
PeopleTools 8.62: Application Engine

December 2025

PeopleTools 8.62: Application Engine
Copyright © 1988, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement
or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users
are "commercial computer software," "commercial computer software documentation," or "limited rights data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained
in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by
the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create a
risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as
set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit https://
docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Preface: Preface...ix
Understanding the PeopleSoft Online Help and PeopleBooks... ix

Hosted PeopleSoft Online Help.. ix
Locally Installed PeopleSoft Online Help.. ix
Downloadable PeopleBook PDF Files..ix
Common Help Documentation..ix
Field and Control Definitions.. x
Typographical Conventions.. x
ISO Country and Currency Codes.. xi
Region and Industry Identifiers.. xi
Translations and Embedded Help.. xii

Using and Managing the PeopleSoft Online Help...xii
PeopleTools Related Links... xii
Contact Us...xii
Follow Us...xiii

Chapter 1: Getting Started With Application Engine... 15
Application Engine Overview.. 15
Application Engine Implementation... 15

Chapter 2: Understanding Application Engine.. 19
Application Engine Fundamentals..19
Meta-SQL.. 19
Application Engine Program Elements.. 20

Sections... 20
Steps..20
Actions.. 20
State Records.. 21

Application Engine Program Types..22
Application Engine Program Types... 22
Daemon Program Type...22
Transform Program Type... 24

Chapter 3: Creating Application Engine Programs...25
Viewing Application Engine Programs.. 25

Using Definition View... 25
Using Program Flow View...27
Switching Between Definition and Program Flow Views... 29
Using the Refresh Option...30
Using the Zoom Options..30

Filtering View Contents.. 31
Printing Program and Flow Definitions... 33
Creating, Opening, and Renaming Programs... 34

Creating New Programs... 34
Opening Existing Programs... 35
Renaming Programs... 35

Copying or Moving Program Elements..35
Testing Application Engine Programs.. 36
Setting Program Properties... 37

Copyright © 1988, 2025, Oracle and/or its affiliates. iii

Contents

Accessing Properties...37
Setting General Properties..38
Setting State Record Properties..38
Specifying Temporary Tables...40
Setting Advanced Properties.. 43

Adding Sections.. 45
Understanding Sections.. 46
Inserting Sections... 46
Locating Sections... 47
Setting Section Properties.. 48

Adding Steps... 49
Inserting Steps.. 49
Setting Up Step Properties... 49

Specifying Actions.. 51
Understanding Actions... 51
Inserting Actions...52
Setting Action Properties... 53
Specifying SQL Actions...54
Specifying Do Actions... 56
Specifying PeopleCode Actions...59
Specifying Call Section Actions.. 59
Specifying Log Message Actions.. 61
Specifying XSLT Actions.. 61

Chapter 4: Developing Efficient Programs... 63
Using State Records..63

Understanding State Records... 63
Sharing State Records.. 64
Choosing a Record Type for State Records...65

Setting Commits..65
Reusing Statements... 66
Using the Bulk Insert Feature.. 68
Using Set Processing.. 68

Understanding Set Processing..68
Using Set Processing Effectively... 69
Avoiding Row-by-Row Processing.. 71
Using Set Processing Examples...72

Chapter 5: Using Meta-SQL and PeopleCode..77
Understanding Application Engine Meta-SQL...77
Using PeopleCode in Application Engine Programs... 77

Understanding PeopleCode and Application Engine Programs...78
Deciding When to Use PeopleCode...80
Considering the Program Environment..81
Accessing State Records with PeopleCode..82
Using If/Then Logic...82
Using PeopleCode in Loops...83
Using the AESection Class.. 83
Making Synchronous Online Calls to Application Engine Programs..84
Using the File Class... 85
Calling COBOL Modules...85
Calling PeopleTools APIs.. 88
Using the CommitWork Function.. 89

iv Copyright © 1988, 2025, Oracle and/or its affiliates.

Contents

Calling WINWORD Mail Merge...89
Using PeopleCode Examples... 89

Including Dynamic SQL...91
Using Application Engine Meta-SQL.. 92

%Abs...92
%AeProgram...92
%AeSection...93
%AeStep... 93
%AsOfDate... 93
%AsOfDateOvr...93
%BINARYSORT.. 93
%Bind... 94
%Cast.. 97
%ClearCursor..98
%COALESCE...99
%Comma...100
%Concat..100
%CurrentDateIn.. 101
%CurrentDateOut..101
%CurrentDateTimeIn..101
%CurrentDateTimeOut... 101
%CurrentTimeIn... 101
%CurrentTimeOut...101
%DateAdd...102
%DateDiff... 102
%DateIn.. 102
%DateNull...103
%DateOut..103
%DatePart... 104
%DateTimeDiff...104
%DateTimeIn.. 105
%DateTimeNull.. 105
%DateTimeOut... 106
%DecDiv...107
%DecMult... 107
%Delete...108
%DTTM..108
%EffDtCheck.. 109
%Execute.. 111
%ExecuteEdits.. 111
%FirstRows...113
%GetNextSeqValue...115
%GetProgText...115
%Insert.. 116
%InsertSelect.. 116
%InsertSelectWithLongs...119
%InsertValues..121
%IsRunningOnline..122
%Join...122
%JobInstance.. 124
%KeyEqual... 124

Copyright © 1988, 2025, Oracle and/or its affiliates. v

Contents

%KeyEqualNoEffDt... 125
%LeftParen..126
%Like..126
%LikeExact...128
%List... 131
%ListBind... 133
%ListEqual..134
%Mod..135
%Next and %Previous..136
%NoUppercase..136
%NumToChar... 137
%OldKeyEqual... 138
%ProcessInstance..138
%ResolveMetaSQL...138
%ReturnCode..140
%RightParen... 140
%Round...141
%RoundCurrency..141
%RunControl.. 142
%Select..142
%SelectAll.. 143
%SelectByKey.. 144
%SelectByKeyEffDt... 144
%SelectDistinct...144
%SelectInit.. 145
%Space..145
%SelectDummyTable..145
%SQL..146
%SqlHint...148
%SQLRows...151
%Substring..151
%Table.. 151
%Test...152
%TextIn...153
%TimeAdd.. 153
%TimeIn..154
%TimeNull..154
%TimeOut... 155
%TimePart...155
%TrimSubstr... 156
%Truncate... 156
%TruncateTable.. 157
%Update..158
%UpdatePairs..158
%UpdateStats.. 160
%Upper... 164

Chapter 6: Managing Application Engine Programs.. 165
Running Application Engine Programs.. 165

Understanding Program Run Options.. 165
Creating Process Definitions.. 166
Listing Process Definition Parameters... 167

vi Copyright © 1988, 2025, Oracle and/or its affiliates.

Contents

Starting Programs with the Application Engine Process Request Page.......................................168
Using PeopleCode to Invoke Application Engine Programs...170
Using the Command Line to Invoke Application Engine Programs... 171

Debugging Application Engine Programs.. 176
Enabling the Application Engine Debugger.. 176
Setting Debugging Options.. 177

Restarting Application Engine Programs... 181
Understanding Restart.. 182
Determining When to Use Restart... 182
Controlling Abnormal Terminations.. 184
Restarting Application Engine Programs...184
Starting Application Engine Programs from the Beginning.. 185
Enabling and Disabling Restart..186

Caching the Application Engine Server... 187
Freeing Locked Temporary Tables... 187
Analyzing Application Engine Programs... 188
Configuring Application Engine Action Plug-ins.. 189

Chapter 7: Calling Application Engine Programs from COBOL.. 195
Adding Copybooks to COBOL Programs..195
Assigning Copybook Values...196
Handling COBOL Errors.. 199

Chapter 8: Tracing Application Engine Programs.. 201
Understanding Tracing Application Engine Programs...201
Understanding Trace Results.. 201

Trace File Sections... 201
Step Traces..205
SQL Traces... 205
Statement Timings Traces.. 205
Database Optimizer Traces...207

Enabling Application Engine Tracing.. 209
Setting Command Line Options...210
Setting Parameters in Server Configuration Files..211
Setting Client Options in PeopleSoft Configuration Manager...212
Enabling Selective Tracing...213

Collecting Application Engine Performance Data... 216
Setting Options in PeopleSoft Configuration Manager (two-tier mode)..................................... 216
Setting Options in Domain Configuration Files (three-tier mode).. 217
Configuring Performance Data Collection...218

Locating Trace Files... 218
Chapter 9: Using Log Analyzer... 221

Understanding Log Analyzer..221
Application Engine Call Structure... 221
SQL Information...223
PeopleCode Information...223
Filter..223

Enabling Log Analyzer for Application Engine...224
Setting Options in PeopleSoft Configuration Manager (two-tier mode)..................................... 225
Setting Options in Domain Configuration Files (three-tier mode).. 226
Setting Options to Trace a Specific Application Engine Program...226

Chapter 10: Using Temporary Tables..229
Understanding Temporary Tables... 229

Copyright © 1988, 2025, Oracle and/or its affiliates. vii

Contents

Understanding Global Temporary Tables... 230
Creating Temporary Table Instances.. 232

Understanding Temporary Table Instances.. 232
Defining Temporary Tables..233
Setting the Number of Temporary Table Instances... 233
Building Table Instances.. 235

Managing Temporary Table Instances..235
Understanding Temporary Table Instance Numbers..236
Assigning Temporary Tables to Programs... 236
Adjusting Meta-SQL.. 239

Making External Calls.. 241
Viewing Temporary Table Usage... 243

Viewing Temporary Table Usage by Record...244
Viewing Temporary Table Settings by Program..245
Viewing Online Instance Usage...245
Resolving the Temporary Table Usage Warning Message.. 246

viii Copyright © 1988, 2025, Oracle and/or its affiliates.

Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

Hosted PeopleSoft Online Help
You can access the hosted PeopleSoft Online Help on the Oracle Help Center. The hosted PeopleSoft
Online Help is updated on a regular schedule, ensuring that you have access to the most current
documentation. This reduces the need to view separate documentation posts for application maintenance
on My Oracle Support. The hosted PeopleSoft Online Help is available in English only.

To configure the context-sensitive help for your PeopleSoft applications to use the Oracle Help Center,
see Configuring Context-Sensitive Help Using the Hosted Online Help Website.

Locally Installed PeopleSoft Online Help
If you’re setting up an on-premises PeopleSoft environment, and your organization has firewall
restrictions that prevent you from using the hosted PeopleSoft Online Help, you can install the online help
locally. Installable PeopleSoft Online Help is made available with selected PeopleSoft Update Images and
with PeopleTools releases for on-premises installations, through the Oracle Software Delivery Cloud.

Your installation documentation includes a chapter with instructions for how to install the online help
for your business environment, and the documentation zip file may contain a README.txt file with
additional installation instructions. See PeopleSoft 9.2 Application Installation for your database platform,
“Installing PeopleSoft Online Help.”

To configure the context-sensitive help for your PeopleSoft applications to use a locally installed online
help website, see Configuring Context-Sensitive Help Using a Locally Installed Online Help Website.

Downloadable PeopleBook PDF Files
You can access downloadable PDF versions of the help content in the traditional PeopleBook format on
the Oracle Help Center. The content in the PeopleBook PDFs is the same as the content in the PeopleSoft
Online Help, but it has a different structure and it does not include the interactive navigation features that
are available in the online help.

Common Help Documentation
Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

• Application Fundamentals

Copyright © 1988, 2025, Oracle and/or its affiliates. ix

https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_HOSTED
https://edelivery.oracle.com
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_LOCAL
https://docs.oracle.com/en/applications/peoplesoft/index.html

Preface

• Using PeopleSoft Applications

Most product families provide a set of application fundamentals help topics that discuss essential
information about the setup and design of your system. This information applies to many or all
applications in the PeopleSoft product family. Whether you are implementing a single application, some
combination of applications within the product family, or the entire product family, you should be familiar
with the contents of the appropriate application fundamentals help. They provide the starting points for
fundamental implementation tasks.

In addition, the PeopleTools: Applications User's Guide introduces you to the various elements of the
PeopleSoft Pure Internet Architecture. It also explains how to use the navigational hierarchy, components,
and pages to perform basic functions as you navigate through the system. While your application or
implementation may differ, the topics in this user’s guide provide general information about using
PeopleSoft applications.

Field and Control Definitions
PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions
The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign
(+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

. . . (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
 Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
 an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

x Copyright © 1988, 2025, Oracle and/or its affiliates.

Preface

Typographical Convention Description

⇒ This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

ISO Country and Currency Codes
PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY_CD_TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY_TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers
Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

• Asia Pacific

• Europe

• Latin America

• North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

• USF (U.S. Federal)

Copyright © 1988, 2025, Oracle and/or its affiliates. xi

Preface

• E&G (Education and Government)

Translations and Embedded Help
PeopleSoft 9.2 software applications include translated embedded help. With the 9.2 release, PeopleSoft
aligns with the other Oracle applications by focusing our translation efforts on embedded help. We
are not planning to translate our traditional online help and PeopleBooks documentation. Instead we
offer very direct translated help at crucial spots within our application through our embedded help
widgets. Additionally, we have a one-to-one mapping of application and help translations, meaning that
the software and embedded help translation footprint is identical—something we were never able to
accomplish in the past.

Using and Managing the PeopleSoft Online Help

Select About This Help in the left navigation panel on any page in the PeopleSoft Online Help to see
information on the following topics:

• Using the PeopleSoft Online Help.

• Managing hosted Online Help.

• Managing locally installed PeopleSoft Online Help.

PeopleTools Related Links

PeopleTools 8.62 Home Page

PeopleSoft Search and Insights Home Page

“PeopleTools Product/Feature PeopleBook Index” (Getting Started with PeopleTools)

PeopleSoft Online Help

PeopleSoft Information Portal

PeopleSoft Spotlight Series

PeopleSoft Training and Certification | Oracle University

My Oracle Support

Oracle Help Center

Contact Us

Send your suggestions to psoft-infodev_us@oracle.com.

Please include the applications update image or PeopleTools release that you’re using.

xii Copyright © 1988, 2025, Oracle and/or its affiliates.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=3076202.2
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2205540.2
https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/spotlight.html
https://docs.oracle.com/pls/topic/lookup?ctx=psft_hosted&id=ou
https://support.oracle.com/CSP/ui/flash.html
https://docs.oracle.com/en/
mailto:PSOFT-INFODEV_US@ORACLE.COM

Preface

Follow Us

Icon Link

Watch PeopleSoft on YouTube

Follow @PeopleSoft_Info on X.

Read PeopleSoft Blogs

Connect with PeopleSoft on LinkedIn

Copyright © 1988, 2025, Oracle and/or its affiliates. xiii

http://www.youtube.com/user/PSFTOracle
https://twitter.com/PeopleSoft_Info
https://blogs.oracle.com/peoplesoft
https://www.linkedin.com/groups/4530781/?home=&gid=4530781&trk=anet_ug_hm

Chapter 1

Getting Started With Application Engine

Application Engine Overview

Application Engine is a PeopleTools designed to help you develop background SQL processing programs.
This tool is intended to be used by developers with knowledge of SQL, SQL tools, and PeopleTools.

Application Engine offers an alternative to writing COBOL or SQR programs for background SQL
processing. While Application Engine does not generate, parse, or understand SQL, it does execute SQL
that you provide.

This diagram shows the program structure of Application Engine.

Note: Db2 for z/OS is the official IBM name for the database management system (DBMS).

Application Engine Implementation

This section provides information to consider before you begin to use Application Engine.

Copyright © 1988, 2025, Oracle and/or its affiliates. 15

Getting Started With Application Engine Chapter 1

Implementation of Application Engine can be divided into these activities:

• Set up properties.

• Specify actions.

• Create temporary table instances.

• Set up debugging options.

• Enable Application Engine tracing.

Setting Up Properties

To set up Application Engine properties, perform these steps:

Step Reference

1. Set up program properties. See Setting Program Properties.

2. Set up section properties. See Setting Section Properties.

3. Set up step properties. See Setting Up Step Properties.

4. Set up action properties. See Specifying Actions.

Specifying Actions

To modify action properties, perform these steps:

Step Reference

1. Specify SQL actions. See Specifying SQL Actions.

2. Specify Do actions. See Specifying Do Actions.

3. Specify PeopleCode actions. See Specifying PeopleCode Actions.

4. Specify Call Section actions. See Specifying Call Section Actions.

5. Specify Log Message actions. See Specifying Log Message Actions.

Creating Temporary Table Instances

To set up temporary tables to improve performance, perform these steps:

16 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 1 Getting Started With Application Engine

Step Reference

1. Define temporary tables. See Defining Temporary Tables.

2. Set up the number of temporary table instances. See Setting the Number of Temporary Table Instances.

3. Build table instances. See Building Table Instances.

Setting Up Debugging Options

To set up debugging options for Application Engine programs, perform these steps:

Step Reference

1. Enable the Application Engine debugger. See Enabling the Application Engine Debugger.

2. Set up debugging options. See Setting Debugging Options.

Enabling Application Engine Tracing

To trace Application Engine programs, perform these steps:

Step Reference

1. Set command line options. See Setting Command Line Options.

2. Set parameters in server configuration files. See Setting Parameters in Server Configuration Files.

3. Set options in Configuration Manager. See Setting Client Options in PeopleSoft Configuration
Manager.

Other Sources of Information

In addition to implementation considerations presented in this topic, take advantage of all PeopleSoft
sources of information, including the installation guides, release notes, and PeopleBooks.

Related Links
Application Engine Overview

Copyright © 1988, 2025, Oracle and/or its affiliates. 17

Getting Started With Application Engine Chapter 1

18 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 2

Understanding Application Engine

Application Engine Fundamentals

Application Engine comprises two distinct components—a designer where you define your batch program
and the runtime environment where you run and monitor your program.

In Application Engine, a program is a set of SQL statements, PeopleCode, and program control actions
that enable looping and conditional logic. A program is defined in Application Designer to perform a
business process. You can use Application Engine for straight, row-by-row processing, but the most
efficient Application Engine programs are written to perform set-based processing.

Application Engine does not generate SQL or PeopleCode. It runs the SQL and PeopleCode that you
include in an Application Engine action as part of your program.

Application Engine is designed for batch processing where you have data that must be processed without
user intervention—for example, calculating salaries in payroll processing (although not printing the
checks). Another example might be converting money from one currency to another.

Meta-SQL

You can write SQL within Application Engine, or you can copy SQL statements into Application Engine
from any SQL utility with few, if any, changes. This capability enables you to write and fine tune SQL
statements before you try to incorporate them into an Application Engine program.

Database platforms can have different syntax rules, especially in regard to date, time, and other numeric
calculations. Generally, you can work around syntax differences using PeopleSoft meta-SQL, which
Application Engine supports. Meta-SQL is a set of predefined terms (meta-strings) designed to replace
relational database management system (RDBMS)-specific SQL syntax with a common syntax.

In addition, PeopleSoft meta-SQL enables you to dynamically generate portions of SQL code. For
example, to join two tables based on their common keys, use the following meta-string:

%Join(COMMON_KEYS, PSAESECTDEFN ABC, PSAESTEPDEFN XYZ)

At runtime, the function would be expanded into the following:

ABC.AE_APPLID = XYZ.AE_APPLID
AND ABC.AE_SECTION = XYZ.AE_SECTION
AND ABC.DBTYPE = XYZ.DBTYPE
AND ABC.EFFDT = XYZ.EFFDT

Copyright © 1988, 2025, Oracle and/or its affiliates. 19

Understanding Application Engine Chapter 2

Application Engine Program Elements

An Application Engine program comprises the set of processes to carry out a given task. It is made up of
these key elements:

• Sections

• Steps

• Actions

• State records

Sections
Sections include one or more steps and are equivalent to a COBOL paragraph or an SQR procedure. All
Application Engine programs must contain at least one section entitled MAIN.

A section is a set of ordered steps that is executed as part of a program. You can call sections (and other
programs) from steps within other sections.

A program must contain at least one section. Running the program always starts with the section defined
as MAIN.

Steps
Steps are the smallest unit of work that can be committed within a program. Although you can use a step
to execute a PeopleCode command or log a message, typically you use a step to execute a SQL statement
or to call another section. The SQL or PeopleCode that a step executes are the actions within the step.

When a section is called, its steps execute sequentially. Every program begins by running the first step of
the required section called MAIN and ends after the last step in the last section completes successfully.

Actions
You can specify multiple types of actions for inclusion within a step. Multiple actions are commonly
associated with a single step.

Do Actions

Do actions contain a SQL Select statement designed to return results on which subsequent actions
depend. For instance, if a Select statement returns no rows, then subsequent actions may not need to
execute. A Do action is equivalent to a COBOL Perform statement and has similar constructs.

The four types of Do actions are:

• Do While

• Do When

• Do Select

20 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 2 Understanding Application Engine

• Do Until

SQL

Most SQL actions contain a single SQL statement. These actions can perform the following types of SQL
statements:

• Update

• Delete

• Insert

• Select

A SQL action differs from a Do action, which also contain SQL, in that the SQL action does not
control the flow of the program.

PeopleCode

You can include PeopleCode in a PeopleCode action. Application Engine PeopleCode provides an
excellent way to build dynamic SQL, perform simple if/else edits, set defaults, and other operations that
do not require a trip to the database. It also enables you to reference and change active Application Engine
state records.

Most importantly, PeopleCode provides access to the PeopleSoft integration technologies, such as
PeopleSoft Integration Broker, Component Interfaces, Business Interlinks, and file processing.

Log Message

You use a Log Message action to write a message to the message log based on a condition in your
program. This functionality gives your program multi-language capability. The system stores the message
generically as a message set, message number, and parameter values. When a user views the messages
using the Application Engine Message Log page, the system retrieves the appropriate message string from
the message catalog based on the user’s language preference.

Call Section

You can also insert an action that calls another section. The called section can be in the same program
as the calling section, or it can be in an external program. This capability enables you to chunk your
program into more maintainable, reusable pieces. If a section already exists in one program, then rather
than copying it into another program you can just call it.

Note: Application Engine supports up to 99 levels of nested Call Section actions. For example, the first
called section can call a second, which can call a third, and so on up to 99 calls.

State Records
A state record is a PeopleSoft record that must be created and maintained by the Application Engine
developer. This record defines the fields a program uses to pass values from one action to another. Think
of the fields of the Application Engine state record as the working storage for your Application Engine
program.

Copyright © 1988, 2025, Oracle and/or its affiliates. 21

Understanding Application Engine Chapter 2

An Application Engine state record can be either a physical record or a work record, and you can
associate any number of state records with a program. You must key physical state records by process
instance.

Application Engine Program Types

This section discusses:

• Application Engine program types.

• Daemon program type.

• Transform program type.

Application Engine Program Types
Application Engine has five types of programs. You specify the type in the Program Properties dialog box
for your program definition. The types are:

• Standard, which is a normal entry-point program.

• Upgrade Only, which is used in PeopleSoft upgrade utilities.

• Import Only, which is used by PeopleSoft import utilities.

• Daemon Only, a type of program used as a daemon process.

• Transform Only, a program type used to support Extensible Stylesheet Language Transformations
(XSLT).

Daemon Program Type
Application Engine provides a daemon process, called PSDAEMON, that runs continuously when
PeopleSoft Process Scheduler is running and is intended for recurring jobs. It polls the system, checking
for certain conditions to occur. A predefined set of conditions is an event. When the conditions are true,
PSDAEMON schedules a process to handle the event.

PSDAEMON supports limited tracing because it runs indefinitely. Specifically, it only allows Application
Engine tracing at the step and SQL levels, in addition to the standard PeopleSoft SQL and PeopleCode
tracing. It does not support other options, such as Timings and DB Optimizer tracing.

You activate PSDAEMON in PeopleSoft Process Scheduler or from the command line.

Note: One PSDAEMON process can run for each row in the PS_SERVERDEFN table. The
PS_SERVERDEFN.DAEMONENABLED field must be set to 1.

Starting PSDAEMON from the Command Line

The command line syntax is:

 psdaemon [-CTdatabase_type] [-CDdatabase_name] [-COuserID] [-CPpassw⇒

22 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 2 Understanding Application Engine

ord] -Rserver_name

Use the –R option to query PS_SERVERDEFN, obtaining the daemon group, sleep time, and recycle
count (terminate after N iterations).Server_name is the key value for PS_SERVERDEFN. You do not
need to pass ProcessInstance (–I) or AE Program ID (–AI).

Starting a Daemon Program from PeopleSoft Process Scheduler

Before starting a daemon Application Engine program, you must add the program to the Daemon Group
page in PeopleSoft Process Scheduler.

To add a daemon program:

1. Select PeopleTools > Process Scheduler > Define Daemon Groups.

2. Select the Add New Value page.

3. Enter a daemon procedure group name and click Add.

4. On the Daemon Group page, add the appropriate programs to the program name list.

Restarting the AEDAEMONMGR Program

AEDAEMONMGR is a restartable Application Engine program that commits after each daemon
procedure. When PSDAEMON executes, it determines whether it must restart AEDAEMONMGR
following an abnormal end to a program.

If a restart is not required, PSDAEMON assigns a new process instance and runs AEDAEMONMGR
from the beginning. Because of this design, PeopleSoft Process Scheduler does not have to determine
whether PSDAEMON exited due to an error or because it had reached the recycle count.

AEDAEMONMGR uses the Daemon Group page value to get related daemon procedures from
PS_DAEMONGROUP in order, and then it initiates each procedure. After all procedures have been
executed, AEDAEMONMGR logs a sleep message and returns control to PSDAEMON. The sleep time
is used only to log an informational message at the end of each cycle, for example, "Sleeping for N
minutes...." It also logs a message at the beginning of each cycle so that an administrator can monitor the
runtime and sleep-time of a specific PSDAEMON process.

If an error occurs in AEDAEMONMGR, if the recycle count has been reached, or if
PSSERVERSTAT.DAEMONACTION = '1' (indicating that PeopleSoft Process Scheduler is idle),
then PSDAEMON exits. Otherwise, it sleeps for the requested number of minutes and then calls
AEDAEMONMGR again.

Using PSDAEMON to Start Parallel Processing

Within a daemon group, programs are invoked sequentially and one program does not execute until the
previous program has completed. The programs contained in a daemon group should be quick programs
that scan information to find events. When an event is discovered, the daemon program can use the
ProcessRequest class to invoke programs that are not of the daemon type. These non-daemon type
Application Engine programs can execute in parallel. For that reason, do not include application-specific
processing in a PSDAEMON type program.

Copyright © 1988, 2025, Oracle and/or its affiliates. 23

Understanding Application Engine Chapter 2

Related Links
“Defining Process Definitions” (Process Scheduler)

Transform Program Type
Transform Only type programs enable different systems to communicate with one another by
transforming messages into appropriate formats. When you specify an Application Engine program as a
Transform Only program, you must specify actions of type XSLT or PeopleCode. You can use transform
programs to:

• Apply a transformation to a message to make its structure comply with the requirements of the target
system.

• Perform a data translation on a message so its data is represented according to the conventions of the
target system.

• Determine whether to pass a message through to its target by filtering it based on its content.

Related Links
“Developing Transform Programs Using PeopleSoft Application Engine” (Integration Broker)

24 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3

Creating Application Engine Programs

Viewing Application Engine Programs

This section discusses how to:

• Use Definition view.

• Use Program Flow view.

• Switch between Definition and Program Flow views.

• Use the Refresh option.

• Using the Zoom option

Using Definition View
You use Definition view to create definitions within a defined hierarchical structure, in which nodes
represent the definitions. A node is the visual representation of a section, step, or action that you can
select, collapse, modify, and so on.

The sections that appear in Definition view do not necessarily appear in the order that they execute. To
see the actual order in which the sections execute, switch to Program Flow view.

In addition to using a mouse, you can navigate in this view using the following keyboard combinations:

• Press Ctrl+Home to scroll to the top of the program definition and select the first node.

• Press Ctrl+End to scroll to the end of the program definition and select the last visible node.

• Press Tab to move from the currently selected field to the next field that can be updated.

• Press Ctrl+Down Arrow to move from the currently selected node to the next node.

• Press Ctrl+Up Arrow to move from the currently selected node to the previous node.

Copyright © 1988, 2025, Oracle and/or its affiliates. 25

Creating Application Engine Programs Chapter 3

This example illustrates the fields and controls on the Example of Application Designer Definition view.
You can find definitions for the fields and controls later on this page.

Definition View Pop-up Menu

The following table describes each item you see when you right-click a Definition view window. Certain
menu items are enabled only when a particular definition is selected.

Menu Command Description

View PeopleCode Launches the PeopleCode Editor with the appropriate
PeopleCode loaded. Enabled when a PeopleCode action is
selected.

View SQL Launches the SQL Editor with the appropriate SQL loaded.
 Enabled when an action containing SQL is selected.

View XSLT Launches the SQL Editor with the related Extensible
Stylesheet Language Transformations (XSLT) text loaded.
 Enabled only for Transform Only program types when an
XSLT action is selected.

Cut Removes the selected item and copies it to a clipboard. Here,
 the word clipboard refers to a PeopleTools-only repository
for sharing PeopleTools objects. You cannot copy or paste into
another program.

Copy Copies the selected item.

26 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Menu Command Description

Paste Pastes the contents of the PeopleTools clipboard (the most
recently cut or copied item) to the current location of the
cursor.

Delete Removes the currently selected node from the program
definition.

Refresh View Refreshes the current view and reorders the definition objects
as necessary.

Show Comment Reveals the comments associated with the selected definition
object.

Insert Section Inserts a new section into the current program at the place
where the cursor is positioned. This option is enabled only
when you have selected MAIN or another section.

Insert Step/Action Inserts a new step and action within the currently selected
section. This option is enabled only when you have selected a
section or a step.

Insert Action Inserts a new action within the currently selected step. This
option is enabled only when you have selected a step or action.

Jump to This Program Flow Switches to the Program Flow view with the first occurrence
of the currently selected definition in focus.

Print Displays the print dialog box for the definition view.

Note: To preview any AE program, export the AE program
using either File > Print Preview or File > Print option.
 Select Microsoft Print to PDF while exporting.

Insert Section Into Project Applies to sections. Inserts the currently selected section into
the current project.

Using Program Flow View
Program Flow view is a read-only view that shows the expected sequence of steps to execute for the
program you are developing.

Copyright © 1988, 2025, Oracle and/or its affiliates. 27

Creating Application Engine Programs Chapter 3

This example illustrates the fields and controls on the Example of Application Designer Program Flow
view.

You can control the amount of detail that appears for each definition by clicking it to expand to the next
level. You also can view the SQL or PeopleCode in the lower (splitter) window area by clicking the lower
window.

If a primary step node (one that is not the result of a section call) is selected, the Print Options dialog box
permits printing to begin either at that step node or the entire program prints. However, if a secondary step
node (one that is the result of a section call), a secondary action node, a call section action node, a SQL
node, or a PeopleCode node is selected in the Program Flow view, then the Print Options dialog box only
permits the entire program to be printed.

To display the pop-up menu for a node, right-click the node. You do not have to select the node first.

You also can display the comments associated with definitions by selecting View, Show All Comments or,
for a particular node, right-click and select Show Comment.

You can double-click SQL or PeopleCode statements to launch the editors.

Program Flow Pop-up Menu

The following table describes each pop-up menu item in the Program Flow view:

Menu Command Description

View PeopleCode Launches the PeopleCode Editor with the appropriate
PeopleCode loaded. Enabled when a PeopleCode action is
selected.

View SQL Launches the SQL Editor with the appropriate SQL loaded.
 Enabled when an action containing SQL is selected.

28 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Menu Command Description

Refresh View Refreshes the current view and reorders the definition objects
as necessary.

Show Comment Reveals the comments for a single definition object that
appears in the Program Flow view.

Jump to This Definition Switches to the Definition view with the first occurrence of the
currently selected definition object in focus.

Print Launches the print dialog box for the program view.

Note: To preview any AE program, export the AE program
using either File > Print Preview or File > Print option.
 Select Microsoft Print to PDF while exporting.

Switching Between Definition and Program Flow Views
By default, navigation within either view does not affect the currently active row in the other view. This
functionality enables you to retain your place in one view while scrolling through the other.

To switch between the two views, use any of the following methods:

• View tabs

As with any tabbed interface, if you select a tab, the associated view interface becomes active. When
you return to the previous view, it remains positioned on the current or last selected node within the
program when you switched. This positioning is true whether you selected the item or just placed the
cursor within an edit box.

• View menu

Select a section or step in the current view (note that selecting an action does not enable this
functionality; you can jump only from parent nodes). Then select View, Jump to Program Flow or
View, Jump to Definition, depending on the currently active view. When you select one of these
commands, the focus of the target view depends on what you selected in the previous view. For
example, if you selected Section C, Step 4 in Definition view and you select View, Jump to Program
Flow, then Section C, Step 4 is the focus of the Program Flow window. If the selected item is in
a program that is not open already, then Application Engine opens the appropriate program and
navigates to the requested node in the view window.

• Pop-up menu

The same commands as the View menu are also available from the pop-up menu.

Switching Within Program Flow View

While you are in Program Flow view, you can select these options from the pop-up menu:

Copyright © 1988, 2025, Oracle and/or its affiliates. 29

Creating Application Engine Programs Chapter 3

• Go to Next Reference

Select to switch to the next reference of a particular definition object. This option helps you navigate
quickly through a program. For instance, if references to Section C, Step 4 appear three times because
of multiple calls to this object at runtime, then you can select Go to Next Reference to navigate
quickly and easily to each reference or call.

• Jump to this Definition

Select to go directly to the definition node in the Definition view that pertains to the current selection
in the Program Flow view.

Using the Refresh Option
As you develop an Application Engine program, you may be inserting, renaming, and deleting definitions.
In a large program, you can easily lose your place or become disoriented. The Refresh option reorders all
the nodes for the current definition according to the following logic:

• For standard program definitions, the MAIN section always appears first (Library program types do
not contain a MAIN section because they contain only callable sections).

The remaining sections appear alphabetically by name, which makes it easy to locate a section within
the program definition. At runtime, the system runs sections through Call Section actions within steps,
not by the order in which the sections are defined.

• Steps are never automatically reordered in the Definition view; at runtime, they run in the sequence in
which you defined them.

• Actions are always logically reordered within a step based on their action type, which defines their
runtime sequence.

Note: When you save a modified definition, the system automatically refreshes the view.

Application Engine inserts any delete requests for a given section into the current project, regardless of
the Tools, Options setting in Application Designer.

For example, suppose you delete a section node from the current Application Engine program and then
you reinsert a section node and rename it the same name as the section you just deleted. The section
object is not inserted into the project, regardless of your Tools, Options setting, because a delete action
already exists for this object. To resolve this situation, either remove the delete request manually before
inserting the new copy request or reset the proper flags manually in the upgrade project that changes the
action type from Delete to Copy.

Using the Zoom Options
You can adjust the display of Application Engine programs with zoom in and zoom out options.

Access Zoom In and Zoom Out from the View menu option.

When you zoom to the maximum or minimum, a warning message is displayed.

Shortcut key for zoom in is F8 and zoom out is Alt F8.

30 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Filtering View Contents

Section filtering options enable you to filter the current view so that you see only sections and steps based
on specified criteria.

To enable or modify the filtering options, select View, Section Filtering. You can select from the filtering
options described in this table:

Menu Command Description

No Filtering Select to see all objects in your program, regardless of any
section attributes such as Market, Database Type, Effective
Date, and Effective Status.

Default Select to display the definition filter according to the default
filtering criteria. If you change the value of any filter option
and click OK, you have defined a custom filter.

Custom Select to display the definition filter dialog box and define
custom filtering options for the current view.

Behavior of Section Filtering Options

When using the section filtering options, keep in mind that:

• The default is No Filtering; therefore, all section definitions are included in this view.

• If you select Custom filtering, the default filtering options appear while you are in the current session
of Application Designer.

If you modify these filtering options and click OK, the new options are stored as the currently active
options and the view is updated accordingly.

• If you select the Default filter option, the original default options appear in the dialog box.

After clicking OK, the view reappears with only those sections that qualify. However, if you change
the default options and do not click OK, then these options are stored as a custom filtering request and
the view reappears as necessary.

• If no platform-specific section is defined for the target filter value, then the default (base platform) is
always included because it represents the Application Engine runtime behavior more accurately.

If you select Section Filtering > Default orSection Filtering > Custom then the following dialog box
appears:

Copyright © 1988, 2025, Oracle and/or its affiliates. 31

Creating Application Engine Programs Chapter 3

This example illustrates the fields and controls on the Definition Filter dialog box. You can find
definitions for the fields and controls later on this page.

In this example, only definitions that represent the following criteria appear in the Definition and Program
Flow views.

32 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Field or Control Description

Market Select a market code to see only the definitions within that
market. To see all market-related definitions for a program,
 you could update the default profile or define a custom filter
by selecting (none) from theMarket drop-down list box. The
example shows only sections that pertain to the Italian market
(market code ITA).

Platform Select the platform filtering. The example shows only the
sections that are defined for the Microsoft SQL Server
platform. Select Default to display sections defined to be
database-platform-independent (the default platform). Specific
platforms include Oracle, Db2 for z/OS, and Microsoft.

As of Date Select the date filtering. The example shows sections with an
As of Date equal to or greater than April 7, 2000. Select None
to display all sections, regardless of effective date.

Active Status Select to show active section definitions.

Note: All filtering options pertain only to section-level nodes.

Printing Program and Flow Definitions

You can print the program definition or program flow, depending on which view you are in when you
select Print.

To print an Application Engine program definition:

1. Right-click and select Print in either the Program Flow or Definition view or select File, Print.

2. Select print options.

Field or Control Description

Program ID Select to print the whole program.

All Sections Select for all sections to be expanded in the printed report
but only for the primary Application Engine program that
is being printed and only if that program is an application
library. Otherwise, only the MAIN section, first section, or
called section is printed.

All Steps Select to print all the steps in the section.

Copyright © 1988, 2025, Oracle and/or its affiliates. 33

Creating Application Engine Programs Chapter 3

Field or Control Description

All Attributes Select to print all detail level attributes for the specified
node and its children.

SQL Statements Select to print, for every SQL type action, the text of each
SQL statement.

PeopleCode Statements Select to print the text of the PeopleCode statements for
every PeopleCode action.

Comments Select to print the long description comments for the
selected node and its children.

Include External Calls Select to print the section detail of all external calls.

Max No. of Levels (maximum number of levels) Specify the maximum number of recursive levels to print for
the specified call sections, including both external section
calls and internal section calls. This edit box is always
enabled. You can only set the maximum number of levels to
a value greater than or equal to 1.

Creating, Opening, and Renaming Programs

This section discusses how to:

• Create new programs.

• Open existing programs.

• Rename programs.

Creating New Programs
An Application Engine program includes a logically ordered set of sections, steps, and actions. An
executable program must contain at least one section, called MAIN, used to identify the starting point of
the program. Also, it should contain at least one step, and each step should contain at least one action.

To create a new program definition:

1. Select File, New or press Ctrl + N.

2. In the New dialog box, select App Engine Program from the Definition Type drop-down list and click
OK.

3. Save and name your program.

Select File, Save As, enter the name of your program in the Save Name As edit box, and click OK.

34 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Note: You should also provide a program description and specify its owner in the properties dialog box
for the new program.

See Setting Program Properties.

Opening Existing Programs
To open an existing program:

1. Select File, Open.

2. In the Open Definition dialog box, select App Engine Program from the Definition Type drop-down
list.

3. Enter your search criteria for the program you want, select your program in the search results list, and
click Open to open the program.

Renaming Programs
To rename a program:

1. Select File, Rename.

2. In the Rename dialog box, make sure that App Engine Program appears as the definition type.

3. In the box that contains your search results, click the program that you want to rename.

4. Click Rename.

5. Place the cursor in the box that appears around the highlighted program name.

6. Enter a new name for the program.

7. Click Rename again and respond appropriately in the Confirm Rename dialog box.

Note: The system automatically modifies all static references in other programs to the renamed
program. For instance, if you call the renamed program from another Application Engine program, the
Call Section action in the calling program is modified to reflect the new program name. All sections
and steps are saved under the new name. Only one occurrence of a program name can exist for a
given database.

Note: If the renamed program is called in a dynamic Do action, then the reference is not modified
automatically. You should manually check and modify any embedded references to the new program
name in CallAppEngine or other PeopleCode functions.

Copying or Moving Program Elements

The following procedures apply to sections, steps, and actions. Note that when these functions are
performed for a given object, the result applies not only to the selected object but also includes its defined

Copyright © 1988, 2025, Oracle and/or its affiliates. 35

Creating Application Engine Programs Chapter 3

children, if they exist. Also note that all references to menu items apply not only to the main menu bar
items but also to their related items in the context menu, as applicable.

To copy a definition:

1. Select a definition.

2. Select Edit, Copy.

3. Position the cursor where you want to put the copied definition and select Edit, Paste.

To move a definition:

1. Select a definition object.

2. Select Edit, Cut.

3. Position the cursor at the target location and select Edit, Paste.

Testing Application Engine Programs

After creating or modifying your program, you can test it in two-tier mode while in Application Designer.
You use the Run Request dialog box.

This example illustrates the fields and controls on the Run Request dialog box. You can find definitions
for the fields and controls later on this page.

To run an Application Engine program in two-tier mode:

1. Select Edit > Run Program from the Application Designer toolbar.

36 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

The Run Request dialog box appears.

2. Enter appropriate values.

When you click OK, these values are passed as runtime parameters to the initiated Application Engine
runtime executable.

Field or Control Description

Run Control ID Enter the run control ID of the program that you are testing.

Run Minimized Select to have the window of the requested process
minimized when it is submitted to run.

No Commit Select to specify whether to commit any changes to
database.

Output Log to File Select to write the output log to a file.

Log File Name Specify the log file name (enabled only when the Output
Log to File check box is selected).

Process Instance Specify the process instance for this run request or use the
default value of zero if you do not need an instance number.

3. Click OK.

Setting Program Properties

This section discusses how to:

• Access properties.

• Set general properties.

• Set state record properties.

• Specify temporary tables.

• Set advanced properties.

Accessing Properties
When you have an Application Engine program open in Application Designer, you can view and modify
the properties assigned to an entire program just as you would a step or a section.

Copyright © 1988, 2025, Oracle and/or its affiliates. 37

Creating Application Engine Programs Chapter 3

To view or modify the properties associated with a program, click the Properties button or select File,
Definition Properties while the program is open. You can also press Alt+Enter. The Program Properties
dialog box appears.

Setting General Properties
Access the Program Properties dialog box and select the General tab. You can specify identification
values for your Application Engine program.

Field or Control Description

Owner ID (Optional) Enter the owner ID for the program. The owner
ID is a way to identify which definitions are owned by which
PeopleSoft applications, such as PeopleSoft General Ledger,
 Accounts Receivables, and so on. The values in the drop-
down list are Translate table values associated with the
OBJECTOWNERID field.

Setting State Record Properties
Select the State Records tab.

38 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

This example illustrates the fields and controls on the Program Properties dialog box: State Records tab.
You can find definitions for the fields and controls later on this page.

Field or Control Description

Qualify Search Enter any wildcard characters or complete table names to
limit the results that appear in the record list. By default, the
Record List text box contains all record names that end with
the extension AET. This extension identifies the record as an
Application Engine record.

Copyright © 1988, 2025, Oracle and/or its affiliates. 39

Creating Application Engine Programs Chapter 3

Field or Control Description

Get List Click to populate the Record List text box.

Record List This text box contains the results of your state record search.

Selected Select state records for use with a particular program. Click
Add to include selected records from the record list into
the selected list. ClickRemove to remove selected records
from the selected list. Indicate which state record will act as
the default state record by selecting its check box. For your
default state record, you need to reference only field names
in your PeopleCode and SQL (for the active program). When
you reference a non-default state record, you do so by using
recname.fieldname.

Specifying Temporary Tables
Select the Temp Tables tab.

40 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

This example illustrates the fields and controls on the Program Properties dialog box: Temp Tables tab.
You can find definitions for the fields and controls later on this page.

Temporary tables store intermediate results during a program run.

Note: You must have defined required temporary tables in your database before you can associate them
with an Application Engine program.

Copyright © 1988, 2025, Oracle and/or its affiliates. 41

Creating Application Engine Programs Chapter 3

Field or Control Description

Qualify Search Enter any wildcard characters or complete table names to limit
the results that appear in the record list. By default, the Record
List text box contains only records that are of type Temporary
Table. You apply this attribute when you create the record in
Application Designer.

Get List Click to populate the Record List text box.

Record List This text box contains the results of your search for temporary
tables.

Selected Select temporary tables for use with a particular program.
Click Add to include selected records that appear in the record
list. ClickRemove to exclude selected records that appear in
the selected list.

Instance Count Enter the number of physical tables to be created for each
dedicated table for this program during the SQL Build
procedure in Application Designer. Typically, you would set
this number to equal the maximum number of parallel program
runs that you anticipate. For instance, if you expect up to five
instances of the same program to run simultaneously, then you
would set the instance count to 5.

Share Tables in Online Mode Select to enable online temporary table sharing. By default,
 this check box is not selected. If the temporary tables need
to be shared for this particular Application Engine program
when run in online mode, this has to be selected. When an
online Application Engine instance cannot allocate itself a
dedicated temporary table, this instance will share a temporary
table already used by another instance(s), improving the online
performance.

