
Oracle Fusion Cloud Applications Suite
Designing Pixel-Perfect Reports in Oracle
Transactional Business Intelligence

F41284-22
June 2025

Oracle Fusion Cloud Applications Suite Designing Pixel-Perfect Reports in Oracle Transactional Business Intelligence,

F41284-22

Copyright © 2022, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxviii

Documentation Accessibility xxviii

Diversity and Inclusion xxviii

Related Resources xxviii

Conventions xxix

Part I Model Data for Pixel-Perfect Reports

1 Use the Data Model Editor

What is a Data Model? 1-1

Components of a Data Model 1-1

About the Data Source Options 1-2

Process Overview for Creating a Data Model 1-3

Features of the Data Model Editor 1-3

Launch the Data Model Editor 1-4

About the Data Model Editor Toolbar 1-5

About the Interface 1-6

Data Model Properties 1-9

XML Output Options 1-12

Add Attachments to the Data Model 1-13

Attach Sample Data 1-13

Attach Schema 1-13

Data Files 1-13

XML Data Chunking 1-13

2 Create Datasets

Create a Dataset 2-1

Create Datasets Using SQL Queries 2-1

Enter SQL Queries 2-2

Create Non-Standard SQL Datasets 2-2

iii

Use the SQL Query Builder 2-5

Overview of the Query Builder 2-6

Build a Query Using Query Builder 2-6

Supported Column Types 2-6

Add Objects to the Design Pane 2-7

Remove or Hide Objects in the Design Pane 2-7

Query Conditions 2-7

Create Relationships Between Objects 2-8

Save a Query 2-9

Edit a Saved Query 2-9

Add a Bind Variable to a Query 2-10

Add a Bind Variable Using a Text Editor 2-10

Add Lexical References to SQL Queries 2-11

About Defining SQL Queries Against the Oracle BI Server 2-13

Define SQL Queries Against the Oracle BI Server 2-13

Notes for Queries Against Oracle Fusion Cloud Applications Tables 2-14

Create a Dataset Using an Analysis 2-15

Additional Notes on Analysis Datasets 2-15

Create a Dataset Using a Web Service 2-15

Web Service Data Source Options 2-15

Create a Dataset Using a Simple Web Service 2-16

Create a Dataset Using a Complex Web Service 2-16

Additional Information on Web Service Datasets 2-16

Create a Dataset Using a XML File 2-17

About Supported XML Files 2-17

Create a Dataset Using a Content Server 2-17

Create a Dataset Using a Microsoft Excel File 2-18

About Supported Excel Files 2-18

Access Multiple Tables per Sheet 2-19

Create a Dataset Using a CSV File 2-19

About Supported CSV Files 2-20

Create a Dataset from a Centrally Stored CSV File 2-20

Upload a CSV File Stored Locally 2-21

Edit the Data Type 2-22

Refresh and Delete an Uploaded CSV File 2-22

Create a Dataset from an HTTP XML Feed 2-23

Create a Dataset from an HTTP XML Dataset 2-23

Use Data Stored as a Character Large Object (CLOB) in a Data Model 2-24

How the Data Is Returned 2-25

Additional Notes on Datasets Using CLOB Column Data 2-26

Handle XHTML Data Stored in a CLOB Column 2-26

Retrieve XHTML Data Wrapped in CDATA 2-26

iv

Wrap the XHTML Data in CDATA in the Query 2-27

Test Data Models and Generate Sample Data 2-27

Edit Dataset 2-28

Include User Information Stored in System Variables in Your Report Data 2-29

Add the User System Variables as Elements 2-30

Sample Use Case: Limit the Returned Dataset by User ID 2-30

3 Structure Data

Work with Data Models 3-1

About Multipart Unrelated Datasets 3-1

About Multipart Related Datasets 3-3

Guidelines for Working with Datasets 3-5

Create Links Between Datasets 3-6

About Element-Level Links 3-6

About Group-Level Links 3-6

Create Element-Level Links 3-6

Delete Element-Level Links 3-7

Create Group-Level Links 3-7

Delete Group-Level Links 3-8

Create Subgroups 3-9

Move an Element Between a Parent Group and a Child Group 3-10

Create Group-Level Aggregate Elements 3-11

Create Group Filters 3-16

Perform Element-Level Functions 3-17

Set Element Properties 3-17

Sort Data 3-17

Perform Group-Level Functions 3-18

The Group Action Menu 3-18

Edit the Dataset 3-19

Remove Elements from the Group 3-19

Edit the Group Properties 3-20

Perform Global-Level Functions 3-20

Add a Global-Level Aggregate Function 3-21

Add a Group-Level or Global-Level Element by Expression 3-23

Add a Global-Level Element by PL/SQL 3-24

Use the Structure View to Edit Your Data Structure 3-24

Rename Elements 3-25

Add Value for Null Elements 3-26

Function Reference 3-26

v

4 Add Parameters and Lists of Values

About Parameters 4-1

Add a New Parameter 4-2

Create a Text Parameter 4-3

Create a Menu Parameter 4-3

Customize the Display of Menu Parameters 4-5

Define a Date Parameter 4-5

Create a Search Parameter 4-6

About Lists of Values 4-6

Add Lists of Values 4-7

Create a List from a SQL Query 4-7

Create a List from a Fixed Dataset 4-9

Add Flexfield Parameters 4-10

Add a Flexfield Parameter and List of Values 4-11

Add the Flexfield List of Values 4-11

Add the Menu Parameter for the Flexfield List of Values 4-12

Use the Flexfield Parameter to Pass Values to a Flexfield Defined in the Data Model 4-13

Reference the Flexfield in the SQL Query 4-14

Pass a Range of Values 4-15

5 Add Event Triggers

About Triggers 5-1

Add Before Data and After Data Triggers 5-1

Order of Execution 5-2

Create Schedule Triggers 5-2

6 Add Flexfields

About Flexfields 6-1

Use Flexfields in Your Data Model 6-1

Add Key Flexfields 6-2

Enter Flexfield Details 6-3

Add Descriptive Flexfields 6-5

Include Descriptive Flexfield Reference in SQL Queries 6-6

7 Add Bursting Definitions

About Bursting 7-1

What is the Bursting Definition? 7-2

Prerequisites for Configuring Bursting 7-2

Add a Bursting Definition to Your Data Model with an SQL Query 7-3

vi

Attach PDF to Reports using Bursting Engine 7-4

Define the Query for Delivery XML 7-4

Pass a Parameter to the Bursting Query 7-8

Define the Split By and Deliver By Elements for a CLOB/XML Dataset 7-10

Configure a Report to Use a Bursting Definition 7-11

Sample Bursting Query 7-11

8 Performance Best Practices

Know Oracle WebLogic Server Default Time Out Setting 8-1

Best Practices for SQL Datasets 8-1

Only Return the Data You Need 8-2

Use Column Aliases to Shorten XML File Length 8-2

Avoid Using Group Filters by Enhancing Your Query 8-2

Avoid PL/SQL Calls in WHERE Clauses 8-3

Avoid Use of the System Dual Table 8-3

Avoid PL/SQL Calls at the Element Level 8-3

Avoid Including Multiple Datasets 8-4

Avoid Nested Datasets 8-4

Avoid In-Line Queries as Summary Columns 8-5

Avoid Excessive Parameter Bind Values 8-5

Tips for Multi-value Parameters 8-6

Group Break and Sort Data 8-7

Limit Lists of Values 8-8

Work with Lexicals/Flexfields 8-8

Work with Date Parameters 8-10

Run Report Online/Offline (Schedule) 8-10

Set Data Model Properties to Prevent Memory Errors 8-10

Query Time Out 8-11

Enable SQL Pruning 8-11

DB Fetch Size 8-11

Scalable Mode 8-11

Tune SQL Query 8-12

Generate Explain Plan 8-12

Explain Plan for a Single Query 8-12

Explain Plan for Reports 8-12

Guidelines for Tuning Queries 8-13

Validate Data Models 8-13

Data Model Validation Messages 8-14

vii

Part II Create Pixel-Perfect Reports and Layouts

9 Introduction to Designing Reports

Overview for Report Designers 9-1

Define Summary Text for Tables 9-1

About the Layout Types 9-1

About Setting Run-Time Properties 9-2

About Translations 9-2

About Style Templates 9-3

About Sub Templates 9-3

10

Create and Edit Reports

About Report Components 10-1

Create Reports: Process Overview 10-2

Create Reports 10-2

Select a Data Source 10-3

Choose Guide Me or Use Report Editor 10-3

Select the Report Layout 10-4

Save the Report 10-4

Choose Columns for Report Layouts 10-5

Table Layout 10-5

Chart Layout 10-6

Chart and Table Layout 10-7

Pivot Table Layout 10-7

Chart and Pivot Table Layout 10-8

Two Charts and Table Layout 10-9

Create Reports Using a Direct Connection to a Subject Area 10-9

Create Subject Area Reports 10-9

Add Parameters to Subject Area Reports 10-10

Create a Report Against Multiple Subject Areas 10-12

Edit Reports 10-13

Add Layouts to the Report Definition 10-14

Add a Layout Using the Layout Editor 10-14

Add a Layout by Uploading a Template File 10-15

Add a Layout by Generating a Template File 10-15

Configure Layouts Using the List View 10-15

Apply a Style Template to the Layout 10-16

About the Layouts Toolbar 10-16

Configure the Layout Settings Using the List View 10-16

Select Output Formats 10-17

viii

Edit a Layout 10-18

Configure Parameter Settings for the Report 10-19

Configure Report Properties 10-21

Set the General Properties 10-21

Run Report Online 10-21

Advanced Options 10-22

Set the Caching Properties 10-23

Set the Formatting Properties 10-24

Configure Font Mapping 10-24

Configure Currency Formats 10-25

Access Reports via a URL 10-26

Report URL Format 10-26

Report URL Parameters 10-27

About the Layout Editor Interface 10-29

About the Data Source Pane 10-30

About the Components Pane 10-31

About the Properties Pane 10-31

About the Tabbed Toolbar 10-32

Select and Delete Layout Objects 10-32

About the Insert Tab 10-33

11

Create Publisher Layout Templates

Overview of Publisher Layouts 11-1

When to Use a Publisher Layout 11-2

Prerequisites, Recommendations, and Limitations 11-3

Launch the Layout Editor 11-3

Create a New Report 11-3

Edit a Report 11-3

View a Report 11-4

Select a Predefined Layout 11-4

Add Shared Templates for All Users 11-4

Add Personal Predefined Layouts 11-5

Page Layout Tab 11-5

Paper Options 11-5

Header/Footer Options 11-6

Set Properties for Headers and Footers 11-6

View Options 11-7

Display Unit 11-7

Configure Events 11-7

Example of Filter Event Configuration 11-8

Configure Automatic Filtering 11-8

ix

Example: Show Selection Only 11-9

Set Page Margins 11-10

Set Maximum Connections for an Interactive Report 11-11

Insert Layout Components 11-12

Insert Layout Grids 11-13

Add a Border or Background Color 11-14

About the Insert Options 11-14

About the Join and Unjoin Options 11-14

Add Expand and Collapse Option 11-14

About Repeating Sections 11-15

Set Page Break Options for a Repeating Section 11-16

How Repeating Sections Display in Interactive Mode 11-17

Show All Values in a Repeating Section 11-18

About Data Tables 11-19

Insert a Data Table 11-20

Set Alternating Row Colors 11-22

About the Table Tab 11-23

Set the Rows to Display Option 11-23

About Filters 11-23

Set Filters for a Table 11-24

Manage Filters 11-24

About Conditional Formats 11-24

Apply Conditional Formats to a Table 11-25

Manage Formats 11-26

Control the Display of the Total Row 11-27

About the Table Column Header Tab 11-27

About Grouping 11-28

Example: Group Left 11-29

Apply Subtotals 11-30

Example: Group Above 11-30

About the Column Tab 11-31

About the Data Formatting Options for Columns 11-32

Apply Formatting to Numeric Data Columns 11-32

Apply Formatting to Date Type Data Columns 11-33

Custom and Dynamic Formatting Masks 11-33

About the Formula Option 11-34

About the Sort Option 11-34

Remove a Sort Order 11-35

About the Total Cell Tab 11-35

Apply Data Formatting to a Total Cell 11-36

Apply a Formula 11-36

Insert Dynamic Hyperlinks 11-36

x

Apply Custom Data Formatting 11-37

About Charts 11-38

Insert a Chart 11-39

About the Chart Tab 11-42

Apply and Manage Filters 11-42

Convert a Chart to a Pivot Table 11-42

Change the Formula Applied to a Chart Measure Field 11-42

Sort a Chart Field 11-43

Use Advanced Chart Features 11-44

Format Time Series Axis 11-44

Hide Axis Option 11-45

Format Independent Axis 11-45

Scale Axis 11-46

Format Pie Slice 11-46

About Gauge Charts 11-46

Insert a Gauge Chart 11-47

Apply and Manage Filters 11-47

About Pivot Tables 11-47

Insert a Pivot Table 11-48

Customize a Pivot Table Menu 11-49

About the Pivot Table Tab 11-50

Apply Filters 11-50

Customize the Display of Totals 11-50

Convert a Pivot Table to a Chart 11-50

Switch Rows and Columns 11-51

Customize the Pivot Table Headers 11-52

Customize the Pivot Table Data 11-52

About Text Items 11-52

Display a Data Field Side-by-Side with a Text Item 11-53

About the Text Toolbar 11-54

Edit Font Properties 11-54

Insert Page Numbers 11-55

Insert the Date and Time 11-55

Insert a Hyperlink 11-56

About Images 11-56

Add BLOB Image 11-58

About Lists 11-58

Insert a List 11-59

Customize a List 11-60

Customize the Font Style and the Selected Font Style Commands 11-61

Customize Behavior of Selected Items 11-61

Set Predefined or Custom Formulas 11-63

xi

About the Predefined Formulas 11-64

Apply a Custom Formula 11-64

About the Basic Math Functions 11-65

About the Statistical Math Functions 11-66

Apply a Custom Formula: Examples 11-66

Save a Layout 11-72

12

Create RTF Templates

Get Started 12-2

What Are RTF Templates? 12-2

Prerequisites for Designing Templates 12-2

What is XSLT Compatibility? 12-3

Key Concepts 12-3

Design the Template Layout 12-3

About Adding Publisher Code 12-3

Associate the XML Data to the Template Layout 12-4

Use an XML Input File 12-4

Identify Placeholders and Groups 12-5

Use Placeholders 12-5

Identify the Groups of Repeating Elements 12-6

Add Markup to the Template Layout 12-6

Create Placeholders 12-7

Use the Basic RTF Method 12-7

Use the Form Field Method 12-7

Complete the Form Field Method Example 12-9

Define Groups 12-10

Group Scenarios 12-10

Use the Basic RTF Method 12-11

Use the Form Field Method 12-11

Complete the Example 12-12

Define Headers and Footers 12-13

Native Support for Headers and Footers 12-13

Insert Placeholders in the Headers and Footers 12-13

Create Multiple or Complex Headers and Footers 12-13

Define Different First Page, Odd Pages, and Even Pages 12-14

Insert Images and Charts 12-15

Directly Insert Images 12-15

Insert Images with URL References 12-15

Insert Images with an Element Reference from an XML File 12-15

Render an Image Retrieved from BLOB Data 12-16

Add Charts to Templates 12-17

xii

Add a Sample Chart 12-17

Insert the Dummy Image 12-18

Add Code to the Alternative Text Box 12-19

Add Chart Samples 12-22

Horizontal Bar Chart Sample 12-24

Change the Appearance of the Chart 12-25

Add Drawings, Shapes, and Clip Art 12-27

Add Freehand Drawings 12-27

Add Hyperlinks 12-27

Layer Shapes 12-27

Use 3-D Effects 12-28

Add Microsoft Equations 12-28

Add Organization Charts 12-28

Add WordArt 12-29

Add Data-Driven Shapes 12-29

Include Manipulation Commands 12-30

Replicate Shapes 12-30

Add Text to Shapes 12-31

Add Text Along a Path 12-31

Move a Shape 12-31

Rotate a Shape 12-31

Skew a Shape 12-32

Change the Size of Shapes 12-32

Combine Commands 12-33

CD Ratings Example 12-34

Grouped Shape Example 12-35

Supported Formatting Features of Microsoft Word 12-38

General Features of Microsoft Word 12-38

Align Objects 12-39

Insert Tables 12-39

Insert Date Fields 12-41

Insert Multiple Columns on Pages 12-41

Insert Backgrounds and Watermarks 12-42

Add a Background Using Microsoft Word 2000 12-42

Add a Text or Image Watermark Using Microsoft Word 2002 or later 12-43

Microsoft Word Features that Aren't Supported 12-43

Template Features 12-43

Insert Page Breaks 12-44

Insert an Initial Page Number 12-45

Specify Last Page Only Content 12-46

End on Even or Odd Pages 12-49

Insert Blank Page 12-49

xiii

Insert Hyperlinks 12-50

Insert Internal Links 12-51

Include a Table of Contents 12-52

Generate Bookmarks in PDF Output 12-52

Insert Check Boxes 12-53

Insert Drop-Down Lists 12-55

Repeat Row Headers After Page Break 12-57

Use Conditional Formatting 12-58

Use If Statements 12-58

Use If Statements in Boilerplate Text 12-59

Use If-Then-Else Statements 12-60

Insert Choose Statements 12-61

Conditional Formatting Example 12-61

Format Columns 12-62

Format Rows 12-64

Highlight Cells 12-65

Insert Page-Level Calculations 12-67

Display Page Totals 12-68

Insert Brought Forward and Carried Forward Totals 12-70

Insert Running Totals 12-73

Handle Data 12-74

Sort Data 12-74

Check for Null Values 12-75

Regroup the XML Data 12-75

XML Sample 12-75

Regroup Data Syntax 12-76

Template Example 12-77

Regroup by an Expression 12-79

Set Variables, Parameters, and Properties 12-81

Set Variables 12-82

Set Parameters 12-82

Set Properties 12-84

Use Advanced Report Layouts 12-86

Create Batch Reports 12-86

Handle No Data Found Conditions 12-87

Insert Pivot Tables 12-88

Construct Dynamic Data Columns 12-90

Define Columns to Repeat Across Pages 12-91

Example of Dynamic Data Columns 12-91

Format Numbers, Dates, and Currencies 12-93

Format Numbers 12-93

Data Source Requirements 12-93

xiv

Localization Considerations 12-94

Use the Microsoft Number Format Mask 12-94

Supported Microsoft Format Mask Definitions 12-94

Use the Oracle Format Mask 12-95

Format Dates 12-96

Data Source Requirements 12-97

Use the Microsoft Date Format Mask 12-97

Use the Oracle Format Mask 12-98

Default Format Mask 12-100

Oracle Abstract Format Masks 12-100

Display the System Date (sysdate) in Reports 12-101

Format Currencies 12-101

Apply a Currency Format to a Field 12-102

Example: Display Multiple Currency Formats in a Report 12-103

Example: Display Multiple Currency Codes in a Single Report 12-103

Support Calendars and Time Zones 12-104

Calendar Specification 12-104

Specify Time Zone 12-105

Specify No Time Zone Conversion 12-105

Use External Fonts 12-105

Use Barcode Fonts in Reports 12-106

Implement Custom Barcode Formats 12-107

Encode the Data 12-108

2D Barcode Functions 12-108

Control the Placement of Instructions Using the Context Commands 12-109

Use XPath Commands 12-111

Locate Data 12-112

Start Reference 12-114

Specify Context and Parents 12-114

Declare Namespaces 12-114

Use FO Elements and XSL Elements 12-115

Use FO Elements 12-115

Use XSL Elements 12-115

Apply a Template Rule 12-115

Copy the Current Node 12-115

Call a Named Template 12-115

Declare a Template 12-116

Declare a Variable 12-116

Import a Style Sheet 12-116

Define the Root Element of the Style Sheet 12-116

Format Native XSL Numbers 12-116

Guidelines for Designing RTF Templates for Microsoft PowerPoint Output 12-117

xv

Guidelines for Designing RTF Templates for Microsoft Excel Output 12-117

Create Multiple Sheets 12-117

Specify a Sheet Name 12-117

Specify Number and Date Formatting 12-118

Render HTML Formatted Data in a Report 12-118

Supported HTML Features 12-119

Data Model Requirements 12-119

RTF Template Requirements 12-119

Example 12-120

Embed PCL Commands for Check Printing 12-120

Procedure Overview 12-121

Embed PCL Commands in RTF Templates 12-121

Specifications and Restrictions 12-123

13

Create RTF Templates Using the Template Builder for Word

Overview 13-1

Before You Get Started 13-2

Prerequisites and Limitations 13-2

Get Started Using the Template Builder 13-3

Features of the Publisher Template Builder for Word 13-3

Build and Upload a Template 13-3

Work in Connected Mode 13-3

Work in Disconnected Mode 13-4

Access Data for Building Templates 13-5

Load XML Data from a Local File 13-5

Load Data from the Publisher Catalog 13-5

Insert Components to the Template 13-6

Insert a Field 13-6

About the Insert Field Dialog 13-7

Find 13-7

Example 13-7

Force LTR (Left-to-Right) Direction 13-8

Calculation 13-8

Insert a Table Using the Table Wizard 13-9

Step 1: Select Report Format 13-9

Step 2: Select Table Data 13-9

Step 3: Select Data Fields 13-10

Step 4: Group the Table 13-11

Step 5: Insert a Break for the Group 13-13

Step 6: Sort the Table 13-13

Step 7: Click Finish 13-13

xvi

Step 8: Customize the Table Using Microsoft Word Functionality 13-14

Insert a Table or Form Using the Insert Table/Form Dialog 13-14

Select Data Fields 13-14

Define the Layout 13-14

Data Field Properties 13-15

Data Group Properties 13-15

Insert Tables and Forms 13-16

Group Nodes 13-16

Understand the Fields Inserted to the Template 13-17

Insert a Chart 13-17

Chart Type 13-18

Values 13-18

Aggregation 13-18

Labels 13-18

Color 13-18

Chart is Inside Group 13-18

Style 13-19

Properties 13-19

Preview 13-19

Group Data 13-19

Edit an Inserted Chart 13-19

Insert a Repeating Group 13-19

Create Grouping Fields Around an Existing Block 13-22

Insert a Pivot Table 13-22

Manually Edit a Pivot Table 13-25

Insert a Pivot Table in a Repeating Group 13-28

Insert and Edit Conditional Regions 13-30

Insert Conditional Formatting 13-31

Preview a Template 13-32

Template Editing Tools 13-32

Edit and View Field Properties 13-32

About the Properties Tab 13-33

About the Advanced Tab 13-33

About the Word Properties Button 13-33

Validate a Template 13-33

Use the Field Browser 13-34

Check Accessibility 13-35

Upload a Template to Publisher 13-35

Use the Template Builder Translation Tools 13-36

About Translations 13-36

Extract Text to an XLIFF File for Translation 13-36

Preview the Template and Translation File 13-37

xvii

Localize a Template 13-37

Set Options for the Template Builder 13-37

Set UI Options 13-37

Set Preview Options 13-38

Set Build Options 13-39

Set Connection Options 13-41

Set Up a Configuration File 13-41

Publisher Menu Reference 13-41

About the Online Group 13-41

About the Load Data Group 13-42

About the Insert Group 13-43

About the Preview Group 13-44

About the Tools Group 13-44

About the Options Group 13-45

14

Create Excel Templates

Introduction to Excel Templates 14-1

Features of Excel Templates 14-1

Limitations of Excel Templates 14-2

Prerequisites 14-2

Supported Output 14-2

Desktop Tools for Excel Templates 14-2

Install the Template Builder for Excel 14-3

Sample Excel Templates 14-3

Understand the Mappings Between Template and Data 14-3

Use the Template Builder for Excel 14-3

Work in Connected Mode 14-4

Log In Through the Template Builder 14-4

Online Features of the Template Builder 14-5

Upload Templates from the Template Builder 14-6

Work in Disconnected Mode 14-6

Obtain Sample Data 14-6

Load Sample Data in Disconnected Mode 14-7

Upload Templates to the Report 14-7

Insert Fields 14-7

More Features of the Field Dialog 14-9

Insert Repeating Groups 14-9

Use the Field Browser to View, Edit, and Delete Fields 14-10

Preview Templates 14-11

Import Excel Analyzer Templates 14-11

Build a Basic Template Using the Template Builder 14-12

xviii

Step 1: Load Sample Data to the Template Builder 14-12

Step 2: Design the Layout in Excel 14-13

Step 3: Use the Template Builder to Insert Fields 14-13

Step 4: Use the Template Builder to Insert Repeating Groups 14-14

Step 5: Insert the Calculated Salary Field 14-16

Step 6: Test the Template 14-17

Format Dates 14-18

Understand Excel Template 14-22

Map Data Fields and Groups 14-22

Use Excel Defined Names for Mapping 14-22

Use "XDO_" Prefix to Create Defined Names 14-22

Use Native Excel Functions with the "XDO_" Defined Names 14-23

About the XDO_METADATA Sheet 14-23

Create the XDO_METADATA Sheet 14-23

Format of the XDO_METADATA Sheet 14-23

Hide the XDO_METADATA Sheet 14-24

Enable Excel Template Scalability 14-24

Enable Excel Template Scalability at the Template Level 14-24

Enable Excel Template Scalability at the System Level 14-25

Enable Excel Template Scalability at the Report Level 14-25

Use Advanced Publisher Functions 14-25

Reporting Functions 14-26

Split Data from Reports into Multiple Sheets 14-26

Declare and Pass Parameters 14-29

Define a Link 14-30

Import and Call a Subtemplate 14-31

Reference Java Extension Libraries 14-33

Format Functions That Rely on Specific Data Attribute Values 14-34

Define Border and Underline Styles 14-34

Skip a Row 14-39

Group Functions 14-41

Group Data 14-41

Handle the Generated XDO Define Names in Nested Groups 14-41

Regroup the Data 14-42

Preprocess the Data Using an XSL Transformation (XSLT) File 14-43

XSLT Preprocessing Examples: Split Flat Data into Multiple Sheets 14-44

Split the Data by a Specific Field 14-44

Split the Data by Count of Rows 14-46

xix

15

Create PDF Templates

Overview of PDF Templates 15-1

Requirements 15-2

Design the Template 15-2

Add Markup to the Template 15-4

Create a Placeholder 15-4

Name the Placeholder 15-4

Create a Text Placeholder 15-5

Supported Field Properties Options 15-5

Create a Check Box 15-6

Create a Radio Button Group 15-6

Define Groups of Repeating Fields 15-7

Repeat a PDF Template by Using the document-repeat-elementname Form Field 15-8

Add Page Numbers and Breaks 15-10

Add Page Numbers 15-10

Add Page Breaks 15-11

Perform Calculations 15-14

Completed PDF Layout Example 15-15

Runtime Behavior 15-16

Placement of Repeating Fields 15-16

Set Fields as Updatable or Read Only 15-16

Overflow Data 15-18

Create a Layout from a Predefined PDF Form 15-18

Determine If a PDF Has Form Fields Defined 15-18

Use a Predefined PDF Form as a Layout by Renaming the Form Fields 15-18

Use the Comb of Characters Option 15-19

Add or Designate a Field for a Digital Signature 15-21

About Signature Field Options 15-21

Add a Signature Field 15-21

Configure the Report to Insert the Digital Signature at Runtime 15-22

PDF Template Limitations 15-23

16

Create eText Templates

Overview 16-1

Prerequisites 16-2

Structure of eText Templates 16-2

Command Rows, Data Rows, and Data Column Header Rows 16-3

Data Column Header Rows 16-4

Data Rows 16-4

Construct the Data Tables 16-4

xx

Command Rows 16-5

Level Command 16-5

New Record Command 16-8

Sort Ascending and Sort Descending Commands 16-8

Display Condition Command 16-8

Structure of the Data Rows 16-8

Position 16-9

Length/Maximum Length 16-9

Format Column 16-9

Number Data Type 16-9

Date Data Type 16-10

Map EDI Delimiter-Based Data Types to eText Data Types 16-10

Pad 16-11

Data 16-11

Tag 16-12

Comments 16-12

Set Up Command Tables 16-12

TEMPLATE TYPE Command 16-14

Output Character Set 16-15

DEFINE LEVEL Command 16-15

DEFINE SEQUENCE Command 16-18

RESET AT LEVEL 16-18

INCREMENT BASIS 16-18

MINIMUM 16-19

Define Concatenation Command 16-19

Base Level Subcommand 16-19

Element Subcommand 16-19

Delimiter Subcommand 16-19

Use the SUBSTR Function 16-19

Invalid Characters and Replacement Characters Commands 16-20

Output Character Set and New Record Character Commands 16-21

Output Length Mode 16-21

Number Thousands Separator and Number Decimal Separator 16-22

CASE CONVERSION 16-22

Create a Filler Block 16-22

Expressions, Control Structures, and Functions 16-24

Expressions 16-24

Control Structures 16-24

Functions 16-25

Identifiers, Operators, and Literals 16-28

Key Words 16-28

Command and Column Header Key Words 16-28

xxi

Command Parameter and Function Parameter Key Words 16-29

Field-Level Key Words 16-29

Expression Key Words 16-30

Operators 16-30

Reference to XML Extract Fields and XPATH Syntax 16-31

Notes on Viewing eText Output from a Browser 16-32

17

Set Report Processing and Output Document Properties

Overview 17-1

PDF Output Properties 17-2

PDF Digital Signature Properties 17-5

PDF Accessibility Properties 17-6

PDF/A Output Properties 17-6

PDF/X Output Properties 17-8

DOCX Output Properties 17-9

RTF Output Properties 17-9

PPTX Output Properties 17-10

HTML Output Properties 17-10

FO Processing Properties 17-11

RTF Template Properties 17-13

XPT Template Properties 17-14

PDF Template Properties 17-15

Excel Template Properties 17-16

CSV Output Properties 17-16

Excel Output Properties 17-16

EText Output Properties 17-18

All Outputs Properties 17-18

Define Font Mappings 17-18

Set Font Mapping at the Site Level or Report Level 17-19

Create a Font Mapping 17-19

Predefined Fonts 17-19

Included Barcode Fonts 17-20

Barcode Font Mapping 17-21

Part III Create Style Templates and Subtemplates

18

Create and Implement Style Templates

Understand Style Templates 18-1

About Styles Defined in the Style Template 18-1

Style Template Process 18-2

xxii

Create a Style Template RTF File 18-2

Define Styles for Paragraphs and Headings 18-2

Define Styles for Tables 18-3

Define a Header and Footer 18-3

Upload a Style Template File to the Catalog 18-4

Assign a Style Template to a Report Layout 18-4

Update a Style Template 18-5

Add Translations to a Style Template Definition 18-5

19

Understand Subtemplates

What is a Subtemplate? 19-1

About RTF Subtemplates 19-1

About XSL Subtemplates 19-1

Supported Locations for Subtemplates 19-2

Test Subtemplates from the Desktop 19-2

Upload a Subtemplate 19-2

Call a Subtemplate from an External Source 19-3

Import a Subtemplate Outside the Catalog over HTTP or FTP 19-3

Import Subtemplates Outside the Catalog on the Same Server 19-3

Required Settings To Run Sub Templates Stored Outside the Catalog 19-3

20

Design RTF Subtemplates

Understand RTF Subtemplates 20-1

Process Overview for Creating and Implementing RTF Sub Templates 20-1

Create an RTF Subtemplate File 20-2

Call a Subtemplate from a Main Template 20-3

Import the Subtemplate to the Main Template 20-3

Call the Subtemplate to Render Its Contents 20-4

Import a Localized Subtemplate 20-4

Example 20-5

When to Use RTF Subtemplates 20-5

Reuse a Common Layout 20-5

Conditionally Display a Layout Based on a Value in the Data 20-6

Example 20-6

Conditionally Display a Layout Based on a Parameter Value 20-7

Example 20-7

Handle Simple Calculations or Repeating Formulae 20-8

Example 20-8

Add Translations to an RTF Subtemplate 20-9

xxiii

21

Design XSL Subtemplates

Understand XSL Subtemplates 21-1

Where to Put XSL Code in the RTF Main Template 21-1

Process Overview for Creating and Implementing XSL Sub Templates 21-1

Create an XSL Subtemplate File 21-2

Call an XSL Subtemplate from the Main Template 21-3

Import the Subtemplate 21-3

Call the Subtemplate 21-3

Pass Parameters to an XSL Subtemplate 21-4

Create the Sub Template Object in the Catalog 21-4

Example Uses of XSL Subtemplates 21-4

Handle XML Data with HTML Formatting 21-5

Dynamically Apply Formatting to a Portion of Data 21-6

Part IV Translate Objects in Pixel-Perfect Reports

22

Translation Support Overview and Concepts

What Can I Translate in Publisher? 22-1

What Languages Does Publisher Support? 22-1

Can I Translate Objects in the Catalog? 22-1

Can I Translate Templates? 22-1

Work with Translation Files 22-2

What is an XLIFF? 22-2

What is the Structure of an XLIFF File? 22-2

Source-language and Target-language Attributes 22-3

Embedded Data Fields 22-3

<source> and <target> Elements 22-4

Locale Selection Logic 22-5

23

Translate Individual Templates

Overview 23-1

Types of Translations 23-1

Use the XLIFF Option 23-1

Generate the XLIFF from a Template 23-2

Generate the XLIFF from the Template Builder 23-2

Generate the XLIFF from the Layout Properties Page 23-2

Translate the XLIFF 23-2

Upload the Translated XLIFF to Publisher 23-3

Use the Localized Template Option 23-3

xxiv

Design the Localized Template File 23-3

Upload the Localized Template to Publisher 23-3

24

Translate Catalog Objects, Data Models, and Templates

Overview 24-1

What Can Be Translated? 24-1

About Source Language Limitations 24-2

Export the XLIFF File 24-2

Identify and Update the Object Tags 24-2

Import the XLIFF File 24-2

Part V Reference Information

25

Techniques for Handling Large Output Files

Reuse Static Content 25-1

What is Static Content Reuse? 25-1

Limitations of this Feature 25-2

Define Reusable Content in an RTF Template 25-2

Example 25-3

Generate Zipped PDF Output 25-3

Limitations and Prerequisites 25-4

Design Time Considerations 25-4

Select the Output Type 25-4

Implement PDF Splitting for an RTF Template 25-5

Enter the Commands in an RTF Template 25-5

Example - split by each department 25-6

Implement PDF Splitting for a PDF Template 25-7

Enter the Commands in the PDF Template 25-7

26

Extended Function Support in RTF Templates

Extended SQL and XSL Functions 26-1

Number-To-Word Conversion 26-8

XSL Equivalents 26-9

Use FO Elements 26-10

27

Design Accessible Reports

Design for Accessibility 27-1

Obtain General Information 27-1

xxv

Avoid Common Misconceptions 27-1

Follow General Guidelines for Accessible Content 27-2

Color Selection 27-2

Color Contrast 27-2

Font Selection 27-3

Use the Template Builder to Verify Report Accessibility 27-3

Design Accessible Reports Using RTF Templates 27-3

Avoid Nested Tables or Separated Tables 27-3

Examples 27-4

Table Headers Must Not Be Separated from the Table Body 27-4

Define a Document Title 27-5

Define Alternative Text for an Image 27-5

Define a Table Summary 27-5

Define a Table Column Header 27-5

Define a Table Row Header 27-6

Sample Supported Tables 27-6

Design Accessible Reports Using Publisher Layouts 27-7

Define Document Titles 27-8

Define Alternative Text for Images 27-8

Define Summary Text for Tables 27-8

Define Table Row Headers 27-8

Define Text Header Levels 27-8

Define a Layout Table 27-8

28

Supported XSL-FO Elements

Supported XSL-FO Elements 28-1

Property Groups Table 28-5

29

Generate PDF/A and PDF/X Output

Generate PDF/A Output 29-1

Requirements and Limitations 29-1

Additional Resources 29-2

Generate PDF/X output 29-2

Prerequisites 29-2

Requirements and Limitations 29-2

Additional Resources 29-3

xxvi

30

Generate Accessible PDF Output

Configure Accessible PDF Output for Reports 30-2

31

Generate CSV Output

Extract a Large Volume of Data 31-2

32

PDF Version Support

About PDF Version Support 32-1

Supported Utilities 32-1

Limitations 32-1

Limitations That Apply to All PDF Utilities 32-2

FormProcessor Limitations 32-2

PDFDocMerger and PDFBookBinder Limitations 32-2

PDFSignature Limitations 32-2

33

Test Templates with Template Viewer

About Template Viewer 33-1

Debug Templates 33-2

Generate Reports in PDF/A, PDF/X, and PDF/UA Formats 33-3

Set the Font Directory 33-3

Add Key and Value Pairs for PDF/A Output 33-3

Add the Optional Property Settings for PDF/A and PDF/X Outputs 33-4

Monitor Memory Usage 33-4

Profile XSLT 33-4

Validate XML Documents 33-5

Test Fonts 33-5

34

Frequently Asked Questions for Publisher Data Models and Reports

Top FAQs for Data Model Editor (Pixel-Perfect Reports) 34-1

Frequently Asked Questions for Pixel-Perfect Reports 34-2

xxvii

Preface

Learn how to model data and design pixel-perfect reports in Publisher.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
This document is intended for data modelers and report designers for creating pixel-perfect
reports in Publisher.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Resources
For a full list of guides, refer to the Books tab on Oracle Transactional Business Intelligence
Help Center.

Preface

xxviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Videos and Images

Your company can use skins and styles to customize the look of the application, dashboards,
reports, and other objects. It is possible that the videos and images included in the product
documentation look different than the skins and styles your company uses.

Even if your skins and styles are different than those shown in the videos and images, the
product behavior and techniques shown and demonstrated are the same.

Preface

xxix

Part I
Model Data for Pixel-Perfect Reports

This part describes how to model data for pixel-perfect reports.

Topics:

• Use the Data Model Editor

• Create Datasets

• Structure Data

• Add Parameters and Lists of Values

• Add Event Triggers

• Add Flexfields

• Add Bursting Definitions

• Performance Best Practices

1
Use the Data Model Editor

This topic describes the components and features supported by the data model editor.

Topics:

• What is a Data Model?

• Components of a Data Model

• Features of the Data Model Editor

• About the Data Source Options

• Process Overview for Creating a Data Model

• Launch the Data Model Editor

• Data Model Properties

What is a Data Model?
A data model is an object that contains a set of instructions to retrieve and structure data for a
pixel-perfect report. Data models reside as separate objects in the catalog.

A data model can be simple with one data set retrieved from a single data source, for example,
the data returned from the columns in the employees table, or can be complex with
parameters, triggers, and bursting definitions and using multiple data sets.

Use the data model editor to build a data model.

Components of a Data Model
A data model supports the following components:

• Dataset

A dataset contains the logic to retrieve data from a single data source. A dataset can
retrieve data from a variety of data sources (for example, a database, an existing data file,
a web service call to another application, or a URL/URI to an external data provider). A
data model can have multiple datasets from multiple sources.

• Event triggers

A trigger checks for an event. When the event occurs the trigger runs the PL/SQL code
associated with it. The data model editor supports before data and after data triggers as
well as schedule triggers. Before data and after data triggers consist of a call to execute a
set of functions defined in a PL/SQL package stored in an Oracle database. A schedule
trigger is executed for scheduled reports and tests for a condition that determines whether
or not to run a scheduled report job.

• Flexfields

A flexfield is a structure specific to Fusion Applications Suite. The data model editor
supports retrieving data from flexfield structures defined in your Fusion Applications Suite
database tables.

1-1

• Lists of values

A list of values is a menu of values from which report consumers can select parameter
values to pass to the report.

• Parameters

A parameter is a variable whose value can be set at runtime. The data model editor
supports several parameter types.

• Bursting Definitions

Bursting is a process of splitting data into blocks, generating documents for each data
block, and delivering the documents to one or more destinations. A single bursting
definition provides the instructions for splitting the report data, generating the document,
and delivering the output to its specified destinations.

About the Data Source Options
Data source types supported for creating datasets can be categorized into three general types.

Note:

All references to Administrator in this guide refers to BI Administrator.

Dataset types that can use the full range of editor functions in data model

The full range of editor functions in data model are supported for these dataset types:

• SQL queries submitted against Oracle BI Server, an Oracle Database, or other supported
databases. Publisher can retrieve the metadata information from these SQL queries.

See Create Datasets Using SQL Queries.

• Microsoft Excel spreadsheet data sources

You can store the Excel spreadsheet in a file directory set up as a data source by your
administrator, or you can upload it directly from a local source to the data model. See
Create a Dataset Using a Microsoft Excel File.

• XML data file data sources

You can store the XML file in a file directory set up as a data source by your administrator,
or you can upload it directly from a local source to the data model. See Create a Dataset
Using a XML File.

• CSV (comma separated value) file data sources

You can store the CSV file in a file directory set up as a data source by your administrator,
or you can upload it directly from a local source to the data model. See Create a Dataset
Using a CSV File.

Dataset types that can use partial editor functions in data model

Publisher can retrieve the column names and data type information from the data source of
these dataset types, but it can't process or structure the data. Only a subset of the full range of
editor functions in data model are supported for dataset types:

• Analysis

See Create a Dataset Using an Analysis.

Chapter 1
About the Data Source Options

1-2

Dataset types that can't be modified in the data model editor

For these dataset types, Publisher can retrieve the data generated and structured at the
source. You can't apply additional modifications in the data model editor for these dataset
types:

• HTTP XML feeds off the web

See Create a Dataset from an HTTP XML Feed.

• Web services

See Create a Dataset Using a Web Service.

To use a web service to return data for the report, supply the web service WSDL to
Publisher and then define the parameters in Publisher.

Process Overview for Creating a Data Model
Follow the steps below to create a data model.

Step Reference

Launch the data model editor. Launch the Data Model Editor

Set properties for the data model. Data Model Properties

Create the data sets for the data model. Create Datasets

Define the data output structure. Structure Data

Define the parameters to pass to the query, and
define lists of values for users to select parameter
values.

Add Parameters and Lists of Values

Define Event Triggers. About Triggers

(Oracle Applications Only) Define Flexfields. Add Flexfields

Test your data model and add sample data. Test Data Models and Generate Sample Data

Add a bursting definition. Add Bursting Definitions

Features of the Data Model Editor
The data model editor for pixel-perfect reporting enables you to combine data from multiple
datasets into a single XML data structure.

Datasets from multiple data sources can be merged either as sequential XML or at line-level to
create a single combined hierarchical XML. Using the data model editor you can easily
combine data from the following dataset types: SQL query, OLAP (MDX query), LDAP, and
Microsoft Excel.

The data model editor is designed with a component pane on the left and work pane on the
right. Selecting a component on the left pane launches the appropriate fields for the
component in the work area.

The data model editor supports the following:

• Group data - Create groups to organize the columns in your report. Groups can do two
things: separate a query's data into sets, and filter a query's data.

Chapter 1
Process Overview for Creating a Data Model

1-3

When you create a query, the data engine creates a group that contains the columns
selected by the query; you can create groups to modify the hierarchy of the data appearing
in a data model. Groups are used primarily when you want to treat some columns
differently than others. For example, you create groups to produce subtotals or create
breaks.

• Link data - Define master-detail links between datasets to group data at multiple levels.

• Aggregate data - Create group level totals and subtotals.

• Transform data - Modify source data to conform to business terms and reporting
requirements.

• Create calculations - Compute data values that are required for your report that are not
available in the underlying data sources.

The data model editor provides functions at the element level, the group level, and the global
level. Note that not all dataset types support all functions. See the Important Notes section that
accompanies your dataset type for limitations. The figure below highlights some of the features
and actions available in the data model editor.

Launch the Data Model Editor
Launch the data model editor to build a data model for pixel-perfect report.

1. From the header or from the Home page, click Create.

2. Click Data Model.

Chapter 1
Features of the Data Model Editor

1-4

About the Data Model Editor Toolbar
In the data model editor, the toolbar on the top provides you the options to manage private
data sources, view data, create report, and save the data model.

Option Description

Validate Validate the queries used for datasets, LOVs, and bursting definitions.
See Validate Data Models.

Manage Private Data
Sources

Connect to private data sources for your personal use that don't require
setup by an administrator.

View Data Display the Data tab where you view and generate sample data.

Create Report Create a new report with this data model.

Save / Save As Select Save to save your work in progress to the existing data model
object or select Save As to save the data model as a new object in the
catalog.

If you create a data model and then navigate out of the data model
editor without saving it, a draft or temporary data model entry might be
displayed in the Recent section of the Home page. You can't manually
delete the temporary data model entries manually. The temporary data
model entries are automatically deleted after 24 hours.

Help View online help.

Chapter 1
Features of the Data Model Editor

1-5

About the Interface
By default, the datasets that you created are shown in the Diagram View as separate objects.

The dataset structure builder has these views:

• Diagram - The Diagram view displays datasets and enables graphically creating links and
filters, adding elements based on expressions, adding aggregate functions and global-level
functions, editing element properties, and deleting elements. The Diagram view is typically
the view you use to build your data structure.

• Structure - The Structure view has two modes:

Table View and Output

The table view displays element properties in a table and enables updating XML element
alias names, presentation names of the elements, sorting, null values, and reset options.
The image below shows the structure Table View.

Chapter 1
Features of the Data Model Editor

1-6

The Output view provides a clear view of the XML structure that is generated. The Output
view cannot be updated. The figure shows the Output view.

Chapter 1
Features of the Data Model Editor

1-7

• Data - The Data view displays the following options to view the output and test your data
model.

– View - Click View to display the XML that is returned by the data model. Select the
default display option, Tree View to view the sample data in a data hierarchy. Select
Table View to view the sample data in a formatted table similar to what you see in the
reports.

– Export - After the data model has successfully run, click Export to open or save the
file to a local directory.

– Save as Sample Data - After the data model has successfully run, click Save as
Sample Data to save the sample data to the data model.

– View Engine Log - Click View Engine Log to view the data engine log file.

– Generate SQL Monitor Report - Click Generate SQL Monitor Report to generate
the Explain plan for the data model and the data.

• Code - The Code view displays the data structure code created by the data structure
builder that is read by the data engine. You can update the content in code view. The figure
shows the code view.

Chapter 1
Features of the Data Model Editor

1-8

Data Model Properties
You can access the Data Model Properties page when you click Properties in the components
pane of the data model editor.

Enter the following properties for the data model:

Chapter 1
Data Model Properties

1-9

Property Description

Description Enter a description for the data model. The catalog displays the
descriptions of data models. This description is translatable.

Default Data Source Select the data source from the list. Data models can include multiple
datasets from one or more data sources. The default data source you
select here is presented as the default for each new SQL dataset you
define. Select Refresh Data Source List to see any new data sources
added since your session was initiated.

Oracle DB Default Package Enter a default PL/SQL package for data models that include event
triggers or a PL/SQL group filter. The package must exist on the default
data source.

If you define a query against an Oracle Database, then you can include
before or after data triggers (event triggers) in your data model. Event
triggers make use of PL/SQL packages to execute RDBMS level
functions.

Query Timeout Enter a time limit in seconds within which to execute an SQL query in
the database. This property applies to SQL query-based data models for
scheduled reports. If you don't enter a value for this data model, the
server property value is used.

This timeout doesn't include processing time of the result set. For
example: select * from all_invoices query might execute in 5
milliseconds. However, fetching the results sets and processing the 10M
rows might take 3 hours.

If the SQL query is still processing when the timeout value is met, the
error Failed to retrieve data xml. is returned.

Ensure that the SQL timeout value of the data model doesn't exceed the
system level SQL timeout limit. If you set a higher SQL timeout limit, the
system performance might get affected. The Oracle Database Resource
Manager limit is 18000 seconds. If the SQL timeout value of the data
model exceeds the Resource Manager limit, you can't save the data
model.

Enable SQL Pruning Select this property to enhance processing time and reduces memory
usage. This property applies to Oracle Database queries only that use
standard SQL. If your query returns many columns but only a subset are
used by your report template, SQL pruning returns only those columns
required by the template.

Note that Enable SQL Pruning is also a server-level property.
Therefore, by default the data model-level property is set to Instance
Level to inherit the server or instance level setting. To turn SQL pruning
on or off for this particular data model, select On or Off from the list.

SQL pruning is not applicable for PDF, Excel, and E-text template types.

Skip Unused Dataset Query Select this property to omit the execution of any unused datasets in the
layout, so you can reduce processing time and memory usage. By
default, all datasets in a data model are executed whether a dataset is
required for the output. When a data model contains multiple datasets
for different layouts, each layout might not require all the datasets
defined in the data model.

You must set the Enable SQL Pruning property to On to use the Skip
Unused Dataset Query property.

Chapter 1
Data Model Properties

1-10

Property Description

Enable SQL Session Trace Select this property to enable SQL session trace. For each SQL
statement, the trace contains:

• Parse, execute, and fetch counts
• CPU time and elapsed time
• Physical reads and logical reads
• Number of rows processed
• Library cache failures
• User name for which each parse occurred
• Each commit and rollback
This property applies to Oracle Database queries that use standard
SQL.

Administrators and BI Authors can enable diagnostics before running the
report, and then download the diagnostic logs.

SQL Trace Name Enter a name for the SQL trace.

Enable XML Pruning Select On to prune XML datasets larger than 2GB.
If you enable XML data pruning, Publisher removes the unnecessary
data elements and builds the XML structure using only the data fields
that are mapped to the layout fields. Data pruning improves
performance, especially for extremely large data extractions.

Report consumers can configure XML data pruning when scheduling a
job. XML data pruning isn't supported for XPT template (Publisher
Layout).

Backup Data Source Select the Enable Backup Connection property to use the backup data
source.

• To use the backup data source only when the primary is down,
select Switch to Backup Data Source when Primary Data
Source is unavailable. Note that when the primary data source is
down, the data engine must wait for a response before switching to
the backup.

• To always use the backup data source when executing this data
model, select Use Backup Data Source Only. Using the backup
database may enhance performance.

You must enable a backup for the data source.

Enable CSV Output Select this property to generate report output only in a CSV file.

Optimize Query Execution Select this property to allow the data processor to optimize the execution
of SQL queries of parent and child datasets.

Select this property only when the data model includes a parent-child
hierarchy structure in a SQL dataset. Don't select this option for non-
structured and non-SQL datasets.

Chapter 1
Data Model Properties

1-11

Property Description

Multithread Query
Execution

Select this property to create multiple database connections to query the
child datasets in parallel. If you select this property, the number of
database connections per data model increases.

This property is enabled only when:

• Optimize Query Execution is set to true.
• Data model has more than one dataset.
• Data model has parallel child dataset queries linked to the parent

dataset.
• Data model uses the default data source.
This property cannot be used when:

• Data model uses event triggers.
• Data model has a dataset query linearly linked to the parent

dataset.
• Data model uses multiple data sources.

XML Output Options
These options define the characteristics of the XML data structure. Any changes to these
options can impact layouts that are built on the data model.

• Include Parameter Tags — If you define parameters for your data model, select this
option to include the parameter values in the XML output file. See Add Parameters and
Lists of Values for adding parameters to your data model. Enable this option when you
want to use the parameter value in the report.

• Include Empty Tags for Null Elements — Select this option to include elements with null
values in your output XML data. When you include a null element, then a requested
element that contains no data in your data source is included in your XML output as an
empty XML tag as follows: <ELEMENT_ID\>. For example, if the element MANAGER_ID
contained no data and you chose to include null elements, it would appear in your data as
follows: <MANAGER_ID />. If you do not select this option, no entry is displayed for
MANAGER_ID.

• Include Open & Close Tags — Select this option to include the open and close tags in
your output XML data.

• Include Group List Tag — (This property is for 10g backward compatibility and Oracle
Report migration.) Select this option to include the rowset tags in your output XML data. If
you include the group list tags, then the group list displays as another hierarchy within your
data.

• Exclude Tags for LOB Columns — Select this property to exclude the XML element tags
for LOB columns. The data model must contain a single dataset of SQL query type and a
single Character Large Object data element containing data extracted from an XML file.
You can't use global level, summary, or aggregate functions, elements based on
expressions, or group filters.

• Exclude Line Feed And Carriage Return for LOB — Select this option to exclude
carriage returns and line feeds in the data.

• XML Tag Display — Select the display format to generate the XML data tags - uppercase,
lowercase, or to preserve the definition you supplied in the data structure.

Chapter 1
Data Model Properties

1-12

Add Attachments to the Data Model
The Attachment region of the page displays data files that you've uploaded or attached to the
data model.

Attach Sample Data
After you build your data model, you must attach a small, but representative set of sample data
generated from your data model. The sample data is used by Publisher's layout editing tools.
Using a small sample file helps improve performance during the layout design phase.

The data model editor provides an option to generate and attach the sample data. See Test
Data Models and Generate Sample Data.

The administrator can set a limit to the size of the sample data file.

Attach Schema
The data model editor enables you to attach sample schema to the data model definition.

Publisher doesn't use the schema file. However, you can attach the schema for developer
reference. The data model editor doesn't support schema generation.

Data Files
If you upload a local Microsoft Excel, CSV, or XML file as a data source for this report, the file
displays here.

Use the refresh button to refresh this file from the local source. For information on uploading
files to use as data sources, see Create Datasets.

XML Data Chunking
XML data chunking supports distributed processing.

XML data chunking is suitable for large and long-running reports. If the administrator selects
the Enable Data Chunking runtime property at the instance level, you can enable XML data
chunking for individual data models, reports, and scheduled jobs.

In a data model, if you click Chunking, select Enable Chunking, and then specify an attribute
in the Split By field, the data model pre-processor uses the split key to split large amounts of
XML data into several chunks of data of manageable size.

Before you enable XML data chunking, understand its limitations and recommended usage.

XML data chunking:

• Is best suited for listing reports using a table and with no cross-references.

• Supports sorting, grouping, aggregation, and cross-referencing operations only within the
individual chunked output. The merged output doesn't support these data operations.

• Adds page numbers to the PDF pages of the merged output. In the report template,
remove the page numbering element to avoid duplicate or overlapping page numbers in
the PDF output.

• Supports running totals, and other functions only within the individual chunked output, and
each is reset with each chunked output.

Chapter 1
XML Data Chunking

1-13

• Supports only RTF, XPT, and eText, and XSL templates.

• Supports only PDF, XLSX, and Text output formats.

• Doesn't support multiple output formats. If you select XML chunking for a scheduled job,
multiple outputs aren't allowed.

• Isn't supported for online reports.

• Isn't supported for bursting jobs.

Chapter 1
XML Data Chunking

1-14

2
Create Datasets

This topic describes creating datasets, testing data models, and saving sample data.

Topics:

• Create a Dataset

• Edit Dataset

• Create Datasets Using SQL Queries

• Create a Dataset Using an Analysis

• Create a Dataset Using a Web Service

• Create a Dataset Using a XML File

• Create a Dataset Using a Microsoft Excel File

• Create a Dataset Using a CSV File

• Create a Dataset from an HTTP XML Feed

• Use Data Stored as a Character Large Object (CLOB) in a Data Model

• Test Data Models and Generate Sample Data

• Include User Information Stored in System Variables in Your Report Data

Create a Dataset
Reports use data from the datasets defined in the data model. You can use data from multiple
types of data sources to create a dataset.

1. On the component pane of the data model editor, click New Dataset and select your
source dataset type.

2. Complete the required fields. Refer the help topic for the dataset type you want to create.

Create Datasets Using SQL Queries
These topics explain how to create datasets using SQL queries.

• Enter SQL Queries

• Use the SQL Query Builder

• Add a Bind Variable to a Query

• Add Lexical References to SQL Queries

• Define SQL Queries Against the Oracle BI Server

2-1

Enter SQL Queries
Use these steps to enter SQL queries.

To enter an SQL query:

1. Click New Dataset and then click SQL Query.

2. In the dialog to create a new dataset, enter a name for the dataset.

3. The data source defaults to the default data source that you selected on the Properties
page. If you aren't using the default data source for this dataset, select the Data Source
from the list.

You can also use your private data source connections as data sources for SQL query
datasets.

4. Select Standard SQL from the Type of SQL drop-down list. Standard SQL is used for
normal SELECT statements interpreted to understand database schema.

5. Enter the SQL query or click Query Builder to launch the Query Builder page.

6. If you are using Flexfields, bind variables, or other special processing in your query, edit
the SQL code returned by the Query Builder to include the required statements.

If you include lexical references for text that you embed in a SELECT statement, then you
must substitute values to get a valid SQL statement.

7. After entering the query, click OK to save. For Standard SQL queries, the data model
editor validates the query.

If your query includes a bind variable, you're prompted to create the bind parameter. Click
OK to have the data model editor create the bind parameter.

Create Non-Standard SQL Datasets
In addition to creating datasets using basic SQL commands, you can create datasets using
more complex commands.

Procedure Call

Use this query type to call a database procedure. For example, Oracle PL/SQL statements
start with BEGIN. When you use this SQL data type, no metadata is displayed on the data
model structure tab, therefore you can't modify the data structure or data fields. To construct
your SQL with a procedure call enter the code directly in the text box or copy and paste from
another SQL editor. You can't use the Query Builder to modify or build these types of queries.

Non-standard SQL

Use this query type to issue SQL statements that can include the following:

• Cursor statements that return nested results sets

For example:

 Ex:SELECT TO_CHAR(sysdate,'MM-DD-YYYY') CURRENT_DATE ,
 CURSOR
 (SELECT d.order_id department_id,
 d.order_mode department_name ,
 CURSOR
 (SELECT e.cust_first_name first_name,

Chapter 2
Create Datasets Using SQL Queries

2-2

 e.cust_last_name last_name,
 e.customer_id employee_id,
 e.date_of_birth hire_date
 FROM customers e
 WHERE e.customer_id IN (101,102)
) emp_cur
 FROM orders d
 WHERE d.customer_id IN (101,102)
) DEPT_CUR FROM dual

• Functions returning REF cursors

For example:

create or replace PACKAGE REF_CURSOR_TEST AS
 TYPE refcursor IS REF CURSOR;
 pCountry VARCHAR2(10);
 pState VARCHAR2(20);
 FUNCTION GET(pCountry IN VARCHAR2, pState IN VARCHAR2) RETURN
REF_CURSOR_TEST.refcursor;
 END;

 create or replace PACKAGE BODY REF_CURSOR_TEST AS
 FUNCTION GET(
 pCountry IN VARCHAR2,
 pState IN VARCHAR2)
 RETURN REF_CURSOR_TEST.refcursor
 IS
 l_cursor REF_CURSOR_TEST.refcursor;
 BEGIN
 IF (pCountry = 'US') THEN
 OPEN l_cursor FOR
 SELECT TO_CHAR(sysdate,'MM-DD-YYYY') CURRENT_DATE ,
 d.order_id department_id,
 d.order_mode department_name
 FROM orders d
 WHERE d.customer_id IN (101,102);
 ELSE
 OPEN l_cursor FOR
 SELECT * FROM EMPLOYEES;
 END IF;
 RETURN l_cursor;
 END GET;
 END REF_CURSOR_TEST;

To use REF cursor in Publisher:

create SQL dataset with query as SELECT REF_CURSOR_TEST.GET(:PCNTRY,:PSTATE) AS
CURDATA FROM DUAL

• Anonymous blocks/Stored procedures

Chapter 2
Create Datasets Using SQL Queries

2-3

Publisher supports executing PL/SQL anonymous blocks. You can perform calculations in
the PL/SQL block and return the result set. Publisher uses callable statements to execute
anonymous blocks.

The requirements are:

– The PL/SQL block must return a result set of type REF cursor

– You must declare the out variable with the name, xdo_cursor;. If you don't declare the
name properly, the first bind variable is treated as an out variable type and binds with
REF cursor

– Declare the data model parameter with name xdo_cursor. This name is reserved for
out variable type for procedure/anonymous blocks.

Example:

DECLARE
 type refcursor is REF CURSOR;
 xdo_cursor refcursor;
 empno number;
 BEGIN
 OPEN :xdo_cursor FOR
 SELECT *
 FROM EMPLOYEES E
 WHERE E.EMPLOYEE_ID = :P2;
 COMMIT;
 END;

• Conditional queries can be executed if you use an if-else expression. You can define
multiple SQL queries in a single dataset, but only one query executes at run time
depending on the expression value. The expression validates and returns a Boolean value.
If the value is true, executes that section of the SQL query.

The limitations are:

– The following syntax is supported to evaluate expressions: $if{, $elseif{, $else{
– The expression must return true, false

– Only the following operators are supported:

== <= >= < >

 Example:
 create sql dataset with following query
 $if{ (:P_MODE == PRODUCT) }$
 SELECT PRODUCT_ID
 ,PRODUCT_NAME
 ,CATEGORY_ID
 ,SUPPLIER_ID
 ,PRODUCT_STATUS
 ,LIST_PRICE
 FROM PRODUCT_INFORMATION
 WHERE ROWNUM < 5
 $elsif{(:P_MODE == ORDER)}$
 SELECT ORDER_ID
 ,ORDER_DATE
 ,ORDER_MODE
 ,CUSTOMER_ID

Chapter 2
Create Datasets Using SQL Queries

2-4

 ,ORDER_TOTAL
 ,SALES_REP_ID
 FROM ORDERS
 WHERE ROWNUM < 5
 $else{
 SELECT PRODUCT_ID
 , WAREHOUSE_ID
 ,QUANTITY_ON_HAND
 FROM INVENTORIES
 WHERE ROWNUM < 5
 }$
 $endif$

When your dataset is created using non-standard SQL statements, no metadata is displayed
on the data model structure tab, therefore you can't modify the data structure or data fields.
You can't use Query Builder to modify or build these types of queries.

To define XML row tag for non-standard SQL dataset:

Use xmlRowTagName="" in data model definition to define XML row tag for non-standard SQL
query dataset. This allows you to enter a valid tag name. If the attribute is empty, it defaults to
ROW at runtime.

Dataset definition:

<dataSet name="Q1" type="simple">
 <sql dataSourceRef="bipdev4-demo" nsQuery="true" xmlRowTagName="">
 ,,
 </sql>
</dataset>

Use the SQL Query Builder
Use the Query Builder to build SQL queries without coding. The Query Builder enables you to
search and filter database objects, select objects and columns, create relationships between
objects, and view formatted query results with minimal SQL knowledge.

This section describes how to use the Query Builder and includes the following topics:

• Overview of the Query Builder

• Build a Query Using Query Builder

• Supported Column Types

• Add Objects to the Design Pane

• Remove or Hide Objects in the Design Pane

• Query Conditions

• Create Relationships Between Objects

• Save a Query

• Edit a Saved Query

Chapter 2
Create Datasets Using SQL Queries

2-5

Overview of the Query Builder
The Query Builder page is divided into an Object Selection pane and a design and output
pane.

• Object Selection pane contains a list of objects from which you can build queries. Only
objects in the current schema are displayed.

• Design and output pane consists of four tabs:

– Model — Displays selected objects from the Object Selection pane.

– Conditions — Enables you to apply conditions to your selected columns.

– SQL — Displays the query.

– Results — Displays the results of the query.

Build a Query Using Query Builder
You can build a query using Query Builder.

To build a query using Query Builder:

1. Select a schema.

The Schema list displays all available schemas in the data source. You might not have
access to all schemas in that list.

2. Add objects to the Design pane and select columns.

The Object Selection pane lists the tables, views, and materialized views from the selected
schema. For an Oracle Database, the pane also lists synonyms. When you select an
object from the list, it's displayed on the Design pane. Use the Design pane to specify how
to use selected objects in the query.

You might need to use the Search field to enter a search string. If the data source includes
more than 100 tables, use the Search features to locate and select objects.

3. Optional: Establish relationships between objects.

4. Add a unique alias name for any duplicate column.

5. Optional: Create query conditions.

6. Execute the query and view results.

Supported Column Types
Columns of all types display as objects in the Design pane. You can't select more than 60
columns for each query.

Supported Column Type Restrictions

VARCHAR2, CHAR NA

NUMBER NA

DATE, TIMESTAMP The TIMESTAMP WITH LOCAL TIMEZONE data
type isn’t supported.

Chapter 2
Create Datasets Using SQL Queries

2-6

Supported Column Type Restrictions

Binary Large Object (BLOB) The BLOB can be an image, text, or XML data.
When you execute the query in the Query Builder,
the BLOB doesn't display in the Results pane;
however, the query is constructed correctly when
saved to the data model editor. BLOB data isn't
supported for an Oracle BI EE data source due to
limitations of the BIJDBC driver.
Use an RTF template if you want to use a BLOB
data column with an Image data type.

Character Large Object (CLOB) Publisher doesn’t support querying of CLOB
columns in an Oracle BI EE data source.

Add Objects to the Design Pane
Select each object you want to add to the Design pane.

• When you add an object, an icon representing the data type displays next to each column
name.

• When you select a column, it appears on the Conditions tab. The Show check box on the
Conditions tab controls whether a column is included in query results. Be default, this
check box is selected.

• To select the first twenty columns, click the small icon in the upper left corner of the object
and then select Check All.

• You can also execute a query by pressing the CTRL + ENTER keys.

To add objects to the design pane:

1. Select an object.

2. Select the check box for each column to include in your query.

3. To execute the query and view results, select Results.

Remove or Hide Objects in the Design Pane
You can remove or hide objects in the Design pane of Query Builder.

1. To remove an object, click Remove in the upper right corner of the object.

2. To temporarily hide the columns within an object, click Show/Hide Columns.

Query Conditions
Conditions enable you to filter and identify the data you want to work with.

As you select columns within an object, you can specify conditions on the Conditions tab. You
can modify the column alias, apply column conditions, sort columns, or apply functions.

Chapter 2
Create Datasets Using SQL Queries

2-7

Condition Attribute Description

Condition The condition modifies the query's WHERE clause. When specifying a column
condition, you must include the appropriate operator and operand. All standard
SQL conditions are supported. For example:

>=10

='VA'

IN (SELECT dept_no FROM dept)

BETWEEN SYSDATE AND SYSDATE + 15

Function Specifies the functions. Available argument functions include:

• Number columns — COUNT, COUNT DISTINCT, AVG, MAXIMUM,
MINIMUM, SUM

• VARCHAR2, CHAR columns — COUNT, COUNT DISTINCT, INITCAP,
LENGTH, LOWER, LTRIM, RTRIM, TRIM, UPPER

• DATE, TIMESTAMP columns- COUNT, COUNT DISTINCT

Group By Specifies the columns to be used for grouping when an aggregate function is
used. Only applicable for columns included in output.

As you select columns and define conditions, Query Builder writes the SQL for you. To view
the underlying SQL, select the SQL tab.

Create Relationships Between Objects
You can create relationships between objects by creating a join. A join identifies a relationship
between two or more tables, views, or materialized views.

• About Join Conditions

• Join Objects Manually

About Join Conditions
When you write a join query, you specify a condition that conveys a relationship between two
objects. This condition is called a join condition.

A join condition specifies how the rows from one object combine with the rows from another
object.

Query Builder supports inner, outer, left, and right joins.

• An inner join, also called a simple join, returns the rows that satisfy the join condition.

• An outer join extends the result of a simple join.

An outer join returns all rows that satisfy the join condition and returns some or all of those
rows from one table for which no rows from the other satisfy the join condition.

Join Objects Manually
Create a join manually by selecting the Join column in the Design pane.

1. From the Object Selection pane, select the objects you want to join.

2. Identify the columns you want to join.

You create a join by selecting the Join column adjacent to the column name. The Join
column displays to the right of the data type. When your cursor is in the appropriate
position, the following help tip displays:

Chapter 2
Create Datasets Using SQL Queries

2-8

Click here to select column for join

3. Select the appropriate Join column for the first object.

When selected, the Join column is darkened. To deselect a Join column, simply select it
again or press ESC.

4. Select the appropriate Join column for the second object.

When joined, line connects the two columns. An example is shown below.

5. Select the columns to be included in your query. You can view the SQL statement resulting
from the join by positioning the cursor over the join line.

6. Click Results to execute the query.

Save a Query
Save the SQL query after building it in Query Builder.

1. In Query Builder, after you've built a query, click Save to return to the data model editor.

In the data model editor, the query appears in the SQL Query box.

2. Click OK to save the dataset.

Edit a Saved Query
In the the data model editor, after you save a query from the Query Builder, you can also use
the Query Builder to edit the query.

If you've made modifications to the query, or didn't use the Query Builder to construct it, you
might receive an error when you launch the Query Builder for editing the query. If the Query
Builder can't parse the query, you can edit the statements directly in the text box.

You can't edit a customized or an advanced query by using Query Builder.

1. In the the data model editor, under Data Sets, select the SQL dataset you want to edit.

2. On the toolbar, click Edit Selected Dataset to launch the Edit Dataset dialog.

3. Click Query Builder to load the query to the Query Builder.

4. Edit the query and click Save.

Chapter 2
Create Datasets Using SQL Queries

2-9

Add a Bind Variable to a Query
After you create a query, you can add a bind variable to the query to pass a parameter to limit
the results.

1. In the Query Builder, click the Conditions tab.

2. For the column you want to add a bind variable, enter the parameter name in the following
format:.

in (:PARAMETER_NAME)
After you edit the query, the Query Builder can no longer parse it. You must make any
additional edits manually.

For example, in the employee listing, you can choose a specific department.

The image shows the columns in the department table.

Add a Bind Variable Using a Text Editor
Use the Data Model Editor to update a SQL query.

1. In the Edit Data Set dialog box, update the SQL query by adding the following after the
where clause in your query:

and "COLUMN_NAME" in (:PARAMETER_NAME)
for example:

and "DEPARTMENT_NAME" in (:P_DEPTNAME)
where P_DEPTNAME is the name you choose for the parameter, as shown below.

Chapter 2
Create Datasets Using SQL Queries

2-10

2. Click Save.

3. In the data model editor, select the parameter that you entered with the bind variable
syntax as shown in the image.

4. Click OK to enable the data model editor create the parameter entry for you.

Add Lexical References to SQL Queries
You can use lexical references in SQL queries to replace the clauses appearing after SELECT,
FROM, WHERE, GROUP BY, ORDER BY, or HAVING.

Use a lexical reference when you want the parameter to replace multiple values at runtime.
You can also use lexical references to include flexfields in your query. Lexical references are
only supported in queries against applications in Fusion Applications Suite.

Create a lexical reference in the SQL query using the following syntax:

Chapter 2
Create Datasets Using SQL Queries

2-11

¶metername
1. Before creating your query, define a parameter in the PL/SQL default package for each

lexical reference in the query. The data engine uses these values to replace the lexical
parameters.

2. In the data model editor, on the Properties page, specify the Oracle DB Default Package.

3. In the data model editor, create a Before Data event trigger to call the PL/SQL package.

4. Create your SQL query containing lexical references.

5. When you click OK to close your SQL query, you are prompted to enter the parameter.

For example, create a package called employee. In the employee package, define a
parameter called where_clause:

Package employee
AS
 where_clause varchar2(1000);

Package body employee
 AS

where_clause := 'where DEPARTMENT_ID=10';
.....

Reference the lexical parameter in the SQL query where you want the parameter to be
replaced by the code defined in the package, for example:

select "EMPLOYEES"."EMPLOYEE_ID" as "EMPLOYEE_ID",
 "EMPLOYEES"."FIRST_NAME" as "FIRST_NAME",
 "EMPLOYEES"."LAST_NAME" as "LAST_NAME",
 "EMPLOYEES"."SALARY" as "SALARY",
 from "OE"."EMPLOYEES" "EMPLOYEES"
 &where_clause

6. When you click OK on the Create SQL Dataset dialog box, the lexical reference dialog box
prompts you to enter a value for lexical references you entered in the SQL query, as shown
in the image that follows. Enter the value of the lexical reference as it's defined in the
PL/SQL package.

Chapter 2
Create Datasets Using SQL Queries

2-12

At runtime, the data engine replaces &where_clause with the contents of where_clause
defined in the package.

About Defining SQL Queries Against the Oracle BI Server
Remember the following points when you define SQL queries against the Oracle BI Server.

• When you create a SQL query against the Oracle BI Server using the SQL Data Editor or
the Query Builder, logical SQL is generated, not physical SQL like other database sources.

• Hierarchical columns aren't supported. The highest level is always returned.

• Within a subject area, the join conditions between tables are already created; therefore you
don't have to create joins in the Query Builder. The Query Builder doesn't expose the
primary key.

You can link datasets using the data model editor's Create Link function. See Create
Element-Level Links. For datasets created from the Oracle BI Server, there's a limit of two
element-level links for a single data model.

• In the Query Builder, the functions Sort Order and Group By shown on the Conditions tab
aren't supported for queries against the Oracle BI Server. If you enter a Sort Order or
select the Group By check box, the Query Builder constructs the SQL, and writes it to the
Publisher SQL Query text box, but when you attempt to close the Dataset dialog, the query
fails validation.

To apply grouping to the data retrieved by the SQL query, you can use the data model
editor's Group by function instead. See Create Subgroups.

• If you pass parameters to the Oracle BI Server and you choose Null Value Passed for Can
Select All, make sure you handle the null value in your query.

Define SQL Queries Against the Oracle BI Server
When you launch the Query Builder against the Oracle BI Server, the Query Builder displays
the subject areas from the catalog. You can drag the subject areas to the Query Builder
workspace to display the columns. Select the columns to include in your data model.

1. In the data model editor, click New Dataset and then click SQL Query.

2. Enter a name for the dataset.

3. From the Data Source list, select the Oracle BI Server connection, usually shown as
Oracle BI EE .

4. Click Query Builder to launch the Query Builder page.

You can also enter the SQL syntax manually in the SQL Query text box in the data model
editor. However, you must use the Logical SQL syntax used by Oracle Analytics.

5. From the Catalog drop-down list, select a subject area as shown below. The list displays
the subject areas defined in the Oracle Analytics.

Chapter 2
Create Datasets Using SQL Queries

2-13

6. Select tables and columns for the query.

7. Click Save.

8. Click OK to return to the data model editor. The generated SQL is Logical SQL that follows
a star schema (that is, it isn't physical SQL).

9. Save your changes to the data model.

Notes for Queries Against Oracle Fusion Cloud Applications Tables
Special considerations for Oracle Fusion Cloud Applications customers apply when writing
queries against the Oracle Fusion Cloud Applications tables

• You cannot return month name from sysdate using to_char(sysdate,"mon"). This
function returns the month number. To display month name, use one of the following
solutions:

– Format the date field in your layout using the following syntax: <?
format_date:fieldname;MASK)?>

– To display month name based on month number, use the following syntax in your
layout:

<?xdoxslt:month_name(month, [abbreviate?], $_XDOLOCALE)?>
where month is the numeric value of the month (January = 1) and

[abbreviate?] is the value 0 for do not abbreviate or 1 for abbreviate.

For example:

<?xdoxslt:month_name(1, 0, $_XDOLOCALE)?>
returns January

– To add an expression in the data model, use the following expression:

Format_date(date, format_String)
For example:

SUBSTRING(FORMAT_DATE(G_1.SYSDATE,MEDIUM),0,3)
returns Nov (when the current SYSTDATE is November)

Chapter 2
Create Datasets Using SQL Queries

2-14

Create a Dataset Using an Analysis
You can use the Oracle BI Presentation Catalog to select an analysis as a data source.

An analysis is a query against an organization's data that provides answers to business
questions. A query contains the underlying SQL statements that are issued to the Oracle BI
Server.

Hierarchical columns aren’t supported in Publisher data models.

Create a dataset using an analysis:

1. Click the New Dataset toolbar button and select Analysis.

2. In the New Dataset - Analysis dialog, enter a name for this dataset.

3. Click the browse icon to connect to the Oracle BI Presentation Catalog.

4. When the catalog connection dialog launches, navigate through the folders to select the
analysis to use as the dataset for the report.

5. Enter a Time Out value in seconds. If Publisher hasn’t received the analysis data after the
time specified in the time out value has elapsed, then Publisher stops attempting to
retrieve the analysis data.

6. Click OK.

Additional Notes on Analysis Datasets
Parameters and lists of values are inherited from the analysis and are displayed at runtime.

The analysis must have default values defined for filter variables. If the analysis contains
presentation variables with no default values, then you can't use it as a data source for reports
in Publisher.

You can't use group breaks, group filters, data links and group-level functions when structuring
data based on datasets for an analysis. You can use global-level functions and you can set
values for null elements.

Create a Dataset Using a Web Service
You can use datasets that use simple and complex web service data sources to return valid
XML data. Only document or literal web services are supported.

Define your parameters first, so that the methods are available for selection when setting up
the data source. The parameters must be set up in the Parameters section of the report
definition.

Multiple parameters are supported. Ensure the method name is correct and the order of the
parameters matches the order in the method. To call a method in the web service that accepts
two parameters, you must map two parameters defined in the report to the two parameters in
the method. Note that only parameters of simple type are supported, for example, string and
integer.

Web Service Data Source Options
Administrator can set up a web service data as a data source.

Chapter 2
Create a Dataset Using an Analysis

2-15

Administrator can set up connections to web service data sources and then you can use the
data source in multiple data models. You must set up the connection before you create the
data model.

Publisher supports datasets that use simple and complex web service data sources to return
valid XML data.

Create a Dataset Using a Simple Web Service
If you aren't familiar with the available methods and parameters in the web service to call, you
can open the URL in a browser to view them.

To create a dataset by using a simple web service:

1. Click the New Dataset toolbar button, and then select Web Service.

2. Enter the dataset name.

3. Select the data source and the method.

4. Click OK.

5. On the Data Model pane, select Parameters, click Create New Parameter, and define the
parameters to make them available to the web service dataset.

6. Edit the web service dataset and add the parameters to the dataset.

7. Click Save.

Create a Dataset Using a Complex Web Service
You can use complex web service data sources to return valid XML data. A complex web
service type internally uses soapRequest /soapEnvelope to pass the parameter values to the
destination host.

To create a dataset by using a complex web service:

1. Click the New Dataset toolbar button, and then select Web Service.

2. Enter the dataset name, data source, and the method.

The methods available for selection are based on the complex web service data source.
When you select a method, the Parameters are displayed. To view optional parameters,
select Show optional parameters.

If you aren’t familiar with the available methods and parameters in the web service, open
the WSDL URL in a browser to view them.

3. If the start of the XML data for the report is deeply embedded in the response XML
generated by the web service request, in the Response Data XPath field, specify the path
to the data to use in the report.

4. Add the parameters required for the web service.

5. Test the web service.

Additional Information on Web Service Datasets
There's no metadata available from web service datasets, therefore grouping and linking aren't
supported.

Chapter 2
Create a Dataset Using a Web Service

2-16

Create a Dataset Using a XML File
You can use an XML file to create a data source.

Do one of the following:

• Place the XML file in a directory that your administrator has set up as a data source.

• Upload the XML file to the data model from a local directory.

To use layout editor and interactive viewer, save sample data from the XML file source to the
data model.

About Supported XML Files
Support of XML files as a dataset type in Publisher follows certain guidelines.

• The XML files that you use as input to the Publisher data engine must be UTF-8 encoded.

• Do not use the following characters in XML tag names: ~, !, #, $, %, ^, &, *, +, `, |, :, \", \\, <,
>, ?, ,, /. If your data source file contains any of these characters, use the data model
editor Structure tab to change the tag names to an acceptable one.

• Use valid XML files. Oracle provides many utilities and methods for validating XML files.

• There's no metadata available from XML file datasets, therefore grouping and linking are
not supported.

Create a Dataset Using a Content Server
You can set up connections to Content Server data source on the Administration page and
then use that in multiple data models.

You must set up the connection before you create a data model. Create a data model by
creating the SQL Query dataset (required) first and then create the Content Server dataset.

1. Click the New Dataset toolbar button and select Content Server.

In the New Dataset, Content Server dialog do the following:

2. Enter a name for the dataset in the Name field.

3. Select the content server data source in the Data Source field.

4. Select the Parent Group from the LOV.

5. Select the Document ID from the LOV.

6. Select the Content Type from the LOV.

Chapter 2
Create a Dataset Using a XML File

2-17

7. Click OK.

Create a Dataset Using a Microsoft Excel File
These topics describe requirements, options, and procedures for using Microsoft Excel files as
a data source.

• About Supported Excel Files

• Access Multiple Tables per Sheet

About Supported Excel Files
Support of Microsoft Excel files as a dataset type in Publisher follows certain guidelines.

• Save Microsoft Excel files in the Excel 97-2003 Workbook (*.xls) format by Microsoft Excel.
Files created by a third party application or library are not supported.

• The source Excel file can contain a single sheet or multiple sheets.

• Each worksheet can contain one or multiple tables. A table is a block of data that is located
in the continuous rows and columns of a sheet.

In each table, Publisher always considers the first row to be the heading row for the table.

• The first row under the heading row must not be empty and is used to determine the
column type of the table. The data type of the data in the table may be number, text, or
date/time.

• If multiple tables exist in a single worksheet, the tables must be identified with a name for
Publisher to recognize each one. See Access Multiple Tables per Sheet.

• If all tables in the Excel file are not named, only the data in the first table is recognized and
fetched.

• When the dataset is created, Publisher truncates all trailing zeros after the decimal point
for numbers in all cases. To preserve the trailing zeros in your final report, you must apply
a format mask in your template to display the zeroes.

• Single value parameters are supported, but multiple value parameters are not supported.

Chapter 2
Create a Dataset Using a Microsoft Excel File

2-18

Access Multiple Tables per Sheet
If the Microsoft Excel worksheet contains multiple tables that you want to include as data
sources, then you must define a name for each table in Microsoft Excel.

The name that you define must begin with the prefix: BIP_, for example, BIP_SALARIES.

To access multiple tables per sheet:

1. Insert the table in Microsoft Excel.

2. Select the table and define a name that is prefixed with BIP_.

For example, you could use the Define Name command in Microsoft Excel 2007 to name a
table BIP_Salaries.

Create a Dataset Using a CSV File
Publisher supports datasets that use CSV file data sources to return valid XML data.

The following topics describe using requirements and procedures for using a CSV as a data
source:

• About Supported CSV Files

• Create a Dataset from a Centrally Stored CSV File

• Upload a CSV File Stored Locally

Chapter 2
Create a Dataset Using a CSV File

2-19

About Supported CSV Files
Support of CSV files as a dataset type in Publisher follow certain guidelines.

• You can use a CSV file that is located in a directory that your administrator has set up as a
data source.

You can upload a file from a local directory.

• The supported CSV file delimiters are Comma, Pipe, Semicolon, and Tab.

• If your CSV file contains headers, the header names are used as the XML tag names. The
following characters aren't supported in XML tag names: ~, !, #, $, %, ^, &, *, +, `, |, :, \", \\,
<, >, ?, ,, /. If your data source file contains any of these characters in a header name, use
the data model editor Structure tab to edit the tag names.

• CSV datasets support editing the data type assigned by the data model editor. See Edit the
Data Type. If you update the data type for an element in the dataset, you must ensure that
the data in the file is compliant with the data type that you selected.

• The CSV files that you use as input to the Publisher data engine must be UTF-8 encoded
and cannot contain empty column headers.

• Group breaks, data links, expression and group-level functions aren't supported.

• Data fields in CSV files must use the canonical ISO date format for mapped date elements,
for example, 2012-01-01T10:30:00-07:00, and ######.## for mapped number elements.

• CSV files aren't validated.

Create a Dataset from a Centrally Stored CSV File
You can use a CSV file from a file directory to create a dataset.

1. On the data model editor toolbar, click New Dataset and select CSV File. The New
Dataset - CSV File dialog launches.

2. Enter a name for this dataset.

Chapter 2
Create a Dataset Using a CSV File

2-20

3. Click Shared to enable the Data Source list.

4. Select the Data Source where the CSV file resides.

The list is populated from the configured File Data Source connections.

5. Click Browse to connect to the data source, browse the available directories, and select
the file.

6. Select The first row a column header to specify if the first row in the file contains column
names.

If you do not select this option, the columns are assigned a generic name, for example,
Column1, Column2. You can edit the XML tag names and display names in the data model
editor Structure tab.

7. Select the CSV delimiter used in the file.

The default selection is Comma (,).

8. Click OK.

Upload a CSV File Stored Locally
Create datasets using CSV files stored in local file directories.

To create a dataset using a CSV file stored locally:

1. On the toolbar, click New Dataset and select CSV File. The New Dataset - CSV File dialog
launches, as shown below.

2. Enter a name for this dataset.

3. Select Local to enable the Upload button.

4. Click Upload to browse for and upload the CSV file from a local directory.

5. Optional: Select The first row a column header to specify if the first row in the file
contains column names. If you don't select this option, the columns are assigned a generic
name, for example, Column1, Column2. The XML tag names and display names assigned
can be edited in the data model editor Structure tab.

Chapter 2
Create a Dataset Using a CSV File

2-21

6. Select the CSV Delimiter used in the file. The default selection is Comma (,).

7. Click OK.

Edit the Data Type
After uploading a CSV file data type, you can edit it as needed.

To edit the data type for a CSV file element, click the data type icon or update it from the
element Properties dialog.

The data for an element must be compliant with the data type that you assign. The user
interface doesn't validate the data when you update the data type. If the data doesn't match,
for example, a string value is present for an element you defined as Integer, errors may occur
in the layout editing tools and or at runtime.

You can only update the data types for CSV file data sources.

Refresh and Delete an Uploaded CSV File
You can refresh and delete uploaded local CSV files.

After uploading the file, it is displayed on the Properties pane of the data model under the
Attachments region, as shown below.

To refresh the local file in the data model:

1. In the component pane, click Data Model to view the Properties page.

2. In the Attachment region of the page, locate the file in the Data Files list.

3. Click Refresh.

4. In the Upload dialog, browse for and upload the latest version of the file. The file must have
the same name or it won't replace the older version.

5. Save the data model.

To delete the local file:

1. In the component pane, click Data Model to view the Properties page.

2. In the Attachment region of the page, locate the file in the Data Files list.

Chapter 2
Create a Dataset Using a CSV File

2-22

3. Click Delete.

4. Click OK to confirm.

5. Save the data model.

Create a Dataset from an HTTP XML Feed
Using the HTTP (XML Feed) dataset type, you can create data models from RSS and XML
feeds over the Web by retrieving data through the HTTP GET method.

To include parameters for the dataset, it's recommended that you define the parameters first,
so that they're available for selection when you define the dataset. See Add Parameters and
Lists of Values.

There's no metadata available from HTTP XML feed datasets, therefore grouping and linking
aren't supported.

You might require additional configuration to access external data source feeds depending on
your system's security. For example, if the RSS feed is protected by Secure Sockets Layer
(SSL).

Create a Dataset from an HTTP XML Dataset
You can set up an HTTP (XML Feed) data sources in two different ways.

After the administrator sets up the connections to HTTP data sources, you can use this data
source in multiple data models.

If Oracle Integration Cloud (OIC) provides access to external server URLs, you can use REST-
based web services as an HTTP data source. You can use GET or POST commands, but you
can't use the CURL commands for the HTTP data source.

1. On the toolbar, click New Dataset and select HTTP (XML Feed). The New Dataset - HTTP
(XML Feed) dialog launches, as shown below.

2. Enter a name for this dataset.

3. Select a data source.

4. Enter the URL Suffix for the source of the RSS or XML feed.

Chapter 2
Create a Dataset from an HTTP XML Feed

2-23

5. Select the method GET or POST.

6. To add a parameter, click Add Parameter. Enter the Name and select the Value. The
Value list is populated by the parameter Name defined in the Parameters section.

7. Click OK to close the dataset dialog.

Use Data Stored as a Character Large Object (CLOB) in a Data
Model

Publisher supports using data stored as a character large object (CLOB) data type in your data
models. This feature enables you to use XML data generated by a separate process and
stored in your database as input to a Publisher data model.

Use the Query Builder to retrieve the column in your SQL query, then use the data model editor
to specify how you want the data structured. When the data model is executed, the data
engine can structure the data either as:

• A plain character set within an XML tag name that can be displayed in a report (for
example, an Item Description)

• Structured XML

Ensure that your data doesn't include line feeds or carriage returns. Line feeds and
carriage returns in your data may not render as expected in the report layouts.

To create a dataset from data stored as a CLOB:

1. On the toolbar, click New Dataset and then select SQL Query. The New Dataset - SQL
Query dialog launches.

2. Enter a name for the dataset.

3. If you are not using the default data source for this dataset, select the Data Source from
the list.

4. Enter the SQL query or use the Query Builder to construct your query to retrieve the
CLOB data column.

For example, you could create a query in which the CLOB data is stored in a column
named "DESCRIPTION".

Chapter 2
Use Data Stored as a Character Large Object (CLOB) in a Data Model

2-24

5. After entering the query, click OK to save. Publisher validates the query.

6. By default, the data model editor assigns the CLOB column the "CLOB" data type. To
change the data type to XML, click the data type icon and select XML.

How the Data Is Returned
When you execute the query, if the CLOB column contains well-formed XML, and you select
the XML data type, the data engine returns the XML data, structured within the CLOB column
tag name.

Example output when data type is XML:

Note the <DESCRIPTION> element contains the XML data stored in the CLOB column, as
shown below.

Example output when data type is CLOB:

Chapter 2
Use Data Stored as a Character Large Object (CLOB) in a Data Model

2-25

If you select to return the data as the CLOB data type, the returned data is structured as shown
below.

Additional Notes on Datasets Using CLOB Column Data
More information is available on CLOB column data.

For specific notes on using CLOB column data in a bursting query, see Add a Bursting
Definition to Your Data Model with an SQL Query.

Handle XHTML Data Stored in a CLOB Column
Data from the XHTML documents stored in a database CLOB column can render the markup
in the generated report.

To enable the report rendering engine to handle the markup tags, you must wrap the XHTML
data in a CDATA section within the XML report data that's passed by the data engine.

It's recommended that you store the data in the database wrapped with the CDATA section.
You can then use a simple select statement to extract the data. If the data isn't wrapped in the
CDATA section, then you must include in your SQL statement instructions to wrap it.

The following sections describe how to extract XHTML data in each case:

• Retrieve XHTML Data Wrapped in CDATA

• Wrap the XHTML Data in CDATA in the Query

Only the RTF templates support rendering of the HTML markup in a report.

Retrieve XHTML Data Wrapped in CDATA
This exercise assumes you have the following data stored in a database column called
"CLOB_DATA".

<![CDATA[
<p>
oracle </p>
<p>Oracle Documentation

Chapter 2
Use Data Stored as a Character Large Object (CLOB) in a Data Model

2-26

</p>
]]>

Retrieve the column data using a simple SQL statement, for example:

select CLOB_DATA as "RTECODE" from MYTABLE
In the data model editor, set the data type of the RTECODE column to XML, as shown below.

Wrap the XHTML Data in CDATA in the Query
This exercise assumes that you've the following data stored in a database column called
"CLOB_DATA".

<p>
oracle </p>
<p>Oracle Documentation
</p>

Use the following syntax in your SQL query to retrieve it and wrap it in the CDATA section:

select '<![CDATA' || '['|| CLOB_DATA || ']' || ']>' as "RTECODE"from MYTABLE

In the data model editor, set the data type of the RTECODE column to XML.

Test Data Models and Generate Sample Data
The data model editor enables you to test your data model and view the output to ensure your
results are as expected.

After running a successful test, you can choose to save the test output as sample data for your
data model. You can also use the Export feature to export sample data to a file. If your data
model fails to run, you can view the data engine log.

To test your data model:

1. In the data model editor, select the Data tab, as shown below.

Chapter 2
Test Data Models and Generate Sample Data

2-27

2. For SQL Query, Analysis, and View Object datasets: On the Data tab, select the number of
rows to return. If you included parameters, enter the desired values for the test.

3. Click View to display the XML that is returned by the data model.

4. Select one of the following options to display the sample data:

• Use Tree View to view the sample data in a data hierarchy. This is the default display
option.

• Use Table View to view the sample data in a formatted table like you see in the
reports.

You can create a report based on this data model.

To save the test dataset as sample data for the data model:

1. After the data model has successfully run, click Save as Sample Data. The sample data is
saved to the data model.

To export the test data:

1. For SQL Query, Analysis, and View Object datasets: On the Data tab, select the number of
rows to return.

2. After the data model has successfully run, click Export. You are prompted to open or save
the file to a local directory.

To view the engine log:

1. Click View Engine Log. You are prompted to open or save the file to a local directory. The
data engine log file is an XML file.

To test UCM dataset:

For Content Server, based on the document ID and the content type, the document content is
retrieved from the content (UCM) server. However, if the Document ID is empty or null, then
the document content will be empty.

Edit Dataset
You can modify data models by editing the datasets of a data model.

1. On the component pane of the data model editor, click Datasets. All datasets of this data
model is displayed.

2. Click the dataset that you want to edit.

3. Click Edit Selected Dataset. The dialog for the dataset opens.

Chapter 2
Edit Dataset

2-28

4. Make changes to the dataset and click OK.

5. Save the data model.

6. Test your edited data model and add new sample data.

Include User Information Stored in System Variables in Your
Report Data

Your report data model can include information about the current user that's stored in system
variables.

The user information is stored in system variables as described below.

System Variable Description

xdo_user_name User ID of the user submitting the report. For example: Administrator

xdo_user_roles Roles assigned to the user submitting the report. For example:
XMLP_ADMIN, XMLP_SCHEDULER

xdo_user_report_oracle_lang Report language from the user's account preferences. For example:
ZHS

xdo_user_report_locale Report locale from the user's account preferences. For example: en-US

xdo_user_ui_oracle_lang User interface language from the user's account preferences. For
example: US

xdo_user_ui_locale User interface locale from the user's account preferences. For example:
en-US

Publisher populates the system variables in an online report. In a scheduled job, Publisher
doesn’t populate the XDO_USER_REPORT_LOCALE, XDO_USER_UI_LOCALE,
XDO_USER_UI_ORACLE_LANG, XDO_USER_REPORT_ORACLE_LANG, and
XDO_USER_REPORT_LOCALE system variables.

Chapter 2
Include User Information Stored in System Variables in Your Report Data

2-29

Add the User System Variables as Elements
To add the user information to the data model, you can define the variables as parameters and
then define the parameter value as an element in your data model.

You can also simply add the variables as parameters then reference the parameter values in
your report.

The following query:

select
:xdo_user_name as USER_ID,
:xdo_user_roles as USER_ROLES,
:xdo_user_report_oracle_lang as REPORT_LANGUAGE,
:xdo_user_report_locale as REPORT_LOCALE,
:xdo_user_ui_oracle_lang as UI_LANGUAGE,
:xdo_user_ui_locale as UI_LOCALE
from dual

returns the following results:

<?xml version="1.0" encoding="UTF-8"?>
<! - Generated by Publisher - >
<DATA_DS>
<G_1>
<USER_ROLES>XMLP_TEMPLATE_DESIGNER, XMLP_DEVELOPER, XMLP_ANALYZER_EXCEL,
XMLP_ADMIN, XMLP_ANALYZER_ONLINE, XMLP_SCHEDULER </USER_ROLES>
<REPORT_LANGUAGE>US</REPORT_LANGUAGE>
<REPORT_LOCALE>en_US</REPORT_LOCALE>
<UI_LANGUAGE>US</UI_LANGUAGE>
<UI_LOCALE>en_US</UI_LOCALE>
<USER_ID>administrator</USER_ID>
</G_1>
</DATA_DS>

Sample Use Case: Limit the Returned Dataset by User ID
The following example limits the data returned by the user ID.

select EMPLOYEES.LAST_NAME as LAST_NAME,
 EMPLOYEES.PHONE_NUMBER as PHONE_NUMBER,
 EMPLOYEES.HIRE_DATE as HIRE_DATE,
 :xdo_user_name as USERID
from HR.EMPLOYEES EMPLOYEES
where lower(EMPLOYEES.LAST_NAME) = :xdo_user_name

Notice the use of the lower() function, the xdo_user_name is always be in lowercase format.
Publisher doesn't have a USERID so you must use the user name and either use it directly in
the query; or alternatively you could query against a lookup table to find a user id.

Chapter 2
Include User Information Stored in System Variables in Your Report Data

2-30

3
Structure Data

This topic describes techniques for structuring the data that is returned by Publisher's data
engine, including grouping, linking, group filters, and group-level and global-level functions.

Topics:

• Work with Data Models

• Features of the Data Model Editor

• About the Interface

• Create Links Between Datasets

• Create Element-Level Links

• Create Subgroups

• Move an Element Between a Parent Group and a Child Group

• Create Group-Level Aggregate Elements

• Create Group Filters

• Perform Element-Level Functions

• Set Element Properties

• Sort Data

• Perform Group-Level Functions

• Perform Global-Level Functions

• Use the Structure View to Edit Your Data Structure

• Function Reference

Work with Data Models
The Data Model diagram helps you to quickly and easily define datasets, break groups, and
totals for a report based on multiple datasets.

• About Multipart Unrelated Datasets

• About Multipart Related Datasets

• Guidelines for Working with Datasets

About Multipart Unrelated Datasets
If you don't link the datasets (or queries), the data engine produces a multipart unrelated query
dataset.

For example, in the data model, image shown below, one query selects products and another
selects customers. There's no relationship between the products and customers.

3-1

The result is shown in the data structure as depicted in the following image.

Chapter 3
Work with Data Models

3-2

About Multipart Related Datasets
Data fetched for one part of a dataset or query can be determined by the data fetched for
another part. The result is often called a master/detail, or parent/child relationship that's
defined with a data link between two datasets or queries.

When you run a master/detail data model, each row of the master (or parent) query executes a
query against the detail (or child) to retrieve only matching rows.

In the example, image below, two datasets are linked by the element Customer ID. The Orders
dataset is a child of the Customers dataset.

Chapter 3
Work with Data Models

3-3

The example produces the data structure shown in the following image.

Chapter 3
Work with Data Models

3-4

Guidelines for Working with Datasets
Certain guidelines are recommended for building data models.

• Reduce the number of datasets or queries in your data model as much as possible. In
general, the fewer datasets and queries you have, the faster your data model will run.
While multi-query data models are often easier to understand, single-query data models
tend to execute more quickly. It's important to understand that in parent-child queries, for
every parent, the child query is executed.

• You should only use multi-query data models in the following scenarios:

– To perform functions that the query type, such as a SQL query, doesn't support directly.

– To support complex views, for example, distributed queries or GROUP BY queries.

– To simulate a view when you don't have or want to use a view.

Chapter 3
Work with Data Models

3-5

Create Links Between Datasets
Create links between datasets to combine and structure data after you extract it from the data
source.

Joining and structuring data at the source into one combined dataset is sometimes not
possible. For example, you can't join data at the source when data resides in disparate sources
such as Microsoft SQL Server and an Oracle Database. Even if your data is coming from the
same source, if you are creating large reports or documents with potentially hundreds of
thousands of rows or pages, structure your data so that it matches the intended layout and
optimizes document generation.

Create a link to define a master-detail or parent-child relationship between two datasets. You
can create links as element-level links or group-level links. The resulting, hierarchical XML data
is the same. Creating links as element-level links is the preferred method. Group-level links are
provided for backward compatibility with data templates from earlier versions of Publisher.

A data link or parent-child relationship relates the results of multiple queries. A data link can
establish these relationships:

• Between one query's column and another query's column.

• Between one query's group and another query's group, useful when you want the child
query to know about its parent's data.

About Element-Level Links
Element-level links create a bind (join) between two datasets and define a master-detail
(parent-child) relationship between them.

Create element-level links, the preferred method, to define master detail relationships between
datasets. When you use element-level links to link datasets, you do not need to code a join
between the two datasets through a bind variable.

About Group-Level Links
Group-level links determine how datasets are structured as hierarchical XML, but lack the join
information that the data engine needs to execute the master and detail queries.

When you define a group-level link, you must update your query with a link between the two
datasets through a unique bind variable.

See Add a Bind Variable to a Query.

Create Element-Level Links
Create element-level links to define a master-detail or parent-child relationship between two
datasets.

Defining an element-level link enables you to establish the binding between the elements of
the master and detail datasets.

1. Open the element action menu and click Create Link.

2. In the Create Link dialog, choose the element, and click OK to create the link.

The Create Link dialog is shown below.

Chapter 3
Create Links Between Datasets

3-6

Delete Element-Level Links
You can delete both group-level and element-level links between datasets.

• Do one of the following:.

– Open the element action menu for either element and click Delete Link

– Select the element connector to display the linked element names and click the delete
button.

Create Group-Level Links
A group-level link defines a master-detail relationship between two datasets.

The following figure shows two datasets with a group-level link defined and the resulting XML
data structure.

Chapter 3
Create Group-Level Links

3-7

To create group-level links:

1. In the parent group, click Menu.

2. Click Create Group Link.

3. In the Create Group Link dialog, select the child group and click OK.

4. Click Menu and then click Edit Data Set to add the bind variables to your query.

You must define a unique bind variable in the child query.

An example is shown below.

Data Set: DEPT Data Set: EMP

Select DEPT.DEPTNO as DEPTID,
 DEPT.DNAME as DNAME,
 DEPT.LOC as LOC
from OE.DEPT DEPT

Select EMP.EMPNO as EMPNO,
 EMP.ENAME as ENAME,
 EMP.JOB as JOB,
 EMP.MGR as MGR,
 EMP.HIREDATE as HIREDATE,
 EMP.SAL as SAL,
 EMP.COMM as COMM,
 EMP.DEPTNO as DEPTNO
from OE.EMP EMP
where DEPTNO=:DEPTID

Delete Group-Level Links
You can delete both group-level and element-level links between datasets.

1. In the parent group, click Menu.

2. Click Delete Group Link.

3. In the Delete Group Link dialog, select the Child Group from the list and click OK.

Chapter 3
Create Group-Level Links

3-8

Create Subgroups
In addition to creating parent-child structures by linking two datasets, you can also group
elements in the same dataset by other elements.

Creating subgroups might be helpful if your query returns data that has header data repeated
for each detail row. By creating a subgroup you can shape the XML data for better, more
efficient document generation.

1. Select the element to group with the other elements in the dataset.

2. Click the element action menu icon to open the menu and select Group by as shown.

This creates a new group within the displayed dataset. The following figure shows the G_2
dataset grouped by the element COMPANY. This creates a new group called G_3 that
contains the other five elements in the dataset. The following figure shows how the
grouped dataset is displayed in the Diagram View along with the structure.

Chapter 3
Create Subgroups

3-9

You can perform any of the group actions on the group you've created.

3. To ungroup, click Menu on the group's title bar, and then click Ungroup.

Move an Element Between a Parent Group and a Child Group
Once you've created a group within your dataset, two new options display on the element
action menu that enable you to move elements between the parent and child groups.

For the element that you want to move, click the element action icon to open the menu. If the
element is in the parent group and you want to move it to the child group, select Move
selected elements to Child Group.

If the element is in the child group and you want to move it to the parent group, select Move
selected elements to Parent Group. In the figure below, the element action menu for
OFFICE_DSC displays the option to move the element to the parent group.

Before moving an element be aware of any dependencies on other elements.

Chapter 3
Move an Element Between a Parent Group and a Child Group

3-10

Create Group-Level Aggregate Elements
You can use the data model editor to aggregate data at the group or report level.

For example, if you group sales data by Customer Name, you can aggregate sales to get a
subtotal for each customer's sales. You can only aggregate data at the parent level for a child
element.

The aggregate functions are:

• Average - Calculates the average of all the occurrences of an element.

• Count - Counts the number of occurrences of an element.

• First - Displays the value of the first occurrence of an element in the group.

• Last - Displays the value of the last occurrence of an element in the group.

• Maximum - Displays the highest value of all occurrences of an element in the group.

• Minimum - Displays the lowest value of all occurrences of an element in a group.

• Summary - Sums the value of all occurrences of an element in the group.

1. Drag the element to the Drop here for aggregate function field in the parent group.

The figure below shows creating a group-level aggregate function in the G_DEPT based
on the SALARY element.

Chapter 3
Create Group-Level Aggregate Elements

3-11

Once you drop the element, a new element is created in the parent group. By default, the
Count function is applied. The icon next to the name of the new aggregate element
indicates the function. Pause your cursor over the icon to display the function.

The figure below shows the new aggregate element, CS_1. with the default Count function
defined.

Chapter 3
Create Group-Level Aggregate Elements

3-12

2. To change the function, click the function icon to view a list of available functions and
choose from the list, as shown below.

Chapter 3
Create Group-Level Aggregate Elements

3-13

3. To rename the element or update other properties, click the element's Action menu icon.
Check if the element has a dependency on other elements, before renaming it.

Chapter 3
Create Group-Level Aggregate Elements

3-14

On the menu, click Properties. The Properties dialog is shown below.

4. On the Edit Properties dialog, set the properties as needed.

• Column Name - The internal name assigned to the element by the Publisher data
model editor. This name cannot be updated.

Chapter 3
Create Group-Level Aggregate Elements

3-15

• Alias (XML Tag Name) - Publisher assigns a default tag name for the element in the
XML data file. You can update this tag name to assign a more user-friendly name
within the data file.

• Display Name - The Display Name appears in the report design tools. Update this
name to be meaningful to your business users.

• Function - If you haven't already selected the desired function, then you can select it
from the list here.

• Data Type - Publisher assigns a default data type of Integer or Double depending on
the function. Some functions also provide the option of Float.

• Value if Null - If the value returned from the function is null, you can supply a default
value here to prevent having a null in your data.

• Round - By default, the value is rounded to the nearest third decimal. You can change
the round value, if needed.

• Do Not Reset - By default, the function resets at the group level. For example, if your
dataset is grouped by DEPARTMENT_ID, and you've defined a sum function for
SALARY, then the sum is reset for each group of DEPARTMENT_ID data, giving you
the sum of SALARY for that department only. If instead you want the function to reset
only at the global level, and not at the group level, select Do Not Reset. This creates a
running total of SALARY for all departments. This property is for group level functions
only.

Create Group Filters
Create group filters to conditionally remove records selected by your queries.

Group filters work for columns within the dataset group elements. Group filters might not work
for expression elements and elements from other dataset groups.

Groups can have two types of filters:

• Expression — Create an expression using predefined functions and operators

• PL/SQL Function — Create a custom filter

After you add a group filter, the dataset object displays the filter indicator.

To create group filters:

1. Click Menu, and then select Create Group Filter.

2. Select the Group Filter Type: Expression or PL/SQL. For PL/SQL filters, ensure that you
specify the PL/SQL Package as the Oracle DB Default Package in the data model
properties.

3. Enter the Filter:

• To enter an expression, select the elements and move the elements to the Group Filter
definition box. Click the predefined functions and operators to insert them in the Group
Filter box.
Click Validate Expression to ensure that the entry is valid.

• To enter a PL/SQL function, select the PL/SQL package from the Available box and
move the function to the Group Filter box.
Your PL/SQL function in the default package must return a Boolean type.

Chapter 3
Create Group Filters

3-16

Perform Element-Level Functions
You can perform various functions at the element level.

• Group by an element to create a subgroup, as described in Create Subgroups

• Create element-level links between datasets, as described in Create Element-Level Links

• Set element properties, as described in Set Element Properties

Set Element Properties
You can set properties for individual elements.

Note that these properties are also editable from the Structure View. If you need to update
multiple element properties, it may be more efficient to use the Structure View.

To set element-level properties using the element dialog:

1. Click the element's action menu icon. From the menu, select Properties.

2. Set the properties as needed.

• Alias - Publisher assigns a default tag name to the element in the XML data file. You
can update this tag name to assign a more user-friendly name within the data file.

• Display Name - The Display Name appears in the report design tools and the column
name in reports. Update this name to be meaningful to your business users.

• Data Type - Publisher assigns a default data type. Valid values are String, Date,
Integer, Double, Float.

• Sort Order - You can sort XML data in a group by one or more elements. For example,
if in a dataset employees are grouped by department and manager, you can sort the
XML data by department. Within each department you can group and sort data by
manager, and within each manager subgroup, employees can be sorted by salary. If
the element isn't in a parent group, the Sort Order property isn't available.

• Value if Null - If the value of an occurrence of the element is null, you can supply a
default value here to prevent having a null in your data.

Sort Data
Sorting is supported for parent group break columns only.

For example, if a dataset of employees is grouped by department and manager, you can sort
the XML data by department. Within each department you can group and sort data by
manager. If you know how the data should be sorted in the final report, you specify sorting at
data generation time to optimize document generation.

To apply a sort order to a group:

1. Click the action menu icon of the element you want to sort by. From the menu, select
Properties.

2. Select the Sort Order.

The figure below shows the Properties dialog for the DEPARTMENT_ID element with the
Sort Order list displayed.

Chapter 3
Perform Element-Level Functions

3-17

Perform Group-Level Functions
This section describes how to perform group-functions.

Topics include:

• The Group Action Menu

• Edit the Dataset

• Remove Elements from the Group

• Edit the Group Properties

The Group Action Menu
The Menu button is available at the group level and enables to perform various functions.

