Oracle® SQLcl
User's Guide

Release 25.1
G26927-02
April 2025

ORACLE"

Oracle SQLcl User's Guide, Release 25.1
G26927-02

Copyright © 2019, 2025, Oracle and/or its affiliates.
Primary Author: Celin Cherian

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface
Audience X
Documentation Accessibility X
Conventions X
1 Changes in Release 25.1 for Oracle SQLcl User's Guide
2 Using Oracle SQLcl
2.1 Starting and Leaving SQLcl 2-2
2.2 Defining Parameters in SQLcl Scripts Using the ARGUMENT Command 2-3
2.3 Starting Up and Shutting Down a Database 2-5
2.4 Entering and Executing Commands 2-6
2.5 Manipulating SQL, SQLcl, and PL/SQL Commands 2-7
2.6 Formatting Query Results 2-10
2.7 Connecting to a Database 2-13
2.8 Loading a File 2-14
2.8.1 LOAD Command 2-14
2.8.1.1 SET LOAD Command 2-18
2.8.1.2 SET LOADFORMAT Command 2-20
2.9 Using the OCI Command for Oracle Cloud Infrastructure REST APIs 2-22
3 Using Liquibase
3.1 About Liquibase in SQLcl 3-1
3.2 Requirements for Using Liquibase 3-2
3.3 Supported Types 3-3
3.4 Supported Liquibase Commands in SQLcl 3-4
3.5 Using SQLcl Liquibase Functionality with Open-Source Liquibase 3-5
3.6 Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle
Database Package 3-10
3.7 Liquibase Open-Source Changesets with SQLcl Liquibase 3-19
3.8 DATABASECHANGELOG_DETAILS VIEW 3-23

ORACLE"

3.9 ChangeSets in Liquibase 3-24

3.10 Tips for Liquibase Settings 3-24
3.10.1 How to Exclude Table Properties When Deploying Changelogs to a New
Environment 3-25
3.10.2 Create Database Objects in a Schema Different From the Connected Schema 3-28
3.11 Important 23.4 Update with Liquibase Changelog Files 3-30
3.12 Examples Using Liquibase 3-33
3.12.1 Review SQL 3-33
3.12.2 Capture and Deploy an Object 3-33
3.12.3 Capture and Deploy a Schema 3-34
3.12.4 Execute Custom SQL with RunOracleScript 3-34

4 Database Application CI/CD

4.1 Introduction 4-1
4.1.1 Supported Objects 4-2
4.1.2 Database CI/CD Concepts 4-3

4.2 About the Project Command 4-9

4.3 Quick Start 4-11
4.3.1 Prerequisites 4-12
4.3.2 Assumptions 4-12
4.3.3 Project Setup 4-13
4.3.4 Ticket-1 4-14
4.3.5 Ticket-2 4-22
4.3.6 Final Steps 4-26

4.3.6.1 Generate Release 1.0.0 4-27
4.3.6.2 Generate an Artifact 4-29
4.3.6.3 Deploy to PROD 4-29

4.4 Examples 4-30
4.4.1 Single Schema 4-30
4.4.2 Administrator Exports HR to Production Schema 4-37

5 Using Cloud Storage

5.1 Using DBMS_CLOUD for Authentication 5-1
5.2 Creating the OCI profile for OCI Authentication 5-4
5.3 About the Cloud Storage Command Options 5-4
5.4 Examples 5-5

6 Using Data Pump

6.1 Getting Started 6-1
6.1.1 Prerequisites 6-1

ORACLE"

6.1.2 Usage 6-2

6.2 Data Pump Command Syntax and Arguments 6-3
6.3 Use Cases 6-11
6.4 Tips and Troubleshooting 6-13

7 Using the Cloud Premigration Advisor Tool

7.1 Overview 7-1
7.2 Prerequisites 7-2
7.3 About the MIGRATEADVISOR Command 7-3
7.4 Examples 7-6
7.5 Tips and Troubleshooting 7-7

8 Using the PGQL Plug-in

8.1 Downloading and Installing 8-1
8.2 About PGQL Commands 8-1
8.3 Examples 8-2
o SQLcl Command Reference
9.1 AQ (Advanced Queuing) 9-1
9.1.1 Create a Queue Table 9-3
9.1.2 Alter a Queue Table 9-4
9.1.3 Drop a Queue Table 9-5
9.1.4 Create a Queue 9-5
9.1.5 Alter a Queue 9-6
9.1.6 Drop a Queue 9-7
9.1.7 Create a Sharded Queue 9-7
9.1.8 Alter a Sharded Queue 9-9
9.1.9 Drop a Sharded Queue 9-10
9.1.10 Create an Exception Queue 9-10
9.1.11 Create a Transactional Event Queue 9-11
9.1.12 Alter a Transactional Event Queue 9-13
9.1.13 Drop a Transactional Event Queue 9-14
9.1.14 Create an EQ Exception Queue 9-14
9.1.15 Start a Queue 9-15
9.1.16 Stop a Queue 9-15
9.1.17 Add a Subscriber 9-16
9.1.18 Alter a Subscriber 9-17
9.1.19 Remove a Subscriber 9-18
9.1.20 Enqueue 9-18
ORACLE

9.1.21

9.2 AWR

Dequeue

9.3 BACKGROUND

9.3.1

Jobs Command

9.3.1.1 Cancel Jobs
9.3.1.2 Log Jobs
9.3.1.3 Delete Jobs

9.3.2

Wait4 Command

9.4 BLOCKCHAIN_TABLE

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13

add_interval_partitioning
countersign_row
desc
delete_expired_rows
get_bytes for_row_hash
get_bytes for_row_signature
get_digest
get_signed_digest
sign_row
sign_row_with_countersignature
verify_rows
verify table
verify_user_chains

9.5 CERTIFICATE

951
9.5.2
9.5.3
9.54

Add
Add_Copy
Drop

List

9.6 CODESCAN
9.7 CONNECT

9.7.1 KERBEROS Connection Type
9.7.2 NAME Connection Type
9.7.3 OCI Connection Type
9.7.4 Oracle Connection Type
9.7.5 OREST Connection Type
9.7.6 RADIUS Connection Type
9.7.7 SOCKS Connection Type
9.7.8 THIRD Connection Type
9.7.9 WALLET Connection Type
9.8 CONMGR
9.8.1 Clone Connections
9.8.2 Import Connections

9.8.2.1 SECRET Command

ORACLE

9-20
9-24
9-24
9-25
9-25
9-25
9-26
9-26
9-27
9-29
9-30
9-32
9-33
9-35
9-36
9-38
9-40
9-41
9-44
9-47
9-49
9-51
9-54
9-54
9-55
9-56
9-56
9-56
9-57
9-58
9-59
9-60
9-60
9-61
9-62
9-63
9-64
9-65
9-66
9-66
9-67
9-68

Vi

9.8.3 List Connections 9-70

9.8.4 Show Connections 9-70
9.8.5 Test Connections 9-70
9.9 DG (Data Guard) 9-71
9.10 DIRS, PUSHD and POPD 9-71
9.11 IMMUTABLE_TABLE 9-71
9.11.1 Add Interval Partitioning 9-72
9.11.2 Delete Expired Rows 9-73
9.11.3 Describe Table 9-74
9.12 LIQUIBASE 9-74
9.12.1 calculate-checksum 9-76
9.12.2 changelog-sync 9-78
9.12.3 changelog-sync-sq|l 9-79
9.12.4 changelog-sync-to-tag 9-81
9.12.5 changelog-sync-to-tag-sq|l 9-82
9.12.6 clear-checksums 9-83
9.12.7 data 9-84
9.12.8 db-doc 9-86
9.12.9 diff 9-87
9.12.10 diff-changelLog 9-89
9.12.11 drop-all 9-91
9.12.12 future-rollback-count-sql 9-92
9.12.13 future-rollback-from-tag-sql 9-94
9.12.14 future-rollback-sql 9-95
9.12.15 (generate-apex-object 9-96
9.12.16 generate-changelog 9-99
9.12.17 generate-controlfile 9-100
9.12.18 generate-db-object 9-101
9.12.19 generate-ords-module 9-102
9.12.20 generate-ords-schema 9-103
9.12.21 generate-schema 9-104
9.12.22 history 9-106
9.12.23 list-locks 9-107
9.12.24 mark-next-changeset-ran 9-108
9.12.25 mark-next-changeset-ran-sql 9-109
9.12.26 release-locks 9-110
9.12.27 rollback 9-111
9.12.28 rollback-count 9-112
9.12.29 rollback-count-sql 9-114
9.12.30 rollback-sq]l 9-115
9.12.31 rollback-to-date 9-116
9.12.32 rollback-to-date-sq|l 9-118
ORACLE

Vii

9.12.33 snapshot
9.12.34 status
9.12.35 tag
9.12.36 tag-exists
9.12.37 unexpected-changesets
9.12.38 update
9.12.39 update-count
9.12.40 update-count-sql
9.12.41 update-sq|l
9.12.42 update-testing-rollback
9.12.43 update-to-tag
9.12.44 update-to-tag-sq|l
9.12.45 validate
9.12.46 version

9.13 MDB

9.14 MLE
9.14.1 Create Module
9.14.2 Alter Module

9.15 MODELER

9.16 PROJECT
9.16.1 init
9.16.2 export
9.16.3 config
9.16.4 gen-artifact
9.16.5 deploy
9.16.6 release
9.16.7 verify
9.16.8 stage

9.17 REST

9.18 SDK

9.19 SET system_variable value

9.20 SHOW option

9.21 SODA

A List of Unsupported SQL*Plus Commands and Features

9-120
9-121
9-122
9-123
9-124
9-126
9-127
9-129
9-130
9-131
9-132
9-134
9-135
9-136
9-137
9-138
9-139
9-140
9-141
9-142
9-143
9-144
9-144
9-146
9-146
9-147
9-147
9-148
9-149
9-150
9-151
9-153
9-154

B SQL Performance Troubleshooting

ORACLE"

viii

C Third-Party License Information

C.1 ANTLR4 Java Runtime 4.13.1 C-1
C.2 Apache Mina SSHD-contrib 2.13.2 C-1
C.3 Apache Mina SSHD-osgi 2.13.2 C-19
C.4 Apache Mina SSHD-putty 2.13.2 Cc-27
C.5 Apache Mina SSHD-scp 2.13.2 C-35
C.6 Apache Mina SSHD-sftp 2.13.2 C-43
C.7 Commons 10 2.16.1 C-48
C.8 Commons Text 1.12.0 C-52
C.9 Eclipse Parsson 1.1.7 C-56
C.10 Google Guava 33.2.1 C-69
C.11 HttpComponentsCore 5.2.4 C-76
C.12 HttpComponents Http Client 5.3.1 C-79
C.13 httpcore55.2.4 C-91
C.14 jackson-annotations 2.17.2 C-94
C.15 jackson-core 2.17.2 C-98
C.16 jackson-databind 2.17.2 C-104
C.17 jackson-jr-objects 2.17.2 C-107
C.18 jakarta.json-api 2.1.3 C-111
C.19 JLine 3.26.3 C-129
C.20 Jansi2.4.1 C-147
C.21 json-base 2.4.3 C-151
C.22 json-flattener 0.16.6 C-154
C.23 liquibase-core 4.25.0 C-170
C.24 OCI SDK for Java 3.57.1 C-175
C.25 org.eclipse.jgit 6.10.0.202406032230-r C-222
C.26 slf4j-api 2.0.13 C-239
C.27 slf4j-jdk14 2.0.13 C-239
C.28 StringTemplate 4.3.4 C-240
C.29 ucanaccess 5.1.1 C-241
ORACLE

Preface

Preface

This guide provides usage information about Oracle SQLcl (SQL Developer Command Line), a
Java-based command-line interface for Oracle Database.

Audience

This guide is intended for those using Oracle SQLcl.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=accsid=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info Or Visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE »

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Changes in Release 25.1 for Oracle SQLcl
User's Guide

The new features in this release are:

* New SDK command for installing Azure and OCI SDKs
See SDK

ORACLE

1-1

Using Oracle SQLcl

ORACLE

Oracle SQLcl (SQL Developer Command Line) is a Java-based command-line interface for
Oracle Database. Using SQLcl, you can execute SQL and PL/SQL statements interactively

or

as as a batch file. SQLcl provides inline editing, statement completion, command recall, and

also supports existing SQL*Plus scripts.

Oracle SQLcl is available for download from Oracle Technology Network.

Note:

 Torun SQLcl, you need to install Oracle Java 11, 17 or 21. If the Java version is
less than 11, then the SQLcl installation fails with the following error message:
Error: A JNI error has occurred, please check your installation and
try again Exception in thread "main"
java.lang.UnsupportedClassVersionError:. Check the Java version using
thejava -version command.

e On Windows, Java is searched for in the following directories:

— For SQLcl (sql.exe):
..\..\Jdk\Jjre\bin; $JAVA HOME%\bin;$PATH%; $ORACLE HOMES%
\jdk\jre\bin

— For SQLcl installed with Oracle Database:
$JAVA HOME%\bin; $PATH%; ..\jdk\jre\bin; $ORACLE HOME$%
\jdk\jre\bin

» If the Java file is not found in those directories, Java is searched for in the
registry, the minimum version (version more than or equal to) being 11.0.9.

e JavaScript is not included with Oracle Java 14 and later versions. It is
recommended to download and install GraalVM, and then install JavaScript on
GraalVM by using the command gu install js (see Getting Started with
GraalVM JavaScript).

This chapter contains the following topics:

e Starting and Leaving SQLcl

e Starting Up and Shutting Down a Database

* Entering and Executing Commands

* Manipulating SQL, SQLcl, and PL/SQL Commands

* Defining Parameters in SQLcl Scripts Using the ARGUMENT Command
e Formatting Query Results

e Connecting to a Database

* Loading a File

2-1

https://www.graalvm.org/latest/docs/getting-started/
https://github.com/oracle/graaljs/blob/master/README.md
https://github.com/oracle/graaljs/blob/master/README.md

Chapter 2
Starting and Leaving SQLcl

e Using the OCI Command for Oracle Cloud Infrastructure REST APIs

2.1 Starting and Leaving SQLcl

ORACLE

Note:
Startup and Login Scripts

When you start SQLcl, it looks for a startup.sqgl script. This script is run only once
during the program's runtime.

For every connection, SQLcl looks for a 1ogin.sql file. This file is run for every
connection created.

The show Login command displays the location of the 1ogin.sqgl file and verifies
whether the file exists or not.

Logging In and Logging Out

Use the following commands to log in to and out of SQLcl.
SQL [[option] [logon | /NOLOG] [start]]

where option has the following syntax:

-H[ELP] | -V[ERSION] | [[-C[OMPATIBILITY] x.y[.z]]] [-L[OGON]] [-NOLOGINTIME] [-
R[ESTRICT] {1 | 2 | 3}] [-S[ILENT]]

where logon has the following syntax:

{username[/password] [@connect identifier] | /} [AS {SYSASM |SYSBACKUP |SYSDBA |
SYSDG |SYSOPER |SYSRAC |SYSKM}] [edition=value]

and where start has the following syntax:
@{url | file name[.ext]} [arg ...]

{EXIT | QUIT} [SUCCESS | FAILURE | WARNING | n | variable | :BindVariable]
[COMMIT | ROLLBACK]

Commits or rolls back all pending changes, logs out of Oracle, terminates SQLcl and returns
control to the operating system.

{QUIT | EXIT} [SUCCESS | FAILURE | WARNING | n | variable | :BindVariable]
[COMMIT | ROLLBACK]

Commits or rolls back all pending changes, logs out of Oracle, terminates SQLcl and returns
control to the operating system.

Setting JVM Options

To set an Oracle Java Virtual Machine (JVM) option in SQLcl, use the following environment
variable:

JAVA TOOL_OPTIONS

2-2

Chapter 2
Defining Parameters in SQLcl Scripts Using the ARGUMENT Command

The following example shows in Windows, how to change the user interface language in SQLcl
to Spanish (es):

c:\SQLDev\sqlcl\20.2\sqlcl\bin>SET JAVA TOOL OPTIONS=-Duser.language=es
c:\SQLDev\sqlcl\20.2\sglcl\bin>sql hr/oracle

Picked up JAVA TOOL OPTIONS: -Duser.language=es

SQLcl: Versifn 20.2 Production en mar. ago. 25 15:37:58 2020

Copyright (c) 1982, 2020, Oracle. Todos los derechos reservados.

Last Successful login time: Mar Ago 25 2020 15:38:01 -04:00

Conectado a:

Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production

Se ha encontrado login.sgl en el CWD. El acceso a la DB estB restringido para
login.sql.

Ajuste SQLPATH para incluir la ruta y activar la funcionalidad completa.

SQL>

The following example shows how to change the user interface language in SQLcl to French
(fr), and also increase the maximum memory available to SQLcl (-Xmx800m):

c:\SQLDev\sqglcl\20.2\sqlcl\bin>SET JAVA TOOL OPTIONS=-Duser.language=fr -
Xmx800m

c:\SQLDev\sqlcl\20.2\sglcl\bin>sqgl hr/oracle

Picked up JAVA TOOL OPTIONS: -Duser.language=fr -Xmx800m

SQLcl : version 20.2 Production sur mar. aoVt 25 15:57:21 2020

Copyright (c) 1982, 2020, Oracle. Tous droits r@serves....

2.2 Defining Parameters in SQLcl Scripts Using the ARGUMENT
Command

ORACLE

The ARGUMENT command enables you to define SQL*Plus parameters that are passed to SQLcl
scripts. This command adds a DEFINE for the parameter if the parameter does not exist.

Parameters are passed by position to scripts where they are assigned a number starting with
one for each position. Therefore, to supply a value for parameter 1, use argument 1 [options];
for parameter 2, use argument 2 [options], and so on. See Passing Parameters through the
START Command in the Oracle SQL*Plus User's Guide for more information.

Syntax

argument |arg OPTIONS

Use the SET PARAMETERPOLICY command to control parameter retention. The parameter
retention applies to all parameters whether defined using this command or not.

When SET PARAMETERPOLICY is SHARE (default), defined variables retain their values until you:

* Enter a new DEFINE command referencing the variable.
* Enter an UNDEFINE command referencing the variable.

* Enter an ACCEPT command referencing the variable.

2-3

https://docs.oracle.com/en/database/oracle/oracle-database/21/sqpug/using-substitution-variables-sqlplus.html#GUID-678E9B76-3E97-4E00-B869-939FF2D43E3F
https://docs.oracle.com/en/database/oracle/oracle-database/21/sqpug/using-substitution-variables-sqlplus.html#GUID-678E9B76-3E97-4E00-B869-939FF2D43E3F

ORACLE

Chapter 2
Defining Parameters in SQLcl Scripts Using the ARGUMENT Command

* Reference the variable in the NEW VALUE or OLD VALUE clause of a COLUMN command and
then reference the column in a SELECT command.

e Exit SQLcl.
When SET PARAMETERPOLICY iS ISOLATE:

e Parameter settings are saved and undefined at the start of the script.
e On return from the script, the saved parameters are restored.
* Parameter settings in called scripts do not affect the containing script.

The SET PARAMETERPOLICY command must be specified before the script is called. If SET
PARAMETERPOLICY is set to ISOLATE within a script, parameters are removed on return.
Parameters cannot be reset as the values were not saved at the start of the script.

Options

Option Description

Required

arg_num The position of the parameter relative to 1.

action {default|prompt} The argument action to take when a parameter is not
already defined.
e prompt: Prompts the user for the parameter value

and sets it.

e default: Sets the default value.

action value The value to specify for the parameter or the string for
prompting the user for the value. Values containing
spaces must be enclosed in double quotes.

Optional

comment {comment} Associate a comment with the parameter.
{comment} - Associate the comment value specified with
the parameter.

comment value The comment to associate with the parameter. Values
containing spaces must be enclosed in double quotes.

Examples

Example 1 - The following example uses the ARGUMENT command to define two parameters in a
script (script.sql).

script.sql:
prompt 'Give value for 1 or prompt for it: &1°'
prompt 'Give value for 99 or prompt for it: &99'

Connected to:

Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.3.0.0.0

SQL> arg 99 default 99 set

/* 99 shared with script.sql */

SQL> @script.sql

Enter value for 1: x

'Give value for 1 or prompt for it: x
'Give value for 99 or prompt for it: 99 set'
SQL> exit

2-4

Chapter 2
Starting Up and Shutting Down a Database

Disconnected from Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 -
Production
Version 19.3.0.0.0

Example 2 - The following example illustrates how the SET PARAMETERPOLICY ISOLATE is used
to redefine parameters every time the script is called.

SQL> set parameterpolicy isolate
SQL> arg 99 default 99 set
/* 99 is not passed to the script, so prompted for */

SQL> @script.sql

Enter value for 1: x2

'Give value for 1 or prompt for it: x2'

Enter value for 99: x99

'Give value for 99 or prompt for it: x99'

/* 99 restored - set back to the original value when script.sql finishes */

SQL> define 99
DEFINE 99 = "99_Set" (CHAR)

2.3 Starting Up and Shutting Down a Database

ORACLE

Starting up and shutting down a database requires DBA privileges.
STARTUP db options | cdb options | upgrade options
where db options has the following syntax:

[FORCE] [RESTRICT] [PFILE=filename] [QUIET] [MOUNT [dbname] | [OPEN
[open db options] [dbname]] | NOMOUNT]

where open db options has the following syntax:

READ {ONLY | WRITE [RECOVER]} | RECOVER

where cdb_options has the following syntax:

root connection options | pdb connection options
where root connection options has the following syntax:
PLUGGABLE DATABASE pdbname [FORCE] | [RESTRICT] [OPEN {open pdb options}]
where pdb connection options has the following syntax:
[FORCE] | [RESTRICT] [OPEN {open pdb options}]
where open pdb options has the following syntax:

READ WRITE | READ ONLY

and where upgrade options has the following syntax:
[PFILE=filename] {UPGRADE | DOWNGRADE} [QUIET]

Starts an Oracle Database instance with several options, including mounting and opening a
database.

2-5

Chapter 2
Entering and Executing Commands
SHUTDOWN [ABORT | IMMEDIATE | NORMAL | TRANSACTIONAL [LOCAL]]

Shuts down a currently running Oracle instance, optionally closing and dismounting a
database.

2.4 Entering and Executing Commands

ORACLE

Use the following commands to execute and collect timing statistics on SQL commands and
PL/SQL blocks:

/ (slash)

Executes the most recently executed SQL command or PL/SQL block which is stored in the
SQL buffer. Does not list the command. Use slash (/) at the command prompt or line number
prompt in SQLcl command line.

EXEC[UTE] statement
Executes a single PL/SQL statement or runs a stored procedure.
R[UN]

Lists and executes the most recently executed SQLcl command or PL/SQL block which is
stored in the SQL buffer. The buffer has no command history list and does not record SQLcl
commands.

TIMI [NG]

Timing is only available as a switch.

Use the following command to access the help system:
HELP | ? [topic]

Accesses the command-line help system. Enter HELP INDEX or ? INDEX for a list of topics. You
can view the Oracle Database Library at http://www.oracle.com/technology/
documentation.

Use the following command to execute operating system commands:
HO[ST] [command]

Executes an operating system command without leaving SQLcl. Enter HOST without command
to display an operating system prompt. You can then enter multiple operating system
commands.

With some operating systems, you can use another character instead of HOST such as "!"
(UNIX) and "$" (Windows). See the Oracle installation and user's manuals provided for your
operating system for details.

You can use the RC variable to return the exit status of the command executed with HOST.

Note:

When connecting to a database using bequeath protocol (where a client connection
is passed directly to a dedicated server process without going through the listener),
the RC variable is not automatically updated. Set bequeath detach=yes in the
sqlnet.ora configuration file to update the RC variable.

2-6

http://www.oracle.com/technology/documentation
http://www.oracle.com/technology/documentation

Chapter 2
Manipulating SQL, SQLcl, and PL/SQL Commands

Use the following command to recall the history of SQLcl commands:

HISTORY [index | FULL | USAGE | SCRIPT | TIME | CLEAR (SESSION)?] | FAILS

* Use the Up and Down arrow keys to navigate through history items at the prompt.
* Use the HISTORY command to print the history contents.
e History is limited to the last 100 statements.

e SET HISTORY LIMIT N allows you to change the default limit, where nis the maximum
number.

e History is retained between SQLcl sessions.
e By default, the sHOW, HISTORY, CONNECT, and SET commands are not saved in history.

e SET HISTORY FILTER allows you to set the commands that should not be recorded in
history.

2.5 Manipulating SQL, SQLcl, and PL/SQL Commands

ORACLE

Use the following commands to edit SQL commands and PL/SQL blocks:

A[PPEND] text

Adds specified text to the end of the current line in the SQL buffer. To separate text from the
preceding characters with a space, enter two spaces. To append text that ends with a
semicolon, end the command with two semicolons (a single semicolon is interpreted as a
command terminator).

C[HANGE] sepchar old [sepchar [new [sepchar]]]

Changes first occurrence of o1d on the current line of the SQL buffer. The buffer has no
command history list and does not record SQLcl commands. You can use any non-
alphanumeric character such as "/" or "!I" as a sepchar. You can omit the space between
CHANGE and the first sepchar.

DEL [n | nm | n* | nLAST | * | * n | * LAST | LAST]

Deletes one or more lines of the SQL buffer ("*" indicates the current line). You can omit the
space between DEL and n or *, but not between DEL and LAST. Enter DEL with no clauses to
delete the current line of the buffer. The buffer has no command history list and does not
record SQLcl commands.

I[NPUT] [text]

Adds one or more new lines of text after the current line in the SQL buffer. The buffer has no
command history list and does not record SQLcl commands.

L[IST] [n | nm | n* | nLAST | * | * n | * LAST | LAST]

Lists one or more lines of the most recently executed SQL command or PL/SQL block which is
stored in the SQL buffer. Asterisk (*) indicates the current line. You can omit the space
between 1LIST and n or *, but not between 1L.1ST and LAST. Enter LIST with no clauses to list all
lines.

In SQLcl, you can also use ";" to list all the lines in the SQL buffer. The buffer has no command
history list and does not record SQLcl commands.

Use the following commands to run scripts:

@ { url | file namel.ext] } [arg ...]