Use Delete for Truncate Table Select to delete the temporary table during allocation of the
Application Engine process. By default, this check box is not
selected.

Use Delete for Truncate table improves the performance of
Application Engine process.

Insert Selected list into Project If the active Application Engine program definition belongs
to a project, select this check box to include the dedicated
temporary tables for this program within the same project.

Runtime Control how an Application Engine program acts if an instance
of its specified dedicated temporary tables is not available. If
you select Continue, then Application Engine uses the base
version, or undedicated version, of the temporary tables. If you
selectAbort, then the program exits with an error message.

42 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Note: If the table is keyed by PROCESS_INSTANCE and the application SQL includes the process
instance in the Where clause, then multiple processes can share the table. The best performance, however,
occurs when a program runs against a dedicated temporary table instance.

Related Links
Understanding Temporary Tables

Setting Advanced Properties
Select the Advanced tab.

Copyright © 1988, 2025, Oracle and/or its affiliates. 43

Creating Application Engine Programs Chapter 3

This example illustrates the fields and controls on the Program Properties dialog box: Advanced tab. You
can find definitions for the fields and controls later on this page.

Field or Control Description

Disable Restart Select to disable the built-in restart capabilities for a particular
program.

44 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Field or Control Description

Application Library In some cases, you may want a program to contain only a
collection, or library, of common routines (in the form of
callable sections) that you do not want to run as a standalone
program. When sections are defined as public, other programs
can call the sections, or routines, that exist in the library at
runtime. Because this type of program is not designed to run as
a standalone program, it does not require the MAIN section, or
initial entry point. Select this check box to rename or remove
any existing MAIN section.

Note: An application library is the appropriate location to
store a collection of shared Application Engine program
sections. Libraries are not intended for storing a specific SQL
action within a section. To share common SQL, use the SQL
repository.

Batch Only Select for batch-only programs. Batch-only programs are
not run from the CallAppEngine PeopleCode function. Any
dedicated temporary table used for batch-only programs does
not have online instances created.

Message Set Specify the default message set value for this program. The
system uses this message set value for all Log Message actions
for which the message set is not specified.

Program Type Select from:

• Standard: Used by standard entry-point programs.

• Upgrade Only: Used by PeopleSoft upgrade utilities only.

• Import Only: Used by PeopleSoft import utilities only

• Daemon Only: Use for daemon type programs.

• Transform Only: Support for XSLT programs.

Adding Sections

This section provides an overview of sections and discusses how to:

• Insert sections.

• Locate sections.

• Set section properties.

Copyright © 1988, 2025, Oracle and/or its affiliates. 45

Creating Application Engine Programs Chapter 3

Understanding Sections
A section comprises steps and is similar to a COBOL paragraph or a PeopleCode function. You can
create sections that are platform-independent or platform-specific, intended for a particular market, and
effective-dated.

Whenever you create a new program, you simultaneously create a section called MAIN. The MAIN
section identifies the entry point of the program so that it can be called by another program.

Section Run Order

A section is unique based on program and section names, and based on its intended database platform
and effective date. When you run an Application Engine program, it runs sections based on the following
order of precedence:

1. If a section for the current market exists, then run it.

Otherwise, run the default GBL (global) market section.

2. If a section for the current platform, or database exists, run it.

Otherwise, run the default database platform section.

3. If multiple effective-dated sections exist, run the section with the most recent effective date based on
the current (run) date.

For example, suppose you have two versions of a particular section, SECT01 for the Public Sector
market and SECT01 for the Global market. If you request to run the public sector version of the program,
Application Engine runs the Public Sector version of SECT01. If the program is running on Oracle,
Application Engine then looks for an Oracle version of SECT01 for Public Sector.

Inserting Sections
To insert a section:

1. Select Insert, Section, or right-click and select Insert Section.

The default name for a section that you insert is Section N, where N is an incremental number
intended to provide a unique name for each section object. Unless you rename sections, the sections
you add are named SectionN+1, where N is the last section you inserted. Consequently, the names are
Section1, Section2, Section3, and so on.

The designer inserts the new section directly beneath the subordinate objects within the owning
section of the highlighted object. For instance, if Section2 were selected, then Section4 would be
inserted between Section2 and Section3 rather than after Section3.

Note: Sections are always reordered alphabetically by name when you save to make locating a section
easier. However, run order depends on internal call section references and is, therefore, independent of
the order in which sections are inserted and displayed.

2. Enter the remaining section property values.

3. Save the program.

46 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Locating Sections
Various methods are available for locating references to sections within an entire database as well as
within a program.

Finding Call Section References

You can generate a list of all the references to a particular section. The list applies only to Application
Engine programs defined within a single database.

To locate section references:

1. Open the program containing the shared, or called, section.

2. Select Edit, Find References.

The Find Definition References dialog box appears.

3. On the Call Sections tab, select the appropriate section from the Section name drop-down list or enter
the name.

By default, the current program name and MAIN section appear in the dialog box.

4. Click OK.

5. In the output window, view the generated list.

The output window lists the programs and sections that call a particular program. This list also shows
the total call references made to a particular section. Call sections within the current program appear
first in the list.

Double-click an item in the output window list to automatically navigate the definition view to that
calling section.

Finding Sections Within the Current Program

Within large and complicated Application Engine programs, such as those upgraded from a previous
release, having more than 100 sections is not uncommon. Rather than scrolling through a large program,
use the Go To Section feature.

Note: This feature applies only to the current program.

To automatically navigate to a selected section:

1. Select Edit, Go To Section.

The Find Definition References dialog box appears.

2. On the Go To Section tab, select the appropriate section from the Section name drop-down list or
enter the name of the section.

3. Click OK.

The Definition view scrolls to the first occurrence of the section with the name you selected.

Copyright © 1988, 2025, Oracle and/or its affiliates. 47

Creating Application Engine Programs Chapter 3

Setting Section Properties
Controls that specify section properties are located in the Definition view. For example, for each section
included in your program, a node, as shown in the following example, appears. You specify all of the
attributes to associate with a particular section from this node:

This example illustrates the fields and controls on the Section object. You can find definitions for the
fields and controls later on this page.

The values you specify at the section level generally apply to all the objects contained within that section.

Field or Control Description

Section Name Develop a naming convention and use it consistently
throughout your projects. You are limited to eight characters.

Market Select the market for which the section is intended. If a
particular market is irrelevant to your batch program, keep the
default market value of Global (GBL).

Platform Select the target database platform for which this section
definition will run. Leave the default value for all sections
whose defined actions are not specific to a given database
platform.

Effective Date To make a particular section effective-dated, enter a target
date.

Effective Status Specify whether a section is active or enabled at runtime.

Section Type If the program terminates abnormally, this value specifies
whether you must restart the section.

If a section controls a procedure that, if not run to completion,
 could corrupt or desynchronize your data, then select Critical
Updates. Otherwise, accept the default value of Prepare Only.

Auto Commit Select to specify the commit level for the section. You can
have no commit or you can have Application Engine commit
after the step successfully completes.

Public Select to enable a section to be called from another program.

48 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Adding Steps

A step represents the smallest unit of work that can be committed in a program. When you create a
program, you have a default MAIN section and step that is initially named Step01.

This section discusses how to:

• Insert steps.

• Set up step properties.

Inserting Steps
To insert a step:

1. Highlight the section or step that you want to precede the new step.

For example, if you want the new step to be the first step in the section, select the section node.
Otherwise, select the existing step that you want the new step to follow.

Note: The name of the section in which you insert the step appears to the right of the step description.
In large programs, this step enables you to determine the section in which a step resides if the section
is not in view. Also, note that a sequence number appears on each step (001, 002, 003, and so on) so
that you can determine the order of a step within a section. The sequence numbering for steps begins
at 001 within each section.

2. Select Insert, Step/Action.

By default, the steps are given a default name of StepN+1 beginning with Step01. Rename the step to
better define the type of action this step contains.

Note: The designer continues to increment the step name until it has a unique step name within a
section. If the designer is unable to create a unique name after 80 attempts, a new step is not inserted.

3. Specify a step name and the remaining values.

To rename a step, position the cursor in the step name edit box and enter a custom name. Only accept
the default name for building quick, simple programs and for training purposes.

Setting Up Step Properties
You set up step properties in Definition view.

Field or Control Description

Step Name Enter a name (up to eight characters).

Copyright © 1988, 2025, Oracle and/or its affiliates. 49

Creating Application Engine Programs Chapter 3

Field or Control Description

Commit Specify the commit level for the step:

• Default: Select to inherit whatever commit level you
specified for the section in which the step resides.

• Later: Select to postpone the commit until a subsequent
commit occurs. Here you can override the section-level
commit if it is set to After Step.

• After Step: Select if you have a commit level of None
specified at the section level. This selection enables
you to override the section-level commit and commit a
specific step within a section with no other commits.

Frequency Enabled only when a step contains one of the following
actions: Do While, Do Select, or Do Until. Enter the numeric
frequency with which Application Engine should commit. If
non-zero, Application Engine commits every N iterations and
then again after the last iteration.

On Error Specify how Application Engine should respond to an error at
the step level. The On Error routine behaves the same for both
SQL and PeopleCode actions. The program only terminates on
errors, not warnings. Select from:

• Abort: The application terminates with an error message.

• Ignore: The program continues but logs an error message.

• Suppress: The program continues and presents no error
message.

• SQL: Usually a program terminates if a SQL Prepare
statement or execute fails. If you select Ignore or
Suppress, errors on running programs are suppressed, but
errors on compiles still cause the program to terminate.
 Thus, if you select to reuse an Update statement, the
program fails on the compile if the SQL is incorrect, but
it does not fail on a duplicate key error or similar error
when the program runs.

• PeopleCode: The program has a PeopleCode error if the
return code satisfies the statementIf (nRet & PCM_
ERROR).

Status Select to activate a step. If the step is currently applicable to
your program (and working), you will probably want to keep it
active.

Note: The On Error property does not apply to compile errors (for example, specifying erroneous SQL
statements). It checks only for execution-type errors. If your program has a syntax error, the program
terminates.

50 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Specifying Actions

This section provides an overview of actions and discusses how to:

• Insert actions.

• Set action properties.

• Specify SQL actions.

• Specify Do actions.

• Specify PeopleCode actions.

• Specify Call Section actions.

• Specify Log Message actions.

• Specify XSLT actions.

Understanding Actions
You can include eight types of actions within a step, and a step can contain multiple actions. The actions
you define for a step depend on the results that your program requires at each stage of execution.

The only mutually exclusive actions within a single step are Call Section and SQL Statement; you cannot
add a Call Section action to a step that already contains a SQL Statement action, and vice versa. You can
include only one of each action type within a single step. Because eight types of actions are available and
two of these are mutually exclusive, the maximum number of actions a single step can contain is seven.

Action Execution Order

At runtime, the system evaluates actions by type and runs them within a strict hierarchy. For example,
if both a Do When and PeopleCode action exist within a given step, then Application Engine always
executes the Do When action first.

Copyright © 1988, 2025, Oracle and/or its affiliates. 51

Creating Application Engine Programs Chapter 3

The following diagram shows the sequence and level of execution for each type of action.

As you add actions to a step in the Definition view, the actions are initially inserted after the selected
definition (the owning step or a previous action). However, following a save request or a refresh of the
view, the designer reorders all actions to match the execution hierarchy. This feature helps you visualize
the sequence in which each step of your program logic runs.

Note: A SQL action and a Call Section action are interchangeable and mutually exclusive. Only one of
these two actions can appear within a step.

When inserting actions, remember that:

• You cannot have more than one action of a specific type within the same step.

• You cannot have a SQL action and a Call Section action within the same step.

• You can define only XSLT type actions for programs defined as Transformation types (see the
program properties).

Inserting Actions
To insert an action:

1. Highlight the step in which you want to insert an action.

2. Insert the action.

You do this using one of the following methods:

52 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

• Select Insert, Step/Action.

• Right-click the step and select Insert Step/Action.

3. Select the action type from the drop-down list or, when current action type is selected, enter the first
one or two characters of the desired action type and then press Tab. The first (or only) type qualified
by your entry is updated in this control.

4. Enter a description of the action.

5. Specify the appropriate properties for the action you selected.

Setting Action Properties
To modify action properties, the Definition view must be active. Because you can include a variety of
actions within a step, different sets of properties are specific to particular action types. Depending on the
action type you select, the properties that appear will change.

For example, you can specify the reuse feature with a SQL action. This feature does not apply to
a PeopleCode action; instead, you would need to specify how to respond to the return value of the
PeopleCode program.

This example illustrates the fields and controls on the Actions and their associated properties.

PeopleCode and all SQL action types invoke the related PeopleTools Editor to define or maintain the
related text.

ReUse Statement Property

The ReUse Statement property is available for all SQL action types (SQL, Do When, Do While, Do Until,
Do Select). You use the ReUse Statement property to optimize the SQL in your batch program. A ReUse
Statement converts any %BIND references to state record fields into real bind variables (:1, :2, and so
on), enabling the Application Engine runtime process to compile the statement once, dedicate a cursor,

Copyright © 1988, 2025, Oracle and/or its affiliates. 53

Creating Application Engine Programs Chapter 3

and then run it again with new data as often as your program requires. When you use SQL or a Do action
to process a large volume of rows one at a time, inside a fetch loop, compiling each statement that you
issue can affect performance significantly. ReUse Statement is a way to combat possible performance
slowdowns.

Note: You can have Application Engine recompile a reused statement by using the %ClearCursor
function.

When setting the ReUse Statement option, choose from these values:

Field or Control Description

Bulk Insert When used in conjunction with statements like INSERT
INTO tablename (field1, field2...) VALUES

(%BIND(ref1), %BIND(ref2), the Bulk Insert feature
offers the most powerful performance enhancement related
to the ReUse Statement feature. This option turns on a ReUse
Statement and, in addition, holds all the data in a buffer and
performs an insert only after a large number of rows have
gathered in the buffer. The number of rows allowed to gather
in the buffer depends on your database platform. Storing data
in the buffers is applicable only if you selected Bulk Insert
and the SQL is an Insert statement. For statements other than
Insert, the system ignores theBulk Insert option.

No Select this option to disable a ReUse Statement. With ReUse
deselected, the Application Engine runtime process recompiles
the SQL statement every time the loop runs. By default, a
ReUse Statement is disabled.

Yes Select this option to enable basic ReUse Statement
functionality.

Note: The ReUse Statement property can improve performance significantly. However, do not use it if
%BIND variables are building parts of the SQL statement or are in the field list of a Select statement (this
note does not apply if you use the Static option in %BIND).

Specifying SQL Actions
This is the default action type for the first action within a given step. Use this action to perform the
following SQL commands on multiple rows:

• Update

• Insert

• Delete

54 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

• Select

Note: Before you insert SQL (select View, SQL) into a SQL action within a new Application Engine
program, you must have saved the program previously. Saving is required because the program name you
use to save the definition is used to relate your program with the SQL objects you are about to create. The
same is true for inserting PeopleCode.

With a SQL action, you use the SQL Editor to create and modify a SQL statement. Following are some
examples of SQL statements:

%Select(AF_PERFM_AET.PREV_ASOF_DT)
SELECT %DateOut(ASOF_DT)
FROM PS_AF_FCST_SCHT%Bind(EPM_CORE_AET.TABLE_APPEND,NOQUOTES)
WHERE AFDEFN_ID = %Bind(AF_CORE_AET.AFDEFN_ID)
AND ASOF_DT = (SELECT MAX(ASOF_DT)
FROM PS_AF_FCST_SCHT%Bind(EPM_CORE_AET.TABLE_APPEND,NOQUOTES)
WHERE AFDEFN_ID = %Bind(AF_CORE_AET.AFDEFN_ID)
AND ASOF_DT < %Bind(AF_PERFM_AET.ASOF_DT))

Note: If you intend to include multiple SQL statements within a single action, you should use the meta-
SQL construct %EXECUTE. The previous sample SQL statement sample contains bind variables from a
previous Application Engine action.

Note: Application Engine framework has restricted the length of executable SQL statement. The
maximum SQL length is 32768. Application Engine does not process statements longer than that and will
return an error.

No Rows Property

In addition to the ReUse Statement property, the No Rows property is available for SQL actions. If the
SQL (Insert, Update, or Delete) associated with the SQL action does not return any rows, you must
specify what the Application Engine program should do.

For example, you could use the No Rows property when you insert into a temporary table and then intend
to perform further operations on the inserted rows (provided that some rows meet the criteria). If the
initial combination of Insert and Select statements provides no rows, you could save the program from
having to re-select on the temporary table before executing another operation, or you could prevent the
program from performing set operations on the table with no qualifying rows.

When you set the No Rows property, choose from the following values:

Field or Control Description

Abort The program terminates.

Section Break Application Engine exits the current section immediately, and
control returns to the calling step.

Continue The program continues processing.

Copyright © 1988, 2025, Oracle and/or its affiliates. 55

Creating Application Engine Programs Chapter 3

Field or Control Description

Skip Step Application Engine exits the current step immediately and
moves on to the next step. Application Engine ignores the
commit for the current step at runtime. If the current step
contains only one action, then use Skip Step only to bypass the
commit.

Note: Using the No Rows property in conjunction with a Truncate Table operation is unreliable. Some
database platforms report zero rows affected for truncations, regardless of how many rows were in the
table.

Specifying Do Actions
Although distinct from the others, these four types of Application Engine actions can be grouped together:

• Do When

• Do While

• Do Until

• Do Select

Use these actions to control the running of your program. These action types enable you to control the
execution of subsequent sections, actions, or SQL statements, depending on the results of a Do SQL
statement in the form of a Select statement. If you coded in COBOL, you would perform similar actions
using the If and While functions.

Any of the Do actions can control the running of a section, a SQL statement, a PeopleCode program, or
a log message. For example, a Do Select can run a SQL statement for each row returned by the included
Select statement.

Do When

When using a Do When action, note that:

• The Do When action is a Select statement that allows subsequent actions to be run if any rows of data
are returned.

• This action is similar to a COBOL If statement.

A Do When statement runs before any other actions in a step. If the Do When statement returns any
rows, the next action is executed. If the Do When conditions are not met, the remaining actions within
that step are not executed. Your program runs a Do When action only once when the owning step
executes.

• The only property that you can specify for a Do When action is the ReUse Statement property, which
applies to all SQL-based actions.

56 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Do While

The Do While action is a Select statement that, if present, runs before subsequent actions of the step. If
the Do While statement does not return any rows of data, the action terminates. The Do While statement
is identical to the COBOL While statement. Subsequent actions within the step are executed in a loop
as long as at least one row is returned by the Select statement for the Do While action. If the Do While
statement does not return any rows, the step is complete.

The only property that you can specify for a Do While action is the ReUse Statement property, which
applies to all SQL-based actions.

Do Until

A Do Until action is a Select statement that runs after each action when a step completes. If the Select
statement returns any rows of data, the step terminates. When using a Do Until action, note that:

• You use a Do Until action if you want the processing actions to execute at least once and to execute
repeatedly until a certain condition is true, such as a Select statement returns some rows.

• You can use a Do Until action to stop a Do Select action prematurely.

For example, if a Select statement for a Do Until action does not return any rows, then the actions in
the step are repeated (except if a Do When action appears in the step). Normally, a Do Select action
continues until no rows are returned. If any rows of data are returned, the Do Select action stops and
the step is not repeated.

• The only property that you can specify for a Do Until action is the ReUse Statement property, which
applies to all SQL-based actions.

Do Select

The Do Select action is a Select statement that executes subsequent actions once for every row of data
that the Do Select statement returns. For instance, a Do Select statement can run a SQL statement for each
row returned from the Select statement. The subsequent actions within the step are executed in a loop
based on the results of the Select statement. The type of the Do Select determines the specific looping
rules.

Like the other Do actions, you can specify the ReUse Statement property for the Do Select action; this
property applies to all SQL-based actions.

In addition to the ReUse Statement property, you must also specify this Do Select property: Do Select
Type.

Note: Application Engine does not commit a step containing a Do Select action with the Select/Fetch
option enabled until the entire step completes successfully, regardless of the other options you have
selected.
For example, suppose at the step level you specified to commit every 100 iterations of the step. One of the
actions of this step is a Do Select action with Select/Fetch selected. Because Application Engine does not
checkpoint or commit while a Do Select action is active, the transaction performed by the actions within
a step is not committed until the entire step completes successfully. This note also applies if any sections
are called from inside the loop.

Copyright © 1988, 2025, Oracle and/or its affiliates. 57

Creating Application Engine Programs Chapter 3

Do Select Type Property

When you specify the Do Select Type property in a Do Select action, you select from the following
values:

Field or Control Description

Select/Fetch Application Engine opens a cursor for the Do Select action
and then, within that cursor, Application Engine performs a
Fetch statement for each iteration of the loop to get each row
from the Select statement. When a Fetch statement results in
an end of table message, the looping is complete. You cannot
restart this type of Select statement because Application
Engine does not perform a checkpoint or a commit within
the step containing this action while Select/Fetch is running.
 Ultimately, your program ignores the commit settings at
runtime until the outermost Select/Fetch completes.

Note: When an Application Engine program is not set up
for the capability to restart, then commits are not controlled,
 monitored, or restricted by Application Engine. When Restart
is disabled, commits are controlled by the program.

Re-Select For each iteration of the loop, Application Engine opens a
cursor and fetches the first row. Your program processes
the first row returned from the Select statement. The cursor
is reopened for each iteration of the loop. With this type of
Fetch statement, you typically want some aspect of the loop
to eventually cause the Select statement to return no rows.
Otherwise, no mechanism is in place by which to exit the loop.
 This type of Do Select is restartable.

Restartable This option is similar to Select/Fetch in that Application
Engine opens the cursor associated with the Do Select
action once, and then it performs a Fetch statement on each
iteration of the loop to get each row from the Select statement.
 However, unlike the Select/Fetch option, you can restart this
action because Application Engine performs a checkpoint in
the middle of the step. Application Engine treats this loop as if
it is restartable, but it does not manage the restart. Make sure
that the SQL you include within this action is such that, upon
restart, the program recognizes where the previous run failed
and where to restart processing. For example, you can employ
a processed switch or base the next Select statement on the
key.

58 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

Specifying PeopleCode Actions
Use this action type to insert PeopleCode within your Application Engine program. You can invoke the
PeopleCode Editor directly from the designer interface to code your PeopleCode programs.

With a PeopleCode action, you can specify only one property: On Return.

Use the On Return value to determine how your Application Engine program reacts based on the return
of your PeopleCode program. The On Return setting takes effect if your PeopleCode program issues a
“return 1” or “exit 1.” You can use the True keyword in place of a non-zero numeric return.

When you specify the On Return property, you select from the following values:

Field or Control Description

Abort The program issues an error and exits immediately.

Break The program exits the current step and section, and control
returns to the calling step.

Skip Step The program exits the current step and continues processing
at the next step in the section. If this step is the last one in the
section, then the calling step resumes control of the processing.

Specifying Call Section Actions
Use the Call Section action to call another section defined in an Application Engine program. You can call
a local section defined within your current program, and you can make external calls to a section defined
in another Application Engine program.

The external section you intend to call must have its access property set to Public. If the access property
of a section is set to Private, that section can be called only from within the same program. By default,
the access property of a section is Private. If you attempt to make a call to a section that does not allow
external calls, you receive an error message at runtime.

Note: You can call only programs that reside within the same database as the calling program.

Program ID Property

Because you can call sections defined in the current program or within external programs, you must first
specify the program ID of the program containing the section you intend to call.

The default value is (current). If you call a section defined in another program, make sure that you first
select the appropriate external program from the Program ID drop-down list. This drop-down list contains
the names of all program definitions that currently exist in the database.

Copyright © 1988, 2025, Oracle and/or its affiliates. 59

Creating Application Engine Programs Chapter 3

Section Name Property

Select from names defined in the program that appears in the Program ID list. To call a section that is
defined in an external program, select the program name in theProgram ID edit box before selecting the
section name.

Also use the Call Section action to call an entire external program. First select the program ID, and then
select section name MAIN. At runtime, this call executes the entire program defined by the value in the
Program ID field.

Note: Application Designer does not prevent you from calling the Main section of the current program
or the current section. For instance, Section1 can contain a step that has a local call section reference for
Section1. This reference enables recursive calls and should, therefore, be used with caution.

Dynamic Property

Use the AE_APPLID and AE_SECTION fields in the state record to run different sections, depending on
the conditions a program encounters during runtime.

You must define these two fields in the default state record for the program. If AE_APPLID is not present
or is blank (at runtime), the current program is substituted for the AE_APPLID value. If AE_SECTION is
not present or is blank, an error occurs.

When issuing a dynamic call, both the section and the program ID must be dynamically set. You enable
a dynamic call by first having your program store different section names in the AE_SECTION field and
different program names in AE_APPLID field. The values you insert in these fields are normally based on
various conditions met within your program. Then you create a Call Section action that calls the section
name defined in the state record field by selecting the Dynamic check box.

Selecting Dynamic automatically populates the AE_SECTION field with the symbolic value %Section
and theProgram ID field with the symbolic value %AEAPPLID. At runtime, the program calls the
section name stored in AE_SECTION that belongs to the program name defined by AE_APPLID.

Program Properties of Called Sections

When you call a section defined in an external program, the current program (the program containing the
defined call section) defines the properties that apply to the running process. Suppose tracing is enabled
for the current program but disabled for the called program section. In this case, the called program has
the trace option enabled at runtime because it inherits the properties of the calling program.

For example, if program A calls program B, and program B calls program C, then the properties of
A apply to both programs B and C. The calling program always controls the properties for the called
program. In this case, program A controls the properties for program B and because program B inherits
the properties of program A, when program B calls program C the properties of program A also apply to
program C.

Note: Although program properties are inherited, state records do not follow this inheritance model.

State Records of Called Programs

When you call a program from another program, the default state record of the called program becomes
active until processing returns to the initial program. However, all of the state records associated with
both programs are available. State records that are common between the two programs share values. To

60 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Creating Application Engine Programs

communicate between the two programs or share %BIND variables, define the same state records in both
programs.

Specifying Log Message Actions
Use this type of action to write a message to the message log. The message log refers to the PeopleTools
table (PS_MESSAGE_LOG) where execution messages reside. Any substitution parameters are written to
PS_MESSAGE_LOGPARM.

This example illustrates the fields and controls on the Example of a Log Message action. You can find
definitions for the fields and controls later on this page.

You can use the Log Message action to insert any type of message. Typically, a Log Message action
writes error messages to the message log, but you can also write informational or status messages.

Note: You can also use MessageBox PeopleCode to populate PS_MESSAGE_LOG instead of using the
Log Message action. Using MessageBox PeopleCode enables you to record errors encountered within
Application Engine PeopleCode programs easily.

Field or Control Description

Message Set and Number Select a message defined in the message catalog.

Parameters Enter values to insert in the log message. This field should be
a comma-delimited list of values to substitute for the message
variables (%1, %2, and so on) in the message text. These
parameters can be hard-coded values or %Bind references.
 The specified information is inserted into the PS_MESSAGE
_LOG at runtime, and any %Bind values are replaced by the
current state record field values. Then you can view the logged
messages from the Process Monitor page.

For example, using message set 1012, number 10, the message reads "The total number of %1 rows
exceeds the control count value, %2,” and you need the following parameters:

Invoice, %Bind(CONTROL_CNT)

Suppose you run this program with the CONTROL_CNT field value of 120. When the process ends, the
following message would be included on the Process Details dialog box in Process Monitor: “The total
number of Invoice rows exceeds the control count value, 120.”

Specifying XSLT Actions
You use XSLT actions only for transform programs.

Copyright © 1988, 2025, Oracle and/or its affiliates. 61

Creating Application Engine Programs Chapter 3

Related Links
“Applying Transformations” (Integration Broker)

62 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4

Developing Efficient Programs

Using State Records

This section provides an overview of state records and discusses how to:

• Share state records.

• Choose a record type for state records.

Understanding State Records
You assign variables for your Application Engine program through state records, while sections, steps,
and actions pass values to subsequent program steps through state records.

You can have up to 200 state records associated with a particular Application Engine program. However,
only one record can be the default state record. You can specify both work (derived) and physical (SQL
table) records to be used as state records. The only difference is that derived state records cannot have
their values saved to the database at commit time, and so the values are lost during a restart. Therefore,
Application Engine erases the contents of derived state records at commit time if Restart is enabled for the
current process.

A Application Engine state record must have a process instance defined as the first field and the only key
field, and the state record name must end with _AET.

Not all the database columns referenced in your program must be in the state record, just the columns that
must be selected into memory so those values can be referenced in a subsequent program action. You may
also want to include additional fields to hold pieces of dynamic SQL, to use as temporary flags, and so on.

Application Engine supports long fields, unlike COBOL or Structured Query Reports (SQR). However, it
allows only one long field per state record. You set a maximum size for the field in Application Designer
and make sure that the data space is compatible with the size of the field that you set.

Application Engine also supports image fields and long text fields.

Copyright © 1988, 2025, Oracle and/or its affiliates. 63

Developing Efficient Programs Chapter 4

This is an example of Sample state record.

During batch processing, Application Engine automatically performs all state record updates. When a
program starts, it inserts a row into the state record that corresponds to the process instance assigned to
that program run. Application Engine updates the record whenever a commit operation occurs. When
restart is enabled and a commit occurs, all state records that have been updated in memory are written to
the database, except for derived state records, which are initialized instead.

After the program completes successfully, Application Engine deletes the corresponding row in the state
record. There is only one row in the state record for each process instance. Multiple programs can use the
same state record, and each program has its own row based on the unique process instance key.

To set values in the state record, you use the %SELECT construct in a SQL statement or write
PeopleCode that references the state field with the standard record.field notation. To reference fields in
the state record, use the %BIND construct.

Sharing State Records
State records can be used by multiple sections and by multiple programs. When you call a section in
another program, any additional state records defined for that program (as in state records that are not
already in use by the calling program) are initialized, even if the program has been called previously
during the run. However, state records that are common to both programs retain their current values.

To reference variables that exist within a state record, use the following:

%BIND(fieldname)

Unless a specific record name is specified preceding the fieldname, %BIND references the default state
record. To reference a state record other than the default, use the following:

%BIND(recordname.fieldname)

In the case of a called program or section, if the called program has its own default state record defined,
then Application Engine uses that default state record to resolve the %BIND(fieldname). Otherwise, the
called program inherits the default state record of the calling program. In theory, the called program does
not require a state record if all the fields it needs for processing exist on the calling program’s state record.

For those state records that are shared between programs (during an external call section), any changes
made by the called program remain when control returns to the calling program. Any subsequent actions
in the calling program can access residual values left in the common state records by the called program.

64 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4 Developing Efficient Programs

This can be useful to return output values or status to the calling program, yet it can also cause unforeseen
errors.

Generally, a called program should not share state records with the caller unless you need to pass
parameters between them. Most programs have their own set of state records unless a program calls
another program that requires specific input or output variables. In that case, you must include the state
record of the called program into the calling program’s state record list, and make sure to set the input
values before issuing the call section.

Choosing a Record Type for State Records
As a general rule, to preserve state record field values across commits in your program, you should store
those values in a state record with a record type of SQL Table. Only derived/work-type state records store
values that don’t need to be accessed across commits. Derived/work records are, however, an excellent
choice for temporary flags and dynamic SQL containers that are set and then referenced immediately.
Because these values aren’t needed later, you don’t want to have to save them to the database at each
commit. When you create your state record in Application Designer, you should have an idea regarding
how your state record will be used. With this information, you can select the appropriate record type to
build.

With Application Engine programs, state records that are derived/work records function the same as
SQL Table records. However, there is one notable distinction: unless you have disabled Restart, derived
work records have their field values re-initialized after each commit. Therefore, unless you anticipate this
behavior, you may encounter problems. One quick way to diagnose such a problem is to examine a trace.
Typically, you see %BIND variables resolved to values prior to a commit, and then after the commit, they
have no value.

This behavior is necessary to ensure consistency in the event of an abnormal termination and restart.
During the restart, Application Engine begins, or restarts, at the point of the last successful commit and
restores the values of any state records with corresponding database tables. Derived/work records aren’t
associated with a physical database table, and consequently they can’t be restored in the event of a restart.

Setting Commits

For new Application Engine programs that you develop, by default, the commit values at the section and
the step level are turned off. No commits occur during the program run, except for the implicit commit
that occurs after the successful completion of the program.

You are responsible for dividing your program into logical units of work by setting commit points within
your program. Typically, a good time to commit is after Application Engine completes a self-contained
task. How often you apply commits affects how your program performs in the event of a restart. For set
processing programs, commit early and often. For row-based processing, commit after every N iterations
of the main fetch loop that drives the process.

If you have a step with a Do While, Do Until, or a Do Select action, you can set the frequency option,
which drives your commit level. This setting enables you to set a commit at the step level that occurs
after a specified number of iterations of your looping construct. Application Engine programs commit
whenever they are instructed to do so, so you can enable the frequency option as well as have other
individual commits inside of a loop.

Copyright © 1988, 2025, Oracle and/or its affiliates. 65

Developing Efficient Programs Chapter 4

The only restriction for batch runs occurs when you have restart enabled, and you are inside a Do Select
action that is of the Select/Fetch type (instead of Re-select or Restartable). With Select/Fetch, all commits
inside the loop are ignored, including the commit frequency if it is set.

The Restartable option is similar to Select/Fetch, except that you are implying to Application Engine that
your SQL is structured in such a way that it filters out rows that have been processed and committed. This
enables a successful restart. One technique for accomplishing this is to have a processed flag that you
check in the Where clause of the Do Select action, and you perform an update inside the loop (and before
the commit) to set the flag to Y on each row that you fetch.

The commit logic is designed to perform a commit regardless of whether any database changes have
occurred. The program commits as instructed, except when the program is restartable and at a point where
a commit would affect restart integrity—inside a non-restartable Do Select action, for example.

When you set a step to commit by default, the commit frequency of the step is controlled by the auto
commit setting of the section. If the section is set to commit after every step, then the program commits.
Otherwise, the program never commits unless the step is explicitly set to commit afterward.

Note: The Commit After, Later setting at the step level enables you to override the section setting if you
do not want to commit after a particular step.

%TruncateTable Considerations

Some databases, such as Oracle, issue an implicit commit for a truncate command. If there were
other pending (uncommitted) database changes, the results would differ if an abend occurred after the
%TruncateTable. To ensure consistency and restart integrity, Application Engine checks the following:

• Whether there are pending changes when resolving a %TruncateTable.

• If the program is at a point where a commit is not allowed.

If either condition is true, Application Engine issues delete from syntax instead.

Considerations with the No Rows Setting

The default for the No Rows setting (on the action) is Continue. This setting controls how your program
responds when a statement returns no rows. In the case of %UpdateStats, you may want to set No Rows
to Skip Step and thus skip the commit. For example, suppose you have a single Insert statement into a
table, followed by an %UpdateStats. If the stats were current before the Insert statement, and the Insert
statement affects no rows, then the %UpdateStats is unnecessary.

Reusing Statements

One of the key performance features of Application Engine is the ability to reuse SQL statements by
dedicating a persistent cursor to that statement.

Unless you select the ReUse property for a SQL action, %BIND fields are substituted with literal values
in the SQL statement. The database has to recompile the statement every time it runs.

66 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4 Developing Efficient Programs

However, selecting ReUse converts any %BIND fields into real bind variables (:1, :2, and so on), which
enables Application Engine to compile the statement once, dedicate a cursor, and re-execute it with new
data multiple times. This reduction in compile time can improve performance significantly.

In addition, some databases have SQL statement caching. Every time they receive SQL, they compare it
against their cache of previously carried out statements to see if they have seen it before. If so, they can
reuse the old query plan, but only if the SQL text matches exactly. This circumstance is unlikely with
literals instead of bind variables.

When using the ReUse property, note that:

• The ReUse property is valid only for SQL actions.

• Use the ReUse property only if you do not use bind variables for column names.

• Use the ReUse property only if you have no %BIND variables in the Select list.

• If the SQL is dynamic, as in you are using %BIND to resolve to a value other than a standard bind
value, and the contents of the bind change each time the statement is executed, then you cannot enable
the ReUse property.

In this situation, the SQL is different (at least from the database perspective) each time and, therefore,
cannot be reused.

• If you use the NOQUOTES modifier inside %BIND, a STATIC is implied.

For dynamic SQL substitution, the %BIND has a Char field and NOQUOTES to insert SQL rather
than a literal value. If you enable the ReUse property, the value of the Char field is substituted inline
instead of using a bind marker (as in :1, :2, and so on). The next time that the action is carried out, the
SQL that it runs is the same as the previous one, even if the value of a static bind has changed.

• To prepare a reused statement from the beginning, because one of the static binds has changed and the
SQL has to reflect that change, use %ClearCursor.

• When making calls to an external section, program, or library, the reusable cursors are retained
upon exiting the program. However, if the calling program attempts to call another external section
thereafter, the reusable cursors are discarded.

If you are running Db2 for z/OS or AS/400, use the ReUse property only when you are not using
%BINDS as operands of the same operator, as shown in the following example:

UPDATE PS_PO_WRK1
SET TAX = %BIND(STATE) + %BIND(FED)

This example causes error -417. You can modify the SQL so that you can use the ReUse property
successfully. Suppose your program contains the following SQL:

UPDATE PS_PO_WRK1
 SET TAX = 0
 WHERE %BIND(TAX_EXEMPT) = %BIND(TAX_STATUS)

If you modify it to resemble the following SQL, the ReUse property works:

UPDATE PS_PO_WRK1
 SET TAX = 0
 WHERE %BIND(TAX_EXEMPT, STATIC) = %BIND(TAX_STATUS)

Copyright © 1988, 2025, Oracle and/or its affiliates. 67

Developing Efficient Programs Chapter 4

Using the Bulk Insert Feature

By buffering rows to be inserted, some databases can get a considerable performance boost. Application
Engine offers this nonstandard SQL enhancement for the following databases: Oracle, Microsoft SQL
Server, and Db2. This feature is named Bulk Insert. For those database platforms that do not support the
Bulk Insert feature, this flag is ignored.

You should consider using this feature only when an Insert SQL statement is called multiple times in the
absence of intervening Commit statements.

Application Engine ignores the Bulk Insert setting in the following situations:

• The SQL is not an Insert statement.

• The SQL is other than an Insert/Values statement that inserts one row at a time.

For instance, the following statements are ignored: Insert/Select, Update, or Delete.

• The SQL does not have a Values clause.

• The SQL does not have a field list before the Values clause.

Note: Application Engine also ignores the Bulk Insert feature when all three of the following conditions
are true: the database platform is Oracle, the record contains an EFFDT (effective date) field, and the
record contains a mobile trigger. A mobile trigger is required because an Oracle database does not allow
the reading of mutating tables in a row trigger.

When the Bulk Insert setting is ignored, Application Engine still runs the SQL; it just does not take
advantage of the performance boost associated with the feature.

To prepare or flush a Bulk Insert statement because one of the static binds has changed and the SQL has
to reflect that, use %ClearCursor. A flush occurs automatically before each commit.

Using Set Processing

This section provides an overview of set processing and discusses how to:

• Use set processing effectively.

• Avoid row-by-row processing.

• Use set processing examples.

Understanding Set Processing
Set processing is a SQL technique used to process groups, or sets of rows, at one time rather than
processing each row individually. Set processing enables you to apply a business rule directly to the
data (preferably while it resides in a temporary table) in the database using an Update or Insert/Select
statement. Most of the performance gain is because the processing occurs in the database instead of
loading the data into the application program, processing it, and then inserting the results back into the

68 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4 Developing Efficient Programs

database tables. Because the data never leaves the database with set processing (whether it remains in the
same table), you effectively eliminate the network round-trip and database API overhead.

Note: Because the updates in set processing occur within the database, use temporary tables to hold
transient data while your program runs. Although temporary tables are not required for set processing,
they are often essential to achieve optimum performance of your batch program.

Using Set Processing Effectively
The information in the topics that follow applies if you are developing new or upgrading older
Application Engine programs to adhere to a set-based model.

SQL Expertise

You should be a SQL expert if you are developing row-by-row programs with Application Engine and
especially if you are developing set-based programs. The following concepts are particularly important:

• Group by and Having clauses.

• Complex joins.

• Subqueries (correlated and non-correlated).

• Tools for your database to analyze complex SQL statements for performance analysis.

Typically, you use these SQL constructs to refine or filter a set to contain only the rows that meet specific
criteria. In Application Engine, you code using SQL, and Application Engine passes that SQL directly to
the database, where it is processed. If you have a complex SQL statement that works functionally, it may
not perform well if it is not tuned properly.

Planning

Well-constructed, robust, and efficient Application Engine programs are usually the product of a detailed
planning stage in which loops, program flow, the use of temporary tables, sections, steps, and so on are
discussed.

Ideally, you should address batch processing as a whole while you are designing the system. Sometimes,
system analysts and developers focus primarily on the online system during the database design, and then
they consider the batch component within the existing database design. Set processing works best in an
environment in which data models are optimized for set processing.

For example, you could have a separate staging table for new data that has not been processed rather than
having numerous cases of existing rows in a table being updated. In set processing, processing the data
after moving it to a temporary table using an Insert or Select statement is easier than using an update.
Avoid performing updates on real application tables, and try to perform your updates on temporary tables.
You can structure your data model to minimize updating real application tables.

Another important consideration is keeping historical data separate from active transactions. After the life
cycle of given piece of transaction data is over, so that no more updates are possible, consider moving that
data to an archive or history table and deleting it from the real transaction table. This action minimizes the
number of rows in the table, which improves performance for queries and updates to your active data.

Copyright © 1988, 2025, Oracle and/or its affiliates. 69

Developing Efficient Programs Chapter 4

Temporary Tables

Although temporary tables are not required for set processing, well-designed temporary tables
complement your set-based program in a variety of ways.

Creating temporary tables enables you to achieve one of the main objectives of set-based processing:
the processing remains on the database server. By storing transient data in temporary tables, you avoid
the batch program fetching the data, row by row, and running the business rule, processing the data, and
then passing the updated data back to the database. If the program ran on the client, you would encounter
performance issues because of the network round-trip and the diminished processing speed of a client
compared to the database platform.

Design your temporary tables to:

• Hold transaction data for the current run or iteration of your program.

• Contain only those rows of data affected by the business rule.

• Present key information in a denormalized, or flattened, form, which provides the most efficient
processing.

• Switch the keys for rows coming from the master tables, if needed.

A transaction may use a different key than what appears in the master tables.

Denormalized Tables

The most efficient temporary tables store data in denormalized form. Because most programs need to
access data that resides in multiple tables, you should consolidate all of the affected and related data into
one table, a temporary table. The program runs more efficiently against a flattened, temporary table rather
than relying on the system to materialize complex joins and views to retrieve or update necessary data for
each transaction.

If your program requires the use of a complex view to process transactions, then resolve the view into
a temporary table for your program to run against. Each join or view that needs to materialize for each
transaction consumes system resources and affects performance. In this approach, the system applies
the join or view once (during the filtering process), populates the temporary table with the necessary
information that the program needs to complete the transaction, and then runs the program against the
temporary table as needed.

For example, consider the following situation:

A program needs to update 10,000 rows in the Customer table, which contains 100,000 rows of data. The
Customer table is keyed by setID. To complete the transaction, the program references data that resides
in a related table called PS_SET_CNTRL_REC. PS_SET_CNTRL_REC is used to associate setID and
BUSINESS_UNIT values. The transaction is keyed by BUSINESS_UNIT.

Given this set of circumstances, the most efficient processing method would be similar to the following:

• Isolate affected or necessary data from both tables and insert it into a temporary table.

Now, instead of dealing with a 10,000-row Customer table and a join to a related table, the program
faces a 10,000-row temporary table that contains all of the required data to join directly to the
transaction data, which can also be in a temporary table. If all necessary columns reside in the
temporary tables, then the program can modify all the rows at once in a simple Update statement.

70 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4 Developing Efficient Programs

This example presents two different uses of temporary tables. In one situation, the temporary table is
designed to hold setup and control data in a modified form. In the other situation, the temporary table
is designed to hold transaction data in a denormalized form, perhaps with additional work columns to
hold intermediate calculations.

• Make sure the data appears in a denormalized form for optimum processing.

• Because the transaction is keyed by BUSINESS_UNIT, you should also key the temporary table that
holds the control data by BUSINESS_UNIT.

In this case, the table that holds the control data is the Customer table.

Avoiding Row-by-Row Processing
A set-based program and row-by-row processing are not mutually exclusive: some rules do call for row-
by-row processing, but these rules are the exceptions. You can have a row-by-row component within a
mostly set-based program.

For example, suppose your program contains five rules that you will run against your data. Four of those
rules lend themselves well to a set-based approach, while the fifth requires a row-by-row process. In this
situation, run the four set-based steps or rules first, and then run the row-by-row step last to resolve the
exceptions. Although not pure set-based processing, you will obtain better performance than if the entire
program used a row-by-row approach.

When performing a row-by-row update, reduce the number of rows and the number of columns that you
select to an absolute minimum to decrease the data transfer time.

