

[1] Oracle® AutoVue Integration SDK
Overview and Installation Guide
Release 21.1.0.4
F86927-04

April 2025

Overview and Installation Guide, Release 21.1.0.4

F86927-04

Copyright © 1998, 2025, Oracle and/or its affiliates. All rights reserved.

Primary Author:

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of
the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial
computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any
operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject
to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo,
and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

iii

Contents

Preface ... v

1 ISDK Overview
1.1 Introduction.. 1-1
1.2 AutoVue and Repository Integration ... 1-1
1.3 GUI Customization .. 1-3
1.4 Repository Extension ... 1-3
1.5 VueLink ... 1-4
1.6 Optional Components .. 1-4
1.6.1 CAD Connector .. 1-4
1.7 Overview of ISDK Components.. 1-5
1.7.1 Documentation.. 1-5

2 System Requirements
2.1 Required Software ... 2-1
2.2 Server ... 2-1
2.2.1 Windows ... 2-1
2.2.2 Linux... 2-1
2.3 Client.. 2-1
2.4 Application Servers.. 2-1
2.5 Development Tools.. 2-2

3 Installation
3.1 Downloading Required Software... 3-1
3.1.1 Oracle AutoVue .. 3-1
3.1.2 WebLogic Server .. 3-1
3.1.3 Oracle Enterprise Pack for Eclipse ... 3-1
3.1.4 Oracle JDeveloper 11gR1... 3-2
3.2 Installing and Configuring ... 3-2
3.2.1 Installing ISDK... 3-2
3.2.2 Creating a Server Runtime Environment on IDE... 3-3
3.2.3 Creating Projects on IDE.. 3-4
3.2.4 Configuring ISDK Components ... 3-5
3.3 Configuring Sample Components.. 3-7

iv

4 Configuring Sample Projects
4.1 Sample Integration for Filesys DMS ... 4-1
4.1.1 Step 1: Copy the AutoVue Jar Files ... 4-1
4.1.2 Step 2: Configure the AutoVue Server... 4-1
4.1.3 Step 3: Configure log4j.properties for Debugging ... 4-2
4.1.4 Step 4: Configure RootDir for the Filesys Repository ... 4-3
4.1.5 Step 5: Configure for an Embedded or Pop-Up Window (Optional) 4-3
4.1.6 Step 6: Configure the Markup Policy (Optional) ... 4-3
4.1.7 Step 7: Configuring User Control... 4-4
4.1.8 Step 8: Configure the Picklist ... 4-4
4.1.9 Step 9: Configure the Thumbnail Display .. 4-4
4.1.10 Step 10: Configure for Redirection... 4-5
4.1.11 Step 11: Configure the Real-Time Collaboration (RTC) Demo... 4-5
4.1.12 Step 12: Configure the Oracle Enterprise Visualization Framework (OEVF) 4-6
4.1.13 Step 13: Configure New Sample Data.. 4-8
4.1.14 Step 14: Run the Filesys Project.. 4-14

5 Implementation
5.1 ISDK Skeleton Project... 5-1
5.2 Sample Projects.. 5-3
5.2.1 Sample Integration for Filesys Project ... 5-3
5.3 Implementation .. 5-8
5.3.1 Phase One ... 5-8
5.3.2 Phase Two... 5-8
5.3.3 Phase Three... 5-8

6 Deployment of ISDK-Based Integrations
6.1 Scaling for High Usage over Distributed Environments ... 6-1

A Updating Existing Integrations to the Java Web Start Client
A.1 Update your Integration ... A-1
A.1.1 Update the server .. A-1
A.1.2 Setup the server for SSL Mode.. A-2
A.1.3 Test AutoVue Sample... A-3
A.1.4 Specify Cookies .. A-4
A.1.5 Update client side code... A-4
A.1.6 Customizing AutoVue .. A-5
A.1.7 AutoVue Constructor Parameters ... A-5
A.2 Steps for Integration.. A-6

B Feedback
B.1 General AutoVue Information .. B-1
B.2 Oracle Customer Support.. B-1
B.3 My Oracle Support AutoVue Community.. B-1
B.4 Sales Inquiries... B-1

v

Preface

The Oracle AutoVue Integration SDK Design, Installation and Configuration Guide provides a
high-level overview of the Oracle AutoVue Integration Software Development Kit (ISDK) and
also describes the procedure for building and running a dynamic Web project in JDeveloper
and Eclipse IDEs for Oracle AutoVue.

For the most up-to-date version of this document, go to the AutoVue Documentation Web site
on the Oracle Technology Network (OTN) at
https://www.oracle.com/technetwork/documentation/autovue-091442.html.

Audience
This document is intended for Oracle partners and third-party developers (such as integrators)
who want to implement their own integration with AutoVue.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the AutoVue Integration SDK library on
OTN:

� Technical Guide

� Acknowledgments

� Javadocs

� Security Guide

Conventions
The following text conventions are used in this document:

vi

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

1

ISDK Overview 1-1

1ISDK Overview

This chapter provides a general overview of the AutoVue Integration SDK, and is intended for
Oracle partners and third-party developers (such as integrators) who want to create an
integration between Oracle AutoVue and a content repository.

1.1 Introduction
The AutoVue Integration Software Development Toolkit (ISDK) is intended for third-party
developers who want to integrate Oracle AutoVue with their Data Management System (DMS).

Figure 1–1 AutoVue ISDK work flow

Oracle AutoVue is a thin client viewing and collaboration solution for enterprise-wide data
access.

The ISDK installation package includes four sample projects that can be modified to suit your
integration needs. The following sections describe these projects in more detail.

1.2 AutoVue and Repository Integration
AutoVue is the key component in Oracle's Enterprise Visualization solutions. AutoVue
solutions deliver native document viewing, markup, and real-time collaboration capabilities
that streamline the information flow and collaborative processes across the global enterprise.
AutoVue solutions help organizations in a variety of industries including Utilities, Industrial
Manufacturing, Electronics & High Tech, Engineering and Construction, Aerospace and
Defense, Automotive, and Oil & Gas. AutoVue streamlines visualization and collaboration
across the global enterprise, improves productivity, reduces errors, and accelerates innovation
and time to market. In an enterprise, AutoVue can be part of many business workflows and use
cases such as collecting comments and annotations during a design review, recording the
actions and results for a maintenance work order, comparing archived documents, and
collaborating with other users.

AutoVue can offer its capabilities to many different enterprise systems/repositories such as
DMS, PLM, and Content Management Systems (CMS). AutoVue needs to be integrated into
these repositories in order to be able to access the documents that are stored in them. There
exist many such integrations. For example, there is an integration between AutoVue and
WebCenter Content (WCC) and AutoVue and Oracle Agile PLM. The Oracle-developed

AutoVue and Repository Integration

1-2 Overview and Installation Guide

integration is known as a VueLink. The VueLink provides an interface that allows
communication between the repository and AutoVue in order to retrieve documents and to store
data that is generated by AutoVue for those documents (such as annotations). The VueLink is a
Java Web application that is hosted on a Java Web application server. The following figure
shows how the communication between AutoVue and the repository is done through a
VueLink.

Figure 1–2 Communication between AutoVue and repository/backend system through a
VueLink

After AutoVue gets access to a document and other related data from the repository, it then
streams the view of the document to the AutoVue client via the VueServlet. The AutoVue
Client provides the user with an interface to manipulate document display and perform other
operations.

As shown in the diagram, the repository contains two important components: the repository
extension and the GUI customization.

In order for the VueLink to communicate with the repository there needs to be a component on
the backend-side whose interface the VueLink understands. This component is known as the
repository extension. For more information, refer to the Repository Extension section.

In a seamless integration, the AutoVue client should be launched from inside the repository
user interface. The GUI Customization is applied to the repository user interface. For more
information, refer to GUI Customization section.

The application server component of the diagram includes the VueServlet and the VueLink.
The VueServlet is a Java Servlet that acts as a tunnel between the AutoVue server and the
AutoVue client. The client makes requests using the HTTP/HTTPS protocol to the VueServlet

Note:

� AutoVue sends a request to the VueLink.

� VueLink forwards the request to the repository.

� The repository sends a response back to the VueLink.

� VueLink forwards the response to the AutoVue server.

Repository Extension

ISDK Overview 1-3

and the VueServlet communicates with the AutoVue server using its socket port. All the
communication between the AutoVue client and the AutoVue server goes through the
VueServlet. The VueServlet is available out of the box with AutoVue and can be easily
deployed. Information on the VueLink is provided in VueLink section.

1.3 GUI Customization
Launching AutoVue should be implemented through the customization of the repositories
graphical user interface (GUI). The AutoVue client will be launched in a second window.

Depending on the underlying technology, the implementation of the GUI customization can
vary from one environment to another. For example, a very simple implementation may be a
hyperlink to an HTML page that loads the AutoVue client. A more sophisticated
implementation may involve a repository-based scripting language or APIs. In both cases, you
must refer to the repository's documentation for information on how to modify its UI and the
available capabilities.

Since the customization can be applied to different places in the repository GUI, its
implementation should be looked at from a usability point of view as well as from a technical
point of view. A good example is customizing the search results page in the repository GUI. In
this example, each document in the Search Results page is associated with a menu item or icon
that launches the AutoVue client to view that particular document. A sample GUI
customization is shown in the following screenshot. The Search Results page in Oracle Content
Server GUI is customized to launch the AutoVue client.

Figure 1–3 Sample GUI Customization

1.4 Repository Extension
The repository extension is the layer on the repository that the VueLink communicates with. It
allows the VueLink to access the repository the same way the end-user accesses the repository
through the GUI.

VueLink

1-4 Overview and Installation Guide

If this interface is not available, then a custom extension must be created using a technology
that the repository supports. The extension must support the different requests that come from
the VueLink. That is, the VueLink requests are related to retrieving and storing documents and
their related data inside the repository. The extension can be built as a Web service or a Java
Application Programming Interface (API). A Java API is the preferred approach as the
performance is generally better and the overhead is lower in a Java to Java integration than in a
Web service integration. This is because once the interface is provided by the repository then a
VueLink-type component should be implemented to connect and communicate with it.

1.5 VueLink
The VueLink is the integration component that acts as the gateway between AutoVue and the
repository. The name VueLink is reserved for these types of Oracle-developed gateway
components. Third-party integrators and partners should choose their own trademarks or
preferred name for this piece of integration. However, regardless of its name, VueLink-type
components enable AutoVue to access documents that are stored inside the repository. It also
enables AutoVue to retrieve any data related to these documents from the repository. In
addition, any data generated by AutoVue (for example, markups and renditions) can be stored
into the repository using this component.

The VueLink is the center piece of an AutoVue integration with a repository. It is able to
communicate with AutoVue and with the repository, thereby acting as a translator for each end
and isolating AutoVue and the repository from each other's complexity. It is a Java Web
application and needs to be deployed on a Java Web application server (such as WebLogic,
GlassFish, and Tomcat).