2-7

ORACLE

Chapter 2
Manipulating SQL, SQLcl, and PL/SQL Commands

Runs the SQLcl statements in the specified script. The script can be called from the local file
system or a web server. You can pass values to script variables in the usual way.

@@ { url | file name[.ext] } [arg ...]

Runs the SQLcl statements in the specified script. This command is almost identical to the @
command. It is useful for running nested scripts because it has the additional functionality of
looking for the specified script in the same path or url as the calling script.

REPEAT <iterations> <sleep>

Repeats the current SQL in the buffer at the specified times with sleep intervals. The maximum
sleep interval is 120 seconds.

SCRIPT <script file>

Runs the SQLcl statements in the specified script.

STA[RT] { url | file namel.ext] } [arg ...]

Runs the SQLcl statements in the specified script. The script can be called from the local file
system or a web server. You can pass values to script variables in the usual way.

Use the following commands to create and modify scripts:
ED[IT] [file namel[.ext]]

Invokes an operating system text editor on the contents of the specified file or on the contents
of the SQL buffer. To edit the buffer contents, omit the file name.

The DEFINE variable EDITOR can be used to set the editor to use. In SQLcl, EDITOR can
be set to any editor that you prefer. Inline will set the editor to be the SQLcl editor. This
supports the following shortcuts:

* "R - Run the current buffer

* "W - Go to top of buffer

* "3 - Go to bottom of buffer

e "A-Goto start of line

e "E -Gotoendofline

FORMAT

° FORMAT BUFFER - formats the script in the SQLcl Buffer

e FORMAT RULES <filename> - Loads SQLDeveloper Formatter rules file to formatter
e FORMAT FILE <input file> <output file>

GET file name[.ext] [LIST | NOLIST]

Loads a SQL statement or PL/SQL block from a file into the SQL buffer. The buffer has no
command history list and does not record SQLcl commands.

REM[ARK]

Begins a comment in a script. The REMARK command must appear at the beginning of a line,
and the comment ends at the end of the line (a line cannot contain both a comment and a
command). SQLcl does not interpret the comment as a command.

SAV[E] [FILE] file name[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

2-8

ORACLE

Chapter 2
Manipulating SQL, SQLcl, and PL/SQL Commands

Saves the contents of the SQL buffer in a script. The buffer has no command history list and
does not record SQLcl commands.

STORE {SET} file name[.ext] [CRE[ATE] | REP[LACE] | APP[END]]
Saves attributes of the current SQLcl environment in a file.

WHENEVER OSERROR {EXIT [SUCCESS | FAILURE | n | variable | :BindVariable] [COMMIT
| ROLLBACK] | CONTINUE [COMMIT | ROLLBACK | NONE] }

Performs the specified action (exits SQLcl by default) if an operating system error occurs (such
as a file writing error).

WHENEVER SQLERROR {EXIT [SUCCESS | FAILURE | WARNING | n | variable
| :BindVariable] [COMMIT | ROLLBACK] | CONTINUE [COMMIT | ROLLBACK | NONE]}

Performs the specified action (exits SQLcl by default) if a SQL command or PL/SQL block
generates an error.

Use the following commands to write interactive commands:

ACC[EPT] variable [NUM[BER] | CHAR | DATE | BINARY FLOAT | BINARY DOUBLE]
[FOR[MAT] format] [DEF[AULT] default] [PROMPT text | NOPR[OMPT]] [HIDE]

Reads a line of input and stores it in a given substitution variable.
DEF[INE] [variable] | [variable = text]

Specifies a substitution variable and assigns a CHAR value to it, or lists the value and variable
type of a single variable or all variables.

PAU[SE] [text]

Displays the specified text then waits for the user to press RETURN.
PRO[MPT] [text]

Sends the specified message or a blank line to the user's screen.
UNDEF[INE] variable ...

Deletes one or more substitution variables that you defined either explicitly (with the DEFINE
command) or implicitly (with a START command argument).

Use the following commands to create and display bind variables:

PRINT [variable ...]

Displays the current values of bind variables, or lists all bind variables.

Use the following symbols to create substitution variables and parameters for use in scripts:
&n

Specifies a parameter in a script you run using the START command. START substitutes
values you list after the script name as follows: the first for &1, the second for &2, and so on.

&user variable, &&user variable

Indicates a substitution variable in a SQL or SQLcl command. SQLcl substitutes the value of
the specified substitution variable for each substitution variable it encounters. If the substitution
variable is undefined, SQLcl prompts you for a value each time an "&" variable is found, and
the first time an "&&" variable is found.

(period)

2-9

Chapter 2
Formatting Query Results

Terminates a substitution variable followed by a character that would otherwise be part of the
variable name.

2.6 Formatting Query Results

Use the following commands to format, store and print your query results.

BRE[AK] [ON report element [action [action]]]

Specifies where changes occur in a report and the formatting action to perform, such as:
e suppressing the display of duplicate values for a given column

» skipping a line each time a given column value changes

e printing computed figures each time a given column value changes or at the end of the
report

Enter BREAK with no clauses to list the current BREAK definition.
Where report element has the following syntax:

{column | expression | ROW | REPORT}

and where action has the following syntax:

[SKI[P] n | [SKI[P]] PAGE] [NODUP[LICATES] | DUP[LICATES]]
BTI[TLE] [printspec [text | variable] ...] | [ON | OFF]

Places and formats a title at the bottom of each report page, or lists the current BTITLE
definition. Use one of the following clauses in place of printspec:

BOLD

CE [NTER]
COL n
FORMAT text
LE[FT]
R[IGHT]
S[KIP] [n]
TAB n

CL[EAR] option ...
Resets or erases the current value or setting for the specified option.
Where option represents one of the following clauses:

BRE [AKS]
BUFF [ER]
COL[UMNS]
COMP [UTES]
CONTEXT
SCR[EEN]
SOL

TIMI [NG]

COL[UMN] [{column | expr} [option ...]]

Specifies display attributes for a given column, such as:

ORACLE 510

» text for the column heading

Chapter 2
Formatting Query Results

» alignment for the column heading

» format for NUMBER data

* wrapping of column data

Also lists the current display attributes for a single column or for all columns.

Where option represents one of the following clauses:

ALI[AS] alias

CLE [AR]

ENTMAP {ON | OFF}
FOR[MAT] format
HEA[DING] text
JUS[TIFY] {L[EFT]

NEWL[INE]

NEW V[ALUE] variable
NOPRI[NT] | PRI[NT

NUL[L] text

OLD VI[ALUE] variable

ON | OFF

| CI[ENTER] | R[IGHT]}
LIKE {expr | alias}

WRA[PPED] | WOR[D WRAPPED] | TRU[NCATED]

Note:

Currently only NEW V[ALUE] variable syntax is supported.

Enter COLUMN [{column |expr} FORMAT format] where the format element specifies the

display format for the column.

To change the display format of a NUMBER column, use FORMAT followed by one of the

elements in the following table:

Element Examples Description
, (comma) 9 999 Displays a comma in the specified position.
. (period) 99.99 Displays a period (decimal point) to separate the integral and
’ fractional parts of a number.

$ $9999 Displays a leading dollar sign.
0 0999 Displays leading or trailing zeros (0).

9990
9 9999 Displays a value with the number of digits specified by the number of

ORACLE

9s. Value has a leading space if positive, a leading minus sign if
negative. Blanks are displayed for leading zeros. A zero (0) is
displayed for a value of zero.

2-11

ORACLE

Chapter 2
Formatting Query Results

Element Examples Description
B 59999 Displays blanks for the integer part of a fixed-point number when the
integer part is zero, regardless of zeros in the format model.
C £999 Displays the ISO currency symbol in the specified position.
D 99099 Displays the decimal character to separate the integral and fractional
parts of a number.
EEEE 9. 999EEER Displays a value in scientific notation (format must contain exactly four
) "E"S).
G 9G999 Displays the group separator in the specified positions in the integral
part of a number.
L L999 Displays the local currency symbol in the specified position.
MI 9999MT Displays a trailing minus sign after a negative value. Displays a trailing
space after a positive value.
PR 9999pPR Displays a negative value in <angle brackets>. Displays a positive
value with a leading and trailing space.
RN rn RN Displays uppercase Roman numerals. Displays lowercase Roman
mn numerals. Value can be an integer between 1 and 3999.
S 59999 Displays a leading minus or plus sign. Displays a trailing minus or plus
99995 sign.
™ ™ Displays the smallest number of decimal characters possible. The
default is TM9. Fixed notation is used for output up to 64 characters,
scientific notation for more than 64 characters. Cannot precede TM
with any other element. TM can only be followed by a single 9 or E.
U 09999 Displays the dual currency symbol in the specified position.
COMP [UTE] [function [LAB[EL] text] ... OF {expr | column | alias} ...ON {expr |

column | alias | REPORT | ROW} ...]

In combination with the BREAK command, calculates and prints summary lines using various
standard computations. It also lists all COMPUTE definitions. The following table lists valid
functions. All functions except NUMBER apply to non-null values only. COMPUTE functions
are always executed in the following sequence AVG, COUNT, MINIMUM, MAXIMUM,
NUMBER, SUM, STD, VARIANCE.

Function Computes Applies to Datatypes

AVG Average of non-null values NUMBER

COU[NT] Count of non-null values All types

MIN[IMUM] Minimum value NUMBER, CHAR, NCHAR, VARCHAR2
(VARCHAR), NVARCHAR2 (NCHAR
VARYING)

MAX [IMUM] Maximum value NUMBER, CHAR, NCHAR, VARCHAR2
(VARCHAR), NVARCHAR2 (NCHAR
VARYING)

2-12

Chapter 2
Connecting to a Database

Function Computes Applies to Datatypes
NUM [BER] Count of rows All types

SUM Sum of non-null values NUMBER

STD Standard deviation of non-null values NUMBER

VAR [IANCE] Variance of non-null values NUMBER

SET SQLFORMAT {csv | html | xml | json | ansiconsole | insert | loader | fixed |
default}

Outputs reports in various formats. The ansiconsole option formats and resizes data
according to the column widths, for easier readability. The json option returns a query in JSON
format.

SET SQLFORMAT DELIMITED <delimiter> <left enclosure> <right enclosure> allows you
to set a custom delimited format.

SET SQLFORMAT JSON-FORMATTED returns a query in well formatted JSON output.
SPO[OL] [filename[.ext] [CRE[ATE] | REP[LACE] | APP[END]] | OFF | OUT]

Stores query results in a file, or optionally sends the file to a printer. OFF stops spooling. OUT
stops spooling and sends the file to your computer's default printer. Enter SPOOL with no
clauses to list the current spooling status. If no file extension is given, the default
extension, .1stor .11s, is used.

TTI[TLE] [printspec [text | variable] ...] | [ON | QFF]

Places and formats a specified title at the top of each report page, or lists the current TTITLE
definition. The old form of TTITLE is used if only a single word or a string in quotes follows the
TTITLE command.

Where printspec represents one or more of the following clauses:

BOLD
CE[NTER]
COL n
FORMAT text
LE[FT]
R[IGHT]
S[KIP] [n]
TAB n

2.7 Connecting to a Database

ORACLE

Use the CONNECT command to connect to a database.

The options specified automatically determine the kind of connection required, such as
whether it is a traditional client-server connection or a wallet-based cloud connection. You can
override this by using options that specify a particular connection type. For example, specify -
wallet to use the wallet connection type.

The connection types supported in SQLcl are:

« KERBEROS

2-13

Chapter 2

Loading a File
« NAME
« OClI
+ ORACLE
« OREST
RADIUS
* SOCKS
e THIRD
e WALLET

For more information, see the CONNECT command.

Persistent connections can be managed with the CONMGR command. Persistent connections are
referenced by a connection name. Connections may store a user name. If a user name is
stored, a password may also be stored. Passwords are stored in a secure wallet. If a password
is not stored, it is provided when prompted to create the connection. A stored connection may
describe a connection in a variety of formats, including basic host name, port and service
name values or a TNS name and a cloud configuration.

To add a stored connection, see NAME Connection Type .
To save a stored connection, see the options -save, -savepwd, and -replace in CONNECT.

For more information about the command, see CONMGR.

2.8 Loading a File

Use the 1L.oAD command in SQLcl to load a comma-separated value file from a local directory or
cloud storage location into a table.

2.8.1 LOAD Command

ORACLE

Loads a comma-separated value (csv) file from a local directory or cloud storage location into a
table.

Syntax
LOAD [TABLE] [schema.]table name { <file-specification> | <cloud-storage-

specification> }
[NEW | SHOW | SHOW DDL | CREATE |CREATE DDL]

where

[schema.]table_name identifies the table to load. If the schema is omitted, the table for the
connected user schema is loaded.

file-specification has the following syntax:

{ <fully-qualified-file-name> | <file-name> }

* fully-qualified-file-name: Identifies the full path to the file to load.

« file-name: ldentifies the file to load. The file must be located in the default path.

2-14

ORACLE

Chapter 2
Loading a File

cloud-storage-specification has the following syntax:

{ CLOUDSTORAGE | CS | CLOUD STORAGE } [<url> | <qualified-name>]

e url: Complete URL for the cloud storage file if a default cloud storage URL is not set using
the Cloud Storage command.

e qualified-name: Name of the object, optionally qualified by the namespace and bucket. The
qualified name combined with the URL specified by the Cloud Storage command must fully
identify the object URL. If url and qualified-name are omitted, the default Cloud Storage
URL must be set to the object.

NEW creates a table and loads data.

[SHOW | SHOW DDL] executes the DDL generation phase and shows the DDL.

[CREATE | CREATE DDL] executes the DDL generation phase and creates the table.

Use SET LOAD and SET LOADFORMAT to specify properties for DDL analysis and generation.

Create table DDL generation pre-scans the data file to determine column properties. Use SET
LOAD SCAN <n> to specify the number of rows to scan for DDL. 100 is the default. To turn off
scanning, set to 0.

Use SET LOAD COL_SIZE to change column sizes that are generated. Use SET LOAD
MAP NAMES to map file column names to table column names.

For more information about the Cloud Storage command, see Using Cloud Storage.
The defaults for the file format are:

e The columns are delimited by a comma and may optionally be enclosed in double quotes.
* Lines are terminated with standard line terminators for Windows, UNIX or Mac.

e Fileis encoded UTFS8.

The default load:

e Processes with 50 rows per batch.
e If AUTOCOMMIT is set in SQLcL, a commit is done every 10 batches.
e The load is terminated if more than 50 errors are found.

Use SET LOADFORMAT options for reading the file (delimiter, enclosures).

Use SET LOAD options for loading the data (rows per batch, date formats).

Example

The following example shows how to load a file from local storage into a table.

--Create Table "countries"

create table countries(countries id NUMBER(5),countries name VARCHARZ (40));
Table COUNTRIES created

--Load file COUNTRIES DATA TABLE.csv in local storage to "countries" table
load countries C:\Users\JDOE\SQLc1\COUNTRIES DATA TABLE.csv

format csv

2-15

ORACLE

column names on
delimiter ,

enclosure left "
enclosure right "
encoding UTF8

row limit off
row_terminator default
skip rows 0

skip after names

--Number of rows processed: 30
--Number of rows in error:
0 - SUCCESS: Load processed without errors

--Check the number of rows in countries table
select count (*) from countries;

The following example shows how to load data into a new table EMP.
load emp empfile.csv new
--Create new table and load data into table HR.EMP

csv
column names on
delimiter ,

enclosures ""

encoding UTF8
row_limit off
row_terminator default
skip rows 0

skip after names

#INFO DATE format detected: RRRR-MM-DD

CREATE TABLE HR.EMP
(
EMPLOYEE ID NUMBER(5),
FIRST NAME VARCHAR2 (26),
LAST NAME VARCHAR2 (26),
EMAIL VARCHAR2 (26),
PHONE_NUMBER VARCHAR2 (26),
HIRE DATE DATE,
JOB_ID VARCHAR? (26),
SALARY NUMBER(9, 2),
COMMISSION PCT VARCHAR2 (26),
MANAGER ID NUMBER (5),
DEPARTMENT ID NUMBER (5)

Chapter 2
Loading a File

2-16

ORACLE

#INFO Table created

#INFO Number of rows processed: 21

#INFO Number of rows in error: 0

#INFO Last row processed in final committed batch: 21
SUCCESS: Processed without errors

The following example shows how to create a new table from a local file.

load empl empfile.csv create ddl
--Create new table HR.EMP1

csv
column names on
delimiter ,
enclosures
encoding UTF8
row_limit off
row_terminator default
skip rows 0

skip after names

batch rows 50
batches per commit 10
clean names transform
column_size rounded

commit on

date format

errors 50

map column names off
method insert

timestamp format
timestamptz format
locale English United States
scan_rows 100

truncate off

unknown columns fail on

--Pre-scans the date format
#INFO DATE format detected: RRRR-MM-DD

CREATE TABLE SYSTEM.EMP1
(
EMPLOYEE ID NUMBER(5),
FIRST NAME VARCHAR2 (26),
LAST NAME VARCHAR2 (26),
EMAIL VARCHAR2 (26),
PHONE_NUMBER VARCHAR2 (26),
HIRE DATE DATE,
JOB_ID VARCHAR? (26),
SALARY NUMBER(9, 2),
COMMISSION PCT VARCHAR2 (26),
MANAGER ID NUMBER (5),
DEPARTMENT ID NUMBER (5)

Chapter 2
Loading a File

2-17

Chapter 2
Loading a File

2

#INFO Table created
SUCCESS: Processed without errors

2.8.1.1 SET LOAD Command

ORACLE

SET LOAD enables you to set options for loading data when using the LOAD command.
Syntax

SET LOAD default | [options...]

where

default means load method properties return to default values.

options represents the following:

. BATCH_ROWS | BATCHROWS <number;of;rows>

Data loading is done in batches. Specifies the number of rows to include in each batch.

* BATCHES PER COMMIT |BATCHESPERCOMMIT <batches per commit>

Commit after processing number_of_batches. If the number is equal to O, commit happens
at the end of the load. If the number is greater than or equal to O, COMMIT ON is set.

° CLEAN NAMES [TRANSFORM | TRANSFORM128 | QUOTE | QUOTE128 | UNIQUE]

Identifies the rule for making table and column names compliant with database identifiers.
Names are cleaned before they are mapped to provide consistency with previous releases.
If both CLEAN NAMES and MAP_COLUMN NAMES are used, then clean names should be

specified.

The standard identifiers are:

— No longer than 30 or 128 characters.

— Not a reserved word.

— Starts with a letter and contains only letters, digits, or one of _$#.
— Uppercase

— Names that do not comply must be quoted. Length rules always apply.

Note:
Data that is enclosed in quotes will have quotes in the header row removed

before names are cleaned.

TRANSFORM (default)

2-18

ORACLE

Chapter 2
Loading a File

Indicates that names are transformed as follows:

— Names are in uppercase.

— If the name starts and ends with the quote character, the quotes are removed.
— Names that are reserved words are appended with a dollar sign ($).

— Names that start with a number or special character is prefixed with an X.

— Spaces and hyphens are replaced with underscores (). $ and # characters are
retained.

— Special characters other than $ and # is replaced with the number sign (#).

— Names are truncated to 30 or 128 characters depending on database
MAX_STRING_SIZE.

— After names are cleaned, non-uniqgue names within the column set are appended with
a unique sequence number. If truncation is required, the sequence number is
maintained.

TRANSFORM (default)

Applies all transform rules. Names may be 128 characters.
QUOTE

Quote non-compliant names and shorten to 30 or 128 characters depending on database
MAX_STRING_SIZE.

QUOTE128

Quote non-compliant names. Names may be 128 characters.
UNIQUE

Compatibility option with previous releases of load service. Names that are not unique
within the column set are appended with a unique sequential number. Truncation is not
provided.

COLUMN STIZE|COLUMNSIZE|COLSIZE {ACTUAL|ROUND|ROUNDED |MAX |MAXIMUM}

Create table column size strategy.
ACTUAL uses the largest size found during the scan.
ROUND | ROUNDED uses a size a little larger than the largest size found during the scan.

MAX | MAXIMUM uses the database maximum size for the data type that was detected.

COMMIT {ON|OFF}

Enable or disable data commits.

DATE | DATE FORMAT | DATEFORMAT format mask

The format of all DATE data type columns loaded. Specify no format_mask or DEFAULT to
use database default.

For DATE columns, if format is not set and SCAN ROWS = 0, the data is not scanned for a
valid mask.

ERRORS {number of rows | UNLIMITED}|-1: Indicates the number of error rows allowed.

2-19

Chapter 2
Loading a File

If this number is exceeded, the load will be terminated.
-1 and UNLIMITED indicate no error limit.

All rows in a batch may be in error if any row fails.

. LOCALE { <language country> | DEFAULT | "" }

Specify locale language and optionally country.

DEFAULT | "" : Set to default locale.

. MAP_COLUMN_NAMESIMAPCOLUMNNAMESIMAPNAMES { OFF| (<file-col-name>=<table-
col-name>,...) }

Provide a mapping from the column names specified in the file to column names in the
table.

e METHOD INSERT

Method to use for data loads.

* SCAN_ROWS|SCANROWS|SCAN <1-5000>

Identify the number of rows to scan for create table generation. Default is 100 rows.

e TIMESTAMP|TIMESTAMP FORMAT |TIMESTAMPFORMAT

The format of all TIMESTAMP data type columns being loaded. Specify no format_mask or
DEFAULT to use database default. For TIMESTAMP columns, if format is not set and
SCAN_ROWS not equal to 0, the data is scanned for a valid mask.

e TIMESTAMPTZ|TIMESTAMPTZ FORMAT |TIMESTAMPTZFORMAT

The format of all TIMESTAMPTZ data type columns being loaded. Specify no format_mask
or DEFAULT to use database default. For TIMESTAMPTZ columns, if format is not set and
SCAN_ROWS not equal to 0, the data is scanned for a valid mask.

e TRUNCATE {OFF|ON}

Truncate ON truncates the table before loading

* UNKNOWN COLUMNS FAIL|UNKNOWNCOLUMNSFAIL|UNKNOWNFAIL {ON|OFF}

ON: Terminates the load if any columns in the file do not map to a column in the table.

OFF: Allows the load to proceed when columns in the file do not map to a column in the
table.

2.8.1.2 SET LOADFORMAT Command

SET LOADFORMAT enables you to set format properties for loading data when using the LOAD
command.

ORACLE 590

ORACLE

Chapter 2
Loading a File

Syntax

SET LOADFORMAT [default|csv|delimited|html|insert|json|json-formatted|loader]
t2|xml] [options...]

where

e default: Load format properties return to default values.

e csv: Comma-separated values.

° delimited: (csv synonym) Delimited format, comma separated values by default.
* html : Hypertext Markup Language. For the UNLOAD command only.

° insert: SQL insert statements. For the UNLOAD command only.

* json: JavaScript Object Notation. For the UNLOAD command only.

e json-formatted : Pretty-formatted JSON. For the UNLOAD command only.

e loader : Oracle SQL Loader format. For the UNLOAD command only.

* t2:T2 Metrics. For the UNLOAD command only.

* xml : Extensible Markup Language. For the UNLOAD command only.

options represent the following clauses:

* COLUMN NAMES|COLUMNNAMES|NAMES {ON|OFF}: Header row with column names.
e DELIMITER {separator}: Delimiter separating fields in the record.

° DOUBLE [OFF] : (Import only) Embedded right enclosures are doubled. OFF indicates
embedded right enclosures are not doubled and embedded right enclosures can lead to
unexpected results.

° ENCLOSURES {enclosures|OFF} : Optional left and right enclosures.
— OFF indicates no enclosures
— If 1 character is specified, sets left and right enclosures to this value.

— If 2 or more characters are specified, sets left to the first character, right to the second
character and ignores the remaining characters.

— To set multiple character enclosures, use Set ENCLOSURE_LEFT and
ENCLOSURE_RIGHT.

° ENCODING {encoding|OFF|""}: Encoding of load file. OFF and "™ reset to default encoding
for environment.

* LEFT|ENCLOSURE LEFT|ENCLOSURELEFT {enclosure|OFF}: Seta 1 or more character left
enclosure. If no ENCLOSURE_RIGHT is specified, it is used for both left and right. OFF
indicates no enclosures.

e RIGHT|ENCLOSURE RIGHT|ENCLOSURERIGHT {enclosure|OFF}: Seta 1 or more character
right enclosure. OFF indicates no right enclosure.

* ROW LIMIT|ROWLIMIT|LIMIT} {number of rows|OFF|""}: Maximum number of rows to
read, including the header. OFF and "™ set to not limit.

* SKIP|SKIP ROWS|SKIPROWS {number of rows|OFF|""}: Number of rows to skip.

2-21

Chapter 2
Using the OCI Command for Oracle Cloud Infrastructure REST APIs

e [[SKIP AFTER NAMES|SKIPAFTERNAMES|AFTER] | [SKIP BEFORE NAMES|SKIPBEFORENAMES |
BEFORE]]: Skip the rows before or after the (header) Column Names row.

* TERM|ROW TERMINATOR {terminator|""|DEFAULT|CR|CRLF|LF}: Character(s) indicating
end of row. If the file contains standard line end characters, the line_end does not need to
be specified.

— " or DEFAULT specifies the default (any standard terminator) for the LOAD command.
— " or DEFAULT specifies the environment default for the UNLOAD command.
— CRLF specifies WINDOWS terminator, generally for the UNLOAD command.
— LF specifies UNIX terminator, generally for the UNLOAD command.
— CR specifies MAC terminator, generally for the UNLOAD command.
Examples

SQL> set loadformat delimited
7369, "SMITH", "CLERK", 7902, 17-DEC-80,800,,20,5555555555554444

SQL> set loadformat delimited enclosures <> line end {eol}
7369, <SMITH>, <CLERK>, 7902, 17-DEC-80,800,,20,5555555555554444{eol}

SQL> set loadformat default (restore default settings)
7369, "SMITH", "CLERK", 7902, 17-DEC-80,800,,20,5555555555554444

2.9 Using the OCI Command for Oracle Cloud Infrastructure
REST APIs

ORACLE

Starting from SQLcl release 20.2, you can call Oracle Cloud Infrastructure (OCI) REST APIs
using the oCT command.

