
PeopleTools 8.62: Component
Interfaces

December 2025

PeopleTools 8.62: Component Interfaces
Copyright © 1988, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement
or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users
are "commercial computer software," "commercial computer software documentation," or "limited rights data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained
in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by
the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create a
risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as
set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit https://
docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Preface: Preface..vii
Understanding the PeopleSoft Online Help and PeopleBooks.. vii

Hosted PeopleSoft Online Help...vii
Locally Installed PeopleSoft Online Help... vii
Downloadable PeopleBook PDF Files...vii
Common Help Documentation.. vii
Field and Control Definitions... viii
Typographical Conventions...viii
ISO Country and Currency Codes.. ix
Region and Industry Identifiers.. ix
Translations and Embedded Help.. x

Using and Managing the PeopleSoft Online Help... x
PeopleTools Related Links... x
Contact Us...x
Follow Us...xi

Chapter 1: Getting Started with PeopleSoft Component Interfaces.. 13
Overview... 13
Implementing PeopleSoft Component Interfaces... 13

Implementing the Excel to Component Interfaces Utility... 13
Chapter 2: Understanding Component Interfaces... 15

Understanding Component Interfaces...15
Component Interface Architecture..15
Component Interface Attributes..15

Name... 16
Keys.. 16
Properties.. 16
Collections.. 16
Methods...16

Component Interface Definitions and Views... 17
Chapter 3: Developing Component Interfaces... 21

Understanding Stateful CI.. 21
Creating Component Interface Definitions...21

Understanding Creating Component Interface Definitions..21
Creating New Component Interfaces... 22
Naming Component Interface Definitions... 24
Associating Component Interfaces with Menus.. 24
Determining the Fields to Expose in Component Interfaces... 25
Drop Zones in Component Interfaces..26

Using Keys..27
Understanding Keys... 27
Adding and Deleting Keys...28

Setting Properties.. 29
Understanding Standard Properties.. 29
Creating User-Defined Properties.. 38
Deleting User-Defined Properties.. 39
Renaming User-Defined Properties..39

Copyright © 1988, 2025, Oracle and/or its affiliates. iii

Contents

Creating Reference Properties..40
Making Properties Read-Only..42

Working with Collections... 42
Working with Methods... 43

Understanding Session Functions and Methods.. 43
Understanding Standard Methods.. 44
Understanding Collection Methods..47
Enabling and Disabling Standard Methods..50
Creating User-Defined Methods.. 51
Exporting User-Defined Methods.. 53

Validating Component Interfaces..53
Setting Security Options... 55
Testing Component Interfaces.. 56

Searching Component Interfaces to Test... 56
Testing Component Interfaces..59
Determining ItemByKeys Parameters..62

Understanding Synchronization.. 63
Writing Component Interface Programs...64
Understanding Runtime Considerations... 65

General Considerations...65
Scope Conflicts...65
Interactive Mode...66

Chapter 4: Programming Component Interfaces Using PeopleCode...67
Understanding PeopleCode Behavior and Limitations...67

PeopleCode Event and Function Behavior.. 67
CopyRowset Language Considerations..68
Limitations of Client-Only PeopleCode...69

Generating PeopleCode Templates to Access Component Interfaces.. 69
Understanding PeopleCode Templates... 70

Chapter 5: Programming Component Interfaces in Java... 73
Building APIs in Java...73
Setting Up the Java Environment...73
Generating Java Runtime Code Templates...74
Understanding the Java Template...75

Chapter 6: Programming Component Interfaces in C++..79
Building APIs for C++... 79
Setting Up the C++ Environment...79

Setting Up Client Machines to Access C++ APIs...80
Configuring Compilers for C++ Projects...80

Generating C++ Runtime Code Templates...81
Understanding the C++ Template...82

Chapter 7: Using the Component Interface Software Development Kit... 87
Understanding the Component Interface SDK...87

Component Interface SDK Samples.. 87
Prerequisites for Using the Component Interface SDK... 87
Using the SDK_BUS_EXPENSES Test Page..88
Testing the SDK_BUS_EXP Component Interface... 88
Using the Component Interface SDK Sample in Java and C+ +... 89

Understanding using the Component Interface SDK Samples in Java and C++........................... 89
Building the Component Interface SDK Sample (Java)..89
Building the Component Interface Sample (C++)...89

iv Copyright © 1988, 2025, Oracle and/or its affiliates.

Contents

Running the Component Interface SDK Sample in Java and C++..89
Interpreting the Code for the Component Interface SDK Sample (Java)...................................... 90
Interpreting the Code for the Component Interface SDK Sample (C++)...................................... 92

Chapter 8: Using the Excel-to-Component Interface Utility...95
Understanding the Excel-to-Component Interface Utility..95

Prerequisites for Using the Excel to CI Utility... 95
Understanding Building Component Interfaces for the Excel to Component Interface Utility............96

Testing Component Interfaces..96
Performance Expectations.. 97
PeopleCode Behavior and Limitations...97
Default Properties... 97

Running the Excel to Component Interface Utility..98
Granting Access to the WEBLIB_SOAPTOCI iScript..98
Enabling the Developer Menu in Microsoft Excel 2007 and Later Versions................................ 98
Enabling Macros in Microsoft Excel... 99
Starting the Excel to Component Interface Utility.. 100
Converting Excel to Component Interface Utility Templates to the Current Excel Version........ 100
Viewing the Excel to Component Interface Coversheet.. 100

Setting Up Connection Information... 101
Entering Connection Information...101
Translations and Multilingual Support...105
Connecting to the Database to Create a Template and Submit Data... 105

Creating Templates..106
Understanding the Template Actions Toolbar..109
Entering Data into the Template.. 110

Entering Data on the Data Input Sheet.. 111
Using the Data Input Sheet..111

Viewing the Staged Data.. 112
Correcting and Resubmitting Data...114

Creating SOAP/XML Requests.. 115
Request Format...115
Sample Create Request...115
Sample Get Request... 116
Sample Update Request... 116
Sample Updatedata Request...116

Sending Requests.. 117
Receiving Responses...117

Viewing a Response if a Row Already Exists...117
Viewing a Sample Get Request and Response.. 118

Diagnosing and Resolving Errors...118
Viewing Log Files.. 119
Viewing HTML Page... 119
Resolving Error Messages for Client Environments... 119

Chapter 9: Creating Component Interface-Based Services.. 121
Understanding Generating Component Interfaced-Based Services..121

Chapter 10: Using Services to Validate Prompt Table and Translate Field Values.......................... 123
Understanding Validating Prompt Table and Translate Field Values... 123
Prerequisites for Validating Prompt Table and Translate Field Values.. 124
Validating Prompt Table Field Values.. 124

Understanding Validating Set Control Fields...125
Using the PTLOOKUPPROMPT Service Operation.. 125

Copyright © 1988, 2025, Oracle and/or its affiliates. v

Contents

Using the PTLOOKUPPROMPT_REST_GET Service Operation... 125
Validating Translate (XLAT) Field Values... 127

Understanding Translate (XLAT) Table Entries.. 127
Understanding Security When Validating Translate (XLAT) Field Values..................................127
Using the PTLOOKUPXLAT Service Operation.. 128
Using the PTLOOKUPXLAT_REST_GET Service Operation...128

Using Messages to Request Valid Prompt Field and Translate (XLAT) Field Values........................129
Using Response Messages to Retrieve Valid Prompt Field and Translate (XLAT) Field Values....... 131
Examples: Validating Prompt Field and Translate (XLAT) Field Values...132

Example 1: Validating a Translate (XLAT) Field..132
Example 2: Performing a Prompt Table Lookup with a Field Value Wildcard........................... 133
Example 3: Filtering Field Values by Name/Value Pairs...134
Example 4: Specifying Set Control Field Values to Validate Field Values Controlled by Set
Control Fields... 135
Example 5: Specifying Set Control ID Values to Validate Field Values Controlled by Set ID
Values..136

vi Copyright © 1988, 2025, Oracle and/or its affiliates.

Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

Hosted PeopleSoft Online Help
You can access the hosted PeopleSoft Online Help on the Oracle Help Center. The hosted PeopleSoft
Online Help is updated on a regular schedule, ensuring that you have access to the most current
documentation. This reduces the need to view separate documentation posts for application maintenance
on My Oracle Support. The hosted PeopleSoft Online Help is available in English only.

To configure the context-sensitive help for your PeopleSoft applications to use the Oracle Help Center,
see Configuring Context-Sensitive Help Using the Hosted Online Help Website.

Locally Installed PeopleSoft Online Help
If you’re setting up an on-premises PeopleSoft environment, and your organization has firewall
restrictions that prevent you from using the hosted PeopleSoft Online Help, you can install the online help
locally. Installable PeopleSoft Online Help is made available with selected PeopleSoft Update Images and
with PeopleTools releases for on-premises installations, through the Oracle Software Delivery Cloud.

Your installation documentation includes a chapter with instructions for how to install the online help
for your business environment, and the documentation zip file may contain a README.txt file with
additional installation instructions. See PeopleSoft 9.2 Application Installation for your database platform,
“Installing PeopleSoft Online Help.”

To configure the context-sensitive help for your PeopleSoft applications to use a locally installed online
help website, see Configuring Context-Sensitive Help Using a Locally Installed Online Help Website.

Downloadable PeopleBook PDF Files
You can access downloadable PDF versions of the help content in the traditional PeopleBook format on
the Oracle Help Center. The content in the PeopleBook PDFs is the same as the content in the PeopleSoft
Online Help, but it has a different structure and it does not include the interactive navigation features that
are available in the online help.

Common Help Documentation
Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

• Application Fundamentals

Copyright © 1988, 2025, Oracle and/or its affiliates. vii

https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_HOSTED
https://edelivery.oracle.com
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_LOCAL
https://docs.oracle.com/en/applications/peoplesoft/index.html

Preface

• Using PeopleSoft Applications

Most product families provide a set of application fundamentals help topics that discuss essential
information about the setup and design of your system. This information applies to many or all
applications in the PeopleSoft product family. Whether you are implementing a single application, some
combination of applications within the product family, or the entire product family, you should be familiar
with the contents of the appropriate application fundamentals help. They provide the starting points for
fundamental implementation tasks.

In addition, the PeopleTools: Applications User's Guide introduces you to the various elements of the
PeopleSoft Pure Internet Architecture. It also explains how to use the navigational hierarchy, components,
and pages to perform basic functions as you navigate through the system. While your application or
implementation may differ, the topics in this user’s guide provide general information about using
PeopleSoft applications.

Field and Control Definitions
PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions
The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign
(+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

. . . (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
 Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
 an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

viii Copyright © 1988, 2025, Oracle and/or its affiliates.

Preface

Typographical Convention Description

⇒ This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

ISO Country and Currency Codes
PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY_CD_TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY_TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers
Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

• Asia Pacific

• Europe

• Latin America

• North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

• USF (U.S. Federal)

Copyright © 1988, 2025, Oracle and/or its affiliates. ix

Preface

• E&G (Education and Government)

Translations and Embedded Help
PeopleSoft 9.2 software applications include translated embedded help. With the 9.2 release, PeopleSoft
aligns with the other Oracle applications by focusing our translation efforts on embedded help. We
are not planning to translate our traditional online help and PeopleBooks documentation. Instead we
offer very direct translated help at crucial spots within our application through our embedded help
widgets. Additionally, we have a one-to-one mapping of application and help translations, meaning that
the software and embedded help translation footprint is identical—something we were never able to
accomplish in the past.

Using and Managing the PeopleSoft Online Help

Select About This Help in the left navigation panel on any page in the PeopleSoft Online Help to see
information on the following topics:

• Using the PeopleSoft Online Help.

• Managing hosted Online Help.

• Managing locally installed PeopleSoft Online Help.

PeopleTools Related Links

PeopleTools 8.62 Home Page

PeopleSoft Search and Insights Home Page

“PeopleTools Product/Feature PeopleBook Index” (Getting Started with PeopleTools)

PeopleSoft Online Help

PeopleSoft Information Portal

PeopleSoft Spotlight Series

PeopleSoft Training and Certification | Oracle University

My Oracle Support

Oracle Help Center

Contact Us

Send your suggestions to psoft-infodev_us@oracle.com.

Please include the applications update image or PeopleTools release that you’re using.

x Copyright © 1988, 2025, Oracle and/or its affiliates.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=3076202.2
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2205540.2
https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/spotlight.html
https://docs.oracle.com/pls/topic/lookup?ctx=psft_hosted&id=ou
https://support.oracle.com/CSP/ui/flash.html
https://docs.oracle.com/en/
mailto:PSOFT-INFODEV_US@ORACLE.COM

Preface

Follow Us

Icon Link

Watch PeopleSoft on YouTube

Follow @PeopleSoft_Info on X.

Read PeopleSoft Blogs

Connect with PeopleSoft on LinkedIn

Copyright © 1988, 2025, Oracle and/or its affiliates. xi

http://www.youtube.com/user/PSFTOracle
https://twitter.com/PeopleSoft_Info
https://blogs.oracle.com/peoplesoft
https://www.linkedin.com/groups/4530781/?home=&gid=4530781&trk=anet_ug_hm

Chapter 1

Getting Started with PeopleSoft Component
Interfaces

Overview

A component interface is a set of application programming interfaces (APIs) that you can use to access
and modify PeopleSoft database information programmatically. PeopleSoft component interfaces expose
a PeopleSoft component (a set of pages grouped for a business purpose) for synchronous access from
another application (PeopleCode, Java, or C/C++). A PeopleCode program or an external program (Java,
or C/C++) can view, enter, manipulate, and access PeopleSoft component data, business logic, and
functionality. Additionally, you can use the Component Interface Tester to check the validity of your
component interface and the Excel to Component Interface Utility to manage your data.

Component interfaces are created in PeopleSoft Application Designer, so you should ensure that you are
familiar with PeopleTools and Application Designer.

This section provides information to consider before you begin to use PeopleSoft component interfaces.
In addition to implementation considerations presented in this section, take advantage of all PeopleSoft
sources of information, including the installation guides, release notes, and PeopleBooks.

Related Links
“PeopleSoft Application Designer Overview” (Application Designer Developer’s Guide)
“Using PeopleSoft Application Designer” (Application Designer Developer’s Guide)

Implementing PeopleSoft Component Interfaces

PeopleSoft PeopleTools include the functionality to create component interfaces for your applications.

Complete the following tasks before you begin creating component interfaces for your implementation:

• Install your Application according to the installation guide for your database type.

See the PeopleSoft installation guide for your platform and product line.

• Establish a user profile that gives you access to PeopleSoft Application Designer and any other
processes that you will use. See “Working With User Profiles” (Security Administration).

Implementing the Excel to Component Interfaces Utility
PeopleSoft provides the Excel to Component Interface utility that enables you to upload data from
Microsoft Excel into your PeopleSoft database. Several tasks are involved in setting up the Excel to
Component Interfaces Utility.

Copyright © 1988, 2025, Oracle and/or its affiliates. 13

Getting Started with PeopleSoft Component Interfaces Chapter 1

See Running the Excel to Component Interface Utility.

14 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 2

Understanding Component Interfaces

Understanding Component Interfaces

A component interface enables exposure of a PeopleSoft component (a set of pages grouped together for
a business purpose) for synchronous access from another application (such as PeopleCode, Java, C/C+
+, or XML). Component interfaces can be viewed as "black boxes" that encapsulate PeopleSoft data and
business processes, and hide the details of the underlying page and data. Component interfaces can be
used to integrate one application with another application or with external systems. Component interfaces
execute the business logic built into the component and as a result, they provide a higher level of data
validation than a simple SQL insert.

A component interface maps to one, and only one, PeopleSoft component. However, you can create
multiple component interfaces for the same component. You create component interfaces in PeopleSoft
Application Designer. Record fields on the component are mapped to the keys and properties of the
component interface. Methods are used to find, create, modify, or delete data.

Component Interface Architecture

The component interface architecture comprises three fundamental elements—components, component
interfaces, and the component interface API.

Every component interface has the following main attributes:

• Name.

• Keys (Get keys, Create keys, and Find keys).

• Properties and collections (fields and records).

• Methods.

Note: In most cases, component interfaces act like their associated components, meaning that PeopleCode
events typically trigger in the same order as the component. However, several runtime exceptions relate to
component interfaces and PeopleCode processing and search dialog box processing.

Related Links
“Understanding the Component Processor” (PeopleCode Developer’s Guide)

Component Interface Attributes

This section discusses the name, keys, properties, collections, and methods of component interfaces.

Copyright © 1988, 2025, Oracle and/or its affiliates. 15

Understanding Component Interfaces Chapter 2

Name
Each component interface requires a unique name that is specified when the component interface is
created. The calling programs use the name of the component interface to access properties and methods.

Keys
Keys are special properties containing values that retrieve an instance (Get keys) or a list of instances
(Find keys) of the component interface. When you create a new component interface, Get and Find keys
are created based on the search record definition for the underlying component. However, you can add,
remove, or change keys in PeopleSoft Application Designer. Create keys are created for components that
have the Add action enabled.

Properties
Properties provide access to both component data and component interface settings. Component interfaces
include two types of properties: standard and user-defined.

• Standard properties are assigned automatically when a component interface is created.

Standard properties can be set to true or false. These properties are not displayed in the PeopleSoft
Application Designer. Examples of standard properties include InteractiveMode, GetHistoryItems,
and EditHistoryItems.

• User-defined properties map to record fields on the PeopleSoft component and are displayed in the
PeopleSoft Application Designer.

A property can correspond to a field or a scroll (collection). You can control which user-defined
properties are included on the component interface.

Note: Every PeopleSoft Application Designer definition—including the component interface—has
a definition properties dialog box in which you make design-time settings for the definition. Those
properties should not be confused with the runtime properties that are discussed here.

Collections
A component interface collection is a special type of property that corresponds to a scroll. It contains
fields and subordinate scrolls as defined in its underlying component. By default, each collection uses the
name of the primary record for the underlying scroll.

Methods
A method is a function that performs a specific task on a component interface at runtime. As with
component interface properties, two main types of methods are available: standard and user-defined. For
example, you can use methods to save or create a new purchase order. Runtime access to each method is
determined by the security that you have for that specific method.

• Standard methods are those that are available for all component interfaces.

The Find, Get, Save, and Cancel methods are automatically generated by PeopleSoft Application
Designer when a new component interface is created. The Create method is created for components

16 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 2 Understanding Component Interfaces

that have the Add action enabled. In the component interface designer, standard methods are
highlighted in gray.

• User-defined methods are created in PeopleSoft Application Designer to provide added functionality
to the component interface.

These methods are functions that are made accessible through the component interface. Each function
maps to a user-defined method. In the component interface designer, user-defined methods are
highlighted in blue.

Component Interface Definitions and Views

You create, modify, and review your component interface definition by using PeopleSoft Application
Designer. You open the component interface definition just as you would any other definition, such as a
page or record.

When working with a component interface definition in PeopleSoft Application Designer, you see the
component view on the left and the component interface view on the right.

This example shows the component and component interface view in PeopleSoft Application Designer.

The component view shows records and scrolls in the component, using a tree representation. The
structure is the same as the one you see on the structure tab of a component in PeopleSoft Application
Designer. Drag the fields and collections that you want exposed to the component interface view.

The component interface view shows the exposed keys, properties, and methods, using a tree
representation. When you open a component interface, properties are displayed in the order in which they
appear in the component view.

Copyright © 1988, 2025, Oracle and/or its affiliates. 17

Understanding Component Interfaces Chapter 2

The tree nodes in both the component view and the component interface view have different icons. Some
icons are used in both the component view and the component interface view with slightly different
meanings. The following tables explain the meaning of each icon and column in the component interface
view.

Component Interface View Icons

This table lists the component interface view icons:

Term Definition

Component interface.

Term Definition

Group of keys.

Property that is a key field from the underlying record.

Alternate search key.

Group of properties or methods.

Collection.

Property or user-defined method.

Standard method.

Property that is a required field for the underlying record.

Item in a component interface that is no longer in sync with
the underlying component. For example, if a field on which
a property depends is deleted from the component, this icon
appears.

18 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 2 Understanding Component Interfaces

Component Interface View Columns

The following terms describe the columns in the component interface view.

Term Definition

Name Name of a specific element of a component interface (such as
the name of a property or method). The default name for field
properties is the field name. The default name for collections is
the primary record name.

Record Name of the underlying record on which a specific element is
based. If the underlying record name changes, the component
interface continues to point to the appropriate record.

Field Name of the field to which a component interface property
points. Like the record name, the underlying field name can
change, and the component interface continues to point to the
appropriate field.

Read Only Y in this column indicates that a specific property has been
marked read-only.

Comment Identifies comments that exist in the Edit Property dialog box
for the selected key, property, or collection.

Note: In the component interface view, properties appear in the same order as they appear in the
component and are not sorted alphabetically.

Copyright © 1988, 2025, Oracle and/or its affiliates. 19

Understanding Component Interfaces Chapter 2

20 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3

Developing Component Interfaces

Understanding Stateful CI

For any PeopleTools release before PeopleTools 8.55, the Component interfaces could be defined as
local variables. When you initialized the local variable it required to load the legacy component every
time. For which you faced delays and the system performance suffered because when the component
interface with large and complex legacy component was called from multiple events, the local variable
was initialized multiple times in each event.

If you wanted to change the data in the legacy component, then you had to call the Save method of the
component interface each time.

Considering the complexity involved in accessing the component interface object from multiple events,
it is feasible to load the component interface one time. For which, you should declare the component
interface as a Stateful CI which means declare the component interface as a component or global
variable. Benefits of using a Stateful CI are:

• Easy to reuse in different events.

• One- time loading of the legacy component.

• Data changes saved across different events and different server trips.

The performance of the component interface improves because:

• There is no need to instantiate the component interface instance in every local scope.

• There is no need to load data for legacy component used in the CI.

• There is no need to run PreBuild and PostBuild events number of times.

• There is no need to call Save method in every local scope to keep the data changes.

Creating Component Interface Definitions

This section discusses how to create and work with component interface definitions.

Understanding Creating Component Interface Definitions
This section discusses key concepts for creating component interface definitions.

Copyright © 1988, 2025, Oracle and/or its affiliates. 21

Developing Component Interfaces Chapter 3

Component Structure

You must know the structure of the component for which you are constructing a component interface
because each component interface refers to a single component. You can use an existing component
within an application or create a new one for the sole purpose of constructing a component interface.
Many parts of the component interface, such as the keys, are created based on settings in the referenced
component.

Criteria for Setting Automatic Default Properties

To be able to set automatic defaults for fields in the new component interface, the system needs the
properties to be of a specific field or page control type.

The fields should be of the following types:

• Character

• Long character

• Number

• Signed number

• Date

• Time

• Datetime

The field should be one of the following page control types:

• Edit box

• Drop-down list box

• Check box

• Radio button

The field cannot be invisible and should not be the same as the key field of the immediate parent.

Collections must have at least one child property that satisfies the field or page control criteria for
providing the field by default. Collections with no properties are not added.

For a field on a secondary page to be selected for the default properties process, it must satisfy all the
criteria for field type and page control and must be at the same level as the host page.

Additionally, the component tree that a component interface uses to order the properties lists the fields in
the record based on their order in the record definition and not the order of the fields on the page. If the
component tree lists the fields of a record based on the page, the properties of the component interface
will reflect that order.

Creating New Component Interfaces
This section discusses how to create a new component interface.

22 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

This example shows a new component interface with no properties yet defined.

To create a new component interface:

1. Select File > New from the PeopleSoft Application Designer menu.

2. Select Component Interface from the New dialog box.

3. Select the component on which to base this component interface.

After you select the appropriate component, you see a message asking whether you want the fields
that are exposed in the selected component to become the default properties of the component
interface.

Note: Not all fields on the component interface can have automatic defaults created for them.