• Create and delete group links, as described in Create Group-Level Links

• Create, edit, and delete group filters, as described in Create Group Filters

• Add an element to the group based on an expression, as described in Add a Group-Level
or Global-Level Element by Expression

• Edit the dataset, as described in Edit the Dataset

• Remove elements from the group, as described in Remove Elements from the Group

• Edit group properties, as described in Edit the Group Properties

The group-level Menu button is shown below.

Chapter 3
Perform Group-Level Functions

3-18

Edit the Dataset
Launch the dataset editor to modify properties of selected datasets.

To edit the dataset at group-level:

1. Click the group-level menu.

2. Select Edit Dataset to launch the dataset editor.

Remove Elements from the Group
You can remove elements from groups as needed.

To remove an element from the group:

• On the element row, click the menu and then click Remove Element. An example is
shown below. You can only remove elements added as a group function (sum, count, and
so on) or added as an expression.

Chapter 3
Perform Group-Level Functions

3-19

Edit the Group Properties
Edit the properties of a group as needed.

1. Click Menu and select Properties.

2. Edit the Group Name or Display Name and click OK, as shown below.

Perform Global-Level Functions
The global-level functions enable you to add elements to your report dataset at the top report
level.

You can add the following types of elements as top-level data:

• Elements based on aggregate functions

• Elements based on expressions

• Elements based on PL/SQL statements (for Oracle Database data sources)

Chapter 3
Perform Global-Level Functions

3-20

Make sure you order the global-level functions correctly. The global-level functions execute
sequentially.

If you select a data type of Integer for any calculated element and the expression returns a
fraction, the data isn't truncated. The Global Level Functions object is shown below. To add
elements based on aggregate functions, drag the element to the "Drop here for aggregate
function" space of the object. To add an element based on an expression or PL/SQL, click
Menu, and choose the appropriate action.

Add a Global-Level Aggregate Function
You can add global-level aggregate functions based on selected elements.

Available functions are as follows:

• Count

• Average

• First

• Last

• Maximum

• Minimum

• Summary

1. Drag and drop the data element from the dataset to the Drop here for aggregate
function area of the Global Level Functions object.

For example, the image below shows creating a global level aggregate function based on
the Salary element.

Chapter 3
Perform Global-Level Functions

3-21

2. When you release the mouse, the data model editor assigns a default name to the
aggregate element and assigns Count as the default function.

The figure below shows the function for the new global level element CS_1 being modified
from Count to Average.

3. Click the function icon to the left of the new element name and choose the function from
the list.

4. To change the default name, click the actions icon to the right of the element name and
click Properties to launch the Edit Properties dialog.

Chapter 3
Perform Global-Level Functions

3-22

Add a Group-Level or Global-Level Element by Expression
You can add group-level or global-level aggregate functions by expressions.

1. To add a group-level element, on the Group object, click Menu and select Add Element
by Expression.

2. In the Add Element by Expression dialog, enter fields and operators.

3. In the Display Name field, enter a name that is meaningful to your business users.

Chapter 3
Perform Global-Level Functions

3-23

4. Optional: Select a data type.

5. Use the shuttle arrow to move the data elements required for the expression from the
Available box to the Expression box.

6. Click an operator to insert it in the Expression box, or choose from the function list.

7. Click Validate Expression to validate the expression.

Add a Global-Level Element by PL/SQL
The PL/SQL function must return a VARCHAR data type.

1. On the Properties page, specify the PL/SQL Package as the Oracle DB Default Package
in the data model properties. .

2. On the Global Level Functions object, click Menu, and then click Add Element by PL/
SQL.

3. In the Add Element by PL/SQL dialog, enter the following fields:

• Name - Enter a meaningful name for the element.

• Display Name - Enter a display name. This appears in the report design tools. Enter a
name that is meaningful to your business users.

• Data Type - Select String.

4. Select the PL/SQL package from the Available box and click the shuttle button to move the
function to the Group Filter box.

Use the Structure View to Edit Your Data Structure
The Structure view enables you to preview the structure of your data model.

The Data Source column displays the date elements in a hierarchical tree that you can
collapse and expand. Use this view to verify the accuracy of the data model structure and to
perform the following edits:

Chapter 3
Use the Structure View to Edit Your Data Structure

3-24

• Rename Elements

• Add Value for Null Elements

The Structure view is shown below.

Rename Elements
Use the Structure page to define user-friendly names for elements in the data model.

You can rename both the XML element tag name (XML View) and the name that displays in
the report layout tools (Business View). The figure below shows renaming the Data Source
elements to friendlier Business View names.

Chapter 3
Use the Structure View to Edit Your Data Structure

3-25

Add Value for Null Elements
The Structure also enables you to enter a value to use for an element if the data model returns
a null value for the element.

1. Click the Structure tab.

2. Enter the value to use in the Value if Null field for the element.

Function Reference
The table below describes the usage of supported functions available from the Add Element by
Expression dialog and the Edit Group Filter dialog.

Function Description Syntax Example

IF Logical IF operator

Evaluates boolean_expr, and
returns true_return if
boolean_expr is true, and
false_return if boolean_expr
is false.

IF (boolean_expr,
true_return, false_return)

IF (G_1.DEPARTMENT_ID
== 10, 'PASSED',
'FAIL')returns 'PASSED' if
DEPARTMENT_ID = 10,
otherwise returns 'FAIL'

NOT Logical NOT operator

Evaluates boolean_expr, and
returns true if boolean_expr
is false.

STRING(NOT(boolean_ex
pr))

STRING(NOT(G_1.JOB_ID
== 'MANAGER'))returns
'TRUE' if JOB_ID =
MANAGER, otherwise
returns 'FALSE'

AND Logical AND operator

Evaluates boolean_expr1
and boolean_expr2, and
returns true if both Boolean
expressions are true,
otherwise returns false.

STRING(AND(boolean_ex
pr1, boolean_expr2, ...))

STRING(AND (G_1.JOB_ID
== 'MANAGER',
G_1.DEPARTMENT_ID ==
10))returns 'TRUE' if both
JOB_ID = MANAGER and
DEPARTMENT_ID = 10,
otherwise returns 'FALSE'

&& Logical AND operator

Evaluates boolean_expr1
and boolean_expr2, and
returns true if both Boolean
expressions are true,
otherwise returns false.

STRING(boolean_expr1
&& boolean_expr2)

STRING(G_1.JOB_ID ==
'MANAGER' &&
G_1.DEPARTMENT_ID ==
10)

returns 'TRUE' if both
JOB_ID = MANAGER and
DEPARTMENT_ID = 10,
otherwise returns 'FALSE'

|| Logical OR operator

Evaluates boolean_expr1
and boolean_expr2 and
returns true if either or both
the Boolean expressions is
true, otherwise returns false.

STRING(OR(boolean_exp
r1, boolean_expr2)

STRING(OR (G_1.JOB_ID
== 'MANAGER',
G_1.DEPARTMENT_ID ==
10))

returns 'TRUE' if either
JOB_ID = MANAGER or
DEPARTMENT_ID = 10,
otherwise returns 'FALSE'

MAX Returns the maximum value
of the element in the set.

MAX(expr1, expr2,
expr3, ...)

MAX(G1_Salary, 10000)

returns max of salary or
10000

Chapter 3
Function Reference

3-26

Function Description Syntax Example

MIN Returns the minimum value
of the element in the set.

MIN(expr1, expr2,
expr3, ...)

MIN(G1_Salary,5000)

returns min of salary or 5000

ROUND Returns a number rounded
to the integer places right of
the decimal point.

ROUND(number[,integer])

If integer is omitted,
number is rounded to 0
places.

Integer can be negative to
round off digits left of the
decimal point.

Integer must be an
integer.

ROUND(2.777)

returns 3

ROUND(2.777, 2)

returns 2.78

FLOOR Returns the smallest integer
equal to or less than n.

FLOOR(n) FLOOR(2.777)

returns 2

CEILING Returns the largest integer
greater than or equal to n.

CEILING(n) CEILING(2.777)

returns 3

ABS Returns the absolute value of
n.

ABS(n) ABS(-3)

returns 3

AVG Returns the average value of
the expression.

AVG(expr1, expr2,
expr3, ...)

AVG(G_1.SALARY,G_1.CO
MMISSION_PCT*G_1.SALA
RY)

returns the average of
SALARY and COMMISSION

For example, if SALARY =
14000 and
COMMISSION_PCT = .4,
the expression evaluates to
9800.0

LENGTH Returns the length of an
array.

The LENGTH function
calculates the length using
characters as defined by the
input character set.

If char is null, the function
returns null.

If char is an array, it returns
the length of the array.

LENGTH(expr) Example to return the length
of an array: LENGTH{1, 2, 4,
4}) returns 4

Example to return the length
of a string:
LENGTH('countries') returns
9

SUM Returns the sum of the value
of the expression.

SUM(expr1, expr2, ...) SUM (G_1.SALARY,
G_1.COMMISSION_PCT*G
_1.SALARY)

returns sum of salary and
commission

For example, if SALARY =
14000 and
COMMISSION_PCT =.4, the
expression evaluates to
19,600.0

Chapter 3
Function Reference

3-27

Function Description Syntax Example

NVL Replaces null (returned as a
blank) with a string in the
results of a query.

NVL(expr1, expr2)

If expr1 is null, then NVL
returns expr2.

If expr1 is not null, then
NVL returns expr1.

NVL(G_1.COMMISSION_P
CT, .3) returns .3 when
G_1.COMMISSION_PCT is
null

CONCAT Returns char1 concatenated
with char2.

CONCAT(char1, char2) CONCAT(CONCAT(First_Na
me, ' '), Last_Name)

where First_Name = Joe
and Last_Name = Smith

returns Joe Smith

STRING Returns char as a string data
type.

STRING(expr) STRING(G1_SALARY)

where salary = 4400

returns 4400 as a string

SUBSTRING Extracts a substring from a
string.

SUBSTRING(string,
start_pos, end_pos)

string is the source string.

start_pos is the position to
start the extraction.

end_pos is the end
position of the string to
extract (optional).

SUBSTRING('this is a test',
5, 7) returns "is" (that is,
characters 6 through
7)SUBSTRING('this is a
test', 5) returns "is a test"

INSTR Returns the position/location
of the first character of a
substring in a string.

INSTR(string1, string2)

string1 is the string to
search.

string2 is the substring to
search for in string1.

INSTR('this is a test', 'is a')

returns 5

DATE Converts a valid Java date
string to a date data type in
canonical format.

DATE(char, format_string)

where (1) char is any valid
Java date string (for
example, 13-JAN-2013)(2)
format_string is the Java
date format of the input
string (for example, dd-
MMM-yyyy) The input and
format strings must be a
valid Java date format
string.

DATE(01-Jan-2013,'dd-
MMM-yyyy')

returns
2013-01-01T08:00:00.000+0
0:00

FORMAT_DAT
E

Converts a date argument in
the Java date format to a
formatted string.

FORMAT_DATE(date,form
at_string)

FORMAT_DATE(SYSDATE,'
dd-MMM-yyyy')

where the value of
SYSDATE =
2013-01-24T16:32:45.000-0
8:00returns 24-Jan-2013

FORMAT_NU
MBER

Converts a number or
numeric string to a string in
the specified number format.

FORMAT_NUMBER(num
ber,format_string)

FORMAT_NUMBER(SOME_
NUMBER, '$9,999.00')

where the value of
SOME_NUMBER =
12345.678returns $12,345.6
8

Chapter 3
Function Reference

3-28

Function Description Syntax Example

DECODE Replaces the value of an
expression with another
value based on the specified
search and replace criteria.

DECODE(expr, search,
result [, search, result]...[,
default])

DECODE(PROD_FAMILY_C
ODE,100,'Colas',200,'Root
Beer',300,'Cream
Sodas',400,'Fruit
Sodas','Other')returns(1)
'Colas' if
PROD_FAMILY_CODE =
100(2) 'Root Beer' if
PROD_FAMILY_CODE =
200(3) 'Cream Sodas' if
PROD_FAMILY_CODE =
300(4) 'Fruit Sodas' if
PROD_FAMILY_CODE =
400(5) 'Other' if
PROD_FAMILY_CODE is
any other value

REPLACE Replaces a sequence of
characters in a string with
another set of characters.

REPLACE(expr,string1,stri
ng2)

where string1 is the string
to search for and string2 is
the string to replace.

REPLACE(G_1.FIRST_NAM
E,'B','L')

where G_1.FIRST_NAME =
Barry

returns Larry

Chapter 3
Function Reference

3-29

4
Add Parameters and Lists of Values

This topic describes how to add parameters and lists of values to a data model.

Topics:

• About Parameters

• Add a New Parameter

• About Lists of Values

• Add Lists of Values

• Add Flexfield Parameters

About Parameters
The parameters in a data model enables you to interact with data when you view reports.

Supported parameter types:

• Text - Enables entering a text string to pass as the parameter.

• Menu - Enables making selections from a list of values. A list of values can contain fixed
data that you specify or a list created using a SQL query that is executed against any of
the defined data sources. This option supports multiple selection, a Select All option, and
partial page refresh for cascading parameters.

To create a menu type parameter, define the list of values, and then define the parameter
and associate it to the list of values.

• Date - Enables you to select a date as a parameter. You must use the data type Date and
the Java date format.

• Search - Enables you to specify search text and to select one value from a long list of
values.

You can define mandatory parameters for your report. An asterisk symbol next to a parameter
label indicates that the parameter is marked as mandatory in the data model. You must provide
values for the mandatory parameters of a report, if you want to run the report online or
schedule the report.

After defining the parameters in the data model, you can configure how the parameters are
displayed in the report. Make sure you don't use any special characters in the display name of
the parameters.

You can use parameters in various ways, depending on the type of the dataset. For example,
you can use all parameter features with datasets from SQL queries. With other types of
datasets, you can use all, none, or a subset of the parameter features, as described in this
table.

4-1

Dataset Type Parameter
Support

Multiple
Selection

Can Select All Refresh Other
Parameters on
Change

SQL Query Yes

Supports all
parameter types

Yes Yes Yes

Analysis Inherited from
Analysis

Yes (using Oracle
BI Dashboards)

Yes (using Oracle
BI Dashboards)

Yes (using Oracle BI
Dashboards)

DV Dataset Yes

Supports all
parameter types

Yes Yes No

HTTP (XML Feed) Yes

Supports only
Text and Date
parameter types

No No No

Web Service Yes

Supports only
Text and Date
parameter types

No No No

CSV File No No No No

Microsoft Excel File Yes

Supports only
Text and Date
parameter types

No No No

XML File No No No No

Content Server No No No No

Add a New Parameter
Create a parameter by assigning it a name and other properties.

The parameter name you choose must not exceed the maximum length allowed for an
identifier by your database. Refer to your database documentation for identifier length
limitations.

When you design report layouts using the Layout Editor, the preview of the report output uses
the default values of the parameters.

You can configure row placement at the report level. The report definition supports additional
display options for parameters.

To add a new parameter:

1. On the Data Model components pane, click Parameters and then click Create new
Parameter.

2. Enter a Name for the parameter.

The name must match any references to this parameter in the dataset.

3. Select the Data Type from the list. A Date data type only supports a Date Parameter
Type.

Chapter 4
Add a New Parameter

4-2

4. Enter a Default Value for the parameter. This is recommended to prevent long running
queries.

5. Select the Parameter Type.

6. To mark the parameter as mandatory, select Mandatory.

Without providing values for the mandatory parameters, you can't test a report using the
View Data option, or run the report online, or schedule the report.

7. In the Row Placement setting configure the number of rows for displaying the parameters
and in which row to place each parameter.

For example, if your report has six parameters, you can assign each parameter to a
separate row, 1 - 6, with one being the top row; or, you can assign two parameters each to
rows 1, 2, 3. By default, all parameters are assigned to row 1.

Create a Text Parameter
The Text type parameter provides a text box to prompt the user to enter a text entry to pass as
the parameter to the data source.

To create a text parameter:

1. Select Text from the Parameter Type list.

2. Enter the Display Label. For example, Department.

3. Enter the Text Field Size as an integer. This field determines the size (width) of the field,
but doesn't limit the number of characters that the user can enter into the text box.

4. Enable the following Options if required:

• Text field contains comma-separated values - Enables the user to enter multiple
comma-delimited values for this parameter. The parameter in your data source must
be defined to support multiple values.

• Refresh other parameters on change - Performs a partial page refresh to refresh
any other parameters whose values are dependent on the value of this one.

Create a Menu Parameter
A Menu type parameter presents a list of values to the user.

You must define the list of values first. The Menu type parameter supports the data types of
String and Integer only. If the number of values in the list exceeds 999, then use a Search
parameter instead of a Menu type parameter.

To create a menu parameter:

1. Select Menu from the Parameter Type list. The lower pane displays the appropriate fields.

2. In Data Type, select String or Integer.

3. Enter the Display Label. The display label is the label that displays to users when they
view the report. For example: Department.

4. Select the List of Values that you defined for this parameter.

5. Enter the Number of Values to Display in List. If the number of values in the list exceeds
the entry in this field, the user must click Search to find a value not displayed, as shown in
the figure below. This field defaults to 100.

Chapter 4
Add a New Parameter

4-3

6. Enable the following Options if required:

• Multiple Selection - Allows the user to select multiple entries from the list. Your data
source must be able to support multiple values for the parameter. The display of a
menu parameter that supports multiple selection differs. See the two figures below.

• Can select all - Inserts an All option in the list.
When the user selects All from the list of values, you can pass a null value for the
parameter.

Using * passes a null, so you must handle the null in your data source. A method to
handle the null would be the standard Oracle NVL command, for example: where
customer_id = nvl(:cstid, customer_id) where cstid is a value passed from the
list of values, and when the user selects All it passes a null value.

• Refresh other parameters on change — Performs a partial page refresh to refresh
any other parameters whose values are dependent on the value of this one.

The figure below shows how the Department menu type parameter displays to the report
consumer when multiple selection isn't enabled.

The figure below shows how the Department menu type parameter displays to the report
consumer when multiple selection is enabled.

Chapter 4
Add a New Parameter

4-4

Customize the Display of Menu Parameters
The display of menu parameters in the report can be further customized in the report definition.

Menu type parameters support the additional display option as a static list of checkboxes or
radio buttons.

Define a Date Parameter
The Date type parameter provides a date picker to prompt the user to enter a date to pass as
the parameter to the data source.

1. Select Date from the Parameter Type list. The lower pane displays the appropriate fields
for your selection.

2. Enter the Display Label. The display label is the label that displays to users when they
view the report. For example: Hire Date.

3. Enter the Text Field Size as an integer. This field determines the number of characters
that the user can enter into the text box for the date entry. For example: 10.

4. Optional: Select Ignore User Timezone if you want to display the date parameter value in
UTC.

5. Enter the Date Format String. The format must be a Java date format (for example, MM-
dd-yyyy).

To bypass the server setting for the UTC time zone and retain the user preference time
zone, add Z to the date format (for example, MM-dd-yyyyZ).

6. Optional: Enter a Date From and Date To. The dates entered here define the date range
that are presented to the user by the date picker. For example if you enter the Date From
as 01-01-1990, the date picker doesn't allow the user to select a date before 01-01-1990.
Leave the Date To blank to enable all future dates.

The figure shows how the Hire Date parameter displays to the report consumer.

Chapter 4
Add a New Parameter

4-5

Create a Search Parameter
You can use the Search type parameter to provide a box for entering search text and a search
icon to search and list the values that match the search so that users can select.

Use the Search type parameter to find a value within a long list of values. You must create a
LOV for the parameter before you define the Search type parameter.

To create a Search type parameter:

1. On the Data Model components pane, click Parameters, and then click Create new
Parameter.

2. Enter a name for the parameter, select String from the Data Type list, and enter a default
value for the parameter.

3. Select Search from the Parameter Type list.

4. Enter a label for the parameter in the Display Label field.

5. Select the LOV for the parameter from the List of Values list.

6. Optional: Select Refresh other parameters on change.

About Lists of Values
A list of values is a defined set of values that a report consumer can select from to pass a
parameter value to your data source.

If you define a menu type parameter, the list of values provides the menu of choices. You must
define the list of values before you define the menu parameter. Only 999 values are allowed in
a list.

Populate the list using one of the following methods:

Chapter 4
About Lists of Values

4-6

• SQL Query — Retrieves the values from a database using a SQL query.

• Fixed Data — Retrieves the values that a user manually enters.

Add Lists of Values
You can create lists of SQL Query or Fixed Data values .

1. In the Data Model components pane, click List of Values and then click Create new List
of Values.

2. Enter a Name for the list and select a Type.

Create a List from a SQL Query
The data engine expects a (display) name-value pair from the list of values query. In the list of
values select statement, the column listed first is used as the display name and the second is
used for the value that is passed to the parameter in the dataset query by the data engine.

If the query returns only one column, then the same column value is used both as the list of
values display name shown to the user and as the value that is passed to the parameter.

1. Select a Data Source from the list.

2. In the lower pane, select Cache Result (recommended) if you want the results of the
query cached for the report session.

3. Enter the SQL query or use the Query Builder. The figure below shows a SQL query type
list of values.

Chapter 4
Add Lists of Values

4-7

The SQL query shown below selects only the DEPARTMENT_NAME column from the
DEPARTMENTS table. In this case the list of values both displays the results of the query in
the list and passes the same value to the parameter in the dataset. The figure below shows the
list of values display entries and the values passed to the dataset. The menu items and the
values shown for P_DEPT are the DEPARTMENT_NAME values.

If instead you wanted to pass the DEPARTMENT_ID to the parameter in the dataset, and
display the DEPARTMENT_NAME in the list, construct your SQL query as follows:

Select "DEPARTMENTS"."DEPARTMENT_NAME" as "DEPARTMENT_NAME",
 "DEPARTMENTS"."DEPARTMENT_ID" as "DEPARTMENT_ID"
 from "DEMO"."DEPARTMENTS" "DEPARTMENTS

Chapter 4
Add Lists of Values

4-8

The figure below shows the list of values display entries and the values passed to the dataset.
The menu lists the DEPARTMENT_NAME while the values shown for P_DEPT are the
DEPARTMENT_ID values.

Create a List from a Fixed Dataset
Create a list from a fixed dataset for each label-value pair required.

When you create a label-value pair, the label is displayed to the user in the list. The value is
passed to the data engine.

1. In the lower pane, click the Create new List of Values icon to add a Label and Value pair.

2. Repeat for each label-value pair required.

The figure below shows fixed data type list of values.

Chapter 4
Add Lists of Values

4-9

Add Flexfield Parameters
Oracle E-Business Suite customers who have configured Publisher to use E-Business Suite
security can create reports that leverage key flexfields as parameters.

When you define a data model to pass a key flexfield as a parameter, Publisher presents a
dialog to the report consumer to make selections for the flexfield segments to pass as
parameters to the report, similar to the way flexfields are presented when running reports
through the concurrent manager in the E-Business Suite.

The flexfield list of values displays in the report viewer as shown below.

The flexfield list of values displays as a dialog from which you select the segment values, as
shown below.

Chapter 4
Add Flexfield Parameters

4-10

Add a Flexfield Parameter and List of Values
Add flexfield parameters by adding the list of values.

The flexfield type list of values retrieves the flexfield metadata definition to present the
appropriate values for each segment in the flexfield list of values selection dialog. Use the
flexfield parameter to pass values to the Flexfield defined in the Data Model.

At runtime the &flexfield_name reference is replaced with the lexical code constructed based
on the values in the Flexfield component definition.

1. Add the flexfield list of values (LOV).

2. Add a parameter and associate it with the flexfield LOV by selecting your flexfield list of
values as the source menu for the parameter.

3. Add the Flexfield component to the data model.

4. Reference the Flexfield in your SQL query using the &flexfield_name syntax.

Add the Flexfield List of Values
Add a list of values retrieved from a flexfield definition.

When you choose Flexfields as the Type, the Data Source option is no longer editable. All
flexfields type lists of values use the Oracle E-Business Suite as the data source.

1. On the Data Model components pane, click List of Values and then click Create new List
of Values.

2. Enter a Name for the list and choose Flexfields as the Type.

3. In the Flex_Acct_List: Type: Flexfields pane, enter the following:

• Application Short Name - E-Business Suite application short name, for example:
SQLGL.

• ID Flex Code - Flexfield code defined for this flexfield in the Register Key Flexfield
form, for example: GL#.

• ID Flex Number - Name of the source column or parameter that contains the flexfield
structure information, for example: 101 or :STRUCT_NUM. If you use a parameter,
ensure that you define the parameter in the data model.

The image shows a sample flexfield type, LOV.

Chapter 4
Add Flexfield Parameters

4-11

Add the Menu Parameter for the Flexfield List of Values
Define the parameter to display the flexfield list of values and capture the values selected by
the user.

The Flexfield type parameter definition includes an additional field called Range to support
range flexfields. A range flexfield supports low and high values for each key segment rather
than just single values. You can customize the default value of the flexfield and row placement
in the report definition. The row placement determines where this parameter appears in the
report viewer.

The following options are disabled for flexfield parameters: Number of Values to Display in
List, Multiple Selection, Can select all, and Refresh other parameters on change.

1. On the Data Model components pane, click Parameters and then click Create new
Parameter.

2. Select Menu from the Parameter Type list.

3. Choose String or Integer as the Data Type.

4. Enter a Default Value for the flexfield parameter.

5. Enter the Row Placement.

6. Enter the Display Label. The display label is the label that displays to users when they
view the report. For example: Account From.

7. Select the List of Values that you defined for this parameter.

When you select a list of values that is the Flexfield type, an additional field labeled Range
displays.

The image shows a parameter definition for the flexfield list of values.

Chapter 4
Add Flexfield Parameters

4-12

Use the Flexfield Parameter to Pass Values to a Flexfield Defined in the Data Model
After adding the Menu parameter to the flexfield list of values, you can pass the parameter
values to a flexfield component in the data model.

To define the Flexfield in the data model:

1. On the Data Model components pane, click Flexfields and then click Create new
Flexfield.

2. Enter the following:

• Name — Enter a name for the flexfield component.

• Type — Select the flexfield type from the list. The type you select here determines the
additional fields required.

• Application Short Name — Enter the short name of the Fusion Applications Suite
application that owns this flexfield (for example, GL).

• ID Flex Code — Enter the flexfield code defined for this flexfield in the Register Key
Flexfield form (for example, GL#).

• ID Flex Number — Enter the name of the source column or parameter that contains
the flexfield structure information. For example: 101. To use a parameter, prefix the
parameter name with a colon, for example, :PARAM_STRUCT_NUM.

3. In the lower region of the page, enter the details for the type of flexfield you selected. For
the field that is to take the parameter value, enter the parameter name prefixed with a
colon, for example, :P_Acct_List.

In the figure below the Flexfield component is defined as a "Where" Type. The
parameter :P_Acct_List is entered in the Operand1 field. At runtime, values selected by the
user for the parameter P_Acct_List will be used to create the where clause.

Chapter 4
Add Flexfield Parameters

4-13

Reference the Flexfield in the SQL Query
Finally, create the SQL query against the E-Business Suite database.

Use the lexical syntax in the SQL query. In the figure below &Acct_Flex is the Flexfield lexical
called in the where condition of the SQL query.

Chapter 4
Add Flexfield Parameters

4-14

Pass a Range of Values
To define the parameters for the flexfield lists of values when you want to pass a range of
values you create two menu parameters that both reference the same flexfield LOV.

At runtime users choose a high value from the list of values and a low value from the same list
of values. These two values are then passed as operands to the flexfield component of the
data model.

1. Create one flexfield LOV.

2. Create the high range parameter. For the Range field, select High to designate this
parameter as the high value.

3. Create the low range parameter. For the Range field, select Low to designate this
parameter as the low value. Both parameters reference the flexfield list of values that you
created in Step 1. The figure below shows creating the parameters to define the range.

4. Create the Flexfield in the data model.

In the lower region of the page, enter the details for the type of flexfield you selected. Enter
the parameter prefixed with a colon for example, :P_Acct_List.

In the figure below the Flexfield component is defined as a "Where" Type. The
parameters :P_FLEX_LOW and :P_FLEX_HIGH are entered in the Operand1 and
Operand2 fields. At runtime, values selected by the user for the parameters P_FLEX_LOW
and P_FLEX_HIGH will be used to create the where clause.

Chapter 4
Add Flexfield Parameters

4-15

When the report associated with this data model is displayed in the report viewer, the report
consumer sees the two flexfield parameters as shown below.

When the report consumer clicks either the high or low flexfield indicator (...), a dialog launches
enabling input of both the high and low values as shown below.

The display characteristics in the report viewer of the range flexfield parameter resemble
closely the presentation of range flexfields in the E-Business Suite.

Chapter 4
Add Flexfield Parameters

4-16

5
Add Event Triggers

This topic describes how to define triggers in your data model. Data models support before
data and after data event triggers and schedule triggers.

Topics:

• About Triggers

• Add Before Data and After Data Triggers

• Create Schedule Triggers

About Triggers
An event trigger checks for an event and when the event occurs, it runs the code associated
with the trigger.

Publisher supports three types:

• Before Data - Fires right before the dataset is executed.

• After Data - Fires right after the data engine executes all datasets and generates the XML.

• Schedule Trigger - Fires when a scheduled job is triggered and before it runs.

Before data and after data triggers execute a PL/SQL function stored in a PL/SQL package in
your Oracle Database. The return data type for a PL/SQL function inside the package must be
a Boolean type and the function must explicitly return TRUE or FALSE.

A schedule trigger is associated with a scheduled job. It's a SQL query that executes at the
time a report job is scheduled to run. If the SQL returns any data, the report job runs. If the
SQL query returns no data, the job instance is skipped.

Event triggers accept only one value in a parameter. If you pass multiple values to a schedule
event trigger parameter, the status of the scheduled job is set to Skipped.

Event triggers aren't used to populate data used by a bursting definition. See Add Bursting
Definitions.

Add Before Data and After Data Triggers
You can add event triggers that fire before and after data.

If you define a default package then you must define all parameters as a global PL/SQL
variable in the PL/SQL package. You can then explicitly pass parameters to your PL/SQL
function trigger or all parameters are available as a global PL/SQL variable, see Data Model
Properties

1. On the data model Properties pane, enter the Oracle DB Default Package that contains
the PL/SQL function signature to execute when the trigger fires. .

2. From the task pane, click Event Triggers.

3. From the Event Triggers pane, click Create New Event Trigger.

5-1

4. Enter the following for the trigger:

• Name - Name the trigger something meaningful.

• Type - Select Before Data or After Data.

• Language - Select PL/SQL.

The figure below shows an event trigger.

5. Select the package from the Available Functions box and click the arrow to move a
function to the Event Trigger box.

The name appears as PL/SQL <package name>.<function name>.

Order of Execution
If you define multiple triggers of the same type, they fire in the order that they appear in the
table (from top to bottom).

To change the order of execution:

• Use the Reorder arrows to place the triggers in the correct order.

Create Schedule Triggers
A schedule trigger fires when a report job is scheduled to run. Schedule triggers are of type
SQL Query.

When a report job is scheduled to run, the schedule trigger executes the SQL statement
defined for the trigger. If data is returned, then the report job is submitted. If data isn't returned
from the trigger SQL query, the report job is skipped.

Chapter 5
Create Schedule Triggers

5-2

The schedule trigger that you associate with a report job can reside in any data model in the
catalog. You don't need to create the schedule trigger in the data model of the report for which
you want to execute the trigger. You can reuse schedule triggers across multiple report jobs.

See Define the Schedule for a Job.

1. In the data model editor task pane, click Event Triggers.

2. From the Event Triggers pane, click the Create New icon.

3. Enter the following for the trigger:

• Name - Enter a name for the trigger.

• Type - Select Schedule.

• Language - Accept the default value, SQL Query.

4. In the lower pane, enter the following:

• Options - Select this check box to cache the results of the trigger query.

• Data Source - Select the data source for the trigger query.

• SQL Query - Enter the query in the text area, or click Query Builder to use the utility
to construct the SQL query, see Use the SQL Query Builder.

You can include parameters in the trigger query. Define the parameter in the same
data model as the trigger. Enter parameter values when you schedule the report job.

The schedule trigger queries don't support multi-select parameters. If your query
expects a set of values, modify your query.

If the SQL query returns any results, the scheduled report job executes. The figure below
shows a schedule trigger to test for inventory levels based on a parameter value that can
be entered at runtime.

Chapter 5
Create Schedule Triggers

5-3

6
Add Flexfields

This topic describes the support for flexfields in data models.

Topics:

• About Flexfields

• Add Key Flexfields

• Add Descriptive Flexfields

About Flexfields
A flexfield is a data field that your organization can customize to your business needs without
programming.

Oracle Fusion Cloud Applications Suite aplications use two types of flexfields:

• key flexfields

A key flexfield is a field you can customize to enter multi-segment values such as part
numbers, account numbers, and so on.

• descriptive flexfields

A descriptive flexfield is a field you customize to enter additional information for which your
application hasn't provided a field.

If you are reporting on data from an application in Fusion Applications Suite, use the Flexfield
component of the data model to retrieve flexfield data.

Before including flexfields in your reports, you should understand flexfields in your applications.

Use Flexfields in Your Data Model
Use flexfields based on SQL SELECT statements in your data model.

To use flexfields in your SQL-based data model:

• Add the Flexfield component to the data model as described in this chapter.

6-1

• Define the SQL SELECT statement against the applications data tables.

• Within the SELECT statement, define each flexfield as a lexical. Use the &LEXICAL_TAG
to embed flexfield related lexicals into the SELECT statement.

Add Key Flexfields
You can use key flexfield references to replace the clauses appearing after SELECT, FROM,
WHERE, ORDER BY, or HAVING.

Use a flexfield reference when you want the parameter to replace multiple values at runtime.
The data model editor supports the following flexfield types:

• Where - This type of lexical is used in the WHERE section of the statement. Use it to
modify the WHERE clause such that the SELECT statement can filter based on key
flexfield segment data.

• Order by - This type of lexical is used in the ORDER BY section of the statement. Use it to
obtain a list of column expressions so that the resulting output can be sorted by the flex
segment values.

• Select - This type of lexical is used in the SELECT section of the statement. Use it to
retrieve and process key flexfield (kff) code combination related data based on the lexical
definition.

• Filter - This type of lexical is used in the WHERE section of the statement. Use it to modify
the WHERE clause such that the SELECT statement can filter based on Filter ID passed
from Oracle Enterprise Scheduling Service.

• Segment Metadata - Use it to retrieve flexfield-related metadata. You don't have to write
PL/SQL code to retrieve this metadata. Instead, define a dummy SELECT statement, then
use this lexical to get the metadata. This lexical should return a constant string.

After you set up the flexfield components of your data model, create a flexfield lexical reference
in the SQL query using the following syntax:

&LEXICAL_TAG ALIAS_NAME

for example:

&FLEX_GL_BALANCING alias_gl_balancing

After entering the SQL query, when you click OK

• Enter the following:

– Lexical Name - Enter a name for the flexfield component.

– Flexfield Type - Select Key Flexfield..

– Lexical Type - Select the type from the list. Your selection here determines the
additional fields required. See Enter Flexfield Details.

– Application Short Name - Enter the short name of the Fusion Applications Suite
application that owns this flexfield, for example, GL.

– Flexfield Code - Enter the flexfield code defined for this flexfield. In Oracle E-Business
Suite this code is defined in the Register Key Flexfield form, for example, GL#.

– ID Flex Number - Enter the name of the source column or parameter that contains the
flexfield structure information. For example: 101. To use a parameter, prefix the
parameter name with a colon, for example, :PARAM_STRUCT_NUM.

Chapter 6
Add Key Flexfields

6-2

Enter Flexfield Details
The Details region displays appropriate fields depending on the Lexical Type you chose.

Fields for Key Flexfield Type: Segment Metadata

The table describes the detail fields for segmented metadata.

Field Description

Structure Instance Number Enter the name of the source column or parameter that contains the
flexfield structure information. For example: 101. To use a parameter,
prefix the parameter name with a colon, for
example, :PARAM_STRUCT_NUM.

Segments (Optional) Identifies for which segments this data is requested. Default
value is "ALL". See Oracle E-Business Suite Developer's Guide for
syntax.

Show Parent Segments Select this box to automatically display the parent segments of
dependent segments even if it's not displayed in the segments attribute.

Metadata Type Select the type of metadata to return:

Above Prompt of Segments — Above prompt of segment(s).

Left Prompt of Segments — Left prompt of segment(s)

Fields for Key Flexfield Type: Select

The table below shows the detail fields for the Select flexfield type.

Field Description

Enable Multiple Structure
Instances

Indicates whether this lexical supports multiple structures. Checking this
box indicates all structures are potentially used for data reporting. The
data engine uses
<code_combination_table_alias>.<set_defining_column_name> to
retrieve the structure number.

Code Combination Table Alias Specify the table alias to prefix to the column names. Use TABLEALIAS
if your SELECT joins to other flexfield tables or uses a self-join.

Structure Instance Number Enter the name of the source column or parameter that contains the
flexfield structure information. For example: 101. To use a parameter,
prefix the parameter name with a colon, for
example, :PARAM_STRUCT_NUM.

Segments (Optional) Identifies for which segments this data is requested. Default
value is "ALL". See Oracle E-Business Suite Developer's Guide for
syntax.

Show Parent Segments Select this box to automatically display the parent segments of
dependent segments even if it's not displayed in the segments attribute.

Chapter 6
Add Key Flexfields

6-3

Field Description

Output Type Select from the following:

• Value — Segment value as it's displayed to users.
• Padded Value — Padded segment value as it's displayed to users.

Number type values are padded from the left. String type values are
padded on the right.

• Description — Segment value's description up to the description
size defined in the segment definition.

• Full Description — Segment value's description (full size).
• Security — Returns Y if the current combination is secured against

the current user, N otherwise.

Fields for Key Flexfield Type: Where

The table below shows the detail fields for the Where key flexfield type.

Field Description

Code Combination Table Alias Specify the table alias to prefix to the column names. You use
TABLEALIAS if your SELECT joins to other flexfield tables or uses a self-
join.

Structure Instance Number Enter the name of the source column or parameter that contains the
flexfield structure information. For example: 101. To use a parameter,
prefix the parameter name with a colon, for
example, :PARAM_STRUCT_NUM.

Segments (Optional) Identifies for which segments this data is requested. Default
value is "ALL". See Oracle E-Business Suite Developer's Guide for
syntax.

Operator Select the appropriate operator.

Operand1 Enter the value to use on the right side of the conditional operator.

Operand2 (Optional) High value for the BETWEEN operator.

Fields for Key Flexfield Type: Order By

The table below shows the detail fields for the Order by flexfield type.

Field Description

Enable Multiple Structure
Instances

Indicates whether this lexical supports multiple structures. Selecting this
box indicates all structures are potentially used for data reporting. The
data engine uses
<code_combination_table_alias>.<set_defining_column_name> to
retrieve the structure number.

Structure Instance Number Enter the name of the source column or parameter that contains the
flexfield structure information. For example: 101. To use a parameter,
prefix the parameter name with a colon, for
example, :PARAM_STRUCT_NUM.

Code Combination Table Alias Specify the table alias to prefix to the column names. You use
TABLEALIAS if your SELECT joins to other flexfield tables or uses a self-
join.

Segments (Optional) Identifies for which segments this data is requested. Default
value is "ALL". See Oracle E-Business Suite Developer's Guide for
syntax.

Chapter 6
Add Key Flexfields

6-4

Field Description

Show Parent Segments Select this box to automatically display the parent segments of
dependent segments even if it's not displayed in the segments attribute.

Fields for Key Flexfield Type: Filter

The table below shows the detail fields for the Filter flexfield type.

Field Description

Code Combination Table Alias Specify the table alias to prefix to the column names. You use
TABLEALIAS if your SELECT joins to other flexfield tables or uses a self-
join.

Structure Instance Number Enter the name of the source column or parameter that contains the
flexfield structure information. For example: 101. To use a parameter,
prefix the parameter name with a colon, for
example, :PARAM_STRUCT_NUM.

Add Descriptive Flexfields
Reporting on descriptive flexfields is supported only for Oracle Fusion Cloud Applications.

1. Enter the basic flexfield information:

• Name - Enter a name for the flexfield component.

• Flexfield Type -Select Descriptive Flexfield.

• Lexical Type - Only Select is supported.

• Application Short Name - Enter the short name of the Oracle Fusion Cloud
Applications that owns this flexfield (for example, FND).

• Flexfield Code - Enter the flexfield code defined for this flexfield in the Register
Descriptive Flexfield form, for example, FND_DFF1.

2. Enter the flexfield details:

• Table Alias -Specify the table alias to prefix to the column names. Use TABLEALIAS if
your SELECT joins to other flexfield tables or uses a self-join.

• Flexfield Usage Code - (Optional) Identifies for which segments this data is
requested. Default value is "ALL".

3. If your descriptive flexfield definition includes parameters, you can enter the parameters in
the Parameters region.

To enter parameters, click + to add each parameter. Enter a Label and a Value for each
parameter. The Label must match exactly the label in the descriptive flexfield definition.

Chapter 6
Add Descriptive Flexfields

6-5

Include Descriptive Flexfield Reference in SQL Queries
When you create the SQL data set, you can include the descriptive flexfield using the
ampersand symbol.

For example, the figure below shows &DFF_SELECT referencing of the descriptive flexfield.

When you click OK, the diagram of your data set shows the columns that are returned from
your descriptive flexfield as shown below.

Chapter 6
Add Descriptive Flexfields

6-6

The columns that are returned from the key flexfield have the following limitations:

• Element properties are disabled

• In the data model Structure tab, you cannot edit the following fields: XML Tag Name, Value
if Null, Display Name, Data Type

• Subgrouping of descriptive flexfield elements isn't supported

• Element linking isn't supported

Chapter 6
Add Descriptive Flexfields

6-7

7
Add Bursting Definitions

This topic describes the support for bursting reports and how to define a bursting definition in
the data model to split and deliver your report to multiple recipients.

Topics:

• About Bursting

• What is the Bursting Definition?

• Prerequisites for Configuring Bursting

• Add a Bursting Definition to Your Data Model with an SQL Query

• Define the Query for Delivery XML

• Pass a Parameter to the Bursting Query

• Define the Split By and Deliver By Elements for a CLOB/XML Dataset

• Configure a Report to Use a Bursting Definition

• Sample Bursting Query

About Bursting
Bursting is a process of splitting data into blocks, generating documents for each block, and
delivering the documents to one or more destinations.

The data for the report is generated by executing a query once and then splitting the data
based on a Key value. For each block of the data, a separate document is generated and
delivered.

Bursting enables splitting a single report based on an element in the data model and delivering
the report based on a second element in the data model. Driven by the delivery element, you
can apply a different template, output format, delivery method, and locale to each split segment
of the report. Example implementations include:

• Invoice generation and delivery based on customer-specific layouts and delivery
preference.

• Financial reporting to generate a master report of all cost centers, splitting out individual
cost center reports to the appropriate manager.

• Generation of pay slips to all employees based on one extract and delivered through e-
mail.

How do I burst data and deliver reports?

Refer to the following documentation to help you configure and deliver bursting reports.

7-1

Learn how to... Audience More Information

Configure connections to data
sources, delivery destinations,
and configure permissions to
enable users to access resources

Administrator Configure Delivery Options

Create data sets using the data
sources and define bursting.

Data modeler or Content author Process Overview for Creating a
Data Model

Design the report layout Content author Overview for Report
DesignersOverview for Report
Designers

Schedule jobs to deliver bursting
reports

User Create a Bursting Job

What is the Bursting Definition?
A bursting definition is a component of Publisher data model. After you define the datasets for
the data model, you can set up one or more bursting definitions.

When you set up a bursting definition, you define the following:

• The Split By element governs how the data is split. For example, to split a batch of
invoices by each invoice, you may use an element called CUSTOMER_ID. The dataset
must be sorted or grouped by this element.

• The Deliver By governs how formatting and delivery options are applied. In the invoice
example, it's likely that each invoice has delivery criteria determined by customer;
therefore, the Deliver By element would also be CUSTOMER_ID.

• The Delivery Query is a SQL query that you define to construct the delivery XML data file.
The query must return the formatting and delivery details.

The bursting query timeout value is the same as the SQL query timeout value of 3600 seconds
for scheduled reports (memory guard property timeout value). The bursting query timeout
value doesn't consider the value of the data model query timeout. See Tune SQL Query.

Before you define a bursting query, see Define the Query for Delivery XML and Sample
Bursting Query.

Prerequisites for Configuring Bursting
This topic lists the prerequisites for configuring bursting.

Before you define bursting in the data model and enable bursting in your report, make sure:

• The administrator has configured the Publisher connections to data sources, delivery
destinations, and the permissions to enable users to access resources.

• You've defined a SQL query dataset or a dataset from Data Modeler for this data model.

• The dataset is sorted or grouped by the element by which you want to split the data in your
bursting definition.

• The delivery and formatting information is available to Publisher. You can provide the
information at runtime to Publisher in one of the following ways:

– The information is stored in a database table available to Publisher for a dynamic
delivery definition.

Chapter 7
What is the Bursting Definition?

7-2

– The information is hard-coded in the delivery SQL for a static delivery definition.

• The report definition for this data model has been created and includes the layouts to be
applied to the report data.

Add a Bursting Definition to Your Data Model with an SQL Query
You can add a bursting definition to your data model.

Bursting doesn't support global functions in data model. If a data model contains global
functions, the XML generated by a bursting job doesn't include the tags for the global functions.
The global function elements are at the end section of the XML output. The XML output is cut
based on the Split By element specified in the bursting definition. The global function elements
can't be included in the split XML document.

For example, consider the following XML output and the Split By element. The bursted XML
document won't contain the global function elements:

• XML output: <Data><G1><Invoice_id>10</Invoice_id><Invoice_Num>abcd#1</
Invoice_Num>,,,</G1><GLobalFunc1>InvoiceAccountCode</GLobalFunc1></Data>

• Split By element: /Data/G1/Invoice_id
• Bursted XML document: <Data><G1><Invoice_id>10</

Invoice_id><Invoice_Num>abcd#1</Invoice_Num>,,,</G1></Data>
In the Bursting definition table, add a bursting definition by specifying its name, type, data
source, and other properties.

1. On the component pane of the data model editor, click Bursting to create a bursting query.

2. In the Bursting definition table, click the Create Bursting button.

3. Enter the following for this bursting definition:

• Name - Enter a name for the query. For example, Burst to File.

• Type - Select SQL Query.

• Data Source - Select the data source that contains the delivery information.

4. In the lower region, enter the following for this bursting definition:

• Split By - Select the element from the dataset by which to split the data.

• Deliver By - Select the element from the dataset by which to format and deliver the
data.

• Enable Consolidated Output - Select the option to generate a single consolidated
report.

• Group Data by Split Key Values - Select the option to group the data based on Split
Key values.

• SQL Query - Enter the query or click QueryBuilder to construct the bursting query.

• Attachment - Attach external PDF files to your bursted PDF output, if required.

5. In the Report Properties dialog, select Enable Bursting to enable bursting for a report.

If the Split By and Deliver By elements reside in an XML document stored as a CLOB in your
database, you must enter the full XPATH in the Split By and Delivery By fields.

Chapter 7
Add a Bursting Definition to Your Data Model with an SQL Query

7-3

Attach PDF to Reports using Bursting Engine
You might have a requirement to attach PDFs along with invoices for customers. You can
attach PDFs to reports while bursting.

Once a bursting query is defined, you can enter the attachment query in the Attachment tab.
The attachment expects the repository source to be a WebCenter content, which can be
defined as a data source by the Administrator.

1. Click the Attachment tab.

2. Select the content server name from the Attachment Repository LOV.

3. Define the SQL query for the attachment in the Content Server.

Publisher doesn't support parameters in the SQL query for attachment.

4. Click Save icon after you make changes to the data model.

5. Click the View Data button.

6. Click View to view the data.

7. Save the data by clicking Save As Sample Data.

8. To create a report based on the data model that you created, click Create Report.

Note that the PDF attachments are delivered to recipients along with the main report as a
single PDF file. The attachment document isn’t separately embedded, but appended to the
report.
If you want to save the entire PDF report along with the attachments as a single consolidated
file, then check the option Enable Consolidated Output under bursting query. The
consolidated output contains the sequential merge of report and attachment of each burst. A
user (with consumer role) who schedules the bursting report job and the Administrator will be
able to view the consolidated output in the Job History Details page.

Define the Query for Delivery XML
The bursting query is a SQL query that you define to provide the required information to format
and deliver the report.

Publisher uses the results from the bursting query to create the delivery XML.

The bursting engine uses the delivery XML as a mapping table for each Deliver By element.
The structure of the delivery XML required is as follows:

<ROWSET>
 <ROW>
 <KEY></KEY>
 <TEMPLATE></TEMPLATE>
 <LOCALE></LOCALE>
 <OUTPUT_FORMAT></OUTPUT_FORMAT>
 <DEL_CHANNEL></DEL_CHANNEL>
 <TIMEZONE></TIMEZONE>
 <CALENDAR></CALENDAR>
 <OUTPUT_NAME></OUTPUT_NAME>
 <SAVE_OUTPUT></SAVE_OUTPUT>
 <PARAMETER1></PARAMETER1>
 <PARAMETER2></PARAMETER2>
 <PARAMETER3></PARAMETER3>

Chapter 7
Define the Query for Delivery XML

7-4

 <PARAMETER4></PARAMETER4>
 <PARAMETER5></PARAMETER5>
 <PARAMETER6></PARAMETER6>
 <PARAMETER7></PARAMETER7>
 <PARAMETER8></PARAMETER8>
 <PARAMETER9></PARAMETER9>
 <PARAMETER10></PARAMETER10>
 </ROW>
</ROWSET>

• KEY — The Delivery key must match the Deliver By element. The bursting engine uses
the key to link delivery criteria to a specific section of the burst data. Ensure that you use
double quotes around "KEY" in the select statement, for example:

select d.department_name as "KEY",
• TEMPLATE — The name of the Layout to apply. Note that the value is the Layout name

(for example, "Customer Invoice"), not the template file name (for example, invoice.rtf).

• LOCALE — The template locale, for example, "en-US".

• OUTPUT_FORMAT — The output format. The following table shows the valid values to
enter for the bursting query.

Output format Value to enter in
bursting query

Template types that can generate this output
format

Interactive N/A Not supported for bursting

HTML html – Publisher
– RTF
– XSL Stylesheet (FO)

PDF pdf – Publisher
– RTF
– PDF
– XSL Stylesheet (FO)

RTF rtf – Publisher
– RTF
– XSL Stylesheet (FO)

Excel (*.xlsx) xlsx – Publisher
– RTF
– XSL Stylesheet (FO)

PowerPoint (.*pptx) pptx – Publisher
– RTF
– XSL Stylesheet (FO)

MHTML mhtml – Publisher
– RTF
– XSL Stylesheet (FO)

PDF/A pdfa – Publisher
– RTF
– XSL Stylesheet (FO)

PDF/X pdfx – Publisher
– RTF
– XSL Stylesheet (FO)

Chapter 7
Define the Query for Delivery XML

7-5

Output format Value to enter in
bursting query

Template types that can generate this output
format

Zipped PDFs pdfz – Publisher
– RTF
– PDF
– XSL Stylesheet (FO)

FO Formatted XML xslfo – Publisher
– RTF
– XSL Stylesheet (FO)

Data (XML) xml – Publisher
– RTF
– PDF
– Excel
– XSL Stylesheet (FO)
– XSL Stylesheet (HTML XML/Text)
– Etext

Data (CSV) csv – Publisher
– RTF
– PDF
– Excel
– XSL Stylesheet (FO)
– XSL Stylesheet (HTML XML/Text)
– Etext

XML txml XSL Stylesheet (HTML XML/Text)

Text text – XSL Stylesheet (HTML XML/Text)
– Etext

• SAVE_OUTPUT — Specifies whether to save the output documents to the history tables
so that you can later view and download the output from the Report Job History page.

Valid values are "true" (default) and "false". If this property set to "false", the output isn't
saved.

• DEL_CHANNEL — The delivery method. Valid values are:

– EMAIL

– FAX

– FTP

– PRINT

– WCC

– WEBDAV

• TIMEZONE — The time zone to use for the report. Values must be in the Java format, for
example: "America/Los_Angeles". If time zone isn't provided, then the system default time
zone is used to generate the report.

• CALENDAR — The calendar to use for the report. Valid values are:

– GREGORIAN

– ARABIC_HIJRAH

– ENGLISH_HIJRAH

– JAPANESE_IMPERIAL

Chapter 7
Define the Query for Delivery XML

7-6

– THAI_BUDDHA

– ROC_OFFICIAL (Taiwan)

If not provided, the value "GREGORIAN" is used.

• OUTPUT_NAME — The name to assign to the output file in the report job history. The
length of the job output file name must be less than 100 characters.

• Delivery parameters by channel — The values required for the parameters depend on
the delivery method chosen. The parameter values mappings for each method are shown
in the following table. Not all delivery channels use all the parameters.

Delivery Channel PARAMETER Values

Email PARAMETER1: Email address

PARAMETER2: cc

PARAMETER3: From

PARAMETER4: Subject

PARAMETER5: Message body

PARAMETER6: Attachment value ("true" or "false"). If your output format is
PDF, you must set this parameter to "true" to attach the PDF to the e-mail.

PARAMETER7: Reply-To

PARAMETER8: Bcc (PARAMETER 9-10 are not used)

Fax PARAMETER1: Fax Server Name

PARAMETER2: Fax number

(PARAMETER 3-10 are not used)

FTP and SFTP PARAMETER1: Server Name

PARAMETER2: Username

PARAMETER3: Password

PARAMETER4: Remote Directory

PARAMETER5: Remote Filename

PARAMETER6: Secure (set this value to "true" to enable Secure FTP)

(PARAMETER 7-10 are not used)

If you want to use the FTP delivery settings configured by the administrator,
don't enter the username (PARAMETER2) and password (PARAMETER3)
values. Only if you want to override the configuration of the FTP server and
use password-based authentication, provide the valid username
(PARAMETER2) and password (PARAMETER3) credentials for the FTP
server.

Chapter 7
Define the Query for Delivery XML

7-7

Delivery Channel PARAMETER Values

Printer PARAMETER1: Printer group

PARAMETER2: Printer name or for a printer on CUPS, the printer URI, for
example: ipp://myserver.com:631/printers/printer1
PARAMETER3: Number of copies

PARAMETER4: Sides. Valid values are:

• "d_single_sided" for single-sided
• "d_double_sided_l" for duplex/long edge
• "d_double_sided_s" for tumble/short edge
If the parameter isn't specified, single-sided is used.

PARAMETER5: Tray. Valid values are:

• "t1" for "Tray 1"
• "t2" for "Tray 2"
• "t3" for "Tray 3"
If not specified, the printer default is used.

PARAMETER6: Print range. For example "3" prints page 3 only, "2-5" prints
pages 2-5, "1,3-5" prints pages 1 and 3-5

(PARAMETER 7-10 are not used)

WCC PARAMETER1: Server Name

PARAMETER2: Security Group

PARAMETER3: Author

PARAMETER4: Account (Optional)

PARAMETER5: Title

PARAMETER6: Primary File (or File Name)

PARAMETER7: Comments (Optional)

PARAMETER8: Content ID (Optional. Content ID must be unique.)

PARAMETER9: Custom Metadata. Set value to "on" to turn on custom
metadata.

WebDAV PARAMETER1: Server Name

PARAMETER2: Username

PARAMETER3: Password

PARAMETER4: Remote Directory

PARAMETER5: Remote Filename

PARAMETER6: Authorization type, values are "basic" or "digest"

(PARAMETER 7-10 are not used)

Pass a Parameter to the Bursting Query
You can pass the value for an element of your bursting XML using a parameter defined in the
data model.

For example, if you want to be able to select the template at the time of submission, you can
define a parameter in the data model and use the :parameter_name syntax in your query. The
following example demonstrates this use case of a parameter in a bursting query.

Assume your report definition includes three layouts: layout1, layout2, and layout3. At
submission time you want to select the layout (or TEMPLATE, as defined in the bursting query)
to use.

To pass a parameter to the bursting query:

Chapter 7
Pass a Parameter to the Bursting Query

7-8

1. In your data model, define a list of values with the layout names.

2. Create a menu type parameter. Enter P1 as the name and and select List of Layouts from
List of Values.

3. In the bursting query, pass the parameter value to the TEMPLATE field using :P1 as shown
in the following figure:

Chapter 7
Pass a Parameter to the Bursting Query

7-9

Define the Split By and Deliver By Elements for a CLOB/XML
Dataset

If the split-by and deliver-by elements required for your bursting definition reside in a
dataset retrieved from a CLOB column in a database, Publisher can't parse the XML to list the
elements in the Split By and Deliver By fields in the data model editor.

You therefore must manually enter the XPath to locate each element in the retrieved XML
dataset. To ensure that you enter the path correctly, use the data model editor's Get XML
Output feature to view the XML that is generated by the data engine.

For example, the sample XML code, shown in the figure below, was stored in a CLOB column
in the database called "XMLTEXT", and extracted as an XML dataset:

For this example, you want to add a bursting definition with split by and deliver by element
based on the DEPARTMENT_ID, which is an element within the CLOB/XML dataset.

When you add the bursting definition, the Split By and Deliver By fields can't parse the
structure beneath the XMLTEXT element. Therefore, the field doesn't display the elements
available beneath the XMLTEXT node, as shown in the figure below.

Chapter 7
Define the Split By and Deliver By Elements for a CLOB/XML Dataset

7-10

To use the DEPARTMENT_ID element as the Split By element, manually type the XPath into
the field as shown in the figure below.

Configure a Report to Use a Bursting Definition
Although you can define multiple bursting definitions for a single data model, you can enable
only one for a report.

To configure a report to use a bursting definition:

1. Enable a report to use a bursting definition on the Report Properties dialog of the report
editor.

2. Schedule a job for this report.

3. Choose to use the bursting definition to format and deliver the report.

You can choose not use the bursting definition and choose your own output and
destination as a regular scheduled report.

Sample Bursting Query
This example of a bursting query is based on an invoice report. This report is to be delivered
by CUSTOMER_ID to each customer's individual e-mail address

This example assumes that the delivery and formatting preferences for each customer are
contained in a database table named "CUSTOMERS". The CUSTOMERS table includes the
following columns that will be retrieved to create the delivery XML dynamically at runtime:

• CST_TEMPLATE

• CST_LOCALE

• CST_FORMAT

• CST_EMAIL_ADDRESS

The CUSTOMER_ID will be used as the KEY and also to define the output file name.

Chapter 7
Configure a Report to Use a Bursting Definition

7-11

The SQL code to generate the delivery dataset for this example is as follows:

select distinct
CUSTOMER_ID as "KEY",
CST_TEMPLATE TEMPLATE,
CST_LOCALE LOCALE,
CST_FORMAT OUTPUT_FORMAT,
CUSTOMER_ID OUTPUT_NAME,
'EMAIL' DEL_CHANNEL,
CST_EMAIL_ADDRESS PARAMETER1,
'accounts.receivable@example.com' PARAMETER2,
'bip-collections@example.com' PARAMETER3,
'Your Invoices' PARAMETER4,
'Hi'||CUST_FIRST_NAME||':'|| 'Please find attached your
invoices.' PARAMETER5,
'true' PARAMETER6,
'donotreply@mycompany.com' PARAMETER7
from CUSTOMERS

Chapter 7
Sample Bursting Query

7-12

8
Performance Best Practices

This topic provides tips for creating efficient data models for better performance.

Topics:

• Know Oracle WebLogic Server Default Time Out Setting

• Best Practices for SQL Datasets

• Limit Lists of Values

• Work with Lexicals/Flexfields

• Work with Date Parameters

• Run Report Online/Offline (Schedule)

• Set Data Model Properties to Prevent Memory Errors

• Tune SQL Query

• Validate Data Models

Know Oracle WebLogic Server Default Time Out Setting
WebLogic Server has a default time out of 600 seconds for each request thread.

When the time exceeds 600 seconds, Oracle WebLogic Server marks the thread as Stuck.
When the number of Stuck threads reaches 25, the server shuts down.

To avoid this problem, verify that your SQL execution time doesn't exceed the WebLogic
Server setting.

Best Practices for SQL Datasets
Consider the following tips to help you create more efficient SQL datasets:

• Only Return the Data You Need

• Use Column Aliases to Shorten XML File Length

• Avoid Using Group Filters by Enhancing Your Query

• Avoid PL/SQL Calls in WHERE Clauses

• Avoid Use of the System Dual Table

• Avoid PL/SQL Calls at the Element Level

• Avoid Including Multiple Datasets

• Avoid Nested Datasets

• Avoid In-Line Queries as Summary Columns

• Avoid Excessive Parameter Bind Values

• Tips for Multi-value Parameters

8-1

• Group Break and Sort Data

Only Return the Data You Need
Ensure that your query returns only the data you need for your reports. Returning excessive
data risks OutOfMemory exceptions.

For example, never simply return all columns as in:

SELECT * FROM EMPLOYEES;

Always avoid the use of *.

Two best practices for restricting the data returned are:

• Always select only the columns you need

For example:

SELECT DEPARTMENT_ID, DEPARTMENT_NAME FROM EMPLOYEES;
• Use a WHERE clause and bind parameters whenever possible to restrict the returned data

more precisely.

This example selects only the columns needed and only those that match the value of the
parameter:

SELECT DEPARTMENT_ID, DEPARTMENT_NAME
FROM EMPLOYEES
WHERE DEPARTMENT_ID IN (:P_DEPT_ID)

Use Column Aliases to Shorten XML File Length
The shorter the column name, the smaller the resulting XML file; the smaller the XML file the
faster the system parses it.

Shorten your column names using aliases to shorten I/O processing time and enhance report
efficiency.

In this example, DEPARTMENT_ID is shortened to "id" and DEPARTMENT_NAME is shortened to
"name":

SELECT DEPARTMENT_ID id, DEPARTMENT_NAME nameFROM EMPLOYEES
WHERE DEPARTMENT_ID IN (:P_DEPT_ID)

Avoid Using Group Filters by Enhancing Your Query
Although the Data Model Group Filter feature enables you to remove records retrieved by your
query, this process takes place in the middle tier, which is much less efficient than the
database tier.

It's better to remove unneeded records through your query using WHERE clause conditions
instead.

Chapter 8
Best Practices for SQL Datasets

8-2

Avoid PL/SQL Calls in WHERE Clauses
PL/SQL function calls in the WHERE clause of the query can result in multiple executions.

These function calls execute for each row found in the database that matches. Moreover, this
construction requires PL/SQL to SQL context switching, which is inefficient.

As a best practice, avoid PL/SQL calls in the WHERE clause; instead, join the base tables and
add filters.

Avoid Use of the System Dual Table
The use of the system DUAL table for returning the sysdate or other constants is inefficient.
You should avoid using the system DUAL table when not required.

For example, instead of:

SELECT DEPARTMENT_ID ID, (SELECT SYSDATE FROM DUAL) TODAYS_DATE FROM
DEPARTMENTS WHERE DEPARTMENT_ID IN (:P_DEPT_ID)

Consider:

SELECT DEPARTMENT_ID ID, SYSDATE TODAYS_DATE FROM DEPARTMENTS WHERE
DEPARTMENT_ID IN (:P_DEPT_ID)

In the first example, DUAL isn't required. You can access SYSDATE directly.

Avoid PL/SQL Calls at the Element Level
Package function calls at the element, within the group or row level, are not allowed. You can
include package function calls at the global element level because these functions are
executed only once per data model execution request.

Example:

<dataStructure>
 <group name="G_order_short_text" dataType="xsd:string"
source="Q_ORDER_ATTACH">
 <element name="order_attach_desc" dataType="xsd:string"
value="ORDER_ATTACH_DESC"/>
 <element name="order_attach_pk" dataType="xsd:string"
value="ORDER_ATTACH_PK"/>

The following element is incorrect:

<element name="ORDER_TOTAL _FORMAT" dataType="xsd:string" value="
WSH_WSHRDPIK_XMLP_PKG.ORDER_TOTAL _FORMAT "/>

Chapter 8
Best Practices for SQL Datasets

8-3

<!-- This is wrong should not be called within group.-->
</group>

 <element name="S_BATCH_COUNT" function="sum" dataType="xsd:double"
value="G_mo_number.pick_slip_number"/>
</dataStructure>

Avoid Including Multiple Datasets
It can seem desirable to create one data model with multiple datasets to serve multiple reports,
but this practice results in very poor performance.

When a report runs, the data processor executes all datasets irrespective of whether the data
is used in the final output.

For better report performance and memory efficiency, consider carefully before using a single
data model to support multiple reports.

Avoid Nested Datasets
The data model provides a mechanism to create parent-child hierarchy by linking elements
from one dataset to another.

At run time, the data processor executes the parent query and for each row in the parent
executes the child query. When a data model has many nested parent-child relationships slow
processing can result.

A better approach to avoid nested datasets is to combine multiple dataset queries into a single
query using the WITH clause.

Following are some general tips about when to combine multiple datasets into one dataset:

• When the parent and child have a 1-to-1 relationship; that is, each parent row has exactly
one child row, then merge the parent and child datasets into a single query.

• When the parent query has many more rows compared to the child query. For example, an
invoice distribution table linked to an invoice table where the distribution table has millions
of rows compared to the invoice table. Although the execution of each child query takes
less than a second, executing the child query for each distribution can result in STUCK
threads.

Example of when to use a WITH clause:

Query Q1:
SELECT DEPARTMENT_ID EDID,EMPLOYEE_ID EID,FIRST_NAME FNAME,LAST_NAME
LNAME,SALARY SAL,COMMISSION_PCT COMMFROM EMPLOYEES

Query Q2:
SELECT DEPARTMENT_ID DID,DEPARTMENT_NAME DNAME,LOCATION_ID LOCFROM DEPARTMENTS

Combine the these queries into one using WITH clause as follows:

WITH Q1 as (SELECT DEPARTMENT_ID DID,DEPARTMENT_NAME DNAME,LOCATION_ID LOC
FROM DEPARTMENTS),
Q2 as (SELECT DEPARTMENT_ID EDID,EMPLOYEE_ID EID,FIRST_NAME FNAME,LAST_NAME
LNAME,SALARY SAL,COMMISSION_PCT COMM

Chapter 8
Best Practices for SQL Datasets

8-4

FROM EMPLOYEES)
SELECT Q1.*, Q2.*
FROM Q1 LEFT JOIN Q2
ON Q1.DID=Q2.EDID

Avoid In-Line Queries as Summary Columns
In-line queries execute for each column for each row. For example, if a main query has 100
columns, and brings 1000 rows, then each column query executes 1000 times.

Avoid the following use of in-line queries. If this query returns only a few rows this approach
may work satisfactorily. However, if the query returns 10000 rows, then each sub or in-line
query executes 10000 times, which can result in Stuck threads.

SELECT
NATIONAL_IDENTIFIERS,NATIONAL_IDENTIFIER,
PERSON_NUMBER,
PERSON_ID,
STATE_CODE
FROM
(select pprd.person_id,(select REPLACE(national_identifier_number,'-') from
per_
national_identifiers pni where pni.person_id = pprd.person_id and rownum<2)
 national_identifiers,(select national_identifier_number from per_national
identifiers pni where pni.person_id = pprd.person_id and rownum<2) national_
identifier,(select person_number from per_all_people_f ppf
where ppf.person_id = pprd.person_id
and :p_effective_start_date between ppf.effective_start_date and
ppf.effective_
end_date) PERSON_NUMBER
(Select hg.geography_code from hz_geographies hg
where hg.GEOGRAPHY_NAME = paddr.region_2
and hg.geography_type = 'STATE') state_code

Avoid Excessive Parameter Bind Values
Oracle Database allows bind maximum of 1000 values per parameter.

Binding a large number of parameter values is inefficient. Avoid binding more than 100 values
to a parameter.

When you create a Menu type parameter and your list of values contains many values, ensure
that you enable both the Multiple Selection and Can Select All options, then also select NULL
value passed to ensure that too many values are not passed.

Chapter 8
Best Practices for SQL Datasets

8-5

Tips for Multi-value Parameters
Report consumers often must run reports that support the certain conditions.

• If no parameter is selected (null), then return all.

• Allow selection of multiple parameter values

In these cases the use of NVL() doesn't work, you should therefore use

• COALESCE() for queries against Oracle Database

• CASE / WHEN for Oracle BI EE (logical) queries

Example:

SELECT EMPLOYEE_ID ID, FIRST_NAME FNAME, LAST_NAME LNAME FROM EMPLOYEES
WHERE DEPARTMENT_ID = NVL(:P_DEPT_ID, DEPARTMENT_ID

The preceding query syntax is correct only when the value of P_DEPT_ID is a single value or
null. This syntax doesn't work when you pass more than a single value.

To support multiple values, use the following syntax:

For Oracle Database:

SELECT EMPLOYEE_ID ID, FIRST_NAME FNAME, LAST_NAME LNAME FROM EMPLOYEES
WHERE (DEPARTMENT_ID IN (:P_DEPT_ID) OR COALESCE (:P_DEPT_ID, null) is NULL)

For Oracle BI EE data source:

(CASE WHEN ('null') in (:P_YEAR) THEN 1 END =1 OR "Time"."Per Name Year" in
(:P_YEAR))

For Oracle BI EE the parameter data type must be string. Number and date data types are not
supported.

Chapter 8
Best Practices for SQL Datasets

8-6

Group Break and Sort Data
The data model provides a feature to group breaks and sort data.

Sorting is supported for parent group break columns only. For example, if a dataset of
employees is grouped by department and manager, you can sort the XML data by department.
If you know how the data should be sorted in the final report or template, you specify sorting at
data generation time to optimize document generation. The column order specified in the
SELECT clause must exactly match the element orders in the data structure. Otherwise group
break and sort may not work. Due to complexity, multiple grouping with multiple sorts at
different group levels isn't allowed.

Example: In the example shown below, sort and group break are applied to the parent group
only, that is, G_1. Notice the column order in the query, dataset dialog, and data structure. The
SQL column order must exactly match the data structure element field order; otherwise, it may
result in data corruption.

Example:

SELECT d.DEPARTMENT_ID DEPT_ID, d.DEPARTMENT_NAME DNAME,
 E.FIRST_NAME FNAME,E.LAST_NAME LNAME,E.JOB_ID JOB,E.MANAGER_ID
FROM EMPLOYEES E,DEPARTMENTS D
 WHERE D.DEPARTMENT_ID = E.DEPARTMENT_ID
 ORDER BY d.DEPARTMENT_ID, d.DEPARTMENT_NAME

Once you define the query, you can use the data model designer to select data elements and
create group breaks as shown below.

Chapter 8
Best Practices for SQL Datasets

8-7

The Data Structure with breaks is:

<output rootName="DATA_DS" uniqueRowName="false">
<nodeList name="data-structure"> <dataStructure tagName="DATA_DS">
<group name="G_1" label="G_1" source="q1">
 <element name="DEPT_ID" value="DEPT_ID" label="DEPT_ID" fieldOrder="1"/>
 <element name="DNAME" value="DNAME" label="DNAME" fieldOrder="2"/>
 <group name="G_2" label="G_2" source="q1">
 <element name="FNAME" value="FNAME" label="FNAME" fieldOrder="3"/>
 <element name="LNAME" value="LNAME" label="LNAME" fieldOrder="4"/>
 <element name="JOB" value="JOB" label="JOB" fieldOrder="5"/>
 <element name="MANAGER_ID" value="MANAGER_ID" label="MANAGER_ID"
fieldOrder="6"/>
 </group>
</group>
</dataStructure>
</nodeList>
</output>

Limit Lists of Values
Lists of values based on SQL queries must be limited to 1000 rows.

Adding blind runaway queries in a list of values can cause OutOfMemory exceptions. Consider
that the number of rows returned by an LOV is stored in memory, therefore the higher the
number of rows the more memory usage.

Work with Lexicals/Flexfields
Publisher supports lexical parameters for Oracle Fusion Cloud Applications. Lexical
parameters enable you to create dynamic queries.

In Publisher, lexical parameters are defined as:

Lexical – PL/SQL packaged variable defined as a data model parameter.

Key Flexfield (KFF) – Lexical token in a data set query. KFF creates a "code" made up of
meaningful segment values and stores a single value as a code combination id. Key Flexfields
always return as a single column when used in SELECT / SEGMENT METADATA type or
condition when used in WHERE clause. Key Flexfields execute at run time to extract the lexical
definition and then are substituted in the SQL query.

Descriptive Flexfields (DFF) – Customizable expansion space to track additional information
that is important and unique to the business. DFFs can be context sensitive, where the
information stored in the application depends on the other values of the user input. Unlike Key
Flexfields, Descriptive Flexfields can have multiple context-sensitive segments.

When you define any lexical, name the lexical to match the usage so that when the editor
dialog pops up it will be easier to enter the default values for the SQL query. For example, if
you are using a lexical in a SELECT clause, use "_select" as a suffix. The default values must
be valid to get metadata.

The following example demonstrates the usage of a lexical:

Chapter 8
Limit Lists of Values

8-8

When you create the data set query for the select columns, specify column alias,

SELECT gcc.CODE_COMBINATION_ID,
GCC.ATTRIBUTE_CATEGORY,
gcc.segment1 seg1,
gcc.segment2 seg2,
gcc.segment3 seg3,
gcc.segment4 seg4,
gcc.segment5 seg5,
&KFF_SELECT account
FROM GL_CODE_COMBINATIONS GCC
WHERE gcc.CHART_OF_ACCOUNTS_ID = 101
AND &KFF_WHERE

When you save the query, a pop-up dialog prompts you for the default values. To get SQL
metadata at design time you must specify the default values that can form a valid SQL query.
For example,

• if the lexical usage is a SELECT clause, then specify a null value

• if the lexical usage is a WHERE clause, then specify 1 = 1 or 1 =2 as value

• if the lexical usage is ORDER BY clause, then specify 1 as value

• if the lexical usage is FROM clause, then specify a valid table reference as value

• if the lexical usage is WITH clause, then specify a space as value

Chapter 8
Work with Lexicals/Flexfields

8-9

Work with Date Parameters
Publisher always binds date column or date parameter as a timestamp object.

To avoid timestamp conversion, define the parameter as a string and pass the value with
formatting as 'MM-DD-YYYY' to match the RDBMS date format.

Run Report Online/Offline (Schedule)
Running reports in interactive/online mode uses in-memory processing.

Use the following guidelines for deciding when a report is appropriate for running online.

For Online / Interactive mode:

• When report output size is less than 50MB

Browsers do not scale when loading large volumes of data. Loading more than 50MB in
the browser will slow down or possibly crash your session.

• Data model SQL Query time out is less than 500 seconds

Any SQL query execution that takes more than 500 seconds results in Stuck WebLogic
Server threads. To avoid this condition, schedule long-running queries. The Scheduler
process uses its own JVM threads instead of Weblogic server threads. It's more efficient to
schedule reports than run reports online.

• Total number of elements in the data structure is less than 500

When the data model data structure contains many data elements, the data processor
must maintain the element values in memory; which may result in OutOfMemory
exceptions. To avoid this condition, schedule these reports. For scheduled reports, the
data processor uses temporary file system to store and process data.

• No CLOB or BLOB columns

Online processing holds the entire CLOB or BLOB columns in memory. You should
schedule reports that include CLOB or BLOB columns.

Set Data Model Properties to Prevent Memory Errors
You can use the data model properties to help prevent memory errors in your system.

Chapter 8
Work with Date Parameters

8-10

You can set the Query Time Out, Enable SQL Pruning, and Skip Unused Dataset Query
properties at the data model level.

Only an administrator can set the Enable Data Model scalable mode and DB fetch size
runtime properties for all data models.

To configure the data model proprties, see Data Model Properties.

To configure the runtime properties, see Data Model Properties.

Query Time Out
The Query Time Out property specifies the time limit in seconds within which the database
must execute SQL statements for scheduled reports.

The default value of SQL query timeout for scheduled reports is 600 seconds. You specify the
time limit on the data model. By increasing the number of seconds, you risk getting stuck
threads in the Oracle WebLogic Server. Don't raise the value unless all other optimizations and
alternatives have been utilized.

Queries that can't execute in less than 600 seconds aren't well optimized. Ask your DBA or
performance expert to analyze and fine-tune the query. Increase the number of seconds only
after attempting optimizations of the query.

Enable SQL Pruning
The SQL pruning property specifies whether to fetch only the columns that are used in the
report layout/template.

Set the Enable SQL Pruning property to On in the Data Model Properties page to enhance
performance by allowing the system to fetch only the columns used in the report layout or
template. The system won't fetch columns that are defined in the query but not used in the
report. This property doesn't alter the WHERE clause but instead wraps the entire SQL query
with the columns specified in the layout.

If you enabled SQL pruning, you can use the Skip Unused Dataset Query property to skip the
execution of unused datasets in a layout.

DB Fetch Size
The DB Fetch Size runtime property specifies the number of rows of data that are fetched from
the database at one time.

An administrator can set the DB fetch size runtime property for all data models. A large
number reduces the number of calls to the database but consumes more memory for storing
more rows of data. Set the Enable Auto DB fetch size mode property to true to allow the
system to calculate the optimal fetch size at runtime.

Scalable Mode
The scalable mode property in data model specifies whether to use the temp file system to
generate data.

Administrator can set the Enable Data Model scalable mode runtime property for all data
models.

If you select Enable Data Model scalable mode, Publisher uses the temp file system to
generate data, and the data processor uses the least amount of memory.

Chapter 8
Set Data Model Properties to Prevent Memory Errors

8-11

Tune SQL Query
Query tuning is the most important step to improve performance of any report.

You can generate the explain plan for a data set, SQL monitoring reports for a data model, and
enable SQL session trace. This functionality is applicable to SQL statements executing against
Oracle Database. Logical queries against any other type of database aren't supported. The
administrator can enable SQL session trace using the data model runtime property. Users with
BI Administrator or BI Data Model Developer privileges can enable and download diagnostics
for scheduled jobs.

See Test Data Models and Generate Sample Data.

Generate Explain Plan
You can generate an Explain plan at the dataset level for a single query or at the report level
for all queries in a report.

For more information about interpreting the explain plan, see Oracle Database SQL Tuning
Guide.

Explain Plan for a Single Query
From the SQL dataset Edit dialog you can generate an explain plan before actually executing
the query. This provides a best guess estimation of a plan. The query will be executed binding
with null values.

Click Generate Explain Plan on the Edit SQL Query dialog. Open the generated document in
a text editor like Notepad or WordPad.

Explain Plan for Reports
To generate an explain plan for a report, run the report through the Scheduler.

1. From the New menu, select Report Job.

2. Select the report to schedule then click the Diagnostics tab.

You must have BI Administrator or BI Data Model Developer privileges to access the
Diagnostics tab.

3. Select Enable SQL Explain Plan and Enable Data Engine Diagnostic.

• Enable SQL Explain Plan — Generates a diagnostic log with Explain plan/SQL monitor
report information.

• Enable Data Engine Diagnostic — Generates a data processor log.

• Enable Report Processor Diagnostic — Generates FO (Formatting Options) and server
related log information.

• Enable Consolidated Job Diagnostic — Generates the entire log, which includes
scheduler log, data processor log, FO and server log details.

4. Submit the report.

5. From the Home page, under Browse/Manage, select Report Job History.

Chapter 8
Tune SQL Query

8-12

6. Select the report to view the details. Under Output & Delivery click Diagnostic Log to
download the explain plan output.

Sample Explain plan:

Guidelines for Tuning Queries
Tune queries by following a set of guidelines.

• Analyze the explain plan and identify high impact SQL statements.

• Add required filter conditions and remove unwanted joins.

• Avoid and remove FTS (full table scans) on large tables. Note that in some cases, full table
scans on small tables are faster and improve query fetch. Ensure that you use caching for
small tables.

• Use SQL hints to force use of proper indexes.

• Avoid complex sub-queries and use Global Temporary Tables where necessary.

• Use Oracle SQL Analytical functions for multiple aggregation.

• Avoid too many sub-queries in where clauses if possible. Instead rewrite queries with outer
joins.

• Avoid group functions like HAVING and IN / NOT IN where clause conditions.

• Use CASE statements and DECODE functions for complex aggregate functions.

Validate Data Models
When you validate data models, the validation messages help you correct data models,
optimize queries, reduce stuck threads, and enhance the reporting performance.

Chapter 8
Validate Data Models

8-13

After you create or edit a data model that's created in the current or previous releases, if you
click Validate, Publisher:

1. Checks the queries used for datasets, LOVs, and bursting definitions.

2. Generates the explain plan for SQL queries.

3. Displays a list of error and warning messages.

Take the required action based on the validation message. See My Oracle Cloud Support KM
ID KB59020, and the performance recommendation document attached to the MOS note.

Note that if you have upgraded Publisher from a previous release, the existing data models are
marked as not validated.

Data Model Validation Messages
This topic lists the data model validation messages for your reference.

Message Types

• Error – You must resolve the data model errors if you want to use the data model to run a
report.

• Warning – Make the correction suggested in the warning message. Reporting performance
might get affected if you choose to run the report ignoring the warning.

Message Reference

Validati
on Type

Messag
e Type

Message Action

Query Warning SQL query contains SELECT *. Use of
'*' is restricted. Select the specific
columns.

Specify the columns in the query.

Query Warning Data model contains nested BI JDBC
queries. Linking logical queries is
restricted. Use OTBI instead of Publisher
reports or remove the link between
OBIEE datasets.

Use Oracle Transactional Business
Intelligence reports instead of Publisher
reports or remove the link between the
OBIEE datasets.

Query Warning SQL query execution plan contains
merge cartesian joins. Generate the
explain plan for the SQL query and
identify the merge cartesian joins. Add
the required filters in the SQL query.

Identify the merge cartesian joins in the
explain plan for the SQL query. Add the
required filters in the SQL query.

Runtime Warning Number of bind values per parameter
more than the limit of {0} results in poor
performance. Reduce the number of
bind values.

Reduce the number of bind values per
parameter.

Query Warning Number of columns in SELECT exceeds
the limit of {0}. Select only the required
columns and enable pruning.

See Publisher Best Practices for SaaS
Environments (KM ID KB98811) in My
Oracle Cloud Support.

Select only the required columns and
enable pruning.

See Publisher Best Practices for SaaS
Environments (KM ID KB98811) in My
Oracle Cloud Support.

Query Warning SQL query contains non-equi joins.
Intermediate row spawning can cause
performance issues. Replace non-equi
joins with equi join or outer join.

Replace the non-equi joins with equi join
or outer join.

Chapter 8
Validate Data Models

8-14

https://support.oracle.com/support/?kmExternalId=KB59020
https://support.oracle.com/support/?kmExternalId=KB98811
https://support.oracle.com/support/?kmExternalId=KB98811

Validati
on Type

Messag
e Type

Message Action

Query Warning Selected column name length exceeds
the limit of {0}. Length of the column
name must not be more than 15
characters. Use short alias for column
names.

Use short alias with less than 15
characters for the column names.

Query Warning Number of inline or subquery exceeds
the limit of {0}. Remove the additional in-
line select queries.

Remove the additional in-line select
queries.

Query Warning SQL query contains the FROM DUAL
clause. SQL query contains too many
DUAL tables. Avoid the usage of FROM
DUAL clause.

Avoid the usage of FROM DUAL clause.

Query Warning Number of LOB columns in SELECT
exceeds the limit of {0}. Select only the
required columns.

Select only the required columns.

Query Error Query contains DDL or DML keywords.
Remove the DDL and DML keywords
from the SQL query.

Remove the DDL and DML keywords
from the SQL query.

Structure Warning Number of group breaks on single
dataset exceeds the limit of {0}. Remove
multiple groups from the dataset.

Remove multiple groups from the
dataset.

Structure Warning Data model contains group filters.
Replace the group filters with the
WHERE clause in the SQL query.

Replace the group filters with the
WHERE clause in the SQL query.

Runtime Error Data model property is invalid or
contains invalid values. Specify the
correct data model property and check
the property value.

Specify the correct data model property
in the query and check the property
value.

Query Warning SQL query execution plan contains full
table scans. Provide the required filters
on indexed columns in the SQL query.

Provide the required filters on indexed
columns in the SQL query.

Query Warning SQL query execution plan contains high
buffer reads. Buffer reads exceed the
limit of 1GB. Add filters in the SQL query
to reduce the data fetch volume.

Add filters in the SQL query to reduce
the data fetch volume.

Query Warning SQL query execution plan contains high
CPU cycles. Add the required filters in
the SQL query to reduce the data fetch
volume.

Add the required filters in the SQL query
to reduce the data fetch volume.

Query Warning SQL query execution plan contains
function calls on filter columns. Use of
SQL function calls on index columns
results in poor performance. Remove
function calls on filter columns.

Remove the function calls on the filter
columns.

Query Warning Detected function calls in the WHERE
clause predicates.

Avoid applying SQL or PL/SQL functions
to the columns in the filter or join
expression.

Query Warning Detected calls to PL/SQL functions in
the SELECT list; such calls may affect
performance significantly.

Avoid using custom PL/SQL functions in
the SELECT clauses.

Chapter 8
Validate Data Models

8-15

Validati
on Type

Messag
e Type

Message Action

Query Warning Scalar subqueries are subqueries in the
SELECT list. They must return exactly
one value. Using ROWNUM or
DISTINCT to restrict the output indicates
potential performance problem.

Don't use scalar subqueries with
DISTINCT or ROWNUM keyword.

Query Warning Too many values in the IN-LIST filter
might prevent the optimizer from finding
a more efficient plan.

Reduce the number of values in the IN-
LIST filter.

Runtime Warning A data security predicate (DSP) is
wrapped inside a subquery, producing
unnecessary nesting. A redundant sub-
query increases the total parsing time for
the query.

Avoid unnecessary nesting of
subqueries.

Query Warning BI Server has generated too many joins
between WITH sub-queries using the
unsupported SYS_OP_MAP_NONNULL
function. Too many join predicates may
cause low cardinality estimates for joins
of the respective tables.

Avoid using too many joins between
subqueries.

Query Warning Outer-joined tables were found in the
query that do not have any columns in a
SELECT list. This may create additional
performance overhead during parse and
run time as the optimizer may be unable
to eliminate unused joins. If VO pruning
is happening, check the OTBI code.

Avoid unused OUTER joined tables.

Query Warning Scalar subqueries are present in a
SELECT list. A factored subquery inside
a scalar subquery will cause
progressively degraded performance
during execution as the inner-most
subquery and its outer parent subquery
will be executed for every row produced
by the embracing query.

Avoid the WITH clause in scalar
subquery.

Query Warning Tables that are listed in a query and
joined to other tables but are never
selected from may potentially be
redundant. This will decrease
performance due to additional join
overhead. Check if this table is joined on
its Primary Key column to Foreign Key
columns of other tables.

Avoid joining tables that aren't used in
the query.

Query Warning A column was found that is defined as a
scalar correlated subquery. If such a
column is later used in a filter or join
expression it may cause serious
performance degradation.

Avoid redundant inline view with scalar
subquery in its SELECT list.

Chapter 8
Validate Data Models

8-16

Validati
on Type

Messag
e Type

Message Action

Query Warning Predicates that use bind variables in a
non-trivial way, e.g. (:JCODE IS NULL
OR mcd.JCODE LIKE :JCODE), are
discouraged. In addition, the use of OR
in filter predicates that are selective,
whether or not a bind value is passed, is
discouraged as there are better methods
for handling such cases.

Avoid the use of OR in the filter
predicates that are selective.

Query Warning A CASE expression that contains more
than 10 complex expressions (WHEN ...
THEN) is CPU-intensive, especially
when used in a WHERE clause.

Avoid too many complex WHEN ...
THEN expressions in the CASE
expression.

Query Warning A column defined in a subquery as a
literal constant was later referenced in a
join predicate elsewhere in the main
query. There are better methods for
handling such cases prior to executing
the main SQL query.

Avoid joining on columns that are
defined as constants (literals).

Query Warning A subquery was found with more than 10
UNION branches. Each branch of a
UNION is executed separately, thus
significantly increasing the query's run
time. In most cases, a UNION-heavy
query can be reworked into a much
simpler query by factoring out some
'common denominator' subqueries, and
then reusing them as per functional
requirements.

Reduce the number of UNION branches
in the subquery.

Query Warning Remove the unnecessary table
reference: the columns from this table
can be retrieved from another. When a
redundant table is in a query, the
database optimizer may not be able to
eliminate it during parsing and
optimization.

Remove the unnecessary table
references.

Structure Warning Converting data from CLOB to XML
using the XMLTYPE function is slow.
Use the data type XMLTYPE for storing
XML documents in the database.

Instead of storing data in CLOB and
converting to XML, use the XMLTYPE
data type for storing the XML documents
in the database.

Query Warning A FROM clause was found with more
than 10 row sources (tables, dictionary
views, or inline views). Having too many
row sources may cause serious
performance degradation for multiple
reasons.

Reduce the number of row sources
(tables, dictionary views, or inline views)
in the FROM clause.

Query Warning An inline view is joined to the same
FROM clause table elsewhere in the
query. This creates redundancy in
lookups usage (the same table is used
both as a dimension and a lookup).

Make sure the inline view isn't joined to
the same FROM clause table anywhere
else in the query.

Chapter 8
Validate Data Models

8-17

Validati
on Type

Messag
e Type

Message Action

Query Warning A lookup table was used as a dimension
and joined to itself as a lookup
elsewhere in the query. This creates
redundancy in lookups usage (the same
table is used both as a dimension and a
lookup).

Make sure the lookup table isn't joined to
the same FROM clause table anywhere
else in the query.

Query Warning A lookup table is joined to itself being
used as a dimension. This creates
redundancy in lookups usage (the same
table is used both as a dimension and a
lookup).

Make sure the lookup table isn't joined to
the same FROM clause table anywhere
else in the query.

Query Warning A subquery was found using columns of
a table from the top-most query block.
Using a redundant table in a subquery
increases the parse and execution times.

Avoid using the same columns of the
table in the parent query and in the
subquery with WHERE clause.

Query Warning A SELECT subquery block is redundant
because the same conditions (tables
and WHERE clause) exist in parent
query block. This is a performance
problem because correlated scalar
subqueries are not mergeable, and they
must be executed once for each row
produced by the query that contains
them.

Avoid using redundant WHERE clause
conditions in subquery.

Query Warning Identical or almost identical query blocks
in SET operations (UNION,
INTERSECT, etc.) may cause many
expensive and redundant operations

Avoid using identical queries in the
UNION and SET operations.

Query Warning A missing join in a query can produce a
Cartesian product, cause significant
performance issues, and can indicate a
functional bug. If the missing join is
among tables with a large number of
rows, the performance result can be
disastrous.

Include joins between tables.

Query Warning Lack of filters (meaningful WHERE
clause conditions to limit the number of
rows returned) may cause performance
problems depending on the amount of
data in the table. Performance will
worsen when multiple tables are joined
with no filters.

Include filters in the query to limit the
rows returned.

Query Warning A GROUP BY clause was found with
more than 20 columns. A large number
of columns in the GROUP BY result set
may cause high CPU time to perform the
sorting and grouping operations.

Reduce the number of columns in the
GROUP BY clause.

Query Warning A table was joined but not selected from,
while containing at least one join
condition to the rest of the query. This
potential issue increases the query
runtime as the number of joins in the
query increases due to the redundant
table.

Remove the redundant bridge tables in
the query.

Chapter 8
Validate Data Models

8-18

Validati
on Type

Messag
e Type

Message Action

Query Warning In some cases, the use of SUBSTR
functions (SUBSTR, SUBSTRB,
SUBSTRC, SUBSTR2, SUBSTR4) can
be safely replaced by a LIKE condition to
facilitate the use of index access paths.

Replace SUBSTR in the query with LIKE
condition.

Query Warning This is a potential issue specific to
Oracle Business Intelligence "_TL"
suffixed tables where the LANGUAGE
filter needs to be applied. When the
LANGUAGE filter is missing, the table
returns more rows than needed.

Include a filter on the Language column
in the query.

Query Warning A leading wildcard on a LIKE condition
will perform poorly as the database will
not be able to use an index path.

Avoid using a leading wildcard in the
LIKE condition.

Query Warning Hierarchical queries are slow due to their
recursive nature. Such structures can be
optimized by materializing the block.

Avoid recursive queries in subqueries.

Query Warning This is a potential issue specific to
Oracle Fusion views with "_VL" suffixed
in the name. The table version of these
views performs better.

Avoid outer joins to _VL views.

Query Warning ORDER BY operations on columns from
multiple physical tables can cause
expensive sorts, thereby spiking CPU
usage.

Avoid sorting using columns from
different tables.

Query Warning In most cases, an analytic in-line view
performs better than a WHERE block
aggregate of the same logic. Convert the
WHERE block subquery to an analytic
in-line view.

Use analytics in inline view instead of
aggregate in the subqueries.

Query Warning Removing unused columns, known as
SQL column pruning, in a query block
will improve performance by eliminating
their associated resource needs during
the execution process. Pruning can
make the SQL more lightweight.

Drop unused columns and redundant
attributes from the query.

Query Warning When an aggregate function in a scalar
subquery is executed, it runs the same
function for every row returned in the
main query. Each execution is returning
the same value each time, over and over
again. Such subqueries should be
rewritten.

Avoid using aggregate functions in
scalar subqueries.

Query Warning DECODE statements that are deeply
nested can cause incorrect cardinality
estimations by the database.
Performance can improve by simplifying
the DECODE statements or by pre-
calculating attributes.

Avoid deep nested decode statements in
the query.

Chapter 8
Validate Data Models

8-19

Validati
on Type

Messag
e Type

Message Action

Query Warning This check identifies an attribute which
can act as a reason for a late filter.
Filters applied at a late point in the SQL
structure can prevent optimal filtering
and cause unnecessary processing
overhead. Applying filters at lower levels
will improve performance.

Apply filter at the initial level of the query.

Query Warning Join conditions should be written on the
same side in the WHERE clause when
several EXIST and IN clauses are used.

Use join conditions on the same side of
the WHERE clause when you use many
EXIST and IN clauses in the query.

Query Warning Certain expressions can be rewritten to
help the database optimizer choose a
better plan while maintaining the same
functionally. If concatenation is in the
expression, a database bug may arise.
See Sub-optimal CONCATENATION in
Execution Plans in Technote 2800118.1
for work-arounds and solutions.

Rewrite expressions to help the
database optimizer choose a better plan.

Query Warning Both OTBI and BIP reports use Fusion
View Objects (VOs) that implement user-
level security by adding complex semi-
joins (EXISTS conditions) to correlated
inline views. Very complex structure of
security clause may cause optimizer to
pick up inefficient join methods.
Correlation with external tables may also
lead to multiple executions of such
security predicates.

Avoid complex EXISTS predicates in
subqueries.

Query Warning Correlated subqueries are expensive
because they are executed once for
every row extracted from the external
table they are joined to. Aggregation
inside correlated subqueries is also
expensive as it presumes no or weak
filtering.

Avoid scalar subquery with aggregation
operations.

Query Warning A subquery wrapped inside an IN
condition contains aggregation
(DISTINCT and/or GROUP BY) or
sorting (ORDER BY) operators. Neither
of these operators has an effect on the
semantics of the IN condition. However
they may introduce expensive
operations, and noticeably affect
performance.

Remove DISTINCT, GROUP BY, or
ORDER BY Clauses from the
IN_CONDITION in subqueries.

Query Warning Nearly identical subqueries in FROM
clauses should be avoided as this
pattern leads to multiple redundant
accesses to base tables, multiple
redundant join and filter operations.

Remove repeating instances of
subqueries with similar content and
structure in the query and subqueries.

Query Warning Two tables equi-joined on columns with a
low number of distinct values may
potentially produce a very large
intermediate row source.

Use appropriate filters and conditions in
the query to access specific data.

Chapter 8
Validate Data Models

8-20

Validati
on Type

Messag
e Type

Message Action

Query Warning Filter condition on a table is inefficient
and may produce large number of rows.

Use appropriate filters in the query.

Chapter 8
Validate Data Models

8-21

Part II
Create Pixel-Perfect Reports and Layouts

This part describes how to create pixel-perfect reports and layouts.

Topics:

• Introduction to Designing Reports

• Create and Edit Reports

• Create Publisher Layout Templates

• Create RTF Templates

• Create RTF Templates Using the Template Builder for Word

• Create Excel Templates

• Create PDF Templates

• Create eText Templates

• Set Report Processing and Output Document Properties

9
Introduction to Designing Reports

This topic introduces the components that comprise a pixel-perfect report.

Topics:

• Overview for Report Designers

• About the Layout Types

• About Setting Run-Time Properties

• About Translations

• About Style Templates

• About Sub Templates

Overview for Report Designers
A report consists of a data model, a layout, and a set of properties.

Optionally, a report may also include a style template and a set of translations. A report
designer performs the following tasks:

• Design the layout for the report. The layout can be created using a variety of tools. The
output and design requirements of a particular report determine the best layout design tool.
Options include the Layout Editor, which is a Web-based layout design tool and enables
interactive output, Microsoft Word, Adobe Acrobat, Microsoft Excel, and Adobe Flexbuilder.

• Set runtime configuration properties for the report.

• Design style templates to enhance a consistent look and feel of reports in your enterprise.

• Create subtemplates to re-use common functionality across multiple templates.

• Enable translations for a report.

Define Summary Text for Tables
You can define a text summary to describe a table within a report.

To define summary table text:

1. Select a table.

2. On the Properties pane, expand Misc.

3. In the Summary property, enter the table summary text.

About the Layout Types
You have several options for designing layouts for reports.

The layout type determines the types of output documents supported. The following formats
are supported.

9-1

• Publisher layout (XPT)

The Layout Editor is a Web-based design tool for creating layouts. Layouts created with
the Layout Editor support interactive viewing as well as the full range of output types
supported by RTF layouts.

• Rich Text Format (RTF)

A plug-in utility for Microsoft Word that automates layout design and enables you to
connect to Publisher to access data and upload templates directly from a Microsoft Word
session. The RTF format also supports advanced formatting commands providing the most
flexible and powerful of the layout options. RTF templates support a variety of output types.

• Portable Document Format (PDF)

PDF templates are used primarily when you must use a predefined form as a layout for a
report (for example, a form provided by a government agency). Because many PDF forms
already contain form fields, using the PDF form as a template simply requires mapping
data elements to the fields that exist on the form. You can also design PDF templates
using Adobe Acrobat Professional. PDF templates support only PDF output.

• Microsoft Excel (XLS)

Excel templates enable you to map data and define calculations and formatting logic in an
Excel workbook. Excel templates support Microsoft Excel (.xls) output only.

• XSL Stylesheet

Layouts can also be defined directly in XSL formatting language. Specify whether the
layout is for Data (CSV), Data (XML), FO Formatted XML, HTML, Text, or XML
transformation.

• eText

These are specialized RTF templates used for creating text output for Electronic Data
Interchange (EDI) or Electronic Funds Transfer (EFT) transactions.

See Create and Edit Reports.

About Setting Run-Time Properties
Publisher provides a variety of user-controlled settings that are specified using an easily
accessible Properties dialog. These include security settings for individual PDF reports, HTML
output display settings, font mapping, currency formatting, and other output-specific settings.

See Set Report Processing and Output Document Properties. These settings are also
configured at the system-level, but can be customized per report.

About Translations
Publisher provides the ability to create an XLIFF file from RTF templates. XLIFF is the XML
Localization Interchange File Format, and is the standard format used by localization providers.
Using Publisher's XLIFF generation tool you can generate the standard translation file of an
RTF template.

You can then translate this file (or send to a translation provider). Once translated, the file can
be uploaded to the report definition under the appropriate locale setting so that at runtime the
translated report runs automatically for users who select the corresponding locale.

See Translation Support Overview and Concepts.

Chapter 9
About Setting Run-Time Properties

9-2

About Style Templates
A style template is an RTF template that contains style information that can be applied to
layout templates. The style information in the style template is applied to report layout
templates at runtime to achieve a consistent look and feel across your enterprise reports.

See Create and Implement Style Templates.

About Sub Templates
A Sub Template is a piece of formatting functionality that can be defined once and used
multiple times within a single layout template or across multiple layout template files.

This piece of formatting can be in an RTF file format or an XSL file format. RTF subtemplates
are easy to design as you can use Microsoft Word native features. XSL subtemplates can be
used for complex layout and data requirements.

See Understand Subtemplates.

Chapter 9
About Style Templates

9-3

10
Create and Edit Reports

This topic describes how to create and edit pixel-perfect reports.

Topics:

• About Report Components

• Create Reports: Process Overview

• Create Reports

• Create Reports Using a Direct Connection to a Subject Area

• Edit Reports

• Add Layouts to the Report Definition

• Configure Layouts Using the List View

• Configure Parameter Settings for the Report

• Configure Report Properties

• Access Reports via a URL

About Report Components
The first step in creating a new report is to select the source of the data for the report. A Data
Model defines data that is used by a report.

A report typically consists of the following components:

• Data Model

• Layout

• Properties

• Translations

A Data Model may contain multiple datasets and it defines how data fields are structured in
relation to each other. It may also contain parameters with lists of values, bursting definitions
and other structures or properties that determine how data is provided to a report.

Reports that use Oracle Business Intelligence Subject Areas as the data source do not require
a separate data model. See Create Reports Using a Direct Connection to a Subject Area.

The next step is to design a layout for the report data. The layout defines how the data is
presented in the report. A layout consists of a template file and a set of properties for rendering
the template file. Publisher supports templates created from a variety of sources including
Microsoft Word, Adobe Acrobat, Microsoft Excel, and Publisher's own layout editor. A report
can include multiple layouts.

Next, configure the properties for the report. The report properties enable you to control many
aspects of the report generation, formatting, and display.

10-1

Optionally, add translations for the report. Publisher's translation support enables you to
include translations for individual layouts or for all translatable strings in the layout, data model,
and the report metadata.

This topic describes the process of creating a report by selecting a data model, adding a
layout, and configuring properties using the report editor.

Topic More Information

Creating a data
model

Selecting a
layout type

About the Layout Types

Creating
specific layout
template types

Create Publisher Layout Templates

Create RTF Templates

Create RTF Templates Using the Template Builder for Word

Create Excel Templates

Create PDF Templates

Create eText Templates

Translating
reports

Translation Support Overview and Concepts

Create Reports: Process Overview
The Create Report process guides you through the steps to create a basic report. After
creating the basic report, use the report editor to configure the report and create additional
layouts.

The Create Report process guides you through the following steps:

1. Launch the Create Report guide to select a data source, and create a basic report. You
can create a simple layout using the guide or add the layout later.

2. Edit the simple report layout that you created using the Create Report guide, or create a
new layout.

3. Configure the properties for the layout.

4. Configure parameters for the report.

5. Configure report properties.

6. Add translations for the layouts. Complete this step if the report requires support for
multiple languages.

Create Reports
Use the Create Report guide to create reports.

If your user interface preference is set to a bidirectional language, the Create Report guide
doesn't display all components in right-to-left orientation.

To create a report:

1. Launch the Create Report guide in one of these ways.

• From the global header, click New, and then click Report.

Chapter 10
Create Reports: Process Overview

10-2

• From the Home page, under the Create region, click Report.

• On the catalog toolbar, click New, and then click Report.

• From the Data Model editor page, click Create Report.

2. Follow the guided steps to select data and layout for the report, and if required add charts
and tables.

3. Save the report.

Select a Data Source
Building a report begins with selecting a data source.

Choose one of the following options to begin building your report:

• Use Data Model

Select an existing data model from the catalog.

Click Next to proceed to choose Guide Me or Use Report Editor.

• Upload Spreadsheet

Upload a Microsoft Excel file (file type.xls or .xlsx). If the uploaded spreadsheet contains
multiple sheets, select the sheet to use as the data source. You can include data from only
one sheet.

To use multiple sheets in a workbook, you first create a data model that includes each
spreadsheet as a dataset, and then use that data model as the data source for the report.

Click Next to proceed to choose Guide Me or Use Report Editor.

• Use Subject Area

Select a subject area from the repository. This option enables you to directly query the
server and eliminates the need to create a data model in Publisher. The Create Report
guide limits you to one subject area, however, you can create a report against multiple
subject areas using the report editor.

Click Next to proceed to choose Guide Me or Use Report Editor.

Choose Guide Me or Use Report Editor
You can either choose guide or to use the report editor on the Create Report page.

The following table describes the options on the Create Report page.

Option Description

Guide Me This option guides you through defining the layout of your data in
common predefined report styles. Choose this option to:

• Create a report with simple components
• Select a common report style with basic options
• Quickly view the data in preview mode
Proceed to select the report layout.

Use Report Editor This option prompts you to save the report and then opens the report
editor. Choose this option to proceed to configure the report or to create
a more complex layout.

Chapter 10
Create Reports

10-3

Select the Report Layout
When you choose Guide Me, you are prompted to select the report page options.

After you select the data source for the report, select the report page options and report layout
to define how data is displayed in the report.

To select report layout:

1. Select report page options as follows:

• Select the Portrait or Landscape page option to define the report page orientation.

• Select the Page Header option to include the date in the report page header.

• Select the Page Footer option to include the page number in the report page footer.

2. Select one of the following report layouts:

• Table (default)

• Chart

• Pivot Table

• Chart and Table

• Chart and Pivot Table

• Two Charts and Table

3. Click Next to proceed.

Save the Report
You can save the report layout and the columns you added.

Use the Save Report page as shown in the following illustration.

Chapter 10
Create Reports

10-4

Select one of the following options:

• To run the report you just created, click View Report and then click Finish. The final page
prompts you to save the report. After saving, Publisher runs and displays the report in the
report viewer.

• To customize the report layout, click Customize Report Layout and then click Finish. The
final page prompts you to save the report. After saving, the report opens in the layout
editor.

Choose Columns for Report Layouts
The layout that you select on the Select Layout page drives the remaining pages that you must
complete to create the report.

For example, if you select the Table layout, Create Table is the next page displayed.

After you select a layout, select the data source columns to include in the report. As you select
columns, sample data for the columns displays on the page. The selected columns display in
the order selected.

Keep the following points in mind about sample data:

• For data models: The Create Report process uses the sample data that is saved to the
data model. If sample data isn't attached to the data model, the selected column headings
display without data.

• For uploaded spreadsheets: Sample data is displayed from the selected spreadsheet.

• For subject areas: Sample data is displayed directly from the columns in the subject area.

Table Layout
On the Create Table page you add columns to the layout by dragging and dropping them from
the Data Source pane to the table area.

The columns are displayed in a simple tabular format and the column widths are automatically
adjusted based on the number of selected columns as shown in the following illustration.

To remove a column from the table, hover your mouse over the upper-right hand corner of the
column header and click Delete.

Chapter 10
Create Reports

10-5

The Show Grand Totals Row option is selected by default to automatically display an
aggregated summary row for all columns. Deselect this option to remove the row from the
table.

Click Preview Report to display the report in the report viewer.

Click Next to proceed to save the report.

Chart Layout
The Chart Layout page supports three types of charts. Choose the chart type by clicking its
icon: Bar, Line, or Pie. Add columns to the chart by dragging and dropping them from the Data
Source pane to the chart area.

The following figure shows the create chart layout. You can specify two values each to display
for the chart Value, Series, and Label.

The layout editor supports a variety of more complex charts. To add more values to this chart
or create another chart type, edit this layout in the layout editor after saving the report.

Chapter 10
Create Reports

10-6

To remove a value from the chart, hover your mouse over the upper-right hand corner of the
item label and click Delete.

Click Preview Report to display the report in the report viewer.

Click Next to proceed to save the report.

Chart and Table Layout
When you select the chart and table layout, you add columns to the Create Chart page first,
click Next, and then the Create Table page displays with the columns that you previously
selected for the chart.

You can also add additional columns and remove columns on this page.

Click Next to proceed to save the report.

Pivot Table Layout
When you select columns for the pivot table layout, the columns display on the Create Table
page.

The figure below shows the columns displayed.

Chapter 10
Create Reports

10-7

The Show Row Grand Totals option is selected by default. Deselect this option to hide the
row in the table that includes the grand total for each column.

The Show Column Grand Totals option is selected by default. Deselect this option to hide the
column in the table that includes the grand total for each row.

Click Switch Rows and Columns to flip the rows and columns axes.

Click Preview Report to display the report in the report viewer.

Click Next to proceed to save the report.

Chart and Pivot Table Layout
When you select the chart and pivot table layout, you add columns to the Create Chart page
first, click Next, and then the Create Table page displays with the columns that you previously
selected for the chart. You can also add additional columns and remove columns on this page.

Click Next to proceed to save the report.