See Also:

Oracle Cloud Infrastructure APl Documentation

Prerequisites
To use the OCI command, you need to first set the OCI profile for authentication and access.

For more information about how to set up the required SSH keys and configure your Oracle
Cloud Infrastructure Software Development Kits, see Setup and Prerequisites in the Oracle
Cloud Infrastructure Documentation.

To list profiles contained in the OCI configuration file at ~/ . oci/config, enter:

oci profile

To set the profile name as "demo”, enter:

oci profile demo

2-22

https://docs.cloud.oracle.com/en-us/iaas/api/
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/devguidesetupprereq.htm

ORACLE

Chapter 2
Using the OCI Command for Oracle Cloud Infrastructure REST APIs

From SQLcl release 23.3, if you have a DEFAULT OCI profile installed, it is loaded when
starting SQLcl.

Two Syntax Formats
There are two syntax formats available for using the OCI command.
Specify Target

In the first syntax format, the target is specified completely in the OCI command:

oci <host> <method> [file-to-send-as-body] <request-target>

where

method is GET, PUT or DELETE.

request-target is the path to the namespace, bucket or object on host.
Examples

To delete the emp.csv file from testing-bucket:

oci objectstorage.us-ashburn-1.oraclecloud.com delete /n/abcl23/b/testing-
bucket/o/emp.csv

To list the contents of testing-bucket:

oci objectstorage.us-ashburn-1.oraclecloud.com get /n/abcl23/b/testing-
bucket/o/

To put the emp.csv file into testing-bucket:

oci objectstorage.us-ashburn-1.oraclecloud.com put ./emp.csv /n/abcl23/b/
testing-bucket/o/emp.csv

To get the emp.csv file from testing-bucket:

oci objectstorage.us-ashburn-1.oraclecloud.com get /n/abcl23/b/testing-
bucket/o/emp.csv

Specify Target using Cloud Storage Command

In the second syntax format, the target is a complete or partial URL to the location, which is set
using the Cloud Storage command (cs):

oci <method> [file-to-send-as-body] <qualifier>

where
method is GET, PUT or DELETE.

qualifier is the cloud storage namespace or bucket. qualifier is appended to the location
specified on the set Cloud Storage command and must form the complete URL to the
namespace, bucket, or object used by the method.

2-23

ORACLE

Chapter 2
Using the OCI Command for Oracle Cloud Infrastructure REST APIs

For more information about the Cloud Storage command, see Using Cloud Storage.
Examples

To delete emp.csv from testing-bucket:

cs objectstorage.us-ashburn-1l.oraclecloud.com
oci delete /n/abcl23/b/testing-bucket/o/emp.csv

To list contents of testing-bucket:
--Using the OCI Command (oci get)

cs objectstorage.us-ashburn-1.oraclecloud.com/n/abcl23/b/testing-bucket/o/
oci get

--Using the Cloud Storage Command (cs listo)

cs objectstorage.us-ashburn-1.oraclecloud.com/n/abcl23/b/testing-bucket/o/
cs listo

To put emp.csv into testing-bucket:

cs objectstorage.us-ashburn-1.oraclecloud.com/n/abcl23/b/testing-bucket
oci put ./emp.csv /o/emp.csv

To get emp.csv from testing-bucket:

cs objectstorage.us-ashburn-1.oraclecloud.com/n/abcl23/b/testing-bucket
oci get /o/emp.csv

2-24

Using Liguibase

This chapter covers the Liquibase feature in SQLcI. It has the following topics:

About Liquibase in SQLcl

Requirements for Using Liquibase

Supported Types

Supported Liquibase Commands in SQLcl

Using SQLcl Liquibase Functionality with Open-Source Liquibase

Dynamic Object Transformation with SQLcl Liquibase and DBMS METADATA Oracle
Database Package

Liquibase Open-Source Changesets with SQLcl Liquibase
DATABASECHANGELOG_DETAILS VIEW

ChangeSets in Liquibase

Tips for Liquibase Settings

Important 23.4 Update with Liquibase Changelog Files

Examples Using Liquibase

3.1 About Liquibase in SQLcl

Liquibase is an open-source database-independent library for tracking, managing and applying
database schema changes.

ORACLE

For an understanding of the major concepts in Liquibase, see Major Concepts.

Note:

Liguibase is not available in SQLcl that is part of the SQL Developer installation. To
use this feature, you need to download the standalone SQLcl offering.

The Liquibase feature in SQLcl enables you to execute commands to generate a changelog for
a single object or for a full schema (changeset and changelogs). You can process these
objects manually using SQLcl or through any of the traditional Liquibase interfaces.

With the Liquibase feature in SQLcl, you can:

Generate and execute single object changelogs
Generate and execute schema changesets with object dependencies
Automatically sort a changeset during creation based on object dependencies

Record all SQL statements for changeset or changelog execution, as it is generated

3-1

Chapter 3
Requirements for Using Liquibase

« Provide full rollback support for changesets and changelogs automatically

3.2 Requirements for Using Liquibase

The two important aspects for using the Liquibase functionality are capturing and deploying
objects in an Oracle database.

Capture Objects
To capture an object or a schema, you must have SQLcl with the Liquibase plug-in available.

You can only capture objects from the schema you are connected to in SQLcl. You also need
write permission on the directory in which you save the files.

If you are capturing an entire schema, the user you are connected to must have the privilege to
create a table. The DATABASECHANGELOG_EXPORT table is created internally to gather
object details and sort them correctly. The created object is automatically excluded from the
capture process and destroyed upon capture completion.

Deploy Objects

Liquibase uses the DATABASECHANGELOG table to track the changesets that have been
run. The DATABASECHANGELOGLOCK table ensures that only one instance of Liquibase is
running at a time. The DATABASECHANGELOG_ACTIONS table tracks the object state and
the SQL statements executed during deployment.

- sQLcl

Deploying changes to any database through SQLcl requires the privilege to create a table.
You must have necessary permissions to create any object type through the change that
you are deploying.

* Liquibase
If you use Liquibase directly to deploy changesets, you need:
— the extension installed in your Liquibase environment. Add the following jar files from
sqlcl/lib and sqlcl/1lib/ext folders to the liquibase/1ib folder:

* dbtools-liquibase.jar

* dbtools-apex.jar

* guava-with-1f.jar

* xmlparserv2 sans_jaxp services.jar

* dbtools-common.jar

— the privileges to create a table and a package.

The minimum privileges required when using Liquibase in SQLcl are:

* create session

* create table

* create procedure

* quota unlimited on [default tablespace], where quota is set as required in
your database administration.

ORACLE -

Chapter 3
Supported Types

— to update your properties file by adding the following line:

change-exec-listener-class:
liquibase.changelog.visitor.OracleActionChangelListener

3.3 Supported Types

ORACLE

DDL types use create or replace syntax. A snapshot of the object is taken before applying the
change so automatic rollback to the last known state is supported.

SXML types support automatic alter generation with automatic rollback support.
DDL types have their own change type.
e CONSTRAINT

e DIMENSION

e DIRECTORY

* FUNCTION

- JOB

e OBJECT_GRANT

« PACKAGE_BODY

* PACKAGE_SPEC

* PROCEDURE

e PUBLIC_SYNONYM

* REF_CONSTRAINT

* SYNONYM

« TRIGGER

e TYPE BODY

e TYPE SPEC

SXML types share the SXML change type.
+ AQ _QUEUE

+ AQ_QUEUE_TABLE

* AQ_TRANSFORM

e ASSOCIATION

- AUDIT
- AUDIT_OBJ
« CLUSTER
- CONTEXT
- DB_LINK

- DEFAULT_ROLE
- FGA_POLICY

3-3

Chapter 3
Supported Liquibase Commands in SQLcl

. JOB
LIBRARY

- MATERIALIZED_VIEW

- MATERIALIZED_VIEW_LOG
- OPERATOR

- PROFILE

- PROXY

- REFRESH_GROUP

- RESOURCE_COST

- RLS_CONTEXT

- RLS_GROUP

- RMGR_CONSUMER_GROUP
- RMGR_INTITIAL_CONSUMER_GROUP
- RMGR_PLAN

- RMGR_PLAN_DIRECTIVE

- ROLE

- ROLLBACK_SEGMENT

- SEQUENCE

- TABLE

- TABLESPACE

- TRIGGER XS_ACL

- TRUSTED_DB_LINK

- USER

- VIEW

- XMLSCHEMA

- XS_ACL_PARAM INDEX

- XS_DATA_SECURITY

- XS _ROLE

- XS_ROLESET

- XS_ROLE_GRANT

- XS_SECURITY_CLASS

- XS _USER

3.4 Supported Liquibase Commands in SQLcl

ORACLE

You can invoke the Liquibase commands in SQLcl with 1iquibase or 1b.

The SQLcl Liquibase commands that were initially launched in SQLcl release 19.2 has
deprecated. The SQLcl plug-in has been updated to synchronize with the new command
format introduced by Liquibase.

3-4

Chapter 3
Using SQLcl Liquibase Functionality with Open-Source Liquibase

Syntax

Liquibase|lb COMMAND {OPTIONS}

To see the help for Liquibase in SQLcl, type :

help Liquibase

To only view the examples in help, type:

help liquibase examples

For more information about the SQLcl Liquibase commands, see LIQUIBASE.

3.5 Using SQLcl Liquibase Functionality with Open-Source

Liquibase

ORACLE

SQLcl Liquibase with Oracle Database provides extended functionality to the Liquibase
experience compared to the vanilla Liquibase client. This includes dynamically altering tables
using Liquibase and SQLcl-exclusive Liquibase commands, such as generating specialized
shapshots for:

e A comprehensive schema (generate-schema)

e Oracle REST Data Service (ORDS) objects (generate-ords-module and generate-ords-
schema)

e Oracle APEX objects (generate-apex)

By default, the Liguibase client does not include this enhanced functionality or enable you to
read the specialized changelogs generated by SQLcl Liquibase.

You can add the functionality to read these specialized changelogs to the Liquibase client by
copying certain jar files from SQLcl and updating your Liquibase properties file. The steps to do
this are demonstrated using the following example:

1. Connect to your Oracle Database and start the SQLcl command-line interface. The
example database has a few sample tables that you can view.

SQL> select table name from user tables;
TABLE NAME

REGIONS
LOCATIONS
DEPARTMENTS
JOBS
EMPLOYEES
JOB HISTORY
COUNTRIES

7 rows selected.

3-5

ORACLE

Chapter 3

Using SQLcl Liquibase Functionality with Open-Source Liquibase

Create a table Fruits. This will serve as an example table to track.

SQL> create table fruits (id number(1,0), type varchar2(50), price number,

constraint fruits pk primary key (id));

Table FRUITS created.

The table is added to the list of sample tables.
SQL> select table name from user tables;
TABLE NAME

REGIONS
LOCATIONS
DEPARTMENTS
JOBS
EMPLOYEES
JOB HISTORY
FRUITS
COUNTRIES

8 rows selected.

Generate a changelog for the Fruits table.

SQL> 1b generate-object -object-type table -object-name fruits;

--Starting Liquibase at 13:43:52 (version 4.15.0 #0 built at 2022-08-19

14:45+000)

Changelog created and written to file fruits table.xml

Operation completed successfully.

Delete the Fruits table so that you can run some tests generating it with the changelog

created.

SQL> drop table fruits;

SQL> select table name from user tables;
TABLE NAME

REGIONS
LOCATIONS
DEPARTMENTS
JOBS
EMPLOYEES
JOB HISTORY
COUNTRIES

7 rows selected.

3-6

ORACLE

Chapter 3
Using SQLcl Liquibase Functionality with Open-Source Liquibase

Switch to the vanilla Liquibase open-source command line client, which you can download
from Liquibase’s website.

You must provide the credentials of the Oracle Database that you are connected to in
SQLcl for the vanilla Liquibase client. Create a 1iquibase.properties file from a blank
text file. In this example, the liquibase.properties file is created in C: \Users\
[username] folder on a Windows system. The following figure shows the properties file
used in this example. For more information about providing database credentials for
Liquibase, see Specifying Properties in a Connection Profile.

|| liquibase.properties - Notepad

File Edit Format View Help
changelog-file: example-changelog.xml
driver: oracle.jdbc.0OracleDriver
username:

password:

url: jdbc:oracle:thin:@

ligquibase.hub.mode=off

Copy and paste the fruits table.xml changelog file created earlier from your SQLcl bin
folder to the folder location of your 1iquibase.properties file (in this case, C:\Users\
[username]). To keep your changelog files in a different location, specify the path to the file
location in the changelog-file field of your 1iquibase.properties file.

Run the update command.

>liquibase --changelog-file=fruits table.xml update

>liquibase file=fruits_table.xml update
S S S EEEEEE L e S R R R S e S LR e S R R
#H
=8
2
##
4
##
=8
##
#4
##
##

#8

#4

i
SRR S b
y 4.15.0 #4001 built at 202

The update fails because the SQLcl specialized changelog is an unsupported format in the
vanilla Liquibase client.

3-7

https://www.liquibase.org/download
https://docs.liquibase.com/concepts/connections/creating-config-properties.html

ORACLE

10.

11.

Chapter 3
Using SQLcl Liquibase Functionality with Open-Source Liquibase

The next step is to add the functionality to read the changelogs of your SQLcl Liquibase in
your vanilla Liquibase client so that you can run the changelog.

Copy five jar files from the 1ib and 1ib/ext folders in your SQLcl folder and add them to
the 1ib folder of your vanilla Liquibase client (1iquibase/11ib):

e dbtools-liquibase.jar (sglcl/lib/ext)

e dbtools-apex.jar (sglcl/lib/ext)

* guava-with-1f.jar (sgqlcl/1lib)

* xmlparserv2 sans jaxp services.jar (sqlcl/lib)

* dbtools-common.jar (sgqlcl/1ib)

Update your liquibase.properties file by adding the following line:

change-exec-listener-class:
liquibase.changelog.visitor.OracleActionChangelistener

| *liquibase.properties - Notepad - O -4

File Edit Format View Help
changelog-file: example-changelog.xml
driver: oracle.jdbc.OracleDriver
username:

password:

url: jdbc:oracle:thin:@

change-exec-listener-class: liquibase.changelog.visitor.0OracleActionChangelistener|

liquibase.hub.mode=0ff

You can now read SQLcl Liquibase changelogs in your vanilla Liquibase client.

Run the SQL Liquibase changelog in the vanilla Liquibase client.

>liquibase update --changelog-file fruits table.xml

3-8

Chapter 3
Using SQLcl Liquibase Functionality with Open-Source Liquibase

:\Users\[l}>1iquibase update --changelog-file fruits_table.xml
FHHHHHHHHHHEHHHEEHHBHEHHHHHEHHHHHHHHHEHEHEHEHEHH
##
##
##
##
H#Hit
=3
##
#H#
##
Get documentation at docs.liquibase.com i
Get certified courses at learn.liquibase.com #i
Free schema change activity reports at =4
https://hub.liquibase.com it
it

iquibase Version: 4.15.

iquibase Community 4.15.0

unning Changeset: fruits t

able "HR"."FRUITS"™ created.

iguibase command 'update’' was executed successfully.

[:\Users\

In another command-line window connected to SQL and your database, you can check if
the table has been successfully created.

SQL> select table name from user tables;
TABLE NAME

REGIONS

LOCATIONS
DEPARTMENTS

JOBS

EMPLOYEES

JOB HISTORY
COUNTRIES
DATABASECHANGELOGLOCK
DATABASECHANGELOG
FRUITS

COUNTRIES

10 rows selected.

With this functionality added to your vanilla Liquibase client, you can also read changelogs
for other changelog types such as Oracle Rest Data Services (ORDS), Oracle APEX, and
full database schemas along with Oracle SQLcl scripts.

ORACLE 29

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

quibase update --ct ontroller.xml
T i #

i #

d o 4 4 4 R R AR
% 3 3 3% 32 3 N

B

4%

d

515dcecdf2174bca®9c4331de20: : (HR)-G

3.6 Dynamic Object Transformation with SQLcl Liquibase and
o=us veraoanra Ora@cCle Database Package

Oracle supplies many packages, which are automatically installed with Oracle Database, that
extend database functionality. One of these packages, DBMS METADATA, provides a way to
retrieve metadata from the database dictionary as XML or SQL Data Definition Language
(DDL) statements, and to submit the XML to recreate the object.

Oracle SQLcl Liquibase uses the DBMS METADATA package to generate and execute specialized
changelogs that transform the state of the database objects dynamically. This is a feature not
available in the Liquibase open-source client. By using SQLcl-exclusive Liquibase commands
such as generate-schema, a complete Oracle database schema can be updated. This includes
altering tables and other objects already present according to the changelog’s specification. In
open-source Liquibase, if the update command is run for a changelog mentioning a table that
is pre-existing, it will fail. This is because open-source Liquibase is incapable of altering pre-
exising objects.

SQLcl Liquibase’s specialized changelogs generated from commands such as generate-
schema and generate-object use the SXML data format from the DBMS METADATA package to
execute these dynamic updates. SXML is an XML representation of object metadata that looks
like a direct translation of SQL DDL into XML.

This section demonstrates this concept using a few examples. For these example, a Windows-
based operating system is used.

Example 1

ORACLE 310

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

Connect to an Oracle database with SQLcl release 22.3. The one featured in this example
includes a few sample tables. The tables that are going to be used for this example are
employees and departments.

SQL> select table name from user tables;
TABLE NAME

REGIONS

LOCATIONS
DEPARTMENTS

JOBS

EMPLOYEES
JOB_HISTORY

HIRE DATE
PERSON_COLLECTION
COUNTRIES

9 rows selected.

1. Generate a schema of the database state using SQLcl Liquibase.

SQL> 1b generate-schema

1b generate-schema
ting Liquibase at 15: rsion 4.15.0 #© built at 2022-

2. Switching over to another command-line window, use the open-source Liquibase client to
generate a changelog of the database state. Because generate-schema is a SQLcl-
exclusive command that uses extended functionality, the open-source Liquibase client
must use the generate-changelog command.

Note:

You can download the open-source Liquibase client from the Liquibase website.

>liquibase --changelog-file=sql test.xml generate-changelog

ORACLE 311

https://www.liquibase.org/download

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

The database state is now captured in both SQLcl Liquibase and the open-source
Liquibase client.

3. Inthe SQLcl command-line window, make a few changes to the database.

SQL>alter table employees add height number;
Table EMPLOYEES altered.

SQL>alter table employees add mood varchar2 (50);
Table EMPLOYEES altered.

SQL>alter table departments add happiness varchar2(50);
Table DEPARTMENTS altered.

View these column additions in the database.

SQL> select * from departments;
SQL> select * from employees;

ORACLE 310

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

* from departments;

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID HAPPINES

4. You need to use the Liquibase update command to alter the database to the state of the
changelogs. This is the database state where employees and departments tables do not
have the extra columns added.

To do that, in the command-line window not connected to SQLcl and that was used for
running the open-source Liquibase client commands, enter the following command:

>liquibase --changelog-file=sql test.xml update

The update command fails because Liguibase encounters objects already existing in the
database such as the tables. This standard version of Liquibase does not handle these
objects dynamically.

5. In the SQLcl command-line window, the same step is repeated with SQLcl Liquibase.

First, examine the SQL that is used to complete the schema update using the update-sql
command.

SQL>1b update-sqgl -changelog-file controller.xml

ORACLE 313

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

updat

L1

Examining the output, you see that departments and employees tables are recognized and
that you need to drop the extra columns that you created to return to the state in the
changelog.

-- Changeset departments_table.xml::18f3f8828%eddcfc2bl6éfdaeddal169F8fe@d3f:: (HR)-Generated
ALTER TABLE "HR"."DEPARTMENTS™ DROP ("HAPPINESS™)
/

-- Changeset employees_table.xml: :3679894845b7965245949695613df9351c236f3e: : (HR)-Generated
ALTER TABLE "HR™."EMPLOYEES™ DROP ("HEIGHT")
/
ALTER TABLE "HR"."EMPLOYEES™ DROP ("MOCD")
/

In actual use cases that are more complicated, there can often be risks involved with the
SQL drop command. Examining the SQL code using the update-sql command is
beneficial for review. Any manual changes can then be made to the changesets and
checked as needed.

When you run the update command, the schema is successfully updated and the columns
are dropped.

SQL> 1b update -changelog-file controller.xml
--Starting Liquibase at 68:23:55 (version xml 4.15.0 #0 built at
2022-08-19 14:45+0000)

-- Loaded 38 change(s)

Example 2
This example also explains the same concept, this time adding columns and a table.

For this example, in the database, a table Activities has been previously created along with
columns Head Count and Retention in the departments table and Awards in the employees
table.

ORACLE 314

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

DEPARTMENT \ME MU P) OC HEAD COUNT RETENTION

MAHAGER_ID DERARTHENT_ID

Changelogs are generated and the Activities table and Head count, Retention, and columns
are deleted so as to showcase using Liquibase to create them.

1. Generate the schema in SQLcl.

Note:

Move the changelogs from the previous example to a separate folder to avoid
issues.

SQL> 1b generate-schema
--Starting Liquibase at 09:33:52 (version 4.15.0 #0 built at 2022-08-19
14:45+0000)

2. Switching over to another command-line window to execute commands in the open-source
Liguibase client, here also generate a changelog:

>liquibase --changelog-file=sql test2.xml generate-changelog

ORACLE 315

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

#
e
1
4
7
13
i3
]
]
]

> 16:17+0668)

3. Inthe SQLcl command-line window, delete the Activities table and Head count,
Retention, and Awards columns, so that their creation can be demonstrated with the
update command.

SQL> drop table activities;
Table ACTIVITIES dropped.

SQL> alter table employees drop column awards;
Table EMPLOYEES altered.

SQL> alter table departments drop column head count;
Table DEPARTMENTS altered.

SQL> alter table departments drop column retention;
Table DEPARTMENTS altered.

4. In the open-source Liquibase command-line window, run the update command.

> liquibase --changelog-file=sql test2.xml update

The update fails when Liquibase encounters pre-existing objects.

ORACLE 316

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

5. In the SQLcl command-line window, generate the SQL to examine, then run the update
with SQLcl Liquibase .

SQL>1b update-sqgl -changelog-file controller.xml

Looking at the SQL output, you can see sections involving the creation of the Activities
table and SQLcl Liquibase generating the SQL statements to alter the Departments and
Employees table to add the columns.

-- Changeset departments_table.xml::62926485197be515dcecdf2174bca®9c4331d020: : (HR) -Generated
ALTER TABLE "HR"."DEPARTMENTS" ADD ("HEAD_COUNT" NUMBER)
/
ALTER TABLE "HR"."DEPARTMENTS™ ADD ("RETENTION™" VARCHAR2(5@))
/

-- Changeset employees table.xml::14662f7d19c2e2d74bd735e31b78b79cf2Beedf6: : (HR) -Generated
ALTER TABLE "HR"."EMPLOYEES" ADD ("AWARDS" NUMBER)
/

-- Changeset activities_table.xml::a7941c2352f1cadl2cd6edeadfbd4fc9d1d438d6: : (HR)-Generated
CREATE TABLE "HR™."ACTIVITIES"
("ID" NUMBER,
"NAME" VARCHAR2(50),
"COST" NUMBER,
"LOCATION" VARCHAR2(5@),
"DIFFICULTY" VARCHAR2(5@)
) SEGMENT CREATION DEFERRED
PCTFREE 10 PCTUSED 4@ INITRANS 1 NOCOMPRESS LOGGING
TABLESPACE "USERS";

6. Run the update to see that the table and columns are added.

SQL> 1b update -changelog-file controller.xml

ORACLE 3-17

Chapter 3
Dynamic Object Transformation with SQLcl Liquibase and DBMS_METADATA Oracle Database Package

SQL>select table name from user tables;
SQL>select * from employees;
SQL>select * from departments;

SQL> select table name from user tables;
TABLE NAME

REGIONS

LOCATIONS

DEPARTMENTS

JOBS

EMPLOYEES

JOB HISTORY
DATABASECHANGELOG ACTIONS
DATABASECHANGELOG
ACTIVITIES

COUNTRIES

11 rows selected.

ORACLE 318

Chapter 3
Liquibase Open-Source Changesets with SQLcl Liquibase

MANAGER_ID LOCATION_ID HEAD INT RETENTION

3.7 Liquibase Open-Source Changesets with SQLcl Liquibase

You can use changesets generated in the open-source Liquibase solution with SQLcl
Liquibase. This enables you to carry over previous change management projects to SQLcl to
optimize them with your Oracle Database.

The following example demonstrates this using the H2 database available in the open-source
download of Liquibase and SQLcl Liquibase:

1. Download the open-source Liquibase client available on the Liquibase website. In your
command-line interface, create a project folder and example H2 database with the following
command:

>liquibase init project

e
T
i

\

[#
##
#
#
L
#t

#

i

##

4

R e S S S e s s e
iquibase at 1 17 (version 4.15.0 #4001 built at 2022-08-05 16:17+0000)

with defaults, yes with (C)ustomization, or (N)o. [Y]

up new
sible by opening a new terminal wind to run "liquibase init start-h2",

art/home . html

C: \Users\ I

ORACLE 219

https://www.liquibase.org/download

Chapter 3
Liquibase Open-Source Changesets with SQLcl Liquibase

2. Start your H2 database:

>liquibase init start-h2

G \ >liquiba init start

##
##
##

#8

el
FEEEEE]

*

es at learn.liquibase.com
i eports a

#

R E EEE R

;4

##

Starting Liquiba

Liquib.

mple H2 Database...
The database does not persist data,

ocalhost:9

Pa ord:
Integration
JDBC URL:

Opening Datab
Dev Web URL
Integration

This also launches the database console of the empty H2 database in your browser.