For logic that cannot be coded entirely in set, try to process most of the transactions in set and process
only the exceptions in a row-by-row loop. A good example of an exception is the sequence numbering
of detail lines within a transaction when most transactions have only a single detail line. You can set the
sequence number on all the detail lines to 1 by default in an initial set-based operation, and then carry out
a Select statement to retrieve only the exceptions (duplicates) and update their sequence numbers to 2, 3,
and so on.

Avoid the tendency to expand row-by-row processing for more than is necessary. For example, if you are
touching all of the rows in a table in a specific row-based process, you do not necessarily gain efficiency
by running the rest of your logic on that table in a row-based manner.

When updating a table, you can add another column to be set in the Update statement. However, do not
add another SQL statement to your loop simply because your program is looping. If you can apply that
SQL in a set-based manner, then in most cases you achieve better performance with a set-based SQL
statement outside the loop.

The rest of this section describes techniques for avoiding row-by-row processing and enhancing
performance.

Filtering

Using SQL, filter the set to contain only those rows that are affected or meet the criteria and then run the
rule on them. Use a Where clause to minimize the number of rows to reflect only the set of affected rows.

Copyright © 1988, 2025, Oracle and/or its affiliates. 71

Developing Efficient Programs Chapter 4

Two-Pass Approach

Use a two-pass approach, wherein the first pass runs a rule on all of the rows and the second pass resolves
any rows that are exceptions to the rule. For instance, bypass exceptions to the rule during the first pass,
and then address the exceptions individually in a row-by-row manner.

Parallel Processes

Divide sets into distinct groups and then run the appropriate rules or logic against each set in parallel
processes. For example, you could split an employee data population into distinct sets of hourly and
salary employees, and then you could run the appropriate logic for each set in parallel.

Flat Temporary Tables

Flatten your temporary tables. The best temporary tables are denormalized and follow a flat file model for
improved transaction processing.

For example, payroll control data might be keyed by setID and effective dates rather than by business unit
and accounting date. Use the temporary table to denormalize the data and switch the keys to business unit
and accounting date. Afterwards, you can construct a straight join to the Time Clock table and key it by
business unit and date.

Techniques to Avoid

Note that:

• If you have a series of identical temporary tables, examine your refinement process.

• You should not attempt to accomplish a task that your database platform does not support, as in
complex mathematics, non-standard SQL, and complex analytical modeling.

Use standard SQL for set processing.

• Although subqueries are a useful tool for refining your set, make sure that you are not using the same
one multiple times.

If you are using the same subquery in more than one statement, you should probably have
denormalized the query results into a temporary table. Identify the subqueries that appear frequently
and, if possible, denormalize the queried data into a temporary table.

Using Set Processing Examples
Each of the following topics contains an example of set processing.

Payroll

In this example, suppose the payroll department needs to give a 1000 USD salary increase to everyone
whose department made more than 50,000 USD profit. The following pseudocode enables you to
compare the row-by-row and set-based approaches.

• Row-by-Row:

declare A cursor for select dept_id from department where profit > 50000;
open A;
fetch A into p_dept_id

72 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4 Developing Efficient Programs

while sql_status == OK
 update personnel set salary = (salary+1000) where dept_id = p_dept_id;
 fetch A into p_dept_id;
end while;
close A;
free A;

• Set-Based:

update personnel set salary = (salary + 1000)
 where exists
 (select ‘X’ from department
 where profit > 50000
 and personnel.dept_id = department.dept_id)

Note: The set-based example employs a correlated subquery, which is important in set-based processing.

Temporary Tables

One technique for improving database performance is to use temporary tables to hold the results of
common subqueries. Effective dating and setID indirection are common types of subqueries that you can
replace with joins to temporary tables. With the joins in place, you can access the temporary table instead
of doing the subquery multiple times. Not only do most databases prefer joins to subqueries, but if you
combine multiple subqueries into a single join as well, the performance benefits can be significant.

In this setID indirection example, you see a join from a transaction table (keyed by BUSINESS_UNIT
and ACCOUNTING_DT) to a setup table (keyed by SETID and EFFDT).

If using a single SQL statement, you need to bring in PS_SET_CNTRL_REC to map the business unit
to a corresponding setID. Typically, you do this in a subquery. You also need to bring in the setup table a
second time in a subquery to get the effective date (MAX(EFFDT) <= ACCOUNTING_DT). If you have
a series of similar statements, performance may be negatively affected.

The alternative is to use a temporary table that is the equivalent of the setup table. The temporary table
is keyed by BUSINESS_UNIT and ACCOUNTING_DT instead of SETID and EFFDT. You populate it
initially by joining in your batch of transactions (presumably also a temporary table) once, as described
previously, to get all the business units and accounting dates for this batch. From then on, your transaction
and setup temporary tables have common keys, which allow a straight join with no subqueries.

For the example, the original setup table (PS_ITEM_ENTRY_TBL) is keyed by SETID, ENTRY_TYPE
and EFFDT.

The denormalized temporary table version (PS_ITEM_ENTRY_TAO) is keyed by
PROCESS_INSTANCE, BUSINESS_UNIT, ENTRY_TYPE and ACCOUNTING_DT, and carries the
original keys (SETID and EFFDT) as simple attributes for joining to other related setup tables, as in
PS_ITEM_LINES_TBL for this example.

If the program references the setup table in only one Insert/Select or Select statement, you would not see
increased performance by denormalizing the temporary table. But if several SQL statements are typically
executed in a single run, all of which join in the same setup table with similar setID and effective date
considerations, then the performance cost of populating the temporary table initially provides long-term
advantages.

• Original setup table version:

INSERT INTO PS_PG_PENDDST_TAO (...)
SELECT
.

Copyright © 1988, 2025, Oracle and/or its affiliates. 73

Developing Efficient Programs Chapter 4

 ((I.ENTRY_AMT_BASE - I.VAT_AMT_BASE) * L.DST_LINE_MULTIPLR * L.DST_LINE_PERC⇒

ENT / 100), ((I.ENTRY_AMT - I.VAT_AMT) * L.DST_LINE_MULTIPLR * L.DST_LINE_⇒

PERCENT / 100),
.
FROM PS_PENDING_ITEM I, PS_PG_REQUEST_TAO R, PS_ITEM_LINES_TBL L,
 PS_ITEM_ENTRY_TBL E, PS_SET_CNTRL_REC S, PS_BUS_UNIT_TBL_AR B
.WHERE AND L.ENTRY_REASON = I.ENTRY_REASON AND L.SETID = E.SETID AND ⇒

L.ENTRY_TYPE = E.ENTRY_TYPE AND L.EFFDT = E.EFFDT.
 AND E.EFF_STATUS = 'A'
 AND S.RECNAME = 'ITEM_ENTRY_TBL'
 AND S.SETID = E.SETID
 AND S.SETCNTRLVALUE = I.BUSINESS_UNIT
 AND E.ENTRY_TYPE = I.ENTRY_TYPE
 AND E.EFFDT = (SELECT MAX(EFFDT) FROM PS_ITEM_ENTRY_TBL Z
 WHERE Z.SETID = E.SETID
 AND Z.ENTRY_TYPE = E.ENTRY_TYPE
 AND Z.EFF_STATUS = 'A'
 AND Z.EFFDT <= I.ACCOUNTING_DT)
 AND B.BUSINESS_UNIT = I.BUSINESS_UNIT
/

• Denormalized temporary table version:

INSERT INTO PS_ITEM_ENTRY_TAO
.
SELECT DISTINCT %BIND(PROCESS_INSTANCE), I.BUSINESS_UNIT, I.ACCOUNTING_DT,
 E.ENTRY_TYPE...
. . .
FROM PS_PENDING_ITEM I, PS_PG_REQUEST_TAO R,
 PS_ITEM_ENTRY_TBL E, PS_SET_CNTRL_REC S, PS_BUS_UNIT_TBL_AR B
WHERE R.PROCESS_INSTANCE = %BIND(PROCESS_INSTANCE)
 AND R.PGG_GROUP_TYPE = 'B'
 AND I.POSTED_FLAG = 'N'
 AND R.GROUP_BU = I.GROUP_BU
 AND R.GROUP_ID = I.GROUP_ID
 AND E.EFF_STATUS = 'A'
 AND S.RECNAME = 'ITEM_ENTRY_TBL'
 AND S.SETID = E.SETID
 AND S.SETCNTRLVALUE = I.BUSINESS_UNIT
 AND E.ENTRY_TYPE = I.ENTRY_TYPE
 AND E.EFFDT = (SELECT MAX(EFFDT) FROM PS_ITEM_ENTRY_TBL Z
 WHERE Z.SETID = E.SETID
 AND Z.ENTRY_TYPE = E.ENTRY_TYPE
 AND Z.EFF_STATUS = 'A'
 AND Z.EFFDT <= I.ACCOUNTING_DT)
 AND B.BUSINESS_UNIT = I.BUSINESS_UNIT
/
INSERT INTO PS_PG_PENDDST_TAO (...)
SELECT ...
 ((I.ENTRY_AMT_BASE - I.VAT_AMT_BASE) * L.DST_LINE_MULTIPLR * L.DST_LINE_PERC⇒

ENT / 100),
((I.ENTRY_AMT - I.VAT_AMT) * L.DST_LINE_MULTIPLR * L.DST_LINE_PERCENT / 100)⇒

,

.
FROM PS_PENDING_ITEM I, PS_PG_REQUEST_TAO R, PS_ITEM_LINES_TBL L,
 PS_ITEM_ENTRY_TAO E
.
WHERE
.
 AND L.ENTRY_REASON = I.ENTRY_REASON
 AND L.SETID = E.SETID
 AND L.ENTRY_TYPE = E.ENTRY_TYPE
 AND L.EFFDT = E.EFFDT
.

74 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4 Developing Efficient Programs

 AND E.BUSINESS_UNIT = I.BUSINESS_UNIT
 AND E.ACCOUNTING_DT = I.ACCOUNTING_DT
 AND E.ENTRY_TYPE = I.ENTRY_TYPE
/

Platform Issues

Set processing does not behave the same on every database platform. On some platforms, set processing
can encounter performance breakdowns. Some platforms do not optimize update statements that include
subqueries.

For example, environments that are accustomed to updates with subqueries get all the qualifying
department IDs from the Department table and then, using an index designed by an application developer,
update the Personnel table. Other platforms read through every employee row in the Personnel table and
query the Department table for each row.

On platforms where these types of updates are a problem, try adding some selectivity to the outer query.
In the following example, examine the SQL in the Before section and then notice how it is modified in the
After section to run smoothly on all platforms. You can use this approach to work around platforms that
have difficulty with updates that include subqueries.

Note: In general, set processing capabilities vary by database platform. The performance characteristics
of each database platform differ with more complex SQL and set processing constructs. Some database
platforms allow additional set processing constructs that enable you to process even more data in a set-
based manner. If performance needs improvement, you must tailor or tune the SQL for your environment.
You should be familiar with the capabilities and limitations of your database platform and be able to
recognize, through tracing and performance results, the types of modifications you need to incorporate
with the basic set processing constructs described.

• Basic version:

UPDATE PS_REQ_LINE
SET SOURCE_STATUS = 'I'
WHERE
EXISTS
(SELECT 'X' FROM PS_PO_ITM_STG STG
WHERE
STG.PROCESS_INSTANCE =%BIND(PROCESS_INSTANCE) AND
STG.PROCESS_INSTANCE =PS_REQ_LINE.PROCESS_INSTANCE AND
STG.STAGE_STATUS = 'I' AND
STG.BUSINESS_UNIT = PS_REQ_LINE.BUSINESS_UNIT AND
STG.REQ_ID = PS_REQ_LINE.REQ_ID AND
STG.REQ_LINE_NBR = PS_REQ_LINE.LINE_NBR)

• Optimized for platform compatibility:

UPDATE PS_REQ_LINE
SET SOURCE_STATUS = 'I'
WHERE
PROCESS_INSTANCE = %BIND(PROCESS_INSTANCE) AND
 EXISTS
(SELECT 'X' FROM PS_PO_ITM_STG STG
WHERE
STG.PROCESS_INSTANCE =%BIND(PROCESS_INSTANCE) AND
STG.PROCESS_INSTANCE =PS_REQ_LINE.PROCESS_INSTANCE AND
STG.STAGE_STATUS = 'I' AND
STG.BUSINESS_UNIT = PS_REQ_LINE.BUSINESS_UNIT AND
STG.REQ_ID = PS_REQ_LINE.REQ_ID AND
STG.REQ_LINE_NBR = PS_REQ_LINE.LINE_NBR)

Copyright © 1988, 2025, Oracle and/or its affiliates. 75

Developing Efficient Programs Chapter 4

Note: This example assumes that the transaction table (PS_REQ_LINE) has a PROCESS_INSTANCE
column to lock rows that are in process. This is another example of designing your database with batch
performance and set processing in mind.

This modification enables the system to limit its scan through PS_REQ_LINE to only those rows that the
program is currently processing. At the same time, it enables a more set-friendly environment to first scan
the smaller staging table and then update the larger outer table.

76 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5

Using Meta-SQL and PeopleCode

Understanding Application Engine Meta-SQL

Application Engine meta-SQL is divided into the following categories:

• Construct

A construct is a direct substitution of a value that helps to build or modify a SQL statement.

• Function

A function performs an action on its own or causes another function to be called.

• Meta-variable

A meta-variable allows substitution of text within SQL statements.

Note: Some meta-SQL elements can be used only in Application Engine programs, some can be
used both in Application Engine programs and in other environments, and some cannot be used in
Application Engine programs at all. This PeopleBook discusses only meta-SQL elements that can be
used in Application Engine. You can find a complete reference to all PeopleSoft meta-SQL elements in
PeopleCode Language Reference.

Related Links
Using Application Engine Meta-SQL
“Understanding Meta-SQL” (PeopleCode Language Reference)

Using PeopleCode in Application Engine Programs

This section provides an overview of PeopleCode and Application Engine programs and discusses how
to:

• Decide when to use PeopleCode.

• Consider the program environment.

• Access state records with PeopleCode.

• Use If/Then logic.

• Use PeopleCode in loops.

• Use the AESection class.

Copyright © 1988, 2025, Oracle and/or its affiliates. 77

Using Meta-SQL and PeopleCode Chapter 5

• Make synchronous online calls to Application Engine programs.

• Use the file class.

• Call COBOL modules.

• Call PeopleTools application programming interfaces (APIs).

• Use the CommitWork function.

• Call WINWORD Mail Merge

• Use PeopleCode examples.

Understanding PeopleCode and Application Engine Programs
Inserting PeopleCode into Application Engine programs enables you to reuse common function libraries
and improve performance. In many cases, a small PeopleCode program used instead of Application
Engine PeopleCode is an excellent way to build dynamic SQL, perform simple If/Else edits, set defaults,
and perform other tasks that do not require a trip to the database.

Scope of Variables

This table presents the different types of variables typically used in Application Engine programs and
their scope:

Type of Variable Scope Comments

State record (work record) Transaction (unit of work) Using a work record as your Application
Engine state record means that the values
in the work record cannot be committed
to the database. Commits happen as
directed, but any values in work records
are not retained after a commit.

State record (database record) Application Engine program Using a database record as your
Application Engine state record
preserves the values in the state record
on commit, and the committed values are
available in the event of a restart.

Local PeopleCode variables PeopleCode program Local PeopleCode variables are available
only for the duration of the PeopleCode
program that is using them.

78 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Type of Variable Scope Comments

Global PeopleCode variables Application Engine program Global PeopleCode variables are
available during the life of the program
that is currently running. Any global
PeopleCode variables are saved when an
Application Engine program commits
and checks points; therefore, they are
available in the event of a restart.

Component PeopleCode variables Application Engine program Component PeopleCode variables act
like global variables in Application
Engine.

Action Execution Order

A step can contain only one PeopleCode action because no other types of actions are required within
a step in conjunction with a PeopleCode action (or program). If you include other actions with your
PeopleCode action within the same step, keep in mind the hierarchy when you run it.

With PeopleCode actions, Application Engine runs the PeopleCode program before the SQL, Call
Section, or Log Message actions, but a PeopleCode program runs after any program flow checks.

Because multiple action types exist, they must execute in agreement within a system; therefore, the order
in which actions execute is significant. At runtime, actions defined for a given step are evaluated based on
their action type. All of the action types exist within a strict hierarchy of execution. For example, if both a
Do When action and a PeopleCode action exist within a given step, then the Do When action always runs
first.

The following example shows the sequence and level of execution for each type of action:

Copyright © 1988, 2025, Oracle and/or its affiliates. 79

Using Meta-SQL and PeopleCode Chapter 5

This is an example of action execution hierarchy.

Deciding When to Use PeopleCode
Application Engine is not intended to run programs that include only PeopleCode actions. The primary
purpose of Application Engine is to run SQL against your data.

Use PeopleCode primarily for setting If, Then, Else logic constructs, performing data preparation tasks,
and building dynamic portions of SQL statements; rely on SQL to complete the bulk of actual program
processing. Also use PeopleCode to reuse previously developed online logic. PeopleCode is the tool to
use to take advantage of new technologies such as component interfaces and application classes.

Most programs must verify that a certain condition is true before they run a particular section. For
example, if the hourly wage is less than or equal to X, do Step A; if not, fetch the next row. In certain
instances, you must modify variables that exist in a state record. PeopleCode enables you to set state
record variables dynamically.

Avoid rowset processing in an Application Engine program. Loading data into a rowset can use a
significant amount of memory, which this formula approximates:

mem = nrows * (row overhead + nrecords * (rec overhead + nfields * (field overhead) + average
cumulative fielddata))

where

• mem is the amount of memory required to store the rowset.

• nrows is the number of rows.

80 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

• row overhead is the overhead per row.

• nrecords is the number of records per row.

• rec overhead is the record overhead (approximately 40 bytes).

• nfields is the number of fields in the record.

• field overhead is the overhead per field (approximately 80 bytes).

• average cumulative fielddata is the average amount of data per field.

Using this formula, a rowset containing 500,000 rows with one record per row, 50 fields, and 200 bytes
per field would require approximately 2.3 gigabytes of memory.

Considering the Program Environment
When writing or referencing PeopleCode in a PeopleCode action, you must consider the environment in
which the Application Engine program runs. Environment indicates the differences between online and
batch modes. Application Engine programs usually run in batch mode; consequently, your PeopleCode
cannot access pages or controls as it can while running in online mode. Any PeopleCode operations
that manipulate pages will not run successfully. Even if you invoke your Application Engine program
online from a record or a page using the CallAppEngine PeopleCode function, the Application Engine
PeopleCode still does not have direct access to component buffers.

Any record field references that appear in a PeopleCode action can refer only to fields that exist on an
Application Engine state record. Component buffers, controls, and so on are still inaccessible even if you
define the page records as state records in the Program Properties dialog box. An Application Engine
program can access only state records or other objects you create in PeopleCode.

However, you do have several options for passing data from a component buffer to an Application Engine
program: you can use the CallAppEngine PeopleCode function or you can define global variables.

Passing Parameters Through the CallAppEngine Function

For individual page fields and simple PeopleCode variables such as numbers and strings, you can use the
CallAppEngine PeopleCode function to pass values as parameters.

To use the CallAppEngine function:

1. Declare a record object in PeopleCode.

For example, Local Record &MyRecord;.

2. Assign record objects to any state record that you want to pass to the Application Engine program.

Record objects are parameters to the CallAppEngine function.

3. Set the appropriate values on that state record.

4. Include the record object in the function call.

After these values are set in the state record, all the actions in a particular program, not just the
PeopleCode actions, can use the values.

Copyright © 1988, 2025, Oracle and/or its affiliates. 81

Using Meta-SQL and PeopleCode Chapter 5

Defining Global Variables

You can define global variables or objects in PeopleCode before you call an Application Engine program.
Application Engine PeopleCode actions are able to access only the variables you define; however, the
PeopleCode could set a state record field equal to a number or string variable for use by other Application
Engine actions.

Also, an Application Engine PeopleCode program can read or update a scroll area or a grid using a global
rowset object. When accessing a scroll area or a grid from Application Engine PeopleCode, the same
rules apply and the same illegal operations are possible that you see with accessing PeopleCode not in an
Application Engine program.

The parameters submitted in a CallAppEngine are by value. These parameters seed the specified
Application Engine state record field with a corresponding value. If that value changes within Application
Engine by updating the state record field, then the component data will not be affected. The only way
to update component buffers or external PeopleCode variables from Application Engine is to use global
PeopleCode variables and objects.

Related Links
“CallAppEngine” (PeopleCode Language Reference)

Accessing State Records with PeopleCode
Running PeopleCode from Application Engine steps enables you to complete some simple operations
without having to use SQL. For example, to assign a literal value to an Application Engine state record
field using SQL, you may have issued a statement similar to this one:

%SELECT(MY_AET.MY_COLUMN)
SELECT 'BUSINESS_UNIT' FROM PS_INSTALLATION

You can use a PeopleCode assignment instead:

MY_AET.MY_COLUMN = "BUSINESS_UNIT";

Similarly, you can use a PeopleCode If statement instead of a Do When action to check the value of a
state record field.

When accessing state records with PeopleCode, keep in mind that:

• State records are unique to Application Engine programs.

• Within Application Engine PeopleCode, state record values can be accessed and modified using the
standard recordname.fieldname notation.

Note: When you launch an Application Engine program from PeopleSoft Process Scheduler, you
can generate a process warning status after the program completes by including and modifying the
AE_APPSTATUS field in a state record. You can generate the warning status by setting AE_APPSTATUS
to a value of 1.

Using If/Then Logic
From PeopleCode, you can trigger an error status, or false return, by using the Exit function. Use the
On Return value in the PeopleCode action properties to specify how your Application Engine program

82 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

behaves according to the return of your PeopleCode program. This example shows the On Return
property:

This example illustrates the fields and controls on the Example of On Return action property.

By default, the program terminates, similar to what happens when a SQL error occurs. By changing the
On Return value to Skip Step, however, you can control the flow of your Application Engine program.

You can use Exit to add an If condition to a step or a section break. For example:

If StateRec.Field1 = ‘N’
Exit(1);
Else
/* Do processing */
End-if;

You must specify a non-zero return value to trigger an On Return action. The concepts of “return 1” and
“return True” are equivalent; therefore, if the return value is non-zero or True, then Application Engine
performs what you specify for On Return, as in Abort or Skip Step. However, if the program returns zero
or False, Application Engine ignores the selected On Return value.

Using PeopleCode in Loops
You can insert PeopleCode inside of a Do loop, but be careful when using PeopleCode inside of high-
volume Do loops (While, Select, Until). Minimize the number of distinct programs inside the loop. You
should avoid having PeopleCode perform the actual work of the program and instead use it primarily to
control the flow (If, Then logic), build dynamic SQL, or interact with external systems.

Using bind variables instead of literals to pass values to SQL statements is essential in PeopleCode loops
or if the PeopleCode is called in a loop. If the PeopleCode loops, Application Engine probably will use a
dedicated cursor, which saves the overhead of recompiling the SQL for all iterations. If the PeopleCode
is called from within a loop, Application Engine does not reduce the number of compiles, but it avoids
flooding the SQL cache (for those database servers that support SQL cache) when it uses bind variables.
Do not use bind variables for values in a Select list or for SQL identifiers, such as table and column
names, as some databases do not support them.

Note: Null bind values of type DateTime, Date, or Time are always resolved into literals.

On database platforms for which this feature is implemented, setting BulkMode to True often results in
significant performance gains when inserting rows into a table within a loop.

In general, avoid PeopleCode calls within a loop. If you can call the PeopleCode outside of the loop, use
that approach to increase overall performance.

Using the AESection Class
The AESection PeopleCode class enables you to change the properties of an Application Engine program
section dynamically, without having to modify any of the Application Engine tables directly. This

Copyright © 1988, 2025, Oracle and/or its affiliates. 83

Using Meta-SQL and PeopleCode Chapter 5

capability enables you to develop rule-based applications that conform dynamically to variables that a
user submits through a page, such as the Application Engine Request page.

The AESection class provides the following flexibility:

• Portions of SQL are determined by checks before a run.

• The logic flow conforms as rules change, and the program adjusts to the rules.

When using an AESection object:

• Ensure that you require primarily dynamic capabilities with the SQL your program generates.

• Ensure that the rules to which your program conforms are relatively static or at least defined well
enough that a standard template could easily accommodate them.

• Consider using SQL definitions to create dynamic SQL for your programs to avoid the complexity
created by the AESection object using the StoreSQL function.

• The AESection class is designed to dynamically update SQL-based actions only, not PeopleCode, Call
Section, or other actions.

You can add a PeopleCode action to your generated section, but you cannot alter the PeopleCode.

• The AESection class is designed to use for online processing.

Typically, dynamic sections should be constructed in response to a user action.

Note: Do not call an AESection object from an Application Engine PeopleCode action.

Related Links
“Understanding the AESection Class” (PeopleCode API Reference)

Making Synchronous Online Calls to Application Engine Programs
To make synchronous online calls to an Application Engine program, use the PeopleCode function
CallAppEngine.

Note: If you make a synchronous call, users cannot perform another PeopleSoft task until the Application
Engine program completes. Consider the size and performance of the Application Engine program called
by CallAppEngine. You should ensure that the program will run to successful completion consistently
within an acceptable amount of time.

If an Application Engine program called by CallAppEngine terminates abnormally, the user receives an
error, similar to other save time errors, that forces the user to cancel the operation. The CallAppEngine
function returns a value based on the result of the Application Engine call. If the program was successful,
it returns a zero; if the program was unsuccessful, it returns a value other than zero.

Related Links
“CallAppEngine” (PeopleCode Language Reference)

84 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Using the File Class
The file layout class enables you to perform file input and output operations with Application Engine
using PeopleCode. A file object enables you to open a file (for reading or writing), read data from a file,
or write data to it. Using the combination of the file class and Application Engine provides an effective
method to integrate (or exchange) the data stored in a legacy system with your PeopleSoft system.
The file class facilitates the creation of a flat file that both your legacy system and Application Engine
programs support.

An Application Engine program running on the application server uses a file object to read the file sent
from the legacy system and to translate it so that the file can update affected PeopleSoft application tables.
For the PeopleSoft system and the legacy system to communicate, you first must construct a file object
that both systems can use to insert and read data.

Attain rowset and record access for a file using a file layout definition. You create the file layout
definition in Application Designer, and it acts as a template for the file that both systems read from and
write to. This file layout definition simplifies reading, writing, and manipulating complex transaction data
with PeopleCode.

Generally, use the file class and Application Engine combination when you cannot implement the
PeopleSoft Integration Broker solution.

Related Links
“Understanding File Layout” (PeopleCode API Reference)

Calling COBOL Modules
Using the PeopleCode RemoteCall function, you can call COBOL modules from a PeopleCode action.
This option supports existing Application Engine programs that call COBOL modules. You also can use it
to upgrade Application Engine programs from previous releases.

PTPECOBL Program

The PTPECOBL interface program is a PeopleSoft executable that enables you to invoke your called
COBOL module and pass it required values. You code the RemoteCall function to invoke PTPECOBL,
which in turn calls the specified COBOL module.

If you use PTPECOBL, you do not have to write your own executable to process this task. However,
PTPECOBL does not perform any SQL processing other than retrieving a list of state record values.
Consequently, if your current logic requires previous SQL processing, you may want to write your own
executable file to call your COBOL module. In most situations, PTPECOBL saves you from having to
write a custom executable file to handle each call to a generated dynamically loadable code (.GNT) file.

PTPECOBL performs the following tasks:

1. Initializes the specified state record in memory.

2. Invokes the COBOL module specified in your PeopleCode.

3. Submits required parameters to the called COBOL module.

Copyright © 1988, 2025, Oracle and/or its affiliates. 85

Using Meta-SQL and PeopleCode Chapter 5

4. Updates the state record as necessary, issues a commit, and then disconnects from the database after
your program completes.

Note: While your COBOL program runs, it can access and return values to the state record.

Shared Values in Application Engine and COBOL

The following options are available for sharing values between the Application Engine program and a
called COBOL program:

• Use state records.

If you add field names, Application Engine enables you to pass state record values to the called
COBOL program and to get changes passed back to the calling PeopleCode program. If you pass the
state record values in this way, use PTPECACH to retrieve and update values just as PTPEFCNV
does.

• Code custom SQL.

If you do not pass initial values using state record fields, you need to insert the appropriate SQL in
your called COBOL module to retrieve the appropriate values. Then, to return any updated values
to the calling Application Engine program, you must insert the appropriate SQL into a PeopleCode
program.

If your COBOL program needs values that do not appear in a state record field, then you can pass
PeopleCode variables and values. These variables and values are then retrieved and updated by calling
PTPNETRT from within your COBOL program.

• Create a custom executable file.

If you include extra SQL processing and use non-state record values, for consistency purposes,
creating a custom executable file might be a better approach. It enables you to call your program
directly and have it perform all the PTPNETRT processing. Remember that a RemoteCall command
can only call an executable program, not a GNT file.

Syntax and Parameters

This example shows a sample RemoteCall function issued from an Application Engine PeopleCode action
to a COBOL module:

RemoteCall ("PSRCCBL",?
 "PSCOBOLPROG", "PTPECOBL",?
 "AECOBOLPROG", "MY_GNT",?
 "STATERECORD", "MY_AET",?
 "PRCSINST", MY_AET.PROCESS_INSTANCE,?
 "RETCODE", &RC,?
 "ERRMSG", &ERR_MSG,?
 "FIELD1", MY_AET.FIELD1,?
 "FIELD2", MY_AET.FIELD2);

This table describes each parameter in the RemoteCall function:

86 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Parameters Description

PSRCCBL The Remote Call dispatcher, which runs the specified COBOL
program using the connect information of the current operator.

PSCOBOLPROG Specify the name of the COBOL program to run, which in this
case is PTPECOBL.

This parameter makes the remote call from Application Engine
distinct from a normal remote call. When you enter this
parameter, in effect you enable the following parameters, some
of which are required.

AECOBOLPROG Specify the name of the COBOL module you are calling; for
example, MY_GNT.

STATERECORD Specify the appropriate state record that your Application
Engine program will share with your COBOL module; for
example, MY_AET. PTPECOBL then reserves space in
memory for all of the fields in the state record, regardless of
whether they will ultimately store values for processing.

PRCSINST Specify the state record and Process Instance field; for
example, MY_AET.PROCESS_INSTANCE. This setting
retrieves the current process instance value that appears on
the state record and submits it to your COBOL module using
PTPECOBL.

RETCODE and ERRMSG (Optional) Include RETCODE if you need to return
information about any potential problems that the COBOL
processing encountered, or use it if your Application Engine
program must know whether it completed successfully.

Fieldnames and Values Specify any fields in the state record that contain initial values
for your COBOL module. The quoted field names you specify
must exist in the specified state record. The corresponding
value can be a PeopleCode variable, a record.field reference,
 or a hard-coded value.

Commit and RemoteCall

When using RemoteCall and an Application Engine program:

• The called COBOL module runs as a separate unit of work.

• Run a commit in the step immediately preceding the step containing the RemoteCall PeopleCode
action and also in the step containing the Remote Call PeopleCode action.

Copyright © 1988, 2025, Oracle and/or its affiliates. 87

Using Meta-SQL and PeopleCode Chapter 5

These two actions enable the COBOL process to recognize the data changes made up to the point that
it was called, and minimizes the time when the process might be in a non-restartable state.

• If you insert SQL processing into your COBOL module, your module makes commit updates.

PTPECOBL does not issue any commits.

• If the intent of your COBOL process is to update the value of a passed state record field, then the
calling Application Engine PeopleCode is responsible for ensuring that the state record field is
modified, and the Application Engine program is responsible for committing the state record updates.

• Consider how your COBOL module will react in the event of a restart.

Because the work in COBOL will have already completed and been committed, will your module
ignore a duplicate call or be able to undo or redo the work multiple times? You face similar issues
when you run a remote call from PeopleCode.

• Typically, when a COBOL program updates the database and then disconnects or terminates without
having issued an explicit commit or rollback, an implicit rollback occurs.

Without an explicit commit, the database does not retain any updates.

Note: By default, RemoteCall does not generate any log files after the program completes. To generate
and retain the .out and .err log files, you must set the RCCBL Redirect parameter in the PeopleSoft
Process Scheduler configuration file to a value of1.

See “RemoteCall” (PeopleCode Language Reference).

Related Links
“Editing the PeopleSoft Process Scheduler Configuration File” (Process Scheduler)

Calling PeopleTools APIs
You can call all of the PeopleTools APIs from an Application Engine program. When using APIs,
remember that:

• All the PeopleTools APIs contain a Save method.

However, when you call an API from your Application Engine program, regardless of the Save
method of the API, the data is not saved until the Application Engine program issues a commit.

• If you called a component interface from an Application Engine program, all the errors related to the
API are logged in the PSMessage collection associated with the current session object.

• If you sent a message, errors are written to the message log and the Application Engine message log.

• If an Application Engine program called from a message subscription PeopleCode encounters errors
and the program exits (with Exit (1)), the error is written to the message log and is marked as an
error

88 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Using the CommitWork Function
This function commits pending changes (inserts, updates, and deletes) to the database. When using
CommitWork, remember that:

• This function can be used only in an Application Engine program that has restart disabled.

• The CommitWork function is useful only when you are processing SQL one row at a time in a single
PeopleCode program, and you need to commit without exiting the program.

In a typical Application Engine program, SQL commands are split between multiple Application
Engine actions that fetch, insert, update, or delete application data. You use the section or step level
commit settings to manage the commits.

Related Links
“CommitWork” (PeopleCode Language Reference)

Calling WINWORD Mail Merge
If the Process Scheduler is booted using a shared drive on another machine and you intend to call a
WINWORD mail merge process from Application Engine, then you must do one of the following to
ensure successful completion:

1. Configure the Process Scheduler to run Application Engine programs using psae instead
ofpsaesrv.

2. Ensure the generated document is saved locally, not on a shared network drive.

Using PeopleCode Examples
The following topics provide examples of common ways that you can use PeopleCode within Application
Engine programs.

Do When Actions

Instead of a Do When action that checks a %BIND value, you can use PeopleCode to perform the
equivalent operation. For example, suppose the following SQL exists in your program:

%SELECT(EXISTS) SELECT 'Y' FROM PS_INSTALLATION WHERE %BIND(TYPE) = 'X'),

Using PeopleCode, you could insert this code:

If TYPE = 'X' Then
 Exit(0);
Else
 Exit(1);
End-if;

If you set the On Return parameter on the PeopleCode action properties to Skip Step, this code behaves
the same as the Do When action. The advantage of using PeopleCode is that no trip to the database
occurs.

Copyright © 1988, 2025, Oracle and/or its affiliates. 89

Using Meta-SQL and PeopleCode Chapter 5

Dynamic SQL

If you have a Select statement that populates a text field with dynamic SQL, such as the following:

%SELECT(AE_WHERE1)
SELECT 'AND ACCOUNTING_DT <= %Bind(ASOF_DATE)'

You can use this PeopleCode:

AE_WHERE1 = "AND ACCOUNTING_DT <= %Bind(ASOF_DATE)";

Sequence Numbering

If you typically use Select statements to increment a sequence number inside of a Do Select, While, or
Until loop, you can use the following PeopleCode instead:

SEQ_NBR = SEQ_NBR + 1;

Using PeopleCode rather than SQL can affect performance significantly. Because the sequencing task
occurs repeatedly inside a loop, the cost of using a SQL statement to increment the counter increases with
the volume of transactions your program processes. When you are modifying a program to take advantage
of PeopleCode, the areas of logic you should consider are those that start with steps that run inside a loop.

Note: You can also use the meta-SQL constructs %Next and %Previous when performing sequence
numbering. These constructs may improve performance in both PeopleCode and SQL calls.

Rowsets

You can use rowsets in Application Engine PeopleCode; however, using rowsets means you will be using
PeopleCode to handle more complicated processing, which degrades performance.

Math Functions

Use the math functions that your database offers whenever possible.

Internally, PeopleCode assigns types to numeric values. Calculations for the Decimal type are processed
in arrays to ensure decimal point uniformity across hardware and operating system environments. This
processing is much slower than calculations for type Integer, which are processed at the hardware level.

When PeopleCode converts strings to numeric values, it does so using the internal Decimal type. For
performance reasons, avoid calculations using these values.

A third type of numeric value is the Float type. It is not used as frequently for the following reasons:

• Constants are never stored as Float types in the compiled code.

For example, 2.5 is always Decimal type.

• The only way to produce a Float value is by using built-in functions, such as Float or the Financial
math functions.

Use the Float type to produce a float result only if all operands are also of the Float type. Float operations
occur at the hardware level.

90 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

PeopleCode does not offer optimum performance when processing non-Integer, non-Float math
calculations. To perform calculations with these numeric types, consider allowing the database to perform
the calculations in COBOL.

PeopleCode supports a range of mathematical functions and numeric types. In general, if a complex
calculation is run repetitively in an Application Engine program, you should carefully analyze
whether to perform the calculation in a PeopleCode action or use the relational database management
system (RDBMS) functions through a SQL action. Using SQL may require PeopleSoft meta-SQL
to handle platform differences, but it may be the most efficient way to update field values. If SQL is
not appropriate, consider numeric typing in PeopleCode, as it affects the speed and accuracy of the
calculation.

SQL Class

Instead of using the SQL class within PeopleCode, have Application Engine issue the SQL and use a Do
Select action that loops around sections containing PeopleCode actions.

Coding all of the logic within a single PeopleCode program might appear to be easier, but splitting
the logic into smaller pieces is preferable because you will have better performance and will get more
detailed commit control. Within a PeopleCode program, you can commit in certain cases using the
CommitWork function. You can always issue a commit between Application Engine steps.

See PeopleCode Language Reference.

See “Understanding SQL Objects and Application Engine Programs” (PeopleCode API Reference).

Arrays

Instead of using arrays in Application Engine PeopleCode, explore the use of temporary tables for storing
pertinent or affected data. Arrays offer the following advantages:

• Data is available for restarts.

• An RDBMS is efficient at managing and searching tables.

• Temporary tables lend themselves to set-based processing.

You can use the Statement Timings and PeopleCode Detail Timings trace options to generate an
Application Engine timings report to determine whether your program is spending significant time
processing arrays.

Including Dynamic SQL

Typically, developers include dynamic constructs in Application Engine programs to change SQL
based on various runtime factors or on user-defined entries on a page. You can include dynamic SQL in
Application Engine programs in a variety of ways. For example, you can:

• Include dynamic sections using the AESection object.

• Change SQL using the SQL class.

• Reference SQL in your own tables.

Copyright © 1988, 2025, Oracle and/or its affiliates. 91

Using Meta-SQL and PeopleCode Chapter 5

The AESection class is designed primarily for online section building; therefore, it will not be the most
frequently used solution.

Use the SQL class to store SQL in a SQL definition that you can also access in Application Designer.
Then, if you have a few SQL statements to run, generate the SQL IDs based on some methodology, such
as a timestamp, and then store these in a table.

When the program runs, your SQL could query this table based on process and extract the appropriate
SQL IDs to be run with a SQL action in a Do Select loop.

%SQL(%BIND(MY_SQLID, NOQUOTES))

For a dynamic Do action, the AE_APPLID and the AE_SECTION fields must appear in the default state
record.

Using Application Engine Meta-SQL

This section describes the meta-SQL constructs, functions, and meta-variables you can use in Application
Engine.

Note: The SQL Editor does not validate all of the meta-SQL constructs, such as %Bind and %Select.
Messages might appear stating that these constructs are invalid.

%Abs

Syntax

%Abs(x)

Description

Use the %Abs meta-SQL construct to return a decimal value equal to the absolute value of a number x.

Note: This meta-SQL construct is not implemented for COBOL.

Example

SELECT INVENTORY_CODE FROM INVENTORY_TABLE WHERE %ABS(NEW_AMOUNT - OLD_AMOUNT) > SO⇒

ME_ALLOWED_VALUE

%AeProgram

Description

Use the %AeProgram meta-variable to specify a quoted string containing the currently running
Application Engine program name.

92 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

%AeSection

Description

Use the %AeSection meta-variable to specify a quoted string containing the currently running Application
Engine section name.

%AeStep

Description

Use the %AeStep meta-variable to specify a quoted string containing the currently running Application
Engine Step name.

%AsOfDate

Description

Use the %AsOfDate meta-variable to specify a quoted string containing the as of date used for the current
process.

%AsOfDateOvr

Description

Use the %AsOfDateOvr meta-variable only as a parameter of the %ExecuteEdits function to override the
default use of the system date with the value of a field on a joined record.

Related Links
%Table

%BINARYSORT

Syntax

%BINARYSORT(Recname)

Description

Any in-memory sorting performed using COBOL language functions is performed as a binary sort in the
current character set used for COBOL processing, and may not necessarily match the sort order returned
by the database in response to an Order By clause. Should you require the database to return data sorted
using a binary sort of its encoding rather than the default linguistically-correct sort, you must use the
%BINARYSORT meta-SQL function around each column in the Where or Order By clause where binary
ordering is important.

Copyright © 1988, 2025, Oracle and/or its affiliates. 93

Using Meta-SQL and PeopleCode Chapter 5

However, for z/OS implementations, keep in mind that this binary sorting is only equivalent when the
COBOL program is run z/OS server. For example, the binary sort produced in COBOL differs from
the binary sort produced by the database, as the database is encoded in extended binary-coded decimal
interchange code (EBCDIC) and the client is in an ASCII-based encoding. Therefore, %BINARYSORT
should only be used in COBOL programs that are not run using the RemoteCall function, where the z/OS
platform is not supported as a RemoteCall server.

When running against non-z/OS systems, %BINARYSORT can be used in both RemoteCall and non-
RemoteCall programs.

Note: Using %BINARYSORT in Where and Order By clauses negates the use of any indexes,
as most databases can't use indexes for functional comparisons. (For example, WHERE
%BINARYSORT(column) > 'X'). Use this syntax only when sorting equivalence of SQL statement
results and COBOL memory order is required.

Parameters

Parameter Description

Recname Specify the record name to use with the sorting.

Example
SELECT RECNAME FROM PSRECDEFN WHERE %BINARYSORT(RECNAME) < %BINARYSORT('xxx')

SELECT RECNAME FROM PSRECDEFN ORDER BY %BINARYSORT(RECNAME)

Related Links
RemoteCall
“Understanding COBOL in a Unicode Environment” (Global Technology)

%Bind

Syntax

%Bind([recordname.]fieldname [,
NOQUOTES][, NOWRAP][, STATIC])

Description

Use the %Bind construct to retrieve a field value from a state record. You can use %Bind anywhere
in a SQL statement. When run, %Bind returns the value of the state record field identified within its
parentheses.

Notes About %Bind

Typically, when you use %Bind to provide a value for a field or a Where condition, the type of field in the
state record that you reference with %Bind must match the field type of the corresponding database field
used in the SQL statement.

94 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

On most platforms, you cannot use a literal to populate a Long Varchar field. You should use the
%Bind(recordname.fieldname) construct.

In the case of an external call to a section in another program, if the called program has its own
default state record defined, then Application Engine uses that default state record to resolve the
%Bind(fieldname). Otherwise, the called program inherits the default state record of the calling program.

All fields referenced by a %Select construct must be defined in the associated state record.

You must use the Date, Time, and DateTime output wrappers in the Select list that populates the state
record fields to ensure compatibility across all supported database platforms.

For example:

• First SQL Action

%Select(date_end)
 SELECT %DateOut(date_end)
 FROM PS_EXAMPLE

• Second SQL Action

INSERT INTO PS_EXAMPLE
 VALUES(%Bind(date_end))

Bind Variables and Date Wraps

The behavior of bind variables within Application Engine PeopleCode and normal PeopleCode is the
same.

If you compare Application Engine SQL to PeopleCode (of any type), then the system processes bind
variables differently.

If you use the following approach:

AND TL_EMPL_DATA1.EFFDT <= %P(1))

Then in PeopleCode you issue

%SQL(MY_SQL, %DateIn(:1))

which assumes that you referenced the literal as a bind variable.

Or in Application Engine SQL, you issue

%SQL(MY_SQL, %Bind(date_field))
%SQL(MY_SQL, %Bind(date_field, NOWRAP))

Parameters

Parameter Description

Recordname The name of a state record. If you do not specify a particular
state record, Application Engine uses the default state record
to resolve the %Bind (fieldname).

Copyright © 1988, 2025, Oracle and/or its affiliates. 95

Using Meta-SQL and PeopleCode Chapter 5

Parameter Description

Fieldname The field defined in the state record.

NOQUOTES If the field specified is a character field, its value is
automatically enclosed in quotes unless you use the
NOQUOTES parameter. Use NOQUOTES to include a
dynamic table and field name reference, even an entire SQL
statement or clause, in an Application Engine SQL action.