Since the interface between the VueLink and AutoVue is the same for all VueLinks (regardless
of the repository they are built for), it is good practice to have an integration framework that
has built-in communication with AutoVue and is ready to be used as a starting point for
building new integrations with any repository. The AutoVue Integration SDK is designed to
fulfill this requirement. For more information, refer to the Configuring Sample Projects chapter.

1.6 Optional Components
Before discussing the AutoVue Integration SDK, the optional components to be used in
conjunction with building an integration are presented.

1.6.1 CAD Connector
One of the characteristics of CAD models is that often they are not stored in one document. For
example, an airplane CAD model consists of many parts (such as wings, wheels, and so on)
which in turn have their own subparts. Each part or subpart might be designed and stored in a
separate document and referenced in the airplane CAD model document directly or
hierarchically. In order to view that airplane CAD model, all parts must be loaded and put
together. These separate parts and subparts files are known as external references (XRefs).
AutoVue supports loading and viewing documents along with their XRefs documents.
However, in an integration, the XRefs support should also be provided at the repository level
since they are all stored inside the repository. If the repository provides a mechanism to link

Note: If the repository already provides a programming interface that gives
access to all documents and related data required by the VueLink, then there
is no need to develop a custom extension on the repository side for an
AutoVue integration.

Overview of ISDK Components

ISDK Overview 1-5

documents to each other as references, then this mechanism can be used to provide XRefs
support.

The storing and linking of references in a repository should not be done manually. In order to
properly support the XRefs, some software tools should be provided that can import related
documents from the CAD authoring software into the repository. An example is a CAD
connector. A CAD connector is a software tool that integrates the repository with a CAD
authoring software package (such as AutoCAD). It can check-in/check-out a set of related CAD
files into/out-of the repository while preserving their relations and linkage.

1.7 Overview of ISDK Components
This section describes the various components included in the AutoVue Integration SDK.

1.7.1 Documentation
The following AutoVue Integration SDK documentation, with the exception of the JavaDocs
which is included with the installation, can be found on the Oracle AutoVue Documentation
Web site on the Oracle Technology Network (OTN)
https://www.oracle.com/technetwork/documentation/autovue-091442.html

� Design, Installation and Configuration Guide

– This guide provides a high-level overview of the Integration SDK. In addition, it
contains information related to the installation, configuration and deployment of
projects included in this ISDK in JDeveloper and Eclipse IDE.

� Security Guide

– This guide contains information related to the security and authentication mechanisms
provided in this release of Integration SDK.

� Release Notes

– Details changes and enhancements made in this release of the ISDK.

� Technical Guide

– This guide contains in-depth technical information about the integration framework
and describes how to implement your own integration based on the sample integration
included in this ISDK.

� Acknowledgments

– This document lists licenses and third-party notices.

� JavaDocs

– This contains the JavaDocs of the underlying framework contained in the AutoVue
Integration SDK. The JavaDocs is included the installation of this ISDK.

Note: This software tool is not an AutoVue integration requirement. It is a
facilitator for the repository to organize the XRefs.

Overview of ISDK Components

1-6 Overview and Installation Guide

2

System Requirements 2-1

2System Requirements

The recommended system hardware configuration is:

� A system supporting the JDK/JRE version 8 with at least 8GB of main memory.

� At least 100MB of free disk space to install the software components and examples.

2.1 Required Software
� Oracle AutoVue 21.1.0.4

2.2 Server
The following operating systems have been certified with the Integration SDK:

2.2.1 Windows
� Windows Server 2022 64-bit

� Windows Server 2019 64-bit

� Windows 10, 7 64-bit

� Windows 11, 10 64-bit

2.2.2 Linux
� Redhat Enterprise Linux 7.X (x86_64) 64-bit, 8.x (x86_64) 64-bit, 9.X (x86_64) 64-bit.

� Oracle Linux 7.X (x86_64) 64-bit, 8.X (x86_64) 64-bit, 9.X (x86_64) 64-bit.

2.3 Client
The following Java Virtual Machines have been certified with the Integration SDK:

� Latest versions of Java (tested on Java 8u461 64 bit) for Filesys Sample and Skeleton.

� Web browsers supported by Oracle AutoVue 21.1.0.4.

2.4 Application Servers
The following application servers are compatible with the Integration SDK:

� Oracle WebLogic Server 12cR2

Development Tools

2-2 Overview and Installation Guide

� Any other application server that supports Servlet 2.5 may work but are not certified by
Oracle

2.5 Development Tools
The following IDEs are compatible with the ISDK:

� Oracle Enterprise Pack for Eclipse

3

Installation 3-1

3Installation

This chapter assumes you are familiar with Java development and with basic Web application
development concepts, such as deployment descriptors and WAR archives. Understanding
XML language is beneficial, but not mandatory.

The software products listed in Chapter 2, "System Requirements" must be installed and
configured on your system according to the manufacturer's instructions.

3.1 Downloading Required Software
Before proceeding with the installation of the AutoVue ISDK, the following software must be
installed and configured on your system according to the manufacturer’s instructions.

3.1.1 Oracle AutoVue
Oracle AutoVue 21.1.0.4 is available from https://edelivery.oracle.com. The
description name is Oracle AutoVue 21.1.0.4. Select the appropriate Media Pack for your
development platform.

3.1.2 WebLogic Server
You can download the Quick Installer for Developers version of the WebLogic Server from the
Middleware section of https://www.oracle.com/technetwork Software Downloads. The
download includes the installation instructions, as well as an executable JAR file that contains
the installer.

3.1.3 Oracle Enterprise Pack for Eclipse
Oracle Enterprise Pack for Eclipse (OEPE) is a free set of certified plug-ins, enabling
WebLogic developers to support Java EE and Web Service standards. The Oracle Enterprise
Pack for Eclipse All-In-One installed includes a pre-configured version of Eclipse and the
OEPE plug-ins. The latest version of the installer is available from
https://www.oracle.com/technetwork Software Downloads in the Developer Tools
section.

If you download Eclipse IDE for Java EE Developers from the Eclipse Web site, you must
download the Oracle WebLogic Server plug-in separately when creating the server.

Note: Customers need to download GA Patch BUG #37550493 from ARU.

Installing and Configuring

3-2 Overview and Installation Guide

3.1.4 Oracle JDeveloper 11gR1
You can download Oracle JDeveloper Studio Edition from
https://www.oracle.com/technetwork/developer-tools/jdev/downloads/jdev1112
0download-495887.html.

3.2 Installing and Configuring
This section describes the installation and configuration steps for the ISDK.

To install, unzip the media package to extract all necessary files. You must then create a server
runtime environment on IDE and create a project. At this point you must manually configure
the ISDK component such as the ISDK Skeleton.

Once these steps are complete, and the ISDK is extracted, you can configure the sample
projects. For information on configuring the sample projects, refer to Configuring Sample
Projects.

3.2.1 Installing ISDK
The Oracle AutoVue SDK media pack is shipped as a zipped folder.

1. Enter the location and directory name for the AutoVue Integration SDK. The default
location and name for Windows is C:\Oracle\AutoVueIntegrationSDK.

2. Select the components to install. By default, the ISDK Skeleton is selected. To install the
sample projects, select Sample Integration (Filesys). The installation summary page
appears.

3. The files are extracted to the location specified in step 1.

The Quick Start.html file found in the root folder is a top-level readme file that acts as an entry
point to the rest of the ISDK documentation. To view the contents of this file, open it in your
browser. After running the installer, all the required files are created under your
AutoVueIntegrationSDK installation directory with the following structure:

� The /docs folder contains javadocs. All other ISDK documentation can be found on the
Oracle AutoVue Documentation OTN site at
https://www.oracle.com/technetwork/documentation/autovue-091442.html.

� The /FileSys folder contains four subfolders:

– The /Repository folder contains filesysRepository.zip which contains sample files used
by the Sample Integration for Filesys.

– The /OEVF folder contains two GUI files used for the OEVF demo.

– The /WebApplication folder contains a filesys.war file and a /filesys folder. The
content in the /filesys folder is the unzipped version of the filesys.war file. The
filesys.war can be imported into JDeveloper or Eclipse workspace to demo the Sample

Note: If you are planning on deploying the ISDK in a secured environment,
you should read the Oracle AutoVue Integration Software Development
Toolkit (ISDK) Security Guide before installing the ISDK.

Note: The ISDK is installed by default with Secure Sockets Layer (SSL)
enabled.

https://www.oracle.com/technetwork/developer-tools/jdev/downloads/jdev11120download-495887.html
https://www.oracle.com/technetwork/developer-tools/jdev/downloads/jdev11120download-495887.html

Installing and Configuring

Installation 3-3

Integration for Filesys and to demo RTC & OEVF functionalities. The project contains
source code for sample integration, AutoVue client and third party libraries required
by the integration.

– The /ESAPI_Resources folder contains the OWASP Enterprise Security API
properties files: AvESAPI.properties and validation.properties.

� The /ISDKSkeleton folder contains two sub folders:

– The /WebApplication folder contains an isdk_skeleton.war file and a /isdk_skeleton
folder. The content in the /isdk_skeleton folder is the unzipped version of the isdk_
skeleton.war file. The isdk_skeleton.war can be imported into JDeveloper or Eclipse
workspace to create the Integration SDK Skeleton project. Your integration with
Java-based backend systems will be developed based on this skeleton project and
fulfill the TODO comments in this project.

– The /ESAPI_Resources folder contains the OWASP Enterprise Security API
properties files: AvESAPI.properties and validation.properties.

� The /etc folder contains a list of files and folders structure contained in this ISDK, and
folders containing licenses of third-party software used by the ISDK.

3.2.2 Creating a Server Runtime Environment on IDE
This section describes how to create a server runtime environment on JDeveloper and Eclipse
IDEs.

3.2.2.1 Create Default Runtime on JDeveloper
JDeveloper has an integrated WebLogic Server (IntegratedWebLogicServer) configured. As a
result, you can skip this step if using JDeveloper.

3.2.2.2 Create Server Runtime in Eclipse
You can create a server to identify the runtime environment that you want to use to test your
Oracle AutoVue project. To create the WebLogic Server, complete the following steps:

1. From the File menu, select New, and then select Other.

2. Expand the Server folder, then select Server.

3. Click Next.

Note: The AvESAPI.properties and validation.properties files are placed in
the folder based on the configuration settings defined by the user. If there is
no path defined in the application, the library looks for them inside the esapi
folder of the user's home directory. One way is to add the path to the project
is: From Project Properties, select Run/Debug/Profile and then Edit. From
Edit, select Java Options, and then add the path to the AvESAPI.properties
and validation.properties files (e.g.:
-Dorg.owasp.esapi.resources=C:\temp\esapi). Make sure you copy the
AvESAPI.properties and validation.properties to the location defined (e.g.:
C:\temp\esapi). If there is no path defined in the application, the library looks
for them inside the esapi folder of the user's home directory.

Note: Your Oracle WebLogic Server domain needs to be created in
development mode in order to create the server successfully in Eclipse.

Installing and Configuring

3-4 Overview and Installation Guide

The Define a New Server wizard opens. This wizard lets you define a new server that
contains information required to point to a specific runtime environment for local or
remote testing, or for publishing to an application server.

