
Oracle Linux 10
Working With UEFI Secure Boot

G30890-04
July 2025

Oracle Linux 10 Working With UEFI Secure Boot,

G30890-04

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion vi

1 About UEFI Secure Boot

How the Secure Boot Process Works 1-1

Secure Boot Limitations 1-2

About Secure Boot Keys 1-3

Description of the Secure Boot Key Implementation 1-6

Description of the Shim First Stage Boot Loader 1-7

How Secure Boot Is Enforced Within Oracle Linux 1-7

Enabling and Disabling Secure Boot 1-8

About the MOK Database 1-8

About the Machine Keyring 1-8

2 Tools and Applications for Administering Secure Boot

About the pesign Tool 2-1

About the efibootmgr Application 2-1

About the mokutil Utility 2-2

Disabling Secure Boot at Shim Level 2-2

Validating SBAT Status 2-3

About the dbxtool Command 2-4

3 Signing Kernel Images and Kernel Modules for Use With Secure Boot

Requirements for Signing Kernel Images and Kernel Modules 3-1

Installing Required Packages 3-2

Generating a Signing Certificate 3-2

Signing the Kernel for Secure Boot 3-3

iii

Configuring an NSS Database 3-4

Signing the Kernel Image 3-4

Updating the MOK Database 3-5

Enrolling a Kernel Hash in the MOK Database 3-6

Signing the Kernel Module for Secure Boot 3-6

Signing the Kernel Module 3-7

Updating the MOK Database with the Kernel Module Certificate 3-8

Validating That a Key Is Trusted 3-9

UEK R8 3-10

RHCK 3-10

iv

Preface

Oracle Linux 10: Working With UEFI Secure Boot provides background and other related
information about the UEFI Secure Boot feature and its implementation in Oracle Linux.

Note:

UEFI Secure Boot is also more commonly referred to as "Secure Boot" in this
document.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

v

https://docs.oracle.com/en/operating-systems/oracle-linux/10/secure-boot/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About UEFI Secure Boot

For an OS to be secure, every layer below the OS layer must also be secure. Running
software on a CPU is unsafe if the software can not be trusted to run code correctly. Likewise,
if the boot loader is tampered with or the firmware itself is compromised, the kernel that's
booted can not be trusted.

UEFI Secure Boot is a platform feature within the UEFI specification that ensures that the
system boots by using only the software that's trusted by the hardware manufacturer. Secure
Boot provides a verification mechanism where the firmware validates a boot loader before
running the loader. This mechanism checks that the code that's run by a system's firmware is
trusted. When the system starts, the firmware checks the signature for each piece of boot
software, including the firmware drivers and the OS itself. If the signatures are valid, the
system boots, and the firmware relinquishes control to the OS.

Secure Boot uses cryptographic checksums and signatures to prevent malicious code from
being loaded and run early in the boot process before the OS has loaded. Every program that's
loaded by the firmware includes a signature and a checksum and undergoes the same
validation by the firmware. Secure Boot stops all untrusted programs from running to prevent
any unexpected or unauthorized code from operating in the UEFI-based environment.

Most UEFI compliant systems ship with Secure Boot enabled. These systems are also loaded
with Microsoft keys. Thus, binaries that are signed by Microsoft are also trusted by the
firmware. By default, these systems don't run any unsigned code. However, you can change
the firmware configuration to either enroll more signing keys or to disable Secure Boot.

Secure Boot doesn't prevent users from controlling their own systems. Users can enroll extra
keys into the system to enable the signing of other programs. Further, on some systems with
Secure Boot enabled by default, users can also remove platform provided keys to force
firmware to trust user signed binaries only.

How the Secure Boot Process Works
Each step in the Secure Boot process checks a cryptographic signature on the executable of
the next step. The BIOS checks a signature on the boot loader and then the boot loader
checks the signatures on all the kernel objects that the boot loader loads.

Objects in the chain are typically signed by the software manufacturer by using private keys
that match the public keys already in the BIOS. Altered modules or objects in the boot chain
would have mismatching signatures, which prevents the device from booting the image.
Otherwise, the platform boots successfully.

The following are required to meet the goals of Secure Boot:

• The Linux boot loader must provide authentication of the Linux kernel.

• The Linux distribution must provide further security enforcement in the kernels that it
distributes.

The Shim first stage boot loader program provides a way to meet both of these goals. For
more explanation, see Description of the Shim First Stage Boot Loader.

The following figure illustrates the Secure Boot process:

1-1

Figure 1-1 Secure Boot Process

Phase 0: The UEFI checks whether Secure Boot is enabled and loads the keys that it stores
for this purpose from the UEFI Secure Boot key database.

Phase 1: The Shim software loads. UEFI first validates the signature that was used to sign the
Shim. If the signature is valid, the Shim loading can continue. Otherwise, the Shim is unable to
load. Thereafter, the loaded Shim is responsible for validating all code. The Shim maintains its
own MOK database, where other keys are stored for validation purposes.

Phase 2: The Shim software validates the key that's used to sign the GRUB2 secondary
bootloader. If validation passes, GRUB2 loads. the Shim can then validate the keys that are
used to sign the kernel images available to GRUB2.

Phase 3: A valid kernel loads. The kernel has read access to the keys in the UEFI Secure
Boot key database and the MOK database. The kernel also has its own set of trusted keys that
are built into the kernel image itself.

Phase 4: The kernel validates the keys that are used to sign all other modules that need to be
loaded, including signed kernel images on kexec operations. Depending on the kernel
implementation, the kernel would trust the keys in the UEFI Secure Boot database or the MOK
database. Or, it would only trust the keys that are built into the kernel image itself. Note that for
kexec signed kernel images signature validation, the following keys can be used: UEFI, DB/
MOK, DB keys, and kernel builtin keys.

Secure Boot Limitations
Secure Boot can impose limitations on the system and its operations. The feature is purposely
designed to restrict the applications that can run before the OS is booted because after the
system is booted, the OS has no way of identifying any programs that were booted earlier or
even whether the system was booted securely. For example, if a boot kit is injected into the
system before the system boot, Secure Boot could be rendered useless. Or, if an attacker
disables Secure Boot and installs malware that could be interpreted by the OS as platform
security, the system is compromised..

