siebConsts = SiebelJS.Dependency("SiebelApp.Constants"),

16
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

CANCEL_OPR = consts.get("SWE_EXTN CANCEL ORIG OP"),

STOP_PROP = consts.get("SWE_EXTN STOP PROP OP");

function derivedpml () {
SiebelAppFacade.derivedpml.superclass.constructor.apply(this, arguments);
}

SiebelJS.Extend(derivedpml, SiebelAppFacade.ListPresentationModel) ;

derivedpml.prototype.Init = function() {
SiebelAppFacade.derivedpml.superclass.Init.call(this);
this.AttachEventHandler (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function()
{

SiebelJS.Log("Control focus 1");

arguments[arguments.length - 1] [consts.get("SWE_EXTN CANCEL ORIG OP")]
false;

3

this.AddValidator (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function() {

return true;

3

}i

derivedpml.prototype.Setup = function (propSet) {

SiebelAppFacade.derivedpml.superclass.Setup.call(this, propSet);

}i

return derivedpml;

}O)s

return "SiebelAppFacade.derivedpml";

})

Complete Contents of the derivedpm?2 Presentation Model
The following code is the complete contents of the derivedpm?2 presentation model:

if (typeof(SiebelAppFacade.derivedpm2) === "undefined") {
SiebelJS.Namespace ("SiebelAppFacade.derivedpm2") ;
define("siebel/custom/derivedpm2", ["siebel/custom/derivedpml”], function() {

SiebelAppFacade.derivedpm2 = (function() {
var siebConsts = SiebelJS.Dependency("SiebelApp.Constants"),
CANCEL_OPR = consts.get("SWE_EXTN CANCEL ORIG OP"),
STOP_PROP = consts.get("SWE_EXTN STOP PROP OP");
function derivedpm2 () {
SiebelAppFacade.derivedpm2.superclass.constructor.apply(this, arguments);
}
SiebelJS.Extend(derivedpm2, SiebelAppFacade.derivedpml) ;
derivedpm2.prototype.Init = function() {
SiebelAppFacade.derivedpm2.superclass.Init.call(this);
this.AttachEventHandler(siebConsts.get ("PHYEVENT COLUMN_ FOCUS"), function()
{
SiebelJS.Log("Control focus 2");
H:
this.AddvValidator (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function(row, ctrl,
val) {
if (ctrl.GetDisplayName () === "Account" && val === "Hibbing Mfg") {
return true;
}
H:
}i
derivedpm2.prototype.Setup = function (propSet) {
SiebelAppFacade.derivedpm2.superclass.Setup.call(this, propSet);
}i
return derivedpm2;
}O):
return "SiebelAppFacade.derivedpm2";
b
}

17
ORACLE

Siebel

Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul

Customizing the Sequence that Attaches and Validates Event
Handlers

The example in this topic illustrates how you can modify the sequence that Siebel Open Ul uses to attach and validate
event handlers so that it stops any further event handler processing after a validation occurs. It does some custom

validation, and then runs an event handler in a file named derivedpm2.js. If the user triggers a control focus event, then

Siebel Open Ul runs the custom event handler that displays a message in the Browser console log. The validator then

returns a value of false, so Siebel Open Ul stops any further event handler processing for the custom event handler and

for the predefined event handler.

To customize the sequence that attaches and validates event handlers

1. Do Step 1in the topic Attaching and Validating Event Handlers in Any Sequence

2. Do Step 2 in the topic Attaching and Validating Event Handlers in Any Sequence, but specify the validator first,

and then the event handler. You use the following code:

this.Addvalidator (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function() {
custom validation
return true;

3
this.AttachEventHandler (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function()

{
Siebjs.Log("Control Focus 2");

})

For more information about the methods that this code uses, see AddValidator Method and
AttachEventHandler Method.

3. Do Step 5 in the topic Attaching and Validating Event Handlers in Any Sequence, but verify that Siebel Open Ul

displays the following text in the browser console log:

Control Focus 2
Control Focus 1

Using AttachEventHandler Prior to Siebel CRM Release 8.1.1.13

Prior to Siebel CRM release 8.1.1.13, the AttachEventHandler method returns one of the following values. This
configuration allows AttachEventHandler to attach only one custom event to an event:

- true. Attached an event handler successfully.
- false. Did not attach an event handler successfully.
It uses the following syntax:

AttachEventHandler ("eventName", eventHandler())

where:

- eventName is a string that identifies the name of the event that Siebel Open Ul must attach to the event.

ORACLE

18

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

- eventHandler identifies the method that Siebel Open Ul calls.

For more information, see AttachEventHandler Method.

Overriding the OnControlEvent Method and Then Calling a
Superclass

You must not configure Siebel Open Ul to override the OnControlEvent method to handle an event, and then call a
superclass. For example, assume you configure Siebel Open Ul to override the listpmodel.js file, and that the derived
class resides in the derivedpm?.js file. Assume you then use the following code to override the OnControlEvent method
that resides in the pmodel.js file. This file specifies the base presentation model class:

derivedpml.prototype.OnControlEvent = function(event name)
{
}

In this situation, when an event occurs, Siebel Open Ul calls the overridden OnControlEvent instead of the
pmodel.prototype.OnControlEvent. You must avoid this configuration. For more information, see OnControlEvent
Method.

Allowing Blocked Methods for HTTP GET Access

In Siebel Innovation Pack 2014 and later, read and write operations have been separated for all applets, business
components, and business service methods.

If you want to allow access to a blocked method for HTTP GET access, a user property has been introduced for applets
and business services to include methods on a white list, thereby allowing access using HTTP GET.

This topic describes how to allow blocked methods for HTTP GET access using the GETEnabledMethods user property.

To allow blocked methods for HTTP GET access
1. Open Siebel Tools.

For more information, see Using Siebel Tools .

2. Inthe Object Explorer, click Applet.

3. Inthe Applets list, locate the applet or business service to which you want to add the GETEnabledMethods user
property.

4. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.

5. Inthe Applet User Props list, add the user property with the values:

Field Value
Name GETEnabledMethods
Value MethodNamel, MethodName2, ... MethodNameN

Where MethodNameX is the name of a method that should be accessible by way of HTTP GET.

19
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Field Value

Note: It is recommended to list only read-only methods in the white list for HTTP GET access. Methods that perform
write operations should not be listed.

Managing Files

This topic describes how to manage files. It includes the following information:

« Organizing Files That You Customize

Updating Relative Paths in Files That You Customize
« Specifying Dependencies Between Presentation Models or Physical Renderers and Other Files
« Configuring Custom Manifests

You also use the manifest to manage files. For more information, see Configuring Manifests.

Organizing Files That You Customize

This topic describes how to organize files that you customize. A predefined file is a type of file that comes configured
ready-to-use with Siebel CRM. A custom file is a predefined file that you modify or a new file that you create. A PNG file
that you use for your company logo is an example of a custom file. You can customize the following types of files:

- JavaScript files

- CSSfiles
Image files, such as JPG or PNG files
HTML files

- XML files

Note the following guidelines:

- You must modify any relative paths that your custom file contains. For more information, see Updating Relative
Paths in Files That You Customize.

- The folder structures that this topic describes applies to all cached and deployed files.
- Any third-party libraries that you use must reside in a predefined folder or in a custom folder.

Note: You must not modify any files that reside in the folders that the following table describes. You must make
sure that these folders contain only Oracle content, and that your custom folders contain only custom content. This
configuration helps to avoid data loss in these folders. If you modify any predefined file, then Siebel Open Ul might
fail, and it might not be possible to recover from this failure.

To organize files that you customize

- Store all your custom CSS files and image files that reside on the Siebel Application Interface in one of the
following folders:

120
ORACLE

Siebel
Configuring Siebel Open Ul

Chapter 5
Customizing Siebel Open Ul

AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\files\custom
AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\images\custom

where:

o AI_INSTALL_DIR is the folder where you installed Siebel Application Interface.
o Store all your custom presentation models and physical renderers in the following folder:

AI INSTALL DIR\applicationcontainer external\siebelwebroot\scripts\siebel\custom

Predefined presentation models and physical renderers are stored in the following folder. You must not
modify any file that resides in this folder:

AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\scripts\siebel

Where Siebel CRM Stores Predefined Files

The following table shows where Siebel CRM stores predefined files on the Siebel Application Interface. You must not
modify any of these files. Instead, you can copy the file, and then save this copy to one of your custom folders.

File Type

JavaScript files

CSS files

Image files

ORACLE

Folders Where Siebel CRM Stores Predefined Files

Siebel Open Ul stores JavaScript files in the following folders:

AI_ INSTALL DIR\applicationcontainer external\siebelwebroot\scripts
AI_INSTALL DIR\applicationcontainer_external\siebelwebroot\scripts\siebel
AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\scripts\3rdParty

These folders contain JavaScript files only for predefined Siebel Open Ul. You must not modify these
files, and you must not store any custom files in these folders. The 3rdParty folder might contain CSS
files that the third-party JavaScript files require.

Siebel Open Ul stores CSS files in the following folders:
AI_ INSTALL DIR\applicationcontainer external\siebelwebroot\files
AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\files\3rdParty

These folders contain CSS files only for predefined Siebel Open Ul. You must not modify these files,
and you must not store any custom files in these folders.

Siebel Open Ul stores image files in the following folders:

AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\images

These folders contain image files only for predefined Siebel Open Ul. You must not modify these files,
and you must not store any custom files in this folder. To support color schemes, Siebel Open Ul
converts the images that Siebel CRM provides from GIF files to PNG files.

121

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Updating Relative Paths in Files That You Customize

If you customize a file, and if you save this custom file in a custom folder, then you must modify any relative paths that
this file references. For example, if you copy the rules from a predefined .css file into a custom CSS file, then you must

modify the relative paths that your custom CSS file references so that they reference the correct file. For an example of
this configuration, see Customizing the Logo.

To update relative paths in files that you customize
1. Create a custom file.

For more information about custom files, see Organizing Files That You Customize.
2. Search your custom file for any relative paths.

For example, images/ in the following code is an example of a relative path:

src=images/ebus.gif

3. Modify the relative path so that it can correctly locate the file that it references.
For example:

src=AI_INSTALL DIR/applicationcontainer_external/siebelwebroot/images/ebus.gif

4. Do Step 2 and Step 3 for every relative path that your custom file contains.

Specifying Dependencies Between Presentation Models or
Physical Renderers and Other Files

A presentation model or physical renderer sometimes includes a module dependency, which is a relationship that
occurs when this presentation model or physical renderer depends on another file. The Define method recognizes each
of these items as a JavaScript code module, which is an object that the module_name argument identifies as depending
on other modules to run correctly. You specify the module_name argument when you use the Define method to
identify the JavaScript files that Siebel Open Ul must download for a presentation model or physical renderer. For more
information, see Define Method.

Consider the following example that uses the customPR.js file to define the physical renderer. This renderer depends on
plug-in X and plug-in Y, and it uses the following directory structure:

122
ORACLE

Siebel
Configuring Siebel Open Ul

®m 3rdParty
m X

4 ¥-COTe.s

2 #-helper.js
|y
4 Core.s
m siebel
m custom

2 customPR.js

Chapter 5
Customizing Siebel Open Ul

In this example, logical dependencies exist between the customPR.js file and the x-core.js file, the x-helper.js file, and
the customPR js file — as shown in the following figure:

siebelcustomicustomPR

IrdPartyXix-core

e -

3rdPartyXfx-helpler

ArdPartyY/core

Siebel Open Ul then uses the following logic at run time for this example:

1. The user navigates to a view that includes an applet that uses the customPR physical renderer.
2. The Siebel Server sends a reply to the client that includes information about the property set and the physical

layout.

3. The view processes the information that the Siebel Server sends in Step 2, and then determines that it must use
siebel/custom/customPR. js t0 render the applet.
4. The Require]S script loader uses the customPR.js file name to identify siebel/custom/customPR as the module

name, and then sends a request to the Siebel Server for this module.

5. If Siebel Open Ul already loaded this module, then it returns the module object to the client and proceeds to

Step 7.

6. If Siebel Open Ul has not already loaded this module, then it does the following work:
a. Sends a request to the Application Interface for the siebel/custom/custompR. js file.
b. If dependencies exist, then Siebel Open Ul sends a request for these dependent modules, and then runs
the modules in the browser.
c. Siebel Open Ul runs the script for the siebel/custom/custompR. js file in the browser.

ORACLE

123

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

7. Siebel Open Ul uses the module object to create a new instance of the presentation model and the physical
renderer.

To help manage your customizations, it is strongly recommended that you use a module name that is similar to
the relative location of the file name. You use the manifest administration screens to specify the manifest for these
dependencies.

To specify dependencies between presentation models or physical renderers and
other files

1. Use the list_of_dependencies argument when you use the Define method in your presentation model or
physical renderer.

For an example that uses the list_of_dependencies argument, see Setting Up the Physical Renderer. For more
information, see Define Method.

2. |If file dependencies require that you configure Siebel Open Ul to download files in a specific order, then do
Configuring Manifests.

Configuring Manifests

This topic describes how to configure Siebel Open Ul manifests. It includes the following topics:
« Overview of Configuring Manifests
- Start Application with Seeded Manifest Entries
« Configuring Manifest for Context Renderers
« Configuring Custom Manifests
« Adding Custom Manifest Expressions

« Adding Java Script Files to Manifest Administrative Screens

Overview of Configuring Manifests

A manifest is a set of instructions that Siebel Open Ul uses to identify the JavaScript files that it must download from
the Siebel Server to the client so that it can render screens, views, applets, menus, controls, and other objects. For an
overview of how Siebel Open Ul uses this manifest, see Example of How Siebel Open Ul Renders a View or Applet.

Siebel Open Ul replaces the XML manifest file with manifest data that it stores in the Siebel Database. You cannot
modify this predefined manifest data, but you can use the Manifest Administration screen in the client to configure the
manifest data that your customization requires.

For more information about using a utility that migrates your custom manifest configurations from Siebel CRM version
8.11.9 or 81110 to the current release, see the topic that describes migrating the Siebel Open Ul manifest file in Siebel
Database Upgrade Guide .

Example of How Siebel Open Ul Identifies the JavaScript Files It Must Download

The following figure describes an example of how Siebel Open Ul uses the manifest to identify the JavaScript file
it must download so that it can use the presentation model for the SIS Account List Applet. The manifest maps the
recyclebinpmodel.js file that resides in the siebel/custom folder to the presentation model that it uses to display this

124
ORACLE

Siebel

Chapter 5
Configuring Siebel Open Ul

Customizing Siebel Open Ul

applet. For details about this example, see Creating the Presentation Model and Configuring the Manifest for the Recycle
Bin Example.

e [[e
Ty wnage

— -

g Frgpeotgnee Wiie 15 AgCiuet L Agpar

Vo Y e | e | e | < RCARILEE = - < | o= [o |
-

inacive Fing 3] LR [e

Administration on Siebel Server

if(typeof(SiebelippFacade.RecycleBinFModel) === "yndefined™){
SiebelJs.Namespace ippFacade .RecycleBEinFModel™)
it 0 s
Model = anction () {
var conats = SjiebelJ5.Dependency("SiebelApp.Constanta™)

funetion RecycleBinPEModel () {
SiebelippFacade.RecycleBinPModel . superclass.conscructor,. 2pply(this, argumsnts)
}
SiebelJS.Extend{ RecycleBinFModel, SiebelAppFacade.ListPresentationModel)
return RecycleBinFModel:
FOyy 2
retorn SiebelAppFacade . RecyleBinPModel
1
1

Presentation Model File on Client

define(

As shown in this figure, the example manifest administration includes the following:

1. The Files list specifies the siebel /custom/recyclebinpmodel.js file.

2. The presentation model specifies siebel /custom/recyclebinpmodel when it calls the define method.
Example of a Completed Manifest Administration

The following figure includes an example of a completed manifest administration that configures Siebel Open Ul to

download JavaScript files for the Contact List Applet. For more information about how to configure this example, see
Configuring Custom Manifests.

125
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul
e & [e [0 | -
©

As shown in this figure, the example manifest administration includes the following items:

1.

The Grid group uses the AND operator to group three expressions into the following group expression:

Desktop AND EditList AND Grid

A group expression is a type of expression that Siebel Open Ul uses to arrange subexpressions into a group in
the Object Expression list.

Siebel Open Ul uses the Level field to determine the order it uses to evaluate expressions. It uses the following
sequence:

a.

It uses the Level field to determine the order it uses to evaluate group expressions. In this example, it
uses the following sequence:

- Evaluates the Grid group first.
- Evaluates the Tile group next.
- Evaluates the Map group last.

It uses the Level field within a group to determine the order it uses to evaluate each subexpression, which
is a type of expression that Siebel Open Ul displays as part of a group in the Object Expressions list. It
displays each subexpression in an indented position after the group expression. In this example, it uses
the following sequence to evaluate subexpressions that reside in the Grid group:

- Evaluates the Desktop expression first.
- Evaluates the EditList expression next.
- Evaluates the Grid expression last.

In this example, Siebel Open Ul evaluates all the expressions that reside in the Grid group, and then does
one of the following according to the result of this evaluation:

- All expressions that reside in the Grid group evaluate to true. Siebel Open Ul downloads the file
that the Files list specifies.

126

ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

- Any expression that resides in the Grid group evaluates to false. Siebel Open Ul discards the
entire Grid group, and then evaluates the Tile group.

3. Siebel Open Ul uses the Files list to identify the files it must download. In this example, it does the following
evaluation:

o If the platform is a desktop, and if the mode is EditList, and if the user chooses Grid, then it downloads
the siebel/quridrenderer.jsfﬂe.

o If the platform is a desktop, and if the mode is EditList, and if the user chooses Tile, then it downloads the
siebel/Tilescrollcontainer. js file.

To view an example that allows the user to choose Grid or Tile, see Allowing Users to Change the Applet Visualization.

Start Application with Seeded Manifest Entries

You can use the ManifestSafeLoad component parameter to launch a Siebel application, such as Call Centre, with
only Oracle-provided manifest records. These records are seeded records in manifest. To launch the application using
this parameter, you have to set the value of the parameter to TRUE. By default, the value is FALSE, which allows the
application to launch both custom-configured and seeded records using manifest. You can change the parameter’s
value for the application’s object manager (for example, SCCObjMgr_enu) as follows:

change param ManifestSafeLoad=TRUE for comp <application_object_manager> <language>

Note: Restart the component after modifying the parameter. You need to change the parameter only for Siebel
applications, and not for Web Tools, because the latter always starts with Oracle-provided Manifest records.

Configuring Custom Manifests

This topic describes how to configure the example described in Example of a Completed Manifest Administration. For
other examples that configure the manifest to download objects for:

- Web templates and modified applet modes, see Allowing Users to Change the Applet Visualization.

Different Web templates, physical renderers, and presentation models depending on the applet and the user
responsibility, see Displaying Applets Differently According to the Applet Mode.

- The physical renderer and the presentation model, see Configuring the Manifest for the Recycle Bin Example.
- The context renderer.

- A custom theme, see Customizing the Logo and Customizing Themes.

To configure custom manifests
1. Make sure your custom presentation model or physical renderer uses the Define method:

a. Use a JavaScript editor to open your custom presentation model or physical renderer.

b. Inthe section where you configure Siebel Open Ul to do the setup, make sure you use the Define method
to identify the presentation model file or the physical renderer file.

For an example that does this setup, see Example of How Siebel Open Ul Identifies the JavaScript Files It
Must Download.

2. Configure the manifest files:

a. Login to a Siebel client with administrative privileges.

127
ORACLE

Siebel
Configuring Siebel Open Ul

b. Navigate to the Administration - Application screen, and then the Manifest Files view.

Chapter 5

Customizing Siebel Open Ul

c. Verify that the Manifest Files view includes the files that Siebel Open Ul must download for your custom

deployment.

For this example, verify that the Manifest Files view includes the following files:

siebel/listapplet.js
siebel/jqggridrenderer.js

If the Manifest Files view does not include these files, then add them now. For more information, see
Adding Java Script Files to Manifest Administrative Screens.

3. Configure the Ul object:

a. Navigate to the Administration - Application screen, and then the Manifest Administration view.

b. In the Ul Objects list, specify the following object.

Field

Type

Usage Type

Name

Value

Applet

Physical Renderer

Contact List Applet

For more information, see Fields of the Ul Objects List.

4. Configure the Grid group:

For more information about how to configure a group, see Adding Group Expressions.

a. Inthe Object Expression list, add the following subexpression.

Field

Group Name

Expression

Level

Operator

Web Template Name

ORACLE

Value

Leave empty.

Desktop

Leave empty.

Leave empty.

128

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Field Value

For more information, see Fields of the Object Expression List.
b. Add another subexpression.

Field Value

Group Name Leave empty.
Expression EditList
Level 2

Operator Leave empty.
Web Template Name Leave empty.

c. Add another subexpression.

Field Value

Group Name Leave empty.
Expression Grid

Level 3

Operator Leave empty.
Web Template Name Leave empty.

d. Add the following group expression.

Field Value

Group Name Leave empty.

129
ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 5

Field Value
Expression Grid

Level 1

Operator Leave empty.
Web Template Name Leave empty.

Use the Move Up and Move Down buttons to arrange the subexpressions in ascending numeric order

Customizing Siebel Open Ul

according to the value in the Level field. Make sure the Object Expression list displays all subexpressions

after the group expression.

Use the Indent and Outdent buttons so that Siebel Open Ul displays the subexpressions after and
indented from the group expression. The tree in the Inactive Flag field displays this indentation.

In the Ul Objects list, query the Name property for the name of the Ul object that you are configuring.
This query refreshes the Manifest Administration screen so that you can edit the Group Name and
Operator fields of the group expression.

In the Object Expressions list, expand the tree that Siebel Open Ul displays in the Inactive Flag field.
Set the following fields of the group expression.

Field Value
Group Name Grid
Operator AND

5. Specify the files that Siebel Open Ul must download for the Grid group:

engoo

Make sure the Grid group expression is chosen in the Object Expression list.
In the Files list, click Add.

In the Files dialog box, click Query.

In the Name field, enter the path and file name of the file.

For example, enter the following value:
siebel/jggridrenderer.js
Click Go.

If the Files dialog box does not return the file that your deployment requires, then you must use the
Manifest Files view to add this file before you can specify it in the Files list. For more information, see
Adding Java Script Files to Manifest Administrative Screens.

Click OK.

ORACLE

130

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

6. Configure the Tile group:
a. Repeat Step 4, with the following differences:

- For the group expression, set the Group Name field to Tile and the Level field to 2.
- For the last subexpression, set the Expression field to Tile.
b. Repeat Step 5, except add the following file:

siebel/tilescrollrenderer.js
7. Configure the Map group:
a. Repeat Step 4, with the following differences:

- For the group expression, set the Group Name field to Map and the Level field to 3.
- Add only one subexpression with the Expression field set to Map.
b. Repeat Step 5, except add the following file:

siebel/custom/siebelmaprenderer.js

8. In the Object Expression list, use the Move Up, Move Down, Indent, and Outdent buttons until the Object
Expression list resembles the configuration in the figure in the topic Overview of Configuring Manifests.

Fields of the Ul Objects List
The following table describes the fields of the Ul Objects list.

Field Description

Inactive Flag Set to one of the following values:
- Y. Make the object inactive. Make sure you set the Inactive Flag to Y for any custom object that
your deployment does not require.

- N. Make the object active. Make sure you set the Inactive Flag to N for any custom object that
your deployment requires.

The Inactive Flag allows you to configure more than one manifest. You can activate or deactivate each
of these configurations during development. You can set the Inactive Flag in the same way for each
object that the Manifest Administration view displays.

Type Choose one of the following values to specify the type of Siebel CRM object that you are customizing:

- Application
- View

- Applet

- Navigation
- Toolbar

- Menu

- Control

For more information, see How Siebel Open Ul Chooses Files If Your Custom Manifest Matches a
Predefined Manifest.

Usage Type Specify how Siebel Open Ul must download files. Choose one of the following values:

131
ORACLE

Siebel

Configuring Siebel Open Ul

Field

Name

Chapter 5
Customizing Siebel Open Ul

Description

- Common. Siebel Open Ul downloads the files when it initializes the Siebel application. Siebel Call
Center is an example of a Siebel application.

- Theme. Siebel Open Ul downloads only the files it requires to support a theme that you
customize. For an example that uses this value, see Customizing the Logo.

- Presentation Model. Siebel Open Ul downloads the files that your custom presentation model
requires.

- Physical Renderer. Siebel Open Ul downloads the files that your custom physical renderer
requires.

- Web Template. Siebel Open Ul uses ODH according to the Name property of the Web template.
You specify this OD content in the Web template in Siebel Tools. For more information, see
Identifying the ODH.

For more information, see How Siebel Open Ul Chooses Files If Your Custom Manifest Matches a
Predefined Manifest.

Enter the name of your custom object. For example, if you set the Type to Applet, then you must
specify the value that Siebel Tools displays in the Name property of the applet.

Fields of the Object Expression List

The following table describes the fields of the Object Expression list. You can configure a simple expression, or you can
configure a complex expression that includes AND or OR operators, and that can include nested levels. For an example
that includes complex expressions, see Configuring Custom Manifests.

Field

Group Name

Expression

Level

ORACLE

Description

If the record that you are adding to the Object Expressions list is part of a group of two or more
expressions, and if this record is the group expression, then enter a value in the Group Name field and
leave the Expression field empty.

The Object Expressions list is a hierarchical list. You can use it to specify complex expressions that you
enter as more than one record in this list.

You must add more than one record and indent at least one of them before you can enter a group
name. For more information about how to do this work, see Adding Group Expressions.

If the record that you are adding to the Object Expressions list is:

- Not a group expression. Set a value in the Expression field and leave the Group Name field
empty.
- A group expression. Leave the Expression field empty and enter a value in the Group Name field.

If the Expression list does not include the expression that your deployment requires, then you must
add a custom expression. For more information, see Adding Custom Manifest Expressions.

Enter a number to determine the order that Siebel Open Ul uses to evaluate expressions that the
Object Expression list contains. Siebel Open Ul evaluates these expressions in ascending, numeric
order according to the values that the Level field contains. If the Type field in the Ul Objects list:

- Is Application, then Siebel Open Ul evaluates every expression. It downloads each file that the
Files list specifies for each expression that it evaluates to true.

132

Siebel
Configuring Siebel Open Ul

Field

Operator

Web Template Name

Adding Group Expressions

Chapter 5
Customizing Siebel Open Ul

Description

- Is not Application, and if Siebel Open Ul evaluates an expression to true, then it does the
following:

o Downloads the file that the Files list specifies for this expression
o Does not process any expression that exists further down in the order

o Does not download any other files

If the record that you are adding to the Object Expressions list is a group expression, then you must
specify the logical operator that Siebel Open Ul uses to combine the subexpressions that the group
contains. You can use one of the following values:

- AND. Specifies to combine subexpressions. If you specify AND, then Siebel Open Ul downloads
files only if it evaluates every subexpression in the group to true.

- OR. Specifies to consider individually each subexpression that resides in the group. If you specify
OR, then Siebel Open Ul downloads files according to the first subexpression that it evaluates to
true.

If the record that you are adding to the Object Expressions list is not a group expression, or if it does
not reside first in the hierarchy, then leave the Operator field empty.

If you set the Usage Type field in the Ul Objects list to Web Template, then you must specify the name
of the Siebel CRM Web template file in the Web Template Name field. To identify this file name, see
Identifying the ODH.

You must use the sequence that this topic describes when you add a group expression. For an example that uses this
sequence, see Configuring Custom Manifests. For more information about group expressions and subexpressions, see
Example of a Completed Manifest Administration.

To add group expressions

i UN

Navigate to the Administration - Application screen, and then the Manifest Administration view.

In the Ul Objects list, locate the Ul object that you must modify.

In the Object Expression list, add the subexpressions.

Add the group expression. Leave the Group and Operator fields empty.

Use the Move Up and Move Down buttons to arrange the subexpressions in ascending numeric order according

to the value in the Level field. Make sure the Object Expression list displays all subexpressions after the group

expression.

6. Use the Indent and Outdent buttons so that Siebel Open Ul displays the subexpressions after and indented
from the group expression. The tree in the Inactive Flag field displays this indentation.

7. Inthe Ul Objects list, query the Name property for the name of the Ul object that you are configuring. This
query refreshes the Manifest Administration screen so that you can edit the Group Name and Operator fields of

the group expression.

o

In the Object Expressions list, expand the tree that Siebel Open Ul displays in the Inactive Flag field.

9. Set the values for the Group Name field and the Operator field of the group expression.

ORACLE

133

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

How Siebel Open Ul Chooses Files If Your Custom Manifest Matches a Predefined
Manifest

If the values that you specify in the Type, Usage Type, and Name fields of the Ul Objects list are identical to the values
that a predefined Ul object specifies, then Siebel Open Ul uses your custom manifest. For example, Siebel Open Ul
comes predefined with a Ul Object record with the Type set to Applet, the Usage Type set to Physical Renderer, and the
Name set to Contact List Applet. To override this configuration, you must do the following work:

- Create a new record in the Ul Objects list that contains the same values in the Type, Usage Type, and Name
fields that the predefined record contains.

- Add a new record in the Object Expression list that evaluates to true.
- Add a new record in the Files list for the object expression that evaluates to true.

The only exception to this rule occurs in the following situation:

-« You set the Type to Application.
- You set the Usage Type to Common.

- A winning expression exists in your customization. A winning expression is an expression that Siebel Open
Ul evaluates to true, and that Siebel Open Ul then uses to identify the files it must download according to the
configuration that the Manifest Administration view specifies.

In this situation, Siebel Open Ul downloads the files that:

- The predefined manifest configuration specifies
- The winning expression of your custom manifest configuration specifies

The following table describes how Siebel Open Ul chooses files if your manifest configuration matches the predefined
manifest configuration for a Ul object. The Configuration column describes values that the Ul Objects list of the
Manifest Administration screen contains.

Configuration Predefined Configuration Custom Result
Exists Configuration
Exists
Type is Application Yes No Siebel Open Ul downloads files according to the
and Usage Type is winning predefined expressions.
Common
Type is Application Yes Yes Siebel Open Ul downloads files according to the
and Usage Type is winning predefined expression and the winning
Common custom expressions.
Usage Type is not Yes No Siebel Open Ul downloads files according to the
Common first predefined expression that it evaluates to
true.

If more than one expression exists, then it uses
the level to determine the sequence it uses to
evaluate these expressions.

Usage Type is not Yes Yes Siebel Open Ul downloads files according to the
Common first custom expression that it evaluates to true.

134
ORACLE

Siebel Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul
Configuration Predefined Configuration Custom Result
Exists Configuration
Exists

If more than one expression exists, then it uses
the level to determine the sequence it uses to
evaluate these expressions.

If Siebel Open Ul does not evaluate any custom
expression to true, then it uses a predefined
expression for this object.

|dentifying the ODH

This topic describes how to identify the ODH that a Web template uses.

To identify the Web template file name

1. Open Siebel Tools.
For more information, see Using Siebel Tools .
2. Inthe Object Explorer, click Web Template.
3. Inthe Web Templates list, locate the object definition for the Web template.

For example, if you entered Applet Form Grid Layout in the Name field in the Ul Objects list, then query the
Name property in the Web Templates list for Applet Form Grid Layout.

The Definition Column lists the Object Definition for the queried Web template.

For example, Siebel Open Ul uses the CCAppletFormGridLayout Web template for the Applet Form Grid Layout
Web template.

Adding Custom Manifest Expressions

This topic describes how to add a custom manifest expression.

To add custom manifest expressions

1. Login to a Siebel client with administrative privileges.
2. Navigate to the Administration - Application screen, and then the Manifest Expressions view.
3. Inthe Expressions list, add the following expression.

Field Value
Name Enter text that describes the expression. For example, enter the following value:
Desktop

Siebel Open Ul uses this value as an abbreviation for the expression that it displays in the
Expression field in the Object Expression list in the Manifest Administration screen. It uses this
abbreviation only to improve readability of the Object Expression list.

135
ORACLE

Siebel Chapter 5

Configuring Siebel Open Ul Customizing Siebel Open Ul
Field Value
Expression Enter an expression. For example, to apply the expression according to the:

o Platform, use the following expression:

GetProfileAttr ("Platform Name") = 'Desktop’'

This example applies the expression for desktop platforms.
o User position, use the following expression:

GetProfileAttr ("Primary Position Type") = "Sales Representative"

This example applies the expression for the Sales Representative position.
Siebel Open Ul uses this value when it evaluates expressions that reside in the Object
Expression list. For more information, see GetProfileAttr Method.

Using Temporary Manifest Expressions During Development

It is recommended that you configure a temporary manifest expression that makes the manifest specific to a single
user. This configuration allows you to test and troubleshoot the manifest configuration, if necessary.

To use temporary manifest expressions during development

1. Configure a manifest.

For more information, see Configuring Custom Manifests.
2. Inthe Expressions list, add an expression that configures the manifest for a single user.

For example:
Name Expression
CCHENG GetProfileAttr ("Login Name") = 'CCHENG'

3. Log out of the client, and then log back in to the client using the ID that you specified in Step 2.
If you encounter an error during the log in, or if the client stops responding, then do the following:

a. Close the client session.
b. Login with a user ID that is different from the ID that you specified in Step 2.
c. Troubleshoot the manifest configuration error.
For example, assume you configure a manifest that references a custom file in the siebel/custom
folder, but you forget to add this custom file to this folder. If you attempt to log in to the client with this
configuration, then the client might stop responding, and you might not be able to examine the manifest
configuration. If you configure a temporary expression that is specific to a single user, then you can log in
as a different user and troubleshoot the manifest configuration.
4. If necessary, fix the manifest configuration.
5. Remove the expression that you added in Step 2.

136
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

Adding JavaScript Files to Manifest Administrative Screens

This topic describes how to add a JavaScript file to the manifest administrative screens.

To add JavaScript files to manifest administrative screens

1. Login to a Siebel client with administrative privileges.
2. Navigate to the Administration - Application screen, and then the Manifest Files view.
3. Inthe Files list, add a new record for each JavaScript file that you must add.

Make sure you include the path. For example, to add the mycustomrenderer.js file, you add the following value:

custom/mycustomrenderer. js

You can now add this file in the Files list in the Manifest Administration view. For more information about how
to do this, see Step 5 in the topic Configuring Manifests.

Configuring Manifest for Context Renderers

A context renderer can be configured through manifest for View or Applet against the Physical Renderer type.

To configure manifest for context renderers

Log in to a Siebel client with administrative privileges.

Navigate to the Administration - Application screen, then the Manifest Administration view.

In the Ul Objects list, query the Name property for the name of the Ul object that you are configuring.

In the Object Expressions list, validate if any files are listed against the expression for which you are configuring
the CR. If there are no files configured, add the physical renderer file as the first entry in the Files applet.

In the Files list, select the required CR file name and add it.

Use the Sequence field to set the sequence value to be used for determining the order of CR execution.

PUWNA

ow

Note: You must add the first file entry for physical renderer (phyrenderer.js, jggridrenderer.js or any custom
renderer) with the sequence as 1, and then configure context renderer using the next sequence.

7. To add the physical renderer and context renderer files:

a. Inthe Files list, click Add.

b. In the Files dialog box, click Query.

c. Inthe Name field, enter the path and file name of the required file.
d. Click Go.

Configuring Multiple Tab Browsing

Siebel CRM supports accessing the same applications over multiple tabs of the same browser session. By default, multi-
tab browsing is disabled. Each tab access to Siebel interactive application creates a new Siebel CRM session. Multi-tab

137
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

browsing minimizes the impact on the server by providing a configurable option to control the maximum number of
tabbed browser sessions for an interactive application in a given browser window.

Note: It is recommended that administrators should consider the business requirements of their organizations before
enabling multiple browser tabs and should limit the Maximum Possible Tabbed Sessions field value to minimize any
adverse effect on scalability. Accessing an additional tab than the value configured for the Maximum Possible Tabbed
Sessions field generates a session warning message.

To configure multi-tab browsing, perform the following tasks:

1. Setting Server Parameter to Enable Multi-Tab Access
2. Configuring Application Interface Profile Parameter to Limit the Number of Browser Tabs

Setting Server Parameter to Enable Multi-Tab Access

To set the server parameter for enabling multi-tab access, perform the following steps:

Log in to a Siebel client with administrative privileges.

Navigate to the Administration - Server Configuration screen, and then the Servers view.

In the Siebel Servers list, choose a Siebel Server.

Click the Components view tab.

In the Components list, select the required Application Object Manager. For example, Call Center Object
Manager (ENU).

Select Parameters from the drop-down list before the Component Event Configuration section and click the
Hidden button.

7. Inthe Parameter field, perform a case-sensitive search for the EnableMultiTab parameter.

8. In the Value on Restart field, enter True.

9. Restart the Siebel Server.

VAhWNA

o

Configuring Application Interface Profile Parameter to Limit the Number of
Browser Tabs

To set the Application Interface profile parameter to limit the number of browser tabs, perform the following steps:

1. Login to Siebel Management Console.

2. Select the required Application Interface profile.

3. Select the Applications tab and expand the Enhanced Authentication section of the selected application.

4. Inthe Maximum Possible Tabbed Sessions field, enter a value to limit the number of browser tabs. For example,
2, if you want to allow only two browser tabs. By default, the value for Maximum Possible Tabbed Sessions field
issetto.

Note: This parameter is effective only when the EnableMultiTab server parameter is set to True for the
specified Application Object Manager.

5. Save the profile.

Configuring Smartphone UX

Siebel Open Ul supports an enhanced UX for Smartphone (iOS and Android) devices for mobile applications. With this
feature, Siebel Open Ul uses a specialized PHONE theme for smartphone devices, where list applets are transformed

138
ORACLE

Siebel Chapter 5
Configuring Siebel Open Ul Customizing Siebel Open Ul

to Tile visualization mode with infinite scrolling navigation, and navigation defaults to Side Menu. The enhanced
Smartphone UX also employs some specialized out-of-the-box context renderers to optimize the layout on the client to
ensure the optimal usage of available real estate.

You enable the Smartphone UX for mobile applications bye setting the component parameter AutoTileType to PHONE
as follows:

change param AutoTileType=PHONE for comp <application_object manager> <language>

For example, to enable Smartphone UX for Service Mobile, modify the component parameter as follows:

change param AutoTileType=PHONE for comp ServiceMObjMgr_ Enu

Restart the component after modifying the component parameter to see the enhanced look and feel in Smartphone
devices.

Note: For desktop or tablet devices, modifying the AutoTileType component parameter will not change the look and
feel of the application.

Guidelines for Customizing Smartphone UX

- Smartphone UX uses a predefined theme, specially designed for mobile form factor. For information on
customizing themes, see Customizing Themes. Make sure to add Smartphone as the Manifest expression value
when configuring a custom theme in the Manifest Administration view.

- Smartphone UX uses the Side menu navigation type by default and its predefined theme provides CSS
definition for the Side menu.

- Smartphone UX uses the Auto Tile feature to display List Applet in Tile visualization mode. For more
information, see Auto Tile Visualization Feature. To customize the list of fields in Tile, see Customizing the Tile
Content.

If Tile visualization mode is not required for any List Applet in Smartphone UX; it can be turned off using the
Applet user property. For more information, see Auto Tile Behavior.

- Smartphone UX uses context renderer to display accordions for Applets in a View. In addition, it uses context
renderer for functionality like in-line Tile Editing capability. If required, customized context renderer can
be implemented for customization. To deploy Context Renderer only for Smartphone UX mode, configure
Smartphone as the Manifest expression when configuring Physical Renderer/Context Renderer in Manifest
Administration View. For more information, see About Context Renderers, Configuring Custom Manifests, and
Configuring Manifest for Context Renderers.

About Preferences

Siebel Tools has preferences that control the appearance and behavior of user interface elements. To set these
preferences, navigate to Administration - Application, and then System Preferences.

The following table describes some of the preferences available.

139
ORACLE

Siebel
Configuring Siebel Open Ul

System Preference Name Default Value
Enable Responsive Label Y

Enable Elastic Grid Y

Busy Cursor Timeout 30

Starting with look ahead N

ORACLE

Chapter 5

Customizing Siebel Open Ul

Description

Enables Smart Labels. Input fields qualified for responsiveness start
showing a label as soon as any input character is typed in them. These
fields must have a input value,

Enables Elastic Grid. When enabled, a list applet’s height is reduced to the
height required for the number of records being displayed in the UL.

Controls the maximum time the cursor shows as busy. The default value is
30 seconds and is also the minimum value.

The Busy Cursor Timeout preference provides a way to customize the
maximum timeout of the application based on the customer process

and usage. This system preference does not change the busy cursor
behavior. It provides a way to customize the hourglass timing. Busy Cursor
Timeout can be interrupted by other processes that also have timeouts,
such as Message Bar interval, Portlet session timeout, or any custom
implementation that does a polled server call at regular intervals. The
Busy Cursor Timeout value should be less than the timeout values of
these processes. The maximum value for busy cursor timeout is 600 (10
minutes).

The end of the busy cursor period can indicate one of the following events:

1. A process may take more time than the maximum Busy Cursor
Timeout value and the maximum time has been reached.

2. The process has completed.
3. The process has been interrupted by another module.

Controls the autocomplete logic in drop-down menus based on the value
of the drop-down input field. When set to N (or False) the look ahead logic
is Contains. When set to Y (or True), the look ahead logic is Starting with.
For example:

- When this preference is set to N (for Contains), and the value of the
input field is tom, then the drop-down menu displays values such as
tomb, atomic, and custom.

- When this preference is set to Y (for Starting with), the drop-down
menu displays only tomb from the same set of data.

140

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

6 Customizing Styles, Applets, Fields, and
Controls

Customizing Styles, Applets, Fields, and Controls

This chapter describes how to customize styles, applets, fields, and controls. It includes the following topics:

« Customizing Logos, Themes, Backgrounds, Tabs, Styles, and Fonts
« Customizing Applets
« Customizing Controls

Customizing Logos, Themes, Backgrounds, Tabs, Styles,
and Fonts

This topic describes how to customize the logo, theme, background image, tabs, styles, and fonts that Siebel Open Ul
displays in the client. It includes the following information:

« Customizing the Logo

« Customizing Themes

« Customizing the Synergy Theme

« Customizing the Aurora Theme

« Customizing Browser Tab Labels

« Using Cascading Style Sheets to Modify the Position, Dimension, and Text Attributes of an Object
- Adding Fonts to Siebel Open Ul

- Specifying Font Families

« Customizing the Redwood Theme

You can make these modifications in the client at run time. You can then copy them into CSS files on the Siebel Server,
and then deploy them to all users.

Customizing the Logo

Siebel Open Ul defines the logo that it displays in the client in CSS files. It uses the following predefined code to display
the logo in the Aurora theme for screen sizes larger than 1199 pixels:

#_sweclient #_ sweappmenu .siebui-logo
float: left;
height: 40px !important;
line-height: 40px;
background-image: url("../images/ebus.gif");
background-repeat: no-repeat;
background-origin: content-box;
background-position: 4px 12px;

141
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

width: 106px;
white-space: nowrap;

}

You can configure Siebel Open Ul to override this code, or you can create your own custom theme so that you can
display a custom logo. You can configure Siebel Open Ul to display a separate logo in each theme. For more information
about overriding an existing theme, or adding a new theme, see Open Ul Deployment Guide (Article ID 1499842.1) on My
Oracle Support.

To customize the logo

1. Create a JPG file that includes your custom logo.

For example, the file might be my-logo.jpg.
2. Copy the file you created in Step 1to the following folders:

AI_INSTALL DIR\applicationcontainer externall\siebelwebroot\images\custom

3. Use an editor to open your custom CSS file that resides in the following folder:

AI_INSTALL DIR\applicationcontainer_external\siebelwebroot\files\custom

For example, open the my-style.css file.
4. Add the following code:

#_sweclient i# sweappmenu .siebui-logo {
background-image: url('../../images/custom/my-logo.jpg’)
}

5. (Optional) Modify the logo attributes, as necessary:
a. Use an editor to open your custom CSS file.

For example, open my-style.css.
b. Add your custom code.

Siebel Open Ul uses the following predefined code to specify the logo attributes:

#_sweclient # sweappmenu .siebui-logo {
float: left;

height: 40px !'important;

line-height: 40px;

background-image: url("../images/ebus.gif");
background-repeat: no-repeat;
background-origin: content-box;
background-position: 4px 12px;

width: 106px;

white-space: nowrap;

}

You can modify each of these attributes, as necessary. For example, you can modify the following width
and height attributes to decrease the width and height of the logo to accommodate your custom logo
image:

#_sweclient # sweappmenu .siebui-logo {

width: 25px;

height: 25px;

}

142
ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 6
Customizing Styles, Applets, Fields, and Controls

6. Configure the manifest. For more information about how to do this step, see Configuring Manifests:

a. Login to a Siebel client with administrative privileges.
. Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Add the file that you modified in Step 4.

For this example, you add the following file:

custom/my-style.css

d. Navigate to the Manifest Expressions view.
e. Inthe Expressions list, add the following expression.

Field

Name

Expression

Value

GRAY_TAB

LookupName (OUI_THEME SELECTION, Preference
("Behavior", "DefaultTheme")) = "GRAY_TAB"

In this expression, LookupName is a method that converts the language-dependent name
of the theme to the language-independent name of the theme. Siebel Open Ul uses the
language-independent name.

f. Navigate to the Manifest Administration view.
g. Inthe Ul Objects list, specify the following object.

Field

Type

Usage Type

Name

Value

Application

Theme

PLATFORM DEPENDENT

h. Inthe Object Expression list, add the following subexpression.

Field

Group Name

Expression

ORACLE

Value

Leave empty.

Desktop

143

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
Level 1
Operator Leave empty.
Web Template Name Leave empty.

i. Inthe Object Expression list, add the following subexpression.

Field Value

Group Name Leave empty.

Expression Enter the value that you specified in Step e.
Level 2

Operator Leave empty.

Web Template Name Leave empty.

j- Use the Move Up, Move Down, Indent, and Outdent buttons to rearrange the subexpressions, as
necessary.

k. Inthe Files list, click Add.In the Files dialog box, click Query.
I. Inthe Name field, enter the following path and file name:

custom/my-style.css

m. Click Go.
7. Log out of the client, log back in to the client, and then verify that Siebel Open Ul replaces the Oracle logo with
your custom logo.

Customizing Themes

This topic includes an example that customizes the theme that Siebel Open Ul displays in the client. It describes how to
add a custom theme named Mobile Theme Gold that Siebel Open Ul displays on a tablet.

The User Preferences - Behavior screen in the Siebel Mobile client allows the user to choose the theme that this client
displays. Siebel Open Ul comes predefined with one theme for the tablet and one theme for the phone, by default.

It constrains the theme that the user can choose depending on whether the user uses a phone, tablet, or desktop
computer.

144
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

To customize themes
1. Create a new style sheet named theme-gold.css. Save this new file in the following folder:

AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\files\custom

You can use any CSS file that includes your custom theme. You can also specify multiple CSS files. For this
example, use theme-gold.css.

2. Add the new theme to the OUI_THEME_SELECTION list of values:
a. Open Siebel Tools. Connect to the database that your Siebel Mobile application uses.

For more information, see Using Siebel Tools .

Click the Screens application-level menu, click System Administration, and then click List of Values.
Right-click in the List of Values list, and then click New Record.

d. Add the following value to the OUI_THEME_SELECTION list of values.

0 e

Property Value

Type OUI_THEME_SELECTION
Display Value Gold
Language-Independent Code GOLD_THEME

The value that you specify must match the theme name that you define in the manifest. In
this example, this name is GOLD_THEME.

Parent LIC NAVIGATION_TAB
NAVIGATION_TREE

NAVIGATION_SIDE

e. For the new theme to be displayed only for desktop, then under Object Expression add a new record
with Expression = Desktop and Level = 1. For the new theme to be displayed for all platforms (desktop,

mobile, and so on), then under Object Expression add a new record with Expression = null and Level =
1.

145
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

3. Configure the manifest. For more information about how to do this step, see Adding Custom Manifest
Expressions:

a. Login to a Siebel client with administrative privileges.
. Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Add the file that you created in Step 1.

For this example, add the following file:

files/custom/theme-gold.css

d. Navigate to the Manifest Expressions view.
e. Inthe Expressions list, add the following expression.

Field Value

Name GOLD_THEME

Expression LookupName (OUI_THEME SELECTION, Preference ("Behavior",
"DefaultTheme")) = "GOLD_THEME"

In this expression, LookupName is a method that converts the language-dependent name
of the theme to the language-independent name of the theme. Siebel Open Ul uses the
language-independent name.

f. Navigate to the Manifest Administration view.
g. Inthe Ul Objects list, specify the following object.

Field Value

Type Application

This example configures Siebel Open Ul to display your custom theme for the entire Siebel
application. To specify this theme for a single object, see Customizing Themes for Other

Objects.
Usage Type Theme
Name PLATFORM DEPENDENT

h. Inthe Object Expression list, add the following subexpression.
Field Value

Group Name Leave empty.

146
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
Expression Gold Theme

If you must add a theme to some other platform, such as a phone or desktop, then specify
this other platform. For example, specify Phone instead of Tablet.

Level 1
Operator Leave empty.
Web Template Name Leave empty.

i. Inthe Files list, add the file that you created in Step 1.
For this example, you add the following file:

files/custom/theme-gold.css

You can use the Sequence field to determine the sequence that Siebel Open Ul uses when it downloads
cascading style sheets.

4. Test your modifications:

Login to the Siebel Open Ul client.

Click User Preferences, click Behavior, and then click Edit.
Verify that the Theme field includes the Gold value.

Click Gold, and then click Save.

Log out of the Siebel Open Ul client, and then log back in.
Verify that the Siebel Open Ul client displays Gold theme.

-0 2 n CT9

Customizing Themes for Other Objects

This topic describes how to customize themes other objects and portlet applications.

147
ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 6
Customizing Styles, Applets, Fields, and Controls

To customize themes for other objects and portlet applications

Do Step 1through Step 4, except for Step 3, Step e, in the topic Customizing Themes and specify the object type
and name of the object where Siebel Open Ul must apply the style.

For example, to apply the style only for an applet, set the Type to Applet, and the Name to the applet name,

such as Contact List Applet.

To specify the theme for another application, use the following expression:

GetProfileAttr ("PortletId") = "PtId"

In this expression, Ptld is the Ptld argument of the URL to a Siebel portlet.

For example:

GetProfileAttr ("PortletId")

"CRMOPTY1"

For more information about Ptld, see Configuring Siebel Open Ul to Consume Siebel Portlets.

Customizing the Synergy Theme

This topic describes elements of the Synergy theme that can be customized. For more information about the Synergy

theme, see Siebel Fundamentals Guide .

The Synergy theme is designed for Available Tab navigation only and is not suitable for Side Menu or Tree navigation.

Adding Landing Pages

By default, the landing page is enabled for all desktop applications. Follow the instructions in this topic to add a Synergy
theme landing page for mobile applications.

To add landing page for mobile applications

1. Navigate to the Administration - Runtime Events screen, and then the Action Sets view.
2. Create an action set with a Name of your choosing and default field values.
3. Add a new action to the action set you created in Step 2 with the following defined values:

Field

Name

Sequence

Profile Attribute

ORACLE

Value

Action Name

For example, Landing Page.

Is Landing Page Enabled

148

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
Value TRUE

4. Navigate to the Administration - Runtime Events screen, and then the Action Sets view.
5. Create a run-time event with the following values:

Field Value
Object Type Application
Object Name Name of application

For example, Siebel Universal Agent.

Event Login
Action Set Name Select the action set that was created in Step 2.
Sequence Sequence number

Removing Applets from Landing Pages
Follow the instructions in this topic to configure Synergy theme landing page.

To configure content on landing pages

1. Navigate to the Administration - Personalization screen, and then the Applets view.
2. Query for the applet that you want to remove from the landing page.
3. Add the following expression:

GetProfileAttr ("Is SUI_THEME Landing View") = 'FALSE'

I Note: If there are any existing expressions, use the AND operator.

Removing Landing Pages

By default, in Siebel Open Ul, desktop applications are configured to have landing pages, but Mobile applications do not
have default landing pages. Follow the instructions in this topic to skip the display of landing page entirely.

To remove landing pages

1. Navigate to the Administration - Runtime Events screen, and then the Action Sets view.
2. Create an action set with a Name of your choosing and default field values.
3. Add a new action to the action set you created in Step 2 with the following defined values:

149
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
Name Action Name

For example, Remove Landing Page.

Sequence 1
Profile Attribute Is Landing Page Enabled
Value FALSE

4. Navigate to the Administration - Runtime Events screen, and then the Action Sets view.
5. Create a run-time event with the following values:

Field Value
Object Type Application
Object Name Name of application

For example, Siebel Universal Agent.

Event Login
Action Set Name Select the action set that was created in Step 2.
Sequence Sequence number

6. Navigate to the Administration - Personalization screen, and then the Applets view.
7. Query for the Conditional Expression using containing the following string:

"*Is SUI_THEME Landing View*"

8. Select a record from the results of the search performed in Step 7, then remove the following expression from
the Conditional Expression string:

GetProfileAttr ('Is SUI_THEME Landing View') = 'FALSE'
9. Repeat Step 8 for every record returned in the search performed in Step 7.
10. Select Reload Personalization Rules from the applet menu.

150
ORACLE

Siebel

Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Customizing the Aurora Theme

This topic describes how to customize the Aurora theme. For more information about the Aurora theme, see Siebel
Fundamentals Guide .

To customize the Aurora theme

1.

v A WN

A R

10.

12.
13.
14.
15.
16.
17.
18.
19.

Create new CSS rules in mycustom.css and place the file in:

AI_Install Dir\applicationcontainer_external\siebelwebroot\files\custom

Navigate to the Sitemap and query for manifest and then select Manifest Files.

From the drop-down menu choose Name, then enter files in the text field and run the query.
Click the plus (+) icon in the menu bar.

In the name field, enter the path to the new CSS file, for example:

files\custom\<mycustom.css>

Navigate to Manifest Administration and query for the Usage Type of Theme.

Click the plus (+) icon in the menu bar.

Create a new Platform Dependent record and click the plus (+) icon in Object Expressions.
Create an Aurora theme expression by clicking the plus icon (+) and entering Aurora in the Expression field.
Click the MVG icon.

In the Expressions pop-up window, click OK.

Set the new object expression’s level to 1.

Click the plus (+) icon in the Files menu bar.

In the Files pop-up window, click the Search icon.

Enter files in the search field and click the Execute icon.

Select the check box for your new CSS file and click OK.

Navigate to Tools, User Preferences, and then Behavior.

From the Theme drop-down menu, choose Aurora.

Close the application and then restart it.

The changes you made in the new CSS file are now active.

Customizing Browser Tab Labels

Siebel Open Ul uses the view Title that you define in Siebel Tools to set the Browser tab label. If this Title is not defined,
then Siebel Open Ul displays the Id of the current record as the label. For example, it might display 2-HB474 as the
Browser tab label as shown in the following image:

151

ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
4 s

<« C M [hitpsy//fofms-bld.development.local,
[BLD- Sigbel8.2 - NDL.. [NDIS Deme Launch ...

Home Participants Registrations Claims

Payment Requests List

Payment |d Claim Id Participant Disab

2-HBOKW 8875 73

2-HPSHZ 887553073

If the Tabel is not set for the view, the Id of the selected record is displayed by default. The tab name for the browser is
set with the view Title or Title String Override, if it is defined within Siebel Tools. The same view Title is also looked up
when the following script is called:

SiebelApp.S_App.GetActiveView() .GetTitle() .

Using Cascading Style Sheets to Modify the Position, Dimension,
and Text Attributes of an Object

The example in this topic describes how to modify the cascading style sheet. You move the Predefined Query (PDQ) to a
different location and you modify the text color of the Predefined Query.

To use cascading style sheets to modify the position, dimension, and text attributes
of an object

1. Add these CSS rules to the end of your custom style sheet, my-style.css:

#_sweclient #_ sweappmenu .PDQToolbarContainer {
position: absolute;

top: 40px;

left: 610px;

width: 140px;

}
#_sweclient #_sweappmenu .PDQToolbarContainer select {
color: red;

width: 140px;

}

2. Save the my-style.css file.
3. Verify that the Predefined Query drop-down list appear in the Help menu.

Adding Fonts to Siebel Open Ul

This topic describes how to add custom fonts to Siebel Open Ul. Although you can add custom fonts, it is recommended
that your Siebel Open Ul deployment use only Web-safe fonts because you might not be able to control font usage. For
example, assume you deploy a custom font to all users in your company, and that you also add this font to Siebel Open
Ul. Assume that one of your Siebel Open Ul users chooses this font in a text editor in Siebel Open Ul, and then sends

152
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

this text in an email message to an external customer who has not installed this custom font on their computer. In this
situation, your Siebel Open Ul user can read the font but the external customer cannot read it.

Using Web-safe fonts helps to make sure that any browser or other client, such as a desktop computer or mobile
device, can correctly render the text that your users provide, regardless of how each user configures font usage in
their individual browsers or clients, or of the level of font customization that exists in your deployment environment.
For more information about Web-safe fonts, see the topic that describes Web Safe Font Combinations at http://
www.w3schools.com/cssref/css_websafe_fonts.asp.

To add fonts to Siebel Open Ul
1. Create a JavaScript file that adds your custom font:
a. Create a new JavaScript file named ckeditorfontadditions.js, and then save this file in the custom folder.

For more information about this folder, see Organizing Files That You Customize.

b. Add the following code to the file that you created in Step a. This code adds the fonts that Siebel Open Ul
displays in the Font picklists when the user edits text in the client:

if (typeof (SiebelAppFacade.CKEDITOREXTN) == "undefined") {
Namespace ('SiebelAppFacade.CKEDITOREXTN') ;

(function() {

SiebelApp.EventManager.addListner ("postload", ckeditorextn, this);
var updatedFont = "";

function ckeditorextn() {

try {

if (CKEDITOR &&

CKEDITOR.config.font names !== updatedFont) {
CKEDITOR.config.font names = CKEDITOR.config.font names +
'font_families'

updatedFont = CKEDITOR.config.font_names;

}

} catch (error) {

// Nothing to do.

}

}

10

where:

- CKEDITOR.config.font names is @ predefined function that Siebel Open Ul uses to store the list of
fonts that it uses.

- font_families specifies one or more font families that Siebel Open Ul uses to render the font.

- catch (error) catches any error that might occur when Siebel Open Ul attempts to render the fonts
that you specify. If an error occurs, then Siebel Open Ul uses a predefined font to display the
control.

For this example, use the following code for font_families:

';Calibri/Calibri, Verdana, Geneva, sans-serif;'

For more information about how to specify the font family, see Specifying Font Families.

153
ORACLE

Siebel

Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

2. Administer the manifest:

For more information about how to do this step, see Configuring Manifests.

a.

h.

Log in to the client as an administrator.
Navigate to the Administration - Application screen, and then the Manifest Files view.
In the Files list, add the file that you created in Step 2.

You add the following record:

siebel/custom/ckeditorfontadditions. js

Navigate to the Administration - Application screen, and then the Manifest Administration view.
In the Ul Objects list, add a new record. Use values from the following table.
Type Usage Type Name

Application Common PLATFORM INDEPENDENT

In the Object Expression list, add the following subexpression.

Field Value

Group Name Leave empty.
Expression Desktop
Level 1

Operator Leave empty.
Web Template Name Leave empty.

In the Files list, add the file that you created in Step 2.
You add the following record:

siebel/custom/ckeditorfontadditions. js

Refresh the manifest. Log out of the client, and then log back in to the client.

3. Verify that Siebel Open Ul added your custom fonts:

a.
b.

Navigate to the Administration Communications screen, and then the All Templates view.

In the Compose Template section, in the Text window, click the Font drop-down, and then make sure the
Font list displays the font that you specified in Step 1, Step b.

154

ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Specifying Font Families

You can use the following code to specify the font family:

function ckeditorextn() {

try {

if (CKEDITOR &&

CKEDITOR.config.font names !== updatedFont) ({
CKEDITOR.config.font names = CKEDITOR.config.font names +
'font families'

updatedFont = CKEDITOR.config.font_names;

}

} catch (error) {

// Nothing to do.

In this code sample, font_families specifies one or more font families that Siebel Open Ul uses to render the font.

font_families can include one or more families. You must precede each font family with a semi-colon (;). For example:
;font_family 1;font_ family 2;font_family n
You must use the following format for each font family:

font_name/font_label,substitute_font_1,substitute_font 2, substitute_ font n,
generic_font family

where:

- font_name specifies the name of the font, such as Calibri.
- font_label specifies the text label. It displays this label in the Font picklists in the client.
- substitute_font 1 specifies the font if the font that font_name specifies does not exist in the client computer.

- substitute_font_2 specifies the font if the font that substitute_font 1 specifies does not exist in the client
computer.

- generic_font_family specifies the font family if the font that substitute_font_n specifies does not exist in the
client computer. Siebel Open Ul chooses a font from this generic font family.

It is recommended that you specify a substitution font that resembles the font that it substitutes. For example, Calibri

is a sans-serif, proportionally spaced font. If you specify Calibri as the font_name, then it is recommended that you
specify a close approximation to Calibri for substitute_font 1, such as Verdana, which is also a sans-serif, proportionally
spaced font. It is recommended that you use this same approach when you specify the remaining substitution fonts. For
example, specify Geneva for substitute_font_2.

Consider the following example:
';Calibri/My Font, Verdana, Geneva, sans-serif;'
This code configures Siebel Open Ul to do the following:
- Adds Calibri to the list of fonts that Siebel Open Ul displays in Font picklists.
- Uses My Font as the label for the Calibri font that Siebel Open Ul displays in Font picklists.

- If Calibri is not installed on the client computer, then Siebel Open Ul uses the following sequence to determine
the font that it displays:

a. Uses Verdana for My Font.
b. If Verdana is not installed on the client computer, then it uses Geneva for My Font.

155
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

c. If Geneva is not installed on the client computer, then it uses any sans-serif font that is installed on the
client computer for My Font.

If you specify a font that includes a space character, then you must use double-quotes to enclose the entire font name.
For example, you must use double quotes to enclose Times New Roman and Courier New:

';"Times New Roman"/My Font,Georgia,"Courier New", Serif;'

For more information about font families, see the topic that describes the CSS font family property at the W3 Schools
website at http://www.w3schools.com/cssref/pr_font_font-family.asp.

Customizing the Redwood Theme

This topic describes elements of the Redwood theme that can be customized. For more information about the Redwood
theme, see Siebel Fundamentals Guide.

I Note: The Redwood theme is designed for Side Menu only and is not suitable for Tab or Tree navigation.

To customize the Redwood theme

1. Create new CSS rules in a custom css file, for example mycustom. css and place the file in:
SIEBEL_ROOT\applicationcontainer_external\siebwebroot\siebel\files\custom

2. Navigate to the Sitemap and query for manifest and then select Manifest Files.
3. Click on the plus (+) icon in the menu bar.
4. Inthe name field, enter the path to the new CSS file, for example:
files\custom\ <mycustom.css>
5. Navigate to Manifest Administration.
6. Click the plus (*#) icon in the menu bar.
7. Create a new Platform Dependent record and click the plus (+) icon in Object Expressions.
8. Enter Redwood Theme in the Expression field.
9. Set the new object expression level to 1.
10. Click the plus (+) icon in the Files menu bar.
11. In the Files pop-up window, click the Search icon.
12. Enter the custom CSS file which was created in Manifest Files view and click on the Execute icon.
13. Save the Record
14. Navigate to Tools > User Preferences > Behavior.
15. Choose Redwood from the Theme drop-down menu.
16. Close the application and then restart it.

Note: The changes you made in the new CSS file are now active.

Customizing Applets

This topic describes how to customize applets. It includes the following information:

- Displaying and Hiding Fields

156
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

« Allowing Users to Drag and Drop Data into List Applets
- Expanding and Collapsing Applets
Customizing List Applets to Display a Box List
Customizing List Applets to Render as Carousels
Customizing List Applets to Render as Maps
Customizing List Applets with Class Names
- Configuring List and Form Applets to display a color based on the value selected
« Disabling Oracle Maps
Configuring the Focus in Siebel Applets
- Adding Static Drilldowns to Applets
- Allowing Users to Change the Applet Visualization
- Displaying Applets Differently According to the Applet Mode
« Adding Custom User Preferences to Applets
Customizing Applets to Capture Signatures from Desktop Applications
- Customizing Applets to Capture Signatures for Siebel Mobile Applications
- Customizing Applets to Display Record Counts for Navigation Links

Customizing Applets for Homepage Views in Redwood Theme

Displaying and Hiding Fields

The example in this topic describes how to configure Siebel Open Ul to display a field. To view a diagram that illustrates
some of the objects you modify and the relationships between these objects, see Configuring Manifests.