ORACLE 350

Chapter 3
Liquibase Open-Source Changesets with SQLcl Liquibase

| & | Oautocommit “0 "o | Max rows: 00 8 | % |Autocomplete [Off v |Auto select [On v | (@)

|1 jdbc:h2:mem:dev Run Run Selected || Auto complete | Clear | SQL statement:
] INFORMATION_SCHEMA [
i Users

(D) H2 2.1.214 (2022-06-13)

Important Commands

) Displays this Help Page

=]

Y Shows the Command History

(J |Ctri+Enter |Executes the cumrent SQL statement
D | shift+Enter| Executes the SQL statement defined by the text selection

Ctrl+Space |Auto complete

&t Disconnects from the database
Sample SQL Script
Delete the table if it exists | DROP TABLE IF EXISTS TEST,
Create a new table CREATE TABLE TEST(ID INT PRIMARY KEY, |
with 1D and NAME columns| NAME VARCHAR(255));
Add a new row INSERT INTO TEST VALUES(1, 'Hello');
Add another row INSERT INTO TEST VALUES(2, "World');
Query the table SELECT * FROM TEST ORDER BY ID;
Change data in a row UPDATE TEST SET NAME='Hi' WHERE ID=1;|
Remove a row DELETE FROM TEST WHERE ID=2; |
Help HELP |

In the browser console, create a sample table using the following command and click Run:

>create table pets (id int, name varchar (256), breed varchar(256), Primary
Key (id));

5| ¢ | [Autocommit %0 /D | Maxrows:[1000 v| @ Q | £ |Autocomplete [OF v | Auto select [On v | (@)

[J jdbch2:mem:dev Run|| Run Setected| | Auto compiéiéfit.:lear.'SOL statement:

=N:=| EETS create table pets (id int, name varchar(256), breed varchar(256), Primary Key (id)),
D
= [MAME
[BREED

® |3, Indexes
@ (2] INFORMATION_SCHEMA
[{# Users
() H2 2.1.214 (2022-06-13)

create table pets (id int, name varchar(256), breed varchar(256), Primary Key (id));
Update count: 0
(2 ms)

Capture this schema consisting of the Pets table with a Liquibase changelog.

Open a new command-line window and generate the changelog:

>liquibase --changelog-file=examplepets.xml generate-changelog

Name the changelog file as examplepets.xml.

ORACLE"

3-21

Chapter 3
Liquibase Open-Source Changesets with SQLcl Liquibase

\IE> 1 quibase ngelog-file-examplepets.xml generate-changelog

T iaari S
##
##
##
\ ##
[##
##
##
#
##
##
ibase.com ##
##
##
##
AR

4.15.0 #4001 built at 2022-08-05 16:17+0000)

The output shows where the file is saved.
5. Connect to your Oracle Database from the SQLcl 22.3 bin location.

You can view the tables in your database with the following command. The example
database shows a few sample tables.

SQL> select table name from user tables;
TABLE NAME

REGIONS
LOCATIONS
DEPARTMENTS
JOBS
EMPLOYEES
JOB_HISTORY
COUNTRIES

7 rows selected.

6. Copy the examplepets.xml changelog file to the SQLcl 22.3 bin folder.
7. Inthe SQL command-line interface, run the changelog to add the pets table to your
database, and check to see that the table is now included in your list.

SQL> 1b update --changelog-file examplepets.xml
SQL> select table name from user tables;

ORACLE 399

Chapter 3
DATABASECHANGELOG_DETAILS VIEW

SQL> 1b update --changelog-file examplepets.xml
--Starting Liquibase at 14:40:11 (version 4.15.0 #@ built at 20822-88-19 14:45+0000)

peration completed successfully.

SQL> select table name from user_tables;

11 rows selected.

3.8 DATABASECHANGELOG_DETAILS VIEW

DATABASECHANGELOG_DETAILS is a view that consolidates information from the
DATABASECHANGELOG and DATABASECHANGELOG_ACTIONS tables for easier reporting
and troubleshooting.

This view enables a better understanding of the status and work performed by each change
applied to the database. The SQL column shows the actual SQL that was run in the database.
The SXML column shows the state of the object prior to the change being applied.

Example

SQL> desc DATABASECHANGELOG DETAILS

ORACLE

Name Null?

Type

DEPLOYMENT ID

VARCHARZ (10)

(

ID VARCHAR2 (255)
AUTHOR VARCHAR2 (255)
FILENAME VARCHAR2 (255)
SQL CLOB

SXML CLOB

DATEEXECUTED NOT NULL TIMESTAMP (6)
EXECTYPE NOT NULL VARCHARZ (10)
MD5SUM VARCHARZ (35)
DESCRIPTION VARCHAR2 (255)
COMMENTS VARCHAR2 (255)
LIQUIBASE VARCHARZ (20)

3-23

ORACLE

Chapter 3
ChangeSets in Liquibase

CONTEXTS VARCHAR2 (255)
LABELS VARCHAR2 (255)

3.9 ChangeSets in Liquibase

The following table lists the changeSets and provides a description for each of them. To learn

more about changeSets, see <changeSet> tag.

ChangeSet

Description

CreateOracleConstraint

Creates a constraint from SQL.

CreateOracleDirectory

Creates a directory from SQL.

CreateOracleFunction

Creates a function from SQL.

CreateOracleGrant

Creates a grant from SQL.

CreateOraclePackageBody

Creates a package body from SQL.

CreateOracleJob

Creates a DBMS_Scheduler job from SQL.

CreateOraclePackageSpec

Creates a package specification from SQL.

CreateOracleProcedure

Creates a procedure from SQL.

CreateOraclePublicSynonym

Creates a public synonym from SQL.

CreateOracleRefConstraint

Creates a referential constraint from SQL.

CreateOracleSynonym

Creates a synonym from SQL.

CreateOracleTrigger

Creates a trigger from SQL.

CreateOracleTypeBody Creates a type body from SQL.
CreateOracleTypeSpec Creates a type spec from SQL.
CreateSxmlObject Creates a function from SQL.

DropOracleConstraint

Drops a constraint.

DropOracleFunction

Drops a function.

DropOracleGrant

Drops a grant.

DropOraclePackageBody

Drops a package body.

DropOraclePackageSpec

Drops a package specification.

DropOracleProcedure

Drops a procedure.

DropOracleRefConstraint

Drops a referential constraint.

DropOracleTrigger Drops a trigger.

DropOracleTypeBody Drops a type body.

DropOracleTypeSpec Drops a type specification.

DropOracleSynonym Drops a synonym.

DropSxmlObject Drops an SXML object. If the object was created

through createSxmlObiject, this rolls back the object
to the last state. If not created, the object is just
dropped. This is primarily used internally for SXML
object handling.

RunOracleScript

Executes a SQL script using the SQLcl engine and
therefore supports all SQLcl commands. Supports
script, file, and URL sources.

3.10 Tips for Liquibase Settings

This section covers the following:

3-24

Chapter 3
Tips for Liquibase Settings

* How to Exclude Table Properties When Deploying Changelogs to a New Environment

» Create Database Objects in a Schema Different From the Connected Schema

3.10.1 How to Exclude Table Properties When Deploying Changelogs to a
New Environment

ORACLE

When capturing tables from one environment and deploying to another, there are certain table
properties you may want to exclude from the deployment while creating the table. This may be
due to these properties being unavailable or undesired in your target environment, such as:

e Partitioning
e Compression
e Tablespace

SQLcl uses the Data Definition Language (DDL) session settings in the target environment,
where the database objects are created or altered in (and not the environment the changelog
was generated from), to generate the DDL for the objects. By turning off the DDL settings, you
can prevent the corresponding table properties from being included in the table creation.

1. Generate your Liquibase changelog file for the table you want to capture and deploy.

liquibase generate-object -object-name [table name] -object-type table

As an example, consider the following table:

CREATE TABLE "PARTITION COMPRESSION TABLESPACE TEST"
("A" VARCHAR2 (20) NOT NULL ENABLE,
"B" VARCHARZ (20),
"C" VARCHAR2 (20) NOT NULL ENABLE,
CONSTRAINT "PARTITION COMPRESSION TABLESPACE TEST PK" PRIMARY KEY
("A")
USING INDEX
PCTFREE 10 INITRANS 2 MAXTRANS 255 LOGGING
TABLESPACE "USERS" ENABLE
) PCTFREE 0 PCTUSED 40 INITRANS 1 COMPRESS BASIC
STORAGE (BUFFER POOL DEFAULT FLASH CACHE DEFAULT CELL FLASH CACHE
DEFAULT)
TABLESPACE "USERS"
PARTITION BY HASH ("C")
(PARTITION "SYS P803" SEGMENT CREATION DEFERRED
COMPRESS BASIC
TABLESPACE "USERS");

The following is an excerpt from the resulting changelog (the partition, compression and
tablespace attributes are highlighted):

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

<TABLE_PROPERTIES>
<HASH PARTITIONING>

3-25

https://www.oracle.com/database/technologies/partitioning.html
https://blogs.oracle.com/dbstorage/post/when-to-use-the-various-types-of-oracle-data-compression

Chapter 3
Tips for Liquibase Settings

<COL_LIST>
<COL_LIST ITEM>
<NAME>C</NAME>
</COL_LIST ITEM>
</COL_LIST>
<DEFAULT PHYSICAL PROPERTIES>
<HEAP TABLE>
<SEGMENT ATTRIBUTES>
<PCTFREE>0</PCTFREE>
<PCTUSED>40</PCTUSED>
<INITRANS>1</INITRANS>
<MAXTRANS>255</MAXTRANS>
<STORAGE>
<BUFFER_POOL>DEFAULT</BUFFER_POOL>
<FLASH_CACHE>DEFAULT</FLASH_CACHE>
<CELL_FLASH_CACHE>DEFAULT</CELL_FLASH_CACHE>
</STORAGE>
<TABLESPACE>USERS</TABLESPACE>
</SEGMENT_ATTRIBUTES>
<COMPRESS>BASIC</COMPRESS>
</HEAP_TABLE>
</DEFAULT_PHYSICAL_PROPERTIES>
<PARTITION_ LIST>
<PARTITION_LIST ITEM>
<NAME>SYS_P803</NAME>
<SEGMENT ATTRIBUTES>
<SEGMENT_CREATION_PEFERRED></
SEGMENT CREATION DEFERRED>
<TABLESPACE>USERS</TABLESPACE>
</SEGMENT_ATTRIBUTES>
<COMPRESS>BASIC</COMPRESS>
</PARTITION_LIST_ITEM>
</PARTITION_LIST>
</HASH_PARTITIONING>
</TABLE_PROPERTIES>
</RELATIONAL_TABLE>
</TABLE>]]></n0:source>
</n0:createSxmlObject>
</changeSet>
</databaseChangeLog>

2. Inthe environment where you apply the update and generate the table, turn off the
following DDL settings:

set ddl partitioning off
set ddl segment attributes off
set ddl tablespace off

Partitioning turns off the partitioning property, segment_attributes turns off the compression
property, and tablespace turns off the tablespace property.

SQL> show ddl
Parameters

ORACLE 396

ORACLE

Chapter 3

Tips for Liquibase Settings
COLLATION CLAUSE : NEVER
CONSTRAINTS : ON
CONSTRAINTS AS ALTER : ON
EMIT SCHEMA : ON
FORCE : ON
INHERIT : ON
INSERT : ON
0ID : ON
PARTITIONING : OFF
PRETTY : ON
REF_CONSTRAINTS : ON
SEGMENT ATTRIBUTES : OFF
SIZE BYTE KEYWORD : ON
SPECIFICATION : ON
SQLTERMINATOR : ON
STORAGE : ON
TABLESPACE : OFF

End Parameters

To confirm that these settings are not included in the table generation, use the liquibase
update-sgl command. This command shows you the exact SQL and PL/SQL code that
will be run by the update command before you execute it.

liquibase update-sql -changelog-file
partition compression tablespace test table.xml

When partitioning, compression, and tablespace settings are turned off, the SQL code
looks like the following snippet:

-- Changeset
partition compression tablespace test table.xml::fbl1d77405bcd3cf7d60e555337
b80ec9555134d7: : (HR) -Generated
CREATE TABLE "PARTITION COMPRESSION TABLESPACE TEST"
("A" VARCHAR? (20) NOT NULL ENABLE,
"B" VARCHAR2 (20),
"C" VARCHAR? (20) NOT NULL ENABLE,
CONSTRAINT "PARTITION COMPRESSION TABLESPACE TEST PK" PRIMARY KEY
("A")
USING INDEX ENABLE
)

The following is an example of the SQL code if partitioning, compression, and tablespace
settings were turned on:

-- Changeset
partition compression tablespace test table.xml::fbl1d77405bcd3cf7d60e555337
b80ec9555134d7:: (HR) -Generated
CREATE TABLE "PARTITION COMPRESSION TABLESPACE TEST"
("A" VARCHARZ2 (20) NOT NULL ENABLE,
"B" VARCHAR2Z (20),
"C" VARCHARZ2 (20) NOT NULL ENABLE,
CONSTRAINT "PARTITION COMPRESSION TABLESPACE TEST PK" PRIMARY KEY
("a")

3-27

Chapter 3
Tips for Liquibase Settings

USING INDEX
PCTFREE 10 INITRANS 2 MAXTRANS 255 LOGGING
TABLESPACE "USERS" ENABLE
) PCTFREE 0 PCTUSED 40 INITRANS 1 COMPRESS BASIC

STORAGE (
BUFFER POOL DEFAULT FLASH CACHE DEFAULT CELL FLASH CACHE DEFAULT)
TABLESPACE "USERS"
PARTITION BY HASH ("C")

(PARTITION "SYS P803" SEGMENT CREATION DEFERRED
COMPRESS BASIC
TABLESPACE "USERS");

You can apply the update and create the table by running the update command in your
target environment. This creates the table as unpartitioned, uncompressed, and uses the
tablespace of the target environment (rather than attempting to use the tablespace of the
environment the changelog was generated from).

liquibase update -changelog-file
partition compression tablespace test table.xml

3.10.2 Create Database Objects in a Schema Different From the Connected

Schema

With SQLcl Liquibase, you can make deployments to a different database user schema than
the one you are connected to. However, you must have the required permissions for the target
user schema.

There are three important parameters related to this for the 1iquibase update command:

ORACLE

-output-default-schemal-ouds
Controls if the schema is output or not when running the data definition language (DDL)
SQL to create or alter your database object.

— If -output-default-schema true is set, the schema is included.

create table storefront.merchandise ..

— If -output-default-schema false iS Setor -output-default-schema is not set at all,
the schema is not included.

create table merchandise ..

To deploy database objects to a different schema than the connected schema, you must
set -output-default-schema true SO that you can specify the schema you want to create
the objects in using -default-schema-name.

-default-schema-name|-desn
If -output-default-schema true is set, the -desn parameter controls which schema is
output.

3-28

Chapter 3
Tips for Liquibase Settings

Use this parameter to specify the schema in which to create your database objects. For
example, if you are connected to test_user and you want to create your table in storefront,
your command would be:

liquibase update -changelog-file merchandise table.xml -output-default-
schema true -default-schema-name storefront

If -output-default-schema true is setand -default-schema-name iS not set, the schema
output is based on the ownerName attribute for your changeset in your changelog file.

<n0:createSxmlObject objectName="Merchandise" objectType="TABLE"
ownerName="LBUSER" replacelfExists="false" >

If ownerName is not set, the schema you are connected to is used.

e -liquibase-schema-name|-1lbsn
One of the big advantages of the Liquibase functionality in SQLcl is the ability to track and
manage your changes. This is mainly done with the databasechangelog tracking tables
automatically created and updated in your schema when you run Liquibase.

-liquibase-schema-name allows you to control in which schema you update Liquibase
tracking information through the databasechangelog tables.

This allows you to have use cases such as having a control schema or user that tracks all
your Liquibase change information, while applying the database objects themselves to
other schemas.

For example, you are connected to the user or schema storefront and want to create your
merchandise table using your merchandise_table.xml changelog file. However, you do not
want Liquibase to create your databasechangelog tables in this schema. You want the
tracking information to be stored in the pre-existing databasechangelog tables in your
schema control_user.

The following command accomplishes this:

liquibase update -changelog-file merchandise table.xml -liquibase-schema-
name control user

Note:

Storefront needs to have the permission to write on the databasechangelog,
databasechangeloglock, and databasechangelog actions tables in
control_user.

GRANT SELECT, INSERT, UPDATE, DELETE ON

CONTROL USER.DATABASECHANGELOG TO STOREFRONT;

GRANT SELECT, INSERT, UPDATE, DELETE ON

CONTROL USER.DATABASECHANGELOGLOCK TO STOREFRONT;
GRANT SELECT, INSERT, UPDATE, DELETE ON

CONTROL USER.DATABASECHANGELOG ACTIONS TO STOREFRONT;

ORACLE 399

Chapter 3
Important 23.4 Update with Liquibase Changelog Files

3.11 Important 23.4 Update with Liquibase Changelog Files

ORACLE

For cross-schema use, changelog files generated before SQLcl release 23.4 may require
regeneration or manual updates. These alterations are necessary only if you are changing
schema names between your export and import with pre-23.4 changelogs.

If you do not regenerate your changelogs or make the manual adjustments, then:

« Changelogs containing schema names are applied only to the schema named in them,
regardless of provided parameters.

* Changelogs not containing schema names are applied only to the schema you are
currently connected to with SQLcl, regardless of provided parameters.

SQLcl release 23.4 introduced a $USER_NAMES replacement for the schema name stored in
changesets.

There are two types of changes for manually updating your changelogs with the proper
$USER_NAMES$ substitution:

e Changelogs with <SCHEMA></SCHEMA> XML element
e Changelogs that use SQL within a CDATA field

For changelogs with the <SCHEMA></SCHEMA> XML element, replace the content inside
with $USER NAMES.

In the following code block, the two <SCHEMA> XML elements that appear in this code are
highlighted using bold font. These are replaced with $USER NAME$%

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:n0="http://www.oracle.com/xml/ns/dbchangelog-ext"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-latest.xsd">
<changeSet 1d="5b3935a6b05750a24ac6ebclcbdbbcofedcbdbd0" author=" (HR) -
Generated" failOnError="false" runOnChange="true" runAlways="false" >
<n0:createSxmlObject objectName="MERCHANDISE" objectType="TABLE"
ownerName="HR" replaceIfExists="true" >
0:source><! [CDATA[
<TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
<SCHEMA>HR</SCHEMA>
<NAME>MERCHANDISE</NAME>
<RELATIONAL TABLE>
<COL_LIST>
<COL _LIST ITEM>
<NAME>ID</NAME>
<DATATYPE>NUMBER</DATATYPE>
<IDENTITY COLUMN>
<SCHEMA>HR</SCHEMA>
<GENERATION>ALWAYS</GENERATION>
<START7WITH>1</START7WITH>
<INCREMENT>1</INCREMENT>
<MINVALUE>1</MINVALUE>
<MAXVALUE>9999999999999999999999999999</MAXVALUE>

3-30

ORACLE

Chapter 3
Important 23.4 Update with Liquibase Changelog Files

<CACHE>20</CACHE>
</IDENTITY_COLUMN>

After you do the manual adjustment, this section changes to:

<?xml version="1.0" encoding="UTF-8"?2>
<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:n0="http://www.oracle.com/xml/ns/dbchangelog-ext"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-latest.xsd">
<changeSet 1d="5b3935a6b05750a24ac6ebclcb646bcofedchbdbd0" author=" (HR)-
Generated" failOnError="false" runOnChange="true" runAlways="false" >
<n0:createSxmlObject objectName="MERCHANDISE" objectType="TABLE"
ownerName="HR" replacelfExists="true" >
<n0:source><! [CDATA[
<TABLE xmlns="http://xmlns.oracle.com/ku" version="1.0">
<SCHEMA>%USER_NAME%</SCHEMA>
<NAME>MERCHANDISE</NAME>
<RELATIONAL TABLE>
<COL_LIST>
<COL_LIST ITEM>
<NAME>ID</NAME>
<DATATYPE>NUMBER</DATATYPE>
<IDENTITY COLUMN>
<CHEMA>%USER_NAME%</SCHEMA>
<GENERATION>ALWAYS</GENERATION>
<START_WITH>1</START_WITH>
<INCREMENT>1</INCREMENT>
<MINVALUE>1</MINVALUE>
<MAXVALUE>9999999999999999999999999999</MAXVALUE>
<CACHE>20</CACHE>
</IDENTITY_COLUMN>

For changelogs that use SQL within the CDATA field, attach "$USER NAME%". to the front of all
database object references. If a schema name is in these locations, replace it with
"$USER_NAMES". Note that there is a period after "$USER_NAMES".

Two examples are shown below, each showing a changelog file before and after the manual
adjustment, with the area of adjustment highlighted in bold font in the code block for emphasis.

Example 1

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangelog

xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:n0="http://www.oracle.com/xml/ns/dbchangelog-ext"
xsi:schemalLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-latest.xsd">
<changeSet 1d="f1lblbf677cf990caa0147£863eal8486cdf23815" author=" (LBUSER) -
Generated" failOnError="false" runOnChange="false" runAlways="false" >

3-31

Chapter 3
Important 23.4 Update with Liquibase Changelog Files

<n0:createOracleRefConstraint objectName="EMP JOB FK"

objectType="REF CONSTRAINT" ownerName="LBUSER" replacelfExists="false" >
<n0:source><! [CDATA[ALTER TABRLE "LBUSER"."EMPLOYEES" ADD CONSTRAINT
"EMP_JOB_FK" FOREIGN KEY ("JOB ID") REFERENCES "LBUSER"."JOBS" ("JOB ID")
ENABLE;]]1></n0:source>

</n0:createOracleRefConstraint>

</changeSet>

</databaseChangeLog>

After you do the manual adjustment, this section changes to:

<?xml version="1.0" encoding="UTF-8"?2>

<databaseChangeLog

xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:n0="http://www.oracle.com/xml/ns/dbchangelog-ext"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-latest.xsd">
<changeSet id="flblbf677c£990caal0147£863eal8486cdf23815" author=" (LBUSER) -
Generated" failOnError="false" runOnChange="false" runAlways="false" >
<n0:createOracleRefConstraint objectName="EMP JOB FK"

objectType="REF CONSTRAINT" ownerName="LBUSER" replacelfExists="false" >
<n0:source><! [CDATA[ALTER TABLE "%USER_NAME%"."EMPLOYEES" ADD CONSTRAINT
"EMP_JOB_FK" FOREIGN KEY ("JOB_ID") REFERENCES "%USER;NAME%"."JOBS"
("JOB_ID") ENABLE;]]></n0:source>

</n0:createOracleRefConstraint>

</changeSet>

</databaseChangeLog>

Example 2

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangelog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:n0="http://www.oracle.com/xml/ns/dbchangelog-ext"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-latest.xsd">
<changeSet 1d="2blce58£c2f1781ce70d5bb99bf23b6ae8741££3" author="(TESTI) -
Generated" failOnError="false" runOnChange="false" runAlways="false" >
<n0:createOracleProcedure objectName="P SQLCLERROR PROCEDURE"
objectType="PROCEDURE" ownerName="TEST9" replaceIfExists="false" >
<n0:source><![CDATA[CREATE OR REPLACE EDITIONABLE PROCEDURE
"TEST9"."P_SQLCLERROR PROCEDURE" is
begin
null;
end p sqglclerror procedure;
/11></n0:source>
</n0:createOracleProcedure>
</changeSet>
</databaseChangeLog>

ORACLE 330

Chapter 3
Examples Using Liquibase

After you do the manual adjustment, this section appears as follows:

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:n0="http://www.oracle.com/xml/ns/dbchangelog-ext"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-latest.xsd">
<changeSet 1d="2blce58fc2f1781ce70d5bb99bf23b6ae8741££3" author="(TESTI) -
Generated" failOnError="false" runOnChange="false" runAlways="false" >
<n0:createOracleProcedure objectName="P SQLCLERROR PROCEDURE"
objectType="PROCEDURE" ownerName="TEST9" replacelfExists="false" >
<n0:source><! [CDATA[CREATE OR REPLACE EDITIONABLE PROCEDURE
"$USER_NAME$"."P_SQLCLERROR PROCEDURE" is
begin
null;
end p sqglclerror procedure;
/11></n0:source>
</n0:createOracleProcedure>
</changeSet>
</databaseChangeLog>

3.12 Examples Using Liguibase

Some examples of using the Liquibase functionality for database change management tasks:

* Review SQL
e Capture and Deploy an Object
e Capture and Deploy a Schema

e Execute Custom SQL with RunOracleScript

3.12.1 Review SQL

To review SQL before running maintenance commands:

1. Optionally, set up to save SQL updates.

cd <Ilb-changes-directory>
spool update.sqgl

2. Connect to HR and capture the object.
connect <db-connectl-string>

1b update-sql
spool off

3.12.2 Capture and Deploy an Object

To deploy the EMPLOYEES table from HR to HR2:

ORACLE 333

1. Set default output path.
cd <output-files-path>
2. Connect to HR and capture the object.

connect <db-connectl-string>

1b generate-object -object-type table -object-name employees

3. Connect to HR2 and ensure the object does not exist.

connect <db-connectZ2-string>
drop table employees

4. Create the object in HR2 and verify that it was created.

1lb update -changelog-file employees table.xml
desc employees

3.12.3 Capture and Deploy a Schema

To capture HR schema and reproduce it in HR2 schema:
1. Set default output path.
cd <output-files-path>

2. Connectto HR and capture the schema.

connect <db-connectl-string>
1b generate-schema

3. Setup the HR2 user.

connect <db-connect-dba-string>

drop user hr2 cascade;

create user hr2 identified by hr2;

grant connect,resource, create view to hr2;
alter user hr2 quota unlimited on users;
alter user hr2 quota unlimited on sysaux;

4. Create the schema objects deployed from HR in HR2 and verify.

1b update -changelog-file controller.xml
tables

3.12.4 Execute Custom SQL with RunOracleScript

Chapter 3
Examples Using Liquibase

Create a RunOracleScript changeset to create a table and use PL/SQL variables in the script.

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog

ORACLE

3-34

ORACLE

Chapter 3
Examples Using Liquibase

xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:n0="http://www.oracle.com/xml/ns/dbchangelog-ext"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.6.xsd">
<changeSet id="runScriptString" author="jdoe">
<n0:runOracleScript objectName="myScript" ownerName="JDOE"
sourceType="STRING">
<n0:source><! [CDATA[
DEFINE table_name = RUNNERSTRING;
create table &&table name (id number);
11></n0:source>
</n0:runOracleScript>
</changeSet>
</databaseChangeLog>

3-35

Database Application CI/CD

The Oracle SQLcl Projects feature allows users to manage the creation and administration of a
database application. It is targeted towards enterprise-level applications that require structured
release processes.