Chapter 10
Create Reports

10-8

Two Charts and Table Layout
When you select the two charts and table layout, you add columns to the Create Chart page
first, click Next, and then Create 2nd Chart.

Once you add columns to the Create 2nd Chart page, click Next to display the Create Table
page. The Create Table page displays with the columns that you already selected for the first
chart. You can also add additional columns and remove columns on this page.

Click Next to proceed to save the report.

Create Reports Using a Direct Connection to a Subject Area
Subject area reports contain queries that are issued directly to Oracle BI Server, therefore the
report doesn't use a Publisher data model.

When you run a report that uses a subject area as a data source, the Oracle BI Server
optimizes and determines how many queries are actually issued to the database based on the
columns selected for the report.

Keep the following points in mind when creating a subject area report:

• You must use the Create Report guide to create subject area reports.

• No data model is created for a subject area report. Publisher executes the subject area
queries as defined in Oracle BI Enterprise Edition to retrieve the report data.

• In the Create Report guide, you can only select one subject area for a report. To create a
report that uses multiple subject areas, first create a report against a single subject area
using the Create Report guide and then edit the report in the report editor to add subject
areas. See Create a Report Against Multiple Subject Areas.

• For reports that use a subject area, Publisher calculates subtotals and totals based on the
data received from the BI Server, which is already summarized. As Publisher isn't
performing the summary calculations, certain functions that require access to the original
column data, such as count distinct and average, may deliver different results in Publisher .

• Hierarchical columns that are available in Oracle BI Enterprise Edition are not available for
use in subject area reports in Publisher .

• Be aware that if you link multiple fields from unrelated subject areas in a single report
component such as a graph, table, or pivot table, the rendering of the component may fail
because the data cannot be correlated correctly.

• If you want to generate a CSV output for the subject area, specify the subject area
(analysis) as a data source in the data model.

Create Subject Area Reports
You can create a subject area report by launching the create report guide.

To create a subject area report:

1. Launch the Create Report guide.

2. Select a subject area. Only one subject area can be selected.

To report against multiple subject areas, after selecting the first subject area, select the
Use Report Editor option, and click Finish to save the report. Then, use the report editor
to add the additional subject areas.

Chapter 10
Create Reports Using a Direct Connection to a Subject Area

10-9

3. Follow the prompts to create your report layout as described in Choose Columns for
Report Layouts.

Add Parameters to Subject Area Reports
Parameters are usually defined in the data model for Publisher reports. Reports that run
directly against a subject area do not use a data model, therefore, you must use the report
editor to set up parameter definitions for subject area reports.

If you intend to use a subject area report in an Oracle BI Enterprise Edition dashboard and you
need to use parameters.

Add parameters to subject area reports

1. Create and save the report as described in Create Subject Area Reports.

2. In report editor, click Parameters to launch the Edit Parameters dialog as shown in the
following figure.

3. Click Add to launch the Select a Column to Define Parameter dialog as shown in the
following figure.

Chapter 10
Create Reports Using a Direct Connection to a Subject Area

10-10

4. Select a parameter column and click OK to launch the Edit Parameter dialog as shown in
the following figure.

The options displayed for selection in the Edit Parameter dialog are driven by the
parameter column data type.

Chapter 10
Create Reports Using a Direct Connection to a Subject Area

10-11

5. Enter the parameter label to be displayed in the report.

6. Select a parameter display option:

• Calendar - Provides users with a field into which they can enter a specific date, as well
as a calendar pop-up to select a date. This display option is only available for selection
if the parameter has a date column type.

• Choice List - Provides users with a collapsed list of all prompt values. This display
option is useful for a long list of values where you want to provide the user with the
ability to search for a specific value.

• Checkboxes - Provides users with a visible list of all prompt values where a small,
selectable box displays before each value item. This display option is suitable for a
prompt that contains a smaller set of data.

• Radio Buttons - Provides users with a visible list of all prompt values where a radio
button is displayed before each prompt value. This display option is useful for short
lists of values where the user is to select only one prompt value.

• Text - Provides users with a field into which they can enter a specific prompt value.
This display option cannot be used for multiple prompt values. Only the field and the
field label are displayed for this option.

7. Select the parameter operator. The default value is set to is equal to/is in.

8. Click OK.

Create a Report Against Multiple Subject Areas
You can use the report editor to link a report to multiple subject areas.

To add multiple subject areas to a report:

1. Use the report editor to open the report. The upper left corner displays the subjects areas
already linked to the report.

2. Click Edit Subject Areas to launch the Select Subject Areas dialog as shown in the
following figure:

Chapter 10
Create Reports Using a Direct Connection to a Subject Area

10-12

3. From the Available pane, select one or more subject areas.

4. Click Add to move the subject area(s) to the Selected pane.

5. Click Finish.

Edit Reports
Navigate to the report editor through the Create Report process flow or by clicking a report's
Edit link in the catalog.

The report editor is shown in the following figure:

Chapter 10
Edit Reports

10-13

Use the report editor to:

• Add layouts

• Configure layouts

• Configure the parameters for this report

• Configure the report properties

• Update the data model associated with the report

This procedure addresses these options in the order listed.

Add Layouts to the Report Definition
You can add a layout to a report in three different ways:

• Create Layout - Select one of the basic or shared templates to launch the Layout Editor.

• Upload Layout - Upload a template file layout that you have designed in one of the
supported file types.

• Generate Layout - Automatically generate a simple RTF layout.

1. Navigate to the report editor through the Create Report process flow or by clicking a
report's Edit link in the catalog.

2. Click Add New Layout.

If you want to update the template of a report, you can upload a new template of the same
type. For example, to update an RTF template of report, edit the report and upload the new
RTF template. However, you can’t upload an XSL template to replace the RTF template.

Add a Layout Using the Layout Editor
Follow these steps to add a layout using the Layout Editor.

Chapter 10
Add Layouts to the Report Definition

10-14

1. Under the Create Layout region, click one of the basic or shared templates to launch the
Layout Editor. The shared templates are preformatted layouts with common report
components already inserted.

2. Design the template.

3. When finished, click Save. In the Save Template dialog enter a name for this layout and
select a locale. Click Save.

4. Click Return to return to the Report Editor.

5. Configure the settings for the layout.

Add a Layout by Uploading a Template File
Uploading a template file assumes that you've already created a template file.

To add a layout by uploading a template file:

1. Under the Upload or Generate Layout region, click the Upload icon.

2. In the Upload dialog, perform the following:

• Enter a Layout Name.

• Click Browse to locate the Template File in the local file system.

• Select the Template Type from the list.

• Select the Template Locale from the list.

• Click Upload.

If you are connected to Publisher through the Template Builder, then you can upload the layout
file directly from the client tool.

Add a Layout by Generating a Template File
Follow these steps to add a layout by generating a template file.

1. Under the Upload or Generate Layout region, click the Generate icon.

2. In the Autogenerate Layout dialog, perform the following:

• Enter a Template Name for the layout.

• Click Generate.

The autogenerate feature creates a simple table-based RTF layout that includes all the fields in
the data model. The feature can only be used with datasets for which metadata is available.
Therefore, this feature can't be used with datasets generated from stored XML files, HTTP
feeds, web services, or migrated data templates.

Configure Layouts Using the List View
After creating or uploading the layouts for the report, you can configure settings for the layout
from the List View.

The following figure shows the List View.

Chapter 10
Configure Layouts Using the List View

10-15

Apply a Style Template to the Layout
A style template contains style definitions that are applied to the paragraphs, headings, tables,
and headers and footers of a report. A style template is optional and can only be applied to an
RTF template file.

1. Click Choose to browse for and select the style template.

2. To apply the style template to an individual layout in the list, select the Apply Style
Template box for that layout in the list of properties.

About the Layouts Toolbar
The table explains the actions that you can do with the layout toolbar buttons.

The Layout toolbar buttons are described in the following table.

Toolbar Button Description

Create Launches the add layout page to upload or create a new layout.

Edit Launches the Layout Editor for the selected layout. This button is enabled for
Publisher layouts (.xpt) only.

Properties Launches the Properties page to enable the upload of localized templates and
XLIFF files to associate with this layout. This button is enabled for RTF (.rtf)
and Publisher layouts (.xpt) only.

Delete Deletes the selected layout.

Configure the Layout Settings Using the List View
Configure these layout settings using List View.

The settings are described in the following table:

Setting Description

Name Place the cursor in the text box to enter a new name for the layout.

Template File Displays the name of the file that was saved to the report definition. Click
the template file name to download it.

Type Displays the template file type.

Output Formats Select the output types to be enabled for this layout. By default, all valid
output types for a layout are enabled. The layout type determines the
output types available. See Select Output Formats for the complete list.

Chapter 10
Configure Layouts Using the List View

10-16

Setting Description

Default Format Select the default output format for this layout when viewed or
scheduled.

Default Layout Select the layout that this report uses by default when viewed online or
scheduled. Only one box in this column can be checked.

Apply Style Template Select this box to apply the style template to this layout. Note that a style
template can only be applied to RTF template files. See Apply a Style
Template to the Layout.

Active By default a layout is active. Clear this box when you want to keep the
layout as part of the report definition, but no longer make it available.
When a layout is inactive it doesn't display in the report viewer or the
scheduler.

View Online By default, a layout is available for report consumers who open the
report in the Report Viewer. If this layout is for scheduled reports only,
clear this box.

Locale (Read-only) Displays the locale selected when the layout was uploaded.

Select Output Formats
You can use a wide range of output formats.

Different layout types support different output types. The following table lists all possible output
types.

Output Format Description

Data (CSV) Enable this option to generate comma separated value output.

Data (XML) Enable this option to generate XML output.

Excel (*.xlsx) Enable this option to generate the report in Excel.xlsx (Excel XML format). If your
report consumers have Excel 2007 or later installed, this option provides the best
preservation of layout and formatting.

For this output format, Publisher doesn't apply any formatting for number and date.
Publisher saves the formatting mask and the actual value (date or number) into the
XLSX output file. The formatting is handled by Microsoft Excel. For example:

• If the Microsoft Windows Region and Language of the client computer is set to
English (United States), then the numbers and dates are formatted in en-US
locale in the Excel 2007 output file.

• If the Microsoft Windows Region and Language of the client computer is set to
French (France), then the numbers and dates in the same Excel 2007 output
file are formatted in fr-FR locale.

FO Formatted XML This option generates a XSL-FO (Extensible Stylesheet Language Formatting
Objects) file. This output type is useful for debugging templates.

HTML Enable HTML output for reports that require browser viewing.

Interactive This output is only available for layouts designed using Publisher's Layout Editor.
Interactive output enables pop-up chart value displays, scrollable and filterable
tables, and other interactive features for a report.

MHTML Enable Mime Hyper Text Markup Language to allow the report consumer to save a
Web page and its resources as a single MHTML file (.mht), in which all images and
linked files are saved as a single entity. A report consumer would use this option to
send or save HTML output and retain the embedded images and stylesheet
formatting.

Chapter 10
Configure Layouts Using the List View

10-17

Output Format Description

PDF Portable Document Format is commonly required for reports that require printing or
sharing.

PDF/A Use for reports that require long-term preservation or archiving. PDF/A is a
specialized subset of the PDF standard that prohibits elements that may interfere
with the preservation of the file as a self-contained document.

PDF/X Use for reports that require formatting for prepress graphics exchange. PDF/X is a
specialized subset of the PDF standard that streamlines documents for high-quality
print production output and restricts content that doesn't serve the print production,
such as signatures, comments, and embedded multimedia.

PowerPoint (*.pptx) Enable this output type to generate a Microsoft PowerPoint file in Microsoft Office
Open XML format. This output type is supported for versions of Microsoft
PowerPoint 2007 and later.

RTF Rich Text Format. Enable this output for reports that must be opened for editing.

Text This option generates text output for eText templates. Text output is available only
for eText templates.

Word Generates Microsoft Word .docx file.

Zipped PDFs Publisher can generate a zip file containing the report PDF output and index files.
This option is only available for layouts that have been designed to enable zipped
PDF output. For information on designing a report to generate zipped PDF.

The following table lists valid output formats for each layout type.

Layout Type Valid Output Types

Publisher template created using the
layout editor (XPT)

Data (CSV), Data (XML), FO Formatted XML, HTML,
Interactive, MHTML, PDF, PDF/A, PDF/X, PowerPoint (*.pptx),
RTF, Word, Zipped PDFs

RTF template (RTF) Data (CSV), Data (XML), Excel (*.xlsx), FO Formatted XML,
HTML, MHTML, PDF, PDF/A, PDF/X, PowerPoint (*.pptx),
RTF, Word, Zipped PDFs

PDF template (PDF) Data (CSV), Data (XML), PDF, Zipped PDFs

Excel template (XLS) Data (CSV), Data (XML), Excel (*.xls)

XSL Stylesheet (FO) (XSL) Same outputs as RTF template

XSL Stylesheet (HTML XML/Text) (XSL) Data (CSV), Data (XML), HTML, Text

eText template (RTF) Data (CSV), Data (XML), Text

Analyzer template (XPA) (Supported for backward compatibility only.) Analyzer
templates can be uploaded from previous versions of
Publisher. The Online Analyzer in current versions exports the
online analysis to layout editor templates (.xpt).

Data (CSV) and Data (XML) output formats are available for all layout types. However, when
you select either of these formats, no layout formatting is applied and only data is included in
the output.

Edit a Layout
Follow these steps to edit a Publisher layout and other template types.

To edit a Publisher layout (.xpt file type):

Chapter 10
Configure Layouts Using the List View

10-18

• Select the report from the list and click Edit.

To edit any other template type:

• Click the File name link to download the layout to a local computer for editing.

Configure Parameter Settings for the Report
Parameters are defined in the data model. The report editor enables you to configure the
parameter settings specifically for each report that uses the data model.

1. On the Report Editor page, click Parameters. The Parameters dialog is displayed as
shown in the following figure:

2. Customize the parameter settings for this report by making selections for the following
display options:

Parameter Location - This property controls where the parameter region is displayed in
the report viewer. The options are:

• Horizontal Region - Displays the parameters horizontally across the top of the report
viewer.

• Vertical Region - Displays the parameters vertically along the left side of the report
viewer.

• Full Page - Displays the parameters on a separate page in the report viewer. After a
user enters parameter values, the page is dismissed. To change parameter values,
click the report viewer Parameters button to display the Parameters page again.

• Dialog - invokes a dialog box to display the parameters. After a user enters parameter
values, the dialog is dismissed. To change parameter values, click the report viewer
Parameters button to display the dialog again.

Parameter Label Location - This property controls where the parameter labels are
displayed. The options are:

• Place label on side - Places the parameter label to the left side of the entry box.

• Place label on top - Places parameter label on top of the entry box.

Chapter 10
Configure Parameter Settings for the Report

10-19

Show Apply Button - This property controls the display of the Apply button in the report
viewer.

When set to True, reports with parameter options display the Apply button in the report
viewer. When a user changes the parameter values, he must click Apply to render the
report with the new values.

When set to False, the report viewer doesn't display the Apply button. Instead, when a
user enters a new parameter value, Publisher automatically renders the report after the
new value is selected or entered without further action from the user.

This property is also set at the server level. To always use the server setting, choose the
Default option.

When deciding whether to remove the Apply button, consider the ability of the underlying
data sources to quickly return data. Lists of values that're based on static lists or very fast
data sources are ideally suited to turning off the Apply button. If the underlying data
sources for the lists of values queries are slow, or if there're many parameter values to set
and refine before rendering the report, then retaining the Apply button is recommended.

Show - This property controls whether the parameter is displayed to the user. Disable the
Show property if you don't want the user to see or change the parameter values that're
passed to the data model.

Don’t hide a parameter on which other parameters depend. If the value of a hidden
parameter changes, then any parameters that dependent on that hidden parameter aren’t
updated. This lack of updating might cause report generation to fail with a message such
as "Invalid Parameter Requested".

Type - This property is customizable for menu type parameters only. For menu type
parameters, the following display options are available:

• Check box - If the parameter allows multiple selections, (Multiple = True) this option is
available. The check box type displays all menu options in the parameter region of the
report. Users can make multiple selections, as shown the following figure:

• Radio button - If the parameter allows only a single selection (Multiple = False), this
option is available. The radio button type displays all menu options in the parameter
region of the report. Users can make a single selection as shown in the following
figure:

Chapter 10
Configure Parameter Settings for the Report

10-20

– The check box and radio button options are best suited for menus when the list of
values is small. These options also display well when the Parameter Location is
the vertical region.

Multiple - This property is display only; it indicates whether multiple values may be
selected for a menu parameter.

Display Label - Use this property to edit the display labels shown for each parameter. The
default values are defined in the data model.

Default Value - Use this property to configure the default value for the parameter
specifically for this report. Choose Default to pass the default value defined in the data
model.

Row Placement - Use this property to configure the number of rows for displaying the
parameters and in which row to place each parameter. For example, if your report has six
parameters, you can assign each parameter to a separate row, 1 - 6, with one being the
top row; or, you can assign two parameters each to rows 1, 2, 3. By default, all parameters
are assigned to row 1.

• When the Parameter Location property is set to Vertical Region, only one parameter
displays per row. You can use the Row Placement property to order the rows vertically.

Configure Report Properties
In the report editor, click Properties and launch the Report Properties dialog to configure
report properties.

The Report Properties dialog has the following option sets:

• General - Set general properties for the report.

• Caching - Specify caching options for this report.

• Formatting - Set the runtime configuration properties for the report.

• Font Mapping - Create font mappings for this report.

• Currency Format - Define currency formats for this report.

Set the General Properties
Set the properties on the General tab as follows:

Run Report Online
Disable this property if you don't want users to view this report in the online Report Viewer.

When disabled, users can Schedule the report only. For most reports you keep this enabled.
Disable it for long-running, batch, or other reports for which online viewing isn't appropriate.
When this property is enabled, you can also set the properties described in the following table.

Property Description Default

Show controls This property controls the display of the control region of the
report. The Control region consists of the Template list,
Output list, and Parameter lists. Disable this property if you
don't want users to view and update these options.

Enabled

Chapter 10
Configure Report Properties

10-21

Property Description Default

Allow Sharing
Report Links

The Actions menu of the Report Viewer includes the option
Share Report Link, which enables users to display the URL
for the current report. Disable this property if you don't want
users to see and copy the report link.

Enabled

Open Links in
New Window

This property controls how links contained within a report are
opened. By default links open in a new browser window.
Disable this property to open links in the same browser
window.

Enabled

Auto Run When this property is enabled, the report automatically runs
when the user selects the Open link for the report. When Auto
Run is disabled, selecting the Open link for the report displays
the online viewer but doesn't run the report. The user must
select an output type from the View Report menu to run the
report.

Enabled

Advanced Options
You can set the advanced properties for a report.

The following table describes the advanced property options.

Property Description

Job Priority Specifies the priority for the report. You can assign Critical, Normal, or
Low priority for a report. By default, the priority of a report is Normal.

Publisher sets the JMS Priority to sort the scheduled report jobs based
on priority, and enables the high priority report jobs to run before the
non-critical jobs.

If all the reports have the same priority, Publisher processes the reports
in First In First Out (FIFO) order. You can view the priority settings of
jobs in the Report Job History page.

Send Output as URL Specifies whether to send the report output as a URL. This report-level
property overrides the setting of the Email Output as URL instance-
level property. Administrators and report authors and can configure this
report-level property.

• Instance Level - Select this option to configure the report-level
property to the same value as the Email Output as URL instance-
level property.

• Enabled - Select this option to configure the report to send the
report output as a URL, no matter the setting of the Email Output
as URL instance-level property.

• Disabled - Select this option if you don't want to send the report
output as a URL, even though the administrator has enabled the
Email Output as URL instance-level property.

Save XML for Republishing Specifies whether to save the XML data for republishing the report.
Deselect this option to disable generation of the XML data file for the
report.

Disable "Make Output
Public" option

Select this option to prohibit anyone from scheduling this report to make
the output public. This disables the Make Output Public option for the
report in the Output tab of the Schedule Report Job page.

Chapter 10
Configure Report Properties

10-22

Property Description

Enable Bursting Select this option to enable bursting of the report output, and then select
the appropriate bursting definition from the list. When a user schedules
the report, the selected bursting definition will be enabled in the
Scheduler.

The bursting definition is a component of the data model.

Enable Chunking | Chunk
Size

Select this option to enable XML data chunking for a report job and
specify the data size for each chunk. The layout processor outputs
individual XML data chunks and merges them to generate a
consolidated final report output. This option is available only if you have
enabled XML data chunking at the server level.

XML data chunking isn't available for online reports. XML data chunking
in a report job supports RTF, XPT, and eText output formats, but you
can't schedule a job to output in multiple formats.

Ignore Email Domain
Restrictions

Select this option to ignore the values set in the Allowed Email Recipient
Domains property in the delivery configuration page.

Report is Controlled by
External Application. Users
cannot run or schedule
report from catalog, can
view history

Select this option when Publisher is integrated with another application
that controls the generation of this report, and you do not want users to
run and view this report directly from the catalog. Reports run by
Publisher are stored in the Publisher history tables and users can view
completed reports from the Report Job History page.

Enterprise Scheduler Job
Package Name

Specifies the name of the enterprise scheduler job package.

Enterprise Scheduler Job
Definition Name

Specifies the name of the enterprise scheduler job definition.

Set the Caching Properties
Set these options for caching.

The following illustration shows the Caching tab.

Chapter 10
Configure Report Properties

10-23

The following table describes the properties on the Caching tab.

Variable Description Default

Enable Data
Caching

When this property is enabled, the data generated by the
online submission of this report is stored in the cache.
Subsequent requests to run this report with the same
parameter selections display the report using the data from
the cache. This setting enhances performance by using
stored data to generate a report rather than regenerating the
data from the source. The data remains in the cache
according to the time limit that's specified in the Cache
Duration property. You can control whether the cache for the
report is shared by users by setting the User Level property.

Not Enabled

Caching Duration
(Minutes)

Enter the time limit for a report dataset or document to remain
in cache. Once the time limit has expired, the next request for
the same report generates a fresh dataset.

30 minutes

User Level This property stores a separate cache for each user. The
report data shown to each user comes only from the private
cache. When enabled, this property ensures that each user
can only see data that they're authorized to view. However,
user-level cache has less efficient performance. If the report
data isn't user sensitive, you can disable this property to
enhance performance.

Enabled

Document
Caching

Enable this property to cache the report document. With
document cache enabled, when a user views the report
online, the document (data plus layout) is placed in the cache.
When any other user (unless User Level is enabled) uses the
online viewer to view the exact same report (same layout,
same output type, same parameter selections) the document
is retrieved from the cache. The document remains in the
cache according to the caching duration specified. Scheduled
reports don't use document cache.

Enabled

User Can Refresh
Report Data

When this property is enabled, the user can choose to refresh
the data on demand. When the user clicks Refresh in the
report viewer, Publisher generates a fresh dataset for the
report.

Not Enabled

Set the Formatting Properties
The Formatting properties tab enables you to set runtime properties at the report level.

These same properties can also be set at the system level, from the Administration page. The
Formatting properties tab displays both the system-level setting and the report-level setting for
each property. If different values are set at each level, the report level takes precedence.

For a full description of each property, see Set Report Processing and Output Document
Properties.

Configure Font Mapping
You can map base fonts in RTF or PDF templates to target fonts to be used in the published
document. Font mappings can be set at the report level or the system level. The administrator
configures the system level font mappings in the Runtime Configuration page. When you view
the report properties Font Mapping tab, any system level settings are displayed. To change the
settings for this report, edit the font mappings here.

Chapter 10
Configure Report Properties

10-24

1. Under RTF Templates or PDF Templates, Click Add.

2. Enter the following in the new row:

• Base Font: Enter the font family to map to a new font. Example: Arial

• Select the Style: Normal or Italic (Not applicable to PDF Template font mappings)

• Select the Weight: Normal or Bold (Not applicable to PDF Template font mappings)

• Select the Target Font Type: Type 1 or TrueType

• Enter the Target Font.

If you selected TrueType, then you can enter a specific numbered font in the collection.
Enter the TrueType Collection (TTC) Number of the desired font.

Configure Currency Formats
In the Currency Format tab, map a number format mask to a specific currency so that reports
can display multiple currencies with their own corresponding formatting. Currency formatting is
only supported for RTF and XSL-FO templates.

Currency formats can be set at the report level or the system level. The report properties
display the system level settings in the Currency Format tab. You can edit the currency format
and change the settings for the report.

To apply these currency formats in an RTF template, you must use the format-currency
function.

1. Click the Add icon.

2. Enter the ISO currency code, for example: USD, JPY, EUR, GBP, INR.

3. Enter the format mask to apply for this currency.

The Format Mask must be in the Oracle number format. The Oracle number format uses
the components "9", "0", "D", and "G" to compose the format, for example: 9G999D00

where

9 represents a displayed number only if present in data

G represents the group separator

D represents the decimal separator

0 represents an explicitly displayed number regardless of incoming data

The following figure shows sample currency formats:

Chapter 10
Configure Report Properties

10-25

Access Reports via a URL
You can call a report via a URL from another application.

Use the report URL format and specify the parameters for the report in the URL.

Report URL Format
You can call a report using a URL, for which you can build the URL.

The basic URL for a report is:

https://<server:port>/ui/xmlpserver/<ReportDirectory>/<ReportName>.xdo
or

https://<server:port>/xmlpserver/<ReportDirectory>/<ReportName>.xdo
where

server:port is the name of the server and port number where Publisher is running
ui is a static string for the user interface path
xmlpserver is a required static string (the name of the application)
ReportDirectory is the folder path to the report. When the report is under Shared Folders,
don't include "Shared Folders" in the path. If the report is under My Folders, include the
~username as the first node in the path. See the examples following.
ReportName.xdo is the name of the report with the .xdo extension. If the name contains
spaces, replace the space with a "+" character.

Examples

The following examples render the complete report inside the report viewer with all the report
controls.

Chapter 10
Access Reports via a URL

10-26

The following URL launches the North America Sales report. The report resides in the catalog
under Shared Folders/Samples/Sales. Note that Shared Folders isn't included in the path.

https://example.com:7001/xmlpserver/Samples/Sales/
North+America+Sales.xdo
The following URL launches the North America Sales report that resides in the catalog under
My Folders/Samples/Sales. Note that the user name in this case is weblogic, therefore the first
node in the path is ~weblogic.

https://example.com:7001/xmlpserver/~weblogic/Samples/Sales/
North+America+Sales.xdo

Report URL Parameters
When you use a URL to call a report, you can specify parameters in the URL.

The default layout, default output format, and default parameters are used to render the report.
You can add parameters to the URL to specify how the report renders.

When you construct the URL, note the following standard URL syntax:

• ? denotes the first parameter

• & denotes each additional parameter

The following table describes the parameters you can add to the URL.

Parameter Definition Example Usage

_xpt Specifies whether to render the report in the report viewer or
export the document to a new window appropriate for the
output type. For example, if the output type specified is html,
the report document (only) will render in a browser window; if
the output type is PDF you will be prompted to save or open
the PDF document. When this parameter isn't specified, the
report renders in the report viewer.

Valid values are:

• 0 renders the report in the report viewer

• 1 exports the document to appropriate application
window

_xpt=0

_xdo (Optional) Provides the path to the report. _xdo=%2FSamples%2FSalary+Rep
ort.xdo

_xt Specifies the layout to use. Enter the name of the layout as
defined in the report definition. If an invalid name is entered,
the default layout is used.

_xt=Manager+Summary

Chapter 10
Access Reports via a URL

10-27

Parameter Definition Example Usage

_xf Specifies the output format. If no value is specified, the
default output format is used. If an invalid value is specified,
or, if a value is specified that isn't enabled for the layout, the
report doesn't render. Valid values are:

• analyze for Interactive output

• rtf
• docx
• pdf
• html
• pptx for PowerPoint 2007

• ppt for PowerPoint

• xml for data

• excel for Excel

• excel2000 for Excel 2000

• xslx for Excel 2007

• csv

_xf=pdf

Report parameters as
named in the data
model

Specify name-value pairs for the parameters specific to the
report. You must use the parameter name as defined in the
data model.

dept=10

_xmode Specifies the report viewer mode. If not specified, defaults to
view in the full report viewer. Valid values are:

• 0 to view in the full report viewer.

• 1 to hide Publisher banner, hide parameters, can change
layout, other actions: export only.

• 2 to hide Publisher banner. (No Header)

• 3 to hide Publisher banner and parameters. (No
Parameters)

• 4 to hide Publisher banner, parameters, other actions,
and layouts. (Document Only)

_xmode=1

Example:

https://example.com:7001/xmlpserver/Samples/Salary+Report.xdo?
_xpt=0&_xdo=%2FSamples%2FSalary%20Report.xdo&_xmode=4&dept=10&_xt=Simp
le&_xf=html
This URL runs the "Salary Report" report located under Shared Folders/Samples. Note the
following:

_xpt=0 renders the document in the report viewer

_xdo=%2FSamples%2FSalary%20Report.xdo defines the report path

_xmode=4 renders the document only

dept=10 sets the report-specific parameter "dept" to "10"

_xt=Simple uses the layout called "Simple"

_xf=html sets the output format to html

Chapter 10
Access Reports via a URL

10-28

About the Layout Editor Interface
The illustrated figure shows the layout editor interface.

The Layout Editor interface comprises the following:

• The top of the Layout Editor contains two toolbars:

– The Static toolbar is always available and contains common commands such as save
and preview.

– The Tabbed toolbar includes the Insert tab, the Page Layout tab, and a dynamic tab
that shows the most commonly used actions and commands for the selected layout
component. You can collapse this toolbar to make more room to view the design area.
See About the Tabbed Toolbar.

• The accordion pane on the left contains the following:

– Use the Data Source pane to select the data fields to drag to the layout components.

– Use the Components pane to select layout components and drag them to the design
area. You can also use the Insert tab to insert components when this pane is
collapsed.

Chapter 10
About the Layout Editor Interface

10-29

– Use the Properties pane to modify properties for the selected layout component.

You can expand and display each control by clicking the title of the control or the plus sign
next to the title of the control. You can collapse the entire accordion pane to allow more
room to view the layout.

• The lower right region is the design area for building the layout.

About the Data Source Pane
The Data Source pane displays the structure of the data model and the data elements that are
available to insert into the layout.

To insert a data element, select and drag it from the Data Source pane to the component in
the layout.

The data type for each field is represented by an appropriate icon: number, date, or text.

The following figure shows the data source pane. The icon beside each element indicates the
data type.

The JOB_TITLE element is shown as text, the SALARY element is shown as a number, and
the HIRE_DATE element is shown as a date data type.

Note that when you enter dates in the Layout Editor (such as a data comparison for a filter or
for conditional formatting), use one of the following XSL date or time formats: YYYY-MM-DD or
YYYY-MM-DDTHH:MM:SS.

Chapter 10
About the Layout Editor Interface

10-30

About the Components Pane
The Components pane contains the layout components that you can insert into a report.
These components include charts, pivot tables, and images. To insert a component, simply
drag and drop it to the layout.

You can also use the Insert menu to add components to the layout.

About the Properties Pane
The Properties pane displays the properties for the selected component. The properties
displayed are determined by the selected component. Some of the properties available in the
Properties pane are also editable in the dynamic tab for the component.

Click a property value to edit it. The change is applied to the component when you move the
cursor out of the field. Collapse or expand a property group by clicking the plus or minus signs
beside the group name.

The properties available for each component are discussed in detail in the corresponding
section for that component in this chapter. If a property field is blank, then the default is used.

The following figure shows a sample Properties pane for a table column header.

Chapter 10
About the Layout Editor Interface

10-31

About the Tabbed Toolbar
The section defines the tabs and their functions in the Tabbed toolbar.

The Tabbed toolbar contains the following tabs:

• The Insert tab provides the components and page elements that can be placed on a
layout. See Insert Layout Components.

• The Page Layout tab provides common page-level tools and commands. See Page
Layout Tab.

• The component-specific tab provides the most commonly used commands and properties
for the component that is selected in the layout. For example, when you select a chart, the
Chart tab displays. See the section on a specific component for details on the commands.

To set or control more properties for the selected component, open the Properties pane in
the accordion pane, as described in About the Properties Pane.

Select and Delete Layout Objects
You can select layout objects to set the focus or remove the object entirely

Each of the component-specific tabs include the Select region.

• The Select tool enables you to control precisely which component on the layout has focus.
This ability is particularly helpful when working with a complex layout where components
overlap. For example, to select a table, it's sometimes difficult to click the correct spot to

Chapter 10
About the Layout Editor Interface

10-32

select the table and not a column, or header cell. To avoid unnecessary clicking, use the
Select tool to precisely select the Table component from the list.

The following illustration shows the Select tool.

• The Delete tool provides a similar function to the Select tool to enable you to precisely
select the component to delete.

About the Insert Tab
Use the Insert tab to insert report components and page elements.

The Components group displays the report components that you can insert into the layout. To
insert a component, select and drag the item to the desired location in the design area. For
more information about each component, see its corresponding section in this chapter.

The Page Elements group contains page-level elements for the report. To insert a page break,
the page number, or the total page number calculation, select and drag the component to the
desired position in the layout. Note that Page Elements are intended for paginated output
types, such as PDF and RTF. Using them in interactive or HTML output may have unexpected
results.

Chapter 10
About the Layout Editor Interface

10-33

11
Create Publisher Layout Templates

This topic describes creating Publisher layout templates using the layout editor for pixel-perfect
reporting.

Topics:

• Overview of Publisher Layouts

• Launch the Layout Editor

• About the Layout Editor Interface

• Page Layout Tab

• Insert Layout Components

• Insert Layout Grids

• About Repeating Sections

• About Data Tables

• About Charts

• About Gauge Charts

• About Pivot Tables

• About Text Items

• About Images

• About Lists

• Set Predefined or Custom Formulas

• Save a Layout

Overview of Publisher Layouts
Use the Publisher layout editor to create Publisher layout templates for pixel-perfect reports.

The Publisher layout template enables end users to:

• View Dynamic HTML output and perform lightweight interaction with their report data from
within a browser

• Generate high fidelity, pixel-perfect reports to PDF, RTF, Excel, PowerPoint, and static
HTML

The Publisher layout editor is a design tool that provides a WYSIWIG, drag and drop interface
for creating pixel-perfect reports in PDF, RTF, Excel, Word, PowerPoint, and HTML. It also
provides dynamic HTML output that supports lightweight interaction through a browser. This
interactive output is featured in the following illustration.

11-1

Notice the following features:

• Pop-up chart details - Hover cursor over chart items to display details of data.

• Group filtering - Grouped regions can be filtered by the grouping element.

• Scrollable tables - Table data can be scrolled while maintaining display of the headers and
totals.

• Table column sorting - Table data can be sorted by different columns from within the
viewer.

• Table column filtering - Table data can be filtered by values in different columns from within
the viewer.

• Automatic table totaling - Table data totals are automatically added to the layout.

• Propagated filtering - Filter other components by clicking on chart areas or by clicking on
pivot table header, column, or elements.

• Collapse and expand areas of the document.

When to Use a Publisher Layout
Publisher layouts are best suited for reports of simple to medium complexity that don't require
custom coding.

Chapter 11
Overview of Publisher Layouts

11-2

Because the dynamic HTML view is only available for Publisher layouts, always use a
Publisher layout when report consumers need an interactive report (change sorting, apply
filters, and so on).

Prerequisites, Recommendations, and Limitations
These tips will help you use Publisher more effectively.

• To use the layout editor, your account must be granted a role that includes the appropriate
permissions for accessing report layout tools.

• You must attach sample data to the data model before you create a new layout.

• For optimum viewing, set your display resolution to 1024 x 768 or higher.

• Publisher can handle a large amount of data for interactive sorting and filtering and still
provide fast response. It's bestter to summarize data in the Data Model to the level of
interest for the consumer for optimal performance. Publisher layouts can generate static
output such as PDF or RTF documents up to 50% faster than comparable RTF layouts
depending on the data.

• The layout editor doesn't support namespaces or attributes in the XML data.

Launch the Layout Editor
The layout editor is available in several places.

Launch the layout editor in one of the following ways:

• Create a New Report

• Edit a Report

• View a Report

Create a New Report
You can use the Layout Editor to change the appearance of a report.

To launch the Layout Editor when creating a new report:

1. Select the data model for the new report.

The Report Editor displays the Add Layout page.

2. From the Create Layout region, click a predefined template to launch the Layout Editor.

Edit a Report
You can alter the layout of a report using the Layout Editor.

To launch the Layout Editor when editing a report:

1. In the Report Editor:

From the Thumbnail view, click Add New Layout.

or

From the List view, click the Create button on the layouts table toolbar.

Chapter 11
Launch the Layout Editor

11-3

2. From the Create Layout region, click a predefined template to use to launch the Layout
Editor.

View a Report
You can change the layout of a report while viewing it.

To launch the Layout Editor when viewing a report:

• Click Actions and then click Edit Layout.

The layout must have been created in the layout editor.

Select a Predefined Layout
When you create a new layout, you are given the option of selecting a predefined layout to
help you get started.

The following illustration shows the predefined layouts offered by the Basic and Shared
Templates.

The Basic and Shared Templates offer common layout structures with specific components
already added. Choosing one of the predefined layouts is optional, but can facilitate layout
design. If your enterprise utilizes a common design that isn't available here, then you can add
predefined layouts for your own use, or your Administrator can add more for all users.

Add Shared Templates for All Users
Follow the steps to add redefined layout files to the shared directory for all users to access.

1. Log in with Administrator privileges and navigate to the Catalog.

2. In the Shared Folders directory, open the Components folder.

Chapter 11
Launch the Layout Editor

11-4

3. Locate the Boilerplates report and click Edit.

4. Click Add New Layout.

5. Design or upload the layout.

To design the layout: Click an existing boilerplate (or blank) to launch the layout editor.
Insert the components to the layout. When finished, click Save and give the boilerplate a
name. This layout is now displayed to all users in the Shared Templates region.

To upload a layout: Click Upload to upload a predefined Publisher Template (.xpt file).

6. Save the report.

Any Publisher Templates (.xpt) added to this report are displayed to all users as a Shared
Template.

Add Personal Predefined Layouts
Adding personal predefined layouts are available to your account user only. You can design the
layout by launching the layout editor or you can upload a predefined template.

1. Navigate to My Folders.

2. Create a new report called Boilerplate. This report doesn't have a data model.

3. Click Add New Layout.

4. Design or upload the layout.

To design the layout: Click an existing boilerplate (or blank) to launch the layout editor.
Insert the components to the layout. When finished, click Save and give the boilerplate a
name.

To upload a layout: Click Upload to upload a predefined Publisher Template (.xpt file).

These layouts are presented in the My Templates region when you create a new layout.

Page Layout Tab
The Page Layout tab contains commands to set up the layout.

The figure below shows the Page Layout tab.

Paper Options
Paper options include Orientation and Paper Size.

Option Description

Orientation Choose Portrait or Landscape.

Chapter 11
Page Layout Tab

11-5

Option Description

Paper Size Select from the following paper size options: Letter, Legal, A4, A3, Executive,
B5, Com-10, Monarch DL, or C5. The paper size determines the dimensions
of the layout area.

Header/Footer Options
This table describes the header and footer options.

Option Description

Page Header Click to insert a page header in the layout. By default, the page header
appears on every page of a printed report, but can be configured to skip the
first page. To remove the page header, click Page Header again.

Page Footer Click to insert a page footer in the layout. By default, the page footer appears
on every page of a printed report, but can be configured to skip the last page.
To remove the page footer, click Page Footer again.

Report Header Click to insert a report header to the layout. The report header appears only
once at the beginning of the report. To remove the report header, click Report
Header again.

Report Footer Click to insert a report footer to the layout. The report footer appears only once
at the end of the report. To remove the report footer, click Report Footer
again.

Set Properties for Headers and Footers
The Properties pane enables you to set the following properties for headers and footers.

To access the Properties pane, select the header or footer in the design region, then click
Properties from the accordion pane on the left of the page.

For all report and page headers and footers:

• Height - Set the height of the header region in pixels, points, centimeters, or inches

For headers:

• Show in the first page - Select True to show the header in the first page. Select False to
suppress the header from the first page.

This figure shows the Properties for a report header.

Chapter 11
Page Layout Tab

11-6

For footers:

• Show in the last page - Select True to show the footer in the last page. Select False to
suppress the footer from the last page.

View Options
The following table describes view options.

Option Description

Grid Click to insert gridlines in the layout design area. The grid unit size
depends on the Display Unit selected. To remove the gridlines, click
Grid again.

Ruler Click to insert a display ruler across the top of the layout design area.
The ruler units depend on the Display Unit. To remove the ruler, click
Ruler again.

Display Unit
Select the unit of measure to display. This unit is used for the ruler and grid view options, as
well as for any other function that displays a measurement, such as setting border widths and
sizing grid cells. Options are: inch, px (pixel), cm (centimeter), and point (pt).

Configure Events
The Configure Events option enables you to configure how components of the layout respond
to events triggered by a user when viewing the report in interactive mode.

The two types of events are:

• Filter - If you click an element in a list, chart, or pivot table, that element is used to
dynamically filter other components defined as targets in the report. The component being
clicked doesn't change.

• Show Selection Only - If you click an element of a list, chart, or pivot table, the chart or
pivot table (being clicked) shows the results for the selected element only. This action
doesn't affect other components of the report.

Chapter 11
Page Layout Tab

11-7

Example of Filter Event Configuration
The illustration here shows an example of filter event configuration. The layout contains two
charts and a table. The first chart shows salary totals by department in a pie chart. The second
chart shows salary totals by manager in a bar chart. The table displays a list of employees and
their salaries.

In this report, if a user clicks on a value in the Salary by Department chart, you want the Salary
by Manager chart and the Employees table to automatically filter to show only the managers
and employees in the selected department.

Configure Automatic Filtering
Follow these steps to know how to configure automatic filtering.

1. On the Page Layout tab, click Event Configuration to display the Configure Events
dialog.

The following figure shows the Configure Events dialog.

Chapter 11
Page Layout Tab

11-8

2. In the Components column, click the layout component (lists, charts, and pivot tables are
available to configure).

3. Select Filter to enable automatic filtering in other report components.

4. Select the report components in the Targets column to enable the automatic filtering
based on interactive events in the selected component. To disable the automatic filtering
for a target component, clear the box.

The preceding figure shows that the Filter event is enabled for Chart 1 in the layout. Chart
2 and Table 3 are selected as targets to enable automatic filtering when a selection event
occurs in Chart 1.

The Show Selection Only option isn't enabled for Chart 1. That means that Chart 1
continues to display all values when one of its elements is selected.

Example: Show Selection Only
The Show Selection Only event displays only the value of the selected element within the chart
or pivot table (being acted on).

In the example shown in the following figure, Chart 2 is configured with Show Selection Only
enabled and Filter enabled with Table 3 as the Target.

This configuration results in the output shown in the following figure. When the user clicks on
Chart 2, only the selected value is shown in Chart 2. Because the Filter event is enabled for
Table 3, the selection is applied as a filter to Table 3.

Chapter 11
Page Layout Tab

11-9

Set Page Margins
You can set page margins for reports.

To set the page margins for the report:

1. Click anywhere in the design area outside of an inserted component.

2. Click the Properties pane in the lower left of the Layout Editor. The following illustration
shows the Properties for the page.

3. Click the value shown for Margin to launch the Margin dialog.

The following illustration shows the Margin dialog.

Chapter 11
Page Layout Tab

11-10

4. Select the desired size for the margin. Enter the value for the Top, Left, Right, and Bottom
margins.

To automatically set the same value for all sides, select the box: Use same value for all
sides. This action disables all but the Top margin entry. Enter the value in the Top to apply
to all sides.

Set Maximum Connections for an Interactive Report
You can limit the connections from the browser to the server for the interactive viewer.

More connections are faster but increase server load. The default is six connections. Reduce
the number to reduce the load on the server for large reports.

To set the maximum connections for this layout:

1. Click anywhere in the design area outside of an inserted component.

2. Click the Properties pane in the lower left of the Layout Editor. The following illustration
shows the Properties for the page.

Chapter 11
Page Layout Tab

11-11

3. Click the value shown for Max. Connections and select the desired value from the list, as
shown in the following illustration.

Insert Layout Components
The layout editor supports components that are typically used in reports and other business
documents.

The followings components are described in these sections:

• Insert Layout Grids

• About Repeating Sections

• About Data Tables

• About Charts

• About Gauge Charts

• About Pivot Tables

• About Text Items

• About Images

• About Lists

Chapter 11
Insert Layout Components

11-12

Insert Layout Grids
The layout grid provides a way to divide a layout into sections.

It functions similarly to a table in HTML or Word documents to create forms or to provide
sophisticated layouts. Use a layout grid to control the exact placement of all other components
in the layout.

To insert a layout grid:

• Select and drag the Layout Grid component to the design area.

The following illustration shows the Create a Layout Grid dialog.

In the dialog, enter the number of rows and columns for the grid and click OK to insert the grid
to the design area, as shown in the following illustration.

Note the following about a layout grid:

• The grid is created with equidistant columns, and the row size defaults to a minimum of
one row of text.

• Although Font properties are not enabled for a layout grid cell (set font properties using the
individual component properties), the background color and border properties are enabled.

Chapter 11
Insert Layout Grids

11-13

• When you insert a component to a grid cell, it automatically resizes to accommodate the
component.

• Adjust the column width and height by either positioning the mouse pointer over the border
and dragging the blue bar, or by changing the grid column properties in the Properties
pane.

• The grid supports merging of cells.

• You can insert a grid inside a grid.

• Similar to Microsoft Word, the grid uses a flow layout that is very convenient for designing
business documents. Components that do not occupy a full paragraph or block are
positioned top-down and left to right.

Add a Border or Background Color
By default, the gridlines are displayed in the design area only and are not shown during
runtime. If you want to display the gridlines in the finished report, then select the grid cell and
click the Set Border command button to launch the Border dialog.

• To add a background color to a cell. click the Background Color command button to
launch the Color Picker.

About the Insert Options
When you insert a layout grid, you can add additional rows or columns.

Select the layout grid cell that is the focal point, then click the appropriate command button:

• Add a Row above

• Add a Column to the right

• Add a Row below

• Add a Column to the left

About the Join and Unjoin Options
You can join cells or remove joins on cells.

To join cells or remove joins on cells:

1. To join cells:

a. Select multiple adjacent cells by holding down the Ctrl key and clicking each grid cell.

b. Click the Join command button.

2. To remove joins on cells, select the joined cell, and click the Unjoin button.

Add Expand and Collapse Option
When viewing a report in interactive mode, you can expand and collapse a layout grid to toggle
the display of the grid's contents. Expand and Collapse are supported at the grid level, (not the
cell-level) therefore ensure to insert grids appropriately. For example, if the report contains a
chart in the top portion of the layout and a table in the bottom and you want to collapse the
chart display, you must insert one layout grid to contain the chart and a second layout grid
beneath the first to contain the table. Do not insert one grid with two rows.

Chapter 11
Insert Layout Grids

11-14

1. Select the layout grid.

2. Open the Properties pane.

3. Set the Interactive: Expand/Collapse property to True. The following figure shows this
option on the Properties pane.

About Repeating Sections
Repeating sections repeat the components within the section of the layout based on the
occurrence of an element in the data. Repeating sections are used to create classic banded
reports, as well as repeating pages or sections for different data elements such as Group
Above/Outline.

1. Drag and drop the repeating section component to the layout.

2. In the Repeating Section dialog, select one of the following:

• Element - Specify the element for which the section repeats. For example, if the
dataset contains sales information for several countries. If you select COUNTRY as
the repeat-by element, then the section of the layout repeats for each unique country
occurring in the dataset.

• Group Detail - If you have nested sections, then select this option. To continue the
previous example, assuming there're unique data rows for each city and grouping by
country, then this option creates a section that repeats for each city.

The following figure shows a layout with a repeating section defined for the element
Department. Within the repeating section are a chart that shows salaries by manager and a
table that shows all employee salaries. So for each occurrence of department in the dataset,
the chart and table are repeated.

Chapter 11
About Repeating Sections

11-15

Set Page Break Options for a Repeating Section
By default, for paginated output types, the page breaks automatically according to the amount
of content that fits on a page.

You typically have the report break after each occurrence of the repeated content.

Using the preceding example, in the PDF output you typically want to break after each
department.

To create a break in the report after each occurrence of the repeating section:

1. Select the repeating section component.

2. Open the Properties pane.

3. Set the Page Break property to Page.

The following illustration shows the Properties for a repeating section.

Chapter 11
About Repeating Sections

11-16

How Repeating Sections Display in Interactive Mode
In interactive mode, the values for the repeat by element are displayed as a list of values. This
enables the report consumer to dynamically select and view the results.

The following figure shows the repeat by element Department displayed in a list of values:

Chapter 11
About Repeating Sections

11-17

By contrast, the below figure shows the same layout displayed in PDF. In this example the
page break option is set so that each new department begins the repeating section on a new
page.

Show All Values in a Repeating Section
You can view all the values in a repeating section.

In interactive mode, the values for the repeat by element are displayed as a list of values. By
default, this list includes only the values present for the element in the data. Therefore, a report
consumer can view results for only one item at a time.

To enable a report consumer to view the results in the repeating section for all values of the
element, the Repeating Section component provides the property: Show All. When this
property is set to true, the value "All" is added to the list to enable the display of results for all
values.

1. Select the repeating section component.

2. Open the Properties pane.

3. Set the Show All property to True.

When you view the report, the option All is added to the menu of values, as shown in the
following illustration.

Chapter 11
About Repeating Sections

11-18

About Data Tables
The data table is a standard table that is shown in many layouts. It contains a header, data
columns, and a total row. The table supports "group left" functionality (outlines) that merges
fields with the same values as well as subtotals, grand totals, custom calculations, and running
totals.

Once inserted, you can edit the table properties using the dynamic tabs or the Properties
pane. The following dynamic tabs are available for the table components:

• Table

• Table Column Header

• Column

• Total Cell

This section contains the following topics about working with tables:

• Insert a Data Table

• Set Alternating Row Colors

• About the Table Tab

• About the Table Column Header Tab

• About the Column Tab

• About the Total Cell Tab

• Insert Dynamic Hyperlinks

Chapter 11
About Data Tables

11-19

Insert a Data Table
You can insert a data table and to add data columns to the table.

1. From the Insert tab, select and drag the Data Table component to the design area.

The following figure shows an example of an inserted, empty data table. Notice that the
Table tab is now displayed.

2. To add data columns to the table, select an element from the Data Source pane and drag it
to the table in the layout.

You cannot include elements from multiple data models in report components unless the
data models are linked.

The following figure shows the columns being added to the table. Notice that when you
drop a column on the table the sample data is immediately displayed.

Chapter 11
About Data Tables

11-20

3. Continue to drag the elements from the Data Source pane to form the columns of the table.
If you must reposition a column that you've already added, then select it and drag it to the
correct position.

The following figure shows a completed data table:

Notice the following default behavior:

• A total row is automatically inserted. By default it calculates the sum of the items in the
column. You can remove this row or edit the display and calculation applied.

Chapter 11
About Data Tables

11-21

• Default date formatting is applied.

• Default number formatting and alignment is applied.

Set Alternating Row Colors
Some data tables are easier to read when the rows display alternating colors.

An example of alternating colors is shown in the following illustration.

To set an alternating row color:

1. Select the table.

2. Open the Properties pane.

3. Click the value shown for Alternate Row Color to launch the color picker. The following
illustration shows the Alternate Row Color option.

Chapter 11
About Data Tables

11-22

4. Choose a color and click OK.

About the Table Tab
The Table tab defines the functions that you can perform to display a table in a customized
manner.

The Table tab enables you to perform the following:

• Set the number of rows displayed

• Define filters for the data displayed in the table

• Define conditions and formats to apply to rows that meet the conditions

• Show or hide the total row for the table

The following figure shows the Table tab.

Set the Rows to Display Option
The Rows to Display property controls the number of rows of data displayed

The property is set as follows:

• When designing the layout, this property sets the number of rows that are displayed for the
table within the layout editor.

• When viewing this layout in the report viewer in interactive mode, this property sets the
size of the scrollable region for the table.

The default is 10 rows of data. You can select 10, 20, 30, 40, or All rows of data to be
displayed. To set a custom value, open the Properties pane and enter the custom value for
the Rows to Display property.

Note:

Displaying more rows of data can impact the performance of the Layout Editor.

About Filters
A filter refines the displayed items by a condition. This is a powerful feature that enables you to
display only desired elements in the table in an interactive output without having to perform
additional coding.

For example, you could add a filter to meet some of the following report conditions:

Chapter 11
About Data Tables

11-23

• Display only the top 10 salaries

• Display only the bottom 25 store sales

• Display only employees in the IT department

• Display only sales that are between $10,000 and $20,000 and in the Southern region

You can add multiple filters and manage the order in which they're applied to the table data.

Set Filters for a Table
You can use a filter to narrow table results.

To set a filter:

1. Click the Filter toolbar button.

2. Select a Data Field to filter by specific data elements. All elements are available
regardless of whether they're included as table columns.

3. Select an Operator to filter by these operators: is equal to, is not equal to, is less than, is
greater than, is less than or equal to, is greater than or equal to, is between, is in top, is in
bottom.

4. Add a Value appropriate for the operator selected. The value can be either a text entry, or
an element from the data.

Manage Filters
After you've added filters, use the Manage Filters feature to edit, delete, or change the order
that the filters are applied.

To manage filters:

1. Click the Manage Filters toolbar button to launch the Manage Filters dialog, as shown in
the following illustration.

2. Hover the cursor over the filter to display the actions toolbar. Use the toolbar buttons to edit
the filter, move the filter up or down in the order of application, delete, or add another filter.

About Conditional Formats
A conditional format changes the formatting of an element in the table based on a condition.

Chapter 11
About Data Tables

11-24

This feature is extremely useful for highlighting target ranges of values in the table. For
example, you could create a set of conditional formats for the table that display rows in
different colors depending on threshold values.

Apply Conditional Formats to a Table
You can apply conditional formats to a table.

1. Click the Highlight button.

This launches the Highlight dialog, as shown in the following figure.

2. Select a Data Field to create a condition for a data field. All elements are available
regardless of whether they're included as table columns. For example, you may want to
highlight in red all employees with salaries greater than $10,000, but not actually include
the salary element in the table.

3. Select an Operator to create a conditional format by these operators: is equal to, is not
equal to, is less than, is greater than, is less than or equal to, is greater than or equal to, is
between, is in top, is in bottom.

4. Add a Value appropriate for the operator selected. The value can be either a text entry, or
an element from the data.

If entering a date value, use one of the following XSL date or time formats: YYYY-MM-DD
or YYYY-MM-DDTHH:MM:SS.

Chapter 11
About Data Tables

11-25

5. Select a Font Family to apply to the row of data that meets the condition. You can also
apply bold, italic, or underline emphasis.

6. Select the Size of the font to apply to the row of data that meets the condition.

7. Click Color to open the Color Picker. Choose one of the predefined colors or click
Custom Color to define a color to apply to the font.

8. Click Background Color to open the Color Picker. Choose one of the predefined colors
or click Custom Color to define the background color to apply to the row.

The following figure shows the table in the layout with the condition applied.

Manage Formats
After you've added conditional formats, use the Manage Formats command to edit or delete a
format.

To manage formats:

1. Click the Manage Formats button to launch the Manage Conditional Formats dialog, as
shown in the following illustration.

Chapter 11
About Data Tables

11-26

2. Hover the cursor over an item to display the actions toolbar. Use the toolbar buttons to edit
the format, move the format up or down in the order of application, delete, or add another
format. The order of the conditions is important because only the first condition that is met
is applied.

Control the Display of the Total Row
By default, the layout editor inserts a total row in a table that sums numeric columns. To
remove the total row, click the Show menu and select the table view without the highlighted
total row.

The following figure shows the Show menu options:

The total row can be further customized using the Total Cell tab and the Properties pane.

About the Table Column Header Tab
The Table Column Header tab defines the functions that you can perform.

The following figure shows the Table Column Header tab.

Chapter 11
About Data Tables

11-27

The Table Column Header tab enables you to perform the following:

• Edit the font properties of the table header column

• Edit the cell properties of the table header including border weight, style, and color and
background fill color

• Set the vertical and horizontal alignment of the table header

• Apply grouping

About Grouping
"Grouping" groups together elements in the data of the same value. In a table, applying
grouping can make the table easier to read.

The Grouping option enables you to choose between "Group Left" or "Group Above". Group
left maintains the "group by" element within the table. The following figure shows a table that
has been grouped by Manager using Group Left.

Group above inserts a Repeating Section component, and extracts the grouping element from
the table. The grouping element is instead displayed above the table and a separate table is
displayed for each occurrence of the grouping element. The following figure shows a table that
has been grouped by Manager using Group Above.

Chapter 11
About Data Tables

11-28

Example: Group Left
The illustration here shows an example where the table data has been grouped by the
elements of the first two columns, Manager and Title.

Notice that there's only one entry per manager name and one entry for each job title under that
manager name. This organizes the data rows more cleanly in the table.

Chapter 11
About Data Tables

11-29

Apply Subtotals
To further enhance a table, you can add a subtotal row to display for each grouped occurrence
of the element.

Example: Group Above
The illustration here shows an example where the table data has been grouped by Manager.

Notice that in the design pane, the Data Table component has been replaced with a Repeating
Element component that contains the data table. The Manager element is inserted above the
table with a label.

Chapter 11
About Data Tables

11-30

The label is a text item. Edit the text by double-clicking the item to select it, then single-clicking
to edit.

When you run the report, a separate table is created for each occurrence of the grouping
element. In Interactive output mode, the grouping element displayed at the top of the table is
displayed as a filter. Select the value that you want to view from the list, as shown in the below
figure:

About the Column Tab
The Column tab is enabled when you select a specific column in a table. You can edit font and
cell properties and apply them.

The Column tab allows you to perform the following actions:

• Edit the font properties of the column including style, size, and color

• Edit the cell properties of the column including border weight, style, and color and
background fill color

• Set the vertical and horizontal alignment of the column contents

Chapter 11
About Data Tables

11-31

• Apply formatting to the column data (options depend on the data type)

• Apply grouping

• Apply a running total (or other formula) to the data

• Apply sorting and sort precedence

• Apply conditional formatting to the column

About the Data Formatting Options for Columns
The options available from the Data Formatting region of the tab depend on the data type of
the column selected. The tab provides common options to choose from.

If an option isn't listed, you can enter a custom Oracle or Microsoft formatting mask in the
Properties pane. You can also set a formatting mask dynamically by including the mask as an
element in your data. These features are described in the following sections:

• Apply Formatting to Numeric Data Columns

• Apply Formatting to Date Type Data Columns

• Custom and Dynamic Formatting Masks

Apply Formatting to Numeric Data Columns
Follow these formatting options if the column contains numeric data.

• Format - Select one of the common number formats from the list. The format is applied
immediately to the table column. The formats are categorized by Number, Percent, and
Currency, as shown in the following figure:

• Decimal position - Click the Move Left or Move Right to increase or decrease the
decimal positions displayed.

• Show/Hide Grouping Separator - Click this button to hide the grouping separator (for
example, 1,234.00 displays as 1234.00). To show the grouping separator, click the button
again.

Chapter 11
About Data Tables

11-32

Apply Formatting to Date Type Data Columns
Use these formatting options if the column contains dates.

• Format - Select one of the common date formats from the list. The format is applied
immediately to the table column. The formats are categorized by Date and Time, as shown
in the following figure:

Custom and Dynamic Formatting Masks
You can apply any Microsoft or Oracle (recommended) format mask to a report data field. You
can manually enter the mask in the Formatting Mask property on the Properties pane.

To enter a custom data formatting mask:

1. Select the data column or field in the layout.

2. On the Properties pane, under the Data Formatting group select the Formatting Style.
Supported styles are Oracle and Microsoft.

3. In the Formatting Mask field, manually enter the format mask to apply.

Formatting masks can also be applied dynamically by either including the mask in a data
element of your report data, or as a parameter to the report. The mask is passed to the layout
editor based on the value of the data element.

To enter a dynamic formatting mask, in the Formatting Mask field, choose the data element
that defines the formatting mask. The following figure shows an example of setting a dynamic
number format mask. For this example, a parameter called NumberFormat prompts the user
to define a format mask when the report is submitted. The value is passed to the Formatting
Mask property and applied to the data field in the layout.

Chapter 11
About Data Tables

11-33

If you use a parameter to pass the format mask ensure that you select the Include Parameter
Tags option on the data model Properties page.

About the Formula Option
The options available from the Formula region of the Column tab depend on the data type of
the column.

For more information about applying formulas, see Set Predefined or Custom Formulas.

About the Sort Option
To sort the data in a column, select the column, then under the Sort group click Ascending
Order or Descending Order.

To sort by more than one column, select the column, the sort order, and then assign a Priority
to each column. The priority list is a list of values beneath the sort order commands.

For example, in the employee salary table shown in the following figure, assume you want to
sort ascending first by Title then sort descending by Annual Salary:

Chapter 11
About Data Tables

11-34

1. Select the Title column.

2. On the Column tab, under Sort, click the Ascending Order button.

3. From the Priority list, select 1.

The following figure shows the Priority list.

4. Next select the Annual Salary column.

5. On the Column tab, under Sort, click the Descending Order button.

6. From the Priority list, select 2.

Remove a Sort Order
You can remove the sorting applied to a column.

To remove a sort order applied to a column:

1. Select the column.

2. From the Sort region on the Column tab, click the appropriate button of the sort order that
has been applied. For example, to deselect the ascending order, click the Ascending
Order button to undo the sort.

About the Total Cell Tab
The Layout Editor automatically inserts a grand total row when you insert a data table to the
layout. As shown in the section on grouping, you can also insert subtotal rows within the table
based on a grouping element.

To edit the attributes of the cells in a grand total or subtotal row, select the cell and use the
options in the Total Cell tab shown in the following figure.

Chapter 11
About Data Tables

11-35

The Total Cell tab enables you to perform the following:

• Edit the font properties of the total cell

• Edit the cell properties of the total cell including border weight, style, and color and
background fill color

• Set the vertical and horizontal alignment of the table header

• Apply formatting to the cell data

• Apply a formula to the cell

• Apply conditional formatting to the cell

Apply Data Formatting to a Total Cell
The section talks about applying data formatting to a total cell.

See About the Data Formatting Options for Columns.

Apply a Formula
By default, the formula applied to a Total Cell within a numeric column is a sum of the column
items. The Formula option enables you to apply a different formula.

Not all options available from the Formula region of the column tab are applicable to a Total
Cell.

For more information about applying formulas, see Set Predefined or Custom Formulas.

Insert Dynamic Hyperlinks
The layout editor supports dynamic hyperlinks in tables.

To insert a dynamic hyperlink:

1. Select the table column.

2. Click Properties. The column properties include an option for URL, as shown in the
following illustration.

Chapter 11
About Data Tables

11-36

3. In the URL field, enter the static portion of the URL and embed the absolute path to the
element that provides the dynamic portion of the URL within curly braces {}. For example:

http://example.com/show_page?id={/DATA/GROUP1/ELEMENT_NAME}
where http://example.com/show_page?id= is the static portion of the URL and {/DATA/
GROUP1/ELEMENT_NAME} is the absolute path to the element in the data that supplies the
dynamic portion.

For example, in the employee salary report, suppose each employee name should render as a
hyperlink to the employee's person record. Assume the static portion of the URL to each
person record is

https://people.hrserver.com/records/show_page?id=
The dynamic portion comes from the data element EMPLOYEE_ID. For this example, append
the full path to the EMPLOYEE_ID element within curly braces and enter this in the URL field
as follows:

https://people.hrserver.com/records/show_page?id={/ROWSET/ROW/EMPLOYEE_ID}

Apply Custom Data Formatting
Publisher supports the use of the Oracle and Microsoft format masks for custom data
formatting. The results of the output depends on the selected locale.

See Use the Microsoft Number Format Maskand Use the Oracle Format Mask.

1. Select a data field or column.

2. Click Properties. The Data Formatting options are displayed as shown in the following
figure:

Chapter 11
About Data Tables

11-37

3. From the Formatting Style drop-down list, select the Oracle or Microsoft formatting style.
The Oracle formatting style is recommended.

4. In the Formatting Mask field, enter a formatting mask. For example, for a column that
contains product totals, you can use the Oracle formatting style, and the 9G999D99
formatting mask to display total values with two zeros to the right of the decimal place.

About Charts
The layout editor supports a variety of chart types and styles to graphically present data in the
layout.

After you insert a chart, you can edit the chart properties using the dynamic toolbars or the
Properties pane. The Properties pane extends the options from the Chart tab and enables
you to enter very specific custom settings for the following:

• Chart Effect

• Chart Legend

• Chart Plot Area

• Chart Title

• Chart Label

• Chart Values

The following Chart Label properties apply to Scatter and Bubble chart types only: Title Font,
Title Horizontal Align, Title Text, and Title Visible.

Some font effects such as underline, italic, and bold might not render in PDF output.

Chapter 11
About Charts

11-38

The text size for legends, title, and numerical values in Bar charts might be decreased in a
PDF output when compared with an interactive output, because the size of the PDF page is
lesser than the size of the HTML browser page used for the interactive output.

Insert a Chart
Follow these steps to insert a chart.

To insert a chart:

1. From the Insert menu, select and drag the Chart component to the layout.

By default an empty vertical bar chart is inserted and the Chart dynamic tab is displayed,
as shown in the following figure:

2. To change the chart type, click the Chart Type list to select a different type. In the following
figure, the chart type is changed to Pie.

Chapter 11
About Charts

11-39

3. Select and drag the data fields from the Data Source pane to the appropriate areas in the
chart. The chart immediately updates with the preview data, as shown in the following
figure:

Chapter 11
About Charts

11-40

4. To resize the chart, drag and drop the resize handler on the lower right corner of the chart,
as shown in the figure below.

To preserve the aspect ratio when resizing a chart, press and hold the Shift key before
starting to drag the corner.

Chapter 11
About Charts

11-41

About the Chart Tab
The Chart tab helps you to apply a different chart type, filter the data, manage multiple filters.

The Chart tab enables you to perform the following:

• Select a different Chart Type

• Apply a different Chart Style

• Enable 3-D effects

• Filter the data that is displayed in the chart

• Manage multiple filters

• Convert the chart to a pivot table or switch the series and dimensions values

Apply and Manage Filters
This section helps you to know how to apply and manage filters.

See About Filters for information on how to apply and manage filters.

Convert a Chart to a Pivot Table
Follow these steps to convert a chart to a pivot table.

1. Select the chart.

2. In the Convert group, click Pivot Table.

The layout editor converts the label, series, and value elements of the chart into the
appropriate rows, columns, and data elements of a pivot table.

Change the Formula Applied to a Chart Measure Field
By default, the chart displays a sum of the values of the chart measure. You can change the
formula applied to a chart measure field by selecting an option from the Chart Measure Field
tab.

1. Select the measure field in the chart. This displays the Chart Measure Field tab, as shown
in the following figure:

Chapter 11
About Charts

11-42

2. Select from the following options available from the Formula list:

• Count

• Sum

• Running Total

Sort a Chart Field
Charts can be sorted by fields.

To sort a field in the chart:

1. Select the field to display the Chart Field tab.

2. On the Chart Field tab select Sort Ascending or Sort Descending.

3. To sort by multiple fields, apply a Priority to each sort field to apply the sort in the desired
order.

Chapter 11
About Charts

11-43

Use Advanced Chart Features
Create more useful charts by altering their appearance.

The following features enable you to apply additional formatting to your charts:

• Format Time Series Axis

• Hide Axis Option

• Format Independent Axis

• Scale Axis

• Format Pie Slice

If you do not select a value for these format options above, the Publisher default system
settings are applied.

Format Time Series Axis
When the x-axis of your line chart is a date field, Publisher applies a time series format based
on the range of the data.

The following illustration shows the time series format options. You can customize the display
of the time series in your chart, or turn it off.

To select time series date formatting options for a chart:

1. Expand the Time Series report properties category.

2. In Day Format field, select one of the following format options for days:

Chapter 11
About Charts

11-44

• None to hide the day label.

• Day of Week to display only the names of each day of the week.

• Day Single Letter to display only the first letter of each day of the week.

• Day of Week Number to display only the number assigned to each day of the week.
For example, if Sunday is the first day of the week, it can be displayed as 1, Monday
displayed as 2, etc.

• Day of Month to display all days in a month by the actual date. For example, the first
day of the month would be displayed as 1.

3. In Month Format field, select one of the following format options for months:

• None to hide all month labels.

• Month Number to display only a number for each month in the year. For example, if
the first month of the year is January, it's displayed in the chart as 1.

• Month Single Letter to display only the first letter of each month in the year.

• Month Short to display only the short names for each month. For example, January
can be displayed as Jan.

• Month Long to display only the full name of each month.

4. In the Time Format field, select one of the following format options for time increments:

• None to hide all time labels.

• Hour to display time in hours.

• Hour24 to display time in 24 hour increments.

• Hour24 Minute to display minutes in 24 hour increments.

• Hour Minute to display time in hours and minutes.

• Second to display time in seconds.

5. In Year Format field, select one of the following format options for years:

• None to hide all year labels.

• Year Short to display only the short names for each year.

• Year Long to display only the full name of each year.

Hide Axis Option
You can hide axis labels in reports for certain situations such as when you are working with
small charts or visualizing data without values. This option is especially useful for creating
reports that evaluate trends.

To hide an axis:

1. On the Properties pane, expand the Chart Label, Chart Value (1) or Chart Value (2) report
properties category.

2. In Axis Visible, select False.

Format Independent Axis
You can format decimal digits and numbers for each Y axis in a multiple Y-axis report.

To format decimal digits and number types for an axis:

Chapter 11
About Charts

11-45

1. On the Properties pane, expand the Chart Value (1) or Chart Value (2) report category.

2. To format axis decimals, in the Axis Decimals field, enter the number of decimals to display
for a data element per axis.

3. To format data decimals for an axis where the Data Visible property is set to True, enter the
number of decimals to display on the axis.

4. To apply number formatting to an axis, in the Format field, select one of the following
options: General, Percent, or Currency.

5. If you select Currency, in the Currency Symbol field, manually enter the currency symbol.

Scale Axis
You can set chart axis scaling as logarithmic or linear in reports.

1. On the Properties pane, expand the Chart Value (1) or Chart Value (2) report properties
category.

2. In the Axis Scaling field, select one of the following options: Logarithmic or Linear.

Format Pie Slice
You can format pie slice charts to display percentages, total actual values, percentages, and
labels.

To format pie slices:

1. On the Properties pane, expand the Plot Area report property category.

2. In the Pie Slice Format field, select one of the following options: Percent, Value, Label, or
Label and Percent.

About Gauge Charts
A gauge chart is a useful way to illustrate progress or goals. The illustration shows a report
with gauges.

For example, the following figure shows a report with three gauges to indicate the status of
regional sales goals:

Chapter 11
About Gauge Charts

11-46

Insert a Gauge Chart
Follow these steps to insert a gauge chart.

To insert a gauge chart in the layout:

1. From the Insert menu, select and drag the Gauge component to the layout. This inserts an
empty gauge chart.

2. Select and drag the data fields from the Data Source pane to the Label, Value, and Series
areas of the chart. The chart immediately updates with the preview data.

Note the following:

• A separate gauge is created for each occurrence of the Label (that is, each REGION).
One set of properties applies to each occurrence.

• By default, the Value field is a sum. You can change the expression applied to the
value field.

• You can apply a sort to the other gauge chart fields.

Apply and Manage Filters
Follow this section to know how to apply and manage filters.

See About Filters for information on how to apply and manage filters.

About Pivot Tables
The pivot table provides views of multidimensional data in tabular form. It supports multiple
measures and dimensions and subtotals at all levels.

The following figure shows a pivot table:

Chapter 11
About Pivot Tables

11-47

Insert a Pivot Table
Follow the steps in the procedure to insert a pivot table.

To insert a pivot table:

1. From the Insert tab, select and drag the Pivot Table component to the layout. The
following figure shows the empty pivot table structure.

2. Drag and drop data fields from the Data Source pane to the row, column, and data
positions.

Drag multiple fields to the pivot table and place them precisely to structure the pivot table,
as shown in the following figure:

Chapter 11
About Pivot Tables

11-48

3. By default the pivot table is inserted with no data formatting applied. To apply a format to
the data, click the first column of data to enable the Pivot Table Data toolbar. On the Data
Formatting group, select the appropriate format as shown in the following figure:

4. Optional: Resize the pivot table by clicking and dragging the handler in the lower right
corner of the pivot table.

Customize a Pivot Table Menu
After you insert a pivot table customize the appearance and layout using these dynamic tabs.

Chapter 11
About Pivot Tables

11-49

• Pivot Table tab

• Pivot Table Header tab

• Pivot Table Data tab

About the Pivot Table Tab
You can customize the appearance of a pivot table using the Pivot Table tab.

The following figure shows the Pivot Table tab.

Apply Filters
This section describes filters and manage filters features.

See About Filters for a description of the Filter and Manage Filters features.

Customize the Display of Totals
The Pivot Table tab enables you to quickly customize the display of grand total and subtotal
rows.

By default, the layout editor inserts the pivot table with the total and subtotal displays as shown
in the tab:

• Row Grand Total - Inserted at the bottom of table

• Row Subtotal - Inserted at the top of each subgroup, with no row header

• Column Grand Total - Inserted at the far right

• Column Subtotal - Inserted to the left of each column subgroup, with no header

Change the positioning and display of totals and subtotals by clicking the appropriate group in
the tab and selecting the desired layout pattern from the menu.

Convert a Pivot Table to a Chart
The Convert Pivot Table to a Chart command converts the pivot table to a default vertical bar
chart.

After conversion, customize the table as described in About Charts.

The following figure shows the pivot table created in the preceding step converted to a vertical
bar chart.

Chapter 11
About Pivot Tables

11-50

Switch Rows and Columns
Use the Switch Rows and Columns command to see a different view of the same data.

The following illustration shows the pivot table created in the previous step with rows and
columns switched.

Chapter 11
About Pivot Tables

11-51

Customize the Pivot Table Headers
Use the Pivot Table Header tab to customize the fonts, colors, etc.

The Pivot Table Header tab is shown in the following figure:

Select the column or row header of the pivot table and use the Pivot Table Header tab to
perform the following:

• Customize the fonts, colors, alignment and other display features of the header.

• Apply a sort order (for more information see About the Sort Option).

• Apply data formatting (if the data type is number or date).

Customize the Pivot Table Data
Select the data area of the pivot table and use the Pivot Table Data tab to perform these
actions. The commands in the Pivot Table Data tab are the same as the corresponding
commands in the table Column tab.

The Pivot Table Data tab is shown in the following figure:

See the references for more information on their use.

• Customize the fonts, colors, alignment and other display features of the data.

• Apply conditional formatting to the data for more information (see About Conditional
Formats).

• Apply data formatting (see About the Data Formatting Options for Columns).

• Apply a formula (see Apply a Formula).

About Text Items
The text item component allows you to enter free-form text in the layout.

Chapter 11
About Text Items

11-52

1. Drag and drop the text item component to the layout.

2. Double-click the text to enter text editor mode. Select parts of the text to apply different
formatting to different parts.

Display a Data Field Side-by-Side with a Text Item
By default, the text item always spawns a complete paragraph. Inserting a data field next to the
text field places the data field beneath the text field.

The data field beneath a text item is shown in the following figure:

To display the data field inline with the text item:

• Set the Display property to Inline in the Properties pane.

This setting enables the positioning of text items and data fields into a single line as shown
in the following figure:

Chapter 11
About Text Items

11-53

About the Text Toolbar
The Text tab defines all the functions that you can do with respect to font and alignment of text
in a report.

The Text tab is shown in the following figure.

The Text tab enables you to perform the following:

• Set the font properties

• Set alignment of the text in the grid cell

• Insert predefined text items: page number, date, and time

• Insert a hyperlink

Edit Font Properties
Use the Font group of commands to set the style, size, emphasis, and color.

• Select a font style

• Select a font size

• Apply emphasis (bold, italic, or underline)

• Insert a border around the text item

Chapter 11
About Text Items

11-54

• Apply a background color

• Apply a font color

Insert Page Numbers
Drag and drop the page number component to the design area.

The following illustration shows the Page # of N construction.

To create the Page # of N construction:

1. From the Insert tab drag and drop a Text Item to the design area where you want the
page numbers to display.

2. Double-click the inserted text to select the text item for editing. Type "Page ".

3. From the Text dynamic tab, drag and drop the Page Number component.

4. Enter a space, and type "of ".

5. From the Text dynamic tab, drag and drop the Page Total component.

Insert the Date and Time
You can insert time and date variables in a report layout.

1. From the tab drag and drop a Text Item to the design area where you want the date and
time to display.

2. Double-click the inserted text to select the text item for editing.

3. Click the Date icon to insert the date icon in the text item. Click the Time icon to insert the
time icon in the text item.

To display the items side-by-side, set the Text Item property to "Inline".

The following illustration shows the insertion of the date and time icons.

Chapter 11
About Text Items

11-55

When this report is viewed, the date and time are displayed according to the server time zone
if viewed online, or for scheduled reports, the time zone selected for the schedule job.

Insert a Hyperlink
Follow these steps to insert a hyperlink.

To insert a hyperlink in a report:

1. From the Insert tab drag and drop a Text Item to the design area where you want the date
and time to display.

2. Double-click the inserted text to select the text item for editing. Enter the text which you
want to convert to a link.

3. Select the text, then click the Link button.

4. In the dialog enter the URL.

About Images
The image component enables you to include a graphic in the layout.

Publisher supports the following methods for including an image:

• Static image: Upload a static image that is saved in the report file. An uploaded image file
must be in one of the following graphic file formats: GIF, JPEG, PNG, or BMP. The image
file cannot be larger than 500 KB.

• Static URL: Specify a static link to a URL where an image is stored.

• Dynamic URL: Include the image URL in an element of the data. The value of the element
is evaluated at runtime enabling dynamic insertion of images.

• Images from a Content Server: Embed dynamic images from a Content Server (UCM) in
RTF and XPT templates. The administrator has to create a connection to the Content
Server where the images are stored. The data model should use the Content Server as the
data source.

Limitations:

– The XPT template supports dynamic images from a Content Server only in the
repeating sections.

Chapter 11
About Images

11-56

– The XSLX output format doesn’t support inclusion of images from a Content Server.

– The default size for rendering images from a Content Sever (UCM) is 1 MB.

Note:

You can’t embed an SVG image in a PDF report.

To include an image in a layout:

1. Drag and drop the image component to the layout.

2. In the Insert an Image dialog, specify one of the following sources for the image:

• Location: Click Browse to specify the file name and directory of the image on a local
or mapped drive to upload the image.

• URL: Enter the URL where the image is stored.

• Field:

Image URL: Select the field from the data that contains a URL to an image.

Alternative Text: If the data includes a field that contains alternative text for the image,
then select that field to display alternative text when the report is viewed as HTML.

The following figure shows the Insert an Image dialog set up to retrieve an image URL
dynamically from the "Image" data element. The value of the "Name" element is used as
alternative text.

3. Optional: Resize the image in one of the following ways:

• Drag the right bottom corner of the image. To preserve the aspect ratio when resizing
an image, press and hold the Shift key before starting to drag the corner.

• Modify the width and height in the Properties pane.

Chapter 11
About Images

11-57

Add BLOB Image
You can add a Binary Large Object (BLOB) image in an RTF or XPT template. Usage of an
RTF template is recommended for BLOB images.

To add a BLOB image in XPT layout:

1. Specify the data column type as Binary Large Object (BLOB).

2. Insert the image in the BLOB column, and then select the BLOB column data element to
display as image.

To add multiple BLOB data rows in tabular format, use Repeating Group. Include a Layout
Grid to create a tabular format, and add the BLOB column in the Layout grid.

3. In the column preceding the BLOB image, type "data:image/jpeg;base64," along with
the quotes.

About Lists
The list component displays all values of a data element in a vertical or horizontal list. When
viewed in interactive mode, clicking an item in the list updates the results shown in the linked
components of the report.

The following figure shows a report that displays multiple charts based on sales data. The list
component displays each country with sales data. The list enables the report consumer to
quickly see results for each country in the list by clicking the entry in the list.

Chapter 11
About Lists

11-58

Insert a List
Follow these steps to insert a list.

To insert a list:

1. From the Insert tab, select and drag the List component to the design area.

The following figure shows an inserted, empty list:

2. To create the list, select an element from the Data Source pane and drag it to the empty list
in the layout.

The following figure shows the list component after dragging the element Country Name to
it.

Chapter 11
About Lists

11-59

3. Customize the appearance of the list.

4. Configure linked components using the Configure Events command. By default, all other
tables and charts in the layout are configured to filter their results based on the user
selections in the list component.

Customize a List
The List tab helps you to edit the font attributes, define border for the list, set background
color, etc.

Use the List tab to:

• Edit the font size, style, and color

• Define borders for the list

• Set the background color

• Edit the font color and background color for the display of selected items

• Set the orientation of the list

• Specify the sort order

The following figure shows the List tab:

Chapter 11
About Lists

11-60

Customize the Font Style and the Selected Font Style Commands
This figure illustrates default formats. The list on the left shows the default format of the list.
The list on the right shows the Selected Font default format

Edit the font settings by selecting a font family from the list and adjusting the point size.

By default, the list displays with one point black gridlines. Click the Set Border to adjust the
default borders of the list. Use the Background Color and Font Color commands to
customize the colors.

The Selected Font commands edit the appearance of the item in a list when it's selected. By
default, the selected element is moved to the top of the list, and the background is changed to
light blue. You can edit the font weight, background color, and font color that are displayed for
selected items.

Customize Behavior of Selected Items
By default, the selected items move to the top of the list and the non-selected items are hidden
by a gray fill. You also have the option of not applying this behavior by setting the property
Hide Excluded.

This property is available from the Properties pane when the List component is selected. The
Hide Excluded property is highlighted in the following figure:

Chapter 11
About Lists

11-61

The following figure shows the difference in the display depending on the setting of the
property:

Chapter 11
About Lists

11-62

Set Predefined or Custom Formulas
You can set custom formulas using the Define Custom Formula icon.

The following illustration shows the Define Custom Formula icon.

The Formula group of commands is available from the following tabs:

• Column tab

• Total Cell tab

• Chart Measure Field tab

• Pivot Table Data tab

Note that not all options are applicable to each component type.

Chapter 11
Set Predefined or Custom Formulas

11-63

About the Predefined Formulas
The table provides definitions of predefined formulas.

The menu provides the predefined formulas that are described in the following table.

Formula Description

No Formula Removes any mathematical formula from a numeric column.

Blank Text Removes all data and inserts blank text.

Count Returns the count of the number of occurrences of the element in the current
group.

Count Distinct Returns a count of the distinct values of an element in the current group.

Summation Sums the values of the element in the current group.

Average Displays the average of the values in the current group.

Maximum Displays the highest value of all occurrences in the current group.

Minimum Displays the lowest value of all occurrences in the current group.

For non-numeric data, only the following formula options are supported:

• Blank Text

• Count

• Count Distinct

Apply a Custom Formula
Click Define Custom Formula to define your own formula for a component. The Function
dialog enables you to define Basic Math, Context, and Statistical functions in the layout.

The following figure shows the Function dialog:

Chapter 11
Set Predefined or Custom Formulas

11-64

About the Basic Math Functions
When you click one of the basic math functions, you are prompted to define the appropriate
parameters for the function. You can enter a constant value, select a field from the data, or
create a nested function to supply the value.

In the Function dialog, clicking the Multiplication function displays prompts to enter the
multiplicand and the multiplier. The example shows that the multiplicand is the value of the
Amount Sold field. The multiplier is the constant value.

Chapter 11
Set Predefined or Custom Formulas

11-65

About the Statistical Math Functions
When you click one of the statistical math functions you are prompted to define the appropriate
parameter for the function. You can select a field from the data, or create a nested function to
supply the values.

In the following figure, clicking the Average function displays prompts for you to specify the
source of the values for which to calculate the average.

Apply a Custom Formula: Examples
Follow these examples to understand custom formula.

Example 11-1 Example 1: Subtraction

The following figure shows data for Revenue and Cost for each Office:

Chapter 11
Set Predefined or Custom Formulas

11-66

Using a custom formula, you can add a column to this table to calculate Profit (Revenue -
Cost).

1. Add another numeric data column to the table. For example, drag another instance of
Revenue to the table, as shown in the following figure:

2. With the table column selected, click Define Custom Formula.

3. In the Function dialog select Subtraction from the list, as shown in the following figure.
Because the source data for the column is Revenue, by default the Minuend and the
Subtrahend both show the Revenue element.

Chapter 11
Set Predefined or Custom Formulas

11-67

4. Select Subtrahend, then in the Parameter region, select Field and choose the Cost
element, as shown in the following figure:

The dialog is updated to show that the formula is now Revenue minus Cost, as shown in
the following figure:

Chapter 11
Set Predefined or Custom Formulas

11-68

5. Click OK to close the dialog.

6. The table column displays the custom formula. Edit the table column header title, and now
the table has a Profit column, as shown in the following figure:

Example 11-2 Example 2: Nested Function

This example uses a nested function to create a column that shows Revenue less taxes.

1. Add another numeric data column to the table. For example, drag another instance of
Revenue to the table, as shown in the following figure:

Chapter 11
Set Predefined or Custom Formulas

11-69

2. With the table column selected, click Define Custom Formula.

3. In the Function dialog select Subtraction from the list. Because the source data for the
column is Revenue, by default the Minuend and the Subtrahend both show the Revenue
element, as shown in the following figure:

4. Select Subtrahend, then in the Parameter region, select Nested Function and click Edit,
as shown in the following figure.

Chapter 11
Set Predefined or Custom Formulas

11-70

A second Function dialog is displayed to enable you to define the nested function. In this
case the nested function is Revenue times a constant value (tax rate of .23), as shown in
the following figure:

5. Click OK to close the dialog. The primary Function dialog now shows the nested function
as the source of the subtrahend, as shown in the following figure:

Chapter 11
Set Predefined or Custom Formulas

11-71

6. Click OK to close the Function dialog. The table column displays the custom formula. Edit
the table column header label, and now the table displays the custom function, as shown in
the following figure:

Save a Layout
You can save a report layout to the report definition.

1. Click the Save or Save As toolbar button

2. Enter a unique name for this layout.

3. Select a Locale.

Note that after you save the layout, you can't update the Locale.

Chapter 11
Save a Layout

11-72

12
Create RTF Templates

This topic describes the concepts of associating XML data to layout elements in an RTF report
template. It describes basic and advanced techniques for creating complex and highly
conditionalized report formats.

Topics:

• Get Started

• Associate the XML Data to the Template Layout

• Add Markup to the Template Layout

• Define Groups

• Define Headers and Footers

• Insert Images and Charts

• Add Drawings, Shapes, and Clip Art

• Supported Formatting Features of Microsoft Word

• Template Features

• Use Conditional Formatting

• Insert Page-Level Calculations

• Handle Data

• Set Variables, Parameters, and Properties

• Use Advanced Report Layouts

• Format Numbers, Dates, and Currencies

• Support Calendars and Time Zones

• Use External Fonts

• Control the Placement of Instructions Using the Context Commands

• Use XPath Commands

• Declare Namespaces

• Use FO Elements and XSL Elements

• Guidelines for Designing RTF Templates for Microsoft PowerPoint Output

• Guidelines for Designing RTF Templates for Microsoft Excel Output

• Render HTML Formatted Data in a Report

• Embed PCL Commands for Check Printing

• 2D Barcode Functions

12-1

Get Started
This chapter describes the concepts of associating XML data to layout elements in a report
template. It describes basic techniques as well as advanced techniques for creating complex
and highly conditionalized report formats.

If you are using Microsoft Word to create RTF templates, then see Create RTF Templates
Using the Template Builder for Word before reading this chapter. The demos and samples
provided in the Template Builder installation can help orient you to the process of creating
templates in Microsoft Word.

You don't need Microsoft Word or the Template Builder to create RTF templates and this
chapter describes how to add components without using the Template Builder. Many of the
layout components described in this chapter can also be inserted in a template using the
Template Builder.

This section covers the following topics:

• What Are RTF Templates?

• Prerequisites for Designing Templates

• What is XSLT Compatibility?

• Key Concepts

• Design the Template Layout

• About Adding Publisher Code

What Are RTF Templates?
Rich Text Format (RTF) is a specification used by common word processing applications, such
as Microsoft Word.

When you save a document, RTF is a file type option.

Publisher converts documents saved as the RTF file type to XSL-FO enabling you to create
report layouts using many standard word processor features.

During design time, you add data fields and other markup to the template using Publisher's
simplified tags for XSL expressions. These tags associate the XML report data to the report
layout and include other processing instructions.

In addition to the word processor's formatting features, Publisher supports other advanced
reporting features such as conditional formatting, dynamic data columns, running totals, and
charts.

If you are familiar with XSL and prefer not to use the simplified tags, Publisher also supports
the use of pure XSL elements in the template. If you want to include code directly in the
template, then you can include any XSL element, many FO elements, and a set of SQL
expressions that Publisher extends.

Prerequisites for Designing Templates
You must perform these tasks before designing a template.

Before you design a template, you must:

• Know the business rules that apply to the data from the source report.

Chapter 12
Get Started

12-2

• Generate sample data from the report data model.

Be familiar with the formatting features of Microsoft Word.

What is XSLT Compatibility?
Publisher uses the XSLT processor provided by Oracle XDK 11.1.0.7.0, which supports the
W3C XSL Transformations 1.0 recommendation.

The processor also implements the current working drafts of the XSLT and XPath 2.0
standards.

By default, Publisher is compatible with XSLT 1.0. If you want to use XSLT and XPath 2.0
features in the template, then you must disable XSLT 1.0 compatibility. This configuration is
performed at the template level. The template-level setting overrides the server setting.

XSLT compatibility is set as a Build Option in the Template Builder for Word. See Set UI
Options.

Key Concepts
When you design the template layout, you must understand how to associate the XML input
file to the layout.

This chapter presents a sample template layout with its input XML file to illustrate how to make
the proper associations to add the markup tags to the template.

Design the Template Layout
Use the word processor's formatting features to create the design.

For example:

• Select the size, font, and alignment of text

• Insert bullets and numbering

• Draw borders around paragraphs

• Include a watermark

• Include images (jpg, gif, or png)

• Use table auto formatting features

• Insert a header and footer

About Adding Publisher Code
When you create an RTF template, you add Publisher code to the RTF document. Follow one
of these methods to add code.

Publisher supports the following methods for adding code:

• Basic RTF Method

Use any word processor that supports RTF version 1.6 writer (or later) to design a
template using Publisher's simplified syntax.

• Form Field Method

Chapter 12
Get Started

12-3

Using Microsoft Word's form field feature allows you to place the syntax in hidden form
fields, rather than directly into the design of the template.

If you use XSL or XSL-FO code rather than the simplified syntax, then you must use the
form field method.

This chapter describes how to create RTF templates using the preceding methods.

If you are using Microsoft Word, you can use the Publisher Template Builder for Word to
facilitate inserting Publisher code fields.

Associate the XML Data to the Template Layout
The figure in this section shows a sample layout for a Payables Invoice Register.

Note the following:

• The data fields that are defined on the template.

For example: Supplier, Invoice Number, and Invoice Date

• The elements of the template that are repeated when the report is run.

For example, all the fields on the template are repeated for each Supplier that is reported.
Each row of the invoice table is repeated for each invoice that is reported.

Use an XML Input File
Following is the XML file that is used as input to the Payables Invoice Register report template.

To simplify the example, the XML output shown has been modified from the actual output from
the Payables report.

<?xml version="1.0" encoding="WINDOWS-1252" ?>
 - <VENDOR_REPORT>
 - <LIST_G_VENDOR_NAME>

Chapter 12
Associate the XML Data to the Template Layout

12-4

 - <G_VENDOR_NAME>
 <VENDOR_NAME>COMPANY A</VENDOR_NAME>
 - <LIST_G_INVOICE_NUM>
 - <G_INVOICE_NUM>
 <SET_OF_BOOKS_ID>124</SET_OF_BOOKS_ID>
 <GL_DATE>10-NOV-03</GL_DATE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>031110</INVOICE_NUM>
 <INVOICE_DATE>10-NOV-03</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>EUR</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>122</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </G_INVOICE_NUM>
 </LIST_G_INVOICE_NUM>
 <ENT_SUM_VENDOR>1000.00</ENT_SUM_VENDOR>
 <ACCTD_SUM_VENDOR>1000.00</ACCTD_SUM_VENDOR>
 </G_VENDOR_NAME>
 </LIST_G_VENDOR_NAME>
 <ACCTD_SUM_REP>108763.68</ACCTD_SUM_REP>
 <ENT_SUM_REP>122039</ENT_SUM_REP>
 </VENDOR_REPORT>

XML files are composed of elements. Each tag set is an element. For example
<INVOICE_DATE> </INVOICE_DATE> is the invoice date element. "INVOICE_DATE" is the tag
name. The data between the tags is the value of the element. For example, the value of
INVOICE_DATE is "10-NOV-03".

The elements of the XML file have a hierarchical structure. Another way of saying this is that
the elements have parent-child relationships. In the XML sample, some elements are
contained within the tags of another element. The containing element is the parent and the
included elements are its children.

Every XML file has only one root element that contains all the other elements. In this example,
VENDOR_REPORT is the root element. The elements LIST_G_VENDOR_NAME, ACCTD_SUM_REP, and
ENT_SUM_REP are contained between the VENDOR_REPORT tags and are children of
VENDOR_REPORT. Each child element can have child elements of its own.

Identify Placeholders and Groups
Define placeholders to map the data fields. Define groups to designate the repeating elements.

The template content and layout must correspond to the content and hierarchy of the input
XML file. Each data field in the template must map to an element in the XML file. Each group of
repeating elements in the template must correspond to a parent-child relationship in the XML
file.

Publisher supports regrouping of data if the report requires grouping that doesn't follow the
hierarchy of the incoming XML data. For information on using this feature, see Regroup the
XML Data.

Use Placeholders
Each data field in the report template must correspond to an element in the XML file.

Chapter 12
Associate the XML Data to the Template Layout

12-5

When you mark up the template design, you define placeholders for the XML elements. The
placeholder maps the template report field to the XML element. At runtime the placeholder is
replaced by the value of the element of the same name in the XML data file.

For example, the "Supplier" field from the sample report layout corresponds to the XML
element VENDOR_NAME. When you mark up the template, you create a placeholder for
VENDOR_NAME in the position of the Supplier field. At runtime, this placeholder is replaced
by the value of the element from the XML file (the value in the sample file is COMPANY A).

Identify the Groups of Repeating Elements
The sample report lists suppliers and their invoices. There're fields that repeat for each supplier
and invoice.

The report therefore consists of two groups of repeating fields:

• Fields that repeat for each supplier

• Fields that repeat for each invoice

The invoices group is nested inside the suppliers group. This can be represented as follows:

Suppliers

• Supplier Name

• Invoices

– Invoice Num

– Invoice Date

– GL Date

– Currency

– Entered Amount

– Accounted Amount

• Total Entered Amount

• Total Accounted Amount

Compare this structure to the hierarchy of the XML input file. The fields that belong to the
Suppliers group shown above are children of the element G_VENDOR_NAME. The fields that
belong to the Invoices group are children of the element G_INVOICE_NUM.

By defining a group, you're notifying Publisher that for each occurrence of an element (parent),
you want the included fields (children) displayed. At runtime, Publisher loops through the
occurrences of the element and displays the fields each time.

Add Markup to the Template Layout
Publisher converts the formatting that you apply in the word processor to XSL-FO. You add
markup to create the mapping between the layout and the XML file and to include features that
cannot be represented directly in the format.

The most basic markup elements are placeholders, to define the XML data elements; and
groups, to define the repeating elements.

Publisher provides tags to add markup to the template. For the XSL equivalents of the
Publisher tags, see XSL Equivalents.

Chapter 12
Add Markup to the Template Layout

12-6

Create Placeholders
The placeholder maps the template field to the XML element data field. At runtime the
placeholder is replaced by the value of the element of the same name in the XML data file.

Enter placeholders in the document using the following syntax:

<?XML element tag name?>
The placeholder must match the XML element tag name exactly. It's case sensitive.

There're two ways to insert placeholders in the document:

• Use the Basic RTF Method: Insert the placeholder syntax directly into the template
document.

• Use the Form Field Method: (Requires Microsoft Word) Insert the placeholder syntax in
Microsoft Word's Text Form Field Options window. This method allows you to maintain the
appearance of the template.

See Insert a Field.

Use the Basic RTF Method
Enter the placeholder syntax in the document where you want the XML data value to appear.

Enter the element's XML tag name using the syntax:

<?XML element tag name?>
In the example, the template field "Supplier" maps to the XML element VENDOR_NAME. In
the document, enter:

<?VENDOR_NAME?>
The entry in the template is shown in the following illustration.

Use the Form Field Method
Placeholder tags can be added using the Form Field method.

To use Microsoft Word's Form Field method to insert the placeholder tags:

1. Enable the Forms toolbar in the Microsoft Word application.

2. Position the cursor in the location where you want to create a placeholder.

Chapter 12
Add Markup to the Template Layout

12-7

3. Select the Text Form Field toolbar icon. This action inserts a form field area in the
document.

4. Double-click the form field area to invoke the Text Form Field Options dialog box.

5. Optional: Enter a description of the field in the Default text field. The entry in this field
populates the placeholder's position on the template.

For the example, enter "Supplier 1".

6. Select the Add Help Text button.

7. In the help text entry field, enter the XML element's tag name using the syntax:

<?XML element tag name?>
You can enter multiple element tag names in the text entry field.

In the example, the report field "Supplier" maps to the XML element VENDOR_NAME. In
the Form Field Help Text field enter:

<?VENDOR_NAME?>
The following illustration shows the Text Form Field Options dialog and the Form Field
Help Text dialog with the appropriate entries for the Supplier field.

Tip:

For longer strings of Publisher syntax, use the Help Key (F1) tab instead of the
Status Bar tab. The text entry field on the Help Key (F1) tab allows more
characters.

8. Click OK to apply.

The Default text is displayed in the form field on the template.

Chapter 12
Add Markup to the Template Layout

12-8

The following illustration shows the Supplier field from the template with the added form
field markup.

Complete the Form Field Method Example
This table shows the entries made to complete the form field method example. The Template
Field Name is the display name from the template. The Default Text Entry is the value entered
in the Default Text field of the Text Form Field Options dialog box (form field method only). The
Placeholder Entry is the XML element tag name entered either in the Form Field Help Text field
(form field method) or directly on the template.

Template Field Name Default Text Entry
(Form Field
Method)

Placeholder Entry (XML Tag Name)

Invoice Num 1234566 <?INVOICE_NUM?>

Invoice Date 1-Jan-2004 <?INVOICE_DATE?>

GL Date 1-Jan-2004 <?GL_DATE?>

Curr USD <?INVOICE_CURRENCY_CODE?>

Entered Amt 1000.00 <?ENT_AMT?>

Accounted Amt 1000.00 <?ACCTD_AMT?>

(Total of Entered Amt column) 1000.00 <?ENT_SUM_VENDOR?>

(Total of Accounted Amt
column)

1000.00 <?ACCTD_SUM_VENDOR?>

This figure shows the Payables Invoice Register with the completed form field placeholder
markup. See Use the Basic RTF Method for the completed basic RTF markup.

Chapter 12
Add Markup to the Template Layout

12-9

Define Groups
By defining a group, you notify Publisher that for each occurrence of an element, you want the
included fields displayed. At runtime, Publisher loops through the occurrences of the element
and displays the fields each time.

In the example, for each occurrence of G_VENDOR_NAME in the XML file, you want the
template to display its child elements VENDOR_NAME (Supplier Name), G_INVOICE_NUM
(the Invoices group), Total Entered Amount, and Total Accounted Amount. And, for each
occurrence of G_INVOICE_NUM (Invoices group), you want the template to display Invoice
Number, Invoice Date, GL Date, Currency, Entered Amount, and Accounted Amount.

To designate a group of repeating fields, insert the grouping tags around the elements to
repeat.

Insert the following tag before the first element:

<?for-each:XML group element tag name?>

Insert the following tag after the final element:

<?end for-each?>

See Insert a Repeating Group.

Group Scenarios
When grouping, note that the group element must be a parent of the repeating elements in the
XML input file. These are some of the grouping scenarios.

• If you insert the grouping tags around text or formatting elements, then the text and
formatting elements between the group tags are repeated.

Chapter 12
Define Groups

12-10

• If you insert the tags around a table, then the table is repeated.

• If you insert the tags around text in a table cell, then the text in the table cell between the
tags is repeated.

• If you insert the tags around two different table cells, but in the same table row, then the
single row is repeated.

• If you insert the tags around two different table rows, then the rows between the tags are
repeated (this doesn't include the row that contains the "end group" tag).

Use the Basic RTF Method
Enter the tags in the document to define the beginning and end of the repeating element
group.

To create the Suppliers group in the example, insert the tag:

<?for-each:G_VENDOR_NAME?>
before the Supplier field that you previously created.

Insert <?end for-each?> in the document after the summary row.

The following illustration shows the Payables Invoice Register with the basic RTF grouping and
placeholder markup.

Use the Form Field Method
You can define a group using the Form Field method.

To use Microsoft Word's Form Field method to defining a group:

1. Insert a form field to designate the beginning of the group.

In the help text field enter:

<?for-each:group element tag name?>

Chapter 12
Define Groups

12-11

To create the Suppliers group in the example, insert a form field before the Suppliers field
that you previously created. In the help text field enter:

<?for-each:G_VENDOR_NAME?>
For the example, enter the Default text "Group: Suppliers" to designate the beginning of
the group on the template. Default text is optional, but can make the template easier to
read.

2. Insert a form field after the final placeholder element in the group. In the help text field
enter <?end for-each?>.

For the example, enter the Default text "End: Suppliers" after the summary row to
designate the end of the group on the template.

The following figure shows the template after the markup to designate the Suppliers group
was added.

Complete the Example
The second group in the example is the invoices group. The repeating elements in this group
are displayed in the table. For each invoice, the table row should repeat. Create a group within
the table to contain these elements.

For each invoice, only the table row should repeat, not the entire table. Placing the grouping
tags at the beginning and end of the table row repeats only the row. If you place the tags
around the table, then for each new invoice the entire table with headings is repeated.

To mark up the example, insert the grouping tag <?for-each:G_INVOICE_NUM?> in the table
cell before the Invoice Num placeholder. Enter the Default text Group:Invoices to designate
the beginning of the group.

Insert the end tag inside the final table cell of the row after the Accounted Amt placeholder.
Enter the Default text End:Invoices to designate the end of the group.

The following figure shows the completed example using the form field method.

Chapter 12
Define Groups

12-12

Define Headers and Footers
You can define headers and footers as part of the template.

This section covers the following topics:

• Native Support for Headers and Footers

• Insert Placeholders in the Headers and Footers

• Create Multiple or Complex Headers and Footers

• Define Different First Page, Odd Pages, and Even Pages

Native Support for Headers and Footers
You can use native RTF header and footer in the report.

To create a header or footer, use the word processor's header and footer insertion tools. As an
alternative, or if you have multiple headers and footers, you can use start:body and end body
tags to distinguish the header and footer regions from the body of the report.

Insert Placeholders in the Headers and Footers
At the time of this writing, Microsoft Word doesn't support form fields in the header and footer.

You must therefore insert the placeholder syntax directly into the template (basic RTF method),
or use the start body/end body syntax described in the next section.

Create Multiple or Complex Headers and Footers
You can create multiple or complex headers and footers in the template by using Publisher
tags to define the body area of the report. You can include complex objects in the form fields
for the header and footer. When you define the body area, the elements occurring before the

Chapter 12
Define Headers and Footers

12-13

beginning of the body area compose the header. The elements occurring after the body area
compose the footer.

Use the following tags to enclose the body area of the report:

<?start:body?>
<?end body?>
Use the tags either directly in the template, or in form fields.

The Payables Invoice Register contains a simple header and footer and therefore doesn't
require the start body/end body tags. However, if you wanted to add another header to the
template, define the body area.

Perform the following steps to define the body area:

1. Insert <?start:body?> before the Suppliers group tag:

<?for-each:G_VENDOR_NAME?>
2. Insert <?end body?> after the Suppliers group closing tag:

<?end for-each?>
The following figure shows the Payables Invoice Register with the start body/end body tags
inserted:

Define Different First Page, Odd Pages, and Even Pages
If the report requires a different header and footer on the first page of the report; or, if the report
requires different headers and footers for odd and even pages, then you can define different
page setup for first page, odd pages, and even pages using Microsoft Word's Page Setup
dialog. This feature is supported for PDF and RTF output only.

1. Select Page Setup from the File menu.

2. In the Page Setup dialog, select the Layout tab.

3. In the Headers and footers region of the dialog, select the appropriate check box:

Different odd and even

Different first page

Chapter 12
Define Headers and Footers

12-14

4. Insert the headers and footers into the template as desired.

At run time the generated report exhibits the defined header and footer behavior.

Insert Images and Charts
Publisher supports several methods for including images in the published document.

The following sections describe these options:

• Directly Insert Images

• Insert Images with URL References

• Insert Images with an Element Reference from an XML File

• Render an Image Retrieved from BLOB Data

• Add Charts to Templates

Directly Insert Images
Insert the jpg, gif, or png image directly in the template.

Note that if you insert an image to an RTF template, and set the Wrap Text property of the
image to a value other than In Line With Text, the PowerPoint output won't contain the image.

Insert Images with URL References
Include an alternative text link for an image.

To insert images with URL references:

1. Insert a dummy image in the template.

2. In Microsoft Word's Format Picture dialog box select the Web tab. Enter the following
syntax in the Alternative text region to reference the image URL:

url:{'http://<image location>'}
For example, enter:

url:{'http://www.example.com/images/ora_log.gif'}

Insert Images with an Element Reference from an XML File
Include a link to an XML file for an image.

To insert images with element references:

1. Insert a dummy image in the template.

2. In Microsoft Word's Format Picture dialog box select the Web tab. Enter the following
syntax in the Alternative text region to reference the image URL:

url:{IMAGE_LOCATION}
where IMAGE_LOCATION is an element from the XML file that holds the full URL to the
image.

You can also build a URL based on multiple elements at runtime. Just use the concat
function to build the URL string. For example:

Chapter 12
Insert Images and Charts

12-15

url:{concat(SERVER,'/',IMAGE_DIR,'/',IMAGE_FILE)}
where SERVER, IMAGE_DIR, and IMAGE_FILE are element names from the XML file that
hold the values to construct the URL.

This method can also be used with the OA_MEDIA reference as follows:

url:{concat('${OA_MEDIA}','/',IMAGE_FILE)}

Render an Image Retrieved from BLOB Data
You can include an image stored as a BLOB in a form.

If results XML contains image data that had been stored as a BLOB in the database, then use
the following syntax in a form field inserted in the template where you want the image to render
at runtime:

<fo:instream-foreign-object content-type="image/jpg">
<xsl:value-of select="IMAGE_ELEMENT"/>
</fo:instream-foreign-object>

where

image/jpg is the MIME type of the image (other options might be: image/gif and image/png)

and

IMAGE_ELEMENT is the element name of the BLOB in the XML data.

Note that you can specify height and width attributes for the image to set its size in the
published report. The image fits the box size that you define. For example, to set the size of
the example above to three inches by four inches, enter the following:

<fo:instream-foreign-object content-type="image/jpg" height="3 in" width="4
in">
<xsl:value-of select="IMAGE_ELEMENT"/>
</fo:instream-foreign-object>

Specify in pixels as follows:

<fo:instream-foreign-object content-type="image/jpg" height="300 px" width="4
px">
...

or in centimeters:

<fo:instream-foreign-object content-type="image/jpg" height="3 cm" width="4
cm">
...

or as a percentage of the original dimensions:

<fo:instream-foreign-object content-type="image/jpg" height="300%"
width="300%">
...

Chapter 12
Insert Images and Charts

12-16

Add Charts to Templates
Follow these steps to add a chart to the template.

The following list summarizes the steps to add a chart to the template. These steps are
discussed in detail in this section with an example.

1. Insert a dummy image in the template to define the size and position of the chart.

2. Add the definition for the chart to the Alternative text box of the dummy image. The chart
definition requires XSL commands.

3. At runtime Publisher calls the charting engine to render the image that is then inserted into
the final output document.

Note that RTF output is limited to raster images. PDF and HTML output support raster and
vector images.

Add a Sample Chart
Follow this illustration to add a sample chart.