This topic is similar to the Displaying and Hiding Fields topic, but with fewer details. It demonstrates how you can quickly
modify a presentation model.

To customize the fields that are visible in an applet

1. Copy the JavaScript files:
a. Download a copy of the partialrefreshpm.js file to the following folder:
AI_INSTALL DIR\applicationcontainer external\siebelwebroot\scripts\siebel\custom

For more information about this file, see Text Copy of Code That Does a Partial Refresh for the
Presentation Model.
b. Download a copy of the partialrefreshpr.js file to in the following folder:

AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\scripts\siebel\custom

For more information about this file, see Text Copy of Code That Does a Partial Refresh for the Physical
Renderer.
2. Configure the manifest:
a. Login to a Siebel client with administrative privileges.
For more information about the screens that you use in this step, see Configuring Manifests.

157
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

b. Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Inthe Files list, add the following files.

Field Value
Name siebel/custom/partialrefreshpr. js
Name siebel/custom/partialrefreshpm. js

d. Navigate to the Administration - Application screen, and then the Manifest Administration view.
e. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Physical Renderer
Name Contact Form Applet

f. Inthe Object Expression list, add the following expression. The physical renderer uses this expression to
render the applet in a mobile platform.

Field Value
Expression Mobile
Level 1

g. Inthe Files list, add the following file:

siebel/custom/partialrefreshpr.js

h. Inthe Ul Objects list, specify the following applet.

Field Value
Type Applet
Usage Type Presentation Model

158
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
Name Contact Form Applet

i. Inthe Object Expression list, add a record with no value in the Expression field.
j. Inthe Files list, add the following file:

siebel/custom/partialrefreshpm.js

3. Test your modifications:

Open the browser in the client computer, and then clear the browser cache.

Open the Siebel application, and then navigate to the Contact Form Applet.

Delete the value in the Job Title field, and then step out of the field.

Make sure Siebel Open Ul removes the values from the Work # and the Main Fax # fields.
Add a value to the Job Title field, and then step out of the field.

Make sure Siebel Open Ul adds values to the Work # and the Main Fax # fields.

-0 Q2 n T 9

Text Copy of Code That Does a Partial Refresh for the Presentation

To get a copy of the partialrefreshpm.js file, see Article ID 14949981 on My Oracle Support. If you do not have access to
this file on My Oracle Support, then you can open a JavaScript editor, create a new file named partialrefreshpm.js, copy
the following code into this file, and then save your modifications:

if (typeof (SiebelAppFacade.PartialRefreshPM) === "undefined") {

SiebelJS.Namespace ("SiebelAppFacade.PartialRefreshPM") ;

define ("siebel/custom/partialrefreshpm", [], function () {(
SiebelAppFacade.PartialRefreshPM = (function/() {

function PartialRefreshPM (proxy) {

SiebelAppFacade.PartialRefreshPM. superclass.constructor.call(this, proxy);
}

SiebelJS.Extend (PartialRefreshPM, SiebelAppFacade.PresentationModel) ;
PartialRefreshPM.prototype.Init = function() {
SiebelAppFacade.PartialRefreshPM. superclass.Init.call (this);

this.AddProperty ("ShowJobTitleRelatedField", "");
this.AddMethod ("ShowSelection", SelectionChange, {sequence : false, scope :
this}) ;

this.AddMethod ("FieldChange", OnFieldChange, {sequence : false, scope: this});
};

function SelectionChange () {

var controls = this.Get ("GetControls") ;

var control = controls|["JobTitle"];

var value = this.ExecuteMethod ("GetFieldValue", control) ;
this.SetProperty ("ShowJobTitleRelatedField", (value ? true: false));
}

function OnFieldChange (control, wvalue) {

if (control.GetName () === "JobTitle") {

this.SetProperty ("ShowJobTitleRelatedField", (value ? true: false));
}

}

return PartialRefreshPM;

1O

159
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Text Copy of Code That Does a Partial Refresh for the Physical

To get a copy of the partialrefreshpr.js file, see Article ID 1494998.1 on My Oracle Support. If you do not have access to
this file on My Oracle Support, then you can open a JavaScript editor, create a new file named partialrefreshpr.js, copy
the following code into this file, and then save your modifications:

if (typeof (SiebelAppFacade.PartialRefreshPR) === "undefined") {
SiebelJS.Namespace ("SiebelAppFacade.PartialRefreshPR") ;

//Module with its dependencies

define ("siebel/custom/partialrefreshpr", ["order!3rdParty/
jquery.signaturepad.min", "order!siebel/phyrenderer"], function () {
SiebelAppFacade.PartialRefreshPR = (function() {

function PartialRefreshPR (pm) {

SiebelAppFacade.PartialRefreshPR. superclass.constructor.call (this, pm);
}

SiebelJS.Extend (PartialRefreshPR, SiebelAppFacade.PhysicalRenderer) ;
PartialRefreshPR.prototype.Init = function () {
SiebelAppFacade.PartialRefreshPR.superclass.Init.call (this);

// To act when FieldChange method is raised at PM level and execute our
custom code

this.AttachPMBinding("FieldChange", FieldChange) ;

}i

function ModifyLayout () {

var controls = this.GetPM() .Get ("GetControls") ;

var control = controls["JobTitle"];

var value = this.GetPM() .ExecuteMethod("GetFieldValue", control);

var canShow = (value ? true : false);

var WorkPhoneNum = controls|["WorkPhoneNum"];

var FaxPhoneNum = controls["FaxPhoneNum"];

if (canShow) {

$("#WorkPhoneNum Label") .parent().show(); // We need to take the parent
to get the whole div to hide

$("[name='" + WorkPhoneNum.GetInputName() + "']").parent().show();
$("#FaxPhoneNum Label") .parent().show();

$("[name='" + FaxPhoneNum.GetInputName() + "']") .parent() .show();
}

else{

$("#WorkPhoneNum Label") .parent() .hide();

$("[name='" + WorkPhoneNum.GetInputName() + "']").parent().hide();
$("#FaxPhoneNum Label") .parent().hide();

$("[name='" + FaxPhoneNum.GetInputName() + "']").parent() .hide();

}
}

function FieldChange (control, value, index) {
if(control.GetName () === "JobTitle"){
ModifyLayout.call (this) ;

}

}

// We are overloading the standard PR ShowSelection to apply our customization
// We ensure to first call the parent ShowSelection
PartialRefreshPR.prototype.ShowSelection = function(index) {
SiebelAppFacade.PartialRefreshPR.superclass.ShowSelection.call (this, index)
ModifyLayout.call (this) ;

}i

return PartialRefreshPR;

P} O):

return "SiebelAppFacade.PartialRefreshPR";

H:

}

160
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Allowing Users to Drag and Drop Data into List Applets
I Note: Drag and drop functionality refers to the process of moving items from one place to another.

The example in this topic describes how to allow users to select and move data from a spreadsheet to the Contact List
applet. You cannot use a calculated field value for the Client PM User Properties.

To allow users to select and move data into list applets
1. Modify the list applet:
a. Open Siebel Tools.

For more information, see Using Siebel Tools .

b. Inthe Object Explorer, click Applet.
c. Inthe Applets list, query the Name property for Contact List Applet.
d. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.
e. Inthe Applet User Properties list, add the following applet user properties.
Name Value
ClientPMUserProp EnableDragAndDroplinList
EnableDragAndDroplinList TRUE

f. Compile your modifications.

161
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
2. Create a spreadsheet:
a. Open a spreadsheet application, such as Microsoft Excel.
b. Inthe first row, add the following column headers for the columns that you must select and move: First
Name, Last Name, Account, Mr/Mrs.
- For each column name that you include, make sure the column name is identical to the column
name that the list applet displays in the client.
- Siebel Open Ul does not require you to include all column headers. However, you must include all
the required column headers that you noticed in Step 2.
- You can include column headers in any order.
c. Add data rows immediately after the column header row that you added in Step b. For example, add rows
that include information about each contact as follows:
- First Name: Antonia
- Last Name: Pinas
- Account: Partner PC Local
- Mr/Ms: Ms
Your completed work might resemble the following spreadsheet:
A B C D
1 First Mame Last Mame Account Mr/Ms
2 |Antonia Pinas Partner PC Local Ms.
3 Mary Aaron Atherton Group Nrs,
4 Diana Abbot Abbot Designs Ms.
3. Identify the columns that you must select and move:
a. Login to the client, navigate to the Contacts screen, and then the Contacts List.
b. Inthe contact form, notice the required fields.
Siebel Open Ul uses an asterisk (red color) to indicate each required field. In the contact form, the Last
Name and First Name fields are required.
4. Select and move the data:

In the spreadsheet application, choose the cells that include the header and data information.
Select and move the cells that you chose in Step a to the Contact List Applet in the Siebel application.

Do the following to select and move cells in Excel. Your spreadsheet program might work differently:

- Position the cursor over a corner of the selection area until Excel displays the cursor as a four-way
arrow.

- Right-click and hold down the mouse button over the cursor.
- Move the selection area to the Contact List Applet.
- Release the mouse button.

Verify that Siebel Open Ul added the data rows to the list applet.

162

ORACLE

Siebel

Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Expanding and Collapsing Applets

This topic describes how to configure Siebel Open Ul to display an applet as expanded or collapsed, by default.

To expand and collapse applets

1. Modify the applet:

a.

Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools .
In the Object Explorer, click Applet.
In the Applets list, query the Name property for the applet that you must modify.

For example, query for SIS Account Entry Applet.
In the Object Explorer, expand the Applet tree, and then click Applet User Property.

In the Applet User Properties list, create two new applet user properties. Use values from the following
table.

Name Value
ClientPMUserProp Default Applet Display Mode
Default Applet Display Mode Use one of the following values:

- Expanded. Siebel Open Ul displays the applet in an expanded state, by default.
- Collapsed. Siebel Open Ul displays the applet in a collapsed state, by default.

f. Compile your work.
2. Modify the Web template:

a.
b.

Identify the Web template that you must modify, and then open it for editing.
Add the following code:

<div od-type="form">
<div od-if="Web Engine State Properties, IsPrintOff">

<div class="od-context-SelectStyle">
</div>

<div class="siebui-collapsible-applet">

<table datatable="0" summary="" width="100%" cellpadding="0"cellspacing="0"
border="0" align="center"

<div class="siebui-collapsible-applet-header">

<div od-include="CCTitle_Named"/>

<div od-include="CCFormButtonsTop"/>

<div od-type="error" type="Popup">

<table datatable="0" summary="" class="od-context-Applet" width="100%"
cellpadding="0"

</div>

<div class="siebui-collapsible-applet-content">

<div od-type="form-applet-layout">

</div>

163

ORACLE

Siebel

Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

<div>
<div>
<table>
<div>

where:

- siebui-collapsible-applet identifies the applet body.

- siebui-collapsible-applet-header identifies the section where Siebel Open Ul adds the expand
button or the collapse button.
- siebui-collapsible-applet-content identifies the section that Siebel Open Ul expands or collapses.

3. Test your work:

a.

Login to the client.

b. Navigate to the applet that you modified in Step 1.

Verify that Siebel Open Ul displays the applet as expanded or collapsed according to the value that you
set for the Default Applet Display Mode applet user property in Step 1.

Verify that Siebel Open Ul displays the expand and collapse button correctly.

If Siebel Open Ul expands the applet, then it must display the following collapse icon in the the applet:

[4
p |

If Siebel Open Ul collapses the applet, then it must display the following expand icon in the applet:

Customizing List Applets to Display a Box List

This topic describes how to customize a list applet to display a box list. You customize how Siebel Open Ul renders an
applet, the content it displays, and the style that it uses in the client.

To customize list applets to display a box list

1. Login to the client.
2. Navigate to a view that displays a typical Siebel list applet.

For example, navigate to the Accounts screen, and then the Accounts list.

Notice that Siebel Open Ul displays the typical predefined list.
3. Open Windows Explorer, and then navigate to the following folder:

AI_INSTALL DIR\applicationcontainer_external\siebelwebroot\scripts\siebel

4. Rename the existing jggridrenderer.js file that resides in the folder you accessed in Step 3 to
jggridrenderer_original.js.

164

ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

5. Download the jggridrenderer_tile.js file to the folder you accessed in Step 3.
The jggridrenderer_tile file prevents Siebel Open Ul from initializing the jggrid control and from rendering other
fields in the grid. To get a copy of this file, see Article ID 14949981 on My Oracle Support.

6. Rename the jggridrenderer_tile.js file to jggridrenderer.js.

7. Inthe Siebel Open Ul client, press the F5 key to refresh the screen.

B B 8 £ @4 @ & © i & & Saved Queries: * All Accounts/Companies o
= | @ 00:00:00 BrarbESEE - @lolaraa
2 Home Accounts 53 Contacts 1 Opportunities f salesorders 3 service B Quotes Administration - Product

My Accounts v Menu - New Delato Name - |

Benchmark Capital Group
FinanceOne Corporation

Harris Capital Partners
Metropolitan Investments

AG Edwards & Sons, Ing

Abu Nidal organization (ANG)
Active Systems - Head Quarters
Active Systems - SFO

Active Systems - San Francisca
Albany County General Hospital

<< < > >

Benchmark Capital Group

Menu Now Delete

Account Name:* | Benchmark Captal Group Site: | San Disgo Account Team: | SADMIN =]
Address: | 800 Siverado St. Sute 351 Stata: - Main Prone # | 6195463333
Gity: | La Jolla Country - Main Fax # | 6195468933
Zip Code: | 82037 URL: | wawaw.benchmark.com

8. In Windows Explorer, navigate to the following folder:
AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\files\custom

9. Use an editor to open the my-style.css file.
10. Copy the following code into the theme_base.css file. This code configures Siebel Open Ul to display account
names in a series of vertical boxes:

/2y */
/* Styles for alternate List display demo */
/K */

.siebui-boxlist {

width: 100%;

height: 100%;

overflow: auto;

}

.siebui-boxlist-pager, .siebui-boxlist-items{
display: table-row;

white-space: nowrap;

width: 100%;

}

.siebui-boxlist-item, siebui-boxlist-item-selected {
padding: 100px Opx;

height: 40px;

border-radius: 5px;

float: left;

width: 120px;

overflow: hidden;

margin: 5px 12px;

color: #222!'important;

text-shadow: 0 1lpx 0 rgba (255, 255, 255, 0.7);

165
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

text-align: center;

}

.siebui-boxlist-item {

background: rgb (250, 250, 250);

background: -moz-linear-gradient(top, rgba (250, 250, 250, 1) 0%, rgba(225, 225,
225, 1) 100%);

background: -webkit-gradient(linear, left top, left bottom, color-stop (0%,
rgba (250, 250, 250, 1)), color-stop(100%, rgba (225, 225, 225, 1)));

background: -webkit-linear-gradient(top, rgba (250, 250, 250, 1) 0%, rgba(225, 225,
225, 1) 100%);

border-bottom: 1lpx solid #AAA;

box-shadow: 0 0 3px rgba(0, 0, 0, 0.4);

-webkit-box-shadow: 0 0 3px rgba(0, 0, 0, 0.4);

}

.siebui-boxlist-item-selected {

background: rgb (250, 250, 250);

background: -moz-linear-gradient(top, rgba (249, 238, 167, 0.5) 0%, rgba(251, 236,
136, 0.5) 100%) !'important;

background: -webkit-gradient(linear, left top, left bottom, color-stop (0%,
rgba (249, 238, 167, 0.5)), color-stop(100%, rgba(251, 236, 136, 0.5))) 'important;
background: -webkit-linear-gradient(top, rgba (249, 238, 167, 0.5) 0%, rgba(251,
236, 136, 0.5) 100%) !important;

border-bottom: 1lpx solid #AAA;

box-shadow: 0 0 3px rgba(0, 0, 0, 0.4);

-webkit-box-shadow: 0 0 3px rgba(0, 0, 0, 0.4);

/o m */
/* Styles for alternate List display demo */
/K e e */

11. Navigate to the Siebel Open Ul client, and then press the F5 key to refresh the screen.

The client displays the modified layout.

Customizing List Applets to Render as Carousels

The example in this topic describes how to customize Siebel Open Ul to render a list applet as a carousel in Siebel Call
Center. To view different example carousel styles and to get the code for these styles, see the http://sorgalla.com/
projects/jcarousel Web site.

To customize list applets to render as carousels
1. Add records in the client:

a. Open the client, navigate to the Contacts screen, and then click the Contact List link.
b. Add the following contact.

Field Value
Last Name Aamos
First Name Ray

166
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
c. Click the link in the Last Name.
d. Click the Affiliations link.
e. In the Affiliations list, add four affiliations.
f. Make sure you choose a different value in the Account field for each record. Accept default values for all

other fields.
g. Logout of the client.
2. Add the JavaScript files that Siebel Open Ul uses to render the carousel:

a. Save the carouselrenderer.js file to the following folder:

AI_INSTALL DIR\applicationcontainer_ external\siebelwebroot\scripts\siebel\custom

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support.

The carouselrenderer.js file is a physical renderer that bridges a JCarousel third-party control plug-in to
the list presentation model that the listpmodel.js file defines. The List Applet and the Carousel applet use
the same presentation model for the business logic that it uses to display each user interface. The only
difference is how Siebel Open Ul renders each applet.

b. Save the jquery.jcarousel.js file to the following folder:

AI INSTALL DIR\applicationcontainer external\siebelwebroot\scripts\3rdParty\jcarousel

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support. Oracle downloads and integrates
this 3rdParty Carousel package into Siebel Open Ul through the physical renderer. You must never modify
these third-party plug-in files. If you require a configuration that the third-party plug-in does not meet,
then you must modify the physical renderer instead of the third-party plug-in.

3. Add the CSS file that the third-party uses:
a. In Windows Explorer, navigate to the following folder:

AI_INSTALL DIR\applicationcontainer external\siebelwebroot\scripts\3rdParty
b. Add the following subfolder hierarchy to the 3rdparty folder:
\jcarousel\skins\tango\

c. Save the skin.css file to the tango folder that you added in Step b:

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support.
4. Add files to the manifest:

a. Login to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see Configuring Manifests.
Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Inthe Files list, add the following files. You must add a separate record for each file:

siebel/custom/carouselrenderer. js
3rdParty/jcarousel/skins/tango/skin.css

167
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

files/theme-aurora.css

Files that reside in the files folder are predefined files that you use in this example.
5. Administer the manifest for the applet:

a. Navigate to the Administration - Application screen, and then the Manifest Administration view.
b. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Physical Renderer

Name Pharma Professional Affiliation From List Applet

c. Inthe Object Expression list, add the following expression. Siebel Open Ul uses this expression to render
the applet on a desktop platform.

Field Value
Expression Desktop
Level 1

d. Inthe Files list, add the following file:

siebel/custom/carouselrenderer.js

6. Administer the manifest for the Aurora theme:

a. Navigate to the Manifest Expressions view.
b. Inthe Expressions list, add the following expression.

Field Value

Name Aurora Theme

Expression LookupName (OUI_THEME SELECTION, Preference ("Behavior",
"DefaultTheme")) = "AURORA THEME"

168
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
c. Navigate to the Manifest Administration view.
d. Inthe Ul Objects list, specify the following object.
Field Value
Type Application
Usage Type Theme
Name PLATFORM DEPENDENT
e. Inthe Object Expression list, add the following subexpression.
Field Value
Group Name Leave empty.
Expression Aurora Theme
Level 1
Operator Leave empty.
Web Template Name Leave empty.
f. Inthe Files list, add the following files:
files/theme-aurora.css
3rdParty/jcarousel/skins/tango/skin.css
169

ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

7. Test your modifications:

a. Clear the browser cache.

b. Open the Siebel application, and then navigate to the contact that includes the affiliations that you added
in Step 1.

c. Make sure the affiliations view contains carousel data that runs together because no styling is defined for
the carousel content. To fix this problem, continue to Step 8.

Ray Aamos
Meru v Hew Delete Query
Last Mame: & | Asmos Wiark #: 2015742340
First Matme: d Ry Main Fax #:
Jiok Titls: Technical Engineer Pobilz Phone # 2625109171
MM | M - Email | reamosi@abbeygensral.or

Samples Request || Addresses || More Info || Master Case || Income | Contact Summary (RTD}

Menu w Hew Delete Query |

THHERRYMAAMAMOsR ayCen@ronF elixk ol
AdminMane Lah SpecifiedRay
SpecifiedRay TechnicianMoné&amos
Aamos SpecifiedRay

Aamos

A J

8. Modify the styling that Siebel Open Ul uses to render the view:

a. Use a JavaScript editor to open the carouselrenderer.js file that you copied in Step 2.
b. Locate the following code:

itemMarkup += "
";

c. Modify the code you located in Step b to the following. You remove the break:

itemMarkup += "";

d. Use a JavaScript editor to open the skin.css file.
e. Locate the following code:

.jcarousel-skin-tango .jcarousel-item {
width: 75px;

height: 75px;

}

f. Modify the code you located in Step e to the following. Bold font indicates the code that you must modify:

.jcarousel-skin-tango .jcarousel-item {
width: 318px;

height: 75px;

}

g. Locate the following code:

.jcarousel-skin-tango .jcarousel-item-horizontal {
margin-left: O;
margin-right: 10px;

170
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

}

h. Modify the code you located in Step g to the following. Bold font indicates the code that you must
modify:

.jcarousel-skin-tango .jcarousel-item-horizontal {
margin-left: 10;

margin-right: 10px;

color: black;

}
9. Test your modifications:

a. Clear the browser cache.
b. Refresh the view that you examined in Step 7.
c. Make sure the styling no longer contains carousel data that overlaps, and that each record is displayed in

its own block.
r =
Abbot
Bokbby
.@ Mome Specified @.
Ray Aamos
b A

Customizing List Applets to Render as Maps

A list applet can be configured to display a map instead of a standard list of records. When the list applet is configured
to display a map, the following features are available:

- Markers. A marker is displayed on the map at the location address for each record.
- Contextual menu. Clicking a marker reveals a contextual menu with the following options:

o View Details. Clicking this option opens a pop-up dialog box with details about the record associated
with the marker.

o Select. Clicking this option zooms in on the map to the location address associated with the marker
record.

- Tooltip. When you hover over a marker, a tooltip is revealed, showing the address associated with the record.
- Map panning.
- Map zooming.

The example in this topic describes how to customize Siebel Open Ul to render a list applet as a map.

To customize list applets to render as maps
1. Add files to the manifest:

a. Login to a Siebel client with administrative privileges.

171
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

For more information about the screens that you use in this step, see Configuring Manifests.
b. Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Inthe Files list, add the following files. You must add a separate record for each file:

siebel/mappmodel. js
siebel/maprenderer.js

2. Administer the manifest for the applet:

a. Navigate to the Administration - Application screen, and then the Manifest Administration view.
b. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Physical Renderer
Name Applet Name

Where Applet Name is the name of the applet in which you want the map to appear.

c. Inthe Object Expression list, add the following expression. Siebel Open Ul uses this expression to render
the applet on a desktop platform.

Field Value
Expression Desktop
Level 1

d. Inthe Files list, add the following file:

siebel/custom/maprenderer.js

e. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Presentation Mode
Name Applet Name

172
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Field Value

Where Applet Name is the name of the applet in which you want the map to appear.

f. Inthe Object Expression list, add the following expression. Siebel Open Ul uses this expression to render
the applet on a desktop platform.

Field Value
Expression Desktop
Level 1

g. Inthe Files list, add the following file:

siebel/custom/mappmodel. js

3. Define the PM user properties:
a. Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools .

b. Inthe Object Explorer, click Applet.
c. Inthe Applets list, query the Name property for the applet that you must modified in Step 2.
d. Inthe Object Explorer, expand the Applet tree, and then click Applet User Property.
e. Inthe Applet User Properties list, create four new applet user properties. Use values from the following
table.
Name Value
MapMarkerLocation Business Component
MapMarkerTitle Business Component
MapSelectedRowlmage The SVG image, as added in the CSS
MapUnSelectedRowlmage The SVG image, as added in the CSS

When specifying the Value field for the MapMarkerLocation and the MapMarkerTitle, the business
component specified must meet at least one of the following conditions in order to properly display the
markers on the map:

- It must be exposed in the list column of the list applet configured for the map.

173
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

- It must be exposed as an applet control or list column of a sibling applet to the map applet of the
same business component.

- It must be set as a private field.
f. Compile your work.
4. Define the Web Template for the map:

a. Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools .
. Inthe Object Explorer, expand the Applet tree, and then click Applet Web Template.
c. Inthe Applet Web Templates list, add the following applet Web template.

Property Description

Name Enter text that describes the visualization behavior. For example, enter Map View to
describe a map visualization.

Type Edit List
Web Template Choose a Web template that defines the desired visualization. For example, choose Applet
Map.

d. Make sure Siebel Tools defines ODH for the Web template that you defined in Step c.

For example, make sure the Web Template Definition column in Siebel Tools includes ODH for Applet
Map template. If your deployment requires a new Web template, then you must define it before you can
define the applet Web template. For more information about configuring Web templates, see Configuring
Siebel Business Applications.

5. Test your modifications:

a. Clear the browser cache.
b. Refresh the list applet that you modified in Step 2.
c. Make sure that it renders a map.

Customizing List Applets with Class Names

You can use class names at the record level to customize list applets. Using the Applet PM user property you can define
a class name based on a condition that is evaluated for each row in the list applet. Before you begin to customize a list
applet:

- Configure a calculated field in a business component to use for applying the class name. Make sure the
calculation produces an appropriate value that can be evaluated to produce the desired effect. For example,
if you want to apply the class name when the calculated value is 1, 2, or 3, make sure that your calculation can
handle all possible values it may encounter and produces the desired result.

If the calculated field is not exposed in the Ul, expose it as a business component private field.

- Configure the Applet PM User Property as follows (assuming the calculated field is named Record State):

174
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

o Name: Record State Field, Value: Record_State
o For each possible value for Record_State, create a name-value pair

- Name: <State1>, Value <Class1>
- Name: <Staten>, Value <Classn>
o Configure the Applet PM User Property to include all of the previously configured name-value pairs:
Name: ClientPMUserProp, Value: Record State Field, State1, State2, ... Staten

For example, you can make a row in a list applet appear in a specific color if the revenue column has a value
greater than $500. The following procedure explains how to implement this customization.

To customize a list applet to display a row in color based on the value of a specific
column

1. Create a calculated field named "Record State" with the following calculated expression: [revenue > 500]
2. Expose the field as a Business Component Private field.
3. Configure the Presentation Model property as:

a. Name: Record State field
b. Value: Record State
4. For each expected value of the expression (in this example, true or false), add name-value pairs:

Name: true
Value: siebui-row-good-revenue
Name: false
d. Name: siebui-row-avg-revenue
5. Configure the properties to be exposed as Presentation Model properties:

nEo

a. Name: ClientPMUserProp
b. Value: Record State Field, true, false

List applet rows having a revenue value greater than $500 have the siebui-row-good-revenue classname
added. Rows that do not meet this criterion have the siebui-row-avg-revenue classname added. You

can now add the a CSS definition to show the siebui-row-good-revenue rows in the spcified color if the
revenue column has a value greater than $500.

Configuring List and Form Applets to display a color based on the
value selected

Using the Applet Presentation Model (PM) user property you can configure a list applet column (s) or form applet
control (s) to highlight a field with colors based on the value selected. You can add a CSS definition to show the column
(s) or control (s) in the specified color.

For example, if the Customer Service Center wants to easily highlight customer ‘sentiment’ for Service Requests to
assist Service Agents, then this is easily done. Where ‘sentiment’ is pre-defined - potentially via Oracle Al Services, then
Developers can make a column in a list applet appear in a specific color (such as traffic lights) if the sentiment column
has a value positive, negative, or neutral. This simple feature reduces development and configuration effort, whilst
making the UX more intuitive for users.

175
ORACLE

Siebel

Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

To customize a List or Form Applets to display a color based on the value of a specific
Calculated Field

1.

Create a calculated field say<calc_field >, outcome of its value will work as a decision factor to display the
background colour for the control.

For example,

IIf (LookupName ("GENAI_SENTIMENT", [

Sentiment])="POSITIVE", "Positive",6 IIf (LookupName ("GENAI_SENTIMENT",
[Sentiment])="NEGATIVE", "Negative", IIf (LookupName ("GENAI_SENTIMENT",
[Sentiment])="NEUTRAL", "Neutral","")))

Expose the calculated field as a Business Component Private Field.

Note: If this BusComp User Prop already exists, add a comma, then your new field name, such as: <Existing
Field 1>, <Existing Field 2>,Sentiment Indicator.

Set Force Active to TRUE.
Configure the properties to be exposed as Presentation Model properties:

Name: ClientPMUserProp
Value: Record State Field, Record State Control, Positive, Negative, Neutral

(Positive, Negative, Neutral are the expected value of above calc field)

For each expected value of the expression (in this example, Positive, Negative or Neutral), add name-value pairs
as applet user properties as mentioned in point b below.

a. Name: Record State field

Value: calc_field (Name should match as created in step 1)

b. Below user properties Name i.e., point i. ii, iii or so on (should match exactly the outcome of calculated
field created in step 1):

i. Name: Positive

Value: siebui-positive
iil. Name: Negative

Value: siebui-negative
iii. Name: Neutral

Value: siebui-neutral
c. Name: Record State Control

Value: Sentiment (comma separated BC field name. e.g., Sentiment, Priority, Status)

Comma separated applet control (s) specified in the value of user property ‘Record State Control’, will have
background colour based on the calculated field value. If calc field value = ‘Positive’, siebui-positive class name
added. If calc field value = ‘Negative, siebui-negative class name added. If calc field value = ‘Neutral, siebui-
neutral class name added.

Go to Site Map, Manifest Administration and associate the renderer to your applet for list applet.

176

ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Type Usage Type Name File
Applet Physical Renderer <Applet Name> Name

siebel/listcolumnattrpr.js

Go to Site Map, Manifest Administration and associate the renderer to your applet for Form applet.

Type Usage Type Name File
Applet Physical Renderer <Applet Name> Name
siebel/

formcontrolattrpr. js

Customizing Form Applets with lcon Map Images

This topic describes how to configure icon map images to customize form applets.

To configure the icon map for other HTML Types (such as Field, Text, Checkbox and so on) you need to set the control
as read-only in the Form applet. When you do this, in the user interface, irrespective of the HTML Type, the control is
displayed with a similar functionality as PlainText.

Disabling Oracle Maps

Oracle Maps is configured as the default display for the Contact List Applet and the Contact Form Applet. You can
disable the use of Oracle Maps by removing the configuration specified in Customizing List Applets to Render as Maps,
or by using the following procedure.

To disable Oracle Maps

Run the Siebel application.

Navigate to Administration - Application, and then Manifest Application.

Query for the Contact List Applet in the Name field.

Inactivate all the fields having Group Name as Map in the "Object Expression” Applet.
Close the Siebel application.

In Siebel Tools, navigate to Applet Query for Contact Form Applet, Go to Control.
Deactivate the Show Route control.

NoUuhAUWNRA

177
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Configuring the Focus in Siebel Applets

If you modify an applet, then you must make sure that your modification does not adversely affect how Siebel Open Ul
sets the focus in this applet. Siebel Open Ul does the following work to set the focus in applets:

1. Sets the focus to the list column that includes a list column user property that specifies a default focus, such as
DefaultFocus_Edit. This list column is a child object type of the list applet. For more information about default
focus user properties, see the topic that describes Specifying the Default Applet Focus in Siebel Developer's
Reference .

2. If the list column user property described in Step 1 does not exist, then Siebel Open Ul examines the columns of
a row from first to last (left to right), and then places the focus on the first editable control that it encounters. It
continues examining rows in this way until it finds an editable control, or until it reaches the last column of the
last row.

3. If Siebel Open Ul does not find any editable controls in Step 2, then it sets the focus on the first non-editable
control that the list applet displays.

4. If Siebel Open Ul does not find any non-editable controls in Step 3, then it sets the focus on the div container
that it uses to display the list applet.

Assume you do the following configuration:
Use Siebel Tools to add a large number of list columns to the SIS Account List Applet.
Make all list columns except the last list column read-only.
Log in to the client, navigate to the Account list view, and then run a query.

In this situation, Siebel Open Ul places the focus on the last list column that the list applet contains. The div container
might not contain enough room to display this list column, the list column might not be visible in the applet, and you
might not be able to use the applet because the focus is on a column that you cannot access.

To configure the focus in list applets

Make sure your configuration does not set the focus to a list column or field that Siebel Open Ul displays only
partially or does not display at all.

You can use the following guidelines:

o If Siebel Open Ul sets the focus to a list column that contains a DefaultFocus list column user property,
then make sure it correctly displays this list column after you finish your modifications.

o If Siebel Open Ul sets the focus to an editable or non-editable control, then make sure Siebel Open Ul
correctly displays this control after you finish your modifications.

To follow these guidelines, it might be necessary for you to rearrange the first-to-last sequence that Siebel
Open Ul uses to display list columns and controls in the list applet.

Adding Static Drilldowns to Applets

This topic describes how to add a static drill-down to a form applet so that the drilldown object displays the name of
the destination field, such as the primary account name, in the popup label when the user clicks a drilldown link. If you
do not do this configuration on a custom form applet that you create, then the drilldown link displays the data from the
field as the label, such as the account name, and not the caption text from the control.

178
ORACLE

Siebel

Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

To add static drilldowns to applets

1. Create a static drilldown object on the applet that you must modify:

a.

P an o

Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools .

In the Object Explorer, click Applet.

In the Applets list, query the Name property for the applet that you must modify.
In the Object Explorer, expand the Applet tree, and then click Control.

In the Controls list, create the following control.

Property Value

Field Specify the same field that you specified in the Hyperlink Field property of the drill down
object that you created in Step a.

HTML Type Text

For more information, see the topics about creating static drill down objects in Configuring Siebel
Business Applications .

In the Object Explorer, click Applet.

In the Applets list, right-click the record of the applet you are modifying, and then choose Edit Web
Layout.

Add the control that you created in Step e to the layout.

Compile your modifications.

179

ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

2. Test your modifications:

a. Login to the client.

b. Navigate to the applet you modified, and then make sure it displays your new static drill down object with
the correct label.

For example, the following screen capture includes the correct Last Name label and it displays the correct
data in the field (Pinas). If you complete the configuration that this topic describes, then Siebel Open Ul
might display Last Name - Drilldown as the label and as the data in the field.

Antonia Pinas

(vers ~ [e JEEEEM e |

Last Mame: ™ | Pinas

First Mame: ™ | Antonia
Jokr Title:

Mrtds | Mz -

Adding Custom User Preferences to Applets

This topic describes how to customize default applet behavior so that Siebel Open Ul remembers the actions the user
takes that effect this behavior. Expand and collapse is an example of this behavior. The example in this topic customizes
a physical renderer to display the Opportunity List Applet applet as expanded or collapsed, by default, depending

on how the user most recently displayed the applet. For example, assume the user navigates to the Opportunity List
Applet, and then expands the applet.

Siebel Open Ul then displays more records in the list. In the predefined behavior, if the user logs out of the client,
logs back in to the client, and then navigates to this list again, then Siebel Open Ul does not remember that the user
expanded the list. This topic describes how to customize Siebel Open Ul so that it remembers this user action.

You can use this example as a guideline to modify a predefined applet behavior or to create your own custom applet
behavior.
To add custom user preferences to applets

1. Add the user preference to your custom physical renderer and presentation model:

a. Use a JavaScript editor to open your custom physical renderer that renders the Opportunity List Applet.
b. Add the custom user preference. You add the following code:

var pm = this.GetPM() ;
var inputPS = CCFMiscUtil CreatePropSet();

inputPS.SetProperty ("Key", "user_ preference_name") ;

180
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

inputPS.SetProperty ("user preference name", "user preference value") ;

pm.OnControlEvent (siebConsts.get ("PHYEVENT INVOKE_ CONTROL") ,
pm.Get (siebConsts.get ("SWE_MTHD UPDATE USER PREF")), inputPS);

pm.SetProperty ("user_preference_name", "user preference_value");

c. Use a JavaScript editor to open your custom presentation model that renders the Opportunity List
Applet.

d. Add a presentation model property that references the custom user preference. You add the following
code

var pm = this.GetPM() ;

var value = pm.Get("user_ preference name");

You must make sure that Siebel Open Ul derives your custom presentation model from the Presentation
Model class. This class contains the logic that saves user preferences in presentation model properties.
For more information, see Adding Presentation Model Properties That Siebel Servers Send to Clients.

2. Add the expand and collapse button:

a. Use a JavaScript editor to open the physical renderer that you edited in Step 1, Step a.
b. Add the following code to the end of the Show method:

var idl = this.GetPM() .Get ("GetFullId") + '-siebui-cust-expandcollapse-btn';
var expcolbtn = "<button " +

"id= '" 4+ idl + "' " +

"class= 'appletButton' " +

"aria-label=ExpandCollapse " +

"type=\"button\" " +

"title=ExpandCollapse " + ">" + "ExpandCollapse" + "</button>";

c. Add the following code to the end of the BindEvent method. This code binds the button click.

$("#" + pm.Get("GetFullld") + "-" + "siebui-cust-expandcollapse-
btn") .bind("click", {ctx: this},

function (e) {

var self = e.data.ctx,

pm = self.GetPM();

SiebelJS.Log ("Expand") ;

var inputPS = CCFMiscUtil CreatePropSet() ;

var value = pm.Get ("Expand-Collapse")

inputPS.SetProperty ("Key", "Expand-Collapse");

if (value === "Collapse")

{

inputPS.SetProperty ("Expand-Collapse", "Expand") ;

pm.SetProperty ("Expand-Collapse", "Expand");

}

else

{

inputPS.SetProperty ("Expand-Collapse", "Collapse");

pm.SetProperty ("Expand-Collapse", "Collapse");

}

pm.OnControlEvent (siebConsts.get ("PHYEVENT INVOKE_ CONTROL") ,pm.Get (siebConsts.g

et ("SWE_MTHD_UPDATE USER_PREF")), inputPS);
if (value === "Collapse")

{

pm.SetProperty ("Expand-Collapse", "Expand");

//Write Code to expand the applet
$(“#s_“ + pm.Get ("GetFullId") + "_div").find(".siebui-collapsible-applet-
content") .show() ;

181
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

}

else

{

pm.SetProperty ("Expand-Collapse", "Collapse");

//Write Code to collapse the applet

$("#s_" + pm.Get("GetFullId") + "_div").find(".siebui-collapsible-applet-
content") .hide() ;

}
}
) .

’

d. Add the following code to the end of the ShowUI method. This code accesses the default value of the
custom Expand-Collapse user preference, and then instructs Siebel Open Ul to display the applet as
expanded or collapsed according to the user preference value:

PhysicalRenderer.prototype.ShowUI ()

{

var pm = this.GetPM() ;

var value = pm.Get ("Expand-Collapse") ;

if (value === "Collapse")

{

//Write Code to collapse the applet

$(“#s_“ + pm.Get ("GetFullId") + "_div").find(".siebui-collapsible-applet-
content") .hide () ;

}

else

{

//Write Code to expand the applet

$(“#s_“ + pm.Get ("GetFullId") + "_div").find(".siebui-collapsible-applet-
content") .show() ;

}

}

e. Use an HTML editor to open the HTML that Siebel Open Ul uses to display the Opportunity List Applet,
and then add the following code:

$("#s_" + this.GetPM() .Get("GetFullId") + "_div").find(".siebui-collapsible-
applet") .append (expcolbtn) ;

For more information about how to edit HTML code for an applet, see Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts.

3. Test your modifications:

a. Login to the client, and then navigate to the Opportunity List Applet.
Click the expand and collapse button, and then verify that Siebel Open Ul expands the applet.

c. Logout of the client, log back in to the client, navigate to the Opportunity List Applet, and then verify that
Siebel Open Ul displays the same expanded state that you set in Step 2, Step b.

Displaying Applets Differently According to the Applet Mode

This topic describes how to configure Siebel Open Ul to display applets differently according to the applet mode. It
includes the following topics:

- Configuring Siebel Open Ul to Use Different Web Templates According to the Applet Mode

- Configuring Siebel Open Ul to Use Different Physical Renderers and Presentation Models According to the Applet
Mode

182
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

The applet mode is a type of behavior of an applet Web template that determines whether or not the user can or cannot
create, edit, query, or delete Siebel CRM records in an applet. Edit, Edit List, Base, New, and Query are examples of
applet modes. This topic describes how to modify the presentation model, or to modify the physical render and Web
templates, to set the applet mode for an applet.

You can use a Web template to modify the physical layout of objects in the client that the Siebel Server renders as
containers, such as the markup for an applet container. You can also use a physical renderer to modify how the client
renders objects in the client, for example, to modify the markup that it uses to display a grid, menu, or tab.

For more information about applet modes and how to configure them in Siebel Tools, see the topic that describes how
to control how the user creates, edits, queries, and deletes CRM data in Configuring Siebel Business Applications .

Configuring Siebel Open Ul to Use Different Web Templates According to the Applet
Mode

The example in this topic configures Siebel Open Ul to display the same applet differently according to the following
responsibility that Siebel CRM assigns to the current user:

Display the applet as an editable list for the CEO.
Display the applet as an editable grid for a Business Analyst.

To implement this example, you configure Siebel Open Ul to use more than one Web template, where each of these Web
templates reference a different ODH:

- You use the predefined Applet List (Base/EditList) Web template that references the CCAppletList_B_EL Web
template. This template uses an editable list layout.

- You add a new Edit Grid List Web template. This template uses an editable grid layout.

You configure manifest expressions to determine the Web template that Siebel Open Ul uses according to the user who
is currently using the client.

This example configures the Contact List Applet to include the following applet Web templates:

Edit List applet Web template that runs in edit list mode and uses the Applet List(Base/EditList) Web template.
Edit Grid List applet Web template that runs in edit list mode and uses the Applet List Web template.

To Configure Siebel Open Ul to Use Different Web Templates According to the Applet Mode
1. Examine the predefined Web template that this example uses:
a. Open Siebel Tools.

For more information, see Using Siebel Tools .
b. Inthe Object Explorer, click Web Template.
c. Inthe Web Templates list, query the Name property for the following value:

"Applet List (Base/EditList)"

d. Inthe Object Explorer, select the Web Template, and then click Web Template File.
e. Notice the value that the Filename property contains.

This example uses the predefined Applet List (Base/EditList) Web template to display the applet in a list
layout that the user can edit. This Web template uses the CCAppletList_B_EL Web template to display this
layout. It is not necessary to modify this Web template for this example.

2. Add a custom Web template:

183
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

a. Inthe Object Explorer, click Web Template.
b. Inthe Web Templates list, add the following Web template.

Property Value

Name Edit Grid List

c. Inthe Object Explorer, click Web Template File.
d. Inthe Web Template Files list, add the following Web template file.

Property Value
Name Edit Grid List
Filename Specify the file that Siebel Open Ul must use to display this applet in a grid layout that the

user can edit. For example:

EditGridList

3. Modify the applet:

a. Do Step 1, but also add the following applet Web template to the Contact List Applet.

Property Value
Name Edit Grid List
Web Template Edit Grid List

You specify the Web template that you added in Step 1.

Type Edit List

b. Compile your modifications.

184
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

4. Configure the manifest:

a. Login to a Siebel client with administrative privileges.
b. Navigate to the Administration - Application screen, and then the Manifest Expressions view.

For more information about the screens that you use in this step, see Configuring Manifests.
c. Inthe Expressions list, add the following expressions.

Name Expression
Exp_User 1 GetProfileAttr("Primary Responsibility Name") = "Admin"
Exp_User 2 GetProfileAttr("Primary Responsibility Name") = "CEO"

For more information, see GetProfileAttr Method.
d. Navigate to the Manifest Administration view.
e. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Web Template
Name Contact List Applet

f. Inthe Object Expression list, add expressions until this list resembles the configuration shown in the
following table and image.

Inactive Flag Group Name Expression Level Operator Web Template Name
N Exp_User1_AppletMode <empty> 1 AND Edit List 1

N <empty> Exp_User1 1 <empty> <empty>

N <empty> EditList 2 <empty> <empty>

N Exp_User2_AppletMode <empty> 2 AND Edit Grid List

N <empty> Exp_User2 1 <empty> <empty>

185
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Inactive Flag Group Name Expression Level Operator Web Template Name
N <empty> EditList 2 <empty> <empty>

Object Expression u wu Ew —— M

Inactive Flag Group Name Expression Level Operator Veb Template Name

M Exp_User1_AppletMode 1 AND Edit List 1
N Exp_User 1 1
N EditList 2

M Exp_User2_AppletMode 2 AND Edit Grid List
N Exp_User 2 1
N EditList

Note the following:
o You specify the same name that you examined in Step 1for the Web Template Name for user 1.

o You specify the same name that you added in Step 2. For the Web Template Name for the user 2.

o You specify the expressions that you added in Step c. These expressions configure Siebel Open Ul to
display an edit list for a user who possesses the CEO responsibility, and a grid for a user who possesses
the Business Analyst responsibility.

o If the Usage Type is Web Template, then you do not specify any files in the Files list.

5. Test your modifications:
a. Login to the client as a user that Siebel CRM associates with the CEO responsibility, and then make sure
Siebel Open Ul uses the Edit List Web template to display the applet as a list.
b. Log out of the client, log back in to the client as a user that Siebel CRM associates with the Business
Analyst responsibility, and then make sure Siebel Open Ul uses the Edit Grid List Web template to display
the applet as a grid.

Configuring Siebel Open Ul to Use Different Physical Renderers and Presentation
Models According to the Applet Mode

The example in this topic configures Siebel Open Ul to download different presentation models and physical renderers
depending on the following mode that the Contact List Applet must use:

Edit List mode. Download a file named list_PM.js for the custom presentation model and a file named list_PR.js
for the custom physical renderer.

New mode. Download a file named new_PM.js for the custom presentation model and a file named new_PR.js
for the custom physical renderer.

You can use any name for your custom presentation models and physical renderers.

To configure Siebel Open Ul to use different physical renderers and presentation models according
to the applet mode
1. Customize your presentation models and physical renderers.

In this example, assume you customized the following files:
o list_PM.js

o list_PR.js

186
ORACLE

Siebel

Configuring Siebel Open Ul

o new_PM.s

o new_PR.js

Chapter 6

Customizing Styles, Applets, Fields, and Controls

2. Add your custom presentation models and physical renderers to the manifest:

a. Login to the client with administrative privileges.
b. Navigate to the Administration - Application screen, and then the Manifest Files view.

For more information about the screens that you use in this step, see Configuring Manifests.

c. Inthe Files list, add the following files that you customized in Step 1.

Field

Name

Name

Name

Name

Value

siebel/custom/list_PM.js

siebel/custom/list_PR.js

siebel/custom/new_PM.js

siebel/custom/new_PR.js

3. Configure the manifest for Edit List mode:

a. Navigate to the Manifest Administration view.
b. Inthe Ul Objects list, specify the following applet.

Field

Type

Usage Type

Name

Value

Applet

Presentation Model

Contact List Applet

c. Inthe Object Expression list, add the following expression.

Field

Expression

Level

ORACLE

Value

EditList

187

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

d. Inthe Files list, add the following file:

siebel/custom/list_ PM.js

Siebel Open Ul uses the file that you specify for the presentation model that it uses to display the Contact
List Applet in Edit List mode.

e. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Physical Renderer
Name Contact List Applet

f. Inthe Object Expression list, add the following expression.

Field Value
Expression EditList
Level 1

g. Inthe Files list, add the following file:

siebel/custom/list PR.js

Siebel Open Ul uses the file that you specify for the physical renderer that it uses to display the Contact
List Applet in Edit List mode.

4. Configure the manifest for New mode:

a. Inthe Ul Objects list, specify the following applet.

Field Value
Type Applet
Usage Type Presentation Model
Name Contact List Applet

188
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

b. Inthe Object Expression list, add the following expression.

Field Value
Expression New
Level 1

c. Inthe Files list, add the following file:

siebel/custom/new_PM.Js

Siebel Open Ul uses the file that you specify for the presentation model that it uses to display the Contact
List Applet in New mode.

d. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Physical Renderer
Name Contact List Applet

e. Inthe Object Expression list, add the following expression.

Field Value
Expression New
Level 1

f. Inthe Files list, add the following file:

siebel/custom/new_PR.js

Siebel Open Ul uses the file that you specify for the physical renderer that it uses to display the Contact
List Applet in New mode.

5. Test your modifications.

189
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Allowing Users to Change the Applet Visualization

This topic describes how you can modify an applet so that the user can change the applet visualization.The applet
visualization is a type of configuration that specifies the layout that Siebel Open Ul uses to display the applet. List, form,
tile, map, grid, and carousel are each an example of an applet visualization.

Siebel Open Ul allows the user to set some user preferences that determine how it displays an applet. The user can
navigate to the User Preferences screen, and then use the Behavior view to set these preferences. For example, if the
user chooses a value in the Visualization field of the Behavior view, such as Tile, and then navigates to a list applet that
includes a tile configuration, such as the Opportunity List Applet, then Siebel Open Ul displays this applet as a set of
tiles. If the user clicks Grid in this applet, then Siebel Open Ul displays the applet as a grid and sets Grid as the default
layout only for the Opportunity List Applet. This local setting takes precedence over the global setting that the user
sets in the Visualization field in the Behavior view. Siebel Open Ul continues to use a tile layout for all other applets that
include a tile configuration. In this situation, it displays the Opportunity List Applet as a grid even if the user logs out
and then logs back in to the client.

The following figure shows the Contacts List (that you modified in this topic) where the user can change the applet
visualization. The user can click one of the applet visualization buttons (such as Tile, Grid, or Map) to change the applet
visualization.

My Contacts = E Search First Name [~ W =
First Name Last Hame: Vierk Phone # Mrims AccnmlrSear(—hFe\'chﬂ Address city State Postal Code Email
Antcnia Pinas Mr
Sowanya Ramakrishra 47 Vlarkzt Street Baskirg Ridge HJ J782)
M* A Dawson Rice Bab Fax
HIMANSHU AGRAWAL
VARUN AWAN
THCMAS ALEX

This topic describes how to configure the manifest for a custom applet visualization. For information about configuring
the manifest for a predefined configuration, see Configuring Manifests for Predefined Visualizations.

190
ORACLE

Siebel
Configuring Siebel Open Ul

Chapter 6
Customizing Styles, Applets, Fields, and Controls

To allow users to change the applet visualization

1. Modify the applet in Siebel Tools:

a. Open Siebel Tools.

For more information, see Using Siebel Tools .
In the Object Explorer, click Applet.
c. Inthe Applets list, query the Name property for the applet that you must modify.

For example, query the Name property for Contact List Applet.
d. Inthe Object Explorer, expand the Applet tree, and then click Applet Web Template.

The Applet Web Templates list displays the applet modes that Siebel Tools defines for the applet. For
example, Base, Edit, and Edit List. For more information about these modes, see Displaying Applets
Differently According to the Applet Mode.

e. Inthe Applet Web Templates list, add the following applet Web template.

Property

Name

Sequence

Type

Web Template

Description

Enter text that describes the visualization behavior. For example, enter Edit Tile to
describe a tile visualization that allows the user to modify field values.

Enter a value of 1000 or greater. To help you quickly recognize how Siebel Open Ul uses a
Web template, it is recommended that you use a value of:

- 1000 or greater for a Web template that Siebel Open Ul uses to determine the applet
visualization, such as a Tile.

- 1,2, or 3 for a Web template that Siebel Open Ul uses to determine the applet mode,
such as Edit List.

Specify the applet mode, such as Edit or Edit List.

Choose a Web template that defines the desired visualization. For example, choose Applet
Tile.

f. Make sure Siebel Tools defines an ODH for the Web template that you defined in Step e.

For example, make sure the "Definition" column of Web Template in Siebel Tools includes ODH for the
Applet Tile Web tempilate. If your deployment requires a new Web template, then you must define it

ORACLE

191

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

before you can define the applet Web template. For more information about configuring Web templates,
see Configuring Siebel Business Applications .
g. Repeat Step d and Step e for each Web template that your deployment requires.

Your completed work in Siebel Tools must resemble the configuration shown in the following image. As
shown in this image, the Applet Web Templates associated with the Contact List Applet are:

- Base - Applet List (Base/EditList)

- Edit - Applet List Edit (Edit/New/Query)
- Edit List - Applet List (Base/EditList)

- Edit Map - Applet Map

- Edit Tile - Applet Tile

5| Applet Web Templates E@
Applets
W | Hame Project Business Component | Class j
¥| # Contact List Applet Contact (SSE) Contact CSSFramelistFINGer|
A
] b
Applet Web Templates
W | Name Sequence Typs Web Template ﬂ
> g e Base Applet List (Base/EditList)
Edit Edit Appiet List Edit (Edit/New/Query)
Edit Lst Edit List Applet List (Base/EditList)
EditMap 1,001 Edit List Applet Map
EditTie 1,002 Edit List Applet Tile

h. Compile your modifications.
2. Configure the manifest for the applet that you modified in Step 1:

a. Login to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see Configuring Manifests.
. Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Inthe Files list, add the following predefined files.

Field Value

Name siebel/mappmodel.js

siebel/Tilescrollcontainer.js

d. Navigate to the Administration - Application screen, and then the Manifest Administration view.
e. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

192
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
Usage Type Web Template
Name Contact List Applet

f. Inthe Object Expression list, add the expressions that Siebel Open Ul uses to render the applet for this
Web template in the various visualizations and applet modes that you defined in step 1.

Your completed work must resemble the following configuration. Use the Move Up, Move Down, Indent,
and Outdent buttons to create the hierarchy. Note that you do not add files in the Files list for a Web

193
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

template. You only add files for a presentation model or physical renderer. For more information about
how to create these object expressions, see Configuring Manifests.

Object Expression w EWWE Move Up Indent >> tdent 1-90f9
Inactive Flag Group Name Expression Level Operator Web Template Name
- N ile 1 AND Edit Tile - &
o N Desktop 1
o N EditList 2
o N Tile 3
v N Map 2 AND Edit Map =
o N Desktop 1
-] N EditList 2
-] N Map 3 [
3 N Carousal 3 AND Edit Carousal S

g. Configure the manifest for the presentation model for each applet visualization that you defined in Step
1.

You add the Ul object, object expressions, and files until the Manifest Administration screen resembles
the following configuration.

ulobjects TN (20 B3 s actie Fog (]

Inactive Flag Type Usage Type Hame

N Applet Presentation Model Contact List Applet

Object Expression E v f EE ove Up || Move Do 1-3o3| | Files E d E

Inactive Flag . Group Hame Expression Level Operator Web Template Hame Inactive Flag
- N Map P 1 AND N siebeVmappmodel js
° N Desktop 1

° N Map

h. Repeat Step g for each applet visualization that you configured in Siebel Tools.
i. Configure the physical renderer for each applet visualization that you defined in Step 1.

You add the Ul object, object expressions, and files until the Manifest Administration screen resembles
the following configuration:

194
ORACLE

Siebel

Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Ul Objects ['new [peiete [ouery JESTES nactive Fiag [
Inactive Flag Type Usage Type Mame
N Applet Physical Renderer Contact List Applet
Object Expression 1-0er| | Files :
"“'"’Eh — Grid e e 1 - AND e m—— - ""“:’" : siebelTilescrollcontainer js
o N sktop 1
L N EditList
o N
N Tile 2 AND -
° N sktop 1 T
o N itList
o N
N Map
N Carousal N -~

If you do not do this administration, then Siebel Open Ul uses the jggridrenderer.js file for the physical
renderer for a list applet, by default.

3. (Optional) Modify the strings that Siebel Open Ul uses for the labels of the applet visualization buttons.

Do the following:

a.

In Siebel Tools, choose the Screens application-level menu, click System Administration, and then click
List of Values.

In the List of Values list, query the Type property for OUI_MODE_VISUALIZATION.
Make sure the Language-Independent Code property for each record that Siebel Tools displays in the List

of Values list includes the same string that you modified in Step 2, Step g.

For example, make sure the Language-Independent Code property includes the following values:

Type Display Value Language-Independent Code
OUI_MODE_VISUALIZATION Tile Tile

Map Map

Grid Grid

195

ORACLE

Siebel

Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

@ -0

Type Display Value Language-Independent Code

Siebel Open Ul uses the value that the Display Value property contains as the label for each applet
visualization button. To view these buttons, see the first figure in this topic Allowing Users to Change the
Applet Visualization.

Compile your modifications.

Log in to the client.

Navigate to the Administration - Application screen, and then the Manifest Expressions view.
In the Manifest Expressions view, modify the following strings, as necessary.

Name Expression

Tile GetObjectAttr("VisualMode") = 'Tile'

Map GetObjectAttr("VisualMode") = 'Map'
Grid GetObjectAttr("VisualMode") = 'Grid'

For example, Siebel Open Ul uses the Tile string in the Expression field for the Tile expression. You can
modify these strings to meet your deployment requirements.

4. Test your modifications:

a.

Log out of the client, and then log back in.
Navigate to the Contacts screen, and then the Contacts List view.
Verify that Siebel Open Ul displays the Grid, Tile, and Map visualization buttons.

The visualization buttons must resemble the buttons that the first figure in this topic Allowing Users to
Change the Applet Visualization displays.

Click each visualization button, and then verify that Siebel Open Ul displays the visualization that is
associated with the button that you click.

Configuring Manifests for Predefined Visualizations

The following table summarizes different manifest configurations for visualizations that come predefined with Siebel
Open UL It includes all the configuration required. For example, you do not configure any expressions or files for Web

templates.

Visualization

Tile

Presentation Model Physical Render Web Template
Set Usage Type to Presentation = Set Usage Type to Physical Set Usage Type to Web
Model. Renderer. Template.

Set Name to List Applet Name. Set Name to List Applet Name. Set the Name to Edit Tile.

196

ORACLE

Siebel
Configuring Siebel Open Ul

Chapter 6

Customizing Styles, Applets, Fields, and Controls

Visualization Presentation Model Physical Render Web Template
Add the following to the Files Add the following to the Files
list: list:
siebel/listpmodel. js siebel/
Tilescrollcontainer.j
s
Grid Same as Tile. Set Usage Type to Physical No manifest administration
Renderer. is necessary. You use Siebel
Tools to configure Edit List Web
Set Name to List Applet Name. templates.
Add the following to the Files
list:
siebel/
jggridrenderer. js
Map Same as Tile except add the Same as Grid except add the Set Usage Type to Web
following file: following file: Template.
siebel/mappmodel.js siebel/custom/ Set the Name to Edit Tile.

siebelmaprenderer. js

The following physical renderer modifies the List presentation model so that it can use the Google Map plugin for
jQuery:

siebel/custom/siebelmaprenderer.js

Oracle provides this file only as an example that does a map visualization for a list applet. Oracle does not support
usage of siebelmaprenderer.js with Google Maps.

Auto Tile Visualization Feature

Tile Visualization mode is a way of viewing list applets within the Siebel application. With this feature, all qualifying list
applets can be rendered as a tile automatically which can reduce the configuration effort. The tiles implementation (and
the limitations of the tiles Ul) remain the same and the individual usability of each applet when rendered as a tile has to
be verified and must be addressed appropriately. Users do not need to configure the manifest and repository for each
tile.

This topic describes the Auto Tile Visualization feature. It includes the following topics:

- About Auto Tile Visualization of List Applets

- Criteria for Rendering Applets in Tile Mode

- Enabling Auto Tile Mode at the Application Level

- Enabling Auto Tile Mode at the List Applet level

« Predefined Manifest for Tiles Visualization

- Auto Tile Behavior

- Default Tile Content

« Customizing the Tile Content

« Customizing Tile Presentation for Qualifying List Applets
« Customizing Tile Presentation for a Specific List Applet

197
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Customizing the User Interface Layout of a List Applet
« Resolving Tile Presentation for a Specific List Applet

About Auto Tile Visualization of List Applets

With the Auto Tile Visualization feature, the qualifying list applets can be rendered as a tile automatically. The tiles
implementation (and the limitations of the tiles user interface) remains the same. Auto Tile Mode can be enabled by
defining the application or the applet user property in Siebel Open UI.

List applets must meet a specific set of criteria to have the tile mode enabled for them.
- Auto Tile can be enabled at the application level and can also be enabled or disabled for specific applets.
- There are no enhancements to the preexisting tiles usability.
- Auto Tile visual mode will render as similar to the preexisting tile.

Individual usability of each applet when rendered as a tile has to be verified and needs to be taken care, if it
doesn’t meet the business requirements.

- The content, presentation and user interface layout of these tiles can be customized.

Criteria for Rendering Applets in Tile Mode

The qualifying list applets can be rendered in the Tile mode automatically. The list applets must conform to the
following criteria to enable the Tile mode:

- Applet must be configured with Type = 'standard'.
- Applet must be configured with applet Mode = Edit List in the respective repository view.
- There must be at least one Applet Web Template with Type = 'Edit List'.
Must not be configured as HIERARCHICAL list applet.
Must not have the Applet Web Template which is configured against Tile/Map web template.

I Note: For Siebel On Phone, all list applets are rendered in the Tile mode automatically.

Enabling Auto Tile Mode at the Application Level

The Auto Tile mode can be enabled at the application level for all qualifying list applets in the Siebel application. The
example in this topic describes how to enable Auto Tile mode at the application level.

To enable Auto Tile mode at the application level

1. Open Siebel Tools.

For more information, see Using Siebel Tools .

In the Object Explorer, click Application.

3. Inthe Applications list, query the Name property for the application that you must modify.
For example, Siebel Universal Agent.

In the Object Explorer, expand the Application tree, and then click Application User Prop.
In the Application User Properties list, add the following application user properties.

N

v o~

Name Value

EnableAutoTile TRUE

198
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Name Value

6. Compile your modifications.

Enabling Auto Tile Mode at the List Applet level

The Auto Tile mode can be enabled at the List Applet level for all qualifying list applets in the Siebel application. The
example in this topic describes how to enable Auto Tile mode at the list applet level (assuming that the application does
not have the Auto Tile mode enabled) for a specific applet.

To enable Auto Tile mode at the list applet Level

1. Open Siebel Tools.

For more information, see Using Siebel Tools .
2. Inthe Object Explorer, click Applet.
3. Inthe Applet list, query the Name property for the applet that you must modify.

For example, SIS Account List Applet.
In the Object Explorer, expand the Applet tree, and then click Applet User Prop.
In the Applet User Properties list, add the following applet user properties.

v oA

Name Value

EnableAutoTile TRUE

Note: Set the value of the user property to False to disable the Auto Tile mode for a specific applet, assuming
that the Auto Tile mode has been enabled at the application level.

6. Compile your modifications.

Predefined Manifest for Tiles Visualization

The Auto Tile feature needs manifest objects that cater to the Tile mode for the qualifying list applets. The required
Manifest Objects are predefined, as shown in the following tables.

- The manifest object definition for Ul Object (Applet Physical Renderer - DEFAULT LIST APPLET) is as follows:

Type Usage Type Name

Applet Physical Renderer DEFAULT LIST APPLET

The Object Expression for Ul Object (Applet Physical Renderer - DEFAULT LIST APPLET) is as follows:

Expression Level File Name

Tile 1 siebel/TileLayoutPR. js

199
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Expression Level File Name
Not Set 2 siebel/jqgridrenderer.js

- The manifest object definition for Ul Object (Applet Web Template - DEFAULT LIST APPLET) is as follows:

Type Usage Type Name

Applet Web Template DEFAULT LIST APPLET

The Object Expression for Ul Object (Applet Web Template - DEFAULT LIST APPLET) is as follows:

Expression Level Web Template Name

Tile 1 Tile

Auto Tile Behavior

The following table shows the behavior of Auto Tile at the application level or at the applet level, based on the
application or applet user property values. It includes the Application User Property values, Applet User Property values,
and a description of the relevant behavior.

Application User Property Applet User Property Behavior

<not set> <not set> No change from existing behavior.

<not set> TRUE Enables Tile mode only for the specified list
applet.

<not set> FALSE No change from existing behavior.

TRUE <not set> Enables Tile mode for all the qualifying list

applets in the application.

TRUE TRUE Enables Tile mode for all the qualifying list
applets in the application.

TRUE FALSE Enables Tile mode for all the qualifying list
applets except the specified list applets in the
application.