4. Select "Oracle WebLogic Server" .%%%

5. Click Finish. The Oracle WebLogic Server will now be listed in the Servers view. You can
start and stop the Server from this view.

6. Open the Server view to verify that the server has been created. You can click Servers or
click Window from the menu bar, then Show View and Servers to display the Server
view.

3.2.3 Creating Projects on IDE
This section describes how to create a project on JDeveloper and Eclipse IDEs.

3.2.3.1 Projects on JDeveloper
1. Create an application if you do not have one yet. You can create an application by clicking

File from the menu bar, then select New. The New Gallery dialog appears.

2. Select Applications under the General category from the left panel and then select
Custom Application from the right panel.

3. Click OK. The Create Application dialog appears.

4. Complete the Create Application dialog to create an application with the Application
Package Prefix field left empty. Click Finish to the create the project.

5. Click File and then Import. The Import dialog appears.

6. Select WAR File and then click OK. The Create Project from WAR File dialog appears.

7. Browse to the ISDK component folder or sample projects folder and then select a WAR
file.

8. In the following Create Project from WAR file dialogs perform the following:

� Enter your project name.

� Choose a directory to put your project.

� Select the WAR file to import. For example, filesys.war.

� Verify the location for Root Directory for Web Module.

9. Click Finish to finish the creation of your project.

10. In the Project view, browse to verify that your project has been created successfully.

11. Click Build to make your project. There should be no compilation error.

12. Check Libraries and Classpath:

a. Right-click the project and select Project Properties to bring out the Project Properties
dialog

b. Click Libraries and Classpath in the left panel.

c. Check the JSP Runtime and JSF 1.2 are available under the Classpath Entries. If there
are not available, you can add them manually in the following steps:

Click Add Library in the right panel.

Select JSP Runtime under Extension from the pop-up window.

Installing and Configuring

Installation 3-5

If you are going to deploy the project later to an external WebLogic Server instead of
using the IntegratedWebLogicServer, you also need to add JSF 1.2 under Extension
from the pop-up window.

Click OK.

13. To start the WebLogic Server. You can click on Run from menu bar and then click Start
Server Instance to start or click On from the toolbar.

3.2.3.2 Projects on Eclipse
1. From the File menu select Import. The Import dialog appears.

2. In the Import dialog, expand Web and select the WAR file. Click Next to launch the
WAR Import dialog.

3. To import the sample WAR files, click Browse.

4. Browse to the ISDK component folder or filesys folder and select the WAR file.

5. Provide a name for your Web project. If you have already configured the Oracle WebLogic
Server runtime, it will be shown as the Target runtime. If you have not created it yet, click
New to create a Web project. For more information, refer to "Creating a Server Runtime
Environment in Eclipse".

6. Click Next.

7. Accept the default at the WAR Import: Web libraries dialog and click Finish to populate
the Web project.

8. Click Yes if Eclipse asks you to open the "J2EE perspective" for this project.

9. The project should now be created. There should be no compilation errors with the Java
code in your project if "Build" is invoked.

3.2.4 Configuring ISDK Components
This section provides information on configuring ISDK components.

3.2.4.1 Configuring the ISDK Skeleton
The AutoVue Integration SDK Skeleton provides a basic framework for you to build your own
integration.

After you complete the steps outlined in Section 3.2.3, "Creating Projects on IDE," you must
configure the ISDK Skeleton as described in the following steps.

3.2.4.1.1 Step 1: Copy the AutoVue Jar Files Copy the following files from the
directory <AutoVue Installation directory>\bin to your project's WebContent\applet folder (for
Eclipse) or public_html\jvue folder (for JDeveloper):

� jvue.jar

� jogl.jar

� gluegen-rt.jar

� jsonrpc4j.jar

� jsonrpc4j-client.jar

� slf4j-simple-2.0.17.jar

� jogl.jnlp

� gluegen-rt-natives-macosx-universal.jar

Installing and Configuring

3-6 Overview and Installation Guide

� jogl-natives-macosx-universal.jar

� gluegen-rt-natives-windows-amd64.jar

� jogl-natives-windows-amd64.jar

� gluegen-rt-natives-linux-amd64.jar

� jogl-natives-linux-amd64.jar

Copy the file vueservlet.jar and jsonrpc4j-client.jar from the directory <AutoVue Installation
directory>\bin to your project's WebContent\WEB-INF\lib folder (for Eclipse) or public_
html\WEB-INF\lib folder (for JDeveloper).

3.2.4.1.2 Step 2: Configure the AutoVue Server 1.From the WEB-INF folder of your
project, open the web.xml file in a text editor.

2. Locate the following block.

<servlet id="csi_servlet_2">
<servlet-name>VueServlet</servlet-name>
<servlet-class>com.cimmetry.servlet.VueServlet</servlet-class>
<init-param>
<param-name>JVueServer</param-name>
<param-value>localhost:5099</param-value>
</init-param>
<init-param>

3. Update the default location of JVueServer "localhost:5099". You must replace localhost
with the host name/IP address of the machine that is running the AutoVue server, and
replace 5099 with the socket port number that the AutoVue server is listening to (default is
5099).

4. Save your changes.

3.2.4.1.3 Step 3: Configure log4j.properties for Debugging The location of
log4j.properties file is defined in web.xml. By default, it is located at <ISDK Installation
Directory>\ISDKSkeleton\WebApplication\isdk_skeleton\WEB-INF\lib folder.

<init-param>
<param-name>log4jInitFile</param-name>
<param-value>/WEB-INF/lib/log4j.properties</param-value>
</init-param>

To configure log4j.properties for debugging, do the following:

1. Open the log4j.properties file with a text editor.

2. Set the location and the filename of your log4j logging file, for example,
C:/tmp/filesys.log.

setting the logging file
log4j.appender.R.File=<Your logs directory>/<logfile>.log

3. You can change the level and location of output by modifying this file, for example,
log4j.logger.com.cimmetry.vuelink=DEBUG.

The following table shows the different levels of logging available.

Table 3–1 Will Output Messages of Level

Logger Level DEBUG INFO WARN ERROR FATAL

DEBUG YES YES YES YES YES

Configuring Sample Components

Installation 3-7

� If you set Logger Level to FATAL, then only output messages of level FATAL are
logged in log4j file.

� If you set Logger Level to ERROR, then only output messages of level ERROR or
FATAL are logged in log4j file.

� If you set Logger Level to DEBUG, then output messages of any level are logged in
log4j file.

4. Save your changes.

For more information on log4j capabilities, refer to log4j documentation.

3.3 Configuring Sample Components
If you installed the Sample Integration for Filesys project, then you must import the project into
JDeveloper or Eclipse IDE, and then configure, deploy and run the sample integration. To do
so, you must follow the steps outlined in the Deployment of ISDK-Based Integrations. You
need to make sure that you have all the prerequisite software installed before you start
deployment. For the complete list of requirements, specific to your platform, refer to the
System Requirements chapter.

Once you have successfully deployed the Eclipse project, the next step is for you to get familiar
with the sample integration. To learn more about the features and functionality provided by the
sample integration, refer to the Configuring Sample Projects chapter in this book.

Once you are familiar with the sample integration, the next step is for you to build your own
integration. To do so, refer to the Implementation chapter in Oracle AutoVue Integration SDK
Technical Guide and Javadocs. The Oracle AutoVue Integration SDK Technical Guide
explains the technical details and provides step by step guidance for developing your own
integration.

INFO NO YES YES YES YES

WARN NO NO YES YES YES

ERROR NO NO NO YES YES

FATAL NO NO NO NO YES

ALL YES YES YES YES YES

OFF NO NO NO NO NO

Table 3–1 (Cont.) Will Output Messages of Level

Logger Level DEBUG INFO WARN ERROR FATAL

Configuring Sample Components

3-8 Overview and Installation Guide

4

Configuring Sample Projects 4-1

4Configuring Sample Projects

The sample projects included with the ISDK provide a good introduction to the many uses of
the ISDK. You can take the information provided and apply it to your own integration.

The following sections detail the configuration steps for these sample projects.

4.1 Sample Integration for Filesys DMS
This section describes the steps required to run the Sample Integration for Filesys DMS. This
project is located in the <ISDK Installation Directory>\
AutoVueIntegrationSDK\FileSys folder.

4.1.1 Step 1: Copy the AutoVue Jar Files
Copy the following files from the directory <AutoVue Installation directory>\bin to your
project's WebContent\jvue folder (for Eclipse) or public_html\jvue folder (for JDeveloper):

� jvue.jar

� jogl.jar

� gluegen-rt.jar

� jsonrpc4j.jar

� jsonrpc4j-client.jar

� slf4j-simple-2.0.17.jar

� jogl.jnlp

� gluegen-rt-natives-macosx-universal.jar

� jogl-natives-macosx-universal.jar

� gluegen-rt-natives-windows-amd64.jar

� jogl-natives-windows-amd64.jar

� gluegen-rt-natives-linux-amd64.jar

� jogl-natives-linux-amd64.jar

Copy the file vueservlet.jar and jsonrpc4j-client.jar from the directory <AutoVue Installation
directory>\bin to your project's WebContent\WEB-INF\lib folder (for Eclipse) or public_html\
WEB-INF\lib folder (for JDeveloper).

4.1.2 Step 2: Configure the AutoVue Server
1. From the WEB-INF folder of your project, open the web.xml file in a text editor.

Sample Integration for Filesys DMS

4-2 Overview and Installation Guide

2. Locate the following block:

<servlet id="csi_servlet_2">
<servlet-name>VueServlet</servlet-name>
<servlet-class>com.cimmetry.servlet.VueServlet</servlet-class>
<init-param>
<param-name>JVueServer</param-name>
<param-value>localhost:5099</param-value>
</init-param>
<init-param>

3. Update the default location of JVueServer "localhost:5099". You must replace localhost
with an IP address/FQDN of the machine that is running the AutoVue server, and replace
5099 with the socket port number that the AutoVue server is listening to (default is 5099).

4. Save your changes.

4.1.3 Step 3: Configure log4j.properties for Debugging
The location of log4j.properties file is defined in web.xml. By default, it is located at
WEB-INF/lib folder.

<init-param>
<param-name>log4jInitFile</param-name>
<param-value>/WEB-INF/lib/log4j.properties</param-value>
</init-param>

To configure log4j.properties for debugging, do the following:

1. Open the log4j.properties file with a text editor.

2. Set the location and the filename of your log4j logging file. For example,
C:/tmp/filesys.log.

setting the logging file
log4j.appender.R.File=<Your logs directory>/<logfile>.log

3. You can change the level and location of output by modifying this file. For example,
log4j.logger.com.cimmetry.vuelink=DEBUG

The following table shows the different levels of logging available.

� If you set Logger Level to FATAL, then only output messages of level FATAL are
logged in log4j file.

� If you set Logger Level to ERROR, then only output messages of level ERROR or
FATAL are logged in log4j file.