NOWRAP If the field is of type Date, Time, or DateTime, the system
automatically wraps its value in %DateIn or %DateOut, unless
you use the NOWRAP parameter. Therefore, if the state record
field is populated correctly, you do not need to be concerned
with the inbound references, although you can suppress the
inbound wrapping with the NOWRAP modifier inside the
%Bind. Furthermore, Application Engine skips the inbound
wrapper if the %Bind (date) is in the select field list of another
%Select statement. This is because the bind value is already
in the outbound format, and the system selects it into another
state record field in memory. In this circumstance there is no
need for either an outbound wrapper or an inbound wrapper.
 For example,

First SQL action:

%Select(date_end)
SELECT %DateOut(date_end)
FROM PS_GREG

Second SQL action:

INSERT INTO ps_greg
VALUES(%Bind(date_end))

STATIC The STATIC parameter enables you to include a hard-coded
value in a reused statement. For %Bind instances that contain
dynamic SQL, this parameter must be used in conjunction with
the NOQUOTES parameter for proper execution of a reused
statement.

Example
UPDATE PS_REQ_HDR
 SET IN_PROCESS_FLG = %Bind(MY_AET.IN_PROCESS_FLG),
 PROCESS_INSTANCE = %Bind(PROCESS_INSTANCE)
 WHERE IN_PROCESS_FLG = ‘N’
 AND BUSINESS_UNIT || REQ_ID
 IN (SELECT BUSINESS_UNIT ||REQ_ID
 FROM PS_PO_REQRCON_WK1
 WHERE PROCESS_INSTANCE = %Bind(PROCESS_INSTANCE))

In the previous example, %Bind (PROCESS_INSTANCE) assigns the value of the field
PROCESS_INSTANCE in the default state record to the PROCESS_INSTANCE field in table
PS_REQ_HDR.

96 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

The %Bind construct is also used in a Where clause to identify rows in the table
PS_PO_REQRCON_WK1, in which the value of PROCESS_INSTANCE equals the value of
PROCESS_INSTANCE in the default state record.

%Cast

Syntax

%Cast(source_expr, source_type, target_type[, precision[.scale]])

Description

Use the %Cast meta-SQL function to convert a PeopleSoft data type to a Character data type. A
database-generated error is returned if the function attempts to make an invalid conversion. %Cast
can be used wherever %DateOut, %TimeOut, %DateTimeOut, %CurrentDateOut, %CurrentTimeOut,
%CurrentDateTimeOut, and %NumToChar functions can be used.

Note: %NumToChar will preserve all trailing zeroes. Therefore, use the scale parameter of %Cast to
specify the number of trailing zeroes.

On some platforms the meta-SQL functions %DateOut, %TimeOut, %DateTimeOut, %CurrentDateOut,
%CurrentTimeOut and %CurrentDateTimeOut don’t return a Character value. On other platforms, these
functions return a Character string only in certain cases. %Cast returns a Character value on all supported
platforms.

Use %Cast only in the Select portion of query. Do not use it in a Where clause or in Insert or Update
statements.

Parameters

Parameter Description

source_expr Specify the input expression in the form of a Number,
 Long Character, Date, Time, or DateTime column
name or as a %CurrentDateOut, %CurrentTimeOut, or
%CurrentDateTimeOut meta-SQL variable.

This parameter is not case sensitive.

source_type Specify the source data type. Valid data types are Number,
 Long, Date, Time, and DateTime.

This parameter is not case sensitive.

target_type Currently the only target type supported is Character.

Copyright © 1988, 2025, Oracle and/or its affiliates. 97

Using Meta-SQL and PeopleCode Chapter 5

Parameter Description

precision.scale The precision.scale parameter is currently supported on DB2
for z/OS only and with a source type of Number. While this
parameter can be supplied on other platforms, it is ignored.

This parameter is optional.

The scale parameter is an optional part of this parameter.
 Therefore, the expression precision.0 is equivalent to
precision.

%ClearCursor

Syntax

%ClearCursor({program,section,step,action | ALL})

Description

Use the %ClearCursor function to recompile a reused statement and reset any STATIC %Bind variables.

When you use the %ClearCursor function, remember that:

• The function must be located at the beginning of the statement.

• %ClearCursor can be the only function or command contained in the statement.

Parameters

Parameter Description

program Specify the name of the Application Engine program
containing the reused statement you want to recompile.

section Specify the name of the section containing the reused
statement you want to recompile.

step Specify the name of the step containing the reused statement
you want to recompile.

98 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Parameter Description

action Specify one of the following values:

• D: Do Select.

• H: Do When.

• N: Do Until.

• W: Do While.

• S: SQL.

ALL Clear all cursors in the current Application Engine program.

%COALESCE

Syntax

%COALESCE(expr1, expr2, ...)

Description

Use the %COALESCE function to return the first non-null argument provided to the function.

Note: This meta-SQL function is not implemented for COBOL.

Parameters

Parameter Description

expr1. . .exprn Specify the expressions to check.

Note: You cannot specify bind parameters using these
expressions.

Note: %COALESCE has been desupported but remains for backward compatibility only. Use your
database's native COALESCE function instead.

Example

The following example uses the PRODUCT_INFO table to organize a clearance sale of products. It gives
a 10 percent discount to all products with a list price. If there is no list price, the sale price is the minimum
price. If there is no minimum price, the sale price is 10.

SELECT product_id, list_price, min_price, %COALESCE(0.9*list_price, min_price, 10) ⇒

"Sale"

Copyright © 1988, 2025, Oracle and/or its affiliates. 99

Using Meta-SQL and PeopleCode Chapter 5

from PRODUCT_INFO
where SUPPLIER_ID = 6009;

%Comma

Description

Use the %Comma meta-variable to specify a comma. This meta-variable is useful when you must use
a comma but commas are not allowed because of parsing rules. For example, you might use this meta-
variable if you want to pass a comma as a parameter to the %SQL meta-SQL function.

%Concat

Syntax

string1 %Concat string2

Description

At runtime, the %Concat meta-SQL variable is replaced by the string concatenation operator appropriate
for the relational database management system (RDBMS) being used. For example, on DB2, the %Concat
meta-SQL variable is replaced with CONCAT, while on SQL Server it's replaced with a +, and on Oracle
it’s replaced with ||.

This meta-SQL variable is supported with the same limitations as the native concatenation operator
for the RDBMS where the meta-SQL is being executed. For example, some platforms enable you to
concatenate a string with a numeric value; others flag this as an error. PeopleTools makes no attempt to
check or convert the data types of either of the operands.

Note: Concat is not available in COBOL, but the DYN-STMT-CONCAT field can be strung into dynamic
COBOL strings to resolve into a platform-specific concatenation operator.

Example

Example 1:

SELECT LAST_NAME %Concat ',' %Concat FIRST_NAME FROM PS_EMPLOYEE

Example 2:

SELECT PORTAL_NAME
 , PORTAL_LABEL
 , %TrimSubstr(PORTAL_OBJNAME,1,30) %Concat ':' %Concat %TrimSubstr(PORTAL_NAME,1,3⇒

0)
 FROM PSPRSMDEFN
 WHERE PORTAL_PRNTOBJNAME = 'CO_NAVIGATION_COLLECTIONS'
 AND PORTAL_REFTYPE = 'F'

100 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

%CurrentDateIn

Description

The %CurrentDateIn meta-SQL variable expands to a platform-specific SQL substring representing the
current date in the Where clause of a SQL Select or Update statement, or when the current date is passed
in an Insert statement.

%CurrentDateOut

Description

The %CurrentDateOut meta-SQL variable expands to platform-specific SQL for the current date in the
Select clause of a SQL query.

%CurrentDateTimeIn

Description

The %CurrentDateTimeIn meta-SQL variable expands to a platform-specific SQL substring representing
the current datetime in the Where clause of a SQL Select or Update statement, or when the current date
time is passed in an Insert statement.

%CurrentDateTimeOut

Description

The %CurrentDateTimeOut meta-SQL variable expands to platform-specific SQL for the current datetime
in the Select clause of a SQL query.

%CurrentTimeIn

Description

The %CurrentTimeIn meta-SQL variable expands to a platform-specific SQL substring representing the
current time in the Where clause of a SQL Select or Update statement, or when the current time is passed
in an Insert statement.

%CurrentTimeOut

Description

The %CurrentTimeOut meta-SQL variable expands to platform-specific SQL for the current time in the
Select clause of a SQL query.

Copyright © 1988, 2025, Oracle and/or its affiliates. 101

Using Meta-SQL and PeopleCode Chapter 5

%DateAdd

Syntax

%DateAdd(date_from, add_days)

Description

The %DateAdd meta-SQL function returns a date by adding add_days to date_from. The add_days
variable can be negative.

Example
SQLExec("SELECT %DateAdd(%DateIn('2002-02-02'), 12) from %SelectDummyTable", &add);
WinMessage(&add);

%DateDiff

Syntax

%DateDiff(date_from, date_to)

Description

The %DateDiff meta-SQL function returns an integer representing the difference between two dates in
number of days. For example: diff = date_to - date_from

Example
%DateDiff(%DateIn('1966-06-30'), %DateIn('1997-01-01'))

%DateDiff(date1_column, date2_column)

%DateDiff(%DateAdd(date1_column, 30), date2_column)

The following usage is illegal (always use %Datein for inputting date literals):

%DateDiff('1996-06-30', '1997-01-01') /* should use %DateIn for inputting date lite⇒

rals */

%DateIn

Syntax

%DateIn(dt)

Description

The %DateIn meta-SQL variable expands into platform-specific SQL syntax for the date. Use %DateIn
whenever a date literal or Date bind variable is used in a comparison in the Where clause of a Select or
Update statement, or when a Date value is passed in an Insert statement.

102 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind
parameters in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPDT = %DATEIN('2002-12-11')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPDT = %DATEIN(:1)

Parameters

Parameter Description

dt Specify either a Date value or a date literal in YYYY-MM-DD
format.

%DateNull

Syntax

%DateNull

Description

Use the %DateNull meta-SQL variable to specify a null value for a Date field. Only use this meta-SQL in
Insert or Update clauses. Do not use this meta-SQL in a Where clause.

Note: This meta-SQL variable is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Database Resolved Substring

DB2 NULLIF(CURRENT DATE, CURRENT DATE)

All others NULL

Parameters

None.

%DateOut

Syntax

%DateOut(dt)

Copyright © 1988, 2025, Oracle and/or its affiliates. 103

Using Meta-SQL and PeopleCode Chapter 5

Description

The %DateOut meta-SQL variable expands to either a platform-specific SQL substring or datetime value,
depending on the database platform, representing a datetime column in the Select clause of a SQL query

Parameters

Parameter Description

dt Specify dt as a date column.

Note: You cannot specify a literal value for dt. Code such as
%DateOut('1900-01-01') is not allowed.

%DatePart

Syntax

%DatePart(DTTM_Column)

Description

The %DatePart meta-SQL variable returns the date portion of the specified DateTime column.

Note: This meta-SQL variable is not implemented for COBOL.

Considerations using %DatePart

Use %DateOut meta-SQL when fetching values, as in the following example:

%DateOut(%DatePart(DTTM_COLUMN)) from some_table

If a literal is used as the parameter to %DatePart, it must be wrapped in %DateTimeIn:

insert into some_table values(%DatePart(%DateTimeIn('2001-01-01-12.34.56.789012')))

Parameters

Parameter Description

DTTM_Column Specify the datetime column from which you want to return
the date.

%DateTimeDiff

Syntax

%DateTimeDiff(datetime_from, datetime_to)

104 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

The %DateTimeDiff meta-SQL function returns a time value, representing the difference between two
date times in minutes.

Example

The following example returns the difference in hours between the current datetime and the requested
datetime:

%DateTimeDiff(%CurrentDateIn, RQSTDTTM) < " | RECORD.FIELDNAME * 60;

The following example returns the difference in minutes:

%DateTimeDiff(%CurrentDateIn, RQSTDTTM) < " | RECORD.FIELDNAME;

%DateTimeIn

Syntax

%DateTimeIn(dtt)

Description

The %DateTimeIn meta-SQL variable expands to platform-specific SQL for a DateTime value in the
Where clause of a SQL Select or Update statement, or when a DateTime value is passed in an Insert
statement.

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind
parameters in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPDTTM = %DATETIMEIN('2002-12-11-11.59.00.000000')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPDTTM = %DATETIMEIN(:1)

Parameters

Parameter Description

dtt Specify either a DateTime bind variable or a string literal in
the form YYYY-MM-DD-hh.mm.ss.ssssss.

%DateTimeNull

Syntax

%DateTimeNull

Copyright © 1988, 2025, Oracle and/or its affiliates. 105

Using Meta-SQL and PeopleCode Chapter 5

Description

Use the %DateTimeNull meta-SQL variable to specify a null value for a DateTime field. Only use this
meta-SQL in Insert or Update clauses. Do not use this meta-SQL in a Where clause.

Note: This meta-SQL is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Database Resolved Substring

DB2 NULLIF(CURRENT TIMESTAMP, CURRENT
TIMESTAMP)

All others NULL

Parameters

None.

Example

%InsertSelect(LEDGER_KK_WK2,LEDGER_KK_WRK, CURRENCY_CD = %Bind(TO_CURRENCY) ,POSTED⇒

_TOTAL_AMT = SUM(POSTED_BASE_AMT),POSTED_TRAN_AMT = 0,POSTED_BASE_AMT = 0,BASE_CURR⇒

ENCY = %Bind(TO_CURRENCY),PROCESS_INSTANCE = %Bind(PROCESS_INSTANCE),DTTM_STAMP_SEC⇒

 = %DateTimeNull)

FROM PS_LEDGER_KK_WRK

WHERE PROCESS_INST_STG = %Bind(PROCESS_INSTANCE)

AND CURRENCY_CD <> %Bind(TO_CURRENCY)

GROUP BY PROCESS_INST_STG, BUSINESS_UNIT,LEDGER, ACCOUNT, %List(FIELD_LIST, CFCC1_A⇒

K_SBR) ,STATISTICS_CODE, FISCAL_YEAR,ACCOUNTING_PERIOD

%DateTimeOut

Syntax

%DateTimeOut(datetime_col)

Description

The %DateTimeOut meta-SQL variable expands to either a platform-specific SQL substring or datetime
value, depending on the database platform, representing a datetime column in the Select clause of a SQL
query

106 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Parameters

Parameter Description

datetime_col Specify a datetime column.

%DecDiv

Syntax

%DecDiv(a,b)

Description

The %DecDiv meta-SQL function returns a number representing the value of a divided by b, where a and
b are numeric expressions.

If the result needs to be picked up by a bind variable, pick it up using the Character type or PIC X(50).

Parameters

Parameter Description

a Specify the dividend as a number.

b Specify the divisor as a number.

Example
%DecDiv(1000.0, :1)

In the example, :1 is a bind variable in SQLExec PeopleCode.

Related Links
%Mod

%DecMult

Syntax

%DecMult(a,b)

Description

The %DecMult meta-SQL function returns a number representing a multiplied by b, where a and b are
numeric expressions.

Copyright © 1988, 2025, Oracle and/or its affiliates. 107

Using Meta-SQL and PeopleCode Chapter 5

If the result needs to be picked up by a bind variable, pick it up using the Character type or PIC X(50).

Note: %DecMult is replaced with a simple multiplication function on all platforms except for the DB2 for
OS/390 and z/OS platform. On this platform, it is converted to MULTIPLY_ALT. The MULTIPLY_ALT
scalar function returns the product of the two arguments as a decimal value. It is provided as an
alternative to the multiplication operator, especially when the sum of the precision of the arguments
exceeds 31.

Note: If you receive an overflow error using this meta-SQL, you may need to use the CAST function on
the MSSQL, ORACLE, DB2UNIX and DB2 for OS/390 platforms.

Parameters

Parameter Description

a Specify a number to be multiplied.

b Specify a number to use for multiplying.

Example
%DecMult(12.3, 34.67)

%DecMult(c1 + c2, c3)

In the example, c1, c2, and c3 are fields of the Number data type.

%Delete

Syntax

%Delete(:num)

Description

This is a shorthand for:

Delete from %Table(:num) where %KeyEqual(:num)

%DTTM

Syntax

%DTTM(date, time)

108 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

The %DTTM meta-SQL function combines the database date in the date value with the database time in
the time value and returns a database timestamp value.

Note: For Microsoft SQL Server and DB2 databases, do not use null characters for the time argument.
You can use default values such as 00.00.00.000000.

Note: This meta-SQL function is not implemented for COBOL.

Example
INSERT INTO TABLE1 (TIMESTAMP) SELECT %DTTM(DATE,TIME) FROM TABLE2

Related Links
%DateIn
%TimeAdd

%EffDtCheck

Syntax

%EffDtCheck(recordname [correlation_id1], correlation_id2, as_of_date)

Description

The %EffDtCheck construct expands into an effective date subquery suitable for a Where clause. The
value for as_of_date is automatically wrapped in %DateIn unless as_of_date is already wrapped in
%DateIn or refers to other database columns.

Note: This meta-SQL construct is not implemented for COBOL.

%EffDtCheck only works with effective dates. It does not take effective sequence numbers (EFFSEQ)
into account. It also does not do effective-status (EFF_STATUS) checking.

Parameters

Parameter Description

recordname Specify the record name to use as the record in the effective-
date checking. This can be a bind variable, a record object,
 or a record name in the form recname. You cannot specify a
RECORD. recname, a record name in quotation marks, or a
table name.

Note: If you specify a bind variable, it should refer to a record
object, not a string variable.

Copyright © 1988, 2025, Oracle and/or its affiliates. 109

Using Meta-SQL and PeopleCode Chapter 5

Parameter Description

correlation_id1 (Optional) Specify the letter used inside the effective-dating
subselect. If this parameter isn't specified, recordname is used.

correlation_id2 Specify the letter already assigned to the main record in the
From clause of the SQL statement.

as_of_date Specify the date to use in the effective date. This can be a bind
variable, a variable, or a hard-coded date. The value for as_
of_date is automatically wrapped in %DateIn unless as_of_
date is already wrapped in %DateIn or refers to other database
columns.

Example

The following is a generic code sample:

SELECT. . .
 FROM. . .
 WHERE %EffDtCheck(recordname correlation_id, as_of_date)

The example code resolves into the following:

SELECT . . .
 FROM. . .
 WHERE correlation_id.EFFDT = (SELECT MAX(EFFDT) FROM recordname
 WHERE recordname.KEYFIELD1 = correlation_id.KEYFIELD1
 AND recordname.KEYFIELD2 = correlation_id.KEYFIELD2
 AND. . .
 AND recordname.EFFDT <= %DATEIN(as_of_date))

In the following example, &Date has the value of 01/02/1998. The example &Rec object has an EFFDT
key field.

SQLExec("SELECT FNUM FROM PS_REC A WHERE %EffDtCheck(:1, A, :2)", &Rec, &Date);

This example code resolves into the following:

"Select FNUM from PS_REC A where EFFDT = (select MAX(EFFDT)
from PS_REC
 where PS_REC.FNUM = A.FNUM
 and PS_REC.EFFDT <= %DateIn('1998-01-02'))"

The following example uses correlation IDs:

SELECT A.DEPTID
FROM %Table(DEPT_TBL) A
WHERE
%EffDtCheck(DEPT_TBL B, A, %CurrentDateIn)
AND A.EFF_STATUS = 'A'

This example code resolves into the following:

SELECT A.DEPTID
FROM %Table(DEPT_TBL) A
WHERE
A.EFFDT =
(SELECT MAX(B.EFFDT)
FROM DEPT_TBL B

110 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

WHERE
A.SETID = B.SETID
AND A.DEPTID = B.DEPTID
AND B.EFFDT <=%CurrentDateIn)
AND A.EFF_STATUS = 'A'

%Execute

Syntax

%Execute([/])command1{; |
/}command2{; | /}...commandN{; | /}

Description

Use the %Execute function to execute database-specific commands from within your Application Engine
program. Also, the %Execute function enables you to include multiple statements in a single Application
Engine action without encountering database-specific differences. For instance, in some instances you
could code a single Application Engine action to contain multiple SQL statements, and they might run
successfully on one database platform. However, if you attempt to run the same code against a different
database platform, you might encounter errors or skipped SQL.

By default, Application Engine expects a semicolon to be used to delimit multiple commands within an
%Execute function statement. You can instruct Application Engine to use a forward slash (/) delimiter
instead by placing a forward slash inside the function parentheses.

Note: When you use the %Execute function, it must be located at the beginning of the statement and must
be the only function or command contained in the statement. The action type must be SQL.

Note: No comment statement should be used in a SQL code when using %Execute.

Example

The following code enables you to use an Oracle PL/SQL block in an %Execute statement:

%Execute(/)
DECLARE
 counter INTEGER;
BEGIN
 FOR counter := 1 TO 10
 UPDATE pslock SET version = version + 1;
 END FOR;
END;
/

%ExecuteEdits

Syntax

%ExecuteEdits(type,recordname [alias][,field1,field2, ...])

Copyright © 1988, 2025, Oracle and/or its affiliates. 111

Using Meta-SQL and PeopleCode Chapter 5

Description

Use the %ExecuteEdits function to apply data dictionary edits in batch. The %ExecuteEdits function
is Application Engine-only meta-SQL. You cannot use it in COBOL, SQR, or PeopleCode, not even in
Application Engine PeopleCode.

Notes About %ExecuteEdits

Note the following points about the %ExecuteEdits function:

• Consider performance carefully when using this function.

Prompt table and Translate table edits have a significant effect because they involve correlated
subqueries. Run a SQL trace at runtime so that you can view the SQL generated by %ExecuteEdits.
Look for opportunities to optimize it.

• In general, %ExecuteEdits is best used on a temporary table.

If you must run it against a real application table, you should provide Where clause conditions to limit
the number of rows to include only those that the program is currently processing. Process the rows in
the current set at one time rather than row by row.

• With %ExecuteEdits, you cannot use work records in a batch, set-based operation.

All higher-order key fields used by prompt table edits must exist in the record that your code intends
to edit, and the field names must match exactly. For example,

%ExecuteEdits(%Edit_PromptTable, MY_DATA_TMP)

The record MY_DATA_TMP contains the field STATE with a prompt table edit against
PS_REGION_VW, which has key fields COUNTRY and REGION. The REGION field corresponds
to STATE, and COUNTRY is the higher-order key. For %ExecuteEdits to work correctly, the
MY_DATA_TMP record must contain a field called COUNTRY. The edited field (STATE) can use a
different name because Application Engine always references the last key field (ignoring EFFDT).

• In Application Engine, %ExecuteEdits uses the system date when performing comparisons with
effective date (EFFDT); however, in some cases this date is not appropriate (Journal Edit, Journal
Import, and so on). In these situations, use Journal Date when comparing with EFFDT. To override
the use of the default system date with a selected field from a joined table, use %AsOfDateOvr. For
example,

%ExecuteEdits(%AsOfDateOvr(alias.fieldname), %Bind(...)...)

• Restrict the number and type of edits to the minimum required.

Do not edit fields that are known to be valid or that are given default values later in the process. Also
consider using a separate record with edits defined specifically for batch or provide a list of fields to
be edited.

112 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Parameters

Parameter Description

type Specify any combination of the following (added together):

• %Edit_Required

• %Edit_YesNo

• %Edit_DateRange

• %Edit_PromptTable

• %Edit_TranslateTable

recordname Specify the record used to obtain the data dictionary edits.

field1, field2, ... Specify a subset of the fields of the record to which edits
apply.

Example

Suppose you want to insert rows with missing or invalid values in three specific fields, selecting data
from a temporary table but using edits defined on the original application table. Notice the use of an alias,
or correlation name, inside the meta-SQL:

INSERT INTO PS_JRNL_LINE_ERROR (...)
SELECT ... FROM PS_JRNL_LINE_TMP A
WHERE A.PROCESS_INSTANCE = %BIND(PROCESS_INSTANCE)
 AND %EXECUTEEDITS(%Edit_Required + %Edit_PromptTable,?
 JRNL_LINE A, BUSINESS_UNIT, JOURNAL_ID, ACCOUNTING_DT)

To update rows that have some kind of edit error in a temporary table, you can use custom edits defined in
the temporary table record:

UPDATE PS_PENDITEM_TAO
SELECT ERROR_FLAG = 'Y'
WHERE PROCESS_INSTANCE = %BIND(PROCESS_INSTANCE)
 AND %EXECUTEEDITS(%Edit_Required + %Edit_YesNo + %Edit_DateRange +?
 %Edit_PromptTable + %Edit_TranslateTable, PENDITEM_TAO)

%FirstRows

Syntax

%FirstRows(n)

Description

The %FirstRows meta-SQL variable is replaced by database-specific SQL syntax to optimize retrieval of
n rows. Depending on the database, this variable optimizes:

• The query path.

Copyright © 1988, 2025, Oracle and/or its affiliates. 113

Using Meta-SQL and PeopleCode Chapter 5

• The number of rows returned.

• The number of rows returned per fetch buffer.

Considerations Using %FirstRows

Consider the following when using %FirstRows:

• Using %FirstRows does not mean only the first n rows are returned.

It means that the SQL is optimized for the first n rows where the platform supports it. More rows
might be returned, depending on the platform.

• It is the application's responsibility to stop fetching when enough rows have been returned.

• This meta-SQL variable is not implemented for COBOL or dynamic view SQL.

• Do not use this meta-SQL variable if the application might require more than n rows fetched.

The results of fetching more than n rows varies by platform. Some return the extra rows, but
performance may be suboptimal. Others return the message "ROW NOT FOUND".

• Place this meta-SQL variable between the Select statement that begins the SQL statement and the
Select List statement.

Do not use it in subqueries, views, Insert/Select statements, and so on. Do not use a wildcard (*) with
the Select List statement.

• Do not use this meta-SQL variable with Distinct statements, because the code SELECT TOP 1
DISTINCT fails on Microsoft SQL Server.

• This meta-SQL variable is implicitly embedded in all Select statements for SQLExecs for all
platforms except Oracle.

Parameters

Parameter Description

n Specify the number of rows to optimize retrieval for.

Example

The following code checks for the existence of a row:

&SQL = CreateSQL("select %firstrows(1) 'x' from PS_EXAMPLE where COL1 = :1", &temp)⇒

;

The following populates a 10-element array:

&SQL = CreateSQL("select %firstrows(10) COL2, COL3 from PS_EXAMPLE_VW where COL1 = ⇒

:1", &temp);

114 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

%GetNextSeqValue

Syntax

%GetNextSeqValue(sequence_name)

Description

The %GetNextSeqValue meta-SQL function increments the given sequence and returns its next value.

Notes about %GetNextSeqValue

Note the following points about the %GetNextSeqValue function:

• Use this function to generate order numbers, item numbers for lists, and so on.

• With this function, you can create new sequences or migrate GetNextNumberWithGapsCommit()
sequences.

Example

SQLExec("SELECT %GetNextSeqValue(PS_ORDER_NUMBER) FROM %SelectDummyTable", &order_n⇒

umber);

%GetProgText

Syntax

%GetProgText(&Prog,&Section,&Market,&Platform,&Effdt,&Step,&Event)

Description

The %GetProgText function returns a string with the text of a PeopleCode program uniquely identified by
the parameters.

Parameters

Parameter Description

&Prog A string with the name of an Application Engine program.

&Section A string with the name of an Application Engine program
section.

&Market A string specifying the market for an Application Engine
program section.

Copyright © 1988, 2025, Oracle and/or its affiliates. 115

Using Meta-SQL and PeopleCode Chapter 5

Parameter Description

&Platform A string specifying the platform for an Application Engine
program section.

&Effdt A string specifying the effective date for an Application
Engine program section.

&Step A string specifying a step in an Application Engine program
section.

&Event A string specifying the PeopleCode event.

Returns

A string containing the text of a PeopleCode program.

Example
&PeopleCodeText = GetProgText("DYNROLE_PUBL", "MAIN", "GBL", "default",
"1900-01-01", "Step03", "OnExecute");

Related Links
“Understanding the SQL Editor Window” (PeopleCode Developer’s Guide)

%Insert

Syntax

%Insert(:num)

Description

This is a shorthand for:

Insert into %Table(:num) (%List(Nonnull_Fields :num)) values (%InsertValues(:num))

%InsertSelect

Syntax

%InsertSelect([DISTINCT,]insert_recname, select_recname [correlation_id]
[, select_recname_n [correlation_id_n]] [, override_field = value]. . .)

Description

The %InsertSelect meta-SQL construct generates an Insert statement with a Select statement. It does not
generate a From statement. You must specify the select records before you specify override fields.

116 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Note: %InsertSelect has a limit of 99 override fields.

The Insert column list is composed of all the fields in the specified insert_recname, with the exception of
LongChar or Image fields.

Note: Because of the way long values (LongChar and Image fields) are handled in the various database
platforms for Insert statements, all long values in insert_recname are skipped in the generated Insert
statement. This implies that these fields should be defined in such a manner as to allow null values.
If you need to include long values in insert_recname use %InsertSelectWithLongs.

The corresponding value in the Select list is generated based on the following precedence:

1. If the Insert fieldname appears as an override_field, the corresponding value is used in the Select list.

2. If the Insert field name matches a field name in one of the select_recname variables specified, the
corresponding Select field is used in the Select list.

3. The search order of the select_recname records is the order that they are specified in the %InsertSelect
function.

4. If the Insert field name has a constant default value defined in Application Designer, that value is used
in the Select list.

5. A default value appropriate for the data type of the Insert field is used (blank for characters, zero for
numbers, NULL for Date, Time, and DateTime values, and so on.)

Use the optional override_field variable to specify values for a particular field.

Note: You cannot use bind variables with the override_field.

For each field you specify, the matching logic described in the preceding list is not performed. Instead, the
value that you specify after the equal sign is used for that field in the actual Select list. Use this technique
to let PeopleTools or Application Engine handle most of the fields in the record, while specifying some of
them explicitly. Also, you can use override_field to specify aggregate functions like Sum, Max, and so on.

Note: This meta-SQL is not implemented for COBOL.

Parameters

Parameter Description

DISTINCT Specify if the Select statement being generated should contain
a Distinct clause.

insert_recname Specify the name of record being inserted into. You must
specify a record name, not RECORD. recname, a record name
in quotation marks, a bind variable, or a table name.

Note: If the record for insert_recname is a temporary table,
 %InsertSelect automatically substitutes the corresponding
table instance (PS_TARGETnn instead of PS_TARGET).

Copyright © 1988, 2025, Oracle and/or its affiliates. 117

Using Meta-SQL and PeopleCode Chapter 5

Parameter Description

select_recname Specify the name of record being selected from. You can
specify more than one record. You must specify a record name,
 not a RECORD. recname, a record name in quotation marks,
 or a table name.

correlation_id Identify the correlation ID to be used for the select_recname
records and fields.

override_field Specify the name of a field on insert_recname that you want
to supply a value for (instead of using the value supplied from
the select_recname.)

Value Specify the value that should be used for the override_field
instead of the value from select_recname.

Example

Here is a basic example:

%InsertSelect(AE_SECTION_TBL, AE_STEP_TBL S, AE_SECTION_TYPE = ' ')
 FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
WHERE. . .

The example code resolves into the following:

INSERT INTO PS_AE_SECTION_TBL (AE_APPLID, AE_SECTION,. . ., AE_SECTION_TYPE)
SELECT S.AE_APPL_ID, S.AE_SECTION, . . . ' '
FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
 WHERE. . .

In the following example, you have a temporary table, PS_MY_TEMP, which is based on a join between
two other tables, PS_MY_TABLE1 and PS_MY_TABLE2:

%InsertSelect(MY_TEMP, MY_TABLE1, MY_TABLE2 T2)
 FROM PS_MY_TABLE1 T1, PS_MY_TABLE2 T2
WHERE %Join(COMMON_KEYS, MY_TABLE1 T1, MY_TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MY_TEMP (FIELD1, FIELD2 . . .)
 SELECT T2.FIELD1, T2.FIELD2, . . .
FROM PS_MY_TABLE1 T1, PS_MYTABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

The following example creates a distinct Select statement.

%InsertSelect(DISTINCT, MY_TABLE, TABLE1, TABLE2 T2)
 FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE %Join(COMMON_KEYS, TABLE1 T1, TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MYTABLE (FIELD1, FIELD2 . . .)
 SELECT DISTINCT T2.FIELD1, T2.FIELD2, . . .
FROM PS_TABLE1 T1, PS_TABLE2 T2

118 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

Related Links
%InsertSelectWithLongs

%InsertSelectWithLongs

Syntax

%InsertSelectWithLongs([DISTINCT,]insert_recname, select_recname [correlation_id]⇒

[, select_recname_n [correlation_id_n]] [, override_field = value]. . .)

Description

The %InsertSelectWithLongs meta-SQL construct generates an Insert statement with a Select statement.
It does not generate a From statement. You must specify the select records before you specify override
fields.

Use %InsertSelectWithLongs instead of %InsertSelect when the fields in insert_recname include long
values (LongChar and Image fields).

Note: %InsertSelectWithLongs has a limit of 99 override fields.

The Insert column list is composed of all the fields in the specified insert_recname.

The corresponding value in the Select list is generated based on the following precedence:

1. If the Insert fieldname appears as an override_field, the corresponding value is used in the Select list.

2. If the Insert field name matches a field name in one of the select_recname variables specified, the
corresponding Select field is used in the Select list.

3. The search order of the select_recname records is the order that they are specified in the
%InsertSelectWithLongs function.

4. If the Insert field name has a constant default value defined in Application Designer, that value is used
in the Select list.

5. A default value appropriate for the data type of the Insert field is used (blank for characters, zero for
numbers, NULL for Date, Time, and DateTime values, and so on.)

Use the optional override_field variable to specify values for a particular field.

Note: You cannot use bind variables with the override_field.

For each field you specify, the matching logic described in the preceding list is not performed. Instead, the
value that you specify after the equal sign is used for that field in the actual Select list. Use this technique
to let PeopleTools or Application Engine handle most of the fields in the record, while specifying some of
them explicitly. Also, you can use override_field to specify aggregate functions like Sum, Max, and so on.

Copyright © 1988, 2025, Oracle and/or its affiliates. 119

Using Meta-SQL and PeopleCode Chapter 5

Note: This meta-SQL is not implemented for COBOL.

Parameters

Parameter Description

DISTINCT Specify if the Select statement being generated should contain
a Distinct clause.

insert_recname Specify the name of record being inserted into. You must
specify a record name, not RECORD. recname, a record name
in quotation marks, a bind variable, or a table name.

Note: If the record for insert_recname is a temporary table,
 %InsertSelectWithLongs automatically substitutes the
corresponding table instance (PS_TARGETnn instead of PS_
TARGET).

select_recname Specify the name of record being selected from. You can
specify more than one record. You must specify a record name,
 not a RECORD. recname, a record name in quotation marks,
 or a table name.

correlation_id Identify the correlation ID to be used for the select_recname
records and fields.

override_field Specify the name of a field on insert_recname that you want
to supply a value for (instead of using the value supplied from
the select_recname.)

Value Specify the value that should be used for the override_field
instead of the value from select_recname.

Example

Here is a basic example:

%InsertSelectWithLongs(AE_SECTION_TBL, AE_STEP_TBL S, AE_SECTION_TYPE = ' ')
 FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
WHERE. . .

The example code resolves into the following:

INSERT INTO PS_AE_SECTION_TBL (AE_APPLID, AE_SECTION,. . ., AE_SECTION_TYPE)
SELECT S.AE_APPL_ID, S.AE_SECTION, . . . ' '
FROM PS_AE_STEP_TBL S, PS_AS_STMT_TBL T
 WHERE. . .

In the following example, you have a temporary table, PS_MY_TEMP, which is based on a join between
two other tables, PS_MY_TABLE1 and PS_MY_TABLE2:

%InsertSelectWithLongs(MY_TEMP, MY_TABLE1, MY_TABLE2 T2)
 FROM PS_MY_TABLE1 T1, PS_MY_TABLE2 T2

120 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

WHERE %Join(COMMON_KEYS, MY_TABLE1 T1, MY_TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MY_TEMP (FIELD1, FIELD2 . . .)
 SELECT T2.FIELD1, T2.FIELD2, . . .
FROM PS_MY_TABLE1 T1, PS_MYTABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

The following example creates a distinct Select statement.

%InsertSelectWithLongs(DISTINCT, MY_TABLE, TABLE1, TABLE2 T2)
 FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE %Join(COMMON_KEYS, TABLE1 T1, TABLE2 T2) . . .

This code resolves into:

INSERT INTO PS_MYTABLE (FIELD1, FIELD2 . . .)
 SELECT DISTINCT T2.FIELD1, T2.FIELD2, . . .
FROM PS_TABLE1 T1, PS_TABLE2 T2
WHERE T1.FIELD1 = T2.FIELD1
AND T1.FIELD2 = T2.FIELD2 . . .

Related Links
%InsertSelect

%InsertValues

Syntax

%InsertValues(recname)

Description

The %InsertValues meta-SQL construct produces a comma-separated list of the record's non-null field
values. Input processing is applied to the fields in the following ways:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If the field is a string, its value is automatically wrapped in quotation marks.

• If the field has a null value, it is not included in the list.

Note: This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine
SQL actions. Also, this meta-SQL construct is not implemented for COBOL.

Copyright © 1988, 2025, Oracle and/or its affiliates. 121

Using Meta-SQL and PeopleCode Chapter 5

Parameters

Parameter Description

recname Specify the name of the record to be used for inserting. This
can be a bind variable, a record object, or a record name in
the form recname. You can't specify a RECORD. recname, a
record name in quotation marks, or a table name.

Example

Here's an example:

SQLExec("Insert into TABLE (%List(NonNull_Fields, :1)) values (%InsertValues(:1))",⇒

 &Rec);

This example code is expanded into:

"Insert into TABLE (FNUM, FCHAR, FDATE) values (27, 'Y', %datein('1989-11-27'))"

%IsRunningOnline

Description

Use the %IsRunningOnline meta-variable to determine whether the current Application Engine program
is running in online mode or batch mode.

Returns

If %IsRunningOnline = 'N', then the current Application Engine program is running in batch mode.

If %IsRunningOnline = 'Y', then the current Application Engine program is running in online mode.

Examples
%Select(FS_BP_WRK_AET.SELECT_FLAG)
 SELECT 'X'
 FROM PS_INSTALLATION
 WHERE %IsRunningOnline = 'N'

%Select(FS_BP_WRK_SET.SELECT_FLAG
 SELECT 'X'
 FROM PS_INSTALLATION
 WHERE %IsRunningOnline = 'Y'

%Join

Syntax

%Join({COMMON_KEYS | COMMON_FIELDS}, join_recname [correlation_id1], to_recname
[correlation_id2] [, override_field_list])

122 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

where override_field_list is an arbitrary-length list of fields to be substituted in the resulting text string, in
the form:

field1 [, field2]. . .

Description

Use the %Join meta-SQL construct to dynamically build a Where clause joining one table to another. At
runtime, the entire construct is replaced with a character string.

Note: This meta-SQL construct is not implemented for COBOL. If date key fields are not marked as
required in the record definition for either of the referenced tables in the %Join clause, a Null clause
check is added to the date field comparison. This additional clause can have a significant impact on the
execution time for the generated SQL statement.

Parameters

Parameter Description

{COMMON_KEYS | COMMON_FIELDS} Use COMMON_KEYS to specify that all common primary
key fields are used in constructing a Where clause; use
COMMON_FIELDS to specify all common fields, not
just key fields. You can select either COMMON_KEYS or
COMMON_FIELDS.

join_recname Specify the name of the record to be joined. This can be a
bind variable, a record object, or a record name in the form
recname. You can't specify a RECORD. recname, a record
name in quotation marks, or a table name.

correlation_id1 Identify the correlation ID used to relate the record specified
by join_recname and its fields.

to_recname Specify the name of the record to be joined to. This can be a
bind variable, a record object, or a record name in the form
recname. You can't specify a RECORD. recname, a record
name in quotation marks, or a table name.

correlation_id2 Identify the correlation ID used to relate the record specified
by to_recname and its fields.

override_field_list Specify a list of fields that you do not want used in the join.
 For example, if fields A, B, and C were common to two
records, and you didn't want to join on C, list C as an override
_field.

Example

Here is an example:

%Join(COMMON_KEYS, PSAESECTDEFN ABC, PSAESTEPDEFN XYZ)

Copyright © 1988, 2025, Oracle and/or its affiliates. 123

Using Meta-SQL and PeopleCode Chapter 5

The example code results in the following being generated:

ABC.AE_APPLID = XYZ.AE_APPLID
AND ABC.AE_SECTION = XYZ.AE_SECTION
AND ABC.DBTYPE = XYZ.DBTYPE
AND ABC.EFFDT = XYZ.EFFDT

Here's another example:

%Join(COMMON_FIELDS, PSAEAPPLDEFN ABC, PSAESECTDEFN XYZ)

The second example results in the following being generated:

ABC.AE_APPLID = XYZ.AE_APPLID
AND ABC.DESCR = XYZ.DESCR

However, you do not want to perform the join using the DESCR field because it's a long field. Instead use
override_field, as shown in the following code:

%Join(COMMON_FIELDS, PSAEAPPLDEFN ABC, PSAESECTDEFN XYZ, DESCR)

This example results in the following being generated:

ABC.AE_APPLID = XYZ.AE_APPLID

You can also specify a value for a field. Suppose you want to join two tables, but not on the field C3. In
addition, you would like to specify a value for C3. Your code could look like the following:

%Join(COMMON_FIELDS, MY_TABLE1 A, MY_TABLE2 B, C3) AND C3 = 'XX'

%JobInstance

Description

Use the %JobInstance meta-variable to specify the numeric (unquoted) PeopleSoft Process Scheduler job
instance.

%KeyEqual

Syntax

%KeyEqual(recname [correlation_id])

Description

The %KeyEqual meta-SQL construct expands into a conditional phrase suitable for use in a Where
clause.

The conditional phrase consists of a conjunction (AND) of [correlation_id.]keyfieldname = 'keyfieldvalue'
phrases for each key field of the given record.

No auto-update processing is done, but other input processing is applied to the values, according to the
following:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

124 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

• If a value is a string, its value is automatically wrapped in quotation marks.

• If a value is NULL, the "=value" part is replaced with "IS NULL".

Note: This meta-SQL can only be used in PeopleCode programs, not in Application Engine SQL actions.
Also, this meta-SQL is not implemented for COBOL.

Example

Suppose that the record &REC has three keys: FNUM, FDATE, and FSMART. Here is a code example:

Local record &REC;

&REC = CreateRecord(RECORD.MYRECORD);
&REC.FNUM.Value = 27;
&REC.FDATE.Value = %Date;
SQLExec("Delete from MYRECORD A where %KeyEqual(:1 A)", &REC);

This example expands to:

"Delete from TABLE A
 where A.FNUM = 27
 AND A.FDATE = %Date('1989-11-27')
 AND A.FSMART IS NULL"

%KeyEqualNoEffDt

Syntax

%KeyEqualNoEffDt(recname [correlation_id])

Description

The %KeyEqualNoEffDt meta-SQL construct expands into a conditional phrase suitable for use in a
Where clause.

The conditional phrase consists of a conjunction (AND) of [correlation_id.]keyfieldname = 'keyfieldvalue'
phrases for all key fields of the given record, except that it omits any key field named EFFDT.

No auto-update processing is done, but other input processing is applied to the values as follows:

• If the field is a Date, a Time, or a DateTime data type, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If a value is a string, its value is automatically wrapped in quotation marks.

• If a value is NULL, the "=value" part is replaced with "IS NULL."

Note: This meta-SQL can only be used in PeopleCode programs, not in Application Engine SQL actions.
Also, this meta-SQL is not implemented for COBOL.

Copyright © 1988, 2025, Oracle and/or its affiliates. 125

Using Meta-SQL and PeopleCode Chapter 5

Parameters

Parameter Description

recname Specify the name of the record to be used for inserting. This
can be a bind variable, a record object, or a record name in the
form recname. You can't specify RECORD. recname, a record
name in quotation marks, or a table name.

correlation_id Identify the single-letter correlation ID to relate the record
specified by recname and its fields.

Example

The EMPL_CHECKLIST record has three keys: EMPLID, CHECK_SEQ, and EFFDT. Here is a code
example:

&REC = CreateRecord(EMPL_CHECKLIST);

SQLExec("Delete from TABLE A where %KeyEqualNoEffdt(:1 A)", &REC)

The example expands to:

"Delete from TABLE A
 where A.EMPLID = 8001
 AND A.CHECK_SEQ = 00001"

%LeftParen

Description

Use the %LeftParen meta-variable to specify a left parenthesis. Usage is similar to %Comma.

Related Links
%Comma
“%SQL” (PeopleCode Language Reference)

%Like

Syntax

%Like("Literal")

Description

The %Like construct expands to look for literal values. This meta-SQL should be used when looking for
like values. A percent sign character (%) is appended to literal.

Note: This meta-SQL is not implemented for COBOL.

126 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

If you're using a bind marker (such as ":1") for the literal argument in a SQLExec, you must wrap the
SQL string with the ExpandSqlBinds function. ExpandSqlBinds replaces bind markers with the actual
input values.

%Like generates the following:

like 'literal%'

If the literal value contains a backslash character (\) or percent sign (%), then %Like generates the
following:

like 'literal%' escape '\'

See ExpandSqlBinds.

Using %Like and Eliminating Blanks

Some platforms require that you use RTRIM to get the correct value. The following characters are
wildcards even when preceded with the backslash (\) escape character:

• %

• _

Therefore, on some platforms, the literal must end with a percent sign (%) wildcard that isn't preceded by
a backslash (\). Here are some examples:

• literal = 'ABC%'

There is no need for RTRIM on any platform.