This chapter contains the following topics:

e Introduction
e About the Project Command
e Quick Start

Examples

4.1 Introduction

Database Application Continuous Integration and Continuous Delivery (CI/CD) represents a
transformative approach in modern database management and application development. This
methodology seamlessly integrates database changes into the development pipeline while
ensuring swift and secure deployment to production environments. By combining the rapid
feedback mechanisms of Continuous Integration with the streamlined deployment processes of
Continuous Delivery, Database CI/CD addresses the critical need for agility and reliability in
today's fast-paced software development landscape.

At its core, Database CI/CD aims to:

e Accelerate time-to-market for new features and updates.

ORACLE’ i1

Chapter 4
Introduction

¢ Maintain a consistently high quality of code and database schema.
* Facilitate immediate issue detection and resolution.
» Ensure that both application and database components are always in a deployable state.

This approach not only enhances development efficiency but also significantly improves the
end-user experience through frequent, reliable releases.

The project command in Oracle SQLcl is a powerful tool designed to standardize database
software versioning and create releasable artifacts, including APEX elements. This command
supports a consistent model of development and operations, enabling repeatable builds that
can be applied in a specific order.

The key features of SQLcl Projects include:

* Versioned Feature Management: Allows database developers to identify individual
changes and create versioned features or issues.

* Release Artifact Creation: Facilitates rolling multiple changes into a single release artifact
that can be published for use.

* Ordered Installation: Ensures that artifacts are installable in the correct sequence, taking
into account previously installed components in the environment.

e Source Control Integration: Supports creating branches in source control and exporting
objects to these branches. Changes are realised using branch diffs and formatted
consistently, allowing for easy identification through file checksums.

e Automated Release Packaging: When multiple branches or changes are created, SQLcl
Projects can wrap them into a release, automatically setting up the execution of all
changesets in the correct order on a target system.

The SQLcl Projects feature represents a significant step towards streamlining database
development workflows, enhancing version control, and improving the overall efficiency of
database application development and deployment processes.

4.1.1 Supported Objects

ORACLE

The supported database object types have been tested to work with the project export and
project stage commands. All types not included in the following list can be added using the
project stage add-custom command with any custom SQL. For more information about the
add-custom command, see stage.

The database object types that are supported are:
e APEX_APP

« ORDS Modules
e CONSTRAINT

« CONTEXT
* FUNCTION
* INDEX

* MATERIALIZED_VIEW
* OBJECT_GRANT
« PACKAGE_BODY
« PACKAGE_SPEC

4-2

Chapter 4
Introduction

- PROCEDURE
- REF_CONSTRAINT
- ROLE_GRANT

- SEQUENCE

* SYNONYM

* SYSTEM_GRANT
« TABLE

* TRIGGER

« TYPE_BODY
« TYPE_SPEC
* USER
« VIEW

4.1.2 Database CI/CD Concepts

ORACLE

This section covers the concepts relevant to understanding SQLcl Projects.

» Database Continous Integration (Cl) and Database Continuous Delivery (CD)
* Database Project Scaffolding

* Advanced Database Object Explorer

* Automated Database Migration Script Generation

e Building Releasable Artifacts

Database Continous Integration (Cl) and Database Continuous Delivery (CD)

Database continuous integration (Cl) is the process of frequently integrating database schema
and logic changes into application development, aiming to provide immediate feedback on any
issues. Database continuous delivery (CD) focuses on quickly and safely deploying those
changes to production, ensuring that both application and database code are always in a
deployable state. Together, database CI/CD reduces time-to-market and delivers consistent
end-user value through frequent, high-quality releases.

Database Project Scaffolding

When initializing SQLcl Projects (using the project init command), SQLcl creates a set of
files that are used to manage the creation of files and changelogs.

There are three folders in the initial setup:

e .dbtools: This folder contains the following:

— Project filters that are used by project export to filter out objects that will be
exported.

— Project format rules that are used to format the code when it is exported.
— Project configuration settings.

e src: This folder is where the exported objects from the database get placed. This is broken
down by schema and objects types.

4-3

ORACLE

Chapter 4
Introduction

e dist: The release artifacts are created in this folder. This folder gets populated by the
project stage command and the project release command compresses its contents to
create a release artifact.

—.dbtools
F—— filters
| L— project.filters
F—— project.config.json
L— project.sqlformat.xml
— dist
L— install.sql
— src
L— database
— .gitignore
— README.md

Advanced Database Object Explorer

One of the main features of SQLcl Projects is exporting database objects to the source control
repository. The export includes the SQL needed to create the object and a "snapshot” of the
object's metadata. The snapshot is stored as a comment and is prefixed with sqlcl snapshot.
It contains the following information:

e Checksum calculated on the exported code

e Object type

e Object name

¢ Schema name

e SXML representation of the object as exported (see DBMS_METADATA SXML)

The following path is used for exported objects:

src/database/<SCHEMA>/<OBJECT TYPE>/<OBJECT NAME>[.sql|.pks|.pkb]

For example, a table called doc in the HR schema, the file path is src/database/hr/tables/
doc.sql.

create table hr.doc (

id number
)
-- sqlcl snapshot
{"hash":"d9%992dceaaB87a936e8242bdc81201£93030084ab5", "type" :"TABLE", "name" : "DOC"
, "schemaName": "HR", "sxml" :"<TABLE xmlns=\"http://xmlns.abc.com/ku\"
version=\"1.0\"> <SCHEMA>HR</SCHEMA> <NAME>DOC</NAME>
<RELATIONAL TABLE><COL LIST> <COL_LIST_ITEM><NAME>ID</NAME><DATATYPE>NUMBER</
DATATYPE> </COL_LIST ITEM></COL LIST><DEFAULT COLLATION>USING NLS COMP</
DEFAULT COLLATION><PHYSICAL PROPERTIES> <HEAP_TABLE></HEAP_TABLE></
PHYSICAL PROPERTIES> </RELATIONAL_TABLE></TABLE>"}

Automated Database Migration Script Generation

As developers add changes to the database, they are exported to the branch. Git branches are
used to identify changes between units of work. Using the diffs between the branches, the
changed files are identified.

4-4

ORACLE

Chapter 4
Introduction

master Feature/bug

branches

branch

developer
I change

> developer
M I change
Oracle - developer

Database change

Each object file has a specific checksum and, in some cases, specific SXML for the
specification of the object. Using Oracle DBMS_METADATA _DIFF, the SXML files are
compared and the DDL to make both objects the same is generated and added to the
repository.

Building Releasable Artifacts

To ensure deployment consistency, statements need to run in a particular order. Once a
statement is executed, it will never be run again (immutable). Liquibase support, which was
introduced in SQLcl to allow users to create changesets for schemas or objects, can be run to
install the objects into a database. SQLcl Projects builds on that support to generate
changesets for each block of changes on a branch and build those together into a release.

This is achieved by taking the comparison set between branches and generating a hierarchy
scaffolding of changelogs that represent the list of comparisons. Then, the comparison set is
used to generate the SXML differences, which is then used to generate the DDL for the
changes.

4-5

Chapter 4

Introduction
Main
Issue changelog 1 DB name Application
issue issue
DB change 1 DB change 1 App change 1
DB change 2 DB change 2
DB change 3 DB change 3
Issue
changelog 2

After an export of the changes, the project stage command generates the changesets for the
differences from the current branch and the main branch.

—-Example
next
F—— release.changelog.xml
— changes
— initial-export

F—— hr

| L— table

| — doc.sqgl

— stage.changelog.xml
In this example, there is one table that is exported into doc.sql. This example has been
simplified to explain the concept. The project stage command compares the contents of the
current branch and by default compares it against the base branch of the project. The project

ORACLE 4-6

ORACLE

Chapter 4
Introduction

configuration that controls the base branch is git.defaultBranch. This can be shown by using
the following command:

project config -list -name git.defaultBranch

To change it, use the same config command with the -set option.

SQL> project config -list -name git.defaultBranch

t==== +
| SETTING NAME | VALUE |
t==== +
| git.defaultBranch | master |
e +

The project stage command also has a prescribed format. When the command is run, it
creates the following structure:

next/changes/<branch name>

In the example, the branch created for the initial export of the hr.doc table is called initial-
export. Each time a new branch is created and the stage command is run, there is a new
folder underneath next/changes/<branch_name>.

In this example, the doc. sql file is automatically prefixed with Liquibase-formatted SQL
formats and is defined as an individual changeset. doc. sql will be referenced in a changelog
file.

-- Liquibase-formatted sql

-- changeset HR:d992dceaa87a936e8242bdc81201£93030084ab5 stripComments:false
logicalFilePath:initial-export/hr/table/doc.sql

-- sqlcl snapshot src/database/hr/tables/
doc.sgl:null:d992dceaa87a936e8242bdc81201£93030084ab5:create

create table hr.doc (
id number

);

In this example, the stage.changelog.xml references the Liquibase-formatted SQL changeset.
--stage.changelog.xml

<?xml version="1.0" encoding="UTF-8"?2>
<databaseChangeLog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xsi:schemalLocation="http://www.liquibase.org/xml/ns/
dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/
dbchangelog-4.3.xsd">
<!--BEGIN-->
<include file="hr/table/doc.sql" relativeToChangelogFile="true"/>
<!--END-->
<!--BEGIN CUSTOM-->

4-7

ORACLE

Chapter 4
Introduction

<!--END CUSTOM-->
</databaseChangeLog>

The next folder has a release.changelog.xml right at the top. This file is referenced again in
the project release command.

--release.changelog.xml

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xsi:schemalLocation="http://www.liquibase.org/xml/ns/
dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/
dbchangelog-4.3.xsd">
<!--BEGIN CHANGE-->
<include file="changes/initial-export/stage.changelog.xml"
relativeToChangelogFile="true"/>
<!--END CHANGE-->
<!--BEGIN CODE-->
<!--END CODE-->
</databaseChangeLog>

When all the changes are created for a release, run the project release command to take all
files under the next folder and move them to a "numbered release" folder.

The final structure is:

releases
— 1.0
code
— code.changelog.xml
F—— release.changelog.xml
— changes
L— initial-export
|— _custom
F—— hr

| L— table

| — doc.sql

— stage.changelog.xml
— main.changelog.xml

— next

— release.changelog.xml

— util

F—— prechecks.sql

L— recompile.sql

T

To generate a re-runnable artifact, run the project gen-artifact command. This creates a
file in artifacts/<projectname>-<version>.zip. By default, artifacts are not included in the
Git repository (To change this, modify the .gitignore file).

4-8

Chapter 4
About the Project Command

The contents of this artifact include:

releases/next/release.changelog.xml
releases/1.0/changes/initial-export/stage.changelog.xml
releases/1.0/changes/initial-export/hr/table/doc.sql
releases/1.0/release.changelog.xml
releases/1.0/code/code.changelog.xml
releases/util/recompile.sql

releases/util/prechecks.sql

releases/main.changelog.xml

README . md

install.sql

The last part is deploying the artifacts into a production database. The command project
deploy takes the generated artifact and runs it with SQLcl.

SQL> project deploy -file demo-1.0.zip

Starting the migration...

Running Changeset: initial-export/hr/table/
doc.sgl::d992dceaa87a936e8242bdc81201£93030084ab5: : HR

Table HR.DOC created.

Liquibase: Update has been successful. Rows affected: 1

Installing/updating schemas

--Starting Liquibase at 2024-09-19T09:09:02.326601 (version [local build] #0
built at 2024-08-14 18:40+0000)

Table HR.DOC created.

UPDATE SUMMARY

Run: 1
Previously run: 0
Filtered out: 0
Total change sets: 1

Produced logfile: sqlcl-1b-1726733337322.1og
Operation completed successfully.
Migration has been completed.

4.2 About the Project Command

ORACLE

The command in SQLcl for Database CI/CD extension is project. It contains several sub-
commands that are used as part of the process to help developers manage database changes
and create serialized transactions.

All project sub-commands support -verbose and -debug options, which provide detailed
processing information.

Each of the sub-commands are described below.

e init]in

4-9

ORACLE

Chapter 4
About the Project Command

Initializes a new project. This command can be run in a new Git repository or in an existing
repository.

project init -name demo -makeroot -schemas cicd

This command creates a project in the current working directory called demo under a new
folder called demo. Several folders are created under the project directory including a
configuration directory under .dbtools.

This folder and the files under it should be added and committed to the Git repository.
config|cfg
Enables you to view and manage your project configuration properties.

This command allows you to look at the current configuration that is used by each of the
project commands. The files for the configuration are stored under the .dbtools folder. In
the configuration, there are a number of settings that can be configured.

project config -list

This command lists all the configured options. Most of these options have defaults, which
are used in the absence of the parameter. You can see the defaults by using the -verbose
option with project config -list.

You can set configuration items by using the following command:

project config set -name <configitem> -value <value> -type <value-type>

Any invalid configurations are flagged at runtime when a project command is used.
export|ex
Exports database objects into your repository.

As a rule, when exporting from the database, a new branch is created. This branch is used
when using the stage command to compare with previous branches to generate the DDL
statements. You can run the following command in the project to export the objects owned
by the schemas identified in the project init command.

project export

You can also choose to export a specific schema, or even an object.

In the configuration files, there is a specific file for filtering objects that can be modified to
clearly identify the correct objects to export.

Export supports normal database objects supported by DBMS_METADATA and also APEX
applications. See the DBMS_METADATA: Object Types table in Oracle Database PL/SQL
Packages and Types Reference.

stage|st
Creates Liquibase changelogs or changesets for all source files and custom SQL files.

The stage command is used along with the export command. This command takes the
current branch and compares it to the base branch and generates the changelogs that will

4-10

https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/DBMS_METADATA.html#GUID-B1551D25-8F57-4D00-BB1D-7A611A66764D
https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/DBMS_METADATA.html#GUID-B1551D25-8F57-4D00-BB1D-7A611A66764D

Chapter 4
Quick Start

apply those changes to a database. The command creates a folder in a specific format
with a dist folder.

src
dist -
-releases
-next
- <stage files>

The stage command can also be used to add other custom changesets as part of the
change. This generates a file to add SQL and SQLcl commands with a Liquibase SQL
changeset header. This file will be added to the changelog hierarchy automatically.

* release|re
Moves the current set of work into a release state and starts a new body of work.

The release command takes the contents of the dist/next folder and renames it to a given
version number.

project release -version 1.0

And then creates a new next folder under dist.

Once code has been moved into a release it should never be modified. As such, it is
recommended that the release command should only be run once the following criteria
have been met:

— project verify has successfully ran.
— Test the release against various systems:
* Build system: This confirms that all DDL and code compiles correctly.

* Test system (with data): Confirms that no data integrity issues (For example:
Making a column not null only to find out it has null values).

To test a pre-release build, run project gen-artifact and use a version name such as -
version 1.0.0-test. This also includes everything in the next folder.

* gen-artifact|]ga
Generates an artifact representing the current state of your project.

* deploy|dp
Deploys the artifact on a target database.

* verifylv
Provides the means to test various aspects of your project (snapshots, changes, overall
project).

4.3 Quick Start

This section introduces the SQLcl Projects feature using a simple setup and list of tasks. The
quick start covers:

* How to initialize a new project (for an application with a single schema called demo) .

* Work to be done as part of a sprint:
— Ticket-1

ORACLE 411

Chapter 4
Quick Start

* Create the standard sample dept and emp tables
* Load the tables with sample data
— Ticket-2

* Add a new column named email to the emp table
* Add a new function named get_display_name

* How to complete a release, and then generate and deploy an artifact.

Topics

* Prerequisites

e Assumptions

* Project Setup

e Ticket-1

e Ticket-2

e Final Steps

4.3.1 Prerequisites

This Quick Start has the following prerequisites:

e You must create two databases, DEV and PROD, with the demo schema pre-created. You
need to connect as the demo user from SQLcl.

create user demo identified by demo;

grant resource to demo;

grant connect to demo;

grant create view to demo;

alter user demo quota unlimited on system;

* You require two named connections in SQLcl: demo-dev and demo-prod. The following
examples show how to add and manage named connections in SQLcl.

-Add a new named connection
-Note: -savepwd is an optional parameter to save the password.
SQL> conn -savepwd -save demo-dev demo/demoQ//myserver.com:1521/mypdb

-List current connections
SQL> connmgr list

-To connect to a named connection
SQL> conn -name demo-dev

4.3.2 Assumptions

This quick start assumes the following:

* A Git project named demo-project is used.
All work in the repository is "local" only, a remote server (such as, Github or Gitlab) is not
needed for this demo.

ORACLE 415

Chapter 4
Quick Start

e The term ticket (or issue) refers to a unit of work, typically tracked in a system such as Jira.
e SQLcl can run operating system level commands using the host command.
— For example, host date prints the system date.

— A shortcut for the host command is !<cmd>. For example, !date is the equivalent of
host date.

— This demo uses a lot of host commands. To avoid exiting and entering SQLcl each
time, the ! shortcut is used to execute them directly within SQLcl.

4.3.3 Project Setup

ORACLE

Create a Git repository.

Note:

This demo uses a local Git repository. In most cases, a clone from a remote Git
repository is used as a starting point.

-Create and go into new folder
mkdir demo-project
cd demo-project

-Start SQLcl
sql /nolog

-Initialize git repo
SQL> !git init --initial-branch=main

Initialize the repository for SQLcl Projects.
-The schema that is used for this demo is called "demo".

SQL> project init -name demo project -schemas demo

Project name: demo_project

Schema (s) : DEMO

Directory: /private/tmp/demo-project
Connection name:

Project root: demo-project

Your project has been successfully created

-Root folder now looks like:

- F—— .dbtools

F—— filters

|
- | | l— project.filters
| F—— project.config.json

4-13

Chapter 4
Quick Start

- L project.sqglformat.xml
- +— dist

- L— install.sql

- — src

- L— database

- +— .gitignore

- L— README.md

-Add and commit the initial files to the repository

SQL> !git add --all
SQL> !git commit -m "initial"

[main (root-commit) 5fabebd] initial

9 files changed, 188 insertions(+)

create mode 100644 .dbtools/filters/project.filters
create mode 100644 .dbtools/project.config.json
create mode 100644 .dbtools/project.sqlformat.xml
create mode 100644 .gitignore

create mode 100644 README.md

create mode 100644 dist/install.sql

4.3.4 Ticket-1

In practice, most development is done as part of a ticket in a project management system,
such as Jira or GitHub. In this section, ticket-1 is created and has the following requirements:

1. Create emp and dept tables.

2. Add the initial data.

In the following steps, you will:

1. Create and check out a Git branch named ticket-1.

2. Create the tables in the database schema.

3. Export the objects from the schema to the project's src folder.
4. Register the changes in the project's dist folder.

« Changes are detected automatically by comparing the feature branch to the main
branch.

e Changes are created in the next release as part of ticket-1.
e Changes are captured as Liquibase changelogs/sets.
5. Add a custom script to load the initial data for the emp and dept tables.
6. Commit and merge changes to complete the ticket.
Steps
1. Connect to the the demo-dev server.

SQL> conn -name demo-dev
Connected.

ORACLE Y

ORACLE

Chapter 4
Quick Start

Create a new branch called ticket-1.

SQL> !git checkout -b ticket-1
Switched to a new branch 'ticket-1'

Create database objects.

SQL> create table dept(

deptno number (2,0),
dname varchar2 (14),
loc varchar2 (13),

constraint pk dept primary key (deptno)
)i

Table DEPT created.

SQL> create table emp(

empno number (4,0),

ename varchar2 (10),

job varchar? (9),

mgr number (4,0),

hiredate date,

sal number (7, 2),

comm number (7, 2),

deptno number (2,0),

constraint pk emp primary key (empno),

constraint fk deptno foreign key (deptno) references dept (deptno)
)i

Table EMP created.

SQL> create index idx emp deptno on emp (deptno);
Index IDX EMP DEPTNO created.

Export all the objects to the src folder.

SQL> project export

The current connection //myserver.com:1521/mypdb DEMO will be used for all
operations

**%* INDEXES **x*

* k% TABLES * k%

*Hx REF CONSTRAINTS x KK

TABLE

REF CONSTRAINT

INDEX 1

Exported 4 objects

Elapsed 20 sec

The src folder now contains all the scripts required to recreate the objects in the demo
schema.

4-15

Chapter 4
Quick Start

The changes in the src folder are used to detect changes that need to be added to the
dist folder for each release.

The folder structure looks as follows:

L

src

[—
database

demo

F__

indexes

| L
idx_emp deptno.sql

F__

ref constraints

| L
fk deptno.sql
L
tables
dept.sql
— emp.sql

Add and commit the newly created src files.

ORACLE 416

ORACLE

Chapter 4
Quick Start

Note:

It is very important to commit all src changes because only committed changes
are used to determine changes for dist/release.

SQL> !git add --all
SQL> !git commit -m "TICKET-1: Added dept emp tables, and get display name
function”

[ticket-1 812db72] TICKET-1: Added dept emp tables, and get display name
function

4 files changed, 44 insertions(+)

create mode 100644 src/database/demo/indexes/idx emp deptno.sqgl

create mode 100644 src/database/demo/ref constraints/fk deptno.sql
create mode 100644 src/database/demo/tables/dept.sql

create mode 100644 src/database/demo/tables/emp.sql

Generate the scripts and Liquibase changelogs for the current ticket.

This happens in the background where the changes in branches/ticket-1/src are
compared against branches/main/src.

SQL> project stage
Stage successfully created, please review and commit your changes to
repository

The dist folder now becomes as follows:

Note:

e All current work is stored in the releases/next folder. After a release is
ready, this folder is converted to a release number and a new or empty next
folder is created.

e Changelogs work as follows: main.changelog.xml references next/
release.changelog.xml, which references ticket-1/stage.changelog.xml,
which references all the files that are part of ticket-1.

— dist
— install.sql
— releases
F—— main.changelog.xml
L— next
— changes
L— ticket-1
F—— _custom
F—— demo
| F—— index
| | L idx_emp deptno.sql
| }—— ref constraint

4-17

Chapter 4
Quick Start

| | L— fk deptno.sql
| L— table
| F—— dept.sql
| L emp.sql
L— stage.changelog.xml
— code
L— code.changelog.xml
—— release.changelog.xml
— utils
F—— prechecks.sqgl
L— recompile.sql

6. Add and commit the files.

It is recommended to review all generated files before adding to the repository.

SQL> !git add --all
SQL> !git status

On branch ticket-1
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: dist/releases/main.changelog.xml
new file: dist/releases/next/changes/ticket-1/demo/index/
idx_emp deptno.sql
new file: dist/releases/next/changes/ticket-1/demo/

ref constraint/fk deptno.sql
new file: dist/releases/next/changes/ticket-1/demo/table/dept.sqgl
new file: dist/releases/next/changes/ticket-1/demo/table/emp.sqgl

new file: dist/releases/next/changes/ticket-1/stage.changelog.xml
new file: dist/releases/next/code/code.changelog.xml

new file: dist/releases/next/release.changelog.xml

new file: dist/utils/prechecks.sql

new file: dist/utils/recompile.sql

SQL> !git commit -m "TICKET-1: Added dept emp tables"

[ticket-1 261lcceb] TICKET-1: Added dept emp tables

10 files changed, 396 insertions (+)

create mode 100644 dist/releases/main.changelog.xml

create mode 100644 dist/releases/next/changes/ticket-1/demo/index/

idx_emp deptno.sql

create mode 100644 dist/releases/next/changes/ticket-1/demo/
ref constraint/fk deptno.sql

create mode 100644 dist/releases/next/changes/ticket-1/demo/table/dept.sqgl
create mode 100644 dist/releases/next/changes/ticket-1/demo/table/emp.sql
create mode 100644 dist/releases/next/changes/ticket-1/stage.changelog.xml
create mode 100644 dist/releases/next/code/code.changelog.xml

create mode 100644 dist/releases/next/release.changelog.xml

create mode 100644 dist/utils/prechecks.sql

create mode 100644 dist/utils/recompile.sql

7. Add sample data for each table using a custom .sq|! file.

ORACLE 418

ORACLE

Chapter 4
Quick Start

Use the project stage add-custom command to generate custom files, as it auto-
generates all the Liquibase-header information.

SQL> project stage add-custom -file-name dept-data.sql
SQL> project stage add-custom -file-name emp-data.sql

The custom files now appear in dist under the custom folder.

— dist
— releases
L— next
F—— changes
L— ticket-1

| F—— dept-data.sql
| L emp-data.sql

|
| F—— _custom
|
|

The following command displays the contents of dept-data.sql.

SQL> !cat dist/releases/next/changes/ticket-1/ custom/dept-data.sql
(For Windows, use !type .\dist\releases\next\changes\ticket-1\ custom\dept-
data.sql)

-- liquibase formatted sql

-- changeset SqlCl:f56fcfecl1f7d7¢cb99d74403a0c2727a765ddb99
stripComments:false logicalFilePath:ticket-1/ custom/dept-data.sql
-- sglcl snapshot dist/releases/next/changes/ticket-1/ custom/dept-
data.sgl:null:null:custom

Add the sample data for each file.

In dist/releases/next/changes/ticket-1/ custom/dept-data.sql, copy and paste the
following statements to the end of the file and then save the file.

10, 'ACCOUNTING', 'NEW YORK');
20, 'RESEARCH', 'DALLAS');

30, 'SALES', 'CHICAGO');

40, 'OPERATIONS', 'BOSTON');

insert into demo.dept values
insert into demo.dept values
insert into demo.dept values
insert into demo.dept values

—~ o~ —~ —

In dist/releases/next/changes/ticket-1/ custom/emp-data.sql, copy and paste the
following statements to the end of the file and then save the file.

insert into demo.emp values(7839, 'KING', 'PRESIDENT', null,
to date('17-11-1981"', 'dd-mm-yyyy'), 5000, null, 10);

insert into demo.emp values(7698, 'BLAKE', 'MANAGER', 7839,
to date('1-5-1981"', 'dd-mm-yyyy'), 2850, null, 30);

insert into demo.emp values(7782, 'CLARK', 'MANAGER', 7839,
to date('9-6-1981"', 'dd-mm-yyyy'), 2450, null, 10);

insert into demo.emp values(7566, 'JONES', 'MANAGER', 7839,
to date('2-4-1981"','dd-mm-yyyy'), 2975, null, 20);

insert into demo.emp values(7788, 'SCOTT', 'ANALYST', 7566, to date('l3-
JUL-87"', 'dd-mm-rr') - 85, 3000, null, 20);

insert into demo.emp values(7902, 'FORD', 'ANALYST', 7566,
to date('3-12-1981"', 'dd-mm-yyyy'), 3000, null, 20);

4-19

ORACLE

10.