4. Click Yes to confirm the default property definitions or No if you don’t want any properties initially
created.

If you elect to have the property definitions automatically provided by the system by default, then
all properties that appear on the pages of the underlying component are added to the component
interface. Even though the system adds the default properties, you may need to move other properties
into the component view for the component to work.

An untitled component interface appears, showing the Get keys and Find keys. Create keys are
produced only if the underlying component can run in Add mode (the example preceding this
procedure does not have Create keys, because the search record of the underlying component
cannot run in Add mode). PeopleSoft Application Designer generates the keys for you as you drag
definitions.

The standard methods Cancel, Find, Get, and Save are automatically created. The Create method is
not automatically created unless the component supports the Add mode.

Copyright © 1988, 2025, Oracle and/or its affiliates. 23

Developing Component Interfaces Chapter 3

Note: You can begin adding properties to a new component interface at any point. However, you
cannot add any user-defined methods to the component interface until you have saved the component
interface.

5. Save the component interface.

After you have saved the component interface, you can further define user-defined methods.

Naming Component Interface Definitions
Like every other definition in PeopleTools, component interfaces must have unique names. The naming of
component interfaces should be consistent and systematic. Also, the name should not be changed after the
component interface is part of a production system—other applications depend on a consistent name with
which to reference the component interface.

If you are changing the structure of a component interface such that an existing program can no longer
access it correctly, create a new component interface rather than updating the existing one. No version
property is on a component interface, so if you must create a new version of a delivered component
interface, adhere to a standard naming guideline to avoid confusion. A suggested naming guideline is:

• LOCATION (original component interface).

• LOCATION_V2 (version two of the component interface).

Associating Component Interfaces with Menus
This applies to component interfaces built from components that are already attached to one or more
menus.

24 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Use the Properties – General tab to associate a component interface with a menu.

To associate a component interface with a menu:

1. Select File > Open from the PeopleSoft Application Designer menu to open an existing component
interface.

2. Select File > Definition Properties from the PeopleSoft Application Designer menu.

The Definition Properties dialog box appears.

3. Select the appropriate menu name on the General tab for this component interface.

Note: Associate a menu with a component interface only when PeopleCode is in the component that
uses the %Menu system variable.

Determining the Fields to Expose in Component Interfaces
You expose fields from a component in the component interface by dragging a record field or a scroll
from the component view into the component interface view. However, some forethought is required
before exposing a component as a component interface. You need to have a thorough understanding of the
underlying component so that you expose fields that are required in the external system. For example, if

Copyright © 1988, 2025, Oracle and/or its affiliates. 25

Developing Component Interfaces Chapter 3

the component has a field called SSN, you need to be sure that the SSN field is required before exposing
it to the external system. Expose only those properties that are necessary.

The component view displays fields that are available in the component buffer at runtime. For example, if
a record containing 10 fields has only 3 fields included on a page, then the component view will list only
those 3 fields.

The first time that you drag a scroll from the component view to the component interface view, the system
uses the following rules to determine what properties to expose:

• Keys are exposed only at the highest-level collection in which they first appear.

In some cases, this is not appropriate. When an effective-dated component that has the same level-
zero and level-one record is exposed through a component interface, it should be exposed the same
way in which it appears on a page in the component. In this case, only one key field typically appears
at level zero and the effective-date keys appear at level one. The component interface wrapper should
expose the page in the same fashion—removing keys that do not appear in the level-zero scroll from
the component interface top-level collection and manually adding keys that appear in level-one scroll
to the second-level collection.

Typically, you do not want to expose Get keys or Create keys as properties, because these are set
before a Get or Create operation and might be inadvertently changed.

• Make sure that you do not delete all the properties within the collection; that would result in an
empty collection. If such empty collections exist, remove them; otherwise, they appear with X in the
component interface view.

• If your page does not support Add mode, then you should not expose the level-zero record of the
component, because it contains data that is not specific to the component interface that you are
creating.

• Do not expose fields that are not visible in the component view.

The component optimization code might eliminate unused fields from its buffers, which results in an
error when that field is accessed by the component interface.

Drop Zones in Component Interfaces
Component Interfaces support configurable drop zones.

Configurable drop zones allow you to add custom fields that are displayed and processed on delivered
pages without customizing the component or page definition.

At design time, while creating a Component Interface, the availability of drop zone will be evaluated
for the component. If drop zone configuration is detected, then the records and fields from the custom
subpages gets added to the component interface properties list. These records and fields will be inserted at
exact scroll level as the other existing properties.

26 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

This example illustrates a component interface with properties from drop zone custom subpages.

Similar to other component interface properties, the records and fields from the custom subpages can be
retrieved to be modified or deleted directly, or through component interface collections.

Note that subpages within a drop zone subpage are not supported. Similarly, secondary pages within a
drop zone subpage are not supported.

All the limitations of Component Interfaces are applicable for Drop Zones support.

For details, refer to Understanding PeopleCode Behavior and Limitations

Related Links
“Understanding Component Interface Class” (PeopleCode API Reference)
“Configuring Drop Zones” (Application Designer Developer’s Guide)

Using Keys

This section discusses how to add and delete keys.

Understanding Keys
Keys are created automatically when you create a component interface.

The following table shows the three types of component interface keys and describes the characteristics of
each:

Copyright © 1988, 2025, Oracle and/or its affiliates. 27

Developing Component Interfaces Chapter 3

Key Type Key Characteristics

Get keys These keys automatically map to search key fields in the
search record for the underlying component. You must change
Get keys only if you modify the keys of the component after
you create a component interface.

Find keys These map to both search key fields and alternate search key
fields in the search record for the underlying component. You
can remove any Find keys based on alternate search key fields
that you don’t want to make available for searching.

Create keys If the underlying component allows the Add action, then
Create keys are generated for the component interface
automatically. They map to fields marked as Srch (search) in
the search record for the component (or the add search record,
 if one is specified).

Typically, you must manually add keys only if new search key fields are added to the underlying
component after the creation of the component interface. However, you might want to modify the Find
keys—either to restrict a user from searching on a particular key or to add an alternate search key that
didn’t exist when the component was created.

Valid Conditions for Modifying Keys

The following conditions are valid for modifying keys.

• You can add or delete a Find key if it is based on an alternate search key field.

• You can add any type of key based on a qualifying search key field in the component, if it isn’t
already the basis of an existing key of the same type.

This is necessary only if a new search key field is added to the component after you create the
component interface.

• You can delete any type of key if its underlying search key field meets one of these criteria:

• It is no longer defined as a search key field.

• It is no longer designated as a list box item.

• It has been deleted from the component.

Note: An X icon precedes a name in the component interface view if the field underlying a component
interface key no longer qualifies as a key. Remove keys (or any other properties) that are marked with this
symbol to ensure proper operation of the component interface.

Adding and Deleting Keys
To add a key:

1. Expand the search key collection (the first collection) in the component view.

28 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

2. Drag the key to the component interface view.

To delete a key:

1. Select the key in the component interface view.

2. Press the Del key.

Setting Properties

This section provides an overview of standard properties and discusses how to work with user defined
properties.

Understanding Standard Properties
Standard properties do not appear in the component interface view in PeopleSoft Application Designer.
The following tables name and define the standard properties, and list the interfaces for PeopleCode, Java,
and C++.

This table contains the component interface properties:

Property Name Description, Programming Syntax

CreateKeyInfoCollection Returns a collection of items that describes the Create keys.
 This property is read-only.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfoCollection
getCreateKeyInfoCollection()

• C++: HPSAPI_
COMPINTFCPROPERTYINFOCOLLECTION <CI_
NAME>_GetCreateKeyInfoCollection(HPSAPI_<CI_
NAME>)

GetKeyInfoCollection Returns a collection of items that describes the Get keys. This
property is read-only.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfoCollection
getGetKeyInfoCollection()

• C++: HPSAPI_
COMPINTFCPROPERTYINFOCOLLECTION<CI
_NAME>_GetGetKeyInfoCollection(HPSAPI_<CI_
NAME>)

Copyright © 1988, 2025, Oracle and/or its affiliates. 29

Developing Component Interfaces Chapter 3

Property Name Description, Programming Syntax

FindKeyInfoCollection Returns a collection of items that describes the Find keys. This
property is read-only.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfoCollection
getFindKeyInfoCollection()

• C++: HPSAPI_
COMPINTFCPROPERTYINFOCOLLECTION<CI_
NAME>_GetFindKeyInfoCollection(HPSAPI_<CI_
NAME>)

GetHistoryItems Controls whether the component interface runs in Update/
Display mode or Update/Display All mode when the
underlying component is effective-dated. If GetHistoryItems
is set to true, then historical data can be retrieved but
not modified. GetHistoryItems work in accordance with
EditHistoryItems.

The default value is False. This property is read-only.

Use these interfaces to call with other programming languages.

• Java: boolean getGetHistoryItems(), void
setGetHistoryItems(boolean)

• C++: BOOL <CI_NAME>_GetGetHistoryItems(HPSAPI
_<CI_NAME>), void<CI_NAME>_SetGetHistoryItems
(HPSAPI_<CI_NAME>, BOOL)

EditHistoryItems Controls whether the component interface runs in Update/
Display All mode, Update/Display mode, or Correction
mode when the underlying component is effective-dated.
 If EditHistory items are set to true, then historical data can
be modified. EditHistory items work in accordance with
GetHistory items.

The default value is False. This property is read-only.

Use these interfaces to call with other programming languages.

• Java: boolean getEditHistoryItems(), void
setEditHistoryItems(boolean)

• C++: BOOL <CI_NAME>_GetEditHistoryItems
(HPSAPI_<CI_NAME>), void<CI_NAME>_
SetEditHistoryItems(HPSAPI_<CI_NAME >, BOOL)

30 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Property Name Description, Programming Syntax

InteractiveMode Controls whether to apply values and run business rules
immediately, or whether items are queued and business rules
are run later, in a single step.

Note: You should use interactive mode when testing and
debugging a component interface. Interactive mode in a
production environment slows performance because of the
number of server trips required.
If you are using a component interface as part of a batch
process in which thousands of rows are to be inserted, running
in interactive mode may reduce performance so much on some
UNIX servers that the application times out with a connection
failure.

The default value is False. This property is read-only.

Use these interfaces to call with other programming languages.

• Java: boolean getInteractiveMode(), void
setInteractiveMode(boolean)

• C++: BOOL <CI_NAME>_GetInteractiveMode(HPSAPI
_<CI_NAME>), void<CI_NAME>_SetInteractiveMode
(HPSAPI_<CI_NAME>, BOOL)

StopOnFirstError When this property is set to True, the first error generated by
the component interface halts the program.

The default value is False. This property is read-only.

• Java: boolean getStopOnFirstError(), setStopOnFirstError
(boolean)

• C++: BOOL <CI_NAME>_GetStopOnFirstError
(HPSAPI_<CI_NAME>), void<CI_NAME>_
SetStopOnFirstError(HPSAPI_<CI_NAME>, BOOL)

CompIntfcName Returns the name of the component interface class as named in
PeopleSoft Application Designer. This property is read-only.

• Java: String getCompIntfcName()

• C++: LPTSTR <CI_NAME>_GetCompIntfcName(
(HPSAPI_<CI_NAME>)

ComponentName Returns the name of the component as named in PeopleSoft
Application Designer. This property is read-only.

• Java: boolean getComponentName()

• C++: LPTSTR <CI_NAME>_GetComponentName
(HPSAPI_<CI_NAME>)

Copyright © 1988, 2025, Oracle and/or its affiliates. 31

Developing Component Interfaces Chapter 3

Property Name Description, Programming Syntax

Description Returns the description of the component interface class as set
in PeopleSoft Application Designer. This property is read-only.

• Java: boolean getDescription()

• C++: LPTSTR <CI_NAME>_GetDescription((HPSAPI_
<CI_NAME>)

Market Returns the Market setting of the component used to build this
component interface. This property is read-only.

• Java: String getMarket()

• C++: LPTSTR <CI_NAME>_GetMarket((HPSAPI_<CI
_NAME>)

GetDummyRows When a new scroll is inserted on a page, that scroll is
displayed even though it has no underlying data. Any scroll
that is empty has one dummy row displayed with only the
defaults set. This property is True if the dummy row is to be
displayed, False if it is not. The default value for this property
is True. This property is read-write.

• Java: boolean getGetDummyRows(), void
setGetDummyRows(boolean)

• C++: BOOL <CI_NAME>_GetGetDummyRows
(HPSAPI_<CI_NAME>), void<CI_NAME>_
SetGetDummyRows(HPSAPI_<CI_NAME>, BOOL)

PropertyInfoCollection Returns a collection of items that describes a specific
property. The specific properties that are available in the
propertyinfocollection are listed here. This property is read-
only.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfoCollection
getPropertyInfoCollection()

• C++: HPSAPI_
COMPINTFCPROPERTYINFOCOLLECTION <CI
_NAME>_GetPropertyInfoCollection(HPSAPI_<CI_
NAME>)

The Component Interface Property Info Collection object (CompIntfPropInfoCollection) supports the
following “CompIntfPropInfoCollection Object Properties” (PeopleCode API Reference).

32 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Property Name Description, Programming Syntax

Name This property returns the name of the object executing the
property as a string. This property is read-only.

• Java: String getName()

• C++: LPTSTR CompIntfcPropertyInfo_GetName
(HPSAPI_COMPINTFCPROPERTYINFO)

RecordName This property returns the record name associated with the
object executing the property. This property is read-only.

• Java: String getRecordName()

• C++: LPTSTR CompIntfcPropertyInfo_GetRecordName
(HPSAPI_COMPINTFCPROPERTYINFO)

FieldName This property returns the field name associated with the object
executing the property. This property is read-only.

• Java: String getFieldName()

• C++: LPTSTR CompIntfcPropertyInfo_GetFieldName
(HPSAPI_COMPINTFCPROPERTYINFO \)

LabelLong This property returns the record field Long Name value as a
string. If a component override exists for this value, it is not
included. This property is read-only.

• Java: String getLabelLong()

• C++: LPTSTR CompIntfcPropertyInfo_GetLabelLong
(HPSAPI_COMPINTFCPROPERTYINFO)

LabelShort This property returns the record field ShortName value as a
string. If a component override exists for this value, it is not
included. This property is read-only.

• Java: String getLabelShort()

• C++: LPTSTR CompIntfcPropertyInfo_GetLabelShort
(HPSAPI_COMPINTFCPROPERTYINFO)

• COM: String LabelShort

IsCollection This property returns True if the object executing the property
is a data collection, False otherwise. If IsCollection is True,
 other field-oriented properties like Required, Type, Xlat,
 Yes, No, Prompt, and Format are undefined. If IsCollection
is False, the object represents a field and all the previous
properties are defined as described. This property is read-only.

• Java: boolean getIsCollection()

• C++: BOOL CompIntfcPropertyInfo_GetIsCollection
(HPSAPI_COMPINTFCPROPERTYINFO)

Copyright © 1988, 2025, Oracle and/or its affiliates. 33

Developing Component Interfaces Chapter 3

Property Name Description, Programming Syntax

Type This property returns the field type, as a number, of the object.

This property is read-only.

• Java: long getType()

• C++: PSI32 CompIntfcPropertyInfo_GetType(HPSAPI_
COMPINTFCPROPERTYINFO)

OAType This property returns the field type, as a number, of the object.
 This property is read-only.

• Java: long getOAType()

• C++: PSI32 CompIntfcPropertyInfo_GetOAType
(HPSAPI_COMPINTFCPROPERTYINFO)

Format This property returns the field format for the object executing
the property (that is, name, phone, zip, SSN, and so on) as a
number. This property is read-only.

• Java: String getFormat()

• C++: PSI32 CompIntfcPropertyInfo_GetFormat(HPSAPI
_COMPINTFCPROPERTYINFO)

Key This property returns True if the object executing the property
is a key, False otherwise. This property is read-only.

• Java: boolean getKey()

• C++: BOOL CompIntfcPropertyInfo_GetKey
(HPSAPI_COMPINTFCPROPERTYINFO
hCompIntfcPropertyInfo)

Required This property returns True if the object executing the property
is a required property, False otherwise. This property is read-
only.

• Java: boolean getRequired()

• C++: BOOL CompIntfcPropertyInfo_GetRequired
(HPSAPI_COMPINTFCPROPERTYINFO)

Xlat This property returns True if the object executing the property
is associated with an XLAT table, False otherwise. This
property is read-only.

• Java: String getXlat()

• C++: BOOL CompIntfcPropertyInfo_GetXlat(HPSAPI_
COMPINTFCPROPERTYINFO)

34 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Property Name Description, Programming Syntax

Yesno This property returns True if the object executing the property
is associated with the Yes/No table, False otherwise. This
property is read-only.

• Java: boolean getYesno()

• C++: BOOL CompIntfcPropertyInfo_GetYesno(HPSAPI
_COMPINTFCPROPERTYINFO)

Prompt This property returns True if the object executing the property
is associated with a prompt table, False otherwise. This
property is read-only.

• Java: boolean getPrompt()

• C++: BOOL CompIntfcPropertyInfo_GetPrompt
(HPSAPI_COMPINTFCPROPERTYINFO)

Length This property returns the length of the object executing the
property. This property is read-only.

• Java: long getLength()

• C++: PSI32 CompIntfcPropertyInfo_GetLength(HPSAPI
_COMPINTFCPROPERTYINFO)

DecimalPosition This property returns the decimal position for the object
executing the property. This property is read-only.

• Java: long getDecimalPosition()

• C++: PSI32 CompIntfcPropertyInfo_GetDecimalPosition
(HPSAPI_COMPINTFCPROPERTYINFO)

IsReadOnly This property returns True if the property marked read-only
in the component interface definition; False otherwise. This
property is read-only.

• Java: boolean getIsReadOnly()

• C++: BOOL CompIntfcPropertyInfo_GetIsReadOnly
(HPSAPI_COMPINTFCPROPERTYINFO)

Altkey This property returns True if the object executing the property
is an alternate key, False otherwise. This property is read-only.

• Java: boolean getAltkey()

• C++: BOOL CompIntfcPropertyInfo_GetAltkey(HPSAPI
_COMPINTFCPROPERTYINFO)

Copyright © 1988, 2025, Oracle and/or its affiliates. 35

Developing Component Interfaces Chapter 3

Property Name Description, Programming Syntax

Listboxitem This property returns True if the object executing the property
is associated with a list box, False otherwise. This property is
read-only.

• Java: boolean getListboxitem()

• C++: BOOL CompIntfcPropertyInfo_GetListboxitem
(HPSAPI_COMPINTFCPROPERTYINFO)

Example of PropertyInfoCollection

Here is a Java example that calls PropertyInfoCollection:

IcompIntfcPropertyInfoCollection oLO_PropInfoColl
IcompIntfcPropertyInfo oLO_PropInfoItem

oLO_PropInfoColl = oCI.getPropertyInfoCollection();
for (int I=0; I < oLO_PropInfoColl.getCount(); I++) {
 oLO_PropInfoItem = oLO_PropInfoColl.item(i);

 System.out.println("\t Name = " + oLO_PropInfoColl.getName());
 System.out.println("\t Record Name = " + oLO_PropInfoColl.getRecordName());
 System.out.println("\t Field Name = " + oLO_PropInfoColl.getFieldName());
 System.out.println("\t Label Long = " + oLO_PropInfoColl.getLabelLong());
 System.out.println("\t Label Short = " + oLO_PropInfoColl.getLabelShort());
 System.out.println("\t IsCollection = " + oLO_PropInfoColl.getIsCollection());
 System.out.println("\t Type = " + oLO_PropInfoColl.getType());
 System.out.println("\t OAType = " + oLO_PropInfoColl.getOAType());
 System.out.println("\t Format = " + oLO_PropInfoColl.getFormat());
 System.out.println("\t Is Get Key? = " + oLO_PropInfoColl.getKey());
 System.out.println("\t Is Required = " + oLO_PropInfoColl.getRequired());
 System.out.println("\t Is Xlat? = " + oLO_PropInfoColl.getXlat());
 System.out.println("\t Is Yesno? = " + oLO_PropInfoColl.getYesno());
 System.out.println("\t Prompt = " + oLO_PropInfoColl.getPrompt());
 System.out.println("\t Length = " + oLO_PropInfoColl.getLength());
 System.out.println("\t DecimalPosition = " + oLO_PropInfoColl.
 getDecimalPosition());
 System.out.println("\t Is Read Only? = " + oLO_PropInfoColl.
 getIsReadOnly());
 System.out.println("\t Is Alt Key? = " + oLO_PropInfoColl.getAltkey());
 System.out.println("\t Is ListBox item? = " + oLO_PropInfoColl.
 getListboxitem());

Object Adapter

The name of the property is OAType, and it holds the value of the object adapter type. Exposing this
property and supplying the associated methods enables you to detect possible data type mismatches
between the database and the component interface object.

The Java methods are:

Term Definition

getOAType() Returns the object adapter type.

36 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Term Definition

getType() Returns the type of the property of a particular database field.

For example:

public static void printPropertyType(String propName, ICompIntfcPropertyInfo iPrope⇒

rtyInfo) {

String strOAType = null;
String strDBType = null;

 try {
 switch ((int)iPropertyInfo.getOAType()) {
 /* Object Adapter Type == 0 */
 case CIPropertyTypes.PSPROPERTY_OA_TYPE_BOOL:
 strOAType = "BOOL";
 break;
 /* Object Adapter Type == 1 */
 case CIPropertyTypes.PSPROPERTY_OA_TYPE_NUMBER:
 strOAType = "INTEGER";
 break;
 /* Object Adapter Type == 2 */
 case CIPropertyTypes.PSPROPERTY_OA_TYPE_FLOAT:
 strOAType = "FLOAT";
 break;
 /* Object Adapter Type == 3 */
 case CIPropertyTypes.PSPROPERTY_OA_TYPE_STRING:
 strOAType = "STRING";
 break;
 }

 switch ((int)iPropertyInfo.getType()) {
 /* Database Type == 0 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_CHARACTER:
 strDBType = "CHARACTER";
 break;
 /* Database Type == 1 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_LONG_CHARACTER:
 strDBType = "LONG_CHARACTER";
 break;
 /* Database Type == 2 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_NUMBER:
 strDBType = "NUMBER";
 break;
 /* Database Type == 3 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_SIGNED_NUMBER:
 strDBType = "SIGNED NUMBER";
 break;
 /* Database Type == 4 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_DATE:
 strDBType = "DATE";
 break;
 /* Database Type == 5 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_TIME:
 strDBType = "TIME";
 break;
 /* Database Type == 6 */
 case CIPropertyTypes.PSPROPERTY_DB_TYPE_DATETIME:
 strDBType = "DATETIME";
 break;
 }

 }
 catch (Exception e) {
 e.printStackTrace();

Copyright © 1988, 2025, Oracle and/or its affiliates. 37

Developing Component Interfaces Chapter 3

 }

 System.out.println("\n" + propName +
 " Object Adapter Type is: " + strOAType +
 ", Database Type is: " + strDBType);
 }

Component Interface Collection Property

This table describes the component interface collection property Count.

Name Description, Programming Syntax

Count Returns the number of items in a collection.

• Java: long getCount()

• C++: PSI32 CompIntfcCollection_GetCount(HPSAPI_
<CI_NAME>)

Data Item Property

This table describes the data item property ItemNum:

Name Description, Programming Syntax

ItemNum Returns the position of the row within the given collection of a
DataRow.

• Java: long getItemNum()

• C++: PSI32 <CI_NAME>_GetItemNum(HPSAPI_<CI_
NAME>)

Note: The component interface classes contain information about PropertyInfo properties and related
PeopleCode.

Creating User-Defined Properties
User-defined properties are those properties on the underlying component that are exposed through the
component interface. User-defined properties are derived from the component to which the component
interface is associated and must be added manually. They are the specific record fields that you expose
to an external system with the component interface. You create user-defined properties in addition to the
standard properties to enable data manipulation of the component. When you create a new component
interface, if you accept the default properties, user-defined properties are created automatically for each
field displayed to the user on the underlying component.