Secure Boot can also have an impact on the use of some features and user actions, including
the activation of the Kernel Lockdown feature. This feature prevents both direct and indirect
access to a running kernel image to protect the kernel image from unauthorized modifications
and prevent access to the security and cryptographic data in the kernel's memory.

When Lockdown mode is activated, some features that you typically use to revise the kernel
might be affected, including the following:

Chapter 1
Secure Boot Limitations

1-2

• Loading of kernel modules that aren't signed by a trusted key.

• Use of kexec tools to start an unsigned kernel image.

• Hibernation and resume from hibernation modes.

• User space access to physical memory and I/O ports.

• Module parameters that enable you to set memory and I/O port addresses.

• On x86_64 systems only, writing to MSRs through /dev/cpu/*/msr. On Arm
platforms, /dev/cpu/* isn't implemented.

• Use of custom ACPI methods and tables.

• Advanced Configuration and Power Interface (ACPI) and ACPI Platform Error Interface
(APEI) error injection.

If you need to use any of these features, you can disable Secure Boot through the system's
Extensible Firmware Interface (EFI) setup program. For further information, see Enabling and
Disabling Secure Boot.

About Secure Boot Keys
All Secure Boot key types are examples of the Public Key Infrastructure (PKI). Each key
includes two long numbers that are used for encryption and, in the case of Secure Boot, for
data authentication.

Secure Boot uses a private key and a public key.

• The private key is used to sign a file, which is an EFI program. That signature is then
appended to the program.

• The public key must be publicly available. For Secure Boot, this key is embedded in the
firmware itself or is stored in NVRAM. You can use the public key along with the signature
to verify that the file was signed with that public key and that the file hasn't been changed.

For more information about PKI, see Oracle Linux: Managing Certificates and Public Key
Infrastructure.

The following figure illustrates Secure Boot's key signing and verification process.

Chapter 1
About Secure Boot Keys

1-3

https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/

Figure 1-2 Secure Boot Key Signing and Verification Process

The data is signed with a private key. This process generates a hash of the data and uses the
signer's private key to encrypt the hash. When the data needs validation, the signer's public
key is used to decrypt the signature to obtain the hash of the data that was signed. The hash of
the data is generated and compared with the hash that was decrypted from the signature. A
match between the hashes indicates that the data is unchanged from when the was signed.

Although UEFI specification handles several key types, the X.509 key is commonly used.
X.509 is a standard format for public key certificates and digital documents that securely
associate cryptographic key pairs with identities, individuals, and organizations. The platform
key (PK) must be an X.509 key. The X.509 key is stored in DER (Distinguished Encoding
Rules) format. The DER key can be base64 encoded and stored as text in a PEM file.

The X.509 certificate includes a public key, a digital signature, and information about the
identity that's associated with the certificate and its issuing certificate authority (CA). The public
key and a private key form a key pair. The private key is kept secure, while the public key is
included in the certificate. With the key pair, the owner of the private key can digitally sign
documents that can be verified by anyone with the corresponding public key. By using the key
pair, third parties can send messages that are encrypted with the public key that only be
decrypted by the owner of the private key.

Chapter 1
About Secure Boot Keys

1-4

Note:

UEFI specifications use the terms key and public key to mean the public part of the
key pair, or the X.509 certificate. However, in OpenSSL, the term key is the private
key that's used for signing. Thus, all Secure Boot keys must be X.509 keys and not
OpenSSL keys.

More recent kernel images use the PKCS#7 key type. PKCS (Public Key Cryptography
Standards) is a set of standards for the generation and verification of digital signatures and
certificates. PKCS#7 is a method of storing signed or encrypted data, including X.509
certificates. This point can be confusing because the key that's stored within a PKCS#7
structured DER or PEM formatted file is still an X.509 key. However, the type, and therefore the
expected format when processing the file, is different. You must be aware of this distinction
when signing kernel modules because the correct tool must be used when you perform the
signing operation.

Four types of Secure Boot keys are built into the firmware. However, a fifth key can be used by
the Secure Boot Shim, while a sixth key can be built into the Oracle Linux kernel image:

Platform Key (PK)
This is the top level key type that's used in Secure Boot. The PK offers complete control of the
secure boot key hierarchy. The holder of the PK can install a new PK and update the Key
Encryption Key (KEK). UEFI Secure Boot handles a single PK that's typically provided by the
motherboard manufacturer. Thus, only the motherboard manufacturer has complete control
over the system. You can control the Secure Boot process by replacing the PK with a version
that you generate yourself.

Key Exchange Key (KEK)
The KEK signs keys so that the firmware accepts those keys as valid when entering them into
the database. Without the KEK, the firmware can't detect whether a new key is valid or has
been introduced by malware. If the KEK was absent, Secure Boot would require that the
databases remain static. However, because the DBX is a critical element of Secure Boot, a
static database would be unworkable. Hardware often ships with two KEKs: one from
Microsoft and one from the motherboard manufacturer. Thus, either party can issue KEK
updates.

UEFI Secure Boot Database Key (DB)
The DB key is important to Secure Boot because this key is used to sign or verify the binaries
that you run, such as boot loaders, boot managers, shells, drivers, and so on. Most hardware
is shipped with two Microsoft keys installed, one for Microsoft's use and the other for signing
third-party software, such as Shim. Some hardware is also shipped with keys that are created
by the computer manufacturer or other parties. Note that the database can hold several keys,
for different purposes. Moreover, the database can contain both public keys that are matched
to private keys, which can be used to sign several binaries, and hashes that describe
individual binaries.

Forbidden Signature Database Key (DBX)
Contains keys and hashes that correspond to known malware or other unwanted software. If a
binary matches a key or hash that's in both the UEFI Secure Boot key database and the DBX,
the DBX takes precedence. This facility prevents the use of a single binary even if the binary
is signed by a key that you don't want to revoke because it has been used before to sign
several legitimate binaries.

Chapter 1
About Secure Boot Keys

1-5

Machine Owner Key (MOK)
Similar to DBX, this key type signs boot loaders and other EFI executables and can also be
used to store hashes that correspond to individual programs. MOKs aren't a standard part of
Secure Boot. However, they're used by the Shim and PreLoader programs to store keys and
hashes. The MOK facility is an ideal way to test newly generated key pairs and the kernel
modules that are signed with them. MOK keys are stored in the MOK database. See About the
MOK Database.