FALSE <not set> No change from existing behavior.

200

ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Application User Property Applet User Property Behavior
FALSE TRUE Enables Tile mode only for the specified list

applet (assuming it qualifies).

FALSE FALSE No change from existing behavior.

Default Tile Content
By default, the first nine list columns will be displayed in Tile mode.

- Applet Web Template Items under Applet Web Template (that is, with Type = "Edit List") of qualified list
applet, are sorted by their Item Identifier in ascending order.

- Based on this sort order, the first nine are chosen and the list columns which are mapped against these will be
displayed in the Tile details.

- List columns are not displayed if they are not exposed or not selected on the list applet. In this case, fewer than
nine columns would be displayed.

Customizing the Tile Content
Create the following applet user property to customize the details displayed when in tile mode.

Name Value Remarks

ItemPrefForAutoTile <comma separated list of valid Item Identifiers> None.

For example: "501, 509, 503"

ItemPrefForAutoTile:<AWT Type Mode> <comma separated list of valid Item Identifiers> This change is applicable
only for Siebel On Phone
For example, to configure the list of fields For example: "501, 509, 503" and view-based applets.

for Edit List Mode in Tile Visualization, use
ItemPrefForAutoTile:EditList.

The list column restrictions include the following:

- Must be exposed and selected on the list applet. If none of the columns are mapped or selected against these,
then the tile card will be empty.

- A maximum of nine web template items are used.
- Limited to the ones that are listed (so, fewer than nine means only that set).

- Any invalid (unmapped) identifiers are not displayed.

Customizing Tile Presentation for Qualifying List Applets

To customize the tile presentation for all qualifying list applets of an application, the following manifest objects must be
changed to point to the custom JavaScript (JS) files.

The manifest object definition for Ul Object (Applet Physical Renderer - DEFAULT LIST APPLET) is:

201
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Type Usage Type Name
Applet Physical Renderer DEFAULT LIST APPLET

The Object Expression for Ul Object (Applet Physical Renderer - DEFAULT LIST APPLET) changes to the following:

Expression Level File Name
Tile 1 siebel/CustomTilePR.js
Not Set 2 siebel/jqggridrenderer.js

Customizing Tile Presentation for a Specific List Applet

To customize the tile presentation for a specific list applet, the applet Manifest objects must be changed to point to the
custom JS files. For example, the Opportunity List Applet is customized as shown here.

The manifest object definition for Ul Object (Applet Physical Renderer - Opportunity List Applet) is:

Type Usage Type Name

Applet Physical Renderer Opportunity List Applet

The Object Expression for Ul Object (Applet Physical Renderer - Opportunity List Applet) changes to the following:

Expression Level File Name
Tile 1 siebel/CustomTilePR.js
Not Set 2 siebel/jqgridrenderer. js

Customizing the User Interface Layout of a List Applet

The user interface layout for a list applet can be modified by making certain repository changes. The following table
shows the repository changes to make in the Applet Web Template.

Field Description

Name Tile. The tile name must be Tile since it is used in the seeded manifest.
Type Edit List

Sequence This can be any other integer. For example: 100L.

202
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Description
Web Template This can be any valid web template, where the layout definition supports tile. For example: Applet Tile.
Applet Web Template Items Create the required applet Web template items, which must be displayed in the tile card under the

newly created Tile applet Web template.

Resolving Tile Presentation for a Specific List Applet

The tile presentation may not be rendered correctly for certain list applets associated with the Custom Manifest Object
definition. To resolve the tile presentation for a specific list applet, the applet Manifest objects must be changed to point
to the custom JS files. For example, the Account Attachment Object Applet is customized as shown here.

The manifest object definition for Ul Object (Applet Physical Renderer -Account Attachment Applet) is:

Type Usage Type Name

Applet Physical Renderer Account Attachment Applet

The Object Expression for Ul Object (Applet Physical Renderer - Account Attachment Applet) is as follows:

Expression Level File Name

Not Set 1 siebel/attachmentprenderer.js

The default JS file must be added and the order level of the Account Attachment Applet must be modified.

The Object Expression for Ul Object (Applet Physical Renderer - Account Attachment Applet) changes to the following:

Expression Level File Name
Tile 1 siebel/TileLayoutPR. js
Not Set 2 siebel/attachmentprenderer.js

Customizing Applets to Capture Signatures from Desktop
Applications

A signature capture is an electronic capture of a user signature. This topic describes how to customize applets to capture
signatures for calls in Siebel Open UL.

203
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Note: This task uses Siebel Pharma as an example, but the procedure is similar when modifying a different
application. For more information about migrating signatures from High Interactivity to Siebel Open Ul, see the topic
about configuring the digital migration service for signatures and the topic about rendering signatures in the user
interface in Siebel Life Sciences Guide .

To customize applets to capture signatures for desktop applications

1. Copy a signature form applet that comes predefined with Siebel Open Ul:
a. Open Siebel Tools.
For more information, see Using Siebel Tools .

b. Inthe Object Explorer, click Applet.
c. Inthe Applets list, locate an applet that includes a signature capture configuration.

For this example, locate the following applet:

LS Pharma Call Signature Form Applet

d. Right-click the applet you located in Step ¢, and then click Copy Record.
e. Add an _PUI suffix to the name. For example:

LS Pharma Call Signature Form Applet PUI

2. Add applet user properties:
a. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.
b. Inthe Applet User Props list, add the following applet user properties.

Name Value

CanlnvokeMethod: ClearSignature TRUE

Signature Min Length 5

3. Add controls:

a. Inthe Object Explorer, click Control.
b. Inthe Controls list, add the following controls.

Name Description

Clear Signature Set the MethodInvoked property to ClearSignature.
Address Set the Field property to Address.

Signature Capture Set the following properties:

204
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Name Description

- Set the Field property to Signature
- Set the HTML Type property to InkData.

Disclaimer Text Set the Read Only property to TRUE

Signature Header Text

4. Add an applet Web template:

a. Inthe Object Explorer, click Applet Web Template.
b. Inthe Applet Web Templates list, right-click the Base applet Web template, and then click Copy Record.
c. Set the following properties.

Property Value
Name Edit
Type Edit

5. Modify the drilldown objects:

a. Inthe Object Explorer, click Drilldown Object.
b. In the Drilldown Obijects list, modify the following value of the Hyperlink Field property of the Apply
Drilldown and the Cancel Drilldown drilldown objects.

Old Value New Value

Signature Header Text Address

6. Copy a predefined view:

a. Inthe Object Explorer, click View.
b. Inthe Views list, locate a view that includes a signature capture configuration.

For this example, locate the following view:

LS Pharma Call Signature Capture View

Right-click the view you located in Step b, and then click Copy Record.
d. Add an _PUI suffix to the name. For example:

o

LS Pharma Call Signature Capture View_ PUI

205
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

7. Modify the view Web template:

a. Inthe Object Explorer, expand the View tree, expand the View Web Template tree, and then click View
Web Template Item.
b. Inthe View Web Template Items list, query the Name property for the following value:

LS Pharma Call Signature Form Applet

c. Modify the following value of the Name property.

Old Value New Value
LS Pharma Call Signature Form LS Pharma Call Signature Form Applet_PUI
Applet

d. Modify the following value of the Applet Mode property.

Old Value New Value

Base Edit

8. Modify a call form applet that comes predefined with Siebel Open UI:

a. Inthe Object Explorer, click Applet.
b. Inthe Applets list, locate an applet that includes a call form configuration.

For this example, locate the following applet:
Pharma Professional Call Form Applet

c. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.
d. Inthe Applet User Props list, add the following applet user property.

Name Value

Signature Applet NamePUI LS Pharma Call Signature Form Applet_PUI

e. Inthe Object Explorer, click Drilldown Object.
In the Drilldown Obijects list, query the Name property for Signature Capture Drilldown.
g. Create a copy of this record, add the new drilldown to the record copy, and update the following field:

=h

Name New Value

Signature Capture DrillDownPUI LS Pharma Call Signature Capture View_PUI

9. Modify the screen:

206
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

a. Inthe Object Explorer, click Screen.
b. Inthe Screens list, locate a screen that displays the signature form and call form applets.

For this example, locate the following screen:

LS Pharma Calls Screen

In the Object Explorer, expand the Screen tree, and then click Screen View.
d. Inthe Screen Views list, query the Name property for the following value:

o

LS Pharma Call Signature Capture View

e. Create a copy of the LS Pharma Call Signature Capture View, and update the following field:

Old Value New Value

LS Pharma Call Signature Capture LS Pharma Call Signature Capture View_PUI
View

10. Compile your modifications.
11. Administer your customization:

a. Login to the client with administrative privileges.
Navigate to the Administration - Application screen, and then the Views view.
c. Inthe Views list, query the Name property for the following value:

LS Pharma Call Signature Capture View

d. Make a note of the field values of the responsibility that the client displays in the Responsibilities list.
e. Inthe Views list, add the following view.

Field Value
View Name LS Pharma Call Signature Capture View_PUI
f. Inthe Responsibilities list, add a responsibility. Use the same field values that you noted in Step c.

Navigate to the Administration - Personalization screen, and then the Applets view.
In the Applets list, add the following applet.

s

Field Value

Name LS Pharma Call Signature Form Applet_OUI

207
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Field Value

i. Inthe Rule Sets list, add the following rule set.

Field Value

Name Pharma Call Default

Sequence 1

Start Date Any date that has already occurred. For example, 01/01/2012.

12. Add the applet LS Pharma Call Signature Form Applet_PUI to the manifest administration as follows:

a. Login to the client with administrative privileges.
b. Navigate to the Administration - Application screen, and then the Manifest Administration view.
c. Under Ul Objects, create a new record with the following values:

Interactive Flag Type Usage Type Name
N Applet Physical Renderer LS Pharma Call Signature Form
Applet_PUI

d. Under Object Expression, add the following child applet for the record created in Step c.

Interactive Flag Expression Level

N Desktop 1

e. Under Files, set the following file values:

Interactive Flag Name

N 3rdParty/jquery.signaturepad.min.js

208
ORACLE

Siebel

Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

13. Test your modifications.

e ngoo

Log in to the Siebel Open Ul client (for example, Siebel Pharma application).
Navigate to a contact call where you want to capture the signature.
Click Sign to open the Signature Capture view.

Verify that the Signature Capture view applet displays correctly - that is, according to the customizations
detailed in this procedure.

Customizing Applets to Capture Signatures for Siebel Mobile
Applications

A signature capture is an electronic capture of a user signature. This topic describes how to customize applets to capture
signatures in Siebel Mobile applications.

Note: This task uses Siebel Pharma as an example, but the procedure is similar when modifying a different
application. For more information about migrating signatures from High Interactivity to Siebel Open Ul, see the topic
about configuring the digital migration service for signatures and the topic about rendering signatures in the user
interface in Siebel Life Sciences Guide .

To customize applets to capture signatures for Siebel Mobile applications

1. Create a new business component and add a new field.

a.

Create a new Signature business component with the values shown in the following table.

Property Value
Name Signature BC
Class CSSBCBase

Create a new Signature business component field with the values shown in the following table.

Property Value

Name Signature
Type DTYPE_NOTE
Text Length 16,383

Force Activation Selected

209

ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Property Value

2. Create a new Form Applet with the values shown in the following table, adding an _PUI suffix to the name.

Name Class Business Component

Signature Form Applet_PUI CSSFrameBase Signature BC

3. Add applet user properties:

a. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.
b. Inthe Applet User Props list, add the following applet user properties as required.

Name Value

CanlnvokeMethod: ClearSignature TRUE

Parent BC Name, for example: For example:

- For Siebel Pharma, Parent BC - Pharma Professional Call - Mobile
Name is: Parent BC Name:

Pharma Professional Call - - Action
Mobile
- For Siebel Service, Parent BC
Name is: Parent BC Name:
Action
Signature Field Signature
Signature Length 1600
Signature Min Length 5
Use Apply Drilldown Y
Use Cancel Drilldown Y

210
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

4. Add controls:

a. Inthe Object Explorer, click Control.
b. Inthe Controls list, add the following controls.

Name Description
Clear Signature Set the MethodInvoked property to ClearSignature.
Address Set the Field property to Address.

Note: You can create other fields such as Contact First Name in addition to the Address
field as required.

Signature Capture Set the following properties:

- Set the Field property to Signature.
- Set the HTML Type property to InkData.

Apply Signature Set the MethodInvoked property to ApplySignature.

Cancel Signature Set the MethodInvoked property to CancelSignature.

5. Add an applet Web template:

a. Inthe Object Explorer, click Applet Web Template.
b. Inthe Applet Web Templates list, right-click and select new record.
c. Set the following properties.

Property Value

Name Edit

Type Edit

Web Template SIA Applet Form Grid Layout - No Menu_OUI

21
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

6. Create the following new drilldown objects:

a. Inthe Object Explorer, click Drilldown Object.

b. In the Drilldown Obijects list, configure the values shown in the following table as required for the Apply
Drilldown and the Cancel Drilldown drilldown objects.

Note: The values shown in the following table (for View, Business Component, and so on) are
examples only - you can choose a different view and business component as required.

Name Hyperlink View Source Business Component Destination Field
Field Field

Apply Address LS Pharma Professional Call Activity Ild = Pharma Professional Id

Drilldown Execute View - Mobile Call - Mobile

Cancel Address LS Pharma Professional Call Activity Ild = Pharma Professional Id

Drilldown Execute View - Mobile Call - Mobile

7. Expose the Controls in the Applet Web Template item as follows:

In the Object Explorer, click Applet.
Select Applet "Signature Form Applet_PUI", then right-click and select Edit Web Layout.
Select Edit mode.

Select and move the Signature field and the Apply Signature, Cancel Signature, and Clear Signature
buttons on the Web Layout.

8. Compile your modifications.
9. Add the applet Signature Form Applet_PUI to the manifest administration as follows:

angoo

a. Login to the client with administrative privileges.
Navigate to the Administration - Application screen, and then the Manifest Administration view.
c. Under Ul Objects, create a new record with the following values:

Interactive Flag Type Usage Type Name

N Applet Physical Renderer Signature Form Applet_PUI

d. Under Object Expression, add the following child applet for the record created in Step c.

Interactive Flag Expression Level
N <Empty> 2
N Mobile 1

212
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Interactive Flag Expression Level

e. Under Files, set the following file values:

Interactive Flag Name
N 3rdParty/jquery.signaturepad.min.js
N siebel/signviewpr.js

f. Under Ul Objects, create a new record with the following values:

Interactive Flag Type Usage Type Name

N Applet Presentation Model Signature Form Applet_PUI

g. Under Object Expression, add the following child applet for the record created in step f.

Interactive Flag Expression Level

N Mobile 1

h. Under Files, set the following file values:

Interactive Flag Name

N siebel/signviewpm.js

10. Test your modifications.

a. Login to the Siebel Open Ul client.
Navigate to a view where the Signature Form Applet_PUI is exposed.

c. Verify that the Signature Capture view applet displays correctly - that is, according to the customizations
detailed in this procedure.

213
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Customizing Applets to Display Record Counts for Navigation
Links

This topic describes how to customize an applet to display record counts for navigation links. The Navigation

Links Runtime business component includes fields applicable to record counts for navigation links. Also, the
CCAppletList_tile_NavLink_ss Web template includes the siebui-record-count class to hold the record count and the
error image that appears when the record count cannot be retrieved.

After you complete the procedure in this topic, administrators can access the Siebel Open Ul client, and use the
Navigation Links view of the Administration - Application screen to display the number of records in the location to
which a link navigates. For navigation links that appear in tiles, this record count appears beneath the display name for
the navigation link. For navigation links that appear in lists, this record count appears in the Record Count field in the
lists.

Currently, record counts for navigation links are available for only the Siebel eService application.

To customize an applet to display record counts for navigation links
1. Configure the manifest:
a. Login to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see Configuring Manifests.
Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Inthe Files list, add the following file if it does not already exist in the list:

siebel/navlinkpr.js
d. Navigate to the Administration - Application screen, and then the Manifest Administration view.

e. Inthe Ul Objects list, select the applet for which you want to display record counts for navigation links.

The applet must have a value in the Usage Type field of Physical Renderer.
f. Inthe Object Expression list, select the appropriate expression for the applet.
g. Inthe Files list, add the following file:

siebel/navlinkpr.js

2. If navigation links appear in a list, then include the Record Count field in the list:
a. Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools .
In the Object Explorer, click Applet.
c. Inthe Applets list, query the Name property for the applet in which to include the Record Count field.

This applet has a Business Component property of Navigation Links Runtime.
d. Inthe Object Explorer, expand the Applet tree, then expand the List tree, and then click List Column.
e. Inthe List Columns list, create a new list column with a value of List Record Count for the Field property.
f. Compile your work.

214
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

3. (Optional) Change the location of the record count number from its default location in the corner of tiles:
a. Open the appropriate CSS file for editing.

For example, open the theme-aurora.css file, which is located at aA1_install pir
\applicationcontainer external\siebelwebroot\files.

Locate the siebui-record-count class in this file.
c. Change the information for this class to change the location of the record count number.

For example, to center the record count number in the center of tiles, change the information for this
class as follows:

siebel-record-count {
text-align: center;
padding-top: 10px;

}

Customizing Applets for Homepage Views in Redwood Theme

To convert the homepage applet, you can modify the web template that the applet references.

To modify the web template to convert homepage applets with record count

1. In Siebel Web Tools, navigate to Siebel Object > Applet and query for the applet name.
2. Go to Applet > Control and then create two new controls with the following attributes.

Clone app1etTitle and change the attributes as mentioned below:

Field Value

Name AppletTitleAsLabel

Caption - String Reference <Provide the appropriate Symbolic String>
HTML Type Label

Field Value

Name ViewAllLink

Caption - String Reference SBL_APP_HOMEPAGE_VIEWALL

HTML Type Link

215
ORACLE

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Value
Method Invoked GotoView

3. For the ViewAllLink control, expand the Control object, select the User Props

a. Create a new record

b. Enter the name as View

c. Enter value as <Enter the Destination View name where it should navigate to when the link is clicked>
4. Go to Applet Web Template.
5. Clone the Tile Web Template.

Modify the Name, Sequence, Type, and name of the newly cloned Applet Web Template as follows:

Field Value

Name Redwood

Sequence 1001

Type Base

Web Template CCAppletListHomePageTile(Redwood Theme)

Note: If there is no sequence number for the Tile Web Template, you must assign a Sequence Number. For
example:Sequence: 1

6. Go to the Applet Web Template Item and map the following to the web template:
o Add the two new controls created in Step 2 and provide the appropriate Item Identifier.

Also, add the record count control and provide the appropriate Item Identifier.
o Add any three List Columns that you wish to see in the applet and provide the appropriate Item Identifier.

a. Control mapping to the Redwood Web Template.

Field Value

Name AppletTitle

Control AppletTitleAsLabel
Item Identifier 185

216
ORACLE

Siebel

Configuring Siebel Open Ul

Field

Name

Control

ltem Identifier

Chapter 6

Customizing Styles, Applets, Fields, and Controls

Value

ViewAll

ViewAllLink

184

b. List columns mapping to the Redwood web template (Data Rendering).

Field

Name

Control

Item Identifier

Field

Name

Control

Item Identifier

Field

Name

Control

Item Identifier

ORACLE

Value

<Data Field>

<Choose the appropriate list column>

510

Value

<Link Field>

<Choose the appropriate list column that has drill down>

51

Value

<Data Field>

<Choose the appropriate list column>

512

217

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Field Value

Note: Item Identifier = 511 iS reserved as a drill-down field, so it is advisable to have a list column where
drill-down is configured.

7. After making the Redwood Web Template changes in the Web Tools and deliver it, create a new manifest entry
for the applet to conditionally select the new Web Template only when the Redwood theme is applied.

Manifest Administration

1. Navigate to Manifest Administration View.
2. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Physical Renderer
Name <Applet Name>

3. In the Object Expression list, add the following expression.

Field Value
Expression Redwood Theme
Level 1

4. Inthe Files list, add the following file:

siebel/TileLayoutPR. js

5. Inthe Object Expression list, add expressions until this list resembles the configuration shown in the following
table and image.

Inactive Flag Group Name Expression Level Operator Web Template Name
N Redwood <empty> 1 AND Redwood
N <empty> Base 1 <empty> <empty>

218
ORACLE

Siebel

Configuring Siebel Open Ul

To modify the web template to convert homepage list applets
1.

2.
3.

Inactive Flag Group Name
N <empty>

N Base

N <empty>

Field

Name

Redwood

Base

Redwood Theme

Base

S R B T R

Base

Caption - String Reference

HTML Type

Field

Name

Caption - String Reference

HTML Type

Method Invoked

ORACLE

Chapter 6

Customizing Styles, Applets, Fields, and Controls

Expression Level Operator
Redwood Theme 2 <empty>
<empty> 1 <empty>
Base 1 <empty>

Tile

Clone appietritle and change the attributes as mentioned below:

Value

AppletTitleAsLabel

<Provide the appropriate Symbolic String>

Label

Value

ViewAll

SBL_APP_HOMEPAGE_VIEWALL

Link

GotoView

Web Template Name

<empty>

Tile

<empty>

Identify the web template that the applet is using. Let us consider that the applet web template is of type Base/
Edit List
Navigate to Siebel Object > Applet and query for the Applet name.
Go to Applet > Control and create two new controls with the following attributes.

219

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

4. For the ViewAllLink control, expand the Control.

a. Create a new record

b. Enter the name as View

c. Enter value as <Enter the Destination View name where it should navigate to when the link is clicked>
5. Navigate to Applet Web Template

o Create a new record by cloning the eait List Web Template.

Field Value
Name Redwood
Sequence 1001
Type Edit List

Note: If there is no sequence number for the Tile Web Template, you must assign a Sequence Number.
For example:Sequence: 1
6. Go to Applet Web Template Item and map the following to the Web Template.
o Map two new controls to the web template.
7. Control mapping to the Redwood web template

Field Value

Name AppletTitle

Control AppletTitleAsLabel
Item Identifier 184

Field Value

Name ViewAll

Control ViewAllLink

Item Identifier 90

220
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

8. After making the Redwood Web Template changes in the Web Tools and deliver it, create a new manifest entry
for the applet to conditionally select the new web template only when the Redwood theme is applied.

Note: In the Applet Web Template, if all the available templates have the same Type , it is observed that the template
is not selected dynamically, and the existing template is always chosen. For example, if there are three existing web
templates and all are of Type=Base, and you add a new web template Redwood, it will not select the web template
based on the expression provided in the Manifest Administration.

Note: The workaround here is to create a dummy Web Template just to include a second Type. For example, if all web
templates are of Type=Base, one dummy web template should be of Type=guery/EditList.

Manifest Administration

1. Navigate to Manifest Administration View.
2. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Web Template
Name <Applet Name>

3. Inthe Object Expression list, add expressions until this list resembles the configuration shown in the following
table and image.

Inactive Flag Group Name Expression Level Operator Web Template Name

N Redwood <empty> 1 AND Redwood

N <empty> Redwood Theme 1 <empty> <empty>

N <empty> EditList 2 <empty> <empty>

N You can enter the name of <empty> 1 <empty> Use the value as either
the group that you are going Base or Edit List based on
to associate a Web Template the Applet Web Template
Name that you are going to

display in the application.

N <empty> Use thevalueas 1 <empty> <empty>
either Base or

221
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

Inactive Flag Group Name Expression Level Operator Web Template Name

EditList based on
the Applet Web
Template that
you are going

to display in the

application.
Inactive Flag Group Name Expression Level T Operator Web Template Na
YN Redwood 1 AND Redwood
o N Redwood The... 1
O N EditList 2
YN Base 1 Edit List
O N EditList 1

Customizing Controls

This topic describes how to customize a control. It includes the following information:

« Creating and Managing Client-Side Controls
« Displaying Control Labels in Different Languages
« Customizing Presentation Models to Display Control Labels in Different Languages
« Customizing the Busy Cursor to Display While a Business Service Executes
- Creating Property Sets for Client-Side Controls
- Properties That You Can Specify for Client-Side Controls
- Text Copy of the Client Control Presentation Model File
This book includes a number of other topics that also customize controls. For more information about:

- Overview information about customizing controls, see Examples of How You Can Customize Siebel Open U,
Example Client Customizations, and Guidelines for Customizing Siebel Open UI.

- Adding a control to a presentation model, see Customizing the Setup Logic of the Presentation Model.

- Modifying a list column control so that Siebel Open Ul stores the value of the control check box, see
Customizing the Presentation Model to Identify the Records to Delete.

- Customizing control user properties, see Customizing Control User Properties for Presentation Models.

- Accessing a proxy object for an active control, see Accessing Proxy Objects.

« Customizing control themes, see Customizing Themes.

- Rendering controls according to control type, see Customizing List Applets to Render as Maps.

- Adding a control that does a static drill-down, see Adding Static Drilldowns to Applets.

- Customizing controls in an applet, see Customizing Applets to Capture Signatures from Desktop Applications.

222
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

- Adding controls to the calendar, Customizing a Resource Scheduler.

Creating and Managing Client-Side Controls

The example in this topic describes how to create a text box that the Siebel Open Ul client displays, and is not
represented on the Siebel server. This is a Siebel Open Ul client implementation, and as such, data will not be
maintained after the user navigates away from the view containing this type of control. You can also create similar
controls, such as date/time, check box, combobox, and so on.

This example shows how to configure client-side controls in list applets, however, the same principals can be applied to
form applets.

To create controls in the client
1. Create a custom presentation model:
a. Use a JavaScript editor to create a new file named clientctrlpmodel.js. Save this file in the following folder:

siebel\custom

For more information about:

- The complete presentation model that this example uses, see Text Copy of the Client Control
Presentation Model File.

- This folder, see Organizing Files That You Customize.
b. Add the following code to the file that you created in Step a.

This code does the basic set up:

if (typeof(SiebelAppFacade.ClientCtrlPModel === "undefined") {
SiebelJS.Namespace('SiebelAppFacade.ClientCtrlPModel');
//Module with its dependencies

define ("siebel/custom/clientctrlpmodel”, [], function () {
SiebelAppFacade.ClientCtrlPModel = (function() {

var consts = SiebelJS.Dependency("SiebelApp.Constants");
/**

* Constructor Function - ClientCtrlPModel
*

* Parameter - Be a good citizen. Pass All parameter to superclass.

**/

function ClientCtrlPModel (proxy) {

var m_recordset = [];

SiebelAppFacade.ClientCtrlPModel. superclass.constructor.call(this, proxy):;

c. Add the client control:

this.AddMethod ("AddClientControl”, null, { core : true });
// add into method array

this.GetClientRecordSet = function() {

return m_recordset ;

}i

}

For more information, see AddMethod Method and AddClientControl Method.

223
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

d. Extend the ListPresentationModel object:

/* Siebel OpenUI uses the ListPresentationModel object to initialize every
list applet. So, to maintain the functionality that ListPresentationModel
provides, you extend it.*/

SiebelJS.Extend(ClientCtrlPModel, SiebelAppFacade.ListPresentationModel);

ClientCtrlPModel .prototype.Init = function() {

SiebelAppFacade.ClientCtrlPModel.superclass.Init.call(this);

e. Determine whether or not Siebel Open Ul has removed the focus from the field in the applet, and then
temporarily store the value that the user entered in the control:

/* Attach Post Handler for LeaveField */
this.AddMethod("LeaveField", PostLeaveField, { sequence : false, scope
this });

For more information, see LeaveField Method and PreGetFormattedFieldValue Method.
f. Get the format that the field uses to store the value for the control:

/* Attach Pre Handler for GetFormattedFieldValue */

this.AddMethod ("GetFormattedFieldValue", PreGetFormattedFieldValue, {
sequence : true, scope : this });

/* Attach Handler for Delete Record Notification as well */
this.AttachNotificationHandler(consts.get(
"SWE_PROP_BC_NOTI_DELETE RECORD"), HandleDeleteNotification);

For more information, see GetFormattedFieldValue Method.
g. Get the data from memory stored in Step f, and then display this data in the client control:

function PreGetFormattedFieldValue (control, bUseWS, recIndex, returnStructure) {
if (utils.IsEmpty (recIndex)) {

recIndex = this.Get("GetSelection") ;

}

if (recIndex >=0) {

var clientObj = this.GetClientRecordSet() ;
var recordSet=this.Get ("GetRawRecordSet") ;
var id = recordSet[recIndex]["Id"];

var flag = false;

var value;

switch (control.GetName ()) {

case "TestEdit":

value = recordSet[recIndex] ["Name"];

flag = true;

break;

}

if (flag){

if(clientObj[id] && clientObj[id] [control.GetName ()]) {
value = clientObj[id] [control.GetName ()]’
}

else if (clientObj[id]) {

clientObj[id] [control.GetName()] = value;
}

else(
var recordclient = {};
recordclient[control.GetName ()] = value;

clientObj[id] = recordclient;

}

returnStructure["CancelOperation"] = true;
returnStructure["ReturnValue"] = value;

}

}

224
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

}

For more information, see PreGetFormattedFieldValue Method.
h. Save the value after the user leaves the client control:

function PostLeaveField(control, value, notlLeave, returnStructure) {
var clientObj = this.GetClientRecordSet() ;

var currSel = this.Get("GetSelection") ;

var recordSet=this.Get ("GetRawRecordSet") ;

var id = recordSet[currSel]["Id"];

if (clientObj[id]) {

switch (control.GetName ()) {

case "TestEdit":

clientObj[id] [control.GetName ()] = returnStructure["ReturnValue"] ;
break;

}

}

}

For more information, see PreGetFormattedFieldValue Method.
i. Delete the reference to the record data that Siebel Open Ul stored in the client for the control:

function HandleDeleteNotification (propSet) {

var activeRow = propSet.GetProperty(consts.get(
"SWE_PROP_BC_NOTI_ACTIVE ROW"));

if(activeRow === this.Get("GetSelection")){
var delObj = this.GetClientRecordSet() ;

delObj[activeRow] = null;

}

}

For more information, see HandleDeleteNotification Method.
j. Create a property set for the control.

For this example, you use the following code to create a property set for the text box control:

ClientCtrlPModel.prototype.UpdateModel = function (psInfo) {

/// Specify the property set for Edit box

SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);
var ctrlTxtInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate
("TestEdit", "Test Edit", consts.get("SWE_CTRL TEXTAREA"), 1);

For more information about this code, see Creating Property Sets for Client-Side Controls.
k. Add the property set information so that Siebel Open Ul can add it to the proxy:
this.ExecuteMethod("AddClientControl", ctrlTxtInfo);

I. Return the ClientCtrIPModel that you set up in Step b:
}i
return ClientCtrlPModel;

} O):
return "SiebelAppFacade.ClientCtrlPModel";

})
}

2. Configure the manifest:
a. Login to a Siebel client with administrative privileges.

225
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

b. Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Inthe Files list, add the following new files.

Field Value

Name siebel/custom/clientctrlpmodel. js

a

Navigate to the Administration - Application screen, and then the Manifest Administration view.
In the Ul Objects list, specify the following applet.

o

Field Value
Type Applet
Usage Type Presentation Model
Name Account List Applet

f. Inthe Object Expression list, add the following expression. The physical renderer uses this expression to
render the applet in a desktop platform.

Field Value
Expression Desktop
Level 1

g. Inthe Files list, add the following file:

siebel/custom/clientctrlpmodel.js
h. To refresh the manifest, log out of the client, and then log back in to the client.
3. Test your work:

a. Navigate to any list applet, and then verify that it displays the control that you added.

In Step 1, Step b, you extended the ListPresentationModel object that Siebel Open Ul uses to display every
list applet. So, you can navigate to any list applet.

Creating Property Sets for Client- Side Controls

You can use the following code to create a property set for a control that Siebel Open Ul displays in the client:

ClientCtrlPModel.prototype.UpdateModel = function (psInfo) {
/// Specify the property set for the control
SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);

226
ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 6
Customizing Styles, Applets, Fields, and Controls

var variable name= SiebelAppFacade.PresentationModel.GetCtrlTemplate
("control name", "display name", consts.get("control_ type"), column index);
ctrlComboInfo.SetPropertyStr (consts.get("control property"),

"property attribute")

where:

- control_name, display_name, control_type, and column_index are arguments of the GetCtrITemplate method.
For more information about these arguments, see GetCtriTemplate Method.

- control_property specifies a control property. For example, SWE_PROP_WIDTH specifies the width of the

control, in pixels.

- property_attribute specifies an attribute of the control that control_property specifies. For example, 200 sets
the width of the control to 200 pixels.

For example, the following code creates a variable named ctrlCombolnfo for the TestCombo control. It sets the width
and height of this control to 200 pixels, and centers it.

ClientCtrlPModel .prototype.UpdateModel = function (psInfo) {

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);

ClientCtrlPModel .prototype.UpdateModel = function (psInfo) {

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);

var ctrlComboInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate ("TestCombo",
"Test Drop Down", consts.get("SWE_CTRL COMBOBOX"), 10);
ctrlComboInfo.SetPropertyStr (consts.get ("SWE_PROP_WIDTH"), "200")
ctrlComboInfo.SetPropertyStr (consts.get ("SWE_PROP_HEIGHT"), "200")
ctrlChkboxInfo.SetPropertyStr (consts.get ("SWE_PROP_JUSTIFICATION"), "center");

For more information about control_property and property_attribute, see Properties That You Can Specify for Client-
Side Controls. For more information about other control properties that you can specify, such as Sort or Vertical Scroll,
see the topic that describes the control Applet Object Type in Siebel Object Types Reference .

Properties That You Can Specify for Client-Side Controls

The following table describes the properties that you can specify for controls. The Comparable Applet Control or
Description column of this table includes the name of the applet control property that is similar to the SWE control
property. If no applet control property is similar to the SWE control property, then this column includes a description.
For more information about these applet control properties, see the topic that describes controls in the applet object
types section of Siebel Object Types Reference .

SWE Control Property

SWE_PROP_CURR_FLD

SWE_PROP_CASE_SENSITIVE

SWE_PROP_DISP_FORMAT

SWE_PROP_DISP_MODE

SWE_PROP_DISP_MAX_CHARS

SWE_PROP_DISP_NAME

ORACLE

Comparable Applet Control or Description

Identifies the field that is currently chosen.

Specifies to make text in the control case-sensitive.

Display Format

HTML Display Mode

HTML Max Chars Displayed

Specifies the label that Siebel Open Ul uses to identify this control in the client.

227

Siebel

Configuring Siebel Open Ul

SWE Control Property

SWE_PROP_FLD_NAME

SWE_PROP_HEIGHT

SWE_PROP_HTML_ATTRIBUTE

SWE_PROP_IS_BOUND_PICK

SWE_PROP_IS_ENCODE

SWE_PROP_INPUTMETHOD

SWE_PROP_JUSTIFICATION

SWE_PROP_LABEL_JUSTIFICATION

SWE_PROP_MAX_SIZE

SWE_PROP_NAME

SWE_PROP_PICK_APLT

SWE_PROP_POPUP_HEIGHT

SWE_PROP_PROMPT

SWE_PROP_POPUP_WIDTH

SWE_PROP_IS_DYNAMIC

SWE_PROP_SPAN

SWE_PROP_SEQ

SWE_PROP_TYPE

SWE_PROP_WIDTH

SWE_PROP_COLINDEX

SWE_PROP_ICON_MAP

ORACLE

Chapter 6
Customizing Styles, Applets, Fields, and Controls

Comparable Applet Control or Description

Field Name

HTML Height

HTML Attributes

Specifies that the control is a bound picklist.

HTML Display Mode

MethodInvoked

Text Alignment

Specifies the text alignment for a column header that Siebel Open Ul displays in a list control.
HTML Max Chars Displayed

Name

Pick Applet

Specifies the height of the popup dialog box, in pixels.

Prompt Text

Specifies the width of the popup dialog box, in pixels.

Specifies whether or not Siebel Open Ul dynamically displays values in the control.

Specifies to span control contents across multiple fields. This property is not applicable for list controls.
HTML Sequence

Type, HTML Type, or Field Retrieval Type

Width

Specifies the index number of a column.

Bitmap

228

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
SWE Control Property Comparable Applet Control or Description
SWE_PROP_IS_SORTABLE Sort

Text Copy of the Client Control Presentation Model File

The following code from the clientctrlpmodel.js file adds example controls to the client. You can examine this code for
your reference. To get a copy of this file, see Article ID 1494998.1 on My Oracle Support:

if (typeof(SiebelAppFacade.ClientCtrlPModel) === "undefined") {
SiebelJS.Namespace('SiebelAppFacade.ClientCtrlPModel’');
//Module with its dependencies

define ("siebel/custom/clientctrlpmodel", [], function () {
SiebelAppFacade.ClientCtrlPModel = (function() {

var consts = SiebelJS.Dependency("SiebelApp.Constants");

/**

* Constructor Function - ClientCtrlPModel

*

* Parameter - Be a good citizen. Pass All parameter to superclass.

**/
function ClientCtrlPModel (proxy) {
var m_recordset = [];

SiebelAppFacade.ClientCtrlPModel.superclass.constructor.call(this, proxy);

this.AddMethod("AddClientControl", null, { core : true });

// add into method array

this.GetClientRecordSet = function() {

return m_recordset ;

}:

}

/* Siebel OpenUI uses the ListPresentationModel object to initialize every list
applet. So, to maintain the functionality that ListPresentationModel provides, you
extend it.*/

SiebelJS.Extend(ClientCtrlPModel, SiebelAppFacade.ListPresentationModel) ;

ClientCtrlPModel.prototype.Init = function() {

SiebelAppFacade.ClientCtrlPModel.superclass.Init.call(this);

/* Attach Post Handler for LeaveField */

this.AddMethod("LeaveField", PostLeaveField, { sequence : false, scope : this
})

/* Attach Pre Handler for GetFormattedFieldValue */

this.AddMethod ("GetFormattedFieldValue", PreGetFormattedFieldValue, { sequence

true, scope : this });

/* Attach Handler for Delete Record Notification as well */

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_DELETE_RECORD"
) , HandleDeleteNotification);

}i

function PreGetFormattedFieldValue (control, bUseWS, recIndex, returnStructure) {

if (utils.IsEmpty (recIndex)) {

recIndex = this.Get ("GetSelection");

}

if (recIndex >=0) {

var clientObj = this.GetClientRecordSet() ;

var recordSet=this.Get ("GetRawRecordSet") ;

var id = recordSet[recIndex]["Id"];

var flag = false;

var value;

switch (control.GetName ()) {

case "TestEdit":

value = recordSet[recIndex] ["Name"];

flag = true;

break;

}

229
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

if (flag){

if(clientObj[id] && clientObj[id] [control.GetName ()]) {
value = clientObj[id] [control.GetName ()]

}

else if (clientObj[id]) {

clientObj[id] [control.GetName()] = value;

}

else({

var recordclient = {};
recordclient[control.GetName ()] = value;
clientObj[id] = recordclient;

}

returnStructure["CancelOperation"] = true;

returnStructure["ReturnValue"] = value;
}
}
}

function PostLeaveField(control, value, notLeave, returnStructure) {
var clientObj = this.GetClientRecordSet() ;

var currSel = this.Get("GetSelection");

var recordSet=this.Get ("GetRawRecordSet") ;

var id = recordSet[currSel] ["Id"];

if (clientObj[id]) {

switch (control.GetName ()) {

case "TestEdit":

clientObj[id] [control.GetName ()] = returnStructure["ReturnValue"] ;
break;

}

}

}

function HandleDeleteNotification (propSet) {

var activeRow = propSet.GetProperty(consts.get(
"SWE_PROP_BC_NOTI_ACTIVE_ROW"));

if(activeRow === this.Get("GetSelection")){

var delObj = this.GetClientRecordSet() ;

delObj[activeRow] = null;

}

}

ClientCtrlPModel.prototype.UpdateModel = function (psInfo) {

/// PS Attribute info for Edit box

SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);
var ctrlTxtInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate
("TestEdit", "Test Edit", consts.get("SWE_CTRL TEXTAREA"), 1);
this.ExecuteMethod("AddClientControl", ctrlTxtInfo);

}i

return ClientCtrlPModel;

FO);
return "SiebelAppFacade.ClientCtrlPModel";

})
}

Configuring Client-Side Multi-Select

Siebel Open Ul uses a client-side control implementation to display a Multi-Select check box column in list applets.
While this is primarily intended for touch-based devices where multiple selection of rows is not possible using the Shift
+ Click or Ctrl + Click, it can also be configured for desktop browsers.

The Multi Row Select Checkbox Display user property controls the behavior and availability of the client-side multi-
select check boxes. The property can have the following values:

« TOUCH-HIDE. The multi-select column does not appear on touch devices.
« TOUCH-SHOW. The multi-select column appears on touch devices.
- NONTOUCH-HIDE. The multi-select column does not appear on desktop and non-touch based devices.

230
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

NONTOUCH-SHOW. The multi-select column appears on desktops and non-touch based Touch devices.
When the user property is not configured for an applet, the default behavior is to show the Multi-Select column on
touch devices and hide the column on non-touch devices. Administrators can use the user property to override this
behavior on a per-list applet basis.
To configure a multi-select check box for a list applet
1. Open Siebel Tools.

For more information, see Using Siebel Tools .
2. Inthe Object Explorer, click Applet.
3. Inthe Applets list, locate the applet that you want to configure.
4. Add the applet user property to the applet that you located in Step 3:

a. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.
b. Inthe Applet User Props list, add the following applet user property with one of the possible values:

Name Values

Multi Row Select Checkbox Display TOUCH-HIDE, TOUCH-SHOW, NONTOUCH-HIDE, NONTOUCH-SHOW

5. Compile the applet object.
6. Restart the Siebel server.

Your changes will now be visible in the Siebel Open Ul client.

Displaying Control Labels in Different Languages

This topic describes how to modify the custom_messages.js file so that Siebel Open Ul displays the text for a client-side
control label according to the language that the client browser uses. You can also modify the presentation model instead
of modifying the custom_messages.js file. For more information about how to do this, see Customizing Presentation
Models to Display Control Labels in Different Languages. For more information about language support, see Languages
That Siebel Open Ul Supports.

To display control labels in different languages
1. Create the following folder structure, if it does not exist, where <lang> is the language code such as DEU:
AI_DIR/siebel/scripts/siebel/custom/<lang>
2. Copy custom_messages.js from the following folder to the folder created in Step 1:
AI_DIR/siebel/scripts/siebel/samples

3. Open the file you saved in Step 2 using a JavaScript editor.
4. Locate the following code:

function _SWEgetGlobalCustomMsgAry ()

{
if (! _SWEbCMsgInit)

231
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

{
SWEbCMsgInit = true;

}

return _SWEcustommsgAry;

}
5. Add the code in bold to the code that you located in Step 4:

function _SWEgetGlobalCustomMsgAry ()

{
if (! _SWEbCMsgInit)

{
SWEbCMsgInit = true;
SWEcustommsgAry["CUSTOM_ID"] = "custom string";

}

return _SWEcustommsgAry;

}

where:

o CUSTOM_ID is a string that you use to reference the custom_string. You can use any value for
CUSTOM_ID.
o custom_string is a text string that includes text that you manually translate into the language that your
deployment requires.
6. Add the following code at the beginning of the new file:

SiebelApp.S App.LocaleObject.m bClientStringsInitialized = false;

N

Save the file.
8. Navigate to the Administration - Application screen of your Siebel client, then the Manifest Expressions view.

Note: You need to have administrative privileges in the Siebel client.

9. Inthe Expressions list, add the following expression for the language where the string will be used:

Field Name Expression
Value <Name of the expression> such as Language()= “<Language code>" such as
Dutch “DEU”

10. Navigate to the Manifest Files view to add the new file under manifest files.
11. Add an entry for custom_message.js in the new folder created in Step 1 as follows:

siebel/custom/deu/custom messages.js

12. Navigate to the Manifest Administration view to add a new record.
13. Inthe Objects Ul list, create a new entry and specify the object as follows:
Field Type Usage Type Name

Value Application Common PLATFORM INDEPENDENT

14. In the Object Expression list, add the following subexpression:

232
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
Field Group Name Expression Level
Value Not Applicable DEU 1

15. In the Files list, click Add.

16. In the Files dialog box, query for the path and filename that you added in Step 11.

17. Click Go.

18. Save the changes to the manifest.

19. Customized translated string is now available for creating client side control via customized presentation model.
Use the locale object GetLocalString API to retrieve the customized string. Update customized presentation
model and provide appropriate values to the GetCtrITemplate API to retrieve the string.

20. Log out of the Siebel client, clear browser cache, and log in again.

21. Test your work:

a. Navigate to the screen that includes the control that Siebel Open Ul uses to display the translated string
that you modified in Step 4.

Customizing Presentation Models to Display Control Labels in
Different Languages

This topic describes how to customize a presentation model so that it displays a client-side control label in a different
language instead of modifying the custom_messages.js file.

To customize presentation models to display control labels in different languages

1.

Use a JavaScript editor to open the presentation model that Siebel Open Ul uses to display the control label that
you must modify.

For more information, see About the Presentation Model.
Add the following code to call the ExecuteMethod method that the presentation model uses. You can add this
code anywhere in the presentation model file:

pm.ExecuteMethod ("AddLocalString","ID", "custom_string") ;

where:
AddLocalString is the name of the method that ExecuteMethod calls to add your custom string.

For more information about how this example uses ID and custom_string, see Displaying Control Labels
in Different Languages. For more information about these methods, see AddLocalString Method and
ExecuteMethod Method.

For example, add the following code:

pm.ExecuteMethod ("AddLocalString", "New", "Neu");
pm.ExecuteMethod ("AddLocalString", "Delete", "Lo&schen");

3. Test your work:

233

ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

a. Navigate to the screen that includes the control that Siebel Open Ul uses to display the translated string
that you modified in Step 2.
b. Verify that the control displays the translated string.

Customizing the Busy Cursor to Display While a Business Service
Executes

You can force a busy cursor to appear while a selected business service is executing. The example in this topic describes
how to configure this behavior.

There is a system preference for Busy Cursor Timeout. For more information, see About Preferences.

To display a busy cursor while a Business Service executes

1. Create an applet with a button that invokes an always-on method.
2. Create a physical renderer to respond to the method invocation.
3. Create a business service to be invoked.

a. The following is an example of a business service.

function Service_ PreInvokeMethod (MethodName, Inputs, Outputs)
{

var nReturn = ContinueOperation;
switch (MethodName) {
case "ExampleMethod":
var count;
for (var i=1; i<4000000; i++) {
Outputs.SetProperty ("OutputProperty", "OutputValue") ;
Outputs.SetProperty ("ReturnedProperty", Inputs.GetProperty ("InputProperty")):
count++;
}
Return = CancelOperation;
break;

}

return (nReturn);

}

Make sure the business service is invokable from the client using the application user property.
Update the physical renderer to invoke the business service workOnBusyCursor control upon method
invocation.

6. Test your work:

a. Navigate to any list applet, and then verify that it displays the control that you added.

v s

Creating Property Sets for Client-Side Controls

You can use the following code to create a property set for a control that Siebel Open Ul displays in the client:

ClientCtrlPModel .prototype.UpdateModel = function (psInfo) {
/// Specify the property set for the control
SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);
var variable name= SiebelAppFacade.PresentationModel.GetCtrlTemplate
("control name", "display name", consts.get("control_ type"), column index);

234
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

ctrlComboInfo.SetPropertyStr (consts.get("control property"),
"property attribute")

where:

- variable_name specifies the name of a variable.

- control_name, display_name, control_type, and column_index are arguments of the GetCtrITemplate method.
For more information about these arguments, see GetCtriITemplate Method.

- control_property specifies a control property. For example, SWE_PROP_WIDTH specifies the width of the
control, in pixels.

- property_attribute specifies an attribute of the control that control_property specifies. For example, for the
SWE_PROP_WIDTH property, a value of 200 sets the width of the control to 200 pixels.

For example, the following code creates a variable named ctriCombolnfo for the TestCombo control. It sets the width
and height of this control to 200 pixels, and centers it

ClientCtrlPModel .prototype.UpdateModel = function (psInfo) {

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);

ClientCtrlPModel .prototype.UpdateModel = function (psInfo) {

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);

var ctrlComboInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate ("TestCombo",
"Test Drop Down", consts.get("SWE_CTRL COMBOBOX"), 10);

ctrlComboInfo.SetPropertyStr (consts.get ("SWE_PROP_WIDTH"), "200")
ctrlComboInfo.SetPropertyStr (consts.get ("SWE_PROP_HEIGHT"), "200")

ctrlChkboxInfo.SetPropertyStr (consts.get ("SWE_PROP_JUSTIFICATION"), "center");

For more information about control_property and property_attribute, see Properties That You Can Specify for Client-
Side Controls. For more information about other control properties that you can specify, such as Sort or Vertical Scroll,

see the topic that describes the control Applet Object Type in Siebel Object Types Reference .

Properties That You Can Specify for Client-Side Controls

The following table describes the properties that you can specify for controls. The Comparable Applet Control or

Description column of this table includes the name of the applet control property that is similar to the SWE control

property. If no applet control property is similar to the SWE control property, then this column includes a description.
For more information about these applet control properties, see the topic that describes controls in the applet object
types section of Siebel Object Types Reference .

SWE Control Property

SWE_PROP_CURR_FLD

SWE_PROP_CASE_SENSITIVE

SWE_PROP_DISP_FORMAT

SWE_PROP_DISP_MODE

SWE_PROP_DISP_MAX_CHARS

ORACLE

Comparable Applet Control or Description

Specifies the field that is currently chosen.

Specifies to make text in the control case-sensitive.

Display Format

HTML Display Mode

HTML Max Chars Displayed

235

Siebel
Configuring Siebel Open Ul

SWE Control Property

SWE_PROP_DISP_NAME

SWE_PROP_FLD_NAME

SWE_PROP_HEIGHT

SWE_PROP_HTML_ATTRIBUTE

SWE_PROP_IS_BOUND_PICK

SWE_PROP_IS_ENCODE

SWE_PROP_INPUTMETHOD

SWE_PROP_JUSTIFICATION

SWE_PROP_LABEL_JUSTIFICATION

SWE_PROP_MAX_SIZE

SWE_PROP_NAME

SWE_PROP_PICK_APLT

SWE_PROP_POPUP_HEIGHT

SWE_PROP_PROMPT

SWE_PROP_POPUP_WIDTH

SWE_PROP_IS_DYNAMIC

SWE_PROP_SPAN

SWE_PROP_SEQ

SWE_PROP_TYPE

SWE_PROP_WIDTH

SWE_PROP_COLINDEX

ORACLE

Chapter 6

Customizing Styles, Applets, Fields, and Controls

Comparable Applet Control or Description

Specifies the label that Siebel Open Ul uses to identify this control in the client.

Field Name

HTML Height

HTML Attributes

Specifies that the control is a bound picklist.

HTML Display Mode

Methodlnvoked

Text Alignment

Specifies the text alignment for a column header that Siebel Open Ul displays in a list control.

HTML Max Chars Displayed

Name

Pick Applet

Specifies the height of the popup dialog box, in pixels.

Prompt Text

Specifies the width of the popup dialog box, in pixels.

Specifies whether or not Siebel Open Ul dynamically displays values in the control.

Specifies to span control contents across multiple fields. This property is not applicable for list controls.

HTML Sequence

Type, HTML Type, or Field Retrieval Type

Width

Specifies the index number of a column.

236

Siebel Chapter 6

Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls
SWE Control Property Comparable Applet Control or Description
SWE_PROP_ICON_MAP Bitmap
SWE_PROP_IS_SORTABLE Sort

Text Copy of the Client Control Presentation Model File

The following code from the clientctripmodel.js file adds example controls to the client. You can examine this code for
your reference. To get a copy of this file, see Article ID 1494998.1 on My Oracle Support:

if(typeof(SiebelAppFacade.ClientCtrlPModel) === "undefined") {
SiebelJS.Namespace('SiebelAppFacade.ClientCtrlPModel’');
//Module with its dependencies

define ("siebel/custom/clientctrlpmodel”, [], function () {
SiebelAppFacade.ClientCtrlPModel = (function() {

var consts = SiebelJS.Dependency("SiebelApp.Constants");

/**

* Constructor Function - ClientCtrlPModel

*

* Parameter - Be a good citizen. Pass All parameter to superclass.

**/
function ClientCtrlPModel (proxy) {
var m_recordset = [];

SiebelAppFacade.ClientCtrlPModel. superclass.constructor.call(this, proxy);

this.AddMethod("AddClientControl", null, { core : true });

// add into method array

this.GetClientRecordSet = function() {

return m_recordset ;

}i

}

/* Siebel OpenUI uses the ListPresentationModel object to initialize every list
applet. So, to maintain the functionality that ListPresentationModel provides, you
extend it.*/

SiebelJS.Extend(ClientCtrlPModel, SiebelAppFacade.ListPresentationModel);

ClientCtrlPModel .prototype.Init = function() {

SiebelAppFacade.ClientCtrlPModel.superclass.Init.call(this);

/* Attach Post Handler for LeaveField */

this.AddMethod("LeaveField", PostLeaveField, { sequence : false, scope : this
})

/* Attach Pre Handler for GetFormattedFieldValue */

this.AddMethod ("GetFormattedFieldValue", PreGetFormattedFieldValue, { sequence

true, scope : this });

/* Attach Handler for Delete Record Notification as well */

this.AttachNotificationHandler(consts.get("SWE_PROP BC_NOTI_DELETE RECORD"
) , HandleDeleteNotification) ;

}i

function PreGetFormattedFieldValue (control, bUseWS, recIndex, returnStructure) {

if (utils.IsEmpty(recIndex)) {

recIndex = this.Get ("GetSelection") ;

}

if (recIndex >=0) {

var clientObj = this.GetClientRecordSet() ;

var recordSet=this.Get ("GetRawRecordSet") ;

var id = recordSet[recIndex] ["Id"];

var flag = false;

var value;

237
ORACLE

Siebel Chapter 6
Configuring Siebel Open Ul Customizing Styles, Applets, Fields, and Controls

switch (control.GetName ()) {

case "TestEdit":

value = recordSet[recIndex]["Name"];

flag = true;

break;

}

if (flag){

if(clientObj[id] && clientObj[id] [control.GetName ()]) {
value = clientObj[id] [control.GetName ()]
}

else if (clientObj[id]) {

clientObj[id] [control.GetName()] = value;
}

else({

var recordclient = {};
recordclient[control.GetName ()] = value;
clientObj[id] = recordclient;

}

returnStructure["CancelOperation"] = true;

returnStructure["ReturnValue"] = value;

}

}

}

function PostLeaveField(control, value, notLeave, returnStructure) {
var clientObj = this.GetClientRecordSet() ;

var currSel = this.Get("GetSelection");

var recordSet=this.Get ("GetRawRecordSet") ;

var id = recordSet[currSel] ["Id"];

if (clientObj[id]) {

switch (control.GetName ()) {

case "TestEdit":

clientObj[id] [control.GetName ()] = returnStructure["ReturnValue"] ;
break;

}

}

}

function HandleDeleteNotification (propSet) {

var activeRow = propSet.GetProperty(consts.get(
"SWE_PROP_BC_NOTI_ACTIVE ROW"));

if(activeRow === this.Get("GetSelection")){

var delObj = this.GetClientRecordSet() ;

delObj[activeRow] = null;

}

}

ClientCtrlPModel.prototype.UpdateModel = function (psInfo) {

/// PS Attribute info for Edit box
SiebelAppFacade.ClientCtrlPModel. superclass.UpdateModel.call(this, psInfo);
var ctrlTxtInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate
("TestEdit", "Test Edit", consts.get("SWE_CTRL TEXTAREA"), 1);
this.ExecuteMethod("AddClientControl", ctrlTxtInfo);

}i

return ClientCtrlPModel;

}O)s

return "SiebelAppFacade.ClientCtrlPModel";

3

}

238
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

7 Customizing Calendars and Schedulers

Customizing Calendars and Schedulers

This chapter describes how to customize calendars and schedulers. It includes the following topics:

« Customizing Calendars

« Customizing Resource Schedulers

Customizing Calendars

This topic includes examples of customizing the calendar that Siebel Open Ul displays. It includes the following
information:

Using Fields to Customize Event Styles for the Calendar
« Allowing Users to Copy Items from List Applets to Create Calendar Events
« Customizing Event Styles for the Calendar
« Customizing Calendar Work Days
- Customizing How Calendars Display Timestamps
« Replacing Standard Interactivity Calendars
« Customizing How Users View Calendar Availability
« Customizing the Calendar All Day Slot

Using Fields to Customize Event Styles for the Calendar

Siebel Open Ul comes predefined to use the Status field in the Action business component to supply the event style, by
default. You can modify it to use any bounded, single-value field that resides in the Action business component.

To use fields to customize event styles for the calendar

1. Identify the applet that you must modify:
a. Inthe client, navigate to the calendar page that displays the style that you must modify.
b. Click the Help menu, and then click About View.
c. Copy the applet name that the dialog box displays to the clipboard.
2. Identify the field that must supply the event style:
a. Open Siebel Tools.
For more information, see Using Siebel Tools .
b. Inthe Object Explorer, click Business Component.
c. Inthe Business Components list, locate the Action business component.
d. Inthe Object Explorer, expand the Business Component tree, and then click Field.

239
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

e. Inthe Fields list, identify a bounded, single-value field.

Siebel Open Ul will use this field to supply the values that it displays in the Legend in the calendar in the
client.

3. Modify the applet:

a. Inthe Object Explorer, click Applet.
b. Click in the Applets list, click the Query menu, and then click New Query.
c. Paste the applet name that you copied in Step 1into the Name property, and then press the Enter key.

To modify styles for:

- All calendar applets. You can add user properties to the Calendar Base Applet. Siebel Open Ul
uses this applet to set styles for all applets.

- One specific applet. You can add user properties to an individual applet. User properties that you
define on an individual applet override the styles that the Calendar Base Applet specifies.

d. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.
e. Inthe Applet User Props list, add the following applet user property.

Property Value
Name CSS Event Style
Value Enter the name of the field that you identified in Step 2.

f. Inthe Applet User Props list, add the following applet user property.

Property Value
Name CSS Event Style LOV
Value Enter the LOV type that the field that you identified in Step 2 uses.

Siebel Open Ul will use the values that this list of values contains to populate the CSS Class tags in the
HTML, and then to render the event and legend styles. It uses the EventStyle property that contains the
language independent code. It uses the set of language independent codes that this field contains to
define the range of possible values. The CSS Event Style LOV user property allows you to define a single
set of styles that Siebel Open Ul can use for all languages in a multilingual environment.

If the CSS Event Style user property does not exist, or if the CSS Event Style LOV user property does not
exist, then Siebel Open Ul uses the following default values:

- Status for the field.

- EVENT_STATUS for the list of values.
4. Compile your modifications.
5. Restart the Siebel application.

240
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

6. In the client, navigate to the Administration - Data screen, and then click List of Values.
7. Query the List of Values list for all of the unique language independent codes that exist for this list of values
type.

For example, query the Type field for TODO_TYPE.
8. Use a style sheet editor to open the theme-calendar.css file.
9. For each value that you find in Step 7, create the following two styles.

Style Description

fc-event-skin.calendar-EventStyle- Siebel Open Ul uses this style for the event.

LOVName

#color_square_LOVName Siebel Open Ul uses this style for the square that it displays on the legend.

When Siebel Open Ul creates the HTML to render the Calendar, it specifies these styles in the CLASS tag for the
event and for the legend. It specifies the strings for the language independent code for the field with spaces
removed. For example:

? .fc-event-skin.calendar-EventStyle-Completed and #color square Completed
? .fc-event-skin.calendar-EventStyle-NotStarted and #color_square NotStarted
? .fc-event-skin.calendar-EventStyle-InProgress and #color_square_InProgress

For an example of customizing a style sheet, see Customizing Event Styles for the Calendar.
10. Save the theme-calendar.css file.
11. Clear the browser cache.
12. Navigate to the Calendar view.
13. Make sure Siebel Open Ul displays the correct styles.

Allowing Users to Copy Items from List Applets to Create Calendar
Events

You can configure Siebel Open Ul so that the user can copy an item from a list applet, and then paste it on a calendar to
Create an event.

Allowing users to copy items from list applets to create calendar events

1. Do Step 1in the topic Customizing Themes.
2. Test your work:

a. Login to the client, and then navigate to the list applet that you modified in Step 1.

b. Confirm that you can copy a record from the list applet, and then paste it on the calendar to create an
event.

241
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

Customizing Event Styles for the Calendar

Style sheet attributes determine the color, transparency, font, and other styles for each status. You can modify these
styles. You can use any single value field that resides in the Action business component to determine the style that
Siebel Open Ul uses to render events in the calendar. Siebel Open Ul uses the value that the Status field contains to
determine how the client displays an event in the calendar, by default. For example:

Done
Not Started
Planned

- Success

To customize event styles for the calendar

1. Use an editor to open the theme-calendar.css file.
2. Locate the code that specifies the style that you must modify.

For example, locate the following code:

#color_square LOV_name {color: custom attributes important;}
.fc-event-skin.calendar-EventStyle-LOV_name{
{custom_attributes}

where:

o LOV_name identifies the event status that you must modify, such as Done or NotStarted.

Note: The LOV name specified in the code should not include spaces.

o custom_attributes specify the style properties you can modify, such as the background color or font type.

3. Modify the code that you located in Step 2, as necessary.
For example:

#color_square Done {color: #d3ffd7!important;}
.fc-event-skin.calendar-EventStyle-Done {
background: #d3£f£d47;

border-color: #A8FFAF;

}

In this example, Siebel Open Ul modifies the style for each Done appointment. It also modifies the style for the
Done entry in the legend that it displays in the calendar.

If Siebel Open Ul cannot find a matching style for a LOVName, then it displays events in the default text color,
which is typically black on white.

4. Save your modifications, clear the browser cache, and then verify that Siebel Open Ul displays the style you
defined for the Done status.

242
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

Customizing Calendar Work Days

Siebel Open Ul allows the user to specify values for the Workdays field and the Week Start field. It uses the user
preferences that reference the Locale values, by default. It stores the following items:

- Stores locale preferences in the Locale table (S_LOCALE).

- Stores user preferences as predefault values from Locale values.

- Stores user preferences in the user preferences file.

Specifying Work Days
If the user sets the user preference for the Weekly Calendar View to Work Week, then Siebel Open Ul displays only

the days that are specified as workdays. This preference can be specified at several levels, so Siebel Open Ul uses the
following priority:

Personal user preference.

Locale preference for the current user locale.

Applet user property. This property provides high interactivity support.

4. If none of these items are set, then Siebel Open Ul displays the Monday through Friday, five day workweek.

WN =

Specifying the First Day of the Week

If the set of visible days does not include the First Day of Week preference, then Siebel Open Ul displays the next visible
day. For example, if the user uses a Monday through Friday, five-day workweek, and if the First Day of Week is Saturday;,
then Siebel Open Ul displays Monday as the first day of the week in the Work Week calendar. It does this because
Monday is the first visible day that occurs after Saturday.

Specifying Work Days and the First Day of the Week

You can define a default value for all users according to the locale, but a user can override this value. For example,
assume the following:

- The existing Work Week setting for all users is Monday through Friday, as determined by the Locale settings
that the Siebel administrator sets.

- A set of users work Monday through Friday.
- Another set of users who provide weekend support work Wednesday through Sunday.

Each weekend user logs into the Siebel client and uses the User Preferences Calendar view to set their
Wednesday through Sunday schedule. Siebel Open Ul stores this modification in the user preferences file.

In this situation, Siebel Open Ul does the following:

Displays Monday through Friday for each user who does not use the User Preferences Calendar view to modify
their preference

Displays Wednesday through Sunday for each user who uses the User Preferences Calendar view to modify
their preference

Customizing How Calendars Display Timestamps

You specify an applet user property to customize how the calendar displays timestamps.

243
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

Note: If you have customized calendar to display timestamps, but still cannot see a timestamp, it might be hidden
because the browser window is too small. In this case, modifications can be made to be made to the CSS.

To customize how calendars display timestamps

1. Open Siebel Tools.

For more information, see Using Siebel Tools .

In the Object Explorer, click Applet.