11.

Chapter 4

Quick Start
insert into demo.emp values(7369, 'SMITH', 'CLERK', 7902,
to date('17-12-1980', 'dd-mm-yyyy'), 800, null, 20);
insert into demo.emp values(7499, 'ALLEN', 'SALESMAN', 7698,
to date('20-2-1981"', 'dd-mm-yyyy'), 1600, 300, 30);
insert into demo.emp values(7521, 'WARD', 'SALESMAN', 7698,
to date('22-2-1981"', 'dd-mm-yyyy'), 1250, 500, 30);
insert into demo.emp values(7654, 'MARTIN', 'SALESMAN', 7698,
to date('28-9-1981"', 'dd-mm-yyyy'), 1250, 1400, 30);
insert into demo.emp values(7844, 'TURNER', 'SALESMAN', 7698,

to date('8-9-1981','dd-mm-yyyy'), 1500, 0, 30);

insert into demo.emp values(7876, 'ADAMS', 'CLERK', 7788, to date('l3-
JUuL-87', 'dd-mm-rr') - 51, 1100, null, 20);
insert into demo.emp values(7900, 'JAMES', 'CLERK', 7698,

to date('3-12-1981"', 'dd-mm-yyyy'), 950, null, 30);
insert into demo.emp values(7934, 'MILLER', 'CLERK',
to date('23-1-1982"', 'dd-mm-yyyy'), 1300, null, 10);

7782,

Run each file to ensure that the data is loaded into the table.

SQL> @dist/releases/next/changes/ticket-1/ custom/dept-data.sql
SQL> @dist/releases/next/changes/ticket-1/ custom/emp-data.sql
SQL> commit;

Commit complete.
Add and commit the new custom files.

SQL> !git add --all
SQL> !git commit -m "TICKET-1: data files"

[ticket-1 ac2488d] TICKET-1: data files

3 files changed, 33 insertions(+)

create mode 100644 dist/releases/next/changes/ticket-1/ custom/dept-
data.sql

create mode 100644 dist/releases/next/changes/ticket-1/ custom/emp-
data.sql

To highlight the order of operations that have automatically been managed, enter the
following command:

SQL> !cat dist/releases/next/changes/ticket-1/stage.changelog.xml

<?xml version="1.0" encoding="UTF-8"?>
<databaseChangeLog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/
dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/
dbchangelog-4.3.xsd">
<!--BEGIN-->
<include file="demo/table/dept.sql" relativeToChangelogFile="true"/>
<include file="demo/table/emp.sql" relativeToChangelogFile="true"/>
<include file="demo/ref constraint/fk deptno.sql"
relativeToChangelogFile="true"/>
<include file="demo/index/idx emp deptno.sql"
relativeToChangelogFile="true"/>

4-20

ORACLE

12.

Chapter 4
Quick Start

<!--END-->

<!--BEGIN CUSTOM-->

<include file=" custom/dept-data.sql" relativeToChangelogFile="true"/>
<include file=" custom/emp-data.sql" relativeToChangelogFile="true"/>
<!--END CUSTOM-->

Ticket-1 iS now complete.
Merge the changes into the main branch.

This is done through a Merge Request or a Pull Request (depending on your Git provider).
Since this is a local repository, you can only merge directly into main.

SQL> !git checkout main
Switched to branch 'main'
SQL> !git merge "ticket-1"
Updating £9660ae..ac2488d

Fast-forward
dist/releases/main.changelog.xml |

I

dist/releases/next/changes/ticket-1/ custom/dept-data.sql | 11 +++
4+

dist/releases/next/changes/ticket-1/ custom/emp-data.sql | 20 +++
B S

dist/releases/next/changes/ticket-1/demo/index/idx emp deptno.sql |
8 ++++++

dist/releases/next/changes/ticket-1/demo/ref constraint/fk deptno.sql |
9 ittt a a
dist/releases/next/changes/ticket-1/demo/table/dept.sql |
13+ttt t++

dist/releases/next/changes/ticket-1/demo/table/emp.sql |
18 +Htttttttt+++
dist/releases/next/changes/ticket-1/stage.changelog.xml |
16 +++++++tt+++

dist/releases/next/code/code.changelog.xml |
8 ++++++

dist/releases/next/release.changelog.xml |
11 ++++++++

dist/utils/prechecks.sql |
B e A A s B o
dist/utils/recompile.sql |
T o L e o
T B T A L
T o e o

src/database/demo/indexes/idx emp deptno.sql |
T+ttt

src/database/demo/ref constraints/fk deptno.sql |
8 ++++++

src/database/demo/tables/dept.sql |
12 +++++++++

src/database/demo/tables/emp.sql |
17 ++++++++t++++

16 files changed, 473 insertions (+)

4-21

4.3.5 Ticket-2

create mode 100644
create mode 100644

data.sql

create mode 100644

data.sql

create mode 100644
idx_emp deptno.sql
create mode 100644
ref constraint/fk deptno.sql

create
create
create
create
create
create
create
create
create
create
create

mode
mode
mode
mode
mode
mode
mode
mode
mode
mode
mode

100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644

Chapter 4
Quick Start

dist/releases/main.changelog.xml
dist/releases/next/changes/ticket-1/ custom/dept-

dist/releases/next/changes/ticket-1/ custom/emp-
dist/releases/next/changes/ticket-1/demo/index/
dist/releases/next/changes/ticket-1/demo/

dist/releases/next/changes/ticket-1/demo/table/dept.sql
dist/releases/next/changes/ticket-1/demo/table/emp.sql
dist/releases/next/changes/ticket-1/stage.changelog.xml
dist/releases/next/code/code.changelog.xml
dist/releases/next/release.changelog.xml
dist/utils/prechecks.sql

dist/utils/recompile.sql
src/database/demo/indexes/idx emp deptno.sql
src/database/demo/ref constraints/fk deptno.sqgl
src/database/demo/tables/dept.sql
src/database/demo/tables/emp.sql

Now that the first ticket is complete, work can start on TICKET-2. The purpose of this ticket is to
highlight the automated DDL management along with soft objects (that is, re-runnable objects
such as packages, views, and so on) creation.

TICKET-2 has the following requirements:

1.

2

Add a new column emp.email.

Add a new function get display name.

The steps are:

1.
2

w

N o o »

Create and check out a Git branch called ticket-2.

Alter the emp table and add the new column in the database.

Export the emp table. This will show the new table structure in the src/.../tables/

emp.sql fi

ile.

Run the project stage command to register the alter table statements.

Create a new function, get display name, in the database and run project export.

Rerun the project stage command to include the get display name function

Commit and merge changes to complete the ticket.

Steps

1.

ORACLE

Create the ticket-2 branch.

SQL> !git checkout -b ticket-2
Switched to a new branch 'ticket-2'

4-22

ORACLE

Chapter 4
Quick Start

Make the table changes to the development database.

SQL> alter table emp add email varchar2 (255);
Table EMP altered.

Run the project export command to get the latest version of the table.

Note:

Use the -o argument to only export the demo . emp table.

SQL> project export -o emp

The current connection //myserver.com:1521/mypdb DEMO will be used for all
operations

x INDEXES *

* k% TABLES * k%

% REF _CONSTRAINTS *

TABLE 1
REF CONSTRAINT 1
INDEX 1

Exported 3 objects
Elapsed 13 sec

Run the git diff command to show what was changed in the src/database/demo/
tables/emp.sql file.

Note:

Because the column name is changed, the whole file is marked as changed to
add additional spacing.

Only the logical changes are listed below to show the real differences. The diff highlights
that the new column (email) is added.

!git --no-pager diff src/database/demo/tables/emp.sql

- deptno number (2, 0)
+ deptno number (2, 0),

email varchar? (255 byte)
Add and commit changes, which is required before running the project stage command.
This happens in the background where the changes in branches/ticket-1/src are
compared against branches/main/src.

SQL> !git add --all
SQL> !git commit -m "TICKET-2: Added emp.email"

4-23

Chapter 4
Quick Start

[ticket-2 a3e7508] TICKET-2: Added emp.email
1 file changed, 3 insertions(+), 2 deletions(-)

6. Runproject stage to automatically generate the alter table statement required to add
the email column.

SQL> project stage
Stage successfully created, please review andcommityour changes to
repository

The following files have been added:

— dist
— releases
L— next
— changes
L— ticket-2
| L— _custom
— demo
| L— table
| — emp.sql
L— stage.changelog.xml

7. The output of dist/releases/next/changes/ticket-2/demo/table/emp.sql is shown
below.

It automatically detected the modification in the emp table and generated the correct alter
statement.

SQL> !cat dist/releases/next/changes/ticket-2/demo/table/emp.sql

-- liquibase formatted sql

-- changeset DEMO:cffad61078f4afbd0680bfacbe818e5f089ce535
stripComments:false logicalFilePath:ticket-2/demo/table/emp.sql

-- sglcl snapshot src/database/demo/tables/
emp.sql:1d12b2ddb0fe34a061ad35dc1990fc3d84d5a676:9¢c26d3ba57756671939¢cf399¢ch
Te96ael0d3ac84e:alter

alter table demo.emp add (
email varchar2 (255)

8. Add and commit changes.

SQL> !git add --all
SQL> !git commit -m "TICKET-2: emp.email alter commands"

[ticket-2 582cd63] TICKET-2: emp.email alter commands

3 files changed, 20 insertions(+)

create mode 100644 dist/releases/next/changes/ticket-2/demo/table/emp.sql
create mode 100644 dist/releases/next/changes/ticket-2/stage.changelog.xml

ORACLE Y

ORACLE

10.

11.

Chapter 4
Quick Start

Create a new function called get display name. This highlights how the source code can
automatically be managed with SQLcl Projects.

SQL> create or replace function get display name(p _ename in emp.ename$type)
return varchar?
as
begin
return initcap(p_ename);
end get display name;

/
Function GET DISPLAY NAME compiled

Similar to table changes, running a project export command detects supported object
changes.

SQL> project export

x FUNCTIONS *

**%* INDEXES **x*

* % % TABLES * % %

***% REF_CONSTRAINTS ***

TABLE 2
REF CONSTRAINT 1
INDEX 1
FUNCTION 1
Exported 5 objects

Elapsed 14 sec

Add and commit followed by project stage to add to the release.

SQL> !git add --all
SQL> !git commit -m "TICKET-2: added get display name"

[ticket-2 Tcf60ad4] TICKET-2: added get display name
1 file changed, 10 insertions(+)
create mode 100644 src/database/demo/functions/get display name.sql

SQL> project stage
Stage successfully created, please review and commit your changes to
repository

The function was added to the dist/next folder under a common code folder and not
ticket-2.

This is done because re-runnable code (packages, functions, and so on) may be modified
multiple times within a sprint. In most cases, it only needs to be compiled once.

SQL> !git status
On branch ticket-2
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

4-25

12.

13.

Chapter 4

Quick Start
(use "git restore <file>..." to discard changes in working directory)
modified: dist/releases/next/code/code.changelog.xml
modified: dist/releases/next/release.changelog.xml
Untracked files:
(use "git add <file>..." to include in what will be committed)
dist/releases/next/code/demo/
Add and commit the dist changes.
SQL> !git add --all
SQL> !git commit -m "TICKET-2: dist changes for get display name"
[ticket-2 706fdb9] TICKET-2: dist changes for get display name
3 files changed, 13 insertions(+)
create mode 100644 dist/releases/next/code/demo/function/
get display name.sql
Now that all work on ticket-2 is complete, merge back to main.
SQL> !git checkout main
Switched to branch 'main'
SQL> !git merge "ticket-2"
Updating d6abe9d..706£db9
Fast-forward
dist/releases/next/changes/ticket-2/demo/table/emp.sql | 8 ++++++++
dist/releases/next/changes/ticket-2/stage.changelog.xml | 11 ++++++++++
+
dist/releases/next/code/code.changelog.xml | 1+

dist/releases/next/code/demo/function/get display name.sql | 11 ++++++++++
+
dist/releases/next/release.changelog.xml | 2 ++
src/database/demo/functions/get display name.sql | 10 ++++++++++
src/database/demo/tables/emp.sql | 5 +++--
7 files changed, 46 insertions(+), 2 deletions(-)
create mode 100644 dist/releases/next/changes/ticket-2/demo/table/emp.sql
create mode 100644 dist/releases/next/changes/ticket-2/stage.changelog.xml
create mode 100644 dist/releases/next/code/demo/function/
get display name.sql
create mode 100644 src/database/demo/functions/get display name.sql

4.3.6 Final Steps

ORACLE

After the sprint is complete, the following needs to be done:

Generate a release (project release)

— The release command renames the dist/next folder to the release name (in the
following example, 1.0.0) and then generates a new (empty) dist/next folder ready
for the next sprint's changes.

Generate an artifact (project gen-artifact)

4-26

Chapter 4
Quick Start

— gen-artifact creates a zip file that contains a single install.sql file, which points to all
the different sub-folders in the dist folder. In this example, it only contains one folder
(2.0.0). Over time, the artifact will contain additional releases, as this is what allows
Liquibase to upgrade from any point in time.

e Deploy the artifact (project deploy).

— The deploy command takes an artifact and upgrades an environment to the latest
version. For example, if the artifact includes versions 1-10 and the current environment
is on version 8, the installer auto-detects the current state and only runs the changes
related to version 9 and version 10.

4.3.6.1 Generate Release 1.0.0

Generating a release:

* Moves the contents of dist/next to the name of the release. For example, if generating
release 1.0.0, then dist/next > dist/1.0.0.

e Create a new dist/next folder that is open for the next set of work for the next release.
1. Generate release 1.0.0

SQL> project release -version 1.0.0
Process completed successfully

The dist folder now looks like below. Note the dist/next folder has been emptied and
there is a new "fresh" release.changelog.xml.

— dist
— README .md
— install.sql
— releases
— 1.0.0
— changes
— main
— code
L— _custom
— stage.changelog.xml
— ticket-1
— code
L— _custom
|— dept-data.sql
— emp-data.sql
— demo
|— index

| — idx_emp deptno.sql
|— ref constraint
| — fk deptno.sqgl
L— table
|— dept.sqgl
— emp.sql
— stage.changelog.xml
— ticket-2
— code
L— _custom

ORACLE 4-27

ORACLE

Chapter 4
Quick Start

L— table
L emp.sql
L— stage.changelog.xml
— code
F—— code.changelog.xml
L— demo
L— function
— get display name.sqgl
—— release.changelog.xml
—— main.changelog.xml
— next
L— release.changelog.xml

F—— demo
|
|

Add the changed files and commit.

SQL> !git add --all
SQL> !git add .
SQL> !git commit -m "release 1.0.0"

[main 5elacl2] release 1.0.0

16 files changed, 25 insertions(+), 4 deletions(-)

create mode 100644 dist/releases/1.0/changes/main/stage.changelog.xml
rename dist/releases/{next => 1.0}/changes/ticket-1/code/ custom/dept-
data.sqgl (100%)

rename dist/releases/{next => 1.0}/changes/ticket-1/code/ custom/emp-
data.sqgl (100%)

rename dist/releases/{next => 1.0}/changes/ticket-1/demo/index/

idx_emp deptno.sql (100%)

rename dist/releases/{next => 1.0}/changes/ticket-1/demo/ref constraint/
fk deptno.sql (100%)

rename dist/releases/{next => 1.0}/changes/ticket-1/demo/table/dept.sql
(100%)

rename dist/releases/{next => 1.0}/changes/ticket-1/demo/table/emp.sql
(100%)

rename dist/releases/{next => 1.0}/changes/ticket-1/stage.changelog.xml
(100%)

rename dist/releases/{next => 1.0}/changes/ticket-2/demo/table/emp.sql
(100%)

rename dist/releases/{next => 1.0}/changes/ticket-2/stage.changelog.xml
(100%)

rename dist/releases/{next => 1.0}/code/code.changelog.xml (100%)
rename dist/releases/{next => 1.0}/code/demo/function/
get display name.sql (100%)

create mode 100644 dist/releases/1.0/release.changelog.xml

(Optional) Git tag the release.

lgit tag release-1.0.0

At this point, the dist/release/next folder is ready for the next set of work for the new
release.

4-28

Chapter 4
Quick Start

4.3.6.2 Generate an Artifact

An artifact contains all the releases that enable the deployment to automatically detect the
instance's current version and the required releases to run through to update to the latest.
SQLcl generates the artifact as a zipped file. By default, this file is not included in the Git
repository because it is a binary file that can become large over time.

< Note:

Artifacts must be stored in an artifact repository such as JFrog's Artifactory.

Generate the artifact as follows:

SQL> project gen-artifact -version 1.0.0
Your artifact has been generated demo project-1.0.0.zip

The artifact directory now contains the following artifact:

F—— artifact
| L— demo _project-1.0.0.zip

By default, the artifact directory is included in the .gitignore file and not added to the repository.
It is best practice to move these to an artifact repository (for example, JFrog).

4.3.6.3 Deploy to PROD

ORACLE

Use the artifact that was generated in the previous step and run the deploy command on a
different database. The following steps deploy the artifact on the demo-prod connection.

1. Connect to the production server.
SQL> connect -name demo-prod
2. Deploy on the Prod server.
SQL> project deploy -file artifact/demo project-1.0.0.zip

Starting the migration...

Running Changeset: ticket-1/demo/table/
dept.sql::1e18b33eb500d4ccf3880£65c0d06846¢c793¢c509: : DEMO
Running Changeset: ticket-1/demo/table/
emp.sqgl::1d12b2ddb0fe34a061ad35dc1990£fc3d84d5a676: : DEMO
Running Changeset: ticket-1/demo/ref constraint/

fk deptno.sql::55dee6178861d12324b4e858b5465b7f4cladfcd: : DEMO
Running Changeset: ticket-1/demo/index/

idx_emp deptno.sql::ablf05f1b3b979156e8b2c8e1608231ae86aldc5: :DEMO
Running Changeset: ticket-1/code/ custom/dept-
data.sql::£56fcfecll1£7d7¢cb99d74403a0c2727a765ddb99::5qg1Cl
Running Changeset: ticket-1/code/ custom/emp-
data.sql::113b7d3b31e5ae089898777aaa7£556f£6£8dbf7::5glCl

4-29

Chapter 4
Examples

Running Changeset: ticket-2/demo/table/
emp.sqgl::cffad61078£f4afbd0680bfacbe818e5£089ce535: : DEMO

Running Changeset: ../demo/function/

get display name.sql::4c4e9%8cd47aeddbc5caB84a31d8ab7elc066296976: : DEMO
Liquibase: Update has been successful. Rows affected: 26
Installing/updating schemas

--Starting Liquibase at 2024-11-05T17:00:18.968636 (version [local build]
#0 built at 2024-08-14 18:40+0000)

UPDATE SUMMARY

Run: 8
Previously run: 0
Filtered out: 0
Total change sets: 8

Produced logfile: sqglcl-1b-1730851216381.1og
Operation completed successfully.

Migration has been completed

4.4 Examples

ORACLE

This section provides examples that make some assumptions around connections and source
schemas, and depend on having connections created.

4.4.1 Single Schema

This example consists of a single development schema and a single production schema. After
it is created, the production schema includes objects from the development schema and the
Liquibase changelog objects.

Overview

1.
2

Create a SQLcl database project.
Initialize a git repository in the database project and commit initial files to the main branch.

Create a new branch called base-release, run project export to export the objects from
the connection hr-dev and commit the files to the branch.

Run project stage to compare the branch base-release to the main branch and generate
the changelogs for installing the base release.

Run project release to move the development code to a versioned release called 1.0.

Run project gen-artifact to create a deployable zip file of the release called
<projectname>-<version>.zip.

Connect to the production schema and deploy the artifact with project deploy command.

Connection Definitions

hr-dev: This is the connection to use as a development schema.

4-30

ORACLE

Chapter 4
Examples

hr-prod: This is the connection to use as the production schema.

Development Connection and Objects

In the development schema, install the objects for the HR sample schema. These objects are
available on Github. Clone the oracle-samples/db-samples-schemas repository.

In this example, an hr user is set up with the password oracle.

$> git clone git@github.com:oracle-samples/db-sample-schemas.git
$> cd db-sample-schemas/human_resources
$> sql <SYSTEM_USER>/<SYSTEMPASSWORD>@<DATABASE_URL>

SQL> @hr_install

Thank you for installing the Oracle Human Resources Sample Schema.

This installation script will automatically exit your database session

at the end of the installation or if any error is encountered.

The entire installation will be logged into the 'hr install.log' log file.

Enter a password for the user HR: ****+**
Enter a tablespace for HR [USERS]:

Do you want to overwrite the schema, if it already exists? [YES|no]: YES
0ld HR schema has been dropped.

**k*k*x% Creating REGIONS table

*k*kxx% Creating COUNTRIES table

*k*x*x%k Creating LOCATIONS table

*k*k*x% Creating DEPARTMENTS table
*%kx%x% Creating JOBS table

xk*k*x% Creating EMPLOYEES table

***kx%% Creating JOB_HISTORY table

*k*xxx%k Creating EMP DETAILS VIEW view ...
xk*k*x% Creating indexes

xAkFxxx%k Adding table column comments

xH*xxx% Populating REGIONS table
xH*xxx% Populating COUNTRIES table
xxx%%% Populating LOCATIONS table
xxx%%% Populating DEPARTMENTS table
****** Populating JOBS table

xxx%%% Populating EMPLOYEES table
***kx%% populating JOB HISTORY table

Installationverification

Verification:

Table provided actual
regions 5 5
countries 25 25
departments 27 27
locations 23 23
employees 107 107
jobs 19 19
job_history 10 10

4-31

https://github.com/oracle-samples/db-sample-schemas/tree/main/human_resources

ORACLE

Chapter 4
Examples

Create the connection in Oracle SQL Developer extension for VSCode or Oracle SQLcl.

SQL> connect -save hr-dev -savepwd hr/oracle@localhost/freepdbl
Name: hr-dev
Connect String: localhost/freepdbl

User: hr

Password: ****xx%
Connected.

SQL> connect -name hr-dev
Connected.

Use a login.sq|l file to customise the login experience. Set up the user, database, project, git
status, and current working directory.

--login.sql

set sglformat ansiconsole

set sqlprompt "@|red USER|QEC|green O RELEASE|QE|blue 0 >|e"
set statusbar default editmode linecol git project cwd

set statusbar on

Steps
1. Create a SQLcl database project.

Choose a directory to create the project and run the project init command.

SQL> project init -name demo -schemas hr -makeroot

Project name: demo

Schema (s) : HR

Directory: /Users/abc/sandbox/projects/demo
Connection name: hr-dev

Config Only: false

Project root demo

Your project has been successfully created.

This command creates the project and the makeroot option creates a project folder.
2. Initialize the Git repository.

In the project directory, initialize a Git repository and commit the initial files to the main
branch. The main branch is called main. On commit, it is important to use the Conventional
Commits standard for commit messages so that it is useful on release to identify features,
bugs, chores and other types. The code block shows Git running in SQLcl using the host
command denoted by the ! character preceding the Git command. This character allows
the user to run any command available on the host shell.

SQL>cd demo

SQL>pwd

/Users/abc/sandbox/projects/demo

SQL> !git init --initial-branch=main

Initialized empty Git repository in /Users/abc/sandbox/projects/demo/.git/
SQL> !git add .

4-32

ORACLE

Chapter 4
Examples

SQL> !git commit -m "chore: initializing repository with default project
files"

[main (root-commit) 6cc2434] chore: initializing repository with default
project files

8 files changed, 145 insertions(+)

create mode 100644 .dbtools/filters/project.filters

create mode 100644 .dbtools/project.config.json

create mode 100644 .dbtools/project.sqlformat.xml

create mode 100644 .gitignore

create mode 100644 dist/README.md

create mode 100644 dist/install.sql

create mode 100644 src/README.md

create mode 100644 src/database/README.md

In the demo folder, there are several folders and files:

e .dbtools: Contains the configuration files for the project.
e src: Contains the source files exported from the schema.
e dist: Contains the generated install files and releases.

* artifact: Contains the zip files generated for a release.

Create the base-release branch and commit exported files.

Create a branch in Git called base-release and check it out. Run project export to
export the objects from the hr-dev connection.

SQL> !git checkout -b base-release
Switched to a new branch 'base-release'
SQL> project export

The current connection localhost/freepdbl HR will be used for all
operations.

x INDEXES *

*%*x PROCEDURES **x*

x SEQUENCES *

* k% TABLES * k%

x TRIGGERS *

* k% VIEWS * k%

*%** COMMENTS ***

¥% REF CONSTRAINTS ***

TABLE 6
PROCEDURE 2
REF CONSTRAINT 10
CREATE_USER 1
TRIGGER 2
SEQUENCE 3
INDEX 11
VIEW 1
COMMENT 7
Exported 43 objects.

Elapsed 13 sec.