Public Key in the kernel
These keys can be built into the OS and they check signatures as kernel modules are loaded.
Normally, when the CONFIG_MODULE_SIG_KEY parameter is unchanged from the default and a
key pair doesn't already exist, the kernel build automatically generates a new key pair by
using OpenSSL. Then, when vmlinux is built, the public key is built into the kernel.

Description of the Secure Boot Key Implementation
The following figure shows how the Secure Boot key implementation works in Oracle Linux.

Secure Boot Key Implementation

At the UEFI firmware level, the Platform Key (PK) is used to validate the Key Exchange Key
(KEK), which is in turn used to validate all Database Keys (DB) and all DBX Keys (DBX). The
DB keys are used with the DBX keys to validate the key used to sign the Shim binary. After the
Shim is validated, keys stored within the MOK list and loaded by the Shim can be trusted to

Chapter 1
Description of the Secure Boot Key Implementation

1-6

perform validation for the later loading operations that follow. The GRUB2 secondary
bootloader is validated by using a key within the MOK list and by the MokListX that contains
the forbidden MOK keys. Similarly, before the kernel is loaded, validation of the kernel image
binary is first performed against the keys in the MOK list. Finally, after the kernel is loaded, the
Linux kernel modules or Linux kernel images that are used for kexec operations can be
validated, either against the MOK list or against any public keys that are compiled directly into
the Linux kernel.

Description of the Shim First Stage Boot Loader
Shim is a basic software package that's designed to work as a first-stage boot loader on UEFI-
based systems.

Systems that can use UEFI Secure boot typically ship with the following two keys:

• Microsoft Windows Production PCA 2011

• Microsoft Corporation UEFI CA 2011

When Secure Boot is enabled on the system, only those programs that are signed with either
of these keys can boot. For the Shim first stage boot loader, Oracle uses a process that's
agreed upon with Microsoft to sign Oracle’s version of Shim with the Microsoft Corporation
UEFI CA 2011 CA key. Embedded certificates within the Oracle shim validate the signed
second stage boot loader and the kernel. See Description of the Secure Boot Key
Implementation.

How Secure Boot Is Enforced Within Oracle Linux
The enforcement of Secure Boot within Oracle Linux includes certain restrictions, most of
which are implemented to prevent Oracle Linux from being used as a boot loader through the
kexec tool, which would break the Secure Boot chain of trust. The restrictions, which are
referred to as lockdown, prevent access to Ring-0 when Secure Boot is enabled, even by the
root user.

The following are details of the how Secure Boot is enforced in Oracle Linux 10 kernel
releases:

Unbreakable Enterprise Kernel (UEK)
The UEK uses the Kernel Lockdown feature. This feature prevents both direct and indirect
access to a running kernel image, which protects the kernel image from unauthorized
modifications. It also prevents access to the security and cryptographic data in the kernel's
memory.
Lockdown restrictions are applied using three different modes:

• none: No restrictions apply.

• integrity: Disables kernel features that let user space edit the running kernel. This mode
is automatically enabled when Secure Boot is enabled in UEK.

• confidentiality: Also disables kernel features that enable user space to extract
confidential information from the kernel.

Red Hat Compatible Kernel (RHCK)
When Secure Boot is enabled in Oracle Linux 10 with RHCK, the kernel is automatically put
into Lockdown mode. This restricts certain kernel capabilities that could be used to perform
unauthorized modification of the kernel.

Chapter 1
Description of the Shim First Stage Boot Loader

1-7

Enabling and Disabling Secure Boot
You can enable and disable Secure Boot by accessing the system's UEFI setup program. For
instructions on enabling and disabling Secure Boot through the UEFI setup program for
specific hardware, see the manufacturer's instructions.

Note that if you're having trouble working with the system UEFI, you can disable any further
validation for Secure Boot at the level of the Shim. Although you can disable further validation
for Secure Boot from user space, you still need physical access to the system at boot so that
you can access the MokManager utility when the Shim loads. For more information, see
Disabling Secure Boot at Shim Level.

About the MOK Database
MOK keys are stored in the MOK database, or "MOK list." Add certificates for custom built
kernels or kernel modules to the MOK database if the keys that are used to sign those
components or the CA certificate for those keys aren't present in the UEFI Secure Boot key
database. You can add these keys without requiring that a key chains back to another key
that's already in the KEK database. When a key is in the MOK database, it's automatically
propagated to the system key ring on every boot when UEFI Secure Boot is enabled.

To enroll a MOK key, you must manually do so on each target system by using the MOK
Manager Utility on the UEFI system console.

You can also use the MOK Forbidden Signature Database (MOKx), which is similar to the
DBX. MOKx features let a user prevent a specific kernel or kernel module from being loaded,
as identified by that component's public key or the signature. The MOKx also forbids any
second stage boot loader or binary from being booted by Shim, similar to GRUB2's provided
file paths grub2, fwupd, mmx64, mmaa64, and etc.

You can use the MOK database to insert keys into the UEFI Shim's trusted keys directly from
user space. This is easier than manually adding keys to the UEFI Secure Boot Key Database,
which is another option. However, with the MOK database approach, the instructions aren't tied
to particular hardware and you don't have to copy keys somewhere that's accessible to UEFI.

The tool to manage the MOK database is the mokutil utility, with which you access the MOK
Manager. See About the mokutil Utility.

About the Machine Keyring
The machine keyring is a special kernel keyring introduced in UEK R7. It stores certificates and
public keys relevant to secure boot processes and is accessible to the kernel and system-level
services for secure verification of kernel modules and binaries. Certificates loaded into the
machine keyring ensure that signatures can be validated during the secure boot sequence,
complementing the key management performed by firmware-level UEFI databases. Using the
machine keyring upholds system integrity and compliance within the secure boot framework.

The default Machine Owner Key (MOK) certificates embedded in the shim bootloader are
automatically added to the machine keyring during boot. This mechanism lets the kernel verify
signatures from trusted sources as part of secure boot.

Chapter 1
Enabling and Disabling Secure Boot

1-8

2
Tools and Applications for Administering
Secure Boot

This chapter provides a basic summary of the tools and applications that you can use to
administer Secure Boot in Oracle Linux.