In the Applets list, locate any calendar applet.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.
In the Applet User Props list, query the Name property for the following value:

vhWN

Enable Daily Time Display

o

Set the Value property to one of the following values:

o Always. Always display the timestamp immediately before the meeting subject. For example, 8:00 AM -
9:00 AM My Meeting.

o Never. Do not display the timestamp.

o Off-interval. Display the timestamp immediately before the meeting subject only if the meeting starts or
ends at a time that is not consistent with the user preference that specifies how to display time intervals.
For example, if the user preference includes intervals of 8:00, 8:30, 9:00, and so on, and if a meeting
occurs from:

- 8:00 to 8:30. Do not display the timestamp.

- 8:03 to 8:14. Display the timestamp.

- 8:00 to 8:15. Display the timestamp.
An off-interval meeting is a meeting that does not start and end on a calendar increment. For example, if
the calendar displays 30 minute increments, and if the user creates a meeting that does not start and end
on the half-hour, then this meeting is an off-interval meeting. A 15 minute meeting that starts at 9:05 AM
is an example of an off-interval meeting.

If you do not specify an applet user property for a:
o Daily view or weekly view. Siebel Open Ul uses an off-interval value.
o Monthly view. Siebel Open Ul always displays the timestamp.
7. Repeat Step 5 and Step 6 for the following applet user property:

Enable 5Day Time Display

8. Repeat Step 5 and Step 6 for the following applet user property:
Enable Monthly Time Display

Replacing Standard Interactivity Calendars

Some standard interactivity calendars do not work properly in Siebel Open Ul. This topic describes how to replace the
calendars that standard interactivity uses with the calendars that Siebel Open Ul uses.

244
ORACLE

Siebel

Chapter 7

Configuring Siebel Open Ul Customizing Calendars and Schedulers

To replace standard interactivity calendars

1.

2.

Modify the applet:
a. Open Siebel Tools.

For more information, see Using Siebel Tools .
b. Inthe Object Explorer, click Applet.
c. Inthe Applets list, query the Name property for the following value:

LS CIM eCalendar Weekly Applet

Note: This step describes how to search for specific standard interactivity calendar. If you want to
replace a different standard interactivity calendar, query for it in this step.

d. Modify the Class property from CSSSWEFrameCalGridLS to the following value:

CSSSWEFrameActHICalGrid

This modification replaces standard-interactivity applets.
e. Compile your modifications.
Test your modifications:

a. Login to the client.
b. Make sure Siebel Open Ul displays the correct applets.

For example, make sure the Fullcalendar applet replaces the LS CIM eCalendar Weekly Applet.

Customizing How Users View Calendar Availability

Calendar availability is the amount of free time in a user’s agenda for a specific day. Available time is calculated by
taking the number of working hours defined by the user, and subtracting any events already scheduled for that day
within the working hours. You can configure Siebel Open Ul to display the number of free hours available for a user in
the monthly view. If you choose to show calendar availability, you will no longer see scheduled events in the monthly
view. Instead, each day will have the available free hours displayed. This topic describes how to show and hide the
calendar availability.

To show and hide calendar availability

1.

vih N

Open Siebel Tools.

For more information, see Using Siebel Tools .

In the Object Explorer, click Applet.

In the Applets list, locate any calendar applet.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.
In the Applet User Props list, query the Name property for the following value:

Enable BusyFreeTime

245

ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

6. Set the Value property to one of the following values:

o Y. Show calendar availability.

o N. Hide calendar availability.

Customizing the Calendar All Day Slot

The calendar all day slot is an area in the calendar before the workday hours that lists all day events. All day events are
calendar appointments that start and end at 00:00:00 in the user’s time zone. By default, the all day slot is hidden. This
topic describes how to show and hide the calendar all day slot.

To show or hide the calendar all day slot
1. Open Siebel Tools.

For more information, see Using Siebel Tools .

In the Object Explorer, click Applet.

In the Applets list, locate any calendar applet.

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.
In the Applet User Props list, query the Name property for the following value:

v A WN

Enable AllDay Slot

6. Set the Value property to one of the following values:

o Y. Show the calendar all day slot.
o N. Hide the calendar all day slot.

Customizing Resource Schedulers

This topic describes how to customize a resource scheduler. It includes the following topics:

- Overview of Customizing Resource Schedulers

« Customizing a Resource Scheduler

« Customizing the Filter Pane in Resource Schedulers

« Customizing the Resource Pane in Resource Schedulers

« Customizing the Timescale Pane in Resource Schedulers

« Customizing the Schedule Pane in Resource Schedulers

« Customizing Participant Availability in Resource Schedulers
« Customizing Tooltips in Resource Schedulers

This topic includes example values that customize the resource scheduler that Siebel Hospitality uses. You can use a
different set of values to customize a different Siebel application.

246
ORACLE

Siebel

Chapter 7

Configuring Siebel Open Ul Customizing Calendars and Schedulers

Overview of Customizing Resource Schedulers

The following figure includes an example of a resource scheduler, which is a type of bar chart that includes a schedule
that allows the user to schedule a resource. In this example, the Function Space Diary is a resource scheduler that allows
the user to schedule a room in a hotel. The room is the resource. You can use a different resource scheduler to meet the
deployment requirements of your Siebel application.

= O

Explanation of Callouts
As shown in this image, the resource scheduler includes the following items:

1. Date navigation bar. Allows the user to modify the date that Siebel Open Ul displays in the schedule.
2. Time scale selector. Includes the following time scales:

o

o

[e]

o

o

o

D/H. Days and hours.

D/DP. Days and day parts.

W/D. Weeks and days.

W/DP. Weeks, days, and day parts.

M/D. Months and days.

M/DW. Months, days of the week, and day parts.

A day part is a time period that occurs during the day. For example, morning, afternoon, evening, and night are
examples of day parts. You can customize the time period that defines a day part. For example, the morning
day part comes predefined as 8:00 AM to Noon. You can modify it to another time period, such as 9:00 AM to
Noon. For information about customizing the day part, see Step 5.

3. Filter pane. Allows the user to filter data that Siebel Open Ul displays in the schedule.

4. Resource pane. Displays a list of resources. A resource is something that a resource scheduler can use to
support an event. A room is an example of a resource. An event is something that occurs in a resource. A
meeting is an example of an event.

247

ORACLE

Siebel

Chapter 7

Configuring Siebel Open Ul Customizing Calendars and Schedulers

5. Timescale pane. Displays a time scale that includes date and time information. It includes the following items:

o The major axis is a dimension that Siebel Open Ul displays in the time scale. In this example, the major

axis displays the current day, which is Monday, July 22.

The minor axis is a dimension that Siebel Open Ul displays in the time scale. In this example, the minor
axis displays the time of day, such as 10:00 AM.

The third axis is a dimension that Siebel Open Ul displays in the time scale. It displays this axis as a third
dimension in addition to the major axis and the minor axis. You can use the third axis to display Siebel
CRM information according to your deployment requirements. In this example, the third axis displays the
total number of rooms that are available for the current day. For example, 300/380 indicates that 300
rooms out of a total of 380 rooms are available for the current day.

6. Schedule pane. Displays the schedule as a timeline. Includes events that are scheduled for each resource.
7. Legend. Displays a legend that describes the meaning of each color that Siebel Open Ul displays in the
Schedule pane.

Using Abbreviations When Customizing the Resource Scheduler

In Siebel Open Ul, an abbreviation is an optional shortened version of a value that you can specify in the Value property
of an object that a resource scheduler uses. ST is an example of an abbreviation. It indicates the start time of a resource
scheduler. Siebel Open Ul uses these abbreviations to reduce the amount of information that it sends from the Siebel
Server to the client. This book includes the abbreviations that you can use for Siebel Hospitality. Unless noted elsewhere,
these abbreviations come predefined with Siebel Open Ul, and you can use only the abbreviations that this book
describes. For help with using abbreviations, see Getting Help from Oracle.

Customizing a Resource Scheduler

This topic describes how to customize a resource scheduler.

To customize a resource scheduler

1. Configure the applet that Siebel Open Ul uses to display the resource scheduler:

a.

Open Siebel Tools.

For more information, see Using Siebel Tools .
In the Object Explorer, click Applet.

This example includes the minimum set of objects that you must add. To view predefined applets
that Siebel Open Ul uses for a resource scheduler, you can query the name property for TNT Function
Bookings Gantt Applet or, to simplify creating your resource scheduler, you can make a copy of one of
these applets, and then modify the copy.

In the Applets list, add a new applet, or copy one of the applets mentioned in Step b.

Set the following property for the applet that you added in Step c.

Property Value

Class CSSSWEFrameGantt

In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

248

ORACLE

Siebel
Configuring Siebel Open Ul

Chapter 7
Customizing Calendars and Schedulers

f. Inthe Applet User Props list, add the following applet user properties. Each value in the Value property
supports this example. You can use values that your deployment requires. You must include all of these

user properties.

Name

Gantt Open Ul Service

Physical_Renderer

Presentation_Model

ClientPMUserProp

Date Padding for TimeScale LIC

DateBar Navigation TS

Duration for TimeScale LIC

ORACLE

Value

TNT Gantt Ul Service

GanttTNTRenderer

GanttTNTPresentationModel

EnableTooltip,Date Padding for
TimeScale LIC,DateBar Navigation
TS

time_scale_

identifier:number_of_pages

time_scale_identifier:small_

date_change,big_date_change

time_scale_identifier:

number_of_days

For example:

1:7;2:1;4:1;32:36;64:3
1;128:7;256:35;512:1;1
024:1

Description

Specify the business service name that Siebel
Open Ul uses to save system preferences and user
preferences.

Specify the name of the class that Siebel Open Ul
uses for the physical renderer.

Specify the name of the class that Siebel Open Ul
uses for the presentation model.

Specify the user properties that Siebel Open Ul
makes available to JavaScript files that reside on the
client. You must use a comma to separate each user
property name.

Specify the number of pages that Siebel Open

Ul uses in the cache for the time scale. For more
information, see Customizing the Cache That Siebel
Open Ul Uses for Time Scales.

Specify the date navigation buttons. For more
information, see Customizing the Date Navigation
Buttons.

Specify the number of days that Siebel Open Ul
sends to the cache for each time scale. For example,
the following value specifies to send seven days of
data to the cache for the Week/Day time scale:

1:7
You can use a semicolon to specify days for more

than one time scale.

Siebel Open Ul uses a number to identify each time
scale. For more information, see Determining the
Number That Siebel Open Ul Uses to Identify Time
Scales.

249

Siebel
Configuring Siebel Open Ul

Name

No. Of Panes

Custom Control Name

Custom Control

Custom Control 1

Custom Control 2

Value

s_Diary

"Legend Control Name,s_Legend"

"DateBar Control Name,s_
DateBar"

"GanttChart,s_Diary"

g. Configure system preferences and user preferences.

Chapter 7
Customizing Calendars and Schedulers

Description

This applet user property specifies the number

of panes that Siebel Open Ul displays. A resource
scheduler always displays the Resource pane, Time
Scale pane, and the Scheduler pane, so you must not
modify this applet user property.

Specify the name of the custom control.

Specify the tag that Siebel Open Ul uses to render
each custom control. Siebel Open Ul uses this
information to parse the input property set when it
renders a custom control. Use the following format
for each value:

control_name, tag_name

where:

- control_name specifies the name of the custom
control.

- tag_name specifies the tag name that you
define in the Tag Name control user property
in Step c in the topic Customizing a Resource
Scheduler.

For example, the following value specifies to use the
s_Legend tag for the Legend Control Name control:

Legend Control Name,s Legend

You can use Custom Control 1and Custom Control 2
to specify more controls, as required.

In the Applet User Props list, add the following applet user properties. Each value in the Value property
supports this example. You can use values that your deployment requires. You must include all of these

user properties.

Name

Support System Preferences

Support User Preferences

ORACLE

Value

Description

If the value is N or empty, then Siebel Open Ul does
not support system preference usage with a resource
scheduler.

250

Siebel
Configuring Siebel Open Ul

Name Value

System_Pref Field number "GntAXCtrl:Time Scale", "TST",
"TNT_SHM_GNTAX_TIME_SCALE"
For example, System_Pref Field 1,

System_Pref Field 2, and so on.

System_Pref_Prefix GntAXCtrl:

User_Pref Field number "Display Toggle - Query", "Display

Toggle"
For example, User_Pref Field 1,
User_Pref Field 2, and so on.
User_Pref_Prefix Diary

Chapter 7
Customizing Calendars and Schedulers

Description

Specify the default values that Siebel Open Ul uses
in a resource scheduler. You can use the following
abbreviations:

- TST. Specifies the Time Scale.

- ST. Specifies the start time of the schedule.

- ET. Specifies the End time of the schedule.
If a field is a LOV field, then you must specify the LOV
name so that the code gets the language-dependent
value.

For more information about the abbreviations that
the Value property contains, see Using Abbreviations
When Customizing the Resource Scheduler.

Specify the prefix that Siebel Open Ul uses for
every system preference that it uses with a resource
scheduler. You must use this prefix. Siebel Open Ul
only queries system preferences that include this
prefix. It does this query in the System Preferences
business component.

Specify the user preference name. Siebel Open Ul
sends an abbreviation of this user preference to the
client.

Specify the prefix that Siebel Open Ul uses for
every user preference that it uses with a resource
scheduler. You must use this prefix. Siebel Open Ul
queries only the user preferences that include this
prefix. It does this query in the User Preferences
business component.

You can use these system preferences and user preferences to configure Siebel Open Ul to do decision
making in your custom JavaScript code that resides on the client. For example, you can set a user
preference for the default time scale to Month and Day, and then use this default in your custom
JavaScript code to set the default time scale. User preferences take precedence over system preferences.
If a user preference exists, then Siebel Open Ul uses it instead of the corresponding system preference.

h. Specify the methods that Siebel Open Ul uses with the Siebel Server.

In the Applet User Props list, add the following applet user properties. These applet user properties
specify the methods that Siebel Open Ul uses with the Siebel Server. You must add them so that Siebel
Open Ul can call the methods that reside on the Siebel Server. You must not modify these methods. You
must also add a CaninvokeMethod applet user property for every method that your custom JavaScript

ORACLE

251

Siebel
Configuring Siebel Open Ul

Chapter 7
Customizing Calendars and Schedulers

calls on the Siebel Server. Make sure you set the Value property for each of these applet user properties
to True.

Property

CanlnvokeMethod:
DolnvokeDrilldown

CanlnvokeMethod: DoOperation

CanlnvokeMethod:
FilterDisplayOptions

CanlnvokeMethod: FilterGantt

CanlnvokeMethod: InitPopup

CanlnvokeMethod: InvokeOperation

CanlnvokeMethod: ReSetFilterGantt

CanlnvokeMethod: RefreshGantt

CanlnvokeMethod:
ResetDisplayOptions

CanlnvokeMethod:
SaveControlValues

ORACLE

Description

A resource scheduler supports drilldowns through the Resource, Schedule, and Timescale
panes. If the user clicks a label in one of these panes, then Siebel Open Ul calls the
DolnvokeDrilldown method.

Calls the DoOperation method. Siebel Open Ul calls this method for various events, such
as select and move, extend, shrink, create task, and so on.

Specifies how Siebel Open Ul displays bookings when the user clicks Set to set criteria
in the Filter pane. You must configure Siebel Open Ul to call the FilterDisplayOptions
method, typically through the Set button. This configuration enables Siebel Open Ul to
filter events according to the attributes that it defines for each control.

Specifies how Siebel Open Ul displays bookings when the user sets a criteria in the Filter
pane.

Calls the popup dialog box for some operations, such as select and move, create task, and
so. You cannot customize this behavior.

Specifies the method that Siebel Open Ul calls when the user clicks a button in the popup
applet. You cannot customize this behavior. This popup applet is the TNT Gantt Popup
Applet that Siebel Open Ul configures for the applet user property.

Resets the resource filter options to default values. Siebel Open Ul displays these options
in the Filter pane.

Calls the Refreshgantt method. Siebel Open Ul uses this method to refresh a resource
scheduler.

Resets the display filter options to default values. Siebel Open Ul displays these options in
the Filter pane.

Stores the user preference values that the Filter pane fields contain. You cannot customize
this behavior.

252

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

2. Configure optional applet user properties.

You can use applet user properties to implement the optional customizations that your resource scheduler
configuration requires. For more information about how to do this customization, see the following topics:
o Customizing the Filter Pane in Resource Schedulers
o Customizing the Resource Pane in Resource Schedulers
o Customizing the Timescale Pane in Resource Schedulers
o Customizing the Schedule Pane in Resource Schedulers
o Customizing Tooltips in Resource Schedulers
3. Add controls:

a. Inthe Object Explorer, click Control.
b. Inthe Controls list, add the following controls.

Name Caption - String Reference

1 SBL_TNT_TS_WEEK_DAY

2 SBL_TNT_TS_DAY_DAYPART

4 SBL_TNT_TS_DAY_HOUR

64 SBL_TNT_TS_MONTH_DAY

128 SBL_TNT_TS_WEEKDAY_DAYPART
256 SBL_TNT_TS_MONTH_DAY_OF_WEEK

Note the following:

- Aresource scheduler requires each of these controls for the time scale.
- You must add a control for each time scale.

- Set the Name property of each control to the time_scale_identifier, such as 1, 2, 4, and so on. Siebel
Open Ul uses a number to identify each time scale, such as 128 or 256. It does not use values 8,
16, or 32 for time scales with Siebel Hospitality. It might use different values for a different Siebel
application. For more information, see Determining the Number That Siebel Open Ul Uses to
Identify Time Scales.

- Setthe HTML Type property of each control to MiniButton.

- Set the Method Invoked property of each control to RefreshGantt.

253
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

c. Inthe Controls list, add the following controls.

Name HTML Type Class Description

GanttChart CustomControl CSSSWEFrameGantt Specifies the main resource scheduler
control.

GanttDateBar CustomControl CSSSWEFrameGantt Specifies the Date bar that contains the

date controls. Allows the user to modify
the date in a resource scheduler.

Legend CustomControl CSSSWEFrameGantt Specifies the legend that Siebel Open Ul
displays in a resource scheduler.

GoToResource Field Leave empty. Specifies the optional input text control
that searches for resources that reside in
the Resource pane.

Siebel Open Ul binds the event to this
control in the JavaScript that resides on
the client, so you must use GoToResource
as the name.

Make sure you set the Caption - String Reference property of the GoToResource control to
SBL_GO_TO-1004233041-4MM. Do not set this property for the other controls.

d. Inthe Object Explorer, expand the Control tree, click Control User Prop, and then use the Control User
Props list to add the following control user properties to each of the controls that you added in Step c.

Parent Control Value Property
GanttChart s_Diary
GanttDateBar s_DateBar
Legend s_Legend

Set the Name property for each control user property to Tag Name. Each of these control user properties
specifies a tag name for the control. This configuration allows the JavaScript code to access the tag.

254
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

4. Edit the Web template:

a. Inthe Object Explorer, click Applet Web Template.
b. Inthe Applet Web Templates list, create the following applet Web template.

Property Value

Name Edit

Type Edit

Web Template Applet OUI Gantt
Upgrade Behavior Admin

c. Inthe Object Explorer, click Applet.
d. Inthe Applets list, right-click the applet that you are modifying, and then click Edit Web Template.
e. Inthe Web Template Editor, add each of the controls that you added in Step 3, Step c to the layout.

It is recommended that you position each of these controls on the other side of the layout.
f. Set the Item Identifier property of the GanttDateBar control to 3000.
g. Close the Web Layout Editor.
5. Configure the application:

In the Object Explorer, click Application.

In the Applications list, query the Name property for the application that you are modifying.
In the Object Explorer, expand the Application tree, and then click Application User Prop.

In the Application User Props list, add the following application user property.

aengoo

Property Value

Name ClientBusinessService number

For example, ClientBusinessServicel.

Value Gantt Ul Service

You must add a new application user property for each business service that your customization calls
in the client. In this example, you specify the Gantt Ul Service business service. You must increment
the Name for each application user property that you add. For example, ClientBusinessServicel,
ClientBusinessService2, and so on.

6. Compile your modifications.

255
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

7. Test your modifications:

a. Login to the client.
b. Navigate to the resource scheduler, and then test your modifications.

Customizing the Cache That Siebel Open Ul Uses for Time Scales
This topic describes how to customize the cache that Siebel Open Ul uses for time scales.
To customize the cache that Siebel Open Ul uses for time scales
1. Specify the number of pages to use in the cache for a time scale.
Use the following value for the Date Padding for TimeScale LIC applet user property:

time_scale_identifier:number of pages

where:

o time_scale_identifier specifies the time scale.

o number_of_pages specifies the number of pages that Siebel Open Ul uses for the previous operation and
for the next operation. It uses these pages when it prepares the page cache for the time scale that the
time_scale_identifier specifies.

The following example specifies the Week/Day time scale LIC, and it specifies to use 2 pages for the previous
operation, and 2 pages for the next operation:

1:2

Siebel Open Ul uses a number to identify each time scale. It uses the number 1to identify the Week/Day time
scale. For more information, see Determining the Number That Siebel Open Ul Uses to Identify Time Scales.

Siebel Open Ul always includes a default page, so it uses the following calculation to determine the total cache
page count:

previous pages + default page + next pages
So, the cache size for the 1:2 example is 5:
2+1+2=5

For more examples:

o 1:1. Use three pages (1+1+1).
o 1:0. Use one pages (0+1+0).
o 1:2. Use five pages (2+1+2).
2. (Optional) Add more than one time scale.

Use a semicolon to separate each time scale. For example:

1:1;2:1;4:1;32:1;64:1;128:1,;256:1,;512:1,;1024:1

256
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

Customizing the Date Navigation Buttons

When you specify the DateBar Navigation TS applet user property, you specify the time period that Siebel Open Ul uses
to reset the current date when the user clicks one of the following buttons:

- Single arrow facing backwards. Displays the previous date, small date change.

- Single arrow facing forward. Displays the next date, small date change.
Double arrow facing backwards. Displays the previous date, large date change.
Double arrow facing forward. Displays the next date, large date change.

Siebel Open Ul displays these buttons at the start and to the end of the date that it displays in the Date Navigation bar.

To customize the date navigation buttons
1. Specify the DateBar Navigation TS applet user property.
Use the following format:

time scale_ identifier:small_date_change, big date_change

where:

o time_scale_identifier identifies the time scale. Siebel Open Ul uses a number to identify each time scale.
For more information, see Determining the Number That Siebel Open Ul Uses to Identify Time Scales.

o small_date_change specifies the number of hours, days, weeks, or months that Siebel Open Ul uses to
modify the current date if the user clicks the back arrow or the previous arrow.

o big_date_change specifies the number of hours, days, weeks, or months that Siebel Open Ul uses to
modify the current date if the user clicks the double arrow facing backwards or the double arrow facing
forward.

2. (Optional) Add more than one time scale.
Use a semicolon to separate each time scale. For example:

1:7,30;4:1,7;2:1,7;64:30,365;128:7,30;256:1,35;

Examples of Customizing Date Navigation Buttons
The following value customizes the date navigation buttons:

1:7,30
where:
- 1. Specifies the time_scale_identifier. For example, 1 specifies the Week/Day time scale.

- 7. Specifies the number of days. For example, if the current date is August 15, 2013, and if the user clicks:

o The back arrow, then Siebel Open Ul displays August 8, 2013 as the current date.
o The forward arrow, then Siebel Open Ul displays August 22, 2013 as the current date.

- 30. Specifies the number of days for the record set. For example, if the current date is August 15, 2013, and if the
user clicks:

o The double arrow facing backwards, then Siebel Open Ul displays July 15, 2013 as the current date.

257
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

o The double arrow facing forward, then Siebel Open Ul displays September 15, 2013 as the current date.

For another example:
4:1,7
where:
- 4. Specifies the time_scale_identifier. For example, 4 specifies the Day/Hour time scale.

- 1. Specifies the number of days. For example, if the current date is August 15, 2013, and if the user clicks:

o The back arrow, then Siebel Open Ul displays August 14, 2013 as the current date.
o The forward arrow, then Siebel Open Ul displays August 16, 2013 as the current date.

- 7. Specifies the number of days for the record set. For example, if the current date is August 15, 2013, and if the
user clicks:

o The double arrow facing backwards button, then Siebel Open Ul displays August 8, 2013 as the current
date.
o The double arrow facing forward, then Siebel Open Ul displays August 22, 2013 as the current date.

Determining the Number That Siebel Open Ul Uses to Identify Time

This topic describes how to determine the number that Siebel Open Ul uses to identify a time scale.

To determine the number that Siebel Open Ul uses to identify time scales

1. Login to a Siebel client with administrative privileges.
2. Navigate to the Administration - Data screen, and then the List of Values view.
3. Query the Type field for the following value:

TNT_SHM GNTAX_TIME SCALE

4. Inthe Display Value field, locate the time scale that you must modify.
5. Inthe Language-Independent Code field, make a note of the value.

Siebel Open Ul uses the number that it displays in the Language-Independent Code field to identify the time
scale that it displays in the Display Value field.

Customizing the Filter Pane in Resource Schedulers

You can add a custom filter that determines how Siebel Open Ul filters resources and determines the label colors that it
uses for events. You add these controls in the Filter pane. For example, you can add a filter control named Type to filter
events according to the value that the Type field contains.

To customize the Filter pane in resource schedulers

1. Inthe Object List Editor, choose the applet that you modified in Step 1in the topic Customizing a Resource
Scheduler.
2. Inthe Object List Editor, expand the Applet tree, and then click Control.

258
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

3. (Optional) Configure the resource scheduler to filter resources:

a. Inthe Controls list, choose a control that meets your deployment requirements that Siebel Open Ul can
use to filter resources.

If no existing controls meet your deployment requirements, then you can add a control.
In the Object List Editor, expand the Control tree, and then click Control User Prop.
c. Inthe Control User Props list, add the following control user property.

Name Value Description

Field Name Max Room Area Sq Ft Specify to use the control as part of the resources filter.
The HTML Type property of this control must be set
to Text so that Siebel Open Ul displays a text box that
allows the user to enter a value. Siebel Open Ul then uses
the filter resources according to the value that the user
enters. For example, if the user enters a value of 100,
then Siebel Open Ul sends the following value to the
FilterGantt business service method. It sends this value as
an input argument:

Max Room Area Sq Ft = "100"

4. (Optional) Configure the resource scheduler to filter resources and events:

a. Inthe Controls list, choose a control that meets your deployment requirements that Siebel Open Ul can
use to filter resources and events.

If no existing controls meet your deployment requirements, then you can add a control.
In the Object List Editor, expand the Control tree, and then click Control User Prop.
c. Inthe Control User Props list, add the following control user property.

Name Value Description
Display Field Optioned Specify to use the control as part of the resources filter.
Name The HTML Type property of this control must be set to

CheckBox so that Siebel Open Ul displays a check box that
allows the user to display Optioned events. Siebel Open Ul
then filters resources and events according to the choice
that the user makes. In this example, if the user adds a
check mark, then Siebel Open Ul sends the following value
to the DisplayOptions business service method. It sends this
value as an input argument:

Optioned = "Y"

5. Use the Web Layout Editor to add the control that you modified in Step 3 or Step 4 to the Filter pane in the Web
template.

You can do this work as part of Step 4, Step e in the topic Customizing a Resource Scheduler.

259
ORACLE

Siebel

Configuring Siebel Open Ul

Chapter 7
Customizing Calendars and Schedulers

Customizing the Resource Pane in Resource Schedulers

This topic describes how to customize the Resource pane.

To customize the Resource pane in resource schedulers

1. In the Object List Editor, choose the applet that you modified in Step 1in the topic Customizing a Resource

Scheduler.

2. Inthe Object List Editor, expand the Applet tree, and then click Applet User Prop.
3. Inthe Applet User Props list, add each of the following applet user properties, as required.

Name

Pane 0 Grid Name

Pane 0 Grid Type

Pane 0 Col number

Pane 0 Col column
number Attr column
attribute number

For example:

Pane O Col 1 Attr 2

Pane 0 Col O Attr 1

Pane 0 Col O Attr 2

ORACLE

Value

Resource

RGrid

NM,Name

IID, 206

FLD,Room Name

IDD,Products

Description

Specify the name of the Resource pane.

Specify the pane type.

Specify the details for the column header that Siebel Open Ul displays
in the Resource pane, including the abbreviated name and the label.

Specify the identifier that identifies the icon that Siebel Open Ul
displays for the column.

Specify the Room Name business component field that Siebel Open Ul
uses to get the value, and then display it under resource column 0.

Specify the following items:

o IDD. The abbreviation that indicates the name of the drill down
object.

o Drilldown field. The business component field that Siebel Open
Ul uses when the user drills down to a destination view.

If the user clicks the DDFLD value that Siebel Open Ul displays under
resource column O, then it navigates the user to the view that the
Products drill down object defines.

Siebel Open Ul uses the Pane 0 Col O Attr 2 applet user property in
conjunction with the Pane 0 Col O Attr 3 applet user property.

260

Siebel
Configuring Siebel Open Ul

Name

Pane 0 Col O Attr 3

Pane O Field number

Pane 0O Join Field

Pane O Parent Field

Pane O Start Date Field

Pane 0 View Mode

ORACLE

Value

DDFLD,Room Id

Room Id

Room Id

Parent Room Id

Effective Start

Chapter 7
Customizing Calendars and Schedulers

Description

You must configure the corresponding drilldown object that identifies
the destination view and the ID. This drilldown object resides in the
applet that you are configuring.

Specify the following items:

o DDFLD. The abbreviation that indicates the name of the drill down
field.

o Drilldown field. The name of the business component field
that Siebel Open Ul uses when the user drills down on resource
column 0. Siebel Open Ul uses this field value to navigate the user
to the destination view.
Siebel Open Ul uses the Pane 0 Col O Attr 3 applet user property in

conjunction with the Pane O Col O Attr 2 applet user property.

Specify the business component field that Siebel Open Ul uses to get
the Siebel CRM data that it displays in the Resource pane.

Specify the field that Siebel Open Ul uses to join resources and events.
Resources and events are independent of each other. This join field
joins the events that are related to a resource. For example, a meeting
is an example of an event that can be held in a room, which is an
example of a resource. In this example, each event includes a Room Id.

Specify the parent business component field that Siebel Open Ul uses
to display resources in a hierarchy.

Specify the Start Date field that Siebel Open Ul uses to prepare a search
specification.

Specify the view mode that this Resource pane supports. You must use
the following numbers to indicate each view mode:

o 0.VIEW_SALESREP.
o 1. VIEW_MANAGER.

o 2.VIEW_PERSONAL.
o 3.VIEW_ALL.

o 4.VIEW_NONE.

o 5.VIEW_ORG.

o 6. VIEW_CONTACT.

o 7.VIEW_GROUP.

o 8.VIEW_CATALOG.

261

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

Name Value Description

o 9.VIEW_SUBORG.

You can use a comma to specify more than one view mode, where the
comma separates each number. For example, 1,2,3.

4. Configure the font color that Siebel Open Ul uses in the Resource pane.

Add the following applet user property.

Property Value Description

Pane O Color Field Status Specify the business component field that determines the color
that Siebel Open Ul uses to display a resource. If you do not specify
a value, then Siebel Open Ul displays only the color black.

5. Configure the icons that Siebel Open Ul display next to the Resource Name label in the Resource pane.

Add the following applet user property.

Property Value

Pane O Icon number Specify the name of a field that Siebel Open Ul displays in the Resource pane, a comma, and
then the CSS class that contains the icon. For example:

Room Backup Required,siebui-backup required

Customizing the Timescale Pane in Resource Schedulers

This topic describes how to customize the Timescale pane.

To customize the Timescale pane in resource schedulers

1. In the Object List Editor, choose the applet that you modified in Step 1in the topic Customizing a Resource
Scheduler.

2. Inthe Object List Editor, expand the Applet tree, and then click Applet User Prop.
3. Inthe Applet User Props list, add each of the following applet user properties, as required.

Name Value Description
Pane 1 Grid Name TimeScale Specify the name of the Timescale pane.
Pane 1 Grid Type TGrid Specify the type of the Timescale pane.

262
ORACLE

Configuring Siebel Open Ul

Name

Pane 1BC Name

Pane 1 End Date Field

Pane 1 Start Date Field

Pane 1 Field number

Time Scale LOV

Name

Pane 1 BottomAXxis Date
Field

Pane 1 BottomAxis Field
number

where number is a field
number.

Pane 1 BottomAxisBC
Name

ORACLE

Value

TNT SHM Property
Special Dates Action

End Date

Start Date

Start Date,SD

TNT_SHM_GNTAX

_TIME_SCALE

Value

Start Date

Total Group Available,
FLD1

TNT SHM FSI Auth Lvl
for Calendar

Chapter 7
Customizing Calendars and Schedulers

Description

Specify the business component name that Siebel Open Ul uses to
get information about special days or events that it displays in the
Timescale pane. It can use this information to display colors and icons
on the Timescale pane.

Specify the End Date business component field where Siebel Open
Ul applies a search specification to prepare special days, events
information, and so on.

Specify the Start Date business component field where Siebel Open
Ul applies a search specification to prepare special days, events
information, and so on.

Specify the name of a field that resides in the Data business
component. Siebel Open Ul requires an abbreviation to prepare
special day information. Siebel Open Ul sends the field value as an
abbreviation to the client so that the client JavaScript files can use this
information.

Specify the LOV name that Siebel Open Ul uses for different time
scales.

4. Configure the third axis that Siebel Open Ul displays on the Timescale pane. Add each of the following user
properties, as required.

Description

Specify the Date field that Siebel Open Ul uses to search the third axis
that resides in the TimeScale pane business component.

Specify the third axis that resides in the TimeScale pane business
component field. The value contains the name and abbreviation as
FLD1, FLD2, and so on.

Specify the business component name that Siebel Open Ul uses to

get the data that it displays in the third axis. If you do not include this
applet user property, then Siebel Open Ul does not display the third axis
in the Timescale pane.

263

Siebel
Configuring Siebel Open Ul

Name Value

Pane 1 BottomAxisBC
Search Spec

[Product Type] =
LookupValue

(PRODUCT_TYPE,

'Sleeping Room")

Pane 1BottomAxisBC Sort Start Date

Spec

5. Configure the Day Part time scale:

Chapter 7
Customizing Calendars and Schedulers

Description

Specify the search specification that Siebel Open Ul applies on the
business component for the Third axis in the TimeScale pane.

Specify the sort specification that Siebel Open Ul applies on the
business component for the Third axis in the TimeScale pane.

a. Add the Day Part time scale button to the controls.

Use 2 for the Name of this button. This configuration is the LIC value that Siebel Open Ul uses for the Day
Part time scale. You must use a value from the time scale list of values to name each time scale button
control. For more information about how to add this button, see Step 3, Step b in the topic Customizing a

Resource Scheduler.

b. Add each of the following applet user properties, as required.

Name Value

Pane 1 Daypart number Morning,NM,06:00:00,

ST,
where number is the day
part number. 12:00:00,ET,21600,DUR
Pane 1 Daypart Field Name,NM
number

Pane 1 DaypartBC Name TNT SHM Property Day

Part Pricing

Pane 1 DaypartBC Search
Spec

(Empty)

ORACLE

Description

Siebel Open Ul uses the following business component to provide the
dynamic day part data:

TNT SHM Property Day Part Pricing

If this business component does not exist, or if it does not contain any
records, then Siebel Open Ul uses this applet user property to specify
the Static Day Part information that the day part time scale uses. The
value contains the Name, Starttime, Endtime, and Duration of the
daypart.

Specify the business component fields that Siebel Open Ul uses to get
the day part information. The value includes the field name and the
abbreviation for this field name.

Specify the name of the business component that Siebel Open Ul uses
to get the day part information.

Specify the search specification that resides on the business
component that Siebel Open Ul uses to get the day part information.
This value comes predefined as empty.

264

Siebel
Configuring Siebel Open Ul

Chapter 7
Customizing Calendars and Schedulers

Name Value Description

Pane 1 DaypartBC Sort Start Time

Spec

Specify the sort specification that resides on the business component
that Siebel Open Ul uses to get the day part information.

6. Configure the colors that Siebel Open Ul displays on the time scale. You can configure Siebel Open Ul to modify
the colors it uses in time scale cells according to a condition. For example, it can set the color of a weekend cell.
Add each of the following applet user properties, as required.

Name

Pane 1 Color: Admin BC

Pane 1 Color:Admin BO

Pane 1 Color Application

Pane 1 Color Type:Color

Pane 1 Color Type:Color
number

Pane 1 Colors BC Color
Field

Pane 1 Colors BC Type
Field

ORACLE

Value

TNT SHM Gantt AX
Admin Function Status

TNT SHM Gantt Admin
System Pref

Holiday:#3ED143

Special Events:#F76161

Color LIC

Inventory Status

Description

Specify the business component that Siebel Open Ul uses to display
colors for time scale data cells.

Specify the business object that references the business component
that Siebel Open Ul uses to display colors for time scale data cells.

Specify how to get the time scale color. You can use one of the
following values:

o Y. Get the time scale color from the application object.

o N. Get the time scale color from an applet user property.

If the value of the Pane 1 Color Application applet user property is N,
then the value of the Pane 1 Color Type:Color applet user property must
specify the event and the color that Siebel Open Ul uses to indicate

this event. In this example, the event is Holiday and the color code

is #3ED143. For more information about these color codes, see the
ColorHexa website at http://www.colorhexa.com.

If the value of the Pane 1 Color Application applet user property is N,
then the value of the Pane 1 Color Type:Color number applet user
property must specify a special event and the color that Siebel Open Ul
uses to indicate this event.

If the value of the Pane 1 Color Application applet user property is Y,
then the value of the Pane 1 Colors BC Color Field applet user property
must specify the Color field that resides in the business component
that the Pane 1 Color: Admin BC applet user property specifies.

If the value of the Pane 1 Color Application applet user property is Y,
then the value of the Pane 1 Colors BC Type Field applet user property
must specify the type of field that resides in business component that
the Pane 1 Color: Admin BC applet user property specifies.

265

Siebel
Configuring Siebel Open Ul

Name Value

Pane 1 Hour Axis Business EventsTSHourMap
Service Method

Pane 1Hour Axis Business TNT Utility Service
Service Name

Pane 1 Hour Axis Color Y

Chapter 7
Customizing Calendars and Schedulers

Description

Specify the business service method that Siebel Open Ul uses to get the
hour axis colors that it displays in the Timescale pane.

Specify the business service that Siebel Open Ul uses to get the hour
axis colors that it displays in the Timescale pane.

Specify how to color the hour cells. You can use one of the following
values:

o Y. Use avariety of colors in the cells.

o N.Use only black in the cells.

7. Specify how to display weekends. Add the following applet user properties, as required.

Name Value

Pane 1 Weekend Y

Application

Pane 1 Weekend BC TNT SHM Weekend
Admin

Pane 1 Weekend BC Week Day Num

Field:Day

Pane 1 Weekend BC Weekend Weekday Flag

Field:Weekend Flag

ORACLE

Description

Specify how to get the weekend information. You can use one of the
following values:

o Y. Get the weekend information from the application object.

o N. Get the weekend information from an applet user property.

If the value of the Pane 1 Weekend Application applet user property
is Y, then the Pane 1 Weekend BC applet user property must specify
the business component that Siebel Open Ul uses to get the weekend
information.

If the value of the Pane 1 Weekend Application applet user property is
Y, then the Pane 1 Weekend BC Field:Day applet user property must
specify the business component field that Siebel Open Ul uses to get
the weekend information.

If the value of the Pane 1 Weekend Application user property is Y, then
the Pane 1 Weekend BC Field:Weekend Flag user property must specify
the business component field that Siebel Open Ul uses to get the
weekend information.

The Pane 1 Weekend BC Field:Day user property specifies the day
information.

The Pane 1 Weekend BC Field:Weekend Flag user property specifies to
configure this day as a weekday or as a weekend day.

266

Siebel
Configuring Siebel Open Ul

Name

Pane 1 Weekend BO

Pane 1 Weekend Property
Admin BC

Pane 1 Weekend Property
Admin BC Field

Pane 1 Weekend Property
BC

Pane 1 Weekend Property
Field

Pane 1 Weekends

Value

SHM Site

SHM Site

Property Id

SHM Site

Property Id

0,5,6

Chapter 7
Customizing Calendars and Schedulers

Description

If the value of the Pane 1 Weekend Application applet user property
is Y, then the Pane 1 Weekend BO applet user property must specify
the business object that Siebel Open Ul uses to get the weekend
information.

Specify the business component that Siebel Open Ul uses to get
weekend information from the Siebel Server.

Specify the field that resides in the property business component.

Specify the business component that Siebel Open Ul uses to get the
property information.

Specify the business component field that Siebel Open Ul uses to get
the property information.

Specify the days that Siebel Open Ul uses as weekend days. If the value
of the Pane 1 Weekend Application applet user property is N, then the
Pane 1 Weekends applet user property must specify the days that Siebel
Open Ul uses to identify weekend days. You must use the following
numbers to represent each day:

o 0.Sunday.

o 1. Monday.

o 2. Tuesday.

o 3.Wednesday.
o 4. Thursday.

o 5. Friday.

o 6.Saturday.

Use a comma to separate each number. For example, a value of 0,5,6 in
the Pane 1 Weekends user property customizes Siebel Open Ul to use
Sunday, Friday, and Saturday as weekend days.

8. Configure the icons that Siebel Open Ul displays and the text that it uses with these icons in time scale cells
according to a condition. Add the following applet user properties, as required.

Name

Pane 1lcon number

ORACLE

Value

Sell Notes,siebui-
sellnotes

Description

Specify the field value from the business component that the Pane 1
BC Name applet user property identifies, and the class name of the

267

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

Name Value Description

cascading style sheet that Siebel Open Ul uses to render the time scale
cells. You must use a comma to separate these values.

You can configure more than one Pane 1Icon number applet user
property. For example, you can configure Pane 1Icon 1, Pane 1lcon 2,
and so on.

9. Configure the drilldowns that Siebel Open Ul uses on the major axis and the third axis. If you configure a drill-
down, then you must configure each of the following applet user properties.

Name Value Description

Pane 1 Date Drilldown source:destination Specify the time scale that Siebel Open Ul displays when the
user clicks a date in the Timescale pane. For more information,
see Customizing Time Scales That Siebel Open Ul Displays in the
Timescale Pane.

Pane 1 Item Drilldown Time Scale Drilldown Specify the drill-down object that resides in the applet that Siebel
Name Open Ul uses to display the third axis. You must also configure this
drill-down object in the applet.

Pane 1 Item Drilldown Field OUI Property Id Specify the field that contains the value that Siebel Open Ul uses
when it does a drill down operation on a label that resides in the
third axis.

Siebel Open Ul uses this field value to navigate the user to the
destination view according to the drilldown object that the Pane 1
Item Drilldown Name applet user property specifies.

Customizing Time Scales That Siebel Open Ul Displays in the

This topic describes how to specify the Pane 1 Date Drilldown applet user property. You specify the time scales that
Siebel Open Ul displays when the user clicks a date in the Timescale pane, such as Monday, July 22.

To customize time scales that Siebel Open Ul displays in the Timescale pane

1. Determine the number that Siebel Open Ul uses to identify the time scale that you must modify.

For more information, see Determining the Number That Siebel Open Ul Uses to Identify Time Scales.

268
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

2. Add the value that you determined in Step 1to the value of the Pane 1 Date Drilldown applet user property. Use
the following format:

source:destination

where:

o source identifies the time scale that the user clicks. Siebel Open Ul uses a number to identify each time
scale. For more information, see Determining the Number That Siebel Open Ul Uses to Identify Time
Scales.

o destination identifies the time scale that the resource scheduler displays when the user clicks the source.

For example, the following value configures Siebel Open Ul to display the Day/Day-Part time scale when
the user clicks the Week/Day time scale:

1:2
3. (Optional) Allow the user to navigate between time scales.
You can use a semicolon to separate each time scale. For example:

1:2;2:256;4:256;64:2;128:2;256:2;

Customizing the Schedule Pane in Resource Schedulers

This topic describes how to customize the Schedule pane.

To customize the Schedule pane in resource schedulers

1. In the Object List Editor, choose the applet that you modified in Step 1in the topic Customizing a Resource
Scheduler.

2. Inthe Object List Editor, expand the Applet tree, and then click Applet User Prop.
3. Inthe Applet User Props list, add each of the following applet user properties, as required.

Name Value Description

Pane 2 Grid Name Utilization Specify the pane name.

Pane 2 Grid Type UGrid Specify the pane type.

Pane 2 Field number Function Space Id,FSI Specify the business component fields that contain the information

that Siebel Open Ul displays in the Schedule pane. Siebel Open Ul sends
information from these fields to the client. Use the following format:

field name,abbreviated name

You can specify more than one field. For example, Pane 2 Field 1, Pane 2
Field 2, and so on.

269
ORACLE

Siebel
Configuring Siebel Open Ul

Name

Pane 2 BC Name

Pane 2 BC Sort Spec

Pane 2 BC Search Spec

Pane 2 End Date Field

Pane 2 Start Date Field

Pane 2 Start Attrib

Pane 2 End Attrib

Pane 2 Join Field

Pane 2 Bypass Overlap For

Status

ORACLE

Value

TNT SHM Function
Booking VBC

Function Space Id, Start
Date Time

"[Activity Type] =
Completed"

Absolute End Date
Time

Start Date Time

ST

ET

Function Space Id

Dependency

Chapter 7
Customizing Calendars and Schedulers

Description

Specify the business component that Siebel Open Ul uses to get
information about the events that it displays in the Schedule pane.

Specify the business component fields that Siebel Open Ul uses for the
sort specification that it uses to sort the records that it displays in the
Schedule pane. You must use a comma to separate each field name.

Specify the business component fields that Siebel Open Ul uses for the
search specification that it uses to identify the records that it displays in
the Schedule pane. You can use an equation or a field name. For more
information about specifying a search specification, see Configuring
Siebel Business Applications .

Specify the end date field where Siebel Open Ul does the search
according to the search specification.

Specify the start date field where Siebel Open Ul does the search
according to the search specification.

To formulate the search specification, Siebel Open Ul joins the field that
you specify in the Pane 2 Start Date Field applet user property with the
field that you specify in the Pane 2 End Date Field applet user property.

Specify the abbreviation that Siebel Open Ul uses for the start date
field.

Specify the abbreviation that Siebel Open Ul uses for the end date field.

Specify the field that Siebel Open Ul uses as the identifier when it
matches rows with other panes.

Specify the type of events that Siebel Open Ul does not split when an
event overlap occurs. An event overlap is a condition that occurs if
more than one event occurs at the same time. Siebel Open Ul splits the
row height of each overlapping event so that it can display them in the
same screen space that it normally uses to display an event that does
not overlap.

In this example, Siebel Open Ul does not split any Dependency events
that overlap.

270

Configuring Siebel Open Ul

Name

Pane 2 Overlap Event LOV

Type

Pane 2 Overlap Event

Logical Order Based Field

Attr

Pane 2 Overlap Event
Logical Order Values

Pane 2 Round Minutes
Events

ORACLE

Value

TNT_SHM_INV_
STATUS

GS

Reserved,

Option Reserved,

Overbooked,

Optioned,

Unreserved,

Unavailable,

Unavailable Instance,

Out of Order,

Temporary

15

Chapter 7

Customizing Calendars and Schedulers

Description

You can use a comma to bypass multiple event types. For example,
you can use the following value to bypass Dependency and Optioned
events:

Dependency,Optioned

Specify the LOV type that Siebel Open Ul uses for the inventory status
when events overlap.

Specify the abbreviation that Siebel Open Ul uses for the field that it
displays in the Schedule pane when events overlap.

Specify the order that Siebel Open Ul uses to display overlapping
events, according to status. In this example, Siebel Open Ul displays
statuses in the following order. It displays Reserved events first and
Temporary events last:

o Reserved

o Option Reserved

o Overbooked

o Optioned

o Unreserved

o Unavailable

o Unavailable Instance
o Out of Order

o Temporary

Specify the number that Siebel Open Ul uses to resize an event. If the
user resizes an event, then Siebel Open Ul rounds the time according
to the value that you specify. For example, assume you specify 15 as
the value for this applet user property. Assume an event starts at 08:00
AM and ends 10:00 AM. If the user extends the end time for this event
from 10:00 AM to 10:12 AM, then Siebel Open Ul rounds this end time
according to the closest 15 minute increment, where 15 is measured
from the beginning of the hour. In this example, it rounds the end time
to0 10:15 AM.

27

Siebel
Configuring Siebel Open Ul

Chapter 7
Customizing Calendars and Schedulers

4. Configure the colors that Siebel Open Ul uses for the events that it displays in the Schedule pane. It modifies
these colors according to a condition. For example, it can use a color for a Reserved event. Add each of the

following applet user properties, as required.

Name Value

Pane 2 Color number INV_STATUS

_Reserved,GREEN

Pane 2 Event Color Service EventsColorMap
Method

Pane 2 Event Color Service TNT Utility Service
Name

Pane 2 Event Default Color #6495ed

Pane 2 Status LIC Field INVENTORY
number
_STATUS,GS

Pane 2 Status LOV Type TNT_FSD

_COLOR_SCHEMA

ORACLE

Description

Specify the INV_STATUS color that Siebel Open Ul uses for the LOV
type.

Specify the business service method that Siebel Open Ul uses to get the
event colors.

Specify the business service that Siebel Open Ul uses to get the event
colors.

Specify the default color that Siebel Open Ul uses for events.

Specify the colors that Siebel Open Ul uses for the inventory status.
For example, specify the abbreviation that you defined in the Pane 2
Overlap Event Logical Order Based Field Attr applet user property. You
defined these user properties in Step 3.

Specify the color scheme that Siebel Open Ul uses for events. To modify
schemes, do the following:

o Loginto a Siebel client with administrative privileges.

o Navigate to the Administration - Data screen, and then the List Of
Values view.

o Query the Type Field for TNT_FSD_COLOR_SCHEMA.
o Modify the fields, as necessary.

Pane 2 Status LOV Type specifies only the color schemes that are
available. To configure Siebel Open Ul to display a color according to a
condition in Siebel Hospitality, you must use the Function Status Color
Schema list that resides in the Function Space Diary Administration
view of the Function Space Administration screen. For example, to
use a color for the Prospect status in Siebel Hospitality. Configuration
for your Siebel application might be different than it is for Siebel
Hospitality.

272

Siebel
Configuring Siebel Open Ul

Chapter 7
Customizing Calendars and Schedulers

5. Configure the icons and the text for these icons that Siebel Open Ul uses with the events that it displays in the
Schedule pane according to a condition. Add each of the following applet user properties, as required.

Name Value
Pane 2 Icon number DNMF,siebui-
donotmove

Pane 2 Item Icon Fields DNMF,NF,DF,SF,

FSF,HF,AF,2HHF,SFF

6. Configure Drag and Drop.

Description

Specify the abbreviation that you defined in the corresponding applet
user property and the class where the corresponding cascading style
sheet resides. For example, specify the abbreviation that you defined
in the Pane 2 Field O applet user property. You defined these user
properties in Step 3.

Siebel Open Ul uses this configuration for the icon. Use a comma to
separate the abbreviation from the class name.

You can configure more than one applet user property. For example,
Pane 2 Icon O, Pane 2 Icon 1, and so on.

Specify the abbreviations that you defined for the corresponding
user properties in Step 3. For example, specify the abbreviations
for the Pane 2 Field O applet user property, the Pane 2 Field 1
applet user property, and so on. The abbreviations in this example
come predefined with Siebel Hospitality. You cannot use any other
abbreviation. You must use a different set of abbreviations for your
Siebel application.

Use a comma to separate each abbreviation.

Note: Drag and Drop functionality is a feature that you can enable or disable for the bar chart Schedule Pane
in Siebel Open Ul which either allows you to or prevents you from moving items around the Schedule Pane.
You move an item by first selecting the item and (with the mouse button depressed) then moving the item
elsewhere (and releasing the mouse button).

Siebel Open Ul uses a business service method to implement drag and drop functionality. This step describes
how to specify the input arguments that this method requires. You add each of the following applet user

properties.
Name Value
Disable Drag for N
Ganttchart
DragnDrop: Service "Service Name", "TNT
Inputs 1 Gantt Ul Service"

ORACLE

Description

Specify to allow the user to select and move items. Use one of the
following values:

o Y. Allows you to select and move items.

o N. Does not allow you to select and move items.

Specify the business service that Siebel Open Ul uses to handle a drag
and drop operation. You must use this value. You cannot modify it.

273

Configuring Siebel Open Ul

Name

DragnDrop: Service
Inputs 2

DragnDrop: Service
Inputs 3

DragnDrop: Service
Inputs 4

DragnDrop: Service
Inputs 5

DragnDrop: Service
Inputs 6

DragnDrop: Service
Inputs 7

Value

"Service Method",

"DragnDrop"

"BO", "Quote”

N/A

N/A

N/A

N/A

Chapter 7
Customizing Calendars and Schedulers

Description

Specify the business service method that Siebel Open Ul uses to handle a
drag and drop operation. You must use this value. You cannot modify it.

Specify the business object.

You can use this applet user property to specify another input argument
that your deployment requires.

You can use this applet user property to specify another input argument
that your deployment requires.

You can use this applet user property to specify another input argument
that your deployment requires.

You can use this applet user property to specify another input argument
that your deployment requires.

7. Configure other Schedule pane behavior, such as drilldown, extend, shrink, add, update, and delete. Add each

of the following applet user properties, as required.

Name

Create Task: Service
Inputs 1

Create Task: Service
Inputs 2

Disable Resize for
Ganttchart

ExtendShrink: Service

Inputs 1

ORACLE

Value

Description

"Service Name", "TNT = Specify the business service that Siebel Open Ul uses if the user clicks OK

Gantt Ul Service"

"Service Method",

"CreateBookingRecord"

"Service Name", "TNT

Gantt Ul Service"

in the popup dialog box that it displays in the Schedule pane.

Specify the business service method that Siebel Open Ul uses if the user
clicks OK in a popup dialog box.

Specify to allow the user to resize an activity or a booking. Use one of the
following values:

o Y. Allow resizing.

o N.Do not allow resizing.

Specify the business service that Siebel Open Ul uses to handle a resize
operation.

274

Siebel Chapter 7

Configuring Siebel Open Ul Customizing Calendars and Schedulers
Name Value Description
ExtendShrink: Service "Service Method", Specify the business service method that Siebel Open Ul uses to handle a
Inputs 2 "ExtendShrink" resize operation.
Pane 2 Disable :32:256: Specify to disable resizing for a time scale. For example, 32 and 256 each
ExtendShrink Views represent a time_scale_identifier:

o 32.Specifies the Month/Day-of-Week time scale.
o 256. Specifies the Month/Day-of-Week/Day Part scale.

Siebel Open Ul uses a number to identify each time scale. For more
information, see Determining the Number That Siebel Open Ul Uses to
Identify Time Scales.

You must include a color before and after each identifier.

Show Task Details: "Service Name", "TNT = Specify the business service that Siebel Open Ul uses if the user double-

Service Inputs 1 Gantt Ul Service" clicks a booking, a task, or an activity, and then clicks OK in a popup
dialog box.

Show Task Details: "Service Method", Specify the business service method that Siebel Open Ul uses if the user

Service Inputs 2 "CreateBookingRecord" double-clicks a booking, a task, or an activity, and then clicks OK in a

popup dialog box.

Pane 2 Item Drilldown Activity Drilldown Specify the drill-down object that Siebel Open Ul uses when the user
Name clicks a label in the Schedule pane. Siebel Open Ul navigates the user to
the view that this drill-down object defines.

This configuration works in conjunction with the DDID value that you
configure in the Pane 2 Field number applet user property.

You must configure the corresponding drilldown object in the applet.

Customizing Participant Availability in Resource Schedulers

This topic describes how to customize the controls that Siebel Open Ul uses to display information about participant
availability in a resource scheduler. You use custom cascading style sheet files to do some of this modification. For more
information about how to organize these files, see Organizing Files That You Customize.

275
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

To customize participant availability in resource schedulers

1. Allow or disallow the user to resize the panes that Siebel Open Ul uses to display information about participant

availability:
a. Login to Siebel Tools.
b. Inthe Object Explorer, click Applet.
c. Inthe Applets list, query the Name property for Calendar GanttChart OUI Applet.
d. Inthe Object Explorer, expand the Applet tree, and then click Applet User Prop.
e. Inthe Applet User Props list, modify the following applet user property.
Name Description
Disable Resize for Ganttchart Specify to allow the user to resize an activity or a booking. Use one of the following values:

- Y. Allow resizing.
- N. Do not allow resizing.
Note: This user property applies to all schedulers.

2. Modify the color that Siebel Open Ul uses to display events:

In the Object Explorer, click Business Service.

In the Business Services list, query the Name property for Calendar Gantt Color Service.

In the Object Explorer, expand the Business Service tree, and then click Business Service User Prop.
In the Business Service User Props list, modify the following business service user property.

angoo

Name Description

Event Status Mapping Color For information about how to set this business service user property, see Setting the Color
for Events.

3. Compile your modifications.

4. Modify the icons that Siebel Open Ul uses to display information about participant availability. To do this, you
can use one the following siebui-calgantt-icon CSS classes in your custom CSS file.

Description Example
To modify the icon that Siebel Open .siebui-calgantt-icon-employee {
Ul uses for employees, use the siebui- =~ width: 16px;

height: 16px;

| -icon- | lass.
calgantt-icon-employee CSS class float: left:

margin-top: 2px;
background: url(../images/employees_icon.gif) no-repeat
center center;

}

276
ORACLE

Siebel Chapter 7

Configuring Siebel Open Ul Customizing Calendars and Schedulers
Description Example
To modify the icon that Siebel Open .siebui-calgantt-icon-contactcall {
Ul uses for contacts, use the siebui- width: 16px;

height: 16px;

float: left;

margin-top: 2px;

background: url(../images/contact call.jpg) no-repeat
center center;

}

calgantt-icon-contact CSS class.

To modify the icon that Siebel Open Ul . siebui-calgantt-icon-resource {

uses for resources, use the calgantt- width: 16px;
. height: 16px;
icon-resource CSS class.

float: left;

margin-top: 2px;
background: url(../images/resoure-items.gif) no-repeat
center center;

}

5. Modify how Siebel Open Ul displays information about the current record.

You can use the .siebui-currentRecord CSS class in one of your custom CSS files. For example:

.siebui-currentRecord {
border-left: 3px solid green;
border-right: 3px solid red;
z-index: 1000;

}

This example modifies the class only for the current event. To change the default color for all events, modify the
user property to the following:

Pane 2 Event Default Color

6. Verify your work:

a. Loginto the client.
On the Home page, click My Calendar.
c. Onthe application-level menu, click Edit, and then click New Record.

Siebel Open Ul displays the eCalendar Detail View that contains the scheduling control.
d. Verify that the resource scheduler includes the modifications that you configured in Step 2 through Step
5.

Setting the Color for Events

You can use the Event Status Mapping Color business service user property to set the color for each event type. It uses
the following syntax:

"status_abbreviation,event type:color_value"
where:

- status_abbreviation is defined in the Pane 2 Status LIC Field applet user property. Siebel Open Ul uses this
applet user property to display the scheduling control. In this example, you set status_abbreviation to GS (Gantt

277
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

Status). You can use any abbreviation. It is recommended that you use a short abbreviation, such as GS, to
reduce the amount of information that Siebel Open Ul must communicate.

- event_type specifies the type of event. For example, it can specify one of the following values:

o Accepted
o Declined

o Not Responded

- color_value specifies a hexadecimal value that identifies the color that the cascading style sheet uses to display
an event. For example, a color_value of #FF0000 specifies to display an event as red.

You can use the following syntax to specify multiple color values:

"status_abbreviation,event type:color value;status_abbreviation,event_ type:color_v
alue;"

where:

- ; (semi-colon) separates each color value.
For example, the following code sets the color for each event type:

"GS,Accepted: #d3£f£fd7;Declined: #6600CC;Not Responded:#000000"

where:

o Accepted:#d3££d7 sets the RGB color for Accepted events to light green (red at 82.75%, green at 100%, and
blue at 84.31%).

o Declined:#6600cc sets the RGB color for Declined events to purple (red at 40%, green at 0%, and blue at
80%).

o Not Responded:#000000 sets the RGB color for Not Responded events to black (red at 0%, green at 0%, and
blue at 0%).

Note: If you are setting the color for events in a Participant Availability scheduling control, the Business
Service that requires modification is the Calendar Gantt Color Service. The value can be found in the pane 2
Event Color Service Name USer property in the applet.

For more information about how to use a hexadecimal number to represent a color, see the page about color
codes at the ColorCodeHex website at http://www.colorcodehex.com.

Using CSS Classes to Set the Color for Events

You can use the following code instead of modifying the Calendar Gantt Color Service business service to set event
colors:

siebui-calgantt-event type

For example, you can add the following class to one of your custom CSS files to set the border color for Not Responded
events to yellow:

.siebui-calgantt-NotResponded {
border: 1lpx solid #FFFFO00;
}

278
ORACLE

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

Customizing Tooltips in Resource Schedulers

This topic describes how to customize the Tooltips that Siebel Open Ul displays in a resource scheduler.

To customize tooltips in resource schedulers

1. In the Object List Editor, choose the applet that you modified in Step 1in the topic Customizing a Resource
Scheduler.

2. Inthe Object List Editor, expand the Applet tree, and then click Applet User Prop.
3. Inthe Applet User Props list, add each of the following applet user properties, as required.

Name Value Description

Pane 2 Tooltip BC Name = TNT SHM FSI Booking = Specify the business component that Siebel Open Ul uses to get the
tooltip information for the events that it displays in the Schedule pane.
This business component must contain the information that Siebel
Open Ul displays in the tooltip.

Pane 2 Tooltip BO Name = SHM Site Specify the business object that references the business component
that you specify in the Pane 2 Tooltip BC Name applet user property.

Pane 2 Tooltip Field Quote Name Tip Specify the business component fields that Siebel Open Ul uses to get

number the information that it displays in the tooltips in the Schedule pane.
Siebel Open Ul adds a new line for each of these field values in the
tooltips and displays them consecutively. For example:

Eventl
Holiday resorts
10:00
12:00

Pane O Tooltip BC Name = TNT Product - ISS Specify the business component that Siebel Open Ul uses to get the
Admin tooltip information for the Resource pane.

Pane O Tooltip BO Name = SHM Site Specify the business object that references the business component
that you specify in the Pane O Tooltip BC Name applet user property.

Pane O Tooltip Field Physical Area Tip Specify the business component field that Siebel Open Ul uses to get
number the information that it displays in the tooltips for the Resource pane.
Pane O Tooltip Header Name Specify the business component field that Siebel Open Ul uses to
Field get the information that it displays in the first field in the tooltips for

Resource pane.

279
ORACLE

Siebel Chapter 7

Configuring Siebel Open Ul Customizing Calendars and Schedulers
Name Value Description
Pane 1 Tooltip BCName = TNT SHM Property Specify the business component that Siebel Open Ul uses to get the
Special Dates Action information that it displays in the tooltips for the Timescale pane.
Pane 1 Tooltip BO Name = SHM Site Specify the business object that references the business component

that you specify in the Pane 1 Tooltip BC Name applet user property.

Pane 1 Tooltip Field Tooltip Specify the business component field that Siebel Open Ul uses to get
number the information that it displays in the tooltips for the Timescale pane.
Pane 1 Tooltip SortSpec = Type Specify the sort specification that Siebel Open Ul uses to sort the

records in the business component that it uses to get the tooltip
information for the Timescale pane. Siebel Open Ul uses this
configuration to sort sentences in a tooltip that includes more than one
sentence.

EnableTooltip Y Specify to display or not display the tooltip. Use one of the following
values:

o Y. Display the tooltip.
o N. Do not display the tooltip.

4. Configure any special functionality that your tooltip deployment requires. Add each of the following applet user
properties, as required.