User-defined properties are the points where the component and the underlying database are exposed to
the external system. This is the means that component interfaces use to add or change fields and data in
the database.

38 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

To create a user-defined property, drag a record, field, or scroll from the component view to the
component interface view.

Where you insert the definition in the component interface view does not matter. When the component
interface is opened, the system automatically converts the field or record into a component interface
property and places it in the appropriate place in the list of properties. Also, when you drag a definition
from the component view into the component interface view, all child definitions are brought into the
component interface automatically. After these child properties are added to the component interface, you
can remove each property individually, if desired.

Dragging a key from the search records, which precede the level-zero record in the page view, adds a key
to all appropriate key collections (Get, Create, and Find) in the component interface. Because appropriate
keys are added automatically when a component interface is first created, you typically must add keys
only if the new keys are added to the underlying component after the creation of the component interface.

Deleting User-Defined Properties
To delete a property:

1. Select the property to be deleted.

2. Either press the Del key on the keyboard, or right-click the key and select Delete.

Standard Windows behavior is employed for selecting multiple properties using the Shift and Ctrl
keys.

Renaming User-Defined Properties
Property names are automatically generated according to the corresponding fields from the component.
If these names are cryptic, you might want to rename these properties to explain them better. Renaming a
property does not change the field that the property references.

This example shows the Edit Property dialog box. Use this dialog box to rename user-defined properties
for component interfaces.

Important! PeopleSoft Mobile Agent is a desupported product. The options listed in the Mobile Property
Persistence group box of the Edit Property dialog box exist for backward compatibility only.

To rename a property:

Copyright © 1988, 2025, Oracle and/or its affiliates. 39

Developing Component Interfaces Chapter 3

1. Double-click the property name or right-click the property name and select Edit Name from the menu.

2. Enter the new property name.

Programs accessing this component interface must reference the new property name. For example, if
SDK_NAME was changed to NAME, programs must use NAME instead of SDK_NAME.

3. Add any comments that might be helpful.

4. Select the Read-Only check box to make this property read-only.

5. If this property is for a mobile application, select a radio button that sets the persistence of the
property.

• Send Updates is the default behavior for a mobile property.

Any changes or additions to this property on a mobile instance are synchronized to the server.

• If a mobile property is set to Do not Send Updates, this property is not synchronized up to the
server, but the value is maintained on the device.

• A Derived property is used only at mobile runtime. Any values that are set or added to this
property exist only for the runtime life of the object. No persistence of this data on the device
exists, so it is subsequently never uploaded to the server.

Note: PeopleSoft Application Designer generates an error message if it detects that a component interface
has properties that resolve to the same name when creating, saving, or opening a given component
interface.
For example, NAME1 and NAME_1 both resolve to the same name when PeopleSoft APIs are built.
The set and get functions that are generated for the properties RTE_CNTL_TYPE1 and
RTE_CNTL_TYPE_1 are: public String getRteCntlType1(), and public void setRteCntlType1(String
inRteCntlType1). To fix this condition, name the properties so that they do not resolve to the same name.

Creating Reference Properties
Each component interface is isolated and unaware of the other component interfaces in the system.
To access and update information from other component interfaces, references establish relationships
between component interfaces.

Create a reference property in one component interface to access data exposed in another component
interface. For example, the Customer object and the component interface exposing its properties include
properties such as the customer’s name, address, and telephone numbers. Another object, Contact,
includes data associated with all contacts in the system. The link between a specific customer and its
associated contacts is owned by the Contact record, not the Customer record.

Therefore, to access contact data, the Customer component interface needs a reference property referring
to the Contact component interface. For you to update contact data from the Customer component
interface, the reference must include a valid reference path and reference backpointer to the customer ID.

Access the Create Reference dialog box by right-clicking the property and selecting Create Reference.

40 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

This example illustrates the fields and controls on the Create Reference dialog box. You can find
definitions for the fields and controls later on this page.

The Create Reference dialog box has the following fields:

Field or Control Description

Name Describes the name of the reference you are creating.

Related Component Interface Designates the component interface referenced from the
current component interface.

Comments Enter any comments to track the reference.

Related Key Mapping Maps the property from the related component interface to the
selected component interface property.

Copyright © 1988, 2025, Oracle and/or its affiliates. 41

Developing Component Interfaces Chapter 3

Field or Control Description

Valid Reference Path Supports dynamic enumeration of the objects that can be
selected as the value of the reference property being defined.
 This effectively filters these values so that you can select only
objects that support the defined reference.

Because references use the concept of a walkpath to go from
level zero of one component interface to level zero of another
component interface, and then “walk” down to the lower levels
of the component interface, only the level zero references
are displayed in the Valid Reference Path drop-down list of a
reference definition.

Reference Backpointer Refers to the path back to the original component interface.

Making Properties Read-Only
You can make any property read-only. At runtime, the value of a read-only property can be read but not
updated.

To make a property read-only:

1. Select the property.

2. Select Edit > Toggle Read Only Access from the PeopleSoft Application Designer menu.

A Y appears in the Read Only column of the component interface view corresponding to each
property that you selected to be read-only.

Note: You can double-click the icon of any existing user-defined property to edit its name or comment or
to toggle read-only access.

Working with Collections

A collection is a property that points to a scroll, rather than a field, in the underlying component for a
component interface. A collection groups multiple fields in a scroll. All the fields in the scroll are mapped
to a property. These properties are part of the collection.

You create collections the same way you create properties—drag the scroll from the component view into
the component interface view. Consider these points when creating collections:

• When you drag a scroll into the component interface view, all child scrolls come with it.

This is the same behavior that you would expect when creating a property. Child properties are always
added automatically when you drag a field from the component view to the component interface
view. After the property or collection has been created, you can delete individual child properties or
collections manually, if necessary.

42 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

• When you drag a scroll into the component interface view, all record fields contained in that scroll
come with it—not just those from the record that defines the scroll.

The fields from all records at that scroll level are exposed as part of the same collection.

• Keys that appear in parent and child scrolls are not added to child collections.

For the component interface to function as expected, the keys must remain synchronized at all levels
of the component. Having keys at lower levels makes compromising this synchronization possible.
Therefore, lower-level keys are not introduced into the component interface and are not exposed to
the user because those keys have already been set at the parent level.

• When you drag a child scroll into the component interface view, parent collections are created
automatically.

For example, if you drag just the level-two scroll from the component view into the component
interface view, a level-zero collection and a level-one collection are created automatically in the
component interface. This hierarchy of collections is necessary so that you can navigate to the child
collection at runtime.

Working with Methods

This section provides and overview of session functions and methods, standard methods and collection
methods.

Understanding Session Functions and Methods
The session functions and methods connect to a session on an Application server. This connection must be
made before you can use the component interface methods.

Component Interface Session Functions

This table describes the component interface session function createSession:

Name Description, Programming Syntax

createSession

(In PeopleCode, &session = %session)

Returns a session object.

• Java: ISession API.createSession()

• C++: HPSAPI_SESSION PSApiCreateSession()

Component Interface Session Methods

This table describes the component interface session methods:

Copyright © 1988, 2025, Oracle and/or its affiliates. 43

Developing Component Interfaces Chapter 3

Name Description, Programming Syntax

Connect

(not used in PeopleCode)

Connects to the application server.

Use these interfaces to call with other programming languages.

• Java: boolean connect(long apiVersion, string server,
 string username, string password, byte[] ExternalAuth)

• C++: Bool session_Connect(HPSAPI hSession, PSI32
ApiVersion, LPTSTR server, LPSTR username, LPTSTR
password, PSAPIVAPBLOB ExternalAuth)

getCompIntfc Returns a reference to a component interface. getCompIntfc
also checks to determine whether the given user that is
connecting has the appropriate security to access the
component interface.

Use these interfaces to call with other programming languages.

• Java: I<CI_Name> getCompIntfc(string ciName)

• C++: HPSAPI_<CI_Name> Session_GetCompIntfc
(HPSAPI_SESSION hsession, LPTSTR ciName)

Understanding Standard Methods
A method is a definition that performs a specific function on a component interface at runtime.
Each standard method is added by default when the component interface is created and is available
in PeopleCode and other programming languages. Like properties, methods are saved as part of a
component interface definition. Two main types of methods are available: standard methods and user-
defined methods.

Standard Methods Description, Programming Syntax

Cancel Backs out of the current component interface, canceling any
changes made since the last save. This is equivalent to clicking
the Return to Search button online. Returns True on success,
 and False on failure.

Use these interfaces to call with other programming languages.

• Java: boolean cancel()

• C++: BOOL <CI_NAME>_Cancel(HPSAPI_<CI_
NAME> hObj)

44 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Standard Methods Description, Programming Syntax

Create Creates a new instance of a component interface. This is
equivalent to creating a new record in Add mode online.
 Returns True on success, and False on failure.

Use these interfaces to call with other programming languages.

• Java: boolean create()

• C++: BOOL <CI_NAME>_Create(HPSAPI_<CI_
NAME> hObj)

Find Performs a partial key search for a particular instance of a
component interface, using the search keys at level 0. Returns
a collection of component interface instances which match the
search criteria. If no component interface instances match the
search criteria, the count on the collection is zero.

Use these interfaces to call with other programming languages.

• Java: <CI_NAME>Collection find()

• C++: HPSAPI_<CI_NAME>COLLECTION <CI_
NAME>_Find(HPSAPI_<CI_NAME> hObj)

Get Retrieves a particular instance of a component interface.
 This is equivalent to opening a record in Update/Display or
Correction mode when online with a PeopleSoft application.
 Returns True on success, and False on failure.

Use these interfaces to call with other programming languages.

• Java: boolean get()

• C++: BOOL <CI_NAME>_Save(HPSAPI_<CI_NAME>
hObj)

Save Saves an instance of a component interface. This is equivalent
to clicking the Save button in the online system. Returns True
on success, and False on failure. You should cancel after a
save.

Use these interfaces to call with other programming languages.

• Java: boolean save()

• C++: BOOL <CI_NAME>_Save(HPSAPI_<CI_NAME>
hObj)

Copyright © 1988, 2025, Oracle and/or its affiliates. 45

Developing Component Interfaces Chapter 3

Standard Methods Description, Programming Syntax

GetPropertyByName Returns the value of a property that is specified by name. This
function typically is used only in applications that cannot get
the names of the component interface properties until runtime.

Use these interfaces to call with other programming languages.

• Java: Object getPropertyByName(String str)

• C++: HPSAPI_OBJECT <CiCollectionItem>_
GetPropertyByName(HPSAPI_<CI_COLLECTION_
ITEM> hColItem, LPTSTR Name)

SetPropertyByName Sets the value of a property that is specified by name. This
function typically is used only in applications that cannot set
the names of the component interface properties until runtime.

Use these interfaces to call with other programming languages.

• Java: long setPropertyByName(String str, Object o)

• C++: PSI32 <CiCollectionItem>_SetPropertyByName
(HPSAPI_<CI_ COLLECTION_ITEM> hColItem,
 LPTSTR name, HPSAPI_OBJECT Value)

GetPropertyInfoByName

(In PeopleCode, CompIntfPropInfoCollection)

Returns specific information, such as length, about the
definition of a property that is specified by name. This
function typically is used only in applications that cannot get
the names of component interface properties until runtime or
by applications that need to provide a dynamic list of values
that would normally be found in prompt tables.

Use these interfaces to call with other programming languages.

• Java: IcompIntfcPropertyInfo getPropertyInfoByName
(String name)

• C++: HPSAPI_
COMPINTFCPROPERTYINFO<CiPropOrItem>_
GetPropertyInfoByName(HPSAPI_<CIPROPORITEM>
hPropOrItem, LPTSTR name)

where CiPropOrItem is the name of either a property or
an item in a collection.

By default, each component interface is created with four standard methods—Cancel, Find, Get, and
Save. Additionally, the Create standard method is generated if Create keys have been added to the
component interface.

Example for GetPropertyInfoByName

The GetPropertyInfoByName method returns an object containing the property information. Here is a
Java example that calls GetPropertyInfoByName:

IcompIntfcPropertyInfo oCompIntfcPropertyInfo
oCompIntfcPropertyInfo = oCI.getPropertyInfoByName(tempName);
System.out.println(oCompIntfcPropertyInfo.getName());

46 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

if (!oCompIntfcPropertyInfo.getIsCollection()) {
 System.out.println("\t Format = " + oCompIntfcPropertyInfo.getFormat());
 System.out.println("\t Type = " + oCompIntfcPropertyInfo.getType());
}
System.out.println("\t Is Required = " + oCompIntfcPropertyInfo.
 getRequired());
System.out.println("\t Is Collection? = " + oCompIntfcPropertyInfo.
 getIsCollection ());
System.out.println("\t Is Read Only? = " + oCompIntfcPropertyInfo.
 getIsReadOnly());
System.out.println("\t Is Get Key? = " + oCompIntfcPropertyInfo.getKey());
System.out.println("\t Label Long = " + oCompIntfcPropertyInfo.
 getLabelLong());
System.out.println("\t Label Short = " + oCompIntfcPropertyInfo.
 getLabelShort());
System.out.println("\t Length = " + oCompIntfcPropertyInfo.getLength());
System.out.println("\t Name = " + oCompIntfcPropertyInfo.getName());
System.out.println("\t Is Xlat? = " + oCompIntfcPropertyInfo.getXlat());
System.out.println("\t Is Yesno? = " + oCompIntfcPropertyInfo.
 getYesno());

Note: When creating a new component interface, you must save the component interface before the
standard methods are created. PeopleSoft Application Designer adds the standard methods upon the first
save of a new component interface.

Related Links
“CompIntfPropInfoCollection Object Properties” (PeopleCode API Reference)

Understanding Collection Methods
The first item in a component interface collection is always indexed as item 1 from PeopleCode, which is
consistent with other PeopleCode processing. From Java and C++ programs, this item is indexed as item
0.

Component Interface Collection Properties

This table describes the component interface collection properties:

Data Collection Method Action, Usage

Count Returns the number of items in a collection.

Use these interfaces to call with other programming languages.

• Java: long getCount()

• C++: PSI32 <CiCollectionName>_GetCount (HPSAPI_
<CI_COLLECTION_NAME> hCol)

Copyright © 1988, 2025, Oracle and/or its affiliates. 47

Developing Component Interfaces Chapter 3

Data Collection Method Action, Usage

ItemByName

(not used in PeopleCode)

Returns the property in the collection. It takes Name as a
parameter.

Use these interfaces to call with other programming languages.

• Java: ICompIntfcPropertyInfo itemByName(String
Name)

• C++: CompIntfcPropertyInfoCollection
ItemByName (HPSAPI
COMPINTFCPROPERTYINFOCOLLECTION,
 LPTSTR Name)

InsertItem(Index) Inserts a new item. This is equivalent to clicking the Add
button to insert a new row when online. It takes Index as a
parameter and follows the same conventions for performing
business rules (PeopleCode) as the online system.

Use these interfaces to call with other programming languages.

• Java: <CiCollectionName> insertItem(long Index)

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_InsertItem(HPSAPI_<CI_
COLLECTION_NAME> hCol, PSI32 Index)

DeleteItem(Index) Deletes the item that is designated by Index. This is equivalent
to clicking the Delete button to delete the selected row when
online.

Use these interfaces to call with other programming languages.

• Java: boolean deleteItem(long Index)

• C++: BOOL <CiCollectionName>_DeleteItem(HPSAPI_
<CI_COLLECTION_NAME> hCol, PSI32 Index)

48 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Data Collection Method Action, Usage

Item(Index) Takes an item number as a parameter and returns a definition
of the type that is stored in the specified row in the collection.
 For example, if the collection is a data collection, the
return value is a DataRow. If the collection value is a
PropertyInfoCollection, then the return value is a PropertyInfo
definition, and so on.

Use these interfaces to call with other programming languages.

• Java: <CiCollectionName> item(long Index)

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_Item(HPSAPI_<CI_
 COLLECTION_NAME> hCol, PSI32 Index) (HPSAPI_
COMPINTFCPROPERTYINFOCOLLECTION, PSI32)

ItemByKeys(keys) Identifies and finds a specific item, based on keys. The keys
vary according to the design of the collection.

Use these interfaces to call with other programming languages.

• Java: <CiCollectionName> itemByKeys(String Key1,
 String Key2, …)

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_ItemByKeys (HPSAPI_<CI_
COLLECTION_NAME > hCol, LPTSTR Key1, LPTSTR
Key2, …)

CurrentItem Returns the current effective DataRow in the collection. The
behavior is consistent with effective date rules that are used
online. This method works with effective-dated records only.

Use these interfaces to call with other programming languages.

• Java: <CiCollectionName>currentItem()

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_ CurrentItem(HPSAPI_<CI_
COLLECTION_NAME> hCol)

Copyright © 1988, 2025, Oracle and/or its affiliates. 49

Developing Component Interfaces Chapter 3

Data Collection Method Action, Usage

CurrentItemNum

(CurrentItemNumber)

Returns the item number of the current effective DataRow in
the collection. The behavior is consistent with effective date
rules that are used online. This method works with effective-
dated records only.

Use these interfaces to call with other programming languages.

• Java: long currentItemNum()

• C++: PSI32 <CiCollectionName>_ _CurrentItemNum
(HPSAPI_<CI_COLLECTION_NAME> hCol)

GetEffectiveItem(DateString, SeqNum) Returns the DataRow that would be effective for the specified
date and sequence number. This is a more general case of the
GetCurrentItem function, which returns the definition that is
effective at this moment. This method works with effective-
dated records only.

Use these interfaces to call with other programming languages.

• Java: <CiCollectionName> getEffectiveItem(String Date,
 long SeqNum)

• C++: HPSAPI_<CI_COLLECTION_ITEM>
<CiCollectionName>_ GetEffectiveItem(HPSAPI_<CI
_COLLECTION_NAME> hCol, LPTSTR Date, PSI32
SeqNum)

GetEffectiveItemNum(DateString, SeqNum) Returns the item number of the DataRow in the collection that
would be effective for the specified date and sequence number.
 This is a more general case of the GetCurrentItemNum
function, which returns the number of the definition that is
effective at this moment. This method works with effective-
dated records only.

Use these interfaces to call with other programming languages.

• Java: long getEffectiveItemNum(string Date, long
SeqNum)

• C++: <CiCollectionName>_GetEffectiveItemNum
(HPSAPI_<CI_COLLECTION_NAME> hCol, LPTSTR
Date,PSI32 SeqNum)

Enabling and Disabling Standard Methods
You can control whether standard methods are accessible at runtime.

50 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Use the Properties – Standard Methods tab to enable or disable standard methods.

To enable or disable standard methods:

1. Select File > Definition Properties from the PeopleSoft Application Designer menu.

The Definition Properties dialog box appears.

2. Select the Standard Methods tab.

You can enable or disable any of the standard methods selecting the corresponding check box. Doing
so determines whether the method is available at runtime when the component interface is accessed.
The Create option is available only if the component interface has Create keys.

Creating User-Defined Methods
This section discusses how to create user-define methods.

Copyright © 1988, 2025, Oracle and/or its affiliates. 51

Developing Component Interfaces Chapter 3

This example shows the work area in PeopleSoft Application Designer for creating user-defined methods.

To create a user-defined method:

1. Right-click anywhere in the component interface view.

2. Select View PeopleCode from the menu.

The PeopleCode editor appears. If you are using a new component interface, no PeopleCode will
appear in the editor because no user-defined methods have been created.

3. Write the required PeopleCode functions.

PeopleCode functions that you write are stored in a single PeopleCode program that is attached to the
component interface and associated with the Methods event.

Note: New user-defined methods do not appear in the list of methods until you save the component
interface. Double-click the icon of any existing user-defined method to return to this PeopleCode
program.

4. Set permissions for the methods that you created.

You must set permissions for every user-defined method. If you set permission to Full Access, at
runtime that function is exposed to external systems as a method on the component interface object.

52 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Note: User-defined method names must not be named GetPropertyName. The C header for Component
Interfaces creates functions with that name so you can access each property. If you create your own
GetPropertyName functions, you receive errors at runtime. User-defined methods can take only simple
types of arguments (such as number, character, and so on) because user-defined methods can be called
from Java or C/C++ as well as from PeopleCode. PeopleCode can use more complex types (like rowset,
array, record, and so on), but these types of arguments are unknown to Java and C/C++.

Related Links
“Life Cycle of a Component Interface” (PeopleCode API Reference)

Exporting User-Defined Methods
If you want a user-defined component interface to be exportable, meaning used by code that instantiates
the component interface, the method PeopleCode definition must include a Doc statement. It is in the
form of:

Doc <documentation for method>

where <documentation for method> describes what the method does

For example, the following method returns true if foo is positive; otherwise, it returns false.

Function MyFooBar(&foo as number) returns boolean
Doc "GET"
if (&foo > 0) then
return True;
else
return False;
end-if;
end-function;

If a component interface method is to be exposed in a web service, the Doc statement should describe
the standard method after which it will be called and show an indication of each type of input parameter
it requires. In the following example, the SetPassword method on the USER_PROFILE component
interface has been exposed to a web service. The Doc statement in this case has a string following the
Doc keyword and consists of comma-separated values: the method name Get, a string containing the new
password, and another string for the confirmation password.

Function SetPassword(&password As string, &passwordConfirm As string) Returns boole⇒

an
 Doc "GET, NewPasswd, ConfirmPasswd"

Validating Component Interfaces

Validation ensures that the structure of a component interface is still valid. Over time, the structure of
a component interface can become invalid due to component structural changes and modifications. For
example, this can happen whenever a component deletes or adds a record or field. It can also happen if the
keys on the component are added or removed. Properties and keys that no longer synchronize with their
associated components are marked with an X icon.

Copyright © 1988, 2025, Oracle and/or its affiliates. 53

Developing Component Interfaces Chapter 3

The structure of a component interface can become invalid due to drop zone configuration changes to a
component. So, it is necessary to rebuild the component interface whenever any change is made to the
drop zone custom subpages.

Note the following points about validating component interfaces:

• PeopleSoft Application Designer validates each component interface upon its creation. It enables
validation of all component interfaces residing in the respective database.

• The validation process determines only whether the underlying component of a component interface
has changed. It does not validate the PeopleCode that is associated with a component interface. To
validate the PeopleCode, open the component and select Tools > Validate from the PeopleSoft
Application Designer menu.

• If a component interface definition becomes invalid, you cannot save changes to it in PeopleSoft
Application Designer.

• If a component interface definition is associated with an active Integration Broker service, you cannot
delete it.

To correct an invalid component interface, you might have to delete properties for which appropriate
fields or records no longer exist. If the structure of the source component has changed, you might have to
delete old properties and re-add the new properties in their appropriate locations. You may also need to
rename a property or collection.

To validate a component interface:

1. Open the component interface in PeopleSoft Application Designer.

Validation occurs automatically whenever you open a component interface in PeopleSoft Application
Designer.

2. Select Tools > Validate for Consistency from the PeopleSoft Application Designer menu to
validate an open component interface.

Whenever you change components or other related definitions, you should validate a component
interface through PeopleSoft Application Designer.

To validate multiple component interfaces:

1. Select Tools, Validate Component Interfaces in PeopleSoft Application Designer.

CI Validator dialog box appears.

2. Click the Find CIs button to list out all the component interfaces available in the database.

3. Select the component interfaces to validate. Use the Select All button to validate all the listed
component interfaces.

4. Click the Validate CIs button to perform the validation. The Results box displays the success status
of the validations and lists out any failed validation.

The detailed result is displayed in the Validate tab in Application Designer.

54 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Setting Security Options

After creating a component interface, you must set security for it. Each individual method also needs to
be provided security. Security for the component interface is provided through the PeopleSoft Internet
Architecture pages. Component interface permissions are set at the permission list level in PeopleSoft
security.

This example illustrates the Component Interface Permissions page. Use the page to manage access to the
methods of a component interface.