About the pesign Tool
The pesign tool is a command line tool for manipulating signatures and cryptographic digests
of UEFI applications. You can use the pesign tool to sign kernels for both GRUB2 and Shim.

You can also use the pesign tool for printing binary signature information. The pesign package
also provides the pesigcheck tool that you can use to verify a signature against an exact public
certificate.

The pesign tool accepts the X.509 certificate/key pair and signs a PE-COFF binary with it. The
Oracle Linux kernel has an EFI boot stub that wraps the bzImage file as a PE-COFF binary
according to standard UEFI implementation. This implementation provides you with the option
to boot the kernel directly from UEFI without requiring a boot loader. In addition, the pesign
tool can perform the required signing. See About Secure Boot Keys.

Typically, you use the pesign tool to perform one of the following tasks:

• Sign a kernel image with a custom key that you created to sign custom kernel modules.
See Signing Kernel Images and Kernel Modules for Use With Secure Boot.

• Enroll the hash for a particular kernel within the MOK database so that the kernel can be
loaded at boot, even if the Shim doesn't contain its certificate.

• Extract a kernel hash from the signed kernel binary so that you can enroll it by using the
mokutil tool. See Enrolling a Kernel Hash in the MOK Database.

About the efibootmgr Application
Oracle Linux provides the efibootmgr user space application that you can use to change the
Intel Extensible Firmware Interface (EFI) Boot Manager. You use the application to perform
several tasks, including the following:

• Create and destroy boot entries.

• Change the boot order.

• Change the next running boot option.

This tool is a general usage application and doesn't directly relate to Secure Boot. However,
the tool helps you to manage UEFI boot options directly from user space and makes it easier
to debug and resolve some UEFI boot issues from the command line. For more information
and examples, see the efibootmgr(8) manual page.

2-1

About the mokutil Utility
Shim lets users control their own systems. The distribution vendor key is built into the Shim
binary itself. However, an extra database with keys, called the Machine Owner Key (MOK) list
or database, is also provided, and which the user can manage through the MOK Manager
Utility.

In Oracle Linux, the MokManager utility is installed in the EFI System Partition (ESP) within
the /boot/efi/EFI/redhat directory. Originally called MokManager.efi, this file has been
renamed to mmx64.efi for x86_64 platforms or mmaa64.efi for Arm platforms. MOK keys can
be placed in the ESP and then installed from MokManager during boot.

By running the mokutil command, you can use the MokManager utility to add and remove
keys in the MOK list, which remain separate from the distribution vendor key. The mokutil
utility lets you to make keys available to the MOK database directly from user space by using
the command line. Because keys are often created or extracted in this space, mokutil is the
most appropriate tool to use for managing keys that are used for Secure Boot.

Note that although mokutil is run from user space, it doesn't update the MOK database
directly. Instead, mokutil makes keys available to the MOK Management service and triggers
the Shim to display the MOK Management menu at boot. This process ensures that keys or
hashes are only enrolled within the MOK database by somebody who has physical access to
the system and prevents a malicious application or user from changing the MOK database
directly from user space.

Typical use case scenarios where you might use the mokutil utility include the following:

• Adding keys for custom modules that aren't included and signed with the distribution and
which you needed to sign yourself. See Signing Kernel Images and Kernel Modules for
Use With Secure Boot.

• Adding keys or hashes for custom kernels for which the signing key is either revoked or
you have built from source. See Use mokutil to Update Signature Keys for UEFI Secure
Boot.

• Disabling Secure Boot operations from the Shim upward. See Disabling Secure Boot at
Shim Level.

For more information, see the mokutil(1) manual page.

Disabling Secure Boot at Shim Level
UEFI can be disabled through the UEFI setup program, or you can use the mokutil utility to
disable Secure Boot at the level of the Shim, as described here.

When you disable Secure Boot at Shim level, UEFI Secure Boot remains enabled but no
further validation takes place after the Shim is loaded.

The following steps apply to OS that are loaded through Shim and GRUB:

1. Disable Secure Boot.

Run the following command to disable Secure Boot at the Shim level:

sudo mokutil --disable-validation

2. Select a password

Chapter 2
About the mokutil Utility

2-2

https://docs.oracle.com/en/operating-systems/oracle-linux/tutorial-mokutils-uefi/
https://docs.oracle.com/en/operating-systems/oracle-linux/tutorial-mokutils-uefi/

Select a password that's between 8 and 16 characters and then enter the same password
to confirm.

3. Reboot the system.

4. Perform MOK management.

When prompted, press a key to perform MOK management.

5. Change the Secure Boot state.

Select the Change Secure Boot state option.

6. Confirm the change.

When promoted, enter each character of the password that you chose, to confirm the
change. Press Return (or Enter) after each character.

7. Reboot

Select Yes, then select Reboot to reboot the system.

To reenable the Secure Boot state at the Shim level, run the following command:

sudo mokutil --enable-validation

Follow the same prompts that appear in the procedure for disabling Secure Boot.

Validating SBAT Status
Oracle Linux10 uses UEFI Secure Boot Advanced Targeting (SBAT), available in the shim
package.

SBAT is a mechanism for revoking older versions of core boot components such as grub2 and
shim by setting generation numbers in the .sbat section of the UEFI binary. The generation
number set in a UEFI binary defines its revocation level.

To confirm whether UEFI Secure Boot is active, use the --sb-state option with the mokutil
command:

mokutil --sb-state

Themokutil utility can be used to review and update UEFI SBAT revocation status. To review
the current UEFI SBAT level on which the current system is running, use the --list-sbat-
revocations option:

mokutil --list-sbat-revocations

You can change the SBAT policy that applies at the next reboot. Setting the SBAT policy to
latest applies the latest SBAT revocations and prevents the system from booting older grub2
and shim packages that were operating at an earlier SBAT level, and previous falls back to the
previous SBAT revocation level:

mokutil --set-sbat-policy latest

mokutil --set-sbat-policy previous

Chapter 2
About the mokutil Utility

2-3

For systems with UEFI Secure Boot enabled, the default SBAT policy is previous. Both the
latest and previous SBAT policies only set a revocation level that's the same or later than it
was when the latest shim package was installed.