Following is a piece of XML data showing total sales by company division.

<sales year=2004>
 <division>
 <name>Groceries</name>
 <totalsales>3810</totalsales>
 <costofsales>2100</costofsales>
 </division>
 <division>
 <name>Toys</name>
 <totalsales>2432</totalsales>
 <costofsales>1200</costofsales>
 </division>
 <division>
 <name>Cars</name>
 <totalsales>6753</totalsales>
 <costofsales>4100</costofsales>
 </division>
 <division>
 <name>Hardware</name>
 <totalsales>2543</totalsales>
 <costofsales>1400</costofsales>
 </division>
 <division>
 <name>Electronics</name>
 <totalsales>5965</totalsales>
 <costofsales>3560</costofsales>
 </division>
</sales>

This example describes how to insert a chart into the template to display it as a vertical bar
chart, as shown in the following bar chart.

Chapter 12
Insert Images and Charts

12-17

Note the following attributes of this chart:

• The style is a vertical bar chart.

• The chart displays a background grid.

• The components are colored.

• Sales totals are shown as Y-axis labels.

• Divisions are shown as X-axis labels.

• The chart is titled.

• The chart displays a legend.

Each of these properties can be customized to suit individual report requirements.

Insert the Dummy Image
You must insert the dummy image as a "Picture" and not any other kind of object.

The first step is to add a dummy image to the template in the position you want the chart to
appear. The image size defines how large the chart image is in the final document.

The following illustration shows an example of a dummy image.

Chapter 12
Insert Images and Charts

12-18

The image can be embedded inside a for-each loop like any other form field if you want the
chart to be repeated in the output based on the repeating data. In this example, the chart is
defined within the sales year group so that a chart is generated for each year of data present in
the XML file.

Right-click the image to open the Format Picture palette and select the Web tab. Use the
Alternative text entry box to enter the code to define the chart characteristics and data
definition for the chart.

Add Code to the Alternative Text Box
An Alternative text box is a text field that contains code, the content of which is rendered as a
chart in the final document.

The following figure shows an example of the Publisher code in the Format Picture Alternative
text box.

Chapter 12
Insert Images and Charts

12-19

The content of the Alternative text represents the chart that is rendered in the final document.
For this chart, the text is as follows:

chart:
<Graph graphType = "BAR_VERT_CLUST">
 <Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>
 <Y1Title text="Sales in Thousands" visible="true"/>
 <O1Title text="Division" visible="true"/>
 <LocalGridData colCount="{count(//division)}" rowCount="1">
 <RowLabels>
 <Label>Total Sales $1000s</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>
 <DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>

Chapter 12
Insert Images and Charts

12-20

 </LocalGridData>
</Graph>

The first element of the chart text must be the chart: element to inform the RTF parser that the
following code describes a chart object.

Next is the opening <Graph> tag. Note that the whole of the code resides within the tags of the
<Graph> element. This element has an attribute to define the chart type: graphType. If this
attribute isn't declared, the default chart is a vertical bar chart. BI Beans supports many
different chart types. Several more types are presented in this section. For a complete listing,
see the BI Beans graph DTD documentation.

The following code section defines the chart type and attributes:

<Title text="Company Sales 2004" visible="true" horizontalAlignment="CENTER"/>
 <Y1Title text="Sales in Thousands" visible="true"/>
 <O1Title text="Division" visible="true"/>

All of these values can be declared or you can substitute values from the XML data at runtime.
For example, you can retrieve the chart title from an XML tag by using the following syntax:

<Title text="{CHARTTITLE}" visible="true" horizontalAlighment="CENTER"/>

where "CHARTTITLE" is the XML tag name that contains the chart title. Note that the tag name
is enclosed in curly braces.

The next section defines the column and row labels:

<LocalGridData colCount="{count(//division)}" rowCount="1">
 <RowLabels>
 <Label>Total Sales $1000s</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>

The LocalGridData element has two attributes: colCount and rowCount. These define the
number of columns and rows that are shown at runtime. In this example, a count function
calculates the number of columns to render:

colCount="{count(//division)}"

The rowCount is hard-coded to 1. This value defines the number of sets of data to be charted.
In this case it's 1.

Next the code defines the row and column labels. These can be declared, or a value from the
XML data can be substituted at runtime. The row label is used in the chart legend (that is,
"Total Sales $1000s").

Chapter 12
Insert Images and Charts

12-21

The column labels for this example are derived from the data: Groceries, Toys, Cars, and so
on. This is done using a for-each loop:

<ColLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </ColLabels>

This code loops through the <division> group and inserts the value of the <name> element into
the <Label> tag. At runtime, this code generates the following XML:

<ColLabels>
 <Label>Groceries</Label>
 <Label>Toys</Label>
 <Label>Cars</Label>
 <Label>Hardware</Label>
 <Label>Electronics</Label>
</ColLabels>

The next section defines the actual data values to chart:

<DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>

Similar to the labels section, the code loops through the data to build the XML that is passed to
the BI Beans rendering engine. This code generates the following XML:

<DataValues>
 <RowData>
 <Cell>3810</Cell>
 <Cell>2432</Cell>
 <Cell>6753</Cell>
 <Cell>2543</Cell>
 <Cell>5965</Cell>
 </RowData>
</DataValues>

Add Chart Samples
Follow the sample pie chart to understand how you can display the data in a pie chart.

You can also display this data in a pie chart as shown in the following figure.

Chapter 12
Insert Images and Charts

12-22

The following is the code added to the template to render this chart at runtime:

chart:
<Graph graphType="PIE">
 <Title text="Company Sales 2004" visible="true"
 horizontalAlignment="CENTER"/>
 <LocalGridData rowCount="{count(//division)}" colCount="1">
 <RowLabels>
 <xsl:for-each select="//division">
 <Label>
 <xsl:value-of select="name"/>
 </Label>
 </xsl:for-each>
 </RowLabels>
 <DataValues>
 <xsl:for-each select="//division">
 <RowData>
 <Cell>
 <xsl:value-of select="totalsales"/>
 </Cell>
 </RowData>
 </xsl:for-each>
 </DataValues>
 </LocalGridData>
</Graph>

Chapter 12
Insert Images and Charts

12-23

Horizontal Bar Chart Sample
This example shows total sales and cost of sales charted in a horizontal bar format. This also
adds the data from the cost of sales element (<costofsales>) to the chart.

The following code defines this chart in the template:

chart:
<Graph graphType = "BAR_HORIZ_CLUST">
 <Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>
 <LocalGridData colCount="{count(//division)}" rowCount="2">
 <RowLabels>
 <Label>Total Sales ('000s)</Label>
 <Label>Cost of Sales ('000s)</Label>
 </RowLabels>
 <ColLabels>
 <xsl:for-each select="//division">
 <Label><xsl:value-of select="name"/></Label>
 </xsl:for-each>
 </ColLabels>
 <DataValues>
 <RowData>
 <xsl:for-each select="//division">
 <Cell><xsl:value-of select="totalsales"/></Cell>
 </xsl:for-each>
 </RowData>
 <RowData>
 <xsl:for-each select="//division">

Chapter 12
Insert Images and Charts

12-24

 <Cell><xsl:value-of select="costofsales"/></Cell>
 </xsl:for-each>
 </RowData>
 </DataValues>
 </LocalGridData>
</Graph>

To accommodate the second set of data, the rowCount attribute for the LocalGridData element
is set to 2. Also note the DataValues section defines two sets of data: one for Total Sales and
one for Cost of Sales.

Change the Appearance of the Chart
There're many attributes available from the BI Beans graph DTD that you can manipulate to
change the look and feel of the chart.

For example, the previous chart can be changed to remove the grid, place a graduated
background, and change the bar colors and fonts, as shown in the following figure:

The code to support this is as follows:

chart:
<Graph graphType = "BAR_HORIZ_CLUST">
<SeriesItems>
 <Series id="0" color="#ffcc00"/>
 <Series id="1" color="#ff6600"/>
</SeriesItems>
<O1MajorTick visible="false"/>
<X1MajorTick visible="false"/>

Chapter 12
Insert Images and Charts

12-25

<Y1MajorTick visible="false"/>
<Y2MajorTick visible="false"/>
<MarkerText visible="true" markerTextPlace="MTP_CENTER"/>
<PlotArea borderTransparent="true">
 <SFX fillType="FT_GRADIENT" gradientDirection="GD_LEFT"
 gradientNumPins="300">
 <GradientPinStyle pinIndex="1" position="1"
 gradientPinLeftColor="#999999"
 gradientPinRightColor="#cc6600"/>
 </SFX>
</PlotArea>
<Title text="Company Sales 2004" visible="true">
 <GraphFont name="Tahoma" bold="false"/>
</Title>
. . .
</Graph>

The colors for the bars are defined in the SeriesItems section. The colors are defined in
hexadecimal format as follows:

<SeriesItems>
 <Series id="0" color="#ffcc00"/>
 <Series id="1" color="#ff6600"/>
</SeriesItems>

The following code hides the chart grid:

<O1MajorTick visible="false"/>
 <X1MajorTick visible="false"/>
 <Y1MajorTick visible="false"/>
 <Y2MajorTick visible="false"/>

The MarkerText tag places the data values on the chart bars:

<MarkerText visible="true" markerTextPlace="MTP_CENTER"/>

The PlotArea section defines the background. The SFX element establishes the gradient and
the borderTransparent attribute hides the plot border:

<PlotArea borderTransparent="true">
 <SFX fillType="FT_GRADIENT" gradientDirection="GD_LEFT"
 gradientNumPins="300">
 <GradientPinStyle pinIndex="1" position="1"
 gradientPinLeftColor="#999999"
 gradientPinRightColor="#cc6600"/>
 </SFX>
</PlotArea>

Chapter 12
Insert Images and Charts

12-26

The Title text tag has also been updated to specify a new font type and size:

<Title text="Company Sales 2004" visible="true">
 <GraphFont name="Tahoma" bold="false"/>
</Title>

Add Drawings, Shapes, and Clip Art
Publisher supports Microsoft Word drawing, shape, and clip art features. You can add these
objects to the template and they're rendered in the final PDF output or HTML output (not
supported for other output types).

The following AutoShape categories are supported:

• Lines - Straight, arrows, connectors, curve, free form, and scribble.

• Connectors - Straight connectors only are supported. Curved connectors can be achieved
by using a curved line and specifying the end styles to the line.

• Basic Shapes - All shapes are supported. You can’t include images inside the shape
objects.

• Block arrows - All arrows are supported.

• Flowchart - All flowchart objects are supported.

• Stars and Banners - All objects are supported.

• Callouts - The "line" callouts are not supported.

• Clip Art - Add images to the templates using the Microsoft Clip Art libraries.

Add Freehand Drawings
The freehand drawing tool helps you create drawings to the final PDF.

Use the freehand drawing tool in Microsoft Word to create drawings in the template to be
rendered in the final PDF output.

Add Hyperlinks
This section explains on how to add hyperlinks to shapes.

See Insert Hyperlinks.

Layer Shapes
You can layer shapes on top of each other and use the transparency setting in Microsoft Word
to allows shapes on lower layers to show through.

The following illustration shows an example of layered shapes.

Chapter 12
Add Drawings, Shapes, and Clip Art

12-27

Use 3-D Effects
Publisher doesn't support the 3-D option for shapes.

Add Microsoft Equations
Use the equation editor to generate equations in the output.

The following figure shows an example of an equation:

Add Organization Charts
Use the organization chart functionality of Microsoft Word in the templates and the chart that is
rendered in the output.

The following figure shows an example of an organization chart.

Chapter 12
Add Drawings, Shapes, and Clip Art

12-28

Add WordArt
You can use Microsoft Word's WordArt functionality in the templates.

Some Microsoft WordArt uses a bitmap operation that currently can't be converted to SVG. To
use the unsupported WordArt in the template, you can take a screenshot of the WordArt then
save it as an image (gif, jpeg, or png) and replace the WordArt with the image.

The following figure shows a sample WordArt example.

Add Data-Driven Shapes
In addition to supporting the static shapes and features in the templates, Publisher supports
the manipulation of shapes based on incoming data or parameters, as well.

The following manipulations are supported:

• Replicate

• Move

• Change size

• Add text

• Skew

• Rotate

These manipulations not only apply to single shapes, but you can use the group feature in
Microsoft Word to combine shapes together and manipulate them as a group.

Chapter 12
Add Drawings, Shapes, and Clip Art

12-29

Include Manipulation Commands
Enter manipulation commands for a shape in the Web tab of the shape's properties dialog as
shown in this figure.

Replicate Shapes
You can replicate a shape based on incoming XML data in the same way you replicate data
elements in a for-each loop.

To replicate a shape, use a for-each@shape command in conjunction with a shape-offset
declaration. For example, to replicate a shape down the page, use the following syntax:

<?for-each@shape:SHAPE_GROUP?>
 <?shape-offset-y:(position()-1)*100?>
<?end for-each?>

where

for-each@shape opens the for-each loop for the shape context

SHAPE_GROUP is the name of the repeating element from the XML file. For each occurrence of
the element SHAPE_GROUP a new shape is created.

shape-offset-y: is the command to offset the shape along the y-axis.

(position()-1)*100) sets the offset in pixels per occurrence. The XSL position command
returns the record counter in the group (that is 1,2,3,4); one is subtracted from that number and
the result is multiplied by 100. Therefore for the first occurrence the offset would be 0: (1-1) *

Chapter 12
Add Drawings, Shapes, and Clip Art

12-30

100. The offset for the second occurrence would be 100 pixels: (2-1) *100. And for each
subsequent occurrence the offset would be another 100 pixels down the page.

Add Text to Shapes
You can add text to a shape dynamically either from the incoming XML data or from a
parameter value.

In the Property dialog enter the following syntax:

<?shape-text:SHAPETEXT?>

where SHAPETEXT is the element name in the XML data. At runtime the text is inserted into
the shape.

Add Text Along a Path
You can add text along a line or curve from incoming XML data or a parameter.

After drawing the line, in the Property dialog enter:

<?shape-text-along-path:SHAPETEXT?>

where SHAPETEXT is the element from the XML data. At runtime the value of the element
SHAPETEXT is inserted above and along the line.

Move a Shape
You can move a shape or transpose it along both the x and y-axes based on the XML data.

For example to move a shape 200 pixels along the y-axis and 300 along the x-axis, enter the
following commands in the property dialog of the shape:

<?shape-offset-x:300?>
<?shape-offset-y:200?>

Rotate a Shape
You can rotate a shape about a specified axis based on the incoming data.

Use the following command:

<?shape-rotate:ANGLE;'POSITION'?>

where

ANGLE is the number of degrees to rotate the shape. If the angle is positive, the rotation is
clockwise; if negative, the rotation is counterclockwise.

POSITION is the point about which to carry out the rotation, for example, 'left/top'. Valid
values are combinations of left, right, or center with center, top, or bottom. The default is left/
top. The following illustration shows these valid values.

Chapter 12
Add Drawings, Shapes, and Clip Art

12-31

To rotate this rectangle shape about the bottom right corner, enter the following syntax:

<?shape-rotate:60,'right/bottom'?>

You can also specify an x,y coordinate within the shape itself about which to rotate.

Skew a Shape
You can skew a shape using the skew command.

You can skew a shape along its x or y axis using the following commands:

<?shape-skew-x:ANGLE;'POSITION'?>
<?shape-skew-y:ANGLE;'POSITION'?>

where

ANGLE is the number of degrees to skew the shape. If the angle is positive, the skew is to the
right.

POSITION is the point about which to carry out the rotation, for example, 'left/top'. Valid
values are combinations of left, right, or center with center, top, or bottom. See Rotate a
Shape. The default is 'left/top'.

For example, to skew a shape by 30 degrees about the bottom right hand corner, enter the
following:

<?shape-skew-x:number(.)*30;'right/bottom'?>

Change the Size of Shapes
You can change the size of a shape using the appropriate commands either along a single axis
or both axes.

Chapter 12
Add Drawings, Shapes, and Clip Art

12-32

To change a shape's size along both axes, use:

<?shape-size:RATIO?>

where RATIO is the numeric ratio to increase or decrease the size of the shape. Therefore a
value of 2 would generate a shape twice the height and width of the original. A value of 0.5
would generate a shape half the size of the original.

To change a shape's size along the x or y axis, use:

<?shape-size-x:RATIO?>
<?shape-size-y:RATIO?>

Changing only the x or y value has the effect of stretching or shrinking the shape along an axis.
This can be data driven.

Combine Commands
You can also combine these commands to carry out multiple transformations on a shape at
one time. For example, you can replicate a shape and for each replication, rotate it by some
angle and change the size at the same time.

The following example shows how to replicate a shape, move it 50 pixels down the page,
rotate it by five degrees about the center, stretch it along the x-axis and add the number of the
shape as text:

<for-each@shape:SHAPE_GROUP?>
 <?shape-text:position()?>
 <?shape-offset-y:position()*50?>
 <?shape-rotate:5;'center/center'?>
 <?shape-size-x:position()+1?>
<end for-each?>

These commands generate the output shown in the following shape transformation figure:

Chapter 12
Add Drawings, Shapes, and Clip Art

12-33

CD Ratings Example
This example demonstrates how to set up a template that generates a star-rating based on
data from an incoming XML file.

Assume the following incoming XML data:

<CATALOG>
 <CD>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <COMPANY>Columbia</COMPANY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 <USER_RATING>4</USER_RATING>
 </CD>
 <CD>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>CBS Records</COMPANY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 <USER_RATING>3</USER_RATING>
 </CD>
 <CD>
 <TITLE>Still got the blues</TITLE>
 <ARTIST>Gary More</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>10.20</PRICE>
 <YEAR>1990</YEAR>
 <USER_RATING>5</USER_RATING>
 </CD>
 <CD>
 <TITLE>This is US</TITLE>
 <ARTIST>Gary Lee</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>12.20</PRICE>
 <YEAR>1990</YEAR>
 <USER_RATING>2</USER_RATING>
 </CD>
<CATALOG>

Notice the USER_RATING element for each CD. Using this data element and the shape
manipulation commands, you can create a visual representation of the ratings so that the
reader can compare them at a glance. A template to achieve this is shown in the following
visual representation of ratings figure:

Chapter 12
Add Drawings, Shapes, and Clip Art

12-34

The values for the fields are shown in the following values for fields table:

Field Form Field Entry

F <?for-each:CD?>
TITLE <?TITLE?>
ARTIST <?ARTIST?>
E <?end for-each?>
(star shape) Web Tab Entry:

<?for-
each@shape:xdoxslt:foreach_number($_XDOCTX,1,USER_RATING,1)?
>
<?shape-offset-x:(position()-1)*25?>
<?end for-each?>

The form fields hold the simple element values. The only difference with this template is the
value for the star shape. The replication command is placed in the Web tab of the Format
AutoShape dialog.

In the for-each@shape command you can use a command to create a "for...next loop"
construct. Specify 1 as the starting number; the value of USER_RATING as the final number;
and 1 as the step value. As the template loops through the CDs, it creates an inner loop to
repeat a star shape for every USER_RATING value (that is, a value of 4 generates 4 stars).
The output from this template and the XML sample is shown in the following figure:

Grouped Shape Example
This example shows how to combine shapes into a group and have them react to the incoming
data both individually and as a group.

Assume the following XML data:

<SALES>
 <SALE>

Chapter 12
Add Drawings, Shapes, and Clip Art

12-35

 <REGION>Americas</REGION>
 <SOFTWARE>1200</SOFTWARE>
 <HARDWARE>850</HARDWARE>
 <SERVICES>2000</SERVICES>
 </SALE>
 <SALE>
 <REGION>EMEA</REGION>
 <SOFTWARE>1000</SOFTWARE>
 <HARDWARE>800</HARDWARE>
 <SERVICES>1100</SERVICES>
 </SALE>
 <SALE>
 <REGION>APAC</REGION>
 <SOFTWARE>900</SOFTWARE>
 <HARDWARE>1200</HARDWARE>
 <SERVICES>1500</SERVICES>
 </SALE>
</SALES>

You can create a visual representation of this data so that users can very quickly understand
the sales data across all regions. Do this by first creating the composite shape in Microsoft
Word that you want to manipulate. The following figure shows a composite shape comprising
four components:

The shape consists of three cylinders: red, yellow, and blue. These represent the data
elements software, hardware, and services. The combined object also contains a rectangle
that is enabled to receive text from the incoming data.

The following commands are entered into the Web tab:

Red cylinder: <?shape-size-y:SOFTWARE div 1000;'left/bottom'?>
Yellow cylinder: <?shape-size-y:HARDWARE div 1000;'left/bottom'?>
Blue cylinder: <?shape-size-y:SERVICES div 1000;'left/bottom'?>
The shape-size command is used to stretch or shrink the cylinder based on the values of the
elements SOFTWARE, HARDWARE, and SERVICES. The value is divided by 1000 to set the
stretch or shrink factor. For example, if the value is 2000, divide that by 1000 to get a factor of
2. The shape generates as twice its current height.

The text-enabled rectangle contains the following command in its Web tab:

<?shape-text:REGION?>

Chapter 12
Add Drawings, Shapes, and Clip Art

12-36

At runtime the value of the REGION element is displayed in the rectangle.

All of these shapes were then grouped together and in the Web tab for the grouped object, the
following syntax is added:

<?for-each@shape:SALE?>
<?shape-offset-x:(position()-1)*110?>
<?end for-each?>

In this set of commands, the for-each@shape loops over the SALE group. The shape-offset
command moves the next shape in the loop to the right by a specific number of pixels. The
expression (position()-1) sets the position of the object. The position() function returns a
record counter while in the loop, so for the first shape, the offset would be 1-1*110, or 0, which
would place the first rendering of the object in the position defined in the template. Subsequent
occurrences would be rendered at a 110 pixel offset along the x-axis (to the right).

At runtime three sets of shapes are rendered across the page, as shown in the following figure:

To make an even more visually representative report, these shapes can be superimposed onto
a world map. Just use the Order dialog in Microsoft Word to layer the map behind the grouped
shapes.

• Microsoft Word 2000 Users: After you add the background map and overlay the shape
group, use the Grouping dialog to make the entire composition one group.

• Microsoft Word 2002/3 Users: These versions of Word have an option under Tools >
Options, General tab to "Automatically generate drawing canvas when inserting
autoshapes". Using this option removes the need to do the final grouping of the map and
shapes. You can now generate a visually appealing output for the report as seen in the
following figure:

Chapter 12
Add Drawings, Shapes, and Clip Art

12-37

Supported Formatting Features of Microsoft Word
Microsoft Word can simplify formatting output.

In addition to the features already listed, other supported features of Microsoft Word are
described in the following sections:

• General Features of Microsoft Word

• Align Objects

• Insert Tables

• Insert Date Fields

• Insert Multiple Columns on Pages

• Insert Backgrounds and Watermarks

• Microsoft Word Features that Aren't Supported

General Features of Microsoft Word
The general features of Microsoft Word are large blocks of text, page breaks, page numbering,
and hidden text.

• Large blocks of text

• Page breaks

(Not supported for HTML output) To insert a page break, press Ctrl+Enter right before the
closing tag of a group. For example if you want the template to start a new page for every
Supplier in the Payables Invoice Register:

1. Place the cursor just before the Supplier group's closing <?end for-each?> tag.

Chapter 12
Supported Formatting Features of Microsoft Word

12-38

2. Press Ctrl+Enter to insert a page break.

At runtime each Supplier starts on a new page.

Using this Microsoft Word native feature causes a single blank page to print at the end of
the report output. To avoid this single blank page, use Publisher's page break alias.

• Page numbering

Insert page numbers into the final report by using the page numbering methods of the word
processor. For example, if you're using Microsoft Word:

1. From the Insert menu, select Page Numbers...

2. Select the Position, Alignment, and Format as desired.

At runtime the page numbers are displayed as selected.

Note that page numbering isn't supported for HTML output and has limited support in RTF
output. After the RTF report is generated, press F9 to reset the page numbers.

• Hidden text

You can format text as hidden in Microsoft Word and the hidden text is maintained in RTF
output reports.

Align Objects
Use the word processor's alignment features to align text, graphics, objects, and tables.
Bidirectional languages are handled automatically using the word processor's left/right
alignment controls.

Note that Publisher output documents don't support right and left justification for symbol-based
languages such as Chinese, Japanese, and Korean.

The RTF output doesn’t support center aligning the bulleted list and the numbered list.

Insert Tables
Insert Microsoft Word tables to enhance your reports.

The following Microsoft Word features are supported in Publisher:

• Nested Tables

• Cell Alignment

You can align any object in the template using the word processor's alignment tools. This
alignment is reflected in the final report output.

• Row spanning and column spanning

To span both columns and rows in the template:

1. Select the cells that you want to merge.

2. From the Table menu, select Merge Cells.

3. Align the data within the merged cell as you would normally.

At runtime the cells appear merged.

• Table Autoformatting

Publisher recognizes the table autoformats available in Microsoft Word.

To autoformat tables:

Chapter 12
Supported Formatting Features of Microsoft Word

12-39

1. Select the table that you want to format.

2. From the Table menu, select Autoformat.

3. Select the desired table format.

At runtime, the table is formatted using your selection.

• Cell patterns and colors

To highlight cells or rows of a table with a pattern or color:

1. Select the cell(s) or table.

2. From the Table menu, select Table Properties.

3. From the Table tab, select the Borders and Shading... button.

4. Add borders and shading as desired.

• Repeating table headers

Repeating table headers feature isn't supported for RTF output.

If the data is displayed in a table and you expect the table to extend across multiple pages,
then you can define the header rows that you want to repeat at the start of each page.

To repeat header rows:

1. Select the row(s) that you want to repeat on each page.

2. From the Table menu, select Heading Rows Repeat.

• Prevent rows from breaking across pages.

If you want to ensure that data within a row of a table is kept together on a page, you can
set this as an option using Microsoft Word's Table Properties.

To keep a row's contents together on one page:

1. Select the row(s) that you want to ensure do not break across a page.

2. From the Table menu, select Table Properties.

3. From the Row tab, deselect the check box Allow row to break across pages.

• Fixed-width columns

To set the widths of table columns:

1. Select a column and then select Table > Table Properties.

2. In the Table Properties dialog, select the Column tab.

3. Enable the Preferred width checkbox and then enter the width as a Percent or in
Inches.

4. Select the Next Column button to set the width of the next column.

Note that the total width of the columns must add up to the total width of the table.

• Text truncation

By default, if the text within a table cell doesn't fit within the cell, then the text is wrapped.
To truncate the text instead, use the table properties dialog.

Note that table text truncation is supported for PDF and PPT outputs only.

To truncate the text within a table cell:

1. Place the cursor in the cell in which you want the text truncated.

Chapter 12
Supported Formatting Features of Microsoft Word

12-40

2. Right-click and select Table Properties... from the menu, or navigate to Table > Table
Properties...

3. From the Table Properties dialog, select the Cell tab, then select Options...

4. Deselect the Wrap Text check box.

When using multibyte characters (for example, simplified Chinese) in tables, ensure that the
column widths are large enough to contain the width of the largest character plus the cell's left
and right margins to avoid unexpected character display in your final output.

An example of truncation is shown in the following figure.

Insert Date Fields
Insert dates using the date feature of the word processor. Note that this date corresponds to
the publishing date, not to the request run date.

Insert Multiple Columns on Pages
Publisher supports Microsoft Word's Columns function to enable you to publish the output in
multiple columns on a page. (Note that this isn't supported for HTML output.)

Select Format, then Columns to display the Columns dialog to define the number of columns
for the template.

To generate address labels in a two-column format:

1. Divide the page into two columns using the Columns command.

2. Define the repeatable group in the first column. Note that you define the repeatable group
only in the first column, as shown in the following illustration.

Chapter 12
Supported Formatting Features of Microsoft Word

12-41

Tip:

To prevent the address block from breaking across pages or columns, embed the
label block inside a single-celled table. Then specify in the Table Properties that the
row shouldn't break across pages.

This template produces the multicolumn output that is shown in the following illustration.

Insert Backgrounds and Watermarks
Use Microsoft Word to insert backgrounds and watermarks in templates. You can specify a
single, graduated color or an image background for the template to be displayed in the PDF or
PPT output.

To add a background to the template, use the Format > Background menu option.

Add a Background Using Microsoft Word 2000
With the Background support feature in Microsoft Word you can select a color background and
fill effects.

From the Background pop up menu, you can:

• Select a single color background from the color palette.

• Select Fill Effects to open the Fill Effects dialog.

From this dialog, select one of the following supported options:

– Gradient: This can be either one or two colors.

– Texture: Select one of the textures provided, or load your own.

– Pattern: Select a pattern and background/foreground colors.

– Picture: Load a picture to use as a background image.

Chapter 12
Supported Formatting Features of Microsoft Word

12-42

Add a Text or Image Watermark Using Microsoft Word 2002 or later
These versions of Microsoft Word allow you to add either a text or image watermark. Note that
the steps you take to add a watermark depend on which version of Microsoft Word you are
using.

You can add the following types of watermarks to documents:

• Picture Watermark - Load an image and define how it should be scaled on the document.

• Text Watermark - Use the predefined text options or enter your own, then specify the font,
size and how the text should be rendered.

The following figure shows an example of the Printed Watermark dialog completed to
display a text watermark in Microsoft Word 2010:

Microsoft Word Features that Aren't Supported
Don't use soft returns in your RTF template to achieve specific text placement. Instead use
hard carriage returns.

A soft return may have unexpected results in your generated output.

Template Features
Templates include several features that enhance their formatting and layout.

The template features are described in the following topics:

• Insert Page Breaks

• Insert an Initial Page Number

• Specify Last Page Only Content

Chapter 12
Template Features

12-43

• End on Even or Odd Pages

• Insert Blank Page

• Insert Hyperlinks

• Include a Table of Contents

• Generate Bookmarks in PDF Output

• Insert Check Boxes

• Insert Drop-Down Lists

• Repeat Row Headers After Page Break

Insert Page Breaks
You can create a page break in a few ways. Page breaks are supported for PDF, RTF, and
PPT output. Page breaks aren't supported for HTML output.

To create a page break after the occurrence of a specific element use the "split-by-page-break"
alias. This causes the report output to insert a hard page break between every instance of a
specific element.

To insert a page break between each occurrence of a group, insert the "split-by-page-break"
form field within the group immediately before the <?end for-each?> tag that closes the group.
In the Help Text of this form field enter the syntax:

<?split-by-page-break:?>
For the following XML, assume you want to create a page break for each new supplier:

<SUPPLIER>
 <NAME>My Supplier</NAME>
 <INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 </INVOICES>
</SUPPLIER>
<SUPPLIER>
 <NAME>My Second Supplier</NAME>
 <INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
…

In the template sample shown in the following illustration, the field called PageBreak contains
the split-by-page-break syntax:

Chapter 12
Template Features

12-44

Place the PageBreak field with the <?split-by-page-break:?> syntax immediately before the
<?end for-each?> field. The PageBreak field sits inside the end of the SUPPLIER loop. This
ensures that a page break is inserted before the occurrence of each new supplier. This method
avoids the ejection of an extra page at the end of the group when using the native Microsoft
Word page break after the group.

An Excel output generated using a direct FO file created by analytics or by using an RTF
template can have page breaks (break-before="page") in the rows of nested tables. This
enables you to export an analysis report with sections to an Excel file. For example, in a
dashboard page with sections, if you have set the Insert Page Break section property to
Outermost Column, when you export the dashboard page to an Excel file, the Excel file
stores information of each section in separate tab.

Insert an Initial Page Number
Some reports require that the initial page number be set at a specified number. For example,
monthly reports may be required to continue numbering from month to month. You can set the
initial page number for the PDF and PPT output, but not for the HTML or RTF output.

Use the following syntax in the template to set the initial page number:

<?initial-page-number:pagenumber?>

where pagenumber is the XML element or parameter that holds the numeric value.

Also, you can continue the page number from a previous section. The default behavior of a
new section in a document is to reset the page numbering. However, if the report requires that
the page numbering continue into the next section, use the following command:

<?initial-page-number:'auto'?>

This command allows the continuation of the page numbering from the previous section.

Example 1 - Set page number from XML data element

If the XML data contains an element to carry the initial page number, for example:

<REPORT>
 <PAGESTART>200<\PAGESTART>

</REPORT>

Enter the following in the template:

<?initial-page-number:PAGESTART?>

Chapter 12
Template Features

12-45

The initial page number is the value of the PAGESTART element, which in this case is 200.

Example 2 - Set page number by passing a parameter value

If you define a parameter called PAGESTART, then you can pass the initial value by calling the
parameter.

Enter the following in the template:

<?initial-page-number:$PAGESTART?>

You must first declare the parameter in the template. See Set Parameters.

Specify Last Page Only Content
Use the Microsoft Word functionality to specify a different page layout for the first page, odd
pages, and even pages. This feature is supported only for the PDF and PPT output.

To implement these options, simply select Page Setup from the File menu, then select the
Layout tab.

However, Microsoft Word doesn't provide settings for a different last page only. This is useful
for documents such as checks, invoices, or purchase orders on which you may want the
content such as the check or the summary in a specific place only on the last page.

To specify last page only content:

1. Create a section break in the template to ensure the content of the final page is separated
from the rest of the report.

2. Insert the following syntax on the final page:

<?start@last-page:body?>
<?end body?>

Any content on the page that occurs above or below these two tags is displayed only on the
last page of the report. Also, note that because this command explicitly specifies the content of
the final page, any desired headers or footers previously defined for the report must be
reinserted on the last page.

This example uses the last page only feature for a report that generates an invoice listing with
a summary to appear at the bottom of the last page.

Assume the following XML:

<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICELIST>
 <VENDOR>
 <VENDOR_NAME>Nuts and Bolts Limited</VENDOR_NAME>
 <ADDRESS>1 El Camino Real, Redwood City, CA 94065</ADDRESS>
 <INVOICE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>981110</INVOICE_NUM>
 <INVOICE_DATE>10-NOV-04</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>EUR</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>122</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </INVOICE>

Chapter 12
Template Features

12-46

 <INVOICE>
 <INV_TYPE>Standard</INV_TYPE>
 <INVOICE_NUM>100000</INVOICE_NUM>
 <INVOICE_DATE>28-MAY-04</INVOICE_DATE>
 <INVOICE_CURRENCY_CODE>FIM</INVOICE_CURRENCY_CODE>
 <ENT_AMT>122</ENT_AMT>
 <ACCTD_AMT>20.33</ACCTD_AMT>
 <VAT_CODE>VAT22%</VAT_CODE>
 </INVOICE>
 </VENDOR>
 <VENDOR>
 ...
<INVOICE>
 ...
 </INVOICE>
 </VENDOR>
 <SUMMARY>
 <SUM_ENT_AMT>61435</SUM_ENT_AMT>
 <SUM_ACCTD_AMT>58264.68</SUM_ACCTD_AMT>
 <TAX_CODE>EU22%</TAX_CODE>
 </SUMMARY>
</INVOICELIST>

The report should show each VENDOR and their INVOICE data with a SUMMARY section that
appears only on the last page, placed at the bottom of the page. The template for this is shown
in this figure.

Insert a Microsoft Word section break (type: next page) on the first page of the template. For
the final page, insert new line characters to position the summary table at the bottom of the
page. The summary table is shown in the following illustration.

Chapter 12
Template Features

12-47

In this example:

• The F and E components contain the for-each grouping statements.

• The grayed report fields are placeholders for the XML elements.

• The "Last Page Placeholder" field contains the syntax:

<?start@last-page:body?> <?end body?>
to declare the last page layout. Any content above or below this statement is displayed on
the last page only. The content above the statement is regarded as the header and the
content below the statement is regarded as the footer.

If the reports contains headers and footers that you want to carry over onto the last page, you
must reinsert them on the last page.

You must insert a section break (type: next page) into the document to specify the last page
layout. This example is available in the samples folder of the Template Builder for Word
installation.

Because the default behavior of a new section in a document is to reset the page numbering
the page number on the last page is reset. To continue the page numbering from the previous
section, use the following command:

<?initial-page-number:'auto'?>

This command allows the continuation of the page numbering from the previous section.

If the report is only one page in length, the first page layout is used. If the report requires that a
single page report should default to the last page layout (such as in a check printing
implementation), then you can use the following alternate syntax for the "Last Page
Placeholder" on the last page:

<?start@last-page-first:body?> <?end body?>
Substituting this syntax results in the last page layout for reports that are only one page long.

Chapter 12
Template Features

12-48

End on Even or Odd Pages
If the report has different odd and even page layouts, then you might want to force the report to
end specifically on an odd or even page by following these steps. This feature is supported for
the PDF and PDF output, but not for the RTF or HTML output.

For example, you may include the terms and conditions of a purchase order in the footer of the
report using the different odd/even footer functionality and you want to ensure that the terms
and conditions are printed on the final page.

Or, you may have binding requirements to have the report end on an even page, without
specific layout.

To end on an even page with layout:

• Insert the following syntax in a form field in the template:

<?section:force-page-count;'end-on-even-layout'?>

To end on an odd page layout:

• Insert the following syntax in a form field in the template:

<?section:force-page-count;'end-on-odd-layout'?>

If you do not have layout requirements for the final page, but would like a blank page ejected to
force the page count to the preferred odd or even, then use the following syntax:

<?section:force-page-count;'end-on-even'?>

or

<?section:force-page-count;'end-on-odd'?>

Insert Blank Page
You can insert blank pages and skip page numbers in the first page, even pages, or odd pages
of the report.

The fo:page-sequence object is used as a container for page output elements. The
xdofo:blank-on attribute of fo:page-sequence can specify whether to:

• Leave the first page, even pages, or odd pages blank.

• Skip the page numbers in the first page, even pages, or odd pages.

If you specify to skip the page count, the page number counter isn't displayed when the page
renders. The internal page number counter increments irrespective of the setting.

Chapter 12
Template Features

12-49

Attribute Name Values Default

xdofo:blank-on • none
• even
• odd
• first
• even-skip-page-count
• odd-skip-page-count
• first-skip-page-count

none

The tags for RTF Template are:

<?section:xdofo:blank-on;'even'?>
<?section:xdofo:blank-on;'odd'?>
<?section:xdofo:blank-on;'first'?>
<?section:xdofo:blank-on;'even-skip-page-count'?>
<?section:xdofo:blank-on;'odd-skip-page-count'?>
 <?section:xdofo:blank-on;'first-skip-page-count'?>

Examples

To leave the odd pages blank in a report, specify the following code in a form field at the
beginning of the template:

<?section:xdofo:blank-on;'odd'?>
To skip the page count on the even pages of an order report, specify the following code in a
form field at the beginning of the template:

<?section:xdofo:blank-on;'even-skip-page-count'?>

Insert Hyperlinks
You can add hyperlinks for the PDF, RTF, HTML, PPT, and Excel output.

The hyperlinks can be fixed or dynamic and can link to either internal or external destinations.
Hyperlinks can also be added to shapes.

• To insert static hyperlinks to either text or a shape, use the word processor's insert
hyperlink feature.

To insert a static hyperlink to a text or a shape:

1. Select the text or shape.

2. Use the right-mouse menu to select Hyperlink; or, select Hyperlink from the Insert
menu.

3. Enter the URL using any of the methods provided on the Insert Hyperlink dialog box.

• If the input XML data includes an element that contains a hyperlink or part of one, then you
can create dynamic hyperlinks at runtime. In the Type the file or Web page name field of
the Insert Hyperlink dialog, enter the following syntax:

{URL_LINK}
where URL_LINK is the incoming data element name.

If you have a fixed URL that you want to add elements from the XML data file to construct
the URL, enter the following syntax:

Chapter 12
Template Features

12-50

http://www.example.com?product={PRODUCT_NAME}
where PRODUCT_NAME is the incoming data element name.

In both these cases, at runtime the dynamic URL is constructed.

• You can also pass parameters at runtime to construct a dynamic URL.

Enter the parameter and element names surrounded by braces to build up the URL as
follows:

{$SERVER_URL}{$REPORT}/cstid={CUSTOMER_ID}

where SERVER_URL and REPORT are parameters passed to the template at runtime
(note the $ sign) and CUSTOMER_ID is an XML data element. This link may render as:

http://myserver.domain:8888/CustomerReport/cstid=1234
To add the target attribute to a URL, add the following to the URL string:

??target=_target_value

For example:

http://www.example.com??target=_top

Values for the target attribute are:

• _top

• _blank

• _self

• _parent

• framename

You can pass in the value of target dynamically, using the following syntax:

http://www.example.com/index.html??target={$myTarget}

where myTarget is the name of the parameter that holds the value.

Insert Internal Links
Internal links point to a section within a document.

Insert internal links into the template using Microsoft Word's Bookmark feature.

1. Position the cursor in the desired destination in the document.

2. From the Insert menu, select Bookmark.

3. In the Bookmark dialog, enter a name for this bookmark, and select Add.

4. Select the text or shape in the document that you want to link back to the Bookmark target.

5. Use the right-mouse menu to select Hyperlink; or select Hyperlink from the Insert menu.

6. On the Insert Hyperlink dialog, select Bookmark.

7. Select the bookmark that you created from the list.

Chapter 12
Template Features

12-51

At runtime, the link is maintained in the generated report.

Include a Table of Contents
Follow the word processor's procedures for inserting a table of contents.

Publisher supports the Table of contents feature for PDF and PPT output. RTF support is
limited: After report generation, the user must press F9 to reset the page numbers.

Publisher also provides the ability to create dynamic section headings in the document from
the XML data. You can then incorporate these into a table of contents.

Perform these steps to create dynamic headings:

1. Enter a placeholder for the heading in the body of the document, and format it as a
Heading, using the word processor's style feature. You cannot use form fields for this
functionality.

For example, you want the report to display a heading for each company reported. The
XML data element tag name is <COMPANY_NAME>. In the template, enter <?COMPANY_NAME?>
where you want the heading to appear. Now format the text as a Heading.

2. Create a table of contents using the word processor's table of contents feature.

At run time, the TOC placeholders and heading text are substituted.

Generate Bookmarks in PDF Output
If you define a table of contents in the RTF template, then you can use the table of contents
definition to generate links in the Bookmarks tab in the navigation pane of the output PDF.

The bookmarks can be either static or dynamically generated.

The support for bookmark in RTF templates is limited to a single-point bookmark to allow link
(Goto) functionality within the document. Arrays in bookmarks aren't supported.

• To create links for a static table of contents:

Enter the syntax:

<?copy-to-bookmark:?>
directly above the table of contents and

<?end copy-to-bookmark:?>
directly below the table of contents.

• To create links for a dynamic table of contents:

Enter the syntax:

<?convert-to-bookmark:?>
directly above the table of contents and

<?end convert-to-bookmark:?>
directly below the table of contents.

To control the initial state of the bookmark when the PDF file is opened, use the following
command:

<?collapse-bookmark:state;level?>

Chapter 12
Template Features

12-52

where

the state can have the following values:

• hide - Collapses the table of contents entries

• show - Expands the table of contents entries

and

level sets the table of contents collapse level. For example:1 collapses the first level of entries
in the table of contents; 2 collapses the first and second level entries.

Use this command with <?copy-to-bookmark:?> and <?convert-to-bookmark:?> as shown in
the following examples:

• To create a static table of contents that hides level 1 and level 2 of the table of contents
entries, enter the following:

<?copy-to-bookmark:?>
<?collapse-bookmark:hide;2?>

directly above the table of contents and

<?end copy-to-bookmark:?>

directly below the table of contents.

• To create links for a dynamic table of contents that shows levels 1 and 2 of the table of
contents expanded, enter the following:

<?convert-to-bookmark:>
<?collapse-bookmark:show;2?>

directly above the table of contents and

<?end convert-to-bookmark:?>

directly below the table of contents.

Insert Check Boxes
You can include a check box in the report template that you can define to display as checked
or unchecked based on a value from the incoming data.

Check boxes are supported in the PDF output only.

1. Position the cursor in the report template where you want the check box to display, and
select the Check Box Form Field from the Forms tool bar, as shown in the following
figure:

Chapter 12
Template Features

12-53

2. Right-click the field to open the Check Box Form Field Options dialog.

3. Specify the Default value as either Checked or Not Checked.

4. In the Form Field Help Text dialog, enter the criteria for how the box should behave. This
must be a boolean expression (that is, one that returns a true or false result).

For example, suppose the XML data contains an element called <population>. You want
the check box to appear checked if the value of <population> is greater than 10,000. Enter
the following in the help text field:

<?population>10000?>

The help text coding is shown in the following figure:

Note that you don't have to construct an if statement. The expression is treated as an if
statement.

Chapter 12
Template Features

12-54

Insert Drop-Down Lists
You can use the drop-down form field to create a cross-reference in the template from the XML
data to some other value that you define in the drop-down form field.

For example, suppose you've the following XML:

<countries>
 <country>
 <name>Chad</name>
 <population>7360000</population>
 <continentIndex>5</continentIndex>
 </country>
 <country>
 <name>China</name>
 <population>1265530000</population>
 <continentIndex>1</continentIndex>
 </country>
 <country>
 <name>Chile</name>
 <population>14677000</population>
 <continentIndex>3</continentIndex>
 </country>
. . .
</countries>

Notice that each <country> entry has a <continentindex> entry, which is a numeric value to
represent the continent. Using the drop-down form field, you can create an index in the
template that cross-references the <continentindex> value to the actual continent name. You
can then display the name in the published report.

To create the index for the continent example:

1. Position the cursor in the template where you want the value from the drop-down list to
display, in the Developer tab, click Legacy Tools, and then select the Drop-Down Form
Field from the Legacy Forms tool bar, as shown in the figure:

Chapter 12
Template Features

12-55

2. Right-click the field to display the Drop-Down Form Field Options dialog.

3. Add each value to the Drop-down item field and the click Add to add it to the Items in
drop-down list group. The values are indexed starting from one for the first, and so on.
For example, the list of continents is stored as:

• 1 - Asia

• 2 - North America

• 2 - South America

• 4 - Europe

• 5 - Africa

• 6 - Australia

4. Now use the Help Text box to enter the XML element name that holds the index for the
drop-down field values.

For this example, enter

<?continentIndex?>

The following figure shows the Drop-Down Form Field Options dialogs for this example:

Using the check box and drop-down list features, you can create a report to display population
data with check boxes to demonstrate figures that reach a certain limit. An example illustrating
a report of population data with check boxes is shown in the following figure:

Chapter 12
Template Features

12-56

The template to create this report is shown in the below figure and the fields have the values
shown in the table below.

Description of the fields for drop-down list:

• FE - Form field entry: <?for-each:country?> - Begins the country repeating group.

• China - Form field entry: <?name?> - Placeholder for the name element.

• 1,000,000 - Form field entry: <?population?> - Placeholder for the population element.

• (check box) - Form field entry: <?population>1000000?> - Establishes the condition for the
check box. If the value for the population element is greater than 1,000,000, the check box
is displayed as checked.

• Asia - Form field entry: <?contintentIndex?> - The drop-down form field for the
continentIndex element. See the preceding description for its contents. At runtime, the
value of the XML element is replaced with the value it's cross-referenced to in the drop-
down form field.

• EFE - Form field entry: <?end for-each?> - Ends the country group.

Repeat Row Headers After Page Break
If your report includes a row header that spans multiple rows, for example in a group-left
construction, you can specify that the content in the initial cell repeats on the next page.

See the example shown in the following table.

In the preceding example, if the report breaks across the 04-Dec-12 group, you would most
likely prefer that the cell contents "04-Dec-12" repeat on the next page. To specify that the cell
contents repeat, insert the following code in a form field in the table data cell that is to repeat:

<?attribute@block:xdofo:rowspancell-repeat-nextpage;'true'?>

Chapter 12
Template Features

12-57

This feature is only useful when number-rows-spanned for the table-cell is greater than one.

Use Conditional Formatting
Conditional formatting occurs when a formatting element appears only when a certain
condition is met.

For information about using the Template Builder to insert conditional regions and conditional
formatting, see Insert and Edit Conditional Regions and Insert Conditional Formatting.

You can use simple "if" statements as well as more complex "choose" expressions.

The conditional formatting that you specify can be XSL or XSL:FO code, or you can specify
actual RTF objects such as a table or data. For example, you can specify that if reported
numbers reach a certain threshold, they're displayed shaded in red. Or, you can use this
feature to hide table columns or rows depending on the incoming XML data.

This section covers the following topics of conditional formatting:

• Use If Statements

• Use If Statements in Boilerplate Text

• Use If-Then-Else Statements

• Insert Choose Statements

• Format Columns

• Format Rows

• Highlight Cells

Use If Statements
Use an if statement to define a simple condition; for example, if a data field is a specific value.

To use an if statement:

1. Insert the following syntax to designate the beginning of the conditional area.

<?if:condition?>
2. Insert the following syntax at the end of the conditional area: <?end if?>.

For example, to set up the Payables Invoice Register to display invoices only when the
Supplier name is "Company A", insert the syntax <?if:VENDOR_NAME='COMPANY A'?>
before the Supplier field on the template.

Enter the <?end if?> tag after the invoices table.

This example is displayed in the following illustration. Note that you can insert the syntax in
form fields, or directly into the template.

Chapter 12
Use Conditional Formatting

12-58

Use If Statements in Boilerplate Text
You can use “if” statements to change messages presented to users.

Assume that you want to incorporate an "if" statement into the following free-form text:

The program was (not) successful.
You want the "not" to display only if the value of an XML tag called <SUCCESS> equals "N".

To achieve this requirement, use the Publisher context command to place the if statement into
the inline sequence rather than into the block (the default placement).

See Control the Placement of Instructions Using the Context Commands.

For example, if you construct the code as follows:

The program was <?if:SUCCESS='N'?>not<?end if?> successful.

The following undesirable result occurs:

The program was
not
successful.

Because Publisher applies the instructions to the block by default. To specify that the if
statement should be inserted into the inline sequence, enter the following:

The program was <?if@inlines:SUCCESS='N'?>not<?end if?>
successful.

This construction results in the following display:

The program was successful.

Chapter 12
Use Conditional Formatting

12-59

If SUCCESS doesn't equal 'N';

or

The program was not successful.

If SUCCESS equals 'N'.

If you use @inlines with if syntax, any other if syntax inside the statement must use the
context command @inline.If you use @inlines with FOR-EACH syntax any other if or FOR-EACH
syntax inside the statement must use the context command @inline.

Use If-Then-Else Statements
You can use the programming construct "if-then-else".

"if-then-else" is extremely useful when you must test a condition and conditionally show a
result. For example:

IF X=0 THEN
 Y=2
ELSE
 Y=3
END IF

You can also nest these statements as follows:

IF X=0 THEN
 Y=2
ELSE
 IF X=1 THEN
 Y=10
 ELSE Y=100
END IF

Use the following syntax to construct an if-then-else statement in the RTF template:

<?xdofx:if element_condition then result1 else result2 end if?>

For example, the following statement tests the AMOUNT element value. If the value is greater
than 1000, show the word "Higher"; if it's less than 1000, show the word "Lower"; if it's equal to
1000, show "Equal":

<?xdofx:if AMOUNT > 1000 then 'Higher'
 else
 if AMOUNT < 1000 then 'Lower'
 else
 'Equal'
end if?>

Chapter 12
Use Conditional Formatting

12-60

Insert Choose Statements
Use the choose, when, and otherwise elements to express multiple conditional tests. If certain
conditions are met in the incoming XML data, then specific sections of the template are
rendered. This is a very powerful feature of the RTF template. In regular XSL programming, if a
condition is met in the choose command then further XSL code is executed. In the template,
however, you can actually use visual widgets in the conditional flow (in the following example,
a table).

Use the following syntax for these elements:

<?choose:?>
<?when:expression?>
<?otherwise?>

Conditional Formatting Example
This example shows a choose expression in which the display of a row of data depends on the
value of the fields EXEMPT_FLAG and POSTED_FLAG. When the EXEMPT_FLAG equals
"^", the row of data renders light gray. When POSTED_FLAG equals "*" the row of data
renders shaded dark gray. Otherwise, the row of data renders with no shading.

In the following figure, the form field default text is displayed. The form field help text entries
are shown in the following table:

Default Text Entry in Example
Form Field

Help Text Entry in Form Field

<Grp:VAT <?for-each:G_VAT?> starts the G_VAT group

<Choose <?choose:?> opens the choose statement

Chapter 12
Use Conditional Formatting

12-61

Default Text Entry in Example
Form Field

Help Text Entry in Form Field

<When EXEMPT_FLAG='^' <?when: EXEMPT_FLAG='^'?> tests the EXEMPT_FLAG element,
if true, use the first table shown

End When> <?end when?> ends the EXEMPT_FLAG test

<When POSTED_FLAG='*' <?when:POSTED_FLAG='*'?> tests the POSTED_FLAG element,
if true, use the table following

End When> <?end when?> ends the POSTED_FLAG test

Otherwise <?otherwise:?> If none of above are true then use the following
table

End Otherwise> <?end otherwise?> ends the otherwise statement

End Choose> <?end choose?> ends the choose statement

End Vat> <?end for-each?> ends the G_VAT group

Format Columns
You can conditionally show and hide columns of data in the document output. This example
demonstrates how to set up a table so that a column is only displayed based on the value of an
element attribute.

This example shows a report of a price list, represented by the following XML:

<items type="PUBLIC"> <! - can be marked 'PRIVATE' - >
 <item>
 <name>Plasma TV</name>
 <quantity>10</quantity>
 <price>4000</price>
 </item>
 <item>
 <name>DVD Player</name>
 <quantity>3</quantity>
 <price>300</price>
 </item>
 <item>
 <name>VCR</name>
 <quantity>20</quantity>
 <price>200</price>
 </item>
 <item>
 <name>Receiver</name>
 <quantity>22</quantity>
 <price>350</price>
 </item>
</items>

Notice the "type" attribute associated with the items element. In this XML it's marked as
"PUBLIC" meaning the list is a public list rather than a PRIVATE list. For the public version of
the list, the quantity column shouldn't be shown in the output, but you want to develop only one
template for both versions based on the list type.

Chapter 12
Use Conditional Formatting

12-62

The following figure contains a simple template that conditionally shows or hides the quantity
column.

The following table shows the entries made in the template that is shown in the above figure:

Default Text Form Field Entry Description

grp:Item <?for-each:item?> Holds the opening for-each loop for the item
element.

Plasma TV <?name?> The placeholder for the name element from the
XML file.

IF <?if@column:/items/
@type="PRIVATE"?>

The opening of the if statement to test for the
attribute value PRIVATE in the column header.
Note that this syntax uses an XPath expression to
navigate back to the items level of the XML to test
the attribute. For more information about using
XPath in templates, see Use XPath Commands.

Quantity N/A Boilerplate heading

end-if <?end if?> Ends the if statement.

IF <?if@cell:/items/
@type="PRIVATE"?>

The opening of the if statement to test for the
attribute value PRIVATE in the column data.

20 <?quantity?> The placeholder for the quantity element.

end-if <?end if?> Ends the if statement.

1,000.00 <?price?> The placeholder for the price element.

end grp <?end for-each?> Closing tag of the for-each loop.

The conditional column syntax is the "if" statement syntax with the addition of the @column
clause. It's the @column clause that instructs to hide or show the column based on the
outcome of the if statement.

If you did not include the @column the data would not display in the report as a result of the if
statement, but the column still would because you had drawn it in the template.

The @column clause is an example of a context command. For more information, see Control
the Placement of Instructions Using the Context Commands.

The example renders the output that is shown in the following figure:

Chapter 12
Use Conditional Formatting

12-63

If the same XML data contained the type attribute set to PRIVATE, then the output that is
shown in the below figure is rendered from the same template.

Format Rows
You can specify formatting conditions as the row-level of a table.

Examples of row-level formatting are:

• Highlighting a row when the data meets a certain threshold.

• Alternating background colors of rows to ease readability of reports.

• Showing only rows that meet a specific condition.

Conditionally Display a Row

To display only rows that meet a certain condition, insert the <?if:condition?> <?end if?>
tags at the beginning and end of the row, within the for-each tags for the group. These tags are
demonstrated in the sample template that is shown in the following figure:

The following table describes the fields from the template in the above figure:

Default Text
Entry

Form Field Help Text Description

for-each
SALE

<?for-each:SALE?> Opens the for-each loop to repeat the data
belonging to the SALE group.

if big <?if:SALES>5000?> If statement to display the row only if the element
SALES has a value greater than 5000.

INDUSTRY <?INDUSTRY?> Data field

YEAR <?YEAR?> Data field

MONTH <?MONTH?> Data field

SALES end if <?end if?> Closes the if statement.

end SALE <?end for-each?> Closes the SALE loop.

Chapter 12
Use Conditional Formatting

12-64

Conditionally Highlight a Row

This example demonstrates how to set a background color on every other row. The template to
create this effect is shown in the following figure:

The following table shows values of the form fields from the template in the above figure:

Default Text
Entry

Form Field Help Text Description

for-each SALE <?for-each:SALE?> Defines the opening of the for-each loop for the SALE group.

format; <?if@row:position() mod 2=0?>
<xsl:attribute name="background-
color"
xdofo:ctx="incontext">lightgray<
/xsl:attribute><?end if?>

For each alternate row, the background color attribute is set
to gray for the row.

INDUSTRY <?INDUSTRY?> Data field

YEAR <?YEAR?> Data field

MONTH <?MONTH?> Data field

SALES <?SALES?> Data field

end SALE <?end for-each?> Closes the SALE for-each loop.

In the above table, note the format; field. It contains an if statement with a "row" context
(@row). This sets the context of the if statement to apply to the current row. If the condition is
true, then the <xsl:attribute> for the background color of the row is set to light gray. This
setting results in the output that is shown in the following figure:

See Control the Placement of Instructions Using the Context Commands.

Highlight Cells
This example demonstrates how to conditionally highlight a cell based on a value in the XML
file.

This example uses the following XML code:

<accounts>
 <account>

Chapter 12
Use Conditional Formatting

12-65

 <number>1-100-3333</number>
 <debit>100</debit>
 <credit>300</credit>
 </account>
 <account>
 <number>1-101-3533</number>
 <debit>220</debit>
 <credit>30</credit>
 </account>
 <account>
 <number>1-130-3343</number>
 <debit>240</debit>
 <credit>1100</credit>
 </account>
 <account>
 <number>1-153-3033</number>
 <debit>3000</debit>
 <credit>300</credit>
 </account>
</accounts>

The template lists the accounts and their credit and debit values. The final report will highlight
in red any cell whose value is greater than 1000. The template for this is shown in the following
figure:

The field definitions for the template are shown in the following table:

Default Text
Entry

Form Field Entry Description

FE:Account <?for-each:account?> Opens the for each-loop for the element account.

1-232-4444 <?number?> The placeholder for the number element from the XML file.

CH1 <?if:debit>1000?><xsl:attribute
xdofo:ctx="block"
name="background-color">red</
xsl:attribute><?end if?>

This field holds the code to highlight the cell red if the debit
amount is greater than 1000.

100.00 <?debit?> The placeholder for the debit element.

Important:

The <?debit?> element must
reside in its own field.

Chapter 12
Use Conditional Formatting

12-66

Default Text
Entry

Form Field Entry Description

CH2 <?if:credit>1000?><xsl:attribute
xdofo:ctx="block"
name="background-color">red</
xsl:attribute><?end if?>

This field holds the code to highlight the cell red if the credit
amount is greater than 1000.

100.00 <?credit?> The placeholder for the credit element.

EFE <?end for-each?> Closes the for-each loop.

The code to highlight the debit column as shown in the table is:

<?if:debit>1000?>
 <xsl:attribute
 xdofo:ctx="block" name="background-color">red
 </xsl:attribute>
<?end if?>

The "if" statement tests whether the debit value is greater than 1000, and if so the next lines
are invoked. Notice that the example embeds native XSL code inside the if statement.

The "attribute" element allows you to modify properties in the XSL.

The xdofo:ctx component allows you to adjust XSL attributes at any level in the template. In
this case, the background color attribute is changed to red.

To change the color attribute, you can use either the standard HTML names (for example, red,
white, green) or you can use the hexadecimal color definition (for example, #FFFFF).

This template results in the output that is shown in the following figure:

Insert Page-Level Calculations
Learn more about the supported page-level calculations for PDFs and PPTs.

Publisher supports the page-level calculations that are described in the following sections for
PDF and PPT outputs only:

• Display Page Totals

• Insert Brought Forward and Carried Forward Totals

• Insert Running Totals

Chapter 12
Insert Page-Level Calculations

12-67

Display Page Totals
You can display calculated page totals in the report. Because the page isn't created until
publishing time, the totaling function must be executed by the formatting engine.

Page totaling is performed in the PDF-formatting layer. Therefore this feature isn't available for
other outputs types: HTML, RTF, Excel. This page totaling function works only if the source
XML co6de has raw numeric values. The numbers shouldn't be preformatted.

Because the page total field doesn't exist in the XML input data, you must define a variable to
hold the value. When you define the variable, you associate it with the element from the XML
file that is to be totaled for the page. Once you define total fields, you can also perform
additional functions on the data in those fields.

To declare the variable that is to hold the page total, insert the following syntax immediately
following the placeholder for the element being totaled:

<?add-page-total:TotalFieldName;'element'?>

where

TotalFieldName is the name you assign to the total (to reference later) and

'element' is the XML element field to be totaled.

You can add this syntax to as many fields as you want to total.

Then when you want to display the total field, enter the following syntax:

<?show-page-total:TotalFieldName;'Oracle-number-format' number-
separators="{$_XDONFSEPARATORS}"?>

where

TotalFieldName is the name you assigned to give the page total field above and

Oracle-number-format is the format you want to use to for the display, using the Oracle format
mask (for example: 'C9G999D00'). For the list of Oracle format mask symbols, see Oracle
Abstract Format Masks.

number-separators="{$_XDONFSEPARATORS}" is a required attribute to apply the grouping
separator and decimal separator for the format mask you defined.

The following example shows how to set up page total fields in a template to display total
credits and debits that have displayed on the page, and then calculate the net of the two fields.

This example uses the following XML code:

<balance_sheet>
 <transaction>
 <debit>100</debit>
 <credit>90</credit>
 </transaction>
 <transaction>
 <debit>110</debit>
 <credit>80</credit>
 </transaction>

Chapter 12
Insert Page-Level Calculations

12-68

…
<\balance_sheet>

The following figure shows the table to insert in the template to hold the values:

The following table shows the form field entries made in the template whose table is shown in
the previous figure:

Default Text
Entry

Form Field Help Text Entry Description

FE <?for-each:transaction?> This field defines the opening "for-each" loop for
the transaction group.

100.00 <?debit?><?add-page-
total:dt;'debit'?>

This field is the placeholder for the debit element
from the XML file. To total this field by page, the
page total declaration syntax is added. The variable
defined to hold the total for the debit element is dt.

90.00 <?credit?> <?add-page-
total:ct;'credit'?>

This field is the placeholder for the credit element
from the XML file. To total this field by page, the
page total declaration syntax is added. The variable
defined to hold the total for the credit element is ct.

Net <add-page-total:net;'debit
- credit'?>

Creates a net page total by subtracting the credit
values from the debit values.

EFE <?end for-each?> Closes the for-each loop.

Note that on the variable defined as "net" you perform a calculation on the values of the credit
and debit elements.

Now that you've declared the page total fields, you can insert a field in the template where you
want the page totals to appear. Reference the calculated variables using the names you
supplied (in the example, ct and dt). The syntax to display the page totals is as follows:

For example, to display the debit page total, enter the following:

<?show-page-total:dt;'C9G990D00';'(C9G990D00)' number-
separators="{$_XDONFSEPARATORS}"?>

Therefore to complete the example, place the following at the bottom of the template page, or
in the footer:

Page Total Debit: <?show-page-total:dt;'C9G990D00';'(C9G990D00)' number-
separators="{$_XDONFSEPARATORS}"?>
Page Total Credit: <?show-page-total:ct;'C9G990D00';'(C9G990D00)' number-
separators="{$_XDONFSEPARATORS}"?>
Page Total Balance: <?show-page-total:net;'C9G990D00';'(C9G990D00)' number-
separators="{$_XDONFSEPARATORS}"?>
The output for this report is shown in the following figure:

Chapter 12
Insert Page-Level Calculations

12-69

Insert Brought Forward and Carried Forward Totals
Many reports require that a page total be maintained throughout the report output and be
displayed at the beginning and end of each page. These totals are known as "brought forward
and carried forward totals".

The totaling for the brought forward and carried forward fields is performed in the PDF-
formatting layer. Therefore this feature isn't available for other outputs types such as HTML,
RTF, or Excel.

An example of a report with forward totals is displayed in the following figure:

At the end of the first page, the page total for the Amount element is displayed as the Carried
Forward total. At the top of the second page, this value is displayed as the Brought Forward
total from the previous page. At the bottom of the second page, the brought forward value plus
the total for that page is calculated and displayed as the new Carried Forward value, and this
continues throughout the report.

This functionality is an extension of the Display Page Totals feature. The following example
walks through the syntax and setup required to display the brought forward and carried forward
totals in the published report.

Assume that you've the following XML code:

<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>

Chapter 12
Insert Page-Level Calculations

12-70

 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
. . .
</INVOICES>

The sample template that is shown in the following figure creates the invoice table and
declares a placeholder that holds the page total.

The following table shows the fields in the template that is shown in the above figure.

Field Form Field Help Text Entry Description

Init PTs <?init-page-total: InvAmt?> Declares InvAmt as the placeholder that holds the
page total.

FE <?for-each:INVOICE?> Begins the INVOICE group.

10001-1 <?INVNUM?> Placeholder for the Invoice Number tag.

1-Jan-2005 <?INVDATE?> Placeholder for the Invoice Date tag.

100.00 <?INVAMT?> Placeholder for the Invoice Amount tag.

InvAmt <?add-page-
total:InvAmt;INVAMT?>

Assigns the "InvAmt" page total object to the
INVAMT element in the data.

EFE <?end for-each?> Closes the INVOICE group.

End PTs <?end-page-total:InvAmt?> Closes the "InvAmt" page total.

To display the brought forward total at the top of each page (except the first), use the following
syntax:

<xdofo:inline-total
 display-condition="exceptfirst"
 name="InvAmt">
 Brought Forward:
<xdofo:show-brought-forward
 name="InvAmt"

Chapter 12
Insert Page-Level Calculations

12-71

 format="99G999G999D00" number-separators="{$_XDONFSEPARATORS}"/>/>
</xdofo:inline-total>

The following list describes the elements that comprise the brought forward syntax:

• inline-total - This element has two properties:

– name - Specifies the name of the variable you declared for the field.

– display-condition - Sets the display condition. This is an optional property that takes
one of the following values:

* first - Contents are displayed only on the first page.

* last - Contents are displayed only on the last page.

* exceptfirst - Contents are displayed on all pages except first.

* exceptlast - Contents are displayed on all pages except last.

* everytime - (Default) Contents are displayed on every page.

In this example, display-condition is set to "exceptfirst" to prevent the value from
appearing on the first page where the value would be zero.

• Brought Forward: - This string is optional and is displayed as the field name on the
report.

• show-brought-forward - Shows the value on the page. It has the following properties:

– name - The name of the field to show. In this case, InvAmt. This property is mandatory.

– format - The Oracle number format to apply to the value at runtime. This property is
optional, but if you want to supply a format mask, you must use the Oracle format
mask. See Oracle Abstract Format Masks.

– number-separators="{$_XDONFSEPARATORS}" - This attribute is required to apply
the grouping separator and number separator for the format mask you defined.

Insert the brought forward object at the top of the template where you want the brought forward
total to display. If you place it in the body of the template, then you can insert the syntax in a
form field.

If you want the brought forward total to display in the header, you must insert the full code
string into the header because Microsoft Word doesn't support form fields in the header or
footer regions. However, you can alternatively use the start body/end body syntax, which
allows you to define what the body area of the report is. Publisher recognizes any content
above the defined body area as header content, and any content below as the footer. This
allows you to use form fields. See Create Multiple or Complex Headers and Footers for details.

Place the carried forward object at the bottom of the template where you want the total to
display. The carried forward object for our example is as follows:

<xdofo:inline-total
 display-condition="exceptlast"
 name="InvAmt">
 Carried Forward:
<xdofo:show-carry-forward
 name="InvAmt"
 format="99G999G999D00" number-separators="{$_XDONFSEPARATORS}"/>
</xdofo:inline-total>

Note the following differences with the brought-forward object:

Chapter 12
Insert Page-Level Calculations

12-72

• The display-condition is set to exceptlast so that the carried forward total is displayed on
every page except the last page.

• The display string is "Carried Forward".

• The show-carry-forward element is used to show the carried forward value. It has the same
properties as brought-carried-forward, described above.

You are not limited to a single value in the template, you can create multiple brought forward/
carried forward objects in the template pointing to various numeric elements in the data.

Ensure that you do not include the commands <?init-page-total:invAmnt?> and <?end-
page-total:InvAmt?> as shown in the preceding example. The display-condition logic
computation depends on these commands to function correctly.

Insert Running Totals
The variable functionality can be used to add a running total to the invoice listing report.

See Set Variables for more information. This example assumes the following XML structure:

<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICES>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>1-Jan-2005</INVDATE>
 <INVAMT>100</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-2</INVNUM>
 <INVDATE>10-Jan-2005</INVDATE>
 <INVAMT>200</INVOICEAMT>
 </INVOICE>
 <INVOICE>
 <INVNUM>10001-1</INVNUM>
 <INVDATE>11-Jan-2005</INVDATE>
 <INVAMT>150</INVOICEAMT>
 </INVOICE>
</INVOICES>

You can use this XML code to create a report that contains running totals as shown in the
following illustration.

To create the Running Total field, define a variable to track the total and initialize it to 0. The
template is shown in the following illustration.

Chapter 12
Insert Page-Level Calculations

12-73

The values for the form fields in the template that is shown in the previous illustration are
described in the next table.

Form Field Syntax Description

RtotalVar <?xdoxslt:set_variable($_XDOCTX,
'RTotalVar', 0)?>

Declares the "RTotalVar"
variable and initializes it to 0.

FE <?for-each:INVOICE?> Starts the Invoice group.

10001-1 <?INVNUM?> Invoice Number tag

1-Jan-2005 <?INVDATE?> Invoice Date tag

100.00 <?xdoxslt:set_variable($_XDOCTX,
'RTotalVar',
xdoxslt:get_variable($_XDOCTX,
'RTotalVar') + INVAMT)?> <?
xdoxslt:get_variable($_XDOCTX,
'RTotalVar')?>

Sets the value of RTotalVar to
the current value plus the new
Invoice Amount. Retrieves the
RTotalVar value for display.

EFE <?end for-each?> Ends the INVOICE group.

Handle Data
These sections describe methods for handling data in templates.

• Sort Data

• Check for Null Values

• Regroup the XML Data

Sort Data
You can sort a group by any element within the group. Insert the following syntax within the
group tags:

<?sort:element name; order; data-type?>
where

element name is the name of the element you want the group sorted by

order is 'ascending' or 'descending'

data-type is the element data type. Valid values are: 'text' and 'number'.

If the order isn't specified, by default, the sort order is ascending. If the data type isn't specified,
the type is assumed to be text.

Chapter 12
Handle Data

12-74

For example, to sort a dataset by an element named SALARY so that the highest salaries
appear first, enter the following:

<?sort:SALARY;'descending';'number'?>

When you are sorting within a for-each group, enter the sort statement after the for-each
statement. For example, to sort the Payables Invoice Register (shown at the beginning of this
chapter) by Supplier (VENDOR_NAME), enter the following:

<?for-each:G_VENDOR_NAME?><?sort:VENDOR_NAME?>
To sort a group by multiple fields, just enter additional sort statements in the appropriate order.
For example, to sort by Supplier and then by Invoice Number, enter the following

<?sort:VENDOR_NAME?> <?sort:INVOICE_NUM;'ascending';'number'?>

Check for Null Values
Within the XML data there're three possible scenarios for the value of an element.

Scenarios:

• The element is present in the XML data, and it has a value.

• The element is present in the XML data, but it doesn't have a value.

• The element is missing from the XML data, and therefore there's no value.

In the report layout, you may want to specify a different behavior depending on the presence of
the element and its value. The following examples show how to check for each of these
conditions using an "if" statement. The syntax can also be used in other conditional formatting
constructs.

• To define behavior when the element is present and the value isn't null, use the following:

<?if:element_name!=' '?> desired behavior <?end if?>

• To define behavior when the element is present, but is null, use the following:

<?if:element_name and element_name="?> desired behavior <?end if?>

• To define behavior when the element is missing, use the following:

<?if:not(element_name)?> desired behavior <?end if?>

Regroup the XML Data
The RTF template supports the XSL 2.0 for-each-group standard that allows you to regroup
XML data into hierarchies that are not present in the original data.

With this feature, the template doesn't have to follow the hierarchy of the source XML file. You
are therefore no longer limited by the structure of the data source.

XML Sample
This XML sample shows a set of data that uses the for-each-group standard.

Chapter 12
Handle Data

12-75

To demonstrate the for-each-group standard, the following XML data sample of a CD catalog
listing is regrouped in a template:

<CATALOG>
 <CD>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <COMPANY>Columbia</COMPANY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>
 <CD>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>CBS Records</COMPANY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 </CD>
 <CD>
 <TITLE>Still got the blues</TITLE>
 <ARTIST>Gary More</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>10.20</PRICE>
 <YEAR>1990</YEAR>
 </CD>
 <CD>
 <TITLE>This is US</TITLE>
 <ARTIST>Gary Lee</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <COMPANY>Virgin Records</COMPANY>
 <PRICE>12.20</PRICE>
 <YEAR>1990</YEAR>
 </CD>

Using the regrouping syntax, you can create a report of this data that groups the CDs by
country and then by year. You are not limited by the data structure presented.

Regroup Data Syntax
You can regroup data in report using the proper syntax.

Use the following syntax to regroup data:

<?for-each-group: BASE-GROUP;GROUPING-ELEMENT?>

For example, to regroup the CD listing by COUNTRY, enter the following in the template:

<?for-each-group:CD;COUNTRY?>

The elements that were at the same hierarchy level as COUNTRY are now children of
COUNTRY. You can then refer to the elements of the group to display the values desired.

Chapter 12
Handle Data

12-76

Use the following syntax to establish nested groupings within the already defined group:

<?for-each:current-group(); GROUPING-ELEMENT?>

For example, after declaring the CD grouping by COUNTRY, you can then further group by
YEAR within COUNTRY as follows:

<?for-each:current-group();YEAR?>

At run time, Publisher loops through the occurrences of the new groupings, displaying the
fields that you defined in the template.

This syntax is a simple XSL for-each-group syntax. If you choose not to use the simplified
syntax above, you can use the XSL syntax as shown below. The XSL syntax can only be used
within a form field of the template.

<xsl:for-each-group
 select=expression
 group-by="string expression"
 group-adjacent="string expression"
 group-starting-with=pattern>
 <!--Content: (xsl:sort*, content-constructor) -->
</xsl:for-each-group>

Template Example
You can see some features that can be used to enhance templates in this example.

The following illustration shows a template that displays the CDs by Country, then Year, and
lists the details for each CD.

The following table shows the Publisher syntax entries made in the form fields of the template
shown in the previous illustration.

Chapter 12
Handle Data

12-77

Default Text
Entry

Form Field Help Text Entry Description

Group by
Country

<?for-each-
group:CD;COUNTRY?>

The <?for-each-group:CD;COUNTRY?> tag
declares the new group. It regroups the existing CD
group by the COUNTRY element.

USA <?COUNTRY?> Placeholder to display the data value of the
COUNTRY tag.

Group by Year <?for-each-group:current-
group();YEAR?>

The <?for-each-group:current-
group();YEAR?> tag regroups the current group
(that is, COUNTRY), by the YEAR element.

2000 <?YEAR?> Placeholder to display the data value of the YEAR
tag.

Group: Details <?for-each:current-group()?
>

Once the data is grouped by COUNTRY and then
by YEAR, the <?for-each:current-group()?>
command is used to loop through the elements of
the current group (that is, YEAR) and render the
data values (TITLE, ARTIST, and PRICE) in the
table.

My CD <?TITLE?> Placeholder to display the data value of the TITLE
tag.

John Doe <?ARTIST?> Placeholder to display the data value of the
ARTIST tag.

1.00 <?PRICE?> Placeholder to display the data value of the PRICE
tag.

End Group <?end for-each?> Closes out the <?for-each:current-group()?>
tag.

End Group by
Year

<?end for-each-group?> Closes out the <?for-each-group:current-
group();YEAR?> tag.

End Group by
Country

<?end for-each-group?> Closes out the <?for-each-group:CD;COUNTRY?
> tag.

This template produces the report that is shown in the next illustration when merged with the
XML file.

Chapter 12
Handle Data

12-78

Regroup by an Expression
Regrouping by an expression allows you to apply a function or command to a data element,
and then group the data by the returned result.

To use this feature, state the expression within the regrouping syntax as follows:

<?for-each:BASE-GROUP;GROUPING-EXPRESSION?>

To demonstrate this feature, an XML data sample that simply contains average temperatures
per month is used as input to a template that calculates the number of months having an
average temperature within a certain range.

The following XML code is composed of <temp> groups. Each <temp> group contains a
<month> element and a <degree> element, which contains the average temperature for that
month:

<temps>
 <temp>
 <month>Jan</month>
 <degree>11</degree>
 </temp>
 <temp>
 <month>Feb</month>
 <degree>14</degree>
 </temp>
 <temp>
 <month>Mar</month>

Chapter 12
Handle Data

12-79

 <degree>16</degree>
 </temp>
 <temp>
 <month>Apr</month>
 <degree>20</degree>
 </temp>
 <temp>
 <month>May</month>
 <degree>31</degree>
 </temp>
 <temp>
 <month>Jun</month>
 <degree>34</degree>
 </temp>
 <temp>
 <month>Jul</month>
 <degree>39</degree>
 </temp>
 <temp>
 <month>Aug</month>
 <degree>38</degree>
 </temp>
 <temp>
 <month>Sep</month>
 <degree>24</degree>
 </temp>
 <temp>
 <month>Oct</month>
 <degree>28</degree>
 </temp>
 <temp>
 <month>Nov</month>
 <degree>18</degree>
 </temp>
 <temp>
 <month>Dec</month>
 <degree>8</degree>
 </temp>
</temps>

You want to display this data in a format showing temperature ranges and a count of the
months that have an average temperature to satisfy those ranges, as shown in the following
illustration.

Chapter 12
Handle Data

12-80

Using the for-each-group command you can apply an expression to the <degree> element that
enables you to group the temperatures by increments of 10 degrees. You can then display a
count of the members of each grouping, which is the number of months having an average
temperature that falls within each range.

The next illustration shows the template to create the report that is shown in the previous
illustration.

The next table shows the form field entries made in the template that is shown in the previous
illustration.

Default Text Entry Form Field Help Text Entry

Group by TmpRng <?for-each-group:temp;floor(degree div 10)?> <?
sort:floor(degree div 10)?>

Range <?concat(floor(degree div 10)*10,' F to
',floor(degree div 10)*10+10, 'F')?>

Months <?count(current-group())?>
End TmpRng <?end for-each-group?>

Note the following about the form field tags:

• The <?for-each-group:temp;floor(degree div 10)?> is the regrouping tag. It
specifies that for the existing <temp> group, the elements are to be regrouped by the
expression, floor(degree div 10). The floor function is an XSL function that returns the
highest integer that's less than the argument (for example, 1.2 returns 1, 0.8 returns 0).

In this case, it returns the value of the <degree> element, which is then divided by 10. This
generates the following values from the XML data: 1, 1, 1, 2, 3, 3, 3, 3, 2, 2, 1, and 0.

These are sorted, so that when processed, the following four groups are created: 0, 1, 2,
and 3.

• The <?concat(floor(degree div 10)*10,'F to ', floor(degree div
10)*10+10,'F'?> displays the temperature ranges in the row header in increments of
10. The expression concatenates the value of the current group times 10 with the value of
the current group times 10 plus 10.

Therefore, for the first group, 0, the row heading displays 0 to (0 +10), or "0 F to 10 F".

• The <?count(current-group())?> uses the count function to count the members of
the current group (the number of temperatures that satisfy the range).

• The <?end for-each-group?> tag closes out the grouping.

Set Variables, Parameters, and Properties
Learn more about setting variables, parameters, and properties.

Chapter 12
Set Variables, Parameters, and Properties

12-81

This section covers the following topics:

• Set Variables

• Set Parameters

• Set Properties

Set Variables
Updatable variables differ from standard XSL variables <xsl:variable> in that they're updatable
during the template application to the XML data.

This allows you to create many new features in the templates that require updatable variables.

The variables use a "set and get" approach for assigning, updating, and retrieving values.

Use the following syntax to declare/set a variable value:

<?xdoxslt:set_variable($_XDOCTX, 'variable name', value)?>

Use the following syntax to retrieve a variable value:

<?xdoxslt:get_variable($_XDOCTX, 'variable name')?>

For example, you can retrieve a variable value based on a condition:

<?if:'column name'=xdoxslt:get_variable($_XDOCTX, 'variable name')?>

For example, you can perform calculations:

<?xdoxslt:set_variable($_XDOCTX, 'x', xdoxslt:get_variable($_XDOCTX, 'x' + 1)?
>

This sets the value of variable 'x' to its original value plus 1, much like using "x = x + 1".

The $_XDOCTX specifies the global document context for the variables. In a multi-threaded
environment there may be many transformations occurring at the same time, therefore the
variable must be assigned to a single transformation.

See Insert Running Totals for an example of the usage of updatable variables.

Set Parameters
You can pass runtime parameter values into the template.

Parameters can be referenced throughout the template to support many functions. For
example, you can filter data in the template, use a value in a conditional formatting block, or
pass property values (such as security settings) into the final document.

All name-value parameter pairs are passed to the template. You must register the parameters
that you want to utilize in the template using the syntax described below.

To use a parameter in a template:

1. Declare the parameter in the template.

Chapter 12
Set Variables, Parameters, and Properties

12-82

Use the following syntax to declare the parameter:

<?param@begin:parameter_name;parameter_value?>

where

parameter_name is the name of the parameter

parameter_value is the default value for the parameter (the parameter_value is optional)

param@begin: is a required string to push the parameter declaration to the top of the
template at runtime so that it can be referred to globally in the template.

The syntax must be declared in the Help Text field of a form field. The form field can be
placed anywhere in the template.

2. Refer to the parameter in the template by prefixing the name with a "$" character. For
example, if you declare the parameter name to be "InvThresh", then reference the value
using "$InvThresh".

Example 12-1 Example: Pass an invoice threshold parameter

This example illustrates how to declare a parameter in the template that filters the data based
on the value of the parameter.

The following XML sample lists invoice data:

<INVOICES>
 <INVOICE>
 <INVOICE_NUM>981110</INVOICE_NUM>
 <AMOUNT>1100</AMOUNT>
 </INVOICE>
 <INVOICE>
 <INVOICE_NUM>981111</INVOICE_NUM>
 <AMOUNT>250</AMOUNT>
 </INVOICE>
 <INVOICE>
 <INVOICE_NUM>981112</INVOICE_NUM>
 <AMOUNT>8343</AMOUNT>
 </INVOICE>
. . .
</INVOICES>

The following illustration shows a template that accepts a parameter value to limit the invoices
displayed in the final document based on the parameter value.

Fields for defining parameters as shown in the template in the previous illustration:

Chapter 12
Set Variables, Parameters, and Properties

12-83

• InvThreshDeclaration - Form Field Help Text Entry: <?param@begin:InvThresh?> -
Declares the parameter InvThresh.

• FE - Form Field Help Text Entry: <?for-each:INVOICE?> - Begins the repeating group for
the INVOICE element.

• IF - Form Field Help Text Entry: <?if:AMOUNT>$InvThresh?> - Tests the value of the
AMOUNT element to determine if it's greater than the value of InvThresh.

• 13222-2 - Form Field Help Text Entry: <?INVOICE_NUM?> - Placeholder for the
INVOICE_NUM element.

• $100.00 - Form Field Help Text Entry: <?AMOUNT?> - Placeholder for the AMOUNT element.

• EI - Form Field Help Text Entry: <?end if?> - Closing tag for the if statement.

• EFE - Form Field Help Text Entry: <?end for-each?> - Closing tag for the for-each loop.

In this template, only INVOICE elements with an AMOUNT greater than the InvThresh
parameter value are displayed. If you pass in a parameter value of 1,000, then the report that
is shown in the following illustration is produced.

Notice the second invoice doesn't display because its amount was less than the parameter
value.

Set Properties
The properties in the configuration file can alternatively be embedded into the RTF template.

The properties set in the template are resolved at runtime. You can either hard code the values
in the template or embed the values in the incoming XML data. Embedding the properties in
the template avoids the use of the configuration file.

For example, if you use a nonstandard font in the template, then rather than specify the font
location in the configuration file, you can embed the font property inside the template. If you
must secure the generated PDF output, then you can use the PDF security properties and
obtain the password value from the incoming XML data.

To add a property to a template, use the Microsoft Word Properties dialog (available from the
File menu), and enter the following information:

• Name - Enter the property name prefixed with "xdo-"

• Type - Select "Text"

• Value - Enter the property value. To reference an element from the incoming XML data,
enter the path to the XML element enclosed by curly braces. For example: {/root/
password}

Embed a Font Reference

For this example, suppose you want to use a font in the template called "XMLPScript". This
font isn't available on the server; therefore you must define where to find the font at runtime by

Chapter 12
Set Variables, Parameters, and Properties

12-84

setting the "font" property. Assume the font is located in "/tmp/fonts", then you would enter the
following in the Properties dialog:

• Name - xdo-font.XMLPScript.normal.normal

• Type - Text

• Value - truetype./tmp/fonts/XMLPScript.ttf

When the template is applied to the XML data on the server, the font is looked up in the /tmp/
fonts directory. Note that if the template is deployed in multiple locations, then you must ensure
that the path is valid for each location.

Secure a PDF Output

For this example, suppose you want to use a password from the XML data to secure the PDF
output document. The XML data is as follows:

<PO>
 <security>true</security>
 <password>welcome</password>
 <PO_DETAILS>
 ..
</PO>

In the Properties dialog set two properties: pdf-security to set the security feature as enabled or
not, and pdf-open-password to set the password. Enter the following in the Properties dialog:

• Name: xdo-pdf-security
• Type: Text

• Value: {/PO/security}
• Name: xdo-pdf-open-password
• Type: Text

• Value: {/PO/password}
Storing the password in the XML data isn't recommended if the XML persists in the system for
any length of time. To avoid this potential security risk, you can use a template parameter value
that's generated and passed into the template at runtime.

For example, you could set up the following parameters:

• PDFSec - To pass the value for the xdo-pdf-security property

• PDFPWD - To pass the value for the password

You would then enter the following in the Properties dialog:

• Name - xdo-pdf-security
• Type - Text

• Value - {$PDFSec}
• Name - xdo-pdf-open-password
• Type - Text

• Value - {$PDFPWD}
To set the template parameters, see Set Parameters.

Chapter 12
Set Variables, Parameters, and Properties

12-85

Use Advanced Report Layouts
Learn more about Advanced Report Layouts.

This section describes the following tasks for advanced report layouts:

• Create Batch Reports

• Handle No Data Found Conditions

• Insert Pivot Tables

• Construct Dynamic Data Columns

Create Batch Reports
It's a common requirement to print a batch of documents, such as invoices or purchase orders
in a single PDF file. Because these documents are intended for different customers, each
document requires that the page numbering be reset and that page totals are specific to the
document. If the header and footer display fields from the data (such as customer name), then
these must be reset as well.

Publisher supports this requirement through the use of a context command. This command
allows you to define elements of the report to a specific section. When the section changes,
these elements are reset.

The following example demonstrates how to reset the header and footer and page numbering
within an output file:

The following XML code is a report that contains multiple invoices:

...
<LIST_G_INVOICE>
 <G_INVOICE>
 <BILL_CUST_NAME>Vision, Inc. </BILL_CUST_NAME>
 <TRX_NUMBER>2345678</TRX_NUMBER>
 ...
 </G_INVOICE>
 <G_INVOICE>
 <BILL_CUST_NAME>Oracle, Inc. </BILL_CUST_NAME>
 <TRX_NUMBER>2345685</TRX_NUMBER>
 ...
 </G_INVOICE>
 ...
</LIST_G_INVOICE>
...

Each G_INVOICE element contains an invoice for a potentially different customer. To instruct
Publisher to start a new section for each occurrence of the G_INVOICE element, add the
@section command to the opening for-each statement for the group, using the following
syntax:

<?for-each@section:group name?>
where group_name is the name of the element for which you want to begin a new section.

For example, the for-each grouping statement for this example is as follows:

Chapter 12
Use Advanced Report Layouts

12-86

<?for-each@section:G_INVOICE?>
The closing <?end for-each?> tag is not changed.

The following figure shows a sample template for batch reports:

The G_INVOICE group for-each declaration is still within the body of the report, even though
the headers are reset by the command.

The following table describes the values of the form fields from the template in the previous
figure (that shows a sample template for batch reports):

Default Text Entry Form Field Help Text Description

for-each
G_INVOICE

<?for-each@section:G_INVOICE?> Begins the G_INVOICE group, and
defines the element as a Section. For
each occurrence of G_INVOICE, a new
section is started.

<?TRX_NUMBER?> N/A Microsoft Word doesn't support form
fields in the header, therefore the
placeholder syntax for the
TRX_NUMBER element is placed
directly in the template.

end G_INVOICE <?end for-each?> Closes the G_INVOICE group.

Now for each new occurrence of the G_INVOICE element, a new section begins. The page
numbers restart, and if header or footer information is derived from the data, it's reset as well.

Handle No Data Found Conditions
When you use @section with the Publisher commands for-each or for-each-group (for
example: <?for-each@section:ELEMENT_NAME?>), and the input data file has no data, then an
empty or invalid PDF output document may be generated for that for-each loop. To prevent this
from happening, edit the RTF template.

To handle no data found conditions:

1. At the end of the RTF template, add a section break.

Chapter 12
Use Advanced Report Layouts

12-87

2. On the last page (the new section page), add the command <?
if@section:not(ELEMENT_NAME)?>No Data Found<?end if?>
where ELEMENT_NAME is the same data element that you are using in the for-
each@section loop.

Now if no data exists for ELEMENT_NAME, a valid PDF is generated with the text "No
Data Found".

Insert Pivot Tables
The columns of a pivot table are data dependent.

At design time you do not know how many columns are reported, or what the appropriate
column headings are. Moreover, if the columns should break onto a second page, you must be
able to define the row label columns to repeat onto subsequent pages. The following example
shows how to design a simple pivot tale report that supports these features. See Insert a Pivot
Table.

This example uses the following XML sample:

<ROWSET>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2005</YEAR>
 <QUARTER>Q1</QUARTER>
 <SALES>1000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2005</YEAR>
 <QUARTER>Q2</QUARTER>
 <SALES>2000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2004</YEAR>
 <QUARTER>Q1</QUARTER>
 <SALES>3000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2004</YEAR>
 <QUARTER>Q2</QUARTER>
 <SALES>3000</SALES>
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
 <YEAR>2003</YEAR>
 ...
 </RRESULTS>
 <RESULTS>
 <INDUSTRY>Home Furnishings</INDUSTRY>
 ...
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Electronics</INDUSTRY>

Chapter 12
Use Advanced Report Layouts

12-88

 ...
 </RESULTS>
 <RESULTS>
 <INDUSTRY>Food and Beverage</INDUSTRY>
 ...
 </RESULTS>

</ROWSET>

From this XML code, a report is generated that shows each industry and totals the sales by
year as shown in the following illustration.

The following illustration shows the template to generate the report that is shown in the
previous illustration.

The form fields in the template that is shown in the previous illustration have the values that
are described in the following table.

Default Text
Entry

Form Field Help Text Description

header column <?horizontal-break-table:1?> Defines the first column as a header that should
repeat if the table breaks across pages. See
Define Columns to Repeat Across Pages.

for: <?for-each-group@column:RESULTS;YEAR?> Uses the regrouping syntax (see Regroup the
XML Data) to group the data by YEAR; and the
@column context command to create a table
column for each group (YEAR). See Control the
Placement of Instructions Using the Context
Commands.

YEAR <?YEAR?> Placeholder for the YEAR element.

end <?end for-each-group?> Closes the for-each-group loop.

Chapter 12
Use Advanced Report Layouts

12-89

Default Text
Entry

Form Field Help Text Description

for: <?for-each-group:RESULTS;INDUSTRY?> Begins the group to create a table row for each
INDUSTRY.

INDUSTRY <?INDUSTRY?> Placeholder for the INDUSTRY element.

for: <?for-each-group@cell:current-
group();YEAR?>

Uses the regrouping syntax (see Regroup the
XML Data) to group the data by YEAR; and the
@cell context command to create a table cell for
each group (YEAR).

sum(Sales) <?sum(current-group()//SALES)?> Sums the sales for the current group (YEAR).

end <?end for-each-group?> Closes the for-each-group statement.

end <?end for-each-group?> Closes the for-each-group statement.

Note that only the first row uses the @column context to determine the number of columns for
the table. All remaining rows must use the @cell context to create the table cells for the
column. See Control the Placement of Instructions Using the Context Commands.

Construct Dynamic Data Columns
The ability to construct dynamic data columns is a very powerful feature of the RTF template.
Using this feature you can design a template that correctly renders a table when the number of
columns that is required by the data is variable.

For example, you are designing a template to display columns of test scores within specific
ranges. However, you do not how many ranges have data to report. You can define a dynamic
data column to split into the correct number of columns at runtime.

Use the following tags to accommodate the dynamic formatting required to render the data
correctly:

• Dynamic Column Header

<?split-column-header:group element name?>
Use this tag to define which group to split for the column headers of a table.

• Dynamic Column <?split-column-data:group element name?>
Use this tag to define which group to split for the column data of a table.

• Dynamic Column Width

<?split-column-width:name?> or

<?split-column-width:@width?>
Use one of these tags to define the width of the column when the width is described in the
XML data. The width can be described in two ways:

– An XML element stores the value of the width. In this case, use the syntax <?split-
column-width:name?>, where name is the XML element tag name that contains the
value for the width.

– If the element defined in the split-column-header tag, contains a width attribute, use
the syntax <?split-column-width:@width?> to use the value of that attribute.

• Dynamic Column Width's unit value (in points) <?split-column-width-unit:value?>

Chapter 12
Use Advanced Report Layouts

12-90

Use this tag to define a multiplier for the column width. If the column widths are defined in
character cells, then you must use the appropriate multiplier value to render the columns to
the correct width in points. For example, if you are using 10 point courier font in the table,
you would use a multiplier of 6, which is the approximate width of a character displayed in
10 point courier font. If the multiplier isn't defined, then the widths of the columns are
calculated as a percentage of the total width of the table. The column width calculations
are illustrated in the following table:

Width Definition Column 1 (Width = 10) Column 2 (Width =
12)

Column 3 (Width =
14)

Multiplier not
present -% width

10/10+12+14*100 28% %Width = 33% %Width =39%

Multiplier = 6 -
width

60 pts 72 pts 84 pts

Define Columns to Repeat Across Pages
If the table columns expand horizontally across more than one page, you can define how many
row heading columns you want to repeat on every page. This functionality is supported for PDF
output.

Use the following syntax to specify the number of columns to repeat:

<?horizontal-break-table:number?>
where number is the number of columns (starting from the left) to repeat.

Example of Dynamic Data Columns
A template is required to display test score ranges for school exams. Logically, you want the
report to be arranged as shown in the table here.

Test Score Test Score Range
1

Test Score Range
2

Test Score Range
3

...Test Score
Range n

Test Category # students in
Range 1

students in
Range 2

students in
Range 3

of students in
Range n

However, you don't know how many Test Score Ranges are reported. The number of Test
Score Range columns is dynamic, depending on the data.

The following XML data describes these test scores. The number of occurrences of the
element <TestScoreRange> determine how many columns are required. In this case there're
five columns: 0-20, 21-40, 41-60, 61-80, and 81-100. For each column there's an amount
element (<NumOfStudents>) and a column width attribute (<TestScore width="15">).

<?xml version="1.0" encoding="utf-8"?>
 <TestScoreTable>
 <TestScores>
 <TestCategory>Mathematics</TestCategory>
 <TestScore width ="15">
 <TestScoreRange>0-20</TestScoreRange>
 <NumofStudents>30</NumofStudents>
 </TestScore>
 <TestScore width ="20">

Chapter 12
Use Advanced Report Layouts

12-91

 <TestScoreRange>21-40</TestScoreRange>
 <NumofStudents>45</NumofStudents>
 </TestScore>
 <TestScore width ="15">
 <TestScoreRange>41-60</TestScoreRange>
 <NumofStudents>50</NumofStudents>
 </TestScore>
 <TestScore width ="20">
 <TestScoreRange>61-80</TestScoreRange>
 <NumofStudents>102</NumofStudents>
 </TestScore>
 <TestScore width ="15">
 <TestScoreRange>81-100</TestScoreRange>
 <NumofStudents>22</NumofStudents>
 </TestScore>
 </TestScores>
 <TestScoreTable>

Using the dynamic column tags in form fields, set up the table in two columns as shown in the
following figure. The first column, Test Score is static. The second column, Column Header
and Splitting is the dynamic column. At runtime this column is split according to the data,
and the header for each column is appropriately populated. The Default Text entry and Form
Field Help entry for each field are listed in the following table.

Default Text Entry Form Field Help Text Entry

Group:TestScores <?for-each:TestScores?>
Test Category <?TestCategory?>
Column Header and Splitting <?split-column-header:TestScore?> <?split-

column-width:@width?> <?TestScoreRange?>%
Content and Splitting <?split-column-data:TestScore?> <?NumofStudents?

>
end:TestScores <?end for-each?>

• Test Score is the boilerplate column heading.

• Test Category is the placeholder for the <TestCategory> data element, that is,
Mathematics, which is also the row heading.

• The second column is the one to be split dynamically. The width you specify is divided by
the number of columns of data. In this case, there're 5 data columns.

• The second column contains the dynamic range data. The width of the column is divided
according to the split column width. Because this example doesn't contain the unit value
tag (<?split-column-width-unit:value?>), the column is split on a percentage basis.
Wrapping of the data occurs if required.

Chapter 12
Use Advanced Report Layouts

12-92

If the tag (<?split-column-width-unit:value?>) were present, then the columns have a
specific width in points. If the total column widths were wider than the allotted space on the
page, then the table breaks onto another page.

The horizontal-break-table tag could then be used to specify how many columns to
repeat on the subsequent page. For example, a value of 1 would repeat the column Test
Score on the subsequent page, with the continuation of the columns that didn't fit on the
first page.

The template renders the output that is shown in the following figure:

Format Numbers, Dates, and Currencies
This section provides details for formatting numbers, dates, and currencies.

It contains the following topics:

• Format Numbers

• Format Dates

• Format Currencies

Format Numbers
You can use two methods for specifying the number format.

• Oracle's format-number function (recommended).

• Microsoft Word's Native number format mask.

You can also use the native XSL format-number function to format numbers. For information,
see Format Native XSL Numbers.

Use only one of these methods. If the number format mask is specified using both methods,
then the data is formatted twice, causing unexpected behavior.

The group separator and the number separator are set at runtime based on the template
locale. If you are working in a locale other than en-US, or the templates require translation, use
the Oracle format masks.

Data Source Requirements
To use the Oracle format mask or the Microsoft format mask, the numbers in the data source
must be in a raw format, with no formatting applied (for example: 1000.00). If the number has
been formatted for European countries (for example: 1.000,00) then the format won't work.

The Publisher parser requires the Java BigDecimal string representation. This consists of an
optional sign ("-") followed by a sequence of zero or more decimal digits (the integer),
optionally followed by a fraction, and optionally followed by an exponent. For example:
-123456.3455e-3.

Chapter 12
Format Numbers, Dates, and Currencies

12-93

Localization Considerations
If you are working in a locale other than en-US, or the templates require translation, then use
the Oracle format masks.

The Microsoft format masks can generate unexpected results in templates run in different
locale settings.

Do not include "%" in the format mask because this fixes the location of the percent sign in the
number display, while the desired position could be at the beginning or the end of a number,
depending on the locale.

Use the Microsoft Number Format Mask
To format numeric values, use Microsoft Word's field formatting features available from the Text
Form Field Options dialog.

To apply a number format to a form field:

1. Open the Form Field Options dialog for the placeholder field.

2. Set the Type to Number.

3. Select the appropriate Number format from the list of options.

Supported Microsoft Format Mask Definitions
You can use several format mask definitions to standardize the report output.

The following table lists the supported Microsoft format mask definitions for pixel-perfect
reports.

Symbol Location Meaning

0 Number Digit. Each explicitly set 0 appears, if no other number
occupies the position.

Example:

Format mask: 00.0000

Data: 1.234

Display: 01.2340

Number Digit. When set to #, only the incoming data is displayed.

Example:

Format mask: ##.####

Data: 1.234

Display: 1.234

. Number Determines the position of the decimal separator. The decimal
separator symbol used is determined at runtime based on
template locale.

Example:

Format mask: #,##0.00

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

Chapter 12
Format Numbers, Dates, and Currencies

12-94

Symbol Location Meaning

- Number Determines placement of minus sign for negative numbers.

, Number Determines the placement of the grouping separator. The
grouping separator symbol used is determined at runtime
based on template locale.

Example:

Format mask: #,##0.00

Data: 1234.56

Display for English locale: 1,234.56

Display for German locale: 1.234,56

E Number Separates mantissa and exponent in a scientific notation.

Example:

0.###E+0 plus sign always shown for positive numbers

0.###E-0 plus sign not shown for positive numbers

; Subpattern
boundary

Separates positive and negative subpatterns. See the Note
that follows the table.

% Prefix or Suffix Multiply by 100 and show as percentage

' Prefix or Suffix Used to quote special characters in a prefix or suffix.

Subpattern boundary: A pattern contains a positive and negative subpattern, for example,
"#,##0.00;(#,##0.00)". Each subpattern has a prefix, numeric part, and suffix. The negative
subpattern is optional. If absent, the positive subpattern prefixed with the localized minus sign
("-" in most locales) is used as the negative subpattern. That is, "0.00" alone is equivalent to
"0.00;-0.00". If there's an explicit negative subpattern, it serves only to specify the negative
prefix and suffix. The number of digits, minimal digits, and other characteristics are all the
same as the positive pattern. That means that "#,##0.0#;(#)" produces precisely the same
behavior as "#,##0.0#;(#,##0.0#)".

Use the Oracle Format Mask
You can use the Oracle format mask in form fields.

To apply the Oracle format mask to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to "Regular text".

3. In the Form Field Help Text field, enter the mask definition according to the following
example:

<?format-number:fieldname;'999G999D99'?>
where

fieldname is the XML tag name of the data element you are formatting and

999G999D99 is the mask definition.

The following illustration shows an example Form Field Help Text dialog entry for the data
element "empno".

Chapter 12
Format Numbers, Dates, and Currencies

12-95

Supported Oracle number format mask symbols and their definitions:

• 0 - Digit. Each explicitly set 0 appears, if no other number occupies the position.
Example: Format mask: 00.0000 Data: 1.234 Display: 01.2340

• 9 - Digit. Returns value with the specified number of digits with a leading space if
positive or a leading minus if negative. Leading zeros are blank, except for a zero
value, which returns a zero for the integer part of the fixed-point number. Example:
Format mask: 99.9999 Data: 1.234 Display: 1.234

• C - Returns the ISO currency symbol in the specified position.

• D - Determines the placement of the decimal separator. The decimal separator symbol
used is determined at runtime based on template locale. For example: Format mask:
9G999D99 Data: 1234.56 Display for English locale: 1,234.56 Display for German
locale: 1.234,56

• EEEE - Returns a value in scientific notation.

• G - Determines the placement of the grouping (thousands) separator. The grouping
separator symbol used is determined at runtime based on template locale. For
example: Format mask: 9G999D99 Data: 1234.56 Display for English locale: 1,234.56
Display for German locale: 1.234,56

• L - Returns the local currency symbol in the specified position.

• MI - Displays negative value with a trailing "-".

• PR - Displays negative value enclosed by <>.

• PT - Displays negative value enclosed by ().

• S (before number) - Displays positive value with a leading "+" and negative values with
a leading "-".

• S (after number) - Displays positive value with a trailing "+" and negative value with a
trailing "-".

Format Dates
Publisher supports three methods for specifying the date format.

Chapter 12
Format Numbers, Dates, and Currencies

12-96

• Specify an explicit date format mask using Microsoft Word's native date format mask.

• Specify an explicit date format mask using Oracle's format-date function.

• Specify an abstract date format mask using Oracle's abstract date format masks.
(Recommended for multilingual templates.)

Use only one method. If both the Oracle and MS format masks are specified, the data is
formatted twice, which causes unexpected behavior.

Data Source Requirements
To use the Microsoft format mask or the Oracle format mask, the date from the XML data
source must be in canonical format.

Format:

YYYY-MM-DDThh:mm:ss+HH:MM

where

• YYYY is the year

• MM is the month

• DD is the day

• T is the separator between the date and time component

• hh is the hour in 24-hour format

• mm is the minutes

• ss is the seconds

• +HH:MM is the time zone offset from Universal Time (UTC), or Greenwich Mean Time

An example of this construction is:

2005-01-01T09:30:10-07:00

The data after the "T" is optional, therefore the following date: 2005-01-01 can be formatted
using either date formatting option.

If the time component and time zone offset are not included in the XML source date, then
Publisher assumes it represents 12:00 AM UTC (that is, yyyy-mm-ddT00:00:00-00:00).

Use the Microsoft Date Format Mask
To format date values, use Microsoft Word's field formatting features available from the Form
Field Options dialog.

To apply a date format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Date, Current Date, or Current Time.

3. Select the appropriate Date format from the list of options.

If you don't specify the mask in the Date format field, then the abstract format mask
"MEDIUM" is used as default.

Supported Microsoft date format masks:

• d - The day of the month. Single-digit days don't have a leading zero.

Chapter 12
Format Numbers, Dates, and Currencies

12-97

• dd - The day of the month. Single-digit days have a leading zero.

• ddd - The abbreviated name of the day of the week, as defined in AbbreviatedDayNames.

• dddd - The full name of the day of the week, as defined in DayNames.

• M - The numeric month. Single-digit months don't have a leading zero.

• MM - The numeric month. Single-digit months have a leading zero.

• MMM - The abbreviated name of the month, as defined in AbbreviatedMonthNames.

• yy - The year without the century. If the year without the century is less than 10, the year is
displayed with a leading zero.

• yyyy - The year in four digits.

• gg - The period or era. This pattern is ignored if the date to be formatted doesn't have an
associated period or era string.

• h - The hour in a 12-hour clock. Single-digit hours don't have a leading zero.

• H - The hour in a 24-hour clock. Single-digit hours don't have a leading zero.

• HH - The hour in a 24-hour clock. Single-digit hours have a leading zero.

• m - The minute. Single-digit minutes don't have a leading zero.

• mm - The minute. Single-digit minutes have a leading zero.

• s - The second. Single-digit seconds don't have a leading zero.

• ss - The second. Single-digit seconds do have a leading zero.

• f - Displays seconds fractions represented in one digit.

• ff - Displays seconds fractions represented in two digits.

• fff - Displays seconds fractions represented in three digits.

• ffff - Displays seconds fractions represented in four digits.

• fffff - Displays seconds fractions represented in five digits.

• ffffff - Displays seconds fractions represented in six digits.

• fffffff - Displays seconds fractions represented in seven digits.

• tt - The AM/PM designator defined in AMDesignator or PMDesignator, if any.

• z - Displays the time zone offset for the system's current time zone in whole hours only.
(This element can be used for formatting only)

• zz - Displays the time zone offset for the system's current time zone in whole hours only.
(This element can be used for formatting only)

• zzz - Displays the time zone offset for the system's current time zone in hours and minutes.

• : - The default time separator defined in TimeSeparator.

• / - The default date separator defined in DateSeparator.

• ' - Quoted string. Displays the literal value of any string between two ' characters.

• " - Quoted string. Displays the literal value of any string between two " characters.

Use the Oracle Format Mask
Use the Oracle format mask to specify how date and time displays.

1. Open the Form Field Options dialog box for the placeholder field.

Chapter 12
Format Numbers, Dates, and Currencies

12-98

2. Set the Type to Regular Text.

3. Select the Add Help Text... button to open the Form Field Help Text dialog.

4. Insert the following syntax to specify the date format mask:

<?format-date:date_string; 'ABSTRACT_FORMAT_MASK';'TIMEZONE'?>
or

<?format-date-and-calendar:date_string;
'ABSTRACT_FORMAT_MASK';'CALENDAR_NAME';'TIMEZONE'?>
where time zone is optional. The detailed usage of format mask, calendar and time zone is
described below.