Table 4–1 Will Output Messages of Level

Logger Level DEBUG INFO WARN ERROR FATAL

DEBUG YES YES YES YES YES

INFO NO YES YES YES YES

WARN NO NO YES YES YES

ERROR NO NO NO YES YES

FATAL NO NO NO NO YES

ALL YES YES YES YES YES

OFF NO NO NO NO NO

Sample Integration for Filesys DMS

Configuring Sample Projects 4-3

� If you set Logger Level to DEBUG, then output messages of any level are logged in
log4j file.]

4. Save your changes.

For more information on log4j capabilities, refer to log4j documentation.

4.1.4 Step 4: Configure RootDir for the Filesys Repository
1. From the public_html\WEB-INF folder of your project, open the web.xml file in a text

editor.

2. Replace the RootDir param-value. For example, if you have unzipped the Filesys
Repository to folder c:\tmp on Windows, the param-value for RootDir will be
c:\tmp\filesysRepository.

<!-- context parameters are available to all servlets -->
<context-param>
<param-name>RootDir</param-name>
<param-value>Put path to repository here:</param-value>
</context-param>

3. Save your changes.

4.1.5 Step 5: Configure for an Embedded or Pop-Up Window (Optional)
AutoVue can be launched in a pop-up window or embedded inside the caller's browser window.

By default, the Filesys demo uses embedded mode and the RTC demo uses pop-up mode.

For the OEVF demo, you can select the mode by providing embedded=0 or embedded=1
request parameter in the launching URL. Refer to jvue/OEVFDemo.html.

To change the mode in Filesys demo:

1. Open jvue/frmApplet.jsp.

2. Change the line
boolean embedded = true;
to
boolean embedded = false;

To change the mode in RTC demo:

1. Open jvue/RTCDemo_init.jsp and jvue/RTCDemo_join.jsp.

2. Change the line
boolean embedded = false;
to
boolean embedded = true;

4.1.6 Step 6: Configure the Markup Policy (Optional)
The location of MarkupPolicy.xml file is defined in web.xml that controls markup operation.
By default, it is located at WEB-INF/lib folder.

<init-param>
<param-name>CSI_MarkupPolicyDefLocation</param-name>
<param-value>/WEB-INF/lib/MarkupPolicy.xml</param-value>
</init-param>

If you need to update the Markup Policy file, refer to the Oracle AutoVue User's Manual. On
Windows, the link is http://localhost/jVue/help/en/AutoVueOnLineHelp.html. If the link does

Sample Integration for Filesys DMS

4-4 Overview and Installation Guide

not work, check whether there is a virtual directory, jVue, with IIS. It is created during
AutoVue server installation.

4.1.7 Step 7: Configuring User Control
By default, the Sample Integration for Filesys bundles a file called credential.txt that contains
valid user information for authentication. The location of credential.txt file is defined in
web.xml.

<init-param>
<param-name>CredentialInfoLocation</param-name>
<param-value>/WEB-INF/lib/credential.txt</param-value>
</init-param>

To add new users or modify existing user name or password, update credential.txt. Each line of
the file contains an entry for a user and its password. The field separator is colon (:).

4.1.8 Step 8: Configure the Picklist
This list is for controlling the content of a picklist for Stamp (formerly called Intellistamp)
DMS properties. You can remove/modify existing values or add new values for the <Status>
and <RelatedInfo> elements in WEB-INF/lib/picklist.xml, but you are not supposed to delete
these two elements or add new elements directly under <Data> element.

4.1.9 Step 9: Configure the Thumbnail Display
If you want to show thumbnails based on BMP renditions when browsing the Filesys
Repository, you can do the following configuration.

1. For Windows operating systems, create a virtual directory on Internet Information Services
(IIS) for the Filesys repository. For example, if you have unzipped the Filesys repository to
folder c:\tmp on Windows, you can create a virtual directory with alias filesysRepository
and the location path c:\tmp\filesysRepository. Suppose IIS is available at the default port
80.

2. For Linux system, if Apache Server is available, do the following configuration.

� Open Apache's httpd.conf file.

� Locate the line: DocumentRoot "/var/www/html".

� Copy this line and comment out the original one.

� Change the copied line to, for example, DocumentRoot "/home/ucm/tmp"

Suppose your Filesys repository is upzipped to /home/ucm/tmp folder and your
/home/ucm/tmp/filesysReposity folder allow executing file as program. If your
DocumentRoot has already been used, you need to put your Filesys repository under
the existing DocumentRoot folder in order to preview thumbnails.

� Save the file and restart Apache Server.

3. Replace the param-value for RootURL in web.xml. This URL is mainly used for thumbnail
displaying. However, you must enter a URL (for example, http://localhost) even if
thumbnail displaying is not intended. With the configuration sample in Step 1, the
param-value for RootURL will be http://localhost/filesysRepository. Note the case
sensitivity of IIS.

<!-- This URL is only needed to construct thumbnail URLs -->
<context-param>
<param-name>RootURL</param-name>
<param-value>http://localhost/filesysRepository</param-value>

Sample Integration for Filesys DMS

Configuring Sample Projects 4-5

</context-param>

4.1.10 Step 10: Configure for Redirection
To test the redirection functionality in Filesys, you need to install IDE and deploy the Filesys
sample project on two machines (a main server and a remote server) and complete the generic
configuration and other configurations based on your needs. You must then perform the
following configurations for redirection:

1. On the main server machine, change the folder permission for the filesys repository to Full
Control for all users.

2. On the remote server machine, create a network mapping drive to the Filesys repository
directory on the main server machine. In Filesys demo, both remote server and the main
server use the same Filesys repository data.

3. On the main server, modify web.xml to comment out the blocks RemoteVueLink,
RemotejVueServer and RemoteVueServlet. Specify the param-values for these three
parameters.

For Example:

<context-param>
<param-name>RemoteVuelink</param-name>
<param-value> http://sremote:7001/ISDK_Remote/servlet/FilesysVuelink</param-value>
</context-param>
<context-param>
<param-name>RemotejVueServer</param-name>
<param-value>sremote</param-value>
</context-param>
<context-param>
<param-name>RemoteVueServlet</param-name>
<param-value>http://sremote:7001/ISDK_Remote/servlet/VueServlet</param-value>
</context-param>

4.1.11 Step 11: Configure the Real-Time Collaboration (RTC) Demo
The following section describe how to configure the RTC demo:

Table 4–2 Param-names and param-values for web.xml

Param-name Description and param-value

RemoteVueLink URL to the remote VueLink.

The param-value is

http://host:port/context/servlet/FilesysVuelink

where host is the remote host name or IP address, port is the remote
IDE's server runtime port number, context is the Filesys project name
on the remote IDE.

RemotejVueServer Hostname or IP address of the remote AutoVue server.

The remote server can use another AutoVue server instead of the one
running on the main server.

RemoteVueServlet URL to the remote VueServlet.

The param-value is

http://host:port/context/servlet/VueServlet

Sample Integration for Filesys DMS

4-6 Overview and Installation Guide

4.1.11.1 Verify the RTC Demo
Make sure the WEB-INF/lib/credential.txt has an entry for user "rtc" and "rtc1". Although
every valid user can initiate and join a meeting, by default the meeting is initiated as user "rtc"
and joined by user "rtc1" and the AutoVue applet is named after the username.

Prior to running the demo, you must do the following:

� Uncomment the two users (rtc and rtc1) from the WEB-INF/lib/credential.txt file and
change the default passwords.

� Update the password parameter in the jvue\RTCDemo_init.jsp file for user rtc:

request.getSession().setAttribute("password", "rtc");

Update the password parameter in the jvue\RTCDemo_join.jsp file for user rtc1:

request.getSession().setAttribute("password", "rtc1");

Updating these parameters avoids an Authentication dialog when initializing or joining a
RTC meeting when using the ISDK RTC demo.

4.1.11.2 Create or Update the meetingfiles.txt
Verify that the meetingfiles.txt file under your <Filesys repository>/Meeting folder exists. If
this file does not exist, you need to create it manually.

If you want to change the files shown in the Meeting File drop down list when initiating a RTC
meeting from RTCDemo_init.jsp page similar to the following figure, then you need to update
the meetingfiles.txt file.

Each entry in the meetingfiles.txt file represents one meeting file; it starts with "/" and reflects
one viewable document file in the Filesys repository.

To select another file to collaborate on during a meeting, form the AutoVue menu bar, the
meeting controller can click File, Open URL, and then DMS Browse. The Meeting folder
shows files already defined in meetingfiles.txt. The new collaborated file is appended to
meetingfiles.txt.

After the host closes a RTC meeting by clicking Collaboration and then Close Collaboration
Session, the chat transcript is saved to the Meeting folder.

4.1.12 Step 12: Configure the Oracle Enterprise Visualization
Framework (OEVF)

The following sections describe how to configure the OEVF:

4.1.12.1 Define OEVFInfoLocation in web.xml
By default, ISDK filesys bundles a file called oevf.xml which defines the mapping of document
IDs with assetIDs and workflowIDs. The default location of oevf.xml is under the folder
WEB-INF/lib. If you move the file to another location, then you need to specify the full path
for the parameter OEVFInfoLocation in web.xml.:

<!--
the location of xml file which contains all the info about assetIDs, workflowIDs
and full path of the latest revision in FileSys DMS
-->
<init-param>
<param-name>OEVFInfoLocation</param-name>
<param-value>/WEB-INF/lib/oevf.xml</param-value>
</init-param>

Sample Integration for Filesys DMS

Configuring Sample Projects 4-7

4.1.12.2 Update oevf.xml
This step is required if you want to establish new or update existing mappings of document IDs
with assetIDs and workflowIDs.

The root element of the oevf.xml file is <data>. The direct elements under <data> are <file>
elements that contain the definition for files. Each <file> element represents one file. If you
want to add mapping relationships for a new file, then you need to add a new <file> entry.

A <file> element can include multiple <revision> elements that represent the multiple
revisions of the file. If you want to add a new revision section to an existing file, then you must
add one new <revision> entry.

Each <version> element includes a <docID>, <assetIDs>, <workflowIDs> and <version>
elements. The value for <version> element is the revision number. The value for <docID>
element is the relative path to a file in the Filesys data repository. It starts with "/". For
example, /2D/MicroStation.dgn/MicroStation.dgn(2)/MicroStation.dgn.

The <assetID> elements can contain multiple <assetID> elements and the <workflowID>
elements can contain multiple <workflowID> elements. You can add or delete an assetID that
is associated with one revision of a file by adding or deleting element a <assetID> element.
You can add or delete a workflowID. that is associated with one revision of a file by adding or
deleting a <workflowID> element.

4.1.12.3 Update OEVFDemo.html
This step is needed to add new or modify existing test cases for OEVF.

The launching OEVF URL defined inside <a> tag calls "…/jvue/frmApplet.jsp" page
combined with some of the following parameters.

You can pass in only aID, only wID, aID with wID, aID with dID, wID with dID, aID with
wID and dID in addition with embedded or goBack or guiFile param. Refer to
OEVFDemo.html for the meaning of different combinations.