For troubleshooting purposes, you can reset the SBAT policy to the default revocation level.
First, disable UEFI Secure Boot and then set the delete SBAT policy:

mokutil --set-sbat-policy delete

Note:

You can review the .sbat metadata used by grub2 and shim by using the objdump
command. For example, on an x86_64 system you can run the following commands:

objdump -s -j .sbat grubx64.efi

objdump -s -j .sbat shimx64.efi

To review the current SBAT policy levels for the provided shim:

objdump -s -j .sbatlevel shimx64.efi

About the dbxtool Command
The dbxtool command combines a command line tool with the systemd service that's used to
apply UEFI Secure Boot DBX updates. With this tool, you can operate on the UEFI Forbidden
Signature Database, also known as the DBX revocation list. For example, you can use the
command to list the current DBX contents and update them to a newer version.

UEFI DBX files are available at https://uefi.org/revocationlistfile. The DBX prevents any
software that's signed using a compromised key from loading. In this way it helps to protect the
integrity of the Secure Boot framework and avoids needing to manually manage a static
database of keys.

The most current UEFI DBX files and the dbxtool utility that's used to manage the DBX
revocation list are in the fwdup package and updates are present within each later release of
this package on the Oracle Linux yum server. The DBX files are prefixed by DBXUpdate and
found in the /usr/share/fwupd/remotes.d/vendor/firmware/ directory.

If the dbxtool systemd service is running, DBX updates are handled automatically. However, if
you're notified of a CVE that requires a DBX update, you might need to use the tool manually.

Chapter 2
About the dbxtool Command

2-4

https://uefi.org/revocationlistfile

3
Signing Kernel Images and Kernel Modules for
Use With Secure Boot

This chapter provides instructions on signing kernel modules for Secure Boot.

NOT_SUPPORTED:

Oracle doesn't support any modules that are built from source directly outside of
Oracle's official release mechanisms. For help with these modules, contact the
hardware vendor.

A system in Secure Boot mode only loads boot loaders and kernels that have been signed by
Oracle. However, you might need to build and install a third-party module to enable specific
hardware on a deployed system. If you still require UEFI Secure Boot, the module must be
signed with a key that can be validated against a certificate within the UEFI Secure Boot key
database or within the MOK database so that the module is recognized at boot.

Important:

Using the MOK utility on a server depends on server firmware implementation and
configuration. Check that the server provides this capability before manually updating
signature keys used for UEFI Secure Boot. If you're unsure, don't follow the
instructions provided here.

Adding certificates to the MOK database by using the MOK utility requires that you
have physical access to the system so that you can complete the enrollment request
after the Shim is loaded by UEFI. Don't follow the instructions in this document if you
have no physical access to the system.

Because of differences in kernel releases, instructions on how to sign modules differ
depending on the kernel version on the system. In particular, the key signature type within the
module signature has changed from X.509 to PKCS#7. Therefore, although the process to sign
the module by using the kernel-provided sign-file utility is still used, you might be required to
use a utility more appropriate to the specific kernel for which a module is being signed.

Requirements for Signing Kernel Images and Kernel Modules
Before you can sign a module, you must install several required packages, including the kernel
source for the kernel where the module is loaded. You also require a signing certificate for a
key pair that you have created for this purpose.

Signing kernel images and kernel modules have the following requirements:

• Installation of required pacakges

3-1

• Creation of signing certificates

Installing Required Packages
You need only a standard minimal installation of the latest Oracle Linux 10 release for this
procedure. The steps assume that the system is using UEK as the operating environment.

1. Install the required kernel packages.

Obtain the package that contains the system's kernel source:

sudo dnf install kernel-uek-devel

Note:

If you're using RHCK, the kernel source is in the kernel-devel package.

2. Update the system.

Update the system to ensure that you have the most recent kernel and related packages:

sudo dnf update

3. Reboot the system.

This step is in case the kernel is included in the system update. By rebooting, you avoid
confusion around the kernel version that you're working with and the kernel running on the
system when you begin kernel-signing operations.

4. Install the module signing utilities.

Install the required utilities for performing module signing operations.

sudo dnf install openssl keyutils mokutil pesign

5. (Optional) install build tools.

If you need to build modules from source, you might install the Development Tools group
to ensure that build tools are available, for example:

sudo dnf group install "Development Tools"

Generating a Signing Certificate
If you don't already have a signing certificate to be used for signing third-party modules or
kernel images, you can generate one by using the OpenSSL utilities. For more information
about OpenSSL and the public key infrastructure, see Oracle Linux: Managing Certificates and
Public Key Infrastructure.

1. Create a configuration file that OpenSSL can use to obtain default values when generating
certificates.

Chapter 3
Requirements for Signing Kernel Images and Kernel Modules

3-2

https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/

As best practice, create the file in /etc/ssl/x509.conf with the rest of the OpenSSL
configuration. The following is an example of the configuration file:

[req]
default_bits = 4096
distinguished_name = req_distinguished_name
prompt = no
string_mask = utf8only
x509_extensions = extensions

[req_distinguished_name]
O = Module Signing Example
CN = Module Signing Example Key
emailAddress = first.last@example.com

[extensions]
basicConstraints=critical,CA:TRUE
keyUsage=digitalSignature
extendedKeyUsage = codeSigning
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always

2. Generate a new key pair from the configuration file.

For example, the following command creates a signing certificate that's valid for 10 years
(3,650 days).

sudo openssl req -x509 -new -nodes -utf8 -sha512 -days 3650 -batch -
config /etc/ssl/x509.conf -outform DER -out /etc/ssl/certs/pubkey.der -
keyout /etc/ssl/certs/priv.key

Ensure that the keys are adequately protected.

3. Export the certificate in PEM format.

Enter the following command to export the certificate as a .pem file:

sudo openssl x509 -inform DER -in /etc/ssl/certs/pubkey.der -out /etc/ssl/
certs/pubkey.pem

Signing the Kernel for Secure Boot
UEFI Secure Boot requires that kernels are signed with a trusted certificate to prevent
attackers from installing and running unauthorized OSs.

Oracle signs kernel releases that are provided through official software channels to verify their
origin and integrity. For a custom kernel to perform the boot or kexec operations, you must sign
the kernel image by using the signing certificate that you created and confirm that you trust
kernel images that are signed with that certificate.