To set up component interface security:

1. Sign in to the PeopleSoft Pure Internet Architecture through the browser, and select PeopleTools >
Security > Permissions and Roles > Permission Lists.

2. Select the permission list for which you want to set security.

The Permission List component appears.

3. Access the Component Interfaces page.

4. Select the component interface for which you want to set security.

To add another component interface to the list, click the Add button.

5. Click Edit.

The Component Interface Permissions page appears, showing all of the methods (both standard and
user-defined) in the component interface and their method of access.

6. Set the access permission for each method.

Select Full Access or No Access. You must grant full access to at least one method to make the
component interface available for testing and other online use.

7. Click OK when you are done.

Copyright © 1988, 2025, Oracle and/or its affiliates. 55

Developing Component Interfaces Chapter 3

8. Save the page.

Testing Component Interfaces

After setting the security for a component interface, you can test the contents and behavior using the
component interface tester. You should test the component interface before using it in your external
system. This proactive tool helps you discover problems with the underlying component or the component
interface itself, including user-defined methods. When you are testing a component interface, real data
from the database is used. Therefore, if you save the information that you change by calling the Save
method, the information is changed in the database.

With the component interface tester, you can:

• Test the component interface in interactive mode.

• Retrieve history items.

• Test the standard, custom, and collection methods.

Searching Component Interfaces to Test
To test the component interface, you search for the component interface to test, and then you test it.

Access the Component Interface Tester search dialog box:

56 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

This example illustrates the fields and controls on the Component Interface Tester – Enter key values,
choose function dialog box . You can find definitions for the fields and controls later on this page.

To search for a component interface to test:

1. Open the component interface in PeopleSoft Application Designer.

2. Select Tools > Test Component Interface from the PeopleSoft Application Designer menu.

The Component Interface Tester search dialog box appears. This dialog box displays the keys (in the
left-hand columns) for getting, creating, or finding an instance of the component interface. The right-
hand columns provide a place for you to enter sample key values for testing.

3. Enter key values.

a. Double-click the column to the right of any displayed keys.

b. Enter the value in the right-hand column.

The data that is used for the test corresponds to the key values that you enter here. In the
preceding example, we have entered an employee ID of 6602.

Copyright © 1988, 2025, Oracle and/or its affiliates. 57

Developing Component Interfaces Chapter 3

Field or Control Description

Interactive Mode In interactive mode, any action request occurs immediately.
 Each property being set causes an immediate trip to the
application server (or database server in two-tier mode).
 This differs from non-interactive mode, in which actions
are often held and later sent in batches. For example, in non-
interactive mode, if you set a property, the property is not
validated until you perform the save. However, in interactive
mode the property is validated immediately. This means that
edit processing (and other processing, such as FieldChange
PeopleCode) occurs for each set property.

Whether you select this option depends on how you expect a
particular component interface to be used and what you are
currently testing. In a real production system, this parameter
can significantly affect performance, but it makes little
difference in the test component. In non-interactive mode,
 errors and properties are not updated until a method is run.
 By default, Interactive Mode is selected in the component
interface tester.

Get History Items Select to retrieves history data. This option applies to
effective-dated fields only and is equivalent to running in
either Update/Display or Update/Display All mode.

Edit History Items Select to enable editing and saving of history data. This option
applies to effective-dated fields only and is equivalent to
running in either Update/Display or Correction mode.

Get Dummy Rows Specify whether to get dummy rows. This option is selected as
a default.

The component processor provides dummy rows to enable
quick data entry when the level you are accessing does not
have any data. Because of this, an API that does not need
this row finds it and exposes it to the user. The application
that uses the API now has to determine whether the row is
a dummy row and accordingly decides to execute Item or
InsertItem.

Setting the GetDummyRow to false enables the component
interface processor to handle the counts accordingly. With
this property set to false, users do not have to use item and
InsertItem when adding new data at levels 1 to 3. Instead, they
can comfortably always use InsertItem.

Get Existing Clicking Get Existing is equivalent to opening a record in
Update/Display or Correction mode online. It retrieves one
instance from the database. After you click the Get Existing
button, the Component Interface Tester dialog box appears.

58 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Field or Control Description

Create New Clicking Create New is equivalent to creating a new row in
Add mode online. If your component does not support the
Create method, this button is disabled. After you click the
Create New button, the Component Interface Tester dialog
box appears.

Getting Existing Records by Using Partial Keys

If you want to retrieve a partial key, click the Find button on the Component Interface Tester page. The
Find Results dialog box appears:

This example illustrates the Component Interface Tester – Find Results dialog box. Use the page to get
existing records by using partial keys.

You can choose the specific instance by selecting and clicking the Get Selected button. If you do not
enter a partial key before clicking Find, all key values in the database are returned (subject to the
maximum count of 300, just as when online). This is the same as calling the Find method through the
component interface API, followed by selecting a value from the Find results, setting the Get key, and
calling the Get method. After you click the Get Selected button, the Component Interface Tester dialog
box appears.

Testing Component Interfaces
After you have searched for and retrieved the component interface, the Component Interface Tester dialog
box appears.

Copyright © 1988, 2025, Oracle and/or its affiliates. 59

Developing Component Interfaces Chapter 3

This example illustrates the Component Interface Tester dialog box. Use the page to test component
interface properties and methods.

Testing Component Interface Properties

From the Component Interface Tester dialog box, change the value of a property, double-click a value,
and enter a new value. Some basic validation is done when you leave the field, which is equivalent to
leaving a field using the Tab key in the online case. This validation includes system edit, FieldChange
PeopleCode events, and FieldEdit PeopleCode events. Further validation can be done when the Save
method is called (SaveEdit, SavePreChange, Workflow, and SavePostChange). If errors occur or warnings
are encountered, messages are displayed in the Error Message Log area at the bottom of the window. The
error message log displays the same text that would appear in the PSMessages collection of the Session
object if you accessed the component through the Component Interface API.

Component Interface properties added from drop zone subpages can also be accessed and tested here.

Testing Component Interface Methods

Test component interface methods by right-clicking the component interface name.

A menu appears that shows the Save and Cancel standard methods and any user-defined methods that
exist for the component interface. The Find, Create, and Get standard methods are not valid for an
instantiated component, and therefore are not shown.

If a component interface method requires one or more parameters, a dialog box in which you can enter the
parameters appears. After the method is executed, the same dialog box appears again, displaying changes
to the parameters that were caused by the method. The return value of the function appears in the title of
the dialog box. If a component interface requires no parameters, you do not see the initial dialog box, but
you do see the return value dialog box following the function call.

60 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

This example illustrates the Enter parameters dialog box. Use the page to enter required parameters for
component interface methods.

Note: Because running a component interface method can result in a change to the component interface
structure, PeopleSoft Application Designer always redraws the component interface tree in its collapsed
form following a method call.

Testing Collection Methods

Test collection methods by right-clicking the collection name.

A menu appears that shows the standard collection methods. Select the collection method that you want
to test for this component interface. After you select a collection method to test, the Enter parameters
dialog box prompts you to enter an item number for the collection method that you are testing. The value
that you enter for index [Number] is used to retrieve, insert, or delete an item, according to the following
rules.

After you enter an index number, the result appears in the dialog box. If a return value is sent, it is
displayed in the title bar. Otherwise, the message No value is displayed. Click OK or Cancel to dismiss
the dialog box.

Collection Method Rules

This table describes the collection method rules:

Collection Method Purpose

Item(index) Returns the row at the specified index. Only the success
or failure of this routine is of interest from inside the test
component.

Copyright © 1988, 2025, Oracle and/or its affiliates. 61

Developing Component Interfaces Chapter 3

Collection Method Purpose

InsertItem(index) Inserts a new row either before the index that you specify if
the collection is effective-dated or following the index if it
isn’t effective-dated.

DeleteItem(index) Deletes the row that is designated by the index number that
you specified in the Enter parameters dialog box.

ItemByKeys(key1, key2, …) Returns the row corresponding to the specified keys. Only the
success or failure of this routine is of interest from inside the
test component.

CurrentItem This method returns the effective row in an effective-dated
record. Only the success or failure of this routine is of interest
from inside the test component.

GetEffectiveItem(DateString, SeqNum) Returns the data row that would be effective for the specified
date and sequence number. This is a more general case of the
GetCurrentItem function, which returns the definition that is
effective at this moment. This method works with effective-
dated records only.

GetEffectiveItemNum(DateString, SeqNum) Returns the item number inside the collection of the
data row that would be effective for the specified date
and sequence number. This is a more general case of the
GetCurrentItemNum function, which returns the number of the
definition that is effective at this moment. This method works
with effective-dated records only.

Note: Component interface classes contain information about collection methods.

Determining ItemByKeys Parameters
You can get the signature for the ItemByKeys method (or any other method) when testing a component
interface. This is helpful for the ItemByKeys method, because its signature is different for each
component interface.

62 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

This example illustrates the Enter parameters dialog box for the ItemByKeys method. Use the page to get
the signature for any component interface.

To determine ItemByKeys parameters:

1. Open the definition.

2. Select Tools > Test Component Interface.

3. Find or get an appropriate populated component interface.

4. Navigate to the appropriate collection.

5. Right-click, and select ItemByKeys from the menu.

A dialog box appears, showing the specific parameters and types and the order in which you should
call ItemByKeys.

In the preceding example, the keys for the SDK_BUS_EXP_PER ItemByKeys method are
SDK_EMPID (String) and SDK_EXP_PER_DT (String).

Understanding Synchronization

The Component Interface Properties Synchronization tab is used with PeopleSoft Mobile Agent.

Important! PeopleSoft Mobile Agent is a desupported product. The Component Interface Properties
Synchronization tab exists for backward compatibility only.

PeopleSoft Mobile Agent extends the functionality of PeopleSoft Pure Internet Architecture to
disconnected mobile devices, enabling users to continue working with their PeopleSoft applications on a
laptop computer or personal digital assistant (PDA) while disconnected from the internet or local network.

Copyright © 1988, 2025, Oracle and/or its affiliates. 63

Developing Component Interfaces Chapter 3

This example illustrates the Properties—Synchronization tab.

Writing Component Interface Programs

The following chapters in this PeopleBook describe how to write component interface programs in
several programming languages.

Also, the PeopleTools PeopleCode Reference contains a chapter that describes the component interface
classes, including detailed instructions on the life cycle of a component interface and how to implement
a component interface program in PeopleCode. You can use this information to help design your
component interface program in other programming languages.

Related Links
“Understanding Component Interface Class” (PeopleCode API Reference)

64 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 3 Developing Component Interfaces

Understanding Runtime Considerations

In many ways, accessing a component interface is functionally equivalent to working with an online
component. However, some important differences exist between component interfaces and components.
This section describes how those differences affect interactive operation, functionality designed
for graphical interfaces, client versus server operation, and several miscellaneous situations. These
considerations, unless otherwise noted, apply to all the programming languages listed in this manual.

General Considerations
This section discusses general considerations for component interface programs.

WinMessage Unavailable

You cannot use the WinMessage API in a component that will be used to build a component interface.
Use the MsgGet() function instead.

Email from a Component Interface

To use a component interface to send email, use the TriggerBusinessEvent PeopleCode event, not
SendMail.

Related Display

Related display fields are not available for use in a component interface because they are not held in the
buffer context that the component interface uses.

Row Inserts

If row insert functionality has been disabled for a page, you must take care when calling inserts against
the corresponding component interface. Any PeopleCode associated with buttons used on the page to add
rows will not be invoked by the component interface when an insert is done.

Note: If a component has logic that inserts rows on using the RowInsert event, the component interface
cannot identify the change and locate the rows that were inserted by the application code. Generic
interfaces such as Excel to Component Interfaces utility and the WSDLToCI will not function correctly
when using this type of dynamic insert.

Custom Field Formats

Custom field formats that are defined dynamically via PeopleCode are not enforced by component
interfaces, as they are evaluated by the page processor and not available to the component interface
processor. Only the static formats defined in the PeopleSoft Application Designer will be applied.

Scope Conflicts
This section discusses scope conflicts for component interface programs.

Copyright © 1988, 2025, Oracle and/or its affiliates. 65

Developing Component Interfaces Chapter 3

Infinite Processing Loops

A component interface should not call itself in any of the PeopleCode included within its component
definition, because this may result in an infinite loop of the component interface. A component interface
also should not call itself from a user-defined method.

Multiple Instances of a Component Interface

C++ applications should not create multiple, simultaneous instances of the same component interface,
either within a single procedure, or in both a parent and a child procedure because of potential conflicts.

Interactive Mode
This section discusses interactive mode considerations for component interface programs.

UNIX Server Performance

If you are using a component interface as part of a batch process in which thousands of rows are being
inserted, running in interactive mode may reduce performance enough on some UNIX servers to produce
a connection failure. Prevent this by setting the InteractiveMode property to False.

Hidden Edit Validation Errors

If the InteractiveMode property is set to True, and if a transaction sets a property to a value that isn't
allowed in a prompt edit field, the edit field value is reset back to its original value. The error is logged
in the PSMessages collection; however, the Save method runs without errors. Check the value of both the
Save method and the collection ErrorPending property to discover all of the errors.

66 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4

Programming Component Interfaces Using
PeopleCode

Understanding PeopleCode Behavior and Limitations

Note the behavior and limitations discussed in this section when you write PeopleCode for a component
interface.

PeopleCode Event and Function Behavior
PeopleCode events and functions that relate exclusively to the graphical user interface and online
processing cannot be used by component interfaces. These include:

• Search dialog processing.

When you run a component interface, the SearchInit, SearchSave, and RowSelect events do not fire.
This means that any PeopleCode associated with these events will not run. The first event to run is
RowInit.

• Menu PeopleCode and pop-up menus.

The ItemSelected and PrePopup PeopleCode events are not supported. In addition, the
CheckMenuItem, DisableMenuItem, EnableMenuItem, HideMenuItem, and UncheckMenuItem
functions are not available.

• Transfers between components, including modal transfers.

The TransferPage, DoModalPageGroup, and IsModalPageGroup functions cannot be used.

• Dynamic tree controls.

Functions related to this control, such as GetSelectedTreeNode, GetTreeNodeParent,
GetTreeRecordName, RefreshTree, and TreeDetailInNode cannot be used.

• ActiveX controls.

The PSControlInit and PSLostFocus events are not supported, and the GetControl function cannot be
used.

• DoSave() and DoSaveNow().

The DoSave() and DoSaveNow() PeopleCode functions are not supported. You should use the
component interface Save() method and wrap the DoSave() and DoSaveNow() functions so that they
do not execute when called from a component interface.

• Functions that are ignored in a component interface call.

Copyright © 1988, 2025, Oracle and/or its affiliates. 67

Programming Component Interfaces Using PeopleCode Chapter 4

Some PeopleCode functions are ignored if they are called through a component interface. These
functions are:

• WinMessage

• CheckMenuItem

• DisableMenuItem

• EnableMenuItem

• HideMenuItem

• UncheckMenuItem

• SetCursorPos

• TransferPanel

• TransferPage

• DoModalComponent

• IsModalComponent

• DoModalPanelGroup

• IsModalPanelGroup

• GetSelectedTreeNode

• GetTreeNodeParent

• RefreshTree

• TreeDetailInNode

• GetControl

• DoSave

• DoSaveNow

• Gray

• Ungray

CopyRowset Language Considerations
In previous PeopleSoft releases, CopyRowset* functions for component interfaces were not sensitive to
the language code on PSCAMA. Because of this, related language processing did not take place when
language code on PSCAMA was different from the base language code. PeopleSoft now detects the
language code in PSCAMA.

68 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4 Programming Component Interfaces Using PeopleCode

Limitations of Client-Only PeopleCode
Component interfaces can run on either the client or the server. By default, a component interface runs
on the server. It runs on the client only if the code calling the component interface is running on a client
machine.

Component interfaces must run either entirely on the server or entirely on the client. To ensure this
runtime restriction, component interface references declared in PeopleCode must be declared as local, not
global, variables.

Some built-in functions are always client-only; others are client-only under specific conditions.

Some built-in functions behave differently when used in three-tier mode, as opposed to two-tier mode.

Generating PeopleCode Templates to Access Component
Interfaces

To access a component interface using PeopleCode, PeopleSoft Application Designer generates a
template in the form of boilerplate PeopleCode that you can adapt to your purposes. This section
describes how to generate the template code.

This example illustrates PeopleCode generated by dragging and dropping a component interface.

To generate a PeopleCode template for a component interface:

1. Open the desired component interface definition in PeopleSoft Application Designer.

Copyright © 1988, 2025, Oracle and/or its affiliates. 69

Programming Component Interfaces Using PeopleCode Chapter 4

2. Insert the component interface into a project.

a. Select Insert > Current Object into Project.

b. Save the project.

3. Open the PeopleCode editor.

You can associate component interface PeopleCode with a record, a component, a service operation
handler, or an Application Engine program.

4. Select the component interface from the project workspace.

Drag and drop the object from the project into the PeopleCode Editor.

5. Make any necessary changes to the PeopleCode in the PeopleCode Editor window.

This is especially important on components that have multiple scrolls at the same level, as the
automatic code generation may have difficulty determining the parent of the collection (scroll).
Therefore, the template code should be inspected and corrected as needed.

Understanding PeopleCode Templates

The code shown in this section is a dynamically generated PeopleCode template that you can use as a
starting point. Replace all default values or <*> notations with specific values or references to valid
PeopleCode variables (replace this entire three-character string: <*>).

Note: The requirement to populate a non-create key is no longer a requirement to do the initial save.

PeopleCode runs only if you are connected. This means that you do not have to explicitly connect.
Instead, connect to the existing session, using the %Session system variable.

You cannot connect to a different database through PeopleCode.

Set the PeopleSoft session error message mode. This property is used to determine how messages
are output. This property takes either a numeric value or a constant. The default value is 1
(%PSMessages_CollectionOnly).

This property sets the value for the session. You can change modes during a session, for example, if
you're starting a component interface. However, after you run the component interface, you should set the
value back. Here is the list of modes that you can use:

Mode Value Description

0 Return no messages.

1 Default. Log messages into the PSMessage collection.

2 Display a pop-up message or dialog box.

70 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 4 Programming Component Interfaces Using PeopleCode

Mode Value Description

3 Log messages into the PSMessage collection and pop up a
message dialog box.

PeopleCode Template Notes

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

Set the keys for the component interface. In this example SDK_EMPLID is the Get key.

The get() method retrieves data from the database, associated with the key values.

Get and print properties at level 0.

Similar code is generated for the properties SDK_BIRTHDATE and SDK_DEPTID.

Get collection at level 1 (SDK_BUS_EXP_PER).

Get and print properties at level 1.

Similar code is generated for the properties SDK_EMPLID and SDK_BUS_EXP_SUM in the
SDK_BUS_EXP_PER collection.

Get collection at level 2 (SDK_BUS_EXP_DTL).

 &oSdkBusExpDtlCollection = &oSdkBusExpPer.SDK_BUS_EXP_DTL;

Get and print properties at level 2.

Similar code is generated for the properties SDK_EMPID, SDK_EXP_PER_DT, SDK_EXPENSE_CD,
SDK_EXPENSE_AMT, SDK_CURRENCY_CD, SDK_BUS_PURPOSE, and SDK_DEPTID.

Related Links
“Session Class Properties” (PeopleCode API Reference)

Copyright © 1988, 2025, Oracle and/or its affiliates. 71

Programming Component Interfaces Using PeopleCode Chapter 4

72 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5

Programming Component Interfaces in Java

Building APIs in Java

If you plan to access your component interface from a Java external application, you must create a
component interface API. The APIs are in the form of *.java source code files, which should be compiled
into Java classes.

To build the component interface bindings:

1. Open any component interface definition in PeopleSoft Application Designer.

Use any component interface definition, because you can build APIs for all of them, regardless of
which one is open.

2. Select Build > PeopleSoft APIs.

The Build PeopleSoft API Bindings dialog box appears.

3. Select the Build check box in the Java Classes group box.

For the target directory, enter the directory in which you want the Java class source files to be created.

4. Click OK to build the bindings that you selected.

The files that constitute the bindings are built in the location that you specified. If the operation is
successful, a Done message appears in the PeopleSoft Application Designer Build window.

5. Compile the APIs that you just generated.

You could use one of these commands:

• Example 1:

cd %PS_HOME%\class\PeopleSoft\Generated\CompIntfc
javac −classpath %PS_HOME%\class\psjoa.jar *.java

• Example 2:

cd c:\pt8\class\PeopleSoft\Generated\PeopleSoft
javac −classpath %PS_HOME%\class\psjoa.jar *.java

Setting Up the Java Environment

When deploying component interfaces on a local client machine or web server with Java bindings, you
must have:

Copyright © 1988, 2025, Oracle and/or its affiliates. 73

Programming Component Interfaces in Java Chapter 5

• The third-party Java application.

• The application server and database.

• The Java Virtual Machine (JVM) supplied with Sun Microsystems Java Development Kit (JDK).
The JDK may already be installed on your system. To verify that the JVM is installed, check the
%PS_HOME%\JRE directory. If it is not installed, you can obtain download information at the Oracle
web site at http://www.oracle.com/technetwork/java/javase/downloads/index.html.

To set up your client machine to access the component interface API using Java:

1. If it is not already installed on your system, install the Sun Microsystems JDK to enable the JVM.

You can download the JDK to any location, for example c:\bea\jkd<version>.

2. Set the environment variable PATH to include the directory containing jvm.dll.

For example, you might set it at c:\bea\jkd<version>\jre\bin\client; or, if the PeopleTools install is
done locally, the path is <PS_HOME>\jre\bin\client.

3. Set the environment variable CLASSPATH to include:

• The file psjoa.jar (typically <PS_HOME>\class\psjoa.jar).

• The target directory selected during the Build API process (<PS_HOME>\class).

Note: In previous releases, sites using UNIX servers received the following error message when invoking
a component interface through the PeopleSoft Java Object Adapter (PSJOA): PSProperties not loaded
from file. To resolve this issue, copy the pstools.properties file to the component interface execution
directory.

Generating Java Runtime Code Templates

To access a component interface through external APIs using Java, PeopleSoft Application Designer
generates a template in the form of boilerplate Java code that you can adapt to your purposes.

External Java APIs are located in the <PS_CFG_HOME>\ExtAPI_Java directory.

This section describes how to generate the template code.

74 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Programming Component Interfaces in Java

This example illustrates using PeopleSoft Application Designer to generate a Java runtime template.

To generate a Java template for a component interface:

1. Open a component interface definition in PeopleSoft Application Designer.

2. Right-click anywhere in the definition view to display the menu.

3. Select Generate Java Template.

When the template is successfully generated, a message appears stating the name and location of the
template file.

Note: The template file is generated in the directory specified by the TEMP or TMP system
environment variable on your client machine.

4. Edit the generated file and modify the source code to suit your needs.

5. Compile the source code to generate a class file.

In the case of the example used in this manual, you could use this command:

javac −classpath c:\temp;c:\pt8\class;c:\PT8\class\psjoa.jar SDK_BUS_EXP.java

Understanding the Java Template

You can use the Java template as a starting point for your Java program. This section contains a skeleton
of the generated Java template for a component interface named SDK_BUS_EXP, which is part of the
component interface SDK. The template has been edited for length.

Copyright © 1988, 2025, Oracle and/or its affiliates. 75

Programming Component Interfaces in Java Chapter 5

Import all the required classes.

import java.io.*;
import psft.pt8.joa.*;
import PeopleSoft.Generated.CompIntfc.*;
public class SDK_BUS_EXP {
 public static ISession oSession;

 public static void main (String args[]) {
 try {
 //***** Set Connect Parameters *****
 String strServerName, strServerPort, strAppServerPath;
 String strUserID, strPassword;

 //Build Application Server Path
 strAppServerPath = strServerName + ":" + strServerPort;

Note: To enable Jolt failover and load balancing in the PeopleSoft Pure Internet Architecture, you can
supply multiple application server domains for the strAppServerPath variable. Separate the domain
names with a comma, and make sure that no spaces are included, for example, strAppServerPath = //
APPSRVR1:8000,//APPSRVR2:9000

Create the PeopleSoft Session object to enable access to the PeopleSoft system.