4.1.12.4 Copy the OEVF GUI files to AutoVue
Copy assetView.gui and assetEdit.gui files from inside the ISDK installation
AutoVueIntegrationSDK/FileSys/OEVF folder to the folder <AutoVue Installation
Directory>/bin/Profiles folder. If the Profiles folder does not exist, create one before copying.

Table 4–3 OEVF URL parameters

URL Request Parameter Value and Description

aID A Value defined for <assetID> element in oevf.xml.

docID A value defined for <docID> element in oevf.xml.

wID A value defined for <workflowID> element in oevf.xml.

embedded V0 or new such parameter: AutoVue applet appears in a new window.

1: AutoVue applet is embedded in the caller's browser window.

goBack Work together with embedded=0.

0 or no such parameter: The caller's browser displays an empty page
with the launching OEVF URL.

1: The caller's browser displays the OEVFDemo.html page.

guiFile Name of the AutoVue GUI to be used.

Sample Integration for Filesys DMS

4-8 Overview and Installation Guide

4.1.13 Step 13: Configure New Sample Data
You can add new data to the existing sample Filesys repository. It is recommended not to
rename the folder name or file name, or delete existing data, because the sample data is
preconfigured to demonstrate certain functionalities (for example, for RTC Demo and OEVF
demo). To add new data to the existing repository, refer to Add new data to the document
repository.

4.1.13.1 Add new data to the document repository
With Filesys DMS application you can add new data to the document repository by manually
creating the data structure or by using a utility class
com.cimmetry.vuelink.filesys.dms.util.FilesysDataStructureCreator coming with filesys.

4.1.13.1.1 Create data structure manually To add a new document into the repository,
such as "my.dwg", follow these steps:

1. Browse to the <filesys data repository unzipped folder>/filesysRepository folder.

2. You can create a new folder in parallel to "2D", "3D" and "Meeting" folder or create a new
folder inside "2D" or "3D" folder. Suppose you want to add the file inside "2D" folder. You
can name the folder using the file's name that you want to view, that is, "my.dwg". This is
the convention for sample data.

3. Under this folder, create a new folder for the first revision of the file. Name it "my.dwg(1)"
and put the file "my.dwg" inside the folder.

4. If you have another revision for "my.dwg" file, then you can create "my.dwg(2)" folder
under "my.dwg" folder and put the second revision of the file inside.

5. If the file "my.dwg" has XRefs, then create an "xrefs" folder under the base file's folder
"my.dwg(1)" and put all the XRefs files there.

4.1.13.1.2 Add data from IDE To add the new data to your document repository, you
must execute the main() method of
com.cimmetry.vuelink.filesys.dms.util.FilesysDataStructureCreator class.

Example 4–1 main() method
public static void main(String[] args) {
 BasicConfigurator.configure();
//String[] params = {"-url", "C:/temp/filesysRepository/ECAD", "-b", "C:/program
files/jVue/html/samples/ECAD/PAD//PADS_ILEARN.pcb"};
//params = {"-url", "C:/temp/filesysRepository/2D", "-b", "C:/program
files/jVue/html/samples/2D/MicroStation.dgn" -v 3};
 FilesysDataStructureInfos data = new FilesysDataStructureInfos();
 try{
data.constructStructure(args);
FilesysDataStructureCreator struct = new FilesysDataStructureCreator(data);
struct.createStructure();
 }catch(FileNotFoundException fex){
m_logger.error(fex);
System.exit(0);
 }catch(Exception ex){
m_logger.error(ex);
System.exit(0);

You need to pass in arguments for the main() method. These arguments indicate types, versions
and locations of the files to add in the repository. You can add several types of documents to
the repository such as: base documents, XRefs, markups and conversions files. We use options
<-option> to indicate the document type. Here is the complete list the options:

Sample Integration for Filesys DMS

Configuring Sample Projects 4-9

-url: location of filesys repository

-b: base file

-v: version number

-x: xrefs files

-m: master markups files

-n: normal markups files

-c: consolidated markups files

-tiff: TIFF conversion file

-pdf: PDF conversion file

-meta: metaFile

For the first sample argument in the figure above, the url is c:\temp\filesysRepository\ECAD
(You don't have to specify the exact destination location of a file, you have just to specify the
repository location) and the base file is PADS_ILEARN.pcb and is located in C:\program
files\jVue\html\samples\ECAD\PAD folder.

For the second sample argument, the url is c:\temp\filesysRepository\2D and the base file is
MicroStation.dgn and is located in C:\program files\jVue\html\samples\2D folder. The version
number is 3.

4.1.13.1.3 Adding Data from JDeveloper On JDeveloper IDE, to run the
FilesysDataStructureCreator class, you need to complete the following steps:

1. Select the filesys project

2. From the Run menu, select Choose Active Run Configuration, and then select Manage
Run Configurations…

Figure 4–1 JDeveloper Manage Run Configurations

3. Click New… at the right side of the Project Properties windows, name it addData and then
click OK. addData appears under the Run Configurations.

Sample Integration for Filesys DMS

4-10 Overview and Installation Guide

Figure 4–2 JDeveloper addData Run Configurations

4. Select addData and click Edit.

5. Browse to set the Default Run Target to be
com.cimmetry.vuelink.filesys.dms.util.FilesysDataStructureCreator and input Program
Arguments. Click OK to exit. Two sample program arguments are

-url C:/temp/filesysRepository/EDA -b "C:/Program
Files/jVue/html/samples/EDA//PADS/PADS_ILEARN.pcb"
and

-url C:/temp/filesysRepository/2D -b "C:/Program
Files/jVue/html/samples/2D/MicroStation.dgn" -v 3

Sample Integration for Filesys DMS

Configuring Sample Projects 4-11

Figure 4–3 JDeveloper create addData run configuration 2

6. Run addData to create new file structure in the filesys repository.

Figure 4–4 JDeveloper run addData

4.1.13.1.4 Adding Data from Eclipse On Eclipse IDE, to run the
FilesysDataStructureCreator class, you need to complete the following steps:

1. Select the filesys project.

2. From the RUN menu click on the RUN... artifact.

3. Select the Java Application item.

4. Right click and select New from the context menu.

5. Enter addData in the Name field.

6. Search the class to execute (the class must have public static main method)
com.cimmetry.vuelink.filesys.dms.util.FilesysDataStructureCreator

Sample Integration for Filesys DMS

4-12 Overview and Installation Guide

Figure 4–5 Eclipse create addData run configuration 1

7. Click the Arguments tab. You can add Program Arguments to create a file. Two sample
arguments are:

-url C:/temp/filesysRepository/EDA -b "C:/Program
Files/jVue/html/samples/EDA//PADS/PADS_ILEARN.pcb"
and

-url C:/temp/filesysRepository/2D -b "C:/Program
Files/jVue/html/samples/2D/MicroStation.dgn" -v 3

Sample Integration for Filesys DMS

Configuring Sample Projects 4-13

Figure 4–6 Eclipse create addData run configuration 2

8. You can click RUN directly from the above to create new file structure in the filesys
repository or you can click Apply and Close, then click on addData artifact from the RUN
icon.

Figure 4–7 Eclipse run addData

If you provide the first sample argument when running the addData, from your filesys
demo application, you can navigate to check the following new repository structure under
the EDA folder.

Figure 4–8 Repository structure for PADS_ILEARN.pcb

Sample Integration for Filesys DMS

4-14 Overview and Installation Guide

If you provide the second sample argument when running the addData, from your filesys
demo application, you can navigate to check the following new repository structure.

Figure 4–9 Repository Structure for the third version of MicroStation.dgn

4.1.14 Step 14: Run the Filesys Project
The following steps describe how to run the Sample Integration for Filesys project:

1. Run the AutoVue Server.

2. Deploy project and start WebLogic server on Eclipse:

� Go to the Servers view by clicking Servers.

� Right-click on the Oracle WebLogic Server and then click Add and Remove. In the
Add and Remove dialog, select your project from the left panel, click Add to add the
project to the right panel, and then click Finish to exit.

� Click to start the server.

3. Start WebLogic server and deploy project on JDeveloper:

a. From menu bar select Run and then select Start Server Instance
(IntegratedWeblogicServer) to start the WebLogic Server.

b. Right-click the project, click Deploy and click your project's name. The Deploy dialog
appears.

c. From the Deploy dialog, select Deploy on Application Server, click Next, then select
IntegratedWeblogicServer.

d. Accept the default setting and click Next.

e. At the last page, click Finish.

f. Note down the host IP and port number from the server's Deployment log. For
example, the following may appear in the log: <Channel "Default" is now listening on
10.10.1.1:7101 for protocols...>. In this case, note down 10.10.1.1:7101.

4. Launch a Web browser and enter the URL address http://<localhost :port>/<context> to
launch the home page for ISDK Demo. For example:

� For Eclipse, the URL can be http://<localhost> :7001/filesys.

� For JDeveloper, the URL can be
http://10.10.1.1:7101/ISDKSamples-filesys-context-root.

5. If you run into an issue when launching the project, verify that the FilesysVueLink and
VueServlet servlets are running properly using the following URLs:

� http://<host:port>/context/servlet/FilesysVuelink

� http://<host:port>/context/servlet/VueServlet

Replace the <host:port> using your own host name, WebLogic server's port.

Sample Integration for Filesys DMS

Configuring Sample Projects 4-15

Replace context with the context for Filesys project on IDE.

If VueLink and VueServlet are running properly, the URLs load and display their respective
version and build information, and in the case of the VueServlet, whether the connection state
is OK. If you do not get a successful response, perform the following verifications:

� Verify that the AutoVue server is running.

� Verify that your project is installed deployed correctly.

� Verify that web.xml is configured properly.

� Verify that your application server is running and functioning properly.

Sample Integration for Filesys DMS

4-16 Overview and Installation Guide

5

Implementation 5-1

5Implementation

To speed up the integration and provide the integrators with a starting point, the ISDK includes
a skeleton package.

5.1 ISDK Skeleton Project
The ISDK Java skeleton package has the structure for building a new VueLink. The skeleton
comes with a set of TODO comments in places where the integrators need to add their code.
The ISDK Java skeleton implementation means adding code to the skeleton codebase so that it
can communicate with the repository's Java API as shown in the Figure 5–1:

Figure 5–1 ISDK Java skeleton implementation

This project is located under the ISDKSkeleton/WebApplication folder and is available as
single WAR (isdk_skeleton.war) as well as separate files. It can be imported into JDeveloper or
Eclipse workspace.

ISDK Skeleton Project

5-2 Overview and Installation Guide

Figure 5–2 Eclipse workspace

It contains four main subcomponents:

� Framework (VueLink Core): vuelinkcore.jar

� Integration Skeleton

� AutoVue Components:

– AutoVue Client (jvue.jar, jogl.jar, gluegen-rt.jar, jsonrpc4j.jar)

– VueServlet tunneling servlet (VueServlet.jar)

� Third-Party Libraries:

– log4j-api.jar

– log4j-core.jar

– log4j-slf4j2-impl.jar

– slf4j-simple-2.0.17.jar

– jsonrpc4j-client.jar

– gluegen-rt-natives-macosx-universal.jar

– jogl-natives-macosx-universal.jar

– gluegen-rt-natives-windows-amd64.jar

– jogl-natives-windows-amd64.jar

– gluegen-rt-natives-linux-amd64.jar

– jogl-natives-linux-amd64.jar

Refer to Sample Projects for description about the two subcomponents: Framework and
AutoVue Components.