Name Value Description
Pane 2 Tooltip Service GetEventTooltipIinfo Specify the business service method that Siebel Open Ul uses to get
Method the tooltip information for the Schedule pane. If you do not specify this

applet user property, then Siebel Open Ul calls the default business
service, and then displays data according to the configurations of the
following user properties:

o Pane 2 Tooltip BC Name
o Pane 2 Tooltip BO Name

o Pane 2 Tooltip Field number

Pane 2 Tooltip Service TNT Gantt Ul Service Specify the business service name that Siebel Open Ul uses to get the

Name tooltip information for the Schedule pane. If you do not specify this
applet user property, then Siebel Open Ul calls the default business
service, and then displays data according to the configurations of the
following user properties:

o Pane 2 Tooltip BC Name

280
ORACLE

Siebel
Configuring Siebel Open Ul

Name

Pane 1 Tooltip Service
Method

Pane 1 Tooltip Service
Name

Pane O Tooltip Service
Method

Pane O Tooltip Service
Name

ORACLE

Value

GetTSTooltiplnfo

TNT Gantt Ul Service

GetResTooltiplnfo

TNT Gantt Ul Service

Chapter 7
Customizing Calendars and Schedulers

Description

o Pane 2 Tooltip BO Name

o Pane 2 Tooltip Field number

Specify the business service method that Siebel Open Ul uses to get
the tooltip information for the Timescale pane. If you do not specify
this applet user property, then Siebel Open Ul calls the default business
service, and then displays data according to the configurations of the
following user properties:

o Pane 1 Tooltip BC Name
o Pane1Tooltip BO Name

o Pane 1 Tooltip Field number

Specify the business service that Siebel Open Ul uses to get the tooltip
information for the Timescale pane. If you do not specify this applet
user property, then Siebel Open Ul calls the default business service,
and then displays data according to the configurations of the following
user properties:

o Pane 1 Tooltip BC Name
o Pane1Tooltip BO Name

o Pane1Tooltip Field number

Specify the business service method that Siebel Open Ul uses to get
the tooltip information for the Resource pane. If you do not specify this
applet user property, then Siebel Open Ul calls the default business
service, and then displays data according to the configurations of the
following user properties:

o Pane O Tooltip BC Name
o Pane O Tooltip BO Name

o Pane O Tooltip Field number

Specify the business service that Siebel Open Ul uses to get the tooltip
information for the Resource pane. If you do not specify this applet user
property, then Siebel Open Ul calls the default business service, and
then displays data according to the configurations of the following user
properties:

o Pane 0 Tooltip BC Name
o Pane 0O Tooltip BO Name

o Pane O Tooltip Field number

281

Siebel Chapter 7
Configuring Siebel Open Ul Customizing Calendars and Schedulers

282
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

8 Configuring Siebel Ul to Interact with Other
Applications

Configuring Siebel Open Ul to Interact with Other
Applications

This chapter describes how to configure Siebel Open Ul to interact with other applications. It includes the following
topics:

- Displaying Data from External Applications in Siebel Open Ul
- Displaying Data from Siebel Open Ul in External Applications
Web Engine HTTP TXN Business Service

Displaying Data from External Applications in Siebel
Open Ul

This topic describes how to configure Siebel Open Ul to interact with other applications. It includes the following
information:

- Siebel Portal Framework
« Integrating External Content
- Displaying Data from External Applications in Siebel Views

« Displaying Data from External Applications in Siebel Applets

Siebel Portal Framework

This topic provides an overview of Oracle’s Siebel Portal Framework and summarizes the technologies that make up the
Portal Framework. It contains the following information:

- Portal Framework Overview

« Portal Framework Architecture

Portal Framework Overview
Enterprises are often composed of many different information technology resources, such as:
- Shared network directories.
- Department intranet sites.
- Legacy applications.
- Applications developed in-house.

283
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications
Purchased Web applications.

With many disparate applications and technologies, IT resources are difficult to maintain and difficult to use. For
example, applications:

Follow different user interface guidelines.

- Are rendered with different themes.

- Track profile attributes differently.

- Vary in the quality of online assistance.
Have separate login and password credentials.
Have different search functionality.

One solution to this problem is to integrate the various applications and content sources used in an enterprise and
present them in a single user interface, called a portal. The Siebel Portal Framework allows you to do this. The Portal
Framework provides you with the tools and supporting technologies that allow you to:

- Aggregate external data with Siebel data and present it in the Siebel user interface.
Deliver Siebel CRM data to external applications.

Integrate external application business logic and data with Siebel Business Applications.

Portal Framework Architecture
The portal framework includes the following framework components:
Enterprise Application Integration

Portal Agents that integrate external content into the Siebel user interface

Enterprise Application Integration
Siebel EAI provides mechanisms for sharing data and business logic with other applications, including:
Integration objects
- Virtual business objects
Programming APIs
Predefined adapters and connectors

For more information about Siebel EAIl, see Overview: Siebel Enterprise Application Integration and other EAI titles
on the Siebel Bookshelf . The Siebel Bookshelf is available on Oracle Technology Network (OTN) and Oracle Software
Delivery Cloud. It might also be installed locally on your intranet or on a network location.

Portal Agents

Portal Agents provide you with a mechanism to retrieve content from a non-Siebel source and display it in the Siebel
user interface. The Portal Agent retrieves content on behalf of the user, logging on to the external application using
the user’s credentials and retrieving only the content that is targeted for the user. Portal Agents provide single sign-on
capability and a profile tracking mechanism. For more information about Portal Agents, see About Portal Agents.

284
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Integrating External Content

This topic provides an overview of Portal Agents. It describes the configuration and administration tasks necessary
to display external content in the Siebel user interface. It also includes a reference topic that lists all of the commands
available for use with Portal Agents. This chapter contains the following information:

- About Portal Agents

« Process of Creating Portal Agents

« Determining the Login Requirements
« Portal Agent Configuration

« Portal Agent Administration

« Defining End-User Login Credentials
« Example Portal Agent

« Reviewing the SWE Log File

« Portal Agent Command Reference

About Portal Agents

Portal Agents allow you to integrate external data into the Siebel user interface. Portal Agents retrieve data by sending
HTTP requests to external applications, and then display the HTML results in a Siebel applet or on some other portion
of a Siebel application Web page.

Portal Agents combine a set of features and technologies that allow you to integrate external content at the user
interface layer, including the following:

- Single sign-on technology (SSO). For applications that are participating in a single sign-on framework, this
feature eliminates the need for the user to enter login credentials, such as user name and password, more than
once for each work session. For more information about single sign on, see Siebel Security Guide .

- Session management and session reuse. Allows the Siebel application and the external application to
maintain a user’s session context, without reauthenticating for subsequent requests. This minimizes session
resource overhead on the external application, and allows the user to retain session context, such as shopping
cart contents.

- Time-out handling. The Siebel Server automatically reauthenticates when a request is submitted after the
external application’s timeout period has passed.

- Symbolic URLs, with multiple disposition types. Allows content to be displayed in different ways, such as
in a new browser window, inline with the other content, in an <iframe> tag. For more information, see About
Disposition Types.

- Session proxy. For content integrated using a disposition type of Inline, the Siebel Server manages the
interactions with external applications on behalf of the user. For more information about the Inline disposition
type, see Inline Disposition Type.

- Symbolic URL commands. Commands that direct the Portal Agent to assemble the URL for the external
application in several ways. These include dynamically referencing the user’s user name and password,
retrieving stored user name and password values, retrieving data from the user’s personalization profile,
establishing the size of an <iframe> tag, and determining whether to set the browser cookies from the
application server’s login page. For a complete list of commands, see Portal Agent Command Reference.

285
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Note: Portal Agents do not integrate data at the data layer or integrate business logic. Other mechanisms in the
Siebel Portal Framework, such as Integration Objects and Virtual Business Components, are designed to meet those
types of integration needs. For more information about Siebel EAI, see Overview: Siebel Enterprise Application
Integration .

Portal Agents and Authentication Strategies
Portal Agents can be configured to support different authentication strategies:
- Simple Portal Agents. The external application does not require any authentication parameters.

- Single Sign-On Portal Agents. The external application requires authentication parameters. Form-based
Portal Agents send authentication parameters as part of the body portion of the HTTP request.

For more information about authentication, see Siebel Security Guide .

About Disposition Types

One of the steps in setting up a Portal Agent is creating a symbolic URL. The symbolic URL specifies the information
necessary to construct the HTTP request to send to the external application. Symbolic URLs can be one of several
disposition types. The disposition type determines the following:

- The interaction between the browser, the Siebel Server, and the external application.
- How external content is displayed in the user interface.

It is important to understand these disposition types and determine which one suits your integration needs. Each
disposition type is discussed in one of the following sections.

For information about defining symbolic URLs, see Defining Symbolic URLs.

Inline Disposition Type

With a symbolic URL disposition type of Inline, the Siebel Server receives content sent by an external application. It
combines the external content with Siebel-produced content and composes a single HTML page, which it then sends

to the client browser for display to the user. Optionally, links in the aggregated content are rewritten so they reference
the Siebel Server (proxy), rather than referencing the external application server directly. This allows the Siebel Server to
handle links in the aggregated content in such a way that it appears to the user as one integrated application rather than
from different application servers.

The Inline disposition type supports session management. The Siebel Server uses session management to manage
session cookies and automatically log in again to an external application after a time out occurs.

The Inline disposition type requires that:
- The page you are integrating does not include complex JavaScript and does not reference frames.
- The maximum number of characters in the calling URL is 2048.
- No methods other than the cer method are invoked.

If the Inline disposition type is not appropriate, then you might try the IFrame disposition type.

IFrame Disposition Type
Use this disposition type when aspects of the external application do not allow content to be aggregated with other
Siebel content. For more information, see Portal Agent Restrictions.

The IFrame disposition type uses the <iframe> tag to create an internal frame as part of the page generated by the
Siebel Server. It allows the Portal Agent to retrieve content to populate the internal frame. This content does not pass

286
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

through the Siebel Server, but is directly requested by the client and sent by the application server to the user’s browser.
Although this disposition type is not as preferable as the Inline disposition type, in most cases, it is a method that works.

The IFrame disposition type supports JavaScript and frames. Therefore, if the Inline disposition type does not work,
then the IFrame option is the best option. The IFrame disposition type also supports the Session Keep Alive feature.
However, it does not support session management.

The IFrame disposition type works in many cases. However, it does not work when frames displayed within the <iframe>
tag refer to top-level JavaScript objects. If frames in the page that you are trying to integrate refer to top-level JavaScript
objects, then you might use the Web Control disposition type instead, if it is applicable.

Contextual Navigation Between Siebel CRM and Oracle Business Intelligence Pages

When an Oracle® Business Intelligence (Oracle Bl) page is integrated with a Siebel application through the portal
framework and the portal content is dependent on the Siebel record, any change or update of the record in the Siebel
application must also be reflected in the portal content. For example, for an Oracle Bl applet embedded in a view with
the Account List applet, its content dynamically changes at the same time that the content is changed within the
Account List applet. To enable this behavior, you must do the following:

Define a symbolic URL. For more information, see Defining Symbolic URL Arguments.

- Set parameters for the symbolic URL. For more information, see Portal Agent Command Reference.

Form Redirect Disposition Type

In the Form Redirect scenario, the Siebel Web client submits a request to the Siebel Server. The Siebel Server creates

a form with the necessary authentication information in it, and then sends the form back to the browser. The browser
loads the form and then submits it to the external host for processing. The external host sends back the results, which
the browser displays in a new window.

The Form Redirect disposition type is usually displayed in a new window, rather than inline with other Siebel applets.

The Form Redirect disposition type is not commonly used with Siebel CRM.

Portal Agent Restrictions

Portal Agents are meant to bring existing applications and content into the Siebel user interface without requiring
additional modifications of the external application. However, this is not always possible due to the way HTML and Web
browsers are designed. For example:

- The use of frames by an external application might not be amenable to inline aggregation methods.

- Specific frame references in the returned content referring to global frames (_NEW, _TOP, .parent()) might not
be amenable to inline aggregation methods.

Reliance on JavaScript functions defined in (assumed) external frames might not be amenable to inline
aggregation methods.

URLs that are created dynamically by JavaScript might not be amenable to any fixup techniques, because the
URLs would not be easily parsed on the HTML content.

For these reasons, an Inline disposition type does not work often. However, if you control both the Siebel application
instance and the external application, and can resolve some of these issues, then the Inline disposition type might work
correctly. For more information about the Inline disposition type, see Inline Disposition Type.

If you do not have control over the external application, the IFrame disposition type is the method most likely to provide
satisfactory results. It works with about 80% of the form-based application sites tested. For more information about the
IFrame disposition type, see IFrame Disposition Type.

287
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Disposition Types Summary
The following table summarizes the characteristics of each disposition type.

Disposition Type Benefits Limitations
Inline - Inline integration with the Siebel user - Only works in very few cases.
interface.

Does not work with complex JavaScript.
Session management, including

managing session cookies and automatic Does not work if there are reference to frames.

re-login after time out. . Supports the GET method only.
Opens an external URL in a new popup « URL limited to 2048 characters.
window.

IFrame - Inline integration with the Siebel user - No session management.

interface. Supports complex JavaScript.
PP P P Does not support frames that reference top-level
Supports references to frames. JavaScript objects.

Session Keep Alive supported. - Does not open an external URL in a popup

window.
Works for most cases.

Process of Creating Portal Agents
To create a Portal Agent, perform the following tasks:

1. Determining the Login Requirements.
2. Configuring Business Components to Handle External Data.
3. Complete one of the following in the following sections:

o Displaying External Content Within an Applet
o Displaying External Content Outside of an Applet

4. Defining Web Applications
5. Defining Symbolic URLs
6. Defining Symbolic URL Arguments

Determining the Login Requirements

Before you configure Portal Agents, you must understand what information is required by the external application to
authenticate users. Typically, this information is gathered using a form page, also called a login page, and then sent to
the external application. You must determine exactly what information the form gathers from the user and sends to the
external application, including field names and values.

In cases where you have specific knowledge about how an external application is implemented and can consult with
authoritative sources regarding how the application authenticates users, determining the required input fields and
values is relatively simple.

In cases where you do not have specific knowledge about how an external application is implemented, you must
attempt to understand its authentication method by examining the application’s login page. The steps describe an
approach that you can use to reverse-engineer a login page and provide related Portal Agent configuration tips.

288
ORACLE

Siebel

Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Note: It is not always possible to reverse-engineer a login page. For example, JavaScript might process login field
values prior to delivering the posT back to the application server, session values might be encoded in the form itself, or
session values might be stored in the browser's session cookies.

This task is a step in Process of Creating Portal Agents.

To reverse-engineer a login page

1

Navigate to the external application’s login page and determine whether the external application uses
authentication.

For more information, see Defining Symbolic URLs.

If the external application uses form-based authentication, then view the login page’s HTML using your
browser’s view source command.

Identify the form on the login page that asks for user credentials (the form might ask for other information as
well) and identify the input fields in this form used to authenticate users.

It is usually best to strip out all non-form lines of HTML and to isolate the <input> tags. That is, remove lines
previous to <form ...>and after </form> and remove lines that are not part of the <input> tags.

Determine whether the method attribute of the <form> tag is posr.

If it is posT, then you must define the PostRequest command as an argument of the symbolic URL. For more
information, see Defining Symbolic URL Arguments and PostRequest Command.

If it is cET, then you do not have to define a symbolic URL command, because the default method of symbolic
URLs is GeT.

Determine the target of the form’s action attribute, which is usually specified as action=" some string ".

If the target of the action attribute is an absolute URL, one that begins with nttp or a forward slash (/), then use
this URL as the base of the Portal Agent.

If it is a relative address, then you also have to determine where the root of the URL is defined. It could be
defined relative to the URL of the login page itself (most common), in a <codebase> tag (rare) or in JavaScript
(hard to determine).

The target URL is defined using the Host Administration View and the Symbolic URL Administration view. For
more information, see Defining the External Host and PostRequest Command.

Determine any argument values defined in the target URL.

These are the characters after the ? character. Usually, these are simple field-value constants. The exception is
when a field or a value is a session identifier that is dynamically assigned by the external application server and
is only valid for a period before it times out. In this case, it might not be possible to configure a Portal Agent.
Define any argument values contained in the target URL as symbolic URL arguments. For more information, see
Defining Symbolic URL Arguments.

289

ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

7. Identify each of the form’s <input> tags and determine which ones are necessary to send to the external
application for authentication.

Often there are <input> tags in the form with a type attribute of nidden that are not evident when interacting
with the application. Determining whether hidden fields are optional or required is often process of trial and
error.

Some <input> tags might not have values identified. Either these fields are awaiting input to be entered by the
user (for example, login name or password) or they are hidden fields with no values.

o If the input field is specific to the user (it asks for the user’s login name and password), then you can use
UserLoginld Command and UserLoginPassword Command commands to instruct the Portal Agent to
retrieve the user’s credentials from the user’s My Logins view. For more information, see Defining End-
User Login Credentials.

o If there are hidden fields with no values, then, when you enter them as symbolic URL arguments, make
sure that the Required Argument column is not checked. If it is checked, and the input field has no value,
then the Portal Agent does not send this request to the target application server, because there is no
value to put in its place.

You define the input fields and values as symbolic URL arguments. For more information, see Defining Symbolic
URL Arguments.

Note: The Mozilla browser includes a page info command (*1) that analyzes forms on a page and displays the
method, input fields, and so on.

Portal Agent Configuration

Using Portal Agents to integrate external content into the Siebel user interface requires some simple configuration in
Siebel Tools. You must configure a field on the business component to handle external data and then configure either
an applet or a Web page item to display the content in the user interface. An applet displays external content inside the
applet container on a view. A Web page item displays external content outside of an applet, such as in the banner frame
for example.

Note: This topic describes the configuration tasks that are unique to integrating external content with the Siebel

user interface. It does not describe standard configuration tasks that you might be required to perform. For example,
after you configure an applet to display external content, you might have to associate that applet with a view,

add the view to a responsibility, and so on. These additional tasks are standard procedures for configuring Siebel
Business Applications and are outside the scope of this book. For more information about configuring Siebel Business
Applications, see Configuring Siebel Business Applications .

Configuring Business Components to Handle External Data

To configure business components to handle external data using a symbolic URL, you must create a new calculated
field on the business component. Rather than representing structured content, such as records in a database, this field
represents the HTML content sent from an external host.

Note: Although a symbolic URL displays data that is not stored in the database, the business component must have
at least one record stored in an underlying table so that it is instantiated at run time.

This task is a step in Process of Creating Portal Agents.

290
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

To configure a business component to handle external data using a symbolic URL

Create a new field on the business component.

Set the field’s Calculated property to TRUE.

Set the field’s Type property to DTYPE_TEXT.

In the Calculated Value field, enter the name of the symbolic URL (enclosed in double quotes) that you want to
use to submit the HTTP request.

PUWUNA

The name of the symbolic URL in the Calculated Value field must be enclosed in double quotes so that it
evaluates as a constant. See the business component named AnalyticsSSO in the Siebel Repository for an
example of fields configured this way.

Displaying External Content Within an Applet

After you have created the calculated field on the business component, you expose it in the user interface. You display
the external content using a control in a form applet or list applet.

Note: You can also expose external content outside an applet, such as in the banner area. See Displaying External
Content Outside of an Applet.

This task is a step in Process of Creating Portal Agents.

To display external content within an applet

1. Create an applet that you want to use to display the external content.

The applet must be based on the business component that you configured in Configuring Business
Components to Handle External Data.

2. Add a new control or list column to the applet.

3. Associate the control or list column with a calculated field on the business component that is configured to
represent the external data.

4. Set the control or list column’s Field Retrieval Type property to Symbolic URL.

5. Set the control or list column’s HTML Type property to Field.

Displaying External Content Outside of an Applet

After you have created the calculated field on the business component, you expose it in the user interface. You can
display the external content outside of an applet using Web Page Items.

Note: You can also expose external content inside an applet, by using an Applet Control or List Column. For more
information, see Displaying External Content Within an Applet.

This task is a step in Process of Creating Portal Agents.

To display content outside of an applet

1. Start Siebel Tools.

2. Go to the Web Page object type and select the Web page on which to display external data.
3. Create a new Web Page Item or use an existing one.

4. Set the Type property of the Web Page Item to Field.

291
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

5. Create the following two Web Page Item Parameters:

Name Value
FieldRetrievalType Symbolic URL
SymbolicURL [name of symbolic URL]

I Note: The symbolic URL is mapped to the calculated field defined for the business component.

Portal Agent Administration

You administer Portal Agents through several views located under the Administration - Integration screen in the Siebel
Web client. As described in the following topics, these views allow you to define how to handle links, define the external
host, and define the HTTP request that is sent to the external host.

Defining the External Host
You define the external data hosts in the Host Administration view. This view allows you to do the following:

- Maintain external host names in a single place.

- Define how to handle (fix) links after external HTML content is rendered.

To define a data host

1. Navigate to the Administration - Integration screen, and then WI Symbolic URL List.
2. From the drop-down menu, select Host Administration.
3. Enter a new record and define the necessary fields.

Some of the fields are described in the following table:

Field Comments

Name Name of the external host.

Virtual Name User-defined name for the host.

Authentication Type Leave this value blank. For more information, see Defining Symbolic URLs.

Defining Web Applications

Web applications allow multiple symbolic URLs to send requests to the same Web application and share the same
session. This is useful if you have two different applet controls that use symbolic URLs to submit requests to the same
Web application. You can associate these symbolic URLs to a single Web application and specify whether they share the

same session.

292
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

There might be cases in which you do not want requests to share the same session. For example, you might not want to
share a session when a session cookie contains more information than the session ID, as this could result in unexpected
behavior. When you define a Web application, you specify whether it shares sessions.

Web applications also allow you to define the Time Out value for the session time out feature. The Session Time Out
feature is only applicable to symbolic URLs with a disposition type of Inline.

This task is a step in Process of Creating Portal Agents.

To define a Web application
1. Navigate to the Administration - Integration screen, and then WI Symbolic URL List.
2. From the drop-down menu, select Web Application Administration.
3. Enter a record and complete the fields.
Some of the fields are described in the following table:

Field Description

Shared Indicates whether requests generated by symbolic URLs associated with this Web application
share the same session.

Time Out Defines the time out parameter for the session management feature, which is only applicable to
symbolic URLs with a disposition type of Inline.

Defining Symbolic URLs

You use the Symbolic URL Administration view to specify how to construct the HTTP request to the external application
and to define any arguments and values to be sent as part of the request.

This task is a step in Process of Creating Portal Agents.

To define a symbolic URL

1. Navigate to the Administration - Integration screen, and then WI Symbolic URL List.
2. From the drop-down menu, select Symbolic URL Administration.
3. Inthe Symbolic URL Administration list view, enter a new record.

Some of the fields are defined in the following table:

Field Description

URL Use the URL field to enter a URL for the external application. A best practice is to substitute the
host’s Virtual Name, the one that you defined in the Host Administration view, for the host’s
actual name. Doing this makes administering host names easier, because you might have many
symbolic URLs pointing to one host. If the host name changes, then you only need to change
it in the Host Administration applet rather than having to change it in several symbolic URL
definitions.

For example: https://Virtual Host/path...

293
ORACLE

Siebel
Configuring Siebel Open Ul

Field

Host Name

Fixup Name

Multivalue Treatment

SSO Disposition

ORACLE

Chapter 8
Configuring Siebel Ul to Interact with Other Applications

Description

Note: Use the Secure Sockets Layer protocol (SSL) with symbolic URLs to ensure that
communication is secure. For more information about using SSL, see Siebel Security Guide .

For applications that use form-base authentication, the URL is identified by the action attribute
of the <form> tag. For more information, see Determining the Login Requirements.

The Virtual Name of the host defined in the Host Administration view.

Name of the fixup type defined in the Fixup Administration view. The fixup type defines how
links embedded in the external HTML content are rendered. For example:

o Default. Use this fixup type with the IFrame disposition type. Link fixup is inside the view.
This fixup does not affect any of the links. The links (relative or absolute) remain as they
are with the content being passed back in its original form.

o InsideApplet. This fixup converts all of the relative links to absolute links and any links
using a host defined in the Host Administration view are proxied in order to maintain SWE
context.

o OutsideApplication. This fixup converts all of the relative links to absolute links using the
host and path of the parent URL. No links are proxied.

Determines how arguments are handled. Possible values are:

o Comma Separated. Instructs SWE to insert a comma between the values defined in the
symbolic URL arguments when appending the arguments to the URL. It inserts a comma
after the value in the first Argument Value field and the first value in the second Argument
Value field. The second Argument Value field is simply a text string entered by the user.

o Separate Arguments. Instructs SWE to enter separate arguments for each value defined
in the two Argument Value fields.

o Use First Record Only. Uses the first record in the current record set.

The value selected in this field determines how the HTTP request is constructed and sent and
how the external content is rendered in the user interface. Possible values are:

o Inline. Proxies the request through the Siebel Server and displays content inline with other
applets on a view.

o [IFrame. Uses the <iframe> tag to display content inline with other applets on a view.

o Web Control. Uses an ActiveX control to display content inline with other applets on
a view. Browsers displaying symbolic URLs of type Web Control must be set to handle
ActiveX controls. For more information about browser security settings, see Siebel
Security Guide .

o Form Redirect. SWE constructs a form which it sends back to the browser, which the
browser then sends to the external host. The content received is displayed in a new
window.

o Server Redirect. SWE sends the browser a 302 Response with the value of the external
host’s URL in the header. The browser is redirected to the external host. The content
received is displayed in a new window. Note that for Server Redirect there is a required
Symbolic URL argument. For more information, see Portal Agent Restrictions.

For detailed descriptions of each disposition type, see About Portal Agents.

294

Siebel Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications
Field Description
Web Application Name Associates a Web application with this symbolic URL. For more information about Web

applications, see Defining Web Applications.

Defining Symbolic URL Arguments

Symbolic URL Arguments allow you to configure Portal Agents in several ways. You use symbolic URL arguments for
two purposes, to define data to be sent to an external host and to submit commands to SWE that affect the behavior of
Portal Agents.

When defining arguments that send data, such as authentication requirements, the Argument Name and Argument
Value are appended to the URL as an attribute-value pair. You can define symbolic URL arguments that send data as
constants or that dynamically retrieve data from the Siebel database. Symbolic URLs allow you to retrieve data from
the user’s instantiated Siebel business component, such as Service Request or Account, or retrieve data from the Siebel
Personalization business component, such as the user’s ZIP Code or Language.

For information about how to determine required data for applications that use form-based authentication, see
Determining the Login Requirements.

Symbolic URL arguments also allow you to implement commands, which you use to define the behavior of Portal
Agents. For usage descriptions of available commands, see Portal Agent Command Reference.

This task is a step in Process of Creating Portal Agents.

To define symbolic URL arguments

Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

From the drop-down menu, select Symbolic URL Administration.

In the Symbolic URL Administration list view, select the symbolic URL that you want to configure.

In the Symbolic URL Arguments form, enter the arguments that need to be sent to the external host.

P UWNa

Some of the fields are defined in the following table:

Field Description

Name Name of the argument. For arguments of type Constant, Field, and Personalization Attribute,
this field defines the exact field name expected by the external application. It is the first part of
an attribute-value pair appended to the URL.

For argument types of commands, the Name can usually be anything. The only exception to
this is for the EncodeURL and PreloadURL commands. For more information, see Portal Agent
Command Reference.

Required Argument When this field is checked (default) the argument must have a value. If you are configuring an
argument that does not have a value, then uncheck the Required field. If an argument has no
value and the Required field is checked, then the request is not sent because there is no value
to append to the URL.

295
ORACLE

Siebel
Configuring Siebel Open Ul

Field

Argument Type

Argument Value

Append as Argument

Sequence

Chapter 8
Configuring Siebel Ul to Interact with Other Applications

Description

The Argument Type determines the source of the data to be send along in the HTTP request.
Possible values are:

Constant. Sends the value defined in the Argument Value field in the request.

Field. Sends the value of a single-value or multi-value field from the current Siebel
business component.

Profile Attribute. Sends the value of a field from the Siebel Personalization business
component.

URL Argument. Data comes from the named argument of the current request.
Language Value. The user’s current language setting; for example, ENU.

Command. Implements commands that allow you to affect the behavior of the symbolic
URL. For a complete list of commands, see Portal Agent Command Reference.

The value of the argument varies depending on the Argument Type. Descriptions of possible
values for each argument type are described here.

If the Argument Type is one of the following:

Constant. The Argument Value is the second part of the attribute-value pair that is
appended to the URL.

Field. The Argument Value defines a field name from the current business component.
The data from this field is the second part of an attribute-value pair that is appended to
the URL.

Profile Attribute. The Argument Value defines a field name on the Siebel Personalization
business component. The data from this field is the second part of an attribute-value pair
that is appended to the URL

URL Argument. The Argument Value defines the name of the argument on the incoming
SWE request.

Language Value. The Argument Value is left null.

Command. The Argument Value typically defines the name of the command. For more
information, see Portal Agent Command Reference.

When this field is checked (default), the value is added as a URL argument on the outgoing
request. If this field is not checked, then the value is substituted in the text of the outgoing URL.

Determines the sequence of the arguments. In some cases the target host requires arguments
in a particular order.

Configuring Multiple Symbolic URLs and Hosts for Alternative Execution Locations

You can configure multiple symbolic URLs and symbolic URL hosts, to execute applications in alternative locations (for
example, for testing or demonstration purposes).

Note: When you use an alternative symbolic URL host, all symbolic URLs in the application that are configured to use
that host will use the alternative host name. In contrast, when you use alternative symbolic URLs, each symbolic URL
used in the application must have its own alternative symbolic URL. Therefore, you can reduce the effort required to
execute the application in an alternative location by using an alternative symbolic URL host rather than a symbolic

URL.

ORACLE

296

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Configuring Alternative Symbolic URLs
To use an alternative symbolic URL, define the additional symbolic URL at the Symbolic URL Administration view, and
specify the following parameter in the [DataSources] section of the application’s configuration file:

SymbolicURLSuffix. The value of this parameter is appended to the end of the name of the default symbolic URL to
specify the name of the alternative symbolic URL.

For example, if the parameter SymbolicURLSuffix is set to _MyDemo in the application’s configuration file, and the
default symbolic URL name is AccountNews, then the symbolic URL that is used when the application is executed is
AccountNews_MyDemo. The URL value associated with the AccountNews_MyDemo symbolic URL in the Symbolic URL
Administration page is used.

Note: When you define the alternative symbolic URL, its name must match the name of the existing symbolic URL
with the value of the SymbolicURLSuffix parameter appended to it.

For more information about defining symbolic URLs, see Defining Symbolic URLs.

Configuring Alternative Symbolic URL Hosts

To use an alternative symbolic URL host, define the additional symbolic URL host at the Host Administration view, and
specify the following parameter in the [DataSources] section of the application’s configuration file:

SymbolicURLHostSuffix. This value is appended to the end of the name of the existing symbolic URL host to specify
the name of the alternative symbolic URL host.

For example, if the parameter SymbolicURLHostSuffix is set to _demo in the application’s configuration file, and the
existing host name is ABC, then the new host name is ABC_demo. The host name value associated with ABC_demo in
the Host Administration page is used.

Note: When you define the alternative symbolic URL host, its name must match the name of the existing symbolic
URL host with the value of the SymbolicURLHostSuffix parameter appended to it.

For more information about defining hosts, see Defining the External Host.

Defining Content Fixup

The Fixup Administration view allows you to define how links embedded within external HTML content are rendered in
the Siebel user interface. The fixup types that you define here will be associated with symbolic URLs.

To define a fixup type

1. Navigate to the Administration - Integration screen, and then WI Symbolic URL List.
2. From the drop-down menu, select Fixup Administration.
3. Enter a new record and define the fields.

Some of the fields are described in the following table:

Field Comments

Link Context Select one of the following values:

297
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Field Comments

o Do Nothing. This fixup does not affect any of the links. The links (relative or absolute)
remain as they are with the content being passed back in its original form.

o Outside Application. This fixup converts all of the relative links to absolute links using the
host and path of the parent URL. No links are proxied.

o Inside Application. This fixup converts all of the relative links to absolute links and any
links using a host defined in the Host Administration view are proxied in order to maintain
SWE context. After the user clicks a link, this fixup type renders HTML in the view, using
the entire view for display.

o Inside Applet. This fixup handles links the same way as the Inside Application fixup type.
However, in this case, when a user clicks a link, it renders HTML within an applet. The
other applets remain present on the view.

Context View Name Name of the view that displays the link. This is optional.

Link Target Specifies the name of a specific target frame of the link. For example, _blank for a new browser
window or AnyName to open a window of that name. This option is not often used.

I Note: Fixup is required for all links.

Defining End-User Login Credentials

The Portal Framework provides a mechanism to store user login credentials for external Web applications. The SSO
Systems Administration view allows you to specify an external application and then enter login credentials on behalf
of users. The My Logins view, located in the User Preferences screen, is used by end users to maintain their own
credentials.

To specify an external Web application and define login credentials

1. Navigate to the Administration - Integration screen, and then SSO Systems Admin List.
2. Inthe SSO Systems list, enter a new record and define the following:

Field Description
System Name Name of the external Web application.
Symbolic URL Name Select the name of the symbolic URL that interacts with the external Web application.

The symbolic URL must be configured with the UserLoginld Command and UserLoginPassword
Command commands as arguments. These arguments instruct the symbolic URL to pass the
stored login credentials when authenticating with an external Web application.

Description Enter a description of the Web application.

3. If you are defining login credentials on behalf of end users, then, in the SSO System Users list, enter end-user
login names and passwords.

298
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Example Portal Agent

This topic provides an example of using a symbolic URL to integrate content from an external site.

Each of these steps is described in the topics that follow. This example uses www.example.com, which does not have the
login page and other elements described here; substitute your actual site.

Note: This example assumes that the underlying objects are already configured to support the symbolic URL. For
more information, see Portal Agent Configuration.

Review the Login Form

By reviewing the login page at www.example.com, you can determine the target URL of the Action attribute and the
required arguments that are being passed to the Web application. Assume that www.example.com has a login page that
contains the following <form> and <input> tags:

<form action="/index.shtm" method="POST" name="frmPassLogin" onsubmit="return
logincheck () ;">

<input TYPE="TEXT" NAME="SearchString" SIZE="18" MAXLENGTH="100" VALUE="">
<input type="hidden" value="All" name="sc">

<input type="hidden" value="ON" name="FreeText">

<input type="image" src="/images/nav/button/bttn_form arrow.gif" NAME="Action"
border="0"/ alt="Submit Search"></td>

<input type="text" name="username" size="18">

<input type="password" name="password" size="18">

<input type="image" src="/images/nav/button/bttn_form arrow.gif" border="0"
name='login' />

<input type="checkbox" name="remember" checked/> Remember my Login

</form>

From the action attribute of the <form> tag, you can determine that the target URL is relative to the root of the login
page’s URL. Therefore, the target URL is:

www . example . com/index.shtm

You can also determine that the method attribute of the <form> tag is rost:
method="POST"

After reviewing the <input> tags, you can determine that the required arguments are:

username
password

Note: Notice that not all input fields are necessary for login. For more information about reviewing login forms, see
Determining the Login Requirements.

Define the External Host

The external host is simply the address of the login page. In this example, it is www.example.com. Be sure to provide a
meaningful name in the Virtual Host Name field. This value is used instead of the actual host name when you define
the symbolic URL. This makes administration easier if the host name changes. Also notice that there is no value for the
Authentication Type.

The following figure shows the external host defined for this example where Name is www.siebel.com and Virtual Name
is SIEBEL.

299
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Host Administration [~] | [ZiTha n new | Delete | Query]

Name & Yirtual Name Authentication Type Authentication Yalue

> v siebel.com SIEBEL

For more information, see Defining the External Host.

Define the Symbolic URL

After you define the external host, you can define the symbolic URL. Notice that the URL defined here uses the Virtual
Name of the host, not the actual name. Also notice that, when you select the external host from the Host Name field,
it is populated with the actual host name. When SWE constructs the URL, it substitutes the actual Host Name for the
Virtual Name in the URL. In this example, the fixup type is Default, because the page is displayed in the browser using
the <iframe> tag and therefore, it is recommended that links not be fixed up in any way.

The following figure shows the symbolic URL defined for this example where Name is PartnerDashboard1, URL is
http://NQHOST/Analytics/saw.dll, Host Name is [NQHOST], Fixup Name is Default, SSO Disposition is IFrame, and Web
Application Name is Analytics.

Symbolic URL Administration [v] | [[iE.Tha n New | Delate | Query
Name URL Host Name Fikup Name Multivalue Treatment 550 Disposition Web Application Name

» PartnerDashboardl http:fMQHOST Analytics/sav. di [NGHOST] Default IFrame Analytics

For more information about defining symbolic URLs, see Defining Symbolic URLs.

Define Symbolic URL Arguments

You use symbolic URL Arguments to define the information that you want to append as arguments to the URL. You also
use symbolic URL arguments to define commands that you want to execute. In this case, the following arguments are
required:

- PostRequest. This command instructs SWE to submit the request using a rosT method rather than cer, which
is the default. In this case, you know that posr is required because the method attribute of the <form> tag
specifies posr.

- UserLoginPassword. This command instructs SWE to retrieve the password stored for the user and pass it to
the external application. The name of this argument is the name of the input field expected by the external
application. In this case, it is password.

- UserLoginID. This command instructs SWE to retrieve the stored login name for the user and pass it to
the external application. The name of this argument is the name of the input field expected by the external
application. In this case, it is username.

300
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

The following figure shows the symbolic URL arguments defined for this example, which are as follows:
IFrameLogin:Cmd, Cmd, IFrameLogin:ngUser, IFrameLogin:ngPassword, PortalPath, PostRequest,a dn
IFrameLogin:Syndicate.

Symbolic URL Arguments | X5 n Mew | Delete | cquery

Name Required Argument Argument Type Argument ¥alue Append as Argument Substitute in Text Sequence §

W

IFrameLogin: Cmd v Constant Logon vy

Crnd Constant PartalPages

IFrameLlogin:ngUser Cornmand UseSiebelLoginld

IFrameLogin:ngPassword Command UseSiebelLoginPassword

PartalPath Constant IsharedjPartner/_PortaliChannel Executive

Cornmand PostRequest

1
2
3
4
5
PostRequest [
7

L L N N S
AR UL L S

IFrameLogin: Syndicate Constank Siebel

For more information about symbolic URL arguments, see Defining Symbolic URL Arguments. For more information
about symbolic URL commands, see Portal Agent Command Reference.

Define User Login Credentials

Finally you must define login credentials for a user. The values defined here are appended as arguments to the URL
constructed by SWE. In this case, the following user name and password are defined:

- The user name is Joe_Smith@example.com.

- The password is abracadabra.

Testing the Integration
After completing the previous steps, you can test the integration.

To test the integration

1. Log out of the application.
. Log backin as the test user.
3. Navigate to the applet or Web page item that is associated with the symbolic URL.

Content from the external host, in this case example.com, is displayed in the Siebel user interface.

Reviewing the SWE Log File
Reviewing the SWE log file can help you to debug errors in your Portal Agent configuration.
« Thelocation of the log file is s1EBSRVR ROOT\log.

- The name of the log files are swelog_pid.txt and sweusage_pid.txt, where pid is the process ID of the
corresponding Siebel process.

For more information about log files and about configuring log levels, see Siebel System Monitoring and Diagnostics
Guide .

Portal Agent Command Reference

Portal Agent commands allow you to carry out actions such as: use a set of stored credentials for authentication or
define additional attributes for the <iframe> tag. These commands are entered as symbolic URL arguments. For more
information, see Defining Symbolic URLs.

301
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

The commands are described in the following subtopics.

EncodeURL Command

Use the EncodeURL command to specify whether to encode arguments appended to the symbolic URL. By default, the
URL is encoded. However, some servers do not recognize standard encoding, in which case you can use this command
to not encode the URL.

Define the fields in the Symbolic Arguments applet. See the following table.

Field Value
Name EncodeURL
Argument Value TRUE or FALSE

FreePopup Command
Use the FreePopup command to show portal contents in a popup window.

The symbolic URL contains the FreePopup command, it notifies the client that the pop-up is a free one and the client
displays the contents in the pop-up window.

FreePopup is supported for FormRedirect, the only disposition type available for opening a portlet in a pop-up.

To start the external application as a full browser window, use the values in the following table.

Name Required Argument Type Argument Value Sequence Append as
Argument Argument

FreePopup True Command True 1 True

FullWindow True Command True 2 True

To start the external application as a modal window, use the values in the following table.

Name Required Argument Type Argument Value Sequence Append as
Argument Argument

PopupSize True Command 750x500 1 True

FreePopup True Command True 2 True

To start the external application in a new browser tab (for each click), use the values in the following table.

302
ORACLE

Siebel Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications
Name Required Argument Argument Type Argument Value Append as Argument
FreePopup Y Command True Y
Target Y Command _blank Y

IFrame Command
Use the IFrame command to define additional HTML attributes for the <iframe> tag.

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field Value Example
Name Any Name None
Argument Value IFrame [attribute]=[value] IFrame Height=100 Width=500

Disposition Types
Use the IFrame command with the IFrame disposition type.

IsRecordSensitive Command

Use the IsRecordSensitive command to turn on or off the record-sensitive feature. Set the value to TRUE to ensure that
a child applet with a symbolic URL is refreshed on the parent record, for instance, when you embed an Analytics report
as a child applet with a requirement that it display contextual information.

This command is turned off by default. Set this argument value to TRUE in the Symbolic URL Arguments configuration.

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field Value
Name IsRecordSensitive
Argument Value TRUE

NoCache Command

Use the NoCache command to instruct SWE not to cache Inline responses on the server. This command is only valid for
the Inline disposition type.

Define the fields in the Symbolic URL Arguments applet. See the following table.

303
ORACLE

Siebel Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications
Field Value
Name Any name
Argument Value NoCache

NoFormFixup Command
Use the NoFormFixup command to instruct SWE not to fix up a form by putting proxy SWE arguments into links that
appear on the page.

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field Value

Name Any name

Argument Value NoFormFixup
PreLoadURL Command

Use this command to specify a preloaded URL. Use this command when the external application gathers information
from a preloaded cookie on the client machine. Use this command with disposition types of IFrame and Web Control.

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field Value
Name PreLoadURL
Argument Value [URL]

PostRequest Command

Use PostRequest to configure the Portal Agent to use the rostT method instead of the cer method, which is the default.
Use this command when the method of the action attribute is rost. This method avoids displaying user information on
a Web page or browser status bar. Use this command with disposition types of IFrame and Web Control only.

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field Value
Name Any Name
Argument Value PostRequest

304
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

UserLoginld Command

Use the UserLoginld command to send the stored user login ID for a particular Web application. The command gets the
user’s Login ID from the My Login Credential business component.

For more information about how user login IDs are entered into this business component, see Defining End-User Login
Credentials.

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field Value
Name [input field name]
Argument Value UserLoginld

UserLoginPassword Command

Use the UserLoginPassword command to send the stored user password for a particular Web application. The command
gets the user’s password from the My Login Credential business component.

For more information about how user passwords are entered into this business component, see Defining End-User
Login Credentials.

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field Value
Name [input field name]
Argument Value UserLoginPassword

UseSiebelLoginld Command
Use the UseSiebellLoginld command to retrieve the user’s Siebel login ID from the stored set of credentials.

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field Value
Name [input field name]
Argument Value UseSiebelLoginld

UseSiebelLoginPassword Command
Use the UseSiebelLoginPassword command to retrieve the user’s Siebel password from the stored set of credentials.

305
ORACLE

Siebel

Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Define the fields in the Symbolic URL Arguments applet. See the following table.

Field

Name

Argument Value

Value

[input field name]

UseSiebelLoginPassword

Displaying Data from External Applications in Siebel Views

The example in this topic describes how to configure Siebel Open Ul to get connection details from Linkedin, find
matching mutual contacts in Affiliation views, and then display the matching records in a Siebel view.

To display data from external applications in Siebel views

1. Set up the data:

a.

b.
c.

2

@ -0

O S

m.

Log in to LinkedIn, and then identify two connections that include profile pictures and that allow you to
reference them in your configuration.

Write down the case-sensitive first name and last name for each LinkedIn profile.

Log in to Siebel Call Center, navigate to the contacts Screen, and then the Contact List view.

Click New, and then enter the First Name and Last Name values for one of the profiles that you noted in
Step b.

The values you enter must match exactly. Make sure uppercase and lowercase usage is the same.

Click New, and then enter the First Name and Last Name values for the other profile you noted in Step b.
Navigate to the Opportunity screen, and then the Opportunity List view.

Click New to create a new opportunity, and then add the contact that you created in Step b to this new
opportunity.

Click New to create another new opportunity, and then add the contact that you created in Step d to this
new opportunity.

Log in to the Siebel application using the sample database, and then repeat Step b through Step e.
Navigate to the Contact Screen, and then the Contact List view.

Drill down on the first contact, and then navigate to the third level Affiliations view.

Click New, and then add the contact that you created in Step d.

Click New, and then add the contact that you created in Step e.

2. Download the sociallyawarepmodel.js file into the following folder:

AI INSTALL DIR\applicationcontainer externall\siebelwebroot\scripts\siebel\custom

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support. This code already contains the
configuration that Siebel Open Ul requires to authenticate the user with LinkedIn and to get the connections for
this user from LinkedIn. For more information about the language_code, see Languages That Siebel Open Ul
Supports.

3. Use a JavaScript editor to open the sociallyawarepmodel.js file that you downloaded in Step 2.

4. Locate the following code:

306

ORACLE

Siebel

Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

SociallyAwarePM.prototype.Init = function() {
SiebelAppFacade.SociallyAwarePM. superclass.Init.call (this);

5. Add the following code immediately under the code you located in Step 4:

7.

this.AddProperty ("linkedINRecordSet", []):
this.AddProperty ("linkedINMarker", 0);

where:
o linkedINRecordset Stores the connection details of the current user from LinkedIn.

o linkedINMarker Marks the position in the connection details record set for querying purposes in the
Siebel Database.

Add the following code immediately after the code you added in Step 5:

this.AddMethod ("QueryForRelatedContacts", QueryForRelatedContacts) ;
this.AddMethod ("GetConnectionByName", GetConnectionByName) ;

This code allows the presentation model to call the GetConnectionByName method and the
QueryForRelatedContacts method that you add in Step 7.

Add the following code immediately after the FetchConnectionFromLinkein method:

function GetConnectionByName (fName, 1Name) {
var connection = null;
if (fName && 1Name) {
var linkedInRecSet = this.Get ("linkedINRecordSet") ;
for(var i = 0; i < linkedInRecSet.length; i++){
var current = linkedInRecSet[i];
if (current.firstName === fName && current.lastName === 1Name)
{connection = current;break;}}
}
return connection;
}
function QueryForRelatedContacts () {
var currentMark = this.Get("linkedINMarker") ;
var recordSet = this.Get ("linkedINRecordSet") ;
var firstName = "";
var lastName = "";
for(var i = currentMark; i < currentMark + 5; i++){
var current = recordSet[i];
firstName = firstName + current["firstName"];
lastName = lastName + current["lastName"];
if (i < (currentMark + 4))
{firstName = firstName + " OR ";
lastName = lastName + " OR ";
}}
if (firstName !== "" || lastName !== ""){
SiebelApp.S_App.GetActiveView () .ExecuteFrame (
this.Get ("GetName") ,
[
{field : "Last Name" , value : lastName},
{field : "First Name", value : firstName}]);
}
}

where:

o GetConnectionByName USeS the first name and last name to get the connection information stored on the
client. Siebel Open Ul gets this information from LinkedIn.

307
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

o QueryForRelatedContacts IS the presentation model method that uses the subset of the LinkedIn
connection record that Siebel Open Ul sets to query the Siebel Server for matching records. The
notification causes Siebel Open Ul to call the BindData method of the physical renderer as part of the
reply processing. The BindData method updates the user interface with the matching set of records from
server. For more information, see Notifications That Siebel Open Ul Supports and GetActiveView Method.

8. Add the following code immediately after the AddProperty methods you added in Step 5:

this.AddMethod ("QueryForRelatedContacts", QueryForRelatedContacts) ;
this.AddMethod ("GetConnectionByName", GetConnectionByName) ;

These AddMethod calls add the QueryForRelatedContacts method and the GetConnectionByName method so
that Siebel Open Ul can call them from the presentation model.

9. Configure the manifest:
a. Login to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see Configuring Manifests.
Navigate to the Administration - Application screen, and then the Manifest Files view.
c. Inthe Files list, add the following file.

Field Value

Name siebel/custom/sociallyawarepmodel.js

d. Navigate to the Administration - Application screen, and then the Manifest Administration view.
e. Inthe Ul Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Presentation Model
Name Enter any value.

f. Inthe Object Expression list, add the following expression. Siebel Open Ul uses this expression to render
the applet on a desktop platform.

Field Value
Expression Desktop
Level 1

308
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Field Value

g. Inthe Files list, add the following file:

siebel/custom/sociallyawarepmodel.js

10. Test your modifications.

Displaying Data from External Applications in Siebel Applets

The example in this topic describes how to configure Siebel Open Ul to display data from an external applicationin a
Siebel applet. Siebel Open Ul can use a symbolic URL open this external application from an applet. For example, to
display a Google Map or a Linked In view as an applet in a Siebel application.

Note: When a symbolical URL is displayed in the Siebel Web framework, Siebel Open Ul sends it regular ping requests
to prevent the session from timing out. This is done because Siebel Open Ul can not detect activity, or lack of activity,
on the symbolic URL

The example in this topic configure Siebel Open Ul to display a Google map as a child applet in the Account detail page.
The Map displays a location according to the Zip Code of the account record. If the Zip Code is empty, then it displays
the default Google map.

To display data from external applications in Siebel applets
1. Configure the business component:
a. Open Siebel Tools.

For more information, see Using Siebel Tools .

b. Inthe Object Explorer, click Business Component.
c. Inthe Business Components list, query the Name property for Account.
d. Inthe Object Explorer, expand the Business Component tree, and then click Field.
e. Inthe Fields list, add the following field.
Property Value
Name You can use any value. For this example, use the following value:
SymbolicURLGoogleMap
Calculated TRUE
Type DTYPE_TEXT

309
ORACLE

Siebel Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications
Property Value
Calculated Value Enter the name of any Symbolic URL enclosed in double quotation marks. For this

example, enter the following value:

SymbolicURLGoogleMap

You define this Symbolic URL later in this example.

2. Configure the applet:

a. Inthe Object Explorer, click Applet.
b. Inthe Applets list, query the Name property for SSO Analytics Administration Applet.

In a typical configuration, you create an applet that Siebel Open Ul can to use to display the external
content. This applet must reference the business component that you configured in Step 1.

c. Copy the applet that you located in Step 2b, and then set the following properties for this copy.

Property Value
Name GoogleMap
Business Component Account
Title GoogleMap

d. Inthe Object Explorer, expand the Applet tree, expand the List tree, and then click List Column.
e. Inthe List Columns list, set the following properties for the single record that the list displays.

Property Value

Name SymbolicURLGoogleMap
Field SymbolicURLGoogleMap
Field Retrieval Type Symbolic URL

310
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

3. Configure the view:

a. Inthe Object Explorer, click View.
b. Inthe Views list, query the Name property for the view that must display the Google map.

For this example, query the Name property for the following value:

Account Detail - Contacts View

c. Inthe Object Explorer, expand the View tree, expand the View Web Template tree, and then click View
Web Template Item.

d. Inthe View Web Template Items list, add the following view Web template item.

Property Value

Name GoogleMap

Applet GoogleMap

Field Retrieval Type Symbolic URL

Item Identifier Enter the next highest number in the sequence of numbers that Siebel Tools displays for

all records in the View Web Template Items list.

Note that you cannot move an applet into the Web Layout Editor in Siebel Tools. You must add it
manually to the Web page.

4. Compile your modifications.

M
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

5. Examine the URL that Siebel Open Ul must integrate:
a. Open the URL that Siebel Open Ul must integrate.

For this example, open http: //maps.google.com/ iN a browser.
b. View the source HTML.

For example, if you use Internet Explorer, then click the View menu, and then click Source. Alternatively,
save the file to your computer, and then use an HTML editor to open it.

c. ldentify the input fields.
It is recommended that you search for the input tag.
In this example, the source displays the name in the following way:

name="q"

You use this value when you define the arguments for the Symbolic URL.
d. Determine if the method attribute of the page is one of the following:

- POST. You must define the PostRequest command as an argument of the symbolic URL.

- GET. you do not need to define a symbolic URL command.
In this example, the method is GET.

e. Determine the target of the from action attribute, which is typically specified as action = "some string".
In this situation, it is ' /maps'. It is appended to the predefined URL.

6. Configure the symbolic URL:

a. Login to the Siebel client with administrator privileges.
b. Navigate to the Administration - Integration screen, and then the WI Symbolic URL List view.
c. Inthe Fixup Administration dropdown list, choose Symbolic URL Administration.
d. Inthe Symbolic URL Administration list, add the following symbolic URL.
Field Value
Name SymbolicURLGoogleMap
URL http://maps.google.com/maps
Fixup Name Default
SSO Disposition IFrame

e. Inthe Symbolic URL Arguments list, add the following symbolic URL argument.

Field Value

Name q

312
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Field Value

This value is the input tag in HTML for the Google map.

Required Argument N

You set this argument to N because the account might not include a zip code.

Argument Type Field

Siebel Open Ul must send the value in the zip code field of the account to the Google map.

Argument Value Postal Code

You set this argument to the name of the business component field that contains the
value that Siebel Open Ul must send to the Google map.

Append as Argument Y
Substitute in Text N
Sequence# 1

f. Inthe Symbolic URL Arguments list, add the following symbolic URL argument. Siebel Open Ul uses this
argument to embed the Google map in the applet.

Field Value
Name output
Required Argument Y
Argument Type Constant
Argument Value embed
Append as Argument Y
Substitute in Text N

313
ORACLE

Siebel Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications
Field Value
Sequence# 2

7. Test your modifications:

a. Navigate to the Accounts screen, and then click Accounts List.

b. Inthe Accounts List, create a new account and include a value in the Zip Code field.
c. Drill down on the Account Name field.
d

. Make sure Siebel Open Ul displays a Google map and that this map includes a push pin that identifies the
zip code that you entered in Step b.

Displaying Data from Siebel Open Ul in External
Applications

This topic describes how to display data from Siebel Open Ul in an external application. It includes the following
information:

- Displaying Siebel Portlets in External Applications
« Configuring Multiple Siebel Portlets in Portal Applications
- Configuring Advanced Options
« Configuring Communications with Siebel Portlets When Hosted Inside iFrame
« Additional Considerations
- Limitations
« Preparing Standalone Applets
Using iFrame Gadgets to Display Siebel CRM Applets in External Applications
- SWE API

Siebel Open Ul comes predefined to display Siebel CRM data only in a Siebel application, such as Siebel Call Center.
This topic describes how to display Siebel CRM data in an external application or website, such as Oracle WebCenter or
iGoogle.

Displaying Siebel Portlets in External Applications

You can configure Siebel Open Ul to display a Siebel portlet. A Siebel portlet is a Siebel Open Ul application that is
embedded in a thirty-party website. Oracle WebCenter and iGoogle are examples of these types of third-party websites.
An HMTL iFrame is used in these websites to display part of the Siebel application in a portlet window.

This topic describes how to display Siebel portlets in external applications.

Configuring Siebel Open Ul to Consume Siebel Portlets

Siebel portlets can be integrated inside a portal application using iFrame or any other mechanism supported by the
portal application. Siebel accepts both GET and POST requests.

314
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

To make a Siebel Server available as part of a portal, you can add the server URL to an iFrame that resides on the main
Web page. In this sample code, the HTTP GET method is used:

<HTML>

<BODY>

<IFRAME src = "http://server_address/siebel/app/application/
lang?SWECmd=SWECmd=GotoView&IsPortlet =l&other arguments"> </IFRAME>
</BODY>

</HTML>

where:

- Server_address specifies the address of the Siebel Server.
- application specifies the Siebel application.

- sWECmd iS a required argument that specifies how to display the Siebel application when the user accesses this
URL.

- isPortlet is a required argument that informs the Siebel Server that this application runs in a portlet. The server
requires this argument so that it can do the processing it requires to support a portlet.

- other_arguments specify how to display the Siebel application. For example, the login requirements to display,
the applets to display, how to size applets, and so on.

For example, consider the following iFRAME src:
http://server name.example.com/siebel/app/callcenter/enu?
SWECmd=GetApplet&SWEApplet=Quote+List+Applet&IsPortlet
=1&SWESM=Edit+List"style="height: 50%;width: 100%;&KeepAlive=1&PtId=my_ theme"

The following table describes the parts of this iFRAME src that specifies the Siebel URL.

URL Argument Description

http://server_name.example.com Access the Siebel Server that resides at server_name.example.com.

/callcenter/enu Run the CallCenter application.

SWECmd=GetApplet Provide commands to the Siebel Web Engine.

SWEApplet=Quote+List+Applet Display the Quote List Applet.

IsPortlet =1 Run the CallCenter application as a portlet.

SWESM=Edit+List Use the Edit List Mode

KeepAlive=1 Keep Siebel portlet sessions active even if the session is idle longer than SessionTimeout. Siebel CRM

is predefined to expire a Siebel session that is not in use for a period of time according to the value that
the SessionTimeout server parameter specifies. In the absence of this parameter, the session timing
out will lead to Siebel Open Ul displaying a login dialog box in the portlet. This behavior might not be
desirable in a Siebel portlet. It is recommended that you set this argument to keep the session active.

For more information about the KeepAlive parameter, see Configuring the Portlet Session to Stay Alive.

&Ptld=my_theme" You can style a portlet application in such a way that the look and feel of the exposed application
match that of the portal. The iFrame itself can be styled using a Cascading Style Sheet.

315
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

URL Argument Description

For more information, see Configuring the Use of Cascading Style Sheets Instead of iFrame Attributes.

In addition, the Siebel application can be styled according to a theme. A theme can be defined in the
Siebel manifest, and the Ptld argument can be used to reference the theme. The theme defined will be
applied to the exposed application.

SWECmd=ExecutelLogin Provide user name and password authentication arguments. ExecuteLogin is allowed only through
&SWEUserName=user_name HTTP POST. Passing user IDs and password in an HTTP request is not recommended due to security
reasons.
&SWEPassword=my_password
For more information, see About Siebel Portlet Authentication and Security Requirements.

Siebel Open Ul supports HTTP POST and exposes the Siebel portlet for HTTP POST requests. The Siebel portal can
send the following URL with the listed form fields:

http://server_name.example.com/siebel/app/callcenter/enu?
SWECmd=ExecuteLogin

SWEUserName=user_name

SWEPassword=my password

SWEAC=SWECmd=GetApplet

SWEApplet=Quote+List+Applet

IsPortlet =1

KeepAlive=1

PtId=my theme"

About Siebel Portlet Authentication and Security Requirements

Siebel Open Ul portlets must be configured differently depending on whether the application is hosted in HTTP and in
HTTPS. The recommended configuration guidelines are as follows:

- HTTP. Implement SSO and access Siebel CRM over HTTP or HTTPS, depending on the requirement.
- HTTPS. Implement SSO and enable SSL for Siebel CRM.

CAUTION: You should never pass user IDs and passwords in the HTTP request to a Siebel portlet. Passing user IDs
and passwords exposes authentication details to the end user.

Configuring Views to Be Embedded in a Portlet

You can allow a view to be embedded in a portlet. Doing so runs the Siebel application in the portlet and navigates to
a specified view. The view specified must be accessible anonymously or by user who is logged in to the Siebel Open Ul
client.

To allow a view to be embedded in a portlet, include the following command in the URL:
SWECmd=GotoView; SWEView=<View Name>;]

The full URL should use the conventions in the following example:

http://<siebel_ server>/<siebel/app/application>/lang?IsPortlet
=1&SWECmd=GotoView&SWEView=<View Name>

316
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

For example, with the Opportunities List View embedded in a portlet, the URL would use the conventions in the
following URL:

http://<siebel_ server>/<siebel/app/application>/lang?IsPortlet
=1&SWECmd=GotoView&SWEView=Opportunities+List+View

Configuring Standalone Applets to Be Embedded in a Portlet

Siebel Open Ul supports standalone applets. You can expose standalone applets in a portlet. This can be achieved by
providing the following cetappiet command in the URL:

SWECmd=GetApplet; SWEApplet=<Standalone Applet Name>; SWESM=<Applet's Show Mode>

About the SWESM Parameter

The swesM parameter is the default mode for the applet to be shown, but can be changed to any one of the
preconfigured modes of the applet, such as:

- Base
- Edit / Edit List
« Query
The full URL should use the conventions in the following example:
http://<siebel_server>/<siebel/app/application>/lang?IsPortlet

=1&SWECmd=GetApplet&SWEApplet=Opportunity+List+Applet&SWESM=Base

About Search Specifications

When using standalone applets in portlets, the data displayed in the standalone applet can be controlled by using
search specifications. The search specifications are applied to various Business Component fields on which the
standalone applet is deployed. You can control the search specifications using the following parameters:

- BCField <n>. Defines the business component field on which to query.

- BCFieldValue <n> . Defines the value that the Bcrie1da<n> must match for the record to be displayed.

- PBCField <n> . Defines the parent business component field on which to query.

- PBCFieldValue <n>. Defines the value that the pecrie1d<n> must match for the record to be displayed.

For example, if you wanted to specify the Opportunities List applet embedded in a portlet and limit the records
displayed to Opportunity Names that match "Test Opportunity" you could use the following URL:

http://<siebel server>/<siebel/app/application>/lang?IsPortlet
=1&SWECmd=GetApplet&SWEApplet=Opportunity+List+Applet&SWESM=Base&BCField0=Opportun
ity+Name&BCFieldValueO=Test+Opportunity

Search Specifications Guidelines
Adhere to these additional guidelines when defining your search specifications:
- When specifying multiple business component fields or parent business component fields, use the AND

operator at the end of the final expression. Only records that satisfy all of the matching criteria are returned by
the search.

- Field values can contain any type of data that is accepted by the Siebel search specification system. For
example, "PBCFieldValue2=0Opportunity1+OR+Opportunity2" is a valid value.

317
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Field values not exposed in the applet itself can still be used by the URL. These fields will be explicitly activated
and used for the query.

- Search specifications applied to a URL will work in the context. Therefore, the user will not be able to access the
super-set of records, unless the user navigates to the view in question.

If a parent business component field and parent business component field value is configured in a URL, and the
business component does not have a parent business component, then the specification is ignored.

If a business component field is used in the URL that does not exist on the business component, then the URL
is considered invalid and the applet will fail to build. This results in unpredictable behavior in the portlet.

Configuring View-Based Applets to Be Embedded in a Portlet

When an applet has been configured part of a view rather than as a standalone applet, it can still be exposed in a
portlet. To do this, use the cotoview command with the following additional parameters:

SWECmd=GotoView; SWEView=<View Name>; SWEApplet=<Applet Name>

Only the applet specified in the portlet will be embedded in the portlet. For example, only the Opportunity List Applet
will be shown using the following URL:

http://<siebel server>/<siebel/app/application>/lang?IsPortlet
=1&SWECmd=GotoView&SWEView=Opportunity+List+View&SWEApplet=Opportunity+List+Applet

Note: If an applet that does not exist in the view is specified, then the URL is considered invalid and the applet fails to
build. This results in unpredictable behavior in the portlet.

Configuring Multiple Siebel Portlets in Portal Applications

Siebel CRM supports exposing multiple Siebel Portlets to the Portal application in the same portlet session. By default,
multiple Siebel Portlets are not exposed to the Portal application. Portal applications having one Siebel portlet works
without any change. Each Siebel portlet creates a new Siebel session.

Note: It is recommended that administrators should consider the business requirements of their organizations
before enabling multiple portlets and should limit the Maximum Possible Tabbed Sessions field value to minimize any
adverse effect on scalability. Configuring an additional portlet than the value configured for the Maximum Possible
Tabbed Sessions field leads to corruption of allowed portlets, so make sure that the number of portlets configured is
always less than or equal to the Maximum Possible Tabbed Sessions field value.

To configure multiple Siebel Portlets in the Portal application, perform the following tasks:

1. Setting Server Parameter to Enable Multiple Portlets
2. Configuring Application Interface Profile Parameter to Limit the Number of Portlets
3. Append the New Portletld Parameter to the Siebel Portlet URL

Setting Server Parameter to Enable Multiple Portlets
To set the server parameter to enable multiple portlets, perform the following steps:
1. Login to a Siebel client with administrative privileges.

2. Navigate to the Administration - Server Configuration screen, and then the Servers view.
3. Inthe Siebel Servers list, choose a Siebel Server.

318
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

4. Click the Components view tab.

5. Inthe Components list, select the required Application Object Manager. For example, Call Center Object
Manager (ENU).

6. Select Parameters from the drop-down list before the Component Event Configuration section and click the

Hidden button.

In the Parameter field, perform a case-sensitive search for the EnableMultiTab parameter.

In the Value on Restart field, enter True.

9. Restart the Siebel server.

© N

Configuring Application Interface Profile Parameter to Limit the Number of Portlets
To set the Application Interface profile parameter to limit the number of portlets, perform the following steps:

Log in to Siebel Management Console.