The Session object controls the environment and enables you to do error handling for all APIs from a
central location.

 //***** Create PeopleSoft Session Object *****
 oSession = API.createSession();

Connect to the application server by using the connect method of the Session object.

//***** Connect to the App Server *****
//if the Jolt Password is to be provided, switch to the the second
//version of the statement below
if (!oSession.connect(1, strAppServerPath, strUserID,
strPassword, null)) {
//if (!oSession.connectS(1, strAppServerPath, strUserID,
//strPassword, null, strJoltPwd)){
System.out.println("\nUnable to Connect to the Application Server.
Please verify it is running");
ErrorHandler();
return;
}

You define the domain connection password using the DomainConnectionPwd field in the Security
section of the application server configuration file, configuration.properties. “Security Options”
(System and Server Administration)“Configuring Domain Connection Password” (System and Server
Administration)

Beginning in PeopleTools 8.53, using a domain connection password to connect to the application server
is optional. However, if a domain connection password is specified, then the methods in the component
interface APIs have to specify a value for it.

If the application server is configured to use a domain connection password other than the default value,
use the connectS method, currently shown commented out in the previous Java template example, instead
of the Connect method. The connectS method takes in all the same parameters as the Connect method,
plus a domain Connection password as an additional parameter:

connectS(1, strAppServerPath, strUserID, strPassword, null, strJoltPwd);

76 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 5 Programming Component Interfaces in Java

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

 ISdkBusExp oSdkBusExp;
 String ciName;
 ciName = "SDK_BUS_EXP";
 oSdkBusExp = (ISdkBusExp) oSession.getCompIntfc(ciName);
 if (oSdkBusExp == null) {
 System.out.println("\nUnable to Get Component Interface " +
 ciName);
 ErrorHandler();
 return;
 }

 //***** Set the Component Interface Mode *****
 oSdkBusExp.setInteractiveMode(false);
 oSdkBusExp.setGetHistoryItems(true);
 oSdkBusExp.setEditHistoryItems(false);

Set the keys for the component interface. In this example, SDK_EMPLID is the Get key.

//***** Set Component Interface Get/Create Keys *****
 String strSdkEmplid;
 System.out.print("\nEnter SdkEmplid: ");
 strSdkEmplid = inData.readLine();
 oSdkBusExp.setSdkEmplid(strSdkEmplid);

The get() method retrieves data from the database, associated with the key values.

//***** Execute Get *****
 if (!oSdkBusExp.get()) {
 System.out.println("\nNo rows exist for the specified keys.
 \nFailed to get the Component Interface.");
 ErrorHandler();
 return;
 }

Get and print properties at level 0.

 System.out.println("oSdkBusExp.SdkName: " +
 oSdkBusExp.getSdkName());

Similar code is generated for the properties SDK_BIRTHDATE and SDK_DEPTID.

Get collection at level 1 (SDK_BUS_EXP_PER).

 ISdkBusExpSdkBusExpPerCollection oSdkBusExpPerCollection;
 ISdkBusExpSdkBusExpPer oSdkBusExpPer;
 oSdkBusExpPerCollection = oSdkBusExp.getSdkBusExpPer();

Get and print properties at level 1.

for (int i17 = 0;
 i17 < oSdkBusExpPerCollection.getCount(); i17++) {
 oSdkBusExpPer = oSdkBusExpPerCollection.item(i17);

 System.out.println("oSdkBusExpPer.SdkExpPerDt: " +
 oSdkBusExpPer.getSdkExpPerDt());

Similar code is generated for the properties SDK_EMPLID and SDK_BUS_EXP_SUM in the
SDK_BUS_EXP_PER collection.

Copyright © 1988, 2025, Oracle and/or its affiliates. 77

Programming Component Interfaces in Java Chapter 5

Get collection at level 2 (SDK_BUS_EXP_DTL).

 ISdkBusExpSdkBusExpPerSdkBusExpDtlCollection
 oSdkBusExpDtlCollection;
 ISdkBusExpSdkBusExpPerSdkBusExpDtl oSdkBusExpDtl;
 oSdkBusExpDtlCollection = oSdkBusExpPer.getSdkBusExpDtl();

Get and print properties at level 2.

 for (int i211 = 0;
 i211 < oSdkBusExpDtlCollection.getCount(); i211++) {
 oSdkBusExpDtl = oSdkBusExpDtlCollection.item(i211);

 System.out.println("oSdkBusExpDtl.SdkChargeDt: " +
 oSdkBusExpDtl.getSdkChargeDt());

Similar code is generated for the properties SDK_EMPID, SDK_EXP_PER_DT, SDK_EXPENSE_CD,
SDK_EXPENSE_AMT, SDK_CURRENCY_CD, SDK_BUS_PURPOSE, and SDK_DEPTID.

 }
 }

Disconnect from the Application server by using the disconnect method of the Session object. This
method clears the buffers and releases the memory.

 //***** Disconnect from the App Server *****
 oSession.disconnect();
 return;
 }
 catch (Exception e) {
 e.printStackTrace();
 System.out.println("An error occurred: ");
 ErrorHandler();
 }
 }
}

78 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6

Programming Component Interfaces in C++

Building APIs for C++

If you plan to access your component interface from a C++ external application, you must create a
component interface API. The APIs are in the form of C header files (*.h), which need to be included in
the calling program.

To build the component interface bindings:

1. Open any component interface definition in PeopleSoft Application Designer.

Use any component interface definition, because you can build APIs for all of them, regardless of
which one is open.

2. Select Build, PeopleSoft APIs.

The Build PeopleSoft API Bindings dialog box appears.

3. Select the Build check box in the C Header Files group box.

For the target directory, enter the directory in which you want the C++ header file to be created,
typically <PS_HOME>\bin\client\winX86.

4. Click OK to build the bindings that you selected.

The peoplesoft_peoplesoft._i.h file that constitutes the bindings is built in the location that you
specified. If the operation was successful, a Done message appears in the PeopleSoft Application
Designer Build window.

Setting Up the C++ Environment

When deploying component interfaces on a local client machine with C++ bindings, you must have:

• The third-party C++ application.

• The Application server and database.

• The Java Virtual Machine (JVM) supplied with the Sun Microsystems Java Development Kit (JDK)
found in the %PS_HOME%\JRE directory.

• Your compiler, configured for the C++ project.

Third-Party Applications

For applications written in C or C++, note that:

Copyright © 1988, 2025, Oracle and/or its affiliates. 79

Programming Component Interfaces in C++ Chapter 6

• The function names generated by the Build APIs process can be quite long. You may want to consider
creating classes within your C++ code to mask this length throughout your program.

• When you create your installation for your C or C++ program, make sure that you include the setup of
the path to the psapiadapter.dll.

Setting Up Client Machines to Access C++ APIs
To set up your client machine to access the component interface API using C++:

1. Install the PeopleSoft PeopleTools on your file server.

See PeopleSoft 9.2 Application Installation for your database platform.

2. Set the environment variable PS_HOME to point to the installed PeopleSoft PeopleTools directory
(for example, c:\pt860).

3. Set the environment variable PATH to include the directory containing jvm.dll and the directory
containing the PeopleTools client binaries.

For example, %PS_HOME%\bin\client\winx86; or, if the PeopleTools installation is done locally, the
path is <PS_HOME>\jre\bin\client.

4. Install the JVM supplied with the Oracle JDK. The JVM is located in the %PS_HOME%\JRE
directory.

5. Set the environment variable CLASSPATH to include the psjoa.jar file (typically <PS_HOME>\class
\psjoa.jar).

Configuring Compilers for C++ Projects
To configure a compiler for the C++ project:

Note: These instructions assume that you are using Microsoft Visual C++. If you use a different compiler,
apply the equivalent settings for that product.

1. Create a new project in Microsoft Visual C++.

2. Select Tools > Options.

3. Select the Directories tab.

4. Click the New button in the Options dialog box.

5. Enter the path to the SDK include files, for example:

C:\PT840\SDK\PSCOMPINTFC\SRC\C++\SAMPLES\INC

6. Click OK to save the options.

7. Open the Project Settings dialog box.

8. Select the C/C++ tab.

9. Select the General category.

80 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Programming Component Interfaces in C++

10. Add PS_WIN32 to the preprocessor definitions.

11. Select the Link tab.

12. Select the Input category.

13. Specify the full path to psapiadapter.lib for the Object/library modules.

This is typically <PS_HOME>\src\lib\psapiadapter.lib. Make sure that this is the only entry for
psapiadapter.lib.

14. Click OK to save the settings.

Generating C++ Runtime Code Templates

To access a component interface through external APIs using C++, PeopleSoft Application Designer
generates a template in the form of boilerplate C++ code that you can adapt to your purposes.

External C++ APIs are located in the <PS_CFG_HOME>\ExtAPI_C directory.

This section describes how to generate the template code.

This example illustrates generating a C++ template in PeopleSoft Application Designer.

To generate a C++ template for a component interface:

1. Open a component interface definition in PeopleSoft Application Designer.

2. Right-click anywhere in the definition view to display the menu.

Copyright © 1988, 2025, Oracle and/or its affiliates. 81

Programming Component Interfaces in C++ Chapter 6

3. Select Generate C Template.

When the template is successfully generated, a message appears stating the name and location of the
template file.

Note: The template file is generated in the directory specified by the TEMP or TMP system
environment variable on your client machine.

4. Add the generated template file to the project.

In Microsoft Visual C++:

a. Open the project created earlier.

b. Select Project > Add To Project > Files.

c. Select the generated file.

d. Click OK.

5. Edit the generated file and modify the source code to suit your needs.

6. Build the project to generate an executable (.exe) file.

Understanding the C++ Template

The C++ template can be used as a starting point for your C++ program. This section contains a skeleton
of the generated C++ template for a component interface named SDK_BUS_EXP, which is part of the
component interface SDK. The template has been edited for length.

Include all the required header files.

#ifdef PS_WIN32
#include "stdafx.h"
#endif

#include "cidef.h"
#include "apiadapterdef.h"
#include "PSApiAdapterInter.h"
#include "PSApiExternalLib.h"
#include "peoplesoft_peoplesoft_i.h"
#include <stdio.h>
#include <iostream.h>
#include <wchar.h>

HPSAPI_SESSION hSession;
TCHAR tmpValue[1024];

.....

void main(int argc, char* argv[])
{
 //***** Set Connect Parameters *****
 TCHAR strServerName[40], strServerPort[10], strAppServerPath[80];
 TCHAR strUserID[80], strPassword[80];

 //Build Application Server Path
 _stprintf(strAppServerPath, _T("%s:%s"), strServerName, strServerPort);

82 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Programming Component Interfaces in C++

Note: To enable Jolt failover and load balancing in the PeopleSoft Internet Architecture, you can
supply multiple application server domains for the strAppServerPath variable. Separate the domain
names with a comma, and make sure that no spaces are included, for example, strAppServerPath = //
APPSRVR1:8000,//APPSRVR2:9000.

Create the PeopleSoft Session object to enable access to the PeopleSoft system.

The Session object controls the environment and enables you to perform error handling for all APIs from
a central location.

 //***** Create PeopleSoft Session *****
 PSAPIVARBLOB ExternalAuth;
 memset(&ExternalAuth, 0, sizeof(PSAPIVARBLOB));
 hSession = PSApiCreateSession();
 if (!hSession)
 {
 wprintf(L"\nUnable to Create Session\n");
 return;
 }

Connect to the Application server by using the Session_Connect() function.

 //***** Connect to the App Server *****
 if (!Session_Connect(hSession, 1, strAppServerPath, strUserID,
 strPassword,ExternalAuth))
 {
 wprintf(L"\nUnable to Connect to Application Server\n");
 ErrorHandler();
 return;
 }

Get a reference to the component interface providing its name. (A runtime error occurs if the component
interface does not exist.)

 //***** Get Component Interface *****
 HPSAPI_SDK_BUS_EXP hSdkBusExp;
 TCHAR ciName[30];
 _tcscpy(ciName, _T("SDK_BUS_EXP"));
 hSdkBusExp = (HPSAPI_SDK_BUS_EXP) Session_GetCompIntfc(hSession,
 ciName);
 if (!hSdkBusExp)
 {
 wprintf(L"\nUnable to Get Component Interface %s\n", ciName);
 ErrorHandler();
 return;
 }

 //***** Set the Component Interface Mode *****
 SdkBusExp_SetInteractiveMode(hSdkBusExp, false);
 SdkBusExp_SetGetHistoryItems(hSdkBusExp, true);
 SdkBusExp_SetEditHistoryItems(hSdkBusExp, false);

Set the keys for the component interface. In this example, SDK_EMPLID is the Get key.

 //***** Set Component Interface Get/Create Keys *****
 TCHAR strSdkEmplid[80];
 wprintf(L"\nEnter SdkEmplid: ");
 _getts(strSdkEmplid);
 SdkBusExp_SetSdkEmplid(hSdkBusExp, strSdkEmplid);

The <CI_NAME>_Get() function retrieves data from the database associated with the key values.

 //***** Execute Get *****
 if (!SdkBusExp_Get(hSdkBusExp))
 {

Copyright © 1988, 2025, Oracle and/or its affiliates. 83

Programming Component Interfaces in C++ Chapter 6

 wprintf(L"\nUnable to Get Component for the Search keys provided.\n");
 ErrorHandler();
 return;
 }

Get and print properties at level 0.

 wprintf(L"SdkBusExp.SdkName: %s\n",
 printProperty(SdkBusExp_GetSdkName(hSdkBusExp), tmpValue));

Similar code is generated for the properties SDK_BIRTHDATE and SDK_DEPTID.

Get collection at level 1 (SDK_BUS_EXP_PER).

 HPSAPI_SDK_BUS_EXP_SDK_BUS_EXP_PERCOLLECTION
 hSdkBusExpSdkBusExpPerCollection;
 HPSAPI_SDK_BUS_EXP_SDK_BUS_EXP_PER hSdkBusExpSdkBusExpPer;
 hSdkBusExpSdkBusExpPerCollection =
 SdkBusExp_GetSdkBusExpPer(hSdkBusExp);

Get and print properties at level 1.

 for (int i17 = 0; i17 < SdkBusExpSdkBusExpPerCollection_GetCount
 (hSdkBusExpSdkBusExpPerCollection); i17++)
 {
 hSdkBusExpSdkBusExpPer = SdkBusExpSdkBusExpPerCollection_Item
 (hSdkBusExpSdkBusExpPerCollection, i17);
 wprintf(L"oSdkBusExpSdkBusExpPer.SdkExpPerDt: %s\n",
 printProperty
 (SdkBusExpSdkBusExpPer_GetSdkExpPerDt(hSdkBusExpSdkBusExpPer),
 tmpValue));

Similar code is generated for the properties SDK_EMPLID and SDK_BUS_EXP_SUM in the
SDK_BUS_EXP_PER collection.

Get collection at level 2 (SDK_BUS_EXP_DTL).

 HPSAPI_SDK_BUS_EXP_SDK_BUS_EXP_PER_SDK_BUS_EXP_DTLCOLLECTION
 hSdkBusExpSdkBusExpPerSdkBusExpDtlCollection;
 HPSAPI_SDK_BUS_EXP_SDK_BUS_EXP_PER_SDK_BUS_EXP_DTL
 hSdkBusExpSdkBusExpPerSdkBusExpDtl;
 hSdkBusExpSdkBusExpPerSdkBusExpDtlCollection =
 SdkBusExpSdkBusExpPer_GetSdkBusExpDtl(hSdkBusExpSdkBusExpPer);

Get and print properties at level 2.

 for (int i211 = 0; i211 <
 SdkBusExpSdkBusExpPerSdkBusExpDtlCollection_GetCount
 (hSdkBusExpSdkBusExpPerSdkBusExpDtlCollection); i211++)
 {
 hSdkBusExpSdkBusExpPerSdkBusExpDtl =
 SdkBusExpSdkBusExpPerSdkBusExpDtlCollection_Item
 (hSdkBusExpSdkBusExpPerSdkBusExpDtlCollection, i211);

 wprintf(L"oSdkBusExpSdkBusExpPerSdkBusExpDtl.SdkChargeDt:
 %s\n", printProperty
 (SdkBusExpSdkBusExpPerSdkBusExpDtl_GetSdkChargeDt
 (hSdkBusExpSdkBusExpPerSdkBusExpDtl), tmpValue));}

Similar code is generated for the properties SDK_EMPID, SDK_EXP_PER_DT, SDK_EXPENSE_CD,
SDK_EXPENSE_AMT, SDK_CURRENCY_CD, SDK_BUS_PURPOSE, and SDK_DEPTID.

Disconnect from the Application server by using the disconnect method of the Session object. This
method clears the buffers and releases the memory.

 //***** Disconnect from the App Server *****

84 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 6 Programming Component Interfaces in C++

 Session_Disconnect(hSession);

 return;
}

Copyright © 1988, 2025, Oracle and/or its affiliates. 85

Programming Component Interfaces in C++ Chapter 6

86 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 7

Using the Component Interface Software
Development Kit

Understanding the Component Interface SDK

The PeopleSoft component interface SDK is installed with the PeopleTools installation. It provides
resources to assist you in developing and testing component interface-based integration between
PeopleSoft and third-party applications. The SDK contains sample definitions with data and source
code. For easy identification, all of the definition names start with SDK_. The SDK is installed in the
PeopleSoft home directory (PS_HOME) under sdk.

Note: The SDK definitions and associated data are for development purposes only and should not be used
in a production environment.

Component Interface SDK Samples
Programming samples for the component interface SDK_BUS_EXP are part of the SDK. The samples are
available in two languages—Java, and C++.

The component interface source code is located in the <PS_HOME>\SDK\PSCOMPINTFC directory.

Note: The source files mentioned in this section are located relative to the installed PeopleSoft home
directory (PS_HOME).

Prerequisites for Using the Component Interface SDK

To call a PeopleSoft component interface, you must have:

• A working understanding of PeopleTools components.

• A working understanding of Java, or C++.

• The application server and database installed.

• The Java Virtual Machine (JVM) installed that is supplied with the Sun Microsystems Java
Development Kit (JDK), found in the %PS_HOME%\JRE directory.

Copyright © 1988, 2025, Oracle and/or its affiliates. 87

Using the Component Interface Software Development Kit Chapter 7

Using the SDK_BUS_EXPENSES Test Page

The SDK includes a component interface, called SDK_BUS_EXP, which is part of the sample
development project and is delivered with the SDK. It is built on the component SDK_CI_SAMPLES,
which contains the page SDK_BUS_EXP. The page exposes information about employee business
expenses for external access.

Note: The component SDK_CI_SAMPLES is a sample and is not for business use.

This example illustrates the SDK Business Expenses page.

To test the SDK_BUS_EXPENSES test page:

1. Provide access to the SDK_CI_SAMPLES component, using PeopleTools security.

2. Select PeopleTools SDK > PeopleTools SDK > Use > SDK CI Samples.

3. Search for and select an employee ID.

Testing the SDK_BUS_EXP Component Interface

To test the SDK_BUS_EXP component interface:

1. View the component interface definition through the PeopleSoft Application Designer.

2. Test the component interface definition, using the component interface tester.

88 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 7 Using the Component Interface Software Development Kit

Using the Component Interface SDK Sample in Java and C+ +

This section describes how to use the component interface SDK sample in Java and C++.

Understanding using the Component Interface SDK Samples in Java and C
++

The component interface sample programs for Java and for C++ are provided as part of the component
interface SDK and follow the same sequence of options. The source files are located in <PS_HOME>\sdk
\pscompintfc\src\<java or c++>\samples\sdk_bus_exp.

Building the Component Interface SDK Sample (Java)
The component interface sample program for Java is provided as part of the component interface SDK,
located in <PS_HOME>\sdk\pscompintfc\src\java\samples\sdk_bus_exp.

The Java source code for the sample is in the following file: sdk_bus_exp.java

Before you run the sample, you must build the APIs and set up the Java environment.

To build the Java component interface sample:

1. Set your java classpath to include the external API classes you already built and the psoa.jar library
delivered under <PS_HOME>\class\psjoa.jar

2. Compile the source using javac sdk_bus_exp.java

Building the Component Interface Sample (C++)
The component interface sample program for C/C++ is provided as part of the component interface SDK,
located in <PS_HOME>\sdk\pscompintfc\src\cpp\samples\sdk_bus_exp.

The C++ source code for the sample is in the following file: sdk_bus_exp\sdk_bus_exp.cpp

Before you run the sample, you must build the APIs and set up the C++ environment. To build the C++
component interface sample:

1. Open the sdk_bus_exp workspace in the Microsoft Visual C++ editor.

2. Build the project by selecting Build, Rebuild All.

Running the Component Interface SDK Sample in Java and C++
To run the compiled Java or C++ component interface sample:

1. In a DOS window, change directories to the location of the sdk_bus_exp directory.

After you launch the executable sdk_bus_exp, the system prompts you for parameters one at a time.

2. At each prompt, enter the appropriate value and press Enter.

Copyright © 1988, 2025, Oracle and/or its affiliates. 89

Using the Component Interface Software Development Kit Chapter 7

Select option 1 to sign in. You are then prompted to provide the connect information.

If the connect succeeds, a menu appears where you can perform Get or Find functions.

3. Get details for an employee.

Select option 1 to get details for an employee. You are then prompted with the different update modes
and the employee ID for which you want to display information. Enter the employee ID 8001 and
press Enter. This displays the level 0 data and the options that you can perform.

4. Select a business expense period at collection level 1.

Select option 8, Item, to select a business expense period. Selecting this option displays a list of
available business expense periods for the selected employee.

Select the expense period that you want to work with.

5. Select a business expense detail item at collection level 2..

Select option 18, Item, to select a business expense detail within the selected business expense period.
Selecting this option displays a list of available business expense details within the selected business
expense periods.

Interpreting the Code for the Component Interface SDK Sample (Java)
The following discussion refers to the Java sample program, sdk_bus_exp.java. (The code has been edited
for length.) It explains the runtime options shown above.

1. Import all the required classes:

The code example shows how to import the required classes:

package sdk_bus_exp;
import java.io.*;
import java.util.*;
import psft.pt8.joa.*;
import PeopleSoft.Generated.CompIntfc.*;
public class sdk_bus_exp {
.....

2. Declare all the required objects.

Only one active period and one active detail record are possible at any time. Users are prompted to
select the needed values if they are not active.

Collection Object Level Item Object for Collection

oSdkBusExpCollection Root (SDK_BUS_EXP) oSdkBusExp

oSdkBusExpPerCollection Level 1 (SDK_BUS_EXP_PER) oSdkBusExpPer

oSdkBusExpDtlCollection Level 2 (SDK_BUS_EXP_PER_DTL) oSdkBusExpDtl

90 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 7 Using the Component Interface Software Development Kit

In addition, the CompIntfPropInfoCollection object is used to access the structure of a component
interface. It is not specific to a component interface.

3. Declare the PeopleSoft session object.

4. Connect to the application server.

5. Instantiate the component interface.

6. Perform a Get or Create to access the component interface.

You must provide the keys to access the record that you want to modify.

7. Use the appropriate methods to access the component interface properties.

There are standard methods and user-defined methods defined for the session, the component
interface, and the component interface collections.

The executeMethod function is used to invoke a method specified as a function parameter
(nMethodIn).

The component interface Java SDK sample has 25 options:

SDK Option Where Executed

1 through 5 On the component interface.

6 through 15 SDK_BUS_EXP_PER collection.

16 through 25 SDK_BUS_EXP_DTL collection

Options 1 through 4 and options 6 through 25 are similar in behavior to those described in the product
documentation for PeopleCode API Reference for a component Interface and its collections.