Signing the kernel for Secure Boot involves the following tasks:

1. Configuring an NSS Database

2. Signing the Kernel Image

3. Updating the MOK Database

Chapter 3
Signing the Kernel for Secure Boot

3-3

Configuring an NSS Database
The NSS database stores complete sets of keys that the tool for signing kernels accesses to
obtain the kernel signing key.

1. Configure an NSS database.

Run the following command to create a certificate and key database in the current
directory.

sudo certutil -d . -N

2. Create a password for the database as prompted.

3. Export a PKCS#12 version of the kernel signing key.

NSS utilities are only capable of working with PKCS#12 formatted key files, so you need to
perform this step so that you can sign the kernel image.

sudo openssl pkcs12 -export -inkey /etc/ssl/certs/priv.key -in /etc/ssl/
certs/pubkey.pem -name cert -out /etc/ssl/certs/cert.p12

4. Enter the export password as prompted.

The password refers to the password for the PKCS#12 archive. For convenience, make
this password match the password for the NSS database.

5. Add or import the PKCS#12 version of the kernel signing key.

Enter the following command to import the kernel signing key to the new database.

sudo pk12util -d . -i cert.p12

6. Enter the passwords as prompted.

Two password prompts are displayed: first, for the NSS database, then for the PKCS#12
archive.

Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
pk12util: PKCS12 IMPORT SUCCESSFUL

Signing the Kernel Image
In this task, you use the pesign utility to sign the kernel with a new signature using the signing
key in the NSS database.

1. Remove the existing PE signature.

Enter the following command:

sudo pesign -u 0 -i /boot/vmlinuz-$(uname -r) --remove-signature -o
vmlinuz.unsigned

2. Assign a new signature.

Chapter 3
Signing the Kernel for Secure Boot

3-4

Assign a new signature based on the kernel signing key in the NSS database:

sudo pesign -n . -c cert -i vmlinuz.unsigned -o vmlinuz.signed -s

3. Enter the password as prompted.

The password of the NSS certificate database is the one that you created in Configuring an
NSS Database.

4. Copy the signed kernel back to the /boot directory.

The following command performs the copy operation. The -b option in the command
creates a backup of the original kernel image.

sudo cp -bf vmlinuz.signed /boot/vmlinuz-$(uname -r)

Updating the MOK Database
Because the key that you created isn't included in the UEFI Secure Boot Key Database, you
must enroll it into the MOK database in the Shim.

Note:

If you only want to let a specific kernel or kernel module load under Secure Boot, and
you don't want to enroll a certificate, you can enroll the hash of the binary instead.
This limits authorizations to the specific binary, rather than all components signed by
a particular certificate. This process is described in Enrolling a Kernel Hash in the
MOK Database.

1. Import the key.

Import the key with the following command:

sudo mokutil --import /etc/ssl/certs/pubkey.der

The command prompts you for a single-use password that you use when the MOK
Management service enrolls the key after you reboot the system.

2. Reboot the system.

The UEFI Shim automatically starts the Shim UEFI key manager at boot. Ensure that you
hit a key within 10 seconds to interrupt the boot process to enroll the MOK key you
created.

3. Press any key to perform MOK Management.

4. Select Enroll MOK from the menu.

5. Select View key 0 from the menu to display the key details.

6. Check and confirm.

Verify that the values presented match the key that you used to sign the module and that
you inserted into the kernel image, then press any key to return to the Enroll MOK menu.

7. Select Continue from the menu.

Chapter 3
Signing the Kernel for Secure Boot

3-5

The Enroll the key(s)? screen is displayed.

8. Select Yes to enroll the key.

9. Enter the password

At the password prompt, enter the password that you used when you imported the key at
the beginning of this procedure.

The key is enrolled within the UEFI Secure Boot key database.

10. Reboot the system.

When the Perform MOK management screen is displayed, select Reboot from the menu.

Enrolling a Kernel Hash in the MOK Database
Describes how to enroll a specific kernel's hash into the MOK database.

If you can't or don't want to enroll a signing certificate as described in Updating the MOK
Database, you can enroll a specific kernel’s hash into the MOK database. This lets you load
that particular kernel under Secure Boot, even without a certificate.

1. Extract the kernel's hash.

Use the pesign tool to obtain the hash signature for a kernel. For example, to obtain the
hash of the running kernel:

pesign -h -i /boot/vmlinuz-$(uname -r) | awk '{print $1}' > vmlinuz.hash

Note:

The pesign tool returns a hash value and the path to the kernel module. In
version 116 of the pesign tool packaged with Oracle Linux 10, the fields are
returned in a different order to earlier versions.

2. Enroll the hash using mokutil.

sudo mokutil --import-hash vmlinuz.hash

You're prompted to set a one-time password. Remember this, because you're asked for it
when the system reboots.

3. Reboot the system.

4. At boot, use the MOK Manager to enroll the hash.

From the MOK Manager menu, select the "Enroll hash" option, enter the password, and
confirm.

Signing the Kernel Module for Secure Boot
UEFI Secure Boot requires that kernel modules are signed with a trusted certificate to prevent
attackers from installing and running unauthorized OS and malicious drivers.

Oracle signs kernel releases that are provided through official software channels to verify their
origin and integrity. However, to install other drivers, you must create signing certificates for

Chapter 3
Signing the Kernel Module for Secure Boot

3-6

them, sign the relevant kernel modules, and confirm that you trust the kernel modules that are
signed with that certificate.

UEFI Secure Boot trusts modules that are signed using platform certificates that are available
in the UEFI and MOK databases. The key for signing the module is enrolled into the database.

Signing the kernel module involves the following tasks:

1. Signing the Kernel Module

2. Updating the MOK Database with the Kernel Module Certificate

Signing the Kernel Module
The sign-file utility ensures that the module is signed correctly for the kernel. This utility is
provided within the kernel source.

1. Ensure that module is already installed in /lib/modules/.

2. Run the sign-file utility for the running kernel.

Enter the following command to sign the module.

sudo /usr/src/kernels/$(uname -r)/scripts/sign-file sha512 /etc/ssl/certs/
priv.key /etc/ssl/certs/pubkey.der /lib/modules/$(uname -r)/path/to/
module.ko

3. (Optional) Check the signature information of the module.