Select the required Application Interface profile.

Select the Applications tab and expand the Enhanced Authentication section of the selected application.

In the Maximum Possible Tabbed Sessions field, enter a value to limit the number of browser tabs. For example,
2, if you want to allow only two browser tabs. By default, the value for Maximum Possible Tabbed Sessions field
issetto.

PUWUN

Note: This parameter is effective only when the EnableMultiTab server parameter is set to True for the
specified Application Object Manager.

5. Save the profile.

Append the New Portletld Parameter to the Siebel Portlet URL

The new Portletld parameter is required in the Siebel portlet URL when more than one portlet needs to be added in the
portal application. Portletld should be a valid numeric number. The following sample code snippet illustrates two Siebel
portlets exposed in a portal application.

<HTML>
<BODY>

<IFRAME src = "https://server_address/siebel/app/application/lang ?2SWECmd=GotoView&IsPortlet

=1&Portletld=1&other_arguments"
style="height:500px;width:1000px"> </IFRAME>

<IFRAME src = “https://server_address/siebel/app/application/lang?SWECmd=GetApplet&IsPortlet

=1&Portletld=2&other arguments"
style="height:500px;width:1000px"> </IFRAME>
</BODY>

</HTML>

Configuring Advanced Options

This topic describes advanced options when configuring Siebel Open Ul in an external application.

Configuring Multiple Command Chaining in a URL

Use the sweac parameter to chain more than one command in a URL. An example, where this might be useful is a
situation where you want to navigate to a certain view and create a new record in that view's active applet.

319
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

To configure multiple command chaining in a URL, include the following attribute in the URL:
SWEAC=SWECmd=NewRecord]
The full URL should use the conventions in the following example:

http://<siebel_server>/<siebel/app/application>/lang?IsPortlet
=1&SWECmd=GotoView&SWEView=Opportunities+List+View&SWEAC=SWECmd=NewRecord

The preceding example runs the Siebel application in the portlet and takes the context to the Opportunity View to create
a new record in the active applet on that view.

Configuring the Portlet Session to Stay Alive

Siebel sessions that are not in use will eventually expire. The time for which the session is kept alive is determined by the
value of the SessionTimeout server parameter. In some cases when exposing Siebel CRM as a portlet expiring sessions
this might not be optimal.

To override the SessionTimeout server parameter so that the portlet session stays alive, include the following attribute
in the URL:

KeepAlive=1
[Other values for this parameter are as follows: Trug, T, ox, and v.]

The full URL should use the conventions in the following example:

http://<siebel server>/<siebel/app/application>/lang?IsPortlet
=1&SWECmd=GotoView&SWEView=Contact+List+View&KeepAlive=1

When using the KeepAlive attribute, consider these additional guidelines:

- The KeepAlive attribute value is enforced by monitoring periodic client pings to the Siebel Server. Consequently,
the client must be on a network connected to the server.

- If the KeepAlive attribute value is omitted or set to raLse the session will eventually timeout and a login screen
is returned to the portlet.

- Once the KeepAlive attribute is set to True by a request (either the URL or a subsequent message-based
communication) it cannot be changed to raLsk by a subsequent request.

Configuring the Use of Cascading Style Sheets Instead of iFrame

The iFrame tag supports a number of attributes, which can be used to control the visual formatting of the portlet
content. For a full list of the attributes, see the following W3C website:

http://www.w3.org/wiki/HTML/Elements/iframe

In recent HTML revisions, many attributes are being deprecated. Consequently, it is recommended that cascading style
sheets be used for visual formatting.

Siebel Open Ul attaches CSS classes for the portlet iFrame. In Siebel Open Ul, the CSS can be applied by defining a
theme in the Theme.js file and passing the theme name as a parameter in the URL under Ptld.

The full URL should use the conventions in the following example:

http://<siebel server>/<siebel/app/application>/lang?IsPortlet
=1&SWECmd=GotoView&SWEView=Contact+List+View&KeepAlive=1&PtId=CUSTOM PORTLET THEME

Where custom_portrET_THEME is defined in Theme.js. If the argument value is omitted, invalid, or cannot be found in
Theme.js, then Siebel Open Ul will use the default theme.

320
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

For more information about customizing themes, see Customizing Themes.

Configuring Communications with Siebel Portlets When Hosted
Inside iFrame

This topic outlines the Siebel Server parameter configurations that are required and optional to enable communication
with Siebel portlets when hosted inside an iFrame. These parameters can be modified for the Siebel Component with
which the functionality is meant to communicate. The instructions in this topic are not required when cross-domain
communications are not needed.

Planning Across Domain Integrations

Siebel Open Ul can be used in IFrames in the same domain and supports use across domains. The following settings
support this feature:

. Xframe-options allow-from. Allows Siebel CRM to be hosted inside a portal. The portal application name has
to be listed as the Allow-From value.

PortletOriginList. Gives the list of allowed applications to communicate with Siebel Open Ul when it is hosted
inside an iFrame.

Planning Cross-Domain Integrations

You can use the X-Frame-Options HTTP header to determine whether or not Siebel Open Ul can display a page in a
browser in a frame or in an iFrame. This capability is useful to avoid a potential security problem by making sure a
hacker cannot embed the content that Siebel Open Ul provides into another application. The XFrameOptions parameter
is a hidden Siebel Server parameter that you can use to control the value of the X-Frame-Options header. You can set it
to one of the following values:

- SAMEORIGIN. Display the page only in a frame that resides in the same location as the page.This is the default
value.

- ALLOW-FROM. url Display the page only in a frame that resides in the specified location. If an external
application accesses a Siebel URI, then you specify the URI that this external application uses. For example, if
the external application uses my_url.com, then you use the following value: ALLOW-FROM http://my_url.com/
If a browser (such as Chrome or Safari) does not support ALLOW-FROM, then the browser ignores it.

DENY. Do not display the page in a frame or in an iFrame.

Make sure that HTTPS/HTTP transports match for cross-domain sites.

321
ORACLE

Siebel
Configuring Siebel Open Ul

Chapter 8
Configuring Siebel Ul to Interact with Other Applications

To configure communications with Siebel portlets when hosted inside an iFrame

1. Set up the Siebel Server parameters:

a.
b.
C.
d. Click Parameters.
e.
Parameter
PortletAPIKey

PortletOriginList

PortletMaxAllowedAttempts

PortletBlockedInterval

Log in to a Siebel client with administrative privileges.
Navigate to the Administration - Server Configuration screen, and then the Servers view.
In the Siebel Servers list, choose a Siebel Server.

In the Parameters list, add the following parameters.

Description

This is a required parameter. It is a unique key configured as a server parameter. The
source portal program must pass this key to call the Siebel application exposed as the
portlet. The messaging object used to communicate with Siebel Portal will need to contain
a parameter msg.Key. The msg.Key must match the key configured in this parameter. If
the messaging object does not contain a key, or contains an invalid one, the invocation
will result in an error in the Siebel portlet.

This is a required parameter. It defines the list of valid domains from which the Siebel
portlet will accept a communication request. A comma separated list can be provided for
this parameter. Any invocations coming from domains that are not listed here will cause
an error in the Siebel portlet.

This is an optional parameter. Its default value is 3. This parameter specifies the number
of unsuccessful communication attempts with the portlet before Siebel Open Ul blocks
any subsequent calls. An unsuccessful call can occur in the following situations:

- A domain attempts to send a communication request to the portlet, but the
PortletOriginList does not specify this domain.

- The portlet_key sent by the communicating domain does not match the parameter
specified in the Siebel server.
The Siebel portal will remain blocked up to the time extent as defined by
PortletBlockedInterval after which Siebel Open Ul resets the unsuccessful attempts to zero

This is an optional parameter. Its default value is 900 seconds. This parameter
specifies the time in seconds for which Siebel portlet will remain blocked to any
communication attempt from the hosting portal or a neighboring portlet after having
exceeded the number of unsuccessful communication attempts (as defined by
PortletMaxAllowedAttempts). During this time, the Siebel portlet will still be open to
access by the user of the application. However, no programmatic access is permitted.

2. Based on your configuration, the portal, or another portlet in the portal, add the following object to your
custom code. The SWEView, SWEApplet, and Key arguments are required. All other arguments are optional:

var msg = new Object();
msg.SWEView = view_name;
msg.SWEApplet = applet name;

msg.SWECmd =GotoView or GetApplet

ORACLE

322

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

msg.Key = portlet key;

where:

o Vview_name specifies the view that Siebel Open Ul displays in the portlet window. If you specify only the
view, then Siebel Open Ul displays the view and all the applets that this view contains.

o applet_name specifies the applet that Siebel Open Ul displays in the portlet window. If you specify only
the applet, then Siebel Open Ul displays only this applet and no view. If you specify the view and applet,
then Siebel Open Ul displays the applet in the view.

o GotoView or GetApplet specifies whether or not to display a view or an applet in the portlet window.

o portlet_key must specify the value that you specify for the PortletAPIKey server parameter in Step .
The Siebel client sends this value to the Siebel Server when it calls a Siebel application. You must
include the msg.Key argument, and the value of this argument must match the value of the key that the
PortletAPIKey server parameter contains on the Siebel Server. If the messaging object does not contain
a key, or if it contains a key that does not match the value of the server parameter, then Siebel Open Ul
displays an error in the Siebel portlet.

For example, the following code displays the Opportunity List Applet inside the Opportunity List View:

var msg = new Object();

msg.SWEView = Opportunity List View;
msg.SWEApplet = Opportunity List Applet;
msg.Key = oraclel23;

3. Add the following code immediately after the code that you added in Step .

document.getElementById('siebelframeid') .contentWindow.postMessage (msg, '*');

This code invokes a change in the Siebel Portlet window, so that the requested view or applet will get loaded in
the content area.

4. You can use several SWE commands to display a Siebel portlet in Siebel Open Ul. For security reasons, you can
use only the GotoView and GetApplet method to call a Siebel portlet from an external application. GotoPage
and GotoPageTab are not applicable to Siebel Open Ul. You can use the commands in the following table within
a Siebel portlet. You cannot use them to call a portlet.

Supported Values Inside External Siebel Called from Ul Called from Outside Siebel Portlet
Application Element Inside Siebel = Container
Portlet Container

CanlnvokeMethod Yes Yes No

ExecutelLogin Yes. It is not supported for HTTP Not applicable for this No. Yes. It is not supported for HTTP
GET. It is supported through HTTP = use case. GET. It is supported through HTTP
POST. POST.

GotoView Yes. Use only when invoked from Yes Yes

the browser address bar by refresh
or history navigation.

GetApplet Yes Yes Yes

323
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications
Supported Values Inside External Siebel Called from Ul Called from Outside Siebel Portlet
Application Element Inside Siebel = Container

Portlet Container

InvokeMethod Yes Yes No

For more information, see Allowing
Blocked Methods for HTTP GET

Access.
LoadService Yes Yes No
Login Yes Not applicable to Siebel = Not applicable (use SSO or similar)
Open UL.
Logoff Yes Not applicable to Siebel No
Open UL.
ReloadCT Yes Yes No

Additional Considerations

The following list outlines additional considerations when displaying data from Siebel Open Ul in external applications:

All parameters passed in a URL need to be URL-encoded. For example, "Account List View" would become
"Account+List+View" or "Account%20List%20View". For more information on URL encoding, refer to:

http://en.wikipedia.org/wiki/Percent-encoding

Anonymous sessions are supported in portlet expositions.
Tasks Workflow URLs are also supported in portlets.

SWE Commands are limited to the ones mentioned in Step 4 of Configuring Communications with Siebel
Portlets When Hosted Inside iFrame. However, other parameters may be passed in portlet mode to the Siebel
server. They will be honored by the server depending on the context.

If the content in the Siebel portlet is bootstrapped to load an applet using the GetApplet method, then the
subsequent messaging to the portlet will be limited to whether the applet can be invoked. Operations such as
invoking of popups or navigating to other views will not be supported. If these are required, the portlet must be
bootstrapped via the GotoView call. For more information, see Configuring Standalone Applets to Be Embedded
in a Portlet.

324

ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Limitations

The following list outlines limitations when displaying data from Siebel Open Ul in external applications:

- Siebel CRM supports only one portlet in a valid Siebel session. Consuming more than one portlet that is
targeted to same Siebel session is not supported.

- Opening Siebel Open Ul in multiple browser tabs that share the same Siebel session ID is not supported.

Portal communications as described in Configuring Communications with Siebel Portlets When Hosted Inside
iFrame, is not supported in any version of Microsoft Internet Explorer. Siebel Open Ul uses HTML 5 specified
Cross Document Messaging, that is not fully supported in the latest version of Internet Explorer.

Preparing Standalone Applets

A standalone applet is a type of applet that Siebel Open Ul can display outside the context of a Siebel CRM view. A
predefined view references a business object, a business object references a business component, and an applet also
references a business component, but an applet does not reference a business object in a predefined Siebel Open Ul
configuration. You must modify this configuration so that the applet can work independently of the view. To do this, you
configure the applet to directly reference the business object.

To prepare standalone applets

1. Open Siebel Tools.

For more information, see Using Siebel Tools .

In the Object Explorer, click Applet.

In the Applets list, query the Name property for the applet that Siebel Open Ul must display outside of the view.
In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

In the Applet User Properties list, add the following applet user property.

vhUN

Property Description
Name Enter the following value:
Business Object

Value Enter the name of the business object that this applet must reference.

Using iFrame Gadgets to Display Siebel CRM Applets in External
Applications

The example in this topic describes how to use iFrame gadgets to configure Siebel Open Ul to display a Siebel applet in
an external application.

325
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

To use iFrame gadgets to display Siebel CRM applets in external applications
1. Do the setup:

a. Create a LinkedIn profile at the http://www.linked.com Web site.
b. Create a Gmail profile at the http://www.google.com/ig Web site.
2. Configure the external applications:

Open a new browser session, navigate to http://www.linked.com/, and then log in to your profile:
Open a new browser tab, navigate to http://www.google.com/ig, and then log in to your gmail profile:
Navigate to http://www.google.com/ig/settings.

Click Add More Gadgets.

In the Search for Gadgets section, enter iFrame Gadget, and then click Search.

In the Search Results for the iFrame Gadget list, click iFrame Gadget.

Click Embed This Gadget.

In the Add This Gadget to Your Webpage page, enter the following URL that Siebel Open Ul uses to
display the applet. You enter this URL into the Address of Page to Show field:

SR -0 20 T

http://server name.example.com/siebel/app/callcenter/enu?
SWEUserName=user_name&SWEPassword=user_ password&SWECmd=ExecuteLoginé&S
WEAC=SWECmd=GotoView&SWEView=view_ name&IsPortlet=1&SWEApplet=applet name

where:

- server_name identifies the name of the server.

- user_name identifies the user name.

- user_password identifies the user password.

- view_name identifies the name of the view that contains the applet.

- applet_name identifies the applet that Siebel Open Ul must display in the external application.

For example, you enter the following URL to display the Opportunity list applet:

http://server_ name.example.com/siebel/app/callcenter/enu?
SWEUserName=%48%4B%49%4D&SWEPassword=%48%4B%49%4D&SWECmd=ExecuteLogin
&SWEAC=SWECmd=GotoView&SWEView=Opportunity+List+View&IsPortlet=1&SWEApplet=Oppo
rtunity+List+Applet

This URL configures the gadget to load the Opportunity applet from the server that this URL specifies. It
uses an encrypted user name and password, represented as the following:

%48%4B%49%4D

It is strongly recommended that you use Web Single Sign-On (SSO) to handle this user name and
password authentication. For more information, see the topic that describes the URL Login in Siebel
Security Guide .

i. Click Preview Changes.
j. Click Save.
3. Test your modifications:

a. Verify that iGoogle refreshes the page and displays the Opportunity list.
b. Expand the widget to full screen to display the full width of the list.

326
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

o

To choose a LinkedIn contact, use the menu that Google displays on the list header of the screen.
d. Verify that the Web browser displays the opportunities for the contact that you choose.
e. Verify that the chosen Linkedln contact matches a Siebel contact record.

Make sure the Web browser displays a layout that is similar to that shown in the following image.

(©) www.google.com/ig#m_7 i ¢ m o B Q-

a /L
B

+You Search Images Maps Play YouTube News Gmail More -

Google [a |

Like the way your page looks? Sign in to save your changes. Learn more [x
iGoogle Home i] el
Siebel Open Ul 24 0 6@

Opportunities (10)

Now Delete Query Opportunity Name: + | Chandan DasGupta - Query Results

Opportunity Name Account Contact Revenue Committed Probability % Team Space Sales Cycle Sales Method Sales Tear

Package Error DasGupta 0 Y TeamspaceNone ACAPS Application SADMIN

Classic Home ©2012 Google - Advertising Programs - Business Solutions - Privacy & Terms - Help - About Google

SWE API

This topic contains reference information about SWE commands, methods, and arguments. The command is described
in the following section.

SWE Commands Available in Siebel Open Ul

You can use several SWE commands to display a Siebel portlet in the external application. For security reasons, you
can use only the GotoView and GetApplet methods to call a Siebel portlet from an external application. GotoPage and
GotoPageTab are not applicable in Siebel Open Ul. You can use the commands listed in the following table within a
Siebel portlet. You cannot use them to call a portlet.

Supported Values Inside Siebel Application Called from Ul Element Inside Called from Outside Siebel
Siebel Portlet Container Portlet Container
CanlnvokeMethod Yes Yes No
ExecutelLogin Yes Not applicable for this use case. Yes
This is not supported for HTTP This is not supported for
GET. It is supported through HTTP GET. It is supported
HTTP POST. through HTTP POST.
GotoView Yes Yes Yes

Use only when invoked from
the browser address bar by
refresh or history navigation.

GetAplet Yes Yes Yes

327
ORACLE

Siebel Chapter 8

Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications
Supported Values Inside Siebel Application Called from Ul Element Inside Called from Outside Siebel
Siebel Portlet Container Portlet Container

InvokeMethod Yes Yes No

LoadService Yes Yes No

Login Yes Not applicable. Not applicable (use SSO or

similar).
Logoff Yes Not applicable. No
ReloadCT Yes Yes No

Web Engine HTTP TXN Business Service

This chapter describes the Web Engine HTTP TXN Business Service. It contains the following information:

« About the Web Engine HTTP TXN Business Service
Web Engine HTTP TXN Business Service API
- Example of Using Web Engine HTTP TXN Business Service
- Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service

About the Web Engine HTTP TXN Business Service

HTTP provides several means to allow Web servers to obtain information from the browser. The most familiar example
is when a user enters data into a form on a Web page and the data is sent to the Web server, which can access the
value of each form field. This example illustrates sending form field parameters to the Web server with a rosT method.
In general, a browser can send cookies, headers, query string parameters, and form field parameters to the Web

server. Web servers can also respond to the browser with cookies and custom headers. The Web Engine HTTP TXN
Business Service allows Siebel Business Applications to retrieve or set cookies, headers, and query string and form field
parameters.

The Web Engine HTTP TXN Business Service can be invoked by scripts or by workflow. The inbound HTTP request to
the Siebel Web Engine (SWE) is parsed and the business service returns property sets containing cookies, headers,

or parameters. In addition, server variables, which are not a part of the HTTP request header, can also be retrieved.
The business service can also set a custom cookie or header in the HTTP response header generated by the SWE. The
business service gives complete control over the request header received and the response header sent by the SWE.

For more information, see the following topics:

Web Engine HTTP TXN Business Service API
« Example of Using Web Engine HTTP TXN Business Service
« Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service

328
ORACLE

Siebel
Configuring Siebel Open Ul

Chapter 8

Configuring Siebel Ul to Interact with Other Applications

Web Engine HTTP TXN Business Service API

The following table lists the methods exposed by the Web Engine HTTP TXN Business Service.

Method Description

GetAllRequestCookies
the client to the server.

GetAllRequestHeaders
the client to the server.

GetAllRequestParameters
from the client to the server.

GetAllResponseCookies
the server to the client.

GetAllResponseHeaders

from the server to the client.

GetAllServerVariables Retrieves all server variables.

GetClientCertificate

GetRequestCookies
InputArguments.

ORACLE

Retrieves all request cookies sent from

Retrieves all request headers sent from

Retrieves all request parameters sent

Retrieves all response cookies sent from

Retrieves all response headers sent

Retrieves the client certificate info.

Retrieves the request cookies named in

Parameters

InputArguments: Ignored.

OutputArguments: Property Set hierarchy.
Each cookie is a child Property Set with the
TYPE property set to the cookie name.
InputArguments: Ignored.

OutputArguments: Property Set containing the
HTTP Parameter name-value pairs.
InputArguments: Ignored.

OutputArguments: Property Set containing the
HTTP Parameter name-value pairs.
InputArguments: Ignored.

OutputArguments: Property Set hierarchy.
Each cookie is a child Property Set with the
TYPE property set to the cookie name.
InputArguments: Ignored.
OutputArguments: Property Set containing the
HTTP Header name-value pairs.
InputArguments: Ignored.

OutputArguments: Property Set containing the
Server Variable name-value pairs.
InputArguments: Ignored.
OutputArguments: Property Set containing
certificate name-value pairs. Currently only

returns Common Name (CN) property of the
certificate.

InputArguments: Property Set containing the
cookie names to retrieve.
OutputArguments: Property Set hierarchy.

Each cookie is a child Property Set with the
TYPE property set to the cookie name.

329

Siebel
Configuring Siebel Open Ul

Method

GetRequestHeaders

GetRequestinfo

GetRequestParameters

GetResponseCookies

GetResponseHeaders

GetResponselnfo

GetServerVariables

GetWebSessionlnfo

ORACLE

Description

Retrieves the request headers named in
InputArguments.

Retrieves the request Web Session,
Headers, Cookies, Parameters and
Client Certificate information in one call.

Retrieves the request parameters
named in InputArguments.

Retrieves the response cookies named
in InputArguments.

Retrieves the response headers named
in InputArguments.

Retrieves the response Headers and
Cookies in one call.

Retrieves the server variables named in
InputArguments.

Retrieves the client's Web session
information.

Chapter 8
Configuring Siebel Ul to Interact with Other Applications

Parameters

InputArguments: Property Set containing the
header names to retrieve.

OutputArguments: Property Set containing the
HTTP Header name-value pairs.

InputArguments: Ignored

OutputArguments: Property Set hierarchy.
Each section is a child Property Set with the
TYPE property set to 'Headers', 'Cookies’,
'Parameters' or 'ClientCertificate'. The Web
Session information is simply stored as
properties of OutputArguments.

InputArguments: Property Set containing the
parameter names to retrieve.

OutputArguments: Property Set containing the
HTTP Parameter name-value pairs.

InputArguments: Property Set containing the
cookie names to retrieve.

OutputArguments: Property Set hierarchy.
Each cookie is a child Property Set with the
TYPE property set to the cookie name.

InputArguments: Property Set containing the
header names to retrieve.

OutputArguments: Property Set containing the
HTTP Header name-value pairs.

InputArguments: Ignored.

OutputArguments: Property Set hierarchy.
Each section is a child Property Set with the
TYPE property set to 'Headers' or 'Cookies'.
Content Type and Status are simply stored as
properties of OutputArguments.

InputArguments: Property Set containing the
server variable names to retrieve.
OutputArguments: Property Set containing the
Server Variable name-value pairs.
InputArguments: Ignored.

OutputArguments: Property Set containing the
Web session name-value pairs—SessionName;

Cookie Name; Sessionld; Web Session ID;
SessionFrom (Value is 'URL' or 'COOKIE").

330

Siebel
Configuring Siebel Open Ul

Method

SetResponseCookies

SetResponseHeaders

SetResponselnfo

Description

Sets the response cookies to the values
in InputArguments.

Sets the response headers to the values
in InputArguments.

Sets the response Headers and Cookies
in one call.

Chapter 8
Configuring Siebel Ul to Interact with Other Applications

Parameters

InputArguments: Property Set hierarchy.
Each cookie is a child Property Set with the
TYPE property set to the cookie name. The
PERSISTENT property determines whether the
cookie persists between sessions. If the value
is Y, then the cookie persists between browser
sessions. Otherwise, the cookie exists for one
session at a time.

OutputArguments: Ignored.
InputArguments: Property Set containing the
HTTP Header name-value pairs.
OutputArguments: Ignored.
InputArguments: Property Set hierarchy. Each
section is a child Property Set with the TYPE
property set to 'Headers' or 'Cookies'. Content
Type and Status are simply stored as properties

of InputArguments.

OutputArguments: Ignored.

Example of Using Web Engine HTTP TXN Business Service

To invoke each method of the Web Engine HTTP TXN Business Service and write the results to a text file, use the

following procedures:

- Adding Sample Code for Displaying Results of Using the Business Service

« Adding Sample Code for Invoking Methods of the Business Service

Adding Sample Code for Displaying Results of Using the Business Service

The following procedure shows how to add sample code for displaying results of the Web Engine HTTP TXN Business

Service.

To add sample code for displaying results of Web Engine HTTP TXN Business Service

P WN

o WebApplet_OutputChildPropertySets
o WebApplet_OutputProperties

o WebApplet_OutputPropertySet

ORACLE

In Oracle’s Siebel Tools, navigate to the desired Applet object, in the Object Explorer.
Lock the project, if required.

Right-click and select the Edit Server Script option.
Add the following three functions, individually to the declarations section:

331

Siebel

Configuring Siebel Open Ul

Sample Code Functions

Sample code for the WebApplet_OutputChildPropertySets Function:

Chapter 8

Configuring Siebel Ul to Interact with Other Applications

function WebApplet OutputChildPropertySets (oPropertySet, nLevel, £p)

{

var oChildPropSet;
var nChild = 0;

Clib.

Clib

Clib.

if (
{

Clib.

}

else

{

for (nChild = 0;

{

oChildPropSet = oPropertySet.GetChild(nChild) ;
WebApplet OutputPropertySet (oChildPropSet, nLevel+l, fp);

}
}
}

Sample code for the WebApplet_OutputProperties Function:

function WebApplet OutputProperties (oPropertySet, nLevel , fp)

{

fputs (' ——-m——m o
.fputs ('CHILD PROPERTY SETS\n',fp);
fputs (' ——-mm o
oPropertySet.GetChildCount ()

fputs (' (NONE) \n', fp) ;

var strName;
var strValue;

Clib.

Clib.

fputs('------------
Clib. fputs (' PROPERTIES\n', fp);
fputs('----------"-"- -

= 0)

if (oPropertySet.GetPropertyCount() == 0)

{

Clib.

}

else

{

fputs (' (NONE) \n', £p) ;

strName = oPropertySet.GetFirstProperty();
while (strName != '"')

{

Clib.

fputs(strName + ' : ' + oPropertySet.GetProperty (strName) +

strName = oPropertySet.GetNextProperty () ;

}
}
}

(nChild <= oPropertySet.GetChildCount ()

Sample code for the WebApplet_OutputPropertySet Function:

function WebApplet OutputPropertySet (oPropertySet, nLevel, fp)

{

Clib.
Clib.
Clib.
Clib.
Clib.
Clib.
Clib.

fputs('-------- - - - -~ \n',£p);
fputs ('START' + ' ', fp);

fputs ('LEVEL : ' + nlLevel + '\n', f£fp);
fputs('---------—-—— -~ \n',£p);
fputs ('TYPE : ' + oPropertySet.GetType() + '\n', £p);
fputs ('VALUE : ' + oPropertySet.GetValue() + '\n', fp);

WebApplet_ OutputProperties (oPropertySet, nLevel, f£fp);

WebApplet OutputChildPropertySets (oPropertySet, nLevel, fp);
Clib.
Clib.
Clib.

fputs('--------------—
fputs ('END' + ' ', fp);
fputs ('LEVEL : ' + nLevel + '\n', £fp);

ORACLE

+£p) ;

; nChild++)

I\nl

+£p) ;

332

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Clib.fputs('---—————-————————————————— - \n',£p);
}

Adding Sample Code for Invoking Methods of the Business Service

The following procedure shows how to add sample code for invoking methods of the Web Engine HTTP TXN Business
Service.

To add sample code for invoking methods of Web Engine HTTP TXN Business Service

1. Add the code from Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service to the
WebApplet_InvokeMethod event.

Compile the project.

Start the Siebel application.

Navigate to the applet where the server script has been placed.

Perform an action on the applet that invokes a SWE method (for example, change the record or create a new
record).

A WN

The code generates a text file in the bin directory where the Siebel application is installed containing results of
each method of the Web Engine HTTP TXN Business Service.

Sample Output

The following is an excerpt of the resulting text file.

WebApplet InvokeMethod event:

Method: GetAllRequestCookies

TYPE : COOKIES
VALUE :

VALUE : 1

Max-Age : -1

Path :

333
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

END LEVEL : 0

TYPE : HEADERS
VALUE

HOST : <host computer name>

CACHE-CONTROL : no-cache

CONNECTION : Keep-Alive

COOKIE : SWEUAID=1

USER-AGENT : Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461; SV1; .NET
CLR 1.1.4322)

CONTENT-TYPE : application/x-www-form-urlencoded

ACCEPT-ENCODING : deflate

CONTENT-LENGTH : 348

SWEActiveView : Account List View
SWERowIds

SWEP :

SWESP : false

SWECmd : InvokeMethod

SWEMethod : PositionOnRow

SWER : 1

SWEControlClicked : 0
SWEIgnoreCtrlsShift : 0

SWEVI
SWEActiveApplet : Account List Applet
SWERPC : 1

SWEReqRowId : 1

SWEView : Account List View
SWEC : 3

SWERowId : 1-6

SWEShiftClicked : O

SWETS : 1118939959734

SWEApplet : Account List Applet

END LEVEL : O

334
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Sample Code for Invoking Methods of Web Engine HTTP TXN
Business Service

This topic contains the sample code for invoking the methods of the Web Engine HTTP TXN Business Service and
writing the results to a text file. For more information, see Example of Using Web Engine HTTP TXN Business Service.

Add the following sample code to the WebApplet_InvokeMethod event:

function WebApplet_ InvokeMethod (MethodName)

{

var fp = Clib.fopen('testfile.txt',6'a');

if (fp == null)

{

TheApplication () .RaiseErrorText (" ERROR Opening File ")
}

else

{

var oBS = TheApplication() .GetService ('Web Engine HTTP TXN') ;
var Inputs = TheApplication () .NewPropertySet() ;

var Outputs = TheApplication () .NewPropertySet() ;

var Headers = TheApplication () .NewPropertySet() ;

var Cookies = TheApplication () .NewPropertySet() ;

var tmpCookie = TheApplication () .NewPropertySet() ;

Clib. fputs (' \n',£p);
Clib. fputs ('WebApplet InvokeMethod event:\n', fp);
Clib. fputs (' \n',£p);

Clib.fputs('\n', £p);

Clib.fputs(’ \n', £p);
Clib. fputs ('Method: GetAllRequestCookies\n',fp);
Clib. fputs (' \n',£fp) ;

Inputs.Reset() ;

Outputs.Reset() ;

oBS.InvokeMethod ('GetAllRequestCookies', Inputs, Outputs);
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib.fputs('\n',£fp);

Clib. fputs (' \n', £p) ;
Clib. fputs ('Method: GetAllRequestHeaders\n',fp);
Clib. fputs (' \n', £fp) ;

Inputs.Reset() ;

Outputs.Reset() ;

oBS.InvokeMethod ('GetAllRequestHeaders', Inputs, Outputs);
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £fp);

Clib. fputs (' \n',£fp);
Clib. fputs ('Method: GetAllRequestParameters\n', fp);
Clib. fputs (' \n', £p);

Inputs.Reset() ;

Outputs.Reset() ;

oBS.InvokeMethod ('GetAllRequestParameters', Inputs, Outputs);
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £p);

335
ORACLE

Siebel
Configuring Siebel Open Ul

Clib. fputs (' \n', £p)
Clib. fputs ('Method: GetAllResponseCookies\n', fp);
Clib. fputs (' \n', fp)

Inputs.Reset() ;
Outputs.Reset() ;
oBS.InvokeMethod ('GetAllResponseCookies',
WebApplet OutputPropertySet (Outputs, 0, £p);

Clib.fputs('\n', £fp);

Clib. fputs (' \n', £p)
Clib. fputs ('Method: GetAllResponseHeaders\n', fp);
Clib.fputs (' \n', £p)

Inputs.Reset() ;
Outputs.Reset() ;

Chapter 8
Configuring Siebel Ul to Interact with Other Applications

’

’

Inputs, Outputs)

’

’

oBS.InvokeMethod ('GetAllResponseHeaders', Inputs, Outputs);

WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £fp);

Clib. fputs (' \n', £p)
Clib.fputs ('Method: GetAllServerVariables\n', fp);
Clib. fputs (' \n', £p)

Inputs.Reset() ;
Outputs.Reset() ;
oBS.InvokeMethod ('GetAllServerVariables',
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £p);

Clib. fputs (' \n', £p)
Clib. fputs ('Method: GetRequestCookies\n',£fp);
Clib. fputs (' \n', £p)

Inputs.Reset() ;
Outputs.Reset() ;

Inputs.SetProperty ('MY-COOKIE',
Inputs.SetProperty ('TestCookie',
Inputs.SetProperty ('TestlCookie',

')
')
')

oBS.InvokeMethod ('GetRequestCookies', Inputs, Outputs);
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £p);

Clib. fputs (' \n', £p)
Clib. fputs ('Method: GetRequestHeaders\n', fp);
Clib. fputs (' \n', fp)

Inputs.Reset() ;
Outputs.Reset() ;

Inputs
Inputs
Inputs
Inputs

.SetProperty
.SetProperty
.SetProperty
.SetProperty

('MyHEADER', '');
('"MY_TEST', '');
('CONTENT-TYPE', '');
('CONTENT-LENGTH', '');

oBS.InvokeMethod ('GetRequestHeaders', Inputs, Outputs);
WebApplet_ OutputPropertySet (Outputs, 0, £p);

Clib.fputs('\n', £fp);

Clib. fputs (' \n', fp)
Clib. fputs ('Method: GetRequestInfo\n', fp);
Clib. fputs (' \n', £p)

Inputs.Reset() ;

ORACLE

’

’

Inputs, Outputs);

’

’

’

’

’

’

336

Siebel

Configuring Siebel Open Ul

Outputs.Reset() ;

oBS.InvokeMethod ('GetRequestInfo',

Inputs, Outputs);

WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £p);

Clib. fputs ('
Clib. fputs ('Method: GetRequestParameters\n',fp);
Clib. fputs ('

Inputs.Reset() ;
Outputs.Reset() ;

Inputs.
Inputs.
Inputs.
Inputs.
Inputs.

SetProperty
SetProperty
SetProperty
SetProperty
SetProperty

('TestQstr',

')

('SWEActiveView',
('SWECmd', '');

('SWEMethod',
('TestParam',

')
O

O

Chapter 8
Configuring Siebel Ul to Interact with Other Applications

\n', £p);

\n',£fp) ;

oBS.InvokeMethod ('GetRequestParameters', Inputs, Outputs);
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £fp);

Clib. fputs ('
Clib.fputs('Method: GetResponseCookies\n', fp);
Clib. fputs ('

Inputs.

Reset () ;

Outputs.Reset() ;

Inputs.SetProperty ('My-Test-COOKIE',
Inputs.SetProperty ('_sn', '');
oBS.InvokeMethod ('GetResponseCookies',
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £p);

Clib. fputs ('
Clib. fputs ('Method: GetResponseHeaders\n', £fp);
Clib. fputs ('

Inputs.

')

Reset () ;

Outputs.Reset () ;

Inputs.SetProperty ('Content-Language',
Inputs.SetProperty ('MyHeader',

DF

')

\n',£fp) ;

\n', £p);

Inputs, Outputs);

\n', £p);

\n',£fp) ;

oBS.InvokeMethod ('GetResponseHeaders', Inputs, Outputs);
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £fp);

Clib. fputs ('

Clib.fputs ('Method: GetResponseInfo\n', fp);

Clib. fputs ('

Inputs.

Reset () ;

Outputs.Reset() ;

oBS.InvokeMethod ('GetResponseInfo',

Clib.fputs('\n', £fp);

Clib. fputs ('
Clib. fputs ('Method: GetServerVariables\n', £fp);
Clib. fputs ('

Inputs.

Inputs, Outputs) ;
WebApplet_ OutputPropertySet (Outputs, 0, £p);

Reset() ;

ORACLE

\n',£fp) ;

\n',£p);

\n', £p);

\n', £p);

337

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Outputs.Reset() ;

Inputs.SetProperty ('AUTH-USER-ID', '');
Inputs.SetProperty ('SERVER-NAME', '');

oBS.InvokeMethod ('GetServerVariables', Inputs, Outputs);
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £p);

Clib. fputs (' \n',£fp);
Clib. fputs ('Method: GetWebSessionInfo\n',£fp);
Clib. fputs (' \n', £p);

Inputs.Reset() ;
Outputs.Reset() ;

oBS.InvokeMethod ('GetWebSessionInfo', Inputs, Outputs);
WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £fp);

Clib. fputs (' \n', £p);
Clib.fputs('Method: SetResponseCookies\n', fp);
Clib. fputs (' \n', £p);

Inputs.Reset() ;
Outputs.Reset() ;

tmpCookie = null;
tmpCookie = TheApplication () .NewPropertySet() ;

tmpCookie.SetType ('My Test Cookie');

tmpCookie.SetValue ('Cookie Value for My Test_Cookie');
tmpCookie.SetProperty ('Max-Age', '23434343');
tmpCookie.SetProperty ('Domain', '.example.com');
tmpCookie.SetProperty ('Path', 'eapps/test/cookie/path');

Inputs.AddChild (tmpCookie) ;

tmpCookie = null;
tmpCookie = TheApplication() .NewPropertySet() ;

tmpCookie.SetType ('Another Cookie');
tmpCookie.SetValue ('Cookie Value for Another Cookie');
tmpCookie.SetProperty ('Max-Age', '23434343');
tmpCookie.SetProperty ('Domain', 'esales.example.com');
tmpCookie.SetProperty ('Path', 'esales/cookie/path');

Inputs.AddChild (tmpCookie) ;

oBS.InvokeMethod ('SetResponseCookies', Inputs, Outputs);

Clib.fputs('-------———————— === \n',£fp);
Clib. fputs ('Input Cookies\n', fp);
Clib. fPuts (' === —————mmmmmmmm oo \n',fp);

WebApplet OutputPropertySet (Inputs, 0, £fp);

oBS.InvokeMethod ('GetAllResponseCookies', Inputs, Outputs);

Clib.fputs ('—=—=———=—— = \n',£fp);
Clib. fputs ('Output Cookies\n', £fp);
Clib.fputs('—-—=—===———————— \n',£fp);

WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib. fputs('\n', £fp);

Clib. fputs (' \n', £p);
Clib.fputs('Method: SetResponseHeaders\n', £fp);
Clib. fputs (' \n',£p);

338
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

Inputs.Reset() ;
Outputs.Reset() ;

Inputs.SetProperty ('MyHeader', 'THIS is MyHeader');

oBS.InvokeMethod ('SetResponseHeaders', Inputs, Outputs);

Clib.fputs('---————--——————————————————————————— \n',£p);
Clib. fputs ('Input Headers\n', fp);
Clib.fputs ('-—=====———— - \n', £fp);

WebApplet OutputPropertySet (Inputs, 0, £p)

oBS.InvokeMethod ('GetAllResponseHeaders', Inputs, Outputs);

Clib.fputs('---———-—--——————————————————————————— \n',£p);
Clib. fputs ('Output Headers\n', fp);
Clib.fputs ('-—=====———— - \n', £fp);

WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib.fputs('\n', £p);

Clib.fputs (' \n', £p);
Clib. fputs ('Method: SetResponseInfo\n', fp);
Clib. fputs (' \n', £p);

Inputs.Reset();
Outputs.Reset() ;
Headers.Reset() ;
Cookies.Reset () ;

Headers.SetType ('HEADERS') ;

Headers.SetProperty ('ABC_RESPONSE HEADER1', 'RESPONSE HEADER1 Value') ;
Headers.SetProperty ('ABC_RESPONSE HEADER2', 'RESPONSE HEADER2 Value') ;
Headers.SetProperty ('ABC_RESPONSE_ HEADER3', 'RESPONSE_ HEADER3 Value');
Headers.SetProperty ('ABC_RESPONSE HEADER4', 'RESPONSE HEADER4 Value') ;
Inputs.AddChild(Headers) ;

Cookies.SetType ('COOKIES') ;

tmpCookie = null;
tmpCookie = TheApplication () .NewPropertySet() ;

tmpCookie.SetType ('My Test Cookie2');

tmpCookie.SetValue ('Cookie Value for My Test_ Cookie2');
tmpCookie.SetProperty ('Max-Age',6 '23434343');
Cookies.AddChild (tmpCookie) ;

tmpCookie = null;
tmpCookie = TheApplication () .NewPropertySet() ;

tmpCookie.SetType ('Another Cookie2');
tmpCookie.SetValue ('Cookie Value for Another Cookie2');
tmpCookie.SetProperty ('Max-Age', '23434343');
Cookies.AddChild (tmpCookie) ;

Inputs.AddChild (Cookies);

oBS.InvokeMethod ('SetResponseInfo', Inputs, Outputs);

Clib.fputs('---————--——————-————————————————————— \n',£p);
Clib. fputs ('Input Info\n', fp);
Clib.fputs ('-—=====———— - \n', £fp);

WebApplet OutputPropertySet (Inputs, 0, £fp);

oBS.InvokeMethod ('GetResponseInfo', Inputs, Outputs);

Clib.fputs('---—-——---—————————————————————————— \n',£p);
Clib. fputs ('Output Info\n', fp);
Clib.fputs ('-—=====———— - \n', £fp);

339
ORACLE

Siebel Chapter 8
Configuring Siebel Open Ul Configuring Siebel Ul to Interact with Other Applications

WebApplet OutputPropertySet (Outputs, 0, £fp);

Clib.fclose (fp) ;
}
}

340
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

9 Customizing Siebel Open Ul for Siebel
Mobile Disconnected

Customizing Siebel Open Ul for Siebel Mobile
Disconnected

This chapter describes how to customize Siebel Open Ul for Siebel Mobile Disconnected. It includes the following topics:
- Overview of Customizing Siebel Open Ul for Siebel Mobile Disconnected
- Doing General Customization Tasks for Siebel Mobile Disconnected
« Customizing Siebel Pharma for Siebel Mobile Disconnected Clients
« Customizing Siebel Service for Siebel Mobile Disconnected Clients

- Methods You Can Use to Customize Siebel Mobile Disconnected

Overview of Customizing Siebel Open Ul for Siebel
Mobile Disconnected

This topic describes an overview of customizing Siebel Open Ul for Siebel Mobile Disconnected. It includes the following
information:

« Operations You Can Customize When Clients Are Offline
« Operations You Cannot Customize When Clients Are Offline

« Process of Customizing Siebel Open Ul for Siebel Mobile Disconnected

Operations You Can Customize When Clients Are Offline

You can customize the following operations when the client is offline:

- Create, read, update, and delete parent objects and child objects.

Modify user interface behavior according to data characteristics, such as read only, required, and can invoke.
Siebel Open Ul uses the IsReadonly, IsRequired, and Canlnvoke methods to achieve this behavior.

You can customize the following items when the client is offline:
- Association applets
- Applet menu and applet menu items
- Pick applets
Picklists
- Static picklists

341
ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Error statuses

- Static drill downs

Expressions

- Searches

Operations You Cannot Customize When Clients Are Offline

You cannot customize the following operations when the client is offline:

Multivalue fields.
Multivalue groups.

Dynamic controls. A dynamic control is a type of control that Siebel Open Ul creates dynamically at run time.
The Siebel repository does not specify a dynamic control. For example, a view might contain a placeholder for a
control that Siebel Open Ul dynamically creates and displays at run time.

Dynamic drilldowns.

- Toggle applets.

Language-dependent code conversion to language-independent code. The Siebel Server does this conversion
during synchronization.

« Custom layout modification.

Effective dating. The Siebel EAl Adapter allows Siebel Open Ul to access effective dating data. Effective dating
data is data that identifies the start date and the end date for a field or link. A third-party application can
request and receive effective dating data from the Siebel application. For more information about effective
dating, see Overview: Siebel Enterprise Application Integration and Siebel Public Sector Guide .

- Siebel Application Response Measurement (SARM) usage.
- Siebel eScript or Siebel Visual Basic usage. Scripts that reside on the Siebel Server do not work in an offline

client, so you must migrate them to JavaScript that resides on the client. Some business service scripts do work
in offline clients.

Drilldown visibility. Siebel Open Ul comes predefined to use the visibility that the drill down definition specifies.
If this definition does not exist, or if it contains no values, then Siebel Open Ul uses the view to determine
drilldown behavior. If the view does not specify drilldown behavior, then Siebel Open Ul uses business
component visibility in the following order to determine drilldown behavior:

o SalesRep
o Personal
o Org

Numeric totals in applets. Some applets display the total for a series of numbers that reside in a column in a list
applet or for all records. Siebel Open Ul cannot display these totals while the client is offline.

- COM object usage, such as run-time events, data maps, or variable maps.
- Cascade delete.

- Search specification on a link.

- Sort specification that includes a date field.

User properties for various objects except for the user properties associated with items described in Operations
You Can Customize When Clients Are Offline.

342

ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Default applet menu items.

- Workflow processes.

- CreateRecord method.

New record creation from an association popup applet. Siebel Open Ul comes predefined to disable this
creation. You can customize Siebel Open Ul to enable it.

Note the following offline behaviors:

- Siebel Open Ul displays only the data that it downloads during a full download for any business component

field that it populates through a join that joins different tables.

If more than one business component references the same table, and if Siebel Open Ul modifies a business
component record for one of these business components, then it does not populate this modification to the
other business components until the user goes online and synchronizes the client with the Siebel Server.

If the Owner Delete property of a business component is set to TRUE, then the user cannot delete a record in
this business component even if this user owns or creates this record. This user must go online to the delete the
record. For more information about this property, see Siebel Object Types Reference .

Process of Customizing Siebel Open Ul for Siebel Mobile
Disconnected

It is recommended that you use the sequence of steps that this topic describes to customize Siebel Open Ul to use
a Siebel application in a Disconnected client. Siebel Pharma and Siebel Service are each an example of a Siebel
application. To view examples that use these steps, see Customizing Siebel Pharma for Siebel Mobile Disconnected
Clients and Customizing Siebel Service for Siebel Mobile Disconnected Clients.

To customize Siebel Open Ulfor Siebel Mobile Disconnected

1.

Configure the manifest, if necessary.

For more information, see Modifying Manifest Files for Siebel Mobile Disconnected.
Create a new JavaScript file or copy an existing one.

You must place all custom presentation models and physical renderers in a custom folder. For more information
about this folder, see Organizing Files That You Customize.

Register your custom JavaScript method or Siebel business service.

For more information, see Using Siebel Business Services or JavaScript Services to Customize Siebel CRM
Objects.

Add your custom code:

a. Declare your variables.

b. Use the CaninvokeMethod method to make sure Siebel Open Ul can call your custom method or business
service.

c. Specify the logic for your custom JavaScript method or Siebel business service.
d. Use InvokeMethod to call your custom JavaScript method or Siebel business service.

For more information, see Using Custom JavaScript Methods.
Test your modifications.

343

ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Doing General Customization Tasks for Siebel Mobile
Disconnected

This topic describes how to do general customization tasks for Siebel Mobile Disconnectedin Siebel Open UL. It includes
the following topics:

- Modifying Manifest Files for Siebel Mobile Disconnected

« Registering Methods to Make Sure Siebel Open Ul Runs Them in the Correct Sequence
Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects
Using Custom JavaScript Methods
Using Custom Siebel Business Services
Configuring Data Filters
Configuring Objects That Siebel Open Ul Does Not Display in Clients

« Configuring Error Messages for Disconnected Clients

« About Siebel Mobile Application Logging

Modifying Manifest Files for Siebel Mobile Disconnected

The cache manifest file specifies the resources that Siebel Open Ul must download to the disconnected client for offline
use. Each application uses a separate cache manifest file that uses the following format:

application_name.manifest
where:

- application_ name identifies the name of the Siebel application, such as Siebel Service for Mobile. Siebel Open
Ul converts this name to lower case and replaces each space that the name contains with an underscore. For
example, siebel_service_for_mobile.manifest IS the cache manifest file that Siebel Open Ul uses for Siebel
Service for Siebel Mobile Disconnected.

Manifest files reside in the following folder on the Mobile Web Client:

AI_INSTALL DIR\applicationcontainer_external\siebelwebroot\language code\siebel service for mobile.manifest
Siebel Open Ul includes only the cache manifest files that it requires to support the Siebel application that you deploy.

For more information about the 1anguage_code, see Languages That Siebel Open Ul Supports.

To modify manifest files for Siebel Mobile Disconnected

1. Add resources to the cache manifest file that your application uses, as necessary.

If your deployment requires custom resources to run an application offline, then you must add these resources
to the cache manifest file that this application uses. For example, assume you must configure Siebel Open Ul to
run Siebel Service for Siebel Mobile Disconnected so that it can download the following resources, and then use
them while the client is offline:

o my_style.css

344
ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

o my_image.png

o my_script.js
In this situation, you can create a file named my_cache.manifest that includes the following information:

CACHE MANIFEST
2012-4-27:v1
Explicitly cached 'master entries'.

CACHE:
files/my_style.css
images/my_image.png
scripts/my script.js

The cache manifest file must use the HTML 5 standard. This standard allows you to run a Perl script in Step 4
that merges your custom cache manifest files into the predefined application cache manifest files. Siebel Open
Ul includes this script starting with the Siebel CRM 8.1.1110 Quick Fix release.

Make a backup copy of the predefined manifest file that you must modify.
For example, siebel service for mobile.manifest. YOU modify this file in Step 4.

It is recommended that you do this backup because the script that you run in this task modifies the
siebel_service for_mobile.manifest file. You can use this backup if you encounter a problem when running this
script.

Open a Windows command line on the computer where the manifest files reside, and then navigate to the
following folder (if doing this task on the Siebel Server):

AI_ INSTALL DIR\applicationcontainer externall\siebelwebroot\language code

Enter the following command:

Perl mergemanifest.pl -s my cache.manifest-d application_name.manifest

where:

o my_cache.manifest specifies the source manifest file. If you do not include the -s switch, then Siebel Open
Ul uses the custom.manifest file, by default.

o application_name.manifest Specifies the destination manifest file. You must include the -d switch.

For example:

Perl mergemanifest.pl -s my cache.manifest -d siebel_service for mobile.manifest

This command merges the custom manifest file that you modified in Step 1into the predefined
siebel_service_for mobile.manifest file. Note the following:
o You must run this script any time you modify your cache manifest file or do an upgrade.
o You must make sure the source and destination files exist.

o This script adds the CACHE, NETWORK, and FALLBACK sections that reside in the
my cache.manifest, if they exist, to the end of the corresponding sections that reside in the

345

ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

siebel_service for_ mobile.manifest file. Your custom entries take precedence over the predefined Oracle
entries that reside in this file.

o If afile contains more than one CACHE section, NETWORK section, or FALLBACK section, then this script
merges these sections into one section. For example, if two CACHE sections exist, then this script merges
these CACHE sections into a single CACHE section. This merge does not modify the sequence where the
entries reside in the files.

o The script does not add duplicate entries to the destination file. If the merge results in duplicate entries,
then Siebel Open Ul removes the first duplicate from the destination file. It adds this removed entry to the
destination.log file that resides in the folder where the destination file resides.

o The script does not include empty lines in the destination file.

o This script creates the destination .log file every time it runs.

o If the script finishes the merge, and if the result of this merge is identical to the destination file, then the
script does not update the destination file, and the destination file retains its original timestamp.

Registering Methods to Make Sure Siebel Open Ul Runs Them in
the Correct Sequence

Siebel Mobile Disconnected uses a local database, which is a database that resides in the browser that stores the data
that Siebel Open Ul requires.

To register methods to make sure Siebel Open Ul runs them in the correct sequence

1.

N

On the client computer, use a JavaScript editor to open the file that includes the business service call that you
must modify.
For more information, see Using Custom JavaScript Methods.
Locate the code that includes the business service call that you must modify.
You can use the ExecuteQuery and FirstRecord methods. Assume you locate the following code in Step 2:
business_service.prototype.Submit = function () {
retObj = bc.ExecuteQuery() ;
err = retObj.err;
if('err){
retObj = bc.FirstRecord() ;
if ('retObj.err) {
//Do an operation here that sets the return value to bRet
return ({err:false,retVal:bRet}) ;
}
}
else({
SiebelApp.S App.OfflineErrorObject.SetErrorMsg("messageKey", errParamArray) ;
return ({err:true});
}
};

o where business_service identifies the name of the business service that your custom code calls. For
example, PharmaCallSubmitsvc.
For more information, see SetErrorMsg Method, FirstRecord Method and ExecuteQuery Method.
In this example, you replace the code that you located in Step 2 with the following code:
PharmaCallSubmitsvc.prototype.Submit = function () {

346

ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

var currRetValue={err:false}, retObj;
retObj=bc.ExecuteQuery () ;

err = retObj.err;

if ('err) {

retObj=bc.FirstRecord() ;

if ('retObj.err) {

//Do an operation here that sets the return value to bRet
currRetValue={err:false,retVal:bRet};

}

}

else(
SiebelApp.S_App.OfflineErrorObject.SetErrorMsg ("messageKey", errParamArray) ;
currRetValue={err:true};

}

return currRetValue;

}s

Using Siebel Business Services or JavaScript Services to
Customize Siebel CRM Objects

This topic describes how to use a Siebel business service or a JavaScript service to customize a predefined, Siebel CRM
applet or business component.

Customizing Predefined Business Components

The example in this topic describes how to register and call a custom JavaScript method that customizes a predefined
business component. You must configure Siebel Open Ul to register a custom method before Siebel Open Ul can call it.

To customize predefined business components

1. Use a JavaScript editor to create a new JavaScript file.

2. Specify the input properties that Siebel Open Ul must send to the ServiceRegistry method.
The ServiceRegistry method uses input properties to register your custom method. For more information, see
Properties You Must Include to Register Custom Business Services.
You add the following code:

a.

Create the namespace for the JavaScript class. In this example, you create a namespace for the
pharmacallsvc class:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") ({
SiebelJS.Namespace ('SiebelApp.pharmacallsvc') ;
Define the variables:
var oconsts = SiebelApp.Offlineconstants;
var inputObj = {};
Specify the business component where Siebel Open Ul applies your customization. In this example, you
specify the Pharma Professional Call - Mobile business component:
inputObj [oconsts.get ("DOUIREG_OBJ NAME")] = "Pharma Professional Call - Mobile";

Specify the type of object that you are customizing. In this example, you are customizing a business
component:

347

ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

inputObj [oconsts.get ("DOUIREG_OBJ TYPE")] =
oconsts.get ("DOUIREG_OBJ_TYPEBUSCOMP"),

e. Specify the name of the predefined method that you are customizing. In this example, you are
customizing the WriteRecord method:

inputObj [oconsts.get ("DOUIREG_OBJ MTHD")] = "WriteRecord";

f. Specify the name of the JavaScript class where the method you are customizing resides. In this example,
this method resides in the pharmacallsvc class:

inputObj [oconsts.get ("DOUIREG_SRVC _NAME")] = "pharmacallsvc";

g. Specify the name of the custom service method that contains the customization of the WriteRecord
method:

inputObj [oconsts.get ("DOUIREG_SRVC MTDH")] = "WriteRecord";
h. Specify the type of customization:
inputOb]j [oconsts.get ("DOUIREG_EXT TYPE")] = oconsts.get ("DOUIREG_EXT TYPEPRE") ;
3. Register the custom JavaScript method that you specified in Step 2. This code calls the ServiceRegistry method:
SiebelApp.S_App.GetModel () .ServiceRegistry (inputObj) ;
4. Define the constructor:
SiebelApp.pharmacallsve = (function () {
function pharmacallsvc() {
}
5. Extend the custom JavaScript class:
SiebelJS.Extend (pharmacallsvc, SiebelApp.ServiceModel) ;
6. Specify the custom WriteRecord method:
pharmacallsvc.prototype.WriteRecord = function (psInputArgs) {//get the inputs
var psOutArgs = SiebelApp.S_App.NewPropertySet() ;
return psOutArgs;//return the outputs
i;turn pharmacallsvc;

}O):

}

The custom method must include your customization logic. This code gets the property set from the
predefined WriteRecord method and uses it as input to your custom WriteRecord method. The custom
WriteRecord method then returns an output property set to the predefined WriteRecord method.

The following code is the completed code for this topic:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") {
SiebelJS.Namespace ('SiebelApp.pharmacallsve') ;

var oconsts = SiebelApp.Offlineconstants;

var inputObj = {};

348
ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

inputObj [oconsts.get ("DOUIREG_OBJ NAME")] = "Pharma Professional Call - Mobile";
inputObj [oconsts.get ("DOUIREG OBJ_TYPE")] =
oconsts.get ("DOUIREG OBJ_TYPEBUSCOMP") ;

inputObj [oconsts.get ("DOUIREG_OBJ MTHD")] = "WriteRecord";

inputObj [oconsts.get ("DOUIREG_SRVC NAME")] = "pharmacallsvc";

inputOb]j [oconsts.get ("DOUIREG_SRVC_MTDH")] = "WriteRecord";

inputObj [oconsts.get ("DOUIREG_EXT TYPE")] = oconsts.get ("DOUIREG_EXT TYPEPRE") ;
SiebelApp.S_ App.GetModel () .ServiceRegistry (inputObj) ;

SiebelApp.pharmacallsve = (function () {

function pharmacallsvc() {

}

SiebelJS.Extend(pharmacallsvc, SiebelApp.ServiceModel) ;
pharmacallsvc.prototype.WriteRecord = function (psInputArgs) {//get the inputs
var psOutArgs = SiebelApp.S_App.NewPropertySet() ;

return psOutArgs;//return the outputs

}i

return pharmacallsvc;

P} O):

}

If you want Siebel Open Ul to anonymously register existing applet and business component objects you can
use anonymous registration. This allows administrators to have a common customization across all applets or
all business components.

For example, in order to have the ability to print or click on a specific button in any applet, the following
registration will give the handle of invoke a method in any applet, because the ObjectName is deliberately
omitted:

inputArgs[oconsts.get ("DOUIREG_OBJ NAME")] = "";
inputArgs[oconsts.get ("DOUIREG_OBJ_TYPE")]=oconsts.get ("DOUIREG_OBJ TYPEAPPLET") ;

inputArgs[oconsts.get ("DOUIREG_OBJ MTHD")] = "InvokeMethod";
inputArgs[oconsts.get ("DOUIREG_SRVC_NAME")] = "CustomDMService";
inputArgs[oconsts.get ("DOUIREG_SRVC_MTDH")] = "InvokeMethodPrint";

inputArgs[oconsts.get ("DOUIREG_EXT TYPE")] = oconsts.get("DOUIREG_EXT TYPEPRE") ;

In this case, InvokeMethodPrint will be called for all applets as PRE whenever InvokeMethod is called for any
applet.

Customizing Predefined Applets

The example in this topic registers a custom method that customizes a predefined applet. The work you do in this topic
is very similar to the work you do in Customizing Predefined Business Components. The only difference occurs when you
specify the input object for the applet and the type of object.

To customize predefined applets

- Do Step 1through Step 6 in the topic Customizing Predefined Business Components with the following

differences:

o For Step 2, Step ¢, in the topic Customizing Predefined Business Components specify the applet where
Siebel Open Ul applies your customization. In this example, you specify the Pharma Call Entry Mobile
applet:

inputObj [oconsts.get ("DOUIREG_OBJ NAME")] = "Pharma Call Entry Mobile";

o For Step 2, Step d, in the topic Customizing Predefined Business Components specify the type of object
that you are customizing. You specify an applet instead of a business component:

inputObj [oconsts.get ("DOUIREG_OBJ TYPE")] =

349

ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

oconsts.get ("DOUIREG_OBJ_ TYPEAPPLET") ;

The following code is the completed code for this topic:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") ({
SiebelJS.Namespace ('SiebelApp.pharmacallsvce') ;

var oconsts = SiebelApp.Offlineconstants;

var inputObj = {};

inputObj [oconsts.get ("DOUIREG_OBJ NAME")] = "Pharma Call Entry Mobile";
inputObj [oconsts.get ("DOUIREG_OBJ TYPE")]
oconsts.get ("DOUIREG_OBJ_ TYPEAPPLET") ;

inputObj [oconsts.get ("DOUIREG_OBJ MTHD")] = "InvokeMethod";
inputObj [oconsts.get ("DOUIREG_SRVC_NAME")] = "pharmacallsvc";
inputObj [oconsts.get ("DOUIREG_SRVC MTDH")] = "InvokeMethod";

inputObj [oconsts.get ("DOUIREG_EXT TYPE")] = oconsts.get ("DOUIREG_EXT TYPEPRE") ;
SiebelApp.S_App.GetModel () .ServiceRegistry (inputObj) ;

SiebelApp.pharmacallsve = (function () {

function pharmacallsvc() {

}

SiebelJS.Extend (pharmacallsvc, SiebelApp.ServiceModel) ;
pharmacallsvc.prototype.InvokeMethod = function (psInputArgs) {//get the inputs
var psOutArgs = SiebelApp.S_App.NewPropertySet() ;

return psOutArgs;//return the outputs

}i

return pharmacallsvc;

PO);
}

Using Custom JavaScript Methods

The example in this topic describes how to call a custom JavaScript method that does not customize a predefined
method. Siebel Open Ul does not require you to register a custom JavaScript method. Instead, you configure Siebel
Open Ul to do the following work:

- Override the InvokeMethod to call your custom method.

- Override the CaninvokeMethod method to enable or disable your custom method.

The offline_predefined_js_call_example.js file contains the code that this example describes. To get a copy of this file,
see Article ID 1494998.1 on My Oracle Support.

To use custom JavaScript methods

1.
2.

Use a JavaScript editor to create a new JavaScript file.
Register the InvokeMethod and CanlnvokeMethod methods. You add the following code:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") ({
SiebelJS.Namespace ('SiebelApp.pharmacallsve') ;

var inputObj = {};

var oconsts = SiebelApp.Offlineconstants;

inputObj[oconsts.get ("DOUIREG_OBJ _NAME")] = "Pharma Call Entry Mobile";
inputObj[oconsts.get ("DOUIREG_OBJ_ TYPE")]
oconsts.get ("DOUIREG_OBJ_ TYPEAPPLET") ;

inputObj[oconsts.get ("DOUIREG_OBJ MTHD")] = "CanInvokeMethod";
inputObj[oconsts.get ("DOUIREG_SRVC NAME")] = "pharmacallsvc";
inputObj[oconsts.get ("DOUIREG_SRVC _MTDH")] = "CanInvokeMethod";

inputObj[oconsts.get ("DOUIREG_EXT TYPE")] = oconsts.get ("DOUIREG_EXT TYPEPRE") ;
SiebelApp.S_App.GetModel () .ServiceRegistry (inputObj) ;
inputObj[oconsts.get ("DOUIREG_OBJ NAME")] = "Pharma Call Entry Mobile";

350

ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected
inputObj[oconsts.get ("DOUIREG_OBJ TYPE")] =
oconsts.get ("DOUIREG_OBJ_TYPEAPPLET") ;
inputObj[oconsts.get ("DOUIREG_OBJ MTHD")] = "InvokeMethod";
inputObj[oconsts.get ("DOUIREG_SRVC _NAME")] = "pharmacallsvc";
inputObj[oconsts.get ("DOUIREG_SRVC MTDH")] = "InvokeMethod";
inputObj[oconsts.get ("DOUIREG_EXT TYPE")] = oconsts.get ("DOUIREG_EXT TYPEPRE") ;
SiebelApp.S_App.GetModel () .ServiceRegistry (inputObj) ;
SiebelApp.pharmacallsve = (function () {
function pharmacallsvc(pm) {
}
SiebelJS.Extend (pharmacallsvc, SiebelApp.ServiceModel); //Extending
pharmacallsvc.prototype.InvokeMethod = function (psInputArgs) {
var svcMthdName = "";
var psOutArgs = SiebelApp.S_App.NewPropertySet() ;
For more information about this code, see the description about the inputObj argument in ServiceRegistry
Method. Also see CaninvokeMethod Method and Using Siebel Business Services or JavaScript Services to
Customize Siebel CRM Objects.
3. Get the value of the MethodName argument from the psinputArgs method:
svcMthdName = psInputArgs.GetProperty ("MethodName") .toString() ;
4. Call the Submit method:
if (svcMthdName === "Submit") {
retObj=this.Submit () ;
5. Do one of the following:

o If InvokeMethod handles the submit call that you define in Step 4, then you use the following code to set
the Invoked property to true:

if ('retObj.err) {

psOutArgs.SetProperty ("Invoked", true);
currRetValue=({err: "", retVal: psOutArgs});

}

else {

psOutArgs.SetProperty ("Invoked", true);
currRetValue=({err: retObj.err, retvVal: psOutArgs});
}

})

return currRetValue;}

o If InvokeMethod does not handle the submit call that you define in Step 4, then you must use the
following code to configure Siebel Open Ul to set the Invoked property to false. This code is required for
any InvokeMethod method that you configure Siebel Open Ul to override:

else {
psOutArgs.SetProperty ("Invoked", false);
currRetValue=({err: "", retVal: psOutArgs});

}

return (currRetValue) ;

Y

o If the current, overridden CanlnvokeMethod Method handles the submit call that you define in Step
4, then you must set the Invoked property to true. Siebel Open Ul includes the return value in the
RetVal property for the method from CanlnvokeMethod. You can set this method according to your
requirements:

pharmacallsvc.prototype.CanInvokeMethod = function (psInputArgs) ({
var currRetValue={err:false}, retObj;

351

ORACLE

Siebel
Configuring Siebel Open Ul

var psOutArgs = SiebelApp.S_App.NewPropertySet() ;

var svcMthdName = "";

svcMthdName = psInputArgs.GetProperty ("MethodName") .toString() ;

if (svcMthdName === "Submit") {
psOutArgs.SetProperty ("Invoked", true);
psOutArgs.SetProperty ("Retval", true);
currRetValue=({err: "", retVal: psOutArgs});
}

Chapter 9

Customizing Siebel Open Ul for Siebel Mobile Disconnected

6. If the current, overridden CaninvokeMethod method does not handle the submit call, then use the following

code to set the Invoked property to false:

else {

psOutArgs.SetProperty ("Invoked", false);
psOutArgs.SetProperty ("RetvVal", false);
currRetValue=({err: "", retVal: psOutArgs});
}

return (currRetValue) ;

};

pharmacallsvc.prototype.Submit= function (psInputArgs) {

var psOutArgs = SiebelApp.S_App.NewPropertySet() ;
return (psOutArgs) ;

}i

return pharmacallsvc;

P} O):

Using Custom Siebel Business Services

This topic describes how to call a Siebel business service that you customize. You must configure Siebel Open Ul to

register this business service before Siebel Open Ul can call it.