Option 5, InsertBusExpDtlDefaults, is the user-defined method of the SDK_BUS_EXP component
interface. This method is defined in PeopleCode inside the component interface definition.

The logic used in the corresponding options of these collections is identical.

This is the main method. It performs such functions as starting the session, getting the component
interface, and disconnecting:

public static final void main(String[] args)System.out.println(" ");
System.out.println("\t 1) Sign In ");
System.out.println("\t q) Quit ");
System.out.println(" ");
System.out.print("Command to execute (1, q) [1]: ");
charTemp = readCharacter();
switch (charTemp) {case 'q':case 'Q':.....
disconnectFromAppServer();
return;
default:
getConnectParameters();
if (connectToAppServer()) {
oSdkBusExp = (ISdkBusExp) oSession.getCompIntfc(m_strCIName);
while (getKeyType()) {

Copyright © 1988, 2025, Oracle and/or its affiliates. 91

Using the Component Interface Software Development Kit Chapter 7

methodInt = selectMethod();
while (methodInt != 0) {
executeMethod(methodInt);
if (methodInt == 2) {
methodInt = 0;
} else {
methodInt = selectMethod();
.....

Related Links
“Understanding Component Interface Class” (PeopleCode API Reference)

Interpreting the Code for the Component Interface SDK Sample (C++)
The following listings of code are taken from the C++ sample program, sdk_bus_exp.cpp. (The code has
been edited for length.)

1. Include all the headers.

#ifdef PS_WIN32
#include "stdafx.h"
#endif
#include "cidef.h"
#include "apiadapterdef.h"
#include "PSApiExternalLib.h"
#include "PSApiAdapterInter.h"
#include "PeopleSoft_PeopleSoft_i.h"
#include <stdio.h> #include <stdlib.h>
#include <iostream.h>
#include <wchar.h>

2. Declare the PeopleSoft session handle.

HPSAPI_SESSION hSession;

3. Declare all the required objects. Only one active period and one active detail record are possible at
any time.

Collection Object Level Item Object for Collection

hSdkBusExpCollection Root (SDK_BUS_EXP) hSdkBusExp

hSdkBusExpPerCollection Level 1 (SDK_BUS_EXP_PER) hSdkBusExpPer

hSdkBusExpDtlCollection Level 2 (SDK_BUS_EXP_PER_DTL) hSdkBusExpDtl

Collection ObjectLevelItem Object for CollectionhSdkBusExpCollectionRoot
(SDK_BUS_EXP)hSdkBusExphSdkBusExpPerCollectionLevel 1
(SDK_BUS_EXP_PER)hSdkBusExpPerhSdkBusExpDtlCollection Level 2
(SDK_BUS_EXP_PER_DTL)hSdkBusExpDtl

The function executeMethod is used to launch the appropriate method depending upon the user input
(nMethodIn).

The component interface C++ SDK sample has 25 options:

92 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 7 Using the Component Interface Software Development Kit

SDK Option1 through 5 SDK_BUS_EXP_PER collection.6 through 25SDK_BUS_EXP_DTL collection

SDK Option Where Executed

1 through 5 On the component interface.

6 through 15 SDK_BUS_EXP_PER collection

16 through 25 SDK_BUS_EXP_DTL collection

Options 1 through 4 and options 6 through 25 are similar in behavior to those described in the product
documentation for PeopleCode API Reference for a component Interface and its collections.

Option 5, InsertBusExpDtlDefaults, is the user-defined method of the SDK_BUS_EXP component
interface. This method is defined in PeopleCode inside the component interface definition.

The logic used in the corresponding options of these collections is identical.

Related Links
“Understanding Component Interface Class” (PeopleCode API Reference)

Copyright © 1988, 2025, Oracle and/or its affiliates. 93

Using the Component Interface Software Development Kit Chapter 7

94 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8

Using the Excel-to-Component Interface
Utility

Understanding the Excel-to-Component Interface Utility

Use the Excel to Component Interface utility and component interfaces to upload data from Microsoft
Excel into PeopleSoft databases. Each source workbook contains both worksheets and Excel Visual Basic
code modules that execute business logic for each transaction.

Use the Microsoft Excel workbooks as a template to create worksheets that are specific to the business
logic that you need to use when you are uploading data to the PeopleSoft system. You can copy the data
input sheet to other workbooks for distribution without copying the code modules.

The code formats spreadsheet data into a PeopleSoft readable Document Object Model (DOM) structure,
and submits it to the PeopleSoft database. Next a PeopleCode program parses the DOM structure and
uses the component interface to create entries in the PeopleSoft database, validating the data submitted
against the business logic that is built into the PeopleSoft component. Because the component interface is
a wrapper around the component, all logic applied during data entry is applied when you are loading data
through this tool.

The component interface executes all the necessary PeopleCode events and the field-level edits. Based
upon results from saving the component interface, another DOM is created in the PeopleCode that returns
success, warnings, errors, or a combination of the three to the Microsoft Excel document. Records in error
can be corrected and resubmitted.

Prerequisites for Using the Excel to CI Utility
To use the Excel to CI utility you must have the following software installed.

Check the My Oracle Support web site for the currently certified versions of software supported.

• Microsoft Excel.

• Microsoft Visual Basic 6.0 SP5: Run-Time Redistribution Pack.

You can download this software from the Microsoft website at http://www.microsoft.com/downloads/
Search.aspx?displaylang=en.

• Microsoft Core XML Services (MSXML) 6.0 or higher.

You can download this software from the Microsoft website at http://www.microsoft.com/downloads/
Search.aspx?displaylang=en.

Copyright © 1988, 2025, Oracle and/or its affiliates. 95

Using the Excel-to-Component Interface Utility Chapter 8

Understanding Building Component Interfaces for the Excel to
Component Interface Utility

To use the Excel to Component Interface utility effectively, you must have a complete understanding of
the component that you are using and the component interface that is built around it. In addition, you
should know what data needs to be entered and which fields on the component need to be exposed as
component interface properties. Fields that are not relevant for data input should not be exposed on the
component interface. This reduces processing time when you are loading data, as well as saving time
when you are building the template because no need to delete unnecessary properties on the template will
exist.

Some component interface structures will need to be modified before they can be used to load data
through the utility. Components that have logic to insert multiple rows in child collections, and then
require more values to be set on those collections, will need modification to the component to work with
the Excel to Component Interface utility. Change the component so that the logic to insert and partially
populate these rows does not happen by default through the component interface.

%CompIntfc and %CompIntfcName can be used so that this logic does not fire either from any
component interface or from the component interface that you created for use with the Excel to
Component Interface utility.

Additionally, components that have no keys at level 0, but rely on logic at level 0 to load the level 1
collection, cannot be loaded by using the Excel to Component Interface utility.

Component interfaces that rely on CommitWork to save the data cannot be used in the Excel to
Component Interface utility.

Prompt and translate table values are validated when data is saved and submitted to the database through
the Excel to Component Interface utility. This is different from the behavior on the page when prompts
and translates are validated interactively. Some components may use prompts that are dynamically
populated. For those situations, you must know what the valid values for the prompt will be.

Note: Remember that any changes made to the structure of a component interface will also need to be
reflected in the template. Always ensure that the component interface and the template in the Excel to
Component Interface utility are in sync. Structural changes made in only the component interface will
cause an error in the Excel to Component Interface utility when data is submitted to the database.

Testing Component Interfaces
Before using the Excel to Component Interface utility run the component interface through the component
interface tester in three-tier mode. Testing the component interface enables you to troubleshoot any
problems before running the component interface through the utility. If the component interface does
not work in the tester, it will not work in the Excel to Component Interface utility either. The component
interface tester is located on the Tools menu in PeopleSoft Application Designer.

See Testing Component Interfaces.

96 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

Performance Expectations
The performance of a component interface depends entirely upon the underlying component. If the
component has a complex user interface with many pages and scrolls, the component interface generally
will have a slower processing time. The best performance times are found with small and medium-
complexity component interfaces.

PeopleCode Behavior and Limitations
Certain PeopleCode functions and events that are specific to the user interface do not execute through the
component interface. You will need to modify PeopleCode for the component, pages, and records when
you build the component interface for the component.

PeopleCode events and functions that relate exclusively to the page interface and online processing
cannot be used by component interfaces. These include:

• Search dialog processing.

• Menu PeopleCode and pop-up menus.

• Transfers between components, including modal transfers.

• Dynamic tree controls.

• ActiveX controls.

• DoSave and DoSaveNow.

• Functions that are ignored in a component interface call.

Related Links
Understanding PeopleCode Behavior and Limitations
“Understanding Component Interface Class” (PeopleCode API Reference)

Default Properties
When you create a new component interface in PeopleSoft Application Designer, the system can create
default properties for all the fields exposed on the component interface that meet certain criteria.

When you are creating a new component interface, the following requirements must be met to qualify as a
default property.

The fields should be of the following types:

• Character

• Long character

• Number

• Signed number

• Date

Copyright © 1988, 2025, Oracle and/or its affiliates. 97

Using the Excel-to-Component Interface Utility Chapter 8

• Time

• Datetime

The field should be one of the following page control types and must be exposed on the page:

• Edit box

• Drop-down list box

• Check box

• Radio button

Related Links
Creating Component Interface Definitions

Running the Excel to Component Interface Utility

This section discusses steps to run the Excel to Component Interface utility.

Before starting to complete these tasks, review the prerequisites for using the Excel-to-CI utility.

Related Links
Understanding the Excel-to-Component Interface Utility

Granting Access to the WEBLIB_SOAPTOCI iScript
To use the Excel to Component Interface utility, you must grant access to the iScript
WEBLIB_SOAPTOCI in the permission list of the user who is building the template.

Related Links
“Understanding Permission Lists” (Security Administration)
“Managing Permission Lists” (Security Administration)

Enabling the Developer Menu in Microsoft Excel 2007 and Later Versions
The Developer menu in Microsoft Excel contains options to work with Microsoft Visual Basic, macros,
sheet properties, and so on.

In Microsoft Excel 2007 and later versions the Developer menu is not automatically enabled and does not
appear on the menu ribbon in the default view of the Excel workspace. In the other versions of Microsoft
Excel supported for use with the Excel to Component Interface utility, the Developer menu appears by
default.

The following example shows the menu ribbon that appears in the default Microsoft Excel 2007
workspace view:

98 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

This example illustrates the menu ribbon that appears in the default Microsoft Excel 2007 workspace.

To use the Excel to Component Interface utility, you need access to some of the features accessed
through via the Developer menu, and therefore you must enable the menu. The following example shows
Microsoft Excel 2007 workspace with the Developer menu enabled on the menu ribbon:

This example illustrates the Developer menu enabled on the Microsoft Excel 2007 menu ribbon.

Once enabled, the Developer menu appears on the far right on the menu ribbon.

To enable the Developer menu in Microsoft Excel 2007 and later versions:

1. Launch Microsoft Excel 2007 or your later version.

2. In the upper left corner of the workspace, click the circular Microsoft Office icon.

The Recent Documents menu appears.

3. Click the Excel Options button at the bottom of the menu.

The Excel Options page appears.

4. In the Top Options For Working with Excel section, check the Show Developer Tab in the Ribbon
option.

5. Click the OK button.

The Microsoft Excel 2007 workspace appears and the Developer menu appears on the menu ribbon.

Enabling Macros in Microsoft Excel
The Excel to Component Interface utility relies on macros; therefore, you must enable macros in
Microsoft Excel for the utility to work. When a Microsoft Excel spreadsheet is opened, the system
displays a dialog box asking you to select whether to enable macros on the spreadsheet. Always select
Enable Macros so that the macros delivered with the Excel to Component Interface utility can function.

To ensure that the macros are available to run, you must set the security level in Microsoft Excel to allow
macros to open.

To enable macros in Microsoft Excel:

1. Open the Excel to Component Interface utility.

Copyright © 1988, 2025, Oracle and/or its affiliates. 99

Using the Excel-to-Component Interface Utility Chapter 8

2. From the Excel menu, select Tools > Macros > Security.

3. Select either Medium or Low to enable the macros.

4. Select OK.

Starting the Excel to Component Interface Utility
The Excel to CI Utility spreadsheet is located in the PS_HOME/excel directory. The file name is
ExcelToCI2007.xlsm.

Converting Excel to Component Interface Utility Templates to the Current
Excel Version

You can use customized Excel-to-CI templates based on versions of Microsoft Excel released previous
to Excel 2007. To preserve the macros embedded in your customized Excel-to-CI templates, you must
convert the templates to Excel 2007 format.

Microsoft Excel 2007 files have the extension .xlsm.

To convert an Excel-to-CI template to Microsoft Excel 2007 format:

1. Open a template in Excel 2007.

2. Click the Microsoft Office Button and choose Save As.

3. Click Excel Macro-enabled Workbook.

A Save As dialog box appears.

4. Choose a save location and enter a name for the workbook.

5. The workbook name must have the extension xlsm, such as myworkbook.xlsm

6. Click the Save button.

Viewing the Excel to Component Interface Coversheet
The coversheet of the Excel to Component Interface utility workbook gives a brief overview of the
process flow and functionality of the tool.

Access the Coversheet tab in ExcelToCI2007.xlsm:

100 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

This example illustrates the coversheet for the Excel to Component Interface utility.

Setting Up Connection Information

This section discusses how to set up the connection information.

Entering Connection Information
Access the Connect Information tab in ExcelToCI2007.xlsm by clicking the Connect Information tab:

This example illustrates the Connect Information tab in the Excel to Component Interface Utility.

Copyright © 1988, 2025, Oracle and/or its affiliates. 101

Using the Excel-to-Component Interface Utility Chapter 8

The information on this page is required to create a new template or to submit data to the database.
You will need to specify environment information as well as information about how data should be
transmitted. The Action field will be populated automatically based on your setup and the component
interface that the template is associated with.

The initial connection settings will be the PeopleSoft default values. You will need to modify these values
for your specific implementation of PeopleSoft. If you are unsure what to enter for these values, check
with your system administrator.

The connection options are:

Field or Control Description

Web Server Machine Name The name of the PeopleSoft web server to which you are
connecting.

Protocol The protocol used to access the web server. The default is
HTTP. The preferred protocol is HTTPS.

HTTP Port The HTTP port number that the web server uses. The default is
80.

Portal The name of the portal you are using. EMPLOYEE is a default
portal shipped with PeopleSoft.

PeopleSoft Site Name The PeopleSoft site name that you entered when you installed
the PeopleSoft Internet Architecture. The default is ps.

Node The PeopleSoft default local node name. The default is PT_
LOCAL.

Language Code The code for the language in which the data is submitted to the
database. If no language code is specified, the base language is
used.

Chunking Factor The number of rows of data to be transmitted to the database at
one time. The default is 40.

Error Threshold The total number of errors that are permitted before
submission to the database ceases. When the error threshold
is exceeded, an error message appears and submission to the
database stops.

102 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

Field or Control Description

Submit Blanks as Input When this option is set to Yes and a character input field
selected for input contains only blank spaces, the field will be
included for submission instead of being ignored. This option
is set to No by default, for backwards compatibility.

If full-width blank space Unicode characters are entered as
an input value in ExcelToCI, (this is achieved by using an
encoding that supports such Unicode characters) the field will
be submitted, the blanks will be sent, and the value will not be
trimmed before it is saved to the database.

If regular ASCII blank spaces (also known as half-width
characters) are entered as a value for a character field, the field
will be submitted, but the value will be trimmed, so an empty
string will be saved. In essence, the field value will be cleared.

Note: The ExcelToCI functionality uses hyperlink text for
errors or warnings. Note that Microsoft Excel limits the
number of characters for hyperlink to 255.

Copyright © 1988, 2025, Oracle and/or its affiliates. 103

Using the Excel-to-Component Interface Utility Chapter 8

Field or Control Description

Action The value for this field is supplied by the system when the
component interface is retrieved from the database. However,
 you can change the supplied value by selecting it from the
Action drop-down list.

The types of actions available are based on the structure of the
component interface. The actions are:

• Create.

This option is available if the component interface has
create keys. Use this mode when new keys are being
added at level 0.

• Update.

This option is available if the component interface does
not have create keys. Use this mode if you are adding new
children to an existing parent.

• UpdateData.

Use this option to update specific non-key values that
already exist. The system uses the keys to locate the row,
 and when a match is found, the row is updated with new
data. If a key match is not found by the system, it displays
an error message indicating which collection was missing
a key match.

When using the UpdateData action, you must provide all
keys for the collection for the system to modify the data.

Note: If you want to insert an effective-dated collection at
Level 1 containing a child collection at Level 2, you may need
to use UPDATE to insert the parent row at level 1 and then
use UPDATEDATA to insert the child row at level 2. This
is because child rows are copied forward from the current
effective-dated collection as a result of the insertion of a new
effective-dated parent row. These child rows will be updated
by the component processor with the new effective date, and
may have the same level 2 keys as the Level 2 child row that
you are trying to submit from ExcelToCI.

Optional Keys This field is reserved for PeopleSoft internal use

Error Thresholds and Chunking

A running error count is kept for each chunk of data that is being submitted to the database. When
the total error count exceeds the error threshold that you specified on the Connection Information tab,
submission to the database stops and the system displays an error message. Rows that error out will
have a status of Error on the data input page and should be corrected. The data submitted to the database
before the error threshold was reached will remain in the target database. Rows not yet submitted will be
submitted when the data is restaged and submitted.

104 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

Translations and Multilingual Support
You can use the Excel to Component Interface utility to upload data from any installed language. The
Excel to CI utility delivers separate Excel macros for each delivered language. The macros contain the
translated strings used as labels on the main spreadsheet. The macros are located in the appropriate
language directory found in the PS_HOME/EXCEL directory.

Enabling Non-English Languages

To enable a non-English language in the Excel to CI Utility:

• Change the language code on the spreadsheet Connect Information tab to the language to the language
you want to use.

• Change the reference to the related language macro to be used, as the default macro contains English
language strings.

To change the related language macro, in Excel select the Tools, Macro and right-click on the Visual
Basic Editor option. Once in Visual Basic, select Tools, References, and click on the RelLangMcro
entry. Change the file to be used to the one with the same name but located inside the translated
language directory of your choice. Click OK and then save the change.

• If you are using a language in which a different character set or numeric formatting is used, you
need to set the locale of your client machine to match that language. To do so, open Control Panel,
Regional settings, and select the correct language and input locale.

Related Links
“PeopleSoft Pure Internet Architecture Fundamentals” (Portal Technology)
“Security Basics” (Security Administration)

Connecting to the Database to Create a Template and Submit Data
Your PeopleSoft login information is needed for both creating the template and submitting data to the
database.

Access the Login dialog box by selecting the Template tab and then clicking the New Template button, or
by clicking the Submit Data button on the Staging and Submission tab:

This example shows the Login dialog box for the Excel-to-Component Interface utility.

Copyright © 1988, 2025, Oracle and/or its affiliates. 105

Using the Excel-to-Component Interface Utility Chapter 8

The system uses your user ID and password to ensure that you have the correct permissions to access the
component interface that you are creating the template on. You must be granted permission to access the
component interface that you are using.

Field or Control Description

User ID/Password Enter your PeopleSoft user ID and password.

Component Interface Name Enter the name of the component interface for which you want
the template created.

Generate Log Select the Generate Log check box to create one log file
for ExcelToCI2007.xlsm and one for the SOAPTOCI Web
Library.

Note: Unless you are troubleshooting errors, you should run
the Excel to Component Interface utility without creating log
files. Logs should be generated for debugging purposes only.

Related Links
Diagnosing and Resolving Errors

Creating Templates

The template page is a graphical representation of the component interface structure that you will be using
to load data. The structure of the component interface is retrieved from the database when a new template
is built. All of the fields that are exposed through the component interface appear on the template page.
Fields that are read-only on the component interface will not appear on the template.

The new template macro builds the parent-child relationship within Microsoft Excel based upon the
component interface scroll-level definition. The system adds a new row for each scroll level and assigns a
unique identifier to it.

Access the Template tab in ExcelToCI.xlsm to create your template:

106 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

This example illustrates the Template tab in the Excel to Component Interface utility.

Field or Control Description

Collection The name of the component interface collection. A collection
is a property that points to a scroll, rather than a field, in the
underlying component for a component interface.

Property The component interface property name. Typically, this is also
the name of the field on the page.

Copyright © 1988, 2025, Oracle and/or its affiliates. 107

Using the Excel-to-Component Interface Utility Chapter 8

Field or Control Description

Record Type This number represents the parent/child relationship of the
records. The level 0 scroll record is always represented by 000.
 Level 1 scroll records appear with numbers that start with 100
and always have 00 as the last two numbers.

Level 2 scrolls are identified by numbers that start with the
identifier of their level 1 parent and end with a 0.

Level 3 scrolls are identified by the first number from the level
1 parent, the second number from its level 2 parent, and then
the third number from its own position in the list.

The numbers for each scroll level increments based on the
number of records that exist at that level. For example, level 0
would be 000, level 1 would be 100, level 2 would be 110, and
so on.

Note: Component interfaces that have more than 10
collections at a given level increments with alphabetic
identifiers. For example, 800, 900, A00, and so on.

Field Type The standard PeopleSoft type for the field, for example, Date,
 Character, and so on.

Field Length The length of the field as defined by PeopleSoft. For numeric
fields and signed number fields, the length is broken down into
integer and decimal positions. For example, a length of 15.3
indicates 15 integer positions and three decimal positions.

Key/Required If the field is a key field, the system will display a Y to the
left of the forward slash. When the field is not a key, it will be
blank. If the field is a required field, the system will display
an R to the right of the forward slash. When the field is not
required, it will be blank. This information comes from the
record definition itself.

Note: Fields that are either keys or required must be set in
order to submit data successfully.

Sequence The sequence number represents the property order in the
template.

Status This field displays the load status on the Staging and
Submission page.

Line No This corresponds to the line number on the Input Data and the
Staging and Submission pages.

108 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

Understanding the Template Actions Toolbar
The template actions toolbar is made up of buttons that you use to create and modify a template, as well
as create a data input sheet. Each button on the toolbar has help text that describes the purpose and use of
each of the buttons when you place the cursor over the button. You can access the toolbar from Add-Ins
tab on the Excel standard menu bar in Template, Data Input, and Stage and Submission tabs.

Field or Control Description

New Template Builds a new template based upon a component interface.
 The New Template macro builds the parent-child relationship
within Microsoft Excel based upon the component interface
structure.

When you build a new template, the system prompts you for
your sign in information.

New Data Input Builds a new data input sheet based upon the selected input
cells. When you build a new data input sheet, the system
prompts you as to whether you want to overwrite the existing
sheet. If you select Yes, a new data input sheet is created,
 overwriting the former one.

Select Input Cell Selects an individual cell to be included in the data input sheet.
 Cells that have been selected as input cells are highlighted in
pink.

Select All Input Cells Selects all properties to be included in the data input as input
cells. When a cell is selected as an input cell, it is highlighted
in pink.

Restore Input Cells Restores the template to its original state and clears default
values. The fields in the template will be highlighted in gray,
 indicating that nothing is included for submission.

Insert New Child Copies the selected row to be inserted as a new child. This
creates multiple occurrences of the same record type.

For example, if the selected row has a template identifier of
100, a new row is inserted that also has an identifier of 100
and is an exact duplicate of the selected row.

Note: Use Insert New Child when multiple children must
be submitted under the same parent record. Multiple children
should not be created at identifier 000.

Include All for Submission Includes all properties on the spreadsheet to be included
for submission to the database. Cells that are included for
submission appear only on the Staging and Submission sheet
and do not appear on the data input sheet. Properties that are
included for submission are highlighted in blue.

Copyright © 1988, 2025, Oracle and/or its affiliates. 109

Using the Excel-to-Component Interface Utility Chapter 8

Field or Control Description

Include for Submission Includes a single property to be included on the Staging and
Submission sheet. Properties that use default values from
the template must be included for submission. Cells that are
included for submission generally are properties that contain
default values or properties that you would like to see in the
structure of the Staging and Submission sheet. Properties that
are included for submission are highlighted in blue.