If no format mask is specified, then the abstract format mask "MEDIUM" is used as the
default.

Example form field help text entry:

<?format-date:hiredate;'YYYY-MM-DD'?>
Supported Oracle format mask symbols:

• - / , . ; : "text" - Punctuation and quoted text are reproduced in the result.

• AD A.D. - AD indicator with or without periods.

• AM A.M. - Meridian indicator with or without periods.

• BC B.C. - BC indicator with or without periods.

• CC - Century. For example, 2002 returns 21; 2000 returns 20.

• DAY - Name of day, padded with blanks to length of 9 characters.

• D - Day of week (1-7).

• DD - Day of month (1-31).

• DDD - Day of year (1-366).

• DL - Returns a value in the long date format.

• DS - Returns a value in the short date format.

• DY - Abbreviated name of day.

• E - Abbreviated era name.

• EE - Full era name.

• FF[1..9] - Fractional seconds. Use the numbers 1 to 9 after FF to specify the number of
digits in the fractional second portion of the datetime value returned. Example:
'HH:MI:SS.FF3'

• HH - Hour of day (1-12).

• HH12 - Hour of day (1-12).

• HH24 - Hour of day (0-23).

• MI - Minute (0-59).

• MM - Month (01-12; JAN = 01).

• MON - Abbreviated name of month.

• MONTH - Name of month, padded with blanks to length of 9 characters.

• PM P.M. - Meridian indicator with or without periods.

Chapter 12
Format Numbers, Dates, and Currencies

12-99

• RR - Lets you store 20th century dates in the 21st century using only two digits.

• RRRR - Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same
return as RR. If you do not want this functionality, then simply enter the 4-digit year.

• SS - Seconds (0-59).

• TZD - Daylight savings information. The TZD value is an abbreviated time zone string
with daylight savings information. It must correspond to the region specified in TZR.
Example: PST (for Pacific Standard Time), PDT (for Pacific Daylight Time)

• TZH - Time zone hour. (See TZM format element.)

• TZM - Time zone minute. (See TZH format element.) Example:
'HH:MI:SS.FFTZH:TZM'

• TZR - Time zone region information. The value must be one of the time zone regions
supported in the database. Example: PST (Pacific Standard Time)

• WW - Week of year (1-53) where week 1 starts on the first day of the year and
continues to the seventh day of the year.

• W - Week of month (1-5) where week 1 starts on the first day of the month and ends
on the seventh.

• X - Local radix character.

• YYYY - 4-digit year.

• YY Y - Last 2, or 1 digit(s) of year.

Default Format Mask
If you do not want to specify a format mask with either the MS method or the Oracle method,
you can omit the mask definition and use the default format mask. The default format mask is
the MEDIUM abstract format mask from Oracle.

To use the default option using the Microsoft method, set the Type to Date, but leave the Date
format field blank in the Text Form Field Options dialog.

To use the default option using the Oracle method, do not supply a mask definition to the
"format-date" function call. For example:

<?format-date:hiredate?>

Oracle Abstract Format Masks
The abstract date format masks reflect the default implementations of date/time formatting in
the I18N library.

When you use one of these masks, the output generated depends on the locale that is
associated with the report.

Specify the abstract mask using the following syntax:

<?format-date:fieldname;'MASK'?>

where fieldname is the XML element tag and

MASK is the Oracle abstract format mask name

Chapter 12
Format Numbers, Dates, and Currencies

12-100

For example:

<?format-date:hiredate;'SHORT'?>
<?format-date:hiredate;'LONG_TIME_TZ'?>
<?format-date:xdoxslt:sysdate_as_xsdformat();'MEDIUM'?>

The following table lists the abstract format masks and the sample output that would be
generated for the US locale.

Mask Output for US Locale

SHORT 2/31/99

MEDIUM Dec 31, 1999

LONG Friday, December 31, 1999

SHORT_TIME 12/31/99 6:15 PM

MEDIUM_TIME Dec 31, 1999 6:15 PM

LONG_TIME Friday, December 31, 1999 6:15 PM

SHORT_TIME_TZ 12/31/99 6:15 PM GMT

MEDIUM_TIME_TZ Dec 31, 1999 6:15 PM GMT

LONG_TIME_TZ Friday, December 31, 1999 6:15 PM GMT

Display the System Date (sysdate) in Reports
To correctly display the sysdate, use the function xdoxslt:sysdate_as_xsdformat() with the <?
format-date:?> command.

For example:

<?format-date:xdoxslt:sysdate_as_xsdformat();'MEDIUM'?>

<?format-date:xdoxslt:sysdate_as_xsdformat();'LONG'?>

<?format-date:xdoxslt:sysdate_as_xsdformat();'LONG_TIME_TZ'?>

<?format-date-and-calendar:xdoxslt:sysdate_as_xsdformat();
 'LONG_TIME';'ROC_OFFICIAL';?>

Format Currencies
Publisher enables you to define specific currency format masks to apply to the published data
at runtime.

To utilize currency formatting in the RTF template:

1. Set up the currency formats in the runtime configuration properties. The currency formats
can be defined at the system level or at the report level.

Chapter 12
Format Numbers, Dates, and Currencies

12-101

When you set up the currency format property, you define the format to be used for a
specified currency, using the International Standards Organization (ISO) currency code. A
sample is shown in the following figure:

2. Enter the format-currency command in the RTF template to apply the format to the field at
runtime.

Apply a Currency Format to a Field
Follow these steps to understand the parameters for the format-currency function and to apply
a currency format to a field.

The parameters for the format-currency function are as follows:

<?format-currency:Amount_Field;CurrencyCode;displaySymbolOrNot?>

where

Amount_Field takes the tag name of the XML element that holds the amount value in the data.

CurrencyCode can either be set to a static value or it can be set dynamically. If the value is
static for the report, then enter the ISO three-letter currency code in single quotes, for example,
‘USD’.

To set the value dynamically, enter the tag name of the XML element that holds the ISO
currency code. Note that an element that contains the currency code must be present in the
data.

At runtime, the Amount_Field is formatted according to the format you set up for the currency
code in the report properties.

displaySymbolOrNot takes one of the following values: true or false. When set to true, the
currency symbol is displayed in the report based on the value for CurrencyCode. If you do not
want the currency symbol to be displayed, then you can either enter false or simply do not
specify the parameter.

Chapter 12
Format Numbers, Dates, and Currencies

12-102

Example: Display Multiple Currency Formats in a Report
The table here provides an example that assumes you've set up the various currency formats
in the report properties.

Currency Code Format Mask

USD 9G999D99

INR 9G99G99G999D99

In this example, you need not set the currency code dynamically. You've the following elements
in the XML data:

<TOTAL_SALES>
 <US_SALES>8596526459.56</US_SALES>
 <INDIA_SALES>60000000</INDIA_SALES>
</TOTAL_SALES>

You want to display these two total fields in the template.

For US_SALES, the syntax in the Publisher properties field is as follows:

<?format-currency:US_SALES;'USD'?>

At runtime, the fields are displayed as shown in the following figure:

Example: Display Multiple Currency Codes in a Single Report
This simple XML code includes an element that contains the Amount (Trans_amount) and an
element that contains the ISO currency code (Cur_Code).

<ROW>
 <Trans_Amount>123</Trans_Amount>
 <Cur_Code>USD</Cur_Code>
</ROW>
<ROW>
 <Trans_Amount>-456</Trans_Amount>
 <Cur_Code>GBP</Cur_Code>
</ROW>
<ROW>
 <Trans_Amount>748</Trans_Amount>
 <Cur_Code>EUR</Cur_Code>
</ROW>
<ROW>

Chapter 12
Format Numbers, Dates, and Currencies

12-103

 <Trans_Amount>-987</Trans_Amount>
 <Cur_Code>JPY</Cur_Code>
</ROW>

To display each of these amounts with the appropriate currency symbol, enter the following in
the template for the field in which you want the amounts to display:

<?format-currency:Trans_Amount;Cur_Code;'true'?>

The following figure shows the multiple currency report that is generated:

Support Calendars and Time Zones
This section describes support for calendars and time zones.

Calendar Specification
The term calendar refers to the calendar date displayed in the published report.

The following types are supported:

• GREGORIAN

• ARABIC_HIJRAH

• ENGLISH_HIJRAH

• JAPANESE_IMPERIAL

• THAI_BUDDHA

• ROC_OFFICIAL (Taiwan)

Use one of the following methods to set the calendar type:

• Call the format-date-and-calendar function and declare the calendar type.

For example:<?format-date-and-
calendar:hiredate;'LONG_TIME_TZ';'ROC_OFFICIAL';?>
The following figure shows the output generated using this definition with locale set to zh-
TW and time zone set to Asia/Taipei:

Chapter 12
Support Calendars and Time Zones

12-104

• Set the calendar type using the profile option XDO: Calendar Type
(XDO_CALENDAR_TYPE).

Note that the calendar type that is specified in the template overrides the calendar type set in
the profile option.

Specify Time Zone
You can specify a time zone using a Java time zone string.

There're two ways to specify time zone information:

• Call the format-date or format-date-and-calendar function with the Oracle format.

• Set the user profile option Client Timezone (CLIENT_TIMEZONE_ID) in Oracle
Applications.

If no time zone is specified, then the report time zone is used.

In the template, the time zone must be specified as a Java time zone string, for example,
America/Los Angeles. The following example shows the syntax to enter in the help text field of
the template:

<?format-date:hiredate;'LONG_TIME_TZ';'Asia/Shanghai'?>

Specify No Time Zone Conversion
You can prevent a time zone from being converted to the user’s local time zone.

To stop timezone conversion truncate the timezone component in the date-time XSD string. In
reports that do not need timezone conversion, <?format-date-nt: ...?> is a convenient
function to achieve no timezone conversion.

Use this RTF template command to prevent any time zone conversion on the date-time
provided.

Syntax: <?format-date-nt:<date_string>;'ABSTRACT_FORMAT_MASK'?>
Examples:

<?format-date-nt:Hire_Date;'SHORT'?>
<?format-date-nt:xdoxslt:sysdate_as_xsdformat();'MEDIUM'?>
<?format-date-nt:Hire_Date;'MEDIUM_TIME'?>

Use External Fonts
You can use external fonts in the output that are not normally available on the server.

External fonts are supported for PDF output only. To set up a new font for the report output,
use the font to design the template on your client machine, then make it available on the
server, and configure Publisher to access the font at runtime.

To use external fonts

1. Use the font in the template.

a. Copy the font to the <WINDOWS_HOME>/fonts directory.

If you want use external fonts, you must have the license for those fonts.

Chapter 12
Use External Fonts

12-105

b. Open Microsoft Word and build the template.

c. Insert the font in the template: Select the text or form field and then select the desired
font from the font dialog box (Format > Font) or font drop down list.

The following illustration shows an example of the form field method and the text
method.

2. Use Upload Center to upload the fonts.

3. Set the "font" property.

You can set the font property for the report in the Font Mappings page, or in the
configuration file.

To set the property in the Font Mappings page:

a. Open the report in the report editor.

b. Click Properties, then click Font Mappings.

c. Enter the font and then select the font to which you want to map it.

Now you can run the report to use the font in the output as designed. For PDF output, the
advanced font handling features embed the external font glyphs directly into the final
document. The embedded font only contains the glyphs required for the document and not the
complete font definition. Therefore the document is completely self-contained, eliminating the
need to have external fonts installed on the printer.

Use Barcode Fonts in Reports
Publisher includes several fonts that output barcodes.

Font files included with Publisher:

• LibreBarcode128-Regular.TTF - Supports code128a, code128b, and code128c algorithms.
Also supports code128auto to automatically switch between the three code128 algorithms.

• LibreBarcode39-Regular.TTF - Supports code39 and code39mod43 algorithms.

• LibreBarcodeEAN13Text-Regular.TTF - Supports upca and upce algorithms.

When you use one of these prepackaged fonts, Publisher executes the preprocessing on the
data prior to applying the barcode font to the data in the output document. For example, to
calculate checksum values or start and end bits for the data before formatting them.

At design time, you don't need to apply the barcode font to the field in Microsoft Word. Instead,
you can map the font that you apply to the field using Publisher's font mapping. At runtime,
Publisher applies the barcode font to any field using the base font you specified in the font
mapping. Be sure to choose a font that isn't used elsewhere in the template.

If you want to use the font directly in Microsoft Word, then add the appropriate .TTF file to the
C:\WINDOWS\Fonts directory. To use the Template Builder Preview function, map the font in
the Template Builder configuration file.

Chapter 12
Use Barcode Fonts in Reports

12-106

To use the barcode fonts in the report output:

1. Insert a field in the template where the barcode is to display in the report output.

2. In the form field, enter the following command:

<?format-barcode:data;'barcode_type'?>

where

data is the element from the XML data source to be encoded. For example: INVOICE_NO

barcode_type is one of the supported algorithms listed above.

Examples:

<?format-barcode:INVOICE_NO;'code128a'?>

<?format-barcode:INVOICE_NO;'code39mod43'?>

<?format-barcode:INVOICE_NO;'upca'?>

3. In Microsoft Word, apply the font to the field. If you haven't installed the barcode fonts on
your client machine, then select a font that isn't used elsewhere in the template, for
example, Bookman.

4. Configure the font in the Font Mapping page. For more information about the Font Mapping
page.

Note the following:

• Microsoft Word may not render the barcode fonts properly even when they're installed on
your client. To work around this issue, apply a different font to the field and map the font as
described above.

• The upca algorithm accepts only UPC-A message string and encodes into UPC-A
barcode.

• A string of 12 characters is treated as UPC-A message with a check digit, 11 is without a
check digit.

• The upce algorithm accepts only UPC-E message strings and encodes into UPC-E
barcode.

• A string of 8 characters is treated as a UPC-E message with both a front and end guard
bar; a string of 6 characters is without guard bars.

Implement Custom Barcode Formats
If you choose to use a custom barcode instead, use this procedure to implement a custom
barcode.

Publisher offers the ability to execute preprocessing on the data prior to applying a barcode
font to the data in the output document. For example, you might need to calculate checksum
values or start and end bits for the data before formatting them.

The solution requires that you register a barcode encoding class with Publisher that can then
be instantiated at runtime to apply the formatting in the template.

To enable the formatting feature in the template, you must use two commands in the template.
The first command registers the barcode encoding class with Publisher. This must be declared

Chapter 12
Use Barcode Fonts in Reports

12-107

somewhere in the template prior to the encoding command. The second is the encoding
command to identify the data to be formatted.

Encode the Data
Use this syntax in a form field in the template to format the data.

<?format-barcode:data;'barcode_type'?>

where

data is the element from the XML data source to be encoded. For example: LABEL_ID
barcode_type is the method in the encoding Java class used to format the data. For example:
code128a.

For example:

<?format-barcode:LABEL_ID;'code128a'?>

At runtime, the barcode_type method is called to format the data value and the barcode font is
then applied to the data in the final output.

2D Barcode Functions
You can use the QR code or PDF417 2D barcode type in RTF templates. When you create an
RTF template, use the qrcode or pdf417 functions to specify the barcode type. These functions
don't require external fonts.

qrcode Syntax

<?qrcode: <DATA>; <SIZE>[; <CHARSET>[; <ECLEVEL>[; <GS1FORMAT>[; <MASKPATTERN>[;
<QRVERSION>]]]]]?>
where

• DATA – Data to be encoded in the QR code format.

• SIZE – QR code size dimension in points(pt).

• CHARSET – (Optional) Character set for encoding the data. Default is UTF8.

• ECLEVEL – (Optional) QR code error correction level. Default is "M".
Valid values are:

– "H" (~30% correction)

– "Q" (~25% correction)

– "M" (~15% correction)

– "L" (~7% correction)

• GS1FORMAT – (Optional) Whether to encode data in GS1 format. Enter "true" to encode
data using the GS1 standard.

• MASKPATTERN – (Optional) QR code mask pattern to be used. Default is optimal mask
pattern. Valid values are integers (or string representation of integers) from 1 to 7.

Chapter 12
Use Barcode Fonts in Reports

12-108

• QRVERSION – (Optional) Exact version of the QR code to be encoded. Default is the
version determined by the size of data to be encoded. Valid values are integers (or string
representations of integers) from 1 to 40.

For example, the qrcode syntax to generate QR code with data of size 200pixel, high error
correction level, GS1 format encoding, QR code version 4, and to use the default values of
character set and mask patterns:

<?qrcode: ‘01049123451234591597033130128’; ‘200’;’’ ; ‘H’; ‘true’; ‘’; 4?>

Note the character set and mask patterns are left blank to use the default values.

pdf417 Syntax

<?pdf417: <DATA>[; <XSCALE>[; <COLUMNS>[; <ROWS>[; <CHARSET>]]]]?>
where

• DATA – Data to be encoded in the PDF417 format.

• XSCALE – Point(pt) per PDF417 module width. Default is 1 (1pt per module).

• COLUMNS – The number of columns to be used in the generated PDF417 symbol. Default
is -1.

• ROWS – The number of rows to be used in the generated PDF417 symbol. Default is -1.

• CHARSET – (Optional) Character set to be used to encode data with the Byte compaction
mode. Specify CHARSET only if the data contains non-Latin-1(ISO-8859-1) characters.

Control the Placement of Instructions Using the Context
Commands

The Publisher syntax is simplified XSL instructions. This syntax, along with any native XSL
commands you may use in the template, is converted to XSL-FO at runtime. The placement of
these instructions within the converted stylesheet determines the behavior of the template.

Publisher's RTF processor places these instructions within the XSL-FO stylesheet according to
the most common context. However, sometimes you must define the context of the instructions
differently to create a specific behavior. To support this requirement, Publisher provides a set of
context commands that allow you to define the context (or placement) of the processing
instructions. For example, using context commands, you can:

• Specify an if statement in a table to refer to a cell, a row, a column or the whole table.

• Specify a for-each loop to repeat either the current data or the complete section (to create
new headers and footers and restart the page numbering)

• Define a variable in the current loop or at the beginning of the document.

You can specify a context for both processing commands using the Publisher syntax and those
using native XSL.

• To specify a context for a processing command using the simplified Publisher syntax,
simply add @context to the syntax instruction. For example:

– <?for-each@section:INVOICE?> - Specifies that the group INVOICE should begin a
new section for each occurrence. By adding the section context, you can reset the
header and footer and page numbering.

Chapter 12
Control the Placement of Instructions Using the Context Commands

12-109

If you do not want to restart the page numbering, then add the command: <?initial-
page-number:'auto'?> after the @section command to continue the page numbering
across sections.

– <?if@column:VAT?> - Specifies that the if statement should apply to the VAT column
only.

• To specify a context for an XSL command, add the xdofo:ctx="context" attribute to the tags
to specify the context for the insertion of the instructions. The value of the context
determines where the code is placed.

For example:

<xsl:for-each xdofo:ctx="section" select ="INVOICE">
<xsl:attribute xdofo:ctx="inblock" name="background-color">red</xsl:attribute>

Publisher supports the context types that are described in the following table:

Context Description

section The statement affects the whole section including the header and footer. For
example, a for-each@section context command creates a new section for
each occurrence - with restarted page numbering and header and footer.
Note that you can retain continuous page numbering across sections by using
the <?initial-page-number:'auto'?> command. See Create Batch
Reports for an example of this usage.

column The statement affects the whole column of a table. This context is typically
used to show and hide table columns depending on the data. See Format
Columns for an example.

cell The statement affects the cell of a table. This is often used together with
@column in pivot tables to create a dynamic number of columns. See Insert
Pivot Tables for an example.

block The statement affects multiple complete fo:blocks (RTF paragraphs). This
context is typically used for if and for-each statements. It can also be used to
apply formatting to a paragraph or a table cell. See Highlight Cells for an
example.

inline The context becomes the single statement inside an fo:inline block. This
context is used for variables.

incontext The statement is inserted immediately after the surrounding statement. This
is the default for <?sort?> statements that must follow the surrounding for-
each as the first element.

inblock The statement becomes a single statement inside an fo:block (RTF
paragraph). This is typically not useful for control statements (such as if and
for-each) but is useful for statements that generate text, such as call-template.

inlines The statement affects multiple complete inline sections. An inline section is
text that uses the same formatting, such as a group of words rendered as
bold. See Use If Statements in Boilerplate Text.

If you use @inlines with if syntax, any other if syntax inside the statement
must use the context command @inline. If you use @inlines with FOR-
EACH syntax any other if or FOR-EACH syntax inside the statement must use
the context command @inline.

begin The statement is placed at the beginning of the XSL stylesheet. This is
required for global variables. See Set Parameters.

end The statement is placed at the end of the XSL stylesheet.

The following table shows the default context for the Publisher commands:

Chapter 12
Control the Placement of Instructions Using the Context Commands

12-110

Command Context

apply-template inline

attribute inline

call-template inblock

choose block

for-each block

if block

import begin

param begin

sort incontext

template end

value-of inline

variable end

Use XPath Commands
XPath is an industry standard developed by the World Wide Web Consortium (W3C).

It's the method used to navigate through an XML document. XPath is a set of syntax rules for
addressing the individual pieces of an XML document. You might not know it, but you've
already used XPath; RTF templates use XPath to navigate through the XML data at runtime.

This section contains a brief introduction to XPath principles. XPath follows the Document
Object Model (DOM), which interprets an XML document as a tree of nodes. A node can be
one of seven types:

• root

• element

• attribute

• text

• namespace

• processing instruction

• comment

Many of these elements are shown in the following sample XML, which contains a catalog of
CDs:

<?xml version="1.0" encoding="UTF-8"?>
<! - My CD Listing - >
<CATALOG>
 <CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>

Chapter 12
Use XPath Commands

12-111

 <CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
 </CD>
</CATALOG>

The root node in this example is CATALOG. CD is an element, and it has an attribute cattype.
The sample contains the comment My CD Listing. Text is contained within the XML document
elements.

Locate Data
Locate information in an XML document using location-path expressions.

A node is the most common search element that you encounter. Nodes in the example
CATALOG XML include CD, TITLE, and ARTIST. Use a path expression to locate nodes within
an XML document. For example, the following path returns all CD elements:

//CATALOG/CD

where

the double slash (//) indicates that all elements in the XML document that match the search
criteria are to be returned, regardless of the level within the document.

the slash (/) separates the child nodes. All elements matching the pattern are returned.

To retrieve the individual TITLE elements, use the following command:

/CATALOG/CD/TITLE

This example returns the following XML:

<CATALOG>
 <CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 </CD>
 <CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 </CD>
</CATALOG>

Further limit the search by using square brackets. The brackets locate elements with certain
child nodes or specified values. For example, the following expression locates all CDs
recorded by Bob Dylan:

/CATALOG/CD[ARTIST="Bob Dylan"]

Chapter 12
Use XPath Commands

12-112

Or, if each CD element did not have an PRICE element, you could use the following
expression to return only those CD elements that include a PRICE element:

/CATALOG/CD[PRICE]

Use the bracket notation to leverage the attribute value in the search. Use the @ symbol to
indicate an attribute. For example, the following expression locates all Rock CDs (all CDs with
the cattype attribute value Rock):

//CD[@cattype="Rock"]

This returns the following data from the sample XML document:

<CD cattype=Rock>
 <TITLE>Hide Your Heart</TITLE>
 <ARTIST>Bonnie Tylor</ARTIST>
 <COUNTRY>UK</COUNTRY>
 <PRICE>9.90</PRICE>
 <YEAR>1988</YEAR>
</CD>

You can also use brackets to specify the item number to retrieve. For example, the first CD
element is read from the XML document using the following XPath expression:

/CATALOG/CD[1]

The sample returns the first CD element:

<CD cattype=Folk>
 <TITLE>Empire Burlesque</TITLE>
 <ARTIST>Bob Dylan</ARTIST>
 <COUNTRY>USA</COUNTRY>
 <PRICE>10.90</PRICE>
 <YEAR>1985</YEAR>
 </CD>

XPath also supports wildcards to retrieve every element contained within the specified node.
For example, to retrieve all the CDs from the sample XML, use the following expression:

/CATALOG/*

You can combine statements with Boolean operators for more complex searches. The
following expression retrieves all Folk and Rock CDs, thus all the elements from the sample:

//CD[@cattype="Folk"]|//CD[@cattype="Rock"]

The pipe (|) is equal to the logical OR operator. In addition, XPath recognizes the logical OR
and AND, as well as the equality operators: <=, <, >, >=, ==, and !=. For example, you can find
all CDs released in 1985 or later using the following expression:

/CATALOG/CD[YEAR >=1985]

Chapter 12
Use XPath Commands

12-113

Start Reference
The first character in an XPath expression determines the point at which it should start in the
XML tree.

Statements beginning with a forward slash (/) are considered absolute. No slash indicates a
relative reference. An example of a relative reference is:

CD/*

This statement begins the search at the current reference point. That means if the example
occurred within a group of statements the reference point left by the previous statement would
be utilized.

As noted earlier, double forward slashes (//) retrieve every matching element regardless of
location in the document, therefore the use of double forward slashes (//) should be used only
when necessary to improve performance.

Specify Context and Parents
To select current and parent elements, XPath recognizes the dot notation commonly used to
navigate directories.

Use a single period (.) to select the current node and use double periods (..) to return the
parent of the current node. For example, to retrieve all child nodes of the parent of the current
node, use:

../*

Therefore, to access all CDs from the sample XML, use the following expression:

/CATALOG/CD/..

You could also access all the CD titles released in 1988 using the following:

/CATALOG/CD/TITLE[../YEAR=1988]

The two periods (..) are used to navigate up the tree of elements to find the YEAR element at
the same level as the TITLE, where it's then tested for a match against "1988". You could also
use // in this case, but if the element YEAR is used elsewhere in the XML document, then you
might get erroneous results.

XPath is an extremely powerful standard when combined with RTF templates allowing you to
use conditional formatting and filtering in the template.

Declare Namespaces
If the XML data contains namespaces, you must declare them in the template prior to
referencing the namespace in a placeholder. Declare the namespace in the template using
either the basic RTF method or in a form field.

Enter the following syntax:

Chapter 12
Declare Namespaces

12-114

<?namespace:namespace name= namespace url?>
For example:

<?namespace:fsg=http://www.example.com/fsg/2002-30-20/?>
Once declared, you can use the namespace in the placeholder markup, for example: <?
fsg:ReportName?>

Use FO Elements and XSL Elements
This section describes how to use FO elements and XSL elements.

Use FO Elements
You can use the native FO syntax inside the Microsoft Word form fields.

For more information on XSL-FO see the W3C Website.

The full list of FO elements that Publisher supports is in Supported XSL-FO Elements.

Use XSL Elements
You can use any XSL element in the template by inserting the XSL syntax into a form field.

If you are using the basic RTF method, you cannot insert XSL syntax directly into the template.
Publisher has extended the following XSL elements for use in RTF templates.

To use these in a basic-method RTF template, you must use the Publisher Tag form of the XSL
element. If you are using form fields, use either option.

Apply a Template Rule
Use this element to apply a template rule to the current element's child nodes.

XSL Syntax: <xsl:apply-templates select="name">
Publisher Tag: <?apply:name?>
This function applies to <xsl:template-match="n">, where n is the element name.

Copy the Current Node
Use this element to create a copy of the current node.

XSL Syntax: <xsl:copy-of select="name">
Publisher Tag: <?copy-of:name?>

Call a Named Template
Use this element to call a named template to be inserted into or applied to the current
template.

For example, use this feature to render a table multiple times.

XSL Syntax: <xsl:call-template name="name">

Chapter 12
Use FO Elements and XSL Elements

12-115

Publisher Tag: <?call-template:name?>

Declare a Template
Use this element to apply a set of rules when a specified node is matched.

XSL Syntax: <xsl:template name="name">
Publisher Tag: <?template:name?>

Declare a Variable
Use this element to declare a local or global variable.

XSL Syntax: <xsl:variable name="name">
Publisher Tag: <?variable:name?>
Example:

<xsl:variable name="color" select="'red'"/>

Assigns the value red to the color variable. The variable can then be referenced in the
template.

Import a Style Sheet
Use this element to import the contents of one style sheet into another.

An imported style sheet has lower precedence than the importing style sheet.

XSL Syntax: <xsl:import href="url">
Publisher Tag: <?import:url?>

Define the Root Element of the Style Sheet
This and the <xsl:stylesheet> element are completely synonymous elements. Both are used
to define the root element of the style sheet.

An included style sheet has the same precedence as the including style sheet.

XSL Syntax: <xsl:stylesheet xmlns:x="url">
Publisher Tag: <?namespace:x=url?>
The namespace must be declared in the template. See Declare Namespaces.

Format Native XSL Numbers
The native XSL format-number function takes a basic format.

The basic format is:

format-number(number,format,[decimalformat])

The following list describes the parameters:

Chapter 12
Use FO Elements and XSL Elements

12-116

• number - Required. Specifies the number to be formatted.

• format - Required. Specifies the format pattern. Use the following characters to specify the
pattern:

– # (Denotes a digit. Example: ####).

– 0 (Denotes leading and following zeros. Example: 0000.00).

– . (The position of the decimal point Example: ###.##).

– , (The group separator for thousands. Example: ###,###.##).

– % (Displays the number as a percentage. Example: ##%).

– ; (Pattern separator. The first pattern is used for positive numbers and the second for
negative numbers).

• decimalformat - Optional. For more information on the decimal format, consult any basic
XSLT manual.

Guidelines for Designing RTF Templates for Microsoft
PowerPoint Output

Publisher can generate the RTF template as PowerPoint output enabling you to get report data
into key business presentations. Currently, the PowerPoint document generated is a simple
export of the formatted data and charts to PowerPoint.

Guidelines for Designing RTF Templates for Microsoft Excel
Output

This section describes report features specific to designing RTF templates for Excel output
(.xlsx).

It includes the following topics:

• Create Multiple Sheets

• Specify a Sheet Name

• Specify Number and Date Formatting

Create Multiple Sheets
By default, page breaks and section breaks specified in the RTF template create a new sheet
in the output Excel workbook. You can control whether page breaks create a new sheet using
the property xlsx-page-break-as-new-sheet. Set this property to false when you don't want
page breaks in the RTF template to generate new sheets in the Excel workbook. A section
break in the template will always create a new sheet in the Excel workbook output.

For information on setting properties in an RTF template, see Set Properties.

Specify a Sheet Name
You can specify which sheet to use in an input data phrase.

To specify a sheet name, use the following command in the template:

Chapter 12
Guidelines for Designing RTF Templates for Microsoft PowerPoint Output

12-117

<?spreadsheet-sheet-name: xpath-expression?>

where xpath-expression is an XPath expression or a string constant.

For example, assume your template uses input data as follows:

 <?xml version="1.0" encoding="UTF-8" ?>
 <ROWSET>
 <ROW>
 <CUSTOMER_NAME>Vgpsuwo Fjprpit</CUSTOMER_NAME>
 <CUSTOMER_NUMBER>7795</CUSTOMER_NUMBER>
 <YEAR>2005</YEAR>
 <BRAND>MSPKID</BRAND>
 <DIVISION>UWGLERXM</DIVISION>
 <STATE>LD</STATE>
 <INVOICE_DATE>2004-12-07T07:13:15.379-08:00</INVOICE_DATE>
 <INVOICE_NO>806356</INVOICE_NO>
 <INVOICE_AMOUNT>8181.704554734346</INVOICE_AMOUNT>
 </ROW>
...
</ROWSET>

To generate a sheet name that shows the YEAR and STATE from the data (for example, "2005
ID") enter the following in a Publisher field in your template:

<?spreadsheet-sheet-name: {concat(.//YEAR, ' ',.//STATE)}?>
Ensure that your expression generates unique sheet names within the workbook.

Specify Number and Date Formatting
For the XLSX output format, Publisher doesn't apply any formatting for the number and date
fields.

Publisher saves the formatting mask and the actual value (date or number) into the XLSX
output file. The formatting is handled by Microsoft Excel. For example:

• If the Microsoft Windows Region and Language of the client computer is set to English
(United States), then the numbers and dates are formatted in en-US locale in the XLSX
output file.

• If the Microsoft Windows Region and Language of the client computer is set to French
(France), then the numbers and dates in the same XLSX output file are formatted in fr-FR
locale.

Note also that Microsoft Excel doesn't support some Oracle format masks. See Use the Oracle
Format Mask for more information.

Render HTML Formatted Data in a Report
This section describes how to preserve HTML formatting from a data source in your final
output report.

This section contains the following topics:

• Supported HTML Features

• Data Model Requirements

Chapter 12
Render HTML Formatted Data in a Report

12-118

• RTF Template Requirements

• Example

Supported HTML Features
Using supported HTML features helps you format output for readability and consistency.

Supported HTML features are:

• Hyperlink

• List

– Bulleted list

– Ordered list

• Paragraph

• Font style (bold, italic, plain, underline, subscript, superscript, strike-through)

• Font size

• Font family

• Background color

• Foreground color

• Paragraph alignment (center, left, right, and justify)

• Paragraph indent

The following HTML features are not supported:

• Nested list (list with indent)

• Any HTML tags or attributes manually inserted by modifying the HTML source code; for
example, inserted tables or images.

The ordered lists have these limitations:

• The list alignment changes when the font size exceeds 20 points and the paragraph
includes multiple lines.

• Labels and content overlap when the font size exceeds 30 points and when the list
includes more than 30 items. (for example, if the item number 35 uses Roman number
label XXXV).

Data Model Requirements
The XML data used as input to the report must wrap the HTML portion of the data in a CDATA
section.

You can retrieve data stored in the form of XHTML documents stored in a database CLOB
column and render the markup in the generated report.

RTF Template Requirements
To render the HTML in your report, use the following tag in the RTF template.

Chapter 12
Render HTML Formatted Data in a Report

12-119

The tag is:

<?html2fo: elementname?>

where elementname is the XML element name that contains the HTML data.

Note that when you use html2fo to display a string containing the ‘< ‘character, the output
doesn't display the ‘< ‘ character and the succeeding characters in the string because html2fo
considers the ‘< ‘ character as start of a tag.

Example
This example uses the mentioned XML data with embedded HTML data.

<?xml version="1.0" encoding="UTF-8"?>
<RTECODE>
<![CDATA[
<p>
oracle </p>
<p>Oracle Documentation
</p>
]]>
</RTECODE>

To render this sample as formatted HTML a report, enter the following in your RTF template:

<?html2fo: RTECODE?>

Embed PCL Commands for Check Printing
PCL (Printer Command Language) is a page description language. Like Postscript, it's widely
supported in office printers. To support PCL printers, you can use the PDF to PCL converter. In
addition to translating the PDF document into a sequence of PCL commands, specific PCL
commands can be embedded in an RTF template, so that when the report output is generated
in PDF and then converted to PCL the commands are maintained in the PCL file. When the
PCL printer receives the PCL file, it invokes the embedded commands.

Publisher supports PCL commands to enable font selection commands for secure check
printing; for example, to invoke the MICR font used for the machine-readable account codes
and the custom font used for the check signer's signature. The MICR font and the custom
signature font are stored in hardware cartridges on the printer and are invoked using PCL
escape sequences embedded in the PCL-formatted file.

To embed the PCL commands in the file that is printed, use the Publisher commands
described in this section in your RTF template in the specific position on the page where you
want the PCL commands to render.

To use this feature, an administrator must also define the PCL printer in the Publisher printer
setup page to use the PDF to PCL filter.

This feature is provided to support commands for font selection as described in the chapter,
PCL Font Selection of the PCL5 Printer Language Technical Reference Manual. If you include
other PCL commands (such as tray switching) in the template, the report output may produce
the results desired, although these commands are not strictly supported.

Chapter 12
Embed PCL Commands for Check Printing

12-120

Procedure Overview
This overview discusses how to embed PCL commands in a template

To embed PCL commands in a template to be invoked by your PCL printer, perform the
following:

1. Define the PCL printer in the Publisher Administration Delivery options.

2. Include the commands in the RTF template.

3. To generate the output, schedule or run the report selecting PDF as the output type. Select
the PCL printer defined in step 1 as the destination.

Embed PCL Commands in RTF Templates
Publisher supports custom PCL command embedding, which means that in addition to
translating PDF documents into a sequence of PCL commands, Publisher supports specifying
exact PCL commands to be included at a specific position on a PCL page.

To use this feature, include the following syntax in a template or data at the position where you
want to print out the text.

<pcl><control><esc/>(pcl command)</control>(text or data field)<sp/>(text or
data field)</pcl>

where

<pcl></pcl>: indicates the start and end of the custom PCL command sequence and the text
to print using the custom command. If any text data appears before <pcl> or after </pcl>, it's
printed as regular text using the font and font size in effect.

<control></control>: indicates the start and end of the PCL sequence. The data inserted
after </control> is considered text data. The PCL command included between <control> and
</control> is applied to it. Inserting any data between <pcl> and <control> is invalid and the
data is ignored.

<esc/>: include <esc/> between <control> and </control> to escape character (ASCII 0x1b)
in the output.

<sp/>: inserts a space. Include <sp/> in the text section (after </control> and before </pcl>)
to insert a space character in the output.

The entire command and text sequence between <pcl></pcl> must be entered as a single line
of text rendered by a single text-showing (Tj) operator in PDF. To insert a space, you must use
<sp/> because the inclusion of an actual space in the text or data would separate the
sequence into multiple text sequences in the PDF.

The following figure shows a sample check template with the command sequence:

Chapter 12
Embed PCL Commands for Check Printing

12-121

The PCL command sequence in the example is

<pcl><control><esc/>(70X</control>ROUTING<sp/>ACCOUNT</pcl>

Note that (70X is the font to substitute; ROUTING and ACCOUNT are form fields mapped to
the input XML data and the <sp/> command is used to insert the space between the routing
and account numbers.

This RTF template is merged with data and converted to PDF as shown in the following figure.
The PCL command sequence is displayed as regular text.

Note that you can make the font size smaller to make the line less visible, but you can't hide it.

When this PDF is converted to PCL, <esc/> is converted to the escape character 0x1b; the
PCL command is included from the PDF ((70X); <sp/> is converted to a space character and
the text is generated with the PCL absolute cursor positioning command (&a#v#h#P). The
following figure shows the PCL output displayed using a text editor.

Chapter 12
Embed PCL Commands for Check Printing

12-122

When this PCL file is sent to a printer where the MICR font with font ID 70 is installed, the
printer produces the final printed output as shown in the following figure:

Specifications and Restrictions
The PDF to PCL converter supports input of PDF files up to version 1.7 and output of PCL 5
(including HP/GL2 and PJL) and PCL 5c.

The converter supports basic text and vector/raster graphic features in PDF that are required
for most business reporting and office printing.

Note the following limitations for documents processed by the PDF to PCL converter:

• SVG graphics, such as graphs, aren't supported.

• Embedded objects (such as Flash objects) and file attachments aren't supported.

• Use of Adobe core dingbats and symbol font isn't supported. Use TrueType fonts to print
dingbats and symbols and embed the font when generating PDF.

• Supports printing of the generated output on any printer that supports PCL 5/PCL 5c
standard. However, the display of the generated output using PCL viewer applications or
any software that re-processes PCL for other than direct printing purposes isn't supported.

• The PDF to PCL converter supports, with limitations, the conversion of PDF documents
generated by the FO processor. Other PDFs, such as PDF files processed with
FormProcessor or PDF documents generated by external applications may produce the
printed results desired, but aren't strictly supported.

• The PDF to PCL converter supports the conversion of PDF documents generated by the
PDFBookBinder and PDFDocMerger utilities so far as all the PDF documents used for

Chapter 12
Embed PCL Commands for Check Printing

12-123

generating the output are originally generated by the FOProcessor and the documents
don't include restricted features.

Chapter 12
Embed PCL Commands for Check Printing

12-124

13
Create RTF Templates Using the Template
Builder for Word

This topic describes creating RTF templates using the Template Builder for Word add-in.

Topics:

• Overview

• Get Started Using the Template Builder

• Access Data for Building Templates

• Insert Components to the Template

• Preview a Template

• Template Editing Tools

• Upload a Template to Publisher

• Use the Template Builder Translation Tools

• Set Options for the Template Builder

• Set Up a Configuration File

• Publisher Menu Reference

Overview
The Template Builder is an add-in to Microsoft Word that simplifies the development of RTF
templates.

Although you don't need Template Builder to create RTF templates, it provides many functions
that increase productivity.

The Template Builder is tightly integrated with Microsoft Word and enables you to perform the
following functions:

• Insert data fields

• Insert tables

• Insert forms

• Insert charts

• Preview the template with sample XML data

• Browse and update the content of form fields

• Extract boilerplate text into an XLIFF translation file and test translations

The Template Builder automates insertion of the most frequently used components of an RTF
template. RTF templates also support much more complex formatting and processing.

13-1

Before You Get Started
The Template Builder installation provides samples and demo files to help you get started.

The demos can be accessed from the Windows Start menu as follows:

Select Start, Programs, Oracle BI Publisher Desktop, and Demos.

You can also access the demos from the Publisher Desktop\demos folder where you installed
Oracle BI Publisher Desktop (for example: C:\Program
Files\Oracle\Publisher\Publisher Desktop\demos).

The following demos are provided:

• TemplateBuilderDemo.exe - Demonstrates building a report layout using many key
features of the Template Builder, including: connecting to the Publisher server, loading data
for a report, inserting tables and charts, and defining conditional formatting.

• TemplateBuilderInvoice.exe - Demonstrates how to take a prepared layout and use the
Template Builder to insert the required fields to fill the template with data at runtime.

• LocalizationDemo.exe - Demonstrates the localization capabilities of the Template Builder
and shows you how to extract an XLIFF file from the base RTF template. The XLIFF file
can then be translated and the translations previewed in the Template Builder.

The sample files are located in the Publisher Desktop\Samples folder. The Samples folder
contains the subfolders:

• eText templates

• Excel templates

• PDF templates

• RTF templates

The eText, PDF, and Excel template samples can be used as references to create these types
of templates. The Template Builder is only available for the RTF templates. The RTF templates
folder contains eight subfolders to provide samples of different types of reports. Refer to the
TrainingGuide.html located in the RTF templates folder for additional information on what is
contained in each sample.

Prerequisites and Limitations
Certain prerequisites and limitations apply to this feature.

Prerequisites

• The report data model created and running successfully.

• Supported versions of Microsoft Word and Microsoft Windows are installed on the client.

• The Publisher Template Builder downloaded and installed on the client.

The Template Builder can be downloaded from the Home page.

Limitations

The Template Builder doesn't support bidirectional display of text in the user interface.

Chapter 13
Overview

13-2

Get Started Using the Template Builder
This section describes how to get started with creating RTF templates using the Template
Builder for Word.

It contains the following topics:

• Features of the Publisher Template Builder for Word

• Build and Upload a Template

• Work in Connected Mode

Features of the Publisher Template Builder for Word
When you open Microsoft Word after installing the Template Builder, you see the Publisher
menu. Using this you can perform different tasks.

For Microsoft Word users, the Publisher commands are displayed in the ribbon format.

Use the menu (or toolbar) to perform the following:

• Insert data fields into age RTF templates

• Insert tables, forms, charts, and pivot tables

• Preview the template in multiple outputs

• Browse and update the content of form fields

• Validate the template

• Perform calculations on fields within the template

• Connect to the Publisher catalog to retrieve data to build the template

• Upload the template to the Publisher server

• Extract boilerplate text into an XLIFF translation file and test translations

Build and Upload a Template
You can build and upload the template using a direct connection with the Publisher server, or
you can build and upload the template in disconnected mode.

Work in Connected Mode
Connected mode allows you to make changes directly on the Publisher server.

To work in connected mode:

1. Open Microsoft Word.

2. From the Publisher menu, select Log On.

3. Enter your Publisher credentials and the URL for the Publisher server, for example: http://
www.example.com:7001/xmlpserver. (Contact your system administrator if you do not
know the URL.)

4. The Open Template dialog presents the same folder structure as the Publisher catalog.
Select the report or data model for which you want to build a template.

5. If you selected a data model:

Chapter 13
Get Started Using the Template Builder

13-3

Click Create Report to create a report for this data model in the Publisher catalog. This is
the report that you upload the template to.

Enter a Report Name and select the folder in which to save it.

Click Save.

The sample data from the data model is loaded to the Template Builder.

If you selected a report:

Click Open Report to load the data to the Template Builder; or double-click New in the
Layout Templates pane.

Any existing templates are listed in the Layout Templates pane.

6. Follow the guidelines in this chapter to insert data fields and design the template using
features such as tables, charts, and graphics. Use Microsoft Word to apply formatting to
fonts and other objects in the template.

7. To upload the template file to the Publisher server and add it to the report definition, select
Upload Template As from the Publisher menu.

If you haven't saved the template, then you are prompted to save it in Rich Text Format.

8. Enter a name and select a locale in the Upload as New dialog. This is the name that is
displayed under Layouts in the Report Editor. This is also the layout name that is
displayed when a user runs this report.

9. Configure properties for this layout.

Navigate to the Publisher report editor to configure properties for this layout, such as
output formats.

Work in Disconnected Mode
To work in disconnected mode, you must have a sample data file available in the local work
environment.

To work in disconnected mode:

1. Save a sample data file to your local computer.

2. Open Microsoft Word with the Template Builder installed.

3. On the Publisher menu in the Load Data group select Sample XML. Locate the sample
data file in the local directory and click Open. The Template Builder also supports using
XML Schema to design an RTF template. However, because the schema contains no data,
the preview of the report also contains no data.

4. Follow the guidelines in this chapter to insert data fields and design the template using
features such as tables, charts, graphics, and other layout components. Use Microsoft
Word to apply formatting to fonts and other objects in the template.

5. Upload the layout template file.

In the catalog, open the report in the Report Editor. Click Add New Layout.

Complete the fields in the dialog and then select Upload. The template now appears as a
layout for the report.

6. Configure properties for this layout.

Chapter 13
Get Started Using the Template Builder

13-4

Access Data for Building Templates
The data model defines the XML format that is merged with the RTF template. The Template
Builder requires sample data to build the template. You must load sample data to use most of
the template builder functionality.

If you are not connected to Publisher, then use the procedure in Load XML Data from a Local
File. If you are connected, then use the procedure in Load Data from the Publisher Catalog.

Load XML Data from a Local File
One method of loading data to the Template Builder is to save a sample of the report data to a
local directory.

If you do not have access to the report data model, but you can access the report, then you
can alternatively save sample data from the report viewer.

To save data from the report viewer:

1. In the Publisher catalog, navigate to the report.

2. Click Open to run the report in the report viewer.

3. Click the Actions icon, then click Export, then click Data. You are prompted to save the
XML file.

4. Save the file to a local directory.

5. Use the Load Sample XML feature below to load the saved XML file to the Template
Builder.

The Load Data group from the Publisher menu enables you to select and load the saved XML
file to the Template Builder.

• Sample XML - Enables you to load a sample XML file that contains all fields that you want
to insert into the template as a data source. If you are not connected to the Publisher, then
use this method to load the data.

• XML Schema - Enables you to load an XML Schema file (.xsd) that contains the fields
available in the report XML data. The XML schema has the advantage of being complete
(a sample XML file might not contain all the fields from the data source). For the preview,
the Template Builder can generate dummy sample data for an XML Schema. However, the
preview works better if you also upload real sample data.

Load Data from the Publisher Catalog
You can connect directly to Publisher to load the Publisher report data to the Template Builder
to use as sample data for designing layouts.

You can also download an existing template to modify it.

To connect to Publisher and load a data source:

1. Log in to Publisher: From the Publisher menu, select Log On.

2. After you area logged on, you can select Open. The Open Template dialog launches.

3. Navigate to the folder that contains the report or data model for which you want to create a
template.

Chapter 13
Access Data for Building Templates

13-5

When you select a report, you can either select from the Layout Templates to open an
existing template, select Open Report to load just the XML sample data to create a new
layout, or double-click <New> to load the data to the Template Builder to build a new
layout.

When you select a data model, you are prompted to create a report in the catalog.

Insert Components to the Template
This section includes topics that give more information on inserting components to the
template.

• Insert a Field

• Insert a Table Using the Table Wizard

• Insert a Table or Form Using the Insert Table/Form Dialog

• Insert a Chart

• Insert a Repeating Group

• Create Grouping Fields Around an Existing Block

• Insert a Pivot Table

• Manually Edit a Pivot Table

• Insert and Edit Conditional Regions

• Insert Conditional Formatting

Insert a Field
This dialog enables you to select data elements from the data source and insert them into the
template.

In the Insert group select Field to open the Field dialog. The dialog shows the structure of the
loaded data source in a tree view, as shown in the following figure:

Chapter 13
Insert Components to the Template

13-6

Select a field that represents a single data field (a leaf node of the tree) and select Insert (you
can also insert the field by dragging and dropping it into the document, or by double-clicking
the field). A text form field with hidden Publisher commands is inserted at the cursor position in
the template. You may either select and insert additional data fields or close the dialog by
clicking the Close button.

About the Insert Field Dialog
The fields in the Field dialog are explained in these sections.

The Insert Field dialog fields are described in the following sections:

Find
For an XML document with a large and complicated structure, use the find functionality to find
a specific field. Enter a partial string of the field name you are searching into the Find field and
click Find Next.

The next occurrence of a data element that includes the search expression is selected. Click
the Find Next button again to see the next occurrence.

Example
When you select a field name in the tree view, an example value for this field is shown.

Chapter 13
Insert Components to the Template

13-7

Force LTR (Left-to-Right) Direction
Force LTR Direction check box is only needed if you are using the template in a language that
prints the characters from right to left, such as Arabic or Hebrew.

Use this feature to force left-to-right printing for fields such as phone numbers, addresses,
postal codes, or bank account numbers.

Calculation
Calculation feature enables you to perform aggregation functions on data fields, such as sum,
average, count, minimum, and maximum.

For example, if you select sum for a data field, then the field shows the sum of all occurring
values for this data field, depending on the grouping.

It's important to understand the grouping context (marked by G and E form fields) to know
exactly which fields are accumulated. If you insert a data field with an accumulation function
into a repeating section (marked by G and E processing instruction form fields), you must
select On Grouping to accumulate the data for the occurrences within the group. If you do not
want the accumulation to be restricted to the group, you must place the accumulation field
outside the group.

The following figure shows a grouping context example:

Also note that the data field must be a valid XSL number for the accumulation functions to
work. Formatted numbers cannot be processed by Publisher (for example a number using a
thousands separator: 10,000,000.00 cannot be processed).

For more information on groups in a template using the Template Builder, see Insert a
Repeating Group and Define Groups.

Chapter 13
Insert Components to the Template

13-8

Insert a Table Using the Table Wizard
The Insert Table Wizard enables you to create standard reports. On the Insert menu select
Table Wizard and complete these steps.

• Step 1: Select Report Format

• Step 2: Select Table Data

• Step 3: Select Data Fields

• Step 4: Group the Table

• Step 5: Insert a Break for the Group

• Step 6: Sort the Table

• Step 7: Click Finish

• Step 8: Customize the Table Using Microsoft Word Functionality

Step 1: Select Report Format
Start by selecting the basic report format.

Choose from Table, Form, or Free Form. The following illustration shows examples of each
format.

Step 2: Select Table Data
An XML document can include multiple grouped datasets.

For example, a purchase order XML document may contain header level information, lines,
shipments and contacts.

In this step, select the data group that contains the data that is required for the table.

For example, in the Balance Letter sample RTF template (found in the Template Builder
installed files under Oracle\Oracle Analytics Publisher\Oracle Analytics
Publisher Desktop\samples\RTF Templates), the sample XML file contains three data
groups as follows:

Chapter 13
Insert Components to the Template

13-9

• ARXCOBLX/G_CUSTOMER

• ARXCOBLX/G_CUSTOMER/G_CURRENCY

• ARXCOBLX/G_CUSTOMER/G_CURRENCY/G_INVOICES

The Table Wizard presents a list of the available data groups in the XML data file. Select the
group that contains the data fields for the table.

The following illustration shows the Table Wizard Step 2: Selecting Table Data.

To build a table to list the invoices contained in the data, select:

ARXCOBLX/G_CUSTOMER/G_CURRENCY/G_INVOICES

as the dataset.

Step 3: Select Data Fields
The Table Wizard presents the data fields from the selected dataset.

The following illustration shows the Table Wizard Step 3: Selecting Data Fields.

Chapter 13
Insert Components to the Template

13-10

Use the shuttle buttons to select the data fields to show in the table. Use the up and down
arrows to reorder the fields after selecting them.

Step 4: Group the Table
This step enables you to regroup the data by a particular field.

This is optional.

For example, if you are building a table of invoices, you may want to group all invoices of a
particular type or date to be grouped together in the report.

The following illustration shows the Table Wizard Step 4: Grouping the Table.

Chapter 13
Insert Components to the Template

13-11

There're two options for grouping: Group Left or Group Above. Group Left creates a nested
table. The Group By field displays to the left in the outer table. Group Above creates a new
table for each new value of the group by field, displaying the value of the group by field as a
table title.

Examples follow:

Group Left groups the group by element occurrences together, as shown in the following
illustration.

Group Above shows the result as a table with a header, as shown in the following illustration.

Chapter 13
Insert Components to the Template

13-12

When you select an element to group by, Publisher sorts the data by the grouping element. If
the data is already sorted by the grouping element, then select the Data already sorted check
box. This selection improves performance.

Step 5: Insert a Break for the Group
Use the Break option to insert either a Page break or Section break after each occurrence of
this group.

Note that a Section break can only be created on the top-level group. The subsequent
grouping options only display the Page break option.

A page break starts the next group on a new page; a section break starts the next group on a
new page, reset page numbering, reset headers and footers, and reset any running
calculations for each occurrence of the group.

Step 6: Sort the Table
You can sort the data in the table by up to four different fields.

Select a field and then define the sorting order (ascending or descending), and select the
correct data type for the field. For example, if text is selected, "12" comes before "2"
(alphanumerical order). If number is selected, "2" comes before "12".

The following illustration shows the Table Wizard Step 6: Sorting the Table.

Step 7: Click Finish
Click Finish to create the table and insert it to the Microsoft Word document.

Chapter 13
Insert Components to the Template

13-13

Step 8: Customize the Table Using Microsoft Word Functionality
Customize the table by changing fonts, colors, column sizing, borders, shading, and so on,
using Microsoft Word formatting commands.

Insert a Table or Form Using the Insert Table/Form Dialog
The Insert Table/Form dialog is the most flexible tool of the template builder. It allows you to
perform these tasks.

• Create a simple or nested table with a variable number of rows.

• Associate a group of data elements, such as a complete invoice or a purchase order line,
with a form in the document that is repeated for each occurrence of the data element.

• Select and define a layout for all the data fields in the template.

• Group or re-group the data.

The Insert Table/Form dialog shows you two tree view panes. The left pane shows the data
source structure, while the right pane shows the elements that are copied to the template when
you click the Insert button.

Select Data Fields
First select the data fields to insert in the template and then define how to format them.

Drag an XML element from the left Data Source pane to the right Template pane. If the XML
element has children, you see a pop-up menu with the following options:

• Drop Single Node

• Drop All Nodes

• Cancel

Select Drop Single Node if you want to move only the selected node or Drop All Nodes if you
want to move the node and all its children.

If you drag an additional data field from the left Data Source pane to the right Template pane,
it's either inserted at the same level (Same Level) or below the node (Child) where you release
the node. The Insert Position box defines where the node is inserted.

If you use the left mouse button for drag and drop, then the node and all children are copied.
However, if you use the right mouse button for dragging, a dialog is displayed when you
release the mouse button. The dialog gives you the option to copy either only the selected
node or the selected node and all children.

Define the Layout
When you select an element in the right Template pane, you see its properties as well as a
preview of how the node is rendered.

There're two kinds of nodes:

• Data Fields

• Data Groups

Chapter 13
Insert Components to the Template

13-14

Data Field nodes (leaf nodes) do not have any child nodes. They represent simple attributes
such as the total amount for an invoice or the subtotal for a purchase order line.

Data Group nodes (parent nodes) are nodes that do have child nodes. Typically, they don't
represent data attributes, but groups of data - such as an invoice, a purchase order, a
purchase order line, or a shipment.

Data Field Properties
If a Data Field node is selected, its properties are shown in the Properties pane. Use these
options to describe how the Template Builder should display the field.

• Calculation

You can select one of the aggregation functions for the data fields. These functions
(besides count) only have an effect when there's more than one of the data fields in the
context where you use the function.

• Force LTR (Left-to-Right) Direction

This option is only needed if you are using the template in a language that displays
characters from right to left, such as Arabic or Hebrew. Use this option to force left-to-right
printing for fields such as phone numbers, addresses, postal codes, or bank account
numbers.

Data Group Properties
The order in which the data elements are shown reflects the order of the columns in the table.
If you want to reorder the columns, change the Insert Position box from Child to Same Level.
Then drag the elements into the correct order.

If a Data Group node is selected, its properties are shown in the Properties pane. Use these
options to describe how the Template Builder should render the group:

• Style

To display the data as a horizontal table with a header, select Table. To display the fields
below each other with labels in a table, use Form. If you want to insert the fields into a free-
form text section that should be repeated for this element, select Free Form.

• Grouping

Grouping is an advanced operation that allows you to group the data by a specific element
in the data. For example, you might want to group all invoices by customer. You can select
a child element of the selected element as a grouping criterion. See Group Nodes.

• Show Grouping Value

This property is shown only if you selected a node created by the Grouping functionality.
By default, the field you've selected to group the data by is displayed in the report. If you
don't want the grouping data field displayed, then select No.

• Sort By

Select an element by which the data groups are sorted.

• Sort Order

If you selected an element for Sort By you can select if the data should be sorted either
ascending or descending.

• Sort Data Type

Chapter 13
Insert Components to the Template

13-15

If you selected an element for Sort By the data is by default sorted as text. That means that
12 is shown after 111. If the data is numeric, select Number as the sort data type.

• Break

This property allows you to insert a page break or a section break between every data
group. If you select New Page per Element, then a page break is inserted between each
element after the first occurrence.

Tip:

To insert a page break before the first occurrence of an element, use Microsoft
Word's page break command.

If you select New Section per Element, then a section break is created for each data
group. A section break has the following effects: it inserts page break, it resets the page
numbers and new data can be displayed in the header and footer. You typically use this
option to print multiple documents (for example invoices or purchase orders) to a single
PDF file.

Insert Tables and Forms
Once you've dragged all data fields over and defined the layout, select the Insert button to
place the tables and forms at the cursor position in the document.

Group Nodes
You can group any Data Group node by any of its child Data Field Nodes. For example if
you've sales data for multiple quarters, you may want to show the sales data organized by
quarter. In this case you would group the sales data rows by the quarter element.

Assume the following structure:

Sales Transaction
 Quarter
 Customer
 Amount

To group the child nodes of a node (Sales Transaction), you select one of the child nodes
(Quarter) as the grouping property of the parent node (Sales Transaction). The Template
Builder makes this node (e.g. quarter) the parent of the other child nodes (Customer and
Amount).

The new structure looks like the following:

Sales Transaction
 Quarter
 Customer
 Amount

The grouping criterion (Quarter) now behaves like any other Data Group Node with children.
That means that you can define the layout of its children using the Create As Table, Style,
Label, Grouping, and Show Grouping Value properties.

Chapter 13
Insert Components to the Template

13-16

Understand the Fields Inserted to the Template
There're distinct differences between the types of fields in templates.

The Insert Table/Form Dialog creates two kinds of form fields:

• Form fields representing data elements.

• Form fields with processing instructions for repeating table rows or document sections.

Form fields representing data elements are replaced with the data when the template is
processed. Form fields indicating repeating sections are shown as for-each and end for-each
in the document.

If you have selected the Abbreviated form field display option, then the for-each and end for-
each form fields are displayed as F and E. The section of the document encapsulated by these
two elements is repeated, if the associated data element is repeated in the data.

Insert a Chart
Use the Chart dialog to insert a chart into a template.

The following figure shows the Chart dialog.

Chapter 13
Insert Components to the Template

13-17

Chart Type
Publisher supports a large variety of chart types. Expand the Type list to select the chart type
for this template.

Values
Drag and drop the data value you want to measure to the Values field (for example, SALES).

You can select multiple Value elements (measures).

The Values field changes depending on the Chart Type that you select:

• Combination Graph - Enables three fields for the Value selections.

• Scatter Graph - Compares pairs of values. Drag and drop the X and Y data elements to
compare.

• Bubble Graph - Compares sets of three values. Similar to the scatter graph, the third value
is displayed as the size of the bubble.

• Stock Graph - Drag and drop the elements that represent the Open, High, Low, Close, and
Volume values for the stock graph.

Aggregation
Use the Aggregation option in the Properties pane to do functions such as sum, count, and
average.

You can choose to aggregate the Values data as a sum, a count, or an average.

Labels
Drag and drop the data element for which you want to see the Value charted (for example,
Year).

Select Group Data to group the occurrences of the label element before rendering it in the
chart. For example, if you are charting Sales by Year, then selecting Group Data accumulates
the values for Year, so that only one occurrence of each year is displayed in the chart. If you do
not select Group Data, then the value for every occurrence of Year in the data is plotted
separately.

Color
If you want to add a series element to the chart, then drag and drop the element to display as a
series. Each value is displayed as a new color in the graph.

Chart is Inside Group
Select this box if the chart is inside a grouping and you want the chart to display data only for
the occurrences of the data elements within the group.

Chapter 13
Insert Components to the Template

13-18

Style
Select a color scheme and style for the chart.

Properties
The properties region enables you to change value and label display names, select color, font,
and other display options for the chart.

The properties list changes depending on the chart selection.

Preview
Click Preview to display the chart with the sample data.

Group Data
By default the data is grouped by the Value element and aggregated by sum.

If you deselect the Group Data check box, then each occurrence of the value element is
charted and aggregation functions are not available.

Edit an Inserted Chart
To edit a chart that you've already inserted into the template, right-click the chart and select
Publisher Chart from the menu. This invokes the chart dialog to enable you to edit the chart.

Insert a Repeating Group
Follow these steps to insert a repeating group.

To insert a repeating group:

1. Select the section of the template that contains the elements you want repeated.

2. On the Publisher menu, in the Insert group, click Repeating Group.

3. Enter the appropriate fields in the Publisher Properties dialog, as shown in the following
figure:

Chapter 13
Insert Components to the Template

13-19

For Each

Select the element that for each occurrence, you want the loop to repeat. When you select
the For Each data field you are telling Publisher that for each occurrence of the selected
field in the data you want the elements and processing instructions contained within the
loop to be repeated.

For example, assume that the data contains invoice data for customers and you want to
create a table with each customer's invoices. In this case, for each customer number you
want the table to repeat. You would therefore select the customer number in the For Each
field to create a new loop (or group) for each customer.

Note the following about creating repeating groups:

• For loops and groupings not inside another group (that is, outer groups or loops) you
must select the repeating XML element to be used. For example if the dataset is flat,
the only repeatable element is /DATA/ROWSET/ROW. In cases with multiple data
sources or hierarchical XML you can choose the dataset.

• If you are creating nested groups (inserting a loop or group inside of another loop in
the template), the For Each field isn't updatable because it's already defined by the
preexisting outer loop. The For Each field is displayed as Group Item to inform you
that an outer group is already defined.

Absolute Path

Select this check box to use the Absolute Path to the element in the XML structure. This is
important if the data contains the same element name grouped under different parent
elements.

Group By

Select a field from the list by which you want to group the data. If you just want to create a
simple loop, do not select a group by element. Selecting a group by element actually
regroups the data into a new hierarchy based on the group by element.

Break

Use this option to create either a Page break or Section break if you want to insert a break
after each occurrence of this group.

Chapter 13
Insert Components to the Template

13-20

A Section break can only be created on outer groups that surround the whole document. If
the selected field isn't an outer group, the Section break option isn't available.

Note also that when you insert a section break, the page numbering is reset, headers and
footers are reset, and any running calculations are reset for each occurrence of the group.

4. To sort the grouped data, select the Sorting tab. You can select up to four sort-by fields.
For each sort by field, select the following:

Sort order - Select Ascending or Descending.

Data Type - Select Number or Date/Text. It's important that you select the correct data type
to achieve the expected sort order.

If you are sorting by four criteria and the XML data element names are long, then you
might exceed the character length limitation (393 characters) of the Microsoft Word form
field.

5. The Advanced tab enables you to edit the code directly and to enter Text to display for
the field.

The Code region displays the code and processing instructions that the Template Builder
has inserted for the field. You can edit this if you want to change the processing
instructions for this field.

The Text to display field shows how this field displays in the template. You can choose to
enter descriptive text to enable you to understand each field better when reading the
template, or you can enter abbreviated text entries that are less intrusive to the look and
feel of the template.

You can set the default display text as Descriptive or Abbreviated using the Options tab.

The following figure shows the Advanced tab of the Publisher Properties dialog.

6. When you've completed the dialog options, click OK. This inserts the form fields in the
template. By default, the beginning for-each form field displays the text "F" and is inserted
at the beginning of the selected template section. At the end of the selection, an "E" form
field is inserted to denote the end of the repeating group.

Chapter 13
Insert Components to the Template

13-21

Create Grouping Fields Around an Existing Block
Follow these steps to create a group around an existing block of text or elements in a template.

1. Select the block of text. For example, a table row.

If any preexisting Publisher tags are included in the block, then you must include the
beginning and ending tags. For example, if the block contains any opening for-each, if, or
for-each-group tags, then you must include the end for-each, end-if, and end for-each-
group tags in the selection.

2. On the Publisher menu, on the Insert group, click Repeating Group.

3. In the Properties dialog, enter the fields to define the repeating group.

4. Click OK to insert the grouping fields around the block. For example, if the block is a table
row, then the begin field is inserted at the beginning of the first cell and the end field is
inserted at the end of the last field.

Insert a Pivot Table
Follow these steps to insert a pivot table.

To insert a pivot table:

1. On the Publisher menu on the Insert group, click Pivot Table. The Pivot Table dialog
presents the data in the left pane with empty Layout panes on the right for you to drag and
drop data elements. The following figure shows the Pivot Table dialog.

2. Drag and drop the elements from the Data pane to the Layout pane to build the pivot table
structure. In the following figure, the layout shows Sales by Industry accumulated by Year
and by Month:

Chapter 13
Insert Components to the Template

13-22

3. Use the Properties pane to select Aggregation. You can choose Sum, Count, or Average.
Then choose a number Format, as shown in the following figure:

4. By default subtotals for rows and columns are displayed. You can choose not to display the
subtotals by setting the properties to False.

The following figure shows the properties for setting totals and subtotals.

Chapter 13
Insert Components to the Template

13-23

5. Click Preview to see how the pivot table is displayed before you insert it into the template.
Click OK to insert the pivot table into the template. The following figure shows how the
pivot table is displayed in the template.

At runtime, this pivot table is generated as shown in the following table:

Chapter 13
Insert Components to the Template

13-24

Manually Edit a Pivot Table
This section describes the code inserted by the pivot table builder.

When the Template Builder inserts the pivot table, it inserts a Publisher command of the
following structure:

<?crosstab: ctvarname; "data-element"; "rows"; "columns"; "measures";
"aggregation"?>

Parameter Description Example

Ctvarname Crosstab variable name. This is automatically generated by
the Add-in.

C123

data-element This is the XML data element that contains the data elements
to include in the pivot table. If the pivot table is inside a
repeating group, this field must be manually edited to achieve
the expected results. See the table following this section.

"//ROW"

rows This parameter defines the XML elements for row headers.
The ordering information is specified within "{" and "}". The
first attribute is the sort element. If not specified, the row
header element is used as the sort element.

Supported attributes are:

• o - specifies the sort order. Valid values are "a" for
ascending or "d" for descending.

• t - specifies the data type. Valid values are "t" for text or
"n" for numeric.

You can specify more than one sort element, for example:

"emp-full-name {emp-lastname,o=a,t=n}{emp-
firstname,o=a,t=n}"

sorts employee by last name and first name. Note that the
sort element can be any element in the dataset, and doesn't
have to be included in the pivot table. In the preceding
example, emp-lastname and emp-firstname don't have to
be elements included in the pivot table.

"REGION{,o=a,t=t},
DISTRICT{,o=a,t=t}"
In the example, the first row header
is "REGION". It's sorted by
"REGION", order is ascending, and
type is text. The second row header
is "DISTRICT". It's sorted by
"DISTRICT", order is ascending,
and type is text.

columns This parameter defines the XML elements for column
headers. The ordering information is specified within "{" and
"}". The first attribute is the sort element. If not specified, the
column header element is used as the sort element.

Supported attributes are:

• o - specifies the sort order. Valid values are "a" for
ascending or "d" for descending.

• t - specifies the data type. Valid values are "t" for text or
"n" for numeric.

You can specify more than one sort element, for example:

"emp-full-name {emp-lastname,o=a,t=n}{emp-
firstname,o=a,t=n}"

sorts employee by last name and first name. Note that the
sort element can be any element in the dataset, and doesn't
have to be included in the pivot table. In the preceding
example, emp-lastname and emp-firstname don't have to
be elements included in the pivot table.

"ProductsBrand{,o=a,t=t},
PeriodYear{,o=a,t=t}"
In the example, the first column
header is "ProductsBrand". It's
sorted by "ProductsBrand"; the
order is ascending, and type is text.
The second column header is
"PeriodYear". It's sorted by
"PeriodYear"; the order is
ascending, and type is text.

Chapter 13
Insert Components to the Template

13-25

Parameter Description Example

measures This parameter defines the XML elements used as
measures.

"Revenue, PrevRevenue"

aggregation This parameter specifies the aggregation function. Currently,
the only supported value is "sum".

"sum"

Example

This example uses the following XML data:

- <ROWSET>
- <ROW>
 <ProductsType>COATINGS</ProductsType>
 <ProductsBrand>Enterprise</ProductsBrand> <Region>CENTRAL REGION</Region>
 <District>CHICAGO DISTRICT</District>
 <PeriodYear>1998</PeriodYear>
 <Revenue>1555548.0</Revenue>
 <PrevRevenue>125968</PrevRevenue>
 <Units>11</Units>
 </ROW>
...
</ROWSET>

The full dataset includes four values for ProductsBrand, four values for Region, and two values
for PeriodYear to be displayed in the pivot table.

Using the Template Builder for Word and the sample XML file you can create a pivot table as
shown in the following illustration.

The generated XDO command for this pivot tables is as follows:

<?crosstab:c4536;"//
ROW";"Region{,o=a,t=t},District{,o=a,t=t}";"PeriodYear{,o=a,t=t},ProductsBran
d{,o=a,t=t}";"Revenue,PrevRevenue";"sum"?>

Chapter 13
Insert Components to the Template

13-26

Running the command on the given XML data files generates this XML file "cttree.xml". Each
XPath in the "cttree.xml" is described in the following table. The information in the table is to
help you understand how Publisher constructs the pivot table. The generated cttree.xml file
isn't accessible for viewing or updating.

Element XPath Count Description

C0 /cttree/C0 1 This contains elements which are related to column.

C1 /cttree/C0/C1 4 The first level column "ProductsBrand". There're four
distinct values, shown in the label H element.

CS /cttree/C0/C1/CS 4 The column-span value. It's used to format the pivot
table.

H /cttree/C0/C1/H 4 The column header label. There're four distinct values
"Enterprise", "Magicolor", "McCloskey" and "Valspar".

T1 /cttree/C0/C1/T1 4 The sum for measure 1, which is Revenue.

T2 /cttree/C0/C1/T2 4 The sum for measure 2, which is PrevRevenue.

C2 /cttree/C0/C1/C2 8 The first level column "PeriodYear", which is the
second group-by key. There're two distinct values
"2001" and "2002".

H /cttree/C0/C1/C2/H 8 The column header label. There're two distinct values
"2001" and "2002". Because it's under C1, the total
number of entries is 4 x 2 = 8.

T1 /cttree/C0/C1/C2/T1 8 The sum for measure 1 "Revenue".

T2 /cttree/C0/C1/C2/T2 8 The sum for measure 2 "PrevRevenue".

M0 /cttree/M0 1 This contains elements that are related to measures.

M1 /cttree/M0/M1 1 This contains summary for measure 1.

H /cttree/M0/M1/H 1 The measure 1 label, which is "Revenue".

T /cttree/M0/M1/T 1 The sum of measure 1 for the entire Xpath from "//
ROW".

M2 /cttree/M0/M2 1 This contains summary for measure 2.

H /cttree/M0/M2/H 1 The measure 2 label, which is "PrevRevenue".

T /cttree/M0/M2/T 1 The sum of measure 2 for the entire Xpath from "//
ROW".

R0 /cttree/R0 1 This contains elements that are related to row.

R1 /cttree/R0/R1 4 The first level row "Region". There're four distinct
values, shown in the label H element.

H /cttree/R0/R1/H 4 This is the row header label for "Region". There're four
distinct values "CENTRAL REGION", "EASTERN
REGION", "SOUTHERN REGION" and "WESTERN
REGION".

RS /cttree/R0/R1/RS 4 The row-span value. It's used to format the crosstab
table.

T1 /cttree/R0/R1/T1 4 The sum of measure 1 "Revenue" for each distinct
"Region" value.

T2 /cttree/R0/R1/T2 4 The sum of measure 1 "Revenue" for each distinct
"Region" value.

Chapter 13
Insert Components to the Template

13-27

Element XPath Count Description

R1C1 /cttree/R0/R1/R1C1 16 This contains elements from combining R1 and C1.
There're 4 distinct values for "Region", and four distinct
values for "ProductsBrand". Therefore, the combination
is 4 X 4 =16.

T1 /cttree/R0/R1/R1C1/T1 16 The sum of measure 1 "Revenue" for each
combination of "Region" and "ProductsBrand".

T2 /cttree/R0/R1/R1C1/T2 16 The sum of measure 2 "PrevRevenue" for each
combination of "Region" and "ProductsBrand".

R1C2 cttree/R0/R1/R1C1/R1C2 32 This contains elements from combining R1, C1 and
C2. There're 4 distinct values for "Region", and four
distinct values for "ProductsBrand", and two distinct
values of "PeriodYear". Therefore, the combination is 4
X 4 X 2 = 32.

T1 /cttree/R0/R1/R1C1/R1C2/T1 32 The sum of measure 1 "Revenue" for each
combination of "Region", "ProductsBrand" and
"PeriodYear".

T2 /cttree/R0/R1/R1C1/R1C2/T2 32 The sum of measure 2 "PrevRevenue" for each
combination of "Region", "ProductsBrand" and
"PeriodYear".

R2 /cttree/R0/R1/R2 18 This contains elements from combining R1 "Region"
and R2 "District". Because the list of values in R2 has
dependency on R1, the number of entries isn't just a
simple multiplication.

H /cttree/R0/R1/R2/H 18 The row header label for R2 "District".

R1N /cttree/R0/R1/R2/R1N 18 The R2 position number within R1. This is used to
check if it's the last row, and draw table border
accordingly.

T1 /cttree/R0/R1/R2/T1 18 The sum of measure 1 "Revenue" for each
combination "Region" and "District".

T2 /cttree/R0/R1/R2/T2 18 The sum of measure 2 "PrevRevenue" for each
combination of "Region" and "District".

R2C1 /cttree/R0/R1/R2/R2C1 72 This contains elements from combining R1, R2 and
C1.

T1 /cttree/R0/R1/R2/R2C1/T1 72 The sum of measure 1 "Revenue" for each
combination of "Region", "District" and
"ProductsBrand".

T2 /cttree/R0/R1/R2/R2C1/T2 72 The sum of measure 2 "PrevRevenue" for each
combination of "Region", "District" and
"ProductsBrand".

R2C2 /cttree/R0/R1/R2/R2C1/R2C2 144 This contains elements from combining R1, R2, C1
and C2, which gives the finest level of details.

M1 /cttree/R0/R1/R2/R2C1/R2C2/M1 144 The sum of measure 1 "Revenue".

M2 /cttree/R0/R1/R2/R2C1/R2C2/M2 144 The sum of measure 2 "PrevRevenue".

Insert a Pivot Table in a Repeating Group
When you create a pivot table inside a repeating group you must manually edit the pivot table
code so that the elements included in the pivot table respect the grouping context. The edit to
the code depends on how you grouped the data.

Chapter 13
Insert Components to the Template

13-28

Procedure When Using the Template Builder "Group by" Feature

If your data is flat and you used the Template Builder's Group By feature to group your data,
then use this procedure. After inserting the pivot table, open the Publisher Properties dialog to
view the <?crosstab...?> code. In the crosstab command, update the data-element
component to current-group().

For example, assume in the preceding example you created a repeating group around the
pivot table that is grouped by the <Region> element.

To edit the pivot table code:

1. Select and right-click the inserted pivot table. From the menu, select BI Publisher
Properties to view the <?crosstab...?> command. Alternatively, open the Template
Builder Field Browser and select the <?crosstab:...?> command.

2. Replace the data-element component with "current-group()". For example, in the
sample, the data-element value is "//ROW". Replace the value "//ROW" with "current-
group()" as follows:

<?crosstab:c4536;"current-
group()";"Region{,o=a,t=t},District{,o=a,t=t}";"PeriodYear{,o=a,t=t},Produc
tsBrand{,o=a,t=t}";"Revenue,PrevRevenue";"sum"?>

This applies the XDO crosstab command only across the current group to return the
expected values in the pivot table.

Example 13-1 Procedure When the Data is Already Grouped

If the data input to the Template Builder is already grouped, then you must insert the
appropriate XPath for the data-element component to ensure that the pivot table only includes
the elements in the current group.

For example, assume the data for this report is structured as follows:

<ROWSET> <REGION>
 <RegionName>CENTRAL REGION</RegionName>
 <ProductList>
 <Product>
 <ProductsBrand>Enterprise</ProductsBrand>
 <District>CHICAGO DISTRICT</District>
 <PeriodYear>2001</PeriodYear>
 <Revenue>1555548.0</Revenue>
 <PrevRevenue>125968</PrevRevenue>
 <Units>11</Units>
 </Product>

In your template you insert a repeating group based on the <REGION> element. When you
insert the pivot table within the repeating group, the code appears as

<?crosstab:c10959;"//
Product";"District{,o=a,t=t},ProductsBrand{,o=a,t=t}";"PeriodYear{,o=a,t=t}";"
Revenue,PrevRevenue";"sum"?>

Chapter 13
Insert Components to the Template

13-29

In this case, to instruct Publisher to use only the elements under the current REGION
grouping, edit the data-element to use the relative XPath as follows: .//Product. The edited
code is:

<?crosstab:c10959;".//
Product";"District{,o=a,t=t},ProductsBrand{,o=a,t=t}";"PeriodYear{,o=a,t=t}";"
Revenue,PrevRevenue";"sum"?>

Insert and Edit Conditional Regions
A conditional region is an area that is surrounded by a conditional statement. If the statement
tests true, the area is displayed in the report; if the condition tests false, the area is suppressed
from the report.

For example, the data contains sales information. The report contains a table that displays
sales by industry. You want this table in the report to display information for industries with
sales amounts lower than 100,000. Using the insert conditional region functionality, you can
select the region that contains the sales table and insert the condition that the sales element
must be less than 100,000.

1. Select the region that you want to apply the condition to. For example, if you want to
display a table only for a certain condition, then select the region that contains the table.
Note that the region must be inside a loop.

2. On the Publisher menu, on the Insert group, click Conditional Region. The following
figure shows the Publisher Properties dialog for a Conditional region.

3. Enter the following fields:

Data Field - Select the field to test for the condition. Select the data type of the field:
Number or Date/Text.

(Condition 1) Data field - Select the comparison operator.

Select the value to meet the condition. Note that you can enter an integer, enter text, or
select another data element to define a comparison based on the incoming values.

4. Click OK. The form fields that contain the conditional logic are inserted around the region.
The beginning form field displays the text "C" and the form field closing the region displays
the text "EC".

To edit the conditional region, double-click the inserted form field to launch the dialog for
editing; or, right-click the form field and select BI Publisher, then Properties.

Chapter 13
Insert Components to the Template

13-30

Insert Conditional Formatting
Using the Conditional Format feature you can insert simple conditional formats to apply to table
rows or cells. The dialog provides several common options that you can select and the
Template Builder inserts the code automatically. The Conditional Format dialog supports two
conditions per field.

The Conditional Format dialog cannot be used inside of pivot tables. You must insert the
conditional formatting logic directly to the appropriate form fields.

To insert a conditional format:

1. Place the cursor in the table cell of the data element for which you want to define the
condition.

2. On the Publisher menu, on the Insert group, click Conditional Format.

3. Enter the following in the Conditional Format dialog

Data Field - Select the element to test for the condition and the data type of the element
(Number or Date/Text).

Apply to Entire Table Row - If you want the format applied to the entire table row, not just
the cell of the selected element, then select this box.

Condition 1) Data field - Select the comparison operator.

Select the value to meet the condition. You can enter an integer, enter text, or select
another data element to define a comparison based on the incoming values.

4. Click Format to define the format you want to apply when the condition is met. Options are
background color, font color, and font style (regular, bold, italic, bold italic). Select the box
and format of each option you want to apply. After you select the format, the Preview
region displays the format chosen.

The following figure shows the Format dialog.

5. Define a second condition if desired.

6. Click OK. The conditional format field is inserted as a form field with the display text "C".

To edit the conditional format, double-click the inserted form field to launch the dialog for
editing; or, right-click the form field and select Publisher, then Properties.

Chapter 13
Insert Components to the Template

13-31

Preview a Template
The Preview menu group enables you to preview the RTF template with sample XML data.

From the Preview group, select the output format. If you haven't saved the template as an RTF
file, then you are prompted to do so. Ensure that you've loaded sample data to the Template
Builder to preview the report.

• PDF

You must have Adobe Acrobat Reader version 5.0 or higher installed to preview
documents in PDF format.

• HTML

Launches the default browser to display the report.

• EXCEL

To use this option, you must have Microsoft Excel 2003 or later. If you have Excel 2007,
this option generates the document in .xlsx, the default Office Excel 2007 XML-based file
format.

• EXCEL 2000

Generates HTML and launches Microsoft Excel to render it. Embedded images such as
charts and logos are not supported in this output type. If you do not have Microsoft Excel
2003 or later, use this option.

• RTF

Generates the report in Rich Text Format.

• PowerPoint

Requires Microsoft PowerPoint 2003 or 2007.

Template Editing Tools
This section describes additional tools provided with the Template Builder to help you validate
and edit the template.

This section includes:

• Edit and View Field Properties

• Validate a Template

• Use the Field Browser

• Check Accessibility

Edit and View Field Properties
Once you've inserted a data field, you can view or edit the field properties in the Publisher
Properties dialog.

You can also insert a field.

To invoke the Publisher Properties dialog, perform one of the following:

• Double-click the field

Chapter 13
Preview a Template

13-32

• Right-click the field, from the menu select Publisher, then Properties

About the Properties Tab
Publisher Properties tab defines the different fields and options available in the General,
Formatting, and Data Aggregation panes of the tab.

You can set the following properties for a data field:

Data Field - Select the data field from the list of available fields from the loaded data source.

Text to Display - Enter the display text for the form field in the template. This text is replaced
at runtime by the value in the data.

Type - Select the type of data. Options are Regular Text, Number, Date, Current Date, and
Current Time. The selection in this field determines the format options.

Format - For any data type except Regular Text, you can select from several number or date
display formatting masks or enter your own.

Force LTR - (Force Left-to-Right) Use this check box when you are publishing the template in
a language that prints the characters from right to left, such as Arabic or Hebrew. Use this
option to force left-to-right printing for fields such as phone numbers, addresses, postal codes,
or bank account numbers.

Function - This feature enables you to perform aggregation functions (Sum, Average, Count,
Minimum, Maximum) on data fields. For example, if you select sum for a data field, then the
field shows the sum of all occurring values for this data field depending on the scope.

Scope (informational only) - This field has two possible values:

• Group Item - Indicates that the data field is inside a group. If you choose to perform a
function on the field, then only the occurrences of the field within the current group are
included in the aggregation.

• Normal - Indicates that the field isn't inside a group. Aggregation functions are performed
on all occurrences of the field in the data.

About the Advanced Tab
The Advanced tab displays the underlying code.

If the code pattern within the form field isn't recognized (for example, because you added
commands manually to the field), then the Publisher Properties dialog displays this tab only.

Use this tab to edit or add code to the form field manually. Click OK to update the template.

About the Word Properties Button
The Word Properties button opens the Microsoft Word Text Form Field Options dialog. You
can also use this dialog to set the data type and number format.

The underlying code used by Publisher is also available by clicking the Add Help Text button.

Validate a Template
The Template Builder provides a validation tool to check the template for incorrect use of
commands and unsupported elements in the RTF file.

To validate the template:

Chapter 13
Template Editing Tools

13-33

• On the Publisher menu, on the Tools group, click Validate Template.

If there're no validation errors, then a "No Error found" message is returned. If an error is
found, then an error message is displayed. You can use the Field Browser to help locate the
error.

Use the Field Browser
The Field Browser dialog provides a fast way to review and update the instructions hidden in
the Microsoft Word form fields.

This dialog is particularly useful to understand and modify existing templates.

On the Tools group, click Field Browser.

The following illustration shows the Field Browser dialog.

The Field Browser dialog shows a table with the display text of the form field in the Text column
and the underlying code instructions in the second Code column. When you select a specific
row in the dialog, the matching form field is selected in the Microsoft Word document.

If you select some part of the text before opening the Field Browser, then the dialog shows only
the fields in the selection. If no text is selected, then the field browser shows all fields in the
document.

The options in the Field Browser are described in the following table.

Chapter 13
Template Editing Tools

13-34

Option Description

Edit You can update processing instructions directly from the Field Browser dialog.
Select a field in the Text table. The Edit box shows the processing instructions for
the field. To change the instructions for the field modify the text in the Edit field and
click Update.

Refresh The Field Browser dialog isn't aware of any form fields that you've added or
modified while the dialog is open. Click Refresh to show any changes to the
document since the Field Browser dialog has been opened.

Show All If you opened the browser with a part of the document selected, then you see only
the form fields in the selected area. Click Show All to see all the form fields in the
document.

Close Click Close to close the field property browser. The only button doesn't
automatically update any changes in the edit field, therefore ensure that you select
Update if you want to save edits.

Check Accessibility
The Template Builder provides an accessibility checker to check the template for features to
enhance the accessibility of the report for report consumers who may need assistive
technologies to view the report.

To check for the presence of accessibility features: On the Publisher tab, in the Tools group,
click Check Accessibility. The tool generates a report that indicates areas of a template that
do not include the following accessibility features:

• document title

• alternative text for images

• table summary for data tables

• column header for data tables

• row header for data tables

In some cases the accessibility checker cannot determine if the accessibility feature is present
and generates a warning. The report designer can then verify that the accessibility features are
present.

For information on how to add these features to the template, see Design Accessible Reports.

Upload a Template to Publisher
If you used the Open Template dialog to connect to Publisher, and load the data to the
Template Builder, or if you downloaded an existing template from the Publisher catalog, then
you can upload the new or updated layout back to the report definition on the server.

See Work in Connected Mode.

If you downloaded an existing template and want to upload the modifications to the template,
then select Upload Template from the Publisher menu.

If this is a new template for the report definition, then use the Upload Template As option to
upload the layout to the report definition on the server. Also use this option to upload
modifications to an existing template under a different name.

Chapter 13
Upload a Template to Publisher

13-35

Use the Template Builder Translation Tools
Translation is simplified by using Template Builder tools.

The Template Builder provides tools to help you create and test translations for templates.

About Translations
The section describes options for adding translated templates to a report.

There're two options for adding translated templates to a Publisher report definition:

• Create a separate RTF template that is translated (a localized template)

• Generate an XLIFF file from the original template (at runtime the original template is
applied for the layout and the XLIFF file is applied for the translation)

Use the first option if the translated template requires a different layout from the original
template.

If you only require translation of the text strings of the template layout, use the XLIFF option.

For detailed information, see Translation Support Overview and Concepts.

To use the Template Builder translation tools to create templates for translations, see the
following topics in this section:

• Extracting Text to an XLIFF File for Translation

• Previewing a Translation

• Localizing a Template

For a demo on Publisher's localization capabilities, see the LocalizationDemo.exe demo
provided with the Template Builder installation (located in the Publisher\Oracle BI Publisher
Desktop\demos folder where you installed Oracle BI Publisher Desktop).

Extract Text to an XLIFF File for Translation
This menu item allows you to create a standard XLIFF translation file that contains the
boilerplate text from the template. XLIFF is a standard file format that is understood by many
translation software packages. Since an XLIFF is an XML file, you can translate the text in a
regular text editor.

A translatable string is any text in the template intended for display in the published report,
such as table headers and field labels. Text supplied at runtime from the data isn't translatable,
nor is any text that you supply in the Microsoft Word form fields.

To extract text to an XLIFF file for translation:

1. From the Publisher menu, select Tools, then Translate Template, then Extract Text.

2. You are prompted to save the extract file as an XML file type. Enter a name for the extract
file and save to the desired location.

3. If you want to translate the template manually, open the .xlf file using a text editor and
enter the translated strings in the file.

4. When done, you can preview the translation. Then upload the file to the Publisher report
definition.

Chapter 13
Use the Template Builder Translation Tools

13-36

Preview the Template and Translation File
You can preview the translation of a template as a PDF file.

To preview the template with the translated XLIFF file applied:

1. From Publisher, in the Tools group, click Translation, then Preview Translation.

2. You are prompted to select the saved XLIFF file. Locate the file, and click Open.

The Template Builder merges the sample data, the translation file, and the RTF template to
generate a PDF for preview.

Localize a Template
Localizing a template means that you are creating a template to be used for a specific
language.

Because Publisher enables you to extract the boilerplate text strings from a template into an
XLIFF file that can be translated and then applied at runtime, if the reports for additional
languages only require the translation of these text strings, then you only need to supply
translated XLIFF files to accompany the base template.

However, you would localize a template when the requirements for the report in the specific
language go beyond the simple translation of the text in the layout.

To save a template as a localized template:

1. From the Publisher menu, in the Tools group, select Translations, then Localize
Template. This invokes a warning message that localizing the template overwrites the
template. Click OK.

2. You are prompted to select the XLIFF translation file. Locate the appropriate file and click
Open.

The translated XLIFF file is applied to the template that you currently have open in
Microsoft Word.

3. Save the localized template.

4. Upload the template file to the appropriate report definition in the catalog. Select the
appropriate locale in the upload dialog.

Set Options for the Template Builder
Use the Options dialog to specify template settings.

Access the Options dialog as follows: In the Options group, click Options.

The Options dialog contains four tabs: UI, Preview, Build, and Connection, as described in the
following sections.

Set UI Options
Use the Options dialog: UI tab to set options that influence the look and feel of the Template
Builder.

The following illustration shows the Options dialog: UI tab.

Chapter 13
Set Options for the Template Builder

13-37

The tree view that shows the data source can show either the correct XML tag names of the
data source or they can show a slightly modified version that is easier to read. Select the
option Element Names for Report XML to show the modified labels. These labels contain no
<> characters, use "Title case" and use spaces (" ") instead of underscores ("_").

Set Preview Options
The Options dialog: Preview tab allows you to specify options that influence the Preview
functionality of the Template Builder.

The following illustration shows the Options dialog: Preview tab.

Chapter 13
Set Options for the Template Builder

13-38

The following table describes the options available from the Preview tab.

Option Description

Style Template If you have a Publisher Style Template available locally, then you can specify it
here. A style template is an RTF template that contains style information that can
be applied to RTF layouts, similar to a style sheet. The style information in the style
template is applied to RTF layouts at runtime to achieve a consistent look and feel
across your enterprise reports. For more information, Create and Implement Style
Templates.

Locale You can choose the language and territory used for previewing the template. While
this change doesn't automatically translate any files, it's important to set the correct
locale for the preview to use the correct direction of the text (left-to-right or right-to-
left), and to correctly set locale-specific date, number, and currency formats.

Java Home The Preview (and export functionality) requires Java code. You can change the
path to the JAVA HOME directory. If you don't specify this option, the Template
Builder assumes that the Java virtual machine (java.exe) is accessible in the PATH
specified in the environment variables of Windows.

Java Option Specify the memory to reserve for the Template Builder to process the template.
The default value is -Xmx256M.

Set Build Options
Use the Options dialog: Build tab to specify options that influence how the Template Builder
generates tables and forms.

The following illustration shows the Options dialog: Build tab.

Chapter 13
Set Options for the Template Builder

13-39

The following table describes the options available from the Build tab.

Option Description

For-each form field Select how the Template Builder creates the form fields for processing
instructions in the Insert Table/Form dialog.

The Descriptive option (for example: for-each Invoice) renders a
descriptive form field for the processing instructions. This option makes
the layout template easier to understand. However, the longer fields may
distract from the visual layout of the template. Note that the descriptive
option doesn't apply to fields within table cells.

The Abbreviated option (for example: F) provides a one letter
abbreviation for each instruction.

Select the Hidden box to generate the processing instruction form fields
using Microsoft Word's hidden font effect. Hidden text is hidden in the
Print Preview and you may display or hide the hidden text by changing
the Hidden Text setting in the Display group of the Microsoft Word
Options.

Form Field Size Large - inserts the code to a document variable. The document variable
field can accommodate approximately 48 kilobytes of code line.

This setting affects only fields that are created or edited while this option
is set. The form fields created with the Large setting cannot be
understood by Publisher 10g. If the template is intended for use with the
10g version of Publisher, use the Backward Compatibility setting.

Backward Compatible - in previous versions of the Template Builder
the Publisher code was inserted to the Microsoft Word Form Field Help
Text box. This limited the length of code that could be inserted for a
single form field. By default, the Large option is used because it can
accommodate much larger code strings. However, the Large option isn't
compatible with Publisher10g.

Chapter 13
Set Options for the Template Builder

13-40

Option Description

Table Header Color When you insert a table using the Table Wizard or the Insert Table/Form
dialog the Template Builder applies the Table Header Color specified
here to the table header background. Customize the default color for the
templates.

Generate XSLT 2.0
compliant code

Publisher uses the XSLT processor provided by Oracle XDK 11.1.0.7.0,
which supports the W3C XSL Transformations 1.0 recommendation. The
processor also implements the current working drafts of the XSLT and
XPath 2.0 standards.

By default, Publisher is compatible with XSLT 1.0. If you want to use
XSLT and XPath 2.0 features in the template, then enable this option.
This configuration is performed at the template level. The template-level
setting overrides the server setting.

Set Connection Options
Options on this tab are reserved for a future release.

Set Up a Configuration File
The Template Builder can be used with a configuration file.

The configuration file must be named xdoconfig.xml and must be stored in the config directory
(example path: C:\Program Files\Oracle\BI Publisher Desktop\Template
Builder for Word\config).

Alternatively, you can use the file name xdo.cfg. The configuration file allows you to:

• Define additional fonts such as Windings to test the templates

• Use security settings for PDF files

Publisher Menu Reference
After you install the Template Builder, the next time you open Microsoft Word, you see the
Publisher menu.

If the Publisher menu isnt available after you install the Template Builder, modify the Add-In
settings.

About the Online Group
The Online group of commands enable you to initiate interaction with the Publisher application.

For more information about working with the online commands, see Work in Connected Mode.

The following figure shows the Online group of commands.

Chapter 13
Set Up a Configuration File

13-41

The following table describes the commands available for the Online group.

Command Description

Log on Enables you to log in to Publisher. Enter your user name and password.
Select or enter the URL for the Publisher Report Server (see your
Administrator if you do not know the URL). When you log on, the Open
Template dialog is displayed.

You must log in directly to the Publisher server. For example: http://
www.example.com:7001/xmlpserver.

Open After you log on, this command becomes available to enable you to open
a report in the Publisher catalog.

Upload Template If you used the Open Template dialog to download a template from the
Publisher catalog, use this option to upload the updated layout back to
the report definition in the catalog.

Upload Template As If you used the Open Template dialog to download a template or to open
a report from the catalog, use this option to upload the layout to the
report definition in the catalog. Also use this option to upload
modifications to an existing template under a different name.

Save XML Data If you are working in connected mode, then use this command to save
the data to a local directory if you also need access to the data in
disconnected mode.

About the Load Data Group
The Load Data group of commands enables you to load a saved sample data file or sample
schema to the Template Builder.

You must load data to use most of the Template Builder functionality. See Access Data for
Building Templates for more options for loading data to the Template Builder.

The following figure shows the Load Data group of commands.

The Load Data Group options table below describes the commands available for the Load
Data group.

Command Description

Sample XML This command enables you to load a previously saved sample XML file from the
report data source. If you are not connected to the Publisher server, use this
method to load the data.

Chapter 13
Publisher Menu Reference

13-42

Command Description

XML Schema This command enables you to load an XML Schema file (.xsd) that contains the
fields available in the report XML data. The XML schema has the advantage of
being complete (a sample xml file may not contain all the fields from the data
source). For the preview, the Template Builder can generate dummy sample data
for an XML Schema. However, the preview works better if you also upload real
sample data.

About the Insert Group
Use the Insert group of commands to insert the layout components to the template.

To insert components, see Insert Components to the Template.

The following figure shows the Insert group of commands.

Command Description

Table Wizard This function provides a wizard that guides you through the creation of
tables used in typical reports.

Pivot Table The Pivot Table function enables you to drag and drop the data
elements to a pivot table structure.

Chart Publisher doesn't recognize native Microsoft Word charts. The Insert
Chart function allows you to insert a chart that's understood by
Publisher.

Field This function allows you to select fields from the data source and insert
them into the template.

As a beginner, you should use Insert Fields only for data fields that are
unique - none repeating - in the document. See Insert a Table Using the
Table Wizard for additional information on how to insert repetitive fields.

Table/Form Use this function to insert data fields to be organized as a simple or
nested table or as a form that's repeated with different data. You may
even organize all the data fields for the whole document before inserting
them.

Repeating Group Enables you to select or define a group of elements that you want
repeated for each occurrence of an element in the data.

Conditional Format Enables you to define simple conditional formats to apply to table rows
or cells.

Conditional Region Enables you to insert a conditional statement around a region of the
template.

Chapter 13
Publisher Menu Reference

13-43

Command Description

All Fields This function inserts all fields found in the XML data into the document.
It also inserts processing instructions into the document that repeats a
section - such as a table row - when the associated XML element is
repeated.

XML documents often contain a large number of fields in a deeply
nested hierarchy. For example, an Oracle Purchasing purchase order
contains purchase order lines, which contain shipments, which contain
distributions. The purchase order line alone contains more than 150 data
fields. In these cases, you should use the Insert Table/Form function to
have more control over which fields are inserted.

About the Preview Group
The Preview group of commands enables you to preview the RTF template with the sample
XML data. The preview menu offers PDF, HTML, RTF, PowerPoint, and Excel as output
formats.

When you select any of the output formats, the Template Builder merges the data into the
template and creates the output document.

About the Tools Group
The section describes the commands available for a the Tools group.

For more information about using the commands in the Tools group refer to Template Editing
Tools and Use the Template Builder Translation Tools.

The following figure shows the Tools group of commands.

The table below describes the commands available for the Tools group.

Command Description

Field Browser The field browser is a tool for advanced users who must change the
Publisher commands that are hidden in the form fields. It shows the
commands behind each form field and allows you to change them. Use
this tool to correct flawed RTF templates or to update multiple fields
efficiently.

Validate Template The validation function checks the template for incorrect use of Publisher
commands and unsupported elements in the Word file.

Chapter 13
Publisher Menu Reference

13-44

Command Description

Translation Includes the following subcommands:

• Extract Text - Enables you to create a standard XLIFF translation
file that contains the boilerplate text from the template. XLIFF is a
standard file format that is understood by many translation software
packages. Because an XLIFF is an XML file, you can translate the
text in a text editor. For more information on working with XLIFF
files, see Work with Translation Files.

• Preview Translation - Enables you to preview the template as a
PDF file using a specified XLIFF translation file. This functionality
enables you to test translation files.

• Localize Template - Applies a translation file to an RTF template.
This means that in the current RTF template all boilerplate text is
translated. The main function of this feature is to create a language-
specific version of a template.

Export Includes the following functions:

• XSL-FO Stylesheet - Allows you to convert the RTF template into
an enhanced XSL-FO stylesheet. This function can be used to
generate XSL-FO for debugging or further customization.

• Formatted XML - Enables you to apply the XSL-FO stylesheet
generated from the Word document to the sample data and save
the intermediate FO format. This function is mainly for debugging.

• PDF - Converts the Word document to PDF.

About the Options Group
The Options group of commands allows you to define preferences and options for using
Publisher and access online help.

The following figure shows the Options group of commands.

See Set Options for the Template Builder.

Chapter 13
Publisher Menu Reference

13-45

14
Create Excel Templates

This topic describes creating report templates in Microsoft Excel using the Template Builder for
Excel.

Topics:

• Introduction to Excel Templates

• Understand the Mappings Between Template and Data

• Use the Template Builder for Excel

• Build a Basic Template Using the Template Builder

• Format Dates

• Understand Excel Template

• Use Advanced Publisher Functions

• Preprocess the Data Using an XSL Transformation (XSLT) File

Introduction to Excel Templates
An Excel template is a report layout designed in Microsoft Excel for formatting your enterprise
reporting data in Excel spreadsheets.

Excel templates provide a set of special features for mapping data to worksheets and for
performing additional processing to control how the data is output to Excel workbooks.

This introduction includes the following topics:

• Features of Excel Templates

• Limitations of Excel Templates

• Prerequisites

• Supported Output

• Desktop Tools for Excel Templates

• Sample Excel Templates

Features of Excel Templates
With Excel templates you can format the data in different ways.

• Define the format for the data in Excel output.

• Split hierarchical data across multiple sheets and dynamically name the sheets.

• Create sheets of data that have master-detail relationships.

• Use native XSL functions in the data to manipulate it prior to rendering.

• Use native Excel functionality.

14-1

Limitations of Excel Templates
The following are limitations of Excel templates.

• When you use an Excel template,

– You can't have more than 100,000 active cells in an Excel workbook.

– You can't use conditional formatting based on the generated data to change the
background color of a cell in the report output.

• For reports that split the data into multiple sheets, images aren't supported. If the template
sheet includes images, when the data is split into multiple sheets, the images are
displayed only on the first sheet.

• Publisher provides an add-in to Microsoft Excel to facilitate the insertion of fields and
repeating groups. More complex designs require manual coding. Some features require
the use of XSL and XSL Transformation (XSLT) specifications.

• The Template Builder for Excel limits the number of Excel template fields per Excel
template to 990.

Prerequisites
To design Excel templates, you must meet certain prerequisites.

• You must have Microsoft Excel 2003 or later installed. The template file must be saved as
Excel 97-2003 Workbook binary format (*.xls).
If you're using a version of Excel later than Excel 2003 to create your template and save it
as Excel 97-2003, ensure that you don’t use any features of the later version that aren't
supported in Excel 97-2003. For example, Excel 2003 allows only three conditional
formatting rules per cell, but Excel 2007 allows more. If you apply more than three
conditional formatting rules to a cell, only three are applied. Excel 2007 also provides color
support not provided in Excel 2003.

• To use some of the advanced features, you must have knowledge of XSL.

• The data model must be created in Publisher with sample data available.

Supported Output
Excel templates generate Excel binary (.xls) output only.

Desktop Tools for Excel Templates
Publisher provides a downloadable add-in to Excel that provides these features.

• Connects directly to the Publisher server to load sample data and upload and download
templates

• Inserts data field mappings to the template

• Inserts repeating group mappings to the template

• Provides a field browser to review all inserted code and to edit or delete mappings

• Previews the template using the sample data or live data when in connected mode

Chapter 14
Introduction to Excel Templates

14-2

Install the Template Builder for Excel
The Template Builder for Excel is installed automatically when you install the Oracle BI
Publisher Desktop tools.

The tools can be downloaded from the Home page of Oracle Business Intelligence Publisher
as follows:

Under the Get Started region, select the Oracle BI Publisher Desktop option (32bit Office or
64bit Office) appropriate for your version of Microsoft Office.

The Excel Template Builder isn’t compatible with the (deprecated) Analyzer for Excel. If you
have the Analyzer for Excel installed from a previous version, the Publisher Tools installer
detects its presence and halts the installation. You must remove the Analyzer for Excel before
installing the Oracle BI Publisher Desktop. The Excel Template Builder includes a feature to
import Analyzer for Excel templates to the Excel template format.

Sample Excel Templates
The Template Builder installation includes sample Excel templates.

To access the samples from a Windows desktop:

• Click Start, Programs, Oracle BI Publisher Desktop, Samples, then Excel.

This action launches the folder that contains the Excel sample templates.

Understand the Mappings Between Template and Data
When you design Excel templates use the Excel Template Builder for inserting fields and
repeating groups to your template.

When the Template Builder inserts a field or repeating group it creates a mapping between the
data and the spreadsheet and writes the mapping to a hidden sheet called the
XDO_METADATA sheet. The Template Builder creates the hidden XDO_METADATA sheet the
first time you insert a field or repeating group.

To view or update the XDO_METADATA sheet unhide the sheet. To add calculations or more
advanced functions, enter the XSL functions directly in the XDO_METADATA sheet using the
named mappings created by the Template Builder. For more information about template-data
mappings, see Understand Excel Template.

Use the Template Builder for Excel
The Excel Template Builder facilitates template design by automating the insertion of simple
mappings, providing preview functionality, and enabling direct connection to Publisher from
your Excel session.

The Publisher tab that displays when you install the Template Builder is shown in the following
illustration.

Chapter 14
Understand the Mappings Between Template and Data

14-3

You can use the Template Builder in connected mode or disconnected mode. In connected
mode, log in to the Publisher server from Excel. The connection enables you to browse the
Publisher catalog and load sample data from an existing report or data model. When your
template is complete, you can upload it directly to the report definition in the Publisher catalog.
In disconnected mode, you must download a sample data file from the data model to your local
client.

This section includes the following topics about using the Template Builder for Excel:

• Work in Connected Mode

• Work in Disconnected Mode

• Insert Fields

• Insert Repeating Groups

• Use the Field Browser to View, Edit, and Delete Fields

• Preview Templates

• Import Excel Analyzer Templates

Work in Connected Mode
In connected mode you can interact directly with Publisher.

The process flow for creating or editing a template in connected mode is:

1. Open Excel with the Template Builder for Excel Add-in installed.

2. Log on to Publisher .

3. Select the report or data model for which you want to create a new layout; or, select an
existing layout to modify.

4. Design your template in Excel.

5. Preview your template using the View Report or Preview command.

6. Use one of the upload template commands to upload your completed template to the
catalog.

Log In Through the Template Builder
The Excel Template Builder enables a direct connection to Publisher from your desktop Excel
session.

By logging in directly to Publisher, you can browse the catalog to choose the report to which to
add the Excel template; or, if no report has been created, you can select the data model and
create the report in the catalog from your Excel session.

To log in to Publisher from Excel:

Chapter 14
Use the Template Builder for Excel

14-4

1. In Excel, on the Publisher tab in the Online group, click Log On.

2. In the Login dialog, enter your Publisher username, password, and the URL. Publisher
URL format: http://www.<host>:<port>/xmlpserver.

Online Features of the Template Builder
After logging in, the following commands in the Online group become enabled.

• Log Off - ends the connection to Publisher.

• Open - enables interaction with the Publisher catalog.

• View Report - executes the data model on the server and returns live results to view in
your template. If the data model includes parameters, you are prompted to enter values.

• Upload Template/Upload Template As - uploads the template to the Publisher catalog.

Access the Publisher Catalog from the Template Builder
The Open online command enables interaction with the Publisher catalog.

The Open command launches the Open Template dialog to enable access to the Publisher
catalog.

Navigate the catalog folders to locate the report, data model, or existing layout template. From
this dialog you can initiate one of the following actions:

Chapter 14
Use the Template Builder for Excel

14-5

• Modify an existing Excel template.

When you select a report in the Reports region, any existing Excel templates or Excel
Analyzer templates (deprecated) are displayed in the lower Layout Templates region. To
modify an existing template, select the template name and click Open Layout Template.
The Template Builder loads the sample data from the report's data model and opens the
existing template in Excel.

• Create a new template for an existing report.

Select the report name in the Reports region and click Open Report. The Template
Builder loads the sample data for this report's data model.

• Select a data model to create a new report.

When you select a data model from the catalog, the Create Report button is enabled.
Click Create Report and you are prompted to enter a report name and select the location
in the catalog to save the new report.

Upload Templates from the Template Builder
A link to upload templates is provided if you are online with the server.

If you've maintained the connection during the design process, click one of the following to
upload your completed template to the Publisher server:

• Upload Template uploads your edited template and replaces the existing template in the
catalog. Upload Template is enabled only when you've opened an existing template from
the Open Template dialog using the Open Layout Template button.