• literal = 'ABC\%'

You need RTRIM on Microsoft SQL Server and DB2.

Using %Like and Trailing Blanks

Not all executions of %Like perform the same. When dealing with trailing blanks, some platforms behave
as if there is an implicit percent sign (%) at the end of the comparison string, while most do not.

In the following example, if the selected column contains the string "ABCD " (with three trailing blanks.
The statement may or may not return any rows:

select * from t1 Where c like 'ABCD'

Therefore, it is always important to explicitly code the percent sign (%) the end of matching strings for
columns where you want to include trailing blanks. The following table shows the use of implicit percent
signs with specific databases:

Database Includes Implicit Percent Sign (%)

PeopleSoft Standard Usage Yes

DB2/400 No

Copyright © 1988, 2025, Oracle and/or its affiliates. 127

Using Meta-SQL and PeopleCode Chapter 5

Database Includes Implicit Percent Sign (%)

DB2/MVS No

DB2/Unix No

Microsoft SQL Server Yes

Oracle No

SQLBase No

Using %Like and Wildcards

SQL specifies two wildcards that can be used when specifying pattern matching strings for use with the
SQL Like predicate. The underscore is used as a substitution for a single character within a string, and the
percent sign represents any number of character spaces within a string. All supported databases use these
characters as wildcards.

Parameters

Parameter Description

literal Specify the value to search for.

%LikeExact

Syntax

%LikeExact(fieldname, "Literal")

Description

The %LikeExact meta-SQL variable expands to look for literal values. Use this variable when exact
matches are necessary, taking into account wildcards in the literal values.

Note: This meta-SQL is not implemented for COBOL.

%LikeExact generates one of the following:

• If the literal contains no wildcards:

fieldname = 'literal'

128 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

• If the literal ends with the '%' wildcard:

fieldname like 'literal' [escape '\']

Some platforms require that you use RTRIM to get the correct value. The following characters are
wildcards even when preceded with the backslash (\) escape character.

• %

• _

Therefore, on some platforms, the literal must end with a percent sign (%) wildcard that isn't preceded by
a backslash (\). Here are some examples:

• literal = 'ABC%'

You do not need RTRIM on any platform.

• literal = 'ABC\%'

You need RTRIM on Microsoft SQL Server and DB2.

Considerations Using Bind Markers

If you're using a bind marker (such as ":1") for the literal argument in a SQLExec, you must wrap the
SQL string with ExpandSqlBinds. ExpandSqlBinds replaces bind markers with the actual input values.

The following forms work:

• Application Engine SQL action (with or without the ReUse property enabled).

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, %Bind(⇒

AE_APPL_ID, STATIC))

The STATIC modifier is only required if the ReUse property is enabled, but you can always use it.

• PeopleCode.

AE_TESTAPPL_AET.AE_APPL_ID = "AB_C";

SQLExec("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_I⇒

D, :AE_TESTAPPL_AET.AE_APPL_ID)");

Here is another acceptable form:

SQLExec(ExpandSqlBinds("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %Like⇒

Exact(AE_APPL_ID, :1)", "AB_C"));

This form does not work:

SQLExec("UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, :1⇒

)", "AB_C");

Copyright © 1988, 2025, Oracle and/or its affiliates. 129

Using Meta-SQL and PeopleCode Chapter 5

Parameters

Parameter Description

fieldname Specify a field to be used in the first part of the Like
comparison.

literal Specify the value to search for.

Example

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'ABC')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID = 'ABC'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'AB%C')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE RTRIM(AE_APPL_ID) LIKE 'AB%C'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE LIKEEXACT(AE_APPL_ID, 'AB%C%')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID LIKE 'AB%C%'

Here is an example:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE %LIKEEXACT(AE_APPL_ID, 'AB%C% ')

The example resolves into the following:

UPDATE PS_AE_APPL_TMP SET AE_PRODUCT = 'X' WHERE AE_APPL_ID LIKE 'AB%C% '

The following example shows using ExpandSqlBinds:

SQLExec(ExpandSqlBinds("SELECT COUNT(*) FROM PS_ITEM WHERE %LIKEEXACT(BUSINESS_UNIT⇒

, :1)", "M04"), %COUNT);

Related Links
ExpandSqlBinds

130 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

%List

Syntax

%List({FIELD_LIST
| FIELD_LIST_NOLONGS | KEY_FIELDS | ORDER_BY},recordname [correlation_id])

Description

The %List construct expands into a list of field names delimited by commas. The fields included in the
expanded list depend on the parameters.

Note: This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

Considerations for Using %List

When using %List in an Insert/Select or Insert/Values or %Select statement, you must have matching
pairs of %List (or %ListBind) variables in the target and source field lists. Use the same list type
argument and record name to ensure consistency.

Parameters

Parameter Description

FIELD_LIST Use all field names in the given record. You can select only
one option from FIELD_LIST, ORDER_BY, FIELD_LIST_
NOLONGS, or KEY_FIELDS.

KEY_FIELDS Use all key fields in the given record. You can select only one
option from FIELD_LIST, FIELD_LIST_NOLONGS, KEY_
FIELDS, or ORDER_BY.

ORDER_BY Use all the key fields of recordname, adding the DESC field
for descending key columns. This parameter is often used
when the list being generated is for an Order By clause. You
can select only one option from FIELD_LIST, KEY_FIELDS,
 ORDER_BY, or FIELD_LIST_NOLONGS.

FIELD_LIST_NOLONGS Use all field names in the given record, except any long
columns (long text or image fields.) You can select only one
option from FIELD_LIST, ORDER_BY, KEY_FIELDS, or
FIELD_LIST_NOLONGS.

recordname Identify either a record or a subrecord that the field names
are drawn from. This can be a bind variable, a record object,
 or a record name in the form recname. You cannot specify
RECORD.recname, a record name in quotation marks, or a
table name.

Copyright © 1988, 2025, Oracle and/or its affiliates. 131

Using Meta-SQL and PeopleCode Chapter 5

Parameter Description

correlation_id Identify the single-letter correlation ID to relate the record
specified by recordname and its fields.

Example

The following is a good example of using %List. Both the Insert and Select statements use the same
%List variable:

INSERT INTO PS_PO_DISTRIB_STG (%Sql(POCOMMONDISTSTGFLDLSTU)
, %List(FIELD_LIST, CF16_AN_SBR)
, MERCHANDISE_AMT
, MERCH_AMT_BSE
, QTY_DEMAND
, QTY_PO
, QTY_PO_STD
, QTY_REQ)
SELECT %Sql(POCOMMONDISTSTGFLDLSTU)
, %List(FIELD_LIST, CF16_AN_SBR)
, MERCHANDISE_AMT
, MERCH_AMT_BSE
, QTY_DEMAND
, QTY_PO
, QTY_PO_STD
, QTY_REQ
FROM PS_PO_DIST_STG_WRK WRK
WHERE WRK.PROCESS_INSTANCE = %Bind(PROCESS_INSTANCE)

The following example shows a poor example of how to use %List. The Insert and Select field lists both
use %List, but the Select field list is only partly dynamic; the rest is hard-coded.

INSERT INTO PS_EN_TRN_CMP_TMP (%List(FIELD_LIST, EN_TRN_CMP_TMP))
SELECT B.EIP_CTL_ID
, %List(SELECT_LIST, EN_BOM_COMPS A)
, E.COPY_DIRECTION
, E.BUSINESS_UNIT_TO
, E.BOM_TRANSFER_STAT
, 'N'
, B.MASS_MAINT_CODE
, 0
 FROM PS_EN_BOM_COMPS A
 , PS_EN_ASSY_TRN_TMP B
 , PS_EN_TRNS_TMP E
WHERE ...

The following example shows the previous poor example rewritten in a better way:

INSERT INTO PS_EN_TRN_CMP_TMP (EIP_CTL_ID,
, %List(FIELD_LIST, EN_BOM_COMPS)
, COPY_DIRECTION
, BUSINESS_UNIT_TO
, BOM_TRANSFER_STAT
, EN_MMC_UPDATE_FLG
, MASS_MAINT_CODE
, EN_MMC_SEQ_FLG01
, ...
, EN_MMC_SEQ_FLG20)
SELECT B.EIP_CTL_ID
 , %List(FIELD_LIST, EN_BOM_COMPS A)
, E.COPY_DIRECTION
, E.BUSINESS_UNIT_TO
, E.BOM_TRANSFER_STAT
, 'N'

132 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

, B.MASS_MAINT_CODE
, 0
, ...
, 0
 FROM PS_EN_BOM_COMPS A
 , PS_EN_ASSY_TRN_TMP B
 , PS_EN_TRNS_TMP E
WHERE ...

The following code segment is another poor example. Only the field list of the Insert statement is
dynamically generated, and the Select statement is statically coded. If the table STL_NET_TBL is
reordered, the Insert statement will be incorrect.

INSERT INTO PS_STL_NET_TBL (%List(FIELD_LIST, STL_NET_TBL))
SELECT :1
, :2
, :3
, :4
, :5
, :6
, :7
,:8
FROM PS_INSTALLATION

The following code shows the previous poor example rewritten in a better way:

INSERT INTO PS_STL_NET_TBL (%List(FIELD_LIST, STL_NET_TBL))

VALUES (%List(BIND_LIST, STL_NET_TBL MY_AET))

%ListBind

Syntax

%ListBind({FIELD_LIST | FIELD_LIST_NOLONGS | KEY_FIELDS},recordname [State_record_a⇒

lias])

Description

The %ListBind meta-SQL construct expands a field list as bind references for use in an Insert/Value
statement.

Note: This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

Considerations for Using %ListBind

When using %ListBind in an insert/select or insert/values or %Select statement, you must have matching
pairs of %List or %ListBind in the target and source field lists, using the same list type argument and
record name to ensure consistency.

Copyright © 1988, 2025, Oracle and/or its affiliates. 133

Using Meta-SQL and PeopleCode Chapter 5

Parameters

Parameter Description

FIELD_LIST Use all field names in a record. You can select only one option
from FIELD_LIST, FIELD_LIST_NOLONGS, or KEY_
FIELDS.

FIELD_LIST_NOLONGS Use all field names in a record, except any long columns (long
text or image fields). You can select only one option from
FIELD_LIST, FIELD_LIST_NOLONGS, or KEY_FIELDS.

KEY_FIELDS Use all key field names in a record. You can select only one
option from FIELD_LIST, FIELD_LIST_NOLONGS, or KEY
_FIELDS.

recordname Identify either a record or a subrecord that the field names
are drawn from. This can be a bind variable, a record object,
 or a record name in the form recname. You cannot specify
RECORD.recname, a record name in quotation marks, or a
table name.

State_record_alias Specify the Application Engine state record buffer that
contains the values (this could be different than the record
used to derive the field list). If missing, the default state record
is assumed.

Example

INSERT INTO PS_TARGET (FIELD1, FIELD2, %List(FIELD_LIST, CF_SUBREC), FIELDN) VALUES⇒

 (%Bind(MY_AET.FIELD1), %Bind(MY_AET.FIELD2), %ListBind(FIELD_LIST, CF_SUBREC MY_AE⇒

T), %Bind(MY_AET.FIELDN))

%ListEqual

Syntax

%ListEqual({ALL | KEY },Recordname [alias],RecordBuffer [,Separator])

Description

The %ListEqual construct maps each field, possibly to an alias with a %Bind value, with a separator
added before each equality. Each field is mapped as follows:

 alias.X = %Bind(recbuffer.X)

This construct can be used in the Set clause of an Update statement or in a Where clause.

Note: This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

134 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Parameters

Parameter Description

ALL | KEY Specify if you want all fields or just key fields.

recordname Identify either a record or a subrecord that the field names
are drawn from. This can be a bind variable, a record object,
 or a record name in the form recname. You cannot specify
RECORD.recname, a record name in quotation marks, or a
table name.

alias (Optional) Specify an alias to precede each field name.

RecordBuffer Specify the record buffer for the bind variables (this could be
different than the record used to derive the field list).

Separator If you want to specify a logical separator, specify either AND
or OR with this parameter. If you do not specify a separator, no
logical separator is used; the value of a comma is used instead.

Example
UPDATE PS_TEMP

SET %ListEqual(ALL, CF_SUBREC, MY_AET)
WHERE %ListEqual(KEYS, TEMP, MY_AET, AND)

%Mod

Syntax

%Mod(a, b)

Description

Use the %Mod meta-SQL function to return the remainder (or modulo) of division of one number by
another number. %Mod uses the integer portion of both the dividend and the divisor. If the divisor is 0,
%Mod returns the dividend value.

Example

Each of the following examples shows the computed result of the %Mod function:

%Mod(10, 3) = 1
%Mod(9, 3) = 0
%Mod(10.1, 3) = 1
%Mod(-10, 3) = -1
%Mod(10, 0)= 10

Copyright © 1988, 2025, Oracle and/or its affiliates. 135

Using Meta-SQL and PeopleCode Chapter 5

Related Links
%DecDiv

%Next and %Previous

Description

Use the %Next and %Previous functions to return the value of the next or previous field in a numbered
sequence. These functions are valid in any Application Engine SQL action and should be used when
performing sequence-numbering processing. Typically, you use them instead of a %Bind construct. These
functions use the current value of the number field as a bind variable and then increment (%Next) or
decrement (%Previous) the value after the statement runs successfully. A number field indicates the
numeric field of the state record that you initially set to a particular value (as in 1 to start).

If the statement is a Select and no rows are returned, the field value is not changed. The substitution rules
are the same as for %Bind. For example, if the ReUse property is enabled, then the field is a true bind (':n'
substituted). Otherwise, inline substitution occurs.

Example

You could use these functions in an Update statement within a Do Select action:

• Do Select action

%SELECT(field1, field2, ...) SELECT key1, key2, ... FROM PS_TABLE WHERE ...
ORDER BY key1, key2, ..."

• SQL

UPDATE PS_TABLE SET SEQ_NBR = %Next(seq_field) WHERE key1 = %Bind(field1)
AND key2 = %Bind(field2) ...

With a Do Select action, the increment/decrement occurs once per run, not once for every fetch. So unless
your Do Select action implements the Reselect property, the value is changed only on the first iteration
of the loop. Alternatively, with the Reselect property or Do While and Do Until actions, every iteration
reruns the Select statement and then fetches one row. With these types of loops, the value changes on
every iteration.

Related Links
%Bind

%NoUppercase

Syntax

%NoUppercase

136 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

When processing a SQL statement, the system automatically casts all field names and possibly record
names to uppercase when processing a SQL statement. When processing records from a third party, fields
that are lowercase are cast into uppercase, which can create a runtime issue on case-sensitive platforms.

To prevent this, use the %NoUppercase meta-SQL statement at the beginning of the SQL statement.

Parameters

None.

Note there are not parameters, as well as no parenthesis, for this meta-SQL.

Returns

None.

Example
%NoUppercase
INSERT INTO PS_RM_APP_ENG_LOG (MAP_ID
, RECNAME
, FIELDNAME
, MESSAGE_SET_NBR
, MESSAGE_NBR
, LANGUAGE_CD)
SELECT %Bind(MAP_ID)
, %Bind(RECNAME)
, ' '
,17834
, 1116
, %Bind(LANGUAGE_CD)
FROM %SelectDummyTable
WHERE EXISTS (
SELECT 'X'
FROM SW_OPPORTUNITY SW_OPPORTUNITY
, SW_PERSON SW_PERSON
, SW_CUSTOMER SW_CUSTOMER
, SW_SALES_TEAM_VW SW_SALES_TEAM_VW
WHERE SW_OPPORTUNITY.SWCUSTOMERID = SW_CUSTOMER.SWCUSTOMERID
AND SW_OPPORTUNITY.SWSALESTEAMID = SW_SALES_TEAM_VW.SWPROVIDERGRPID
AND SW_SALES_TEAM_VW.SWPERSONID = SW_PERSON.SWPERSONID
GROUP BY SW_OPPORTUNITY.SwOpportunityId
HAVING COUNT(*) > 1)

%NumToChar

Syntax

%NumToChar(Number)

Description

Use the %NumToChar construct to transform a numeric value into a character value. Spaces are trimmed
from Number.

Copyright © 1988, 2025, Oracle and/or its affiliates. 137

Using Meta-SQL and PeopleCode Chapter 5

Note: %NumToChar will preserve all trailing zeroes. Therefore, use the scale parameter of %Cast to
specify the number of trailing zeroes.

Related Links
%Cast

%OldKeyEqual

Syntax

%OldKeyEqual(recname [correlation_id])

Description

The %OldKeyEqual meta-SQL construct is similar to the %KeyEqual construct, except that it uses the
original values of the record fields, rather than the current values. Since the rules for which values are
original and which are current are not very clear, especially for standalone record objects, avoid using this
meta-SQL construct. You should use separate records to hold previous values. This can make your code
clearer and more maintainable.

Note: This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine
SQL actions. Also, this meta-SQL is not implemented for COBOL.

Related Links
%KeyEqual

%ProcessInstance

Description

Use the %ProcessInstance meta-variable to specify the numeric (unquoted) process instance.

Note: It is recommended not to use %ProcessInstance inside a SQL step. %ProcessInstance is always
replaced by the literal value before being sent to the database; whereas, %Bind(PROCESS_INSTANCE)
is passed as a bind value. So, even though the ReUse flag for all of SQLs are set, Process Instance values
are sent as referrals and that forces a parse each time the SQLs are executed.

%ResolveMetaSQL

Syntax

%ResolveMetaSQL(&SQL,%DbType)

138 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

The %ResolveMetaSQL function returns a string with any meta-SQL in the string expanded to platform-
specific SQL, similar to the text that is returned on the Meta-SQL tab when using the Resolve Meta-SQL
option in the SQL Editor.

If &SQL does not contain any meta-SQL, then the function returns a string identical to &SQL.

%DBType value represents the type of current database.

Parameters

Parameter Description

&SQL Specify a string containing the SQL to be resolved.

%DBType %DBType value is Db2

Also see “FetchSQL” (PeopleCode Language Reference).

Returns

A string with meta-SQL expanded to platform-specific SQL.

Example

Here is an example:

&SQLText = FetchSQL(SQL.PTLT_CODE_MARKET);
&ResolveSQLText = ResolveMetaSQL(&SQLText,DB2);

Suppose &SQLText contains the following SQL:

INSERT INTO %Table(PTLT_ASSGN_TASK)(PTLT_FEATURE_CODE
 , PTLT_TASK_CODE
 , PORTAL_NAME
 , PTLT_TASK_CODE2
 , MENUNAME
 , OBJECTOWNERID)
 SELECT A.EOLT_FEATURE_CODE
 , %Sql(PTLT_TASK_CODE, A.PNLGRPNAME, A.MARKET)
 , 'EMPLOYEE'
 , %Sql(PTLT_TASK_CODE, A.PNLGRPNAME, A.MARKET)
 , A.MENUNAME
 , ' '
 FROM %Table(EOLT_FEAT_COMP) A
 , %Table(PTLT_TASK) B
 , %Table(PTLT_TASK_LOAD) C
 WHERE %Sql(PTLT_TASK_CODE, A.PNLGRPNAME, A.MARKET) = B.PTLT_TASK_CODE
 AND B.PTLT_TASK_CODE = C.PTLT_TASK_CODE
 AND B.PTLT_LOAD_METHOD = C.PTLT_LOAD_METHOD
 AND A.MENUNAME <> ' '
 AND A.MENUNAME <> C.MENUNAME
 AND NOT EXISTS (
 SELECT 'X'
 FROM %Table(PTLT_ASSGN_TASK) Z
 WHERE Z.PTLT_FEATURE_CODE = A.EOLT_FEATURE_CODE
 AND Z.PTLT_TASK_CODE = %Sql(PTLT_TASK_CODE, A.PNLGRPNAME, A.MARKET))

Copyright © 1988, 2025, Oracle and/or its affiliates. 139

Using Meta-SQL and PeopleCode Chapter 5

&ResolveSQLText would contain the following text (depending on your database platform):

INSERT INTO PS_PTLT_ASSGN_TASK(PTLT_FEATURE_CODE
 , PTLT_TASK_CODE
 , PORTAL_NAME
 , PTLT_TASK_CODE2
 , MENUNAME
 , OBJECTOWNERID)
 SELECT A.EOLT_FEATURE_CODE
 , RTRIM(SUBSTR(A.PNLGRPNAME
 ,1
 ,18)) || '.' || A.MARKET
 , 'EMPLOYEE'
 , RTRIM(SUBSTR(A.PNLGRPNAME
 ,1
 ,18)) || '.' || A.MARKET
 , A.MENUNAME
 , ' '
 FROM PS_EOLT_FEAT_COMP A
 , PS_PTLT_TASK B
 , PS_PTLT_TASK_LOAD C
 WHERE RTRIM(SUBSTR(A.PNLGRPNAME,1,18)) || '.' || A.MARKET = B.PTLT_TASK_CODE
 AND B.PTLT_TASK_CODE = C.PTLT_TASK_CODE
 AND B.PTLT_LOAD_METHOD = C.PTLT_LOAD_METHOD
 AND A.MENUNAME <> ' '
 AND A.MENUNAME <> C.MENUNAME
 AND NOT EXISTS (
 SELECT 'X'
 FROM PS_PTLT_ASSGN_TASK Z
 WHERE Z.PTLT_FEATURE_CODE = A.EOLT_FEATURE_CODE
 AND Z.PTLT_TASK_CODE = RTRIM(SUBSTR(A.PNLGRPNAME,1,18)) || '.' || A.MARKET)

Related Links
“Understanding the SQL Editor Window” (PeopleCode Developer’s Guide)

%ReturnCode

Description

Use the %ReturnCode meta-variable to evaluate or specify the return code of the last Application Engine
program step performed. If the operation fails, breaks, or generates an error, %ReturnCode is set to one of
the following types of return codes:

• Database (SQL) call errors.

• PeopleCode function errors.

• GEN_ERROR, when produced by general runtime exceptions.

• AE_ABORT, when produced by application or runtime logic, including some memory-related errors.

If the application process is not terminated, %ReturnCode is reset to the default value of 0 for each
subsequent successful operation.

%RightParen

Description

Use the %RightParen meta-variable to specify a right parenthesis. Usage is similar to that of %Comma.

140 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Related Links
%Comma
%SQL

%Round

Syntax

%Round(expression, factor)

Description

%Round rounds an expression to a specified scale before or after the decimal point. If factor is a literal, it
can be rounded to a negative number.

Parameters

Parameter Description

expression Specify an arbitrary numeric expression involving numeric
constants and database columns.

factor Specify an integer or bind variable in SQLExec PeopleCode.
 The range of a factor is from -31 to +31 for literals. Non-
literals can only be positive.

Example

Here is an example:

%Round(10.337, 2) = 10.34

%Round(13.67, 0) = 14

SQLExec("SELECT %Round(field_c1, :1) from RECORD_T", field_c2, &Result);

In the example, field_c1 and field_c2 are two fields in the record.

The following cases are illegal, and may cause incorrect results or runtime SQL errors:

%Round(10.337, 2 + 1) (factor can not be an expression)

%Round(field_c1, field_c2) (factor can not be database columns)

%RoundCurrency

Syntax

%RoundCurrency(expression, [ALIAS.]currency_field)

Copyright © 1988, 2025, Oracle and/or its affiliates. 141

Using Meta-SQL and PeopleCode Chapter 5

Description

Use the %RoundCurrency function to return the value of an amount field rounded to the currency
precision specified by the Currency Control Field property of the field, as defined in the Application
Designer Record Field Properties dialog box. For this function to work, you must have the Multi-
Currency option selected on the PeopleTools Options page.

See “Using Administration Utilities” (System and Server Administration).

This function is an enhanced version of the Application Engine &ROUND construct that appeared in
previous releases, and it is valid only in Application Engine SQL; it is not valid for SQLExecs or view
text.

You can use this function in the Set clause of an Update statement or the Select list of an Insert/Select
statement. The first parameter is an arbitrary expression of numeric values and columns from the
source tables that computes the monetary amount to be rounded. The second parameter is the control
currency field from a particular source table (the Update table, or a table in the From clause of an Insert/
Selectstatement). This field identifies the corresponding currency value for the monetary amount.

Note: Remember that the as of date of the Application Engine program is used for obtaining the currency
rounding factor. The currency rounding factor is determined by the value of DECIMAL_POSITIONS in
the corresponding row in PS_CURRENCY_CD_TBL, which is an effective-dated table.

If multicurrency is not in effect, the result is rounded to the precision of the amount field (either 13.2 or
15.3 amount formats are possible).

Example
UPDATE PS_PENDING_DST
 SET MONETARY_AMOUNT =
 %RoundCurrency(FOREIGN_AMOUNT * CUR_EXCHNG_RT, CURRENCY_CD)
 WHERE GROUP_BU = %Bind(GROUP_BU) AND GROUP_ID = %Bind(GROUP_ID)

%RunControl

Description

Use the %RunControl meta-variable to specify a quoted string containing the current run control
identifier. The run control ID is available to your program when using %RunControl, regardless of
whether the AEREQUEST table contains a row.

%Select

Syntax

%Select(statefield1[,statefield2]...[,statefieldN])

Select field1[,field2]...[,fieldN]

The statefields must be valid fields on the state record (they may be fieldname or recordname.fieldname,
as with %Bind), and fields must be either valid fields in the From tables or hard-coded values.

142 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

Use the %Select construct to identify the state record fields to hold the values returned by the
corresponding Select statement. The %Select construct is required at the beginning of all Select
statements. For example, you need one in the flow control actions and one in the SQL actions that contain
a Select statement.

You use the %Select construct to pass variables to the state record, and you use the %Bind construct to
retrieve or reference the variables.

Example

Consider the following sample statement:

%SELECT(BUSINESS_UNIT,CUST_ID)
SELECT BUSINESS_UNIT, CUST_ID
FROM PS_CUST_DATA
 WHERE PROCESS_INSTANCE = %BIND(PROCESS_INSTANCE)

The following steps illustrate the execution of the previous statement:

1. Resolve bind variables.

The string %Bind(PROCESS_INSTANCE) is replaced with the value of the state record field called
PROCESS_INSTANCE.

2. Execute the SQL Select statement.

3. Perform a SQL Fetch statement.

If a row is returned, the state record fields BUSINESS_UNIT and CUST_ID are updated with the
results. If the Fetch statement does not return any rows, all fields in the %Select construct retain their
previous values.

Note: All fields referenced by a %Select construct must be defined in the associated state record. Also,
aggregate functions always return a row, so they always cause the state record to be updated. As such, for
aggregate functions, no difference exists between using %SelectInit or %Select.

%SelectAll

Syntax

%SelectAll(:num [correlation _id])

Description

%SelectAll is shorthand for selecting all fields in the specified record, wrapping DateTime fields with
%DateOut, %TimeOut, and so on.

The pseudocode looks like this:

Select(AllFields, :num correlation_id) from %Table(:num) prefix

Copyright © 1988, 2025, Oracle and/or its affiliates. 143

Using Meta-SQL and PeopleCode Chapter 5

This shortcut is only appropriate if the statement is being used in PeopleCode or Application Engine to
read data into memory. Dynamic views should retain the internal database formats for DateTime fields.

Using %SelectAll with CreateSQL

You can use %SelectAll with the CreateSQL function without a record object. It must subsequently be
executed with the record object with which you want to do the Select statement. Here is an example:

 &REC_PROJ_FUNDING = CreateRecord(Record.PROJ_FUNDING); /* free standing record
 object */
 /* Create SQL objects */
 &SQL_PROJ_FUNDING_SEL = CreateSQL("%SelectAll(:1)" /* bind this later */);
 /* bind the %SelectAll */
 &SQL_PROJ_FUNDING_SEL.Execute(&REC_PROJ_FUNDING);
 While &SQL_PROJ_FUNDING_SEL.Fetch(&REC_PROJ_FUNDING);
 /* Process row content ... /*
 End-While;

You could also move the CreateRecord SQL statements out of the loop (and then move the close
statements out of the loop too).

%SelectByKey

Syntax

%SelectByKey(:num [correlation_id])

Description

This is a shorthand for:

Select %List(Select_List, :num correlation_id) from %Table(:num) correlation_id whe⇒

re %KeyEqual(:num, correlation_id)

%SelectByKeyEffDt

Syntax

%SelectByKeyEffDt(:num1, :num2)

Description

This is a shorthand for:

Select %List(Select_List, :num1) from %Table(:num1) A where %KeyEqualNoEffDt(:num1 ⇒

A) and %EffDtCheck(:num1 B, A, :num2)

%SelectDistinct

Syntax

%SelectDistinct(:num [prefix])

144 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

%SelectDistinct is shorthand for selecting all fields in the specified record, wrapping DateTime fields
with %DateOut, %TimeOut, and so on.

The pseudocode looks like this:

Select DISTINCT(AllFields, :num correlation_id) from %Table(:num) prefix

This shortcut is only appropriate if the statement is being used in PeopleCode or Application Engine to
read data into memory. Dynamic views should retain the internal database formats for DateTime fields.

%SelectInit

Syntax

%SelectInit(statefield1[,statefield2]...[,statefieldN])

Select field1[,field2]...[,fieldN]

The statefields must be valid fields on the state record (they may be fieldname or recordname.fieldname,
as with %Bind), and fields must be either valid fields in the From tables or hard-coded values.

Description

Use the %SelectInit construct to identify the state record fields to hold the values returned by the
corresponding Select statement.

The %SelectInit construct is identical to the %Select construct with the following exception: if the Select
statement returns no rows, then %SelectInit re-initializes the buffers. In the case of a %Select construct
where no rows are returned, the state record fields retain their previous values.

Note: For aggregate functions, no difference exists between using %SelectInit or %Select.

%Space

Description

Use the %Space meta-variable to specify a single space. Usage is similar to %Comma.

Related Links
%Comma
%SQL

%SelectDummyTable

Description

Use the %SelectDummyTable variable to perform a SELECT without specifying a specific table. The
database platform-specific “dummy table” is substituted in the SELECT.

Copyright © 1988, 2025, Oracle and/or its affiliates. 145

Using Meta-SQL and PeopleCode Chapter 5

Example

Before: In the following example, the SELECT was performed on the one-row PeopleTools installation
table.

SELECT 'x'
 FROM PS_INSTALLATION WHERE ...

After: Using the %SelectNoTable variable ensures that the SQL will not fail if the table does not exist or
if the table contains more than one row.

SELECT 'x'
 FROM %SelectDummyTable WHERE ...

Before: In the following example, %SelectInit is used to initialize files in an Application Engine state
record.

%SelectInit(GL_JP_AET.PROCESS_STATUS, GL_JP_AET.PROCESS_ORIG, GL_LOG_MSG_AET.MESSAG⇒

E_SET_NBR, GL_LOG_MSG_AET.MESSAGE_NBR, GL_LOG_MSG_AET.MESSAGE_PARM1, GL_LOG_MSG_AET⇒

.MESSAGE_PARM2, GL_LOG_MSG_AET.MESSAGE_PARM3)
 SELECT 'P'
 , 'P'
 , 5830
 , 4
 , TO_CHAR(1)
 , 'DVP1'
 , 'EK'
 FROM PS_INSTALLATION

After: Using the %SelectNoTable variable ensures that the SQL will not fail if the table does not exist or
if the table contains more than one row.

%SelectInit(GL_JP_AET.PROCESS_STATUS, GL_JP_AET.PROCESS_ORIG, GL_LOG_MSG_AET.MESSAG⇒

E_SET_NBR, GL_LOG_MSG_AET.MESSAGE_NBR, GL_LOG_MSG_AET.MESSAGE_PARM1, GL_LOG_MSG_AET⇒

.MESSAGE_PARM2, GL_LOG_MSG_AET.MESSAGE_PARM3)
 SELECT 'P'
 , 'P'
 , 5830
 , 4
 , TO_CHAR(1)
 , 'DVP1'
 , 'EK'
 FROM %SelectDummyTable

%SQL

Syntax

%SQL(SQL_ID [, paramlist])

where paramlist is a list of arguments that are used for dynamic substitutions at runtime, in the form:

arg1 [, arg2]. . .

146 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

Use the %SQL construct for common SQL fragments that you have already defined and want to reuse,
substituting additional values dynamically. SQL_ID is the name of a SQL definition created using either
Application Designer or the StoreSQL function.

You can only nest up to 10 %SQL statements at a time.

Note: This meta-SQL construct is not implemented for COBOL. A SQL definition is not the same as the
SQL object that is instantiated from the SQL class at runtime. A SQL definition is created either using
Application Designer at design time, or using the StoreSQL function. A SQL object is instantiated at
runtime from the SQL class, and has methods and properties associated with it like any other object.

When a specified SQL definition has more than one version, the database type always takes precedence.

If one or more versions of a SQL definition are found for the database type of the current database
connection, and if any of the versions have an effective date less than or equal to the value returned for
%AsOfDate, the most recent version is used.

If no versions are found for the current database type, or if all of the versions have effective dates greater
than the value returned for %AsOfDate, the system looks for an effective version of the SQL definition
under the database type Generic.

If no version is found, an error occurs.

Application Engine Considerations

Application Engine programs use the current date to compare with the effective date, not the date returned
by %AsOfDate.

Special SQL Characters

The following meta-SQL variables can be used as part of the %SQL construct to represent special
characters as SQL parameters.

Meta-SQL Variable Description

%Comma Represents a single comma.

%LeftParen Allows you to pass a left parenthesis character to a %P()
variable, without closing the SQL object.

%RightParen Allows you to pass a right parenthesis character to a %P()
variable, without closing the SQL object.

%Space Represents a space.

Copyright © 1988, 2025, Oracle and/or its affiliates. 147

Using Meta-SQL and PeopleCode Chapter 5

Example

In the following example, the SQL definition MY_SQL was created in Application Designer to be the
following:

%P(1).EFFDT = (SELECT MAX(EFFDT) FROM ...)

In the following example, the %SQL statement is dynamically generated:

UPDATE PS_TEMP
SET ...
WHERE ...
AND %SQL(MY_SQL, PS_TEMP)

The previous example resolves to the following:

UPDATE PS_TEMP
SET ...
WHERE ...
AND PS_TEMP.EFFDT = (SELECT MAX(EFFDT) FROM ...)

Related Links
“Understanding SQL Class” (PeopleCode API Reference)

%SqlHint

Syntax

%SqlHint(SQL_cmd, index, hint_text, DB_platform [,
{ENABLE | DISABLE}])

Description

Use the %SqlHint function to insert a database platform-specific SQL hint into the specified SQL
statement. The hint is inserted immediately after the SQL command specified by the SQL_cmd parameter.

This meta-SQL function is ignored in any of the following circumstances:

• The current database connection does not match the DB_platform parameter.

• The DB_platform parameter is not specified as ORACLE. (This is a limitation of the current release.)

• The nth occurrence of the SQL command specified by SQL_cmd and index does not exist in the
current SQL statement.

148 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Parameters

Parameter Description

SQL_cmd Specifies the SQL command that will use the hint as one of the
following literal constants:

• SELECT

• INSERT

• UPDATE

• DELETE

• MERGE

index Specifies which occurrence of the SQL command will use the
hint as an Integer value from 1 to 99.

hint_text Specifies the SQL hint as a String value enclosed in single
quotes. The hint can include other meta-SQL, such as %Table.

DB_platform Specifies the database platform for which the hint is valid as
one of the following literal constants:

• ORACLE

• DB2

• DB2UNIX

• SQLSERVER

Note: Currently, ORACLE is the only supported platform.
 This meta-SQL function is ignored for all other platforms.

ENABLE | DISABLE Specifies whether to enable or disable the hint as a literal
constant.

Note: ENABLE is the default value for this optional
parameter.

Example 1

Before: The following example includes an Oracle-specific SQL hint to be inserted after the first
SELECT of the SQL statement:

%SqlHint(SELECT, 1, '/*+ FIRST_ROWS(10) */', ORACLE)
 SELECT EMPLID
 FROM PS_JOB

After: For an Oracle connection, this meta-SQL would expand to:

 SELECT '/*+ FIRST_ROWS(10) */' EMPLID

Copyright © 1988, 2025, Oracle and/or its affiliates. 149

Using Meta-SQL and PeopleCode Chapter 5

 FROM PS_JOB

After: On all other connections, this meta-SQL would expand to:

 SELECT EMPLID
 FROM PS_JOB

Example 2

Before: In the following example, %SqlHint functions will be expanded and applied after all other meta-
SQL expansion has occurred. In this example, the APPEND hint will be applied to the first INSERT
found in this SQL statement. The LEADING hint will be applied to the first SELECT found in this SQL
statement.

%SqlHint(INSERT, 1, '/*+ APPEND*/', ORACLE, ENABLE),%SqlHint(SELECT, 1, '/*+ LEADI⇒

NG(H) INDEX(L, PSFJRNL_LN) */', ORACLE, ENABLE) %InsertSelect(JRNL_LIU_TAO, JRNL_LN⇒

 L, BUSINESS_UNIT_IU=H.BUSINESS_UNIT_IU, LEDGER_GROUP=H.LEDGER_GROUP, IU_SYS_TRAN_C⇒

D=H.IU_SYS_TRAN_CD, IU_TRAN_CD=H.IU_TRAN_CD, PROCESS_INSTANCE=%Bind(PROCESS_INSTANC⇒

E))
 FROM %Table(JRNL_HIU_TAO) H, PS_%Bind(GL_JEDIT_WK_AET.RECNAME_JRNL_LN,NOQUOTES) L⇒

 WHERE H.PROCESS_INSTANCE=%Bind(PROCESS_INSTANCE)
 AND H.BUSINESS_UNIT=L.BUSINESS_UNIT
 AND H.JOURNAL_ID=L.JOURNAL_ID
 AND H.JOURNAL_DATE=L.JOURNAL_DATE
 AND H.UNPOST_SEQ=L.UNPOST_SEQ;

After: The SQL statement after all meta-SQL expansion and hint insertion:

 INSERT /*+ APPEND */ INTO PS_JRNL_LIU_TAO5 (BUSINESS_UNIT , JOURNAL_ID , JOURNAL_D⇒

ATE

/* For the purposes of clarity, many columns in this column list have been omitted ⇒

from this example. */

 , DEPTID , SCENARIO , BUSINESS_UNIT_IU)
 SELECT /*+ LEADING(H) INDEX(L, PSFJRNL_LN) */ L.BUSINESS_UNIT
 , L.JOURNAL_ID
 , L.JOURNAL_DATE

/* For the purposes of clarity, many columns in this column list have been omitted ⇒

from this example. */

 ,L.DEPTID
 ,L.SCENARIO
 , H.BUSINESS_UNIT_IU
 FROM PS_JRNL_HIU_TAO5 H
 , PS_%Bind(GL_JEDIT_WK_AET.RECNAME_JRNL_LN,NOQUOTES) L
 WHERE H.PROCESS_INSTANCE=%Bind(PROCESS_INSTANCE)
 AND H.BUSINESS_UNIT=L.BUSINESS_UNIT
 AND H.JOURNAL_ID=L.JOURNAL_ID
 AND H.JOURNAL_DATE=L.JOURNAL_DATE
 AND H.UNPOST_SEQ=L.UNPOST_SEQ ;

150 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

%SQLRows

Description

Use the %SQLRows meta-variable to specify whether a SQL action returned any rows.

You can use %SQLRows in any Application Engine SQL statement, but the underlying value is affected
only by SQL actions. It is not affected by Do When, Do Select, Do While, and Do Until actions. For
Select statements, the value can only be 0 or 1: row not found or rows found, respectively. It does not
reflect the actual number of rows that meet the Where criteria. To find the number of rows that meet the
Where criteria, code a Select Count (*) statement.

%Substring

Syntax

%Substring(source_str, start, length)

Description

%Substring expands to a substring of source_str.

Parameters

Parameter Description

source_str Specify the source string.

start Specify the substring's beginning position. The first character
of source_str is position 1.

length Specify the length of the substring.

%Table

Syntax

%Table(recname)

Description

Use the %Table construct to return the SQL table name for the record specified with recname.

This construct can be used to specify temporary tables for running parallel Application Engine processes
across different subsets of data.

Copyright © 1988, 2025, Oracle and/or its affiliates. 151

Using Meta-SQL and PeopleCode Chapter 5

Example

For example, the following statement returns the record PS_ABSENCE_HIST:

%Table(ABSENCE_HIST)

If the record is a temporary table and the current process has a temporary table instance number specified,
then %Table resolves to that instance of the temporary table PS_ABSENCE_HISTnn, where nn is the
instance number.

Related Links
“%Table” (PeopleCode Language Reference)

%Test

Syntax

%Test(Prefix, Test, Suffix)

Description

The %Test construct can be used with records that have no key values.

Parameters

Parameter Description

Prefix Specify a string that is conditionally added before the
expansion of the test string. You cannot use meta-SQL in this
parameter.

Test Specify a meta-SQL string to be expanded.

Suffix Specify a string that is conditionally added at the end of the
test string. You can use meta-SQL in this parameter.

Returns

If the expansion of Test produces only a blank (or empty) string, the entire %Test meta-SQL construct is
replaced with an empty string. Otherwise, the %Test meta-SQL construct is replaced by the prefix, then
the expansion of Test, and then the suffix.

Example

The following meta-SQL generates valid SQL even when the given record has no keys:

%SelectAll(:1) %Test(WHERE ,%KeyEqual(:1));

152 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

%TextIn

Syntax

%TextIn(BindVariable)

Description

%TextIn construct, when used with a bind variable, allows the insertion and updating of a text string into
a LongChar field (column).

This construct is mandatory for any LongChar field insertion or update to be compatible on all database
platforms on which it is supported.

Parameters

Parameter Description

BindVariable Specify a bind variable.

Example

In the following example, :1 is a bind variable in PeopleCode:

&String1 = "This is a test."

SqlExec("INSERT INTO PS_TABLE1 (STMTID, SQLSTMT) VALUES (1, %TextIn(:1))", &String1⇒

)

%TimeAdd

Syntax

%TimeAdd(datetime, add-minutes)

Description

This construct generates the SQL that adds add-minutes (a positive or negative integer literal or
expression, provided that the expression resolves to a data type that can be used in datetime arithmetic for
the given RDBMS) to the provided datetime (which can be a datetime literal or expression).

Note: On some platforms, you can use time-value in place of datetime. However, this can give a SQL
error on other platforms. This meta-SQL construct is not implemented for COBOL.

Copyright © 1988, 2025, Oracle and/or its affiliates. 153

Using Meta-SQL and PeopleCode Chapter 5

Parameters

Parameter Description

time Specify a Time or DateTime value to add more time to.

add-minutes Specify the number of minutes to add to time. This must be
a numeric value or an expression that resolves to a numeric
value.

Example
SELECT %TimeAdd(%CurrentTimeIn, 60) FROM %SelectNoTable

%TimeIn

Syntax

%TimeIn(tm)

Description

%TimeIn expands to platform-specific SQL for a Time value in the Where clause of a SQL Select or
Update statement, or when a time value is passed in an Insert statement.

Restrictions Using COBOL

You can only use string literals when using this construct in COBOL. You cannot use it with bind
parameters in COBOL. For example, the following works in COBOL:

UPDATE PS_PERSONAL_DATA SET LASTUPTM = %TIMEIN('11:59:00:000000')

The following SQL fails:

UPDATE PS_PERSONAL_DATA SET LASTUPTM = %TIMEIN(:1)

Parameters

Parameter Description

tm Specify a Time bind variable or a string literal in the form hh.
mm.ss.ssssss.

%TimeNull

Syntax

%TimeNull

154 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

Use this meta-SQL to specify a null value for a time field. Only use this meta-SQL in Insert or Update
statements. Do not use this meta-SQL in a Where clause.

Note: This meta-SQL is not implemented for COBOL.

This meta-SQL resolves into a database-specific SQL substring, as shown in the following table:

Database Resolved Substring

DB2 NULLIF(CURRENT TIME, CURRENT TIME)

All others NULL

Parameters

None.

%TimeOut

Syntax

%TimeOut(time_col)

Description

The %TimeOut meta-SQL variable expands to either a platform-specific SQL substring or datetime value,
depending on the database platform, representing the time_col column in the Select clause of a SQL
query.

Parameters

Parameter Description

time_col Specify a time column.

%TimePart

Syntax

%TimePart(DTTM_Column)

Description

%TimePart returns the time portion of the specified datetime column.

Copyright © 1988, 2025, Oracle and/or its affiliates. 155

Using Meta-SQL and PeopleCode Chapter 5

Note: This meta-SQL is not implemented for COBOL.

Considerations Using %TimePart

Use %TimeOut meta-SQL when fetching from the database:

%TimeOut(%TimePart(DTTM_COLUMN)) from some_table

If a literal is used as the parameter to %TimePart, it must be wrapped in %DateTimeIn as shown in the
following:

insert into some_table values(%TimePart(%DateTimeIn('2001-01-01-12.34.56.789012')))

Parameters

Parameter Description

DTTM_Column Specify the datetime column to return the time for.

%TrimSubstr

Syntax

%TrimSubstr(source_str, start, length)

Description

%TrimSubstr, like %Substring, expands to a substring of source_str, except that trailing blanks are
removed from the substring.