SQL>!git status

On branch base-release

Untracked files:

4-33

(use "git add <file>..." to include in what will be committed)

src/database/hr/
SQL>!git add src
SQL>!git status
On branch base-release
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: src/database/hr/comments/countries.sql
new file: src/database/hr/comments/regions.sql
new file: src/database/hr/create users/create user.sql
new file: src/database/hr/indexes/dept location ix.sql
new file: src/database/hr/indexes/loc state province ix.sql
new file: src/database/hr/procedures/add job history.sql
new file: src/database/hr/procedures/secure dml.sql
new file: src/database/hr/ref constraints/countr reg fk.sql
new file: src/database/hr/ref constraints/loc c id fk.sql
new file: src/database/hr/sequences/departments_seq.sql
new file: src/database/hr/sequences/employees seq.sql
new file: src/database/hr/sequences/locations seq.sql
new file: src/database/hr/tables/countries.sql
new file: src/database/hr/tables/regions.sql
new file: src/database/hr/triggers/secure employees.sql

new file: src/database/hr/triggers/update job history.sql

new file: src/database/hr/views/emp details view.sql

!git commit -m "chore: base export of hr schema"
[base-release b481c4l] chore: base export of hr schema

44 files changed, 609 insertions(+)

create mode 100644 src/database/hr/comments/countries.sql

create mode 100644 src/database/hr/comments/regions.sql

create mode 100644 src/database/hr/create users/create user.sql
create mode 100644 src/database/hr/indexes/dept location ix.sql

create mode 100644 src/database/hr/indexes/loc state province ix.sql
create mode 100644 src/database/hr/procedures/add job history.sql

create mode 100644 src/database/hr/procedures/secure dml.sql

create mode 100644 src/database/hr/ref constraints/countr reg fk.sql

create mode 100644 src/database/hr/ref constraints/loc c id fk.sql
create mode 100644 src/database/hr/sequences/departments seq.sql

create mode 100644 src/database/hr/sequences/locations seq.sql

create mode 100644 src/database/hr/tables/countries.sql

create mode 100644 src/database/hr/tables/regions.sql

Chapter 4
Examples

create mode 100644 src/database/hr/triggers/secure employees.sql

create
create

mode
mode

100644 src/database/hr/triggers/update job history.sql
100644 src/database/hr/views/emp details view.sql

4. Use project stage to create changelogs for installing the base release.

ORACLE

4-34

ORACLE

Chapter 4
Examples

Run the project stage command to compare the base-release branch to the main
branch and generate the changelogs for installing the base release.

SQL> project stage

Stage successfully created, please review and commit your changes to
repository.

SQL> !git status

On branch base-release

Untracked files:

(use "git add <file>..." to include in what will be committed)
dist/releases/
SQL> !find dist/releases/next
dist/releases/next

dist/releases/next/changes

dist/releases/next/changes/base-release
dist/releases/next/changes/base-release/code
dist/releases/next/changes/base-release/code/ custom
dist/releases/next/changes/base-release/stage.changelog.xml
dist/releases/next/changes/base-release/hr
dist/releases/next/changes/base-release/hr/ref constraint
dist/releases/next/changes/base-release/hr/ref constraint/dept loc fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/emp job fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/jhist job fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/jhist dept fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/loc _c id fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/countr reg fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/emp dept fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/jhist emp fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/dept mgr fk.sql
dist/releases/next/changes/base-release/hr/ref constraint/

emp manager fk.sqgl

dist/releases/next/changes/base-release/hr/table
dist/releases/next/changes/base-release/hr/table/jobs.sql
dist/releases/next/changes/base-release/hr/table/departments.sql
dist/releases/next/changes/base-release/hr/table/regions.sql
dist/releases/next/changes/base-release/hr/table/countries.sql
dist/releases/next/changes/base-release/hr/table/employees.sql
dist/releases/next/changes/base-release/hr/table/job history.sql
dist/releases/next/changes/base-release/hr/table/locations.sql
dist/releases/next/changes/base-release/hr/index
dist/releases/next/changes/base-release/hr/index/emp name ix.sql
dist/releases/next/changes/base-release/hr/index/jhist department ix.sql
dist/releases/next/changes/base-release/hr/index/emp manager ix.sql
dist/releases/next/changes/base-release/hr/index/emp department ix.sql
dist/releases/next/changes/base-release/hr/index/loc_country ix.sql
dist/releases/next/changes/base-release/hr/index/jhist employee ix.sql
dist/releases/next/changes/base-release/hr/index/jhist job ix.sql
dist/releases/next/changes/base-release/hr/index/loc city ix.sql
dist/releases/next/changes/base-release/hr/index/dept location ix.sql
dist/releases/next/changes/base-release/hr/index/emp job ix.sql
dist/releases/next/changes/base-release/hr/index/loc_state province ix.sql
dist/releases/next/changes/base-release/hr/sequence
dist/releases/next/changes/base-release/hr/sequence/departments seq.sql
dist/releases/next/changes/base-release/hr/sequence/locations seq.sql
dist/releases/next/changes/base-release/hr/sequence/employees seq.sql
dist/releases/next/release.changelog.xml

4-35

ORACLE

Chapter 4
Examples

dist/releases/next/code
dist/releases/next/code/code.changelog.xml
dist/releases/next/code/hr
dist/releases/next/code/hr/trigger
dist/releases/next/code/hr/trigger/update job history.sql
dist/releases/next/code/hr/trigger/secure employees.sql
dist/releases/next/code/hr/comment
dist/releases/next/code/hr/comment/jobs.sql
dist/releases/next/code/hr/comment/departments.sqgl
dist/releases/next/code/hr/comment/regions.sql
dist/releases/next/code/hr/comment/countries.sql
dist/releases/next/code/hr/comment/employees.sql
dist/releases/next/code/hr/comment/job_history.sql
dist/releases/next/code/hr/comment/locations.sql
dist/releases/next/code/hr/procedure
dist/releases/next/code/hr/procedure/secure dml.sql
dist/releases/next/code/hr/procedure/add job history.sql
dist/releases/next/code/hr/view
dist/releases/next/code/hr/view/emp details view.sql

Run project release to complete the release.

Run the project release command to move the development code to a versioned release
called 1.0.

SQL> project release -version 1.0 -verbose
Creating a release version 1.0 for the current body of work

Updated change:dist/releases/main.changelog.xml

Moved folder "dist/releases/next" to "dist/releases/1.0"
Created file: dist/releases/next

Created change:dist/releases/next/release.changelog.xml
Created change:dist/releases/next/release.changelog.xml
Process completed successfully

This moves all changes in the next folder to the 1.0 folder under releases.

—-Cropped Tree Structure
SQL> !tree

—— demo
— README .md
— dist
— install.sql
L— releases
— 1.0
F—— code
F—— release.changelog.xml
— changes
L— pase-release

F—— code
F__ . e

— stage.changelog.xml
— main.changelog.xml

4-36

Chapter 4
Examples

F— next

| L release.changelog.xml
L— util

|

|

| F—— prechecks.sqgl
| L recompile.sql
L— src

— README.md

L— database

— README.md
L— hr

6. Runproject deploy to install the artifact into a database.

Connect to the production schema and deploy the artifact with the project deploy
command.

connect -name production-connection

SQL> project deploy -file artifact/demo-1.0.zip -verbose

Check database connection...

Extract the file name: demo-1.0

Artifact decompression in progress...

Artifact decompressed: /var/folders/35/v7k4b96d1d9061mm93bgjinr0000gn/T/
e6b3d0£0-92d5-4fde-b82c-37ea9%ec419¢58326209255710673404

Starting the installation...

7. Check the installed schema to check the installed objects.

SQL> connect hr/<password>
Connected.
SQL> tables

TABLES

COUNTRIES
DATABASECHANGELOG ACTIONS
DATABASECHANGELOG
DATABASECHANGELOGLOCK
DEPARTMENTS

DOC

EMPLOYEES

JOB_HISTORY

JOBS

LOCATIONS

REGIONS

The migrated tables are listed along with the management tables for Liquibase.

4.4.2 Administrator Exports HR to Production Schema

In this example, the steps are the same as in Single Schema, except for the deploy (step 7),
which is done in this case as an administrator. All objects that are created need to be prefaced

ORACLE 4-37

Chapter 4
Examples

with the schema name. This can be added on export by setting the following configuration
item:

project config set -name export.setTransform.emitSchema -value true -type
BOOLEAN

Run the project deploy command.

SQL> connect adminuser/oracle@database

SQL> drop user hr cascade;

SQL> grant connect,resource, dba to hr identified by oracle;

SQL> project deploy -file artifact/demo-1.0.zip -verbose

Check database connection...

Extract the file name: demo-1.0

Artifact decompression in progress...

Artifact decompressed: /var/folders/35/v7k4b96d1d9b61mm93bgjjnr0000gn/T/
e6b3d0£0-92d5-4fde-b82c-37ea9%ec419¢58326209255710673404

Starting the installation...

After the installation, the main difference in objects is where the Liquibase tables exist.
SQL> show user

USER is "ABC"

SQL> tables

TABLES

DATABASECHANGELOG ACTIONS
DATABASECHANGELOG
DATABASECHANGELOGLOCK

SQL> connect hr/oracle
Connected.

SQL> tables

TABLES

COUNTRIES
DEPARTMENTS
DOC
EMPLOYEES
JOB_HISTORY
JOBS
LOCATIONS
REGIONS

ORACLE 438

Using Cloud Storage

Starting from SQLcl release 21.2, you can use the DBMS CLOUD package for authentication to
access objects in Cloud Storage.

The following actions can be performed with either OCI or DBMS CLOUD:
e Put, get, delete, and peek objects in Cloud Storage.
* Load database objects from objects in Cloud Storage.

* Unload a database table to an object in Cloud Storage.

Table 5-1 Accessing the cloud storage
-]

Using OCI Using DBMS_CLOUD

Can access on-premises database and cloud Can access cloud database only

database

Set a default Cloud Storage URL, list Set a default Cloud Storage URL, list objects, and
compartments, buckets and objects, and view view some of the contents of an object in Cloud

some of the contents of an object in Cloud Storage | Storage

Create an OCI profile for authentication and access | Authentication is done using existing OCI or Swift
as a prerequisite step credentials

Use the Cloud Storage (cs) command to set a default Cloud Storage URI, list compartments,
buckets and objects, and view some of the contents of an object in Cloud Storage.

Topics

e Using DBMS_CLOUD for Authentication

e Creating the OCI profile for OCI Authentication

e About the Cloud Storage Command Options

 Examples

See Also:

* Loading a File
* Using the OCI Command for Oracle Cloud Infrastructure REST APIs

5.1 Using DBMS_CLOUD for Authentication

You can access the cloud storage using the DBMS CLOUD Credential command. Presently, the
DBMS_CLOUD Credential supports Oracle Cloud database.

With the DBMS CLOUD Credential command (dbcc), you can:

ORACLE -

Chapter 5
Using DBMS_CLOUD for Authentication

* Create a credential using Swift, OCI credentials, or an existing OCI profile.
e Enable, disable, update, and drop a credential.
e List the credentials.

* Set the default credential.

Create a Credential

To create authentication using the Swift credential, use the following command:

dbcc create <new-credential-name> user <username> pass <password>

To create authentication using the OCI credential, use the following command:

dbcc create <new-credential-name> fingerprint <fingerprint> user ocid <user-
id> tenancy ocid <tenancy-id> private path <path-to-private-key>

To create authentication using OCI profile, use the following command:
dbcc create <new-credential-name> profile <oci-profile-name>
Enable, Disable, Update, and Drop a Credential

To enable a credential, use the following command:

dbcc enable <credential-name>

To disable a credential, use the following command:

dbcc disable <credential-name>

To update a credential, use the following command:

dbcc update <credential-name> <attribute> <value>

where <attribute> : [user ocid] [tenancy | tenancy id] [key path |
private key path] [print | fingerprint]

To drop a credential, use the following command:

dbcc drop <credential-name>

List the Credentials

To display a list of available credentials, use the following command:

dbcec list

ORACLE -

ORACLE

Chapter 5
Using DBMS_CLOUD for Authentication

Set the Default Credential

To set mycred as the default credential, use the following command:

dbcc mycred

To find help on the dbcc command, use the following command:

help dbccred

An Example to Create and Set a DBMS_CLOUD Credential

The following example details the steps to create and set different types of DBMS CLOUD
credentials.

--Set the path to the Wallet zip file on your system
SQL> set cloudconfig <path-to-Wallet-file>
Operation is successfully completed.

--Supply the database user name, password and the database service name
provided in the tnsnames.ora

SQL> connect admin/<password>@adw20200526 high

Connected.

--Set Cloud Storage URL to the bucket

SQL> cs https://objectstorage.us-ashburn-1.example.com/n/test/b/example
DBMS CLOUD Credential: Not Set

OCI Profile: Not Set

Transer Method: Not Set

URI as specified: https://objectstorage.us-ashburn-1.example.com/n/test/b/
example

--create CREDENTIAL using Swift authentication

SQL> dbcc create swiftcred user <username> pass <password>
Credential SWIFTCRED created.

DBMS CLOUD Credential set to SWIFTCRED.

Transfer method set to DBMS CLOUD.

--create CREDENTIAL using OCI authentication
SQL> dbcc create ocicred fingerprint ec:98:83:**:**:*x:h5
user ocid ocidl.user.ocl...... **gdxoca
tenancy ocid ocidl.tenancy.ocl..... a**3n3a
private path C:\\Users\\test\\.oci/freedb api key.pem
Credential OCICRED created.
DBMS CLOUD Credential set to OCICRED.
Transfer method set to DBMS CLOUD.

--create CREDENITAL using an existing OCI profile called freedb

--If profile name is not passed as a parameter, it takes the default
OCI profile details which is already set.

SQL> dbcc create profcred profile [freedb]

Credential PROFCRED created.

DBMS CLOUD Credential set to PROFCRED.

5-3

Chapter 5
Creating the OCI profile for OCI Authentication

Transfer method set to DBMS CLOUD.

5.2 Creating the OCI profile for OCI Authentication

For using the OCI authentication scheme, you must first set the OCI profile.

For more information about how to set up the required SSH keys and configure your Oracle
Cloud Infrastructure Software Development Kits, see Setup and Prerequisites in the Oracle
Cloud Infrastructure Documentation.

Note the following points:

* Generate a RSA key pair in PEM format (minimum 2048 bits required) without a
passphrase. Use this key_file in the profile.

« Do not use relative paths inside the configuration file because relative paths resolve based
on the SQLcl launch directory. Therefore, the key_file may not be found.

« Use double backslashes (\\) instead of a single backslash (\) for specifying the path of the
key_file in Windows.

To display the list of profiles contained in the OCI configuration file at ~/.oci/config, use
the following command:

oci profile

To set the profile as demo, use the following command:

oci profile demo

5.3 About the Cloud Storage Command Options

You can invoke the Cloud Storage command in SQLcl with cloudstorage or cloud storage Or
CS.

The Cloud Storage Command provides Cloud Storage functions to:
e Set and show the default cloud storage URI.

* Set and show the transfer method, profile and credential.

e List compartment, bucket and objects in cloud storage.

* Get, put, delete, and peek a Cloud Storage Object.

For a list of the Cloud Storage command options in SQLcl, enter:

help cs

The command options are:
e c¢s [uri] <uri>: Sets the default Cloud Storage URI. The URI must contain the host
and optionally the namespace, bucket, and object.

Example:
--host

ORACLE -

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/devguidesetupprereq.htm

Chapter 5
Examples

cs https://objectstorage.us-ashburn-1.oraclecloud.com

--namespace

cs https://objectstorage.us-ashburn-1.oraclecloud.com/n/test

--bucket

cs https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/example
--object

cs https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/example/o/
employees.csv

cs oci [<profile>]: Sets the default transfer as OCI. Optionally, specify the profile to be
used.

cs {DBC | DBMS CLOUD} [<credential>]: Sets the default transfer as DBMS_CLOUD.
Optionally, specify the credential to use.

cs clear: Clears the Cloud Storage URI including URI and transfer options.

cs show: Shows the current default Cloud Storage URI, transfer method, profile and
credential.

cs listc [<compartment>]: Lists the compartments in the specified compartment. If
compartment is not specified, lists the compartments in the namespace as identified by the
profile. (OCI only)

cs listb <compartment>: Lists the buckets in a compartment. (OCI only)

cs listo [<bucket>]: Lists the objects in a bucket. Bucket must be specified in the URI
or on the 1isto command.

cs delete [<qualifier>]: Delete the object from cloud storage.
cs get [<qualifier>]: Getthe object from cloud storage.
cs PUT [file-to-send-as-body] <qualifier>: Copy the file to cloud storage.

cs peek [<qualifier>] [{ pos | position} <position>] [size <size>]:
Displays the contents of the object where:

qualifier is the name of the object, optionally qualified by the namespace and the bucket.
The qualified name combined with the default URI specified must fully identify the object
URI.

position is the start location in the object for display.

size is the number of characters to display. If omitted, 2000 characters are displayed.

5.4 Examples

This section provides some examples:

ORACLE

Load a Cloud Storage File into a Table

Unload Table Data into Cloud Storage

List Compartments, Buckets, and Objects

Load a Local File into Cloud Storage using the PUT command
Get a File from Cloud Storage using the GET Command
Delete a File in Cloud Storage using the DELETE Command

Grant a DBMS_CLOUD Credential to Another User

5-5

ORACLE

Chapter 5
Examples

Load a Cloud Storage File into a Table
The following example shows how to load a cloud storage file into a database table:

Use Case 1: When using the DBMS CLOUD authentication scheme, the DBMS CLOUD credential is
set and transfer method is set to doms_cloud.

--Set the DBMS CLOUD credential
SQL> cs dbc swiftcred

--Set Cloud Storage URI to the bucket
SQL> cs https://objectstorage.us-ashburn-1.example.com/n/test/b/example

DBMS CLOUD Credential: SWIFTCRED

OCI Profile: Not Set

Transfer Method: dbms cloud

URI as specified: https://objectstorage.us-ashburn-1.example.com/n/test/b/
example

Use Case 2: When using the OCI Profile authentication scheme, the OCI profile is set and
transfer method is set to oci.

--Set the OCI profile
SQL> cs oci demo
--Set Cloud Storage URI to the bucket

SQL> cs https://objectstorage.us-ashburn-1.example.com/n/test/b/example

DBMS CLOUD Credential: Not Set

OCI Profile: Demo

Transfer Method: oci

URI as specified: https://objectstorage.us-ashburn-1.example.com/n/test/b/
example

--Create Table "locations"
SQL> create table locations(location id NUMBER(5),location name VARCHAR2 (40));
Table LOCATIONS created

--Load data from LOCATIONS DATA TABLE.csv in cloud storage into "locations"
table of the schema for the current user
SQL> load locations cs /o/LOCATIONS DATA TABLE.csv

format csv

column names on
delimiter ,

enclosure left "
enclosure right "
encoding UTF8

row limit off
row_terminator default
skip rows 0

skip after names

5-6

ORACLE

Chapter 5
Examples

--Number of rows processed: 50

--Number of rows in error: 0

--Last row processed in final committed batch: 50
0 - SUCCESS: Load processed without errors

SQL> select count (*) from locations;

--Load data from LOCATIONS DATA TABLE.csv in your current local folder into
"locations" table

of the schema for the current user
SQL> load locations cs LOCATIONS DATA TABLE.csv

Unload Table Data into Cloud Storage

The following example shows how to unload data from the locations table into cloud storage.
The data is unloaded to the cloud storage location and is named LOCATIONS DATA TABLE.csv.

--Set Cloud Storage URI to the bucket
SQL> cs https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/example

--Specify delimiter as | and terminator as <eol>
SQL> set loadformat delimiter | term <eol> csv

--Unload locations table into cloud storage
SQL> unload locations cs

DBMS CLOUD Credential: SWIFTCRED --Using DBMS CLOUD authentication
OCI Profile: Not Set

Transfer Method: dbms cloud

URI as specified: https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/
example/o/

Final URI: https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/
example/o/

format csv

column names on
delimiter |
enclosure left "
enclosure right "
encoding UTF8
row_terminator <eof>

** UNLOAD Start ** at 2020.09.10-17.08.34

Export Separate Files to https://objectstorage.us-ashburn-1.oraclecloud.com/n/
test/b/example

DATA TABLE LOCATIONS

File Name: LOCATIONS DATA TABLE.csv

Number of Rows Exported: 23

** UNLOAD End ** at 2020.09.10-17.08.39

5-7

ORACLE

-- Show

Chapter 5
Examples

file contents

SQL> cs peek /o/LOCATIONS DATA TABLE.csv

"LOCATION_ID"\"LOCATION_NAME"<eOf>Ol["California"<eof>02|"Alaska<eof>O3I"Flori
da"<eof>04|"Texas"<eof>05|"Virginia"<eof>

06| "Louisiana"<eof>07|"Massachusetts"<eof>08|"Arkansas"<eof>09|"Oregon"<eof>10
|"Hawaii"<eof>11|"Maryland"<eof>

12| "Pennsylvania"<eof>13|"Colorado<eof>14|"Michigan"<eof>15|"Minnesota"<eof>16
|"Ohio"<eof>17|"Maine"<eof>18|"Arizona"<eof>

19| "Missouri"<eof>20|"Vermont"<eof>21|"Kansas"<eof>22|"Nevada"<eof>23|"I1llinoi

S"

List Compartments, Buckets, and Objects

The following example shows how to list compartments, buckets, and objects in cloud storage:

Note:

When using DBMS CLOUD credential, you can only list the objects in the
bucket.DBMS CLOUD transfer method does not support listing compartments and
buckets.

cs https://objectstorage.us-ashburn-1.oraclecloud.com/n/test

--Lists
SQL> cs

the compartments in the namespace
listc

COMP_APEX

dbtst
old
ords

pdf-fn-compartment

sandbox
sgldev

--Lists
SQL> cs

sgldevl

--Lists
SQL> cs

example
test

--Lists
SQL> cs

the compartments in the compartment sgldev
listc sqgldev

the buckets in the compartment sqgldev
listb sqgldev

the objects in the bucket transfer
listo /b/example

COUNTRIES DATA TABLE.csv
DEPARTMENTS DATA TABLE.csv

REGIONS

DATA TABLE.csv

5-8

ORACLE

Chapter 5
Examples

LOCATIONS DATA TABLE.csv

--Displays the first 2000 characters of LOCATIONS DATA TABLE file
SQL> cs peek /o/LOCATIONS DATA TABLE.csv

Load a Local File into Cloud Storage using the PUT command

The following example shows how to load a local file into cloud storage using the cs PUT
command and the Cloud Storage command:

--Set Cloud Storage URI to the bucket
SQL> cs https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/example

--Put an object from local directory into cloud storage
SQL> c¢s put C:\\Users\\JDOE\\EMPLOYEES DATA TABLE.csv /o/myemployees.csv

Put C:\\Users\\JDOE\\EMPLOYEES DATA TABLE.csv copied
to https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/
example/o/myemployees.csv

--List the objects in the bucket
SQL> cs listo

COUNTRIES DATA TABLE.csv
DEPARTMENTS DATA TABLE.csv
REGIONS DATA TABLE.csv
LOCATIONS DATA TABLE.csv
myemployees.csv

Get a File from Cloud Storage using the GET Command

The following example shows how to get a file from cloud storage using the ¢S GET command
and the Cloud Storage command:

--Set Cloud Storage URI to the bucket
SQL> cs https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/example/o/

--Set the local directory
SQL> cd C:\\Users\JDOE\\TempCS

--Get the myemployees.csv file from cloud storage
SQL> cs get /o/myemployees.csv

Get Object https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/
example/o/myemployees.csv
copied to C:\Users\JDOE\TempCSemployees.csv

Delete a File in Cloud Storage using the DELETE Command

The following example shows how to delete a file in cloud storage using the CS DELETE
command and the Cloud Storage command:

--Set Cloud Storage URI to the bucket
SQL> cs https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/example/o/

5-9

ORACLE

Chapter 5
Examples

--Set the local directory
SQL> cd C:\\Users\JDOE\\TempCS

--Delete the myemployees.csv file in cloud storage
SQL> cs delete /n/test/b/example/o/myemployees.csv

Deleted Object
https://objectstorage.us-ashburn-1.oraclecloud.com/n/test/b/example/o/
myemployees.csv

Grant a DBMS_CLOUD Credential to Another User

The following example shows how to create and grant a DBMS CLOUD credential to another user:

-- Create a DBMS CLOUD credential using oci-profile
SQL> dbcc create jdoecred profile freedb

DBMS CLOUD Credential: JDOECRED

OCI Profile: Not Set

Transfer Method: dbms cloud

URI as specified: https://objectstorage.us-ashburn-1.example.com/n/test/b/
example

-- Grant jdoecred to user jdoe
SQL> grant all on jdoecred to jdoe;

-- Connect to the Cloud instance as jdoe
SQL> connect jdoe/********@adw20200526_high

-- Create a synonym for jdoecred
SQL> create synonym mycred for admin.jdoecred;

-- Set the transfer method using the synonym mycred
SQL> cs dbc mycred

-- User can now list the objects in the Cloud Storage 'test' bucket

because jdoe.mycred exists (as synonym)
SQL> cs listo

5-10

Using Data Pump

You can import and export data and metadata using Data Pump. Data Pump is made available
in SQLcl using the PL/SQL package, DBMS DATAPUMP.

You can do the following:

Export one or more schemas.
Import one or more schemas with the remap schema option.

Use DATAPUMP export and import for Oracle Database and Oracle Autonomous Database
Cloud Services.

Use database directory or Oracle Object Store for dump files, which can be optionally
encrypted.

Perform parallel processing of dump files.
Filter objects by object types or names.

Use the SET DATAPUMP command to set defaults and save them with the STORE
command.

Use the Cloud Storage feature to put or get from the database directory.

Topics

Getting Started
Data Pump Command Syntax and Arguments
Use Cases

Tips and Troubleshooting

6.1 Getting Started

The following sections provide information needed to get started with the DATAPUMP command
in SQLcl.

6.1.1 Prerequisites

ORACLE

To use DATAPUMP in SQLcl, you need to know the following:

When you are the logged-in user that is exporting or importing:

— You must have the appropriate system privileges or adequate user space resource on
the tablespace.

— If you do not have the DBA or PDB_DBA role, you need access to the Oracle Directory for
importing or exporting your own schema.

6-1

Chapter 6
Getting Started

For example:
grant read, write on directory DATA PUMP DIR to dpumpnotdba;

e When using other schemas:

— See Required Roles to learn about the required roles for data pump import and export
operations.

— You must have permissions for the tablespace to import.
e If you are unable to use Data Pump, you can instead load a file using Loading a File.
e To connect to an Autonomous Database:

— Download the wallet file for the Oracle Cloud connection. See Download Client
Credentials.

For importing to Autonomous, see Cloud Premigration Advisor Tool (CPAT).
e To use object storage from Oracle Database:

— See About the Cloud Storage Command Options and Setup and Prerequisites in the
Oracle Cloud Infrastructure Documentation.

— You must install an OCI profile configuration file.
— The OCI profile must be set using 0OCT PROFILE <name>Ofr CS OCI <profile>.

— You can copy dump files to object storage as the last step of an export using the -
copycloud option on the data pump export.