• Upload Template As prompts you to assign a Template Name and Locale to the
template then uploads the file to the report in the Publisher catalog.

Work in Disconnected Mode
When direct connection to Publisher isn't possible or practical, you can use the Template
Builder to design and preview templates in disconnected mode.

In disconnected mode the commands in the Online group are not enabled. The process flow
for working in disconnected mode is:

1. Log in to Publisher and download sample data from the data model for which you want to
design a template.

2. Open Excel with the Publisher Template Builder for Excel Add-in installed.

3. Load the sample data to the Template Builder.

4. Design your template in Excel.

5. Preview your template using the Preview command.

6. Log in to Publisher and use the report editor to upload your template.

Obtain Sample Data
The Template Builder requires sample data to insert the data field mappings to your template.

If you do not have access to the report data model, but you can access the report, then you
can alternatively save sample data from the report viewer.

To save data from the report viewer:

Chapter 14
Use the Template Builder for Excel

14-6

1. In the catalog, navigate to the report.

2. Click Open to run the report in the report viewer.

3. Click the Actions menu, then click Export, then click Data. You are prompted to save the
XML file.

4. Save the file to a local directory.

Load Sample Data in Disconnected Mode
You can load sample data into a local directory while offline.

Once you've saved the sample data from the report data model to a local directory, load it to
the Template Builder.

1. Open Excel with the PublisherTemplate Builder for Excel Add-in installed.

2. On the Publisher tab, in the Load Data group, click Sample XML. You're prompted to
locate and select the data from its saved location. A confirmation message confirms the
data is loaded.

Upload Templates to the Report
You can upload report templates while offline.

When working in disconnected mode, upload the template to the report editor following the
instructions in Add a Layout by Uploading a Template File.

Insert Fields
The Field command in the Insert group maps data elements from the loaded sample data to
the desired location in the spreadsheet.

The maximum number of fields you can add using Template Builder to an Excel template is
990.

1. In Excel, select the cell to which to map the data element.

2. On the Publisher tab, in the Insert group, click Field. The Field dialog launches, displaying
the data elements from your sample data.

3. On the Field dialog select the element to insert to the cell. Notice that as you select items
in the data structure, sample data is displayed in the Example region as shown in the
following illustration.

Chapter 14
Use the Template Builder for Excel

14-7

4. Click Insert to insert the data element to the cell in the spreadsheet. Sample data is
inserted to the cell.

When you insert a field, the Template Builder creates a mapping between the data and the cell
by assigning a unique Excel defined name to the cell and mapping the data element to that
defined name. The mapping is written to the XDO_METADATA sheet as shown in the following
illustration.

Chapter 14
Use the Template Builder for Excel

14-8

Note that the XDO_METADATA sheet is hidden by default.

More Features of the Field Dialog
The Field dialog provides the following features.

Find

For an XML document with a large and complicated structure, use the find functionality to find
a specific field. Enter all or part of the field name into the Find field and click Find Next.

Business View or XML Tag Name View

When working in connected mode, you can choose whether to view the data structure using
the Business View names or the XML Tag Names as defined in the data model. Business View
names are user-friendly names defined for the data elements in the data model editor. This
option isn't available if sample data has been loaded from a locally stored file or when the data
model doesn't include Business View names.

Insert Repeating Groups
You can insert repeating groups of cell elements.

To insert a repeating group:

Chapter 14
Use the Template Builder for Excel

14-9

1. Select the cells in the spreadsheet that contain the elements you want repeated.

2. On the Publisher menu, in the Insert group, click Repeating Group.

3. Enter the appropriate fields in the Publisher Properties dialog.

4. When you've completed the dialog options, click OK to insert the Publisher code to define
the groupings. An Excel defined name is assigned to the cell range using the Publisher
syntax XDO_GROUP_?name? and the code is written to the XDO_METADATA sheet as shown
in the following illustration.

Use the Field Browser to View, Edit, and Delete Fields
The Field Browser enables you to view and edit the code inserted by the Template Builder and
the code you inserted manually into the XDO_METADATA sheet.

When you select a line of code in the Field Browser, the corresponding cells in the template
are highlighted, so you know which field you are editing, deleting, or viewing.

To edit or delete a field using the Field Browser:

1. On the Publisher menu, in the Tools group, click Field Browser.

2. The Field Browser displays the Publisher commands that are present in the template.
Select the field or command to view. The code for the selected command displays in the
lower Edit region. Notice that if the code has opening and ending tags (such as the
opening and ending tags of a repeating group) the opening tag display in the upper code
box and the closing tag displays in the lower code box.

When you select a command, the area of the template that corresponds to the code is
highlighted. In the following illustration the repeating group is selected in the Field Browser
and the corresponding fields are highlighted in the template.

Chapter 14
Use the Template Builder for Excel

14-10

3. To delete the code, click Delete. To edit the code, update the code displayed in the Edit
and click Update.

4. When finished, click Close to close the Field Browser.

Preview Templates
Use the preview feature of the Template Builder to test your template before uploading it to
Publisher.

To preview a template with the loaded sample data:

• On the Publisher tab in the Preview group, click Excel.

The sample data is applied to the template and the output document is opened in a new
workbook.

If you're working in connected mode, you can test your template with live data from the report
data model using View Report.

To view your template using live data:

• On the Publisher tab in the Online group, click View Report.

The Template Builder sends a request to execute the data model in Publisher and returns
the data to apply to the template. If the data model requires parameters, you're prompted
to enter values. The output document is opened in a new Excel workbook.

Import Excel Analyzer Templates
The Excel Analyzer feature of Publisher has been deprecated, but if you have Excel Analyzer
templates from previous Publisher releases, you can use the Import command of the Excel
Template Builder to import an Excel Analyzer template and convert it to an Excel template. The
Import command supports only Excel Analyzer templates created using the Offline Mode.

To import an Excel Analyzer template:

1. Open the Excel Analyzer template. If you're working in connected mode, navigate to the
report that contains the template you wish to convert. When you select the report in the
Open Template dialog, the Excel Analyzer template displays in the Layout Templates

Chapter 14
Use the Template Builder for Excel

14-11

region as type "excel". Click Open Layout Template to open the Excel Analyzer template
in Excel.

2. Click Import. A message notifies you: This feature will overwrite your template.

3. Click OK.

The Template Builder converts the Excel Analyzer template to an Excel template.

Build a Basic Template Using the Template Builder
This section demonstrates the concepts of Excel templates by describing the steps to create a
simple Excel template using the Excel Template Builder.

This procedure follows these steps:

Step 1: Load Sample Data to the Template Builder
Step 2: Design the Layout in Excel
Step 3: Use the Template Builder to Insert Fields
Step 4: Use the Template Builder to Insert Repeating Groups
Step 5: Insert the Calculated Salary Field
Step 6: Test the Template

Step 1: Load Sample Data to the Template Builder
Loading sample data provides a properly formatted base from which to build a template.

The method you choose for loading sample data depends on whether you are working in
connected or disconnected mode.

• To load data when working in connected mode, see Access the Publisher Catalog from the
Template Builder.

• To load data when working in disconnected mode, see Load Sample Data in Disconnected
Mode.

The sample data for this example is a list of employees by department. Note that employees
are grouped and listed under the department.

<?xml version="1.0" encoding="UTF-8"?>
<! - Generated by Oracle BI Publisher 11.1.1.4.0 - >
<DATA>
 <DEPT>
 <DEPARTMENT_ID>20</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Marketing</DEPARTMENT_NAME>
 <EMPS>
 <EMPLOYEE_ID>201</EMPLOYEE_ID>
 <EMP_NAME>Michael Hartstein</EMP_NAME>
 <EMAIL>MHARTSTE</EMAIL>
 <PHONE_NUMBER>515.123.5555</PHONE_NUMBER>
 <HIRE_DATE>1996-02-17T00:00:00.000+00:00</HIRE_DATE>
 <SALARY>13000</SALARY>
 </EMPS>
 <EMPS>
 <EMPLOYEE_ID>202</EMPLOYEE_ID>
 <EMP_NAME>Pat Fay</EMP_NAME>
 <EMAIL>PFAY</EMAIL>
 <PHONE_NUMBER>603.123.6666</PHONE_NUMBER>

Chapter 14
Build a Basic Template Using the Template Builder

14-12

 <HIRE_DATE>1997-08-17T00:00:00.000+00:00</HIRE_DATE>
 <SALARY>6000</SALARY>
 </EMPS>
 </DEPT>
<DEPT>
...
...
</DEPT>
</DATA>

To build the template described in this tutorial, use the sample data available in the Samples
folder installed with BI Publisher Desktop. A very similar dataset can be found in <Install
Directory>\BI Publisher Desktop\Template Builder for
Word\samples\Excel templates\Employee By Departments\EmpByDept Single
Sheets\EmpbyDeptExcelData.xml

Step 2: Design the Layout in Excel
Use Excel to simplify a design layout.

In Excel, determine how you want to render the data and create a sample design, as shown in
the following illustration.

The design shows a department name and a row for each employee within the department.
You can apply Excel formatting to the design, such as font style, shading, and alignment. Note
that this layout includes a total field. The value for this field isn't available in the data and
requires a calculation.

Step 3: Use the Template Builder to Insert Fields
You can map data to data fields in the template.

In this layout design, the following fields must be mapped to the template from the data:

Field in Layout Element in Data

Department DEPARTMENT_NAME

Chapter 14
Build a Basic Template Using the Template Builder

14-13

Field in Layout Element in Data

Employee Name EMP_NAME

Employee ID EMPLOYEE_ID

Email EMAIL

Telephone PHONE_NUMBER

Salary SALARY

To insert field mappings using the Template Builder:

1. Select the cell in the spreadsheet where the data field is to display. For example, to map
the DEPARTMENT_NAME element, select cell B5.

2. On the Publisher tab, in the Insert group click Field. (Because this is the first field you are
inserting, a message displays stating that the metadata sheet will be created.) The Field
dialog displays showing the data structure, shown in the following illustration.

3. Select the element in the Field dialog and click Insert. Sample data is inserted to the cell in
the template.

4. Repeat for the Employee Name, Employee ID, Email, Telephone, and Salary fields in the
template.

Step 4: Use the Template Builder to Insert Repeating Groups
A group is a set of data that repeats for each occurrence of a particular element.

In the sample template design, there're two groups:

Chapter 14
Build a Basic Template Using the Template Builder

14-14

• For each occurrence of the <EMPS> element, the employee's data (name, e-mail,
telephone, salary) is displayed in the worksheet.

• For each occurrence of the <DEPT> element, the department name and the list of
employees belonging to that department are displayed.

In other words, the employees are "grouped" by department and each employee's data is
"grouped" by the employee element. To achieve this in the final report, insert a repeating group
around the cells that are to repeat for each grouping element.

Note that the data must be structured according to the groups that you want to create in the
template. The structure of the data for this example

<DATA>
 <DEPT>
 <EMPS>

establishes the grouping desired for the report.

To insert the repeating group for Employees:

1. Select the cells that make up the group. In this example, the first group is the Employee
data that makes up a row in the table, the cells are A8 - E8.

2. On the Publisher tab, in the Insert group, click Repeating Group.

3. In the Properties dialog, select the following:

• From the For Each list, select EMPS.

• From the Group By list, select EMPLOYEE_ID.

To insert the repeating group for Departments:

1. To define the department group, select the Department name cell and all the employee
fields beneath it (A5-E9) as shown in the following illustration.

2. On thePublisher tab, in the Insert group, click Repeating Group. Notice that the total
salary cell is included in the department group to ensure that it repeats at the department
level.

3. In the Properties dialog, select the following:

• From the For Each list, select DEPT.

Chapter 14
Build a Basic Template Using the Template Builder

14-15

• From the Group By list, select DEPARTMENT_ID.

Step 5: Insert the Calculated Salary Field
Finally, insert the second Salary field that is to be an aggregated sum for each department.

To insert the calculated field:

1. Select the cell in the spreadsheet where the calculated salary is to display. In this example,
the cell is E9.

2. On the Publisher tab, in the group, click Field to display the dialog.

3. Select the SALARY element and click Insert to insert the mapping in the template.

4. Open the XDO_METADATA sheet.

The Template Builder created a hidden XDO_METADATA sheet when you inserted the first
field. Unhide the sheet in your workbook by right-clicking Sheet1 and selecting Unhide
from the menu.

The following illustration shows the XDO_METADATA sheet for the sample template.

The total salary field maps to the cell named XDO_?XDOFIELD7?.

5. In Column B enter the calculation as an XPATH function. To calculate the sum of the
SALARY element for all employees in the group, enter the following: <?sum(.//
SALARY)?>. The entry is shown in the following illustration.

Chapter 14
Build a Basic Template Using the Template Builder

14-16

Step 6: Test the Template
You can test a template using Preview.

To preview a template with the loaded sample data:

• On the Publisher tab in the group, click Excel.

The sample data is applied to the template and the output document is opened in a new
workbook.

Chapter 14
Build a Basic Template Using the Template Builder

14-17

Format Dates
Excel cannot recognize canonical date format. If the date format in the XML data is in
canonical format, that is, YYYY-MM-DDThh:mm:ss+HH:MM, you must apply a function to
display it properly.

One option to display a date is to use the Excel REPLACE and SUBSTITUTE functions. This
option retains the full date and timestamp. If you only require the date portion in the data (YYY-
MM-DD), then another option is to use the DATEVALUE function. The following example
shows how to use both options.

Example: Formatting a Canonical Date in Excel

Using the Employee by Department template and data from the first example, this procedure
adds the HIRE_DATE element to the layout and displays the date as shown in Column E of the
following figure:

Chapter 14
Format Dates

14-18

To format the date:

1. Add a column to the table in your layout for HIRE_DATE.

2. In the table row where the data is to display, use the Template Builder to insert the
HIRE_DATE field.

If you are not using the Template Builder, copy and paste a sample value for HIRE_DATE
from the XML data into the cell that is to display the HIRE_DATE field. For example: Copy
and paste 1996-02-03T00:00:00.000-07:00 into the E8 cell. Assign the cell the defined
name XDO_?HIRE_DATE? to map it to the HIRE_DATE element in the data. The inserted
field is shown in the following figure:

If you do nothing else, the HIRE_DATE value is displayed as shown. To format the date as
"3-Feb-96", you must apply a function to that field and display the results in a new field.

3. Insert a new Hire Date column. This is now column F, as shown in the following figure:

Chapter 14
Format Dates

14-19

4. In the new Hire Date cell (F8), enter one of the following Excel functions:

• To retain the full date and timestamp, enter:

=--REPLACE(SUBSTITUTE(E8,"T"," "),LEN(E8)-6,6,"")

• To retain only the date portion (YYY-MM-DD), enter:

=DATEVALUE(LEFT(E8,10))

Notice that in both functions, "E8" refers to the cell that contains the value to convert.

After you enter the function, it populates the F8 cell as shown in the following figure:

5. Apply formatting to the cell.

Right-click the F8 cell. From the menu, select Format Cells. In the Format Cells dialog,
select Date and the desired format, as shown in the following figure.

Chapter 14
Format Dates

14-20

The sample data in the F8 cell now displays as 3-Feb-96.

6. Hide the E column, so that report consumers do not see the canonical date that is
converted.

The following figure shows the template with column E hidden:

Chapter 14
Format Dates

14-21

Understand Excel Template
Similar to RTF template design, Excel template design follows the paradigm of mapping fields
from the XML data to positions in the Excel worksheet.

Excel templates make use of features of Excel in conjunction with special Publisher syntax to
achieve this mapping. In addition to direct mapping of data elements, Excel templates support
more complex formatting instructions by defining the cell ranges and the commands in a
separate worksheet designated to contain these commands. This sheet is called the
XDO_METADATA sheet.

Map Data Fields and Groups
Excel templates use named cells and groups of cells to enable Publisher to insert data
elements.

Cells are named using Publisher syntax to establish the mapping back to the XML data. The
cell names are also used to establish a mapping within the template between the named cell
and calculations and formatting instructions defined on the XDO_METADATA sheet.

The template content and layout must correspond to the content and hierarchy of the XML data
file used as input to the report. Each group of repeating elements in the template must
correspond to a parent-child relationship in the XML file. If the data isn't structured to match the
desired layout in Excel, you can regroup the data using XSLT preprocessing or the grouping
functions. However, for the best performance and least complexity it's recommended that the
data model be designed with the report layout in mind.

Use Excel Defined Names for Mapping
Publisher uses the Excel defined names feature to identify data fields and repeating elements.

A defined name in Excel is a name that represents a cell, range of cells, formula, or constant
value.

The Template Builder for Excel automatically creates the defined names when you use it to
insert fields and repeating groups. You can also insert the defined names manually. The
defined names used in the Excel template must use the syntax described in this chapter and
follow the Microsoft guidelines described in the Microsoft Excel help document. Note that
Publisher defined names are within the scope of the template sheet.

When you create an Excel Template manually (that is, NOT using the Publisher Desktop Excel
Template Builder), you must provide default values for all marked up cells XDO_?. The default
values must match to the data type of the report data XML file. Without default values for the
XDO_? cells, the output cells generated from those template cells may lose formatting and the
result is unpredictable. If you use Publisher Desktop to create an Excel Template, the default
values are automatically supplied with the first row of sample data in the report data file.

Use "XDO_" Prefix to Create Defined Names
The Publisher defined names are Excel defined names identified by the prefix "XDO_".

Creating the defined name with the Publisher code in the template creates the connection
between the position of the code in the template and the XML data elements, and also
maintains the ability to dynamically grow data ranges in the output reports, so that these data
ranges can be referenced by other formula calculations, charts, and macros.

Chapter 14
Understand Excel Template

14-22

Use Native Excel Functions with the "XDO_" Defined Names
You can use the XDO_ defined names in Excel native formulas as long as the defined names
are used in a simple table.

When a report is generated, Publisher automatically adjusts the region ranges for those named
regions so that the formulas calculate correctly.

However, if you create nested groups in the template, then the cells generated in the final
report within the grouping can no longer be properly associated to the correct name. In this
case, the use of XDO_ defined names with native Excel functions cannot be supported.

About the XDO_METADATA Sheet
Each Excel template requires a sheet within the template workbook called "XDO_METADATA".

Publisher uses this sheet in the template in the following ways:

• To identify the template as an Excel template.

• To insert the code for the field and group mappings you create with the Template Builder.

As the template designer, you also use this sheet to specify more advanced calculations and
processing instructions to perform on fields or groups in the template. Publisher provides a set
of functions to provide specific report features. Other formatting and calculations can be
expressed in XSLT.

Create the XDO_METADATA Sheet
When you begin the design of a new Excel template using the Template Builder, the first time
you use one of the Insert functions the Template Builder automatically creates a hidden
XDO_METADATA sheet. A message informs you that the sheet has been created.

Publisher creates the sheet as a hidden sheet. Use the Excel Unhide command to view and
edit the XDO_METADATA sheet.

Format of the XDO_METADATA Sheet
The XDO_METADATA sheet is created with the format shown in this figure. The format
consists of two sections: the header section and the data constraints section. Both sections are
required.

Chapter 14
Understand Excel Template

14-23

In the header section, all the entries in column A must be listed, but a value is required for only
one: Template Type, as shown. The entries in Column A are:

• Version

• ARU-dbdrv

• Extractor Version

• Template Code

• Template Type

• Preprocess XSLT File

• Last Modified Date

• Last Modified By

The Data Constraints section is used to specify the data field mappings and other processing
instructions. Details are provided in the following sections.

Hide the XDO_METADATA Sheet
Oracle recommends that you hide the XDO_METADATA sheet before uploading the completed
template to the Publisher catalog to prevent its inclusion in the final report output. Use the
Excel Hide command to hide the sheet before uploading the template to the server.

Enable Excel Template Scalability
Enable Excel template scalability to process large data to output reports in Excel format.

If you try to publish reports with large amounts of data as Excel spreadsheets, you might
encounter memory issues because the limit of an Excel sheet is 65536 rows. If you enable an
Excel template to scale, that template divides a large amount of data into multiple sheets,
which helps to avoid memory issues. You can enable Excel template scalability at the system
level, the report level, or the Excel template level. The template level setting overrides the
report level setting, and the report level setting overrides the system level setting. To ensure
backward compatibility, Excel template scalability is set to false by default.

An Excel template that’s enabled to scale does the following to avoid memory issues:

• Flows data into multiple sheets when the data size is more than 65536 rows in a table.

• Flushes memory of every N rows after those N rows are processed for rendering the Excel
report.
By default, the flush cell size = 3000 *100 (rows * columns). N = 3000 * 100 /
Actual_columns_in_your_ Excel_template_sheet

You can override this flush cell size by specifying the flush cell size
(XDO_FLUSH_CELLSIZE_? flush_cell_size) below the "Data Constraints:" line in the
XDO_METADATA sheet in the Excel template. An XDO_GROUP table might not work
properly if the final report size of an XDO_GROUP table is greater than the flush cell size.

• Releases the memory used for each sheet after processing the data in the sheet.

Enable Excel Template Scalability at the Template Level
You can enable scalability in an Excel template to avoid running out of memory while
publishing large amounts of data to an Excel spreadsheet.

To enable Excel template scalability at the template level:

Chapter 14
Understand Excel Template

14-24

1. Open the Excel template.

2. Select the XDO_METADATA sheet in the Excel template.

3. Below the "Data Constraints:" line, enter XDO_SCALABLE_? in Column A, and type true in
column B.

Enable Excel Template Scalability at the System Level
As an administrator, you can set a runtime property to enable scalability for all Excel templates.

To enable Excel template scalability at the system level:

1. As an administrator, navigate to the Runtime Configuration page.

2. Scroll down to view the Excel template properties.

3. Set the Enable Scalable Mode property to true.

Enable Excel Template Scalability at the Report Level
As a report author, you can set a report level property to enable scalability for the Excel
template used by the report.

To enable Excel template scalability at the report level:

1. Open the report for edit.

2. Click Properties to open the Report Properties dialog.

3. Click the Formatting tab and scroll down to view the Excel template properties.

4. Set the Enable Scalable Mode property to true.

Use Advanced Publisher Functions
Publisher provides a set of functions to achieve additional reporting functionality.

You define these functions in the Data Constraints region of the XDO_METADATA sheet.

The functions make use of Columns A, B, and C in the XDO_METADATA sheet as follows:

Use Column A to declare the function or to specify the defined name of the object to which to
map the results of a calculation or XSL evaluation.

Use Column B to enter the special XDO-XSL syntax to describe how to control the data
constraints for the XDO function, or the XSL syntax that describes the special constraint to
apply to the XDO_ named elements.

Use Column C to specify additional instructions for a few functions.

The functions are described in the following sections:

• Reporting Functions

• Format Functions That Rely on Specific Data Attribute Values

• Group Functions

Chapter 14
Use Advanced Publisher Functions

14-25

Reporting Functions
You can add functions to a template using the commands shown and a combination of
Publisher syntax and XSL.

A summary list of the commands is shown in the following table. See the corresponding
section for details on usage.

Function Commands

Split Data from Reports into Multiple
Sheets

XDO_SHEET_? with XDO_SHEET_NAME_?

Declare and Pass Parameters XDO_PARAM_?n?

Define a Link XDO_LINK_?link object name?

Import and Call a Subtemplate XDO_SUBTEMPLATE_?n?

Reference Java Extension Libraries XDO_EXT_?n?

Split Data from Reports into Multiple Sheets
You can define the logic to split the data from a report into multiple sheets.

You can’t span images across multiple sheets. If the template sheet includes images, when the
data splits into multiple sheets, the images are displayed only on the first sheet. Use this set of
commands to split the report data into multiple sheets:

• XDO_SHEET_? command to define the logic to split the data onto a new sheet.

• XDO_SHEET_NAME_? command to specify the naming convention for each sheet.

In the XDO_METADATA sheet, you can specify multiple templates to create multiple sheets.
For each template, define a pair of XDO_SHEET_? and XDO_SHEET_NAME_? commands. Make sure
you define the same original template sheet name for each pair of XDO_SHEET_? and
XDO_SHEET_NAME_? commands.

The following table describes the column entries.

Column A Entry Column B Entry Column C Entry

XDO_SHEET_? <?xsl_evaluation to split the data?>
Example:

<?.//DEPT?>

<?original sheet name?>
Example:

<?Sheet2?>
XDO_SHEET_NAME_? <?xsl_expression to name the sheet?>

Example:

<?concat(.//
DEPARTMENT_NAME,'-',count(.//
EMP_NAME))?>

<?original sheet name?>
Example:

<?Sheet2?>

1. In column A, enter the XDO_SHEET_? and XDO_SHEET_NAME_? commands.

2. In column B:

• The XDO_SHEET_? command must refer to an existing high-level node in the XML data.
In the example, <?.//DEPT?> creates a new sheet for each occurrence of <DEPT> in the
data. If the data is flat, then you can’t use this command unless you first preprocess

Chapter 14
Use Advanced Publisher Functions

14-26

the data to create the desired hierarchy. To preprocess the data, define the
transformation in an XSLT file, then specify this file in the Preprocess XSLT File field of
the header section of the XDO _METADATA sheet.

• The XDO_SHEET_NAME_? command must define the name to apply to the sheets. Enter
the XSL expression to derive the new sheet name. The expression can reference a
value for an element or attribute in the XML data, or you can use the string operation
on those elements to define the final sheet name. The following example names each
sheet using the value of DEPARTMENT_NAME concatenated with "-" and the count of
employees in the DEPT group.

<?concat(.//DEPARTMENT_NAME,'-',count(.//EMP_NAME))?>

3. In column C, specify the name of the original template sheet. For example, if you have a
report that contains summary data in the first three worksheets and the burst data is in
Sheet2 and Sheet3, specify <?Sheet2?> as the original template sheet name for the first
pair of XDO_SHEET_? and XDO_SHEET_NAME_? commands and specify <?Sheet3?>
for the second pair of commands. If you do not specify the template sheet name for either
XDO_SHEET_? or XDO_SHEET_NAME_? commands, Publisher doesn't take any action
for the definition pair.

Example: Splitting the data into multiple sheets

Using employee data, this example:

• Lists the employees of each department in separate sheets.

– Creates a new worksheet for each department.

– Names each worksheet the name of the department. For example, Marketing.

• Lists the first 100 employees in separate sheets for the departments of the first 100
employees.

– Creates a new worksheet for each department to which the first 100 employees
belong.

– Names each worksheet the name of the department with the number of employees
with employee ID less than 100 in that department. For example, Human Resources-3
if three employees in the Human Resources department have employee ID less than
100.

To split the data into sheets:

1. Enter the defined names for each cell of employee data and create the group for the
repeating employee data, as shown in the following illustration. Do not create the grouping
around the department because the data is split by department.

2. Enter the values in the Data Constraints section of the XDO_METADATA sheet.

The entries are shown in the following illustration.

Chapter 14
Use Advanced Publisher Functions

14-27

The following illustration shows the generated report. The data for each department is
displayed on its own sheet, which is named per the specified convention.

Chapter 14
Use Advanced Publisher Functions

14-28

Declare and Pass Parameters
To define a parameter, use the XDO_PARAM_?n? function to declare the parameter, then use
the $parameter_name syntax to pass a value to the parameter. A parameter must be defined
in the data model.

Column A Entry Column B Entry

XDO_PARAM_?n?

where n is the unique identifier for the parameter

<?param@begin:parameter_name;parameter_value?>
where parameter_name is the name of the parameter from the data
model and parameter_value is the optional default value.

For example:

<?param@begin:Country;US?>

To use the value of the parameter directly in a cell, refer to the parameter as $parameter_name
in the definition for the XDO_ defined name, as described in the following table.

Column A Entry Column B Entry

XDO_PARAM_?parameter_name?

For example:

XDO_PARAM_?Country?

<?$parameter_name?>
For example:

<?$Country?>

You can also refer to the parameter in other logic or calculations in the XDO_METADATA sheet
using $parameter_name.

Example 14-1 Example: Define and pass a parameter

To declare and reference a parameter named Country:

1. In the template sheet, mark the cell with a defined name. In the following figure, the cell
has been marked with the defined name XDO_?Country?

Chapter 14
Use Advanced Publisher Functions

14-29

2. In the hidden sheet assign that cell the parameter value, as shown in the following figure:

Define a Link
Use the XDO_LINK_? command to define a hyperlink for any data cell, as described in this
table.

Example: Define a Link

Column A Entry Column B Entry

XDO_LINK_?cell object name?

For example:

XDO_LINK_?INVOICE_NO?

<xsl statement to build the dynamic URL>
For example:

<xsl:value-of select="concat('https://
server.company.com/documents/
invoice_print.show?c_rptno=',./INVOICE_NO)"/>

Assume your company generates customer invoices. The invoices are stored in a central
location accessible by a Web server and can be identified by the invoice number
(INVOICE_NO).

To generate a report that creates a dynamic link to each invoice:

1. In the template sheet, assign the cell that is to display the INVOICE_NO the XDO defined
name: XDO_?INVOICE_NO?, as shown in the following figure:

Chapter 14
Use Advanced Publisher Functions

14-30

2. In the XDO_METADATA sheet, enter the appropriate values, as described:

• Column A entry: XDO_LINK_?INVOICE_NO?
• Column B entry: <xsl:value-of select="concat('https://server.company.com/

documents/invoice_print.show?c_rptno=',./INVOICE_NO)"/>
The entries in the Excel are shown in the following figure:

The report output is displayed as shown in the following figure. The logic that is defined in the
XDO_METADATA sheet is applied to create a hyperlink for each INVOICE_NO entry.

Import and Call a Subtemplate
Use these commands to declare XSL subtemplates that you can then call and reference in any
of the XDO_ commands.

The Template Builder for Excel doesn't support preview for templates that import subtemplates.
To import the subtemplate, enter the command shown in the following table:

Column A Entry Column B Entry

XDO_SUBTEMPLATE_?n? where n is a
unique identifier. For example:
XDO_SUBTEMPLATE_?1?

<xsl:import href="xdoxsl:///path to
subtemplate.xsb"/> For example: <xsl:import
href="xdoxsl:///Shared Folders/Financial
Reports/SubTemplates/MySubTemplate.xsb"/>

Chapter 14
Use Advanced Publisher Functions

14-31

To call the subtemplate, declare the cell name for which the results should be returned in
Column A, then enter the call-template syntax with any other XSL processing to be performed.
The commands are shown in the following table:

Column A Entry Column B Entry

XDO_?cell object name? <xsl:call-template name="template_name"> </
xsl:call-template>

For more information on XSL subtemplates and creating the subtemplate object in the catalog,
see Design XSL Subtemplates.

Example: Importing and Calling a Subtemplate

Assume you have the following subtemplate uploaded to the catalog as PaymentsSummary-
SubTemplate.xsb. This subtemplate evaluates the value of a parameter named pPayType and
based on the value, returns a string that indicates the payment type:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 </xsl:template>
 <xsl:template name="BRM_PAY_TYPES">
 <xsl:param name="pPayType" select="string('ALL')"/>
 <xsl:choose>
 <xsl:when test="$pPayType = '0'">UNDEFINED</xsl:when>
 <xsl:when test="$pPayType=string('10000')">PREPAID</xsl:when>
 <xsl:when test="$pPayType=string('10001')">INVOICE</xsl:when>
 <xsl:when test="$pPayType=string('10003')">CREDIT CARD</xsl:when>
 <xsl:when test="$pPayType=string('10005')">DIRECT DEBIT</xsl:when>
 <xsl:when test="$pPayType=string('10011')">CASH</xsl:when>
 <xsl:when test="$pPayType=string('10012')">CHECK</xsl:when>
 <xsl:when test="$pPayType=string('ALL')">ALL</xsl:when>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

In the Excel template, you've defined a field with the XDO Defined Name XDO_?TYPE?, which
is populated based on the string returned from code performed in the subtemplate, as shown in
the following figure:

Chapter 14
Use Advanced Publisher Functions

14-32

Enter the commands shown in the following table in the Data Constraints region.

Column A Entry Column B Entry

XDO_SUBTEMPLATE_?1? <xsl:import href="xdoxsl:///Shared Folders/
Financial Reports/SubTemplates/PaymentsSummary-
SubTemplate.xsb"/>

XDO_?TYPE? <xsl:call-template name="BRM_PAY_TYPES">
<xsl:with-param name="pPayType"
select="string('10000')"/> </xsl:call-template>

The XDO_SUBTEMPLATE_?1? function imports the subtemplate from the catalog.

The XDO_?TYPE? cell entry maps the results of the subtemplate processing entered in
Column B.

Reference Java Extension Libraries
You can include the reference to a Java extension library in the template and then call methods
from this library to perform processing in the template.

Use the command shown in the following table to reference the Java extension libraries.

Column A Entry Column B Entry

XDO_EXT_?n? where n is a unique
identifier. Example: XDO_EXT?1?

<?namespace:xmlns:bipext="extension library"?> Example:
<?namespace:xmlns:bipext="http://www.example.com/XSL/
Transform/java/
example.com.xmlpublisher.reports.BIPExtension"?>

You can have multiple extension libraries defined in a single template file.

Example: Calling a Java Extension Library

Assume the extension library includes the following two methods that you want to call in the
template:

• bipext:infTimeToStr()

Chapter 14
Use Advanced Publisher Functions

14-33

• bipext:infStrToTimet()

After you've declared the library as shown above, specify the cell to which you want to apply
the method by entering the XDO defined name in Column A and calling the function in Column
B. The following table shows example commands.

Column A Entry Column B Entry

XDO_?PARAM_START_DATE? <xsl:value-of
select="bipext:infTimeToStr(bipext:infStrToTimet((.//
PARAM_START_DATE)[1],2),3)"

The entries in the XDO_METADATA sheet to declare and call the Java extension libraries are
shown in the following illustration.

Format Functions That Rely on Specific Data Attribute Values
The commands in this table require that specific formatting attributes be present in the XML
data file.

A summary list of the commands is shown in the following table. See the corresponding
section for details on usage.

Function Command

Define Border and Underline Styles XDO_STYLE_n_?cell object name?
Skip a Row XDO_SKIPROW_?cell object name?

Define Border and Underline Styles
While you can define a consistent style in the template using Excel formatting, the
XDO_STYLE command enables you to define a different style for any data cell dynamically
based on the XML data.

With the XDO_STYLE command you specify the cell to which to apply the style, the logic to
determine when to apply the style, and the style type to apply. The style value must be present
in the XML data. The following table provides examples.

Chapter 14
Use Advanced Publisher Functions

14-34

Column A Entry Column B Entry Column C Entry

XDO_STYLE_n_?cell_object_name?

For example:

XDO_STYLE_1_?TOTAL_SALARY?

<xsl evaluation that returns a supported value>

For example:

<xsl:value-of select=".//
TOTAL_SALARY/@borderStyle"/>

Style type

For example:

BottomBorderStyle

Publisher supports the normal Excel style types and values as shown in the following table:

Style Type Supported Values (Must be in returned by
evaluation in Column B)

Supported Types (Enter in
Column C)

Normal BORDER_NONE

BORDER_THIN

BORDER_MEDIUM

BORDER_DASHED

BORDER_DOTTED

BORDER_THICK

BORDER_DOUBLE

BORDER_HAIR

BORDER_MEDIUM_DASHED

BORDER_DASH_DOT

BORDER_MEDIUM_DASH_DOT

BORDER_DASH_DOT_DOT

BORDER_MEDIUM_DASH_DOT_DOT

BORDER_SLANTED_DASH_DOT

BottomBorderStyle

TopBorderStyle

LeftBorderStyle

RightBorderStyle

DiagonalLineStyle

You can also set a color using one of the types shown in the following table:

Style Type Supported Value (Must be in returned by
evaluation in Column B)

Supported Types (Enter in
Column C)

Normal When you set Color Style, give the value in
RRBBGG hex format, for example:

borderColor="0000FF"

BottomBorderColor

TopBorderColor

LeftBorderColor

RightBorderColor

DiagonalLineColor

Publisher also supports the underline type with the values shown in the following table:

Style Type Supported Values (Must be in returned by
evaluation in Column B)

Supported Type (Enter in Column
C)

Underline UNDERLINE_NONE

UNDERLINE_SINGLE

UNDERLINE_DOUBLE

UNDERLINE_SINGLE_ACCOUNTING

UNDERLINE_DOUBLE_ACCOUNTING

UnderlineStyle

You can have multiple underline styles defined for a single cell.

Example: Defining Styles

Chapter 14
Use Advanced Publisher Functions

14-35

To apply a style in a template, the style value must be present in the data. In this example, a
border style and an underline style are applied to the DEPT_TOTAL_SALARY field shown in
the Excel template.

For this example, the following data is used. Note that the DEPT_TOTAL_SALARY element in
the data has these attributes defined:

• borderStyle

• underLineStyle

• borderColor

The value of each of these attributes is used to apply the defined style based on logic defined
in the template.

<?xml version="1.0" encoding="UTF-8"?>

<EMPLOYEES>
 <G_DEPT>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>
 <LIST_G_EMP>
 <G_EMP>
 <EMPLOYEE_ID>200</EMPLOYEE_ID>
 <EMP_NAME>Jennifer Whalen</EMP_NAME>
 <EMAIL>JWHALEN</EMAIL>
 <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
 <HIRE_DATE>1987-09-17T00:00:00.000-06:00</HIRE_DATE>
 <SALARY>4400</SALARY>
 </G_EMP>
 </LIST_G_EMP>

 <DEPT_TOTAL_SALARY borderStyle="BORDER_DOUBLE"
underLineStyle="UNDERLINE_DOUBLE_ACCOUNTING" borderColor="0000FF">4400</
DEPT_TOTAL_SALARY>
 </G_DEPT>
 <G_DEPT>
 <DEPARTMENT_ID>20</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Marketing</DEPARTMENT_NAME>
 <LIST_G_EMP>
 <G_EMP>
 <EMPLOYEE_ID>201</EMPLOYEE_ID>
 <EMP_NAME>Michael Hartstein</EMP_NAME>
 <EMAIL>MHARTSTE</EMAIL>
 <PHONE_NUMBER>515.123.5555</PHONE_NUMBER>
 <HIRE_DATE>1996-02-17T00:00:00.000-07:00</HIRE_DATE>
 <SALARY>13000</SALARY>
 </G_EMP>
 <G_EMP>
 <EMPLOYEE_ID>202</EMPLOYEE_ID>
 <EMP_NAME>Pat Fay</EMP_NAME>
 <EMAIL>PFAY</EMAIL>
 <PHONE_NUMBER>603.123.6666</PHONE_NUMBER>
 <HIRE_DATE>1997-08-17T00:00:00.000-06:00</HIRE_DATE>
 <SALARY>6000</SALARY>
 </G_EMP>
 </LIST_G_EMP>

Chapter 14
Use Advanced Publisher Functions

14-36

 <DEPT_TOTAL_SALARY borderStyle="BORDER_DOUBLE"
underLineStyle="UNDERLINE_DOUBLE_ACCOUNTING" borderColor="0000FF">19000</
DEPT_TOTAL_SALARY>
 </G_DEPT>

...

</EMPLOYEES>

To define a style:

1. In the Excel template, assign the defined name XDO_?DEPT_TOTAL_SALARY? to the
field that is to display the DEPT_TOTAL_SALARY from the data, as shown in the following
figure:

2. In the XDO_METADATA sheet, enter the following:

• To define the top border style, use these entries:

– Column A entry:XDO_STYLE_1_?DEPT_TOTAL_SALARY?
– Column B entry: <xsl:value-of select=".//DEPT_TOTAL_SALARY/

@borderStyle"/>
– Column C entry: TopBorderStyle

The entry in Column A maps this style command to the cell assigned the name XDO_?
DEPT_TOTAL_SALARY?

The entry in Column B retrieves the style value from the attribute borderStyle of the
DEPT_TOTAL_SALARY element. Note from the sample data that the value for
borderStyle is "BORDER_DOUBLE".

The entry in Column C tells Publisher to apply a TopBorderStyle to the cell.

• To define the top border color, use these entries:

– Column A entry: XDO_STYLE_2_?DEPT_TOTAL_SALARY?
– Column B entry: <?.//DEPT_TOTAL_SALARY/@borderColor?>
– Column C entry: TopBorderColor

Chapter 14
Use Advanced Publisher Functions

14-37

The entry in Column A maps this style command to the cell assigned the name XDO_?
DEPT_TOTAL_SALARY?

The entry in Column B retrieves the style value from the attribute borderColor of the
DEPT_TOTAL_SALARY element. Note from the sample data that the value for
borderColor is 0000FF (blue).

The entry in Column C tells Publisher to apply a TopBorderColor to the cell.

• To define the underline style, use these entries:

– Column A entry: XDO_STYLE_3_?DEPT_TOTAL_SALARY?
– Column B entry: <?.//DEPT_TOTAL_SALARY/@underLineStyle?>
– Column C entry: UnderlineStyle

The entry in Column A maps this style command to the cell assigned the name XDO_?
DEPT_TOTAL_SALARY?

The entry in Column B retrieves the style value from the attribute underLineStyle of the
DEPT_TOTAL_SALARY element. Note from the sample data that the value for
underLineStyle is UNDERLINE_DOUBLE_ACCOUNTING.

The entry in Column C tells Publisher to apply the UnderLineStyle to the cell.

The following figure shows the three entries in the Data Constraints region:

When you run the report, the style commands are applied to the XDO_?
DEPT_TOTAL_SALARY? cell, as shown in the following figure:

Chapter 14
Use Advanced Publisher Functions

14-38

Skip a Row
Use the XDO_SKIPROW command to suppress the display of a row of data in a table when
the results of an evaluation defined in Column B return the case insensitive string "True".

Example entries are shown in the following table.

Column A Entry Column B Entry

XDO_SKIPROW_?cell_object_name?

For example:

XDO_SKIPROW_?EMPLOYEE_ID?

<xsl evaluation that returns the string "True"/>

For example:

<xsl:if test="string-length(./EMPLOYEE_ID/@MANAGER) != 0">
<xsl:value-of select="./EMPLOYEE_ID/@MANAGER"/> </xsl:if>

Example: Skip a Row Based on Data Element Attribute

In this example, the Excel template suppresses the display of the row of employee data when
the EMPLOYEE_ID element includes a "MANAGER" attribute with the value "True".

Chapter 14
Use Advanced Publisher Functions

14-39

Assume data as shown below. Note that the EMPLOYEE_ID element for employee Michael
Hartstein has the MANAGER attribute with the value "True". The other EMPLOYEE_ID
elements in this set do not have the attribute.

<?xml version="1.0" encoding="UTF-8"?>

<EMPLOYEES>
 <G_DEPT>
 <DEPARTMENT_ID>20</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Marketing</DEPARTMENT_NAME>
 <LIST_G_EMP>
 <G_EMP>
 <EMPLOYEE_ID MANAGER="TRUE">201</EMPLOYEE_ID>
 <EMP_NAME>Michael Hartstein</EMP_NAME>
 <EMAIL>MHARTSTE</EMAIL>
 <PHONE_NUMBER>515.123.5555</PHONE_NUMBER>
 <HIRE_DATE>1996-02-17T00:00:00.000-07:00</HIRE_DATE>
 <SALARY>13000</SALARY>
 </G_EMP>
 <G_EMP>
 <EMPLOYEE_ID>202</EMPLOYEE_ID>
 <EMP_NAME>Pat Fay</EMP_NAME>
 <EMAIL>PFAY</EMAIL>
 <PHONE_NUMBER>603.123.6666</PHONE_NUMBER>
 <HIRE_DATE>1997-08-17T00:00:00.000-06:00</HIRE_DATE>
 <SALARY>6000</SALARY>
 </G_EMP>
 <G_EMP>
 <EMPLOYEE_ID>652</EMPLOYEE_ID>
 <EMP_NAME>William Morgan</EMP_NAME>
 <EMAIL>WMORGAN</EMAIL>
 <PHONE_NUMBER>219.123.7776</PHONE_NUMBER>
 <HIRE_DATE>1994-10-17T00:00:00.000-06:00</HIRE_DATE>
 <SALARY>8000</SALARY>
 </G_EMP>
 </LIST_G_EMP>
 </G_DEPT>

...

</EMPLOYEES>

To suppress the display of the row of the employee data when the MANAGER attribute is set to
"True", enter the entries shown in the following table in the Data Constraints section.

Column A Entry Column B Entry

XDO_SKIPROW_?EMPLOYEE_ID? <xsl:if test="string-length(./EMPLOYEE_ID/@MANAGER) != 0">
<xsl:value-of select="./EMPLOYEE_ID/@MANAGER"/> </xsl:if>

The output from this template is shown in the following illustration. Note that the employee
Michael Hartstein isn't included in the report.

Chapter 14
Use Advanced Publisher Functions

14-40

Group Functions
Use the functions shown in this table to create groupings of data in the template.

Function Command

Group Data XDO_GROUP_?group element?
Regroup the Data XDO_REGROUP_?

Group Data
Use the XDO_GROUP command to group flat data when the layout requires a specific data
grouping, for example, to split the data across multiple sheets.

Example entries are shown in the following table:

Column A Entry Column B Entry Column C Entry

XDO_GROUP_?group
element?
For example:

XDO_GROUP_?STATE_GROUP?

<xsl beginning groupng logic/>
For example:

<xsl:for-each-group
select="current-group()" group-
by="./STATE"> <xsl:for-each-
group select="current-group()"
group-by="./RESOURCE_NAME">
<xsl:for-each select="current-
group()">

<xsl ending groupng
tags/>
For example:

</xsl:for-each>
<xsl:for-each-group>
<xsl:for-each-group>

Define the XSL statements to be placed at the beginning and ending of the section of the
group definition marked up by XDO_?cell object name?. You can mark multiple groups nested
in the template, giving each the definition appropriate to the corresponding group.

Handle the Generated XDO Define Names in Nested Groups
When XDO_GROUP_? is used in a nested group, the ranges of XDO define names in the final
report become meaningless. In this case, don't refer to the define names in formulas in the final

Chapter 14
Use Advanced Publisher Functions

14-41

report. You can disable the XDO markup activity in the final report using the command
XDO_MARKUP_?.

The following table shows the usage of XDO_MARKUP_? in the XDO_METADATA sheet:

Column A Entry Column B Entry

XDO_MARKUP_? "false" or "FALSE"

(The cell must be formatted as Text in the Excel Format Cells dialog.)

In addition, if your template includes a large number of defined names and these are used in
multiple levels of nested groups, Excel may not be able to handle the number of generated
defined names. In this case, use the XDO_MARKUP_? command to disable markup for the
generated report.

When set to false, Publisher doesn't produce any defined names for any result produced by
XDO_GROUP_?

Regroup the Data
The XDO_REGROUP regroups the data by declaring the structure using the defined names.

The XDO_REGROUP logic is a shortened form of the XDO_GROUP logic and doesn't require
the XSLTcoding requirements in the XDO_METADATA sheet. The definition must therefore be
directly on XDO_REGROUP_? define names, or on any other definition on the
XDO_METADATA sheet. Entries are shown in the following table.

Column A Entry Column B Entry

XDO_REGROUP_? XDO_REGROUP_?UniqueGroupID?levelName?
groupByName?sortByName?sortByName?sortByName?

where

• UniqueGroupID is the ID of the group. It can be the same
as the levelName or you can assign it a unique name.

• levelName is the XML level tag name in the XML data file
or XDO_CURRGRP_ that represents the current-group()
in the context of nested grouping. XDO_CURRGRP_
should be used for all inner groups when more than one
nesting group exists in your template.

• groupByName is the field name that you want to use for
the GroupBy operation for the current group. This name
can be empty if the XDO_REGROUP_? command is
used for the most inner group.

• sortByName is the field name that you want to sort the
group by. You can have multiple sortBy fields. If no
sortByName is declared, then the data from the XML file
isn't sorted.

The next three tables show an example of how to create three nested groupings.

Column A Entry Column B Entry

XDO_REGROUP_? XDO_REGROUP_?PAYMENTSUMMARY_Q1?
PAYMENTSUMMARY_Q1?PAY_TYPE_NAME?

In the definition shown in the previous table, the most outer group is defined as
PAYMENTSUMMARY_Q1, and it's grouped by PAY_TYPE_NAME

Chapter 14
Use Advanced Publisher Functions

14-42

Column A Entry Column B Entry

XDO_REGROUP_? XDO_REGROUP_?COUNTRYGRP?XDO_CURRGRP_?
COUNTRY?

The definition shown in the previous table creates a second outer group. The group is
assigned the name COUNTRY_GRP and it's grouped by the element COUNTRY.

Column A Entry Column B Entry

XDO_REGROUP_? XDO_REGROUP_?STATEGRP?XDO_CURRGRP_?STATE?

The definition shown in the previous table creates the inner group STATEGRP and it includes a
sortByName parameter: STATE.

Preprocess the Data Using an XSL Transformation (XSLT) File
For the best performance, design the data model to perform as much of the data processing as
possible. When you can't get the required output from the data engine, you can preprocess the
data using an XSLT file that contains the instructions to transform the data.

Some sample use cases include:

• To create groups to establish the necessary hierarchy to support the desired layout.

• To add style attributes to data elements.

• To perform complex data processing logic that may be impossible in the Excel Template or
undesirable for performance reasons. The Template Builder for Excel doesn't support
preview for templates that require XSLT preprocessing.

To use an XSLT preprocess file:

1. Create the file and save as .xsl.

2. Upload the file to the report definition in the Publisher catalog, as you would a template:

a. Navigate to the report in the catalog.

b. Click Edit.

c. Click Add New Layout.

d. Click Upload.

e. Complete the fields in the Upload dialog and select XSL Stylesheet (HTML/XML/Text)
as the template Type.

f. After upload, click View a List. Deselect Active, so that users do not see this template
as an option when they view the report.

For testing purposes, you might want to maintain the XSL template as active to enable
you to view the intermediate data when the template is applied to the data. After
testing is complete, set the template to inactive.

g. Save the report definition.

3. In the Excel template, on the XDO_METADATA sheet, in the Header section, enter the file
name for the Preprocess XSLT File parameter. For example: splitByBrand.xsl.

Chapter 14
Preprocess the Data Using an XSL Transformation (XSLT) File

14-43

XSLT Preprocessing Examples: Split Flat Data into Multiple Sheets
This topic presents two examples of using an XSLT preprocess file to group flat data so that it
can be split into multiple sheets in Excel.

The examples are:

• Split the Data by a Specific Field

• Split the Data by Count of Rows

Splitting the data by row count is an option when your report data exceeds the sheet row
size of Excel 2003 (65,536 rows per sheet).

Both examples use the following XML data:

 <ROWSET>
 <ROW>
 <Products.Type>COATINGS</Products.Type>
 <Products.Brand>Enterprise</Products.Brand>
 <Markets.Region>CENTRAL REGION</Markets.Region>
 <Markets.District>CHICAGO DISTRICT</Markets.District>
 <Periods.Year>2000</Periods.Year>
 <Measures.Dollars>1555548.0</Measures.Dollars>
 </ROW>
 <ROW>
 <Products.Type>COATINGS</Products.Type>
 <Products.Brand>Enterprise</Products.Brand>
 <Markets.Region>EASTERN REGION</Markets.Region>
 <Markets.District>NEW YORK DISTRICT</Markets.District>
 <Periods.Year>2000</Periods.Year>
 <Measures.Dollars>1409228.0</Measures.Dollars>
 </ROW>
...
</ROWSET>

Split the Data by a Specific Field
This example demonstrates how to use an XSLT preprocess file to create a grouping in the
data that will enable the splitting of the data across multiple Excel sheets based on the
grouping.

This example groups the sample data by the Products.Brand field.

1. Create an XSLT file to group the data.

The following sample XSLT file groups the data according to <Products.Brand> and
creates a high level element <BrandGroup> for each of those groups.

<?xml version="1.0" encoding="utf-8" ?>
 <xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
 <xsl:template match="/">
 <ROWSET>
 <xsl:for-each-group select="/ROWSET/ROW" group-by="./Products.Brand">
 <xsl:variable name="var_brand" select="current-grouping-key()" />
 <BrandGroup>

Chapter 14
Preprocess the Data Using an XSL Transformation (XSLT) File

14-44

 <xsl:attribute name="name">
 <xsl:value-of select="$var_brand" />
 </xsl:attribute>
 <xsl:copy-of select="current-group()" />
 </BrandGroup>
 </xsl:for-each-group>
 </ROWSET>
 </xsl:template></xsl:stylesheet>

When applied to the data sample, this XSLT file generates intermediate data as follows:

 <ROWSET>
 <BrandGroup name="Enterprise">
 <ROW>
 <Products.Type>COATINGS</Products.Type>
 <Products.Brand>Enterprise</Products.Brand>
 <Markets.Region>CENTRAL REGION</Markets.Region>
 <Markets.District>CHICAGO DISTRICT</Markets.District>
 <Periods.Year>2000</Periods.Year>
 <Measures.Dollars>1555548.0</Measures.Dollars>
 </ROW>
 ...
 </BrandGroup>
 ... <ROWSET>

2. Save the XSLT file as splitByBrand.xsl and upload the file to the report definition in the
catalog. Select "XSL Stylesheet (HTML/XML/Text)" as the template type.

3. In the Excel template file, in the XDO_METADATA sheet, enter the following:

• For the Preprocess XSLT File parameter, enter "splitByBrand.xsl"

• In the Data Constraints region, make the entries to split the data into multiple sheets
based on the <BrandGroup> element created by the results of the XSLT preprocessing.

– Coulmn A entry: XDO_SHEET_?, Column B entry: <?//BrandGroup?>
– Coulmn A entry: XDO_SHEET_NAME_?, Column B entry: <?./@name?>
The sample entries in the XDO_METADATA sheet are shown in this figure.

Chapter 14
Preprocess the Data Using an XSL Transformation (XSLT) File

14-45

4. Hide the XDO_METADATA sheet if you do not want your users to see it. Upload the Excel
template file to the report definition in the catalog.

Split the Data by Count of Rows
This example demonstrates how to use an XSLT preprocess file to group the sample XML
data.

Group the sample XML data by the count of occurrences of /ROWSET/ROW, and then
configure the Excel template to create a new sheet for each occurrence of the newly created
group.

1. Create an XSLT file to create groups in the data according to a size specified in a variable.

The following sample XSLT file groups the occurrences of /ROWSET/ROW according to
the value of $var_size and creates a high level element <CountGroup> for each of those
groups.

 <?xml version="1.0" encoding="utf-8" ?> <xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <ROWSET>
 <xsl:variable name="var_size" select="3" />
 <xsl:for-each select="/ROWSET/ROW">
 <xsl:variable name="var_pos" select="position()" />
 <xsl:variable name="var_mod" select="$var_pos mod($var_size)" />
 <xsl:if test="$var_mod = 1">
 <xsl:variable name="var_groupNum" select="($var_pos - $var_mod)
div number($var_size) + 1" />
 <xsl:element name="CountGroup">
 <xsl:attribute name="name">
 <xsl:value-of select="concat('Group', $var_groupNum)" />
 </xsl:attribute>
 <xsl:for-each select="/ROWSET/ROW[position() > ($var_pos -1) and
position() < ($var_pos + $var_size)]">
 <xsl:copy-of select="." />
 </xsl:for-each>
 </xsl:element>
 </xsl:if>
 </xsl:for-each>
 </ROWSET>
 </xsl:template>
</xsl:stylesheet>

When applied to the data sample, this XSLT file generates intermediate data as follows:

 <ROWSET>
 <CountGroup name="Group1">
 <ROW>
 <Products.Type>COATINGS</Products.Type>
 <Products.Brand>Enterprise</Products.Brand>
 <Markets.Region>CENTRAL REGION</Markets.Region>
 <Markets.District>CHICAGO DISTRICT</Markets.District>
 <Periods.Year>2000</Periods.Year>
 <Measures.Dollars>1555548.0</Measures.Dollars>
 </ROW>

Chapter 14
Preprocess the Data Using an XSL Transformation (XSLT) File

14-46

 ...
 </CountGroup>
 ...
 <ROWSET>

2. Save the XSLT file as splitByCount.xsl and upload the file to the report definition in the
catalog. Select "XSL Stylesheet (HTML/XML/Text)" as the template type.

3. In the Excel template file, in the XDO_METADATA sheet, enter the following:

• For the Preprocess XSLT File parameter, enter "splitByCount.xsl".

• In the Data Constraints region, make these entries.

– Column A entry: XDO_SHEET_?, Column B entry: <?//CountGroup?>
– Column A entry: XDO_SHEET_NAME_?, Column B entry: <?./@name?>

4. Hide the XDO_METADATA sheet so that it doesn't display to report consumers.

5. Upload the Excel template file to the report definition in the catalog.

Chapter 14
Preprocess the Data Using an XSL Transformation (XSLT) File

14-47

15
Create PDF Templates

This topic describes creating PDF templates for reports.

Topics:

• Overview of PDF Templates

• Requirements

• Design the Template

• Add Markup to the Template

• Create a Placeholder

• Define Groups of Repeating Fields

• Repeat a PDF Template by Using the document-repeat-elementname Form Field

• Add Page Numbers and Breaks

• Perform Calculations

• Completed PDF Layout Example

• Runtime Behavior

• Create a Layout from a Predefined PDF Form

• Add or Designate a Field for a Digital Signature

• PDF Template Limitations

Overview of PDF Templates
To create a PDF template, take an existing PDF document and apply the Publisher markup.

Because you can use a PDF from any source, you have multiple design options. For example:

• Design the template using any application that generates documents that can be converted
to PDF, such as Microsoft Word

• Scan a paper document to use as a template

• Download a PDF document from a third-party website

The steps required to create a template from a third-party PDF depend on whether form fields
have been added to the document. For more information, see Create a Layout from a
Predefined PDF Form.

If you are designing the template, then when you've converted to PDF, the template is treated
like a set background. When you mark up the template, you draw fields on top of this
background. To edit the template, you must edit the original document and then convert back
to PDF.

For this reason, the PDF template isn't recommended for documents that require frequent
updates. However, it's appropriate for forms that have a fixed template, such as invoices or
purchase orders.

15-1

Requirements
To apply or edit form fields in a PDF document, you must have Adobe Acrobat Professional.

Publisher supports Adobe Acrobat 5.0 and later as a tool for updating the template.

Publisher generates the output PDF version based on the input PDF version as follows:

• PDF version 1.4 and earlier generates PDF 1.4

• PDF version 1.5 and later generates the same output version as the input version

Design the Template
To design the template you can use any desktop application that generates documents that
can be converted to PDF. Or, scan in an original paper document to use as the background for
the template.

The following figure shows a template for a sample purchase order. It was designed using
Microsoft Word and converted to PDF using Adobe Acrobat Distiller.

Chapter 15
Requirements

15-2

The following is the XML data that is used as input to this template:

<?xml version="1.0"?>
<POXPRPOP2>
 <G_HEADERS>
 <POH_PO_NUM>1190-1</POH_PO_NUM>
 <POH_REVISION_NUM>0</POH_REVISION_NUM>
 <POH_SHIP_ADDRESS_LINE1>3455 108th Avenue</POH_SHIP_ADDRESS_LINE1>
<POH_SHIP_ADDRESS_LINE2></POH_SHIP_ADDRESS_LINE2>
<POH_SHIP_ADDRESS_LINE3></POH_SHIP_ADDRESS_LINE3>
<POH_SHIP_ADR_INFO>Seattle, WA 98101</POH_SHIP_ADR_INFO>
<POH_SHIP_COUNTRY>United States</POH_SHIP_COUNTRY>
<POH_VENDOR_NAME>Allied Manufacturing</POH_VENDOR_NAME>
<POH_VENDOR_ADDRESS_LINE1>1145 Brokaw Road</POH_VENDOR_ADDRESS_LINE1>
<POH_VENDOR_ADR_INFO>San Jose, CA 95034</POH_VENDOR_ADR_INFO>
<POH_VENDOR_COUNTRY>United States</POH_VENDOR_COUNTRY>

Chapter 15
Design the Template

15-3

<POH_BILL_ADDRESS_LINE1>90 Fifth Avenue</POH_BILL_ADDRESS_LINE1>
<POH_BILL_ADR_INFO>New York, NY 10022-3422</POH_BILL_ADR_INFO>
<POH_BILL_COUNTRY>United States</POH_BILL_COUNTRY>
<POH_BUYER>Smith, J</POH_BUYER>
<POH_PAYMENT_TERMS>45 Net (terms date + 45)</POH_PAYMENT_TERMS>
<POH_SHIP_VIA>UPS</POH_SHIP_VIA>
<POH_FREIGHT_TERMS>Due</POH_FREIGHT_TERMS>
<POH_CURRENCY_CODE>USD</POH_CURRENCY_CODE>
<POH_CURRENCY_CONVERSION_RATE></POH_CURRENCY_CONVERSION_RATE>
<LIST_G_LINES>
<G_LINES>
<POL_LINE_NUM>1</POL_LINE_NUM>
<POL_VENDOR_PRODUCT_NUM></POL_VENDOR_PRODUCT_NUM>
<POL_ITEM_DESCRIPTION>PCMCIA II Card Holder</POL_ITEM_DESCRIPTION>
<POL_QUANTITY_TO_PRINT></POL_QUANTITY_TO_PRINT>
<POL_UNIT_OF_MEASURE>Each</POL_UNIT_OF_MEASURE>
<POL_PRICE_TO_PRINT>15</POL_PRICE_TO_PRINT>
<C_FLEX_ITEM>CM16374</C_FLEX_ITEM>
<C_FLEX_ITEM_DISP>CM16374</C_FLEX_ITEM_DISP>
<PLL_QUANTITY_ORDERED>7500</PLL_QUANTITY_ORDERED>
<C_AMOUNT_PLL>112500</C_AMOUNT_PLL>
<C_AMOUNT_PLL_DISP> 112,500.00 </C_AMOUNT_PLL_DISP>
</G_LINES>
</LIST_G_LINES>
<C_AMT_POL_RELEASE_TOTAL_ROUND>312420/<C_AMT_POL_RELEASE_TOTAL_ROUND>
</G_HEADERS>
</POXPRPOP2>

Add Markup to the Template
After you've converted a document to PDF, you define form fields that display the data from the
XML input file. These form fields are placeholders for the data. The process of associating the
XML data to the PDF template is the same as the process for the RTF template.

See Associate the XML Data to the Template Layout.

When you draw the form fields in Adobe Acrobat, you're drawing them on top of the template
that you designed. There isn't a relationship between the design elements on the template and
the form fields. You therefore must place the fields exactly where you want the data to display
on the template.

Create a Placeholder
You can define a placeholder as text, a check box, or a radio button, depending on how you
want the data presented.

The steps for adding a form field depend on the version of Adobe Acrobat Professional that
you are using. See the Adobe documentation for the version. If you are using Adobe Acrobat 9
Pro, then from the Forms menu, select Add or Edit Fields.

Name the Placeholder
The name of the placeholder must match the XML source field name.

Chapter 15
Add Markup to the Template

15-4

Create a Text Placeholder
Follow these steps to create a text Form Field placeholder using Adobe Acrobat 9 Pro. If you
are using a different version of Adobe Acrobat Professional, then refer to the documentation for
details.

To create a text placeholder:

1. From the Forms menu, select Add or Edit Fields.

2. From the Add New Field list, choose Text Field. The cursor becomes a crosshair.

3. Place the crosshair in the form where you want the field to reside and click. The Field
Name dialog pops up.

4. Enter the name. The name of the text field must match the name of the XML element from
the data that is to populate this field at runtime.

5. To set more properties, click Show All Properties.

Use the Properties dialog box to set other attributes for the placeholder. For example,
enforce maximum character size, set field data type, data type validation, visibility, and
formatting.

6. If required, drag the field for exact placement and resize the field using the handles.

Supported Field Properties Options
Publisher supports the following options available from the Field Properties dialog box.

Note that these options are not available when you use repeating fields. For more information
about these options, see the Adobe Acrobat documentation.

• General

– Read Only

The setting of this check box in combination with a set of configuration properties
controls the read-only/updatable state of the field in the output PDF. See Set Fields as
Updatable or Read Only.

– Required

– Visible/Hidden

– Orientation (in degrees)

• Appearance

– Border Settings: color, background, width, and style

– Text Settings: color, font, size

– Border Style

• Options tab

– Multi-line

– Scrolling Text

• Format tab - Number category options only

• Calculate tab - all calculation functions

Chapter 15
Create a Placeholder

15-5

Create a Check Box
A check box is used to present options from which more than one can be selected. Each check
box represents a different data element. You define the value that causes the check box to
display as checked.

For example, a form contains a check box listing of automobile options such as Power
Steering, Power Windows, and Sunroof. Each of these represents a different element from the
XML file (for example <POWER_STEERING>). If the XML file contains a value of Y for any of these
fields, you want the check box to display as checked. All or none of these options may be
selected.

The following describes how to create a check box field using Adobe Acrobat 9 Pro. If you are
using a different version of Adobe Acrobat Professional, refer to the documentation for details.

To create a check box:

1. From the Forms menu, select Add or Edit Fields.

2. From the Add New Field list, choose Check Box. The cursor becomes a crosshair.

3. Place the crosshair in the form where you want the field to reside and click. The Field
Name dialog pops up.

4. Enter the name. The name of the check box field must match the name of the XML
element from the data that is to determine its state (checked or unchecked).

5. Click Show All Properties

6. Click the Options tab.

7. Select the Check Box Style type from the list.

8. In the Export Value field enter the value that the XML data field should match to enable
the "checked" state.

For example, enter "Y" for each check box field.

9. Set other Properties as desired.

Create a Radio Button Group
A radio button group is used to display options from which only one can be selected.

For example, the XML data file contains a field called <SHIPMENT_METHOD>. The possible values
for this field are "Standard" or "Overnight". You represent this field in the form with two radio
buttons, one labeled "Standard" and one labeled "Overnight". Define both radio button fields as
placeholders for the <SHIPMENT_METHOD> data field. For one field, define the on state when the
value is Standard. For the other, define the on state when the value is Overnight.

The following describes how to create a radio button group using Adobe Acrobat 9 Pro. If you
are using a different version of Adobe Acrobat Professional, then refer to the documentation for
details.

To create a radio button group:

1. From the Forms menu, select Add or Edit Fields.

2. From the Add New Field list, choose Radio Button. The cursor becomes a crosshair.

3. Place the crosshair in the form where you want the radio button group to reside and click.
The Radio Group Name dialog pops up.

Chapter 15
Create a Placeholder

15-6

4. Enter the name. The name of the radio group must match the name of the XML element
from the data that is to determine its state (selected or unselected).

5. In the Button Value field enter the value that the XML data field should match to enable
the on state.

For the example, enter Standard for the field labeled Standard.

6. To enter another radio button to the group, click Add another button to group. The name
of the radio group defaults into the name field.

7. In the Button Value field enter the value that the XML data field should match to enable
the on state for this button.

For example, enter Overnight for the field labeled Overnight.

8. If you want to change any of the properties, then click Show All Properties. To change the
radio button style, click the Options tab.

9. Select Radio Button from the Type drop down list.

10. Set other Properties as desired.

Define Groups of Repeating Fields
In the PDF layout, you explicitly define the area on the page that contains the repeating fields.
For example, on the purchase order layout, the repeating fields should display in the block of
space between the Item header row and the Total field.

To define the area to contain the group of repeating fields:

1. Insert a Text Field at the beginning of the area that is to contain the group.

2. In the Field Name dialog, enter any unique name you choose. This field isn't mapped.

3. In the Tooltip field of the Text Field Properties dialog, enter the following syntax:

<?rep_field="BODY_START"?>
4. Define the end of the group area by inserting a Text Field at the end of the area the that is

to contain the group.

5. In the Field Name dialog, enter any unique name you choose. This field isn't mapped. Note
that the name you assign to this field must be different from the name you assigned to the
body start field.

6. In the Tooltip field of the Text Field Properties dialog, enter the following syntax:

<?rep_field="BODY_END"?>
To define a group of repeating fields:

1. Insert a placeholder for the first element of the group. The placement of this field in
relationship to the BODY_START tag defines the distance between the repeating rows for
each occurrence.

2. For each element in the group, enter the following syntax in the Tooltip field:

<?rep_field="T1_Gn"?>
where n is the number of the element in the group.

For example, the group in the sample report is laid out in three rows.

• For the fields belonging to the row that begins with PO_LINE_NUM enter

<?rep_field="T1_G1"?>

Chapter 15
Define Groups of Repeating Fields

15-7

• For the fields belonging to the row that begins with C_FLEX_ITEM_DISP enter

<?rep_field="T1_G2"?>
• For the fields belonging to the row that begins with C_SHIP_TO_ADDRESS enter

<?rep_field="T1_G3"?>
The following figure shows the entries for the Short Description/Tooltip field:

Repeat a PDF Template by Using the document-repeat-
elementname Form Field

The document-repeat-elementname form field in a PDF template enables repeating the entire
template for a specified group of data elements.

When you want to use the same PDF template for a group of data elements, set the document-
repeat-elementname PDF form field to the group name of the data elements to be used in the
report.

Repeat a PDF Template in a Report

If the document-repeat-elementname PDF form field is set, when you run the report, the
FormProcessor utility sends the PDF template and the associated XML data to the document
repeat engine. The document repeat engine repeats the PDF template for each element of the
group specified by document-repeat-elementname, and generates the report.

Example 15-1 Generate Monthly Payslips

To generate the monthly payslips for each employee in a department, set the document-
repeat-elementname form field as shown below to the name of the group element associated
with the data of employees in the department, and provide the XML data that contains the
employee_Data element to the template. The report will iterate the same template for each
employee payslip.

<?set-property: document-repeat-elementname; employee_Data?>

The following figure shows the documents-repeat-elementname field entry in the PDF
template.

Chapter 15
Repeat a PDF Template by Using the document-repeat-elementname Form Field

15-8

The following figure shows the report containing the payslips of the employees.

Chapter 15
Repeat a PDF Template by Using the document-repeat-elementname Form Field

15-9

Add Page Numbers and Breaks
This section describes how to add the following page features to the PDF layout.

• Add Page Numbers

• Add Page Breaks

Add Page Numbers
To add page numbers, define a field in the layout where you want the page number to appear
and enter an initial value in that field.

1. Decide the position on the layout where you want the page number to be displayed.

2. Create a placeholder field called @pagenum@.

3. Enter a starting value for the page number in the Default field (Text Field Properties >
Options tab). If the XML data includes a value for this field, then the start value that is
assigned in the layout is overridden. If no start value is assigned, then it defaults to 1.

Chapter 15
Add Page Numbers and Breaks

15-10

Add Page Breaks
You can define a page break in the layout to occur after a repeatable field.

To insert a page break after the occurrence of a specific field, add the following to the syntax in
the Tooltip field of the Text Field Properties dialog:

page_break="yes"

For example:

<?rep_field="T1_G3", page_break="yes"?>

The following example demonstrates inserting a page break in a layout. The XML sample
contains salaries of employees by department:

<?xml version="1.0"?>
<ROOT>
 <LIST_G_DEPTNO>
 <G_DEPTNO>
 <DEPTNO>10</DEPTNO>
 <LIST_G_EMPNO>
 <G_EMPNO>
 <EMPNO>7782</EMPNO>
 <ENAME>CLARK</ENAME>
 <JOB>MANAGER</JOB>
 <SAL>2450</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>7839</EMPNO>
 <ENAME>KING</ENAME>
 <JOB>PRESIDENT</JOB>
 <SAL>5000</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>125</EMPNO>
 <ENAME>KANG</ENAME>
 <JOB>CLERK</JOB>
 <SAL>2000</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>7934</EMPNO>
 <ENAME>MILLER</ENAME>
 <JOB>CLERK</JOB>
 <SAL>1300</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>123</EMPNO>
 <ENAME>MARY</ENAME>
 <JOB>CLERK</JOB>
 <SAL>400</SAL>
 </G_EMPNO>
 <G_EMPNO>
 <EMPNO>124</EMPNO>
 <ENAME>TOM</ENAME>
 <JOB>CLERK</JOB>

Chapter 15
Add Page Numbers and Breaks

15-11

 <SAL>3000</SAL>
 </G_EMPNO>
 </LIST_G_EMPNO>
 <SUMSALPERDEPTNO>9150</SUMSALPERDEPTNO>
 </G_DEPTNO>

 <G_DEPTNO>
 <DEPTNO>30</DEPTNO>
 <LIST_G_EMPNO>
 .
 .
 .

 </LIST_G_EMPNO>
 <SUMSALPERDEPTNO>9400</SUMSALPERDEPTNO>
 </G_DEPTNO>
 </LIST_G_DEPTNO>
 <SUMSALPERREPORT>29425</SUMSALPERREPORT>
</ROOT>

Suppose the report requirement is to display the salary information for each employee by
department as shown in the following figure:

To insert a page break after each department, insert the page break syntax in the Tooltip field
for the SUMSALPERDEPTNO field as follows:

<?rep_field="T1_G3", page_break="yes"?>
The Text Field Properties dialog for the field is shown in the following figure.

Chapter 15
Add Page Numbers and Breaks

15-12

For a break to occur, the field must be populated with data from the XML file.

The sample report with data is shown in the following figure:

Chapter 15
Add Page Numbers and Breaks

15-13

The page breaks after each department.

Perform Calculations
Adobe Acrobat provides a calculation function in the Field Properties dialog box.

To create a field to display a calculated total on a report:

Chapter 15
Perform Calculations

15-14

1. Create a text field to display the calculated total. Give the field any Name you choose.

2. In the Field Properties dialog box, select the Format tab.

3. Select Number from the Category list.

4. Select the Calculate tab.

5. Select the radio button next to "Value is the <List of operations> of the following fields:"

6. Select sum (+) from the list.

7. Click the Pick... button and select the fields to be totaled.

Completed PDF Layout Example
The figure gives an illustration of a completed PDF layout.

Chapter 15
Completed PDF Layout Example

15-15

Runtime Behavior
The following sections describe runtime behavior of PDF templates:

• Placement of Repeating Fields

• Set Fields as Updatable or Read Only

• Overflow Data

Placement of Repeating Fields
The placement, spacing, and alignment of fields that you create on the layout are independent
of the underlying form layout.

At runtime, according to calculations performed on the placement of the rows of fields that you
created, Publisher places each repeating row of data as follows:

First occurrence:

The first row of repeating fields displays exactly where you placed them on the layout.

Second occurrence, single row:

To place the second occurrence of the group, Publisher calculates the distance between the
BODY_START tag and the first field of the first occurrence. The first field of the second
occurrence of the group is placed this calculated distance below the first occurrence.

Second occurrence, multiple rows:

If the first group contains multiple rows, then the second occurrence of the group is placed the
calculated distance below the last row of the first occurrence.

The distance between the rows within the group is maintained as defined in the first
occurrence.

Set Fields as Updatable or Read Only
You can make fields either read only or updatable.

When you define a field in the layout, you can set it to "Read Only", as shown in the following
illustration:

Chapter 15
Runtime Behavior

15-16

Regardless of what you choose at design time for the Read-Only check box, the default
behavior of the PDF processing engine is to set all fields to read-only for the output PDF. You
can change this behavior using the following report properties:

• all-field-readonly

• all-fields-readonly-asis

• remove-pdf-fields

Note that in the first two options, you're setting a state for the field in the PDF output. The
setting of individual fields can still be changed in the output using Adobe Acrobat Professional.
Also note that because the fields are maintained, the data is still separate and can be
extracted. In the third option, "remove-pdf-fields" the structure is flattened and no field/data
separation is maintained.

To make all fields updatable:

Set the "all-field-readonly" property to "false". This sets the Read-Only state to false for all
fields regardless of the individual field settings at design time.

To make all fields read only:

This is the default behavior. No settings are required.

To maintain the Read-Only check box selection for each field:

To maintain the setting of the Read Only check box on a field-by-field basis in the output PDF,
set the property, all-fields-readonly-asis, to true. This property overrides the settings of all-field-
readonly.

To remove all fields from the output PDF:

Set the property "remove-pdf-fields" to "true".

Chapter 15
Runtime Behavior

15-17

Overflow Data
When multiple pages are required to accommodate the occurrences of repeating rows of data,
each page displays identically except for the defined repeating area, which displays the
continuation of the repeating data.

For example, if the item rows of the purchase order extend past the area defined on the layout,
succeeding pages displays all data from the purchase order form with the continuation of the
item rows.

Create a Layout from a Predefined PDF Form
There're many PDF forms available online that you may want to use as layouts for the report
data. For example, government forms that your company is required to submit. You can use
these downloaded PDF files as the report layouts, supplying the XML data at runtime to fill in
the report fields.

Some of these forms already have form fields defined, some don't. If the PDF form already has
fields defined, then you can use one of the following methods to match the form field names to
the data field names:

• Use Adobe Acrobat Professional to rename the fields in the document to match the names
of the elements in the XML data file.

• Use BI Publisher's Data Model Editor to rename the XML element names in the data file to
match the field names in the PDF form.

If the form fields are not already defined in the downloaded PDF, then you must create them.

Determine If a PDF Has Form Fields Defined
Follow these steps to determine if a PDF has form fields defined and to get a list of the field
names.

1. Open the document in Adobe Acrobat Professional.

2. Click Highlight Fields. Form fields that exist in the document are highlighted.

3. From the Form menu, select Add or Edit Fields. The field names display in the document
as well as in the Fields pane.

Use a Predefined PDF Form as a Layout by Renaming the Form Fields
You can use a PDF form as a template for another form.

To use a predefined PDF form as a layout:

1. Download or import the PDF file to the local system.

2. Open the file in Adobe Acrobat Professional.

3. From the Form menu, select Add or Edit Fields. This highlights text fields that have
already been defined.

The following illustration shows a sample W-2 PDF form after selecting Add or Edit Fields
to highlight the text fields.

Chapter 15
Create a Layout from a Predefined PDF Form

15-18

To map the existing form fields to the data from the incoming XML file, rename the fields to
match the element names in the XML file.

4. Open the form field Text Field Properties dialog by either double-clicking the field, or by
selecting the field then selecting Properties from the right-mouse menu.

5. In the Name field, enter the element name from the input XML file.

6. Repeat for all fields that you want populated by the data file.

7. When all fields have been updated, click Close Form Editing.

8. Save the layout.

Use the Comb of Characters Option
The comb of characters option for a PDF form field in Adobe Acrobat spreads the text evenly
across the width of the text field.

Use this option when the form field requires the characters to be entered in specific positions,
as the Routing number field shown in the following figure:

To use this feature, perform the following:

Chapter 15
Create a Layout from a Predefined PDF Form

15-19

1. In Adobe Acrobat Professional, add the form field as a text field. An example is shown in
the following figure:

2. Open the Text Field Properties dialog and click the Options tab. Clear all check boxes and
select the Comb of characters check box.

The Comb of characters option is only enabled when all other options are cleared.

Enter the number of characters in the text field. For the routing number example, a value of
9 is entered in the Comb of field as shown in the following figure:

If your data may not contain the number of characters specified each time, you can set the
Alignment option to specify whether the value will be aligned to the right, left, or center
within the field.

When you run the report, the characters comprising the value for the routing field will be
spread across the text field as shown in the following figure:

Chapter 15
Create a Layout from a Predefined PDF Form

15-20

The following figure shows how the data will display in the field when the data for the routing
field doesn't contain the full nine characters and the Alignment option is set to left:

Add or Designate a Field for a Digital Signature
Publisher supports digital signatures on PDF output documents. Digital signatures enable you
to verify the authenticity of the documents you send and receive. Publisher can access the
digital ID file from a central, secure location and at runtime sign the PDF output with the digital
ID. The digital signature verifies the signer's identity and ensures that the document hasn't
been altered after it was signed.

Implementing digital signature requires several tasks across the Publisher product. This topic
describes how to add a new field or configure an existing field in the PDF template for the
digital signature.

About Signature Field Options
For PDF templates you've these options for designating a digital signature field for the output
report.

• Add a signature field to the PDF layout.

Use this option if you want the digital signature to appear in a specific field and the PDF
template doesn't include a signature field.

• Use an existing signature field in the PDF template.

Use this option if the PDF template already includes a signature field that you want to use.
To designate an existing field for the digital signature, define the field in the Runtime
Configuration page.

• Designate the position of the digital signature on the output report by setting x and y
coordinates.

Use this option if you prefer to designate the x and y coordinates for the placement of the
digital signature, rather than use a signature field. You set the position using the runtime
digital signature properties.

All three options require setting configuration properties for the report in the Report Properties
page after you've uploaded the template.

Add a Signature Field
Follow these steps to add a signature field.

1. Open the template in Adobe Acrobat Professional.

2. From the Form menu, select Add or Edit Fields. Then click Add New Field. Choose
Digital Signature from the list of fields.

3. Draw the signature field in the desired location on the layout. When you release the mouse
button, a dialog prompts you to enter a name for the field.

Chapter 15
Add or Designate a Field for a Digital Signature

15-21

4. Enter a name for the signature field. The following figure shows an inserted digital
signature field called "My_Signature."

5. Save the template.

6. Configure the report to insert the digital signature at runtime.

Configure the Report to Insert the Digital Signature at Runtime
After you've uploaded the PDF template to the report definition, you enable digital signature
and specify the signature field in the Report Properties.

1. From the edit report page, click Properties and then click the Formatting tab.

2. Scroll to the PDF Digital Signature group of properties.

3. Set Enable Digital Signature to True.

4. For the property Existing signature field name, enter the field name from the PDF
template.

No other properties are required for this method.

The following figure shows the My_Signature field name entered into the properties field.

Chapter 15
Add or Designate a Field for a Digital Signature

15-22

5. Click OK.

The runtime properties that you set are at the report level and not the layout level.
Therefore any layouts associated with the report now include the digital signature as
specified in the Report Properties. When an Existing signature field name is specified,
the template must contain the field for the signature to be applied.

PDF Template Limitations
The PDF template has a few limitations.

The PDF template doesn't support:

• The field properties mentioned in Supported Field Properties Options for repeating fields.

• Nested repeating fields.

• Section-wise repeat. The document-repeat-elementname field is used for repeating the
entire template.

• Pixel control.

• Data alignment in fields.

• Large documents. You might experience performance issues when a document is larger
than 250 MB.

To avoid these limitations, use an RTF template instead of a PDF template.

Chapter 15
PDF Template Limitations

15-23

16
Create eText Templates

This topic describes creating the eText templates in Microsoft Word. Publisher uses eText
templates to generate the flat files for EDI and EFT transactions.

Topics:

• Overview

• Structure of eText Templates

• Construct the Data Tables

• Command Rows

• Structure of the Data Rows

• Set Up Command Tables

• Create a Filler Block

• Expressions, Control Structures, and Functions

• Identifiers, Operators, and Literals

Overview
An eText template is an RTF-based template that is used to generate text output for Electronic
Funds Transfer (EFT) and Electronic Data Interchange (EDI).

At runtime, Publisher applies this template to an input XML data file to create an output text file
that can be transmitted to a bank or other customer. Because the output is intended for
electronic communication, the eText templates must follow very specific format instructions for
exact placement of data.

An EFT is an electronic transmission of financial data and payments to banks in a specific
fixed-position format flat file (text).

EDI is similar to EFT except it's not limited to the transmission of payment information to
banks. It's often used as a method of exchanging business documents, such as purchase
orders and invoices, between companies. EDI data is delimiter-based, and also transmitted as
a flat file (text).

Files in these formats are transmitted as flat files, rather than printed on paper. The length of a
record is often several hundred characters and therefore difficult to layout on standard size
paper.

To accommodate the record length, the EFT and EDI templates are designed using tables.
Each record is represented by a table. Each row in a table corresponds to a field in a record.
The columns of the table specify the position, length, and value of the field.

These formats can also require special handling of the data from the input XML file. This
special handling can be on a global level (for example, character replacement and sequencing)
or on a record level (for example, sorting). Commands to perform these functions are declared
in command rows. Global level commands are declared in setup tables.

16-1

At runtime, Publisher constructs the output file according to the setup commands and layout
specifications in the tables.

Prerequisites
This section is intended for users who're familiar with EDI and EFT transactions.

Preparers of eText templates require both functional and technical knowledge; that is,
functional expertise to understand bank and country specific payment format requirements and
sufficient technical expertise to understand XML data structure and eText specific coding
syntax commands, functions, and operations.

Structure of eText Templates
There're two types of eText templates: fixed-position based (EFT templates) and delimiter-
based (EDI templates).

The templates are composed of a series of tables. The tables define layout and setup
commands and data field definitions. The required data description columns for the two types
of templates vary, but the commands and functions available are the same. A table can contain
just commands, or it can contain commands and data fields.

The following illustration shows a sample from an EFT template to display the general structure
of command and data rows.

Commands that apply globally, or commands that define program elements for the template,
are "setup" commands. These must be specified in the initial tables of the template. Examples
of setup commands are Template Type and Character Set.

Chapter 16
Structure of eText Templates

16-2

In the data tables you provide the source XML data element name and the specific placement
and formatting definitions required by the receiving bank or entity. You can also define
functions to be performed on the data and conditional statements.

The data tables must always start with a command row that defines the "Level." The Level
associates the table to an element from the XML data file, and establishes the hierarchy. The
data fields that are then defined in the table for the Level correspond to the child elements of
the XML element.

The following graphic illustrates the relationship between the XML data hierarchy and the
template Level. The XML element "RequestHeader" is defined as the Level. The data elements
defined in the table ("FileID" and "Encryption") are children of the RequestHeader element.

The order of the tables in the template determines the print order of the records. At runtime the
system loops through all the instances of the XML element corresponding to a table (Level)
and prints the records belonging to the table. The system then moves on to the next table in
the template. If tables are nested, the system generates the nested records of the child tables
before moving on to the next parent instance.

Command Rows, Data Rows, and Data Column Header Rows
Command rows are used to specify commands in the template. Command rows always have
two columns: command name and command parameter. Command rows don't have column
headings. The commands control the overall setup and record structures of the template.

The following figure shows the placement of Command Rows, Data Rows, and Data Column
Header Rows:

Chapter 16
Structure of eText Templates

16-3

Blank rows can be inserted anywhere in a table to improve readability. Most often they're used
in the setup table, between commands. Blank rows are ignored by Publisher when the
template is parsed.

Data Column Header Rows
Data column headers specify the column headings for the data fields (such as Position,
Length, Format, Padding, and Comments). A column header row usually follows the Level
command in a table (or the sorting command, if one is used). The data column header row
must come before any data rows in the table. Additional empty column header rows can be
inserted at any position in a table to improve readability. The empty rows are ignored at
runtime.

The required data column header rows vary depending on the template type. See Structure of
the Data Rows.

Data Rows
Data rows provide the values for the data column header attributes for each data field.

The content of the data rows varies depending on the template type. See Structure of the Data
Rows.

Construct the Data Tables
The data tables contain a combination of command rows and data field rows. Each data table
must begin with a Level command row that specifies its XML element. Each record must begin

Chapter 16
Construct the Data Tables

16-4

with a New Record command that specifies the start of a new record, and the end of a
previous record (if any).

The required columns for the data fields vary depending on the Template Type.

Command Rows
The command rows always have two columns: command name and command parameter.

The supported commands are:

• Level Command

• New Record Command

• Sort Ascending and Sort Descending Commands

• Display Condition Command

The usage for each of these commands is described in the following sections.

Level Command
The level command associates a table with an XML element. The parameter for the level
command is an XML element. The level is printed once for each instance the XML element
appears in the data input file.

The level commands define the hierarchy of the template. For example, Payment XML data
extracts are hierarchical. A batch can have multiple child payments, and a payment can have
multiple child invoices. This hierarchy is represented in XML as nested child elements within a
parent element. By associating the tables with XML elements through the level command, the
tables also have the same hierarchical structure.

Similar to the closing tag of an XML element, the level command has a companion end-level
command. The child tables must be defined between the level and end-level commands of the
table defined for the parent element.

An XML element can be associated with only one level. All the records belonging to a level
must reside in the table of that level or within a nested table belonging to that level. The end-
level command is specified at the end of the final table.

Following is a sample structure of an EFT file record layout:

• FileHeaderRecordA

– BatchHeaderRecordA

– BatchHeaderRecordB

PaymentRecordA

PaymentRecordB

* InvoiceRecordA

– Batch FooterRecordC

– BatchFooterRecordD

• FileFooterRecordB

Following would be its table layout:

Chapter 16
Command Rows

16-5

The table layout displays the command and its value:

<LEVEL> : RequestHeader
<NEW RECORD> : FileHeaderRecordA
Data rows for the FileHeaderRecordA

<LEVEL> : Batch
<NEW RECORD> : BatchHeaderRecordA
Data rows for the BatchHeaderRecordA
<NEW RECORD> : BatchHeaderRecordB
Data rows for the BatchHeaderRecordB

<LEVEL> : Payment
<NEW RECORD> : PaymentRecordA
Data rows for the PaymentRecordA
<NEW RECORD> : PaymentRecordB
Data rows for the PaymentRecordB

<LEVEL> : Invoice
<NEW RECORD> : InvoiceRecordA
Data rows for the InvoiceRecordA
<END LEVEL> : Invoice

<END LEVEL>: Payment

<LEVEL> : Batch
<NEW RECORD> : BatchFooterRecordC
Data rows for the BatchFooterRecordC
<NEW RECORD> : BatchFooterRecordD
Data rows for the BatchFooterRecordD
<END LEVEL> : Batch

<LEVEL> : RequestHeader
<NEW RECORD> : FileFooterRecordB
Data rows for the FileFooterRecordB
<END LEVEL> : RequestHeader

Multiple records for the same level can exist in the same table. However, each table can only
have one level defined. In the example above, the BatchHeaderRecordA and
BatchHeaderRecordB are both defined in the same table. However, note that the END LEVEL
for the Payment must be defined in its own separate table after the child element Invoice. The
Payment END LEVEL cannot reside in the same table as the Invoice Level.

Note that you do not have to use all the levels from the data extract in the template. For
example, if an extract contains the levels: RequestHeader > Batch > Payment > Invoice, you
can use just the batch and invoice levels. However, the hierarchy of the levels must be
maintained.

The table hierarchy determines the order that the records are printed. For each parent XML
element, the records of the corresponding parent table are printed in the order they appear in

Chapter 16
Command Rows

16-6

the table. The system loops through the instances of the child XML elements corresponding to
the child tables and prints the child records according to their specified order. The system then
prints the records of the enclosing (end-level) parent table, if any.

For example, given the EFT template structure above, assume the input data file contains the
following:

• Batch1

– Payment1

* Invoice1

* Invoice2

– Payment2

* Invoice1

• Batch2

– Payment1

* Invoice1

* Invoice2

* Invoice3

Record
Order

Record Type Description

1 FileHeaderRecordA One header record for the EFT file

2 BatchHeaderRecordA For Batch1

3 BatchHeaderRecordB For Batch1

4 PaymentRecordA For Batch1, Payment1

5 PaymentRecordB For Batch1, Payment1

6 InvoiceRecordA For Batch1, Payment1, Invoice1

7 InvoiceRecordA For Batch1, Payment1, Invoice2

8 PaymentRecordA For Batch1, Payment2

9 PaymentrecordB For Batch1, Payment2

10 InvoiceRecordA For Batch1, Payment2, Invoice1

11 BatchFooterRecordC For Batch1

12 BatchFooterRecordD For Batch1

13 BatchHeaderRecordA For Batch2

14 BatchHeaderRecordB For Batch2

15 PaymentRecordA For Batch2, Payment1

16 PaymentRecordB For Batch2, Payment1

17 InvoiceRecordA For Batch2, Payment1, Invoice1

18 InvoiceRecordA For Batch2, Payment1, Invoice2

19 InvoiceRecordA For Batch2, Payment1, Invoice3

20 BatchFooterRecordC For Batch2

21 BatchFooterRecordD For Batch2

22 FileFooterRecordB One footer record for the EFT file

Chapter 16
Command Rows

16-7

New Record Command
The new record command signifies the start of a record and the end of the previous one, if any.

Every record in a template must start with the new record command. The record continues until
the next new record command, or until the end of the table or the end of the level command.

A record is a construct for the organization of the elements belonging to a level. The record
name is not associated with the XML input file.

A table can contain multiple records, and therefore multiple new record commands. All the
records in a table are at the same hierarchy level. They're printed in the order in which they're
specified in the table.

The new record command can have a name as its parameter. This name becomes the name
for the record. The record name is also referred to as the record type. The name can be used
in the COUNT function for counting the generated instances of the record. See the COUNT
function Functions for more information.

Consecutive new record commands (or empty records) aren't allowed.

Sort Ascending and Sort Descending Commands
Use the sort ascending and sort descending commands to sort the instances of a level.

Enter the elements that you want to sort by in a comma-separated list. This is an optional
command. When used, it must come right after the (first) level command and it applies to all
records of the level, even if the records are specified in multiple tables.

Display Condition Command
The display condition command specifies when the enclosed record or data field group should
be displayed. The command parameter is a boolean expression. When it evaluates to true, the
record or data field group is displayed. Otherwise the record or data field group is skipped.

The display condition command can be used with either a record or a group of data fields.
When used with a record, the display condition command must follow the new record
command. When used with a group of data fields, the display condition command must follow
a data field row. In this case, the display condition applies to the rest of the fields through the
end of the record.

Consecutive display condition commands are merged as AND conditions. The merged display
conditions apply to the same enclosed record or data field group.

Structure of the Data Rows
The output record data fields are represented in the template by table rows.

In FIXED_POSITION_BASED templates, each row has the following attributes (or columns):

• Position

• Length/Maximum Length

• Format Column

• Pad

Chapter 16
Structure of the Data Rows

16-8

• Data

• Comments

The first five columns are required and must appear in the order listed.

For DELIMITER_BASED templates, each data row has the following attributes (columns):

• Length/Maximum Length

• Format Column

• Data

• Tag

• Comments

The first three columns are required and must be declared in the order stated.

In both template types, the Comments column is optional and ignored by the system. You can
insert additional information columns, because all columns after the required ones are ignored.

The usage rules for these columns are as follows:

Position
Specifies the starting position of the field in the record. The unit is in number of characters.

This column is only used with FIXED_POSITION_BASED templates.

Length/Maximum Length
Specifies the length of the field.

The unit is in number of characters. For FIXED_POSITION_BASED templates, all the fields
are fixed length. If the data is less than the specified length, it's padded. If the data is longer,
it's truncated. The truncation always occurs on the right.

For DELIMITER_BASED templates, this value specifies the maximum length of the field. If the
data exceeds the maximum length, it's truncated. Data less than the maximum length isn't
padded.

Format Column
Format Column specifies the data type and format setting.

There're three accepted data types:

• Alpha

• Number

• Date

Refer to Field-Level Key Words for their usage.

Number Data Type
Numeric data has three optional format settings: Integer, Decimal, or you can define a format
mask.

Specify the optional settings with the Number data type as follows:

Chapter 16
Structure of the Data Rows

16-9

• Number, Integer

• Number, Decimal

• Number, <format mask>

For example:

Number, ###,###.00

The Integer format uses only the whole number portion of a numeric value and discards the
decimal. The Decimal format uses only the decimal portion of the numeric value and discards
the integer portion.

The following table shows examples of how to set a format mask. When specifying the mask, #
represents that a digit is to be displayed when present in the data; 0 represents that the digit
placeholder is to be displayed whether data is present or not.

When specifying the format mask, the group separator must always be "," and the decimal
separator must always be "." To alter these in the actual output, you must use the Setup
Commands NUMBER THOUSANDS SEPARATOR and NUMBER DECIMAL SEPARATOR.
See Set Up Command Tables for details on these commands.

The following table shows sample Data, Format Specifier, and Output. The Output assumes
the default group and decimal separators.

Data Format Specifier Output

123456789 ###,###.00 123,456,789.00

123456789.2 ###.00 123456789.20

1234.56789 ###.000 1234.568

123456789.2 # 123456789

123456789.2 #.## 123456789.2

123456789 #.## 123456789

Date Data Type
The Date data type format setting must always be explicitly stated. The format setting follows
the SQL date styles, such as MMDDYY.

Map EDI Delimiter-Based Data Types to eText Data Types
Some EDI (DELIMITER_BASED) formats use more descriptive data types.

These are mapped to the three template data types as shown in the following table.

ASC X12 Data Type Format Template Data Type

A - Alphabetic Alpha

AN -Alphanumeric Alpha

B - Binary Number

CD - Composite data element N/A

CH - Character Alpha

DT - Date Date

Chapter 16
Structure of the Data Rows

16-10

ASC X12 Data Type Format Template Data Type

FS - Fixed-length string Alpha

ID - Identifier Alpha

IV - Incrementing Value Number

Nn - Numeric Number

PW - Password Alpha

R - Decimal number Number

TM - Time Date

Assume the setup commands shown in the following table.

Name Command

NUMBER THOUSANDS SEPARATOR .

NUMBER DECIMAL SEPARATOR ,

The following table shows the Data, Format Specifier, and Output for this case. Note that the
Format Specifier requires the use of the default separators, regardless of the setup command
entries.

Data Format Specifier Output

123456789 ###,###.00 123.456.789,00

123456789.2 ###.00 123456789,20

1234.56789 ###.000 1234,568

123456789.2 # 123456789

123456789.2 #.## 123456789,2

123456789 #.## 123456789

Pad
Pad applies to FIXED_POSITION_BASED templates only. Specify the padding side (L = left or
R = right) and the character. Both numeric and alphanumeric fields can be padded. If this field
isn't specified, numeric fields are left-padded with "0" and alpha fields are right-padded with
spaces.

Example usage:

• To pad a field on the left with a "0", enter the following in the Pad column field:

L, '0'

• To pad a field on the right with a space, enter the following the Pad column field:

R, ' '

Data
Specifies the XML element from the data extract that is to populate the field. The data column
can simply contain the XML tag name, or it can contain expressions and functions.

Chapter 16
Structure of the Data Rows

16-11

For more information, see Expressions, Control Structures, and Functions.

Tag
Acts as a comment column for DELIMITER_BASED templates.

It specifies the reference tag in EDIFACT formats, and the reference IDs in ASC X12.

Comments
Use this column to note any free form comments to the template. Usually this column is used
to note the business requirement and usage of the data field.

Set Up Command Tables
A template always begins with a table that specifies the setup commands.

The setup commands define global attributes, such as template type and output character set
and program elements, such as sequencing and concatenation.

The setup commands are:

• TEMPLATE TYPE Command

• OUTPUT CHARACTER SET

• Output Length Mode

• NEW RECORD CHARACTER

• INVALID CHARACTERS

• REPLACE CHARACTERS

• NUMBER THOUSANDS SEPARATOR

• NUMBER DECIMAL SEPARATOR

• DEFINE LEVEL

• DEFINE SEQUENCE

• DEFINE CONCATENATION

• CASE CONVERSION

An example setup table is shown in the following figure:

Chapter 16
Set Up Command Tables

16-12

Here is another example setup table:

Chapter 16
Set Up Command Tables

16-13

TEMPLATE TYPE Command
This command specifies the type of template.

There're two types: FIXED_POSITION_BASED and DELIMITER_BASED.

Use the FIXED_POSITION_BASED templates for fixed-length record formats, such as EFTs.
In these formats, all fields in a record are a fixed length. If data is shorter than the specified
length, then it's padded. If longer, it's truncated. The system specifies the default behavior for
data padding and truncation. Examples of fixed position based formats are EFTs in Europe,
and NACHA ACH file in the U.S.

In a DELIMITER_BASED template, data is never padded and only truncated when it reaches a
maximum field length. Empty fields are allowed (when the data is null). Designated delimiters
are used to separate the data fields. If a field is empty, two delimiters are displayed next to
each other. Examples of delimited-based templates are EDI formats such as ASC X12 820 and
UN EDIFACT formats - PAYMUL, DIRDEB, and CREMUL.

In EDI formats, a record is sometimes referred to as a segment. An EDI segment is treated the
same as a record. Start each segment with a new record command and give it a record name.

Chapter 16
Set Up Command Tables

16-14

You should have a data field specifying the segment name as part of the output data
immediately following the new record command.

For DELIMITER_BASED templates, you insert the appropriate data field delimiters in separate
rows between the data fields. After every data field row, you insert a delimiter row. You can
insert a placeholder for an empty field by defining two consecutive delimiter rows.

Empty fields are often used for syntax reasons: you must insert placeholders for empty fields
so that the fields that follow can be properly identified.

There're different delimiters to signify data fields, composite data fields, and end of record.
Some formats allow you to choose the delimiter characters. In all cases you should use the
same delimiter consistently for the same purpose to avoid syntax errors.

In DELIMITER_BASED templates, the <POSITION> and <PAD> columns do not apply.
They're omitted from the data tables.

Some DELIMITER_BASED templates have minimum and maximum length specifications. In
those cases Oracle Payments validates the length.

Output Character Set
The output character set supported depends on the JRE version and configurations.

Set a character set name that the JRE (Java runtime environment) version supports. For
example, US-ASCII, ISO-8859-1, UTF-8, UTF-16BE, UTF-16LE, or UTF-16.

DEFINE LEVEL Command
Some formats require specific additional data levels that are not in the data extract. For
example, some formats require that payments be grouped by payment date. Using the Define
Level command, a payment date group can be defined and referenced as a level in the
template, even though it isn't in the input extract file.

When you use the Define Level command you declare a base level that exists in the extract.
The Define Level command inserts a new level, one level higher than the base level of the
extract. The new level functions as a grouping of the instances of the base level.

The Define Level command is a setup command, therefore it must be defined in the setup
table. It has three subcommands:

• BASE LEVEL command - defines the level (XML element) from the extract that the new
level is based on. The Define Level command must always have one and only one base
level subcommand.

• GROUPING CRITERIA - defines the XML extract elements that are used to group the
instances of the base level to form the instances of the new level. The parameter of the
grouping criteria command is a comma-separated list of elements that specify the grouping
conditions.

The order of the elements determines the hierarchy of the grouping. The instances of the
base level are first divided into groups according to the values of the first criterion, then
each of these groups is subdivided into groups according to the second criterion, and so
on. Each of the final subgroups is considered as an instance of the new level.

• GROUP SORT ASCENDING or GROUP SORT DESCENDING - defines the sorting order
of the group. Insert the <GROUP SORT ASCENDING> or <GROUP SORT DESCENDING> command
row anywhere between the <DEFINE LEVEL> and <END DEFINE LEVEL> commands. The
parameter of the sort command is a comma-separated list of elements by which to sort the
group.

Chapter 16
Set Up Command Tables

16-15

• GROUP SORT ASCENDING NUMBER or GROUP SORT DESCENDING NUMBER -
defines the sorting order of the numeric group. Insert the <GROUP SORT ASCENDING NUMBER>
or <GROUP SORT DESCENDING NUMBER> command row anywhere between the <DEFINE
LEVEL> and <END DEFINE LEVEL> commands. The parameter of the sort command is a
comma-separated list of elements for sorting.

For example, the following table shows five payments under a batch.

Payment Instance PaymentDate (grouping
criterion 1)

PayeeName (grouping criterion
2)

Payment1 PaymentDate1 PayeeName1

Payment2 PaymentDate2 PayeeName1

Payment3 PaymentDate1 PayeeName2

Payment4 PaymentDate1 PayeeName1

Payment5 PaymentDate1 PayeeName3

In the template, construct the setup table as follows to create a level called
PaymentsByPayDatePayee from the base level "Payment" grouped according to Payment
Date and Payee Name. Add the Group Sort Ascending command to sort each group by
PaymentDate and PayeeName:

Payment Group Level

<DEFINE LEVEL> PaymentsByPayDatePayee

<BASE LEVEL> Payment

<GROUPING CRITERIA> PaymentDate, PayeeName

<GROUP SORT ASCENDING> PaymentDate, PayeeName

<END DEFINE LEVEL> PaymentsByPayDatePayee

The five payments generate the four groups (instances) shown in the following table for the
new level:

Payment Group Instance Group Criteria Payments in Group

Group1 PaymentDate1, PayeeName1 Payment1, Payment4

Group2 PaymentDate1, PayeeName2 Payment3

Group3 PaymentDate1, PayeeName3 Payment5

Group4 PaymentDate2, PayeeName1 Payment2

The order of the new instances is the order in which the records print. When evaluating the
multiple grouping criteria to form the instances of the new level, the criteria can be thought of
as forming a hierarchy. The first criterion is at the top of the hierarchy, the last criterion is at the
bottom of the hierarchy.

Generally there're two kinds of format-specific data grouping scenarios in EFT formats. Some
formats print the group records only; others print the groups with the individual element records
nested inside groups. The following tables are two examples for these scenarios based on the
five payments and grouping conditions previously illustrated and show the generated output:

Scenario 1: Group Records Only

EFT File Structure:

Chapter 16
Set Up Command Tables

16-16

• BatchRec

– PaymentGroupHeaderRec

– PaymentGroupFooterRec

Record
Sequence

Record Type Description

1 BatchRec NA

2 PaymentGroupHeaderRec For group 1 (PaymentDate1, PayeeName1)

3 PaymentGroupFooterRec For group 1 (PaymentDate1, PayeeName1)

4 PaymentGroupHeaderRec For group 2 (PaymentDate1, PayeeName2)

5 PaymentGroupFooterRec For group 2 (PaymentDate1, PayeeName2)

6 PaymentGroupHeaderRec For group 3 (PaymentDate1, PayeeName3)

7 PaymentGroupFooterRec For group 3 (PaymentDate1, PayeeName3)

8 PaymentGroupHeaderRec For group 4 (PaymentDate2, PayeeName1)

9 PaymentGroupFooterRec For group 4 (PaymentDate2, PayeeName1)

Scenario 2: Group Records and Individual Records

EFT File Structure:

BatchRec

• PaymentGroupHeaderRec

– PaymentRec

• PaymentGroupFooterRec

Record
Sequence

Record Type Description

1 BatchRec NA

2 PaymentGroupHeaderRec For group 1 (PaymentDate1, PayeeName1)

3 PaymentRec For Payment1

4 PaymentRec For Payment4

5 PaymentGroupFooterRec For group 1 (PaymentDate1, PayeeName1)

6 PaymentGroupHeaderRec For group 2 (PaymentDate1, PayeeName2)

7 PaymentRec For Payment3

8 PaymentGroupFooterRec For group 2 (PaymentDate1, PayeeName2)

9 PaymentGroupHeaderRec For group 3 (PaymentDate1, PayeeName3)

10 PaymentRec For Payment5

11 PaymentGroupFooterRec For group 3 (PaymentDate1, PayeeName3)

12 PaymentGroupHeaderRec For group 4 (PaymentDate2, PayeeName1)

13 PaymentRec For Payment2

14 PaymentGroupFooterRec For group 4 (PaymentDate2, PayeeName1)

Once defined with the Define Level command, the new level can be used in the template in the
same manner as a level occurring in the extract. However, the records of the new level can

Chapter 16
Set Up Command Tables

16-17

only reference the base level fields that are defined in its grouping criteria. They cannot
reference other base level fields other than in summary functions.

For example, the PaymentGroupHeaderRec can reference the PaymentDate and PayeeName
in its fields. It can also reference the PaymentAmount (a payment level field) in a SUM
function. However, it cannot reference other payment level fields, such as PaymentDocName
or PaymentDocNum.

The DEFINE LEVEL command must always have one and only one grouping criteria
subcommand. The DEFINE LEVEL command has a companion END DEFINE LEVEL
command. The subcommands must be specified between the DEFINE LEVEL and END
DEFINE LEVEL commands. They can be declared in any order.

DEFINE SEQUENCE Command
The DEFINE SEQUENCE command defines a sequence that can be used in conjunction with
the SEQUENCE_NUMBER function to index either the generated EFT records or the extract
instances (the database records). The EFT records are the physical records defined in the
template. The database records are the records from the extract. To avoid confusion, the term
record always refers to the EFT record. The database record is referred to as an extract
element instance or level.

The DEFINE SEQUENCE command has four subcommands: RESET AT LEVEL,
INCREMENT BASIS, START AT, MINIMUM, and MAXIMUM:

RESET AT LEVEL
The RESET AT LEVEL subcommand defines where the sequence resets its starting number.

RESET AT LEVE is a mandatory subcommand. For example, to number the payments in a
batch, define RESET AT LEVEL as Batch. To continue numbering across batches, define
RESET AT LEVEL as RequestHeader.

In some cases the sequence is reset outside the template. For example, a periodic sequence
may be defined to reset by date. In these cases, the PERIODIC_SEQUENCE keyword is used
for the RESET AT LEVEL. The system saves the last sequence number used for a payment
file to the database. Outside events control resetting the sequence in the database. For the
next payment file run, the sequence number is extracted from the database for the start at
number (see start at subcommand).

INCREMENT BASIS
The INCREMENT BASIS subcommand specifies if the sequence should be incremented
based on record or extract instances. The allowed parameters for this subcommand are
RECORD and LEVEL.