It includes skeleton classes containing TODO tasks to realize the following functionalities:

� Document viewing

� Retrieve document attributes

� Create, save and review markups

Sample Projects

Implementation 5-3

� Compare document versions

� Convert documents to other formats

� Returning External References (XREFS)

� Browse DMS repository

� Search DMS repository

� Support for Stamps markup entity

� Support for Set Property action

� Support for AutoVue authorization mechanism

� Support for integration between Online meeting managements and AutoVue Real-Time
Collaboration (RTC)

� Support for markup save alert before applet close

� Enhanced framework to support Oracle Enterprise Visual Framework (OEVF)

The Integration Skeleton contains the following packages:

� com.mycompany.autovueconnector

� com.mycompany.autovueconnector.actions

� com.mycompany.autovueconnector.backend

� com.mycompany.autovueconnector.context

� com.mycompany.autovueconnector.defs

� com.mycompany.autovueconnector.propactions

� com.mycompany.autovueconnector.session

It includes a sample Front-UI file - applet/csiApplet.jsp - which contains HTML code for
launching AutoVue applet (<applet> tag). When you develop your DMS extension on the DMS
Server, you can customize this sample file.

Refer to the Oracle AutoVue Integration SDK Technical Guide about steps to design your
integration based the ISDK Skeleton.

5.2 Sample Projects
The installation of the ISDK includes the sample project:

� Sample Integration for Filesys DMS

These projects provide a good introduction to the many uses of the ISDK. The following
sections provide an introduction to each project. For full configuration information, refer to
Configuring Sample Projects.

5.2.1 Sample Integration for Filesys Project
The AutoVue Integration SDK bundles a sample integration into a JDeveloper-based or
Eclipse-based project. This project is located under the FileSys\WebApplication folder and is
available as single web archive (WAR) filesys.war file and separate files. This provides you
with an option of either importing the project from single WAR file into your workspace or
manually creating a project and adding individual pieces to it.

The following high-level architectural diagram shows how various components included in the
Sample Integration for Filesys are related to each other as well as to others. For detailed

Sample Projects

5-4 Overview and Installation Guide

description about this architectural diagram, refer to Oracle AutoVue Integration SDK
Technical Guide.

Figure 5–3 High-level architectural diagram of Sample Integration for Filesys
components

The following is a sample integration project on Eclipse.

Figure 5–4 Sample integration project on Eclipse

The following is a sample integration project on JDeveloper:

Sample Projects

Implementation 5-5

Figure 5–5 Sample integration project on JDeveloper

The project contains four main subcomponents:

� Framework (VueLink Core)

� Sample Integration

� AutoVue Components

� Third-Party Libraries

The following sections describe each of these subcomponents.

5.2.1.1 Framework (VueLink Core)
The framework is implemented based on Java Servlet API provided by SUN as part of J2EE.
The main class is called com.cimmetry.Vuelink which extends javax.servlet.http.HttpServlet.
Servlets do not run on their own, they require a servlet engine such as Oracle WebLogic Server.

The framework links AutoVue system with a third-party DMS. Integration framework receives
requests from AutoVue, obtains information from the DMS, and then builds a response back to
AutoVue.

The framework provides plumbing for parsing XML requests received from AutoVue Server as
well as constructing XML responses sent back to AutoVue Server. The framework uses XML
parser libraries included in your servlet container.

The framework defines a set of interfaces and classes that facilitate the integration task. The
framework is packaged into vuelinkcore.jar and contains many packages including following:

� com.cimmetry.vuelink

� com.cimmetry.vuelink.authentication

� com.cimmetry.vuelink.backend

� com.cimmetry.vuelink.context

� com.cimmetry.vuelink.defs

� com.cimmetry.vuelink.io

Sample Projects

5-6 Overview and Installation Guide

� com.cimmetry.vuelink.property

� com.cimmetry.vuelink.prosaction

� com.cimmetry.vuelink.query

� com.cimmetry.vuelink.session

� com.cimmetry.vuelink.util

� com.cimmetry.vuelink.xml

The framework uses log4j for logging messages into application server log file or console.

5.2.1.2 Sample Integration
The ISDK includes a sample integration of a simplified file system management (Filesys). This
sample includes VueLink for filesys DMS and aims to act as a starting point for developing
your own integration as well as familiarizing yourself with the integration framework.

Figure 5–6 Sample integration framework

The Filesys DMS comes with a database repository that is preloaded with some sample files in
2D/3D formats. To simplify things, the structure of this repository is based on local file system.
Markups and renditions are stored back into this content repository.

The sample integration demonstrates how you can add basic and advanced functionalities to
your own integration including:

� Document viewing of native formats

� Retrieve document attributes

� Create, save and review markups

� Browse DMS repository

� Search DMS repository

� Compare document versions

� Convert documents to other formats

� Support for Stamps markup entity

� Support for Set Property action (with Pick List support)

� Enhanced framework to support Oracle Enterprise Visual Framework (OEVF)

� Support for markup save alert before applet close

� Support for browser Pop-up blocker notification

� Support for AutoVue authorization mechanism (encrypted Authorization block and
password)

� Improved performance with support for distributed file servers

� Support for integration between Online meeting managements and AutoVue Real-Time
Collaboration (RTC)

Sample Projects

Implementation 5-7

� Support for saving/deleting on-line master markups based on default markup policy

� Support for read-only markups

� Bundled demos for OEVA and RTC

The sample integration for Filesys contains many packages including the following:

� com.cimmetry.vuelink.filesys

� com.cimmetry.vuelink.filesys.actions

� com.cimmetry.vuelink.filesys.backend

� com.cimmetry.vuelink.filesys.dms

� com.cimmetry.vuelink.filesys.dms.gui

� com.cimmetry.vuelink.filesys.propactions

� com.cimmetry.vuelink.filesys.session

� com.cimmetry.vuelink.filesys.util

The sample integration includes a front-end UI which allows users to navigate the Filesys DMS
data structure. This UI consists of:

� A default home page: index.jsp. It provides links for Filesys demo, RTC demo and OEVF
demo.

� RTC demo pages: RTCDemo.jsp, RTCDemo_init.jsp, RTCDemo_join.jsp

� OEVF demo pages: OEVFDemo.html, OEVFDemoDes.html

� Filesys demo pages: jVue.html, frmApplet.jsp and a single servlet called
com.cimmetry.vuelink.filesys.dms.gui.ListDirServlet. The main filesys demo page
contains two frames as shown in the following figure.

� The frame on the left displays the structure of Filesys DMS data. The content of this frame
is displayed by ListDirServlet which allows you to navigate the Filesys DMS by expanding
folders and selecting documents to view.

� The frame on the right displays the AutoVue applet using frmApplet.jsp. When you click a
document in the frame on the left, it displays in the frame on the right.

5.2.1.3 AutoVue Components
The ISDK bundles following two components of Oracle AutoVue:

� AutoVue Java Client

Referenced by frmApplet.jsp which contains HTML and Javascript code to initiate the
Web Start of the client.

� VueServlet tunneling servlet (vueservlet.jar)

This servlet is used to allow AutoVue Java connects to AutoVue Servlet.

The AutoVue Integration SDK does not bundle AutoVue Server. You need to download and
install it separately. Refer to the Installation chapter for more information.

5.2.1.3.1 Third-Party Libraries The Sample Integration for Filesys bundles third-party
open-source libraries needed by the framework. For information, refer to the Acknowledgments
document.

Implementation

5-8 Overview and Installation Guide

5.3 Implementation
The ISDK Java skeleton should be used when a Java API is available in the repository.

The implementation steps are dependent on the ISDK Java skeleton being used. However, the
expected functionality of the integration can be understood in three phases that range from the
most basic (phase one) to the more advanced (phase three) capabilities. The following sections
discuss these integration phases.

5.3.1 Phase One
The requirement for phase one is viewing the document. To view the document, the integration
should cover the Open and Download actions and a subset of GetProperties (get name, size, last
modified date and multi-content values) actions.

5.3.2 Phase Two
Phase two of the integration adds the following capabilities:

� Save, update and delete markups (annotations) inside the repository

� Compare a document with other versions of the same document

� Download the external references (XRefs) of a document from the repository (if
applicable)

� Save (and reuse) the renditions of a document into the repository

� Add the repository attributes to the print output in the header/footer sections

For this to happen, the integrators should add implementation for the Save and Delete and a
subset of GetProperties related to listing versions, listing markups, listing XRefs, listing
renditions and listing all attributes of a document.

As mentioned in Optional Components, the repository should support XRefs and the
development of a CAD connector for the repository may be required.

5.3.3 Phase Three
Phase three of the integration adds the following capabilities:

� Search and browse the repository through the AutoVue client UI

� Use the AutoVue Intellistamp with the repository attributes

AutoVue Intellistamp is one of the AutoVue advanced markup features. For more information,
refer to the Oracle AutoVue User's Manual.

For these features, integrators must add an implementation for SetProperties and the remaining
subset of GetProperties that are defined to retrieve these information: search/browse UI,
search/browse query results, and the collaboration-related data from the repository.

6

Deployment of ISDK-Based Integrations 6-1

6Deployment of ISDK-Based Integrations

Once the development of an ISDK-based component is complete, it should be deployed on a
Java Web application server.

The deployment may involve some configuration depending on its complexity. For example, if
multiple instances of integrations are being used in a server farm, the deployment must be
scaled for high usage. For more information, refer to Scaling for High Usage over Distributed
Environments. Additionally, it may be required to support proper failover when deploying in a
distributed environment.

For technical information on deploying the ISDK and supported Web application servers, refer
to the Oracle AutoVue Integration SDK Technical Guide.

6.1 Scaling for High Usage over Distributed Environments
Depending on the number of concurrent users, the type and size of documents that users
typically view, and whether files are to be loaded natively or from streaming files, it may be
required to deploy your ISDK-based integration in a server farm. Additionally, it may be
required to deploy it in distributed environments. In order to support proper failover in a
distributed environment, the HTTP session needs to be replicated across all cluster nodes. In
the event that a node fails, a second cluster node takes over and continues to process the
requests. Seamless failover is when the user's actions are not disrupted and no authorization
dialog is requested during this process.

Depending on the type of DMS integration and connection, login or session information may
need to be remembered. For the information to be replicated across nodes, the objects attached
to the HTTP session need to be serializable.

For example, in the FileSys sample integration, the
com.cimmetry.vuelink.filesys.FilesysContext class manages this aspect. The back-end session
objects may not always be serializable. The FilesysContext stores the username and password
strings in the session. This allows the node that is taking over another session to reinitialize the
connection with the back-end. The DMSSession class is provided by the ISDK to wrap the
HTTP session variable. It provides the setAttribute() and getAttribute() methods to handle the
storing of serializable objects to be saved and replicated. For more information, refer to the
Oracle AutoVue Integration SDK Technical Guide.