Deselect Input Cell Changes a cell that was previously selected as an input cell
to a cell that is included for submission. The cell is no longer
included on the data input sheet but appears as part of the
structure on the Staging and Submission sheet.

Clear Template Clears all the data and structures on this sheet.

Do Not Include for Submission Does not include the selected property for submission to the
database. If a property is not included for submission, it will
not appear in the structure that is submitted to the database
on the Staging and Submission sheet. Properties that are not
included for submission will appear only on the template
worksheet and are not submitted to the database. Properties
that are not included for submission are highlighted in gray.

Note: When you create a new template or a new data input sheet, the system clears the existing worksheet
of all existing information. If you have a template or data input sheet that you need to save from previous
uploads, save a copy of the worksheet before you create a new template or data input sheet.

Entering Data into the Template
When determining which properties to include as input cells and which properties to include for
submission, remember that the component interface uses the same business logic and executes the same
PeopleCode as if the record were entered online using the page in your PeopleSoft application. To provide
the minimal data necessary, these fields must be provided either with default (hard-coded) values or
values that you provide using the data input sheet.

Note: You should unit test the template that you created with a few sample entries, and then verify your
results before using the interface for mass input. For example, if you forgot to select a property, you will
need to build a new data input sheet. If the results of the submission are satisfactory, continue entering
data.

Adding a New Child Record

By default, each collection is represented once on the template. To insert copies of a given collection,
select that collection and click the Insert New Child button to create a copy of the selected row. The
collection that you selected is copied so that you can have two rows under the same parent.

110 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

This example illustrates the Template tab in the Excel to Component Interface utility when a child row is
added.

Note: On the data input sheet (when the hierarchy is flattened) you will see duplicate columns where
multiple children exist.

Adding Default Values

Some fields have default values associated with them, either in the record definition or at runtime when
the record is created on the database. Additionally, many components trigger PeopleCode, which supplies
default values, as well. To accept the database default, include the property for submission and the system
default will be used.

Some fields may exist for which you want to create your own default. For example, if you want to set
the value of a field named Status as of Effective Date to A for every row that you submit, enter that
value for the field in the template. Then include the cell for submission on the template. The field will not
appear on the data input page, but the value will appear in the field on the Submit to Database page. This
is useful for effective dates, status fields, set IDs for simple imports, and so on.

When providing values for translate fields or prompt tables, provide the field value rather than the short
or long description for the translate value. If you are unsure of the field values, check in the record or field
definition in PeopleSoft Application Designer.

Entering Data on the Data Input Sheet

The data input sheet enables you to enter data into the Excel to Component Interface utility so that it
can be loaded to the database by using the component interface that you've selected. You can enter data
manually or you can cut and paste it from another spreadsheet or third-party application.

Using the Data Input Sheet
Access the data input tab to enter data:

Copyright © 1988, 2025, Oracle and/or its affiliates. 111

Using the Excel-to-Component Interface Utility Chapter 8

This example illustrates the Data Input tab of the Excel to Component Interface utility.

The field labels that appear on the data input sheet are those properties that you selected as input cells on
the template. Each scroll level is identified by color. The record type from the template is also displayed
for each property.

The system creates default date, datetime, and number formats when it creates the template. You can
modify this format by using default cell formatting of Microsoft Excel when entering data, with the
exception of the d/m/yy format for dates and datetimes. Instead, always use a d/m/yyyy format for dates
and datetimes. To access the formatting feature, select Format > Cells from the Excel menu.

The data input sheet is also used to correct data that failed to submit to the database. Errors that are
flagged on the Submit to Database page are posted to the data input page, and when you have corrected
them, the items marked in error can be staged again to the Staging and Submission sheet.

Data Input Actions

Select the Add-Ins tab in Excel menu bar to access Stage Data for Submission button, which takes the
data that you entered on the data input sheet and stages it for submission to the database. When the data is
staged, it appears on the Staging and Submission sheet in the hierarchical template structure. At this point,
you should check that all fields are populated as expected. When the data is staged, it displays both the
data on the data input sheet and the data that you specified as default values.

Viewing the Staged Data

Access the Staging and Submission tab:

112 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

This example illustrates the Staging and Submission tab of the Excel to Component Interface utility.

Staging and Submission Actions Toolbar

Field or Control Description

Post Results The results of the submission are copied to the data input
sheet, where you can view the status of each row that is
submitted and make any necessary corrections to rows that
have the status of Error.

Submit Data The login dialog box appears. You must specify your user ID
and password.

The system submits the data to the database in the chunks that
you specified on the Connection Information sheet.

After correcting any errors on the data input sheet, you can
submit the data again. The items that had been marked as
Error will be resubmitted, whereas those marked OK and
Warning will be ignored.

Error When Submitting Existing Keys

If you receive the error message Row already exists with the specified keys and you are in CREATE mode,
the key already exists at level 0 or is part of the search record.

To verify that the key exists:

1. Open the component interface in PeopleSoft Application Designer.

2. Launch the component interface tester by selecting Tools > Test Component Interface.

The component interface Tester search dialog box appears. This dialog box displays the keys (in the
left-hand columns) for getting, creating, or finding an instance of the component interface.

3. Enter the value for the key that you are testing.

Copyright © 1988, 2025, Oracle and/or its affiliates. 113

Using the Excel-to-Component Interface Utility Chapter 8

4. Click Get Existing for the key that you are about to add, using the Excel to component interface
utility.

If the Get Keys command returns the key, the key already exists and you must add data by using
UPDATE mode.

If you receive a message that no row exists for the key, then the key does not exist at level 0 and the
data should be added by using CREATE mode.

See Testing Component Interfaces.

Correcting and Resubmitting Data
After you submit the data to the database, the result of entering the data into Excel to Component
Interface utility appears on the Staging and Submission sheet. If a submission generates an error or a
warning, the Status column in the Staging and Submission sheet displays that.

You can read the errors and warnings messages on moving your cursor over the Status column. Also, the
utility adds an Errors page which displays consolidated error messages with the respective row numbers.

If you click a cell that displays Error link in the Status column, an HTML page opens. This HTML page
also displays the complete list of error and warning messages in a tabular format.

Both the Errors sheet and the HTML page help to display all error messages and warnings on a single
sheet. You can correct the input data before staging it for submission to the database again. You can
continue this process of correcting errors and resubmitting the data until no errors remain.

Note: Data that was not submitted because the error threshold was reached will have no status. When
the data that created the error is corrected on the data input sheet, the data that was not submitted will be
staged to the database.

Submission Statuses

Errors received for each record submitted appear in a comment field when you move the cursor over the
status column. The records marked OK in green have been successfully submitted and cannot be restaged
for submission and can be kept as a record of work completed.

One of the following three status values can appear when you submit data to the database:

Field or Control Description

Ok The submission to the database finished successfully. The field
is highlighted in green.

These records cannot be restaged for submission.

Warning The data was saved to the database successfully, but a warning
was generated in the process. The field is highlighted in
yellow.

114 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

Field or Control Description

Error The data was not saved to the database due to an error. This
field is highlighted in red with a hyperlink to a HTML page.
 The field provides two options to see the error details that the
component interface generated.

• Click the Error link to access the HTML page with the
error details.

• Place your cursor on the Status field to see the error
messages in a comment box.

Note: The same errors are also consolidated in the Errors
worksheet in the Excel to Component Interface utility.

Creating SOAP/XML Requests

You can construct a SOAP/XML (Simple Object Access Protocol/Extensible Markup Language) request
to create, update, or get component interface rows. The request and response contain component interface
data in a SOAP/XML format.

Request Format
The following example shows the request format:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xml⇒

ns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <Action__CompIntfc__CIName>
 Tags and Data
 </Action__CompIntfc__CIName>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Valid actions are Create, Get, Update, and Update data.

CIname is the name of the component interface.

Tags and Data contains the tags and data for the component interface row or rows.

Sample Create Request
The following example shows a Create request:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <CREATE__CompIntfc__SUPPORT_DOC_TBL>

Copyright © 1988, 2025, Oracle and/or its affiliates. 115

Using the Excel-to-Component Interface Utility Chapter 8

 <SUPPORT_DOC_ID>POLICE</SUPPORT_DOC_ID>
 <SUPPORT_DOC>
 <DESCR>Police Report</DESCR>
 <DESCRSHORT>Police</DESCRSHORT>
 </SUPPORT_DOC>
 </CREATE__CompIntfc__SUPPORT_DOC_TBL>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Get Request
The following example shows a Get request:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <Get__CompIntfc__SDK_BUS_EXP>
 <SDK_EMPLID>8052</SDK_EMPLID>
 </Get__CompIntfc__SDK_BUS_EXP>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Update Request
The following example shows an Update request:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <UPDATE__CompIntfc__SDK_BUS_EXP>
 <SDK_EMPLID>8001</SDK_EMPLID>
 <SDK_BUS_EXP_PER>
 <SDK_EXP_PER_DT>08/14/2002</SDK_EXP_PER_DT>
 <SDK_BUS_EXP_DTL>
 <SDK_CHARGE_DT>08/14/2002</SDK_CHARGE_DT>
 <SDK_EXPENSE_CD>01</SDK_EXPENSE_CD>
 <SDK_EXPENSE_AMT>1234.56</SDK_EXPENSE_AMT>
 <SDK_CURRENCY_CD>USD</SDK_CURRENCY_CD>
 <SDK_BUS_PURPOSE>Client Visit</SDK_BUS_PURPOSE>
 <SDK_DEPTID>10100</SDK_DEPTID>
 </SDK_BUS_EXP_DTL>
 </SDK_BUS_EXP_PER>
 </UPDATE__CompIntfc__SDK_BUS_EXP>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Updatedata Request
The following example shows an Updatedata request:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <UPDATEDATA__CompIntfc__USER_PROFILE>
 <UserID>username</UserID>
 <UserDescription>updated description</UserDescription>
 <EmailAddresses>
 <EmailType>BUS</EmailType>
 <EmailAddress>Updated@updated.com</EmailAddress>
 </EmailAddresses>
 </UPDATEDATA__CompIntfc__USER_PROFILE>
 </SOAP-ENV:Body>

116 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

</SOAP-ENV:Envelope>

Sending Requests

To send the request, post the XML code to the URL of the PeopleSoft Pure Internet Architecture server
with the appropriate path to the iScript on the server.

Note: The PeopleSoft user ID and password must be sent in the SOAP request header with the identifiers
of userid and pwd. You should send the request on a secure site.

Use this format:

Protocol(http or https)>://<WebServerMachineName>:<HTTPPort>/psc/ps/<Portal>/<Node>⇒

/s/
WEBLIB_SOAPTOCI.SOAPTOCI.FieldFormula.IScript_SOAPToCI?&disconnect=y&postDataBin=y

Field or Control Description

WebServerMachineName Machine name of the server.

HTTPPort Port of the server.

Portal Portal defined on the PeopleSoft Pure Internet Architecture
server.

Node Node defined on the PeopleSoft Pure Internet Architecture
server.

For example,

http://MyWebServer:80/psc/ps/EMPLOYEE/PT_LOCAL/s/
WEBLIB_SOAPTOCI.SOAPTOCI.FieldFormula.IScript_SOAPToCI?disconnect=y&postDataBin=y

Receiving Responses

This section provides examples of response types.

Viewing a Response if a Row Already Exists
This is one example of the error response. The messages vary depending on the type of error.

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <USER_PROFILE>
 <Error-Warning>
 <Message>
 <Type>Error</Type>

Copyright © 1988, 2025, Oracle and/or its affiliates. 117

Using the Excel-to-Component Interface Utility Chapter 8

 <MessageSetNumber>91</MessageSetNumber>
 <MessageNumber>49</MessageNumber>
 <MessageText>Row already exists with the specified keys.
 {USER_PROFILE} (91,49)</MessageText>
 <ExplainText>A rows already exists in the database with the s⇒

pecifiedkeys.
 </ExplainText>
 </Message>
 </Error-Warning>
 <Key_information>
 <UserID>PTDMO10</UserID>
 </Key_information>
 </USER_PROFILE>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Viewing a Sample Get Request and Response
The following XML code gets an SDK_BUS_EXP component interface row for an employee with an
employee ID of 8052:

<?xml version="1.0"?>
<SDK_BUS_EXP action="GET">
 <SDK_EMPLID key="Y">8052</SDK_EMPLID>
 </SDK_BUS_EXP>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The XML response for this employee is:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SDK_BUS_EXP>
 <SDK_BUS_EXP_PER>
 <SDK_EMPLID>8052</SDK_EMPLID>
 <SDK_EXP_PER_DT>2000-11-09</SDK_EXP_PER_DT>
 <SDK_BUS_EXP_DTL>
 <SDK_EMPLID>8052</SDK_EMPLID>
 <SDK_EXP_PER_DT>2000-11-09</SDK_EXP_PER_DT>
 <SDK_CHARGE_DT />
 <SDK_EXPENSE_CD />
 <SDK_EXPENSE_AMT>0</SDK_EXPENSE_AMT>
 <SDK_CURRENCY_CD>USD</SDK_CURRENCY_CD>
 <SDK_BUS_PURPOSE />
 <SDK_DEPTID />
 </SDK_BUS_EXP_DTL>
 </SDK_BUS_EXP_PER>
 </SDK_BUS_EXP>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Diagnosing and Resolving Errors

This section discusses how to diagnose and resolve errors in client environments.

118 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 8 Using the Excel-to-Component Interface Utility

Viewing Log Files
If you select the check box to create log files when building a template or submitting to the database,
two log files are created—one that logs the activity of ExcelToCI2007.xlsm and the other that logs the
SOAPTOCI Web Library.

The log for ExcelToCI2007.xlsm is created in the temp directory on the workstation running the
Microsoft Excel spreadsheet.

The log for the Web Library, SOAPTOCI<unique_number>.log, is created on the application server in the
<PS_CFG_HOME> directory. This file contains both the SOAP request and the SOAP response.

Log files are written for each chunk of data that is sent to the database.

Viewing HTML Page
The HTML page displays a complete list of errors and warnings generated in Staging & Submission sheet
of the Excel to Component Interface utility. The errors and warnings are displayed in a tabular format.
You can click any Error link in the Status column of Staging & Submission sheet to access this page.

See Correcting and Resubmitting Data

Resolving Error Messages for Client Environments
The following table lists common errors and error messages and their possible resolutions.

Error Message Possible Resolution

Component not correctly registered Reinstall Visual Basic 6.0 SP5: Run-Time Redistribution Pack
found on the Microsoft download site.

ActiveX component not correctly registered (Error 336) Reinstall Visual Basic 6.0 SP5: Run-Time Redistribution Pack
found at the Microsoft downloads website.

Error Number: -2147024770 Description: Automation error.
 The specified module could not be found.

Perform the following steps:

1. Open Windows Explorer.

2. Navigate to c:\winnt\system32 directory and locate
msxml6.dll.

3. Right-click the DLL and select Register COM
Server. The message DLLRegisterServer in c:\winnt
\system32\msxml6.dll succeeded. will appear.

4. Click OK.

Copyright © 1988, 2025, Oracle and/or its affiliates. 119

Using the Excel-to-Component Interface Utility Chapter 8

Error Message Possible Resolution

Error Number: 429 Description: ActiveX component can't
create object.

Perform the following steps:

1. Open Windows Explorer.

2. Navigate to c:\winnt\system32 directory and locate
msxml4.dll.

3. Right-click the DLL and select Register COM
Server. The message DLLRegisterServer in c:\winnt
\system32\msxml6.dll succeeded. will appear.

4. Click OK.

Error Number -214722099 Description: Automation error in
the dll.

Perform the following steps:

1. Location and open the file ExcelToCI2007.xlsm.

2. Press Alt + F11 to open the Microsoft Visual Basic
Editor.

3. Select Tools > Add references.

4. Deselect anything that begins with Microsoft XML.

5. Browse for c:\winnt\system32msxml6.dll and click OK.

6. Select that version of msxml and click OK.

7. Click Save.

Not Authorized (90,6) The user who is trying to access the component interface from
ExcelToCI does not have access to the component interface.
 Please provide access using PeopleTools Security.

120 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 9

Creating Component Interface-Based
Services

Understanding Generating Component Interfaced-Based Services

PeopleSoft Integration Broker enables you to take an existing component interface and create a service
that can invoke the component interface.

Further, it creates service operations, including request messages and response messages (if appropriate).
The system creates an inbound any-to-local routing for the service operation version, as well as handlers
for each method you choose to include in the service.

All service operations you generate from component interfaces are synchronous service operations.

After you create the service operation you can access the service definition to view and capture the
WSDL.

Related Links
“Understanding Creating Component Interface-Based Services” (Integration Broker)

Copyright © 1988, 2025, Oracle and/or its affiliates. 121

Creating Component Interface-Based Services Chapter 9

122 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10

Using Services to Validate Prompt Table
and Translate Field Values

Understanding Validating Prompt Table and Translate Field Values

PeopleSoft delivers a a PTLOOKUP service and a REST-based PTLOOKUP_REST service that enables
integration partners to retrieve lists of valid/allowable values for prompt and translate (XLAT) fields from
PeopleSoft components on which component interfaces are based, allowing them to validate their client
application data against PeopleSoft data.

PTLOOKUP Service

To use the PTLOOKUP service, you generate a WSDL document for this service using the Provide Web
Service wizard and furnish your integration partner the WSDL document. The third-party integration
partner uses the provided request message shape contained in the WSDL document to specify the field
values to validate. They then send the request message to the PeopleSoft system to invoke the service.
The PeopleSoft system returns a response message to the integration partner with the field values
requested.

The PTLOOKUP service contains two service operations:

Term Definition

PTLOOKUPPROMT.v1 Use this service operation to return prompt table field values
for prompt tables contained in a component.

PTLOOKUPXLAT.v1 Use this service operation to return translate (XLAT) field
values for translate fields contained in a component.

Each service operation is synchronous and is delivered with a request message, a response message, a
handler, and a routing. The delivered metadata for these service operations is described elsewhere in this
section.

The service operations take as their primary inputs the value being validated, the name of the table, and
the field name against which to compare. The service operations compare the input value against the
lookup table and return the result of the validation test.

PTLOOKUP_REST Service

To use the PTLOOKUP_REST service, you generate a WADL document for this service using the
Provide Web Service wizard and furnish the WADL document to your integration partner to generate The
third-party integration partner uses the provided request document type message shape to specify the field

Copyright © 1988, 2025, Oracle and/or its affiliates. 123

Using Services to Validate Prompt Table and Translate Field Values Chapter 10

values to validate. They then use the request URL contained in the WADL document to invoke the service
on the PeopleSoft system. The PeopleSoft system returns a response message to the integration partner
with the field values requested.

The PTLOOKUP_REST service contains two service operations:

Term Definition

PTLOOKUPPROMPT_REST_GET.v1 Use this service operation to return prompt table field values
for prompt tables contained in a component.

PTLOOKUPXLAT_REST_GET.v1 Use this service operation to return translate (XLAT) field
values for translate fields contained in a component.

Each service operation is synchronous and is delivered with pre-defined URI templates, a document
template, request and response messages, and any-to-local routing definitions. The delivered metadata for
these service operations is described elsewhere in this section.

The service operations take as their primary inputs the value being validated, the name of the table, and
the field name against which to compare. The service operations compare the input value against the
lookup table and return the result of the validation test.

Prerequisites for Validating Prompt Table and Translate Field
Values

The following list outlines prerequisites for using the PTLOOKUP service to validate prompt table and
translate table field values:

• The PeopleSoft system must have Integration Broker configured and running.

• Integration partners must know and provide the field names and table names for which they are
retrieving validation information.

• Integration partners must have access to:

• PeopleSoft Application Designer to inspect PeopleSoft component, record, and field information
and properties.

• PeopleSoft Integration Broker or another services-oriented architecture environment configured
and running

Validating Prompt Table Field Values

This section discusses how to use the PTLOOKUPPROMPT service operation and the
PTLOOKUPPROMPT_REST_GET service operation to validate prompt table field values.

124 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Services to Validate Prompt Table and Translate Field Values

Understanding Validating Set Control Fields
Use service operation security permission lists to secure access to these service operations.

Requests must be sent to the PeopleSoft system using SSL or TLS.

Moreover, because prompt table field values can contain sensitive or confidential information, such as
salary grades or order categories. Access to the prompt tables targeted by the PTLOOKUPPROMPT
service operation and the PTLOOKUPPROMPT_REST_GET service operation are restricted by the
requirement that they be added to a query access tree for which the user issuing the service request must
be granted permission.

Using the PTLOOKUPPROMPT Service Operation
The PTLOOKUPPROMPT service operation is a non-REST-based service operation that you can use to
validate prompt table field values. To access the service operation, select PeopleTools > Integration
Broker > Integration Setup > Service Operation Definitions and select the PTLOOKUPPROMPT
service operation.

PTLOOKUPPROMPT is a restricted service operation that is delivered with the following metadata:

Metadata Type Name Description

Request Message PTLOOKUPPROMPT.V1 PTLOOKUPPROMPT.V1 is a
document-based message.

Response Message PTLOOKUPRESP.V1 PTLOOKUPRESP.V1 is a document-
based message.

Handler REQUESTHNDLR REQUESTHNDLR is an OnRequest
handler that is implemented using an
application class.

The application class package delivered
is PT_IB_LOOKUP and the class ID is
RequestHandler.

Routing System generated. PeopleSoft delivers a system-generated
synchronous any-to-local routing for this
service operation.

Listening Connector PeopleSoftServices The default listening connector.

Using the PTLOOKUPPROMPT_REST_GET Service Operation
The PTLOOKUPPROMPT_REST_GET is a REST-based service operation that you can use to
validate prompt table field values. To access the service operation, select PeopleTools > Integration
Broker > Integration Setup > Services. Select the PTLOOKUP_REST service. The Services page
appears. In the Existing Operations section click PTLOOKUPPROMPT_REST_GET.

Copyright © 1988, 2025, Oracle and/or its affiliates. 125

Using Services to Validate Prompt Table and Translate Field Values Chapter 10

The PTLOOKUPPROMPT_REST_GET service operation is delivered with the following metadata:

Metadata Type Name Description

URI Templates NA The service operation is delivered with
six (6) pre-defined URI templates. The
templates are listed after this table.

Document Template PTLOOKUPPROMPTTMPL.V1 The Document type message. The
document message has elements defined
with names used for value replacement
within the URI template(s).

Request Message NA In a REST-based service operation a
request is made by sending a URL based
on one of the URI templates.

Response Message PTLOOKUPRESP.V1 PTLOOKUPRESP.V1 is a document-
based message.

Fault Message PT_LOOKUP_RESTFAULT.v1 PT_LOOKUP_RESTFAULT.v1 is a
document-based message.

Handler REQUESTHNDLR REQUESTHNDLR is an OnRequest
handler that is implemented using an
application class.

The application class package delivered
is PT_IB_LOOKUP and the class ID is
RequestHandler.

Routing System generated. PeopleSoft delivers a system-generated
synchronous any-to-local routing for this
service operation.

Listening Connector RESTListeningConnector The default listening connector.

The following URI templates are delivered with this service operation:

• Lookup/{LookupRecName}/{LookupFieldName}?
fieldvalue={LookupFieldValue}

• Lookup/{LookupRecName}/{SetIDValue}/{LookupFieldName}?
fieldvalue={LookupFieldValue}

• Lookup/{LookupRecName}/{LanguageCode}/{SetIDValue}/
{LookupFieldName}?fieldvalue={LookupFieldValue}

• Lookup/{LookupRecName}/{EffectiveDate}/{LanguageCode}/{SetIDValue}/
{LookupFieldName}?fieldvalue={LookupFieldValue}

126 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Services to Validate Prompt Table and Translate Field Values

• Lookup/{LookupRecName}/{EffectiveDate}/{LanguageCode}/{SetIDValue}/
{DescrFieldName }/{LookupFieldName}?fieldvalue={LookupFieldValue}

• Lookup/{LookupRecName}/{EffectiveDate}/{LanguageCode}/{SetIDValue}/
{SetControlFieldValue}/{DescrFieldName }/{LookupFieldName}?
fieldvalue={LookupFieldValue}

Validating Translate (XLAT) Field Values

This section discusses how to use the PTLOOKUPXLAT service operation and the
PTLOOKUPXLAT_REST_GET service operation to validate XLAT field values.