Use the modinfo command to check the signature information. The syntax is:

modinfo module

For example, a module named hello might display the following output:

filename: /lib/modules/6.12.0-0.20.20.el10uek.x86_64/extra/
hello.ko
description: Hello World Linux Kernel Module
author: A.Developer
license: GPL
srcversion: D51FB4CF0B86314953EE797
depends:
retpoline: Y
name: hello
vermagic: 6.12.0-0.20.20.el10uek.x86_64 SMP mod_unload modversions
sig_id: PKCS#7
signer: Module Signing Example Key
sig_key: AB:2C:E3:AB:87:D9:9C:6A:31:B8:80:20:D4:92:25:F3:9A:26:DC
sig_hashalgo: sha512
signature:
9F:B0:25:CB:14:C1:C7:10:7F:60:1E:E6:66:82:64:58:91:1F:01:A5:

D9:03:1B:9C:2D:42:00:45:78:2B:FA:70:F8:C7:3B:1A:A2:42:00:09:

33:E0:81:1D:C6:E6:46:A5:FE:8B:9F:8C:3D:4E:A1:3A:05:52:ED:F6:

25:F9:88:98:D3:70:78:1D:7E:63:F3:73:C8:C8:14:C2:3A:52:B4:8F:

Chapter 3
Signing the Kernel Module for Secure Boot

3-7

4C:8D:80:D9:0D:24:F8:C9:B1:28:82:B6:A9:27:56:C6:86:80:25:A5:

75:C8:78:A9:30:BD:01:4C:DD:43:7F:FD:41:98:2C:59:21:7D:39:17:

EC:2C:C1:65:1D:95:F0:09:C7:F6:45:10:83:15:78:A2:EE:D4:73:79:

B2:F0:57:C1:96:B3:4C:43:B8:D1:87:94:50:61:D6:EC:50:2B:6A:6C:

5C:C1:3E:8C:CB:6F:19:DC:EF:6C:12:07:03:99:B7:B3:22:0B:F6:AC:

CB:40:C6:34:15:EA:1F:88:D4:4E:1C:87:2D:5A:92:F7:12:A6:E7:91:

B3:80:AA:80:8F:49:B7:F0:F0:97:05:09:7A:65:30:4A:AE:10:BE:9F:

6A:E4:B2:24:BE:1A:21:D0:F6:15:05:DA:2C:64:EA:B2:8E:AC:6F:18:

40:65:21:F6:AA:17:31:AE:3F:3A:43:DB:A8:BC:71:79:EF:11:18:DE:

86:EE:74:2A:E0:44:FC:B3:FF:CB:CB:F0:CA:BD:7B:A1:57:84:D8:A6:

91:E5:B8:EF:1B:8A:63:16:43:03:AF:C4:C7:BF:52:9A:A9:23:75:C6:

42:54:69:4E:3D:51:56:5A:9D:9B:C7:11:5E:9A:30:87:5F:F3:5E:C3:

AE:2C:1D:6F:C9:4D:15:E5:CF:EC:46:0E:EF:D9:BB:2F:DF:DF:54:EA:

F3:B6:9C:A3:6F:80:19:B9:DF:FA:2A:30:4E:2E:70:74:11:F9:5C:F6:

EE:1A:DF:86:C4:2B:36:7E:B4:A4:D4:7E:30:19:1A:D1:92:D3:A7:FB:

53:BF:67:C3:65:9E:4B:92:F0:6C:D4:6C:05:9B:0F:BF:D1:5B:CB:86:

AE:68:00:AE:43:53:8B:7D:7E:18:20:CD:65:68:6C:4A:0D:93:A4:54:

09:39:9C:D3:BD:CD:17:B6:8A:D3:62:0C:CA:A8:FD:1A:52:CE:29:A0:

93:BF:AD:D2:58:3F:EA:4E:4B:50:31:6F:F6:B2:1E:87:C4:0A:9D:E4:

43:E9:C7:CA:E9:CB:EF:A6:61:5B:DA:01:33:37:66:DB:16:8D:7C:D7:

30:39:57:D4:0C:1A:54:AE:91:7B:FE:35:10:CC:34:03:99:EA:5A:57:
 E0:95:61:02:42:95:A2:F5:2E:72:30:95

Updating the MOK Database with the Kernel Module Certificate
Because the key that you created isn't included in the UEFI Secure Boot Key Database, you
must enroll it into the MOK database in the Shim.

Chapter 3
Signing the Kernel Module for Secure Boot

3-8

Note:

If you only want to a specific kernel or kernel module to run under Secure Boot, and
you don't want to enroll a certificate, you can enroll the hash of the binary as
described in Enrolling a Kernel Hash in the MOK Database. This limits authorizations
to the specific binary, rather than all components signed by a certificate.

1. Import the key.

Use the mokutil utility to import the key:

sudo mokutil --import /etc/ssl/certs/pubkey.der

The command prompts you for a single use password that you use when the MOK
Management service enrolls the key after you reboot the system.

2. Reboot the system.

The UEFI Shim automatically starts the Shim UEFI key manager at boot. Ensure that you
hit a key within 10 seconds to interrupt the boot process to enroll the MOK key you
created.

3. Press any key to perform MOK Management.

4. Select Enroll MOK from the menu.

5. Select View key 0 from the menu to display the key details.

6. Check and confirm the key values.

Verify that the values presented match the key that you used to sign the module and that
you inserted into the kernel image, then press any key to return to the Enroll MOK menu.

7. Select Continue from the menu.

The Enroll the key(s)? screen is displayed.

8. Select Yes to enroll the key.

9. Enter the password.

At the password prompt, enter the password that you used when you imported the key at
the beginning of this procedure.

The key is enrolled within the UEFI Secure Boot key database.

10. Reboot the system.

When the Perform MOK management screen is displayed, select Reboot from the menu.

Validating That a Key Is Trusted
After the system is booted, you can validate whether a key is included in the appropriate kernel
keyring. Validation depends on the kernel version that you're running. Also, the keyring name
that you need to check varies, as the implementation has changed across kernel versions.

If the key that was generated for signing custom modules is listed within the correct keyring,
you can load modules that are signed with this key while in Secure Boot mode.