Consider the following when serializing objects:

� The DMS provides a session ID: If the back-end DMS provides a session ID, this session
ID can be serialized into the DMSSession object. This way when a cluster node fails, the
new node can pick up the replicated DMSSession and use the stored session ID to continue
communicating with the back-end DMS.

� The DMS connection object is not serializable: If the connection object cannot be
serialized into the DMSSession, the information needed for recreating this object should be

Scaling for High Usage over Distributed Environments

6-2 Overview and Installation Guide

serialized and replicated. This way, when the active node fails, the second node retrieves
this information and recreates the DMS connection object.

If seamless failover is not possible, an authorization exception can be thrown to request the user
login information. This way, the user retains the ability to save any markups that they have
created provided that they can enter a valid username and password.

Non-serializable objects should be added to the DMSSession to increase performance and
allow caching of data between requests. However, they need to be declared as transient in order
not to break the session replication during failover. These transient objects will need to be
regenerated once the session was migrated to a different cluster node.

For information on scaling AutoVue servers for high usage and seamless failover, refer to the
"Scaling AutoVue for High Usage" section of the Oracle AutoVue Planning Guide.

A

Updating Existing Integrations to the Java Web Start Client A-1

AUpdating Existing Integrations to the Java Web
Start Client

As an alternative to browser based Java Applets, the new solution is based on "Java Web Start"
utility. Java Web Start provides a facility for launching Java-based applications from web
browsers, running out of the browser as a separate process. The browser uses file download and
file association capabilities to start Web Start automatically. In place of the HTML APPLET
tag and attributes, a new "Java Network Launching Protocol" (JNLP) XML file allows
developers to specify where the application can be obtained, how it should be launched, and
what the initial parameters are. The sections covered in this chapter will help you migrate your
Applet based deployment to the new version of AutoVue.

A.1 Update your Integration
This section will help you migrate your Applet based deployment to the new version of
AutoVue. Do the following for updating your integration to the new solution of AutoVue:

1. Update the server: Deploy the different AutoVue artifacts on the server side.

2. Setup the server for SSL mode: This is required only if you need to run AutoVue under
HTTPS protocol.

3. Test the AutoVue sample: Test the sample to ensure you have properly deployed all the
artefacts on the server side.

4. Specify Cookies: Specify cookies that are necessary for authenticating the different
components necessary for a seamless integration. These cookies must be specified in the
VueJNLPServlet so that AutoVue can correctly integrate with your application (single sign
on).

5. Update the client side code: Update the Client code (customization) to use the new
AutoVue JavaScriptAPI provided in autovue.js.

6. Security: Ensure your deployment is secure and follows all the security guidelines of your
organization.

7. Customize your code: If needed, customize your integration solution to fulfill your
specific needs.

A.1.1 Update the server
Add VueJNLPServlet descriptor and mapping to the deployment descriptor file – web.xml of
the VueServlet container. Then setup VueJNLPServlet initialization parameters in it. Following
are the servlet initialization parameters:

� URL-Dir: This parameter refers to the URL of AutoVue Client folder with respect to the
context root in your Java Servlet container. You may use the integrated jetty servlet

Update your Integration

A-2 Overview and Installation Guide

container AutoVue ships with. Make sure your root context is used consistently across
your entire deployment. From now on, your root context is "/AutoVue", which would be
the value of this "URL-Dir" parameter.

� Cookies: Semicolon ';' separated list of cookie names identifying the cookies to transfer to
AutoVue at the start-up:

The rest of initialization parameters are usual AutoVue Client Parameters (also called "Applet
Parameters", usually). Refer to the section – Client Parameters for more information about
these parameters. Following is the sample code to be included in the deployment descriptor file
web.xml:

<servlet id="VueJNLPServlet">
<servlet-name>VueJNLPServlet</servlet-name>
 <servlet-class>com.cimmetry.servlet.VueJNLPServlet</servlet-class>
 <init-param>
 <param-name>URL-Dir</param-name>
 <param-value>/AutoVue</param-value>
 </init-param>
 <init-param>
 <param-name>Cookies</param-name>
 <param-value>JSESSIONID;COOKIE2;COOKIE3...</param-value>
 </init-param>
 ...
 <load-on-startup>0</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>VueJNLPServlet</servlet-name>
 <url-pattern>/servlet/VueJNLPServlet</url-pattern
 <url-pattern>/servlet/VueJNLPServlet/*</url-pattern>
</servlet-mapping>

Validation:
� Start AutoVue Server

� Start AutoVue Servlet Container (Jetty, Tomcat or WebLogic)

� Connect with a browser to the URL of VueJNLPServlet and CodebaseHost as an argument
indicating the codebase URL:

As an example, for Jetty:
http://localhost:5098/servlet/VueJNLPServlet?CodebaseHost=http://
localhost:5098/AutoVue

If you follow the steps provided above, AutoVue Client should start.

A.1.2 Setup the server for SSL Mode
When running the AutoVue Client with the rendez-vous servlet, there is no need for the
localhost certificate, as was required in previous releases of AutoVue 21.0.2. When running
with the rendez-vous servlet, configuring SSL support is specific to the application server being

Note: An integrator specific implementation will most certainly not need
this parameter defined, as the context root is usually known by the servlet and
does not need to be different from the one present inside the JNLP.

Update your Integration

Updating Existing Integrations to the Java Web Start Client A-3

used to host the AutoVue servlets. See the documentation for the chosen application server to
configure it for SSL operation.

A.1.3 Test AutoVue Sample
A new HTML sample page (av_jnlp.html) illustrating a basic AutoVue integration and similar
to the usual sample page autovue.html is delivered within the files of the new solution.

In order to test this client sample, you should:

� Start AutoVue Server

� Start AutoVue Servlet Container (Jetty, Tomcat or WebLogic)

� Connect with a browser to the URL of the new HTML sample page av_jnlp.html. As an
example, for Jetty, the URL is

http://localhost:5098/AutoVue/av_jnlp.html

As soon as the page loads, Java Web Start is triggered and launches AutoVue Client standalone
outside of the browser. You can then test the file links and the scripting API. It should work
exactly as it used to do for the Applet sample autovue.html, except that AutoVue Client is not
embedded in the browser as an Applet.

The new HTML sample av_jnlp.html has similar options as autovue.html, and they can be
customized. Following are the options:

� CL_PRTS

� INIT_PARAMS

� ONINIT

� ONINITERROR

� USER_DATA

All these options are explained in detail in the following sections.

A.1.3.1 CL_PRTS
CL_PRTS should be set to null when using rendez-vous communication.

A.1.3.2 INIT_PARAMS
Similar to "Applet Parameters", INIT_PARAMS is the list of AutoVue Client parameters that
is set at initialization stage. They should be provided into a Java Script Object wrapping the
parameters to pass. An example follows:

INIT_PARAMS = {'FILENAME':'<myFileURL>', 'LOCALE':'fr_CA'}

A.1.3.3 USER_DATA
Custom object to provide within the start API and receive within the failure callback
ONINITERROR below.

A.1.3.4 ONINIT
This is a JavaScript callback to register. It will be called when AutoVue starts and listens to
JSON-RPC requests in order to handle JavaScript calls. By default it is set to the function
onAvStartup provided in av_jnlp.html sample. This callback is similar to the one used in the
earlier solution and has the same name.

Update your Integration

A-4 Overview and Installation Guide

A.1.3.5 ONINITERROR
This is a JavaScript callback to send within the start API. It will be called in case AutoVue
does not start. As for AutoVue Applet, a suggestion is given inav_jnlp.html (onAvInitError)
which prompts the user 3 times to retry, then; suggests sending an e-mail to the server
administrator notifying him about this failure. This callback is similar to the one used in the
earlier solution and has the same name. It must follow the prototype described in the start API.

A.1.4 Specify Cookies
AutoVue Client is not an applet anymore. It cannot access the cookies directly. Any browser
cookies that will be needed by the AutoVue Client must be provided at launch time. A new
AutoVue Client parameter is introduced to address this. The new parameter "COOKIES" holds
a list of cookies in a key-value format (name=value) separated by a semicolon ";".

The server administrator should specify a semicolon ";" separated list of cookie names passed
as init parameter of VueJNLPServlet, named COOKIES as well. This init parameter supports
two special values:

� true: Pass all the browser cookies of the domain to AutoVue (this must be combined with
filtering in the VueJNLPServlet and encryption to ensure a secure deployment).

� false: Do not pass any cookie to AutoVue

Basically, add cookies' names to the server configuration file web.xml:

<servlet id="VueJNLPServlet">
 <servlet-class>com.cimmetry.servlet.VueJNLPServlet</servlet-class>
 <init-param>
 <param-name>Cookies</param-name>
 <param-value>JSESSIONID;...</param-value>
 </init-param>
 <load-on-startup>0</load-on-startup>
</servlet>

The required cookies' values will be collected by the "GET" method of VueJNLPServlet during
the client start-up and passed to the client within the new Client parameter (COOKIES).

A.1.5 Update client side code
In order to update the client side code, you have to do the following:

� Remove AutoVue Applet tag and related code, after that include autovue.js as follows:

<script type="text/javascript" src="graphics/autovue.js"></script>

Instantiate an AutoVue object within a JavaScript block as in av_jnlp.html (refer to the section
– AutoVue Constructor Parameters for more information about the constructor parameters):

var myAvApp = new AutoVue(<VueJNLPServlet Host>, <Codebase Host>, ...);

� Call the start method to launch an AutoVue Client (refer to the JavaScript API section of
the Oracle AutoVue API Guide for more information about the function parameters):

myAvApp.start(onInit, onFail, user_data);
myAvApp.setFile(<URL of a file to load in AutoVue>);

Update the calls to AutoVue Applet scripting API using the new AutoVue Object. Refer to the
JavaScript API section of the Oracle AutoVue API Guide for a complete description of
AutoVue scripting API supported by AutoVueJavaScript Object. An example follows:

Update your Integration

Updating Existing Integrations to the Java Web Start Client A-5

Validation: Start AutoVue Server, AutoVue Servlet Container and launch AutoVue Client
using your integration solution. It should work as before and AutoVue will start in a separate
window.

A.1.6 Customizing AutoVue
The new solution provides customization capabilities similar to AutoVue applet solution.
Following are the customizable options:

� Client Parameters

� AutoVue Constructor Parameters

The sections - Client Parameters and AutoVue Constructor Parameters discuss the customizable
options.

A.1.6.1 Client Parameters
The new solution provides the following mechanism to set Client Parameters (usually set in the
applet and known as "Applet Parameters"):

� Client Setting

Client Setting: Pass the parameters to the constructor of AutoVueJavaScriptObject. Refer to
the section – AutoVue Constructor Parameters for a description of expected parameters format.