Enter RECORD to increment the sequence for every record.

Enter LEVEL to increment the sequence for every new instance of a level.

Note that for levels with multiple records, if you use the level-based increment, then all the
records in the level have the same sequence number. The record-based increment assigns
each record in the level a new sequence number.

For level-based increments, the sequence number can be used in the fields of one level only.
For example, suppose an extract has a hierarchy of batch > payment > invoice and you define
the INCREMENT BASIS by level sequence, with reset at the batch level. You can use the

Chapter 16
Set Up Command Tables

16-18

sequence in either the payment or invoice level fields, but not both. You cannot have
sequential numbering across hierarchical levels.

However, this rule doesn't apply to increment basis by record sequences. Records can be
sequenced across levels.

For both increment basis by level and by record sequences, the level of the sequence is
implicit based on where the sequence is defined.

MINIMUM
Specifies the minimum sequence number.

If MINIMUM isn't declared, the minimum sequence number os set as 1 by default.

Specify this value when you want the minimum sequence number to be a value other than 1.

Define Concatenation Command
Use the define concatenation command to concatenate child-level extract elements for use in
parent-level fields.

For example, use this command to concatenate invoice number and due date for all the
invoices belonging to a payment for use in a payment-level field.

The define concatenation command has three subcommands: base level, element, and
delimiter.

Base Level Subcommand
The base level subcommand specifies the child level for the operation.

For each parent-level instance, the concatenation operation loops through the child-level
instances to generate the concatenated string.

Element Subcommand
The element subcommand specifies the operation used to generate each element. An element
is a child-level expression that is concatenated to generate the concatenation string.

Delimiter Subcommand
The delimiter subcommand specifies the delimiter to separate the concatenated items in the
string.

Use the SUBSTR Function
Use the SUBSTR function to break down concatenated strings into smaller strings that can be
placed into different fields.

For example, the following table shows five invoices in a payment.

Invoice InvoiceNum

1 car_parts_inv0001

2 car_parts_inv0002

Chapter 16
Set Up Command Tables

16-19

Invoice InvoiceNum

3 car_parts_inv0003

4 car_parts_inv0004

5 car_parts_inv0005

Using the concatenation definition shown in the following table:

Level Definition

<DEFINE CONCATENATION> ConcatenatedInvoiceInfo

<BASE LEVEL> Invoice

<ELEMENT> InvoiceNum

<DELIMITER> ','

<END DEFINE CONCATENATION> ConcatenatedInvoiceInfo

You can reference ConcatenatedInvoiceInfo in a payment level field. The string is as follows:

car_parts_inv0001,car_parts_inv0002,car_parts_inv0003,car_parts_inv0004,car_parts_inv000
5

If you want to use only the first forty characters of the concatenated invoice information, then
use either TRUNCATE function or the SUBSTR function as follows:

TRUNCATE(ConcatenatedInvoiceInfo, 40)

SUBSTR(ConctenatedInvoiceInfo, 1, 40)

Either of these statements result in:

car_parts_inv0001,car_parts_inv0002,car_

To isolate the next forty characters, use the SUBSTR function:

SUBSTR(ConcatenatedInvoiceInfo, 41, 40)

to get the following string:

parts_inv0003,car_parts_inv0004,car_par

Invalid Characters and Replacement Characters Commands
Some formats require a different character set than the one that was used to enter the data in
Oracle Applications. For example, some German formats require the output file in ASCII, but
the data was entered in German. If there's a mismatch between the original and target
character sets you can define an ASCII equivalent to replace the original. For example, you
would replace the German umlauted "a" with "ao".

Some formats don't allow certain characters. To ensure that known invalid characters are not
transmitted in the output file, use the invalid characters command to flag occurrences of
specific characters.

To use the replacement characters command, specify the source characters in the left column
and the replacement characters in the right column. You must enter the source characters in
the original character set. This is the only case in a format template in which you use a

Chapter 16
Set Up Command Tables

16-20

character set not intended for output. Enter the replacement characters in the required output
character set.

For DELIMITER_BASED formats, if there're delimiters in the data, you can use the escape
character "?" to retain their meaning. For example,

First name?+Last name equates to First name+Last name

Which source?? equates to Which source?

Note that the escape character itself must be escaped if it's used in data.

The replacement characters command can be used to support the escape character
requirement. Specify the delimiter as the source and the escape character plus the delimiter as
the target. For example, the command entry for the preceding examples is as follows:

<REPLACEMENT CHARACTERS>
+ ?+
? ??
<END REPLACEMENT CHARACTERS>

The invalid character command has a single parameter that is a string of invalid characters that
causes the system to error out.

The replacement character process is performed before or during the character set conversion.
The character set conversion is performed on the XML extract directly, before the formatting.
After the character set conversion, the invalid characters are checked in terms of the output
character set. If no invalid characters are found, then the system proceeds to formatting.

Output Character Set and New Record Character Commands
Use the new record character command to specify the character(s) to delimit the explicit and
implicit record breaks at runtime.

Each new record command represents an explicit record break. Each end of table represents
an implicit record break. The parameter is a list of constant character names separated by
commas.

Some formats contain no record breaks. The generated output is a single line of data. In this
case, leave the new record character command parameter field empty.

If you do not define a "new record character" field in the template, then the system sets "\n" as
default new record character.

Output Length Mode
Output Length Mode can be set to "character" or "byte".

When OUTPUT LENGTH MODE is set to "character", the output record length for each field is
based on character length. When OUTPUT LENGTH MODE is set to "byte", the output record
length for each field is based on byte length.

If no OUTPUT LENGTH MODE is setting is provided, "character" is used.

Chapter 16
Set Up Command Tables

16-21

Number Thousands Separator and Number Decimal Separator
The default thousands (or group) separator is a comma (",") and the default decimal separator
is a period ("."). Use the Number Thousands Separator command and the Number Decimal
Separator command to specify separators other than the defaults.

For example, to define "." as the group separator and "," as the decimal separator, enter the
commands as follows:

<NUMBER THOUSANDS SEPARATOR> .
<NUMBER DECIMAL SEPARATOR> ,

Note that when you set "NUMBER DECIMAL SEPARATOR", you must also set "NUMBER
THOUSANDS SEPARATOR". Ensure to set the appropriate format mask for the field to be
displayed. For more information on formatting numbers, see Format Column.

CASE CONVERSION
Use CASE CONVERSION to convert strings from lowercase to uppercase for fields with format
type ALPHA. This command is used with FIXED_POSITION_BASED templates.

Valid values are "UPPER" and "LOWER". Enter the command as follows:

<CASE CONVERSION> : UPPER

Create a Filler Block
For FIXED_POSITION_BASED templates, you can use a filler block to define a specific block
size for the eText output. When the actual data doesn't fill the specified block size, the
remainder of the block is filled with a specified filler character.

For example, if you define a BLOCK SIZE of 9, and the eText output generated is only three
lines of text, then the remaining six lines are filled with the specified FILLER CHARACTER.

The commands used are:

• <BEGIN FILLER BLOCK> - this signifies the beginning of the block. Enter a name for this
block.

• <FILLER CHARACTER> - enter a character or string to use to "fill" the remainder of the block
when the data doesn't fill it.

Example entries for <FILLER CHARACTER> are:

To fill the block with the ? character, enter the FILLER CHARACTER command as shown:

<FILLER CHARACTER> : ?

To fill the block with the string abc, enter the FILLER CHARACTER command as shown:

<FILLER CHARACTER> : abc

Chapter 16
Create a Filler Block

16-22

To fill the block with empty spaces, enter the FILLER CHARACTER command as shown:

<FILLER CHARACTER> :

• <BLOCK SIZE> - enter an integer to specify the size of the block in lines of text.

These commands must be used before the template definition starts.

Enter the following command at the end of the block:

• <END FILLER BLOCK> - signifies the end of the block. Enter the name already specified for
this block in the <BEGIN FILLER BLOCK> command.

The following figure shows an example of filler block usage:

Chapter 16
Create a Filler Block

16-23

The following figure shows an example of output generated with FILLER BLOCK:

The following figure shows an example of output generated if FILLER BLOCK isn't used:

Expressions, Control Structures, and Functions
This section describes the rules and usage for expressions in the template. It also describes
supported control structures and functions.

Expressions
Expressions can be used in the data column for data fields and some command parameters.
An expression is a group of XML extract fields, literals, functions, and operators. Expressions
can be nested. An expression can also include the "IF" control structure. When an expression
is evaluated it always generates a result. Side effects are not allowed for the evaluation.

Based on the evaluation result, expressions are classified into the following three categories:

• Boolean Expression - an expression that returns a boolean value, either true or false. This
kind of expression can be used only in the IF-THEN-ELSE control structure and the
parameter of the display condition command.

• Numeric Expression - an expression that returns a number. This kind of expression can be
used in numeric data fields. It can also be used in functions and commands that require
numeric parameters.

• Character Expression - an expression that returns an alphanumeric string. This kind of
expression can be used in string data fields (format type Alpha). They can also be used in
functions and command that require string parameters.

Control Structures
The only supported control structure is IF-THEN-ELSE. It can be used in an expression.

Chapter 16
Expressions, Control Structures, and Functions

16-24

The syntax is:

IF <boolean_expressionA> THEN
 <numeric or character expression1>
[ELSIF <boolean_expressionB THEN
 <numeric or character expression2>]
...
[ELSE
 <numeric or character expression3]
END IF

Generally the control structure must evaluate to a number or an alphanumeric string. The
control structure is considered to a numeric or character expression. The ELSIF and ELSE
clauses are optional, and there can be as many ELSIF clauses as necessary. The control
structure can be nested.

The IN predicate is supported in the IF-THEN-ELSE control structure. For example:

IF PaymentAmount/Currency/Code IN ('USD', 'EUR', 'AON', 'AZM') THEN
 PayeeAccount/FundsCaptureOrder/OrderAmount/Value * 100
ELSIF PaymentAmount/Currency/Code IN ('BHD', 'IQD', 'KWD') THEN
 PayeeAccount/FundsCaptureOrder/OrderAmount/Value * 1000
ELSE
 PayeeAccount/FundsCaptureOrder/OrderAmount/Value
END IF;

Functions
Here is the list of supported functions.

• SEQUENCE_NUMBER - Is a record element index. It's used in conjunction with the Define
Sequence command. It has one parameter, which is the sequence defined by the Define
Sequence command. At runtime it increases its sequence value by one each time it's
referenced in a record.

• COUNT - Counts the child level extract instances or child level records of a specific type.
Declare the COUNT function on a level above the entity to be counted. The function has
one argument. If the argument is a level, then the function counts all the instances of the
(child) level belonging to the current (parent) level instance.

Example: If the level to be counted is Payment and the current level is Batch, then the
COUNT returns the total number of payments in the batch. However, if the current level is
RequestHeader, the COUNT returns the total number of payments in the file across all
batches. If the argument is a record type, the count function counts all the generated
records of the (child level) record type belonging to the current level instance.

• INTEGER_PART, DECIMAL_PART - Returns the integer or decimal portion of a numeric
value. This is used in nested expressions and in commands (display condition and group
by). For the final formatting of a numeric field in the data column, use the Integer/Decimal
format.

• IS_NUMERIC - Boolean test whether the argument is numeric. Used only with the "IF"
control structure.

• TRUNCATE - Truncates the first argument - a string to the length of the second argument.
If the first argument is shorter than the length specified by the second argument, the first

Chapter 16
Expressions, Control Structures, and Functions

16-25

argument is returned unchanged. This is a user-friendly version for a subset of the SQL
substr() functionality.

• SUM - Sums all the child instance of the XML extract field argument. The field must be a
numeric value. The field to be summed must always be at a lower level than the level on
which the SUM function was declared.

• MIN, MAX - Finds the minimum or maximum of all the child instances of the XML extract
field argument. The field must be a numeric value. The field to be operated on must always
be at a lower level than the level on which the function was declared.

• FORMAT_DATE - Formats a date string to any desirable date format. For example:

FORMAT_DATE("1900-01-01T18:19:20", "YYYY/MM/DD HH24:MI:SS")

produces the following output:

1900/01/01 18:19:20

• FORMAT_NUMBER - Formats a number to display in desired format. For example:

FORMAT_NUMBER("1234567890.0987654321", "999,999.99")

produces the following output:

1,234,567,890.10

• MESSAGE_LENGTH - Returns the length of the message in the EFT message.

• RECORD_LENGTH - Returns the length of the record in the EFT message.

• INSTR - Returns the numeric position of a named character within a text field.

• SYSDATE, DATE - Gets Current Date and Time.

• POSITION - Returns the position of a node in the XML document tree structure.

• REPLACE - Replaces a string with another string.

• CONVERT_CASE - Converts a string or a character to UPPER or LOWER case.

• CHR - Gets the character representation of an argument, which is an ASCII value.

• LPAD, RPAD - Generates left or right padding for string values.

• AND, OR, NOT - Operator functions on elements.

• AddToVar - Adds the specified value to the current value of the variable, and returns the
value added to the variable. If the assignment is unsuccessful, the function returns 0. If the
variable doesn't exist, the function creates a new variable and assigns the specified value.

Usage: AddToVar(var-name,value-to-be-added)

Example:

AddToVar('MyVAR', 10) - if MyVar=0, assigns 10 to MyVar, and returns 10.

AddToVar('MyVAR', 20) - if MyVar=10, adds 20 to MyVar, assigns 30 to MyVar, and returns
20.

• GetVar - Returns the value of the specified variable. Returns 0 if the variable doesn't exist.

Usage: GetVar(var-name)

Example: GetVar('MyVAR')

• ResetVar - Resets the value of the variable to 0.

Usage: ResetVar(var-name)

Example: ResetVar('MyVAR')

Chapter 16
Expressions, Control Structures, and Functions

16-26

• SetVar - Assigns the specified value to the variable, and returns the assigned value.

Usage: SetVar(var-name, value-to-be-assigned)

Example: SetVar('MyVAR', 1200)

• DISTINCT_VALUES - Returns a sequence in which all but one of a set of duplicate values,
based on value equality, have been deleted. Equivalent to the XPATH function DISTINCT-
VALUES. Usage: distinct_values(fieldname).

• INCREASE_DATE - Increments a date by the number of days specified.

Usage:

increase_date(.//date, 2)

returns a date value two days after the value of .//date

• DECREASE_DATE - Decreases a date by the number of days specified.

Usage:

decrease_date(.//date, 2)

returns a date value two before the value of .//date

• XPATH - Allows direct injection of pure XPath language to generate the XSL template.

Example:

XPATH('sum((../PRE_TAX_DEDUCTIONS/PAYMENT)[position() >= 9])')

XPATH('sum((../PRE_TAX_DEDUCTIONS/PAYMENT)[NAME = 'NULL'])')

• Other SQL functions include the following. Use the syntax corresponding to the SQL
function.

– TO_DATE

– LOWER

– UPPER

– LENGTH

– GREATEST

– LEAST

– DECODE

– CEIL

– ABS

– FLOOR

– ROUND

– CHR

– TO_CHAR

– SUBSTR

– LTRIM

– RTRIM

– TRIM

– IN

– TRANSLATE

Chapter 16
Expressions, Control Structures, and Functions

16-27

Identifiers, Operators, and Literals
This section lists the reserved key word and phrases and their usage. The supported operators
are defined and the rules for referencing XML extract fields and using literals.

Key Words
There're several categories of key words and key word phrases:

• Command and column header key words

• Command parameter and function parameter key words

• Field-level key words

• Expression key words

Command and Column Header Key Words
The command and column header key words must be used in the format shown: enclosed in
<>s and in all capital letters with a bold font.

• <LEVEL> - the first entry of a data table. Associates the table with an XML element and
specifies the hierarchy of the table.

• <END LEVEL> - declares the end of the current level. Can be used at the end of a table or
in a standalone table.

• <POSITION> - column header for the first column of data field rows, which specifies the
starting position of the data field in a record.

• <LENGTH> - column header for the second column of data field rows, which specifies the
length of the data field.

• <FORMAT> - column header for the third column of data field rows, which specifies the
data type and format setting.

• <PAD> - column header for the fourth column of data field rows, which specifies the
padding style and padding character.

• <DATA> - column header for the fifth column of data field rows, which specifies the data
source.

• <COMMENT> - column header for the sixth column of data field rows, which allows for free
form comments.

• <NEW RECORD> - specifies a new record.

• <DISPLAY CONDITION> - specifies the condition when a record should be printed.

• <TEMPLATE TYPE> - specifies the type of the template, either
FIXED_POSITION_BASED or DELIMITER_BASED.

• <OUTPUT CHARACTER SET> - specifies the character set to be used when generating
the output.

• <NEW RECORD CHARACTER> - specifies the character(s) to use to signify the explicit
and implicit new records at runtime.

• <DEFINE LEVEL> - defines a format-specific level in the template.

• <BASE LEVEL> - subcommand for the define level and define concatenation commands.

Chapter 16
Identifiers, Operators, and Literals

16-28

• <GROUPING CRITERIA> - subcommand for the define level command.

• <END DEFINE LEVEL> - signifies the end of a level.

• <DEFINE SEQUENCE> - defines a record or extract element based sequence for use in
the template fields.

• <RESET AT LEVEL> - subcommand for the define sequence command.

• <INCREMENT BASIS> - subcommand for the define sequence command.

• <START AT> - subcommand for the define sequence command.

• <MAXIMUM> - subcommand for the define sequence command.

• <MINIMUM> - subcommand for the define sequence command.

• <MAXIMUM LENGTH> - column header for the first column of data field rows, which
specifies the maximum length of the data field. For DELIMITER_BASED templates only.

• <END DEFINE SEQUENCE> - signifies the end of the sequence command.

• <DEFINE CONCATENATION> - defines a concatenation of child level elements that can
be referenced as a string in the parent level fields.

• <ELEMENT> - subcommand for the define concatenation command.

• <DELIMITER> - subcommand for the define concatenation command.

• <END DEFINE CONCATENATION> - signifies the end of the define concatenation
command.

• <SORT ASCENDING> - format-specific sorting for the instances of a level.

• <SORT DESCENDING> - format-specific sorting for the instances of a level.

• <SORT ASCENDING NUMBER> - numeric sorting for the instances of a level.

• <SORT DESCENDING NUMBER> - numeric sorting for the instances of a level.

Command Parameter and Function Parameter Key Words
The command parameter and function parameter key words must be entered in all capital
letters, non-bold fonts.

• PERIODIC_SEQUENCE - used in the reset at level subcommand of the define sequence
command. It denotes that the sequence number is to be reset outside the template.

• FIXED_POSITION_BASED, DELIMITER_BASED - used in the template type command,
specifies the type of template.

• RECORD, LEVEL - used in the increment basis subcommand of the define sequence
command. RECORD increments the sequence each time it's used in a new record. LEVEL
increments the sequence only for a new instance of the level.

Field-Level Key Words
This section gives a list of key words and specifies the data type for each.

• Alpha - in the <FORMAT> column, specifies the data type is alphanumeric.

• Number - in the <FORMAT> column, specifies the data type is numeric.

• Integer - in the <FORMAT> column, used with the Number key word. Takes the integer part of
the number. This has the same functionality as the INTEGER function, except the

Chapter 16
Identifiers, Operators, and Literals

16-29

INTEGER function is used in expressions, while the Integer key word is used in the
<FORMAT> column only.

• Decimal - in the <FORMAT> column, used with the Number key word. Takes the decimal part
of the number. This has the same functionality as the DECIMAL function, except the
DECIMAL function is used in expressions, while the Decimal key word is used in the
<FORMAT> column only.

• Date - in the <FORMAT> column, specifies the data type is date.

• L, R- in the <PAD> column, specifies the side of the padding (Left or Right).

Expression Key Words
Key words and phrases used in expressions must be in capital letters and bold fonts.

• IF THEN ELSE IF THEN ELSE END IF - these key words are always used as a group.
They specify the "IF" control structure expressions.

• IS NULL, IS NOT NULL - these phrases are used in the IF control structure. They form part
of boolean predicates to test if an expression is NULL or not NULL.

Operators
There're two groups of operators: the boolean test operators and the expression operators.

The boolean test operators include: "=", "<>", "<", ">", ">=", and "<=". They can be used only
with the IF control structure. The expression operators include: "()", "||", "+", "-", and "*". They
can be used in any expression.

The following table lists the operators and describes their usage.

Symbol Usage

= Equal to test. Used in the IF control structure only.

<> Not equal to test. Used in the IF control structure only.

> Greater than test. Used in the IF control structure only.

< Less than test. Used in the IF control structure only.

>= Greater than or equal to test. Used in the IF control structure only.

<= Less than or equal to test. Used in the IF control structure only.

() Function argument and expression group delimiter. The expression group inside
"()" is always be evaluated first. "()" can be nested.

| Union operator to be used in the <LEVEL> element.

|| String concatenation operator.

+ Addition operator. Implicit type conversion may be performed if any of the operands
aren't numbers.

- Subtraction operator. Implicit type conversion may be performed if any of the
operands aren't numbers.

* Multiplication operator. Implicit type conversion may be performed if any of the
operands aren't numbers.

DIV Division operand. Implicit type conversion may be performed if any of the operands
are not numbers. Note that "/" isn't used because it's part of the XPATH syntax.

IN Equal-to-any-member-of test.

Chapter 16
Identifiers, Operators, and Literals

16-30

Symbol Usage

NOT IN Negates the IN operator. Not-Equal-to-any-member-of test.

Reference to XML Extract Fields and XPATH Syntax
XML elements can be used in any expression.

At runtime XML elements are replaced with the corresponding field values. The field names
are case-sensitive.

When the XML extract fields are used in the template, they must follow the XPATH syntax. This
is required so that the Publisher can correctly interpret the XML elements.

There's always an extract element considered as the context element during the Publisher
formatting process. When Publisher processes the data rows in a table, the level element of
the table is the context element. For example, when Publisher processes the data rows in the
Payment table, Payment is the context element. The relative XPATH you use to reference the
extract elements are specified in terms of the context element.

For example to refer to the PayeeName element in a Payment data table, specify the following
relative path:

Payee/PayeeInfo/PayeeName
Each layer of the XML element hierarchy is separated by a backslash "/". You use this notation
for any nested elements. The relative path for the immediate child element of the level is just
the element name itself. For example, you can use TransactionID element name as is in the
Payment table.

To reference a parent level element in a child level table, you can use the "../" notation. For
example, in the Payment table if you must reference the BatchName element, you can
specify ../BatchName. The "../" provides Batch as the context; in that context you can use
the BatchName element name directly as BatchName is an immediate child of Batch. This
notation goes up to any level for the parent elements. For example if you must reference the
RequesterParty element (in the RequestHeader) in a Payment data table, you can specify the
following:

../../TrxnParties/RequesterParty
You can always use the absolute path to reference any extract element anywhere in the
template. The absolute path starts with a backslash "/". For the PayeeName in the Payment
table example above, you have the following absolute path: /BatchRequest/Batch/Payment/
Payee/PayeeInfo/PayeeName

The absolute path syntax provides better performance.

The identifiers defined by the setup commands such as define level, define sequence and
define concatenation are considered to be global. They can be used anywhere in the template.
No absolute or relative path is required. The base level and reset at level for the setup
commands can also be specified. Publisher can find the correct context for them.

If you use relative path syntax, then you should specify it relative to the base levels in the
following commands:

• The element subcommand of the define concatenation command

• The grouping criteria subcommand of the define level command

Chapter 16
Identifiers, Operators, and Literals

16-31

The extract field reference in the start at subcommand of the define sequence command
should be specified with an absolute path.

The rule to reference an extract element for the level command is the same as the rule for data
fields. For example, if you have a Batch level table and a nested Payment level table, then you
can specify the Payment element name as-is for the Payment table. Because the context for
evaluating the Level command of the Payment table is the Batch.

However, if you skip the Payment level and you have an Invoice level table directly under the
Batch table, then you must specify Payment/Invoice as the level element for the Invoice table.

The XPATH syntax required by the template is very similar to UNIX/LINUX directory syntax.
The context element is equivalent to the current directory. You can specify a file relative to the
current directory or you can use the absolute path which starts with a "/".

Finally, the extract field reference as the result of the grouping criteria sub-command of the
define level command must be specified in single quotes. This tells the Publisher engine to use
the extract fields as the grouping criteria, not their values.

Notes on Viewing eText Output from a Browser
If the report data contains Simplified Chinese characters and the <OUTPUT CHARACTER
SET> is set to GBK, then the Chinese characters do not display properly in Internet Explorer 7
with gbk2312 encoding.

This issue may also occur in other non-English encodings as well, such as native Japanese
and Korean. The output renders appropriately with Firefox 3.5, when setting the character set
to be GBK in the eText template and setting the browser encoding to be GBK or GB2312. You
can work around this issue by setting <OUTPUT CHARACTER SET> to utf-8. Note that this is
a browser display issue only. The text file is generated correctly.

Chapter 16
Identifiers, Operators, and Literals

16-32

17
Set Report Processing and Output Document
Properties

This topic describes how to configure report processing and output document properties.

Topics:

• Overview

• PDF Output Properties

• PDF Digital Signature Properties

• PDF Accessibility Properties

• PDF/A Output Properties

• PDF/X Output Properties

• DOCX Output Properties

• RTF Output Properties

• PPTX Output Properties

• HTML Output Properties

• FO Processing Properties

• RTF Template Properties

• XPT Template Properties

• PDF Template Properties

• Excel Template Properties

• CSV Output Properties

• Excel Output Properties

• EText Output Properties

• All Outputs Properties

• Define Font Mappings

Overview
The Formatting tab of the Report Properties dialog enables you to set runtime formatting
properties at the report level.

These properties are also set at the system level. If conflicting values are set for a property at
each level, the report level takes precedence.

1. Open the report in the Report Editor.

2. Click Properties to display the Report Properties dialog.

3. Click the Formatting tab to display the formatting properties.

17-1

4. For each property, you can update the Report Value. The Server Value is shown for
reference.

PDF Output Properties
Generate the type of PDF files you want by setting the PDF output properties.

Property Name Description Default

Compress PDF output Specify "true" or "false" to control compression of
the output PDF file.

true

Hide PDF viewer's menu
bars

Specify "true" to hide the viewer application's menu
bar when the document is active. The menu bar
option is only effective when using the Export
button, which displays the output in a standalone
Acrobat Reader application outside of the browser.

false

Hide PDF viewer's tool
bars

Specify "true" to hide the viewer application's
toolbar when the document is active.

false

Replace smart quotes Specify "false" if you don't want curly quotes
replaced with straight quotes in the PDF output.

true

Disable opacity and
gradient shading for DVT
chart

Specify "true" if you don't want opacity and gradient
shading for the PDF output. This reduces the size
of the PostScript file.

false

Enable PDF Security Specify "true” if you want to encrypt the PDF
output. You can then also specify the following
properties:

• Open document password
• Modify permissions password
• Encryption Level

false

Open document
password

This password is required for opening the
document. It enables users to open the document
only. This property is enabled only when "Enable
PDF Security" is set to "true".

When you set the Encryption level to Low, Medium,
or High, the password must contain only Latin-1
characters and shouldn't be more than 32 bytes
long.

When you set the Encryption level to Highest, if
your password exceeds 127 bytes, only the first
127 bytes of the password are used for
authentication.

N/A

Chapter 17
PDF Output Properties

17-2

Property Name Description Default

Modify permissions
password

This password enables users to override the
security setting. This property is effective only
when "Enable PDF Security" is set to "true".

When you set the Encryption level to Low, Medium,
or High, the password must contain only Latin-1
characters and shouldn't be more than 32 bytes
long.

When you set the Encryption level to Highest, if
your password exceeds 127 bytes, only the first
127 bytes of the password are used for
authentication.

If you set a password in the pdf-open-password
property without setting a password in the pdf-
permissions-password property, or if you set the
same password in both the pdf-open-password
and pdf-permissions-password properties, the
user gets full access to the document and its
features, and permission settings such as "Disable
printing" are bypassed or ignored.

N/A

Encryption level Specify the encryption level for the output PDF file.
The possible values are:

• 0: Low (40-bit RC4, Acrobat 3.0 or later)
• 1: Medium (128-bit RC4, Acrobat 5.0 or later)
• 2: High (128-bit AES, Acrobat 7.0 or later)
• 3: Highest (256-bit AES, Acrobat X (10) or

later)
This property is effective only when "Enable PDF
Security" is set to "true". When Encryption level is
set to 0, you can also set the following properties:

• Disable printing
• Disable document modification
• Disable context copying, extraction, and

accessibility
• Disable adding or changing comments and

form fields
When Encryption level is set to 1 or higher, the
following properties are available:

• Enable text access for screen readers
• Enable copying of text, images, and other

content
• Allowed change level
• Allowed printing level

2 - high

Disable document
modification

Permission available when "Encryption level" is set
to 0. When set to "true", the PDF file cannot be
edited.

false

Disable printing Permission available when "Encryption level" is set
to 0. When set to "true", printing is disabled for the
PDF file.

false

Disable adding or
changing comments and
form fields

Permission available when "Encryption level" is set
to 0. When set to "true", the ability to add or
change comments and form fields is disabled.

false

Chapter 17
PDF Output Properties

17-3

Property Name Description Default

Disable context copying,
extraction, and
accessibility

Permission available when "Encryption level" is set
to 0. When set to "true", the context copying,
extraction, and accessibility features are disabled.

false

Enable text access for
screen readers

Permission available when "Encryption level" is set
to 1 or higher. When set to "true", text access for
screen reader devices is enabled.

true

Enable copying of text,
images, and other
content

Permission available when "Encryption level" is set
to 1 or higher. When set to "true", copying of text,
images, and other content is enabled.

false

Allowed change level Permission available when "Encryption level" is set
to 1 or higher. Valid Values are:

• 0: none
• 1: Allows inserting, deleting, and rotating

pages
• 2: Allows filling in form fields and signing
• 3: Allows commenting, filling in form fields, and

signing
• 4: Allows all changes except extracting pages

0

Allowed printing level Permission available when "Encryption level" is set
to 1 or higher. Valid values are:

• 0: None
• 1: Low resolution (150 dpi)
• 2: High resolution

0

Use only one shared
resources object for all
pages

The default mode of Publisher creates one shared
resources object for all pages in a PDF file. This
mode has the advantage of creating an overall
smaller file size. However, the disadvantages are
the following:

• Viewing may take longer for a large file with
many SVG objects

• If you choose to break up the file by using
Adobe Acrobat to extract or delete portions,
then the edited PDF files are larger because
the single shared resource object (that
contains all of the SVG objects for the entire
file) is included with each extracted portion.

Setting this property to "false" creates a resource
object for each page. The file size is larger, but the
PDF viewing is faster and the PDF can be broken
up into smaller files more easily.

true

PDF Navigation Panel
Initial View

Controls the navigation panel view presented when
a user first opens a PDF report. The following
options are supported:

• Panels Collapsed - displays the PDF
document with the navigation panel collapsed.

• Bookmarks Open (default) - displays the
bookmark links for easy navigation.

• Pages Open - displays a clickable thumbnail
view of each page of the PDF.

Bookmarks Open

Chapter 17
PDF Output Properties

17-4

PDF Digital Signature Properties
You set the properties to enable a digital signature for PDF reports and to define the placement
of the signature in the output PDF report.

At the instance level or at the report level, you can set the properties to enable a digital
signature for PDF reports. You must first register at least one digital signature, so you can
select the one to you use in your instance or reports. To implement the digital signature for a
report based on a PDF layout template or an RTF layout template, set the Enable Digital
Signature property on the report to "true."

You also must set the appropriate properties to place the digital signature in the desired
location on your output report. Your choices for placement of the digital signature depend on
the template type. The choices are as follows:

• (PDF only) Place the digital signature in a specific field by setting the Existing signature
field name property.

• (RTF and PDF) Place the digital signature in a general location of the page (top left, top
center, or top right) by setting the Signature field location property.

• (RTF and PDF) Place the digital signature in a specific location designated by x and y
coordinates by setting the Signature field x coordinate and Signature field y coordinate
properties.

If you choose this option, you can also set Signature field width and Signature field
height to define the size of the field in your document.

Property Name Description Default

Enable Digital Signature Set this to "true" to enable a digital signature for
PDF reports.

false

Digital signature name Select a registered digital signature file. N/A

Existing signature field
name

This property applies to PDF layout templates only.
If the report is based on a PDF template, then you
can enter a field from the PDF template in which to
place the digital signature.

N/A

Signature field location This property can apply to RTF or PDF layout
templates. This property provides a list that
contains the following values: Top Left, Top Center,
Top Right. Choose one of these general locations
and Publisher inserts the digital signature to the
output document, sized and positioned
appropriately. If you choose to set this property, do
not enter X and Y coordinates or width and height
properties.

N/A

Signature field X
coordinate

This property can apply to RTF or PDF layout
templates. Using the left edge of the document as
the zero point of the X axis, enter the position in
points that you want the digital signature to be
placed from the left. For example, if you want the
digital signature to be placed horizontally in the
middle of an 8.5 inch by 11 inch document (that is,
612 points in width and 792 points in height), enter
306.

0

Chapter 17
PDF Digital Signature Properties

17-5

Property Name Description Default

Signature field Y
coordinate

This property can apply to RTF or PDF layout
templates. Using the bottom edge of the document
as the zero point of the Y axis, enter the position in
points that you want the digital signature to be
placed from the bottom. For example, if you want
the digital signature to be placed vertically in the
middle of an 8.5 inch by 11 inch document (that is,
612 points in width and 792 points in height), enter
396.

0

Signature field width Enter in points (72 points equal one inch) the
desired width of the inserted digital signature field.
This applies only if you're also setting the
Signature field x coordinate and Signature field
Y coordinate properties.

0

Signature field height Enter in points (72 points equal one inch) the
desired height of the inserted digital signature field.
This applies only if you're also setting the
Signature field x coordinate and Signature field
Y coordinate properties.

0

PDF Accessibility Properties
Set the properties described in the table below to configure PDF accessibility.

Property Name Description Default

Make PDF output accessible Set to “true” to make the PDF outputs
accessible. Accessible PDF output contains
the document title and PDF tags.

False

Use PDF/UA format for
accessible PDF output

Set to “true” to use the PDF/UA format for the
accessible PDF outputs.

False

PDF/A Output Properties
Set properties to configure PDF/A output.

PDF/A output properties are described in the following table. See Generate PDF/A Output.

Chapter 17
PDF Accessibility Properties

17-6

Property Name Description Default Internal Name

PDF/A version Select one of the PDF/A standards. The
value is set in the xmpMM:Version field of the
metadata dictionary.

PDF/A-1B preserves the visual appearance
and structure of the document. PDF/A-2B
supports the PDF/A-1B features, preserves
transparency, and uses compressed objects
and XRef streams to make the PDF file size
smaller. The PDF files generated by
Publisher for version PDF/A-3 and PDF/A-2
are similar. PDF/A-3A is a tagged format for
accessibility and PDF/A-3B is a regular
untagged format that conforms with the
PDF/A-3 specification.

PDF/A-1B pdfa-version

PDF/A ICC profile
data

The name of the ICC profile data file, for
example: CoatedFOGRA27.icc

The ICC (International Color Consortium)
profile is a binary file describing the color
characteristics of the environment where this
PDF/A file is intended to be displayed. The
ICC profile that you select must have a major
version below 4.

To use a specific profile data file other than
the default settings in the JVM, obtain the file
and place it under <Publisher
repository>/Admin/Configuration.
When you set this property, you must also set
a value for PDF/A ICC Profile Info (pdfa-
icc-profile-info).

Default
profile
data
provided
by JVM

pdfa-icc-
profile-data

PDF/A ICC profile
info

ICC profile information (required when pdfa-
icc-profile-data is specified)

sRGB
IEC61966
-2.1

pdfa-icc-
profile-info

PDF/A file identifier One or more valid file identifiers set in the
xmpMM:Identifier field of the metadata
dictionary. To specify more than one identifier,
separate values with a comma (,).

Automatic
ally
generated
file
identifier

pdfa-file-
identifier

PDF/A document ID Valid document ID. The value is set in the
xmpMM:DocumentID field of the metadata
dictionary.

None pdfa-document-id

PDF/A version ID Valid version ID. The value is set in the
xmpMM:VersionID field of the metadata
dictionary.

None pdfa-version-id

PDF/A rendition
class

Valid rendition class. The value is set in the
xmpMM:RenditionClass field of the metadata
dictionary.

None pdfa-rendition-
class

Chapter 17
PDF/A Output Properties

17-7

PDF/X Output Properties
Set properties to configure PDF/X output.

PDF/X output properties are described in the table below. The values that you set for these
properties depend on the printing device. Note the following restrictions on other PDF
properties:

• pdf-version - value above 1.4 isn't allowed for PDF/X-1a output

• pdf-security - must be set to False

• pdf-encryption-level - must be set to 0

• pdf-font-embedding - must be set to true

See Generate PDF/X output.

Property Name Description Default Internal Name

PDF/X ICC Profile
Data

(Required) The name of the ICC
profile data file, for example:
CoatedFOGRA27.icc.

The ICC (International Color
Consortium) profile is a binary file
describing the color
characteristics of the intended
output device. For production
environments, the color profile
may be provided by your print
vendor or by the printing
company that prints the
generated PDF/X file. The file
must be placed under <bi
publisher repository>/
Admin/Configuration.

None pdfx-dest-output-
profile-data

PDF/X output
condition identifier

(Required) The name of one of
the standard printing conditions
registered with ICC (International
Color Consortium). The list of
standard CMYK printing
conditions to use with PDF/X-1a
is provided on the following ICC
website: http://www.color.org/
chardata/drsection1.xalter. The
value that you enter for this
property is a valid "Reference
name," for example: FOGRA43.

Choose the appropriate value for
the intended printing
environment. This name is often
used to guide automatic
processing of the file by the
consumer of the PDF/X
document, or to inform the default
settings in interactive
applications.

None pdfx-output-
condition-identifier

Chapter 17
PDF/X Output Properties

17-8

http://www.color.org/chardata/drsection1.xalter
http://www.color.org/chardata/drsection1.xalter

Property Name Description Default Internal Name

PDF/X output
condition

A string describing the intended
printing condition in a form that
will be meaningful to a human
operator at the site receiving the
exchanged file. The value is set in
OutputCondition field of
OutputIntents dictionary.

None pdfx-output-
condition

PDF/X registry name A registry name. Set this property
when the pdfx-output-
condition-identifier is set
to a characterization name that is
registered in a registry other than
the ICC registry.

http://
www.color.org

pdfx-registry-name

PDF/X version The PDF/X version set in
GTS_PDFXVersion and
GTS_PDFXConformance fields of
Info dictionary. PDF/X-1a:2003 is
the only value currently
supported.

PDF/X-1a:2003 pdfx-version

DOCX Output Properties
The table below describes the properties that control DOCX output files.

Property Name Description Default

Enable change tracking Set to "true" to enable change tracking in the output
document.

false

Protect document for
tracked changes

Set to "true" to protect the document for tracked
changes.

false

Default font Use this property to define the font style and size in
the output when no other font has been defined.
This is particularly useful to control the sizing of
empty table cells in generated reports. Enter the
font name and size in the following format
<FontName>:<size> for example: Arial:12. Note
that the font you choose must be available to the
processing engine at runtime.

Arial:12

Open password Use this property to specify the password that
report users must provide to open any DOCX
report.

NA

RTF Output Properties
You can configure RTF output with a number of predetermined properties.

Set the properties described in the table below to configure RTF output.

Property Name Description Default Internal Name

Enable change tracking Set to "true" to enable change
tracking in the output RTF
document.

false rtf-track-changes

Chapter 17
DOCX Output Properties

17-9

Property Name Description Default Internal Name

Protect document for tracked
changes

Set to "true" to protect the
document for tracked
changes.

false rtf-protect-
document-for-
tracked-changes

Default font Use this property to define the
font style and size in RTF
output when no other font has
been defined. This is
particularly useful to control
the sizing of empty table cells
in generated reports. Enter
the font name and size in the
following format
<FontName>:<size> for
example: Arial:12. Note that
the font you choose must be
available to the Publisher
processing engine at runtime.

Arial:12 rtf-output-
default-font

Enable widow orphan Set to "true" to ensure that
there're no hanging
paragraphs in the document.
If the last para in a page
contains an orphaned line and
the remaining lines of the
paragraph continue in the next
page, the starting line of the
paragraph is moved to the
next page to keep the lines of
the paragraph together for
better readability.

false rtf-enable-widow-
orphan

PPTX Output Properties
The table below describes the properties that control PPTX output files.

Property Name Description Default

Open password Use this property to specify the password that
report users must provide to open any PPTX
report.

NA

HTML Output Properties
The table below describes the properties that control HTML output files.

Property Name Description Default

Show header Set to "false" to suppress the template header in
HTML output.

true

Show footer Set to "false" to suppress the template footer in
HTML output.

true

Replace smart quotes Set to "false" if you don't want curly quotes
replaced with straight quotes in the HTML output.

true

Character set Specify the output HTML character set. UTF-8

Chapter 17
PPTX Output Properties

17-10

Property Name Description Default

Make HTML output
accessible

Set to "true" to make the HTML output accessible. false

Use percentage width for
table columns

Set to "true" to display table columns according to a
percentage value of the total width of the table
rather than as a value in points. This property is
especially useful if the browser display tables with
extremely wide columns. Setting this property to
true improves the readability of the tables.

true

View Paginated When you set this property to true, HTML output
will render in the report viewer with pagination
features. These features include:

• Generated table of contents
• Navigation links at the top and bottom of the

page
• Ability to skip to a specific page within the

HTML document
• Search for strings within the HTML document

using the browser's search capability
• Zoom in and out on the HTML document using

the browser's zoom capability
Note that these features are supported for online
viewing through the report viewer only.

false

Reduce Padding in
Table-cell

When you set this property to true, cells in HTML
tables are displayed without padding, which
maximizes the page space available for text.

false

Embed images and
charts in HTML for
offline viewing

When you set this property to true, charts and
images are embedded in the HTML output, which
is suitable for viewing offline.

false

Use SVG for charts When you set this property to true, charts display
as a SVG (Scalable Vector Graphic) to provide a
higher resolution in the HTML output. When you
set this property to false, charts display as a raster
image.

true

Keep original table width When you set this property to true, if a column in a
table is deleted, the original width of the table is
maintained.

true

Enable horizontal
scrollbar automatically
for html table

When you set this property to true, a horizontal
scroll bar is added to a table that doesn't fit within
the current size of the browser window.

false

Enable html table
column size auto adjust

When you set this property to true, the column
widths in a table are automatically adjusted to the
size of the browser window.

false

Set zero height for empty
paragraph

When you set this property to true and the output is
HTML, the height of an empty paragraph (that is, a
paragraph without text) is set to zero points.

true

FO Processing Properties
The table below describes the properties that control FO processing.

Chapter 17
FO Processing Properties

17-11

Property Name Description Default

Use BI Publisher's XSLT
processor

Controls the use of parser. If set to "false", uses the
non packaged XDK parser. If set to "true", uses the
11g parser packaged in Publisher. If set to "12c",
uses the 12c parser packaged in Publisher.

You can set this property at the server level or at
the report level.

If the data size is more than 2GB, set to "12c".

If you set this property to "12c" at report level,
ensure that you set the Set ACCESS_MODE to
FORWARD_READ on XSLT processor property
to '"false" at the server level and '"true" at the report
level.

true

XML parser 11g
compatibility mode

When set to "true", if the Use BI Publisher's XSLT
processor property is set to "12c" or "false", the
group-by attribute string is modified to ensure that
the XDK 12c parser is compatible with the XML
11g parser.

True

Enable scalable feature
of XSLT processor

Controls the scalable feature of the XDO parser.
The property "Use BI Publisher's XSLT processor"
must be set to "true" or "12c" for this property to be
effective.

The value of this property should be "true" at both
server level and report level. If you set to "false",
FO processor uses memory (heap) instead of disk,
and might cause out-of-memory issues.

false

Enable XSLT runtime
optimization

When set to "true", the overall performance of the
FO processor is increased and the size of the
temporary FO files generated in the temp directory
is significantly decreased. Note that for small
reports (for example 1-2 pages) the increase in
performance isn't as marked. To further enhance
performance when you set this property to true, set
the Extract attribute sets property to "false".

true

Enable XPath
Optimization

When set to "true", the XML data file is analyzed for
element frequency. The information is then used to
optimize XPath in XSL.

false

Pages cached during
processing

This property is enabled only when you specify a
Temporary Directory (under General properties).
During table of contents generation, the FO
Processor caches the pages until the number of
pages exceeds the value specified for this property.
It then writes the pages to a file in the Temporary
Directory.

50

Bidi language digit
substitution type

Valid values are "None" and "National". When set
to "None", Eastern European numbers are used.
When set to "National", Hindi format (Arabic-Indic
digits) is used. This setting is effective only when
the locale is Arabic, otherwise it's ignored.

National

Disable variable header
support

When set to true, prevents variable header support.
Variable header support automatically extends the
size of the header to accommodate the contents.

false

Chapter 17
FO Processing Properties

17-12

Property Name Description Default

Disable external
references

When set to true, disallows importing of secondary
files such as sub templates or other XML
documents during XSL processing and XML
parsing. This increases the security of the system.
Set this to "false" if the report or template calls
external files.

true

FO Parsing Buffer Size Specifies the size of the buffer for the FO
Processor. When the buffer is full, the elements
from the buffer are rendered in the report. Reports
with large tables or pivot tables that require
complex formatting and calculations may require a
larger buffer to properly render those objects in the
report. Increase the size of the buffer at the report
level for these reports. Note that increasing this
value affects the memory consumption of the
system.

1000000

FO extended
linebreaking

When set to true, punctuation, hyphenation, and
international text are handled properly when line
breaking is necessary.

true

Enable XSLT runtime
optimization for sub-
template

Provides an option to perform XSL import in
FOProcessor before passing only one XSL to XDK
for further processing. This allows xslt-optimization
to be applied to the entire main XSL template
which already includes all its sub templates.

The default is true. If you call the FOProcessor
directly, the default is false.

true

Report Timezone Valid values: User or JVM.

When set to User, Publisher uses the User-level
Report Time Zone setting for reports. The User
Report Time Zone is set in the user's Account
Settings.

When set to JVM, Publisher uses the server JVM
timezone setting for all users' reports. All reports
therefore display the same time regardless of
individual user settings. This setting can be
overridden at the report level.

User

Set ACCESS_MODE to
FORWARD_READ on
XSLT processor

If you set the Use BI Publisher's XSLT processor
property to "12c" at report level, ensure that the Set
ACCESS_MODE to FORWARD_READ on XSLT
processor property is set to "false" at the server
level and "true" at the report level.

false

PDF Bidi Unicode
Version

Specifies the Unicode version (3.0 or 4.1) used to
display the BIDI strings in the PDF output.

4.1

RTF Template Properties
You configure RTF templates with various settings.

The properties described in the following table can be set to govern RTF templates.

Chapter 17
RTF Template Properties

17-13

Property Name Description Default

Extract attribute sets The RTF processor automatically extracts
attribute sets within the generated XSL-FO.
The extracted sets are placed in an extra FO
block, which can be referenced. This
improves processing performance and
reduces file size. Valid values are:

• Enable - extract attribute sets for all
templates and subtemplates

• Auto - extract attribute sets for
templates, but not subtemplates

• Disable - do not extract attribute sets

Auto

Enable XPath rewriting When converting an RTF template to XSL-
FO, the RTF processor automatically rewrites
the XML tag names to represent the full
XPath notations. Set this property to "false"
to disable this feature.

true

Characters used for checkbox The default PDF output font doesn't include a
glyph to represent a checkbox. If the
template contains a checkbox, use this
property to define a Unicode font for the
representation of checkboxes in the PDF
output. You must define the Unicode font
number for the "checked" state and the
Unicode font number for the "unchecked"
state using the following syntax:
fontname;<unicode font number for
true value's glyph >;<unicode font
number for false value's glyph>
Example: Go Noto Current Jp;9745;9744
Note that the font that you specify must be
made available at runtime.

Go Noto Current
Jp;9745;9744

Barcode encoder Select the barcode encoder for generating
the barcodes in reports. Oracle recommends
that you use the Libre encoder.

Libre

XPT Template Properties
Configure XPT templates by setting the properties described in the table below.

Property Name Description Default

XPT Scalable Mode for Offline
Reports

When you set this property to true, the
scheduled reports that use the XPT template
and include a large amount of data run
without memory issues. The first 100,000
rows of data in the report are stored in
memory and the remaining rows are stored in
the file system.

When you set this property to false, the
scheduled reports that use XPT template are
processed in-memory. Set this property to
false for reports that contain less data.

False

Chapter 17
XPT Template Properties

17-14

Property Name Description Default

XPT Scalable Mode for Online
Static Output

When you set this property to true, the online
reports that use the XPT template and include
a large amount of data run without memory
issues. The first 100,000 rows of data in the
report are stored in memory and the
remaining rows are stored in the file system.

When you set this property to false, the online
reports that use XPT template are processed
in-memory. Set this property to false for
reports that contain less data.

False

Enable Asynchronous Mode
for Interactive Output

When you set this property to true, interactive
reports that use the XPT template make
asynchronous calls to Oracle WebLogic
Server.

When you set this property to false, interactive
reports that use the XPT template make
synchronous calls to Oracle WebLogic Server.
Oracle WebLogic Server limits the number of
synchronous calls. Any calls that are stuck
expire in 600 seconds.

True

PDF Template Properties
The properties described in the table below can be set to govern PDF templates.

Property Name Description Default Internal Name

Remove PDF fields
from output

Specify "true" to remove
PDF fields from the output.
When PDF fields are
removed, data entered in
the fields cannot be
extracted.
For repeating fields, the
value of this property is set
to true by default and
cannot be changed to false.

See Set Fields as
Updatable or Read Only.

false remove-pdf-fields

Set all fields as read
only in output

By default, Publisher sets all
fields in the output PDF of a
PDF template to be read
only. If you want to set all
fields to be updatable, set
this property to "false".

For more information, see
Set Fields as Updatable or
Read Only.

true all-field-readonly

Chapter 17
PDF Template Properties

17-15

Property Name Description Default Internal Name

Maintain each field's
read only setting

Set this property to "true" if
you want to maintain the
"Read Only" setting of each
field as defined in the PDF
template. This property
overrides the settings of
"Set all fields as read only in
output."
For more information, see
Set Fields as Updatable or
Read Only.

false all-fields-
readonly-asis

Excel Template Properties
Configure Excel templates by setting the properties described in the table below.

Property Name Description Default

Enable Scalable Mode When set to true, large reports that use Excel
template run without out of memory issues.
Data overflows automatically into multiple
sheets if a group of data in a sheet exceeds
65000 rows. This overcomes the Microsoft
Excel limitation of 65000 rows per sheet.

When set to false, large reports that use Excel
template can cause out of memory issues.

false

CSV Output Properties
Use the properties described in this table to control comma-separated value output.

Property Name Description Default

CSV delimiter Specifies the character used to delimit the
data in comma-separated value output.
Other options are: Semicolon (;), Tab (\t)
and Pipe (|).

,

Remove leading and trailing
white space

Specify "True" to remove leading and
trailing white space between data
elements and the delimiter.

false

Excel Output Properties
You can set specific properties to control Excel output.

Property Name Description Default

Show grid lines Set to true to show the Excel table grid lines
in the report output.

false

Page break as a new sheet Set to "True" if you want a page break
specified in the report template to generate a
new sheet in the Excel workbook.

true

Chapter 17
Excel Template Properties

17-16

Property Name Description Default

Minimum column width Set the coulmn width in points. When the
column width is less than the specified
minimum and it contains no data, the column
is merged with the preceding column. The
valid range for this property is 0.5 to 20 points.

3 (in points, 0.04 inch)

Minimum row height Set the row height in points. When the row
height is less than the specified minimum and
it contains no data, the row is removed. The
valid range for this property is 0.001 to 5
points.

1 (in points, 0.01 inch)

Keep values in same column Set this property to True to minimize column
merging. Column width is set based on
column contents using the values supplied in
the Table Auto Layout property. Output may
not appear as neatly laid out as when using
the original layout algorithm.

False

Table Auto Layout Specify a conversion ratio in points and a
maximum length in points, for example
6.5,150. See example.

For this property to take effect, the property
"Keep values in same column" must be set to
True.

This property expands the table column width
to fit the contents. The column width is
expanded based on the character count and
conversion ratio up to the maximum
specification.

Example: Assume a report with two columns
of Excel data -- Column 1 contains a text
string that's 18 characters and Column 2 is 30
characters long. When the value of this
property is set to 6.5,150, the following
calculations are performed:

Column 1 is 18 characters:

Apply the calculation: 18 * 6.5pts = 117 pts

The column in the Excel output will be 117 pts
wide.

Column 2 is 30 characters:

Apply the calculation: 30 * 6.5 pts = 195 pts

Because 195 pts is greater than the specified
maximum of 150, Column 2 will be 150 pts
wide in the Excel output.

N/A

Maximum allowable nested
table row count

Specify the maximum allowable row count for
a nested table. Allowed values are 15000 to
999,999.

During report processing, nested inner table
rows cannot be flushed to the XLSX writer,
therefore they stay in-memory, increasing
memory consumption. Set this limit to avoid
out-of-memory exceptions. When this limit is
reached for the size of the inner table,
generation is terminated. The incomplete
XLSX output file is returned.

20,000

Chapter 17
Excel Output Properties

17-17

Property Name Description Default

Open password Use this property to specify the password that
report users must provide to open any XLSX
output file.

Configuration name: xlsx-open-password

NA

Enable row split Set to "true" to avoid stretching a row to a
large height, and allow the row to be split into
multiple rows.

True

EText Output Properties
The table below describes the properties that control EText output files.

Property Name Description Default

Add UTF-8 BOM Signature When set to true, the Etext output is in UTF-8
Unicode with BOM format.

false

Enable bigdecimal When set to true, you enable high-precision
numeric calculation of the Etext output.

false

All Outputs Properties
The properties in the table below apply to all outputs.

Property Name Description Default

Use 11.1.1.5 compatibility
mode

Reserved. Don't update unless instructed by
Oracle.

False

Ignore case for catalog object
path

Specifies whether to ignore the case of the
catalog object path while locating a catalog
object.

False

Allow fallback to seeded
report

Specifies whether to fallback on or to skip
execution of the corresponding seeded report
(pre-defined report) when you don’t have
permission to run the custom report. When
set to true and the user doesn’t have
permission to run the custom report, the
corresponding seeded report executes. When
set to false, you get an error when the custom
report execution fails.

True

Webservice optimization When set to true, Publisher caches the report
definition and avoids multiple requests to the
catalog when the same report runs multiple
times within a short interval of time. Caching
helps to improve the system performance.

True

Define Font Mappings
Map base fonts in RTF or PDF templates to the target fonts to be used in the published
document. Font mapping is performed only for PDF output and PowerPoint output.

There're two types of font mappings:

Chapter 17
EText Output Properties

17-18

• RTF Templates - for mapping fonts from RTF templates and XSL-FO templates to PDF and
PowerPoint output fonts

• PDF Templates - for mapping fonts from PDF templates to different PDF output fonts.

Set Font Mapping at the Site Level or Report Level
A font mapping can be defined at the site level or the report level.

Use the following settings to set the font mapping:

• To set a mapping at the site level, select the Font Mappings link from the Admin page.

• To set a mapping at the report level, select the Configuration link for the report, then
select the Font Mappings tab. These settings apply to the selected report only.

The report-level settings take precedence over the site-level settings.

Create a Font Mapping
From the Admininstration page,

1. In the Admininstration page, under Runtime Configuration, select Font Mappings.

2. Under RTF Templates or PDF Templates, select Add Font Mapping.

3. Enter the following on the Add Font Mapping page:

• Base Font - enter the font family that is mapped to a new font. Example: Arial

• Select the Style: Normal or Italic (Not applicable to PDF Template font mappings)

• Select the Weight: Normal or Bold (Not applicable to PDF Template font mappings)

• Select the Target Font Type: Type 1 or TrueType

• Enter the Target Font
If you selected TrueType, then you can enter a specific numbered font in the collection.
Enter the TrueType Collection (TTC) Number of the desired font.

Predefined Fonts
The following Type1 fonts are built-in to Adobe Acrobat and by default the mappings for these
fonts are available for publishing.

You can select any of these fonts as a target font with no additional setup required.

The Type1 fonts are listed in the table below.

Font Family Style Weight Font Name

serif normal normal Time-Roman

serif normal bold Times-Bold

serif italic normal Times-Italic

serif italic bold Times-BoldItalic

sans-serif normal normal Helvetica

sans-serif normal bold Helvetica-Bold

sans-serif italic normal Helvetica-Oblique

Chapter 17
Define Font Mappings

17-19

Font Family Style Weight Font Name

sans-serif italic bold Helvetica-BoldOblique

monospace normal normal Courier

monospace normal bold Courier-Bold

monospace italic normal Courier-Oblique

monospace italic bold Courier-BoldOblique

Courier normal normal Courier

Courier normal bold Courier-Bold

Courier italic normal Courier-Oblique

Courier italic bold Courier-BoldOblique

Helvetica normal normal Helvetica

Helvetica normal bold Helvetica-Bold

Helvetica italic normal Helvetica-Oblique

Helvetica italic bold Helvetica-BoldOblique

Times normal normal Times

Times normal bold Times-Bold

Times italic normal Times-Italic

Times italic bold Times-BoldItalic

Symbol normal normal Symbol

ZapfDingbats normal normal ZapfDingbats

The TrueType fonts are listed in the table below. All TrueType fonts are subset and embedded
into PDF.

Font Family Name Style Weight Actual Font Actual Font Type

Go Noto Current Jp normal normal GoNotoCurrentJp.tt
f

TrueType
(Japanese flavor)

Go Noto Current Kr normal normal GoNotoCurrentKr.tt
f

TrueType (Korean
flavor)

Go Noto Current Sc normal normal GoNotoCurrentSc.tt
f

TrueType
(Simplified Chinese
flavor)

Go Noto Current Tc normal normal GoNotoCurrentTc.tt
f

TrueType
(Traditional
Chinese flavor)

Included Barcode Fonts
The table lists the barcode fonts included in Publisher.

Font File Supported Algorithm

LibreBarcode128-Regular.TTF code128a, code128b, and code 128c

code128auto to automatically switch between the three
code128 algorithms

Chapter 17
Define Font Mappings

17-20

Font File Supported Algorithm

LibreBarcode39-Regular.TTF code39, code39mod43

LibreBarcodeEAN13Text-Regular.TTF upca, upce

Barcode Font Mapping
Use Libre barcode fonts instead of Monotype barcode fonts in your reports.

Libre supports the same set of barcodes as Monotype (Code 128, Code 39, and UPC), but
Libre uses a encoding scheme different from the encoding scheme Monotype uses.

Barcode Type Default Barcode Font
Name

Monotype Font Libre Font

Code 128 Default Code 128 128R00.TTF LibreBarcode128-
Regular.ttf

Code 39 Default BC 3of9 B39R00.TTF LibreBarcode39-
Regular.ttf

UPC Default UPC-EAN UPCR00.TTF LibreBarcodeEAN13Text
-Regular.ttf

What changes when you use the Libre barcode fonts instead of the Monotype barcode
fonts to generate barcodes?

The barcode output generated might be smaller in size. If the scanner can't read the barcode,
edit the template to increase the barcode field font size, and then test again with your scanner.

Chapter 17
Define Font Mappings

17-21

Part III
Create Style Templates and Subtemplates

This part describes how to create and implement style templates and subtemplates.

Topics:

• Create and Implement Style Templates

• Understand Subtemplates

• Design RTF Subtemplates

• Design XSL Subtemplates

18
Create and Implement Style Templates

This topic describes how to create and implement style templates. A style template is an RTF
template that contains style information that can be applied to other RTF layouts to achieve a
consistent look and feel across your enterprise reports.

Topics:

• Understand Style Templates

• Create a Style Template RTF File

• Upload a Style Template File to the Catalog

• Assign a Style Template to a Report Layout

• Update a Style Template

• Add Translations to a Style Template Definition

Understand Style Templates
A style template is an RTF template that contains style information that can be applied to RTF
layouts.

The style information in the style template is applied to RTF layouts at runtime to achieve a
consistent look and feel across your enterprise reports. You associate a style template to a
report layout in the report definition. Using a style template has the following benefits:

• Enables the same look and feel across your enterprise reports

• Enables same header and footer content, such as company logos, headings, and page
numbering

• Simplifies changing the elements and styles across all reports

About Styles Defined in the Style Template
Use style template to define paragraph and heading styles, table styles, and header and footer
content.

The styles of the following elements can be defined in the style template:

• Paragraph and Heading Styles

You can create a paragraph style in a style template. When this same named style is used
in a report layout, the report layout inherits the following from the style template definition:
font family, font size, font weight (normal, bold), font style (normal, italic), font color, and
text decoration (underline, overline, or strike through).

• Table Styles

Following are some of the style elements inherited from the table style definition: font style,
border style, gridline definition, shading, and text alignment.

• Header and Footer Content

18-1

The header and footer regions of the style template are applied to the report layout. This
includes images, dates, page numbers, and any other text-based content. If the report
layout also includes header and footer content, then it's overwritten.

Style Template Process
Following this process for creating style templates helps ensure consistency across
documents.

Design Time

For the Style Template:

1. Open Microsoft Word.

2. Define named styles for paragraphs, tables, headings, and static header and footer
content. This is the style template.

3. Save this document as a .rtf file.

4. To ensure that you do not lose custom styles in Microsoft Word, also save the document as
a Word Template file (.dot) or save the styles to the Normal.dot file. This file can be shared
with other report designers.

5. Upload the RTF style template file to the catalog.

For the layout template using the style template:

1. In the RTF template, use the same named styles for paragraph and table elements that
you want to be inherited from the style template.

2. Open the report in BI Publisher's Report Editor and select the style template to associate
to the report. Then enable the style template for the specific report layout.

Runtime

When you run the report with the selected layout, Publisher applies the styles, header, and
footer from the style template.

Create a Style Template RTF File
These sections describe how to define the style types in the Microsoft Word document.

For more complete information see the Microsoft Word documentation.

Define Styles for Paragraphs and Headings
Use a paragraph style to define formatting such as font type, size, color, text positioning and
spacing. A paragraph style can be applied to one or more paragraphs. Use a paragraph style
to format headings and titles in the report as well.

To define a paragraph style type:

1. In the Microsoft Word document, from the Format menu, select Styles and Formatting.

2. From the Styles and Formatting task pane, select New Style.

3. In the New Style dialog, enter a name for the style. Select style type: Paragraph. Format
the style using the options presented in the dialog. To see additional paragraph options
(such as font color and text effects), click Format.

Chapter 18
Create a Style Template RTF File

18-2

4. When finished, click OK and the new style is displayed in the list of available formats in the
Styles and Formatting task pane.

5. Select the new style and make an entry in the style template to display the style.

To apply the paragraph style type in the document:

1. Position the cursor within the paragraph (or text) to which you want to apply the style.

2. Select the style from the list of available formats in the Styles and Formatting task pane.
The style is applied to the paragraph.

To modify an existing style type:

1. In the Microsoft Word document, from the Format menu, select Styles and Formatting.

2. From the Styles and Formatting task pane, select and right-click the style to modify.

3. From the menu, select Modify.

To apply heading styles in the document:

1. Position the cursor on the text to which you want to apply the heading style.

2. Select the heading style from the list of available formats in the Styles and Formatting task
pane. The selected heading styles are applied to the report output. For example, in the
HTML report, Heading 1 through Heading 6 styles use H1, H2, H3, H4, H5, and H6 tags
respectively.

Define Styles for Tables
Follow these steps to define styles for tables.

To define a table style type:

1. In the Microsoft Word document, from the Format menu, select Styles and Formatting.

2. From the Styles and Formatting task pane, select New Style.

3. In the New Style dialog, enter a name for the style. Choose style type: Table. Format the
style using the options presented in the dialog. To see additional table options (such as
Table Properties and Borders and Shading), click Format.

4. When finished, click OK and the new style is displayed in the list of available formats in the
Styles and Formatting task pane.

5. Choose the new style and make an entry in the style template to display the style.

To apply the table style type in the document:

1. Position the cursor within the table to which you want to apply the style.

2. Select the table style from list of available formats in the Styles and Formatting task pane.
The style is applied to the table.

Define a Header and Footer
You can define a header and footer in the style template. The contents and sizing of the header
and footer in the style template are applied to the report layouts.

If a header and footer have been defined in the report layout, then they're overwritten. The
header and footer from the style template are applied.

To define a header and footer:

1. In the Microsoft Word document, from the View menu, select Header and Footer.

Chapter 18
Create a Style Template RTF File

18-3

2. Enter header and footer content. This can include a logo or image file, static text, current
date and time stamps, page numbers, or other content supported by Microsoft Word.

Upload a Style Template File to the Catalog
You can place a style template in any folder in the catalog to which you have access.

Your organization might have a designated folder for style templates.

1. On the global header click New, and then click Style Template.

This launches an untitled Style Template properties page.

2. From the Templates region, click the Upload toolbar button.

3. In the Upload Template File dialog, click Browse to select the Template File. Select rtf as
the Type, and select the appropriate Locale.

4. Click Save.

5. In the Save As dialog choose the catalog folder in which to save the style template. Enter
the Name and click Save.

You can upload one RTF file per locale to a Style Template definition. If you upload
additional template files to this Style Template, each file is automatically named as the
locale regardless of the name that you give the file before upload.

6. If you are uploading multiple localized files, then select the file to be used as the default.

Assign a Style Template to a Report Layout
Follow these steps to assign a style template to a report layout.

1. Navigate to the report in the catalog and click Edit to open the report editor.

2. From the default thumbnail view, select View a List. In the Layout region, click the Choose
icon to search for and select the style template from the Publisher catalog.

3. For the layout templates that you want to use the style template, select the Apply Style
Template box for the template. Note that the box is only enabled for RTF templates.

The following figure highlights the actions required to enable a style template in the Report
Editor.

Chapter 18
Upload a Style Template File to the Catalog

18-4

Update a Style Template
You can alter a style template after it has been saved.

To update or edit a saved style template:

1. Navigate to the file in the catalog.

2. Click Edit to open the Style Template properties page.

3. Delete the existing file.

4. Upload the edited file, choosing the same locale.

Add Translations to a Style Template Definition
Style templates offer the same support for translations as RTF template files.

You can upload multiple translated RTF files under a single Style Template definition and
assign the appropriate locale.

Or you can generate an XLIFF (.xlf) file of the translatable strings, translate the strings, and
upload the translated file. These are displayed in the Translations region, as shown in the
following figure:

Chapter 18
Update a Style Template

18-5

At runtime, the appropriate style template is applied based on the user's account Preference
setting for Report Locale for reports viewed online; or, for scheduled reports, based on the
user's selection for Report Locale for the scheduled report.

The XLIFF files for style templates can be generated individually, then translated, and
uploaded individually. Or, if you perform a catalog translation that includes the style template
folders, the strings from the style template files are extracted and included in the larger catalog
translation file. When the catalog translation file is uploaded to Publisher, the appropriate
translations from the catalog file are displayed in the Translations region of the Style Template
definition.

For more information on translations, see Translation Support Overview and Concepts.

Chapter 18
Add Translations to a Style Template Definition

18-6

19
Understand Subtemplates

This topic describes concepts for using subtemplates. A subtemplate is a piece of formatting
functionality that can be defined once and used multiple times within a single layout template
or across multiple layout template files.

Topics:

• What is a Subtemplate?

• Supported Locations for Subtemplates

• Test Subtemplates from the Desktop

• Upload a Subtemplate

• Call a Subtemplate from an External Source

For information on designing an RTF subtemplate, see Design RTF Subtemplates. For
information on designing an XSL subtemplate, see Design XSL Subtemplates.

What is a Subtemplate?
A subtemplate is a piece of formatting functionality that can be defined once and used multiple
times within a single layout template or across multiple layout template files.

This piece of formatting can be in an RTF file format or an XSL file format. RTF subtemplates
are easy to design as you can use Microsoft Word native features. XSL subtemplates can be
used for complex layout and data requirements.

Some common uses for subtemplates include:

• Reusing a common layout or component (such as a header, footer, or address block)

• Handling parameterized layouts

• Handling dynamic or conditional layouts

• Handling lengthy calculations or reusing formulae

About RTF Subtemplates
An RTF subtemplate is an RTF file that consists of one or more <?template:?> definitions,
each containing a block of formatting or commands.

This RTF file, when uploaded to Publisher as a subtemplate object in the Catalog, can be
called from within another RTF Template.

About XSL Subtemplates
An XSL subtemplate is an XSL file that contains formatting or processing commands in XSL for
the Publisher formatting engine to execute. Use an XSL template to include complex
calculations or formatting instructions not supported by the RTF standard.

19-1

This XSL file, when uploaded to Publisher as a Subtemplate object in the Catalog, can be
called from within an RTF Template.

Supported Locations for Subtemplates
It's recommended that you upload subtemplates to the Publisher catalog.

The catalog is the most secure location.

For compatibility with older versions of Publisher, you can also call a subtemplate that resides
in a file on the local server, or on a different server (that can be accessed by HTTP protocol).
Using one of these methods requires specific import syntax and server settings to allow the
communication.

Test Subtemplates from the Desktop
If you have the Template Builder installed, you can preview the template and subtemplate
combination before uploading them to the catalog.

To test from your local environment, you must alter the import template syntax to enable the
processor to locate the subtemplate file on a local directory. To test, enter the import template
syntax as follows:

<?import:file:{local_template_path}?>

For example:

<?import:file:C:///Template_Directory/subtemplate_file.rtf?>

or for an XSL subtemplate file:

<?import:file:C:///Template_Directory/subtemplate_file.xsl?>

You can then select the Preview option in the Template Builder and the processor can locate
the subtemplate and render it from your local environment.

Note that before you upload the primary template to the catalog, you must change the import
syntax to point to the appropriate location in the catalog.

Upload a Subtemplate
You can upload one or more sub templates for use with Publisher.

To upload a subtemplate file:

1. On the global header click New and then click Sub Template. This launches an untitled
Sub Template page.

2. In the Templates region, click Upload.

3. In the Upload Template File dialog, select the subtemplate file for upload.

• Type: Select rtf for RTF subtemplate files or xsl for XSL subtemplate files.

• Locale: Select the appropriate locale for the subtemplate file.

Chapter 19
Supported Locations for Subtemplates

19-2

4. Click Upload.

The subtemplate file is displayed in the Templates region as the locale name that you
selected (for example: English).

5. Click Save. In the Save As dialog choose the catalog folder in which to save the Sub
Template. Enter the Name and click Save.

6. (RTF Sub Templates only) If you are uploading multiple localized files, then select the file
that is to be used as the default. For more information on localization of template files, see
Add Translations to an RTF Subtemplate.

You may upload only one RTF file per locale to a Sub Template definition. If you upload
additional template files to this Sub Template, each file is automatically named as the
locale regardless of the name that you give the file before upload.

Translations are not supported for XSL Sub Templates.

Note that the Sub Template object is saved with the extension ".xsb". You use the Name that
you choose here with the .xsb extension when you import the Sub Template object (for
example: MySubtemplate.xsb).

Call a Subtemplate from an External Source
You can call a subtemplate that resides outside the catalog.

These instructions are provided for backward compatibility only. It's recommended that you
place subtemplates in the catalog.

Note that localization isn't supported for subtemplates that are maintained outside the catalog.

Import a Subtemplate Outside the Catalog over HTTP or FTP
Use a standard protocol, such as http or ftp and enter the import statement as shown here.

<?import:http//myhost:8080/subtemplate.rtf?>

Import Subtemplates Outside the Catalog on the Same Server
If the subtemplate is located on the server, but not in the Publisher catalog, then enter this.

<?import:file://{template_path}?>

where

template_path is the path to the subtemplate file on the server

For example:

<?import:file://c:/Folder/mySubtemplate.rtf?>

Required Settings To Run Sub Templates Stored Outside the Catalog
To run sub templates outside the catalog you must configure the disable external references
property.

Chapter 19
Call a Subtemplate from an External Source

19-3

Using sub templates requires the following FO processing configuration property setting for the
report:

Disable external references: Must be set to False

Chapter 19
Call a Subtemplate from an External Source

19-4

20
Design RTF Subtemplates

This topic describes how to use RTF subtemplates to create and reuse functionality across
multiple reports.

Topics:

• Understand RTF Subtemplates

• Process Overview for Creating and Implementing RTF Sub Templates

• Create an RTF Subtemplate File

• Call a Subtemplate from a Main Template

• When to Use RTF Subtemplates

• Add Translations to an RTF Subtemplate

Understand RTF Subtemplates
An RTF subtemplate is an RTF file that consists of one or more <?template:?> definitions,
each containing a block of formatting or commands.

This RTF file, when uploaded to Publisher as a Sub Template object in the Catalog, can be
called from other RTF templates.

The following graphic illustrates the composition of an RTF Sub Template.

Process Overview for Creating and Implementing RTF Sub
Templates

You must follow this process to work with RTF sub templates.

Using a sub template consists of the following steps (described in the following sections):

20-1

1. Create the RTF file that contains the common components or processing instructions that
you want to include in other templates.

2. Create the calling or "main" layout and include the following two commands:

• import - to import the sub template file to the main layout template.

• call-template - to execute or render the sub template contents in the main layout.

3. Test the template and sub template.

Tip:

You can use the Publisher Desktop Template Viewer to test the main layout plus
sub template before loading them to the catalog. To do so, you must alter the
import template syntax to point to the location of the sub template in the local
environment. See Test Subtemplates from the Desktop.

4. Upload the main template to the report definition and create the Sub Template object in the
catalog. See Upload a Subtemplate.

Create an RTF Subtemplate File
You can create an RTF subtemplate file.

To create an RTF subtemplate file:

1. Enter the components or instructions in an RTF file.

2. Define the instructions as a subtemplate by enclosing the contents in the tags as shown
below.

<?template:template_name?>
 ..subtemplate contents...
<?end template?>

where template_name is the name you choose for the subtemplate. In a single RTF file,
you can have multiple entries, to mark different subtemplates or segments to include in
other files.

<?template:template_name?>
<?end template?>

For example, the following figure shows a sample RTF file that contains two subtemplates,
one named commonHeader and one named commonFooter.

Chapter 20
Create an RTF Subtemplate File

20-2

Call a Subtemplate from a Main Template
There're two entries that you must make to call a subtemplate from a main template.

To implement the subtemplate in a main template, you must make two entries in the main
template:

First, import the subtemplate file to the main template. The import syntax tells the Publisher
engine where to find the Sub Template in the catalog.

Second, enter a call command to render the contents of the subtemplate at the position
desired.

Import the Subtemplate to the Main Template
Enter the import command anywhere in the main template prior to the call template command.

If you do not require a locale, enter the following:

<?import:xdoxsl:///path to subtemplate.xsb?>

where

path to subtemplate.xsb is the path to the subtemplate .xsb object in the catalog.

For example:

<?import:xdoxsl:///Executive/HR_Reports/mySubtemplate.xsb?>

If the subtemplate resides in a personal folder under My Folders, the command to import the
subtemplate is:

<?import:xdoxsl:///~username/path to subtemplate.xsb?>

where username is your user name.

Chapter 20
Call a Subtemplate from a Main Template

20-3

For example, if user myuser uploads a subtemplate called Template1 to a folder called
Subtemplates under My Folders, the correct import statement is:

<?import:xdoxsl:///~myuser/Subtemplates/Template1.xsb?>

Call the Subtemplate to Render Its Contents
You can also enter a call command to render the contents of the subtemplate at the position
that you desire.

• In the position in the main template where you want the subtemplate to render, enter the
call-template command, as follows:

<?call-template:template_name?>

where

template_name is the name you assigned to the contents in the template declaration
statement within the subtemplate file (that is, the <?template:template_name?>
statement).

The following figure illustrates the entries required in a main template:

Import a Localized Subtemplate
To designate the locale of the imported subtemplate, append the locale to the import statement
as shown here.

<?import:xdoxsl:///{path to subtemplate.xsb}?loc={locale_name}?>

where

path to subtemplate.xsb is the path to the subtemplate .xsb object in the catalog

and

locale_name is the language-territory combination which comprises the locale. The locale
designation is optional.

Chapter 20
Call a Subtemplate from a Main Template

20-4

For example:

<?import:xdoxsl:///Executive/HR_Reports/mySubtemplate.xsb?loc=en-US?>

Note that you can also use ${_XDOLOCALE} to import a localized subtemplate based on the
runtime user locale. For example:

<?import:xdoxsl:///Executive/HR_Reports/mySubtemplate.xsb?loc=${_XDOLOCALE}?>

Example
In this example, your company address is a fixed string that is displayed in all your templates.
Rather than reproduce the string in all the templates, you can place it in one subtemplate and
reference it from all the others.

To place the string in a subtemplate and reference it:

1. In an RTF file enter the following template declaration:

<?template:MyAddress?>
My Company
500 Main Street
Any City, CA 98765
<?end template?>

2. Create a Sub Template in the catalog in the following location: Customer Reports/
Templates.

3. Upload this file to the Sub Template and save it as "Common Components" (Publisher
assigns the object the .xsb extension).

4. In the main template, enter the following import statement in a form field or directly in the
template:

<?import:xdoxsl:///Customer Reports/Templates/Common Components.xsb?>

5. In the main template, in the location you want the address to appear, enter:

<?call-template:MyAddress?>
At runtime the contents of the MyAddress subtemplate are fetched and rendered in the layout
of the main template.

This functionality isn't limited to just strings, you can insert any valid RTF template functionality
in a subtemplate, and even pass parameters from one to the other. For examples, see When to
Use RTF Subtemplates.

When to Use RTF Subtemplates
RTF subtemplates can be used in various scenarios.

Following are several common use-cases for RTF subtemplates.

Reuse a Common Layout
Frequently multiple reports require the same header and footer content.

Chapter 20
When to Use RTF Subtemplates

20-5

By using an RTF subtemplate to contain this content, any global changes are simplified and
require updating only the subtemplate instead of each individual layout.

Conditionally Display a Layout Based on a Value in the Data
Subtemplates can also be used to apply conditional layouts based on a value in the report
data.

By using the RTF template "choose" command, you can instruct Publisher to apply a different
<?template?> defined in the subtemplate file.

You cannot conditionalize the import statement for the subtemplate file. Instead, you import
one subtemplate file and conditionalize the call statement. You define the multiple <?template?
> options in the single subtemplate file.

Example
Assume you have a report that is sent to customers in India and the United States. You must
apply a different address layout depending on the country code (COUNTRY_CODE) supplied
in the data. This example uses the RTF templates if statement functionality to call the
subtemplate with the appropriate address format.

The subtemplate file may look as follows:

<?template:US_Address?>
 <?US_Address_Field1?>
 <?US_Address_Field2?>
 <?US_Address_Field3?>
<?end template?>

<?template:IN_Address?>
 <?IN_Address_Field1?>
 <?IN_Address_Field2?>
 <?IN_Address_Field3?>
<?end template?>

To call the sub template with the appropriate address format:

1. Create a Sub Template in the catalog in the following location:

Customers/Invoice Reports

Upload the RTF file and save the Sub Template as Addresses.

2. In the main template enter the following to import the Sub Template:

<?import:xdoxsl:///Customers/Invoice Reports/Addresses.xsb?>

3. In the location where you want the address to display, enter the following:

<?if:COUNTRY_CODE='USA'?>
 <?call:US_Address?>
 <?end if?>
 <?if:COUNTRY_CODE='IN'?>
 <?call:IN_Address?>
 <?end if?>

Chapter 20
When to Use RTF Subtemplates

20-6

When the report is run, the address format is properly applied, depending on the value of
COUNTRY_CODE in the data.

Conditionally Display a Layout Based on a Parameter Value
This example illustrates how to display a different layout based on a user parameter value or a
selection from a list of values. The parameter can be passed to the RTF template and used to
call a different <?template?> within the subtemplate file based on the value.

You cannot conditionalize the import statement for the subtemplate file.

Example
Assume in the report data model that you've defined a parameter named DeptName. Set up
this parameter as type Menu and associate it to a list of values, enabling your user to make a
selection from the list when he views the report in the Report Viewer (or when he schedules
the report).

In the RTF main layout template, enter the following command to capture the value chosen by
the user:

<?param@begin:DeptName?>

To display the layout based on this user selection, you can use an IF statement or a CHOOSE
statement to evaluate the parameter value and call the associated subtemplate.

Use the CHOOSE statement when there're many conditional tests and a default action is
expected for the rest of the values. For example, the Accounting, Sales, and Marketing
departments each require a different layout. All other departments can use a default layout.

To display the layout:

1. Create an RTF file and include the following template declarations:

<?template:tAccounting?>
 - - - Specific Accounting Layout here - - -
<?end template?>

<?template:tSales?>
 - - - Specific Sales Layout here - - -
<?end template?>

<?template:tMark?>
 - - - Specific Marketing Layout here - -
<?end template?>

<?template:tDefault?>
 - - - Default Layout here - - -
<?end template?>

2. Create a Sub Template in the catalog in the following location:

Shared Folders/Executive/Department Expenses
Upload the RTF file and save the Sub Template as DeptSubtemps.

Chapter 20
When to Use RTF Subtemplates

20-7

3. In the main RTF template, include the following commands:

<?import:xdoxsl:///Executive/Department Expenses/DeptSubtemps.xsb?loc=en-US?>

<?param@begin:DeptName?>

<?choose:?>
 <?when:$DeptName='Accounting'?>
 <?call:tAccounting?>
 <?end when?>
 <?when:$DeptName='Sales'?>
 <?call:tSales?>
 <?end when?>
 <?when:$DeptName='Marketing'?>
 <?call:tMark?>
 <?end when?>
 <?otherwise:$>
 <?call:tDefault?>
 <?end otherwise?>
<?end choose:?>

When the user runs the report, the layout applied is determined based on the value of
DeptName. For more information on CHOOSE statements in RTF templates, see Insert
Choose Statements.

Handle Simple Calculations or Repeating Formulae
Simple calculations can also be handled using an RTF subtemplate. More complex formulae
should be handled with an XSL subtemplate.

Example
This example illustrates setting up a subtemplate to contain a formula to calculate interest.

The subtemplate performs the interest calculation on the data in this report and passes the
result back to the main template. The sub template accommodates the possibility that multiple
reports that call this functionality might have different tag names for the components of the
formula.

Assume that you've the following XML data:

<LOAN_DATA>
 <LOAN_AMOUNT>6000000</LOAN_AMOUNT>
 <INTEREST_RATE>.053</INTEREST_RATE>
 <NO_OF_YEARS>30</NO_OF_YEARS>
</LOAN_DATA>

To set up a sub template to contain a formula for calculating interest:

1. In an RTF file, create a template declaration called calcInterest. In this sub template define
a parameter for each of the elements (principal, interest rate, and years) in the formula.
Note that you must set the default value for each parameter.

<?template:calcInterest?>
 <?param:principal;0?>

Chapter 20
When to Use RTF Subtemplates

20-8

 <?param:intRate;0?>
 <?param:years;0?>
 <?number($principal) * number($intRate) * number($years)?>
<?end template?>

2. Create a Sub Template in the catalog in the following location:

Shared Folders/Subtemplates
Upload the RTF file and save the Sub Template as calculations.

3. In the main template, enter the following to import the sub template:

<?import:xdoxsl:///Subtemplates/calculations.xsb?>

4. In the location where you want the results of the calculation to display, enter the following
in a Publisher field:

<?call@inlines:calcInterest?>
 <?with-param:principal;./LOAN_AMOUNT?>
 <?with-param:intRate;./INTEREST_RATE?>
 <?with-param:years;./NO_OF_YEARS?>
<?end call?>

Note the use of the @inlines command here. This is optional. The @inlines command
forces the results to be rendered inline at the location in the template where the call to the
sub template is made. Use this feature, for example, if you want to keep the results on the
same line as a string of text that precedes the call.

Add Translations to an RTF Subtemplate
RTF subtemplates offer the same support for translations as RTF template files.

You can upload multiple translated RTF files under a single Subtemplate definition and assign
the appropriate locale. These are displayed in the Templates region, as shown in the following
figure.

Or you can generate an XLIFF (.xlf) file of the translatable strings, translate the strings, and
upload the translated file. These are displayed in the Translations region.

At runtime, the appropriate subtemplate localization is applied based on the user's account
Preference setting for Report Locale for reports viewed online; or, for scheduled reports,
based on the user's selection for Report Locale for the scheduled report.

The XLIFF files for subtemplates can be generated individually, then translated, and uploaded
individually. Or, if you perform a catalog translation that includes the Sub Template folders, the
strings from the subtemplate files are extracted and included in the larger catalog translation
file. When the catalog translation file is uploaded toPublisher, the appropriate translations from
the catalog file are displayed in the Translations region of the Sub Template definition.

Chapter 20
Add Translations to an RTF Subtemplate

20-9

21
Design XSL Subtemplates

This topic describes how to create XSL subtemplates to create reusable advanced functionality
for your RTF templates.

Topics:

• Understand XSL Subtemplates

• Process Overview for Creating and Implementing XSL Sub Templates

• Create an XSL Subtemplate File

• Call an XSL Subtemplate from the Main Template

• Create the Sub Template Object in the Catalog

• Example Uses of XSL Subtemplates

Understand XSL Subtemplates
An XSL subtemplate is an XSL file that consists of one or more <xsl:template> definitions,
each containing a block of formatting or processing commands.

When uploaded to Publisher as a Sub Template object in the Catalog, this XSL file can be
called from other RTF templates to execute the formatting or processing commands.

XSL subtemplates can handle complex data and layout requirements. Use XSL subtemplates
to transform the data structure for a section of a report (for example, for a chart) or to create a
style sheet to manage a complex layout.

Where to Put XSL Code in the RTF Main Template
When you call the XSL subtemplate within a main RTF subtemplate, you use XSL commands.

You must put this code inside a Publisher field (or Microsoft Word form field). You cannot enter
XSL code directly in the body of the RTF template.

For more information on inserting form fields in an RTF template see Insert a Field.

Process Overview for Creating and Implementing XSL Sub
Templates

You must follow this process when working with XSL sub templates.

Creating and implementing an XSL sub template consists of the following steps:

1. Create the XSL file that contains the common components or processing instructions to
include in other templates.

An XSL sub template consists of one or more XSL template definitions. These templates
contain rules to apply when a specified node is matched.

21-1

2. Create the calling or "main" layout that includes a command to "import" the sub template to
the main template and a command to apply the XSL sub template to the appropriate data
element.

3. Upload the main template to the report definition and create the Sub Template object in the
catalog.

Create an XSL Subtemplate File
Enter the instructions in an editor that enables you to save the file as type ".xsl". An XSL
subtemplate consists of one or more XSL template definitions. These templates contain rules
to apply when a specified node is matched.

The syntax of the subtemplate definition is as follows:

<xsl:template
 name="name"
 match="pattern"
 mode="mode"
 priority="number">
<!--Content:(<xsl:param>*,template) -->
</xsl:template>

The following table describes the components of the template declaration.

Component Description

xsl:template The xsl:template element is used to define a template that can be applied to a
node to produce a desired output display.

name="name" Optional. Specifies a name for the template.

If this attribute is omitted, a match attribute is required.

match="pattern" Optional. The match pattern for the template.

If this attribute is omitted, a name attribute is required.

priority="number" Optional. A number which indicates the numeric priority of the template. More
than one template can be applied to a node. The highest priority value
template is always chosen. The value ranges from -9.0 to 9.0.

Example:

<xsl:template match="P|p">
 <fo:block white-space-collapse="false" padding-bottom="3pt" linefeed-
treatment="preserve">
 <xsl:apply-templates select="text()|*|@*"/>
 </fo:block>
</xsl:template>

<xsl:template match="STRONG|B|b">
 <fo:inline font-weight="bold">
 <xsl:apply-templates/>
 </fo:inline>
</xsl:template>

Chapter 21
Create an XSL Subtemplate File

21-2

Call an XSL Subtemplate from the Main Template
To implement the subtemplate in the main template, make two entries in the main template.

First, import the subtemplate file to the main template. The import syntax tells the Publisher
engine where to find the Sub Template in the catalog.

Second, enter a call command to render the contents of the subtemplate at the position
desired.

Import the Subtemplate
Enter the import command anywhere in the main template prior to the call template command
as shown here.

<?import:xdoxsl:///{path to subtemplate.xsb}?>

where

path to subtemplate.xsb is the path to the subtemplate .xsb object in the catalog.

For example:

<?import:xdoxsl:///Executive/Financial Reports/mySubtemplate.xsb?>

Call the Subtemplate
The template statements that you defined within the XSL subtemplate file are applied to data
elements. There are 'two ways you can call a template defined in the imported XSL
subtemplate.

• By matching the data content with the match criteria:

<xsl:apply-templates select="data_element"/>

This method applies all the templates that are defined in the XSL subtemplate to the
data_element specified. Based on the data content of data_element, appropriate functions
in those templates are applied. See the following use case for a detailed example: Handle
XML Data with HTML Formatting.

• By calling a template by name:

<xsl:call-template name="templateName"/>

This method calls the template by name and the template executes, similar to a function
call. Here also parameters can be passed to the template call, similarly to an RTF
subtemplate. See Pass Parameters to an XSL Subtemplate.

See the following use case for a detailed example: Dynamically Apply Formatting to a
Portion of Data.

Chapter 21
Call an XSL Subtemplate from the Main Template

21-3

Pass Parameters to an XSL Subtemplate
Declare the parameter in the <xsl:template> definition.

To pass parameters to the XSL subtemplate:

1. Declare the parameter in the <xsl:template> definition, as follows:

<xsl:template name="templateName" match="/">
 <xsl:param name="name" />
</xsl:template>

2. Then call this template using the following syntax:

<xsl:call-template name="templateName">
 <xsl:with-param name="name" select="expression">
 <?--- Content:template -->
 </xsl:with-param>
</xsl:call-template>

Create the Sub Template Object in the Catalog
Follow these steps to upload the sub template file.

To upload the sub template file:

1. On the global header click New and then click Sub Template. This launches an untitled
Sub Template page.

2. In the Templates region, click Upload to launch the Upload Template File dialog.

3. Browse for and select the sub template file.

• Type: Select xsl for an XSL sub template file.

• Locale: Select the appropriate locale for the sub template file.

4. Click Upload.

The sub template file is displayed in the Templates region as the locale name that you
selected (for example: en_US).

5. Click Save. In the Save As dialog choose the catalog folder in which to save the Sub
Template. Enter the Name and click Save.

The Sub Template object is saved with the extension ".xsb". Use the Name that you choose
here with the .xsb extension when you import the Sub Template to the report (for example:
MySubtemplate.xsb).

Translations are not supported for XSL Sub Templates.

Example Uses of XSL Subtemplates
These are examples of formatting that can be achieved in a report by using XSL subtemplates.

• Handle XML Data with HTML Formatting

• Dynamically Apply Formatting to a Portion of Data

Chapter 21
Create the Sub Template Object in the Catalog

21-4

Handle XML Data with HTML Formatting
If you have XML data that already contains HTML formatting and you want to preserve that
formatting in the report, then you can preserve that formatting by using an XSL subtemplate to
map the HTML formatting commands to XSL equivalents that can be handled by Publisher.

Note that the HTML must be in XHTML format. This means that all HTML tags must have start
and end tags in the data. For example, if the data uses a simple
 for a break, then you
must add the closing </BR> before you can use this solution.

Following is some sample data with HTML formatting:

<DATA>
 <ROW>
 <PROJECT_NAME>Project Management</PROJECT_NAME>
 <PROJECT_SCOPE>
 <p>Develop an application to produce <i>executive-level summaries</i>
and detailed project reports. The application will allow users to: </p>
 <p>Import existing MS Project files </p>
 <p>Allow the user to map file-specific resources to a central database
entities (i.e., people) and projects; </p>
 <p>Provide structured output that can be viewed by staff and
executives. </p>
 </PROJECT_SCOPE>
 <PROJECT_DEFINITION>Information about current projects is not readily
available to executives. Providing this information creates a reporting
burden for IT staff, who may already maintain this information in Microsoft
Project files. </PROJECT_DEFINITION>
 </ROW>
</DATA>

Assume a report requirement to display this to retain the formatting supplied by these tags as
shown in the following figure:

The following subtemplate uses XSL syntax to match the three HTML tags in the XML data.
The template then replaces the matched HTML string with its XSLFO equivalent.

<xsl:template match="P|p">
 <fo:block white-space-collapse="false" padding-bottom="3pt" linefeed-
treatment="preserve">
 <xsl:apply-templates select="text()|*|@*"/>

Chapter 21
Example Uses of XSL Subtemplates

21-5

 </fo:block>
</xsl:template>

<xsl:template match="STRONG|B|b">
 <fo:inline font-weight="bold">
 <xsl:apply-templates/>
 </fo:inline>
</xsl:template>

<xsl:template match="EM|I|i">
 <fo:inline font-style="italic">
 <xsl:apply-templates/>
 </fo:inline>
</xsl:template>

To use an XSL syntax:

1. Upload the XSL subtemplate file to the Publisher catalog location: Shared Folders/
Projects. Save this subtemplate file as htmlmarkup.xsb.

2. In the main template enter the following to import the subtemplate file:

<?import:xdoxsl:///Projects/htmlmarkup.xsb?>

3. For each field that has HTML markup, call the xsl apply-template command. In this
example, there're two fields:

<xsl:apply-templates select="PROJECT_SCOPE"/>
<xsl:apply-templates select="PROJECT_DEFINITION"/>

The command tells the processor to apply all templates to the value of the element
PROJECT_SCOPE and PROJECT_DEFINITION. It then cycles through the subtemplate
functions looking for a match.

Dynamically Apply Formatting to a Portion of Data
This application of subtemplates is useful for documents that require chemical formulae,
mathematical calculations, or superscripts and subscripts.

For example, in the sample XML data below CO2 is expected to display as CO2 and H2O is
expected to display as H2O.

<ROWSET>
 <ROW>
 <FORMULA>CO2</FORMULA>
 </ROW>
 <ROW>
 <FORMULA>H2O</FORMULA>
 </ROW>
</ROWSET>

This can be achieved by using an XSL subtemplate. Using XSL syntax you can define a
template with any name, for example, "chemical_formatter" that accepts the FORMULA field as
a parameter, and then reads one character at a time. It compares the character with 0 - 9

Chapter 21
Example Uses of XSL Subtemplates

21-6

digits, and if there's a match, then that character is subscripted using the following XSL FO
syntax:

<fo:inline baseline-shift="sub" font-size="75%">

Here is sample code for the XSL template statement:

<xsl:template name="chemical_formatter">
<! - accepts a parameter e.g. H2O - >
<xsl:param name="formula"/>
<! - Takes the first character of the string and tests it to see if it is a
number between 0-9 - > <xsl:variable name="each_char"
select="substring($formula,1,1)"/>
<xsl:choose>
 <xsl:when test="$each_char='1' or $each_char='2'
 or $each_char='3' or $each_char='4' or $each_char='5'
 or $each_char='6' or $each_char='7' or $each_char='8'
 or $each_char='9' or $each_char='0'">
 <! - if it is numeric it sets the FO subscripting properties - >
 <fo:inline baseline-shift="sub" font-size="75%">
 <xsl:value-of select="$each_char"/>
 </fo:inline>
 </xsl:when>
 <xsl:otherwise>
 <! - otherwise the charater is left as is - >
 <fo:inline baseline-shift="normal">
 <xsl:value-of select="$each_char"/>
 </fo:inline>
 </xsl:otherwise>
 </xsl:choose>
 <! - test if there are other chars in the string, if so the recall the
template - >
 <xsl:if test="substring-after($formula,$each_char) !=''">
 <xsl:call-template name="chemical_formater">
 <xsl:with-param name="formula">
 <xsl:value-of select="substring-after($formula,$each_char)"/>
 </xsl:with-param>
 </xsl:call-template>
 </xsl:if>
</xsl:template>

To use this XSL template statement:

1. Save this file as chemical.xsl.

2. Follow the instructions in Upload a Subtemplate. Assume that you name the Sub Template
"Chemical" (it's saved as Chemical.xsb) and place it in the following location: Shared
Folders/Subtemplates.

3. In the main RTF template enter the import syntax:

<?import:xdoxsl:///Subtemplates/Chemical.xsb?>

Chapter 21
Example Uses of XSL Subtemplates

21-7

4. To render the XSL code in the report, create a loop over the data and in the VALUE field
use:

<xsl:call-template name="chemical_formatter">
<xsl:with-param name="formula" select="VALUE"/> </xsl:call-template>

This calls the formatting template with the FORMULA value that is, H2O. Once rendered, the
formulae are shown as expected: H2O.

Chapter 21
Example Uses of XSL Subtemplates

21-8

Part IV
Translate Objects in Pixel-Perfect Reports

This part provides information about translating reports and catalog objects.

Topics:

• Translation Support Overview and Concepts

• Translate Individual Templates

• Translate Catalog Objects, Data Models, and Templates

22
Translation Support Overview and Concepts

This topic provides an overview of concepts related to report and catalog translation in
Publisher.

Topics:

• What Can I Translate in Publisher?

• Work with Translation Files

• Locale Selection Logic

What Can I Translate in Publisher?
You can translate reports and objects in the catalog in Publisher, as described in these
sections:

• What Languages Does Publisher Support?

• Can I Translate Objects in the Catalog?

• Can I Translate Templates?

What Languages Does Publisher Support?
Publisher supports the languages supported by the JRE in use.

See JDK and JRE Supported Languages.

Can I Translate Objects in the Catalog?
Yes, you can translate objects in the catalog. You can extract the translatable strings from all
objects contained in a selected folder in the catalog into a separate file.

You can translate the separate string file, upload the translated file back to the system, and
assign it the appropriate language code. When you extract the strings from the report layouts,
you also extract the user-interface strings that are displayed such as descriptions of catalog
objects and names of report parameters and data displays.

Users viewing the catalog see the item translations that are appropriate for the user interface
language that they selected in their My Account preferences. Users see report translations that
are appropriate for the Report Locale that they selected in their My Account preferences.

Can I Translate Templates?
Yes, you can translate templates by extracting the translatable strings from a single RTF-based
template (including sub templates and style templates) or a single Publisher layout template
(.xpt) file.

Translate a template when you need only the final report documents translated. For example,
you must generate translated invoices to send to German and Japanese customers.

22-1

https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#jfc-table

Work with Translation Files
When you extract the translatable strings for a catalog or template translation, Publisher
creates an XLIFF file that contains the strings.

You can translate these strings within your organization or send the file to a localization
provider. You then upload the translated XLIFF file back to the catalog or the individual layout
and assign it the appropriate locale.

This section describes how to work with an XLIFF file. It contains the following topics:

• What is an XLIFF?

• What is the Structure of an XLIFF File?

What is an XLIFF?
XLIFF is the XML Localization Interchange File Format.

It's the standard format used by localization providers. For more information about the XLIFF
specification, see http://www.oasis-open.org/committees/xliff/documents/xliff-
specification.htm

What is the Structure of an XLIFF File?
XLIFF files must follow a specific structure that's shown in the following example:

<xliff>
 <file>
 <header>
 <body>
 <trans-unit>
 <source>
 <target>
 <note>

The following illustration shows an excerpt from an untranslated XLIFF file.

Chapter 22
Work with Translation Files

22-2

http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm

Source-language and Target-language Attributes
The <file> element includes the source-language and target-language attributes.

The valid value for source-language and target-language attributes is a combination of the
language code and country code as follows:

• the two-letter ISO 639 language code

• the two-letter ISO 3166 country code

For more information on the International Organization for Standardization (ISO) and the code
lists, see the International Organization for Standardization website.

For example, the value for English-United States is "en-US". This combination is also referred
to as a locale.

When you edit the exported XLIFF file, you must change the target-language attribute to the
appropriate locale value of the target language. The following table shows examples of source-
language and target-language attribute values appropriate for the given translations.

Translation (Language/Territory) source-language value target-language value

From English/US To English/Canada en-US en-CA

From English/US To Chinese/China en-US zh-CN

From Japanese/Japan To French/France ja-JP fr-FR

Embedded Data Fields
Some templates contain placeholders for data fields embedded in the text display strings of the
report. Use token to identify the embedded data fields.

Chapter 22
Work with Translation Files

22-3

Don't edit or delete the embedded data field tokens to avoid merging of the XML data with the
template.

For example, the title of the sample report is: Italian Purchase VAT Register - (year)

where (year) is a placeholder in the RTF template that is populated at runtime by data from an
XML element. These fields aren't translatable, because the value comes from the data at
runtime.

To identify embedded data fields, the following token is used in the XLIFF file:

[&n]

where n represents the numbered occurrence of a data field in the template.

For example, in the preceding XLIFF sample, the first translatable string is:

<source>Italian Purchase VAT Register - [&1]<source>

<source> and <target> Elements
Each <source> element contains a translatable string from the template in the source language
of the template. Refer to the illustration for information to create a translation for a source
element string.

For example,

<source>Total</source>
When you initially export the XLIFF file for translation, the source and target elements are all
identical. To create the translation for this template, enter the appropriate translation for each
source element string in its corresponding <target> element.

Therefore if you were translating the sample template into German, you would enter the
following for the Total string:

<source>Total</source>
<target>Gesamtbetrag</target>

The following figure shows the sample XLIFF file from the previous figure updated with the
Chinese translation:

Chapter 22
Work with Translation Files

22-4

Locale Selection Logic
Publisher applies a translation based on the user's selected Report Locale.

Publisher first tries to match an RTF template named for the locale, then an XLIFF file named
for the locale. If an exact match on language-territory isn't found, then Publisher tries to match
on language only.

For example, if you have a report for which the base template is called EmployeeTemplate.rtf
and the locale selected is French (France), then Publisher selects the translation to apply
according to the following hierarchy:

EmployeeTemplate.rtf (fr_FR)

EmployeeTemplate.xlf (fr_FR)

EmployeeTemplate.rtf (fr)

EmployeeTemplate.xlf (fr)

EmployeeTemplate.rtf (default)

With the same set of translations, if the locale selected is French (Switzerland), then the
EmployeeTemplate.rtf (fr) is applied. Now if the available translations are limited to the
following set:

EmployeeTemplate.rtf (fr_FR)

EmployeeTemplate.xlf (fr_FR)

EmployeeTemplate.rtf (default)

and the locale selected is French (Switzerland), then the EmployeeTemplate.rtf (default) is
applied. Even though there's a language match, Publisher doesn't match the different locales.

Chapter 22
Locale Selection Logic

22-5

Therefore, to ensure that a French language translation is used when French is the selected
language, regardless of the selected locale, you must include either an rtf or xlf file named for
the language only (that is, EmployeeTemplate_fr.rtf or EmployeeTemplate_fr.xlf).

Chapter 22
Locale Selection Logic

22-6

23
Translate Individual Templates

This topic describes how to create and upload translated template files to provide translations
for specific templates.

Topics:

• Overview

• Types of Translations

• Use the XLIFF Option

• Use the Localized Template Option

Overview
This chapter describes how to create and upload translated template files when you want to
provide translations only for specific templates.

The following template types can be translated individually:

• RTF layout files

• style templates

• RTF subtemplates

• Publisher layouts (.xpt)

Types of Translations
You can add different types of translations to templates.

There are two options for adding translations for templates:

• Create a separate RTF template that is translated (a localized template). This option is
available for RTF templates only.

Use this option if the translated template requires a different layout from the original
template.

• Generate an XLIFF from the original template. At run time, the original template is applied
for the layout and the XLIFF is applied for the translation.

Use this option if you require only translation of the text strings of the template layout.

Use the XLIFF Option
The XLIFF option is used to translate files.

The following sections describe using the XLIFF option:

• Generate the XLIFF from a Template

• Translate the XLIFF

23-1

• Upload the Translated XLIFF to Publisher

Generate the XLIFF from a Template
These sections describe the two methods for generating an XLIFF for a single template file.

• Generate the XLIFF from the Template Builder (not supported for XPT templates)

• Generate the XLIFF from the Layout Properties Page

Generate the XLIFF from the Template Builder
Follow these steps to generate the XLIFF from the template builder.

This procedure assumes that you;ve installed the Publisher Template Builder for Microsoft
Word.

To generate an XLIFF from the Template Builder:

1. Open the template in Microsoft Word with the Template Builder for Word installed.

2. On the Template Builder tab, in the Tools group, click Translation, and then click Extract
Text.

Publisher extracts the translatable strings from the template and exports them to an XLIFF
(.xlf file).

3. Save the XLIFF to a local directory.

Generate the XLIFF from the Layout Properties Page
You can generate the XLIFF file for report layout templates or for style templates and
subtemplates.

To generate the XLIFF file for report layout templates:

1. Navigate to the report in the catalog and click Edit to open it for editing.

2. From the thumbnail view of the report layouts, click the Properties link of the layout (RTF
or XPT) to open the Layout Properties page.

3. In the Translations region, click Extract Translation.

Publisher extracts the translatable strings from the template and exports them to an XLIFF
(.xlf) file.

4. Save the XLIFF file to a local directory.

To generate the XLIFF file for style templates and subtemplates:

1. Navigate to the style template or sub template in the catalog and click Edit to open the
Template Manager.

2. In the Translations region, click Extract Translation.

Publisher extracts the translatable strings from the template and exports them to an XLIFF
(.xlf) file.

3. Save the XLIFF file to a local directory.

Translate the XLIFF
When you've downloaded the XLIFF file, it can be sent to a translation provider, or using a text
editor, you can enter the translation for each string.

Chapter 23
Use the XLIFF Option

23-2

A "translatable string" is any text in the template that is intended for display in the published
report, such as table headers and field labels. Text supplied at runtime from the data isn't
translatable, nor is any text that you supply in the Microsoft Word form fields.

You can translate the template XLIFF file into as many languages as desired and associate
these translations to the original template. Ensure that when you save your translated file, you
save it with UTF-8 encoding.

Upload the Translated XLIFF to Publisher
After a XLIFF file is translated, upload the XLIFF file toPublisher.

To upload the translated XLIFF:

1. Navigate to the report, subtemplate, or style template in the catalog and click Edit to open
it for editing.

For reports only:

From the thumbnail view of the report layouts, click the Properties link of the layout to
open the Template Manager.

2. In the Translations region, click the Upload toolbar button.

3. In the Upload Translation File dialog, locate the file in a local directory and select the
Locale for this translation.

4. Click OK to upload the file and view it in the Translations table.

Use the Localized Template Option
If you must design a different layout for the reports that you present for different localizations,
then you can create a new RTF file that is designed and translated for the locale and upload
this file to the Template Manager.

The localized template option isn't supported for XPT templates. The following sections
describe using the localized template option:

• Design the Localized Template File

• Upload the Localized Template to Publisher

Design the Localized Template File
Use the same tools that you used to create the base template file, translating the strings and
customizing the layout as desired for the locale.

Upload the Localized Template to Publisher
You can upload several types of templates to Publisher.

To upload the localized template:

1. Navigate to the report, subtemplate, or style template in the catalog and click Edit to open
it for editing.

For reports only:

From the thumbnail view of the report layouts, click the Properties link of the layout to
open the Template Manager.

Chapter 23
Use the Localized Template Option

23-3

2. In the Templates region, click the Upload toolbar button.

3. In the Upload Template File dialog, locate the file in a local directory, select rtf as the
Template Type and select the Locale for this template file.

4. Click OK to upload the file and view it in the Templates table.

Chapter 23
Use the Localized Template Option

23-4

24
Translate Catalog Objects, Data Models, and
Templates

This topic describes translating the catalog objects, data models, and templates using the
Export XLIFF function that is available at the catalog level.

Topics:

• Overview

• What Can Be Translated?

• Export the XLIFF File

• Identify and Update the Object Tags

• Import the XLIFF File

Overview
This chapter describes how to use the Export XLIFF function that is available at the catalog
level.

When you select a folder and choose this option, a single XLIFF file is generated that contains
the translatable strings from the catalog objects contained in the folder; and the RTF and XPT
templates contained in the folder. See the following section for the detailed list of what is
translatable.

The target strings in the generated XLIFF file can be translated into the desired language. The
XLIFF can then be uploaded back to the repository and assigned the appropriate locale. The
translated strings from the XLIFF are displayed when a user selects the target language as
their UI language (for catalog object strings) or selects the target language as their Report
Locale (for report template strings).

What Can Be Translated?
Specific strings can be translated into different languages.

The following table shows what strings can be translated.