To use custom Siebel business services

1. Use a JavaScript editor to create a new JavaScript file.

2. Register your custom business service. You add the following code:

var inputObj = {};

inputObj[oconsts.get ("DOUIREG_OBJ NAME")]= "business_service";

inputObj[oconsts.get ("DOUIREG_SRVC NAME")] = "class";
SiebelApp.S_App.GetModel () .ServiceRegistry (inputObj) ;

where:

business_service identifies the name of a custom business service.

class identifies the JavaScript class that the custom business service references.

For example:

if (typeof (SiebelApp.PharmaCallValidatorsvc) === "undefined")
SiebelJS.Namespace ('SiebelApp.PharmaCallValidatorsve') ;

var oconsts = SiebelApp.Offlineconstants;
var inputObj = {};

inputObj[oconsts.get ("DOUIREG_OBJ NAME")]= "LS Pharma Validation Service";
inputObj[oconsts.get ("DOUIREG_SRVC NAME")] = "PharmaCallValidatorsvc";

SiebelApp.S_App.GetModel () .ServiceRegistry (inputObj) ;

ORACLE

{

’

352

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

3.

SiebelApp.PharmaCallValidatorsve = (function () {

function PharmaCallValidatorsvec() {
SiebelApp.PharmaCallValidatorsvc.superclass.constructor.call (this) ;
}

SiebelJS.Extend (PharmaCallValidatorsvc, SiebelApp.ServiceModel) ;

For more information about the methods that this step uses, see the following topics:

- Properties You Must Include to Register Custom Business Services

- ServiceRegistry Method

- Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects
Use CanlnvokeMethod to determine if Siebel Open Ul can call your custom business service method.

For example, the following code determines if Siebel Open Ul can call the CallValidate business service method:

PharmaCallValidatorsvc.prototype.CanInvokeMethod = function (svcMthdName) {
var currRetValue={err:false}, retObj;

if (svcMthdName === "CallValidate") {

currRetValue={ err: false, retVal: true };

return currRetValue;

}

else {

return SiebelApp.PharmaCallValidatorsvc.superclass.CanInvokeMethod.call (this,
svcMthdName) ;

}

}i

For more information about the methods that this step uses, see CaninvokeMethod Method.

Depending on whether you want to make a call from service to service, or to a standalone service, use one of
the following methods:

a. To make a call from one service to another service, use InvokeMethod. This method will call your custom
business service method.

For example, the following code calls the CallValidate business service method:

PharmaCallValidatorsvc.prototype.InvokeMethod = function (svcMthdName,
psinpargs) {

var currRetValue={err:false}, retObj;

var psOutArgs = SiebelApp.S_App.NewPropertySet() ;

if (!svcMthdName) {

currRetValue=({err: "", retVal: true});

return currRetValue;

}

if (svcMthdName === "CallValidate") {

retObj=this.CallValidate (psinpargs) ;

psOutArgs = retObj.retval;

this.CleanUp() ;

currRetValue=({err:false,retVal:psOutArgs}) ;

return currRetValue;

}

else {

return
SiebelApp.PharmaCallValidatorsvc.superclass.InvokeMethod.call (this,
svcMthdName, psinpargs) ;

}

}

PharmaCallValidatorsvc.prototype.CallValidate = function (psinpropset) {
var currRetValue={err:false}, retObj;

353

ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

var psOutArgs = SiebelApp.S_App.NewPropertySet() ;
//Some Logic
currRetValue=({err:false,retVal:psOutArgs}) ;
return currRetValue;

};

}s

return PharmaCallValidatorsvc;

PO
}

b. To make a call to a standalone service use the InvokeMethod method. Use the Client- Service Call
method to customize the disconnected mobile client. This allows a service call to be made from the client,
typically from a physical model.

The call from any other service file must be done as follows:

var service = SiebelApp.S App.GetService ("LS Pharma Validation Service") ;var
outputSet = service.Invoke("CallValidate", psPropertySet) ;

For example, the following code enables you to display the total number of products detailed in the
tooltip. This would be the call from the physical model:

var service = SiebelApp.S App.GetService ("LS Pharma Validation Service");
var inPropSet = SiebelApp.S_App.NewPropertySet() ;

if (service) {

retObj=currRetValue=service.InvokeMethod ("CountPDMethod", inPropSet) ;
var outPropSet = retObj.retval;

}

In online mode, the call is to the standalone business service in a server, whereas in offline mode, this
invokes the standalone offline business service code.

For example, the following code is for the Sample Offline service:

PharmaCallValidatorsvc.prototype.CanInvokeMethod = function (svcMthdName) ({
var currRetValue={err:false}, retObj;

if (svcMthdName === " CountPDMethod") {

currRetValue={ err: false, retVal: true };

return currRetValue;

}

else {

return
SiebelApp.PharmaCallValidatorsvc.superclass.CanInvokeMethod.call (this,
svcMthdName) ;

}

};

PharmaCallValidatorsvc.prototype.InvokeMethod = function (svcMthdName,
Inputs) {

var currRetValue={err:false}, retObj;

var psOutArgs = CCFMiscUtil CreatePropSet() ;

if (svcMthdName === " CountPDMethod") {

var BO = SiebelApp.S_App.GetBusObject ("Pharma Professional Call -
Mobile") ;

var PDBC = BO.GetBusComp ("Pharma Call Products Detailed") ;

PDBC.SetSearchExpr("[Activity Id] = '" + Inputs.GetProperty("Id") +

")
retObj=currRetValue=PDBC.ExecuteQuery () ;
retObj=currRetValue=PDBC.FirstRecord() ;
var result = PDBC.CountRecords() ;
Outputs.SetProperty ("OutputText", result) ;
}

354
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

For more information about the methods that this step uses, see the following topics:

« Invoke Method for Business Services
« InvokeMethod Method for Applets

Configuring Data Filters

It is recommended that you configure filters to reduce the amount of business component data that Siebel Open Ul
must download to do offline operations. Siebel Open Ul comes predefined with a number of data filters. You can modify
these filters. For more information about how to modify them, see the chapter about working with data filters in Siebel
Mobile Guide: Disconnected .

Configuring Objects That Siebel Open Ul Does Not Display in
Clients

The Handheld Business Service only downloads fields, business component data, and business object data that Siebel
Open Ul displays in the client. You must configure Siebel Open Ul to download these objects that it does not display

in the client. To do this, you use the Settings tab of the Mobile Application view in the Administration - Siebel Remote
screen in the administrative client. For more information, see the topic that describes configuring application settings in
Siebel Mobile Guide: Disconnected .

Configuring Error Messages for Disconnected Clients

This topic describes how to configure Siebel Open Ul to use the SetErrorMsg method in your custom code to return and
display a custom error message in a disconnected client.

To configure error messages for disconnected clients

1. Use an editor to open the file that calls a custom applet, business component, or business service.
This is the same file that you create in Using Siebel Business Services or JavaScript Services to Customize Siebel
CRM Objects.

2. Locate the code that might return an error message.
For example, assume your deployment includes the following code, and that this code calls a method that
might return an error message:

BusComp .prototype.Caller = function ()
var currRetValue={err:false}, retObj;
retObj=currRetValue=this.Called() ;

In this example, the Called method might return an error message. It calls the Caller method. These methods
might reside in different locations in a production environment.
3. Add the following code to the code that you located in Step 2:

//Check for any errors

355
ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

where:

if (retObj.err) {

currRetValue=retObj;

}

else({

//Positive case
currRetValue={err:false,retVal:false};
}

3

return currRetValue;

}

This code determines whether or not the Called method returns an error message. If it:
o Returns an error message, then this code calls the return value to some error.

o Does not return an error message, then the following code sets the err return value to null:

currRetValue={err:false,retVal :false};

Add the following code to the code that you located in Step 3:

BusComp .prototype.Called = function () {

var currRetValue={err:false}, retObj;

var errParamArray = [];

errParamArray.push(valuel, valueN)
SiebelApp.S_App.OfflineErrorObject.SetErrorMsg ("messageKey", errParamArray) ;
currRetValue={err:"AppropriateErrorCode" ,retVal:false};

valuelis a property that Siebel Open Ul sends to the SetErrorMsg method. You can configure Siebel Open Ul to
send up to eight properties.

messageKey is a key that Siebel Open Ul maps to the message string that it displays.
For more information, see SetErrorMsg Method.
In this example, the following code calls the SetErrorMsg method:

SiebelApp.S_App.OfflineErrorObject.SetErrorMsg ("AppropriateErrorCode",
errParamArray) ;

The following code makes sure Siebel Open Ul returns an err value. This value contains the error code:

currRetValue = {err:"AppropriateErrorCode",retVal:false};
return currRetValue;

The following code is the completed code that this example uses:

BusComp .prototype.Caller = function ()
var currRetValue={err:false}, retObj;
retObj=currRetValue=this.Called() ;
//Check for any errors
if (retObj.err) {
currRetValue=(retObj) ;

}

else({

//Positive case
currRetValue={err:false,retVal :false};

}

356

ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

return currRetValue;

}
BusComp .prototype.Called = function () {

var currRetValue={err:false}, retObj;

var errParamArray = [];

errParamArray.push (fieldName) ;
SiebelApp.S_App.OfflineErrorObject.SetErrorMsg ("ErrorCode", errParamArray) ;
currRetValue={err: "AppropriateErrorCode" ,retVal:false};

return currRetValue;

where:

ErrorCode identifies a messageKey. Siebel Open Ul gets the message text for the message key from the
swemessages_language_code.js file that resides in an local folder. For example, swemessages_enu.js. For more
information about the language_code, see Languages That Siebel Open Ul Supports.

- fieldName identifies the name of a business component field. This field contains the values that Siebel Open
Ul displays in the error message. For example, the predefined BCErrNoSuchField message key includes the
following message text in the swemessages_enu.js file:

"Field '%1' not found in BusComp."

SetErrorMsg replaces %1 with the value that Siebel Open Ul passes in the errParamArray. For example:

errParamArray.push ("Name") ;
SiebelApp.S_App.OfflineErrorObject.SetErrorMsg ("BCErrNoSuchField",errParamArray)

In this example, Siebel Open Ul replaces "%1" with the value Name:

"Field 'Name' not found in BusComp."

About Siebel Mobile Application Logging

Users can enable logging for Siebel Mobile applications on their devices. For information about Siebel Mobile
Application logging, see Siebel Mobile Guide: Disconnected .

Customizing Siebel Pharma for Siebel Mobile
Disconnected Clients

This topic includes an example of customizing Siebel Pharma in Siebel Open Ul for display in a Siebel Mobile
Disconnected client. For more information about the functionality that these customizations modify, see the chapter
that describes how to use the Siebel Mobile Disconnected Application for Siebel Pharma in Siebel Mobile Guide:
Disconnected .

This topic customizes Siebel Pharma to submit a Pharma Call record depending on whether or not Siebel Open Ul
already submitted this call. It makes sure Siebel Open Ul does not overwrite a call that it already submitted to the Siebel
Server. To submit a call in Siebel Pharma, the user must do the following work:

Enter all information for the call.
- Add at least one sample for the call.

357
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

- Get the required signature for the samples that the call includes.
- Set the status for the call to Planned or Signed.
- Tap Submit.

Siebel Pharma locks a call after it submits this call, and then the user can no longer edit or update the call. You can
modify some of this behavior. For more information about the work you do in this topic, see Process of Customizing
Siebel Open Ul for Siebel Mobile Disconnected. For more information about the methods that this example uses, see
Methods You Can Use to Customize Siebel Mobile Disconnected.

To customize Siebel Pharma for Siebel Mobile Disconnected clients

1. Create a new JavaScript file.

You can use any file name that is meaningful to your deployment. For example, you can use a short name
that indicates what the business service accomplishes. It is recommended that the file name end with svc.js or
service.js. For example, callsvc.js. To get a copy of this file, see Article ID 1494998.1 on My Oracle Support. For
more information about the folders you can use to store your customizations, see Organizing Files That You
Customize.

2. Add the following code:

SiebelApp.pharmacallsve = (function () {

function pharmacallsvc(pm) {

}

SiebelJS.Extend (pharmacallsvc, SiebelApp.ServiceModel) ;

This code adds the pharmacallsvc method to the pharmacallsvc business service.
3. Specify the logic for your method.
4. Add the following code immediately after the code you added in Step 3:

pharmacallsvc.prototype.InvokeMethod = function (psInputArgs) ({
var currRetValue={err:false}, retObj;

var svcMthdName = "";

var psOutArgs = SiebelApp.S_App.NewPropertySet() ;

svcMthdName = psInputArgs.GetProperty ("MethodName") .toString() ;
if (svcMthdName === "Submit") {
retObj=currRetValue=this.Submit () ;

psOutArgs.SetProperty ("Invoked", true);

currRetValue={err: false, retVal: psOutArgs};

}
return currRetValue;

}i

This code configures Siebel Open Ul to run InvokeMethod on the business service if the svcMthdName variable
that you defined in Step 3 contains a value of Submit.

5. Define the method that includes your customization logic. You add the following code immediately after the
code you added in Step 4:

pharmacallsvc.prototype.Submit = function () {

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_ App.GetModel () ;

var pBusObj = model.GetBusObject ("boName") ;

var pBusComp = pBusObj.GetBusComp ("bcName") ;

var now = new Date() ;

var strStatusField = pBusComp.GetUserProperty ("Status Field");

var pickName =
SiebelApp.S_App.GetActiveView () .GetActiveApplet () .GetControl ("Status") .GetPickAppl
et();

358
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

retObj=currRetValue=pBusComp.SetFieldValue (strStatusField, "submit", true);
retObj=currRetValue=pBusComp.WriteRecord() ;
return currRetValue;

}

This code defines the Submit method. It sets the value for the Status field to Submitted. It uses the following
methods:

o BusComp Method for Applets
o SetFieldValue Method
o WriteRecord Method
o GetActiveView Method
6. Test your modifications:

a. Tap Calls on the application banner to display the Calls list.
b. Tap a callin the list that you know you have not submitted, and then tap Submit to submit the call.
c. Verify that Siebel Open Ul does the following:

- Modifies the call status to Submitted.
- Locks the call

- Decreases the sample inventory for the sales representative according to the samples and
promotional items that the call dropped off

- Closes the call.
- Allows you to review, but not edit the call details.
d. Tap a callin the list that you know you have already submitted, and then tap Submit to submit the call.

Make sure Siebel Open Ul does not overwrite this call. Make sure it displays a dialog box that describes
that you have already submitted this call.

Configuring Interactive Detailing in the Siebel Open Ul Application
for Siebel Pharma

Configuring interactive detailing involves configuring the Detail button to appear on an applet in the application. By
default, the Detail button appears only for Calls in the Siebel Open Ul application for Siebel Pharma. Selecting the
Detail button starts the eDetailer player which is used to deliver personalized content to customers, to demonstrate
information about products to customers, and to obtain feedback from customers about product presentations and
personalized content delivered. For more information about using the eDetailer player in the Siebel Open Ul application
for Siebel Pharma, see Siebel Mobile Connector Guide .

Configuring the Detail Link - Scenario 1: Using New Data Map Object to Capture
Customer Feedback

The following procedure shows you how to configure the Detail link for Contacts in the Siebel Open Ul application for
Siebel Pharma, but you follow the same procedure if configuring the Detail link for any other applet in the application. In
the following procedure, you configure a new data map object (EdetailingContact) to create the Activity and Response
record to capture customer feedback.

To configure the Detail link for Contacts in the Siebel Open Ul application for Siebel Pharma

1. Create a new Detail button control and drilldown in the Contact Form Applet in Siebel Tools:

359
ORACLE

Siebel

Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected
a. Open Siebel Tools.
For more information, see Using Siebel Tools .
In the Object Explorer, click Applet.
C.

In the Applets list, query the Name property for the Contact Form Applet.
d. Create a new Detail button control:

- Inthe Object Explorer, expand the Contact Form Applet, and then Control.
- Inthe Controls list, create a new button control using values from the following table.

Property Value

Name EdetailerButton

Caption Detail

Method Invoked ShowEdetaillerPreviewView

This method handles the related view navigation and data for the Detail link
(eDetailer player). ShowEdetailerPreviewView is a new LS PCD Service for delivering
personalized content in the Life Sciences industry. Note that if Siebel Tools does not
display the Method Invoked in the list, then type it in manually.

e. Define user properties for the Detail button:
- Inthe Object Explorer, expand the Controls tree, and then click Business Component User Prop.

- If you are invoking the business service method Named Method, then the user property value for
Named Method is as follows:

User Property Name Value

Named Method 1 "ShowEdetailerPreviewView", "INVOKESVC", "Contact", "LS PCD Service",
"ShowEdetailerPreviewView", "DrilldownName", "Edetailer Drilldown",

"EdetailerDatamapObj", "EdetailingContact", "CreateBookmark", "true", "'Objectld",
"Mid]"

- Create input arguments for Named Method with the values shown in the following table.

Property Name Value Purpose
DrilldownName Edetailer Navigates to the eDetailer player view.
Drilldown

360
ORACLE

Siebel
Configuring Siebel Open Ul

Property Name

EdetailerDatamapObj

CreateBookmark

Objectld

Value

Chapter 9
Customizing Siebel Open Ul for Siebel Mobile Disconnected

Purpose

EdetailingContact = Triggers the creation of activities, and the

TRUE

feedback capture page when finished showing
the presentation.

Navigates back to the originating view (for
example, Contact) when done showing the
presentation.

Row Id of current = Used to log the response captured to the

record

appropriate contact or account call.

f. Add a new drilldown object for the Detail button control:

- Inthe Object Explorer, expand the Contact Form Applet, and then Drilldown Object.
- Inthe Drilldown Objects list, add a new drilldown object with the values shown in the following

table.

Property

Name

Hyperlink Field

View

Source Field

Business Component

Value

Edetailer Drilldown

Last Name

eDetailer Message Plan Preview View

None

LS Admin Messagign Plans BC

To show only the messaging plans that are related to a particular object (that is, remove the object
for example "Product"), then add a new drilldown object with the values shown in the following

table.

Property

Name

Hyperlink Field

ORACLE

Value

Edetailer Drilldown

Name

361

Siebel Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected
Property Value
View eDetailer Message Plan Preview View
Source Field Id
Business Component LS Admin Messaging Plans BC
Destination Field Product Id

2. Add the Contact business component to the Admin Messaging Plan business object.

a. Inthe Object Explorer, expand the Business Object tree, and then click Business Object Component.
b. Inthe Business Object Component list, create new records with the values shown in the following table.

Business Object Component Value
Bus Comp Link
Contact None

3. Configure a new data map object (EdetailingContact) to create the Activity and Response record:

Note: Data Maps can be Workspace enabled in your development environment. If they have been Workspace
enabled in your development environment and you are working in that environment, then you can only
modify them in an editable Workspace. You do not need an editable Workspace to create and edit Data Maps
in your Production environment.

a. Login to the Siebel business application.
b. Navigate to the Administration - Application screen, then the Data Map Administration view.
c. Click New and create a new data map object with the values shown in the following table:

Data Map Object Name Source Business Object Destination Business Object

EdetailingContact Admin Messaging Plan Action

362
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Data Map Object Name Source Business Object Destination Business Object

d. For the EdetailingContact data map object, click New in the Data Map Component applet and add the
following components:

Name Source Business Destination Parent Advanced Options
Component Business
Component
Contact Act Contact Action None Source Search Specification = [Id] =

GetProfileAttr ('Edetailer Object Id')

ResponselLog eDetailer Feedback LS PCD Presentation = Contact Act None
Capture VBC Details BC

e. For the Contact Act data map component, click new in the Data Map Field applet and add the following

fields:
Source Type Source Destination Type Destination
Field Id Field Primary Contact Id

f. For the Responselog data map component, click new in the Data Map Field applet and add the following

fields:
Source Type Source Destination Type Destination
Field EndTime Field Message End Time
Expression GetProfileAttr("Edetailer Object I1d") Field Contact Id
Field ltemName Field Message
Field Mpild Field Message Id
Field ParentMPId Field Message Plan Id
Field ParentMPName Field Message Plan

363
ORACLE

Siebel Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected
Source Type Source Destination Type Destination
Field StartTime Field Message Start Time

Configuring the Detail Link - Scenario 2: Using New Business to Capture Customer
Feedback

The following procedure shows you how to configure the Detail link in the Siebel Open Ul application for Siebel Pharma
specifically. To configure the Detail link in a different Siebel Open Ul application (for example, in the Siebel Open Ul
application for Siebel Service), follow the procedure shown in Configuring the Detail Link - Scenario 1: Using New Data
Map Object to Capture Customer Feedback. In the following procedure, you configure new business component user
properties (rather than a new data map object) to capture customer feedback.

To configure the Detail link for Contacts in the Siebel Open Ul application for Siebel Pharma
1. Create a new Detail button control and drilldown in the Contact Form Applet in Siebel Tools:
a. Open Siebel Tools.

For more information, see Using Siebel Tools .

In the Object Explorer, click Applet.

In the Applets list, query the Name property for the Contact Form Applet.
d. Create a new Detail button control:

n o

- Inthe Object Explorer, expand the Contact Form Applet, and then Control.
- Inthe Controls list, create a new button control using values from the following table.

Property Value

Name EdetailerButton

Caption Detail

Method Invoked ShowEdetaillerPreviewView

This method handles the related view navigation and data for the Detail link
(eDetailer player). ShowEdetailerPreviewView is a new LS PCD Service for delivering
personalized content in the Life Sciences industry. Note that if Siebel Tools does not
display the Method Invoked in the list, then type it in manually.

364
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Property Value

e. Define user properties for the Detail button:

- Inthe Object Explorer, expand the Controls tree, and then click Business Component User Prop.

- If you are invoking the business service method Named Method, then the user property value for
Named Method is as follows:

User Property Name Value

Named Method 1 "ShowEdetailerPreviewView", "INVOKESVC", "Pharma Professional Call", "LS PCD
Service", "ShowEdetailerPreviewView", "DrilldownName", "Edetailer Drilldown",
"CreateBookmark", "true", "'Objectld", "[Id]"

- Create input arguments for Named Method with the values shown in the following table:

Property Name Value Purpose
DrilldownName Edetailer Drilldown Navigates to the eDetailer player view.
CreateBookmark TRUE Navigates back to the originating view (for

example, Contact) when done showing the
presentation.

Objectld Row Id of current Used to log the response captured to the
record appropriate contact or account call.

f. Add a new drilldown object for the Detail button control:

- Inthe Object Explorer, expand the Contact Form Applet, and then Drilldown Object.
- Inthe Drilldown Objects list, add a new drilldown object using values from the following table.

Property Value

Name Edetailer Drilldown

View eDetailer Message Plan Preview View
Hyperlink Field Last Name

Source Field None

365
ORACLE

Siebel Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected
Property Value
Business Component LS Admin Messaging Plans BC

To show only the messaging plans that are related to a particular object, then add a new drilldown
object with the values shown in the following table.

Property Value

Name Edetailer Drilldown

Hyperlink Field Name

View eDetailer Message Plan Preview View
Source Field Id

Business Component LS Admin Messaging Plans BC
Destination Field Product Id

2. Add the Contact business component to the Admin Messaging Plan business object.

a. Inthe Object Explorer, expand the Business Object tree, and then click Business Object Component.
b. In the Business Object Component list, create new records with the values shown in the following table.

Business Object Component Value
Bus Comp Link
Contact None

3. Configure the business component user properties with the values shown in the following table for the
eDetailer Feedback Capture VBC business component:

Business Component User Property Value

eDetailer Feedback Capture VBC|LS EndTime|Message End Time
PCD Presentation Details BC FieldMap 1

366
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Business Component User Property Value

eDetailer Feedback Capture VBC|LS ItemName|Message
PCD Presentation Details BC FieldMap 2

eDetailer Feedback Capture VBC|LS Mpild|Message Id
PCD Presentation Details BC FieldMap
3

eDetailer Feedback Capture VBC|LS ParentMPId|Message Plan Id
PCD Presentation Details BC FieldMap
4

eDetailer Feedback Capture VBC|LS ParentMPName|Message Plan
PCD Presentation Details BC FieldMap
5

eDetailer Feedback Capture VBC|LS StartTime|Message Start Time
PCD Presentation Details BC FieldMap
6

eDetailer Feedback Capture VBC|LS Response|Respons
PCD Presentation Details BC FieldMap
7

SourceBC eDetailer Feedback Capture VBC

DestinationBC LS PCD Presentation Details BC

Customizing Siebel Service for Siebel Mobile
Disconnected Clients

This topic includes some examples that describe how to customize Siebel Service in Siebel Open Ul for a Siebel Mobile
Disconnected client. It includes the following information:

« Allowing Users to Commit Part Tracker Records
« Allowing Users to Return Parts

- Allowing Users to Set the Activity Status

367
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

For more information about:

- Work you do in this topic, see Process of Customizing Siebel Open Ul for Siebel Mobile Disconnected
- Methods that these examples use, see Methods You Can Use to Customize Siebel Mobile Disconnected

- Functionality that these customizations modify, see the chapter that describes how to use the Siebel Mobile
Disconnected Application for Siebel Service in Siebel Mobile Guide: Disconnected

Allowing Users to Commit Part Tracker Records

The example in this topic describes how to enable the Commit button so that users can commit a Part Tracker record.
To set the Commit Flag for a Part Tracker record, the user navigates to the Activities - Part Tracker view, chooses a Part
Tracker record, and then clicks Commit. If the part is:

- Not already committed, then Siebel Open Ul commits the part.

- Already committed, then Siebel Open Ul displays a message that the part is already committed.

To allow users to commit Part Tracker records

1. In Windows Explorer, navigate to the following folder:
AI_INSTALL DIR\applicationcontainer external\siebelwebroot\scripts\siebel\offline
2. Copy the servicecommitpartconsumed.js file to the following folder:

AI_INSTALL DIR\applicationcontainer external\siebelwebroot\files\custom\

For more information, see Organizing Files That You Customize.
3. Use a JavaScript editor to open the file you created in Step 2.
4. Locate the following code that resides near the beginning of the file:

if (typeof (SiebelApp.commitpartconsumed) === "undefined") {
SiebelJS.Namespace ('SiebelApp.commitpartconsumed') ;

5. Add the following code immediately after the code that you located in Step 4:

var inputArgs = {};

var oconsts = SiebelApp.Offlineconstants;

inputArgs[oconsts.get ("DOUIREG_OBJ NAME")]= "SHCE Service FS Activity Part Movements List Applet -
Mobile";

inputArgs[oconsts.get ("DOUIREG_OBJ TYPE")]= oconsts.get ("DOUIREG OBJ_TYPEAPPLET") ;
inputArgs[oconsts.get ("DOUIREG_OBJ MTHD")]= "CommitPartMvmtClient";

inputArgs[oconsts.get ("DOUIREG_SRVC NAME")]= "commitpartconsumed";

inputArgs[oconsts.get ("DOUIREG_SRVC_MTDH")] = "CommitPartMvmtClient";

inputArgs[oconsts.get ("DOUIREG_EXT TYPE")]= null;

SiebelApp.S App.GetModel () .ServiceRegistry (inputArgs) ;

This code registers the service. For more information, see ServiceRegistry Method.
6. Add the following CaninvokeMethod method immediately after the code that you added in Step 5:

commitpartconsumed.prototype.CanInvokeMethod = function (svcMthdName) ({
if (svcMthdName === "CommitPartMvmtClient") {

return true;

}

else

return SiebelApp.commitpartconsumed.superclass.CanInvokeMethod.call (
this, svcMthdName) ;

368
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

}i

This code determines whether or not Siebel Open Ul can call a method in the current context of the business
component.

7. Add the following InvokeMethod method immediately after the code that you added in Step 6:

commitpartconsumed.prototype.InvokeMethod = function (svcMthdName, psinpargs) {
var psOutArgs = SiebelApp.S_App.NewPropertySet() ;

if (!svcMthdName) ({

return (false);

}

if (svcMthdName === "CommitPartMvmtClient") {

psOutArgs = this.CommitPartMvmtClient() ;

}

else {

return SiebelApp.commitpartconsumed.superclass.InvokeMethod.call (
this,svcMthdName, psinpargs) ;

}

return (psOutArgs);

}i

This code calls the CommitPartMvmtClient service method if the user clicks the Commit button.
8. Add the following code immediately after the code that you added in Step 7:

commitpartconsumed.prototype.CommitPartMvmtClient = function () {
SiebelJS.Log('Invoked CommitPartMvmtClient Method.');

var pServicelInvBC;

var cszCommitFlag;

var pModel;
pModel = SiebelApp.S_App.Model;
var pServiceInvBO = pModel.GetBusObject ("boName") ;
pServiceInvBC = pServiceInvBO.GetBusComp ("bcName") ;
cszCommitFlag = pServiceInvBC.GetFieldValue ("Commit Txn Flag");
if (cszCommitFlag === 'Y'){

SiebelJS.Log('Consumed Part Is Already In Committed State');

}

else

{

// pServiceInvBC.ActivateField("Commit Txn Flag");
//pServiceInvBC.UpdateRecord() ;
pServiceInvBC.SetFieldValue ("Commit Txn Flag", "Y", true);
pServiceInvBC.WriteRecord() ;

}

}i

This code determines whether or not the record is already committed. The Dolnvoke method calls the
CommitPartMvmtClient method, and then the CommitPartMvmtClient method examines the value of the
Commit Txn Flag field. If this value is:

o Y. Siebel Open Ul has already committed the record and displays a Consumed Part Is Already In
Committed State message.

o N. Siebel Open Ul has not committed the record and writes the record to the local database.

For more information about the methods that this code uses, see GetFieldValue Method, SetFieldValue Method,
and WriteRecord Method.

369
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Allowing Users to Return Parts

The example in this topic describes how to enable the RMA button so that a user can return a part. To return a part,
the user creates a part tracker record, and then clicks the RMA button to create a Return Material Authorization (RMA)
record. The work you do to allow a user to return a part is similar to the work you do to allow a user to commit a Part
Tracker record. For example, registering the service, calling the Canlnvoke method, Dolnvoke method, and so on.

You add the code that specifies how to do the RMA return in Step 4 through Step 10. The rma_return.js file contains this
code. To get a copy of this file, see Article ID 14949981 on My Oracle Support.
To allow users to return parts

1. In Windows Explorer, navigate to the following folder:

AI_INSTALL DIR\applicationcontainer_externall\siebelwebroot\scripts\siebel\offline

N

Use a JavaScript editor to open the servicecmtparts.js file.
3. Add the following code to the InvokeMethod method:

var model= SiebelApp.S_App.GetModel () ;
var pBusObj = model.GetBusObject ("boName") ;
var pBusComp = pBusObj.GetBusComp ("bcName") ;

This code gets the active business component for the applet that displays the RMA button.
4. Add the following code. This code declares the objects:

if (typeof (SiebelApp.commitpartconsumed) === "undefined") {
SiebelJS.Namespace ('SiebelApp.commitpartconsumed') ;

var inputArgs = {};

var oconsts = SiebelApp.Offlineconstants;

inputArgs[oconsts.get ("DOUIREG_OBJ NAME")]="SHCE Service FS Activity Part
Movements List Applet - Mobile";

inputArgs[oconsts.get ("DOUIREG_OBJ_TYPE")]=oconsts.get ("DOUIREG_OBJ TYPEAPPLET") ;
inputArgs[oconsts.get ("DOUIREG_OBJ_MTHD")]="CanInvokeMethod";
inputArgs[oconsts.get ("DOUIREG_SRVC NAME")]="commitpartconsumed";
inputArgs[oconsts.get ("DOUIREG_SRVC_MTDH")]="CanInvokeMethod";
inputArgs[oconsts.get ("DOUIREG_EXT TYPE")]=oconsts.get ("DOUIREG_EXT TYPEPRE") ;
SiebelApp.S_App.GetModel () .ServiceRegistry (inputArgs) ;

inputArgs={};

inputArgs[oconsts.get ("DOUIREG_OBJ NAME")]="SHCE Service FS Activity Part
Movements List Applet - Mobile";

inputArgs[oconsts.get ("DOUIREG_OBJ_TYPE")]=oconsts.get ("DOUIREG_OBJ TYPEAPPLET") ;
inputArgs[oconsts.get ("DOUIREG_OBJ_MTHD")]="InvokeMethod";
inputArgs[oconsts.get ("DOUIREG_SRVC NAME")]="commitpartconsumed";
inputArgs[oconsts.get ("DOUIREG_SRVC_MTDH")]="InvokeMethod";
inputArgs[oconsts.get ("DOUIREG_EXT TYPE")]=oconsts.get ("DOUIREG_EXT TYPEPRE") ;
SiebelApp.S_App.GetModel () .ServiceRegistry (inputArgs) ;

inputArgs={};

For information about the methods that this code uses, see the following topics:

370
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

o CaninvokeMethod Method
o ServiceRegistry Method
o InvokeMethod Method for Applets
5. Add the following code. This code calls the CaninvokeMethod method:

SiebelApp.commitpartconsumed = (function () {
function commitpartconsumed (pm) {

}

var commitObj = new commitpartconsumed() ;
commitpartconsumed.prototype.CanInvokeMethod = function (psInputArgs) {
var currRetValue={err:false}, retObj;

var psOutArgs = SiebelApp.S_App.NewPropertySet() ;
var svcMthdName = "";

svcMthdName = psInputArgs.GetProperty ("MethodName") .toString() ;
if (svcMthdName === "CommitPartMvmtClient") {
psOutArgs.SetProperty ("Invoked", true);
psOutArgs.SetProperty ("RetVal", true);
currRetValue={err:false,retVal:psOutArgs};

}

else if (svcMthdName === "OrderPartsRMA") ({
psOutArgs.SetProperty ("Invoked", true);
psOutArgs.SetProperty ("RetVal", true);
currRetValue={err:false,retVal:psOutArgs};

}

elsef{

psOutArgs.SetProperty ("Invoked", false);
psOutArgs.SetProperty ("RetvVal", false);
currRetValue={err:false,retVal:psOutArgs};

}

return currRetValue;

}i
6. Add the following code. This code calls the InvokeMethod method:

commitpartconsumed.prototype.InvokeMethod = function (psInputArgs) {
var currRetValue={err:false}, retObj;

var svcMthdName = "";

var psOutArgs = SiebelApp.S_App.NewPropertySet() ;
svcMthdName = psInputArgs.GetProperty ("MethodName") .toString() ;
if (svcMthdName === "CommitPartMvmtClient") {
retObj=currRetValue=this.CommitPartMvmtClient() ;
psOutArgs.SetProperty ("Invoked", true);
currRetValue={err:false,retVal:psOutArgs};

}

else{

psOutArgs.SetProperty ("Invoked", false);
currRetValue={err:false,retVal:psOutArgs};

}

if (svcMthdName === "OrderPartsRMA") {
retObj=currRetValue=this.OrderPartsRMA() ;
psOutArgs.SetProperty ("Invoked", true);
currRetValue={err:false,retVal:psOutArgs};

}

else{

psOutArgs.SetProperty ("Invoked", false);
currRetValue={err:false,retVal:psOutArgs};

}

return currRetValue;

};

37
ORACLE

Siebel

Configuring Siebel Open Ul

7. Add the code that gets values for the following fields:

o ProductlId

o Product Name
o Used Quantity
o Id

o Status

o Asset Number

o Part Number

You add the following code:

commitpartconsumed.prototype.createRMAOrder = function (orderType) {
var currRetValue={err:false}, retObj;

var sOrderId;

var cszOrderId;

var sAssetNum;

var sPartNum;

var sStatus;

var sProductId;

var sProductName;

var sQuantity;

var sActivityPartMvmtID;

var pModel;

var pFSActivityPartsMovementBC;

var pActionBC;

var sSR_Id;

var pServiceRequestBC;

var pOrderEntry OrdersBC;

var pOrderEntry LineItemBC;

var errParamArray = [];

pModel = SiebelApp.S_App.Model;

var pBusObj = pModel.GetBusObject ("boName")
pFSActivityPartsMovementBC=pBusObj.GetBusComp ("bcName") ;
sOrderId=retObj.retvVal;

if (utils.IsEmpty (sOrderId)) {
retObj=currRetValue=pFSActivityPartsMovementBC.GetFieldvalue ("") ;

var oPsDR _Header:PropertySet = SiebelApp.S_ App.NewPropertySet() ;

// Cannot use the same property set in GetMultipleFieldValues, must use a
// different one for the values. The process will not error, but Siebel
// Open UI will not place the values in the property set.

var 1PS_values:PropertySet = SiebelApp.S_App.NewPropertySet();
oPsDR_Header.SetProperty ("Product Id","");
oPsDR_Header.SetProperty ("Used Quantity","");

oPsDR_Header.SetProperty ("Id","");

oPsDR_Header.SetProperty ("Asset Number","");
oPsDR_Header.SetProperty ("Part Number",6"");

sPartNum=retObj.retVal;
pActionBC=SiebelApp.S_App.GetActiveView () .GetActiveApplet () .BusComp () . ParentBuscomp () ;
retObj=currRetValue=pActionBC.GetFieldValue ("Activity SR Id");
sSR_Id=retObj.retval;

if (sSR_Id==""){

//Activity has no associated SR... Hence the operation will be aborted
SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("IDS_ERR FS MISSING SR", errParamArray);
currRetValue={err: "IDS_ERR FS_MISSING SR", retvVal:""};

return currRetValue;

}

}

return currRetValue;

ORACLE

Chapter 9

Customizing Siebel Open Ul for Siebel Mobile Disconnected

372

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected
}
For information about the methods that this code uses, see GetFieldValue Method.
8. Add the code that gets the parent business component and the following business components:
o Service Request
o Order Entry - Orders
o Order Entry - Line ltems
This code also determines whether or not a service request is not associated with the activity. If not, then it
aborts the operation. You add the following code:
else({
pModel = SiebelApp.S_App.Model;
pServiceRequestBC = pModel.BusObj ("Service Request") .BusComp ("Service Request");
pOrderEntry OrdersBC = SiebelApp.S_App.Model.GetBusObj ("Service Request") .BusComp ("Order Entry -
Orders") ;
pOrderEntry LineItemBC = pModel.BusObj ("Service Request") .BusComp ("Order Entry - Line Items");
//CREATE ORDER Header.
retObj=currRetValue=pOrderEntry OrdersBC.ExecuteQuery() ;
9. Add the code that creates the Order Header record and sets the field values. For example, for the Order Type
field. You add the following code:
retObj=currRetValue=pOrderEntry OrdersBC.NewRecord (true) ;
sLocaleVal = SiebelApp.S_App.Model.GetLovNameVal (orderType, "FS_ORDER_TYPE") ;
retObj=currRetValue=pOrderEntry OrdersBC.SetFieldValue ("Order Type", sLocaleVal, true);
retObj=currRetValue=pOrderEntry OrdersBC.WriteRecord();
retObj=currRetValue=pOrderEntry OrdersBC.GetFieldValue ("Id")
sOrderItemId=retObj.retVal;
retObj=currRetValue=pOrderEntry OrdersBC.GetFieldValue("Id");
m_sOrderHeaderId=retOb]j.retVal;
retObj=currRetValue=pOrderEntry LineItemBC.ExecuteQuery()
For information about the methods that this code uses, see SetFieldValue Method, WriteRecord Method,
NewRecord Method.
10. Add the code that creates the order line item record, commits this record, and sets the value for the Order Item

Id field in the active business component. This value is the row Id of the order header record that Siebel Open Ul
creates. This code sets the field value for each of the following fields:

o Product

o Quantity Requested

o Asset#

o Part#

o Product Status Code

o Order Header Id

You add the following code:

retObj=currRetValue=pOrderEntry LineItemBC.NewRecord (true) ;

retObj=currRetValue=pOrderEntry LineItemBC.SetFieldValue ("Product Id",
retObj=currRetValue=pOrderEntry LineItemBC.SetFieldValue ("Product", sProductName, true);
retObj=currRetValue=pOrderEntry LineItemBC.SetFieldValue ("Quantity Requested", sQuantity, true);
if ('utils.IsEmpty (sAssetNum)) {

375

ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

retObj=currRetValue=pOrderEntry LineItemBC.SetFieldValue ("Asset Number", sAssetNum, true);

}
if ('utils.IsEmpty (sPartNum)) {
retObj=currRetValue=pOrderEntry LineItemBC.SetFieldValue ("Part Number", sPartNum, true);

}
if ('utils.IsEmpty (sStatus)) {
retObj=currRetValue=pOrderEntry LineItemBC.SetFieldValue ("Product Status Code",6 sStatus, true);

}
retObj=currRetValue=pOrderEntry LineItemBC.GetFieldValue ("Id");

sOrderItemId=retObj.retVal;

retObj=currRetValue=pOrderEntry LineItemBC.SetFieldValue ("Order Header Id", m_sOrderHeaderId, true)
retObj=currRetValue=pOrderEntry LineItemBC.WriteRecord() ;
retObj=currRetValue=pFSActivityPartsMovementBC.SetFieldValue ("Order Item Id",sOrderItemId, true);

retObj=currRetValue=pFSActivityPartsMovementBC.WriteRecord() ;

11. Save, and then close the servicecmtparts.js file.

12. Test your modifications:

Log in to the disconnected client.

Click the Activities tab.

Create an activity, and then click Part Tracker.

Create a part tracker record.

Click the RMA button to create a Return Material Authorization (RMA) record.

Make sure Siebel Open Ul creates the RMA record and displays the correct values in the fields of this
record, such as the Product Id, Product Name, Used Quantity, Quantity Requested, Asset #, and so on.

=0 2n OO

Allowing Users to Set the Activity Status

The example in this topic describes how to enable the activity status so that the user can update this status during the
service call life cycle. For example, a field service representative can examine an Activity that is set to Dispatched, set
this status to Acknowledged to acknowledge that this representative examined the activity, set the status to EnRoute,
travel to the customer site, set it to Arrive, set it to In Progress while working on the service call, and then set it to Finish
after finishing the service call. Siebel Open Ul includes the following status values:

- Dispatched
- Acknowledged
- Declined
- En Route
« Arrive
- In Progress
- Hold
- Resume
- Finish
Siebel Open Ul enables and disables the status depending on the current value of the status. For example, if the

representative sets the status to Acknowledged, then Siebel Open Ul allows the user to choose the EnRoute status and
disables all other values.

The work you do to allow a user to set the status is similar to the work you do to allow a user to commit a Part Tracker
record. For example, registering the service, and so on. For more information, see Allowing Users to Commit Part
Tracker Records.

374
ORACLE

Siebel

Chapter 9

Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

To allow users to set the activity status

1.

In Windows Explorer, navigate to the following folder:

AI_INSTALL DIR\applicationcontainer external\siebelwebroot\scripts\siebel\offline

For more information about the language_code, see Languages That Siebel Open Ul Supports.
Use a JavaScript editor to open the serviceactstat.js file.
Locate the following code:

serviceactstat.prototype.InvokeSetActStatus=function (psInpArgs, svcMthdName) {
var psOutArgs=SiebelApp.S_App.NewPropertySet() ;

if ('psInpArgs) {

return (false);

}

if (psInpArgs.propArray.MethodName=="AcceptStatus")
{psOutArgs=this.SetActivityStatus ("Acknowledged") ;

}

else if(psInpArgs.propArray.MethodName=="Start"||psInpArgs.propArray.
MethodName=="ArrivedStatus") {psOutArgs=this.SetActivityStatus ("In
Progress" ,"ArrivedStatus") ;

}

else if (psInpArgs.propArray.MethodName=="DeclineStatus") {
psOutArgs=this.SetActivityStatus ("Declined") ;

}

else if (psInpArgs.propArray.MethodName=="EnrouteStatus") {
psOutArgs=this.SetActivityStatus("In Progress");

}

else if (psInpArgs.propArray.MethodName=="SuspendStatus") {
psOutArgs=this.SetActivityStatus("On Hold");

}

else if (psInpArgs.propArray.MethodName=="ResumeStatus") {
psOutArgs=this.SetActivityStatus("In Progress");

}

else if (psInpArgs.propArray.MethodName=="End" | |psInpArgs.propArray.
MethodName=="FinishedStatus") {

psOutArgs = this.SetActivityStatus ("Done","FinishedStatus");

}

4. Add the following code immediately after the code you located in Step 3:

serviceactstat.prototype.SetActivityStatus=function (pStatus,pDateMethodInv) {
var currRetValue={err:false}, retObj;
SiebelJS.Log('Service Method SetActivityStatus...');
var strstatvalue;

var pickName;

var pickListDef;

var pModel;

var pBusComp;

pModel= SiebelApp.S_App.GetModel () ;

var pBusObj = pModel.GetBusObject ("boName") ;
pBusComp = pBusObj.GetBusComp ("bcName") ;

pickName=SiebelApp.S_App.GetActiveView() .GetActiveApplet () .GetControl ("Status") .Ge
tPickApplet() ;

pickListDef=pickListDef = pBusComp.GetPickListInfo (pickName) ;

pModel=SiebelApp.S App.Model;

strstatvalue=pModel.GetLovNameVal ("Acknowledged", pickListDef.LOVType) ;
currRetValue=pBusComp.ActivateField("Status") ;
currRetValue=pBusComp.SetFieldValue ("Status",6 strstatvalue, true) ;
currRetValue=pBusComp.ActivateField ("Status") ;
currRetValue=pBusComp.SetFieldValue ("Status",strstatvalue, true) ;

375

ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

if (pDateMethodInv!="")//Todo - Refine this condition for uninitialized/defined or
remove this condition

{

var now=new Date() ;

if (pDateMethodInv == "ArrivedStatus") {
currRetValue=pBusComp.SetFieldValue ("Started" , now, true) ;
currRetValue=pBusComp.SetFieldValue ("Done" ,"", true) ;

}

else if (pDateMethodInv=="FinishedStatus") {
currRetValue=pBusComp.SetFieldValue ("Done" ,now, true) ;
currRetValue=pBusComp.SetFieldValue ("Percent Complete","100%", true) ;
}

}
currRetValue=pBusComp.WriteRecord() ;
return currRetValue;

};

For information about the methods that this code uses, see the following:

o SetFieldValue Method

o WriteRecord Method

o GetActiveView Method
5. Test your modifications:

a. Login to the disconnected client.
b. Update the status of an activity.

Make sure Siebel Open Ul displays the correct status activity. For example, if you set the status to
Acknowledged, then make sure Siebel Open Ul allows you to choose the EnRoute status and disables all
other values.

Methods You Can Use to Customize Siebel Mobile
Disconnected

This topic describes the methods that exist in the Application Programming Interface that you can use to customize
Siebel Mobile Disconnected in Siebel Open UL. It includes the following information:

« Methods You Can Use in the Applet Class

« Methods You Can Use in the Business Component Class

« Methods You Can Use in the Business Object Class

« Methods You Can Use in the Business Service Class

« Methods You Can Use in the Application Class

« Methods You Can Use in the Model Class

« Methods You Can Use in the Service Model Class

« Methods You Can Use in Offline Classes

« Other Methods You Can Use with Siebel Mobile Disconnected

376
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

You can configure Siebel Open Ul to override or customize some of the methods that this topic describes. For more
information about how to customize or override a method, see Using Siebel Business Services or JavaScript Services to
Customize Siebel CRM Objects.

Methods You Can Use in the Applet Class

This topic describes methods that you can use that reside in the Applet class. The methods are described in the
following subtopics.

BusComp Method for Applets

The BusComp method returns the business component that the applet references. It uses the following syntax:
Applet.BusComp ()
For example, the following code gets the metadata for the business component that the active applet references:

SiebelApp.S App.FindApplet (appletName) .BusComp () ;

Each applet references a business component. If you configure Siebel Open Ul to call BusComp on an applet, then it
returns the business component that this applet references.

The BusComp method includes no arguments.
For information about using BusComp in the context of a business object, see GetBusComp Method for Business
Objects.

BusObject Method for Applets

The BusComp method returns the business component that the applet references. It uses the following syntax:

Applet.BusObject ()

For example:

SiebelApp.S_App.FindApplet (appletName) .BusObject() ;

The BusObject method includes no arguments.

CanlnvokeMethod Method

The CanlinvokeMethod method determines whether or not Siebel Open Ul can call a method. It returns the following
properties. If you use CanlnvokeMethod, then you must configure it so that it returns these properties:

Invoked. This property returns one of the following values:

o true. Siebel Open Ul examined the method.

o false. Siebel Open Ul did not examine the method.
RetVal. This property returns one of the following values:

o true. Siebel Open Ul can call the method.

o false. Siebel Open Ul cannot call the method.

The CanlnvokeMethod method uses the following syntax:

Applet.CanInvokeMethod (methodName)

377
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

where:

- methodName is a string that contains the name of the method that CaninvokeMethod examines.
CanlnvokeMethod gets this string as a property that resides in an input property set.

For examples that use CaninvokeMethod, see the following topics:
Using Custom JavaScript Methods
Using Custom Siebel Business Services
Customizing Siebel Pharma for Siebel Mobile Disconnected Clients

« Allowing Users to Return Parts

InvokeMethod Method for Applets

The InvokeMethod method calls a method. If you use InvokeMethod, then you must configure it so that it returns a
property set that includes one of the following values:

- true. Siebel Open Ul called the method.
- false. Siebel Open Ul did not call the method.
It uses the following syntax:
Applet.InvokeMethod (methodName) ;
where:
- MethodName is the value of an input property that identifies the method that InvokeMethod calls.

For example, InvokeMethod in the following code calls the method that the value of the svcMthdName variable
contains:

Applet.InvokeMethod (svcMthdName) ;

For examples that use InvokeMethod, see Using Custom JavaScript Methods and Allowing Users to Commit Part Tracker
Records.

Name Method for Applets

The Name method for an applet returns the name of an applet. It uses the following syntax:

Applet.Name ()

For example:

SiebelApp.S_App.GetActiveView() .GetActiveApplet () .Name() ;

The Name method includes no arguments.

Methods You Can Use in the Business Component Class

This topic describes methods that you can use that reside in the Business Component class. The methods are described
in the following subtopics.

ActivateField Method

The ActivateField method activates a business component field. It returns nothing. It uses the following syntax:

378
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

this.ActivateField(field name);
bc.ActivateField("field name");// calling from another JavaScript file
where:

- field_name identifies the name of a business component field.

A field is inactive except in the following situations, by default:

- The field is a system field, such as Id, Created, Created By, Updated, or Updated By.

- The Force Active property of the field is TRUE.

- The Link Specification property of the field is TRUE.

- An active applet includes the field, and this applet references a business component that is active.

- The field resides in an active list applet, and the Show In List property of the list column that displays this field
in the applet is TRUE.

Note the following:

- Siebel CRM calls the ActivateField method on the field, and then runs the ExecuteQuery method.

- If Siebel CRM calls the ActivateField method after it calls the ExecuteQuery method, then the ActivateField
method deletes the query context.

- The ActivateField method causes Siebel CRM to include the field in the SQL statement that the ExecuteQuery
method starts. If Siebel CRM activates a field, and if a statement in the GetFieldValue method or the
SetFieldValue method references the file before Siebel CRM performs a statement from the ExecuteQuery
method, then the activation has no effect.

Example

The following example uses the ActivateField method to activate the Login Name field that resides in the Contact
business component:

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_ App.GetModel () ;

var boContact = model.GetBusObject("Contact") ;
var bcContact = boContact.GetBusComp ("Contact") ;
bcContact.ClearToQuery() ;
currRetValue=bcContact.ActivateField ("Login Name") ;
var sLoginName = "MYNAME";
bcContact.SetSearchSpec ("Login Name", sLoginName) ;
retObj=currRetValue=bcContact.ExecuteQuery () ;

if ('retObj.err) {

model .ReleaseBO (boContact) ;

}

ActivateMultipleFields Method
The ActivateMultipleFields method activates more than one field. It returns nothing. It uses the following syntax:

BusComp.ActivateMultipleFields (SiebelPropertySet) ;

where:

- siebelPropertyset iS a property set that identifies a collection of properties. These properties identify the fields
that Siebel CRM must activate.

379
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Example 1

The following example uses the ActivateMultipleFields method to activate all the fields that the property set contains,
including the Account Products, Agreement Name, Project Name, Description, and Name fields:

var ps = SiebelApp.S_App.NewPropertySet() ;
ps.setProperty ("Account Products","");
ps.setProperty ("Agreement Name","");
ps.setProperty ("Project Name","");
ps.setProperty ("Description”,"") ;
ps.setProperty ("Name","") ;
BusComp.ActivateMultipleFields (ps) ;

Example 2

The following example in Siebel eScript queries the Contact business component and returns the First Name and Last
Name of the first contact that it finds:

var currRetValue={err:false}, retObj;
var model= SiebelApp.S_ App.GetModel () ;
var ContactBC = model.GetBusObject("Contact") ;
var ContactBC = boContact.GetBusComp ("Contact") ;
if (ContactBC)
{
var fieldsPS = SiebelApp.S_App.NewPropertySet() ;
var valuesPS = SiebelApp.S_App.NewPropertySet() ;
fieldsPS. SetProperty("Last Name", "");
fieldsPS.SetProperty ("First Name", "");
ContactBC.ActivateMultipleFields (fieldsPS) ;
ContactBC .ClearToQuery() ;
currRetValue=ContactBC.ExecuteQuery () ;
if ('retObj.err) ({
retObj=currRetValue=ContactBC.FirstRecord() ;
if ('retObj.err) ({
ContactBC .GetMultipleFieldValues (fieldsPS, valuesPS);
var slName = valuesPS.GetProperty("Last Name") ;
var sfName = valuesPS.GetProperty ("First Name") ;
}
}
}

return currRetValue;

Associate Method

The Associate method adds an association between the active record that resides in the child association business
component and the parent business component. You can customize or override this method. It returns the retObj object
with err set to one of the following values:

- true. The Associate method successfully added the record.
- false. The Associate method did not successfully add the record.
It uses the following syntax:
BusComp. Associate()
where:
- Buscomp identifies an instance of the child business component.
For example:

SiebelApp.S_App.FindApplet (appletName) .BusComp () .Associate() ;

380
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

It includes no arguments.

An association business component is a type of business component that includes an intertable. For more information,
see GetAssocBusComp Method.

ClearToQuery Method

The ClearToQuery method clears the current query. It returns nothing. It uses the following syntax:

BusComp .ClearToQuery () ;
It includes no arguments.
Note the following:

- The ClearToQuery method does not clear the sort specification that Siebel Open Ul defines in the Sort
Specification property of a business component.

- You must use the ActivateField method to activate a field before you can use the ClearToQuery method. For
more information see ActivateField Method.

- Any search specifications and sort specifications that Siebel Open Ul sends to a business component are
cumulative. The business component performs an AND operation for the queries that accumulate since the
last time Siebel CRM performed the ClearToQuery method. An exception to this configuration occurs if Siebel
Open Ul adds a new search specification to a field, and if this field already includes a search specification. In this
situation, the new search specification replaces the old search specification.

Example
The following example uses the ClearToQuery method:

var model= SiebelApp.S App.GetModel () ;

var oEmpBusObj= model.GetBusObject ("Employee") ;

var oEmpBusComp = oEmpBusObj.GetBusComp ("Employee ") ;
var sLoginName;

oEmpBusComp .ClearToQuery () ;
oEmpBusComp . SetSearchSpec ("Login Name", sLoginName) ;
oEmpBusComp . ExecuteQuery () ;

For another example usage of the ClearToQuery method, see CountRecords Method.

CountRecords Method

The CountRecords method returns the number of records that a business component contains according to the search
specification and query specification that Siebel Open Ul runs on this business component. It uses the following syntax:

BusComp . CountRecords () ;

It includes no arguments.

Example
The following example uses the CountRecords method:

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_ App.GetModel () ;

var bo = model.GetBusObject ("Opportunity ") ;
var bc = bo.GetBusComp ("Opportunity") ;

if (bc)

{
bc .ClearToQuery() ;
bc .SetSearchSpec ("Name", "A");

381
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

retObj=currRetValue=bc.ExecuteQuery () ;
if ('retObj.err) ({

var count = bc .CountRecords() ;
currRetValue={err:false,retVal:count};
}

}

return currRetValue;

For more information, see ClearToQuery Method.

DeactivateFields Method

The DeactivateFields method deactivates fields from the SQL query statement of a business component. It deactivates
fields that are currently active. DeactivateFields applies this behavior except in the following situations:

« The Force Active property is TRUE.
- Alink requires the field to remain active.
- A business component class requires the field to remain active.
The DeactivateFields method returns nothing.
It uses the following syntax:
BusComp .DeactivateFields ()
For example:
SiebelApp.S App.FindApplet (appletName) .BusComp () .DeactivateFields () ;
It includes no arguments.

You must use the ActivateField method to activate a field before you configure Siebel Open Ul to perform a query for a
business component. After Siebel Open Ul deactivates a field, you must configure it to query the business component
again or the Siebel application fails.

DeleteRecord Method

The DeleteRecord method deletes the current record from the local database. It returns one of the following values:
- error:false. DeleteRecord deleted the record.
- error:true. DeleteRecord did not delete the record.

It uses the following syntax:

ExecuteQuery Method

The ExecuteQuery method runs a query according to the current value of the Search Specification property, the current
value of the Sort Specification property, or according to both of these properties. The business component contains
these properties. ExecuteQuery runs this query on the local database. It returns one of the following values:

- If an error occurs, then it returns err with an error message. For example:

err: "Error Message",retvVal: ""
g

- If an error does not occur, then it returns an empty err message. For example:

{err: "",retval: ""}

It uses the following syntax:

382
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

busComp . ExecuteQuery () ;
where:

- buscomp identifies the business component that ExecuteQuery uses to get the search specification or sort
specification. You can use buscomp as a literal or a variable. For more information, see How This Book Indicates
Code That You Can Use as a Variable and Literal.

FirstRecord Method

The FirstRecord method moves the record pointer to the first record in a business component, making this record the
current record. It uses the following syntax:

BusComp.FirstRecord() ;
For example:

SiebelApp.S_App.FindApplet (appletName) .BusComp () . FirstRecord() ;

GetAssocBusComp Method

The GetAssocBusComp method returns an instance of the association business component. It uses the following
syntax:

BusComp . GetAssocBusComp () ;
It includes no arguments.
For more information, see Associate Method.

You can use an association business component to manipulate an association. You can use the GetAssocBusComp
method and the Associate method only with a many-to-many relationship that uses an intersection table. For example,
with accounts and contacts.

Note the following:

- To associate a new record, you add it to the child business component.
- Toadd a record, you use the GetAssocBusComp method and the Associate method.

If a many-to-many link exists, and if Siebel CRM defines an association applet for the child applet, then you can use the
GetAssocBusComp method with the child business component of a parent-child view.

Example of Using the GetAssocBusComp Method

The following example associates a contact that includes the ContactID Id with an account that includes the Accountld
Id:

var currRetValue={err:false}, retObj;

var Model =SiebelApp.S_ App.GetModel ()

varaccount BO = Model.GetBusObj ("Account") ;

var accountBC accountBO.GetBusComp ("Account") ;

var contactBC accountBO.GetBusComp ("Contact") ;
accountBC.SetSearchSpec ("Id", [AccountId]) ;
currRetValue=accountBC.ExecuteQuery ()
currRetValue=accountBC.FirstRecord() ;// positions on the account record
currRetValue=contactBC.ExecuteQuery ()
currRetValue=contactBC.FirstRecord() ;

var assocBC = contactBC.GetAssocBusComp () ;
assocBC.SetSearchSpec ("Id", [ContactID]) ;

currRetValue=assocBC. ExecuteQuery ()
currRetValue=assocBC.FirstRecord() ;// positions on the contactbc

383
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

currRetValue=contactBC.Associate(); // adds the association

GetFieldValue Method

The GetFieldValue method returns the value of a field for the current record or for the record object that Siebel Open Ul
examines. It uses the following syntax:

Buscomp.GetFieldValue ("field name", pRecord)
where:

- field_name is a string that contains the name of a field. Siebel Open Ul returns the value that this field contains.

- pRecord is an optional argument that returns the entire record that Siebel Open Ul examines. If you do not
specify pRecord, or if it is empty, then GetFieldValue returns only a value in field_name of the active record.

For example, the following code returns the value of the Account Name field from the current record of the business
component:

Buscomp.GetFieldValue "Account Name")

For another example, the following code returns the field value of the Account Name field. A business component can
include more than one record, but only one of these records is the active record. You can use pRecord to get the value of
a field from a record that is not the active record:

Buscomp.GetFieldValue ("Account Name",recordObject)

The GetFieldValue method returns an object that includes an error code and a return value. For more information, see
Configuring Error Messages for Disconnected Clients and SetErrorMsg Method.

For more examples that use the GetFieldValue method, see the following topics:

Customizing Siebel Pharma for Siebel Mobile Disconnected Clients
« Allowing Users to Commit Part Tracker Records
« Allowing Users to Return Parts

You can configure Siebel Open Ul to override the GetFieldValue method.

GetLinkDef Method

The GetLinkDef method returns the link definition of the child business component. This business component is the
child in the parent and child relationship of a link. It returns this definition after Siebel Open Ul processes data for the
child business component. This definition includes values for the following properties:

Name
RecordNum
- childBusCompName
- destFieldName
- interChildColName
- interParentColName
- interTableName
parentBusCompName
primeldFieldName

. searchSpec

384
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

- sortSpec

- srcFieldName
NoDelete
Nolnsert
NointerDelete
NoUpdate

« SrcFieldValue

If the value of a property is empty, then GetLinkDef does not return this property in the return object.
The GetLinkDef method uses the following syntax:
linkdef = busComp.GetLinkDef () ;

var sourcefieldName = linkdef.srcFieldName;

GetLastErrCode Method for Business Components

The GetLastErrCode method returns the error code for the most recent error that the disconnected client logged. It uses
the following syntax:

BusComp . GetLastErrCode ()
For example:
SiebelApp.S_App.FindApplet (appletName) .BusComp () .GetLastErrCode () ;

This method includes no arguments.

The error code that this method returns is a short integer. An error code of O (zero) indicates no error occurred.