Chapter 3
Validating That a Key Is Trusted

3-9

UEK R8
The following describes how to validate a key in UEK R8.

The UEK R8 release provides the .machine keyring to enhance security. Keys in the .machine
keyring are trusted by the Oracle Linux kernel. At system boot, all MOK keys are loaded into
the .machine keyring.

The .machine keyring is linked to the .secondary_trusted_keys keyring. This linkage ensures
that the .machine keyring is consulted whenever the kernel checks
the .secondary_trusted_keys keyring to validate a signed kernel module.

In essence, when validating a signed kernel module, the kernel use the keys in
the .secondary_trusted_keys keyring, which now also references the trusted keys in
the .machine keyring, ensuring a comprehensive validation process. This is shown in the
following example:

sudo keyctl show %:.secondary_trusted_keys

Keyring
 772746105 ---lswrv 0 0 keyring: .secondary_trusted_keys
 252396885 ---lswrv 0 0 _ keyring: .builtin_trusted_keys
 660166481 ---lswrv 0 0 | _ asymmetric: Oracle CA Server:
702a35b0d12005e5010c0614f7b8abf7c5bd5f73
 86702374 ---lswrv 0 0 | _ asymmetric: Oracle IMA signing CA:
a2f28976a05984028f7d1a4904ae14e8e468e551
 247354640 ---lswrv 0 0 | _ asymmetric: Oracle America, Inc.:
Ksplice Kernel Module Signing Key: 09010ebef5545fa7c54b626ef518e077b5b1ee4c
 264616160 ---lswrv 0 0 | _ asymmetric: Oracle Linux Kernel
Module Signing Key: 2bb352412969a3653f0eb6021763408ebb9bb5ab
 772320403 ---lswrv 0 0 _ keyring: .machine
 450491670 ---lswrv 0 0 _ asymmetric: Oracle America, Inc.:
7c552922286d66bcb33c53d7ee0f1cd716ecdc63
 100307441 ---lswrv 0 0 _ asymmetric: Oracle America, Inc.:
39bff3f0f578f26e527321cafda2a9cdbd71143c
 688922247 ---lswrv 0 0 _ asymmetric: Oracle America, Inc.:
4ff35c3e09ce586fa776d56468d86b022af272f1

RHCK
The following describes how to validate a key for Red Hat Compatible Kernels (RHCK).

Keys within both the builtin_trusted_keys keyring and the platform keyring are trusted for
both module signing and for the kexec tools. You can follow the standard procedure to sign a
module and add it to the MOK database for the key to appear in the platform keyring. The
keyring is then automatically trusted.

Chapter 3
Validating That a Key Is Trusted

3-10

Because a key can be loaded into the builtin_trusted_keys keyring, check both keyrings for
the module signing key, for example:

sudo keyctl show %:.builtin_trusted_keys

Keyring
 441234704 ---lswrv 0 0 keyring: .builtin_trusted_keys
 798307349 ---lswrv 0 0 _ asymmetric: Oracle CA Server:
32a7ceb6c56614c69b4729b455254bfaf09569a4
 277992501 ---lswrv 0 0 _ asymmetric: Oracle Linux RHCK
Module Signing Key: dd995b155c19b3a7c3ef7707b969e25f9639666e
 1000618915 ---lswrv 0 0 _ asymmetric: Red Hat Enterprise
Linux kpatch signing key: 4d38fd864ebe18c5f0b72e3852e2014c3a676fc8
 199403819 ---lswrv 0 0 _ asymmetric: Red Hat Enterprise
Linux Driver Update Program (key 3): bf57f3e87362bc7229d9f465321773dfd1f77a80

sudo keyctl show %:.platform

Keyring
 705628740 ---lswrv 0 0 keyring: .platform
 89698906 ---lswrv 0 0 _ asymmetric: Microsoft Corporation
UEFI CA 2011: 13adbf4309bd82709c8cd54f316ed522988a1bd4
 497244381 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: d6ee3a06a222bf4244b8986a531046e59c14eeef
 710039804 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: c65d1d746ae4cb127762e1dbd7ade48215703c5c
 730271863 ---lswrv 0 0 _ asymmetric: Oracle America Inc.:
2e7c1720d1c5df5254cc93d6decaa75e49620cf8
 535985802 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: 795c5945e7cb2b6773b7797571413e3695062514
 607819007 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: f9aec43f7480c408d681db3d6f19f54d6e396ff4
 99739320 ---lswrv 0 0 _ asymmetric: Oracle America, Inc.:
430c85cb8b531c3d7b8c44adfafc2e5d49bb89d4
 231916335 ---lswrv 0 0 _ asymmetric: Microsoft Windows
Production PCA 2011: a92902398e16c49778cd90f99e4f9ae17c55af53
 866576656 ---lswrv 0 0 _ asymmetric: Oracle Linux Test
Certificate: d30dffa37bec20ecfb1d3caee53cd746282e8cad
 230958440 ---lswrv 0 0 _ asymmetric: Module Signing
Example Key: a43b4e638874b0656db2bc26216f56c0ac39f72b

Chapter 3
Validating That a Key Is Trusted

3-11

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About UEFI Secure Boot
	How the Secure Boot Process Works
	Secure Boot Limitations
	About Secure Boot Keys
	Description of the Secure Boot Key Implementation
	Description of the Shim First Stage Boot Loader
	How Secure Boot Is Enforced Within Oracle Linux
	Enabling and Disabling Secure Boot
	About the MOK Database
	About the Machine Keyring

	2 Tools and Applications for Administering Secure Boot
	About the pesign Tool
	About the efibootmgr Application
	About the mokutil Utility
	Disabling Secure Boot at Shim Level
	Validating SBAT Status

	About the dbxtool Command

	3 Signing Kernel Images and Kernel Modules for Use With Secure Boot
	Requirements for Signing Kernel Images and Kernel Modules
	Installing Required Packages
	Generating a Signing Certificate

	Signing the Kernel for Secure Boot
	Configuring an NSS Database
	Signing the Kernel Image
	Updating the MOK Database
	Enrolling a Kernel Hash in the MOK Database

	Signing the Kernel Module for Secure Boot
	Signing the Kernel Module
	Updating the MOK Database with the Kernel Module Certificate

	Validating That a Key Is Trusted
	UEK R8
	RHCK