Object What Can Be Translated Preference That Determines
Translation Displayed

Folder Name Description UI Language (applies to all)

Data Model Name Description Data Display
Name

UI Language (applies to all)

Report Name Description Layout Names
Data Model Reference Parameter
Name

UI Language (applies to all)

Style Template Name Static text in the template UI Language Report Locale

24-1

Object What Can Be Translated Preference That Determines
Translation Displayed

Sub Template Name Static text in the template UI Language Report Locale

Publisher Layouts (.xpt) Static text in the layout Report Locale

RTF Layouts Static text in the layout Report Locale

About Source Language Limitations
Translation of Publisher catalog objects using the Export XLIFF function is available at the
catalog level.

For catalog translation, the source language is limited to "en". You must create catalog and
data model objects in English locale to be able to translate them.

Export the XLIFF File
Follow these steps to export an XLIFF file for a catalog folder.

1. Select the folder in the catalog.

2. Click the Translation toolbar button and then click Export XLIFF.

Publisher extracts the translatable strings from the catalog folder objects and exports them
to an XLIFF (.xlf file).

3. Save the XLIFF file to a local directory.

Identify and Update the Object Tags
In the XLIFF file generated for a catalog object, the source-language and target-language
attributes contain values for the two-letter language code.

For information on how to manually update the XLIFF files with translation strings, see What is
an XLIFF?

Import the XLIFF File
When the target tags have been translated you are ready to import the XLIFF file back to
Publisher.

To import an XLIFF file:

1. Navigate to the folder from which the XLIFF file was generated.

2. From the toolbar, click the Translation button and select Import XLIFF.

3. In the Upload dialog click Browse to locate the translated file and then select the
appropriate locale from the list.

4. Click Upload.

Chapter 24
Export the XLIFF File

24-2

Part V
Reference Information

This part provides reference information for pixel-perfect reports.

Topics:

• Techniques for Handling Large Output Files

• Extended Function Support in RTF Templates

• Design Accessible Reports

• Supported XSL-FO Elements

• Generate PDF/A and PDF/X Output

• Generate Accessible PDF Output

• Generate CSV Output

• PDF Version Support

• Test Templates with Template Viewer

• Frequently Asked Questions for Publisher Data Models and Reports

25
Techniques for Handling Large Output Files

This topic describes techniques that are available to improve performance when the report
generates very large PDF output files.

Topics:

• Reuse Static Content

• Generate Zipped PDF Output

• Implement PDF Splitting for an RTF Template

• Implement PDF Splitting for a PDF Template

Reuse Static Content
This section describes how to reuse static, repeating content in a PDF report output to reduce
the overall PDF file size.

This section contains the following topics:

• What is Static Content Reuse?

• Limitations of this Feature

• Define Reusable Content in an RTF Template

• Example

What is Static Content Reuse?
If the report contains static content and the placement of that content in the report is also fixed
(for example, a set of instructions on the back of a Federal W-2 form), then you can use this
feature to reduce the size of the generated PDF file.

Using the W-2 form as an example, the report has the expected output shown in the following
illustration.

25-1

For each employee, specific content is rendered, but the back (or second) page of each
contains an identical set of instructions.

This set of instructions can be defined as reusable static content. When content is identified as
reusable static content, the PDF document includes the static content only once and
references it in other places when needed, thereby reducing the overall output file size.

Limitations of this Feature
This feature has the following limitations.

• The static content to be reused in the generated report must fit onto one page of the
generated PDF output.

• The contents of the report before the static content must have a fixed height. For example,
the W-2 form has a fixed set of fields that occur before the static content is to be rendered.
The reusable static contents are placed in the same position from the page origin for each
occurrence.

• This feature can only be used with RTF templates generating PDF output.

Define Reusable Content in an RTF Template
To define the static content to be reused, use these tags around the content in the template.

<?reusable-static-content:?>

… static content here …

<?end reusable-static-content?>

Chapter 25
Reuse Static Content

25-2

Inserting these tags around the static content signals Publisher to include this content only
once in the generated file and then reference it in the same position for each occurrence.

Example
This example illustrates an implementation of this feature. The sample report generates one
occurrence per employee. The generated report has employee-specific information on the front
page of each occurrence, and static instructions that print on the back of each occurrence. A
section break occurs after each employee to reset page numbering.

The following figure illustrates the template structure:

Generate Zipped PDF Output
When generating PDF output, Publisher doesn't limit the size of the output file. However, when
the size of the file approaches 2 GB, Adobe Acrobat Reader may no longer be able to open or
handle the file. Publisher provides a feature to split a large PDF output file into smaller, more
manageable files, while still maintaining the integrity of the report as one logical unit.

When PDF output splitting is enabled for a report, the report is split into multiple files generated
in one zip file. The output type is PDFZ. For easy access to the component files, Publisher also
generates an index file that specifies from and to elements contained in each component PDF
file.

To enable this feature, the report designer must set up the report using the methods described
in this section.

Chapter 25
Generate Zipped PDF Output

25-3

Limitations and Prerequisites
Perform these steps before using this feature, and be aware of its functional limitations.

• This feature is supported only for PDF output that is generated from an RTF template or a
PDF template.

• Dataset input to the report must be flat XML data (that is, ROWSET/ROW). The dataset
cannot be hierarchical or concatenated.

• The dataset must be sorted by the element designated as the "repeat" element (as
described below).

Design Time Considerations
To enable report splitting, the report designer must determine these steps.

• Select a repeat element to serve as the counter.

• Determine how many instances of the repeat element occur per PDF file.

• Select which data elements to include in the generated index file.

Select the Output Type
After uploading the template to the report definition, enable Zipped PDFs as an output type.

The output type menu is shown in the following illustration.

When scheduling the report, select PDFZ as the output type, as shown in the following
illustration.

Chapter 25
Generate Zipped PDF Output

25-4

Implement PDF Splitting for an RTF Template
This section describes how to enable PDF splitting for reports generated from RTF templates.

This section includes the following topics:

• Enter the Commands in an RTF Template

• Example - split by each department

Enter the Commands in an RTF Template
When you design a template to use this feature, you must add commands to specify these
queries.

• What element in the data is repeated (using the simple for-each command)

• How many occurrences of the element are included in each PDF file

• What information (data elements) to include in the index file

To achieve this, the following two commands must be entered in the template within the for-
each loop of the element by which you want the document to split:

• <?catalog-index-info:name;element_name?>
where

name is the name that you choose that is used in the index file to identify the from and to
records included in each document.

element_name is the XML tag name of the element that provides the value for name that
you identify above.

The catalog-index-info command defines the construction of the index file that is created.

• <?if:position() mod n = 0?><?document-split:?><?end if?>
where

n is the number of records you want included per PDF file.

This command must be placed within the for-each loop of the element being counted. This
command instructs Publisher to split the document after the next page break when the
number of records equals the n value.

Chapter 25
Implement PDF Splitting for an RTF Template

25-5

Each time the document-split is performed, the name-value pairs defined in the catalog-
index-info command are written to the index files.

Example - split by each department
This example is based on the XML data given here.

This example is based on the following XML data:

<DATA_DS>
 <G_EMP>
 <DEPARTMENT_NAME>Sales</DEPARTMENT_NAME>
 <FIRST_NAME>Ellen</FIRST_NAME>
 <LAST_NAME>Abel</LAST_NAME>
 <HIRE_DATE>1996-05-11T00:00:00.000-07:00</HIRE_DATE>
 <SALARY>11000</SALARY>
 </G_EMP>
 <G_EMP>
 <DEPARTMENT_NAME>Sales</DEPARTMENT_NAME>
 <FIRST_NAME>Sundar</FIRST_NAME>
 <LAST_NAME>Ande</LAST_NAME>
 <HIRE_DATE>2000-03-24T00:00:00.000-08:00</HIRE_DATE>
 <SALARY>6400</SALARY>
 </G_EMP>
 <G_EMP>
 <DEPARTMENT_NAME>Shipping</DEPARTMENT_NAME>
 <FIRST_NAME>Mozhe</FIRST_NAME>
 <LAST_NAME>Atkinson</LAST_NAME>
 <HIRE_DATE>1997-10-30T00:00:00.000-08:00</HIRE_DATE>
 <SALARY>2800</SALARY>
 </G_EMP>
 <G_EMP>
 <DEPARTMENT_NAME>IT</DEPARTMENT_NAME>
 <FIRST_NAME>David</FIRST_NAME>
 <LAST_NAME>Austin</LAST_NAME>
 <HIRE_DATE>1997-06-25T00:00:00.000-07:00</HIRE_DATE>
 <SALARY>4800</SALARY>
 </G_EMP>

...
</DATA_DS>

In this example, the output PDF report includes a document for each employee. You want a
new PDF file generated for each department. You want the index to list the FIRST_NAME and
LAST_NAME from each record that is included in the PDF file.

To achieve this output, enter the following in the template:

<?for-each-group:ROW;./DEPARTMENT_NAME?>
<?for-each:current-group()?>
<?catalog-index-info:'First Name';FIRST_NAME?>
<?catalog-index-info:'Last Name';LAST_NAME?>
...
<?end for-each?>

Chapter 25
Implement PDF Splitting for an RTF Template

25-6

<?document-split:?>
<?end for-each-group?>

Implement PDF Splitting for a PDF Template
This section describes the commands required in a PDF template to split the output into
multiple PDF files.

Enter the Commands in the PDF Template
To enable this feature for a PDF template, enter the three form fields listed in this table here in
the template with the specified commands in the Tooltip field.

Form Field Name Tooltip Command

REPEAT-ELEMENT <?repeat-element:element name?>, where element_name is the
XML tag name of the repeating element that is counted. Example: <?
repeat-element:emp_id?>

CATALOG-INDEX-INFO <?catalog-index-info:'Name';element_name?>, where Name is
the label that appears in the index file for the element_name that you
specify. The index generates a From and To listing for each file in the
zipped set. Example: <?catalog-index-info:'Last
Name';LAST_NAME?>
You can include multiple occurrences of the catalog-index-info command
to include multiple data elements in the index file.

SPLIT-COUNT <?split-count:n?>, where n is the number of occurrences of the
repeat-element that triggers the creation of a new file. Example: <?
split-count:10000?>

Chapter 25
Implement PDF Splitting for a PDF Template

25-7

26
Extended Function Support in RTF Templates

This topic describes SQL and XSL functions extended by Publisher for use in RTF templates.

Topics:

• Extended SQL and XSL Functions

• XSL Equivalents

• Use FO Elements

Extended SQL and XSL Functions
Publisher has extended a set of SQL and XSL functions for use in RTF templates.

The syntax for these extended functions is

<?xdofx:expression?>
for extended SQL functions or

<?xdoxslt:expression?>
for extended XSL functions.

You can't mix xdofx statements with XSL expressions in the same context. For example,
assume that you had two elements, FIRST_NAME and LAST_NAME to concatenate into a 30-
character field and right pad the field with the character "x". You couldn't use the following:

<?xdofx:rpad(concat(FIRST_NAME,LAST_NAME),30, 'x')?>

because concat is an XSL expression. Instead, you could use the following:

<?xdofx:rpad(FIRST_NAME||LAST_NAME),30,'x')?>

The supported functions are shown in the following table:

SQL Statement or
XSL Expression

Usage Description

2+3 <?xdofx:2+3?> Addition

2-3 <?xdofx:2-3?> Subtraction

2*3 <?xdofx:2*3?> Multiplication

2 div 3 <?xdofx:2 div 3?> Division

2**3 <?xdofx:2**3?> Exponential

3||2 <?xdofx:3||2?> Concatenation

26-1

SQL Statement or
XSL Expression

Usage Description

sdiv() <?xdoxslt:sdiv(num1,num2,
string)?>

Returns a specified value if the result of the function is
not a number (NaN). In the syntax shown, num1 is the
dividend; num2 is the divisor and string is the value to
be returned if NaN is returned.

Examples:

<?xdoxslt:sdiv(10,0, '0')?> would yield '0'

<?xdoxslt:sdiv(10,0, 'None')?> would yield
'None'.

lpad() <?xdofx:lpad('aaa',10,'.')?> Pads the left side of a string with a specific set of
characters. The syntax for the lpad function is:
lpad(string1,padded_length,[pad_string])string1 is the
string to pad characters to (the left-hand
side).padded_length is the number of characters to
return.pad_string is the string that is padded to the left-
hand side of string1 .

rpad() <?xdofx:rpad('aaa',10,'.')?> Pads the right side of a string with a specific set of
characters. The syntax for the rpad function is:
rpad(string1,padded_length,[pad_string]).string1 is the
string to pad characters to (the right-hand
side).padded_length is the number of characters to
return.pad_string is the string that is padded to the
right-hand side of string1

trim() <?xdoxslt:trim(' a ')?> Removes spaces in a string. Enter the text to be
trimmed, the function returns the trimmed text.

ltrim() <?xdoxslt:ltrim(' a ')?> Removes the leading white spaces in a string.

rtrim() <?xdoxslt:rtrim(' a ')?> Removes the trailing white spaces in a string.

truncate() <?xdoxslt:truncate (number [,
integer])?>

Returns number truncated to integer places right of the
decimal point. If integer is omitted, then number is
truncated to the whole integer value. integer can be
negative to truncate values left of the decimal point.
integer must be an integer. Example: <?
xdoxslt:truncate(-2.3333)?> returns -2
Example: <?xdoxslt:truncate(2.7777, 2)?>
returns 2.77 Example: <?
xdoxslt:truncate(27.7777, -1)?> returns 20

replicate() <?xdoxslt:replicate('string',
integer)?>

Replicates the specified string the specified number of
times. Example: <?xdoxslt:replicate('oracle',
3)?> returns oracleoracleoracle

decode() <?
xdofx:decode('xxx','bbb','ccc','
xxx','ddd')?>

Uses the functionality of an IF-THEN-ELSE statement.
The syntax for the decode function is:
decode(expression, search, result [,search, result]...[,
default])expression is the value to compare.search is
the value that is compared against expression.result is
the value returned, if expression is equal to
search.default is returned if no matches are found.

Chapter 26
Extended SQL and XSL Functions

26-2

SQL Statement or
XSL Expression

Usage Description

instr()
<?
xdofx:instr('abcabcabc','a',2)?
>

Returns the location of a substring in a string. The
syntax for the instr function is: instr(string1,string2,
[start_position],[nth_appearance])string1 is the string
to search.string2 is the substring to search for in
string1.start_position is the position in string1 where
the search starts. The first position in the string is 1. If
the start_position is negative, the function counts back
start_position number of characters from the end of
string1 and then searches towards the beginning of
string1.nth appearance is the nth appearance of
string2.

substr() <?xdofx:substr('abcdefg',2,3)?> Extracts a substring from a string. The syntax for the
substr function is: substr(string, start_position,
length)string is the source string.start_position is the
position for extraction. The first position in the string is
always 1.length is the number of characters to extract.

left() <?xdoxslt:left('abcdefg', 3)?> Extracts the specified number of characters from a
string, starting from the left. The syntax is left(string,
Numchars) For example, <?
xdoxslt:left('abcdefg', 3)?> returns abc

right() <?xdoxslt:right('abcdefg', 3)?> Extracts the specified number of characters from a
string, starting from the right. The syntax is right(string,
Numchars) For example, <?
xdoxslt:right('abcdefg', 3)?> returns efg

replace() <?
xdofx:replace(name,'John','Jon')
?>

Replaces a sequence of characters in a string with
another set of characters. The syntax for the replace
function is: replace(string1,string_to_replace,
[replacement_string])string1 is the string to replace a
sequence of characters with another set of
characters.string_to_replace is the string that is
searched for in string1.replacement_string is optional.
All occurrences of string_to_replace are replaced with
replacement_string in string1.

to_number() <?xdofx:to_number('12345')?> Converts char, a value of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 datatype that contains a
number in the format that is specified by the optional
format model fmt, to a value of NUMBER datatype.

format_number() <?xdoxslt:format_number(12345,
n, $_XDOLOCALE)?>

Converts a number to a string and formats the number
according to the locale specified in $_XDOLOCALE
and to the number of decimal positions specified in n
using Java's default symbols. For example: <?
xdoxslt:format_number(-12345, 2, 'fr-FR')?
> returns -12 345,00

format_number() <?xdoxslt:format_number(12345,
n, s1, s2,$_XDOLOCALE)?>

Converts a number to a string and uses the specified
separators: s1 for the thousand separator and s2 for
the decimal separator. For example: <?
xdoxslt:format_number(12345, 2, 'g',
'd', $_XDOLOCALE)?> returns 12g345d00

pat_format_number() <?
xdoxslt:pat_format_number(12345,
'##,##0.00', $_XDOLOCALE)?>

Returns a number formatted with the specified pattern.
For example: <?
xdoxslt:pat_format_number(12345,
'##,##0.00', $_XDOLOCALE)?> returns 12,345.00

Chapter 26
Extended SQL and XSL Functions

26-3

SQL Statement or
XSL Expression

Usage Description

to_char() <?xdofx:to_char(value [,fmt])?> Converts a value (character, date, or number) to
VARCHAR2 datatype, using the optional number
format fmt.

For example, <?xdofx:to_char(emp_id)?> returns
the employee ID in string format.

For example, <?xdofx:to_char(SYSDATE, 'dd-
mm-yyyy')?> returns the current date in dd-mm-yyyy
format.

to_date() <?xdofx:to_date (char [, fmt [,
'nlsparam']])

Converts char of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of DATE datatype.
The fmt is a date format specifying the format of char.
If you omit fmt, then char must be in the default date
format. If fmt is 'J', for Julian, then char must be an
integer.

format_date() <?xdoxslt:format_date(./
AnyDate,'yyyy-MM-dd','MM/dd/
yyyy', $_XDOLOCALE, $_XDOTIMEZON
E)?>

Reads date in one format and creates in another
format.

sysdate() <?xdofx:sysdate()?> Returns the current date and time in XML canonical
date format (for example:
1997-07-16T19:20:30.45+01:00). The datatype of the
returned value is DATE. The function requires no
arguments. See Display the System Date (sysdate) in
Reports for information on properly formatting the
sysdate in report output.

current_date() <?
xdoxslt:current_date($_XDOLOCALE
, $_XDOTIMEZONE)?> Example: <?
xdoxslt:current_date('ja-JP',
'Asia/Tokyo')?>

Returns the current date in yyyy-MM-dd format in the
given locale and timezone. This function supports only
the Gregorian calendar.

current_time() <?
xdoxslt:current_time($_XDOLOCALE
, $_XDOTIMEZONE)?> Example: <?
xdoxslt:current_time('ja-JP',
'Asia/Tokyo')?>

Returns the current time in the given locale and
timezone. This function supports only the Gregorian
calendar.

maximum_date() <?
xdoxslt:maximum_date(ELEMENT_NAM
E)?>

Returns the maximum value of the element in the set.
Element should have date value in "yyyy-MM-dd" or
"yyyy-MM-dd'T'HH:mm:ss" format. Return value is a
number representing the milliseconds since January 1,
1970, 00:00:00 GMT. This number can be converted
back to date using the millis_to_date() function.

minimum_date() <?
xdoxslt:minimum_date(ELEMENT_NAM
E)?>

Returns the minimum value of the element in the set.
Element should have date value in "yyyy-MM-dd" or
"yyyy-MM-dd'T'HH:mm:ss.ms" format. Return value is
a number representing the milliseconds since January
1, 1970, 00:00:00 GMT. This number can be converted
back to date using the millis_to_date() function.

Chapter 26
Extended SQL and XSL Functions

26-4

SQL Statement or
XSL Expression

Usage Description

millis_to_date() <?
xdoxslt:millis_to_date(number)?>

Translates a date value, which is a number
representing the milliseconds since January 1, 1970,
00:00:00 GMT to "yyyy-MM-dd'T'HH:mm:ss.ms+00:00"
format. Using the format_date() function, the formatted
date value can be further converted to a required date
format for display on a report.

date_to_millis() <?xdoxslt:date_to_millis(date)?> Translates a date value in "yyyy-MM-dd" or "yyyy-MM-
dd'T'HH:mm" format to a number representing the
milliseconds since January 1, 1970, 00:00:00 GMT.

minimum() <?xdoxslt:minimum(ELEMENT_NAME)?
>

Returns the minimum value of the element in the set.

date_diff() <?xdoxslt:date_diff('y', 'YYYY-
MM-DD', 'YYYY-MM-
DD', $_XDOLOCALE, $_XDOTIMEZONE)
?>

This function provides a method to get the difference
between two dates in the given locale. The dates must
be in "yyyy-MM-dd" format. This function supports only
the Gregorian calendar. The syntax is as follows: <?
xdoxslt:date_diff('format', 'YYYY-MM-DD',
'YYYY-MM-DD', $_XDOLOCALE, $_XDOTIMEZONE)?
> where format is the time value for which the
difference is to be calculated. Valid values are:

• y - for year
• m - for month
• w - for week
• d - for day
• h - for hour
• mi - for minute
• s - for seconds
• ms - for milliseconds
Example: <?xdoxslt:date_diff('y',
'2000-04-08',
'2001-05-01', $_XDOLOCALE, $_XDOTIMEZONE)?
>
returns 1

Example: <?xdoxslt:date_diff('m',
'2001-04-08',
'2000-02-01', $_XDOLOCALE, $_XDOTIMEZONE)?
>
returns -14

Example: <?xdoxslt:date_diff('d',
'2006-04-08', '2006-04-01', $_XDOLOCALE,
'America/Los_Angeles')?>
returns -7

sec_diff() <?
xdoxslt:sec_diff('2000-04-08T20:
00:00',
'2000-04-08T21:00:00', $_XDOLOCA
LE, $_XDOTIMEZONE?>

Returns the difference between two dates in seconds
in the given locale. The dates must be in "yyyy-MM-
dd'T'HH:mm:ss". This function supports only Gregorian
calendar. Example: <?
xdoxslt:sec_diff('2000-04-08T20:00:00',
'2000-04-08T21:00:00', $_XDOLOCALE, $_XDOT
IMEZONE?> returns 3600

Chapter 26
Extended SQL and XSL Functions

26-5

SQL Statement or
XSL Expression

Usage Description

get_day <?
xdoxslt:get_day('2000-04-08', $_
XDOLOCALE)?>

Returns the day value of a date in yyyy-MM-dd format
in the given locale. This function supports only the
Gregorian calendar. Example: <?
xdoxslt:get_day('2000-04-08', $_XDOLOCALE)
?> returns 8

get_month <?
xdoxslt:get_month('2000-04-08',
$_XDOLOCALE)?>

Returns the month value of a date in yyyy-MM-dd
format in the given locale. This function supports only
the Gregorian calendar. Example: <?
xdoxslt:get_month('2000-04-08', $_XDOLOCAL
E)?> returns 4

get_year <?
xdoxslt:get_year('2000-04-08', $
_XDOLOCALE)?>

Returns the year value of a date in yyyy-MM-dd format
in the given locale. This function supports only the
Gregorian calendar. Example: <?
xdoxslt:get_year('2000-04-08', $_XDOLOCALE
)?> returns 2000

month_name <?xdoxslt:month_name(1,
0, $_XDOLOCALE)?>

Returns the name of the month in the given locale.
This function supports only the Gregorian calendar.
The syntax for this function is: <?
xdoxslt:month_name(month,
[abbreviate?], $_XDOLOCALE)?> where month is
the numeric value of the month (January = 1) and
[abbreviate?] is the value 0 for do not abbreviate or 1
for abbreviate. Example: <?
xdoxslt:month_name(12, 1, 'fr-FR')?> returns
dec. Example" <?xdoxslt:month_name(1,
0, $_XDOLOCALE)?> returns January

maximum <?xdoxslt:maximum(ELEMENT_NAME)?
>

Returns the maximum value of the element in the set.

abs <?xdoxslt:abs(-123.45)?> Returns the absolute value of the number entered.
Example: <?xdoxslt:abs(-123.45)?> Returns:
123.45

chr <?xdofx:chr(n)?> Returns the character having the binary equivalent to n
in either the database character set or the national
character set.

ceil() <?xdofx:ceil(n)?> Returns smallest integer greater than or equal to n.

floor() <?xdofx:floor(n)?> Returns largest integer equal to or less than n.

round (SQL function) <?xdofx:round (number [,
integer])?>

Returns number rounded to integer places right of the
decimal point. If integer is omitted, then number is
rounded to 0 places. integer can be negative to round
off digits left of the decimal point. integer must be an
integer. Example: <?xdofx:round (2.777)?>
returns 3 Example: <?xdofx:round (2.777, 2)?>
returns 2.78

round (XSLT function) <?xdoxslt:round (number [,
integer])?>

Returns number rounded to integer places right of the
decimal point. If integer is omitted, then number is
rounded to 0 places. integer can be negative to round
off digits left of the decimal point. integer must be an
integer. Example: <?xdoxslt:round (2.777)?>
returns 3 Example: <?xdoxslt:round (2.777, 2)?
> returns 2.78

Chapter 26
Extended SQL and XSL Functions

26-6

SQL Statement or
XSL Expression

Usage Description

lower() <?xdofx:lower (char)?> Returns char, with all letters lowercase. char can be
any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The return value is
the same datatype as char.

upper() <?xdofx:upper(char)?> Returns char, with all letters uppercase. char can be
any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The return value is
the same datatype as char.

length <?xdofx:length(char)?> Returns the length of char. LENGTH calculates length
using characters as defined by the input character set.

greatest <?xdofx:greatest (expr [,
expr]...)?>

Returns the greatest of the list of exprs. All exprs after
the first are implicitly converted to the datatype of the
first expr before the comparison.

least <?xdofx:least (expr [,
expr]...)?>

Returns the least of the list of exprs. All exprs after the
first are implicitly converted to the datatype of the first
expr before the comparison.

next_element <?xdoxslt:next_element(current-
group(),.,'<element-name>')?>

Returns the next element in the current group. Returns
the element that occurs after the element named. For
example: <?xdoxslt:next_element(current-
group(),.,'employee')?> returns the element that
occurs in the current group after "employee".

prev_element <?xdoxslt:prev_element(current-
group(),..,'<element-name')?>

Returns the previous element in the current group.
Returns the element that occurs before the element
named. For example: <?
xdoxslt:prev_element(current-
group(),.,'employee')?> returns the element that
occurs in the current group before "employee".

set_array <?xdoxslt:set_array($_XDOCTX,
'<name of hash table>', n,
'<value>')?>

Sets a value in a hash table. Syntax is <?
xdoxslt:set_array($_XDOCTX, '<name of hash
table>', n, '<value>')?>where $_XDOCTX is
required to set the context, <name of hash table>
is the name that you supply for your table n is the index
of the hash table <value> is the value to set in the
hash table. For example: <?
xdoxslt:set_array($_XDOCTX, 'Employee', 2,
'Jones')?> See get_array below.

get_array <?xdoxslt:get_array($_XDOCTX,
'<name of hash table>', n)?>

Returns the value at the specified index of the hash
table. Syntax is <?xdoxslt:get_array($_XDOCTX,
'<name of hash table>', n)?>
where $_XDOCTX is required to set the context,
<name of hash table> is the name you supplied for
your table in set_array n is the index value of the
element you want returned. For example, used in
conjunction with the set_array example above, <?
xdoxslt:get_array($_XDOCTX, 'Employee',
2)?> returns Jones

Chapter 26
Extended SQL and XSL Functions

26-7

SQL Statement or
XSL Expression

Usage Description

register_replace_string <?
xdoxslt:register_replace_string(
$_XDOCTX,
'<string_to_be_replaced>',
'<replacement_string>')?>

Registers the <string_to_be_replaced> with
the <replacement_string> . After you register
the <replacement_string>, use the
normalize_string function to print
the <replacement_string>.

For example, if you want to replace
'áàâäéèêëíìîïóòôöúùûü' string with
 'aaaaeeeeiiiioooouuuu' string and print the
replacement string, first use the
register_replace_string function and then use
the normalize_string function.

1. Register the replacement string.
<?
xdoxslt:register_replace_string($_XDOCT
X, 'áàâäéèêëíìîïóòôöúùûü',
'aaaaeeeeiiiioooouuuu')?>

2. Print the replacement string.
<?xdoxslt:normalize_string($_XDOCTX,
'áàâäéèêëíìîïóòôöúùûü')?>
Output: aaaaeeeeiiiioooouuuu

The following table shows supported combination functions.

SQL Statement Usage

(2+3/4-6*7)/8 <?xdofx:(2+3/4-6*7)/8?>
lpad(substr('1234567890',5,3),10,'^') <?xdofx:lpad(substr('1234567890',5,3),10,'^')?>
decode('a','b','c','d','e','1')||instr('321',1,1) <?xdofx:decode('a','b','c','d','e','1')||

instr('321',1,1)?>

Number-To-Word Conversion
This function enables the conversion of numbers to words for RTF template output.

This is a common requirement for check printing.

Syntax of to_check_number() function:

<?xdofx:to_check_number(amount, precisionOrCurrency, caseType, decimalStyle)?>

The following table describes the function attributes.

Attribute Description Valid Value

amount The number to be transformed. Any number

Chapter 26
Extended SQL and XSL Functions

26-8

Attribute Description Valid Value

precisionOrCurrency For this attribute you can specify either the
precision, which is the number of digits after
the decimal point; or the currency code, which
governs the number of digits after the decimal
point. The currency code doesn't generate a
currency symbol in the output.

An integer, such as 2; or a currency code,
such as 'USD'.

caseType The case type of the output. Valid values are: 'CASE_UPPER',
'CASE_LOWER', 'CASE_INIT_CAP'

decimalStyle Output type of the decimal fraction area. Valid values are:
'DECIMAL_STYLE_FRACTION1',
'DECIMAL_STYLE_FRACTION2',
'DECIMAL_STYLE_WORD'

To print the check number in Indian numbering format, use the toCheckNumberIN function
instead of to_check_number.

The following table displays the example function as entered in an RTF template and the
returned output.

RTF Template Entry Returned Output

<?xdofx:to_check_number(12345.67, 2)?> Twelve thousand three hundred forty-five and
67/100

<?xdofx:to_check_number(12345.67, 'USD')?> Twelve thousand three hundred forty-five and
67/100

<?xdofx:to_check_number(12345, 'JPY',
'CASE_UPPER')?>

TWELVE THOUSAND THREE HUNDRED FORTY-
FIVE

<?xdofx:to_check_number(12345.67, 'EUR',
'CASE_LOWER', 'DECIMAL_STYLE_WORDS')?>

twelve thousand three hundred forty-five and sixty-
seven

<?
xdofx:to_check_number(43526152,'INR','CASE_U
PPER','DECIMAL_STYLE_WORDS')?>

FORTY-THREE MILLION FIVE HUNDRED
TWENTY-SIX THOUSAND ONE HUNDRED
FIFTY-TWO

<?
xdoxslt:toCheckNumberIN(43526152,'INR','CASE_
UPPER','DECIMAL_STYLE_WORDS')?>

FOUR CRORES THIRTY FIVE LAKHS TWENTY
SIX THOUSAND ONE HUNDRED FIFTY TWO

XSL Equivalents
Publisher provides syntax equivalent with XSL.

The following table lists the simplified syntax with the XSL equivalents.

Supported XSL Elements Description Publisher Syntax

<xsl:value-of select=
"name">

Placeholder syntax <?name?>

<xsl:apply-templates
select="name">

Applies a template rule to the current
element's child nodes.

<?apply:name?>

<xsl:copy-of select="name"> Creates a copy of the current node. <?copy-of:name?>
<xsl:call-template
name="name">

Calls a named template to be inserted
into/applied to the current template.

<?call:name?>

Chapter 26
XSL Equivalents

26-9

Supported XSL Elements Description Publisher Syntax

<xsl:sort select="name"> Sorts a group of data based on an
element in the dataset.

<?sort:name?>

<xsl:for-each select="name"> Loops through the rows of data of a group,
used to generate tabular output.

<?for-each:name?>

<xsl:choose> Used in conjunction with when and
otherwise to express multiple conditional
tests.

<?choose?>

<xsl:when test="exp"> Used in conjunction with choose and
otherwise to express multiple conditional
tests

<?when:expression?>

<xsl:otherwise> Used in conjunction with choose and
when to express multiple conditional tests

<?otherwise?>

<xsl:if test="exp"> Used for conditional formatting. <?if:expression?>
<xsl:template name="name"> Template declaration <?template:name?>
<xsl:variable name="name"> Local or global variable declaration <?variable:name?>
<xsl:import href="url"> Import the contents of one stylesheet into

another
<?import:url?>

<xsl:include href="url"> Include one stylesheet in another <?include:url?>
<xsl:stylesheet
xmlns:x="url">

Define the root element of a stylesheet <?namespace:x=url?>

Use FO Elements
You can use most FO elements in an RTF template inside the Microsoft Word form fields.

The FO elements listed in the following table have been extended for use with Publisher RTF
templates. The syntax can be used with either RTF template method.

The full list of FO elements supported by Publisher can be found in the Supported XSL-FO
Elements.

FO Element Publisher Syntax

<fo:page-number-citation ref-id="id"> <?fo:page-number-citation:id?>

<fo:page-number> <?fo:page-number?>

<fo:ANY NAME WITHOUT ATTRIBUTE> <?fo:ANY NAME WITHOUT ATTRIBUTE?>

Chapter 26
Use FO Elements

26-10

27
Design Accessible Reports

This topic describes techniques for designing reports to increase accessibility of report output
for users with disabilities.

Topics:

• Design for Accessibility

• Design Accessible Reports Using RTF Templates

• Design Accessible Reports Using Publisher Layouts

Design for Accessibility
When creating content for consumption by a wide variety of users, you must plan to provide
support for users with various disabilities. Such support is a legal requirement in many
locations throughout the world.

You can follow several general guidelines when designing content for consumption by a variety
of people with differing abilities. These guidelines apply to any content that you create for
Publisher or other applications. You must also be aware of features that are specific to
Publisher that ensure that the content that you provide supports accessibility requirements.

This section contains the following topics on designing for accessibility:

• Obtain General Information

• Avoid Common Misconceptions

• Follow General Guidelines for Accessible Content

• Use the Template Builder to Verify Report Accessibility

Obtain General Information
You can locate information about accessibility across the Information Technology industry in
numerous published books.

This guide doesn't intend to duplicate those works. Various standards and legislation are
documented, especially as part of the World Wide Web Consortium (W3C) and Section 508 of
the United States Rehabilitation Act.

Avoid Common Misconceptions
Many designers make assumptions about technology and accessibility. Some of the more
common misconceptions are listed in this section.

• HTML content automatically equals accessible content.

• Accessible tools automatically create accessible content.

• Automated testing tools can reliably determine accessibility.

27-1

None of these assumptions is correct. Developers can create non-accessible content using
HTML. A tool that can produce accessible content might not do so by default, or might allow a
developer to select options that turn off the accessible features within existing accessible
content. Automated testing tools do not always interact with content the same way that end
users do. As a result, the tools can erroneously report accessible elements as non-accessible.
Therefore, accessibility is ultimately the responsibility of the content designer. When creating
content, designers must be aware of certain common practices to ensure the content is
accessible to all users.

Follow General Guidelines for Accessible Content
Always consider the fact that multiple disabilities exist and that multiple disabilities might
manifest in the same individual. You must also remember that there're varying degrees of
certain disabilities (such as the various types of color vision deficiency). Your designs must
take all these possibilities into account.

This section contains guidelines on the following general areas of design:

• "Color Selection"

• "Color Contrast"

• "Font Selection"

Color Selection
Many different types of color vision deficiency exist, from an inability to see the difference
between one common color pair such as red-green (the most common deficiency), all the way
to full color blindness where a person can see only varying shades of gray and black. Using
only color to convey critical information means that certain users are not fully aware of all the
pertinent information about a subject. And, of course, a blind user needs any information
conveyed by color to also be present in an alternate textual format.

As a developer, you must not create any content that provides key information by color alone.
One example of a non-accessible design is to denote negative numbers solely by coloring the
text red. Another example is a typical "stoplight" indicator where the only context information
comes from its color — green for good and red for bad.

Use Color with Text
You can use color in designs if you also include another indication of the same information.

For example, you can include a minus sign or parentheses to denote negative numbers in
tables and pivots. For stoplight displays, you can add descriptive text or different shaped icons
in addition to the color. You can include text such as "Status: good." You can include green
circles for "good," yellow triangles for "warning," and red octagons for "bad."

Color Contrast
Because color vision deficiency can also manifest as an inability to distinguish between subtle
shades of similar colors, overall color design of all screen elements must provide a large
amount of contrast.

You should strive to achieve a minimum of a 4.5:1 color luminosity contrast ratio. For example,
use black text on a white background instead of dark gray text on a light gray background.

Chapter 27
Design for Accessibility

27-2

Font Selection
Users with low visual acuity often use screen magnification software to make the screen easier
to read. The fonts that you use should be readable even when magnified by accessibility tools
by as much as 20 times.

Some fonts do not display well when magnified, while others do. For example, the Tahoma font
magnifies well.

Use the Template Builder to Verify Report Accessibility
You use the Template Builder for Word to create RTF templates that can generate reports with
accessibility features.

The Template Builder also provides an accessibility checker to review the template for features
that enhance the accessibility of the report for report consumers who may need assistive
technologies to view the report.

For more information, see Check Accessibility.

Design Accessible Reports Using RTF Templates
This section describes the following techniques for designing reports using RTF templates.

• Avoid Nested Tables or Separated Tables

• Define a Document Title

• Define Alternative Text for an Image

• Define a Table Summary

• Define a Table Column Header

• Define a Table Row Header

• Define a Layout Table

• Sample Supported Tables

Avoid Nested Tables or Separated Tables
Avoid using nested tables in a report. For a complex report, try breaking down complex tables
into several simple, straightforward tables.

The following figure shows a simple table.

The following figure shows an example of a nested table: A table is inserted inside a table-cell.

Chapter 27
Design Accessible Reports Using RTF Templates

27-3

Examples
These are examples of table structures that Publisher does and doesn't support for
accessibility.

Nested Tables
Publisher doesn't support accessibility when nested tables are used in a report.

In the following illustration, Publisher can't tell to which column data "C1R1data" belongs.

Remove the nested table as shown in the following illustration.

Table Headers Must Not Be Separated from the Table Body
To ensure accessibility, table headers must be part of the table they belong to.

The example shown in the following illustration isn't supported because the header, table body
and accessibility fields exist in three different tables.

Chapter 27
Design Accessible Reports Using RTF Templates

27-4

These three tables should be joined into one to support accessibility, as shown in the following
illustration.

Define a Document Title
You can define a document title. The procedure differs slightly depending on the version of
Microsoft Word.

To define a document title in Microsoft Word 2007:

1. Click Office and click Prepare.

2. Click Properties and define the title.

Define Alternative Text for an Image
You can define alternative text for an image in the template.

To define alternative text for an image:

1. Right-click the image.

2. On the menu, click Format Picture.

3. On the Alt Text tab, enter alt: followed by the alternative text and end with a semicolon.

For example,

alt:flower picture;

Define a Table Summary
Add a table summary to a table by inserting this command.

<?table-summary: 'My Table Test '?>

in the first column and first row position of the table.

Define a Table Column Header
You can define a table column header. The procedure differs slightly depending on the version
of Microsoft Word.

To define a table column header:

1. Select the heading row or rows. The selection must include the first row of the table.

2. On the Design tab, in the Table Style Options group, select Header Row.

Chapter 27
Design Accessible Reports Using RTF Templates

27-5

3. Right-click the table and select Table Properties.

4. In the Table Properties dialog, click the Row tab and then select Repeat as Header row at
the top of each page.

Define a Table Row Header
To define multiple row headers, use the Publisher command.

<?acc-row-header:col_index?>

Example Usage:

<?acc-row-header:'1,2,4'?> ==> column 1, 2 and 4 will be row-headers.

<?acc-row-header:'1,4'?> ==> column 1 and 4 will be row-headers.

In the following figure, the code behind the ACC field is:

ACC Field=<?table-summary:'My Table Test '?><?acc-row-header:'1,2'?>

which defines the first two columns as row headers.

Sample Supported Tables
The following illustrations display sample tables for which accessibility is supported.

Chapter 27
Design Accessible Reports Using RTF Templates

27-6

Design Accessible Reports Using Publisher Layouts
This section describes the following techniques for designing accessible reports using the
Publisher layout editor.

• Define Document Titles

• Define Alternative Text for Images

• Define Summary Text for Tables

• Define Table Row Headers

• Define Text Header Levels

Chapter 27
Design Accessible Reports Using Publisher Layouts

27-7

Define Document Titles
You define the title of a report at the same time as you save the report layout. You can also
rename the report at a later time.

Define Alternative Text for Images
You can define alternative text for images so that they're describable in accessibility mode.

To define alternative text for an image:

1. Select an image such as a chart.

2. On the Properties pane, expand Misc.

3. In the Alternative Text property, enter the alternative text for the image.

Define Summary Text for Tables
You can define a text summary to describe a table within a report.

To define summary table text:

1. Select a table.

2. On the Properties pane, expand Misc.

3. In the Summary property, enter the table summary text.

Define Table Row Headers
Table row headers summarize each row in a table. The layout editor automatically includes
table row headers on all inserted tables. No further action is required.

Define Text Header Levels
You can define text header levels to specify structures within a report.

To define text header levels:

1. Select a text item.

2. On the Properties pane, expand Misc.

3. In the Header Level property, select a value 1 to 6.

Define a Layout Table
You can use layout tables to present information in columns and rows and arrange content
without using headers and a table summary.

Use a layout table when you don’t need column headers, row headers, IDs, table summary,
and other semantics used by a data table. When you've enabled accessibility mode, if you
leave the value of the summary property empty or if you set <?table-summary:?> in a table,
Publisher sets role=”presentation” for that table, and specifies that table as a layout table in
the HTML output.

To define a layout table:

Chapter 27
Design Accessible Reports Using Publisher Layouts

27-8

1. Select a table.

2. On the Properties pane, expand Misc.

3. In the Summary property, make sure the value is empty.

Chapter 27
Design Accessible Reports Using Publisher Layouts

27-9

28
Supported XSL-FO Elements

This topic lists the XSL-FO elements that are supported by Publisher in RTF templates.

• Supported XSL-FO Elements

Supported XSL-FO Elements
The following table lists the XSL-FO elements supported in this release.

For each element the supported content elements and attributes are listed. If elements have
shared supported attributes, these are noted as a group and are listed in the subsequent table,
Property Groups. For example, several elements share the content element "inline." Rather
than list the inline properties each time, each entry notes that "inline-properties" are supported.
The list of inline-properties can then be found in the Property Groups table.

Element Supported Content Elements Supported Attributes

basic-link external-graphic

inline

leader

page-number

page-number-citation

basic-link

block

block-container

table

list-block

wrapper

marker

retrieve-marker

inline-properties

external-destination

internal-destination

bidi-override bidi-override

external-graphic

instream-foreign-object

inline

leader

page-number

page-number-citation

basic-link

inline-properties

28-1

Element Supported Content Elements Supported Attributes

block external-graphic

inline

page-number

page-number-citation

basic-link

block

block-container

table

list-block

wrapper

block-properties

block-container block

block-container

table

list-block

wrapper

block-properties

bookmark-tree bookmark N/A

bookmark bookmark

bookmark-title

external-destination

internal-destination

starting-state

bookmark-title N/A color

font-style

font-weight

conditional-page-master-
reference

N/A master-reference page-
position

• first
• last
• rest
• any
• inherit
odd-or-even

• odd
• even
• any
• inherit
blank-or-not-blank

• blank
• not-blank
• any
• inherit

external-graphic N/A graphic-properties

src

flow block

block-container

table

list-block

wrapper

flow-properties

Chapter 28
Supported XSL-FO Elements

28-2

Element Supported Content Elements Supported Attributes

inline external-graphic

inline

leader

page-number

page-number-citation

basic-link

block

block-container

table

wrapper

inline-properties

instream-foreign-object N/A graphic-properties

layout-master-set page-sequence-master

simple-page-master

simple-page-master

page-sequence-master

N/A

leader N/A inline-properties

list-block list-item block-properties

list-item list-item-label

list-item-body

block-properties

list-item-body block

block-container

table

list-block

wrapper

block-properties

list-item-label block block-container table list-block
wrapper

block-properties

page-number N/A empty-inline-properties

page-number-citation N/A empty-inline-properties

ref-id

page-sequence static-content

flow

inheritable-properties

id

master-reference

initial-page-number

• auto
• <page-number>
force-page-count

• auto
• end-on-even
• end-on-odd
• end-on-even-layout
• end-on-odd-layout
• no-force
• inherit
format

Chapter 28
Supported XSL-FO Elements

28-3

Element Supported Content Elements Supported Attributes

page-sequence-master single-page-master-reference

repeatable-page-master-reference

repeatable-page-master-alternatives

master-name

region-after N/A side-region-properties

region-before N/A side-region-properties

region-body N/A region-properties

margin-properties-CSS

column-count

region-end N/A side-region-properties

region-start N/A side-region-properties

repeatable-page-master-
alternatives

conditional-page-master-reference maximum-repeats

repeatable-page-master-
reference

N/A master-reference

maximum-repeats

root bookmark-tree

layout-master-set

page-sequence

inheritable-properties

simple-page-master region-body

region-before

region-after

region-start

region-end

margin-properties-CSS

master-name

page-height

page-width

reference-orientation

• 0
• 90
• 180
• 270
• -90
• -180
• -270
• 0deg
• 90deg
• 180deg
• 270deg
• -90deg
• -180deg
• -270deg
• inherit
writing-mode

• lr-tb

single-page-master-reference N/A master-reference

static-content block

block-container

table

wrapper

flow-properties

Chapter 28
Supported XSL-FO Elements

28-4

Element Supported Content Elements Supported Attributes

table table-column

table-header

table-footer

table-body

block-properties

table-body table-row inheritable-properties

id

table-cell block

block-container

table

list-block

wrapper

block-properties

number-columns-spanned

number-rows-spanned

table-column N/A inheritable-properties

column-number

column-width

number-columns-repeated

table-footer table-row inheritable-properties

id

table-header table-row inheritable-properties

id

table-row table-cell inheritable-properties

id

wrapper inline

page-number

page-number-citation

basic-link

block

block-container

table

wrapper

inheritable-properties

id

Property Groups Table
These properties support XSL-FO elements.

The following table lists the supported properties belonging to the attribute groups defined in
Supported XSL-FO Elements.

Chapter 28
Supported XSL-FO Elements

28-5

Property Group Properties

area-properties clip

overflow (visible, hidden)

reference-orientation

• 0
• 90
• 180
• 270
• -90
• -180
• -270
• 0deg
• 90deg
• 180deg
• 270deg
• -90deg
• -180deg
• -270deg
• inherit
writing-mode (lr-tb, rl-tb, lr, rl)

baseline-shift (baseline, sub, super)

vertical-align

block-properties inheritable-properties

id

Chapter 28
Supported XSL-FO Elements

28-6

Property Group Properties

border-padding-background-
properties

background-color

background-image

background-position-vertical

background-position-horizontal

border

border-after-color

border-after-style (none, dotted, dashed, solid, double)

border-after-width

border-before-color

border-before-style (none, solid)

border-before-width

border-bottom

border-bottom-color

border-bottom-style (none, dotted, dashed, solid, double)

border-bottom-width

border-color

border-end-color

border-end-style (none, dotted, dashed, solid, double)

border-end-width

border-left

border-left-color

border-left-style (none, dotted, dashed, solid, double)

border-left-width

border-right

border-right-color

border-right-style (none, dotted, dashed, solid, double)

border-right-width

border-start-color

border-start-style (none, dotted, dashed, solid, double)

border-start-width

border-top

border-top-color

border-top-style (none, dotted, dashed, solid, double)

border-top-width

border-width

padding

padding-after

padding-before

padding-bottom

padding-end

padding-left

padding-right

padding-start

padding-top

box-size-properties height

width

Chapter 28
Supported XSL-FO Elements

28-7

Property Group Properties

character-properties font-properties

text-decoration

empty-inline-properties character-properties

border-padding-background-properties

id

color

flow-properties inheritable-properties

id

flow-name

font-properties font-family

font-size

font-style (normal, italic, oblique)

font-weight (normal, bold)

table-omit-header-at-break (TRUE, FALSE, inherit)

table-omit-footer-at-break (TRUE, FALSE, inherit)

graphic-properties border-padding-background-properties

margin-properties-inline

box-size-properties

font-properties

keeps-and-breaks-properties-atomic

id

inheritable-properties border-padding-background-properties

box-size-properties

margin-properties-inline

area-properties

character-properties

line-related-properties

leader-properties

keeps-and-breaks-properties-block

color absolute-position

• auto
• absolute
• fixed
• inherit

inline-properties inheritable-properties id

keeps-and-breaks-properties-
atomic

break-after (auto, column, page)

break-before (auto,column)

keep-with-next

keep-with-next.within-page

keeps-and-breaks-properties-
block

keeps-and-breaks-properties-inline

Chapter 28
Supported XSL-FO Elements

28-8

Property Group Properties

keeps-and-breaks-properties-
inline

keeps-and-breaks-properties-atomic

keep-together

keep-together.within-line

keep-together.within-column

keep-together.within-page

leader-properties leader-pattern (rule, dots)

leader-length

leader-length.optimum (dotted, dashed, solid, double)

rule-thickness

line-related-properties text-align (start, center, end, justify, left, right, inherit)

text-align-last (start, center, end, justify, left, right, inherit)

text-indent

linefeed-treatment (ignore, preserve, treat-as-space, treat-as-zero-width-
space, inherit)

white-space-treatment (ignore, preserve, ignore-if-before-linefeed,
ignore-if-after-linefeed, ignore-if-surrounding-linefeed, inherit)

white-space-collapse (FALSE, TRUE, inherit)

wrap-option (no-wrap, wrap, inherit)

direction (ltr)

margin-properties-block margin-properties-CSS

space-after

space-after.optimum

space-before

space-before.optimum

start-indent

end-indent

margin-properties-CSS margin

margin-bottom

margin-left

margin-right

margin-top

margin-properties-inline margin-properties-block

space-start

space-start.optimum

space-end

space-end.optimum

position

• static
• relative
• absolute
• fixed
• inherit
top

left

Chapter 28
Supported XSL-FO Elements

28-9

Property Group Properties

region-properties border-padding-background-properties

area-properties

region-name

side-region-properties region-properties

extent

Chapter 28
Supported XSL-FO Elements

28-10

29
Generate PDF/A and PDF/X Output

This topic describes how to generate PDF/A and PDF/X output from Publisher.

Topics:

• Generate PDF/A Output

• Generate PDF/X output

Generate PDF/A Output
PDF/A is a variation of PDF file format designed for the long-term archiving of electronic
documents.

Some governments and standards organizations require PDF/A to ensure preservation of
documents. A PDF/A file is a PDF file viewable by PDF viewers such as Adobe Reader, but the
PDF/A file must follow additional requirements specified in the ISO standard. These
requirements specify both required objects and features not supported for long-term archiving.

You can generate the PDF/A-1A, PDF/A-1B, PDF/A-2A, PDF/A-2B, PDF/A-3A, or PDF/A-3B
variation of the PDF/A standard. In the PDF/A version property, specify the PDF/A version you
want to use and then specify PDF/A output for the report.

Requirements and Limitations
PDF/A output has specified requirements and limitations.

Limitations and requirements for generating PDF/A output:

• Supported template types: RTF, FO, XPT, and XSL.

• Font requirements: By default, all fonts in the template are replaced with Go Noto fonts in
the output. To use a different font in the output, specify the font mappings in the report
configuration.

• PDF features not supported in PDF/A documents:

– All audio and video content, including Flash embedding

– Transparency (transparent colors render as opaque). Use PDF/A–2B to support
transparency.

– Encryption

• Reprocessing by utilities isn't supported: Reprocessing PDF/A file using the
PDFBookBinder, PDFDocMerger, or PDFSignature (digital signature) utitlities isn't
supported. The reprocessed PDF file may lose conformance to the PDF/A standard.

• Required report configuration properties: The report run-time properties must be set as
shown in the following table.

29-1

Property Required Setting

Enable PDF Security

(pdf-security)

Must be set to false

Encryption Level

(pdf-encryption-level)

Must be set to 0

Formatting properties specific to PDF/A output can be set in the Report Properties dialog.
For more information, see PDF/A Output Properties.

Additional Resources
For more information about the PDF/A standard, refer to the Adobe website. Refer also to the
iso.org website for articles 'Use of PDF 1.4 (PDF/A-1)' and 'Addendum Cor 1:2007'.

Generate PDF/X output
PDF/X is a collection of ISO standards that defines methods for the exchange of digital graphic
data using PDF to ensure predictable and consistent printing in a professional print
environment.

A PDF/X document is a PDF file viewable by PDF readers such as Adobe Reader, but it
follows an additional set of rules defined by the ISO specifications. These rules specify both
required objects and features not supported for graphics exchange. The PDF/X standard
follows strict rules in color management. Publisher supports the PDF/X-1a:2003 variation of the
PDF/X standard.

Prerequisites
The generation of PDF/X output requires that you obtain the International Color Consortium
(ICC) profile data file and place it under <bi publisher repository>/Admin/Configuration.

The ICC profile is a binary file describing the color characteristics of the intended output
device. For production environments, the color profile may be provided by your print vendor or
by the printing company that prints the generated PDF/X file. An example of an ICC profile
data file is: CoatedFOGRA27.icc.

Profile data is also available from Adobe or colormanagement.org.

Requirements and Limitations
PDF/X output has specified requirements and limitations.
The following lists limitations of and requirements for generating PDF/X output:

• Supported template types: The following template types support the generation of PDF/X:
RTF, FO, XPT, and XSL. There're no additional template requirements to generate PDF/X.

• Color requirements: The color data in the template (text color, images, and SVG) is stored
as RGB data, but at the time the PDF/X file is generated, the color data is converted to
CMYK using an ICC profile that you must provide to Publisher. Specify the ICC profile
using the PDF/X ICC Profile Data property. See the following table.

• PDF features not supported in PDF/X documents:

– Transparency (transparent colors render as opaque)

– Encryption

Chapter 29
Generate PDF/X output

29-2

• Font requirements: By default, all fonts are replaced with Go Noto fonts. To use a different
font in the output, specify the font mappings in the report configuration.

• Reprocessing by Publisher utilities isn't supported: Reprocessing of the PDF/X file using
the Publisher utilities PDFBookBinder, PDFDocMerger, or PDFSignature isn't supported.
The reprocessed file becomes a regular PDF file and may lose conformance to the PDF/X
standard.

• Required report configuration properties: The report run-time properties must be set as
shown in the following table.

Property Required Setting

Enable PDF Security

(pdf-security)

Must be set to false.

Encryption Level

(pdf-encryption-level)

Must be set to 0.

Formatting properties specific to PDF/X output can be set in the Report Properties dialog.
Of the formatting properties, the following two are required:

Property Description Valid Values

PDF/X ICC Profile Data The name of the ICC profile
data file placed under
<Publisher repository>/Admin/
Configuration.

ICC profile data file name, for
example: CoatedFOGRA27.icc

PDF/X output condition identifier The name of one of the
standard printing conditions
registered with ICC. The list of
standard CMYK printing
conditions to use with PDF/X-1a
is provided on the ICC website.

A valid "Reference name," for
example: FOGRA43

For more information, see PDF/X Output Properties.

Additional Resources
For more information about the PDF/X standard, refer to the Adobe website and the iso.org
website.

Refere to these documents:

• Application Notes for PDF/X Standards prepared by the Committee for Graphic Arts
Technologies Standards.

• ISO 15930-4:2003 Graphic technology - Prepress digital data exchange using PDF - Part
4: Complete exchange of CMYK and spot color printing data using PDF 1.4 (PDF/X-1a)
published in iso.org website.

Chapter 29
Generate PDF/X output

29-3

30
Generate Accessible PDF Output

An accessible PDF output is a structured document that includes a document title and the PDF
tags. The paragraph, link, image, table, and list elements are tagged in accessible PDF
documents.

Prerequisites

Set the property for generating accessible PDF output at the report-level for specific reports or
at the global level for all PDF outputs. See Configure Accessible PDF Output for Reports.

Requirements and Limitations

Element Requirements Limitations

Text Format the text using heading styles
such as heading1, heading2, and
heading3.

Don’t justify text because screen
readers might not correctly find the
spaces between words when the line is
justified.

Table Tables must have headers. The
PDF/UA standard recommends adding
the headers. Adobe Acrobat reports a
table without header as an error.

If you add a table summary, the
summary will be added as a table
attribute in PDF documents. However,
the PDF/UA format doesn't require a
summary.

Don’t use a table for layout purpose.
Whether a table is used as a data table
or as a layout table, all tables are
tagged as tables.

Don’t use colspan or rowspan. The
PDF/UA format allows spans, but
Acrobat reports tables with spans as an
error (irregular table).

Image Add alternate text to every image. NA

Document Create bookmarks when you expect the
output to contain more than 21 pages.
The PDF/UA format doesn't require
bookmarks, but Acrobat reports a large
document without bookmarks as an
error.

Add the document title. You can add a
title in the template, or you can set the
title using the pdf-document-title
runtime parameter.

NA

Header and footer Use headers and footers only for
providing the pagination information.

Don’t include any information apart
from the page numbers in the header/
footer section. The headers and footers
are marked as "Artifacts" and these
artifacts aren't read by the screen
readers as per the ISO 14289 7.4
standard.

Static content NA Don’t include a table, list, or link
element in the static content. The entire
static content area will be tagged as a
single paragraph.

30-1

Element Requirements Limitations

Graphics NA Don’t use the Word Shape feature of
RTF in the RTF template. Some of the
Word Shape objects marked as
artifacts instead of figures can’t be read
by the screen readers.

Font Map the Symbol font to a TrueType font
to avoid the usage of the Adobe core
symbol font in the output.

Don’t use the Dingbat font because
there's no equivalent TrueType font.
The Adobe accessibility checker
displays a warning message when you
use fonts that don't have encoding
parameters.

PDF/UA-1 (ISO 14289-1:2014) is a standard for universal accessibility. The PDF/UA format
requires all the fonts used in the output to be embedded in the document. Hence, the PDF/UA
formatted report output might look different from the original report and the file size of the
PDF/UA formatted output might be more than the original report.

If you select PDF/UA as the output format or if you change the Use PDF/UA format for
accessible PDF output runtime property to true, and generate PDF in accessible mode, the
look and feel of the report output might be different from the PDF output from the same
template, because the PDF standard fonts such as Helvetica, Courier, and Times available
with PDF viewers aren't used. Publisher doesn’t load the Type1 font for PDF/UA, PDF/A, and
PDF/X.

Configure Accessible PDF Output for Reports
You can configure all reports or specific reports to generate accessible PDF output.

To configure accessible PDF output for reports, choose one of these methods:

• Configure the report property to make the PDF output of a report accessible.

1. Navigate to the report in the catalog.

2. Click Edit to launch the Report Editor.

3. Click Properties to open the Report Properties dialog.

4. Click the Formatting tab and scroll down.

5. Set the Make PDF output accessible property to true.

• Configure the output format to make the PDF output of a report accessible.

1. Navigate to the report in the catalog.

2. Click Edit to launch the Report Editor.

3. Click View a List and select PDF/UA from the Output Formats list.

You can select PDF/UA output format when you view the report in Online viewer or
when you schedule a report.

• Make the PDF outputs of all online reports and scheduled reports accessible.

1. On the Administration page, under Runtime Configuration, select Properties.

2. Set the Make PDF output accessible property to true.

Chapter 30
Configure Accessible PDF Output for Reports

30-2

31
Generate CSV Output

This topic describes how to generate a CSV output for large reports.

To output a report that includes millions of rows, select to output the report only in CSV format.
When you select only CSV format for the output of a large report, the data processor directly
generates the CSV output without generating an XML file, which reduces the likelihood of out-
of-memory issues.

Requirements

To generate the CSV output for a large volume of data, make sure you:

• Create a dataset using SQL query.

• Set the Enable CSV Output property in the Data Model Properties page.

• Select only the Data (CSV) output format for the report.

• Deselect the Auto Run and Run Report Online options for the report.

• Deselect the Save Data for Republishing option in the Output tab, if you are scheduling
the report.

Limitations

The data engine cannot generate a CSV output when:

• You can't use a template to format the CSV output.

Reports in CSV format are directly generated from the data models. The CSV output
contains carriage return and line feed characters at the end of each line.

• The SQL query contains the CLOB/BLOB columns

When a query includes CLOB columns, the data processor cannot generate the CSV
output because the LOB might be XML data or non-structured data. Converting the LOB
columns to flatten a CSV format doesn't scale. This type of conversion requires complex
code changes that are similar to embedding a formatting engine inside the data engine.

• Data model has a complex parent-child dataset hierarchy with multiple groups

When a data model has multiple datasets with complex parent - child links, the data engine
cannot generate CSV output.

• The SQL query contains the DFF/EFF columns

When a query includes DFF (Descriptive Flexfield) or EFF (Extensible Flexfield) columns,
the data processor cannot generate a CSV output. Each DFF or EFF column is treated as
a nested sub-group in the query, which results in nested XML data. You can't directly
flatten nested XML data to a CSV file.

• The data model has both SQL and Non-SQL datasets

When a data model contains a mix of SQL and Non-SQL datasets (Non-Standard datasets
such as web service, HTTP, and XML), the data processor cannot generate a CSV output.

• The data model has a non-standard SQL query

31-1

When a data model has a non-standard query such as a procedure or a function that
returns a reference, the data processor cannot directly generate a CSV output. The non-
standard queries returning nested XML structure can't be handled inside the data engine.

• The scheduled report has multiple output formats

If you select multiple output formats for the scheduled report, the data processor doesn't
generate the CSV output.

• The scheduled report uses bursting

Splitting and delivering data requires raw XML data. The data engine can't generate the
CSV format for bursting reports.

Extract a Large Volume of Data
You can use Publisher reports to extract a large volume of data and generate a CSV output.

1. Create a data model with a single SQL Query type dataset.

a. If you have multiple queries, combine all the queries into a single query using the
WITH clause.

For example. If you have these Q1, Q2, and Q3 datasets:

Q1 dataset : SELECT DEPARTMENT_ID, DEPARTMENT_NAME,LOCATION FROM DEPARTMENTS
Q2 dataset: SELECT EMPLOYEE_ID,FIRST_NAME,LAST_NAME,JOB,SALARY FROM
EMPLOYEES Q3-dataset: SELECT JOB_ID,MAX_SALARY,MIN_SALARY FROM JOBS
Q3 dataset: SELECT JOB_ID,MAX_SALARY,MIN_SALARY FROM JOBS
Instead of linking the Q1, Q2, and Q3 datasets to form a parent-child hierarchy, create
a single dataset combining the queries of Q1, Q2, and Q3 datasets as shown below:

WITH Q1 AS(SELECT DEPARTMENT_ID, DEPARTMENT_NAME,LOCATION FROM
DEPARTMENTS),
Q2 AS (SELECT EMPLOYEE_ID, FIRST_NAME,JOB_ID AS EMP_JOB_ID,SALARY FROM
EMPLOYEES),
Q3 AS(SELECT JOB_ID, MAX_SALARY,MIN_SALARY FROM JOBS)
SELECT Q1.*,Q2.*,Q3.* FROM Q1,Q2,Q3

b. Click View Data.

c. Click Save As Sample Data.

2. Edit the data model properties to select the Enable CSV Output option.

3. Save the data model.

4. Create a report based on the data model.

5. Edit the report properties and deselect the Auto Run and Run Report Online options.

If you run the report online, you might encounter performance issues while the large
volume of data is processed.

6. Click View a list and select only the Data (CSV) output format for the report.

7. Save the report.

8. Schedule the report.

Make sure you deselect the Save Data for Republishing option in the Output tab.

Chapter 31
Extract a Large Volume of Data

31-2

9. Submit the job to extract data.

10. After the report job completes successfully, download the output from the Report Job
History page.

Chapter 31
Extract a Large Volume of Data

31-3

32
PDF Version Support

This topic describes BI Publisher's support for PDF specification 1.7 in its processing utilities.

Topics:

• About PDF Version Support

• Supported Utilities

• Limitations

About PDF Version Support
The output PDF version is based on the input PDF version.

The input PDF version defines the output PDF version as follows:

• PDF version 1.4 and earlier generates PDF 1.4

• PDF version 1.5 and later generates the same output version as the input version

Supported Utilities
Several utilities support PDF documents and templates.

The utilities that support PDF 1.7 are:

• FormProcessor – merges a PDF template with XML data to produce PDF document
output.

• PDFDocMerger – provides optional processing of PDF files to merge documents, add
page numbering, and set watermarks.

• PDFSignature – creates signed PDF documents by processing unsigned PDF documents
with a signature field name and a password-protected Personal Information Exchange
(PFX) file.

Limitations
This section describes the limitations of Publisher's support for the PDF 1.7 standard.

It includes the following topics:

• Limitations That Apply to All PDF Utilities

• FormProcessor Limitations

• PDFDocMerger and PDFBookBinder Limitations

• PDFSignature Limitations

32-1

Limitations That Apply to All PDF Utilities
PDF utilities have limited functionality in Publisher.

Limitations that apply to all the Publisher PDF utilities are:

• Secured PDF documents can't be used as input to any Publisher PDF utility.

• PDF documents generated by Publisher do not support most accessibility features.

• Unicode passwords are not supported.

• PDF utilities may not work properly with input PDFs that contain 3-D artwork and input
PDF documents formatted as a presentation (slideshow).

FormProcessor Limitations
Limitations that apply to the FormProcessor utility are listed in this section.

• XFA Forms (Adobe's XML Forms Architecture) isn't supported.

• Portable collection (portfolio) isn't supported.

• Tagged PDF documents will lose tags after processing.

PDFDocMerger and PDFBookBinder Limitations
Limitations apply to the PDFDocMerger and PDFBookBinder utilities.

Limitations include:

• The output PDF document version is determined based on the first input PDF document.

• XFA Forms (Adobe's XML Forms Architecture) isn't supported.

• Portable collection (portfolio) isn't supported.

• Tagged PDF documents will lose tags after merging.

• The following objects are preserved in the output, but the navigation panel shows only
objects contained in the first input PDF document.

– Bookmark

– Attachment

– Layer

– Print characteristics (such as paper selection, handling, page range, copies, and
scaling)

PDFSignature Limitations
Limitations apply to the PDFSignature utility.

Limitations include:

• Object signature isn't supported.

• Selective encryption of embedded files isn't supported.

• AES (Advanced Encryption Standard) isn't supported.

Chapter 32
Limitations

32-2

• PDFSignature might not work correctly with the digital signature constraints and certificate
constraints described in Section 1.2.5 of the PDF 1.7 specification. For more information
about the PDF 1.7 specification, see the Adobe website.

Chapter 32
Limitations

32-3

33
Test Templates with Template Viewer

This topic describes how to use the Template Viewer tool.

Topics:

• About Template Viewer

• Debug Templates

• Monitor Memory Usage

• Profile XSLT

• Validate XML Documents

• Test Fonts

About Template Viewer
Template Viewer is a Publisher desktop tool for testing templates.

You can download the Publisher desktop tools from the Oracle BI Enterprise Edition Home
page or from the Publisher Home page. Use the Start menu to launch the Template Viewer
installed on your Windows machine.

With Template Viewer desktop tool, you can:

• Debug templates and sub-templates. See Debug Templates.

• Monitor memory used when a template is applied to a data file. See Monitor Memory
Usage.

• Profile XSLT to view the time consumed by an XSL code. See Profile XSLT.

• Test the fonts used in a template. See Test Fonts.

• Test translation of a template by selecting the XLIFF file related to the template.

• Export the output files to a selected location by using the Export option.

• Run the XSLT processor to validate XML documents. See Validate XML Documents.

33-1

Debug Templates
If you don’t see the expected results in the template preview window, you can use Template
Viewer to enable trace settings and view the debug messages to solve the problem.

You can also save and view the intermediate XSL file generated after the sample data and
template are merged in the XSL-FO processor. If you already use XSL, you’ll quickly learn the
debugging features in Template Viewer.

To preview template with Template Viewer and view log messages:

1. Open Template Viewer:

From the Windows desktop, click Start, then Programs, then Oracle BI Publisher
Desktop, then Template Viewer.

2. Click Browse to locate the working directory that contains the sample data file and
template file. The data file and template file must reside in the same folder.

3. In the Files tab, select the appropriate option. For example, if you’re testing a .xsl
template, select Excel Templates. The Data and Template regions display the data files
and template files present in the directory

4. Click the appropriate data and template files to select them.

5. Select the log (debug) level.

6. If you want to test a style template, browse and specify the style template in the Style
Template File field.

7. If required, set the report parameters in the Setting (Default) tab.

8. From the Output Format list, select the output format. For example, Excel.

9. Click Start Processing.

Chapter 33
Debug Templates

33-2

The Template Viewer merges the selected data with the selected master template and sub-
template and opens the appropriate viewer. View the log messages in the message box.

10. To view the generated XSL:

a. Select the data and template files and choose Excel output.

b. Select Tools, then Generate XSL file from, then Excel Template.

c. At the prompt, save the generated XSL file.

d. Navigate to the saved location and open the XSL file in an appropriate viewer.

Generate Reports in PDF/A, PDF/X, and PDF/UA Formats
You can generate reports in PDF/A, PDF/X, and PDF/UA formats in Template Viewer.

To generate reports in PDF/A, PDF/X, and PDF/UA formats in Template Viewer:

1. Set the font directory to embed fonts in the document.

2. Configure the PDF/A output by setting the properties. Add the key and value pairs for
PDF/A output.

3. Add the optional property settings for PDF/A and PDF/X outputs.

Set the Font Directory
You must set the font directory for Template Viewer.

1. Navigate to the c:\Program Files\Oracle\BI Publisher\BI Publisher Desktop\TemplateViewer
directory.

2. Run the following command:

java –jar -DXDO_FONT_DIR="..\Template Builder for Word\fonts" tmplviewer.jar

Add Key and Value Pairs for PDF/A Output
Add the key and value pairs for PDF/A output

To add the key and value pairs for PDF/A output:

1. Open Template Viewer.

2. From the Windows desktop, click Start, Programs, Oracle BI Publisher Desktop, and then
Template Viewer.

3. Navigate to the Setting (Default) tab.

4. Optional: Load the xdo.cfg configuration file containing the font mapping.

If you don’t specify the font mapping, the default font is TrueType.

5. Add the following key and value pairs:

• pdfx-dest-output-profile-data:File path of the ICC profile data file
For PDF/X, ICC profile data file must be CMYK. For example, Coated Fogra 39.

• pdfx-output-condition-identifier:Name of one of the standard printing
conditions registered with ICC
For example, FOGRA39.

Chapter 33
Debug Templates

33-3

Add the Optional Property Settings for PDF/A and PDF/X Outputs
Add the optional property settings for PDF/A and PDF/X outputs.

To add the optional property settings for PDF/A and PDF/X outputs:

1. Open Template Viewer.

2. From the Windows desktop, click Start, Programs, Oracle BI Publisher Desktop, and
then Template Viewer.

3. Navigate to the Setting (Default) tab.

4. Optional: Load the xdo.cfg configuration file containing the font mapping.

If you don’t specify the font mapping, the default font is TrueType.

5. For a PDF/A output, add the required optional property settings.

Add the key and value pairs for the PDF/A properties you want to set. For the key, use the
internal names of the PDF/A properties mentioned in the documentation for configuring the
runtime property for PDF/A output.

6. For a PDF/X output, add the required optional property settings.

Add the key and value pairs for the PDF/X properties you want to set. For the key, use the
internal names of the PDF/X properties mentioned in the documentation for configuring the
runtime property for PDF/X output.

Monitor Memory Usage
In Template Viewer, you can track the memory used when a template is applied to a data file.

To monitor the memory used by a template:

1. Select the data file and template.

2. Select the Monitor Memory Usage option.

3. Select the output format from the Output Format list.

4. Click Start Processing.

In the directory that you selected, Template Viewer generates a .csv file with a name that starts
with MemMonLong. This log file stores information about the memory used before and after
garbage collection. Memory is monitored in regular time intervals that are measured in
seconds.

Profile XSLT
You can use Template Viewer to profile XSLT. The XSL template includes time-logging
commands that enable time measurements and act as a profiling tool. When you run a
template, the log.csv file is generated to record the time for the running of the XSL code.

To profile XSLT in Template Viewer:

1. Open Template Viewer.

From the Windows desktop, click Start, then Programs, then Oracle BI Publisher
Desktop, then Template Viewer.

2. Browse and select the working directory.

Chapter 33
Monitor Memory Usage

33-4

3. Select the XML data file and RTF template file to generate XSL.

4. Select Tools, then Generate XSL file from, then Inject Profiling into XSL.

5. Select RTF Template to generate XSL.

6. Select Excel from the Output Format list.

7. Click Start Processing.

8. Open the file using Excel.

9. Note the three areas that consume the most time.

Validate XML Documents
You can validate an XML document to ensure that it includes the proper code.

To validate an XML document by using an XSL template:

1. Open Template Viewer.

From the Windows desktop, click Start, then Programs, then Oracle BI Publisher
Desktop, then Template Viewer.

2. Browse and select the working directory.

3. Select the XML data file.

4. Select an XSL template for testing the XML document.

5. Select Run XSLT from the Output Format list.

Test Fonts
You can test fonts to ensure that your reports are displayed correctly.

You must ensure that the required fonts are mapped correctly, to avoid issues such as Roman
alphabet characters not being displayed. You must ensure that the font family name in the font
mapping exactly matches the name that is used in the template.

1. Open Template Viewer.

From the Windows desktop, click Start, then Programs, then Oracle BI Publisher
Desktop, then Template Viewer.

2. Navigate to the Setting (Default) tab.

3. Load the xdo.cfg configuration file containing the font mapping.

For example, the Arial font is set in the xdo.cfg file as follows:

 <truetype path="D:\fonts\arialbi.ttf" />

4. Reload the xdo.cfg configuration file if you make any changes to it.

5. Run the report.

a. In the Files tab, select the data file and template for testing the fonts.

b. From the Output Format list, select the output format.

c. Click Start Processing

Chapter 33
Validate XML Documents

33-5

d. View the report to verify if the fonts display correctly.

Chapter 33
Test Fonts

33-6

34
Frequently Asked Questions for Publisher
Data Models and Reports

This section provides answers to frequently asked questions for designing Publisher data
models and reports.

Topics:

• Top FAQs for Data Model Editor (Pixel-Perfect Reports)

– How do I check if the data model generates data correctly?

– How do I chunk XML data for processing large datasets?

– What's the SQL query size limit for bursting?

– How do I optimize the SQL queries?

• Frequently Asked Questions for Pixel-Perfect Reports

– What are the recommended template size limits?

– What are the data size limitations for an Excel cell in the XLSX output?

– How do I test fonts using template viewer?

– What do I do when the size of the report data exceeds the maximum limit?

– Why aren't the CSV reports formatted as specified in the templates?

– How do I include the ID of the submitter in the report?

– How do I specify "True" or "False" as Text instead of Boolean in an Excel template if
the data file corresponding to the fields contain "True" or "False" as Text value?

– Where are the draft Publisher objects stored?

– What's the maximum number of fields you can add using Template Builder in an Excel
template?

Top FAQs for Data Model Editor (Pixel-Perfect Reports)
The top FAQs for creating and managing data models for pixel-perfect reports are identified in
this topic.

How do I check if the data model generates data correctly?

Open the data model, click Data, and then click View to view a maximum of 200 rows of data.
If you want to view the complete data, create a report, and then view the report online or
schedule the report.

How do I chunk XML data for processing large datasets?

For processing large datasets, enable XML data chunking at the instance level or at the data
model level.

34-1

What's the SQL query size limit for bursting?

The output of an SQL query is limited to 200,000 rows.

How do I optimize the SQL queries?

Use the Skip Unused Dataset Query, Optimize Query Execution, and Multithread Query
Execution data model properties to optimize SQL queries.

Frequently Asked Questions for Pixel-Perfect Reports
This topic provides frequently asked questions about designing Publisher Reports.

What are the recommended template size limits?

• Publisher template limit: 50 MB

• RTF template limit: 30MB

• Microsoft Excel template limit: 50 MB and 65K rows

• PDF template limit: 10 MB

What are the data size limitations for an Excel cell in the XLSX output?

When you generate an XLSX output from an RTF or XPT or Excel template, Excel and
Publisher limits the data in an Excel cell.

Excel limits the number of characters in an Excel cell to 32,767 characters. In addition to the
Excel limit, Publisher limits the data size in a single cell to 65535 bytes when data is converted
to UTF-8 because of an internal processing limit.

How do I test fonts using template viewer?

1. Run the template viewer and navigate to the Setting tab.

2. Load the xdo.cfg configuration file that contains the font mapping. Reload the xdo.cfg file
after any change you make to it.

3. Run the report to see how the fonts look.

What do I do when the size of the report data exceeds the maximum limit?

Try these tips to handle large amounts of data:

• Add a filter to the report to select only the necessary columns and limit the number of rows
returned.

• Enable SQL or XML pruning to remove unused data columns.

• Perform aggregations such as counts, sums, and averages within the query to complete
the calculations at the database layer.

• When using the RTF template or XSL template, use xpath to improve data navigation.
Follow the best practices for designing RTF templates.

• Use data chunking for large amounts of data.

• Increase the value of the Maximum Report Data Size and Free memory threshold
properties, but use care not to incur a loss in performance.

Chapter 34
Frequently Asked Questions for Pixel-Perfect Reports

34-2

Why aren't the CSV reports formatted as specified in the templates?

Reports in CSV format are generated directly from the data models, without generating an
XML file. You can't use a template to format the CSV reports. If you want to include white
spaces in the scheduled CSV reports, select the Enable CSV Output data model property, and
deselect the Save Data for Republishing option.

How do I include the ID of the submitter in the report?

Add the xdo_user_name system variable as a parameter to your report data model, and then
reference the parameter value in your report. See Include User Information Stored in System
Variables in Your Report Data. Don’t use database functions such as the SYS_CONTEXT
function in Publisher reports.

How do I specify "True" or "False" as Text instead of Boolean in an Excel template if the
data file corresponding to the fields contain "True" or "False" as Text value?

When you enter "True" or "False" in an Excel cell, the smart Excel function formats the cell as
Boolean.

If you want your XML data to consider "True" or "False" value as Text instead of Boolean, clear
the cell where you have entered "True" or "False", format the cell as Text, and then enter
"True" or "False".

Where are the draft Publisher objects stored?

All the temporary files of data models and reports are stored in the My Folders/Draft folder.
Irrespective of whether the temporary files are created by a Publisher flow or saved by users
explicitly in the My Folders/Draft folder, Publisher deletes files that are more than 24 hours old
from the My Folders/Draft folder.

What's the maximum number of fields you can add using Template Builder in an Excel
template?

The Template Builder for Excel limits the number of fields per Excel template to 990.

Chapter 34
Frequently Asked Questions for Pixel-Perfect Reports

34-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	Part I Model Data for Pixel-Perfect Reports
	1 Use the Data Model Editor
	What is a Data Model?
	Components of a Data Model
	About the Data Source Options
	Process Overview for Creating a Data Model
	Features of the Data Model Editor
	Launch the Data Model Editor
	About the Data Model Editor Toolbar
	About the Interface

	Data Model Properties
	XML Output Options
	Add Attachments to the Data Model
	Attach Sample Data
	Attach Schema
	Data Files

	XML Data Chunking

	2 Create Datasets
	Create a Dataset
	Create Datasets Using SQL Queries
	Enter SQL Queries
	Create Non-Standard SQL Datasets
	Use the SQL Query Builder
	Overview of the Query Builder
	Build a Query Using Query Builder
	Supported Column Types
	Add Objects to the Design Pane
	Remove or Hide Objects in the Design Pane
	Query Conditions
	Create Relationships Between Objects
	About Join Conditions
	Join Objects Manually

	Save a Query
	Edit a Saved Query

	Add a Bind Variable to a Query
	Add a Bind Variable Using a Text Editor

	Add Lexical References to SQL Queries
	About Defining SQL Queries Against the Oracle BI Server
	Define SQL Queries Against the Oracle BI Server

	Notes for Queries Against Oracle Fusion Cloud Applications Tables

	Create a Dataset Using an Analysis
	Additional Notes on Analysis Datasets

	Create a Dataset Using a Web Service
	Web Service Data Source Options
	Create a Dataset Using a Simple Web Service
	Create a Dataset Using a Complex Web Service
	Additional Information on Web Service Datasets

	Create a Dataset Using a XML File
	About Supported XML Files

	Create a Dataset Using a Content Server
	Create a Dataset Using a Microsoft Excel File
	About Supported Excel Files
	Access Multiple Tables per Sheet

	Create a Dataset Using a CSV File
	About Supported CSV Files
	Create a Dataset from a Centrally Stored CSV File
	Upload a CSV File Stored Locally
	Edit the Data Type
	Refresh and Delete an Uploaded CSV File

	Create a Dataset from an HTTP XML Feed
	Create a Dataset from an HTTP XML Dataset

	Use Data Stored as a Character Large Object (CLOB) in a Data Model
	How the Data Is Returned
	Additional Notes on Datasets Using CLOB Column Data

	Handle XHTML Data Stored in a CLOB Column
	Retrieve XHTML Data Wrapped in CDATA
	Wrap the XHTML Data in CDATA in the Query

	Test Data Models and Generate Sample Data
	Edit Dataset
	Include User Information Stored in System Variables in Your Report Data
	Add the User System Variables as Elements
	Sample Use Case: Limit the Returned Dataset by User ID

	3 Structure Data
	Work with Data Models
	About Multipart Unrelated Datasets
	About Multipart Related Datasets
	Guidelines for Working with Datasets

	Create Links Between Datasets
	About Element-Level Links
	About Group-Level Links

	Create Element-Level Links
	Delete Element-Level Links

	Create Group-Level Links
	Delete Group-Level Links

	Create Subgroups
	Move an Element Between a Parent Group and a Child Group
	Create Group-Level Aggregate Elements
	Create Group Filters
	Perform Element-Level Functions
	Set Element Properties
	Sort Data
	Perform Group-Level Functions
	The Group Action Menu
	Edit the Dataset
	Remove Elements from the Group
	Edit the Group Properties

	Perform Global-Level Functions
	Add a Global-Level Aggregate Function
	Add a Group-Level or Global-Level Element by Expression
	Add a Global-Level Element by PL/SQL

	Use the Structure View to Edit Your Data Structure
	Rename Elements
	Add Value for Null Elements

	Function Reference

	4 Add Parameters and Lists of Values
	About Parameters
	Add a New Parameter
	Create a Text Parameter
	Create a Menu Parameter
	Customize the Display of Menu Parameters

	Define a Date Parameter
	Create a Search Parameter

	About Lists of Values
	Add Lists of Values
	Create a List from a SQL Query
	Create a List from a Fixed Dataset

	Add Flexfield Parameters
	Add a Flexfield Parameter and List of Values
	Add the Flexfield List of Values
	Add the Menu Parameter for the Flexfield List of Values
	Use the Flexfield Parameter to Pass Values to a Flexfield Defined in the Data Model
	Reference the Flexfield in the SQL Query
	Pass a Range of Values

	5 Add Event Triggers
	About Triggers
	Add Before Data and After Data Triggers
	Order of Execution

	Create Schedule Triggers

	6 Add Flexfields
	About Flexfields
	Use Flexfields in Your Data Model

	Add Key Flexfields
	Enter Flexfield Details

	Add Descriptive Flexfields
	Include Descriptive Flexfield Reference in SQL Queries

	7 Add Bursting Definitions
	About Bursting
	What is the Bursting Definition?
	Prerequisites for Configuring Bursting
	Add a Bursting Definition to Your Data Model with an SQL Query
	Attach PDF to Reports using Bursting Engine

	Define the Query for Delivery XML
	Pass a Parameter to the Bursting Query
	Define the Split By and Deliver By Elements for a CLOB/XML Dataset
	Configure a Report to Use a Bursting Definition
	Sample Bursting Query

	8 Performance Best Practices
	Know Oracle WebLogic Server Default Time Out Setting
	Best Practices for SQL Datasets
	Only Return the Data You Need
	Use Column Aliases to Shorten XML File Length
	Avoid Using Group Filters by Enhancing Your Query
	Avoid PL/SQL Calls in WHERE Clauses
	Avoid Use of the System Dual Table
	Avoid PL/SQL Calls at the Element Level
	Avoid Including Multiple Datasets
	Avoid Nested Datasets
	Avoid In-Line Queries as Summary Columns
	Avoid Excessive Parameter Bind Values
	Tips for Multi-value Parameters
	Group Break and Sort Data

	Limit Lists of Values
	Work with Lexicals/Flexfields
	Work with Date Parameters
	Run Report Online/Offline (Schedule)
	Set Data Model Properties to Prevent Memory Errors
	Query Time Out
	Enable SQL Pruning
	DB Fetch Size
	Scalable Mode

	Tune SQL Query
	Generate Explain Plan
	Explain Plan for a Single Query
	Explain Plan for Reports
	Guidelines for Tuning Queries

	Validate Data Models
	Data Model Validation Messages

	Part II Create Pixel-Perfect Reports and Layouts
	9 Introduction to Designing Reports
	Overview for Report Designers
	Define Summary Text for Tables

	About the Layout Types
	About Setting Run-Time Properties
	About Translations
	About Style Templates
	About Sub Templates

	10 Create and Edit Reports
	About Report Components
	Create Reports: Process Overview
	Create Reports
	Select a Data Source
	Choose Guide Me or Use Report Editor
	Select the Report Layout
	Save the Report
	Choose Columns for Report Layouts
	Table Layout
	Chart Layout
	Chart and Table Layout
	Pivot Table Layout
	Chart and Pivot Table Layout
	Two Charts and Table Layout

	Create Reports Using a Direct Connection to a Subject Area
	Create Subject Area Reports
	Add Parameters to Subject Area Reports
	Create a Report Against Multiple Subject Areas

	Edit Reports
	Add Layouts to the Report Definition
	Add a Layout Using the Layout Editor
	Add a Layout by Uploading a Template File
	Add a Layout by Generating a Template File

	Configure Layouts Using the List View
	Apply a Style Template to the Layout
	About the Layouts Toolbar
	Configure the Layout Settings Using the List View
	Select Output Formats
	Edit a Layout

	Configure Parameter Settings for the Report
	Configure Report Properties
	Set the General Properties
	Run Report Online
	Advanced Options

	Set the Caching Properties
	Set the Formatting Properties
	Configure Font Mapping
	Configure Currency Formats

	Access Reports via a URL
	Report URL Format
	Report URL Parameters

	About the Layout Editor Interface
	About the Data Source Pane
	About the Components Pane
	About the Properties Pane
	About the Tabbed Toolbar
	Select and Delete Layout Objects
	About the Insert Tab

	11 Create Publisher Layout Templates
	Overview of Publisher Layouts
	When to Use a Publisher Layout
	Prerequisites, Recommendations, and Limitations

	Launch the Layout Editor
	Create a New Report
	Edit a Report
	View a Report
	Select a Predefined Layout
	Add Shared Templates for All Users
	Add Personal Predefined Layouts

	Page Layout Tab
	Paper Options
	Header/Footer Options
	Set Properties for Headers and Footers

	View Options
	Display Unit
	Configure Events
	Example of Filter Event Configuration
	Configure Automatic Filtering
	Example: Show Selection Only

	Set Page Margins
	Set Maximum Connections for an Interactive Report

	Insert Layout Components
	Insert Layout Grids
	Add a Border or Background Color
	About the Insert Options
	About the Join and Unjoin Options
	Add Expand and Collapse Option

	About Repeating Sections
	Set Page Break Options for a Repeating Section
	How Repeating Sections Display in Interactive Mode
	Show All Values in a Repeating Section

	About Data Tables
	Insert a Data Table
	Set Alternating Row Colors
	About the Table Tab
	Set the Rows to Display Option
	About Filters
	Set Filters for a Table
	Manage Filters
	About Conditional Formats
	Apply Conditional Formats to a Table
	Manage Formats
	Control the Display of the Total Row

	About the Table Column Header Tab
	About Grouping
	Example: Group Left
	Apply Subtotals
	Example: Group Above

	About the Column Tab
	About the Data Formatting Options for Columns
	Apply Formatting to Numeric Data Columns
	Apply Formatting to Date Type Data Columns
	Custom and Dynamic Formatting Masks
	About the Formula Option
	About the Sort Option
	Remove a Sort Order

	About the Total Cell Tab
	Apply Data Formatting to a Total Cell
	Apply a Formula

	Insert Dynamic Hyperlinks
	Apply Custom Data Formatting

	About Charts
	Insert a Chart
	About the Chart Tab
	Apply and Manage Filters
	Convert a Chart to a Pivot Table

	Change the Formula Applied to a Chart Measure Field
	Sort a Chart Field
	Use Advanced Chart Features
	Format Time Series Axis
	Hide Axis Option
	Format Independent Axis
	Scale Axis
	Format Pie Slice

	About Gauge Charts
	Insert a Gauge Chart
	Apply and Manage Filters

	About Pivot Tables
	Insert a Pivot Table
	Customize a Pivot Table Menu
	About the Pivot Table Tab
	Apply Filters
	Customize the Display of Totals
	Convert a Pivot Table to a Chart
	Switch Rows and Columns

	Customize the Pivot Table Headers
	Customize the Pivot Table Data

	About Text Items
	Display a Data Field Side-by-Side with a Text Item
	About the Text Toolbar
	Edit Font Properties
	Insert Page Numbers
	Insert the Date and Time
	Insert a Hyperlink

	About Images
	Add BLOB Image

	About Lists
	Insert a List
	Customize a List
	Customize the Font Style and the Selected Font Style Commands
	Customize Behavior of Selected Items

	Set Predefined or Custom Formulas
	About the Predefined Formulas
	Apply a Custom Formula
	About the Basic Math Functions
	About the Statistical Math Functions

	Apply a Custom Formula: Examples

	Save a Layout

	12 Create RTF Templates
	Get Started
	What Are RTF Templates?
	Prerequisites for Designing Templates
	What is XSLT Compatibility?
	Key Concepts
	Design the Template Layout
	About Adding Publisher Code

	Associate the XML Data to the Template Layout
	Use an XML Input File
	Identify Placeholders and Groups
	Use Placeholders
	Identify the Groups of Repeating Elements

	Add Markup to the Template Layout
	Create Placeholders
	Use the Basic RTF Method
	Use the Form Field Method
	Complete the Form Field Method Example

	Define Groups
	Group Scenarios
	Use the Basic RTF Method
	Use the Form Field Method
	Complete the Example

	Define Headers and Footers
	Native Support for Headers and Footers
	Insert Placeholders in the Headers and Footers
	Create Multiple or Complex Headers and Footers
	Define Different First Page, Odd Pages, and Even Pages

	Insert Images and Charts
	Directly Insert Images
	Insert Images with URL References
	Insert Images with an Element Reference from an XML File
	Render an Image Retrieved from BLOB Data
	Add Charts to Templates
	Add a Sample Chart
	Insert the Dummy Image
	Add Code to the Alternative Text Box
	Add Chart Samples
	Horizontal Bar Chart Sample
	Change the Appearance of the Chart

	Add Drawings, Shapes, and Clip Art
	Add Freehand Drawings
	Add Hyperlinks
	Layer Shapes
	Use 3-D Effects
	Add Microsoft Equations
	Add Organization Charts
	Add WordArt
	Add Data-Driven Shapes
	Include Manipulation Commands
	Replicate Shapes
	Add Text to Shapes
	Add Text Along a Path
	Move a Shape
	Rotate a Shape
	Skew a Shape
	Change the Size of Shapes
	Combine Commands
	CD Ratings Example
	Grouped Shape Example

	Supported Formatting Features of Microsoft Word
	General Features of Microsoft Word
	Align Objects
	Insert Tables
	Insert Date Fields
	Insert Multiple Columns on Pages
	Insert Backgrounds and Watermarks
	Add a Background Using Microsoft Word 2000
	Add a Text or Image Watermark Using Microsoft Word 2002 or later

	Microsoft Word Features that Aren't Supported

	Template Features
	Insert Page Breaks
	Insert an Initial Page Number
	Specify Last Page Only Content
	End on Even or Odd Pages
	Insert Blank Page
	Insert Hyperlinks
	Insert Internal Links

	Include a Table of Contents
	Generate Bookmarks in PDF Output
	Insert Check Boxes
	Insert Drop-Down Lists
	Repeat Row Headers After Page Break

	Use Conditional Formatting
	Use If Statements
	Use If Statements in Boilerplate Text
	Use If-Then-Else Statements
	Insert Choose Statements
	Conditional Formatting Example

	Format Columns
	Format Rows
	Highlight Cells

	Insert Page-Level Calculations
	Display Page Totals
	Insert Brought Forward and Carried Forward Totals
	Insert Running Totals

	Handle Data
	Sort Data
	Check for Null Values
	Regroup the XML Data
	XML Sample
	Regroup Data Syntax
	Template Example
	Regroup by an Expression

	Set Variables, Parameters, and Properties
	Set Variables
	Set Parameters
	Set Properties

	Use Advanced Report Layouts
	Create Batch Reports
	Handle No Data Found Conditions
	Insert Pivot Tables
	Construct Dynamic Data Columns
	Define Columns to Repeat Across Pages
	Example of Dynamic Data Columns

	Format Numbers, Dates, and Currencies
	Format Numbers
	Data Source Requirements
	Localization Considerations
	Use the Microsoft Number Format Mask
	Supported Microsoft Format Mask Definitions
	Use the Oracle Format Mask
	Format Dates
	Data Source Requirements
	Use the Microsoft Date Format Mask
	Use the Oracle Format Mask
	Default Format Mask
	Oracle Abstract Format Masks
	Display the System Date (sysdate) in Reports
	Format Currencies
	Apply a Currency Format to a Field
	Example: Display Multiple Currency Formats in a Report
	Example: Display Multiple Currency Codes in a Single Report

	Support Calendars and Time Zones
	Calendar Specification
	Specify Time Zone
	Specify No Time Zone Conversion

	Use External Fonts
	Use Barcode Fonts in Reports
	Implement Custom Barcode Formats
	Encode the Data
	2D Barcode Functions

	Control the Placement of Instructions Using the Context Commands
	Use XPath Commands
	Locate Data
	Start Reference
	Specify Context and Parents

	Declare Namespaces
	Use FO Elements and XSL Elements
	Use FO Elements
	Use XSL Elements
	Apply a Template Rule
	Copy the Current Node
	Call a Named Template
	Declare a Template
	Declare a Variable
	Import a Style Sheet
	Define the Root Element of the Style Sheet
	Format Native XSL Numbers

	Guidelines for Designing RTF Templates for Microsoft PowerPoint Output
	Guidelines for Designing RTF Templates for Microsoft Excel Output
	Create Multiple Sheets
	Specify a Sheet Name
	Specify Number and Date Formatting

	Render HTML Formatted Data in a Report
	Supported HTML Features
	Data Model Requirements
	RTF Template Requirements
	Example

	Embed PCL Commands for Check Printing
	Procedure Overview
	Embed PCL Commands in RTF Templates
	Specifications and Restrictions

	13 Create RTF Templates Using the Template Builder for Word
	Overview
	Before You Get Started
	Prerequisites and Limitations

	Get Started Using the Template Builder
	Features of the Publisher Template Builder for Word
	Build and Upload a Template
	Work in Connected Mode
	Work in Disconnected Mode

	Access Data for Building Templates
	Load XML Data from a Local File
	Load Data from the Publisher Catalog

	Insert Components to the Template
	Insert a Field
	About the Insert Field Dialog
	Find
	Example
	Force LTR (Left-to-Right) Direction
	Calculation

	Insert a Table Using the Table Wizard
	Step 1: Select Report Format
	Step 2: Select Table Data
	Step 3: Select Data Fields
	Step 4: Group the Table
	Step 5: Insert a Break for the Group
	Step 6: Sort the Table
	Step 7: Click Finish
	Step 8: Customize the Table Using Microsoft Word Functionality

	Insert a Table or Form Using the Insert Table/Form Dialog
	Select Data Fields
	Define the Layout
	Data Field Properties
	Data Group Properties
	Insert Tables and Forms
	Group Nodes
	Understand the Fields Inserted to the Template

	Insert a Chart
	Chart Type
	Values
	Aggregation
	Labels
	Color
	Chart is Inside Group
	Style
	Properties
	Preview
	Group Data
	Edit an Inserted Chart

	Insert a Repeating Group
	Create Grouping Fields Around an Existing Block
	Insert a Pivot Table
	Manually Edit a Pivot Table
	Insert a Pivot Table in a Repeating Group

	Insert and Edit Conditional Regions
	Insert Conditional Formatting

	Preview a Template
	Template Editing Tools
	Edit and View Field Properties
	About the Properties Tab
	About the Advanced Tab
	About the Word Properties Button

	Validate a Template
	Use the Field Browser
	Check Accessibility

	Upload a Template to Publisher
	Use the Template Builder Translation Tools
	About Translations
	Extract Text to an XLIFF File for Translation
	Preview the Template and Translation File
	Localize a Template

	Set Options for the Template Builder
	Set UI Options
	Set Preview Options
	Set Build Options
	Set Connection Options

	Set Up a Configuration File
	Publisher Menu Reference
	About the Online Group
	About the Load Data Group
	About the Insert Group
	About the Preview Group
	About the Tools Group
	About the Options Group

	14 Create Excel Templates
	Introduction to Excel Templates
	Features of Excel Templates
	Limitations of Excel Templates
	Prerequisites
	Supported Output
	Desktop Tools for Excel Templates
	Install the Template Builder for Excel

	Sample Excel Templates

	Understand the Mappings Between Template and Data
	Use the Template Builder for Excel
	Work in Connected Mode
	Log In Through the Template Builder
	Online Features of the Template Builder
	Access the Publisher Catalog from the Template Builder

	Upload Templates from the Template Builder

	Work in Disconnected Mode
	Obtain Sample Data
	Load Sample Data in Disconnected Mode
	Upload Templates to the Report

	Insert Fields
	More Features of the Field Dialog

	Insert Repeating Groups
	Use the Field Browser to View, Edit, and Delete Fields
	Preview Templates
	Import Excel Analyzer Templates

	Build a Basic Template Using the Template Builder
	Step 1: Load Sample Data to the Template Builder
	Step 2: Design the Layout in Excel
	Step 3: Use the Template Builder to Insert Fields
	Step 4: Use the Template Builder to Insert Repeating Groups
	Step 5: Insert the Calculated Salary Field
	Step 6: Test the Template

	Format Dates
	Understand Excel Template
	Map Data Fields and Groups
	Use Excel Defined Names for Mapping
	Use "XDO_" Prefix to Create Defined Names
	Use Native Excel Functions with the "XDO_" Defined Names
	About the XDO_METADATA Sheet
	Create the XDO_METADATA Sheet
	Format of the XDO_METADATA Sheet
	Hide the XDO_METADATA Sheet

	Enable Excel Template Scalability
	Enable Excel Template Scalability at the Template Level
	Enable Excel Template Scalability at the System Level
	Enable Excel Template Scalability at the Report Level

	Use Advanced Publisher Functions
	Reporting Functions
	Split Data from Reports into Multiple Sheets
	Declare and Pass Parameters
	Define a Link
	Import and Call a Subtemplate
	Reference Java Extension Libraries

	Format Functions That Rely on Specific Data Attribute Values
	Define Border and Underline Styles
	Skip a Row

	Group Functions
	Group Data
	Handle the Generated XDO Define Names in Nested Groups
	Regroup the Data

	Preprocess the Data Using an XSL Transformation (XSLT) File
	XSLT Preprocessing Examples: Split Flat Data into Multiple Sheets
	Split the Data by a Specific Field
	Split the Data by Count of Rows

	15 Create PDF Templates
	Overview of PDF Templates
	Requirements
	Design the Template
	Add Markup to the Template
	Create a Placeholder
	Name the Placeholder
	Create a Text Placeholder
	Supported Field Properties Options
	Create a Check Box
	Create a Radio Button Group

	Define Groups of Repeating Fields
	Repeat a PDF Template by Using the document-repeat-elementname Form Field
	Add Page Numbers and Breaks
	Add Page Numbers
	Add Page Breaks

	Perform Calculations
	Completed PDF Layout Example
	Runtime Behavior
	Placement of Repeating Fields
	Set Fields as Updatable or Read Only
	Overflow Data

	Create a Layout from a Predefined PDF Form
	Determine If a PDF Has Form Fields Defined
	Use a Predefined PDF Form as a Layout by Renaming the Form Fields
	Use the Comb of Characters Option

	Add or Designate a Field for a Digital Signature
	About Signature Field Options
	Add a Signature Field
	Configure the Report to Insert the Digital Signature at Runtime

	PDF Template Limitations

	16 Create eText Templates
	Overview
	Prerequisites

	Structure of eText Templates
	Command Rows, Data Rows, and Data Column Header Rows
	Data Column Header Rows
	Data Rows

	Construct the Data Tables
	Command Rows
	Level Command
	New Record Command
	Sort Ascending and Sort Descending Commands
	Display Condition Command

	Structure of the Data Rows
	Position
	Length/Maximum Length
	Format Column
	Number Data Type
	Date Data Type
	Map EDI Delimiter-Based Data Types to eText Data Types
	Pad
	Data
	Tag
	Comments

	Set Up Command Tables
	TEMPLATE TYPE Command
	Output Character Set
	DEFINE LEVEL Command
	DEFINE SEQUENCE Command
	RESET AT LEVEL
	INCREMENT BASIS
	MINIMUM

	Define Concatenation Command
	Base Level Subcommand
	Element Subcommand
	Delimiter Subcommand
	Use the SUBSTR Function
	Invalid Characters and Replacement Characters Commands
	Output Character Set and New Record Character Commands
	Output Length Mode
	Number Thousands Separator and Number Decimal Separator
	CASE CONVERSION

	Create a Filler Block
	Expressions, Control Structures, and Functions
	Expressions
	Control Structures
	Functions

	Identifiers, Operators, and Literals
	Key Words
	Command and Column Header Key Words
	Command Parameter and Function Parameter Key Words
	Field-Level Key Words
	Expression Key Words
	Operators
	Reference to XML Extract Fields and XPATH Syntax
	Notes on Viewing eText Output from a Browser

	17 Set Report Processing and Output Document Properties
	Overview
	PDF Output Properties
	PDF Digital Signature Properties
	PDF Accessibility Properties
	PDF/A Output Properties
	PDF/X Output Properties
	DOCX Output Properties
	RTF Output Properties
	PPTX Output Properties
	HTML Output Properties
	FO Processing Properties
	RTF Template Properties
	XPT Template Properties
	PDF Template Properties
	Excel Template Properties
	CSV Output Properties
	Excel Output Properties
	EText Output Properties
	All Outputs Properties
	Define Font Mappings
	Set Font Mapping at the Site Level or Report Level
	Create a Font Mapping
	Predefined Fonts
	Included Barcode Fonts

	Barcode Font Mapping

	Part III Create Style Templates and Subtemplates
	18 Create and Implement Style Templates
	Understand Style Templates
	About Styles Defined in the Style Template
	Style Template Process

	Create a Style Template RTF File
	Define Styles for Paragraphs and Headings
	Define Styles for Tables
	Define a Header and Footer

	Upload a Style Template File to the Catalog
	Assign a Style Template to a Report Layout
	Update a Style Template
	Add Translations to a Style Template Definition

	19 Understand Subtemplates
	What is a Subtemplate?
	About RTF Subtemplates
	About XSL Subtemplates

	Supported Locations for Subtemplates
	Test Subtemplates from the Desktop
	Upload a Subtemplate
	Call a Subtemplate from an External Source
	Import a Subtemplate Outside the Catalog over HTTP or FTP
	Import Subtemplates Outside the Catalog on the Same Server
	Required Settings To Run Sub Templates Stored Outside the Catalog

	20 Design RTF Subtemplates
	Understand RTF Subtemplates
	Process Overview for Creating and Implementing RTF Sub Templates
	Create an RTF Subtemplate File
	Call a Subtemplate from a Main Template
	Import the Subtemplate to the Main Template
	Call the Subtemplate to Render Its Contents
	Import a Localized Subtemplate
	Example

	When to Use RTF Subtemplates
	Reuse a Common Layout
	Conditionally Display a Layout Based on a Value in the Data
	Example

	Conditionally Display a Layout Based on a Parameter Value
	Example
	Handle Simple Calculations or Repeating Formulae
	Example

	Add Translations to an RTF Subtemplate

	21 Design XSL Subtemplates
	Understand XSL Subtemplates
	Where to Put XSL Code in the RTF Main Template

	Process Overview for Creating and Implementing XSL Sub Templates
	Create an XSL Subtemplate File
	Call an XSL Subtemplate from the Main Template
	Import the Subtemplate
	Call the Subtemplate
	Pass Parameters to an XSL Subtemplate

	Create the Sub Template Object in the Catalog
	Example Uses of XSL Subtemplates
	Handle XML Data with HTML Formatting
	Dynamically Apply Formatting to a Portion of Data

	Part IV Translate Objects in Pixel-Perfect Reports
	22 Translation Support Overview and Concepts
	What Can I Translate in Publisher?
	What Languages Does Publisher Support?
	Can I Translate Objects in the Catalog?
	Can I Translate Templates?

	Work with Translation Files
	What is an XLIFF?
	What is the Structure of an XLIFF File?
	Source-language and Target-language Attributes
	Embedded Data Fields
	<source> and <target> Elements

	Locale Selection Logic

	23 Translate Individual Templates
	Overview
	Types of Translations
	Use the XLIFF Option
	Generate the XLIFF from a Template
	Generate the XLIFF from the Template Builder
	Generate the XLIFF from the Layout Properties Page

	Translate the XLIFF
	Upload the Translated XLIFF to Publisher

	Use the Localized Template Option
	Design the Localized Template File
	Upload the Localized Template to Publisher

	24 Translate Catalog Objects, Data Models, and Templates
	Overview
	What Can Be Translated?
	About Source Language Limitations

	Export the XLIFF File
	Identify and Update the Object Tags
	Import the XLIFF File

	Part V Reference Information
	25 Techniques for Handling Large Output Files
	Reuse Static Content
	What is Static Content Reuse?
	Limitations of this Feature
	Define Reusable Content in an RTF Template
	Example

	Generate Zipped PDF Output
	Limitations and Prerequisites
	Design Time Considerations
	Select the Output Type

	Implement PDF Splitting for an RTF Template
	Enter the Commands in an RTF Template
	Example - split by each department

	Implement PDF Splitting for a PDF Template
	Enter the Commands in the PDF Template

	26 Extended Function Support in RTF Templates
	Extended SQL and XSL Functions
	Number-To-Word Conversion

	XSL Equivalents
	Use FO Elements

	27 Design Accessible Reports
	Design for Accessibility
	Obtain General Information
	Avoid Common Misconceptions
	Follow General Guidelines for Accessible Content
	Color Selection
	Use Color with Text

	Color Contrast
	Font Selection

	Use the Template Builder to Verify Report Accessibility

	Design Accessible Reports Using RTF Templates
	Avoid Nested Tables or Separated Tables
	Examples
	Nested Tables

	Table Headers Must Not Be Separated from the Table Body

	Define a Document Title
	Define Alternative Text for an Image
	Define a Table Summary
	Define a Table Column Header
	Define a Table Row Header
	Sample Supported Tables

	Design Accessible Reports Using Publisher Layouts
	Define Document Titles
	Define Alternative Text for Images
	Define Summary Text for Tables
	Define Table Row Headers
	Define Text Header Levels
	Define a Layout Table

	28 Supported XSL-FO Elements
	Supported XSL-FO Elements
	Property Groups Table

	29 Generate PDF/A and PDF/X Output
	Generate PDF/A Output
	Requirements and Limitations
	Additional Resources

	Generate PDF/X output
	Prerequisites
	Requirements and Limitations
	Additional Resources

	30 Generate Accessible PDF Output
	Configure Accessible PDF Output for Reports

	31 Generate CSV Output
	Extract a Large Volume of Data

	32 PDF Version Support
	About PDF Version Support
	Supported Utilities
	Limitations
	Limitations That Apply to All PDF Utilities
	FormProcessor Limitations
	PDFDocMerger and PDFBookBinder Limitations
	PDFSignature Limitations

	33 Test Templates with Template Viewer
	About Template Viewer
	Debug Templates
	Generate Reports in PDF/A, PDF/X, and PDF/UA Formats
	Set the Font Directory
	Add Key and Value Pairs for PDF/A Output
	Add the Optional Property Settings for PDF/A and PDF/X Outputs

	Monitor Memory Usage
	Profile XSLT
	Validate XML Documents
	Test Fonts

	34 Frequently Asked Questions for Publisher Data Models and Reports
	Top FAQs for Data Model Editor (Pixel-Perfect Reports)
	Frequently Asked Questions for Pixel-Perfect Reports