GetLastErrText Method for Business Components

The GetLastErrText method returns a string that contains the text message for the most recent error that the
disconnected client logged. It uses the following syntax:

BusComp .GetLastErrText ()
For example:
ActiveBusObject () .GetLastErrText () ;

This method includes no arguments.

GetMultipleFieldValues Method

The GetMultipleFieldValues method returns a value for each field that a property set specifies. It uses the following
syntax:

BusComp .GetMultipleFieldValues (fieldNamesPropSet, fieldValuesPropSet)
where:

fieldNamesPropSet IS @ property set that identifies a collection of fields.

fieldvaluesPropSet iS @ property set that includes values for the fields that the fieldNamesPropSet argument
specifies.

If an error occurs, then GetMultipleFieldValues returns err with an error message. For example:

385
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

{err: "Error Message",retval: ""}

If an error does not occur, then GetMultipleFieldValues returns an empty err message. For example:

{err: "",retval: ""}

You cannot use the same instance of a property set for the fieldNamesPropSet argument and for the fieldValuesPropSet
argument.

Example of Using the GetMultipleFieldValues Method
The following example uses the GetMultipleFieldValues method:

var oPsDR _Header = SiebelApp.S App.NewPropertySet() ;

// Cannot use the same property set in GetMultipleFieldValues, must use a
// different one for the values. The process will not error, but Siebel Open UI
// will not place the values in the property set.

var 1PS_values = SiebelApp.S App.NewPropertySet() ;
oPsDR_Header.SetProperty("Last Name","");

oPsDR_Header.SetProperty ("First Name",6"");
oPsDR_Header.SetProperty ("Middle Name","");

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_ App.GetModel () ;

var boContact = model.GetBusObject("Contact") ;

var bcContact = boContact.GetBusComp ("Contact") ;
bcContact.ActivateMultipleFields (oPsDR_Header) ;
bcContact.SetSearchSpec("Last Name", "Mead*");
currRetValue=ExecuteQuery () ;

currRetValue=FirstRecord() ;

// Use a different property set for the values. If you use the same one
// for arguments you get no values back.
currRetValue=GetMultipleFieldValues (oPsDR_Header, 1PS values) ;

// Get the value from the output property set.

SiebelJS.Log("FullName is " +1PS_values.GetProperty("First Name") +
1PS_values.GetProperty("Middle Name")+ 1PS_values.GetProperty("Last Name")) ;

GetPicklistBusComp Method

The GetPicklistBusComp method returns a pick business component that Siebel CRM associates with a field that resides
in the current business component. If no picklist is associated with this field, then this method returns an error. It uses
the following syntax:

BusComp .GetPicklistBusComp (FieldName)

You can use the GetPicklistBusComp method to manipulate a picklist, and you can use the name of the pick business
component that the GetPicklistBusComp method returns.

How Siebel Open Ul Uses the GetPickListBusComp Method With Constrained Picklists

If Siebel CRM uses the GetPickListBusComp method or the Pick method to pick a record that resides in a constrained
picklist, then the constraint is active. The pick business component that these methods return contains only the records
that meet the constraint.

Configuring Siebel Open Ul to Pick a Value from a Picklist
This topic describes how to configure Siebel Open Ul to pick a value from a picklist.

To configure Siebel Open Ul to pick a value from a picklist
1. Use a JavaScript editor to open the JavaScript file that you must modify. This file resides on the client.
2. Add code that uses the Pick method to pick the value.

386
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

For example, add the following code to the method that Siebel Open Ul uses to register the service:

retObj=currRetValue=this.GetFieldValue ("City")
if (retObj.retvVal === "San Mateo")

{

var oBCPick = this.GetPicklistBusComp ("State") ;
oBCPick.SetSearchSpec("Value", "CA");
oretObj=currRetValue=oBCPick.ExecuteQuery (ForwardOnly) ;
retObj=currRetValue=oBCPick.FirstRecord() ;

if (oBCPick.CheckActiveRow ()) {

oBCPick.Pick() ;

}

}

This code configures Siebel Open Ul to use the GetPicklistBusComp method to create an instance of the picklist
business component. For more information, see Pick Method.

GetSearchExpr Method

The GetSearchExpr method returns a string that contains the current search expression that Siebel Open Ul defines for
a business component. The following search expression is an example of a string that GetSearchExpr might return:

[Revenue] > 10000 AND [Probability] > .5

The GetSearchExpr method uses the following syntax:

BusComp . GetSearchExpr () ;

For example:

SiebelApp.S_App.FindApplet (appletName) .BusComp () .GetSearchExpr () ;
The GetSearchExpr method includes no arguments.

If an instance of the business component does not exist, then the GetSearchExpr method returns nothing.

GetSearchSpec Method

The GetSearchSpec method returns a string that contains the search specification that Siebel Open Ul defines for a
business component field in. For example, it might return the following search specification:

> 10000

The GetSearchSpec method uses the following syntax:

BusComp .GetSearchSpec (FieldName) ;

For example:

SiebelApp.S_App.FindApplet (appletName) .BusComp () .GetSearchSpec (FieldName) ;

GetUserProperty Method

The GetUserProperty method gets the value of a business component user property. It uses the following syntax:
BusComp.GetUserProperty (business_component user_ property)

where:

- business_component_user_property is a string that identifies the name of a business component user property.

387
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

For example, the following code gets the value of the Deep Copy business component user property:

SiebelApp.S_App.FindApplet (appletName) .BusComp () .GetUserProperty ("Deep Copy");

GetViewMode Method

The GetViewMode method returns a Siebel ViewMode constant or the corresponding integer value for this constant.
This constant identifies the current visibility mode of a business component. This mode determines the records that a
query returns according to the visibility rules.

The GetViewMode method uses the following syntax:

BusComp. GetViewMode ()
It includes no arguments.

For example:

SiebelApp.S_App.FindApplet (appletName) .BusComp () .GetViewMode () ;

InvokeMethod for Business Components

The InvokeMethod method that you can use with business components works the same as the InvokeMethod method
that you can use with applets. For more information about the InvokeMethod method that you can use with applets, see
InvokeMethod Method for Applets.

Name Method for Business Components
The Name method returns the name of a business component. It uses the following syntax:

SiebelApp.S_App.FindApplet (appletName) .BusComp ()

It includes no arguments.

NextRecord Method

The NextRecord method moves the record pointer to the next record that the business component contains, making
this next record the current record. It adds the next record that the current search specification and sort specification
identifies, and then sets the active row to this record. It adds this record to the current set of records. It does this
work only if the current set of records does not already contain this next record. It returns this next record. It uses the
following syntax:

BusComp . NextRecord ()

For example:

SiebelApp.S_App.FindApplet (appletName) .BusComp () .NextRecord() ;

It includes no arguments.

ParentBusComp Method

The ParentBusComp method returns the parent business component of a business component. It uses the following
syntax:

BusComp. ParentBusComp ()
It includes no arguments.
For example:

388
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

SiebelApp.S App.FindApplet (appletName) .BusComp () . ParentBuscomp ()

Pick Method

The Pick method places the currently chosen record that resides in a pick business component into the appropriate
fields of the parent business component. It uses the following syntax:

BusComp.Pick ()
The Pick method includes no arguments.
You cannot use the Pick method to modify the record in a picklist field that is read-only.

For usage information, see Configuring Siebel Open Ul to Pick a Value from a Picklist. For more information about pick
business component, see Configuring Siebel Business Applications .

RefreshBusComp Method

The RefreshBusComp method runs the current query again for a business component and makes the record that was
previously active the active record. The user can view the updated view, but the same record remains highlighted in the
same position in the list applet. This method returns nothing.

It uses the following syntax:
BusComp . InvokeMethod ("RefreshBusComp")

For example:
currRetValue=buscomp.InvokeMethod ("RefreshBusComp") ;
retObj=currRetValue;

if ('retObj.err){)

It includes no arguments.

RefreshRecord Method

The RefreshRecord method updates the currently highlighted record and the business component fields in the Siebel
client. It positions the cursor on the highlighted record. It does not update other records that are currently available in
the client. This method returns nothing.

It uses the following syntax:
BusComp . InvokeMethod ("RefreshRecord ")

For example:
currRetValue=buscomp.InvokeMethod ("RefreshRecord") ;
retObj=currRetValue;

if (!'retObj.err){ }

It includes no arguments.

SetFieldValue Method

The SetFieldValue method sets a field value in a record. It returns one of the following values depending on whether it
successfully set the field value:

- Successfully set the field value. Returns an empty error code.

- Did not successfully set the field value. Returns an error code.

389
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

It uses following syntax.

SetFieldValue (fieldName, fieldValue) ;
where:

- fieldName is a string that contains the name of the field that SetFieldValue updates.
- fieldValue is a string that contains the value that SetFieldValue uses to update the field.

For examples that use the SetFieldValue method, see the following topics:

« Registering Methods to Make Sure Siebel Open Ul Runs Them in the Correct Sequence
« Customizing Siebel Pharma for Siebel Mobile Disconnected Clients

- Allowing Users to Commit Part Tracker Records

« Allowing Users to Return Parts

- Allowing Users to Set the Activity Status

SetMultipleFieldValues Method

The SetMultipleFieldValues method sets new values in the fields of the current record of a business component. It uses
the following syntax:

BusComp.SetMultipleFieldValues (oPropertySet)

The FieldName argument that the property set contains must match the field name that Siebel Tools displays. This
match must be exact, including upper and lower case characters.

In the following example, the FieldName is Name and the FieldValue is Acme:
oPropertySet.SetProperty ("Name","Acme")
Note the following:

- If an error occurs in the values of any of fields that the property set specifies, then Siebel Open Ul stops the
process it is currently running.

- You can use the SetMultipleFieldValues method only on a field that is active.

- You must not use the SetMultipleFieldValues method on a field that uses a picklist.

Example

The following example in Siebel eScript uses the SetMultipleFieldValues method to set the values for all fields that the
property set identifies, including the Name, Account, and Sales Stage:

var currRetValue={err:false}, retObj;

varmodel = SiebelApp.S_App.GetModel () ;

var bo = model.GetBusObj ("Opportunity") ;

var bc = bo.GetBusComp ("Opportunity") ;

var ps =SiebelApp.S_App.NewPropertySet() ;
ps.SetProperty ("Name", "Call Center Opportunity")
ps.SetProperty ("Account", "Marriott International");
ps.SetProperty ("Sales Stage", "2-Qualified");
bc.ActivateMultipleFields (ps) ;
currRetValue=bc.NewRecord () ;
currRetValue=bc.SetMultipleFieldValues (ps) ;

ps = null;

currRetValue=bc.WriteRecord() ;

390
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

SetSearchSpec Method

The SetSearchSpec method sets the search specification for a business component. It returns nothing. It uses the
following syntax:

BusComp . SetSearchSpec (FieldName, searchSpec) ;
For example:
SiebelApp.S_App.FindApplet (appletName) .BusComp () . SetSearchSpec("Id", strCallld);
where:
- FieldName is a string that identifies the name of the field where Siebel Open Ul sets the search specification.
- searchSpec is a string that contains the search specification.

You must configure Siebel Open Ul to call the SetSearchSpec method before it calls the ExecuteQuery method. To avoid
an unexpected compound search specification on a business component, it is recommended that you configure Siebel
Open Ul to call the ClearToQuery method before it calls the SetSearchSpec method.

SetViewMode Method

The SetViewMode method sets the visibility type for a business component. It returns nothing. It uses the following
syntax:

BusComp . SetViewMode (inMode) ;
where:

- inMode identifies the view mode. It contains one of the following integers:

o 0. Sales Representative.
o 1. Manager.

o 2.Personal.

o 3.AlL

o 4.None.

o 5. Organization.

o 6. Contact.

For example:

SiebelApp.S_ App.FindApplet (appletName) .BusComp () . SetViewMode (inMode) ;

UndoRecord Method

The UndoRecord method reverses any unsaved modifications that the user makes on a record. This includes reversing
unsaved modifications to fields, and deleting an active record that is not saved. It returns one of the following values:

- true. UndoRecord successfully deleted the record.
- false. UndoRecord did not successfully delete the record.
It uses the following syntax:

BusComp . UndoRecord() ;

It includes no arguments.

391
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

For example:
SiebelApp.S_App.FindApplet (appletName) .BusComp () .UndoRecord() ;
You can use the UndoRecord method in the following ways:

- To delete a new record. Use it after Siebel CRM calls the NewRecord method and before it saves the new record
to the Siebel database.

- To reverse modifications that the user makes to field values. Use it before Siebel CRM uses the WriteRecord
method to save these changes, or before the user steps off the record.

UpdateRecord Method

The UpdateRecord method places the current record in the commit pending state so that Siebel Open Ul can modify it.
It returns the retObj object with retVal set to one of the following values:

- true. The UpdateRecord method successfully placed the current record in the commit pending state.
- false. The UpdateRecord method did not successfully place the current record in the commit pending state.
It uses the following syntax:
this.UpdateRecord() ;
where:
- this identifies a business component instance.

For example, the following code calls the CanUpdate method. If CanUpdate indicates that Siebel Open Ul can update the
active row, then this code places the current record in the commit pending state for the business component that this
specifies:

this. UpdateRecord(false)
The UpdateRecord method can run in a Siebel Mobile Disconnected client.

For more information, see CanUpdate Method.

WriteRecord Method

The WriteRecord method writes any modifications that the user makes to the current record. If you use this method
with:

- A connected client. WriteRecord writes these modifications to the Siebel Database that resides on the Siebel
Server.

- Siebel Mobile Disconnected.
- WriteRecord writes these modifications to the local database that resides on the client.
The WriteRecord method returns one of the following values:
- error:false. WriteRecord successfully wrote the modifications to the local database.
- error:true. WriteRecord did not successfully write the modifications to the local database.
The WriteRecord method uses the following syntax:
buscomp . writerecord (bAddSyncQ)
where:
- baddsyncg is an optional argument that specifies to synchronize the modification that WriteRecord makes to the

Siebel Server. You can set this argument to one of the following values:

392
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

o true. Siebel Open Ul synchronizes the modification. This is the default setting.
o false. Siebel Open Ul does not synchronize the modification.

For examples that use the WriteRecord method, see the following topics:

« Registering Methods to Make Sure Siebel Open Ul Runs Them in the Correct Sequence
- Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects
« Customizing Siebel Pharma for Siebel Mobile Disconnected Clients

- Allowing Users to Commit Part Tracker Records

Example

You must first configure Siebel Open Ul to create new records and set values for fields. You can then use the following
code to call the WriteRecord method to save the new record to the offline database:

var currRetValue={err:false}, retObj;
var model= SiebelApp.S_App.GetModel () ;
var bo = model.GetBusObject ("Opportunity ") ;
var bc = bo.GetBusComp ("Opportunity") ;
varstrDEANumber = 9089;
var strDEAExpDate = 02/12/2013;
currRetValue=bc.SetFieldValue ("DEA#", strDEANumber) ;
retObj=currRetValue;
if ('retObj.err) {
currRetValue=bc.SetFieldValue ("DEA Expiry Date", strDEAExpDate) ;
retObj=currRetValue;
if ('retObj.err) ({
currRetValue=bc.SetFieldValue ("DEA Expiry Date", strDEAExpDate) ;
retObj=currRetValue;
if ('retObj.err) {
currRetValue=bc.WriteRecord() ;
}
}
}

Methods You Can Use in the Business Object Class

This topic describes methods that you can use that reside in the Business Object class. The methods are described in
the following subtopics.

GetBusComp Method for Business Objects

The GetBusComp method returns the business component instance that a business object references. It uses the
following syntax:

SiebelApp.S_ App.Model.GetBusObj (business_object) .GetBusComp (business_component)
where:

- business_object identifies the name of a business object.
- business_component identifies the name of a business component.

Each view references a business object, and each business object references one or more business components. If you
configure Siebel Open Ul to call GetBusComp in the context of a business object, then you must do the following:

- use the business_object argument to specify the name of the business object that the view references.

393
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

use the business_component argument to specify the name of a business component that the business object

references.

For example, the following code gets the business component instance for the Order Entry - Orders business
component that the Service Request business object references:

SiebelApp.S_App.Model.GetBusObj ("ServiceRequest") .GetBusComp ("Order Entry -
Orders")

For information about using BusComp in the context of an applet, see BusComp Method for Applets. For more
information about views, business objects, and business components, and how they reference each other, see
Configuring Siebel Business Applications .

GetLastErrCode Method for Business Objects

The GetLastErrCode method returns the error code for the most recent error that the disconnected client logged. It uses
the following syntax:

BusObj.GetLastErrCode ()
For example:

ActiveBusObject () .GetLastErrCode () ;
This method includes no arguments.

The error code that this method returns is a short integer. An error code of O (zero) indicates no error occurred.

GetLastErrText Method for Business Objects

The GetLastErrText method returns a string that contains the text message for the most recent error that the
disconnected client logged. It uses the following syntax:

BusObj.GetLastErrText ()
For example:
ActiveBusObject () .GetLastErrText () ;

This method includes no arguments.

Name Method for Business Objects
The Name method returns the name of a business object. It uses the following syntax:

BusObject.Name () ;

This method includes no arguments.

Methods You Can Use in the Business Service Class

This topic describes methods that you can use that reside in the Business Service class. The methods are described in
the following subtopics.

394
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Invoke Method for Business Services

The Invoke method that you can use with a business service calls the CanlnvokeMethod business service and the
InvokeMethod business service. It returns a property set. It uses following syntax:

service.Invoke (method name, psPropertySet);
where:

- method_name is a string that identifies the business service method that the Invoke method calls. The Invoke
method also calls the following methods:

o CanlnvokeMethod. Determines whether or not Siebel Open Ul can call the business service method that
method_name identifies. Any custom business service file you create must include the CaninvokeMethod
business service method.

o InvokeMethod. Calls the business service method that method_name identifies. Any custom business
service file you create must include the InvokeMethod business service method.

For more information about using these methods, see Using Siebel Business Services or JavaScript Services to
Customize Siebel CRM Objects.

- psPropertySet iS @ property set that the Invoke method sends to the method that method_name identifies.
The following example calls the CanAddSample method of the LS Pharma Validation Service business service:

var service = SiebelApp.S_App.GetService ("LS Pharma Validation Service");
var outputSet = service.Invoke ("CanAddSample", psPropertySet) ;

For an example that uses the Invoke method with a business service, see Using Custom Siebel Business Services.

ServiceRegistry Method

The ServiceRegistry method registers a custom business service method that you define. You must use it any time that
you configure Siebel Open Ul to call a custom business service method. It returns one of the following values:

- true. Siebel Open Ul successfully registered the method.
- false. Siebel Open Ul did not successfully register the method.
It uses following syntax:
SiebelApp.S_App.GetModel () . ServiceRegistry (inputObj) ;

where:

- inputoObj is an object that specifies a set of properties, where each property specifies a name and a value. The
number of properties varies according to object type. For a list of properties that you can use, see Properties
You Must Include to Register Custom Business Services. The inputObj argument uses the following syntax:

inputObj [oconsts.get("name")] = "value";
where:
- name specifies the property name
- value specifies the property value
For example, the following code specifies the DOUIREG_OBJ_NAME property with a value of Pharma Call Entry Mobile:
inputObj [oconsts.get ("DOUIREG_OBJ NAME")] = "Pharma Call Entry Mobile";

The following code specifies the property name:

395
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

oconsts.get ("DOUIREG_OBJ_NAME")

Siebel Open Ul registers a method for a custom service when it loads the script files that it uses for this custom service.
This configuration makes sure that Siebel Open Ul calls the ServiceRegistry method from the correct location in the
code. To view this code in the context of a complete example, see Using Custom JavaScript Methods.

Properties You Must Include to Register Custom Business Services

The following table describes the properties that you must include in the inputObj argument of the ServiceRegistry
method when Siebel Open Ul registers a custom business service. The local constants.js file defines each of these
properties as a constant.

Properties Value

DOUIREG_OBJ_NAME The name of a custom business service. For example:

LS Pharma Validation Service

DOUIREG_SRVC_NAME The name of the JavaScript class that the custom business service references. For example:
PharmaCallValidatorsvce
The following table describes the properties you must include in the inputObj argument of the ServiceRegistery method

when Siebel Open Ul registers a custom business service that references a predefined applet or a predefined business
component.

Property Value

DOUIREG_OBJ_TYPE Specifies that this business service method references an applet or a business component. You must
use one of the following values:

- Use DOUIREG_OBJ_TYPEAPPLET for an applet.
« Use DOUIREG_OBJ_TYPEBUSCOMP for a business component.

DOUIREG_OBJ_MTHD Name of the predefined business service method that you must customize. For example, WriteRecord.
DOUIREG_SRVC_NAME The name of the JavaScript class that the Class property of the business service method references.
For example:
pharmacallsvce
DOUIREG_SRVC_MTDH Name of the business service method that you customized. For example, WriteRecord.
DOUIREG_EXT_TYPE You can use one of the following values:

- DOUIREG_EXT_TYPEPRE. Siebel Open Ul runs the custom business service method, and then
runs the predefined business service method. You must configure Siebel Open Ul to set the
Invoked property to true after it processes DOUIREG_EXT_TYPEPRE so that it does not make any
more calls to this method.

- DOUIREG_EXT_TYPEPOST. Siebel Open Ul runs the predefined business service method, and
then runs the custom business service method.

396
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Methods You Can Use in the Application Class

This topic describes methods that you can use that reside in the Application class. The methods are described in the
following subtopics.

ActiveBusObject Method

The ActiveBusObject method returns the business object that the active view references. It uses the following syntax:

Application. ActiveBusObject()
It includes no arguments.

For example:

SiebelApp.S_App.ActiveBusObject();

ActiveViewName Method

The ActiveViewName method returns the name of the active view. It uses the following syntax:

Application. ActiveViewName ()
It includes no arguments.

For example:

SiebelApp.S_App. ActiveViewName () ;

CurrencyCode Method

The CurrencyCode method returns the currency code that Siebel CRM associates with the division of the user position.
For example, USD for U.S. dollars, EUR for the euro, or JPY for the Japanese yen. It uses the following syntax:

Application. CurrencyCode ()
It includes no arguments.

For example:

SiebelApp.S_App. CurrencyCode();

FindApplet Method

The FindApplet method returns the active applet. It uses the following syntax:
Application. FindApplet (appletName)
where:
- appletName iS a string that contains the name of the active applet.

For example, if the Contact List Applet is the current applet, then the appletName variable in the following code returns
the name of this applet as a string:

SiebelApp.S_App.FindApplet (appletName) ;

397
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

GetBusObject Method

The GetBusObject method creates a new instance of a business object. It returns this new business object instance. It is
not synchronous. It uses the following syntax:

Application. GetBusObject (business_object name)
where:

- business_object_name is a string that identifies the name of a business object
For example, the following code creates a new instance of the Opportunity business object:

SiebelApp.S_App. GetBusObject (Opportunity) ;

GetLastErrCode Method for Applications

The GetLastErrCode method returns the error code for the most recent error that the disconnected client logged. It uses
the following syntax:

Application.GetLastErrCode ()
For example:

TheApplication() .GetLastErrCode () ;
This method includes no arguments.

The error code that this method returns is a short integer. An error code of O (zero) indicates no error occurred.

GetLastErrText Method for Applications

The GetLastErrText method returns a string that contains the text message for the most recent error that the
disconnected client logged. It uses the following syntax:

Application.GetLastErrText ()
For example:
TheApplication() .GetLastErrText () ;

This method includes no arguments.

GetService Method

The GetService method creates an instance of a business service object. It allows you to use the Invoke method to call
this business service object. It uses the following syntax:

SiebelApp.S_App.GetService ("business_service_name") ;
where:

- business_service_name is a string that identifies the name of the business service that GetService uses to
create the business service object. You must use the same name that you use when you register this business
service. For more information about registering a business service, and for an example that uses the GetService
method, see Using Custom Siebel Business Services.

The following example creates a business service instance of the LS Pharma Validation Service business service:

var service = SiebelApp.S_App.GetService ("LS Pharma Validation Service");

398
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Loginld Method

The Loginld method returns the login ID of the user who started the Siebel application. It uses the following syntax:

Application. LoginId()
It includes no arguments.

For example:

SiebelApp.S_App. LoginId();

LoginName Method

The LoginName method returns the login name of the user who started the Siebel application. This login name is the
name that the user enters in the login dialog box. It uses the following syntax:

Application. LoginName ()
It includes no arguments.

For example:

SiebelApp.S_App. LoginName () ;

Name Method for Applications

The Name method returns the name of the Siebel application. It uses the following syntax:

Application. Name ()
It includes no arguments.

For example:

SiebelApp.S_App. Name() ;

NewPropertySet Method

The NewPropertySet method creates a new property set, and then returns this property set to the code that called this
method. It uses the following syntax:

Application. NewPropertySet ()
It includes no arguments.

For example:

SiebelApp.S_App. NewPropertySet();

Positionld Method

The Positionld method returns the position ID of the user position. This position ID is the ROW_ID from the S_POSTN
table. Siebel CRM sets this value when the Siebel application starts, by default. It uses the following syntax:

Application. PositionId()
It includes no arguments.

For example:

399
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

SiebelApp.S App. PositionId();

PositionName Method

The PositionName method returns the name of the current user position. Siebel CRM sets this value when it starts the
Siebel application, by default. It uses the following syntax:

Application. PositionName ()
It includes no arguments.

For example:

SiebelApp.S_App. PositionName () ;

Methods You Can Use in the Model Class

This topic describes methods that you can use that reside in the Model class. The methods are described in the
following subtopics.

GetLoginld Method

The GetLoginld method returns the login Id of the offline user who is currently logged in to the Siebel Mobile
Disconnected client. It uses the following syntax:

Var loginid = SiebelApp.S_App.Model.GetLoginId() ;

ReleaseBO Method

The ReleaseBO method releases the current business object instance. It returns an instance of the current applet or
current business component. It uses the following syntax:

SiebelApp.S_App.Model.ReleaseBO (objBO) ;
where:

- objBo is a variable that identifies the business object instance that Siebel Open Ul must release.

Methods You Can Use in the Service Model Class

This topic describes the method that you can use that resides in the Service Model class.

GetContext Method

The GetContext method gets the context that exists when a JavaScript service or a Siebel business service calls a
method. It returns the current applet or business component depending on this context. It uses the following syntax:

serviceObj.GetContext ()

You cannot configure Siebel Open Ul to override this method.

400
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

Methods You Can Use in Offline Classes

This topic describes a method you can use that resides in the offline classes. The command is described in the following
section.

This method resides in the OfflineErrorObiject class.

SetErrorMsg Method

The SetErrorMsg method defines an error message for a business service that you customize. It returns nothing. It uses
the following Syntax:

SiebelApp.S App.OfflineErrorObject.SetErrorMsg("messageKey", errParamArray) ;
where:

- messageKey contains the error message key. A message key is a text string that includes variable characters. %1
is an example of a variable character.

- errParamArray iS an optional array that contains error properties that SetErrorMsg includes in the error
message. SetErrorMsg replaces each variable character that the messageKey contains with a value from
errParamArray.

For an example that uses SetErrorMsg, see Configuring Error Messages for Disconnected Clients. For an example that
uses SetErrorMsg in the context of a call to a custom business service, see Registering Methods to Make Sure Siebel
Open Ul Runs Them in the Correct Sequence.

Other Methods You Can Use with Siebel Mobile Disconnected

This topic describes other methods that you can use with Siebel Mobile Disconnected. The methods are described in the
following subtopics.

GetBusObj Method

The GetBusObj method creates a new instance of a business object. It returns this new business object instance. It uses
the following syntax:

SiebelApp.S_App.Model.GetBusObj (business_object name)
where:

business_object_name identifies the name of the business object that GetBusObj uses to create the new
business object instance.

For example, the following code creates a new instance of the Service Request business object:

var pServiceRequestBC = SiebelApp.S App.Model.GetBusObj (""Service Request"")"
The GetBusObj method resides in the model.js file.

You cannot configure Siebel Open Ul to override this method.

401
ORACLE

Siebel Chapter 9
Configuring Siebel Open Ul Customizing Siebel Open Ul for Siebel Mobile Disconnected

GetLovNameVal Method

The GetLovNameVal method gets the value that Siebel Open Ul currently displays in the client for a list of values. It uses
the following syntax:

SiebelApp.S App.Model.GetLovNameVal (LOV_name, LOV_type)
where:

LOV_name identifies the name of a list of values.

LOV_type identifies the type of list of values that LOV_name identifies.

For example, the following code gets the value that Siebel Open Ul currently displays in the client for the Samples
Request list of values:

SiebelApp.S_App.Model.GetLovNameVal (""Samples Request"", ""TODO_TYPE"")"
The GetLovNameVal method resides in the model.js file.

You cannot configure Siebel Open Ul to override this method.

GetLovValName Method

The GetLovValName method gets the name of a value that resides in a list of values. It uses the following syntax:
SiebelApp.S App.Model.GetLovValName (value name,LOV_type)
where:
- value_name identifies the name of a value that resides in a list of values.
LOV_type identifies the type of list of values that contains the value that value_name contains.
For example, the following code gets the value that Siebel Open Ul currently displays in the client for the Call value:
SiebelApp.S App.Model.GetLovValName ("Call","TODO TYPE")

The GetLovValName method resides in the model.js file. You cannot configure Siebel Open Ul to override this method.

402
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

10 Application Programming Interface

Application Programming Interface

This chapter describes reference information for the JavaScript Application Programming Interface (API) that you can
use to customize Siebel Open UI. It includes the following topics:

Overview of the Siebel Open Ul Client Application Programming Interface
« Methods of the Siebel Open Ul Application Programming Interface
« Methods for Pop-Up Objects and Property Sets

Overview of the Siebel Open Ul Client Application
Programming Interface

Creating a custom client user interface in Siebel Open Ul requires that you do the following work:

- Creating a new presentation model that Siebel Open Ul uses in addition to the metadata and data that it gets
from the Web Engine that resides on the Siebel Server.

- Creating a new physical user interface by creating a custom physical renderer that Siebel Open Ul uses in
addition to a predefined or custom presentation model.

You can use the following programming interfaces to implement these presentation models:

Presentation model class. Describes the life cycle methods that you must code for a presentation model and
the control methods that Siebel Open Ul uses to add presentation model properties and behavior. For more
information, see Presentation Model Class.

Physical renderer methods. Describes the life cycle methods that you must code into any renderer that binds a
presentation model to a physical renderer. For more information, see Physical Renderer Class.

For a summary of these methods and information about how Siebel Open Ul uses them, see Life Cycle of User Interface
Elements.

Siebel Open Ul defines each class in a separate file. It stores these files in the following folder:

AI_INSTALL DIR\applicationcontainer_external\siebelwebroot\scripts\siebel

For brevity, this chapter states that the method does something. In reality, most methods send a request to a proxy
object, and then this proxy object does the actual work.

For more information about the 1anguage_code, see Languages That Siebel Open Ul Supports.

403
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

Methods of the Siebel Open Ul Application Programming
Interface

This topic describes the methods of the Siebel Open Ul Application Programming Interface. You can use them to
customize Siebel Open UL. It includes the following information:

« Presentation Model Class
« Presentation Model Class for Applets
- Presentation Model Class for List Applets
« Presentation Model Class for Menus
« Physical Renderer Class
 Plug-in Wrapper Class
 Plugin Builder Class
Template Manager Class
- Event Helper Class
« Business Component Class
- Applet Class
- Applet Control Class
« GetEDEnabled Method
« Business Service Class
« Application Model Class
« Control Builder Class
« Locale Object Class
« Component Class
« Component Manager Class
« Other Classes

Presentation Model Class

This topic describes the methods that Siebel Open Ul uses with the PresentationModel class. The methods are
described in the following subtopics.

Siebel Open Ul defines the PresentationModel class in the pmodel.js file.

AddComponentCommunication Method
The AddComponentCommunication method binds a communication method. It uses the following arguments:
- methodName is a string that identifies the communication method that Siebel Open Ul binds.

- targetMethod is a string that identifies the method that Siebel Open Ul calls after methodName finishes. It calls
this target method in the presentation model context.

404
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

- targetMethodConfig identifies an object that contains configuration properties for targetMethod.

- targetMethodConfig.scope identifies the object that the AddComponentCommunication method binds. This
object must reference the targetMethod.

- targetMethodConfig.args is a list of arguments that Siebel Open Ul sends to targetMethod when the
AddComponentCommunication method runs.

AddLocalString Method

The AddLocalString method adds a text string. It uses the following syntax:
AddLocalString (ID, custom string)
where:
- IDis a string that you use to reference the custom_string. You can use any value for ID.
« custom_string is any text string.
For example:

this.AddMethod ("AddLocalString", function (my_text, this is my custom text) {
SiebelApp.S_App.LocaleObject.AddLocalString(my_ text, this is my custom text);
return value;

I
This code adds a string named my_text that includes the following string value:

this is my custom text

AddMethod Method

The AddMethod method adds a method to a presentation model. You can use ExecuteMethod to run the method that
AddMethod adds from the presentation model or from the physical renderer. If AddMethod attempts to add a new
method that the predefined client already contains, then the new method becomes a customization of the predefined
method, and this customization runs before or after the predefined method depending on the CancelOperation part of
the return value.

A method that customizes another method can return to the caller without running the method that it customizes. To
do this, you configure Siebel Open Ul to set the CancelOperation part of the return value to true. You set this property
on the ReturnStructure object that Siebel Open Ul sends to each method as an argument. For an example that does this
configuration, see Customizing the Presentation Model to Identify the Records to Delete.

The AddMethod method returns one of the following values:
« True. Added a method successfully.
- False. Did not add a method successfully.

It uses the following syntax:

AddMethod ("methodName" ,methodDef (argument, argument_n) {
}, {methodConfig:value})

where:

- methodName is a string that contains the name of the method that Siebel Open Ul adds to the presentation
model.

- methodDef is an argument that allows you to call a method or a method or a method reference.
- argument and argument_n are arguments that AddMethod sends to the method that methodDefidentifies.
- methodConfig is an argument that you set to one of the following values:

405
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

o sequence. Set to one of the following values:

- true. Siebel Open Ul calls methodName before it calls the method that already exists in the
presentation model.

- false. Siebel Open Ul calls methodName after it calls the method that already exists in the
presentation model. The default value is false.

o override. Set to one of the following values:

- true. Siebel Open Ul does not call the method that already exists in the presentation model.
Instead, it calls the sent method, when necessary. Note that Siebel Open Ul can never override
some methods that exist in a predefined presentation model even if you set override to true.

- false. Siebel Open Ul calls the method that already exists in the presentation model.

o scope. Describes the scope that Siebel Open Ul must use when it calls methodDef. The default scope is
Presentation Model.

Example of Adding a New Method

The following code adds a new ShowSelection method:
this.AddMethod ("ShowSelection", SelectionChange, {sequence : false, scope : this});

After Siebel Open Ul adds the ShowSelection method, you can use the following code to configure Siebel Open Ul to
call this method. It sends a string value of setactivecontrol to the sequence and a string value of nu11 to the scope
argument. To view how Siebel Open Ul uses this example, see Step 5 in the topic Customizing the Presentation Model to
Identify the Records to Delete:

this.ExecuteMethod ("SetActiveControl", null)

Example of Using the Sequence Argument

The following code configures Siebel Open Ul to attach a method. It calls this method anytime it calls the InvokeMethod
method of the proxy:

this.AddMethod ("InvokeMethod", function(){ }, {sequence : true});

This code sets the sequence argument to true, which configures Siebel Open Ul to call the method that it sends before it
calls InvokeMethod. The method that it sends gets all the arguments that InvokeMethod receives. For more information,
see InvokeMethod Method for Presentation Models.

Example of Overriding the Predefined Presentation Model
The following example overrides the predefined presentation model and runs the ProcessDrillDown method:

this.AddMethod ("ProcessDrillDown", function () {
}, {override : true});

Other Examples
The following examples also use AddMethod:

this.AddMethod ("InvokeMethod", function() {console.log("In Invoke Method of PM"),
{override: true});

this.AddMethod ("InvokeControlMethod",
DerivedPresentationalModel.prototype.MyInvokeControlMethod, {sequence : true});

For more information, see Deriving Presentation Models, Physical Renderers, and Plug-in Wrappers.

406
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

AddProperty Method

The AddProperty method adds a property to a presentation model. Siebel Open Ul can access it through the Get
method. It returns one of the following values:

- True. Added a property successfully.
False. Did not add a property successfully.
It uses the following syntax:
this.AddProperty ("propertyName", propertyValue) ;

where:

propertyName is a string that identifies a property. A subsequent call to this method with the same
propertyName overwrites the previous value.

propertyValue assigns a value to the property.
For example, the following code adds the NumOfRows property and assigns a value of 10 to this property:

this.AddProperty ("NumOfRows", 10);
SiebelJS.Log(this.Get ("NumOfRows")) ;

AddValidator Method

The AddValidator method validates an event. It allows you to write a custom validation for any event. It returns one of
the following values:

- true. Validated the event successfully.
- false. Did not validate the event successfully.
It uses the following syntax:
Addvalidator (siebConsts.get ("event_name"), function(){custom validation}

where:

- event_name identifies the name of the event that AddValidator validates.
For example, the following code validates the control focus event:

this.AddValidator (siebConsts.get ("PHYEVENT COLUMN FOCUS"), function(row, ctrl,
val) {

if (ctrl.GetDisplayName () === "Account" && val === "Hibbing Mfg") {

return true;

})

You can configure Siebel Open Ul to use the value that AddValidator returns to determine whether or not to stop
running handlers for an event. For more information, see AttachEventHandler Method.

For more information about events, see Siebel CRM Events That You Can Use to Customize Siebel Open UI.

AttachEventHandler Method

The AttachEventHandler method attaches an event handler to an event. It uses the following values:

« consts.get("SWE_EXTN_CANCEL_ORIG_OP"). If SWE_EXTN_CANCEL_ORIG_OP returns a value of true, then
Siebel Open Ul cancels the operation for the predefined event handler. For an example that sets the value for
SWE_EXTN_CANCEL_ORIG_OP, see Attaching and Validating Event Handlers in Any Sequence.

407
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

- consts.get("SWE_EXTN_STOP_PROP_OP"). If SWE_EXTN_STOP_PROP_OP returns a value of true, then Siebel
Open Ul stops the operation for the custom event handler from propagating the customization.

The AttachEventHandler method uses the following syntax:

AttachEventHandler (event_name, function_reference);
where:

- event_name identifies the name of an event.

- function_reference identifies the name of a method that the AddMethod method adds. For example,
PHYEVENT_CONTROL_BLUR. Siebel Open Ul calls OnControlEvent to trigger this event, and then calls the
function reference in the scope of the corresponding presentation model.

For more information about:

- An example that uses AttachEventHandler, see Example of the Life Cycle of a User Interface Element.
Events, see Siebel CRM Events That You Can Use to Customize Siebel Open UI.
Using AttachEventHandler, see Life Cycle Flows of User Interface Elements.
Deriving a value, see Deriving Presentation Models, Physical Renderers, and Plug-in Wrappers.

AttachNotificationHandler Method

The AttachNotificationHandler attaches a method that handles the notification that Siebel Open Ul calls when the
Siebel Server sends a notification to an applet. It does this attachment when the notification occurs. It returns one of the
following values:

- True. Attached notification handler successfully.
False. Did not attach notification handler successfully.
It uses the following syntax:
this.AttachNotificationHandler ("notification_name", handler) ;
where:

notification_name is a string that includes the name or type of a notification. For example, NotifyDeleteRecord
or SWE_PROP_BC_NOTI_DELETE_RECORD.

- handler identifies a notification handler that Siebel Open Ul calls when notification processing finishes. For
example, HandleDeleteNotification.

For more information about:

- An example that uses AttachNotificationHandler, see Customizing the Presentation Model to Handle
Notifications
Using the AttachNotificationHandle method, see Customizing Events
How Siebel Open Ul handles notifications, see Life Cycle Flows of User Interface Elements

Notifications, see Notifications That Siebel Open Ul Supports

Example of Using AttachEventHandler

Assume a presentation model named pmodel.js includes an OnControlEvent method that runs a custom event
handler, and that Siebel Open Ul sends an eventConfig object as the last argument in the event handler call. It

uses this eventConfig object in the custom presentation model to set a value for SWE_EXTN_CANCEL_ORIG_OP or
SWE_EXTN_STOP_PROP_OP. This configuration allows AttachEventHandler to create multiple custom events and to
stop an event handler from running.

408
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

For example, assume your customization configures Siebel Open Ul to do the following:

Derive derivedpm?.js from pmodel.js.

Derive derivedpm?Z.js from derivedpm.js.

Derive derivedpm3.js from derivedpm?2.js.

Include an event handler for PHYEVENT_COLUMN_FOCUS in derivedpmd.js, derivedpm2.js, and derivedpm3.js.
Use derivedpm3.js to set the AttachEventHandler to the value that SWE_EXTN_STOP_PROP_OP contains.

Use the following code so that Siebel Open Ul uses the last argument that AttachEventHandler specifies:

this.AttachEventHandler(siebConsts.get ("PHYEVENT COLUMN_ FOCUS"), function()

{
SiebelJS.Log("Control focus 1");
arguments[arguments.length - 1] [consts.get("SWE_EXTN STOP PROP OP")] = false;

})

Siebel Open Ul runs AttachEventHandler customizations in a LIFO (last in, first out) sequence. In this example, it uses
the following sequence:

Runs event handlers that reside in derivedpm3.js.
Runs event handlers that reside in derivedpm?2.js.
Runs event handlers that reside in derivedpm1.js.
Runs event handlers that reside in the predefined presentation model.

So, this example stops the custom PHYEVENT_COLUMN_FOCUS event handlers in the derivedpm2.js file and the
derivedpm.js file from running.

How Siebel Open Ul Uses AttachEventHandler To Manage an Event

An event occurs when the user clicks an object or changes the focus. To manage this event, Siebel Open Ul does the
following work:

1. Instructs the physical renderer to call the OnControlEvent method. To make this call, it uses the event name that
Siebel Open Ul sends to the AttachEventHandler method and corresponding parameters.

2. ldentifies the list of event handlers that it registered with the event name in the Init function of the presentation
model.

3. Uses the OnControlEvent parameters from Step 1to call each of the event handlers that it identified in Step 2.

4. Finishes running all the event handlers, and then sends a return value to the object that called OnControlEvent.

AttachPMBinding Method

The AttachPMBIinding method binds a method to an existing method. Siebel Open Ul calls the method that it binds
when it finishes processing this existing method. The AttachPMBinding method returns one of the following values:

. True. The bind succeeded.
False. The bind failed.

It uses the following syntax:

this.AttachPMBinding ("method name", function() {SiebelJS.Log("method to_call") ;}, {wh
en : function(conditional_ function) {return value;}});

where:
method_name is a string that identifies the name of a method.
method_to_call identifies the method that Siebel Open Ul calls when it finishes processing method_name.
- conditional_function identifies a function that returns one of the following values:

409
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

o true. Calls the AttachPMBinding method.
o false. Does not call the AttachPMBinding method.

For an example that uses AttachPMBinding, see Customizing the Physical Renderer to Refresh the Carousel.

For more information about using the AttachPMBinding method, see Configuring Siebel Open Ul to Bind Methods and
Life Cycle Flows of User Interface Elements.

AttachPostProxyExecuteBinding Method

The AttachPostProxyExecuteBinding method binds a method that resides in a proxy or presentation model
to a PostExecute method. Siebel Open Ul finishes the PostExecute method, and then calls the method that
AttachPostProxyExecuteBinding identifies. It uses the following syntax:

this.AttachPostProxyExecuteBinding("method to_call", function(methodName, inputPS,
outputPS) {"binder configuration";return;});

where:

- method_to_call is a string that identifies the method that Siebel Open Ul calls.

- binder_configuration is a string that identifies code that Siebel Open Ul runs after the applet proxy sends a
reply.
For more information, see Refreshing Custom Events and PostExecute Method.

In the following example, the user clicks the New button in an applet, Siebel Open Ul runs the NewRecord method, and
then the client receives the reply from the Siebel Server. In this situation, you can use the following code to run some
logic in the presentation model after Siebel Open Ul runs the PostExecute method as part of the element life cycle:

this.AttachPostProxyExecuteBinding ("NewRecord", function(methodName, inputPS,
outputPS) {"Do Something for New Record";return;});

The following code runs this same logic in the presentation model for all methods:

this.AttachPostProxyExecuteBinding ("ALL", function (methodName, inputPS,
outputPS) {"Do Something for all methods";return;});

For more information, see NewRecord Method.

For more examples that use AttachPreProxyExecuteBinding and AttachPostProxyExecuteBinding, see Customizing the
Presentation Model to Call the Siebel Server and Delete a Record and Calling Methods for Applets and Business Services.

Using the AttachPreProxyExecuteBinding and AttachPostProxyExecuteBinding Methods

The AttachPreProxyExecuteBinding and AttachPostProxyExecuteBinding methods provide a generic way to do more
processing than the AttachNotificationHandler method provides before or after the proxy finishes processing the reply
from a method that the client or the Siebel Server calls. A method might cause Siebel Open Ul to create a notification
from the Siebel Server that does more post-processing than the client proxy requires. This situation can occur with a
custom method that you implement on the Siebel Server. For example, with an applet, business service, or some other
object type. For more information, see AttachNotificationHandler Method.

Siebel Open Ul sends a notification only for a typical modification that occurs in the predefined product. For example,
a new or deleted record or a modified record set. Siebel Open Ul might not be able to identify and process the correct
notification. For example, you can configure Siebel Open Ul to make one call to the WriteRecord method from the
client, but the server business logic might cause this method to run more than one time. Siebel Open Ul might
receive notifications for any WriteRecord method that occurs for a business component that it binds to the current

410
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

user interface. These notifications might contain more information than the reply notification requires. For more
information, see WriteRecord Method.

AttachPreProxyExecuteBinding Method

The AttachPreProxyExecuteBinding method binds a method that resides in a proxy or presentation model to a
PostExecute method. Siebel Open Ul calls this method, and then runs PostExecute. The AttachPreProxyExecuteBinding
uses the same syntax and arguments that the AttachPostProxyExecuteBinding method uses, except you

configure Siebel Open Ul to call the AttachPreProxyExecuteBinding method. For more information, see
AttachPostProxyExecuteBinding Method.

ExecuteMethod Method

The ExecuteMethod method runs a method. You can use it to run a predefined or custom method that the presentation
model contains. It makes sure Siebel Open Ul runs all dependency chains for the method that it calls. For more
information about dependency chains, see About Dependency Injection.

If the method that ExecuteMethod specifies:

Exists. It returns a value from the method that it specifies.
Does not exist. It returns the following string:
undefined
It uses the following syntax:

this.GetPM() .ExecuteMethod ("method name", arguments);
where:

method_name is a string that identifies the name of the method that ExecuteMethod runs. You must use the
AddMethod method to add the method that method_name specifies before you run ExecuteMethod. If the
method that method_name specifies:

o Exists. Siebel Open Ul calls the method that method_name specifies, sends the arguments, gets the
return value, and then sends this return value to the object that called the ExecuteMethod method.

o Does not exist. The ExecuteMethod method does nothing.

- arguments includes a list of one or more arguments where a comma separates each argument. ExecuteMethod
sends these arguments to the method that method_name specifies. It sends these arguments in the same
order that you list them in this argument list.

For examples that use InvokeMethod, see Customizing the Presentation Model to Delete Records and Customizing the
Presentation Model to Handle Notifications.

For more information about using this method, see Life Cycle Flows of User Interface Elements.

Get Method

The Get method returns the value of the property that Siebel Open Ul adds through the AddProperty method. If Siebel
Open Ul sends a method in the propertyValue argument of the AddProperty method, then it calls the Get method, and
then sends the return value to the method that calls the Get method. For an example that uses the Get method, see
Customizing the Presentation Model to Delete Records. For more information about using this method, see Life Cycle
Flows of User Interface Elements.

a1
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

GetCtrITemplate Method

The GetCtrlITemplate method gets the template for a control, and then uses values from this template to create an
object. It uses values from this template to set the default values and the format for the property set that this control
uses. It returns nothing. It uses the following syntax:

GetCtrlTemplate ("control name", "display name", consts.get("control_ type"),
column_index) ;

where:

- control_name specifies the name of the control.
- display_name specifies the label that Siebel Open Ul displays in the client for this control.
- control_type specifies the type of SWE control, such as SWE_CTRL_TEXTAREA. You can specify one of the
following values:

o SWE_CTRL_URL

o SWE_CTRL_TEXTAREA

o SWE_CTRL_TEXT

o SWE_CTRL_DATE_TZ_PICK

o SWE_CTRL_DATE_TIME_PICK

o SWE_CTRL_DATE_PICK

o SWE_CTRL_CHECKBOX

o SWE_CTRL_CALC

o SWE_CTRL_COMBOBOX

o SWE_CTRL_PWD

- column_index is an integer that specifies the physical location in the list control.

For example, the following code gets the template for the TestEdit control:

GetCtrlTemplate ("TestEdit", "Test Edit", consts.get("SWE_CTRL_TEXTAREA"), 1);

Init Method

The Init method allows you to use different methods to customize a presentation model, such as AddMethod,
AddNotificationHandler, AttachPMBinding, and so on. It uses the following syntax:

Init()
For an example that uses Init, see Step 2 in the topic Overriding Predefined Methods in Presentation Models.

You must not configure Siebel Open Ul to override any method that resides in a derived presentation model except for
the Init method or the Setup method. For more information, see Deriving Presentation Models, Physical Renderers, and
Plug-in Wrappers.

You must configure Siebel Open Ul to do the following:

- Call the Init method in the predefined presentation model before it calls the Init method in the derived
presentation model.

- Call the Setup method in the predefined presentation model before it calls the Setup method in the derived
presentation model. For more information, see Setup Method for Presentation Models.

412
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

OnControlEvent Method

The OnControlEvent method calls an event. It uses the following syntax:
OnControlEvent (event_name, event arguments)
where:
- event_name identifies the name of an event. You must use event_name to send an event.
For more information about:
Examples that use OnControlEvent, see the following topics:
o Modifying CSS Files to Support the Physical Renderer
o Adding Custom User Preferences to Applets

How Siebel Open Ul uses OnControlEvent, see the following topics:
o How Siebel Open Ul Uses the Init Method of the Presentation Model
o Siebel CRM Events That You Can Use to Customize Siebel Open Ul
o Life Cycle Flows of User Interface Elements

SetProperty Method

The SetProperty method sets the value of a presentation model property. It returns one of the following values:
- True. Set the property value successfully.
False. Did not set the property value successfully.
It uses the following syntax:
SetProperty (property name, property value)
where:
property_name specifies the name of the property that SetProperty sets.
property_value specifies the value that SetProperty sets for property_name..

If the property that the SetProperty method references does not exist, then Siebel Open Ul creates this property and
sets the value for it according to the SetProperty method. You can also use the AddProperty method to add a property.

For examples that use SetProperty, see the following topics:
Customizing the Presentation Model to Delete Records
- Customizing the Presentation Model to Call the Siebel Server and Delete a Record
Text Copy of Code That Does a Partial Refresh for the Presentation Model
« Adding Custom User Preferences to Applets
Using Custom JavaScript Methods

« Customizing Siebel Pharma for Siebel Mobile Disconnected Clients

Setup Method for Presentation Models

The Setup method extracts the values that a property set contains. Siebel Open Ul calls this Setup method when it
processes the initial reply from the Siebel Server. It uses the following syntax:

413
ORACLE

Siebel Chapter 10

Configuring Siebel Open Ul Application Programming Interface
Setup (property_set)

where:

property_set identifies the property set that Siebel Open Ul uses with the corresponding proxy object. It
contains the property set information for the proxy and any custom property set information that Siebel Open
Ul added through the presentation model that resides on the Siebel Server. If Siebel Open Ul must parse a
custom property set, then this work must occur in the Setup method for the derived presentation model. For
more information, see Deriving Presentation Models, Physical Renderers, and Plug-in Wrappers.

For example, the following code identifies the childPropset property set:
extObject.Setup (childPropset.GetChild(0)) ;

For more information about:

How Siebel Open Ul uses this Setup method, see Summary of Presentation Model Methods. Methods That
Manipulate Property Sets and GetChild Method.

Examples that use the Setup method, see Customizing the Setup Logic of the Presentation Model and Adding
Presentation Model Properties That Siebel Servers Send for Applets.

- The Setup method that Siebel Open Ul uses with components, see Setup Method for Components.

Presentation Model Class for Applets

This topic describes the methods that Siebel Open Ul uses with the presentation models that it uses to display applets.
The methods are described in the following subtopics.

Siebel Open Ul uses the PresentationModel class to define the presentation models that it uses to display applets. For
more information about this class, see Presentation Model Class.

Summary of Methods That You Can Use with the Presentation Model for Applets

The following table lists the methods that you can use with the presentation model that Siebel Open Ul uses for a
predefined applet. You cannot configure Siebel Open Ul to customize or override any of these methods except for the
PostExecute method. You can configure Siebel Open Ul to customize the PostExecute method.

Method Callable Bindable
CanlnvokeMethod Yes No
CanNavigate Yes No
CanUpdate Yes No
ExecuteMethod Yes No
ExecuteUlUpdate No Yes
FieldChange No Yes

414
ORACLE

Siebel
Configuring Siebel Open Ul

Method

FocusFirstControl

GetControl

GetControlld

GetFieldValue

GetFormattedFieldValue

GetPhysicalControlValue

InvokeMethod

InvokeStateChange

IsPrivateField

LeaveField

NewFileAttachment

PostExecute

ProcessCancelQueryPopup

RefreshData

ResetAppletState

SetActiveControl

SetFocusDefaultControl

SetFocusToCtrl

SetHighlightState

SetUpdateConditionals

ShowPickPopup

ORACLE

Callable

No

Yes

Yes

Yes

Yes

No

Yes

No

Yes

Yes

No

No

No

No

No

Yes

Yes

No

No

Yes

Yes

Bindable

Yes

No

No

No

No

Yes

No

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

Chapter 10
Application Programming Interface

415

Siebel
Configuring Siebel Open Ul

Method

ShowPopup

ShowSelection

UpdateAppletMessage

UpdateConditionals

UpdateCurrencyCalcinfo

UpdateQuickPickinfo

UpdateStateChange

Chapter 10
Application Programming Interface

Callable Bindable
No Yes
No Yes
No Yes
No Yes
No Yes
No Yes
No Yes

Properties of the Presentation Model That Siebel Open Ul Uses for Applets

The following table lists the properties of the presentation model that Siebel Open Ul uses for applets.

Property

GetActiveControl

GetAppleLabel

GetAppletSummary

GetControls

GetDefaultFocusOnNew

GetDefaultFocusOnQuery

GetFullld

Getld

GetMode

GetName

ORACLE

Description

Returns a string that identifies the active control of the applet for the presentation model.

Returns a string that includes the applet label.

Returns a string that includes the applet summary.

Returns an array that lists control objects that the applet includes for the presentation model.

Returns a string that identifies the control name where Siebel Open Ul must set the default focus when
the user creates a new record in an applet.

Returns a string that identifies the control name where Siebel Open Ul must set the default focus when
the user runs a query in the applet.

Returns a string that includes the Applet Full Id that the Siebel Server sends for the presentation model.

Returns a string that includes the applet ID that the Siebel Server sends for the presentation model. For
an example usage of this property, see Customizing the Physical Renderer to Render the Carousel.

Returns a string that identifies the applet mode.

Returns a string that includes the name of the presentation model.

416

Siebel Chapter 10

Configuring Siebel Open Ul Application Programming Interface

Property Description

GetPrsrvControl Returns a string that identifies the control object of a preserve control that Siebel Open Ul sets in a
leave field.

GetQueryModePrompt Returns a string that identifies the prompt that the applet uses when Siebel Open Ul uses it in query
mode.

GetRecordset Returns an array that lists the record set that the applet currently displays.

GetSelection Returns the number of records the user chooses in the applet.

GetTitle Returns a string that includes the applet title that the presentation model defines.

GetUIEventMap Returns an array that lists user interface events that are pending. Each element in this array identifies

an event that you can access using the following code:

this.Get ("GetUIEventMap") [index].ev

You can use the following code to access the arguments:

as this.Get("GetUIEventMap") [index].ar

IsinQueryMode Returns a Boolean value that indicates if the applet is in query mode.

IsPure Returns a Boolean value that indicates if the applet has Buscomp.

Adding Code to the Physical Renderer

You add code for some methods to the section of code in the physical renderer that binds the control to the
presentation model. For example, if you must customize code for a currency calculator control, then you modify the
code in the physical renderer that binds the currency calculator control to the presentation model. This appendix
indicates the methods that must use this configuration.

CanlnvokeMethod Method for Presentation Models

The CaninvokeMethod method that Siebel Open Ul uses for presentation models determines whether or not Siebel
Open Ul can invoke a method. It returns one of the following values:

- true. Siebel Open Ul can invoke the method.
- false. Siebel Open Ul cannot invoke the method.
It uses the following syntax:
CanInvokeMethod (method name)

where:

- method_name is a string that contains the name of the method that CaninvokeMethod examines. You must
enclose this string in double quotation marks, or use a literal value of methodName.

417
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

For example, you can add the following code in a physical renderer to determine whether or not Siebel Open Ul can call
the method that method_name specifies, and if it can call this method on the control that control specifies:

var controlSet = this.GetPM() .Get ("GetControls") ;
for (var control in controlSet) {
if (controlSet.hasOwnProperty (control)) {
var caninvoke = this.GetPM() .ExecuteMethod ("CanInvokeMethod", controlSet[
control].GetMethodName ()) ;
}
}

To avoid an error on the Siebel Server, it is recommended that you configure Siebel Open Ul to use CaninvokeMethod
immediately before it uses InvokeMethod to make sure it can call the method.

For information about the CanlnvokeMethod method that Siebel Open Ul uses for application models, see
CaninvokeMethod Method for Application Models.

For more examples that use CaninvokeMethod, see the following topics:

« Customizing the Presentation Model to Delete Records

« Attaching an Event Handler to a Presentation Model

- Customizing Applets to Capture Signatures from Desktop Applications
« Customizing a Resource Scheduler

« Using Custom JavaScript Methods

« Using Custom Siebel Business Services

« Customizing Siebel Pharma for Siebel Mobile Disconnected Clients

« Allowing Users to Commit Part Tracker Records

CanNavigate Method

The CanNavigate method determines whether or not the user can navigate a control. It returns one of the following
values:

« true. The user can navigate the control.
- false. The user cannot navigate the control.
It uses the following syntax:

CanNavigate (activeControl.GetFieldName ())

For example, the following code uses the CanNavigate method to set up a variable named canNavigate:

var controlSet = this.GetPM() .Get ("GetControls") ;
for (var control in controlSet) {
if (controlSet.hasOwnProperty (control)){ var canNavigate =
this.GetPM() .ExecuteMethod ("CanNavigate", controlSet][
control].GetName())
}
}

The following example identifies the controls in a set of controls that reside in an applet proxy. You can then use the
value that CanNavigate returns to determine whether or not Siebel Open Ul can render a control as a link:

var controlSet = this.GetPM() .Get ("GetControls") ;

for (var control in controlSet) {

if (controlSet.hasOwnProperty (control)) {

var canNavigate = this.GetPM() .ExecuteMethod ("CanNavigate", controlSet[
control].GetName()) ;

418
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

}
}

CanUpdate Method

The CanUpdate method determines whether or not Siebel Open Ul can update a control. It returns one of the following
values:

- true. The user can update the control.
- false. The user cannot update the control.
It uses the following syntax:
CanUpdate (control name)
where:
- control_name identifies the name of the control that CanUpdate examines.

The following example identifies the controls that exist in a set of controls that reside in an applet proxy. You can then
use the value that CanUpdate returns to write custom code in the physical renderer that modifies a control that Siebel
Open Ul can update:

var controlSet = this.GetPM() .Get ("GetControls") ;
for (var control in controlSet) {
if (controlSet.hasOwnProperty (control)) {
var canupdate = this.GetPM() .ExecuteMethod ("CanUpdate", controlSet[control
] .GetName ()) ;
}
}

For an example that uses the CanUpdate method, see UpdateRecord Method.

ExecuteMethod _Method

The ExecuteMethod method runs a method that is available in the presentation model. It returns nothing. It uses the
following syntax:

ExecuteMethod ("method_name",arguments) ;
where:

- method_name is a string that identifies the name of the method that ExecuteMethod runs.

- arguments lists the arguments that Siebel Open Ul requires to run the method that method_name identifies.
For examples that use ExecuteMethod, see the following topics:

« Customizing the Presentation Model to Identify the Records to Delete.

« Customizing the Presentation Model to Delete Records

- Customizing the Presentation Model to Handle Notifications

« Calling Methods

« Accessing Proxy Objects

For information about how Siebel Open Ul uses the ExecuteMethod method, see How Siebel Open Ul Uses the Init
Method of the Presentation Model.

ExecuteUlUpdate_Method

The ExecuteUlUpdate method updates objects in the user interface. It uses the following syntax:

419
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

ExecuteUIUpdate ()

For example, the following code in the applicationcontext.js file updates objects that reside in the current applet:
applet.ExecuteUIUpdate () ;

You can configure Siebel Open Ul to call the ExecuteUlUpdate method in the following ways:

- In the physical renderer:

this.GetPM() .AttachPMBinding ("ExecuteUIUpdate", function() {
custom_code

});

+ In the presentation model:

this.AddMethod ("ExecuteUIUpdate", function() {
custom_code
}, {sequence: true, scope: this});

For information about where you add this code, see Adding Code to the Physical Renderer.

FieldChange Method for Presentation Models

The FieldChange method that Siebel Open Ul uses with presentation models modifies the value of a field. It returns
nothing. It uses the following syntax:

FieldChange (control, field value)
where:

- control identifies the name of a control.

- field_value is a modified value of the control.
For example, you can add the following code to the physical renderer:

this.GetPM() .AttachPMBinding("FieldChange", function(control,field value){
custom_code

b
where:
- custom_code is code that you write that sets the value for the control.
For more information about:
- Where you add this code, see Adding Code to the Physical Renderer
- An example that uses the FieldChange method, Displaying and Hiding Fields
- Using this method, see Life Cycle Flows of User Interface Elements

- The FieldChange method that Siebel Open Ul uses with physical renderers, see FieldChange Method for
Presentation Models

FocusFirstControl Method

The FocusFirstControl method sets the focus on the first control that the presentation model displays. It uses the
following syntax:

FocusFirstControl ()
You can add the following code to the physical renderer:

this.GetPM() .AttachPMBinding ("FocusFirstControl", function() {

420
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

custom_code;

})
where:

- custom_code is code that you write that handles focus updates from the Siebel Server. For example, updating
the enable or disable state of a user interface control that the UpdateUIButtons method of the physical renderer
specifies. For more information about the UpdateUIButtons method, see Life Cycle Flows of User Interface
Elements.

For information about where you add this code, see Adding Code to the Physical Renderer.

GetControl Method

The GetControl method returns a control instance. It uses the following syntax:
GetControl (control name)
where:
- control_name identifies the name of the control that GetControl gets.
You add this code to the physical renderer.
For examples that use GetControl, see the following topics:

Customizing Control User Properties for Presentation Models

Customizing Siebel Pharma for Siebel Mobile Disconnected Clients

GetControlld Method
The GetControlld method gets the control ID of a toggle applet. It uses the following syntax:

GetControlId()

For example, the following code gets the control ID of the toggle applet that Siebel Open Ul currently displays in the
client. This code resides in the applet.js file:

return this.GetToggleApplet () .GetControlId() ;
You can add the following code to the physical renderer:
var ToggleEl = this.GetPM() .ExecuteMethod ("GetControlId") ;

For information about where you add this code, see Adding Code to the Physical Renderer.

GetFieldValue_Method

The GetFieldValue method returns the value of a field. It uses the following syntax:
this.GetFieldValue (field ame);
where:
- field_name identifies the name of a field.
For example, the following code gets the current value of the Call Status field:
pBusComp.GetFieldValue ("Call Status");

For another example that uses the GetFieldValue method, see Text Copy of Code That Does a Partial Refresh for the
Presentation Model.

421
ORACLE

Siebel Chapter 10
Configuring Siebel Open Ul Application Programming Interface

GetFormattedFieldValue Method

The GetFormattedFieldValue method gets the format that a field uses to store the value of a control. It uses the
following syntax:

value = this.GetPM() .ExecuteMethod ("GetFormattedFieldValue", control_name,
flag,in