Note: If you trim a string of blanks, an empty string is returned on all database platforms except Oracle,
when a Null is returned. If a Null result is not acceptable, such as when using the result as a value to insert
into a non-nullable column, you can turn the Null into a single blank using the %COALESCE meta-SQL
with %TrimSubstr, for example: %COALESCE(%TrimSubstr(<expression>), ' ')

Related Links
%Substring

%Truncate

Syntax

%Truncate(expression, factor)

Description

%Truncate truncates an expression to a specified scale before or after the decimal point.

156 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Considerations Using %Truncate

You may get incorrect results or runtime SQL errors if you try to use an expression for factor. The
following code example produces incorrect results:

%Truncate(10.337, 2 + 1)

Parameters

Parameter Description

Expression Specify an expression involving numeric constants and
database columns.

Factor Specify an integer or bind variable in SQLExec PeopleCode.
 The range of a factor is -30 to +31. A negative number
truncates to left of the decimal point.

Example

Here is an example:

%Truncate(10.337, 2) = 10.33

%Truncate(13.37, 0) = 13

%Truncate(19.337, -1) = 10

SQLExec("SELECT %Truncate(field_c1, :1) from RECORD_T", field_c2, &Result);

In the example, field_c1 and field_c2 are two fields in the record.

%TruncateTable

Syntax

%TruncateTable(table name)

Description

Use the %TruncateTable construct to invoke a bulk delete command on a table. This construct is
functionally identical to a Delete SQL statement with no Where clause, but it is faster on databases
that support bulk deletes. If you are familiar with COBOL, this construct is an enhanced version of the
COBOL meta-SQL construct with the same name.

Some database vendors have implemented bulk delete commands that decrease the time required to delete
all the rows in a table by not logging rollback data in the transaction log. For the databases that support
these commands, Application Engine replaces %TruncateTable with Truncate Table SQL. For the other
database types, %TruncateTable is replaced with Delete From SQL.

You should commit after the step that immediately precedes the step containing the %TruncateTable
statement. In general, you should use this construct early in your Application Engine program as an

Copyright © 1988, 2025, Oracle and/or its affiliates. 157

Using Meta-SQL and PeopleCode Chapter 5

initialization task. In addition, avoid using this meta-SQL when your Application Engine program is
started from the PeopleCode CallAppEngine function.

Unlike the COBOL version, Application Engine determines if a commit is possible before making
the substitution. If a commit is possible, Application Engine makes the substitution and then forces a
checkpoint and commit after the delete runs successfully.

If a commit is not possible, Application Engine replaces the meta-SQL with a Delete From string. This
string ensures restart integrity when your program runs against a database for which an implicit commit is
associated with Truncate Table or for which rollback data is not logged.

For databases that either run an implicit commit for %TruncateTable or require a commit before or after
this meta-SQL, replace %TruncateTable with an unconditional delete in the following circumstances:

• A commit is not allowed, as in an Application Engine program called from PeopleCode.

• The program issues a non-select SQL statement since the last commit occurred. In such a situation,
data is likely to have changed.

• You are deferring commits in a Select/Fetch loop within a restartable program.

Note: To use a record name as the argument for %TruncateTable (instead of an explicit table
name), you must include a %Table meta-SQL function to resolve the unspecified table name.
For example, to specify the record PO_WEEK as the argument, use the following statement:
%TruncateTable(%Table(PO_WEEK)).

Related Links
%Table
“%TruncateTable” (PeopleCode Language Reference)

%Update

Syntax

%Update(:num [, :num2])

Description

This is a shorthand for:

Update %Table(:num) set %UpdatePairs(:num) where %KeyEqual(:num2)

If num2 is omitted, the value defaults to num.

%UpdatePairs

Syntax

%UpdatePairs(recname [correlation_id])

158 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Description

The %UpdatePairs construct produces a comma-separated list of fieldname = 'fieldvalue' phrases for each
changed field of the given record. Input processing is applied to the values in the following ways:

• If the field is a Date, a Time, or a DateTime value, its value is automatically wrapped in %Datein,
%TimeIn, or %DateTimeIn, respectively.

• If the field is a string, its value is automatically wrapped in quotes.

• If the field has a null value, NULL is the given value.

Note: This meta-SQL construct can only be used in PeopleCode programs, not in Application Engine
SQL actions. Also, this meta-SQL construct is not implemented for COBOL.

Parameters

Parameter Description

recname Specify the name of the record to use for updating. This can
be a bind variable, a record object, or a record name in the
form recname. You can't specify RECORD. recname, a record
name in quotation marks, or a table name.

correlation_id Identify the single-letter correlation ID to relate the record
specified by recname and its fields.

Example

Suppose that the record &REC has one key: FNUM, and the FCHAR field has changed. Here is an
example:

Local record &REC;

&REC = CreateRecord(RECORD.MYRECORD);
&REC.FNUM.Value = 27;
&REC.FCHAR.Value = 'Y';
SQLExec("Update TABLE set %UpdatePairs(:1) where %KeyEqual(:1)", &REC)

The example expands to:

"Update TABLE set FCHAR = 'Y' where FNUM = 27"

The following example updates all the fields on a base record (&REC) that are not also fields on the
related language record (&REC_RELATED_LANG). It creates a holding record (&REC_TEMP), copies
the fields to update from the base record to the holding record, and then uses the holding record for the
update.

&UPDATE = CreateSQL("Update %Table(:1) set %UpdatePairs(:1) Where %KeyEqual(:2)");
&REC_TEMP = CreateRecord(@("RECORD." | &REC.Name));
&FIELD_LIST_ARRAY = CreateArray();
For &I = 1 to &REC_RELATED_LANG.FieldCount
 &FIELD_LIST_ARRAY.Push(&REC_RELATED_LANG.GetField(&I).Name);
End-For;

For &I = 1 to &REC.FieldCount

Copyright © 1988, 2025, Oracle and/or its affiliates. 159

Using Meta-SQL and PeopleCode Chapter 5

 If &FIELD_LIST_ARRAY.Find(&REC.GetField(&I).Name) = 0 then
 &REC_TEMP.GetField(&I).Value = &REC.GetField(&I).Value;
 End-If;
End-For;

&UPDATE.Execute(&REC_TEMP, &REC);

%UpdateStats

Syntax

%UpdateStats(record name ,[HIGH/LOW])

For example,

%UpdateStats(PO_WRK1)

The default is LOW.

Description

Use the %UpdateStats construct to generate a platform-dependent SQL statement that updates the system
catalog tables used by the database optimizer in choosing optimal query plans. Use this construct after
your program has inserted large amounts of data into a temporary table that will be deleted before the end
of the program run. This construct saves you from having to use dummy seed data for the temporary table
and having to update statistics manually.

Notes About %UpdateStats

For databases that either run an implicit commit for %UpdateStats or require a commit before or after this
meta-SQL, Application Engine skips %UpdateStats in the following circumstances:

• A commit is not allowed, as in an Application Engine program called from PeopleCode.

• The program issues a non-select SQL statement since the last commit occurred.

In such a situation, data is likely to have changed.

• You are deferring commits in a Select/Fetch loop in a restartable program.

Application Engine skips %UpdateStats even if the previous condition is false.

The following table shows how the %UpdateStats construct is resolved by the supported database
systems:

160 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Database Function Behavior

MSS %UpdateStats Specifying LOW produces the statement

UPDATE STATISTICS tablename

Specifying HIGH produces the statement

UPDATE STATISTICS tablename WITH FULLSCA⇒

N

Oracle %UpdateStats Oracle uses DDL templates (in PSDDLMODEL) to determine
SQL statements for %UpdateStats. Use DDLORA.DMS to
change.

Specifying LOW produces the statement

execute DBMS_STATS.GATHER_TABLE_STATS
(ownname=> 'PT861GA', tabname=>'PSSTATUS⇒

',
ESTIMATE_PERCENT=>DBMS_STATS.AUTO_SAMPLE⇒

_SIZE,
NO_INVALIDATE=>FALSE, CASCADE=>TRUE)

You can use the LOW option SQLs if no row exists for the
HIGH option.

DB2 UNIX %UpdateStats In DB2 UNIX, %UpdateStats is performed by issuing sqlustat
() calls that are equivalent to SQL statements. The sqlustat
() is an internal DB2 API call function rather than an SQL
command.

Specifying LOW is equivalent to issuing the statement

RUNSTATS ON TABLE tablename AND INDEXES ⇒

ALL

Specifying HIGH is equivalent to issuing the statement

RUNSTATS ON TABLE tablename
 WITH DISTRIBUTION AND DETAILED INDEXES ⇒

ALL

Note: You cannot view the sqlustat() calls nor the RUNSTATS
statement in the SQL trace.

Copyright © 1988, 2025, Oracle and/or its affiliates. 161

Using Meta-SQL and PeopleCode Chapter 5

Database Function Behavior

Db2 for z/OS %UpdateStats Uses a DDL model template (in PSDDLMODEL) to format
a control statement for the Db2 for z/OS Runstats utility. See
the product documentation for PeopleSoft 9.2 Application
Installation for DB2 for z/OS for more details on using
%UpdateStats.

Specifying LOW produces the statement

RUNSTATS TABLESPACE [DBNAME].[TBSPCNAME]⇒

 TABLE([DBNAME].[TABLE]) SAMPLE 25 [INDE⇒

XLIST]
REPORT NO
SHRLEVEL CHANGE UPDATE ACCESSPATH

Specifying HIGH produces the statement

RUNSTATS TABLESPACE [DBNAME].[TBSPCNAME]⇒

 TABLE([DBNAME].[TABLE])
[INDEXLIST] REPORT NO SHRLEVEL
CHANGE UPDATE ACCESSPATH

Using %DeleteStats for Oracle Database

To delete meta-SQLs in Oracle database, use %DeleteStats().

%DeleteStats(table_name)

%UpdateStats Database Considerations

The following table lists potential issues that you might encounter when using %UpdateStats:

Database Consideration

Oracle Oracle has an implicit commit after the %UpdateStats
statement executes.

162 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Using Meta-SQL and PeopleCode

Database Consideration

Db2 for z/OS For Db2 for z/OS, %UpdateStats requires IBM stored
procedure DSNUTILS running in an authorized Work
Load Manager Application Environment. It is also highly
recommended that individual tables intended to be a target
of the %UpdateStats function are segregated to their own
tablespaces. Refer to the following documents for more
details on using %UpdateStats: PeopleSoft 9.2 Application
Installation for DB2 for z/OS

“Understanding Administration Tools” (Getting Started with
PeopleTools)

Note: You can trace information messages from the
Runstats command on DB2 for z/OS executed as a result
of issuing %UpdateStats. To enable this trace, select the
SQL Informational Trace check box on the Configuration
Manager – Trace page.

All %UpdateStats consumes a large amount of time and database
resources if run against very large tables. Therefore, analyze
permanent data tables outside of application programs. Also,
if temporary tables are likely to grow very large during a batch
run, run the batch program only with %UpdateStats enabled to
seed the statistics data or when the data composition changes
dramatically.

Disabling %UpdateStats

You can disable %UpdateStats in the following ways:

• Include the following parameter on the command line when running an Application Engine program:

-DBFLAGS 1

• Change the Dbflags=0 parameter in the PeopleSoft Process Scheduler configuration file (or
PSADMIN) to Dbflags=1.

Using %UpdateStats With COBOL

You can use the %UpdateStats construct from SQL embedded in COBOL programs. Use this syntax:

%UpdateStats(tablename)

When you issue this construct from PeopleTools, the parameter is record name.

Copyright © 1988, 2025, Oracle and/or its affiliates. 163

Using Meta-SQL and PeopleCode Chapter 5

%Upper

Syntax

%Upper(charstring)

Description

The %Upper construct converts the string charstring to uppercase. You can use wildcards with charstring,
such as the percent sign (%).

Note: This meta-SQL construct is not implemented for COBOL.

Considerations with COBOL and Unicode

COBOL's uppercase function is not Unicode-aware, and corrupts Unicode data. To use an uppercase
function with COBOL, use the function supplied with PeopleTools called PTPUPPER.

The syntax to call PTPUPPER is:

CALL 'PTPUPPER' USING SQLRT

 <any PIC S9(4) COMP field that contains the fields
defined length (non-unicode)>

 <the String field - max PIC X(8192).>

The following is an example from Unicode-expanded source code:

01 W-WORK.

 02 W-DESCR PIC X(90) VALUE SPACES.
 02 W-SIZE PIC S9(4) COMP VALUE +30.
 CALL 'PTPUPPER' USING SQLRT
 W-SIZE OF W-WORK
 W-DESCR OF W-WORK

Parameters

Parameter Description

charstring Specify the string to convert to uppercase.

Example
SELECT EMPLID, NAME FROM PS_EMPLOYEES WHERE %UPPER(NAME) LIKE %UPPER(sch%)

164 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6

Managing Application Engine Programs

Running Application Engine Programs

This section provides an overview of program run options and discusses how to:

• Create process definitions.

• List process definition parameters.

• Start programs with the Application Engine Process Request page.

• Use PeopleCode to invoke Application Engine programs.

• Use the command line to invoke Application Engine programs.

Understanding Program Run Options
You run Application Engine programs in one of the following modes: batch using PeopleSoft Process
Scheduler, online using a PeopleCode function, or manually using the command line. The following table
lists some differences between online and batch programs:

Online Execution Batch Execution

Started by the CallAppEngine function from PeopleCode. Started through PeopleSoft Process Scheduler.

Program runs quickly, synchronously, and at random times. Programs run for longer amounts of time, asynchronously, and
at scheduled times.

Potential for simultaneous runs. Can be designed for parallel runs for performance.

Uses the online temporary table pool. Uses the batch/dedicated temporary table pool.

Batch Programs Using PeopleSoft Process Scheduler

The most typical run mode is batch. You invoke programs that run in this mode using PeopleSoft
Process Scheduler or the Application Engine Process Request page. Batch mode is also referred to as an
asynchronous run, meaning that it runs independently in the background. Application Engine runs on any
operating system that Oracle supports as an application server. If your site uses an operating system that
is not supported for Application Engine, you must run Application Engine programs on the application
server.

To run Application Engine programs on the batch server, you must install Oracle Tuxedo. This condition
applies to both UNIX and Microsoft Windows batch servers. If you run your batch server on the same

Copyright © 1988, 2025, Oracle and/or its affiliates. 165

Managing Application Engine Programs Chapter 6

server machine as your application server, then the application server and the batch server can share one
Oracle Tuxedo installation. If your batch server is separate from your application server, then you must
install Oracle Tuxedo on your batch server.

The TOOLBINSRV parameter in the PeopleSoft Process Scheduler configuration file determines
where PeopleSoft Process Scheduler invokes an Application Engine program. For high-volume batch
environments, specify the PS_HOME\bin\server\winx86 directory that exists on the same machine where
the Application Engine program runs.

Online Programs Using PeopleCode

Application Engine programs that run online are typically run from a page with the CallAppEngine
PeopleCode function. Such online processes are synchronous, meaning that subsequent processes wait for
the results. For instance, a page may be frozen until the online process returns the necessary results. With
the CallAppEngine function, no Commit statements are issued. However, if you use the asynchronous
online PeopleCode option, ProcessRequest, Commit statements are allowed.

Manual Programs Using the Command Line

Usually, you use this mode only during testing or if you need to restart a program manually.

Creating Process Definitions
Select PeopleTools > Process Scheduler > Process Scheduler Processes to access the Processes -
Process Definition page.

This example illustrates the fields and controls on the Processes - Process Definition page.

166 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

To use PeopleSoft Process Scheduler for starting Application Engine batch programs, create a process
definition for each program. Running Application Engine programs is similar to running any COBOL or
Structured Query Report (SQR) program that you typically invoke with PeopleSoft Process Scheduler.
Use Application Engine as the generic process type definition. Each Application Engine program that you
invoke using PeopleSoft Process Scheduler requires a unique process definition derived from the generic
process type definition.

Note: When creating a process definition based on the Application Engine process type definition, the
process name you assign must match your Application Engine program name exactly.

Listing Process Definition Parameters
Select PeopleTools > Process Scheduler > Process Scheduler Processes > Process Definition
Options to access the Processes - Process Definition Options page.

This screenshot shows the Processes - Process Definition Options page.

Use this page to list parameters. The complete parameter list is:

• -ct %%DBTYPE%%

• -cd %%DBNAME%%

• -co %%OPRID%%

• -cp %%OPRPSWD%%

• -r %%RUNCNTLID%%

Copyright © 1988, 2025, Oracle and/or its affiliates. 167

Managing Application Engine Programs Chapter 6

• -i %%INSTANCE%%

• -ai %%PRCSNAME%

Starting Programs with the Application Engine Process Request Page
You also can start an Application Engine program by using the Application Engine Process Request page.
Using this request page enables you to specify values and parameters in addition to those that appear
within PeopleSoft Process Scheduler process definitions.

Most users start Application Engine programs from an application-specific request page using PeopleSoft
Process Scheduler. A systems expert or power user may, at times, need to create custom process requests
that require multiple programs to perform parallel processing or that need to set specific, initial values in a
state record. You might use the Application Engine process request page for one of these cases.

Note: Generally, if seed data or other Application Engine request settings are required for a particular
program, the application-specific request page has SQL executables that do the work that is transparent to
the user. Typically, no user should invoke programs from the generic process request page. Use this page
for internal testing and as a basis for designing program-specific request pages.

Tables Used in the Process Request Page

The Application Engine process request page inserts values into the following tables:

• AEREQUESTTBL

Contains all of the values that appear on the page except those in the Parameters group box.

• AEREQUESTPARM

Includes only initial state record values specified in the Parameters group box, if needed.

Note: Inserting a row in either of the Application Engine request tables is not required to run an
Application Engine program. This change is a key difference between Application Engine versions
prior to PeopleTools 8, where a row in Application Engine request tables is required to start a program,
regardless of how it is invoked. The run control ID is available to your program using %RunControl,
whether or not a row is inserted into the AEREQUESTTBL table.

You need to use the Application Engine Request page to invoke Application Engine and insert a row into
the Application Engine request records only if you need to perform any of the following tasks:

• Insert initial values into the state records associated with a particular program.

• Set an as-of date for the Application Engine program to perform retroactive processing.

• Set a non-default market for the program.

• Set up a temporary table image to use if you are submitting a PeopleSoft EPM process request that
performs parallel processing. Refer to PeopleSoft EPM application documentation for details.

Note: Entries in the AEREQUESTTBL table do not have any effect on Application Engine programs
called from PeopleCode using the CallAppEngine function.

168 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Application Engine Requests

Select PeopleTools > Application Engine > Submit AE Process Requests to access the Application
Engine Request page.

This example illustrates the fields and controls on the Application Engine Request page. You can find
definitions for the fields and controls later on this page.

Field or Control Description

Process Origin Displays where the program was invoked, from PeopleSoft
Process Scheduler, from the command line, and so on.

Process Instance Displays the process instance assigned to the previous program
run.

Status Displays the status of the last program run, whether it is
successful, pending, and so on.

Process Frequency Specify how long a particular process request will remain
active or valid:

• Always: Select to run the process request as needed.

• Once: Select if a process request is a one-time-only
request.

• Don’t: Select to disable a process request so that no one
invokes it and potentially corrupts data.

Copyright © 1988, 2025, Oracle and/or its affiliates. 169

Managing Application Engine Programs Chapter 6

Field or Control Description

As Of Date If you are requesting retroactive processing, specify the
appropriate as of date.

Bind Variable Name Enter the appropriate field or bind variable for which you are
inserting a value.

Value Enter the initial value that you want to set for the specified
field.

Using PeopleCode to Invoke Application Engine Programs
To call a specific Application Engine program from a page using PeopleCode, use the CallAppEngine
function in SavePreChange or SavePostChange PeopleCode. The basic syntax for CallAppEngine is:

CallAppEngine(applid[, statereclist, processinstance, allowcommit]

Note: The RemoteCall function is no longer valid for invoking Application Engine programs in
PeopleCode. However, the RemoteCall function still applies to calling other COBOL functions. If you do
not convert the RemoteCall PeopleCode that previously called an Application Engine program to use the
new function, an error message appears.

Use CallAppEngine if the program you are invoking is a quick process. Because the process is
synchronous, users must wait for any process invoked by CallAppEngine to complete before starting
another process. If the called program causes an unreasonable delay, then use another alternative, such as
the ScheduleProcess PeopleCode function.

Use CallAppEngine when you have a complex, SQL-intensive business process that must run in batch
and online, or the process requires the use of dedicated temporary tables. If this is not the case, you
are usually better off writing the entire program in native PeopleCode. If you have written logic in
PeopleCode, presumably for online execution, and you want to reuse it in a batch program, you may
be forced into row-by-row processing. Design the batch logic first and then decide whether to have a
separate online version or reuse the batch code using CallAppEngine. Consider the trade-off between
code reuse and performance. It is inherently more difficult, but not impossible, to develop a common
solution that performs adequately in both batch and online environments.

If you use CallAppEngine within an Application Engine PeopleCode step, you must do so carefully
and selectively. See the “Application Engine Considerations” section in “CallAppEngine” (PeopleCode
Language Reference). If you need to call an Application Engine program from another Application
Engine program, you can also use the Call Section action.

Do not use CallAppEngine to control the commit operation. Programs called with CallAppEngine are
embedded within a larger unit of work defined by the page trigger, such as a page save.

However, the allowcommit option allows you to specify whether intermediate commits should be allowed
in an online Application Engine program. Online Application Engine programs run in the context of
application server. When the intermediate commits are enabled, the transactions that are in the context
of the Application Engine program up to that commit are committed. None of the other transactions that

170 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

are in the same Jolt request and are outside the context of the Application Engine program are committed.
This is achieved by the use of a secondary connection to the database. Therefore, secondary connection
must be enabled for this application server domain using the database flags (DbFlags) in the application
server configuration file. Note that the secondary connections are enabled by default. If the secondary
connection to the database is disabled and CallAppEngine is invoked with allowcommit set to True,
the functionality will fall back to the default where all transactions are committed only at the end of an
Application Engine program.

Important! There is no mechanism to rollback or clear the transactions that have been committed on
behalf of online Application Engine programs. In case of an error or unexpected program termination, you
are responsible for rolling back transactions if necessary.

Note: Online PeopleCode that calls CallAppEngine should be set to run on the application server. You
encounter performance issues if you run PeopleCode on the client in a three-tier configuration because
every SQL statement that Application Engine issues must be serialized and then sent to the application
server to be run.

Related Links
“CallAppEngine” (PeopleCode Language Reference)
“DbFlags” (System and Server Administration)

Using the Command Line to Invoke Application Engine Programs
You might invoke an Application Engine program through the command line to:

• Restart

When a program abends, a system administrator might restart the program using the command line.
If needed, you can locate all of the specific program and process information from Process Monitor
in the Process Request Detail dialog box. Normally, users or system administrators perform a restart
from the Process Monitor.

• Develop or test

Many developers include the command line in a batch file to launch a program they are developing or
testing. This way, they can quickly run the batch file as needed. This method also enables separation
of development of the application program from its associated pages.

• Debug

To debug a program running on the server, you can sign into the server (using telnet, for example) and
invoke the program from the command line.

To start an Application Engine program from the command line, you must specify the Application Engine
executable (PSAE.EXE) followed by the required parameters, as shown in this example:

 psae -CT dbtype -CS server -CD database_name -CO oprid -CP oprpswd
 -R run_control_id -AI program_id -I process_instance -DEBUG (Y|N)
 -DR (Y|N) -TRACE <trace> value -DBFLAGS<flags> value -<TOOLSTRACESQL> value
 -TOOLSTRACEPC value -OT outtype -OF outformat -FP filepath

Copyright © 1988, 2025, Oracle and/or its affiliates. 171

Managing Application Engine Programs Chapter 6

Or, if your command line options are stored in a text file, you can enter:

 psae optfilename

Note: For Microsoft Windows and UNIX servers, you must set the PS_SERVER_CFG environment
variable before you invoke an Application Engine program from the command line. PS_SERVER_CFG
must contain the fully qualified name of a correctly configured Process Scheduler PSPRCS.CFG file.
When Application Engine runs from the command line, it resolves %PS_SERVDIR% to the value of the
environment variable PS_SERVDIR instead of the parent directory of a Process Scheduler configuration.
For PeopleTools 8.62 and later versions, in certain scenarios, PSAE may require the following Java
options. By default, these options are available in the PSPRCS.CFG file. If this file does not exist on the
client system, then the required Java options must be explicitly defined as environment variables in the
command line when running the Application Engine program.

Set JAVA_TOOL_OPTIONS=--add-opens=java.base/sun.net.www.protocol.http=ALL-UNNAMED ⇒

--add-opens=java.base/sun.security.action=ALL-UNNAMED --add-opens=java.base/sun.net⇒

.www=ALL-UNNAMED --add-opens=java.base/sun.net=ALL-UNNAMED --add-opens=java.base/su⇒

n.security.x509=ALL-UNNAMED --add-opens=java.base/sun.security.pkcs10=ALL-UNNAMED -⇒

-add-opens=java.base/sun.security.pkcs=ALL-UNNAMED

Command Line Options

Field or Control Description

-CT Specify the type of database to which you are connecting.
 Values are ORACLE, MSSQL (Microsoft SQL Server), and
DB2ODBC (Db2 for z/OS).

-CS For platforms that require a server name as part of their sign-
on, enter the appropriate server name. This option affects
Microsoft SQL Server. However, for Microsoft SQL Server,
 this option is valid but not required.

-CD Enter the name of the database to which the program will
connect.

-CO Enter the user ID of the person who is running the program.

-CP Enter the password associated with the specified user ID.

Note: Password may also be passed in encrypted form.

-R Enter the run control ID to use for this run of the program.

172 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Field or Control Description

-AI Specify the Application Engine program to run.

-I Required for restart, enter the process instance for the program
run. The default is 0, which means Application Engine uses
the next available process instance.

-DEBUG This parameter controls the Debug utility. Enter Y to indicate
that you want the program to run in debugging mode or enter
N to indicate that you do not.

-DR This parameter controls restart disabling. Enter Y to disable
restart or enter N to enable restart.

Copyright © 1988, 2025, Oracle and/or its affiliates. 173

Managing Application Engine Programs Chapter 6

Field or Control Description

-TRACE To enable tracing from the command line, enter this parameter
and a specific trace value. The value you enter is the sum of
the specific traces that you want to enable. Traces and values
are:

1: Initiates the Application Engine step trace.

2: Initiates the Application Engine SQL trace.

128:: Initiates the Application Engine timings file trace, which
is similar to the COBOL timings trace.

256: Includes the PeopleCode detail timings in the 128 trace.

1024: Initiates the Application Engine timings table trace,
 which stores the results in database tables.

2048: Initiates the database optimizer explain, writing the
results to the trace file. This option is supported only on Oracle
and Microsoft SQL Server.

4096: Initiates the database optimizer explain, storing the
results in the Explain Plan table of the current database. This
option is supported only on Oracle, Db2, and Microsoft SQL
Server.

For example, to enable the 1, 2, and 128 traces, you would
enter 131,the sum of 1, 2, and 128. To indicate that you do
not want any traces, enter0. If you do not explicitly enter0,
 Application Engine uses the trace value set in PeopleSoft
Configuration Manager.

8192: Sets a trace for PeopleSoft Integration Broker transform
programs.

16384: Initiates the statement timings trace but stores the
results in the PS_AE_TIMINGS_LG and PS_AE_TIMINGS_
DT tables.

-DBFLAGS To disable %UpdateStats meta-SQL construct, enter 1.

-TOOLSTRACESQL Enable a SQL trace.

-TOOLSTRACEPC Enable a PeopleCode trace.

174 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Field or Control Description

-OT (Optional) Initialize the PeopleCode meta-variable
%OutDestType (numeric).

PeopleCode example of %OutDestType:

&ProcessRqst.OutDestType = %OutDestType ⇒

;

-OF (Optional) Initialize the PeopleCode meta-variable
%OutDestFormat (numeric).

PeopleCode example of %OutDestFormat:

Query.RunToFile(Record QryPromptRecord, ⇒

%OutDestFormat);

-FP (Optional) Initialize the PeopleCode meta-variable %FilePath
(string).

PeopleCode example of %FilePath:

If All(%FilePath) Then
 &FILENAME = %FilePath | &FILENAME;
&MYFILE = GetFile(&FILENAME, "E", %FileP⇒

ath_Absolute);
Else
 &MYFILE = GetFile(&FILENAME, "E", %Fil⇒

ePath_Relative);
End-If;

optfilename If you submit a file to Application Engine as the first
parameter in the command line, Application Engine reads
the contents of the file and interprets the contents as if it
were parameters entered on the command line. This option is
intended mainly for the Microsoft Windows or UNIX Process
Scheduler server environment. For example, you might enter
psae $temp/myparmfile.txt.

Note: For security reasons, after Application Engine interprets
the contents of the parameter file, it immediately deletes the
file.

Copyright © 1988, 2025, Oracle and/or its affiliates. 175

Managing Application Engine Programs Chapter 6

Field or Control Description

–NOCOMMIT (Optional) Set Y/N values for this parameter. If it is set to “Y”
then it will not commit any changes to database.

Note: You can only use this parameter in a developer
environment. Do not use it in a product environment.

Debugging Application Engine Programs

This section discusses how to:

• Enable the Application Engine debugger.

• Set debugging options.

Enabling the Application Engine Debugger
To run a program in debug mode:

1. Set the debug option.

You can set the debug option in the following locations:

• Start PeopleSoft Configuration Manager and select the Process Scheduler tab.

In the Application Engine group, enable debug by selecting the Debug check box. This method
applies to all methods of invocation.

• If you used the command line option to invoke your Application Engine program, then you can
include the −DEBUG Y parameter in the command line you submit to PSAE.EXE.

If the Debug check box is already selected in PeopleSoft Configuration Manager, then you do not
need to include the −DEBUG parameter in your command line.

Note: Setting debug capabilities in either PeopleSoft Configuration Manager or the command line
turns debug mode on. However, if you have debug enabled in Configuration Manager and you
submit −DEBUG N on the command line, then the PeopleSoft Configuration Manager setting
defines your default command line value and the command line can override the default.

• If you have PeopleCode in your Application Engine program, enable the PeopleCode debugger.

When you launch your program and the PeopleCode action runs, enter the PeopleCode debugger.

2. Run the Application Engine program to debug.

3. At the Application Engine Debugger prompt, enter a command to enable a debugging option.

176 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Each command is represented by a single letter, such as X, L, or M. Enter the letter that corresponds to
the option you want to engage. To see a list of the available debugging options, enter? at the prompt.

To enable the PeopleCode debugger for Application Engine:

1. Sign on to PeopleTools using the same user ID that you will use to invoke the Application Engine
program.

2. Open Application Designer.

3. Select Debug, PeopleCode Debugger Mode.

Your Application Engine program can be open on the desktop, but you do not need to open the
Application Engine program or the PeopleCode action that you want to debug.

4. Select Debug, Break at Start.

This command will cause the Application Engine program to break before executing any PeopleCode
programs within it.

Setting Debugging Options
Each debugger option is represented by a single letter that you specify at the prompt. To engage the option
you select, press Enter.

Debugging Tips

Become familiar with these tips about debugging programs:

• In some cases, such as when setting breakpoints or watch fields, submenus offer additional options.

After you are familiar with the commands, you can enter multiple items on the command line to
combine commands and bypass the submenus. For example, to see a list of the breakpoints, you could
enter B L.

To set a field as a watch field, you could enter W S MY_FIELD.

To set a field as a watch field on a different state record, enter W S MY_AET.MY_FIELD.

Note: The exception to this option is Modify, which always displays the current value and then
prompts you to enter a new value. You can, however, enter M MY_AET.MY_FIELD to go directly to
the new value prompt.

• Letter commands are not case-sensitive.

For example, Q and q are valid commands.

Copyright © 1988, 2025, Oracle and/or its affiliates. 177

Managing Application Engine Programs Chapter 6

Debugging Options

Option Description

Quit Enter Q. This option performs a rollback on the current unit of
work in the debugging run, and it ends the debugging session.
 It effectively terminates your Application Engine program.

Quit is useful for testing restart. Have some work committed
and some uncommitted. Then, terminate the program at that
point and roll back the pending work. You want to make
sure the program restarts from the point of the last successful
commit.

Exit This option is valid only after one step has completed and
another has not already begun. It is not valid once you reach
the action level.

Use this option as an alternative to Quit. Exit ends the program
run and the debugging session, but it also commits the current
unit of that the program has already completed. This option
can be helpful when testing your restart logic.

Commit Enter C to commit the current unit of work in your program.
 This option is valid only after a step has completed and before
another begins. It is not valid after you reach the action level.

You can use this option, for example, to use your database
query tool to check the data in your database.

Break Enter B to set a breakpoint. When the program reaches the
breakpoint, it temporarily halts execution to enable you to
observe the state of the current process.

Breakpoint options include:

Set: Enter S to set a breakpoint location.

The breakpoint location appears by default at the current
location in the program, but you can specify other sections or
steps by overriding the default values that appear in brackets.

Unset: Enter U to remove breakpoints previously set.

List: Enter L to list breakpoints. When you enter this
command, make sure that you have entered B first to specify
the break option. If you enter L from the main command
prompt, you engage the Look option.

178 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Option Description

Look Enter L to observe the values currently in the state record
associated with the program you are debugging. You must
specify the state record at the Record Name prompt. By
default, the default state record as specified in your program
properties appears in brackets.

You can also specify a specific field name on the state record
in the Field Name prompt. To look at all the fields in the state
record, leave the asterisk (*) within the brackets unchanged.

Modify Enter M to modify the value of a state record value for
debugging purposes. Suppose the previous steps did not
set a value correctly but you want to see how the rest of the
program would perform if the appropriate value existed in the
state record. This option enables you to help your program in
the debugging or testing phase.

As with the Look command, you must specify the appropriate
state record (if you are using multiple state records), and you
must specify one field. You can modify only one field at time.

Watch Enter W to specify a field as a watch field. The program stops
when the field value changes.

Similar to the Break command, you can specify options for
Set, Unset, and List.

Step Over Enter S to run the current step to completion and stop at the
next step in the current section.

The behavior depends on the current level or the program.
 You start at the step level, and then can step into the action
level. If you are at the step level and use step over, you go to
the next step in the current section, skipping over all actions
(including any call sections). If you are at the action level, step
over executes the current action and stops at the next action in
the current step, or at the next step in the current section.

Copyright © 1988, 2025, Oracle and/or its affiliates. 179

Managing Application Engine Programs Chapter 6

Option Description

Step Into Enter I to observe a step or called section in more detail. For
instance, you can check each SQL statement and stop. By
using this option and checking the state record at each stop,
 you can easily isolate problem SQL or PeopleCode.

As with Step Over, the behavior depends on the level. At the
step level, you can step into the action level and stop before
the first action in the step. At the action level, if the current
action is a call section, this option takes you to the first step in
the called section. For other action types, this option acts the
same as the Step Over option because no deeper level exists in
which to step.

Step Out of Liz Enter O. After you’ve stepped into a step or called section,
 use the Step Out of option to run the rest of the current step
or called section and stop. As with the previous step options,
 the behavior of Step Out of depends on the current level of the
program.

At the step level, Step Out of completes the remaining steps
in the current section, returns to the calling section or step,
and stops at the next action in that step. If the section is MAIN
and is not called by another section or step, then Step Out of
behaves the same as the Go option.

At the action level, Step Out of completes the current step and
stops at the next step in the current section, or if the program
is at the end of a section, Step Out of returns to the calling
section or step.

Go Enter G. After the program has stopped at a specific location,
 and you’ve examined its current state, you can use the Go
command to resume the execution of the program. This is
a helpful command when you have breakpoints set. With
this command, the program won’t stop at a step or action; it
only stops at the next breakpoint or watch field, or when the
program runs to completion.

Run to commit Enter R. Resumes execution of your program after it has
stopped. This command forces the program to stop again after
the next commit. This is a good option to use when observing
your commit strategy and how it will affect a restart.

Example of the Look Option

To view the value stored in a specific field of the state record after a step or action, enter the appropriate
field name at the Field Name prompt. For example, if you entered AE_TESTAPPL_AET at the Record

180 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Name prompt and AE_INT_6 at the Field Name prompt, you would see the value of the AE_INT_6 field
in the AE_TESTAPPL_AET record.

You can also use an asterisk (*) as a wildcard to get a partial list. For example, if you enter AE_INT* at
the Field Name prompt, you see only the fields that start with AE_INT; this is also true for the Record
Name prompt. This feature is useful for both listing multiple fields across multiple records and as a
shortcut. If you know that only one state record starts with XXX, you do not have to type the full name,
just type XXX.

Example of the Modify Option

If you wanted to set the AE_INT_15 field in the AETESTPROG to 10, you would enter the record
(AE_TESTAPPL_AET) at the Record Name prompt and the field (AE_INT_15) at the Field Name
prompt.

Then you would see the current value of the field. At the prompt, you could enter a new value.

Using the Look command, you can check to see that the value you specified now exists in the state record.

Example of the Watch Option

Enter S to set a watch field. After you enter S, you enter the record name (such as AE_TESTAPPL_AET)
and field name (such as AE_INT_7) at the appropriate prompts.

Enter U to unset, or remove, a watch field from the list. After you enter U, you see a list of active watch
fields. Enter the watch field ID number to remove a field. For example, if the field AE_INT_7 were
second in the watch field list, you would enter 2 to remove it.

After a step or action completes, enter L to list, or view, the values of all the fields that you included in the
watch list.

Note: You cannot set a watch on a long text field.

Restarting Application Engine Programs

A key feature of Application Engine is its built-in checkpoint and restart capabilities. If a program step
terminates abnormally or fails, you can restart the request from the last successful checkpoint or from the
step immediately preceding the step that failed. You restart the program from the process request page.

This section provides an overview of restart and discusses how to:

• Determine when to use restart.

• Control abnormal terminations.

• Restart Application Engine programs.

• Start Application Engine programs from the beginning.

• Enable and disable restart.

Copyright © 1988, 2025, Oracle and/or its affiliates. 181

Managing Application Engine Programs Chapter 6

Understanding Restart
Application Engine programs save to the database (perform a commit) only when an entire program
successfully completes. You must set individual commits where appropriate.

At the section level, you can set a commit after each step in a section. At the step level, you can require or
defer commits for individual steps, or you can increase the commit frequency within a step to N iterations
of a looping action, such as a Do Select of Do While, within a step.

The commit level that you select affects how restart works in a program. Each time Application Engine
issues a commit with restart enabled, it records the current state of the program. The recording of the
current state that Application Engine performs is referred to as a checkpoint.

Using the restart feature enables you to perform commits more often in a program. Restart reduces the
overall effect on other users and processes while the background program is running because it reduces
the number of rows that are locked by the program. Fewer rows allows multiple instances of the program
to run concurrently (parallel processing), which may be useful for high-volume solutions.

With restart, if a failure occurs at any point in the process, the user can restart the program and expect the
program to behave as follows:

• Ignore the steps that have already completed up to the last successful commit.

• Begin processing at the next step after the last successful commit.

The ability for Application Engine to remember completed steps depends on a record called
AERUNCONTROL, which is keyed by process instance.

When a program runs, each time Application Engine issues a commit it also saves all of the information
required for a program restart in the AERUNCONTROL record.

Determining When to Use Restart
Usually, you want to develop programs to take advantage of Application Engine restart capabilities.
Programs that are good candidates for restart do a lot of preparation work initially, such as joining tables
and loading data into temporary work tables. Also, you should consider restart capabilities for programs
that might put data in an unstable state if they terminate abnormally during a run. As a general rule, restart
is essential for programs that primarily do set-based processing.

However, you may want to disable restart if your program has one the following characteristics:

• It is mainly row-by-row processing.

• The overhead involved with Application Engine performing a checkpoint during the program run is
not desirable.

• The program commits after N iterations of a looping construct within a step, and the Select statement
driving the loop is composed in such a way that if the program terminated and then started again it
would ignore transactions that were already processed in the previous program run. In a sense, the
program processes the restart internally: Application Engine treats each start of a program as a fresh
start, instead of restarting a previous instance.

When developing for restart, consider the consequences if a program fails and you cannot restart the
program. Given the commit structure that you defined for your Application Engine program, would your

182 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

data remain in an usual state if a failure were to occur after any of the commits? Would it be easy to
recover from such a case?

Using Restart at the Program Level

Application Engine automatically updates all state records. When an Application Engine program starts, it
inserts a row in the state record for the assigned process instance. Then the system updates the state record
whenever the program performs a commit to store changed values into the database. Finally, the system
deletes the state record row upon successful completion of the application.

However, if the state record the program uses is a work record, you cannot make any database updates
to the record. Consequently, if you restart the program, you might get unexpected results because the
memory was lost when the program terminated. In fact, the system re-initializes any state records that are
work records at each commit in order to ensure consistent behavior during a normal run and a restarted
run. Therefore, you may need to make at least one of your state records a SQL table to contain values that
must be retained across commits or in case of termination.

Finally, the other consideration for programming for restart at the program level is to check both the
Application Engine Program Properties dialog box and PeopleSoft Configuration Manager to make sure
the Disable Restart check box is not selected.

Using Restart at the Section Level

The section level property associated with restart is section type, which has the options Prepare Only and
Critical Updates.

If a section only prepares data, as in selecting it, populating temporary tables, or updating temporary
tables, then set the section type to Prepare Only. However, if the section updates permanent application
tables in the database, then set the option to Critical Updates.

During runtime, when the system arrives at the first section set to Critical Updates, it sets the
AE_CRITICAL_PHASE value in the AERUNCONTROL record to Y. Once set, the value of
AE_CRITICAL_PHASE remains Y until the program completes successfully. When the program
completes, the corresponding row in AERUNCONTROL is deleted. Therefore, a Prepare Only section
following the Critical Updates section will not reset the AE_CRITICAL_PHASE value to N.

If your program terminates, the user can check the AE_CRITICAL_PHASE value. If it is Y, then the
user knows that the section that failed is critical and that the program should be restarted to ensure data
integrity. If AE_CRITICAL_PHASE is N, restarting may not be necessary; however, as a general rule you
should restart even if AE_CRITICAL_PHASE is set to N.

Using Restart at the Step Level

In the Where clause of a Do Select action in your program, you should include conditions that reduce the
answer set returned from the Select statement.

For example:

SELECT RECNAME, FIELDNAME
 FROM PS_AE_RECFIELD
 ORDER BY RECNAME, FIELDNAME

If you ran this Select statement as part of a Do Select action with Restartable selected as the Do Select
type, the system might process some of the rows twice after a restart. Also, if you specified Reselect, the

Copyright © 1988, 2025, Oracle and/or its affiliates. 183

Managing Application Engine Programs Chapter 6

program could execute in an infinite loop because no code exists to reduce the answer set. However, if
you modified the Select statement as follows, you could make it Restartable:

SELECT RECNAME, FIELDNAME
FROM PS_AE_RECFIELD
WHERE RECNAME > %Bind(RECNAME)
OR (RECNAME = %Bind(RECNAME) AND FIELDNAME > %Bind(FIELDNAME))
ORDER BY RECNAME, FIELDNAME

You can convert a Do Select action that was coded for Restartable to Select/Fetch, but the opposite is not
true.

The previous example shows the use of a key column to reduce the answer set. A key column can be
convenient if your record has only one or two key fields; however, if your record has three or four keys,
your SQL would become overly complex.

Instead of matching key fields, you could add a switch to the selected table and then have the processing
of the called section modify the switch as it processes the row. In this example, your Select statement
might look like this:

SELECT COLUMN1, COLUMN2, . . .
 FROM PS_TABLE1
 WHERE PROCESSING_SWITCH=’N’. . .

Controlling Abnormal Terminations
A controlled abnormal termination (sometimes called an abend) means that Application Engine exits
gracefully because of a calculated error condition. Examples of controlled abends are:

• SQL errors while On Error is set to Abort.

• A PeopleCode return value when On Return is set to Abort.

• A SQL statement that affects no rows when On No Rows is set to Abort.

In these situations (when Application Engine is in control), the Run Status field in Process Monitor reads
Error.

An uncontrolled termination occurs when a memory violation occurs or a user terminates a process. In
these cases, the Run Status field in Process Monitor reads Processing.

Restarting Application Engine Programs
You can restart an Application Engine program in one of these ways:

• From the command line.

• From a process request page.

Note: The following procedures for restarting a failed Application Engine program assume that you have
rectified the error that caused the program to fail in the first place. For instance, suppose the name of a
referenced table has changed. Regardless of how many times you restart the program, it will continue to
fail until you modify all references to the old table name.

184 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Restarting from the Command Line

Normally, only developers and system administrators use the command line for restarting Application
Engine programs. Users, in most cases, should not be expected to use this method.

You can use the command line option to restart programs that run on the client or the server. Application
Engine references only the process instance of the failed process. Therefore, if you run a process on the
client and it fails, you can restart it from the server using the server command line. Likewise, if you run a
process from the server and it fails, you can restart it from the client using the command line.