Note: XLAT values are effective-dated, and only the values marked as Active are used for validation.

Understanding Translate (XLAT) Table Entries
XLAT table entries associated with a field definition include the following attributes:

Attribute Description

FIELDNAME Field name, such as ABSENCE_TYPE.

LANGUAGE_CD Language code.

FIELDVALUE Value for the field; it must be between 1 and 4 characters long.

EFFDT Effective date.

VERSION Internal version number (system-maintained).

EFF_STATUS The status of the field, active or inactive.

XLATLONGNAME Thirty-character description; used as a label on pages and
reports.

XLATSHORTNAME Ten-character description; used as a label on pages and reports.

Understanding Security When Validating Translate (XLAT) Field Values
Use service operation security permission lists to secure access to this service operation.

Requests must be sent to the PeopleSoft system using SSL or TLS.

Copyright © 1988, 2025, Oracle and/or its affiliates. 127

Using Services to Validate Prompt Table and Translate Field Values Chapter 10

Using the PTLOOKUPXLAT Service Operation
The PTLOOKUPXLAT service operation is a non-REST service operation that you can use to
validate prompt table field values. To access the service operation, select PeopleTools > Integration
Broker > Integration Setup > Service Operation Definitions and select the PTLOOKUPXLAT
service operation.

PTLOOKUPXLAT is a restricted service operation that is delivered with the following metadata:

Metadata Type Name Comments

Request Message PTLOOKUPXLAT.V1 PTLOOKUPXLAT.V1 is a document-
based message.

Response Message PTLOOKUPXLATRESP.V1 PTLOOKUPXLATRESP.V1 is a
document-based message.

Handler REQUESTHNDLR REQUESTHNDLR is an OnRequest
handler that is implemented using an
application class.

The application class package delivered
is PT_IB_LOOKUP and the class ID is
RequestHandler.

Routing System generated. PeopleSoft delivers a system-generated
synchronous any-to-local routing for this
service operation.

Listening Connector PeopleSoftServices The default listening connector.

Using the PTLOOKUPXLAT_REST_GET Service Operation
The PTLOOKUPXLAT_REST_GET service operation is a REST-based service operation that you can use
to validate prompt table field values. To access the service operation, select PeopleTools > Integration
Broker > Integration Setup > Services. The Service page appears. In the Existing Operation section
click the PTLOOKUPXLAT_REST_GET service operation.

The PTLOOKUPXLAT_REST_GET service operation is delivered with the following metadata:

Metadata Type Name Description

URI Templates NA The service operation is delivered with
four (4) pre-defined URI templates. The
templates are listed after this table.

128 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Services to Validate Prompt Table and Translate Field Values

Metadata Type Name Description

Document Template PTLOOKUPXLAT.V1 The Document type message. The
document message has elements defined
with names used for value replacement
within the URI template(s).

Request Message NA In a REST-based service operation a
request is made by sending a URL based
on one of the URI templates.

Response Message PTLOOKUPRESP.V1 PTLOOKUPRESP.V1 is a document-
based message.

Fault Message PT_LOOKUP_RESTFAULT.v1 PT_LOOKUP_RESTFAULT.v1 is a
document-based message.

Handler REQUESTHNDLR REQUESTHNDLR is an OnRequest
handler that is implemented using an
application class.

The application class package delivered
is PT_IB_LOOKUP and the class ID is
RequestHandler.

Routing System generated. PeopleSoft delivers a system-generated
synchronous any-to-local routing for this
service operation.

Listening Connector RESTListeningConnector The default listening connector.

The following URI templates are delivered with this service operation:

• XLAT_Lookup/{LookupFieldName}?fieldVal={LookupFieldValue}

• XLAT_Lookup/{LookupFieldName}/{DescrFieldName}/{EffectiveDate}

• XLAT_Lookup/{LookupFieldName}/{LanguageCode}/{DescrFieldName}/
{EffectiveDate}

• XLAT_Lookup/{LookupFieldName}/{LanguageCode}/{EffectiveDate}/
{DescrFieldName}?fieldVal={LookupFieldValue}

Using Messages to Request Valid Prompt Field and Translate
(XLAT) Field Values

The request message for either service operation is a document type message, and includes one or more
sets of the following as inputs associated with the look-up operation:

Copyright © 1988, 2025, Oracle and/or its affiliates. 129

Using Services to Validate Prompt Table and Translate Field Values Chapter 10

Element Description

LookupRecName Populate this element with the prompt table that contains the
data to validate.

This element appears only when performing a prompt table
lookup and working with the PTLOOKUPPROMPT message.

When you perform an XLAT lookup, there is only one XLAT
table for the entire PeopleSoft database and the table name,
 PSXLATITEM, is fixed. As a result you do not need to
provide the table name when performing an XLAT lookup.

LookupFieldName Populate this element with the field name to validate.

LookupFieldValue (Optional) Populate this element with the name of the
descriptor field. The descriptor field describes the purpose of
the record, not the field.

The valid values are:

• A specific value to look up.

• Blank (empty). This will return a list of all possible
values.

• A wildcard (%) value. For example, entering A% will
return all results that start with the letter A.

DescrFieldName (Optional) Populate this element with the field name
description.

LanguageCode (Optional) Populate this element with the language code.

EffectiveDate (Optional) Populate this element with the effective date.

SetControlFieldValue (Optional) Appears only in the PTLOOKUPPROMPT.V1
request message for validating prompt table field values.

If you are validating a prompt table field value that is
controlled by a set control field, enter the set control field
value in the SetControlFieldValue element in the request
message. The system uses this information to extract the name
of the SETID field used to partition the data in the table.

If you do not enter the set control field value, you must enter
the set ID value in the SetIDValue element in the request
message. The SetIDValue element is described elsewhere in
this table.

If you enter a set control field value and a set ID value, the
system uses the set control field value to locate the field name.

130 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Services to Validate Prompt Table and Translate Field Values

Element Description

SetIDValue (Optional) Appears only in the PTLOOKUPPROMPT.V1
request message for validating prompt table field values.

If you are validating a prompt table field value that is
controlled by a set control field, enter the set ID value in the
SetIDValue element.

If you also enter a set control field value in the request
message, as described elsewhere in this table, the system uses
that value, not the set ID value, to locate the field name.

FldName (Optional) Appears only in the PTLOOKUPPROMPT.V1
request message for validating prompt table field values.

If you are validating a prompt table field use this element in
conjunction with the FldNameValue element to return name/
value pairs for the field.

FldNameValue (Optional) Appears only in the PTLOOKUPPROMPT.V1
request message for validating prompt table field values.

If you are validating a prompt table field use this element in
conjunction with the FldName element to return name/value
pairs for the field.

Examples of response messages are provided elsewhere in this appendix.

Using Response Messages to Retrieve Valid Prompt Field and
Translate (XLAT) Field Values

The following table lists the elements contained in the response message and the information contained in
each:

Element Description

RespVal This element is populated with the response value.

RespDescr This element is populated with a description of the response
value.

The response value that the PeopleSoft system sends back is based on one of the following possible
conditions:

Condition Response

Input value is a perfect match. The value that was matched.

Copyright © 1988, 2025, Oracle and/or its affiliates. 131

Using Services to Validate Prompt Table and Translate Field Values Chapter 10

Condition Response

Input value is a partial match. List of matched values.

Input value is blank (empty). List of all values.

Input value not matched. List of all values.

Prompt table name or prompt field are incorrect. Error message.

Examples of response messages are provided elsewhere in this appendix.

Examples: Validating Prompt Field and Translate (XLAT) Field
Values

This section provides examples of request and response messages for the validating prompt field
and translate (XLAT) field values using the PTLOOKUPPROMPT and PTLOOKUPXLAT service
operations.

Note: The examples in this section are for non-REST requests and responses only.

Example 1: Validating a Translate (XLAT) Field
The following code example shows a request message sent to a PeopleSoft system as part of the
PTLOOKUPXLAT service operation to obtain a list of valid field values and their descriptions for the
CERTTYPE field. Note that the LookupFieldValue element is empty (< >). As a result, the PeopleSoft
system will return a list of all valid values for the field:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:s⇒

oapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http://schemas.xmlsoa⇒

p.org/ws/2003/03/addressing/" xmlns:xsd="http://www.w3.org/2001/XMLSchema/" xmlns:x⇒

si="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas. xmlsoap.⇒

org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/ 2004/01/oasis-20040⇒

1-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>username</wsse:Username>
 <wsse:Password>password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <XLAT_Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/ PT_Lo⇒

okup.XLAT_Lookup.V1">

132 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Services to Validate Prompt Table and Translate Field Values

 <LookupFieldName>CERTTYPE</LookupFieldName>
 <LookupFieldValue></LookupFieldValue>
 <DescrFieldName>XLATSHORTNAME</DescrFieldName>
 <LanguageCode></LanguageCode>
 <EffectiveDate>2010-01-03</EffectiveDate>
 </XLAT_Lookup>
 </soapenv:Body>
</soapenv:Envelope>

The following code example shows the response message that the PeopleSoft system returns to the
integration partner. The returned field values are returned in the <RespVal> and <RespDescr> elements,
as highlighted in the example:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>USER</RespVal>
 <RespDescr>User</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.ResponseComp.V1"><RespVal>NODE</RespVal>
 <RespDescr>Node</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.ResponseComp.V1"> <RespVal>CERT</RespVal>
 <RespDescr>Cert</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.ResponseComp.V1"><RespVal>ROOT</RespVal>
 <RespDescr>Root CA</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Example 2: Performing a Prompt Table Lookup with a Field Value Wildcard
The following code example shows a request message sent to a PeopleSoft system as part of the
PTLOOKUPPROMPT service operation to perform a prompt table lookup on the Country table using a
wildcard (%) on the field value to find country names that begin with the letter U:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http:
//schemas.xmlsoap.org/ws/2003/03/addressing/" xmlns:xsd="http://www.w3.org/
2001/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas.xmlsoap.
 org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>username</wsse:Username>
 <wsse:Password>password/wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.Prompt_Lookup.V1">
 <LookupRecName>COUNTRY_TBL</LookupRecName>

Copyright © 1988, 2025, Oracle and/or its affiliates. 133

Using Services to Validate Prompt Table and Translate Field Values Chapter 10

 <LookupFieldName>COUNTRY</LookupFieldName>
 <LookupFieldValue>U%</LookupFieldValue>
 <DescrFieldName>DESCR</DescrFieldName>
 <LanguageCode></LanguageCode>
 <EffectiveDate></EffectiveDate>
 </Lookup>
 </soapenv:Body>
</soapenv:Envelope>

The following code example shows the response message that the PeopleSoft system returns to the
integration partner. The returned field values are returned in the <RespVal> and <RespDescr> elements,
as highlighted in the example:

<?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/" xmlns:soapenc="http://schemas.
xmlsoap.org/soap/encoding/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body><LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/
 Tools/schemas/PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>UMI</RespVal>
 <RespDescr>US Minor Outlying Islands</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1"><RespVal>UGA</RespVal>
 <RespDescr>Uganda</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1"><RespVal>UKR</RespVal>
 <RespDescr>Ukraine</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1"><RespVal>USA</RespVal>
 <RespDescr>United States</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1"><RespVal>URY</RespVal>
 <RespDescr>Uruguay</RespDescr>
 </ResponseComp>
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1"><RespVal>UZB</RespVal>
 <RespDescr>Uzbekistan</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Example 3: Filtering Field Values by Name/Value Pairs
The following code example shows a request message sent to a PeopleSoft system from an integration
partner as part of the PTLOOKUPPROMPT service operation to obtain a list of field values from the
Currency table of currencies from Argentina that start with A by using name/value pair as additional
filter:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"xmlns:wsa="http:
//schemas.xmlsoap.org/ws/2003/03/addressing/" xmlns:xsd="http://www.w3.org/
2001/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas.
 xmlsoap.org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/
 2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>username/wsse:Username>

134 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Services to Validate Prompt Table and Translate Field Values

 <wsse:Password>password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.Prompt_Lookup_All.V1">
 <LookupRecName>CURRENCY_CD_TBL</LookupRecName>
 <LookupFieldName>CURRENCY_CD</LookupFieldName>
 <LookupFieldValue>A%</LookupFieldValue>
 <DescrFieldName>DESCR</DescrFieldName>
 <LanguageCode></LanguageCode>
 <EffectiveDate/>
 <SetControlFieldValue/>
 <SetIDValue/>
 <NameValPair xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.NameValPair.V1"><FldName>COUNTRY</FldName>
 <FldVal>ARG</FldVal>
 </NameValPair>
 </Lookup>
 </soapenv:Body>
</soapenv:Envelope>

The following code example shows the response message that the PeopleSoft system returns to the
integration partner. The returned field values are returned in the <RespVal> and <RespDescr> elements,
as highlighted in the example:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd=
"http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <soapenv:Body>
 <LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>ARS</RespVal>
 <RespDescr>Argentine Peso</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Example 4: Specifying Set Control Field Values to Validate Field Values
Controlled by Set Control Fields

The following code example shows a request message sent to a PeopleSoft system from an integration
partner as part of the PTLOOKUPPROMPT service operation to obtain a list of valid field values for the
VENDOR_ID prompt field, a field controlled by a set control field.

When you provide the set control field value, PeopleSoft uses Set ID indirection (via the GetSetID built-
in function) to obtain the set ID value, and uses it to filter results during lookup.

This example shows specifying the set control field value to obtain the values for the field:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
"xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http:
//schemas.xmlsoap.org/ws/2003/03/addressing/" xmlns:xsd="http://www.w3.org/
2001/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas.xmlsoap.
 org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

Copyright © 1988, 2025, Oracle and/or its affiliates. 135

Using Services to Validate Prompt Table and Translate Field Values Chapter 10

 oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>username</wsse:Username>
 <wsse:Password>password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.Prompt_Lookup_All.V1">
 <LookupRecName>VENDOR</LookupRecName>
 <LookupFieldName>VENDOR_ID</LookupFieldName>
 <LookupFieldValue>TPDENTIST</LookupFieldValue>
 <DescrFieldName>VENDOR_NAME_SHORT</DescrFieldName>
 <LanguageCode/>
 <EffectiveDate/><SetControlFieldValue>US001</SetControlFieldValue>
 <SetIDValue/>
 <NameValPair xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.NameValPair.V1">
 <FldName/>
 <FldVal/>
 </NameValPair>
 </Lookup>
 </soapenv:Body>
</soapenv:Envelope>

The following code example shows the response message that the PeopleSoft system returns to the
integration partner. The returned field values are returned in the <RespVal> and <RespDescr> elements,
as highlighted in the example.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
"xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd="http:
//www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <soapenv:Body>
 <LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.ResponseComp.V1">
 <RespVal>TPDENTIST</RespVal>
 <RespDescr>SMILEWELL-001</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Example 5: Specifying Set Control ID Values to Validate Field Values
Controlled by Set ID Values

The following code example shows a request message sent to a PeopleSoft system from an integration
partner as part of the PTLOOKUPPROMPT service operation to obtain a list of valid field values for the
VENDOR_ID prompt field, a field controlled by a set control field. This example shows specifying the set
control ID value to obtain the field values:

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/
"xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http:
//schemas.xmlsoap.org/ws/2003/03/addressing/"xmlns:xsd="http://www.w3.org/
2001/XMLSchema/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance/">
 <soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <wsse:Security soap:mustUnderstand="1" xmlns:soap="http://schemas.xmlsoap.
 org/wsdl/soap/" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>username</wsse:Username>

136 Copyright © 1988, 2025, Oracle and/or its affiliates.

Chapter 10 Using Services to Validate Prompt Table and Translate Field Values

 <wsse:Password>password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <Lookup xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
 PT_Lookup.Prompt_Lookup_All.V1">
 <LookupRecName>VENDOR</LookupRecName>
 <LookupFieldName>VENDOR_ID</LookupFieldName>
 <LookupFieldValue>TPDENTIST</LookupFieldValue>
 <DescrFieldName>VENDOR_NAME_SHORT</DescrFieldName>
 <LanguageCode/>
 <EffectiveDate/>
 <SetControlFieldValue/><SetIDValue>SHARE</SetIDValue>
 <NameValPair xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.NameValPair.V1">
 <FldName/>
 <FldVal/>
 </NameValPair>
 </Lookup>
 </soapenv:Body>
</soapenv:Envelope>

The following code example shows the response message that the PeopleSoft system returns to the
integration partner. The returned field values are returned in the <RespVal> and <RespDescr> elements,
as highlighted in the example.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/
"xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd=
"http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
 <soapenv:Body>
 <LookupResponse xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.LookupResponse.V1">
 <ResponseComp xmlns="http://xmlns.oracle.com/Enterprise/Tools/
 schemas/PT_Lookup.ResponseComp.V1">
 <RespVal>TPDENTIST</RespVal>
 <RespDescr>SMILEWELL-001</RespDescr>
 </ResponseComp>
 </LookupResponse>
 </soapenv:Body>
</soapenv:Envelope>

Copyright © 1988, 2025, Oracle and/or its affiliates. 137

Using Services to Validate Prompt Table and Translate Field Values Chapter 10

138 Copyright © 1988, 2025, Oracle and/or its affiliates.

	Legal Notices
	Contents
	Preface
	Understanding the PeopleSoft Online Help and PeopleBooks
	Hosted PeopleSoft Online Help
	Locally Installed PeopleSoft Online Help
	Downloadable PeopleBook PDF Files
	Common Help Documentation
	Field and Control Definitions
	Typographical Conventions
	ISO Country and Currency Codes
	Region and Industry Identifiers
	Translations and Embedded Help

	Using and Managing the PeopleSoft Online Help
	PeopleTools Related Links
	Contact Us
	Follow Us

	Getting Started with PeopleSoft Component Interfaces
	Overview
	Implementing PeopleSoft Component Interfaces
	Implementing the Excel to Component Interfaces Utility

	Understanding Component Interfaces
	Understanding Component Interfaces
	Component Interface Architecture
	Component Interface Attributes
	Name
	Keys
	Properties
	Collections
	Methods

	Component Interface Definitions and Views

	Developing Component Interfaces
	Understanding Stateful CI
	Creating Component Interface Definitions
	Understanding Creating Component Interface Definitions
	Creating New Component Interfaces
	Naming Component Interface Definitions
	Associating Component Interfaces with Menus
	Determining the Fields to Expose in Component Interfaces
	Drop Zones in Component Interfaces

	Using Keys
	Understanding Keys
	Adding and Deleting Keys

	Setting Properties
	Understanding Standard Properties
	Creating User-Defined Properties
	Deleting User-Defined Properties
	Renaming User-Defined Properties
	Creating Reference Properties
	Making Properties Read-Only

	Working with Collections
	Working with Methods
	Understanding Session Functions and Methods
	Understanding Standard Methods
	Understanding Collection Methods
	Enabling and Disabling Standard Methods
	Creating User-Defined Methods
	Exporting User-Defined Methods

	Validating Component Interfaces
	Setting Security Options
	Testing Component Interfaces
	Searching Component Interfaces to Test
	Testing Component Interfaces
	Determining ItemByKeys Parameters

	Understanding Synchronization
	Writing Component Interface Programs
	Understanding Runtime Considerations
	General Considerations
	Scope Conflicts
	Interactive Mode

	Programming Component Interfaces Using PeopleCode
	Understanding PeopleCode Behavior and Limitations
	PeopleCode Event and Function Behavior
	CopyRowset Language Considerations
	Limitations of Client-Only PeopleCode

	Generating PeopleCode Templates to Access Component Interfaces
	Understanding PeopleCode Templates

	Programming Component Interfaces in Java
	Building APIs in Java
	Setting Up the Java Environment
	Generating Java Runtime Code Templates
	Understanding the Java Template

	Programming Component Interfaces in C++
	Building APIs for C++
	Setting Up the C++ Environment
	Setting Up Client Machines to Access C++ APIs
	Configuring Compilers for C++ Projects

	Generating C++ Runtime Code Templates
	Understanding the C++ Template

	Using the Component Interface Software Development Kit
	Understanding the Component Interface SDK
	Component Interface SDK Samples

	Prerequisites for Using the Component Interface SDK
	Using the SDK_BUS_EXPENSES Test Page
	Testing the SDK_BUS_EXP Component Interface
	Using the Component Interface SDK Sample in Java and C+ +
	Understanding using the Component Interface SDK Samples in Java and C++
	Building the Component Interface SDK Sample (Java)
	Building the Component Interface Sample (C++)
	Running the Component Interface SDK Sample in Java and C++
	Interpreting the Code for the Component Interface SDK Sample (Java)
	Interpreting the Code for the Component Interface SDK Sample (C++)

	Using the Excel-to-Component Interface Utility
	Understanding the Excel-to-Component Interface Utility
	Prerequisites for Using the Excel to CI Utility

	Understanding Building Component Interfaces for the Excel to Component Interface Utility
	Testing Component Interfaces
	Performance Expectations
	PeopleCode Behavior and Limitations
	Default Properties

	Running the Excel to Component Interface Utility
	Granting Access to the WEBLIB_SOAPTOCI iScript
	Enabling the Developer Menu in Microsoft Excel 2007 and Later Versions
	Enabling Macros in Microsoft Excel
	Starting the Excel to Component Interface Utility
	Converting Excel to Component Interface Utility Templates to the Current Excel Version
	Viewing the Excel to Component Interface Coversheet

	Setting Up Connection Information
	Entering Connection Information
	Translations and Multilingual Support
	Connecting to the Database to Create a Template and Submit Data

	Creating Templates
	Understanding the Template Actions Toolbar
	Entering Data into the Template

	Entering Data on the Data Input Sheet
	Using the Data Input Sheet

	Viewing the Staged Data
	Correcting and Resubmitting Data

	Creating SOAP/XML Requests
	Request Format
	Sample Create Request
	Sample Get Request
	Sample Update Request
	Sample Updatedata Request

	Sending Requests
	Receiving Responses
	Viewing a Response if a Row Already Exists
	Viewing a Sample Get Request and Response

	Diagnosing and Resolving Errors
	Viewing Log Files
	Viewing HTML Page
	Resolving Error Messages for Client Environments

	Creating Component Interface-Based Services
	Understanding Generating Component Interfaced-Based Services

	Using Services to Validate Prompt Table and Translate Field Values
	Understanding Validating Prompt Table and Translate Field Values
	Prerequisites for Validating Prompt Table and Translate Field Values
	Validating Prompt Table Field Values
	Understanding Validating Set Control Fields
	Using the PTLOOKUPPROMPT Service Operation
	Using the PTLOOKUPPROMPT_REST_GET Service Operation

	Validating Translate (XLAT) Field Values
	Understanding Translate (XLAT) Table Entries
	Understanding Security When Validating Translate (XLAT) Field Values
	Using the PTLOOKUPXLAT Service Operation
	Using the PTLOOKUPXLAT_REST_GET Service Operation

	Using Messages to Request Valid Prompt Field and Translate (XLAT) Field Values
	Using Response Messages to Retrieve Valid Prompt Field and Translate (XLAT) Field Values
	Examples: Validating Prompt Field and Translate (XLAT) Field Values
	Example 1: Validating a Translate (XLAT) Field
	Example 2: Performing a Prompt Table Lookup with a Field Value Wildcard
	Example 3: Filtering Field Values by Name/Value Pairs
	Example 4: Specifying Set Control Field Values to Validate Field Values Controlled by Set Control Fields
	Example 5: Specifying Set Control ID Values to Validate Field Values Controlled by Set ID Values