A.1.7 AutoVue Constructor Parameters
Additional options are specific to the new API and the new solution. They are available in
autovue.js. They can be passed as arguments to the constructor of AutoVueJavaScript Object:

var myAvApp = new AutoVue(JNLP_HOST, CODEBASE_HOST , CLIENT_PORTS, INIT_PARAMS,
ECNRYPT_COOKIES, VERBOSITY, STARTUP_DELAY);
CSI_ClbSessionSubject=Subject;CSI_ClbSessionType=public|private;CSI_
ClbUsers=user1,user2,x;

The Table A–1 provides the list of AutoVue Constructor Parameters.

Note:

� If you call the Scripting API directly without starting AutoVue, the
JavaScriptAutoVue Object will start AutoVue client automatically for
you before invoking the scripting API.

� You can recycle this JavaScriptAutoVue Object across your HTML
pages. The object will remember its previous state. For example, if you
had previously connected to AutoVue, the JavaScript will remember the
port used for that. The JavaScript will re-connect to a new AutoVue
application using the previously defined parameters in case AutoVue was
closed.

Steps for Integration

A-6 Overview and Installation Guide

A.2 Steps for Integration
For partners who have developed an integration to link AutoVue to a file repository (typically
using the ISDK toolkit), the recommendation is to follow the incremental process provided in
Table A–2 for migrating the implementation to the new Web Start based AutoVue Client.

Table A–1 AutoVue Constructor Parameters

Parameter Description Default Value

JNLP_HOST Specifies the URL of VueJNLPServlet deployed within
AutoVue Servlet container. For example, for an
AutoVue fresh installation, this URL would be
http://localhost:5098/servlet/VueJNLPServlet. This
parameter is mandatory. It is needed to connect to
VueJNLPServlet servlet that generates the JNLP file
required to trigger Java Web Start. AutoVue Client
cannot start without the required JNLP file.

CODEBASE_HOST Specifies the URL of AutoVue Client codebase
(jvue.jar, jsonrpc4j.jar, jogl.jar, gluegen_rt.jar). For
example. this URL would be
http://localhost:5098/AutoVue. This parameter is also
mandatory. Without it, Java Web Start will not be able
to find AutoVue Client's codebase in order to launch it.

CLIENT_PORTS This parameter is obsolete and should always be set to
null.

No default. The
default value could
also be null.

INIT_PARAMS These replace the AutoVue applet parameters. This is
the list of AutoVue Client parameters to be set at an
initialization stage. They should be provided wrapped
into a JavaScript object.

null

ENCRYPT_COOKIES This option has been deprecated, and is not supported
when using the rendez-vous connection between the
browser and the AutoVue Client. It should be set to
false in rendez-vous based environments.

true

VERBOSITY This parameter specifies how autovue.js should output
error messages:

� None

� Browser Console

� JavaScript alert popup

� Both Browser Console and JavaScript alert popup

1

STARTUP_DELAY AutoVue is launched using Java Web Start. The
start-up process can take some time to complete since
the java classes (jars) have to be downloaded to the
client machine and the browser may prompt the user
before starting any download. At the same time,
AutoVue JavaScript Object tries to establish
communication with AutoVue Client through
JSON-RPC to detect when it is ready to handle
scripting methods. This variable specifies the required
delay before assuming a start-up failure of AutoVue
Client (For example, AutoVue Server not running). It is
set by default to 30 seconds.

30

Steps for Integration

Updating Existing Integrations to the Java Web Start Client A-7

Table A–2 Steps for integrating with the new Web Start-based AutoVue Client

Step Tasks Expected Result

AutoVue Client Launch The initial goal is to have the AutoVue
Client launched in the integrated
environment through the Web Start
framework.

Actions:

� Install and configure
VueJNLPServlet and the template
file it uses on the application server
of your environment.

� Validate JNLP file produced by
VueJNLPServlet.

� Verify that AutoVue Client can be
launched from client machines.

An empty AutoVue Client can be
launched from the embedding
environment. Local files can be
opened from the user interface of
AutoVue.

Basic File Viewing The second step is to enable the viewing
of files from the document repository.
The implementation work here will
involve passing authentication and
document identification information to
the AutoVue client.

Actions:

� Adapt viewer launch page in
existing integration to invoke
VueJNLPServlet with parameters
that are currently added as applet
parameters.

� Validate that viewer can be
launched with files chosen by the
user through the user interface of
the embedding system.

Files can be selected from the
document repository and viewed
in the AutoVue client.

Migrate Additional
Functionality

Most integrations provide additional
document related functionality through
the use of the LiveConnectAPI of
AutoVue. These functions may include
markup, printing, comparison, etc. The
JSON-RPCAPI provides the same
functionality as the LiveConnectAPI.

Actions:

� Identify all LiveConnectAPI usage
in the current integration. Generate
a checklist of user operations that
are built through these capabilities.

� Convert integration code that was
using the AutoVue applet's
LiveConnectAPI s to invoke the
functionality through the
JSON-RPC interface. We
recommend using the provided
AutoVue JavaScript class to
simplify this process.

� Validate that all checklist items
have been successfully migrated.
Provide feedback to Oracle for any
functionality that cannot be
migrated.

Revised integration should match
functionality of original
integration to a very high degree.
Any deficiencies have been
reviewed and a remediation plan
established.

Steps for Integration

A-8 Overview and Installation Guide

Refine Security The migration of the AutoVue
integration from applet-based to Web
Start may allow for an improvement in
the overall system security. If
applicable, the following actions may be
taken:

� Revise security implementation to
make use of VueJNLPServlet
cookies capabilities.

� Restore HTTPOnly attribute on
authentication related cookies if it
had been removed for AutoVue
applet use.

Enable cookie encryption feature:

� Decide on an approach for
generating the required key-pair
information.

� Enable cookie encryption in
VueJNLPServlet invocation.

Security related cookies are
protected through HTTPOnly
attribute. Security information in
JNLP files is secured to a level
appropriate for the operating
environment.

Table A–2 (Cont.) Steps for integrating with the new Web Start-based AutoVue Client

Step Tasks Expected Result

B

Feedback B-1

BFeedback

If you have any questions or require support for AutoVue, please contact your system
administrator. If the administrator is unable to resolve your issue, please contact us using the
links below.

B.1 General AutoVue Information

B.2 Oracle Customer Support

B.3 My Oracle Support AutoVue Community

B.4 Sales Inquiries

Web Site https://www.oracle.com/applications/autovue/

Web Site https://www.oracle.com/support

Web Site https://community.oracle.com/hub/

E-mail https://www.oracle.com/corporate/contact/global.html

Sales Inquiries

B-2 Overview and Installation Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 ISDK Overview
	1.1 Introduction
	1.2 AutoVue and Repository Integration
	1.3 GUI Customization
	1.4 Repository Extension
	1.5 VueLink
	1.6 Optional Components
	1.6.1 CAD Connector

	1.7 Overview of ISDK Components
	1.7.1 Documentation

	2 System Requirements
	2.1 Required Software
	2.2 Server
	2.2.1 Windows
	2.2.2 Linux

	2.3 Client
	2.4 Application Servers
	2.5 Development Tools

	3 Installation
	3.1 Downloading Required Software
	3.1.1 Oracle AutoVue
	3.1.2 WebLogic Server
	3.1.3 Oracle Enterprise Pack for Eclipse
	3.1.4 Oracle JDeveloper 11gR1

	3.2 Installing and Configuring
	3.2.1 Installing ISDK
	3.2.2 Creating a Server Runtime Environment on IDE
	3.2.2.1 Create Default Runtime on JDeveloper
	3.2.2.2 Create Server Runtime in Eclipse

	3.2.3 Creating Projects on IDE
	3.2.3.1 Projects on JDeveloper
	3.2.3.2 Projects on Eclipse

	3.2.4 Configuring ISDK Components
	3.2.4.1 Configuring the ISDK Skeleton
	3.2.4.1.1 Step 1: Copy the AutoVue Jar Files
	3.2.4.1.2 Step 2: Configure the AutoVue Server
	3.2.4.1.3 Step 3: Configure log4j.properties for Debugging

	3.3 Configuring Sample Components

	4 Configuring Sample Projects
	4.1 Sample Integration for Filesys DMS
	4.1.1 Step 1: Copy the AutoVue Jar Files
	4.1.2 Step 2: Configure the AutoVue Server
	4.1.3 Step 3: Configure log4j.properties for Debugging
	4.1.4 Step 4: Configure RootDir for the Filesys Repository
	4.1.5 Step 5: Configure for an Embedded or Pop-Up Window (Optional)
	4.1.6 Step 6: Configure the Markup Policy (Optional)
	4.1.7 Step 7: Configuring User Control
	4.1.8 Step 8: Configure the Picklist
	4.1.9 Step 9: Configure the Thumbnail Display
	4.1.10 Step 10: Configure for Redirection
	4.1.11 Step 11: Configure the Real-Time Collaboration (RTC) Demo
	4.1.11.1 Verify the RTC Demo
	4.1.11.2 Create or Update the meetingfiles.txt

	4.1.12 Step 12: Configure the Oracle Enterprise Visualization Framework (OEVF)
	4.1.12.1 Define OEVFInfoLocation in web.xml
	4.1.12.2 Update oevf.xml
	4.1.12.3 Update OEVFDemo.html
	4.1.12.4 Copy the OEVF GUI files to AutoVue

	4.1.13 Step 13: Configure New Sample Data
	4.1.13.1 Add new data to the document repository
	4.1.13.1.1 Create data structure manually
	4.1.13.1.2 Add data from IDE
	4.1.13.1.3 Adding Data from JDeveloper
	4.1.13.1.4 Adding Data from Eclipse

	4.1.14 Step 14: Run the Filesys Project

	5 Implementation
	5.1 ISDK Skeleton Project
	5.2 Sample Projects
	5.2.1 Sample Integration for Filesys Project
	5.2.1.1 Framework (VueLink Core)
	5.2.1.2 Sample Integration
	5.2.1.3 AutoVue Components
	5.2.1.3.1 Third-Party Libraries

	5.3 Implementation
	5.3.1 Phase One
	5.3.2 Phase Two
	5.3.3 Phase Three

	6 Deployment of ISDK-Based Integrations
	6.1 Scaling for High Usage over Distributed Environments

	A Updating Existing Integrations to the Java Web Start Client
	A.1 Update your Integration
	A.1.1 Update the server
	A.1.2 Setup the server for SSL Mode
	A.1.3 Test AutoVue Sample
	A.1.3.1 CL_PRTS
	A.1.3.2 INIT_PARAMS
	A.1.3.3 USER_DATA
	A.1.3.4 ONINIT
	A.1.3.5 ONINITERROR

	A.1.4 Specify Cookies
	A.1.5 Update client side code
	A.1.6 Customizing AutoVue
	A.1.6.1 Client Parameters

	A.1.7 AutoVue Constructor Parameters

	A.2 Steps for Integration

	B Feedback
	B.1 General AutoVue Information
	B.2 Oracle Customer Support
	B.3 My Oracle Support AutoVue Community
	B.4 Sales Inquiries