To restart an Application Engine program from the command line:

1. Collect the command line values associated with the failed program.

These values include database type, database name, user ID and password, run control ID, program
name, and process instance. You can find these variables in the Process Details dialog box, the
corresponding state record, or the Application Engine Run Control table. Where the values reside
depends on how you invoked the program. For instance, if you invoked the program using the
command line or from outside of PeopleSoft Process Scheduler, then you cannot view details
associated with the program run in the Process Details dialog box.

2. Enter the following command line syntax at the command prompt, substituting the values from the
previous step:

PSAE.EXE −CT DB_TYPE -CD DB_NAME -CO OPRID -CP PASSWORD -R RUN_CONTROL -AI PRO⇒

GRAM_NAME -I PROCESS_INSTANCE

Note: Some database platforms also require that you include a server name in the argument list.

Restarting from a Process Request Page

The only programs you can restart from a process request page are those that run on the server.

To restart an Application Engine program from a process request page:

1. Open PeopleSoft Process Scheduler by selecting PeopleTools > Process Scheduler > System
Process Requests.

2. Locate the run control ID number of the program to restart.

3. To display the details of the failed process, click the Process Detail link.

4. On the Process Request Details page, select Restart Request and click OK.

Bad Restart Errors

If you attempt to restart a process that completed successfully according to Application Engine, you will
receive a bad restart message. You will also get this message if your Application Engine application is
defined with restart disabled.

Starting Application Engine Programs from the Beginning
When an Application Engine program ends abnormally, you may have to decide whether you should
restart the process or start it from the beginning. As your Application Engine program ran at least part

Copyright © 1988, 2025, Oracle and/or its affiliates. 185

Managing Application Engine Programs Chapter 6

way through, starting over may leave your data in an unknown state. Also, application logic might need to
be undone, depending on the stage of the program when it failed, what data the program had committed,
and so on.

However, if restart is enabled and you attempt to start a new process that matches the run control ID and
user ID for another process, then you receive a suspend error. Because the process instance for these
two processes is different, the new request fails. This event usually occurs when a user tries to run the
program again after receiving an error on the previous attempt.

To start the program over from the beginning, you can use SQL to delete the row that corresponds to the
failed program from the Application Engine run control table and your state record.

To restart an Application Engine program from the beginning:

1. Open your native SQL editor and manually delete the row in PS_AERUNCONTROL that
corresponds to the program you want to start from the beginning.

Use the following SQL to accomplish this step:

DELETE FROM PS_AERUNCONTROL
WHERE OPRID=OPRID
AND RUN_CNTL_ID=Run_Control_ID

2. Delete from your state record the row that corresponds to the failed program run.

Use the following SQL to accomplish this step:

DELETE FROM PS_MY_AET
WHERE PROCESS_INSTANCE=Process_Instance

Note: To restart the program, you can also select Restart Request from the Process Request Details
dialog box.

Enabling and Disabling Restart
To disable restart, use any of these methods:

• Select the Disable Restart check box in the Application Engine Program Properties dialog box.

To access program properties, select File, Definition properties and select the Advanced tab.

• Select the Disable Restart check box in the Configuration Manager profile.

To access the profile, start Configuration Manager, select the Profile tab, and click Edit. Then select
the Process Scheduler tab.

• Include the -DR Y option in the command line of PSAE.EXE.

If you disabled restart in any of these three places, restart is disabled.

If you want the program to restart in a production environment while still keeping a restart condition from
getting in the way during development and testing, you can deselect the Disable Restart check box in the
Application Engine program properties. Then, during development, you can select theDisable Restart
check box in Configuration Manager or invoke your program from the command line with the -DR Y
option without having to re-configure the program for testing.

186 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Caching the Application Engine Server

Application Engine caches metadata just like the application server. This caching enhances performance
because a program can refer to the local cache for any objects that it uses.

Cache Directory Location

Application Engine programs that run on a Microsoft Windows NT or UNIX server lock their own cache
directory for the duration of a run. You find these directories under the master cache directory. The master
directory is created under the directory specified by the CacheBaseDir variable in the PeopleSoft Process
Scheduler configuration file. If all existing cache directories are locked, a new one is created. Cache
subdirectories are named sequentially, starting at 1.

If you do not enter a fully qualified path for the CacheBaseDir variable, then Application Engine creates a
cache directory within the directory in which the program is set to run.

Note: Do not share the CacheBaseDir variable with application servers and do not use environment
variables when specifying CacheBaseDir because the system does not resolve them. For example, do not
set CacheBaseDir to $PS_CFG_HOME.

Cache Parameters

The PSPRCS.CFG (PS_SERVER_CFG) file has two additional cache parameters. They are:

• Enable Server Caching

• Server Cache Mode

Do not alter these settings from the delivered defaults. These settings are reserved for future use.

Freeing Locked Temporary Tables

If you use dedicated temporary tables for Application Engine programs, then you might need to
free, or unlock, a temporary table if the program running against it terminates abnormally. Because
most Application Engine programs run through PeopleSoft Process Scheduler, typically you use
Process Monitor to unlock the temporary tables. Deleting or restarting a process using Process Monitor
automatically frees the locked temporary tables.

For the programs that you invoke outside of PeopleSoft Process Scheduler, use the Manage Abends page.
Programs running outside of Process Scheduler include those invoked from CallAppEngine PeopleCode
and the command line.

To free locked temporary tables using the Manage Abends page:

1. Select PeopleTools > Application Engine > Manage AE Abends..

2. Identify the program that has locked the temporary tables you want.

Use the process instance, run control ID, program name, user ID, and run date and time columns to
uniquely identify programs.

Copyright © 1988, 2025, Oracle and/or its affiliates. 187

Managing Application Engine Programs Chapter 6

3. Click the Temp Tables link.

4. On the Temporary Tables page, click the Release button to unlock the temporary tables associated
with the program.

Analyzing Application Engine Programs

Application Engine programs can be analyzed by using the associated temporary table data. You can
retain temporary table data by enabling temporary table data tracing in PeopleSoft Configuration
Manager.

See Enabling Application Engine Tracing

Use AET Analyzer tool to analyze and view the results.

This example illustrates the fields and controls on the Filter Option in Log Analyzer.

In the AET Analyzer tool, filter out the Application Engine steps with temporary table using the Temp
Table option, and analyze.

To filter:

1. In AET Analyzer tool, open the AET file.

2. Load the corresponding temporary table.

Note: After the temp table file is loaded, the Include All Tables check box is enabled.

3. Ensure that Include All Tables check box is cleared.

4. Select Apply Filter to display only AE steps with temporary table.

5. You can further filter the AE steps with temporary table based on a SQL action by selecting the
desired action from the SQL View Options group box.

6. Highlight the AE step that you want to view and analyze, and click Diff Temp Table button.

The result displays the modification done to temporary table data.

188 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Configuring Application Engine Action Plug-ins

PeopleTools allows you to configure an Application Engine action plug-in for SQL and PeopleCode
actions. You can also create a plug-in for a Call Section action. The plug-in can direct the process to run a
SQL or PeopleCode action or call an Application Engine section.

Note that a Call Section action is not used as a plug-in.

The configured plug-in action is run at runtime. This effectively allows you to modify the code without
actually customizing or re-designing the Application Engine program.

To access the AE Action Plugin page in PIA, select PeopleTools, Application Engine.

Note: You can add or replace only SQL, PeopleCode, and Call Section actions in the Application Engine
program. Only sections with steps having SQL, PeopleCode, or Call Section actions of the Application
Engine program, will be eligible for plug-ins. This feature is not designed to add new sections or steps to
an existing Application Engine program.

Actions belonging to the same step of the same section of the Application Engine program can have
multiple plug-in actions defined. The plug-in action type does not have to match the action type that is
selected for configuration. For example, an SQL action can have a plug-in to run a PeopleCode action.

You can re-use the same SQL or PeopleCode plug-in action multiple times for different Application
Engine programs.

The Application Engine action that is being configured cannot be used as a plug-in for another
Application Engine program. Also, you cannot define a plug-in for the Application Engine action that is
already been used as a plug-in.

For example, if Application Engine program A action Y is configured to use Application Engine program
B action X as a plug-in, then Application Engine program A action Y cannot be used as a plug-in for any
other Application Engine program. Also, you cannot configure a plug-in for Application Engine program
B action X.

Ensure that information such as state records, temporary tables, PeopleCode variables that are required by
the plugged-in action is made available from the configured Application Engine program.

To add new Application Engine plug-in actions:

1. In Application Designer, identify an existing or create a new Application Engine program with the
SQL, PeopleCode, or Call Section actions that you want to use to configure the SQL, PeopleCode, or
Call Section actions of any Application Engine program.

To create an Application Engine program, see Creating, Opening, and Renaming Programs

2. In the PIA, open AE Action Plugin page by selecting PeopleTools > Application Engine > AE
Action Plugins.

3. Choose the Application Engine program that you want to configure by plugging-in the desired SQL,
PeopleCode, or Call Section actions from the newly created Application Engine program.

See the subsequent Configuration Options section for details.

Copyright © 1988, 2025, Oracle and/or its affiliates. 189

Managing Application Engine Programs Chapter 6

4. Verify the configured Application Engine program in Application Designer to know the impact of the
plug-ins.

You can identify the configured SQL, PeopleCode, or Call Section action by a red flash on its icon.

This image shows the configured actions with a red flash icon.

On the code (lower) pane:

• The additional code is highlighted in blue.

• The original code or action from the plugged action appears in black.

• Replacement code or actions are in red and the code being replaced is in strikethrough.

The codes are displayed based on the order of execution defined in the PIA.

When a SQL, PeopleCode, or Call Section action has a plugin to do a Call Section, then the lower pane
will show the Call Section plugin as:

Call Section - <Plugin Program Name>.<Plugin Section Name>

For example,

Call-Section - QE_AETESTPRG.QE_PCODE

Note: You can use the %AECallerApplId system variable to identify the name of the Application Engine
program that executed a plug-in action or a call section to the currently executing program.
For more details, see “%AECallerApplId” (PeopleCode Language Reference)

190 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

On-Exit Application Engine Plug-in

PeopleTools allows you to configure an On-Exit Application Engine plug-in at the end of an Application
Engine program. This enables the Application Engine program to run and exit based on the conditions
defined for the On-Exit Application Engine plug-in.

On the PIA, you can specify which section, step, SQL or PeopleCode action should run on-exit from an
Application Engine program.

Note: On-Exit plug-ins can be configured for any existing Application Engine programs.

You can verify the configured On-Exit Application Engine plug-in in the Application Designer.

This example shows an On-Exit Application Engine plug-in configured in the Application Designer.

Configuration Options

Use the AE Action Plugin page to configure Application Engine action plug-in and On-Exit Application
Engine plug-in.

Copyright © 1988, 2025, Oracle and/or its affiliates. 191

Managing Application Engine Programs Chapter 6

This example illustrates the fields and controls on the AE Action Plugin page. You can find definitions for
the fields and controls later on this page.

Use these configuration options to configure a delivered Application Engine program:

Field or Control Description

Enabled Select this check box to enable the configuration.

Section Select a section of the delivered Application Engine program,
 which you plan to configure. Only sections with steps having
SQL or PeopleCode are listed.

Step Select a step of the chosen section. Only steps that have SQL
or PeopleCode actions are listed.

Action Select an action from the chosen step.

Plugin Name Select the new Application Engine program that contains
the new SQL or PeopleCode action, which will be used to
configure the delivered Application Engine program.

Section Select the required section from the new Application Engine
program.

Step Select the required step from the selected section.

Note: The step <ALL> is used as a plug-in. When you select
this step, it runs all the steps in the section and therefore the
Action column disappears.

Action Select the SQL or PeopleCode action from the selected step
to add before or after the existing action, or to replace the
existing action.

192 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Managing Application Engine Programs

Field or Control Description

Mode The three modes that decide the execution order of the
configured Application Engine action:

• Before - Execute the new Application Engine action
before the existing action.

• After - Execute the new Application Engine action after
the existing action.

• Replace - Execute the new Application Engine action
instead of the existing action.

Order within Mode This field is required if the same action belonging to the same
step of the same section of the configured Application Engine
program has multiple plug-ins using the same mode. The value
entered in this field decides the sequence in which the actions
within the mode run during execution.

Description (Optional) Descriptive notes.

Use these configuration options to configure On-Exit Application Engine plug-in:

Field or Control Description

Enabled Select this check box to enable the On-Exit plug-in
configuration.

Plugin Name Select the On-Exit Application Engine plug-in.

Section Select a section of the On-Exit Application Engine plug-in that
you plan to run.

Step Select a step of the selected section.

Action Type Select an action of the selected step.

Copyright © 1988, 2025, Oracle and/or its affiliates. 193

Managing Application Engine Programs Chapter 6

Field or Control Description

<Exit Conditions> These are the exit conditions:

• On Success

• On Skip Step

• On Break

• On Abort

• On Skip

The On-Exit Application Engine plug-in runs based on the exit
condition defined in the Application Engine program.

For example, for an Application Engine program, if you set the
On-Exit plug-in to run for the On-Break exit condition, the
On-Exit plug-in runs when the last action executed before the
Application Engine program exited was a SQL or PeopleCode
action that issued a Break condition.

See documentation for SQL and PeopleCode actions.

See Using PeopleCode in Application Engine Programs

Note: At least one of the exit conditions must be selected.
 Otherwise, an error is displayed while saving.

Note: In the PIA, the Actions Plugin grid gets disabled if the selected Application Engine program does
not have SQL, PeopleCode, or Call Section actions, and a message is displayed stating that only On-Exit
plug-ins can be configured.

Performance

Sometimes plug-in changes may not be immediately recognized. It might take at most ten minutes for the
changes to be recognized.

The processes where it takes time for the plug-in changes to come in effect are:

• When an active application server is running CallAppEngine() PeopleCode.

• When viewing an Application Engine Program Flow view in an active Application Designer session.

• When an Application Engine program begins processing before the plug-in change is initiated.

Note that there cases where plug-in changes are immediately recognized, and those are:

• While stopping and restarting any one process from the above set of processes.

• When an Application Engine program is run through the Process Scheduler.

194 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 7

Calling Application Engine Programs from
COBOL

Adding Copybooks to COBOL Programs

To enable you to call Application Engine programs from COBOL programs, include the copybook called
PTCCBLAE.CBL with your COBOL programs. This copybook is located in PS_HOME\src\cbl\base.

The following is the PTCCBLAE.CBL copybook:

*01 CBLAE.

NOCLN 02 CBLAE-PRCSNAME PIC X(12) VALUE SPACE.

NOCLN 02 CBLAE-COMMIT-FLAG PIC X(1) VALUE SPACE.

 88 AE-COMMITS-SUCCESS VALUE 'B'.

 88 AE-COMMITS-ALL VALUE 'C'.

 02 CBLAE-PARMS.

 03 CBLAE-PARM-CNT PIC 9(4) COMP.

 03 CBLAE-PARM-ENT OCCURS 500 TIMES.

 05 CBLAE-STATEREC PIC X(15).

 05 CBLAE-FIELDNM PIC X(18).

 05 CBLAE-DATA-PTR POINTER.

 05 CBLAE-LENGTH PIC 9999 COMP.

 05 CBLAE-SCALE PIC 99 COMP.

NOCLN 05 CBLAE-TYPE PIC X.

 88 CBLAE-TYPE-CHAR VALUE 'C'.

 88 CBLAE-TYPE-SMALLINT VALUE 'S'.

 88 CBLAE-TYPE-INT VALUE 'I'.

 88 CBLAE-TYPE-DEC VALUE 'P'.

 88 CBLAE-TYPE-DATE VALUE 'D'.

 88 CBLAE-TYPE-TIME VALUE 'T'.

 88 CBLAE-TYPE-TIMEONLY VALUE 'V'.

 88 CBLAE-TYPE-NUMERIC VALUE 'S' 'I' 'P'.

Copyright © 1988, 2025, Oracle and/or its affiliates. 195

Calling Application Engine Programs from COBOL Chapter 7

Data Transfer Process Between COBOL Programs and Application Engine
Programs

To interface between COBOL programs and Application Engine programs, the process uses a file to pass
parameters from COBOL to the Application Engine program. This file is owned by the process and has
the prm extension. The location of the file is determined by the following:

• If an application server root directory is defined, then the file resides in the output directory of that
particular process instance.

• If the output directory on the application server is not defined, then the file resides in the default
output directory of the Process Scheduler domain.

• If neither of the above is defined, then the file is written to the default temp directory.

Assigning Copybook Values

To assign values to the copybook of the calling COBOL program to be passed as parameters into the state
records of the called Application Engine program:

• Identify the fields in your COBOL program that contain the values you want to pass to the
Application Engine program.

• Load the PTCCBLAE.CBL copybook with the state record name, field name, field length (this should
be the size of the field not the size of the contents), the scale (decimal places if any), and set the field
type.

• Call the PTPSETAD program to set the pointer in PTCCBLAE.CBL to the host programs variable.

• Set the variable AE-COMMIT-FLAG to either AE-COMMITS-ALL or AE-COMMITS-SUCCESS.

AE-COMMITS-ALL means that the Application Engine program commits as specified in the
program. AE-COMMITS-SUCCESS means that the Application Engine program ignores all commits
and performs one commit at the end of successful execution.

Example of Loading Values from PTPTSTAE.CBL Sample Program

Make sure the calling COBOL program has connected successfully to the database before calling the
PTPCBLAE copybook. Also ensure that the calling program is not running through a RemoteCall
function.

This code is an example of how to load values from the copybook:

MOVE 0 TO CBLAE-PARM-CNT OF CBLAE

 ADD 1 TO CBLAE-PARM-CNT OF CBLAE

 MOVE 'QE_CBLAETST_AET' TO CBLAE-STATEREC

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 MOVE 'DESCR' TO CBLAE-FIELDNM

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

196 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 7 Calling Application Engine Programs from COBOL

 MOVE 30 TO CBLAE-LENGTH

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 MOVE 0 TO CBLAE-SCALE

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 SET CBLAE-TYPE-CHAR OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 TO TRUE

 CALL 'PTPSETAD' USING CBLAE-DATA-PTR

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 W-DESCR OF W-WORK

 ADD 1 TO CBLAE-PARM-CNT OF CBLAE

 MOVE 'QE_CBLAETST_AET' TO CBLAE-STATEREC

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 MOVE 'QE_AE_INT_7' TO CBLAE-FIELDNM

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 MOVE 2 TO CBLAE-LENGTH

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 MOVE 0 TO CBLAE-SCALE

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 SET CBLAE-TYPE-SMALLINT

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 TO TRUE

 CALL 'PTPSETAD' USING CBLAE-DATA-PTR

 OF CBLAE (CBLAE-PARM-CNT OF CBLAE)

 W-SMINT OF W-WORK

*

 DA000-CALL-AE SECTION.

 DA000.

*

 MOVE 'QE_AETESTPRG' TO CBLAE-PRCSNAME OF CBLAE

 SET AE-COMMITS-ALL TO TRUE

 CALL 'PTPCBLAE' USING SQLRT CBLAE.

 CALL-AE-EXIT.

 EXIT.

Copyright © 1988, 2025, Oracle and/or its affiliates. 197

Calling Application Engine Programs from COBOL Chapter 7

Sample of the Communication Area of PTPBLAE.CBL

If the called Application Engine program updated the state records or fields that were passed by
PTPCBLAE, then the fields or records are stored in the local variables of the calling program, as
identified by PTPSETAD:

* PTCCBLAE - Communication area for PTPCBLAE *

*01 CBLAE.

NOCLN 02 CBLAE-PRCSNAME PIC X(12) VALUE SPACE.

* Name of AE program to be called.

NOCLN 02 CBLAE-COMMIT-FLAG PIC X(1) VALUE SPACE.

* Flag to determine which of the following commits to make.

 88 AE-COMMITS-SUCCESS VALUE 'B'.

* No in-process commit; if successful, then commit occurs.

 88 AE-COMMITS-ALL VALUE 'C'.

* Commits occur when defined in the AE program.

 02 CBLAE-PARMS.

 03 CBLAE-PARM-CNT PIC 9(4)COMP.

* Counter of the number of state records passed.

 03 CBLAE-PARM-ENT OCCURS 500 TIMES.

* Maximum value of state record entries.

 05 CBLAE-STATEREC PIC X(15).

* State record name.

 05 CBLAE-FIELDNM PIC X(18).

* Field name.

 05 CBLAE-DATA-PTR POINTER.

* Pointer to your own working storage area.

 05 CBLAE-LENGTH PIC 9999 COMP.

* Field length of defined state record.

 05 CBLAE-SCALE PIC 99 COMP.

* Number of decimal places.

NOCLN 05 CBLAE-TYPE PIC X.

* Field data type.

 88 CBLAE-TYPE-CHAR VALUE 'C'.

 88 CBLAE-TYPE-SMALLINT VALUE 'S'.

 88 CBLAE-TYPE-INT VALUE 'I'.

 88 CBLAE-TYPE-DEC VALUE 'P'.

 88 CBLAE-TYPE-DATE VALUE 'D'.

198 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 7 Calling Application Engine Programs from COBOL

 88 CBLAE-TYPE-TIME VALUE 'T'.

 88 CBLAE-TYPE-TIMEONLY VALUE 'V'.

 88 CBLAE-TYPE-NUMERIC VALUE 'S' 'I' 'P'.

Handling COBOL Errors

If your COBOL program needs error handling, try the following procedure:

1. Add a field (return code) to your state record.

2. Initialize the field to a negative value.

3. Pass the value into the Application Engine program.

4. At the successful completion of the Application Engine program, change the field value to a positive
value.

5. Check for that value in your COBOL program.

Copyright © 1988, 2025, Oracle and/or its affiliates. 199

Calling Application Engine Programs from COBOL Chapter 7

200 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8

Tracing Application Engine Programs

Understanding Tracing Application Engine Programs

You can set the following traces to monitor the performance of Application Engine programs:

• Application Engine step trace.

• Application Engine SQL trace.

• Application Engine statement timings trace.

• Database optimizer trace.

Note: The general PeopleTools SQL and PeopleCode traces also apply to Application Engine programs.

Understanding Trace Results

This section discusses:

• Trace file sections.

• Step traces.

• SQL traces.

• Statement timings traces.

• Database optimizer traces.

Trace File Sections
At the top of each trace, useful information helps you to identify the PeopleTools version, the database
name, and the database platform type.

SQL Counts and Timings Section

The first section of a trace file is the SQL section. It records the performance of application-specific
SQL. The trace values appear within a series of columns and sections. The following table describes each
column within the first section of the trace file:

Copyright © 1988, 2025, Oracle and/or its affiliates. 201

Tracing Application Engine Programs Chapter 8

Column Description

SQL Statement Application Engine SQL actions and stored SQL objects
always have a statement ID. The SQL Statement column
shows the statement ID so that you can attribute trace values
to individual SQL statements. In the case of SQLExec SQL,
 a portion of the SQL statement appears in the first column
to help you identify it. For SQL objects, use the TraceName
property in the Create SQL so that you can uniquely identify it
in the traces.

Compile Column This column shows how many times the system compiled
a SQL statement and how long the compilation took. The
term compiled refers to the SQL statement being sent to the
database to be parsed and optimized, and it also includes the
time required for the first resolution of any PeopleSoft meta-
SQL.

Execute Column This column shows how many times the system executed the
SQL statement and the time consumed doing so. The term
executed refers to the system sending the compiled SQL to the
database server to be run against the database.

Fetch Column This column applies to Select statements. It shows how many
rows your program fetched from the database and how much
time this consumed. The system must first execute a Select
statement against the database to find the relevant rows and
generate an active set. After the set exists, the program must
still fetch the rows. Some database APIs have buffered fetches,
 which means that the fetch may include more than one row.
Therefore, subsequent fetches are free until the buffer becomes
empty.

Total Column This column shows the sum of the compile, execute, and
fetch times of the SQL statement. Some database application
programming interfaces (APIs may defer a compile to the
execute phase or defer an execute to the first fetch operation.

PeopleCode SQL This subsection is for SQL run from PeopleCode actions.
 Compile counts and times for such SQL is included in execute
count and times because you do not explicitly control the
ReUse feature. To determine whether ReUse is occurring, you
must do a program run after enabling the generic PeopleTools
trace for SQL statements, API calls, and so on. As a starting
point, use a trace value of 31.

202 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

Column Description

Application Engine SQL This subsection reveals the time attributed to Application
Engine overhead that is not directly related to the SQL within
your program. For example, the values in this section represent
the SQL generated for checkpoints, commits, and so on. If
there are Commit statements without checkpoints, it indicates
that restart has been disabled, or a restartable program has
called a non-restartable program.

If the time consumed performing a checkpoint or committing
seems more than expected, you should try to reduce it
if possible by setting the commit frequency of the steps
containing Do loops.

AE Program: program_name This subsection shows SQL actions for a particular program.
 The action properties that affect performance are flagged. For
example, BulkInsert. ReUse is not flagged because it is self-
evident when the Execute count is higher than the compile
count.

Note: When you run a SQL trace at the Application Engine level and the PeopleTools level
simultaneously, you may see misleading results. Extra overhead is added to the overall SQL timings by
the PeopleTools trace. Tracing SQL at the Application Engine level (-TRACE) adds to the non-SQL times
because PeopleTools writes the trace data after timing the SQL.

PeopleCode Actions Section

The second section of the trace file, or PeopleCode section, records the performance associated with all
the PeopleCode actions in your program. The following table describes each column in this section:

Column Description

PeopleCode The names of the PeopleCode actions in your program.

Call How many times each PeopleCode action is called during a
program run.

Non-SQL The time spent running non-SQL actions.

SQL Time spent running SQL. The total SQL time should be
similar to that of the PeopleCode SQL subsection in the first
section of the trace file.

Total The cumulative amount of time spent on an action.

Copyright © 1988, 2025, Oracle and/or its affiliates. 203

Tracing Application Engine Programs Chapter 8

Note: The system rounds to the first decimal place (tenths), but only after it calculates the sum of each
action time.

PeopleCode Built-ins and Methods Section

The third section of the trace file contains either a list or summary of the PeopleCode built-ins and
methods used. To see a list of built-ins and methods, you must enable the PeopleCode detail timings in
addition to the statement timings trace.

If a method or built-in function takes a large amount of time, you may want to consider alternatives. For
example, if array processing dominates your runtime, consider inserting the data into temporary tables
and performing the processing on tables in the database.

Summary Data

The fourth section of the trace file contains summary data. The values in this section provide an overview
of the program run without providing too many details.

The following table describes the values that appear in this section:

Column Description

Total run time The overall amount of time a program required to complete
from start to finish.

Time in application SQL The time that your program spent executing SQL. This value
includes SQL run by both PeopleCode and SQL actions.

Percent time in application SQL The percentage of time spent running SQL compared to the
entire program run.

Time in PeopleCode The time the program spent running PeopleCode. Time in
PeopleCode excludes SQL run from within PeopleCode.

Percent time in PeopleCode The percentage of time spent running PeopleCode compared to
the entire program run.

Total time in Cache The amount of time the program spent retrieving objects from
the cache or refreshing the cache. Total time in cache includes
all memory cache access, file cache access, and SQL run to
load managed objects such as Application Engine program
components, metadata, and so on. Time varies according
to where Application Engine finds an object. For instance,
 retrieving an object that the system cached during a previous
run is faster than retrieving it from the database.

204 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

Column Description

Number of calls to Cache The actual number of calls the program made to the cache.
The number of calls to the cache remains constant for the same
Application Engine program processing the same data.

Environment Information Section

The fifth section of the trace file contains environment information specific to Application Engine. If
programs appear to be performing poorly, check the trace value that you set.

Each trace produces an unavoidable degree of overhead. As a result, the more traces you have enabled,
the more likely you are to see degraded performance. Run only the traces you need. This section of the
trace file shows information about:

• SQL traces.

• PeopleCode traces.

• Application Engine traces.

• Application Engine DbFlags (%UpdateStats).

Step Traces
A step trace reports each step name that your program runs and the order it runs in. Associated with each
step is a timestamp, a Do action level, and an action type.

The trace shows the steps that run within a called section by indented formatting. For example, a step that
runs within a called section is preceded by two dots (..), while other steps are preceded by only one dot (.).

SQL Traces
The SQL trace report shows formatted SQL processes, including commits, rollbacks, and restarts. You
can also view the buffers associated with each SQL statement. Use a SQL trace to spot errors in your SQL
and to view your commit strategy.

Statement Timings Traces
The Application Engine statement timing trace report is similar to a COBOL timings trace in which
you monitor COBOL programs to evaluate performance. This trace enables you to gather performance
information to determine where program performance slows down. After you identify these spots, you
might be able to modify your program to run more efficiently, or you might want to change the database
schema and configuration to optimize program performance.

The statement timings trace is invaluable for tuning an Application Engine program. It may also be useful
as a default trace level for all production runs to provide a metric for long-term performance trends.

By examining all of the figures in this trace, you can identify areas of your program that are not running
as efficiently as possible. For instance, if compile counts are high, you can reduce the numbers by using

Copyright © 1988, 2025, Oracle and/or its affiliates. 205

Tracing Application Engine Programs Chapter 8

the Application Engine reuse feature. If inserts appear to be running slow and you have many of them,
you can increase performance by using the Application Engine bulk insert feature. Each value in the trace,
including cumulative totals, is rounded to the nearest tenth of a second, but totals are calculated using
non-rounded timings.

You can write this trace to a file or you can write the results to tables. Either way, timings trace overhead
is minimal. Internal testing reveals that the Application Engine trace has an overhead between 2 percent
and 5 percent of total runtime.

By storing timings information in a table, you can store historical data in the database, which enables you
to produce reports that help with trend analysis, allow ad hoc SQL queries for longest running statements,
and so on. By storing timings data in the database, you can manipulate and customize reports to show
only the metrics in which you are most interested.

You can use third-party tools to query and present the data as detailed graphical representations of
program performance. You can also implement alarms if the performance of a program reaches a
specified maximum value in a particular area, such as SQL compile time.

Note: Application Engine does not write the timings trace to a table for programs invoked by the
CallAppEngine PeopleCode function. To write to a table, a process instance is required, and programs
invoked by CallAppEngine are not assigned a process instance.

The Statements Timings (table) option, or 1024 -TRACE option, populates the following tables.

• PS_BAT_TIMINGS_LOG (Parent)

This table stores general information about a program run.

• PS_BAT_TIMINGS_DTL (Child)

This table stores detailed information about a program run, such as the execute count, fetch time, and
so on.

The SQL Timings (table) option, or the 16834 -TRACE option, populates the following tables.

• PS_AE_TIMINGS_LG (Parent)

This table stores general information about a program run.

• PS_AE_TIMINGS_DT (Child)

This table stores detailed information about a program run, such as the execute count, fetch time, and
so on.

PS_BAT_TIMINGS_FN

This table stores PeopleCode detailed timing information.

PeopleSoft software provides BATTIMES.SQR as an example of the type of reports you can generate to
reflect the information stored in the BAT_TIMINGS tables. You can produce a summary report for all the
programs for a specific run control ID, or you can get detailed data for a specific process instance.

To invoke the BATTIMES.SQR report through PeopleSoft Process Scheduler:

1. Select PeopleTools > Process Scheduler > Define Batch Timings.

206 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

The Batch Timings page appears.

2. From the Report Type drop-down list, select Detail or Summary.

3. In the Batch Timings For group box, enter the run control ID for summary reports and enter the
process instance for detail reports.

4. When you have made the appropriate selections, click the Run button.

To view batch timings using Process Monitor:

1. Select PeopleTools > Process Scheduler > Process Monitor.

2. Locate the program run associated with the current trace.

3. Click the Job Details button.

4. In the Process Detail dialog box, click the Batch Timings link.

PeopleCode detail timings do not appear; they appear only in the file format.

Database Optimizer Traces
The database optimizer trace provides the execution or query plan for the SQL that your Application
Engine program generates. Each SQL statement is traced only once. You can write the trace to a file or a
table.

How you view the results of this trace depends on the relational database management system (RDBMS)
that you are currently using. For instance, on some platforms only the trace-to-file option is available,
whereas on others only the trace-to-table option is available. The following table shows the options
available for each of the supported platforms:

RDBMS Output

Oracle File and table

Db2 for z/OS Table

Microsoft SQL Server File and table

Note: PeopleTools applications do not collect optimizer data for SQL originating from PeopleCode
actions unless you run Oracle and use file output. In this case, the system traces all SQL that runs after the
first SQL action runs.

Oracle

When sending the trace to a file, Application Engine writes the trace file to the default Oracle trace
directory specified on the database server. To read the trace file, use the TKPROF utility.

Copyright © 1988, 2025, Oracle and/or its affiliates. 207

Tracing Application Engine Programs Chapter 8

To send the trace to a table on Oracle, a PLAN_TABLE table must exist and the statement_id must be of
type VarChar2(254) instead of VarChar2(30).

When sending to a table, the PeopleSoft application updates the trace rows as follows:

• For the EXPLAIN PLAN SET STATEMENT_ID, PeopleSoft software updates the STATEMENT ID
column:

EXPLAIN PLAN SET STATEMENT_ID = ApplId.Section.Step.Type FOR sqlstmt

• or the PLAN_TABLE REMARKS column, PeopleSoft software updates the REMARKS column:

PLAN_TABLE‘s REMARKS column = ‘ProcessInstance-RunControlId(QueryNo)’

Where queryno is a count of how many SQL statements have been traced up to a particular point.

Note: When tracing to a table with Oracle, PeopleSoft software does not perform optimizer traces on
%UpdateStats and %TruncateTable unless the latter resolves into a Delete statement. Alternatively,
sending the Oracle TKPROF utility to a file handles both the Analyze and Truncate commands.

Microsoft SQL Server

When you send trace output to a file, Application Engine writes the optimizer trace to the following
location: %TEMP%\psms<queueid><spid>.trc. To read the trace, use the SQL Server Profiler utility.

Note: The system writes the trace file to the server directory when you specify the trace on the client.
If the client has %Temp% set to a drive or directory that does not exist on the server, then Application
Engine does not generate a trace file.

When you send trace output to a table, Application Engine writes the trace data to the
dbo.PS_OPTIMIZER_TRC table. PeopleTools creates the table automatically when you run the trace for
the first time. The trace data written to the table is identical to the data that appears in the optimizer trace
file.

You use the SQL Server Profiler utility to view the optimizer results. To view the populated trace table,
specify the current server and database in the Source Table dialog box. The Owner value must be dbo,
and theTable value must be PS_OPTIMIZER_TRC.

In the trace, you find information about text, duration, and start time for:

• Execution plans.

• Remote procedure calls.

• Insert statements (Update, Delete, and Select statements).

• PeopleSoft-generated user events that associate trace data with a PeopleSoft SQL identifier.

If the Application Engine program terminates while you are using the trace option, verify that Application
Engine was not tracing a SQL statement at the moment the program terminated. If it was tracing a
SQL statement at that time, you must manually stop the trace. Otherwise, the trace thread on the server
continues to run and will lock the trace file, and each time that server process ID (SPID) is reused by the
server, new information will be appended to the locked trace file.

208 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

To stop the trace manually, submit the following command from Query Analyzer:

xp_trace_destroyqueue queueid

The queueid variable in the file name %TEMP%\psms_queueid_spid.trc is the ID that corresponds to the
queue used for the first SQL statement that the system profiled. Because this trace is only designed to
trace Application Engine SQL (not PeopleTools SQL), the queue is closed after every statement profiled.
Therefore, the queue that must be destroyed may not be the queue ID used in the trace file.

Note: If the %TEMP% variable is set to a location that does not exist, Application Engine does not
generate a trace file.

Db2 for z/OS

For Db2 for z/OS, you can only send the optimizer trace to a table. To facilitate this trace:

• The PeopleSoft application selects the maximum query number from the PLAN_TABLE table,
increments it by 1000 to avoid clashing with other processes, and then increments it by 1 for every
SQL statement traced.

• The PeopleSoft application sets the SET REMARKS parameter to this value:
ApplId.Section.Step.Type-RunControlId(ProcessInstance)

Note: Before using the Database Optimizer Trace, you must first create a DB2 PLAN_TABLE. Refer
to your Db2 for z/OS Administration Guide for the correct format and instructions for creating the
PLAN_TABLE.

Database Optimizer Trace and Performance

While the database optimizer trace is enabled, performance may be affected. Typically, you turn on
this trace only when you are collecting detailed performance metrics. When you are not tuning system
performance, turn off the optimizer trace.

To prevent an administrator or perhaps a user from unwittingly turning the optimizer trace on or leaving it
on after doing performance tuning, you can disable the database optimizer trace for an entire database.

For example, if you have a production database and a development database, you might want to enable
the optimizer trace for the development database but disable it for the production database.

On the PeopleTools Options page, clear the Allow DB Optimizer Trace option to disable the optimizer
trace for a database.

Enabling Application Engine Tracing

By default, all Application Engine traces are turned off. To see a trace or a combination of traces, set trace
options before you run a program.

This section discusses how to:

• Set command line options.

• Set parameters in server configuration files.

Copyright © 1988, 2025, Oracle and/or its affiliates. 209

Tracing Application Engine Programs Chapter 8

• Set client options in Configuration Manager.

• Enable selective tracing

Setting Command Line Options
The command line option is available for Microsoft Windows NT and UNIX, but it is not available when
calling Application Engine programs from PeopleCode.

To enable tracing from the command line, specify the −TRACE option within the command line that you
submit to PSAE.EXE. For example:

n:\pt840\bin\client\winx86\psae.exe -CT MICROSFT -CD PT800GES -CO PTDMO
 -password PTDMO -R PT8GES -AI AETESTPROG −I 45 -TRACE 2

The following table describes the available TRACE option parameter values:

Value Description

0 Disables tracing.

1 Initiates the Application Engine step trace.

2 Initiates the Application Engine SQL trace.

4 Initiates the trace for dedicated temporary table allocation to
an Application Engine trace (AET) file. You can trace how the
system allocates, locks, and releases temporary tables during
program runs.

8 Initiates the trace for temporary table data. Should be used
together with AET file analyzer to display the rows affected by
insert/update/delete SQL statements.

128 Initiates the statement timings trace to a file, which is similar
to the COBOL timings trace to a file.

256 Initiates the PeopleCode detail to the file for the timings trace.

1024 Initiates the statement timings trace and stores the results in
the PS_BAT_TIMINGS_LOG and PS_BAT_TIMINGS_DTL
tables.

2048 Requests a database optimizer trace file.

4096 Requests a database optimizer to be inserted in the Explain
Plan table of the current database.

210 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

Value Description

8192 Sets a trace for PeopleSoft Integration Broker transform
programs.

16384 Initiates a SQL timings trace and stores the results in the PS_
AE_TIMINGS_LG and PS_AE_TIMINGS_DT tables.

To specify traces on the command line, you enter the sum of the desired trace options. This action is
similar to adding the trace values using PSADMIN, such as the COBOL statement timings or the SQL
statement trace value. To specify a combination of traces, enter the sum of the corresponding trace values.
For example, to enable the step (1), the SQL (2), and the statement timings (128) traces, you would enter
131, which is the sum of 1 + 2 + 128.

To disable tracing, explicitly specify −TRACE 0. If you do not include the −TRACE flag in the command
line, Application Engine uses the value specified in the Process Scheduler configuration file or in
Configuration Manager. Otherwise, the command-line parameters override any trace settings that may be
set in Configuration Manager.

Setting Parameters in Server Configuration Files
You can set the parameters in server configuration files of Application Server or PeopleSoft Process
Scheduler server to enable tracing in them and to get the trace output of both SQL and PeopleCode in the
Application Engine Trace (AET) file. You can also set parameter to enable the trace output of sections in
Application Engine programs.

Enabling Traces for Application Server and Process Scheduler Server

You can also enable traces in the configuration files for both the application server and the PeopleSoft
Process Scheduler server.

For programs invoked by PeopleCode and run on the application server, set the TraceAE parameter in the
Trace section of the Application Server configuration file (PSAPPSRV.CFG). You can use PSADMIN to
set this parameter.

In the PeopleSoft Process Scheduler configuration file, set the TraceAE parameter in the Trace section to
indicate a level of tracing. You can use PSADMIN to set this parameter.

This option is available on Microsoft Windows NT and UNIX, and it applies only to Application Engine
programs invoked in batch mode.

Note: The TraceFile parameter does not specify the location of the Application Engine trace file; it
applies only to the generic PeopleTools SQL and PeopleCode traces.

Combining PeopleCode and SQL Trace into AET file

You can combine PeopleCode and SQL Trace into AET file. You can set the TraceAECombineOutput
parameter in server configuration file of Application Server or Process Scheduler Server to enable this
feature.

Copyright © 1988, 2025, Oracle and/or its affiliates. 211

Tracing Application Engine Programs Chapter 8

The default value of this parameter is set to “N”. You can set the parameter, to a value of “Y” to merge
SQL/PeopleCode trace into AET file.

Setting Client Options in PeopleSoft Configuration Manager
For processes running on a Microsoft Windows workstation, you can set trace options using the Trace tab
in PeopleSoft Configuration Manager. This procedure is valid only if you are running Application Engine
programs on a Microsoft Windows workstation in a development environment.

Here, you can also define the file size of the trace file.

This example illustrates the fields and controls on the Application Engine Trace File Settings. You can
find definitions for the fields and controls later on this page.

Application Engine Traces

To set Application Engine traces:

1. Start Configuration Manager, and select the Trace tab.

2. Select the appropriate trace options.

212 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

You can select any combination of options.

3. Click either the Apply or OK button to set trace options.

Temporary Table Data Trace

You can enable temporary table data tracing for diagnostics purposes. Use AE Trace Analyzer to analyze
the temporary table trace file and generate diagnostic results.

To enable temporary table data tracing:

1. Select the Trace tab in PeopleSoft Configuration Manager.

2. Under Application Engine Trace, select Temp. Table Data.

3. Click either the Apply or OK button.

Note: The temporary table data trace file size can be up to 1 GB to limit the memory usage. To support
files exceeding 1 GB size, increase the JVM heap size.

Note: To map the Application Engine steps logged in the AET file with the corresponding temporary
table data output in the temporary table data, you can time stamp the Application Engine step’s start as an
index. Use this time stamp to view the temporary table data of the desired Application Engine step.

The naming convention of AE trace file is AE_Program_name_Process_Instance_Date/
Time_Stamp.AET, for example, AE_AP_MATCH_142879_1126204755.AET, and
corresponding temporary table data trace file is AE_Program_name_Process_Instance_Date/
Time_Stamp_temptable.DAT, for example, AE_AP_MATCH_142879_1126204755_temptable.DAT.

You can also enable the trace output of sections from PeopleSoft Configuration Manager. To enable the
section trace output:

1. Select the Trace tab in PeopleSoft Configuration Manager.

2. Select the Enable Section Trace(g) check box.

Application Engine Trace File Size

The Application Engine Trace file size can get too large making it hard to open and read. You can define
the maximum file size for the file in AE Trace File Size field. The default value of the Application
Engine trace file size is 500 MB.

The file size can vary between 500 MB to 1500 MB. If the current Application Engine trace file size
exceeds the user defined value, file is closed and logging is switched to a new trace file.

Enabling Selective Tracing
You can enable selective tracing for PeopleCode or SQL trace output.

You can select any section, step, or action of an Application Engine program for selective tracing.

To enable selective tracing in PIA, navigate to PeopleTools > Application Engine > Selective Tracing.

Copyright © 1988, 2025, Oracle and/or its affiliates. 213

Tracing Application Engine Programs Chapter 8

This example illustrates the fields and controls on the Selective Tracing page.

Field Description

Enable Selective Tracing Enable or disable selective tracing.

Enrolled Select this option to enroll an Application Engine program.

Only Application Engine programs that have a MAIN section
is listed.

Section This is enabled only when an Application Engine program is
selected for selective tracing.

Step This is enabled when you select a section. The steps are
displayed based on the section you select.

Statement Type This is enabled when you select a step. The statement types
can be PeopleCode or SQL.

PC Trace Value The PeopleCode trace value is displayed, which is selected
from the Selective Trace page.

SQL Trace Value The SQL trace value is displayed, which is selected from the
Selective Trace page.

Selective Trace Settings Use this to select the different PeopleCode trace and SQL trace
settings for each AE program that is enrolled to use selective
tracing. Refer to the subsequent section on PeopleCode and
SQL trace settings.

PeopleCode and SQL Trace Settings

You can select the PeopleCode trace and SQL trace settings from this page. The trace value appears at the
bottom of this Selective Trace page.

After the selecting the trace settings on this page, the trace values then appear on the PC Trace Value and
SQL Trace Value fields on the Selective Tracing page.

The values depend on the traces that you select. The values cannot be manually edited.

214 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

This example illustrates the fields and controls on the Selective Trace page.

Administrator Enabled Selective Tracing

From Selective Tracing Admin page, an administrator can specify selective tracing configuration for an
user or a set of users by using the Enrolled Users link.

Navigate to PeopleTools > Application Engine > Selective Tracing Admin.

This example illustrates the fields and controls on the Selective Tracing Admin page.

On this page, you can enroll the selected Application Engine program with the trace settings for an user or
a set of users.

Select the Enrolled Users link to open the Selective Tracing page.

This example illustrates the fields and controls on the Selective Tracing Admin page.

Copyright © 1988, 2025, Oracle and/or its affiliates. 215

Tracing Application Engine Programs Chapter 8

On this page, enroll an user or a set of users for whom you want to specify the selective tracing
configuration.

When administrator enables selective tracing for an user from the Selective Tracing Admin page, then
on the Selective Tracing page (PeopleTools, Application Engine, Selective Tracing) of that user, the
administrator-enabled selective tracing settings appear in display-only mode.

Any trace setting done by the user on the Selective Tracing page will still be editable.

Note: The administrator's trace setting may override the user trace setting and the user trace setting will
not be shown.

Collecting Application Engine Performance Data

You can collect performance data of any specific SQL action of an Application Engine program to
address any performance issue.

You can collect performance data of the SQL action, not any other action types.

You cannot collect performance data of Application Engine programs called using the CallAppEngine()
function.

This section discusses how to:

• Set options in Configuration Manager.

• Set options in domain configuration files (three-tier mode).

• Configure performance data collection in PeopleSoft Internet Architecture (PIA).

Setting Options in PeopleSoft Configuration Manager (two-tier mode)
You can enable performance data collection using the Trace tab in PeopleSoft Configuration Manager.

To enable performance data collection (two-tier mode):

1. Open Configuration Manager.

2. Click the Trace tab.

3. Select the Enable Perf Collect check box.

4. Click either the Apply or OK button to enable the option.

216 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

The below image shows the Application Engine Performance Collection option:

This procedure is valid only if you are running Application Engine programs on a Microsoft Windows
workstation in a development environment.

Setting Options in Domain Configuration Files (three-tier mode)
You can enable performance data collection in domain configuration files of PeopleSoft Process
Scheduler Administration.

To set options in domain configuration files (three-tier mode):

1. Navigate to the process scheduler configuration file.

2. Under the Trace category, set TraceAEEnablePerfCollect to Y.

This procedure is valid for Application Engine programs on Microsoft Windows and UNIX/LINUX
systems.

Copyright © 1988, 2025, Oracle and/or its affiliates. 217

Tracing Application Engine Programs Chapter 8

Configuring Performance Data Collection
You can configure performance data collection of a specific SQL action using the AE Additional Setup
page.

To configure performance data collection:

1. Navigate to PeopleTools, Application Engine, AE Enhanced Performance Trace.

2. Search for the Application Engine program.

3. On the AE Additional Setup page, enter the configuration detail, such as the section and step name of
the specific SQL action.

Note: Other action types, such as PeopleCode, will not be displayed on this page as you can only
collect performance data for SQL actions.

The example below illustrates the configuration detail to capture performance data of a specific SQL
action:

As part of performance data collection, a new table PSAESQLTIMINGS gets created to store
performance data for specific SQL actions. The table includes Application Engine process instance, run
control ID, rows affected, start time, end time, and SQLID.

Note: Performance data of SQL actions will be inserted in the PSAESQLTIMINGS table when the
Application Engine ends successfully.

You can use the SQLID data to query the database system table to get further information. SQLID data is
available only for Oracle databases.

Related Links
Application Engine Call Structure

Locating Trace Files

Locating a generated trace file depends on how you invoked the program and the operating system on
which the program runs. This table describes trace file locations based on where the program initiated:

218 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Tracing Application Engine Programs

Location Where the Program Was Initiated Trace File Location

Microsoft Windows workstation Look for the trace file in %TEMP%\PS\<db name>.

PeopleCode Look for the trace file in %TEMP%\PS\db_name on Microsoft
Windows NT and in PS_CFG_HOME/log/\<db name> on
UNIX and Linux systems.

Command line Look for the trace file in the directory specified in the Log/
Output field in the PS_SERVER_CFG file.

PeopleSoft Process Scheduler Look for the trace file in a subdirectory of the directory
specified in the Log/Output field in the PS_SERVER_CFG
file.

The Application Engine names the trace files according to the following naming convention:

• When a program includes a process instance, the trace file name is
AE_Program_name_Process_Instance_Date/Time_Stamp.AET. For example,
AE_AEMINITEST_99_0506050320.AET.

• When a program does not include a process instance, the trace file name is AE_Date/
Time_Stamp_OS_PID.AET.

• When Application Engine is run online, the trace file name is OprID_Hostname_Date/
Time_Stamp.AET. For example, PTDMO_SLC00FCJ_0507230158.AET.

The date and time stamp is in the format <month><day><hour><minute><second>, with two values for
each date element and no punctuation between the elements. For example, August 12 at 5:09 p.m. and 30
seconds would be 0812170930.

Note: For an Application Engine program running on a server, PeopleTools writes the generic
PeopleTools trace for SQL and PeopleCode trace files to the same directories as the AET traces. The
prefix of the trace file name is also the same, and the suffix is trc. On a Windows workstation, the system
writes the trace to the file specified in the People Tools Trace File field on the Trace tab of PeopleSoft
Configuration Manager.

Copyright © 1988, 2025, Oracle and/or its affiliates. 219

Tracing Application Engine Programs Chapter 8

220 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 9

Using Log Analyzer

Understanding Log Analyzer

Log Analyzer for Application Engine is an User Interface tool that helps you format the Application
Engine log file to easily get log information about:

• Application Engine call structure

• SQL information

• PeopleCode information

You can launch the Log Analyzer tool by executing runTraceAnalyzer.bat file located at PS_HOME\bin
\client\winx86\AELogAnalyzerTool.

Related Links
Enabling Log Analyzer for Application Engine

Application Engine Call Structure
This image illustrates the Application Engine call structure in Log Analyzer:

By using the Log Analyzer for Application Engine, you can display the application engine call structure
as a tree structure in a table panel. The table panel displays the following log information:

Term Definition

AE Step The Application Engine Step column displays the Application
Engine steps executed in the AE process.

Copyright © 1988, 2025, Oracle and/or its affiliates. 221

Using Log Analyzer Chapter 9

Term Definition

Action Type The Action Type column displays the Application Engine
action type performed in the Application Engine step.
 Application Engine action types can be any one of the
following:

• Call Section

• SQL

• PeopleCode

• Log Message

• Do When

• Do While

• Do Select

• Do Until

Time The Time column displays the time at which the Application
Engine action was executed.

Duration Displays the duration of the action.

Action The action column displays the SQL action that was performed
in the Application Engine step. SQL actions can be any one of
the following:

• INSERT

• UPDATE

• SELECT

• DELETE

Table Name The Table Name column displays the name of the table in
which the action was performed.

Rows The Rows column displays the number of rows that were
updated by the action.

222 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 9 Using Log Analyzer

Term Definition

SQL ID The SQL ID column displays the performance details of the
Application Engine step.

The SQL ID column displays a unique identifier of the SQL
statement when run on Oracle databases. This is useful for
Application Engine SQL performance analysis.

Note: SQL ID is specific to Oracle database so this column is
only displayed when we are analyzing an AET file generated
against an Oracle database.

Full SQL Text The Full SQL Text column displays the full SQL text that was
run for the SQL action.

SQL Information
By using the Log Analyzer feature, you can access the SQL information for any Application Engine step
that was executed. See SQL Traces for more information.

PeopleCode Information
You can load the .TRC file of the AE program to access the corresponding PeopleCode information
associated to the selected node.

Note: ‘Trace start of programs’ must be enabled to access PeopleCode Information using Log Analyzer
for AE.

Related Links
Understanding Trace Results
Setting Options in PeopleSoft Configuration Manager (two-tier mode)

Filter
You can use the Log Analyzer feature to access filtered information about the AE process.

This example illustrates the fields and controls on the Filter Option in Log Analyzer:

The AE process information can be filtered by:

Copyright © 1988, 2025, Oracle and/or its affiliates. 223

Using Log Analyzer Chapter 9

• SQL statement action

• Text

• Duration

• Rows updated

• Temporary Table Data

Filter by Action

SQL Statement action Displays filtered information about the AE process based on
the following SQL statement actions:

• INSERT

• UPDATE

• SELECT

• DELETE

Text Displays filtered information about the AE process based on
text.

Duration Displays filtered information about the AE process based on
duration of the steps.

Rows updated Displays filtered information about the AE process based on
the number of rows that were updated in the AE process.

Temporary table data Displays filtered information about the AE process with
temporary table data.

Related Links
Analyzing Application Engine Programs

Enabling Log Analyzer for Application Engine

By default, the Log Analyzer for application engine feature is turned off. To see logs for an application
engine program, you must set trace options before you run the program.

This section discusses how to:

• Set options in Configuration Manager (two-tier mode)

• Set options in domain configuration files (three-tier mode)

• Set options to trace a specific application engine program

224 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 9 Using Log Analyzer

Related Links
Understanding Log Analyzer
“Understanding PeopleSoft Configuration Manager” (System and Server Administration)
Locating Trace Files

Setting Options in PeopleSoft Configuration Manager (two-tier mode)
For processes running on a Microsoft Windows workstation, you can enable Log analyzer for Application
Engine by setting trace options using the Trace tab in PeopleSoft Configuration Manager. This procedure
is valid only if you are running Application Engine programs on a Microsoft Windows workstation in a
development environment.

This example illustrates the fields and controls on the Enabling Log Analyzer for Application Engine by
setting options in Configuration Manager. You can find definitions for the fields and controls later on this
page.

To set options in PeopleSoft Configuration Manager (two-tier mode):

1. Start Configuration manager, and select the Trace tab.

2. Under PeopleCode Trace, select Trace Start of Programs.

Copyright © 1988, 2025, Oracle and/or its affiliates. 225

Using Log Analyzer Chapter 9

3. Under Application Engine Trace, select Step and SQL.

4. Click either the Apply or OK button to set trace options.

Related Links
“Understanding PeopleSoft Configuration Manager” (System and Server Administration)
“Starting PeopleSoft Configuration Manager” (System and Server Administration)
Locating Trace Files
Step Traces
SQL Traces

Setting Options in Domain Configuration Files (three-tier mode)
To set options in domain configuration files of PeopleSoft Process Scheduler Administration (three-tier
mode):

1. Go to process scheduler configuration file.

2. Set TraceSQL to 3 or above.

3. Set TracePC to 64 or above.

Related Links
“Editing the PeopleSoft Process Scheduler Configuration File” (Process Scheduler)
Locating Trace Files

Setting Options to Trace a Specific Application Engine Program
To set options to trace a specific Application Engine program:

1. Select PeopleTools > Process Scheduler > Process Scheduler Processes. The Process Definitions
page opens.

2. Select an existing value or add a new one.

3. Select the Override Options tab.

226 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 9 Using Log Analyzer

The below image shows how to fill up the Override Options page to trace a specific Application
Engine program:

4. From the Parameter List drop down list, select Append.

5. Under Parameters for Parameter List, type -TRACE 7 -TOOLSTRACEPC 3652 -
TOOLSTRACESQL 131.

6. Click Update/Display

Related Links
Creating Process Definitions
Locating Trace Files

Copyright © 1988, 2025, Oracle and/or its affiliates. 227

Using Log Analyzer Chapter 9

228 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10

Using Temporary Tables

Understanding Temporary Tables

Because Application Engine programs run in batch mode, multiple instances of the same program often
execute in parallel. When this happens, the risk of data contention and deadlocks on tables is significant.
To avoid this risk, you can dedicate specific instances of temporary tables for each program run.

You can also use temporary tables to improve performance. For example, if you find that, multiple
times during a run the program accesses a small subset of rows from a much larger table, you can insert
the necessary rows into a temporary table as an initialization task. Then the program accesses the data
residing in the smaller temporary table rather than the large application table. This technique is similar
to reading the data into an array in memory, except that the data never leaves the database, which is an
important consideration when the program employs a set-based processing algorithm.

Any number of programs, not just Application Engine programs, can use temporary table definitions.
When you specify a temporary table on the Temp Tables tab in the Application Engine program
properties, Application Engine automatically manages the assignment of temporary table instances. When
Application Engine manages a dedicated temporary table instance, it controls the locking of the table
before use and the unlocking of the table after use.

Parallel Processing

Parallel processing is used when considerable amounts of data must be updated or processed within
a limited amount of time or a batch window. In most cases, parallel processing is more efficient in
environments containing multiple CPUs and partitioned data.

To use parallel processing, partition the data between multiple concurrent runs of a program, each with
its own dedicated version of a temporary table (for example, PS_MYAPPLTMP). If you have a payroll
batch process, you could divide the employee data by last name. For example, employees with last names
beginning with A through M are inserted into PS_MYAPPLTMP1; employees with last names beginning
with N through Z are inserted into PS_MYAPPLTMP2.

To use two instances of a temporary table, you would define your program (for example, MYAPPL) to
access one of two dedicated temporary tables. One run would use A through M and the other N through Z.

The Application Engine program invokes logic to pick one of the available instances. After each program
instance is matched with an available temporary table instance, the %Table meta-SQL construct uses the
corresponding temporary table instance. Run control parameters passed to each instance of the MYAPPL
program enable it to identify which input rows belong to it, and each program instance inserts the rows
from the source table into its assigned temporary table instance using %Table. The following diagram
illustrates this process:

Copyright © 1988, 2025, Oracle and/or its affiliates. 229

Using Temporary Tables Chapter 10

This is a diagram of Multiple program instances running against multiple temporary table instances.

No simple switch or check box enables you to turn parallel processing on and off. To implement parallel
processing, you must complete the following task. With each step, you must consider details about your
specific implementation.

1. Define and save temporary table records in Application Designer.

You do not need to run the SQL Build process at this point.

2. In Application Engine, assign temporary tables to Application Engine programs, and set the instance
counts dedicated for each program.

Employ the %Table meta-SQL construct so that Application Engine can resolve table references to the
assigned temporary table instance dynamically at runtime.

3. Set the number of total and online temporary table instances on the PeopleTools Options page.

4. Build temporary table records in Application Designer by running the SQL Build process.

Understanding Global Temporary Tables

You can define Global Temporary Tables (GTTs) in the PeopleSoft Application Designer. The
performance of Application Engine programs are enhanced on using GTTs. GTTs are temporary tables
that hold data that exists only for the duration of a transaction or a session.

• GTTs are applied to Application Engine programs running in both batch mode and online mode.
The data in GTT is session specific for Application Engine programs running in batch mode and
transaction specific for Application Engine programs running in online mode.

230 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

• GTTs in online mode cannot be shared between Application Engine programs. Each Application
Engine program has its own set of GTTs. Therefore, it is recommended that GTTs should not be used
as Share Tables in online mode.

• You can also define GTTs to restart-enabled batch Application Engine programs considering that the
data in a GTT is not retained when the program exists.

• You can set the number of instances to a maximum of 9999 when the Application Engine program
uses only GTTs in temporary tables.

Note: If the Application Engine program uses GTTs and temporary tables then a warning is displayed
on the number of instances exceeding 99.

Specifying Global Temporary Tables

You can define a GTT in Application Designer for a new or an existing record whose Record Type is
selected as Temporary Table.

This example illustrates the Global Temporary Table (GTT) check box.

To define a new GTT record:

1. Select File, New to open the New Definition dialog box in Application Designer.

2. Select Record and click OK.

3. Insert some fields in the Record Fields tab.

4. Select the Record Type tab.

5. Select the Temporary Table that displays the Global Temporary Table (GTT) check box.

6. Select the Global Temporary Table (GTT) check box.

Copyright © 1988, 2025, Oracle and/or its affiliates. 231

Using Temporary Tables Chapter 10

Likewise, if you want to set GTTs for an existing Temporary Table record, open the record in Application
Designer and select the Global Temporary Table (GTT) check box.

Creating Temporary Table Instances

This section provides an overview of temporary table instances and discusses how to:

• Define temporary tables.

• Set the number of temporary table instances.

• Build table instances.

Understanding Temporary Table Instances
To run processes in parallel, you need to enable multiple instances of the same temporary table. You use
the PeopleTools Options page to set the number of temporary table instances for Application Engine
processes started online from the PeopleCode CallAppEngine function.

This global setting is separate from the instance count setting for a particular program. To use a temporary
table with a specific program, you assign the table to the program and set the number of instances created
when a particular program is run.

Key Fields for Temporary Tables

To take advantage of multiple instances of a temporary table, use the Temporary Table record type.

Insert the PROCESS_INSTANCE field as a key on any temporary tables that you intend to use
with Application Engine. Application Engine expects Temporary Table records to contain the
PROCESS_INSTANCE field.

Note: When all instances of a temporary table are in use and the Continue runtime option on the Program
Properties dialog box Temp Table tab is selected, PeopleTools inserts rows into the base table using
PROCESS_INSTANCE as a key. If you do not include PROCESS_INSTANCE as a key field in a
temporary table, select theAbort Temp Table tab runtime option.

Temporary Table Performance Considerations

When you run batch processes in parallel, there is a risk of data contention and deadlocks on temporary
tables. To avoid this, Application Engine has a feature that enables you to dedicate specific instances
of temporary tables for each process. When Application Engine manages a dedicated temporary table
instance, it controls the locking of the table before use and the unlocking of the table after use.

When you decide on the number of instances for temporary tables for a process, you must consider the
number of temporary tables that the process uses. The more instances you have, the more copies of the
temporary tables you will have in your system. For example, if a process uses 25 temporary tables and
you have 10 instances for a process, then you will have 250 temporary tables in your system.

On the other hand, if you are running a process in parallel and all of the dedicated temporary table
instances are in use, processing performance will be slower. Therefore, you will need to find a balance
that works for your organization.

232 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

If you need more temporary table instances after you have entered production, you must rebuild all of
your temporary tables so that the database reflects the proper inventory of instances. While the build
process runs, users cannot access the database. Because of this, spend time deriving adequate estimates as
to the number of temporary tables required.

A physical table within the database, named PS_AEONLINEINST, stores online temporary table instance
usage. If you notice performance issues related to online Application Engine program runs, enable the
Application Engine SQL and Timings trace.

If the following SQL command requires more time than normal to complete, then the number of online
temporary instances defined on the PeopleTools Options page is probably insufficient.

UPDATE PS_AEONLINEINST ...

Defining Temporary Tables
To define a temporary table:

1. In Application Designer, select File, New.

2. Select Record from the New Definition dialog box.

3. Select Insert, Field, and insert the PROCESS_INSTANCE field.

4. Select the Record Type tab and select the Temporary Table option.

Setting the Number of Temporary Table Instances
Select PeopleTools > Utilities > Administration > PeopleTools Options to access the PeopleTools
Options page.

Copyright © 1988, 2025, Oracle and/or its affiliates. 233

Using Temporary Tables Chapter 10

This example illustrates the fields and controls on the PeopleTools Options page.

The system determines the total available number of temporary table instances for a base table according
to your settings for total and online instances on this page.

Field or Control Description

Temp Table Instances (Total) (temporary table instances
[total])

The difference between the total and online numbers is your
EPM-managed tables. If you are not using PeopleSoft EPM,
 the total and online numbers should be the same.

234 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

Field or Control Description

Temp Table Instances (Online) (temporary table instances
[online])

Enter the number of temporary table instances for Application
Engine processes started online from the PeopleCode
CallAppEngine function. In general, the number you enter
should be relatively small (less than 10) so that extra instances
do not affect performance.

Application Engine uses this value to identify a range
of temporary tables devoted to programs called by the
CallAppEngine function. A randomizing algorithm balances
the load for the online process that is assigned to a temporary
table devoted to running the program online.

Building Table Instances
The system builds temporary table instances at the same time it builds a base table for the record
definition. When the system builds a table (as in Build, Current Object) and the record type is Temporary
Table, it determines the total number of instances of the temporary table based on the settings made on
PeopleTools Options page, and on the value of Instant Count, in Application Engine Program Properties,
Temp Tables tab in Application Designer.

When Instance Count is lowered and temporary tables are rebuilt, temporary table instances are dropped
and rebuilt. For instance, If the PeopleTools Option is set to 3 and Instance Count is 10 then there will
be 14 tables in the System Catalog. If the Instance Count were lowered to 5 and tables are rebuilt ,14
tables would still remain in the System Catalog. The last 5 tables TAO10, TAO11, TAO12, TAO13,
TAO14,need to be manually dropped to match what the Application Engine uses.

The system creates a maximum of 99 temporary table instances, even if the sum exceeds 99 for a
particular temporary table.

The naming convention for temporary table instances is: BaseTableName_Number, where Number is a
number between 1 and 99, as in PS_TEST_TMP23.

Note: You can take advantage of database-specific features such as table spaces and segmentation. For
instance, you may want to use the Build process to generate a data definition language (DDL) script and
then fine-tune the script before its execution, or you could place different sets of temporary tables on
different table spaces according to instance number.

Managing Temporary Table Instances

This section provides an overview of temporary table instance numbers and discusses how to:

• Assign temporary tables to programs.

• Adjust meta-SQL.

Copyright © 1988, 2025, Oracle and/or its affiliates. 235

Using Temporary Tables Chapter 10

Understanding Temporary Table Instance Numbers
You use the Temp Tables tab in the Program Properties dialog box to manage the number of different
batch or dedicated temporary tables required for each program definition and the number of instances of
each. You select all the necessary temporary table records to meet the needs of your program logic.

Note: You must set the instance count on the Temp Tables tab before building the tables in Application
Designer.

Regardless of the instance counts value in the Application Engine program properties or on the
PeopleTools Options page, make sure that you have the appropriate records assigned to the appropriate
programs. You also need to ensure that the SQL inside your Application Engine program contains the
correct usage of the %Table construct.

The number of temporary table instances built for a specific temporary table record during the SQL Build
process is the value of the total temporary table instances from the PeopleTools Options page added to the
sum of all the instance count values specified on the Temp Table tab for the Application Engine programs
that use that temporary table.

For example, assume that you defined APPLTMPA as a temporary record type, the number of total
temporary table instances is set to 10, and APPLTMPA appears in the Temp Tables tab in the Program
Properties dialog box for two Application Engine programs. In one program, the instance count is set to 3,
and in the other the instance count is set to 2. When you run the SQL Build process, PeopleTools builds a
total of 15 temporary table instances for APPLTMPA.

The total and online instance counts should be equal unless your PeopleSoft application documentation
provides specific instructions for setting these values differently. When the values are equal, the Temp
Table Instances (Total) field controls the number of physical temporary table instances to be used by
online programs that Application Designer creates for a temporary table record definition. If the value
for theTemp Table Instances (Online) field is less than the value for theTemp Table Instances (Total)
field, the difference between the two numbers provides a pool of tables for backward compatibility for
developers who took advantage of the %Table (record_name, instance_number) approach for manually
managing temporary table locking (such as in PeopleSoft EPM).

Assigning Temporary Tables to Programs
Open an Application Engine program in Application Designer. Select File, Definition Properties and then
select the Temp Tables tab.

236 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

This screenshot illustrates the fields and controls on the Program Properties dialog box: Temp Tables tab.

In the Record List box, include all the necessary temporary table records for this program.

In the Instance Count field, specify the number of copies of temporary tables for a program. Any time
you change the instance count, you should rebuild the temporary tables to ensure that the correct number
of instances is created and available for your programs.

Share Tables in Online Mode has to be selected if the online Application Engine program needs to share
the temporary table instances.

Copyright © 1988, 2025, Oracle and/or its affiliates. 237

Using Temporary Tables Chapter 10

If an Application Engine program is currently sharing the temporary table instances , deselect the Share
Tables in Online Mode to make the program use dedicated temporary tables. With Share Tables in Online
Mode disabled, any temporary table instance can be accessed by only one online process at a time. In case
no temporary table instances are available for an online Application Engine process, the process has to
wait until one of the temporary table instance is released by other processes.

Use Delete for Truncate Tableclears the temporary table by performing delete during Application
Engine process.

Note: The concept of dedicated temporary tables is isolated to the Application Engine program run.
The locking, truncate/delete from, and unlocking actions are designed to occur within the bounds of
an Application Engine program run. Therefore, the system does not keep a temporary table instance
available after the Application Engine program run is over.

Runtime Allocation of Temporary Tables

Online processes have their own set of dedicated temporary tables, defined globally on the PeopleTools
Options page. When you invoke a process online, PeopleTools randomly allocates a single temporary
table instance number to a program for all its dedicated temporary table needs. While the program runs,
no other program can use that instance number. Any other online process that happens to get the same
instance value waits for the first program to finish so that the instance number is unlocked.

In contrast, batch processes are allocated temporary table instances on a record-by-record basis. The
system begins with the lowest instance number available for each temporary table until all of the
temporary table instances are in use. If no temporary tables are available and you selected Continue for
theIf non-shared Tables cannot be assigned group box, then the base table is used, with the process
instance number as a key.

When a program ends normally or is cancelled with Process Monitor, the system automatically releases
the assigned instances.

Condition Online Batch

Temporary tables are allocated using
meta-SQL.

%Table(temp-tbl) %Table(temp-tbl)

Temporary tables are allocated at
runtime.

Psae.exe randomly assigns an instance
number from the number range on your
online temporary table setting on the
PeopleTools Options page. Psae.exe
uses that number for all tables for that
program run.

Individually allocates an instance
number based on availability on a
record-by-record basis. Psae.exe
begins with the lowest instance number
available for each temporary table, until
all of the instances are in use.

No temporary tables are free. For a particular record, if the instance is
currently in use and the program is set
to Continue, then the psae.exe queues
the program until the assigned instance
number becomes free.

If the program is set to Continue, the
system uses a shared base table.

If the program is set to Abort, then the
system terminates the program.

Never queues for a table.

238 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

Condition Online Batch

A temporary table is initially clear. Yes, when program instance becomes
available.

Yes, when assigned.

An instance number is locked. The lock is on when the program is
loading into memory.

The lock is on when the program is
loading into memory. For restartable
programs, the temporary tables remain
locked across restarts until the program
has completed successfully or until the
temporary tables are manually released
using Process Monitor or the Manage
Abends page.

An instance number is unlocked. Temp tables unlocked on completion of
program.

In the event of a kill or a crash, the
tables remain locked, and the tables must
be freed using Process Monitor or the
Manage Abends page.

If restart is disabled, the temporary tables
are unassigned automatically in the event
of a controlled abnormal termination.

If you cancel a process using Process
Monitor, PeopleTools frees the
temporary tables automatically.

When you use the Manage Abends page,
 you must click the Temp Tables button
corresponding to the correct process
instance, and then click theRelease
button on the Temporary Tables tab
of the Application Engine program
properties.

Note: After you manually release the temporary tables from their locked state, you lose any option to
restart the program run.

Sharing Temporary Table Data

Dedicated temporary tables do not remain locked across process instances. If sequential Application
Engine programs need to share data by way of temporary tables, a parent Application Engine program
should call the programs that share data.

Adjusting Meta-SQL
A critical step in implementing parallel processing is to ensure that you have included appropriate meta-
SQL within the code that your Application Engine program runs.

Referencing Temporary Tables

To reference a dedicated temporary table, you must use:

%Table(record)

Copyright © 1988, 2025, Oracle and/or its affiliates. 239

Using Temporary Tables Chapter 10

You can reference any table with %Table, but only those records defined as temporary tables are replaced
with a dedicated instance table by Application Engine. When you are developing programs that take
advantage of %Table, choose temporary table indexes carefully. Depending on the use of the temporary
table in your program and your data profile, the system indexes may be sufficient. On the other hand,
a custom index may be needed instead, or perhaps no indexes are necessary at all. Consider these
issues when designing your application. You want to define indexes and SQL that perform well in most
situations, but individual programs or environments may require additional performance tuning during
implementation.

Note: The default table name refers to PS_recname, where PS_recname1,2,… represents the dedicated
temporary tables.

As Application Engine resolves any %Table, it checks an internal array to see if a temporary table
instance has already been chosen for the current record. If so, then Application Engine substitutes the
chosen table name. If not, as in when a record does not appear in the temp table list for the program, then
Application Engine uses the base table instance (PS_recname) by default. Regardless of whether %Table
is in PeopleCode SQL or in an Application Engine SQL Action, the program uses the same physical SQL
table.

Populating a Temporary Table Process Instance with a Process Instance

All temporary tables should be keyed by process instance. If you use the Continue option when batch
or dedicated tables cannot be assigned,Process Instance is required as a key field. The current process
instance is automatically put into the state record, but when you insert rows into your temporary tables
you must supply that process instance. Use %ProcessInstance or %Bind(PROCESS_INSTANCE) meta-
SQL to return the numeric (unquoted) process instance.

The process instance value is always zero for programs initiated with the CallAppEngine function
because the program called with CallAppEngine runs in process. That is, it runs within the same unit of
work as the component with which it is associated.

If you are using dedicated tables and have elected to continue if dedicated tables cannot be assigned, then
SQL references to dedicated temporary tables must include PROCESS_INSTANCE in the Where clause.

Clearing Temporary Tables

You do not need to delete data from a temporary table manually. The temporary tables are truncated
automatically when they are assigned to your program. If a shared base table has been allocated because
no dedicated instances were available, then Application Engine performs a delete by process instance
instead of performing a truncate. In such a case, PROCESS_INSTANCE is required as a high-level key.

You can perform additional deletes of temporary table results during the run, but you must include your
own SQL action that uses the %TruncateTable function. If the shared base table has been allocated
because no dedicated instances were available, then %TruncateTable is replaced with a delete by process
instance instead of a truncate.

Note: You should always use %TruncateTable to perform a mass delete on dedicated temporary tables,
especially if the Continue option is in effect.

Even if you elected to terminate the program if a dedicated table cannot be allocated, you may still
use %TruncateTable meta-SQL with dedicated temporary tables. %TruncateTable resolves to either a
Truncate or a Delete by process instance, as needed.

240 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

The argument of %TruncateTable is a table name instead of a record name. As a result, you must code
your SQL as shown in this example:

%TruncateTable(%Table(recname))

Note: You should avoid hard-coded table names inside %TruncateTable because they preclude the
possibility of concurrent processing.

Use Delete for Truncate Table to delete the temporary tables during Application Engine allocation
process. This feature will not delete the temporary tables by default during the allocation. If Use Delete
for Truncate Table option is selected delete is performed in all the cases.

Open an Application Engine program in Application Designer. Select File, Definition Properties and then
select the Temp Tables tab. Select the Use Delete for Truncate Table to improve the Application Engine
process performance.

Related Links
“Specifying Trace Settings” (System and Server Administration)

Making External Calls

When you call one Application Engine program from another, the assignment of dedicated tables for the
called, or child, program occurs only if the calling, or parent, program is in a state where a commit can
occur immediately.

PeopleTools enables you to commit immediately so that Application Engine can commit the update it
performs to lock the temporary table instance. Otherwise, no other parallel process could perform any
assignments. In general, you should issue a commit just before the Call Section action.

While making external program calls, note that:

• If the situation is suitable for a commit, then the temporary table assignment and the appropriate
truncates occur.

• If the situation is not suitable for a commit and the called program is set to continue if dedicated
tables cannot be allocated, then the base tables are used instead and a delete by process instance is
performed.

• If the situation is not suitable for a commit and the called program is set to terminate if dedicated
tables cannot be allocated, then the program run terminates.

This situation reflects an implementation flaw that you need to correct.

• The called Application Engine program is allowed to share temporary tables with the calling program.

Common temporary tables are the way you share data between the calling and called programs.
Application Engine locks only instances of temporary tables that have not already been used during
the current program run. Temporary tables that already have an assigned instance continue to use that
instance.

Copyright © 1988, 2025, Oracle and/or its affiliates. 241

Using Temporary Tables Chapter 10

External Calls in Batch Mode

For batch runs, list in the program properties of the root program all of the temporary tables that any
called programs or sections use to ensure that the tables are locked sooner and as a single unit. This
approach can improve performance, and it ensures that all the tables required by the program are ready
before a run starts.

External Calls in Online Mode

If the online program run is designed to use any temporary tables at any point during the CallAppEngine
unit of work, then the root program must have at least one temporary table specified in the Application
Engine program properties. This statement is true even if the root program does not use temporary tables.
Having at least one temporary table specified is required so that the system locks the instance number
early so as to avoid an instance assignment failure after the process has already started processing.

All temporary tables used by a specific program, library, or external section must be specified in that
program to ensure that the system issues truncates (deletes) for the tables being used.

If no temporary tables appear in the root program properties and if Application Engine encounters a
%Table reference for a temporary table record, then an error appears.

Sample Implementation

The following scenario describes the runtime behavior of Application Engine and temporary tables.

Assume you have Program A and Program B and three temporary table definitions: PS_TMPA,
PS_TMPB, and PS_TMPC. Values on the Temporary Tables tab in the Program Properties dialog box for
each program are:

• Program A: PS_TMPA and PS_TMPB are specified as the dedicated temporary tables, and the
instance count is 4.

• Program B: PS_TMPB and PS_TMPC are specified as the dedicated temporary tables, and the
instance count is 3.

After you run the SQL Build process in Application Designer, the following inventory of temporary tables
appears in the database.

For PS_TMPA:

• PS_TMPA1

• PS_TMPA2

• PS_TMPA3

• PS_TMPA4

For PS_TMPB:

• PS_TMPB1

• PS_TMPB2

• PS_TMPB3

242 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

• PS_TMPB4

• PS_TMPB5

• PS_TMPB6

• PS_TMPB7

For PS_TMPC:

• PS_TMPC1

• PS_TMPC2

• PS_TMPC3

Because the instance count for Program A is 4, the system builds four instances of PS_TMPA and
PS_TMPB for Program A to use. Because the instance count for Program B is 3, the system builds an
additional three instances of PS_TMPB and three instances of PS_TMPC for Program B to use.

Notice that because Program A and Program B are sharing PS_TMPB, seven instances were built. The
system derives this total by adding the instance count value from all the programs that share a particular
temporary table instance. In this case, the four from Program A and the three from Program B combine to
require a total of seven instances of PS_TMPB to be built.

Given that this collection of temporary tables exists in your database, assume that you start Program A. At
runtime, Application Engine examines the list of temporary tables dedicated to Program A and assigns the
first available instances to Program A. Then, assuming that no other programs are running, Application
Engine assigns PS_TMPA1 and PS_TMPB1 to Program A.

Suppose that shortly after you started Program A, another user starts Program B. Again, Application
Engine examines the list of temporary tables dedicated to Program B and assigns the first available
instances. In this scenario, Application Engine assigns PS_TMPB2 and PS_TMPC1 to Program B.
Because Program A is already using PS_TMPB1, the system assigns PS_TMPB2 to Program B.

The system assigns records, such as TMPA, to programs. The base tables, such as PS_TMPA, are also
built, by default, in addition to the dedicated temporary instances. If the Program Properties dialog box
setting for the Temp Tables tab is set to Continue when no instances are available, then the system uses
the base table instead of the dedicated instance.

Viewing Temporary Table Usage

This section discusses how to:

• View temporary table usage by record.

• View temporary table settings by program.

• View online instance usage.

• Resolve the temporary table usage warning message.

Copyright © 1988, 2025, Oracle and/or its affiliates. 243

Using Temporary Tables Chapter 10

Viewing Temporary Table Usage by Record
Select PeopleTools > Application Engine > Review AE Temp Table Usage to access the Temp Table
Usage by Record page.

This example illustrates the fields and controls on the Temp Table Usage by Record page. You can find
definitions for the fields and controls later on this page.

If you implemented temporary tables for parallel Application Engine program runs, use this page and
the Temp Table Usage by Program page to find out how the system allocates temporary tables to your
programs.

Parallel processing is designed to be a performance enhancing option. However, if the demand for
temporary table instances consistently exceeds the current supply, performance suffers. Also, in other
situations, your inventory of temporary table instances may far outnumber demand. Here, you may
consider reducing the number of instances provided to conserve system resources.

This page shows you the following metrics for evaluating inventory and allocation of temporary tables.

Field or Control Description

Program Use Count Shows the instance count of the listed program.

Total Instances Shows the total number of existing instances of a temporary
table.

Locked Instances Shows the current number of instances that the system has
locked for program runs.

Unused Instances Shows the current number of instances that are available for
use.

244 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

Viewing Temporary Table Settings by Program
Select PeopleTools > Application Engine > Review Temporary Table Usage > Temp Table
Settings by Program to access the Temp Table Settings by Program page.

This screenshot shows the fields and controls on the Temp Table Settings by Program page.

If the Application Engine process was started in Process Monitor, you can select PeopleTools, Application
Engine, Manage AE Abends to access the Manage Abends page and then the Process Monitor.

Viewing Online Instance Usage
Select PeopleTools > Application Engine > Online AE Instance Locks to access the Online Instance
Usage page.

Copyright © 1988, 2025, Oracle and/or its affiliates. 245

Using Temporary Tables Chapter 10

This example illustrates the fields and controls on the Online Instance Usage page.

Resolving the Temporary Table Usage Warning Message
If an Application Engine batch program is unable to get a dedicated temporary table because all instances
are locked, but it can use the base table, the system issues a warning. However, if the program is set to
terminate when a dedicated instance is not available, then the program terminates even if the base table
can be used.

You could see the warning message in two ways:

• A warning message appears in the standard output of the process.

When running from the command prompt, the message appears in that window. When the program
is running on a server through PeopleSoft Process Scheduler, the output is sent to the standard status
file, which you can access using Process Monitor.

• A warning message appears in the AET trace file if a dedicated temporary table instance cannot be
locked because none is available.

This message appears in the trace file regardless of the trace settings you selected.

If you see the warning about base temporary table usage, then an insufficient number of temporary table
instances are defined or some locked instances must be released.

When a restartable process terminates abnormally, the temporary tables stay locked to enable a smooth
restart. However, if you do not want to restart the process, then you must release the locked temporary
tables. When you cancel the process using Process Monitor, the release of locked temporary tables occurs

246 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Temporary Tables

automatically. If the process was not launched through PeopleSoft Process Scheduler, Process Monitor
does not track the process and you must use the Manage Abends page to release temporary tables used by
processes invoked outside of PeopleSoft Process Scheduler.

Copyright © 1988, 2025, Oracle and/or its affiliates. 247

Using Temporary Tables Chapter 10

248 Copyright © 1988, 2025, Oracle and/or its affiliates.

	Legal Notices
	Contents
	Preface
	Understanding the PeopleSoft Online Help and PeopleBooks
	Hosted PeopleSoft Online Help
	Locally Installed PeopleSoft Online Help
	Downloadable PeopleBook PDF Files
	Common Help Documentation
	Field and Control Definitions
	Typographical Conventions
	ISO Country and Currency Codes
	Region and Industry Identifiers
	Translations and Embedded Help

	Using and Managing the PeopleSoft Online Help
	PeopleTools Related Links
	Contact Us
	Follow Us

	Getting Started With Application Engine
	Application Engine Overview
	Application Engine Implementation

	Understanding Application Engine
	Application Engine Fundamentals
	Meta-SQL
	Application Engine Program Elements
	Sections
	Steps
	Actions
	State Records

	Application Engine Program Types
	Application Engine Program Types
	Daemon Program Type
	Transform Program Type

	Creating Application Engine Programs
	Viewing Application Engine Programs
	Using Definition View
	Using Program Flow View
	Switching Between Definition and Program Flow Views
	Using the Refresh Option
	Using the Zoom Options

	Filtering View Contents
	Printing Program and Flow Definitions
	Creating, Opening, and Renaming Programs
	Creating New Programs
	Opening Existing Programs
	Renaming Programs

	Copying or Moving Program Elements
	Testing Application Engine Programs
	Setting Program Properties
	Accessing Properties
	Setting General Properties
	Setting State Record Properties
	Specifying Temporary Tables
	Setting Advanced Properties

	Adding Sections
	Understanding Sections
	Inserting Sections
	Locating Sections
	Setting Section Properties

	Adding Steps
	Inserting Steps
	Setting Up Step Properties

	Specifying Actions
	Understanding Actions
	Inserting Actions
	Setting Action Properties
	Specifying SQL Actions
	Specifying Do Actions
	Specifying PeopleCode Actions
	Specifying Call Section Actions
	Specifying Log Message Actions
	Specifying XSLT Actions

	Developing Efficient Programs
	Using State Records
	Understanding State Records
	Sharing State Records
	Choosing a Record Type for State Records

	Setting Commits
	Reusing Statements
	Using the Bulk Insert Feature
	Using Set Processing
	Understanding Set Processing
	Using Set Processing Effectively
	Avoiding Row-by-Row Processing
	Using Set Processing Examples

	Using Meta-SQL and PeopleCode
	Understanding Application Engine Meta-SQL
	Using PeopleCode in Application Engine Programs
	Understanding PeopleCode and Application Engine Programs
	Deciding When to Use PeopleCode
	Considering the Program Environment
	Accessing State Records with PeopleCode
	Using If/Then Logic
	Using PeopleCode in Loops
	Using the AESection Class
	Making Synchronous Online Calls to Application Engine Programs
	Using the File Class
	Calling COBOL Modules
	Calling PeopleTools APIs
	Using the CommitWork Function
	Calling WINWORD Mail Merge
	Using PeopleCode Examples

	Including Dynamic SQL
	Using Application Engine Meta-SQL
	%Abs
	%AeProgram
	%AeSection
	%AeStep
	%AsOfDate
	%AsOfDateOvr
	%BINARYSORT
	%Bind
	%Cast
	%ClearCursor
	%COALESCE
	%Comma
	%Concat
	%CurrentDateIn
	%CurrentDateOut
	%CurrentDateTimeIn
	%CurrentDateTimeOut
	%CurrentTimeIn
	%CurrentTimeOut
	%DateAdd
	%DateDiff
	%DateIn
	%DateNull
	%DateOut
	%DatePart
	%DateTimeDiff
	%DateTimeIn
	%DateTimeNull
	%DateTimeOut
	%DecDiv
	%DecMult
	%Delete
	%DTTM
	%EffDtCheck
	%Execute
	%ExecuteEdits
	%FirstRows
	%GetNextSeqValue
	%GetProgText
	%Insert
	%InsertSelect
	%InsertSelectWithLongs
	%InsertValues
	%IsRunningOnline
	%Join
	%JobInstance
	%KeyEqual
	%KeyEqualNoEffDt
	%LeftParen
	%Like
	%LikeExact
	%List
	%ListBind
	%ListEqual
	%Mod
	%Next and %Previous
	%NoUppercase
	%NumToChar
	%OldKeyEqual
	%ProcessInstance
	%ResolveMetaSQL
	%ReturnCode
	%RightParen
	%Round
	%RoundCurrency
	%RunControl
	%Select
	%SelectAll
	%SelectByKey
	%SelectByKeyEffDt
	%SelectDistinct
	%SelectInit
	%Space
	%SelectDummyTable
	%SQL
	%SqlHint
	%SQLRows
	%Substring
	%Table
	%Test
	%TextIn
	%TimeAdd
	%TimeIn
	%TimeNull
	%TimeOut
	%TimePart
	%TrimSubstr
	%Truncate
	%TruncateTable
	%Update
	%UpdatePairs
	%UpdateStats
	%Upper

	Managing Application Engine Programs
	Running Application Engine Programs
	Understanding Program Run Options
	Creating Process Definitions
	Listing Process Definition Parameters
	Starting Programs with the Application Engine Process Request Page
	Using PeopleCode to Invoke Application Engine Programs
	Using the Command Line to Invoke Application Engine Programs

	Debugging Application Engine Programs
	Enabling the Application Engine Debugger
	Setting Debugging Options

	Restarting Application Engine Programs
	Understanding Restart
	Determining When to Use Restart
	Controlling Abnormal Terminations
	Restarting Application Engine Programs
	Starting Application Engine Programs from the Beginning
	Enabling and Disabling Restart

	Caching the Application Engine Server
	Freeing Locked Temporary Tables
	Analyzing Application Engine Programs
	Configuring Application Engine Action Plug-ins

	Calling Application Engine Programs from COBOL
	Adding Copybooks to COBOL Programs
	Assigning Copybook Values
	Handling COBOL Errors

	Tracing Application Engine Programs
	Understanding Tracing Application Engine Programs
	Understanding Trace Results
	Trace File Sections
	Step Traces
	SQL Traces
	Statement Timings Traces
	Database Optimizer Traces

	Enabling Application Engine Tracing
	Setting Command Line Options
	Setting Parameters in Server Configuration Files
	Setting Client Options in PeopleSoft Configuration Manager
	Enabling Selective Tracing

	Collecting Application Engine Performance Data
	Setting Options in PeopleSoft Configuration Manager (two-tier mode)
	Setting Options in Domain Configuration Files (three-tier mode)
	Configuring Performance Data Collection

	Locating Trace Files

	Using Log Analyzer
	Understanding Log Analyzer
	Application Engine Call Structure
	SQL Information
	PeopleCode Information
	Filter

	Enabling Log Analyzer for Application Engine
	Setting Options in PeopleSoft Configuration Manager (two-tier mode)
	Setting Options in Domain Configuration Files (three-tier mode)
	Setting Options to Trace a Specific Application Engine Program

	Using Temporary Tables
	Understanding Temporary Tables
	Understanding Global Temporary Tables
	Creating Temporary Table Instances
	Understanding Temporary Table Instances
	Defining Temporary Tables
	Setting the Number of Temporary Table Instances
	Building Table Instances

	Managing Temporary Table Instances
	Understanding Temporary Table Instance Numbers
	Assigning Temporary Tables to Programs
	Adjusting Meta-SQL

	Making External Calls
	Viewing Temporary Table Usage
	Viewing Temporary Table Usage by Record
	Viewing Temporary Table Settings by Program
	Viewing Online Instance Usage
	Resolving the Temporary Table Usage Warning Message