— You can copy dump files from object storage as the first step of an import using the -
copycloud option on the data pump import.

— You can copy dump files between cloud storage and Oracle Directories using the
Cloud Storage command (put and get).

e To use object storage from Autonomous Database:
— See Using DBMS_CLOUD for Authentication.

— You must set the credential for object storage using Cloud Storage, SET DATAPUMP of
DATAPUMP command.

— You can export dump files directly to object storage without using a database directory.

— You can import dump files directly from object storage without using a database
directory.

— You cannot write log files directly to object storage but you can copy them to cloud
storage using the Cloud Storage command.

e The Time Zone File version is shown during export. The dump file can only be imported
into a database with the same (or later) time zone file version.

e Transparent and Dual encryption modes require Transparent Data Encryption (TDE). If
TDE is not available, you can use only password encryption.

6.1.2 Usage

The DATAPUMP command creates and submits data pump jobs using the DBMS_DATAPUMP
package.

e For importing to Autonomous, see Cloud Premigration Advisor Tool (CPAT).

ORACLE 60

https://docs.oracle.com/en/database/oracle/oracle-database/21/sutil/oracle-data-pump-overview.html#GUID-8B6975D3-3BEC-4584-B416-280125EEC57E
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-download-wallet.html
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=331133414050998&id=2758371.1&_afrWindowMode=0&_adf.ctrl-state=180sl4iebz_4
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/devguidesetupprereq.htm
https://docs.oracle.com/en/database/oracle/oracle-database/21/arpls/DBMS_DATAPUMP.html#GUID-AEA7ED80-DB4A-4A70-B199-592287206348
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=331133414050998&id=2758371.1&_afrWindowMode=0&_adf.ctrl-state=180sl4iebz_4

Chapter 6
Data Pump Command Syntax and Arguments

You can have different hardware, operating systems, character sets, time zones, and
versions in the source and target databases.

All object types and data types existing in Oracle Database release 11g and later versions
are supported.

You can transfer and filter data and metadata.
You can transform schema names, tablespace names, and metadata at import time.
You can unload and load data in an Oracle proprietary format.

You can encrypt dump files to ensure your data is secure. You can use transparent if
available on the database or use password as the encryption mode.

You can filter the import or export process to limit the objects types and objects included.

Export

Data Pump export is used to unload metadata and data into a dump file, which can be stored
in an Oracle Directory or object storage.

If a schema or list of schemas is not provided, the current schema is exported.

If a directory or object storage and a credential are not provided, the dump file is stored in
DATA PUMP DIR.

Job name is created as ESQL_<n>, if one is not provided.
If a dump file name is not provided, the dump file is stored as <jobname>.DMP.

If a log file name is not provided, the log file is stored as <jobname>.L0G.

Import

Data Pump import is used to load metadata and data from a previously exported dump file,
which was stored in an Oracle Directory or object storage.

If a schema or list of schemas is not provided, all the objects in the dump file are imported
(FULL import by default). You can use a filter to limit the number of objects imported.

If a database directory or object storage and a credential are not provided, the dump file is
stored in DATA PUMP_ DIR.

Job name is created as ISQL <n>, if one is not provided.
If a dump file name is not provided, the dump file is stored as <jobname>.DMP.

If a log file name is not provided, the log file is stored as <jobname>.L0G.

6.2 Data Pump Command Syntax and Arguments

You can invoke the Data Pump command using dp or datapump.

Syntax

dp help [examples|syntax] | export [<optional-argument>,...] | import
[<optional-argument>,...] |

ORACLE

6-3

ORACLE

Chapter 6
Data Pump Command Syntax and Arguments

To see the help description for data pump in SQLcl, type:
dp help
To quickly view the syntax and exclude other details, type:

dp help syntax

To only view the examples in help, type:

dp help examples

<optional argument>: The following table describes the possible optional arguments along with
default values for each of them.

Table 6-1 Optional Arguments

File Argument Description Default
-credential, -c Credential for dump file access As specified in the Cloud Storage
in Oracle Object Store. command
-directory,-d Default database directory for DATA PUMP_DIR
reading and writing dump and
log files.
-dumpdirectory,-dd Database directory for dump -directory if specified or
file. DATA PUMP DIR
-dumpfile,-f <file-name>[,...] <jobname><n>.DMP

Dump file name(s) when using
database directory.

You can specify multiple files
whether parallelism is enabled
or not. The number of files
specified must be at least as
large as the degree of
parallelism.

6-4

Chapter 6
Data Pump Command Syntax and Arguments

Table 6-1 (Cont.) Optional Arguments
]

File Argument Description Default
-dumpuri,-u [<uri>[,...] | <qualified- Default object name is
name>[,...]] <jobname>.DMP

<uri>: Complete URI for the
Oracle Object Store file if a
default is not set on Cloud
Storage command.

<qualifier>: Name of the
object, optionally qualified by
the namespace and the
bucket. The qualified name
concatenated to the URI
specified on Cloud Storage
command must fully identify
the object URI.

Credential must be set for
direct read/write access to
Oracle Object Store from
Autonomous database. For -
copycloud between database
directory and Oracle Object
Store, OCI PROFILE must be
set.

You can specify multiple URIs
whether parallelism is enabled
or not. The number of files
specified should be at least as
large as the degree of

parallelism.
-logdirectory,-Id Database directory for log file. -directory if specified or
DATA PUMP DIR
-lodfile,-If Log file name in the database <jobname><n>.LOG
directory.

Table 6-2 Command Arguments

]
Command Argument Description Default

-noexec,-ne [TRUE | FALSE] FALSE

TRUE: Validate and generate the
PL/SQL, but do not execute it.

-verbose,-ve [TRUE | FALSE] FALSE
TRUE: Show additional diagnostic
output.

ORACLE g

Chapter 6
Data Pump Command Syntax and Arguments

Table 6-3 Common Arguments

. ___|
Common Argument Description Default

-copycloud,-cc [TRUE | FALSE] FALSE

TRUE: Copy the dump file
between database directory and
Oracle Object Store.

For export, copy the dump file
from the database directory to
Oracle Object Store after the data
pump job completes.

For import, copy the dump file
from Oracle Object Store to the
database directory before the
data pump job starts.

Setthe OCI PROFILE using OCI
command or CLOUDSTORAGE
command. Set the cloud storage
URI using the CLOUDSTORAGE
command, SET DATAPUMP
command or DATAPUMP
command.

-encryptionpassword,-enp <password> None

If password is not specified, a
prompt for the password is given.

For export, the dump files are
encrypted using the password.
For import, the same password
used for export is provided.

-excludeexpr,-ex <object_type_expression> None
Specify an expression identifying
an object type or set of object
types to exclude from the job.
Example:-excludeexpr "IN
("GRANT', 'INDEX', '"TRIGGER'
) n

-excludelist,-el <object-type>|,...] None

Specify a comma-separated-
value list of object types to
exclude from the job.

Example:-excludelist
GRANT, INDEX, TRIGGER

-includeexpr,-ix <object_type_expression> None
Specify an expression identifying
an object type or set of object
types to include in the job. Only
matching object types and their
dependents are included in the
job. Use -excludelist or -
excludeexpr to exclude
dependent objects. Example: -
includeexpr "IN
('"TABLE', 'VIEW')"

ORACLE 66

Chapter 6
Data Pump Command Syntax and Arguments

Table 6-3 (Cont.) Common Arguments

. ___|
Common Argument Description Default

-includelist,-il <object_type>[,...] None

Specify a comma-separated-
value list of object types to
include in the job. Only matching
object types and their dependents
are included in the job. Use -
excludelist or -excludeexpr to
exclude dependent objects.
Example: -includelist

TABLE, VIEW

-includemetadata,-im [TRUE | FALSE] TRUE
TRUE: Include metadata in the
job.

-includerows,-ir [TRUE | FALSE] TRUE

TRUE: Include data in the job.

-jobname,-j Name for the data pump job. ESQL <n>| ISQL <n> wheren
Job name is appended with a is a data pump generated
data pump generated number, number.

unless it ends with a number.
jobname<n> is used when
submitting the data pump job and
as a default name for dump and
log file names or object names.

-nameexpr,-nx {<object-type>=<name- None
expression>}[;...]

For specified object type, provide
an expression identifying a set of
object names to include in the
job. Example: -nameexpr
TABLE="IN ('EMPLOYEES',
'DEPARTMENTS ') "; PROCEDURE=

"IN
('ADD _JOB HISTORY', 'SECURE
_DMLV) n

-namelist,nl {<object-type>=<name>[,...J}[;...] None

For specified object type, provide
a comma-separated-value list of
objects to include in the job.
Example: -namelist
TABLE=employees,department
s;PROCEDURE=add job histor
y,secure_dml

-parallel,-p <degree_integer> 1

Adjusts the degree of parallelism
within a job allowing multiple
processes simultaneously.
Specify the same number of files
as the degree or some processes
may remain idle.

ORACLE .

ORACLE

Chapter 6
Data Pump Command Syntax and Arguments

Table 6-3 (Cont.) Common Arguments

Common Argument

Description Default

-schemas,-s

<schema>[,...] - The schema or For export, schema for the

list of schemas to process. current connection. For import,
the default is FULL and all
objects in the dump file are
imported.

For example:

-schemas schemal, schema?2

-version,-v

{<nn.n>| COMPATIBLE | COMPATIBLE
LATEST}

<nn.n>: A specific database
version, for example, 11.0.0.

When exporting from Oracle
Database 11g release 2
(11.2.0.3) or later into an Oracle
Database 12 c Release 1 (12.1),
specify a value of 12 to allow all
existing database features,
components, and options to be
exported. This applies to a
multitenant container database
(CDB) or a non-CDB.
COMPATIBLE: Uses the metadata
version from the database
compatibility level and the
compatibility release level for the
feature.

LATEST: The version of the
metadata corresponds to the
database version.

-wait,-w

[TRUE | FALSE] TRUE

TRUE: Wait for the data pump job
to finish and show summary
results.

FALSE: Submit the data pump job
without waiting and without
showing results.

6-8

Chapter 6
Data Pump Command Syntax and Arguments

Table 6-4 Export Only Arguments

. ___|
Export-Only Arguments Description Default

-compression,-cm {ALL | DATA ONLY | METADATA_ONLY
METADATA ONLY | NONE}
Indicates if compression is
needed for user data and
metadata.

ALL: Compress user data and
metadata.

DATA ONLY: Compress only user
data.

METADATA ONLY: Compress only
metadata.

NONE: Do not compress user data
or metadata.

-estimate,-e {BLOCKS | STATISTICS}

Specifies the estimate method for
the size of the tables. It should be
performed before starting the job.
BLOCKS: Estimate is calculated
using the count of blocks
allocated to the user tables.
STATISTICS: Estimate is
calculated using the statistics for
each table. If no statistics are
available for a table, BLOCKS is

used.
-encryption,-en {ALL | DATA ONLY | NONE, or ALL if any other
ENCRYPTED COLUMNS ONLY | encryption option is specified.

METADATA ONLY | NONE}

Specifying any encryption option
will turn on encryption if you do
not specify -encryption NONE.

-encryptionalgorithm,-ena {AES128 | AES192 | AES256} AES128

Identifies the cryptographic
algorithm to use.

-encryptionmode,-enm {DUAL | PASSWORD | TRANSPARENT, or PASSWORD
TRANSPARENT} if -encryptionpassword is
specified.

Identifies the types of security
used for encryption and
decryption.

PASSWORD encrypts the dump
files using the provided password.

TRANSPARENT enables encryption
if the Oracle Encryption Wallet is
available.

DUAL enables import using the
Oracle Encryption Wallet or the
password. When using DUAL, -
encryptionpassword must be
specified.

ORACLE 6.9

Chapter 6
Data Pump Command Syntax and Arguments

Table 6-4 (Cont.) Export Only Arguments
]

Export-Only Arguments Description Default
-filesize,-fs {<n>{B | KB | MB | GB | 500 MB
TB}}

Limit for the size of files.

-flashbackscn,-fb

[TRUE | FALSE] FALSE

TRUE: Use consistent database
content based on system change
number (SCN) at the start time of
execution.

-reusefile,-r

[TRUE | FALSE] TRUE

TRUE: Replace existing dump
file(s) with a new file.

Table 6-5 Import Only Arguments
|

Import-Only Arguments

Description Default

-columnencryption,-ce

[TRUE | FALSE]

TRUE: Include column encryption
clause on table metadata.
FALSE Omit column encryption
clause.

TRUE if supported by database

-objectid,-oid

[TRUE | FALSE] TRUE
TRUE: Assign the exported OID.
FALSE: Assign a new OID

-remapschemas,-rs

{<oldSchema>=<newSchema>[, Not Applicable
)

<oldSchema> objects in the job
are moved to <newSchema>.
Example:
oldschemal=newschemal,oldsch
ema2=newschema2.

-remaptablespaces,-rt

{<oldTablespace>=<newTablespa Not Applicable
ce>[,...]}

<oldTablespace> storage
segment in the job is relocated to
<newTablespace>. Example:
oldtablespacel=newtablespacel,
oldtablespace2=newtablespace2

-segmentattributes,-sa

[TRUE | FALSE] TRUE

TRUE: Include segment attributes
clauses (physical attributes,
storage attributes, tablespace,
logging).

-skipunusableindexes,-sui

[TRUE | FALSE] TRUE

TRUE : Rows are inserted into
tables having unusable indexes.

ORACLE

6-10

Chapter 6
Use Cases

Table 6-5 (Cont.) Import Only Arguments
]

Import-Only Arguments Description Default

-storage,-st [TRUE | FALSE] TRUE
TRUE: Include storage clauses.

-tableexists,-te {APPEND | REPLACE | SKIP | SKIP when -includemetadata
TRUNCATE} true, otherwise APPEND action
Action to take if table exists is taken if table exists during
during import. import.

APPEND: New rows are added to
the existing rows in the table.
REPLACE: Before creating the
new table, the old table is
dropped.

SKIP: The preexisting table is left
unchanged.

TRUNCATE: Rows are removed

from a preexisting table before
inserting rows from the import.

-tablecompression,-tc [TRUE | FALSE] TRUE
TRUE: The table compression
clause is included if supported.

FALSE: The table has the default
compression for the tablespace.

6.3 Use Cases

ORACLE

The following use cases illustrate how to use the DATAPUMP command to import and export
data.

Use Case 1
Copy tables, views and functions in current schema from database to database.

1. Export the current schema into DATA_ PUMP_DIR.
2. Import the schema from DATA_PUMP_DIR.

-- Export the current schema into DATA PUMP DIR
SQL> connect <db-connectl-string>
SQL> dp export -dumpfile my dump.dmp -includelist table,view, function

-- Import from DATA PUMP DIR

SQL> connect <db-connect2-string>
SQL> dp import -dumpfile my dump.dmp
Use Case 2

Copy current schema from database to Autonomous Database. Encryption is done using
prompt for password.

1. Set up for Oracle access to Oracle Object Store using an OCI profile.

6-11

Chapter 6
Use Cases

2. Export current schema into an encrypted dump file in DATA_PUMP_DIR and copy it to the
CS bucket using profile.

3. Import encrypted file from Oracle Object Store using credential.

-- Set up for Oracle access to Oracle Object Store using an OCI profile
SQL> oci profile my-profile

SQL> cs https://swiftobjectstorage.us-ashburn-1.oraclecloud.com/v1l/abcl23/
testing-bucket/

-- Export current schema into an encrypted dump file in DATA PUMP DIR and
copy it to the CS bucket using profile

SQL> connect <db-connect-string>

SQL> dp export -copycloud -dumpfile my dump.dmp -encryptionpassword

-- Import encrypted file from Oracle Object Store using credential

SQL> set cloudconfig <wallet>

SQL> connect <cloud-connect-string>

SQL> dp import -dumpuri /o/my dump.dmp -encryptionpassword -c SWIFTCRED

Use Case 3
Copy multiple schemas from database to Autonomous Database with remap schemas.

1. Set up for Oracle access to Oracle Object Store using an OCI profile.
2. Export schemas into database directory and copy to cloud.

3. Import from Oracle Object Store using credential. Remap the schemas.

-- Set up for Oracle access to Oracle Object Store using an OCI profile
SQL> oci profile my-profile

SQL> cs https://swiftobjectstorage.us-ashburn-1.oraclecloud.com/v1l/abcl23/
testing-bucket/

-- Export schemas into database directory and copy to cloud
SQL> connect <db-connect-string>
SQL> dp export -schemas dpumptestl,dpumptestll -dumpfile DPUMPTEST1 11.DMP -cc

-- Import from Oracle Object Store using credential. Remap the schemas
SQL> set cloudconfig <wallet>

SQL> connect <cloud-connect-string>

SQL> dp import -dumpuri /o/DPUMPTEST1 11.DMP -c SWIFTCRED -rs
dpumptestl=dpumptest?2, dpumptestll=dpumptest2l

Use Case 4

Copy multiple schemas from database to Autonomous Database with remap tablespace using
OCI profile only.

1. Set up for Oracle access to Oracle Object Store using an OCI profile.

2. Export the current schema into DATA_PUMP_DIR and copy it to the CS bucket using
profile.

ORACLE 610

Chapter 6
Tips and Troubleshooting

3. Copy from Oracle Object Store into directory and import from directory. Remap the
tablespace.

-- Set up for Oracle access to Oracle Object Store using an OCI profile
SQL> oci profile my-profile

SQL> cs https://swiftobjectstorage.us-ashburn-1.oraclecloud.com/v1l/abcl123/
testing-bucket/

-- Export the current schema into DATA PUMP DIR and copy it to the CS bucket
using profile

SQL> connect <db-connect-string>

SQL> dp export -copycloud

-- Copy from Oracle Object Store into directory and import from directory.
Remap the tablespace.

SQL> set cloudconfig <wallet>

SQL> connect <cloud-connect-string>

SQL> dp import -copycloud -dumpuri /o/ESQL <n>.DMP -rt DATA=USERS

Use Case 5
Copy current schema from database to Autonomous Database using parallel processors.

1. Set up for Oracle access to Oracle Object Store using an OCI profile.

2. Export the current schema into DATA_PUMP_DIR and copy all files to the CS bucket using
profile.

3. Import from Oracle Object Store using credential.

-- Set up for Oracle access to Oracle Object Store using an OCI profile
SQL> oci profile my-profile

SQL> cs https://swiftobjectstorage.us-ashburn-1.oraclecloud.com/v1l/abcl123/
testing-bucket/

-- Export the current schema into DATA PUMP DIR and copy all files to the CS
bucket using profile

SQL> connect <db-connect-string>

SQL> dp export -copycloud -parallel 3 -dumpfile

my dumpl.dmp,my dump2.dmp,my dump3.dmp

-- Import from Oracle Object Store using credential

SQL> set cloudconfig <wallet>

SQL> connect <cloud-connect-string>

SQL> dp import -dumpuri /o/my dumpl.dmp,/o/my dump2.dmp,/o/my dump3.dmp -c
SWIFTCRED

6.4 Tips and Troubleshooting

ORACLE

The DATAPUMP command builds PL/SQL that uses the DBMS DATAPUMP package to execute
exports and imports.

e Preview the PL/SQL and Parameters

— Use the -noexec option to validate the export or import. This option shows the
generated PL/SQL and parameters but does not submit the job for execution.

6-13

ORACLE

Chapter 6
Tips and Troubleshooting

Get additional information about the command processing
— Use the -verbose option to see additional diagnostic information.

— This option also provides queries that you can copy to view the last line of the log and
percentage completed.

View the job log
— When using the -wait option, the log is written to the console.

— When using -wait false, you can copy the log to object storage if you cannot see
files in the directory.

— When using -wait false, you can view the log file with the following code block for
Oracle Database release 12.2 and later versions:

var ¢ clob;

set long 32000

begin select to clob(BFILENAME ('DATA PUMP DIR', 'ESQL <n>.LOG')) into :c
from dual; end;

/

print c

When importing or exporting as the logged-in user, it is recommended not to use the SYS
role.

Inserting a row into a table confirms you have quota on the tablespace. If you do not have
guota, you see the following error after you run a DATAPUMP command: ORA-31626: job
does not exist.

The following code snippet illustrates this problem:
**% Frror with DataPump command

grant connect, resource, create session to userl identified by userl;
grant read on directory DATA PUMP DIR to userl;
grant write on directory DATA PUMP DIR to userl;

SQL> connect <db-connect-string>
Connected

SQL> datapump export -schemas userl

Datapump Command Start ** at 2022.03.10-15.51.28
Initiating DATA PUMP

DATABASE TIME ZONE: VERSION:32 CON_ID:O

Log

Location: DATA PUMP DIR:ESQL 1614.L0G

ORA-31626: job does not exist

ORA-06512: at "SYS.DBMS SYS ERROR", line 79
ORA-06512: at "SYS.DBMS DATAPUMP", line 1849
ORA-06512: at "SYS.DBMS DATAPUMP", line 6869
ORA-06512: at line 25

** Datapump Command End ** at 2022.03.10-15.51.30
SQL> exit

***Resolve Error by Granting Tablespace Quota to User

6-14

ORACLE

Chapter 6
Tips and Troubleshooting

Connected to:
Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.3.0.0.0

SQL> alter user userl quota 128M on users;
Grant succeeded.

SQL> connect <db-connect-string>
Connected.

SQL> datapump export -schemas userl

** Datapump Command Start ** at 2022.03.10-15.54.15

Initiating DATA PUMP

DATABASE TIME ZONE: VERSION:32 CON ID:0

Log Location: DATA PUMP DIR:ESQL 1616.L0G

Starting "USER1"."ESQL 1616":

Processing object type SCHEMA EXPORT/TABLE/TABLE DATA
Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/
INDEX STATISTICS

Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Processing object type SCHEMA EXPORT/PRE_SCHEMA/PROCACT SCHEMA
Processing object type SCHEMA EXPORT/TABLE/TABLE

Processing object type SCHEMA EXPORT/TABLE/COMMENT

Processing object type SCHEMA EXPORT/TABLE/INDEX/INDEX

Master table "USER1"."ESQL 1616" successfully loaded/unloaded

R R R R B R S S I I I R I I B I I I I S e I I S R e I b b S b e b I b b S I b e I b b b b 3

* % %

Dump file set for USERI.ESQL 1616 is:
/opt/oracle/admin/DB193C/dpdump/DIC3824B6E651CA4E053020014C3358C/

ESQL 1616.DMP

Job "USERI"."ESQL 1616" successfully completed at Thu Mar 10 15:54:52 2022

elapsed 0 00:00:33

DataPump Operation Status 'COMPLETED'

Jobname = ESQL 1616

** Datapump Command End ** at 2022.03.10-15.54.56

6-15

Using the Cloud Premigration Advisor Tool

The Cloud Premigration Advisor Tool (CPAT) helps you evaluate an existing Oracle database
for compatibility with Oracle Autonomous Database before migration. CPAT identifies potential
user actions, prioritizes their importance, and suggests resolutions. Oracle recommends using
CPAT to accelerate your migration to Oracle Cloud.

For more information, see Cloud Premigration Advisor Tool in Oracle Database Ultilities.

Also, see CPAT Analyzes Databases for Suitability of Cloud Migration (Doc ID 2758371.1) in
My Oracle Support.

You can use SQLcl to run CPAT by using the MIGRATEADVISOR command.
Topics:

* Overview

* Prerequisites

* About the MIGRATEADVISOR Command

Examples

e Tips and Troubleshooting

7.1 Overview

ORACLE

Using the MIGRATEADVISOR command in SQLcl, you can:

« Analyze an Oracle database to a generic autonomous type or specific instance, and create
reports identifying actions recommended for successful migration to Oracle Cloud. A report
can be generated in HTML, text or JSON format.

« Optionally, generate a target properties file that will provide more details specific to an
autonomous instance.

The following image shows a CPAT report in HTML format.

SQL> migrateadvisor advise -schemas hr -outfileprefix xschemas -targettype adws -reportformat HTML

Cloud Premigration Advisor Tool Version 22.5.6-30

Cloud Premigration Advisor Check Summai&

Cloud Premigration Advisor Tool completed with overall result: Action Required
38 Checks run
79 Schemas in source DB
1 Schemas analyzed: HR
1 Action Required: Checks with this result typically need to be resolved before attempting migration
Data in Custom Tablespaces (Shared) (25 relevant objects)
5 Review Required
3 Review Suggested
29 Passed
Cloud Premigration Advisor Tool generated report location(s):
/private/tmp/xschemas_premigration_advisor_report2.json
/private/tmp/xschemas_premigration_advisor_report2/premigration_advisor_report.html
/private/tmp/xschemas_premigration_advisor2.log

7-1

https://docs.oracle.com/en/database/oracle/oracle-database/23/sutil/premigration-advisor-tool.html#GUID-8D66CC0A-A9A6-46DC-BF7D-1DAB61728651

Chapter 7
Prerequisites

CPAT Concepts

The source analysis in CPAT is done generically for different cloud types:

ATPS (Autonomous Transaction Processing on Shared Infrastructure)
ATPD (Autonomous Transaction Processing on Dedicated Infrastructure)
ADWS (Autonomous Data Warehouse on Shared Infrastructure)

ADWD (Autonomous Data Warehouse on Dedicated Infrastructure)

Default (Oracle Database)

The source analysis consists of a series of tests that are executed as SQL Statements. The
scope of the tests fall into three categories:

SCHEMA: Checks that are only applicable to data within schemas. For example, tables
are checked for usage of deprecated and desupported features.

INSTANCE: Checks that are only applicable to the database instance as a whole. For
example, certain parameters and values in the VSPARAMETER table are checked.

UNIVERSAL: Checks that are always run.

The source analysis can run in FULL mode, SCHEMA MODE or FULL SCHEMA mode.

FULL.: (Default) Executes all applicable checks in all appropriate schemas. SCHEMA,
INSTANCE, and UNIVERSAL scope checks are executed.

SCHEMA: Executes all applicable checks for schemas specified on the command line and
UNIVERSAL checks. INSTANCE scope checks are not executed.

SCHEMA FULL: Executes all applicable checks for schemas specified on the command
line and UNIVERSAL and INSTANCE checks.

7.2 Prerequisites

The prerequisites for using the migrateadvisor command are:

ORACLE

Oracle Database 11g Release 2 and later versions are supported.

The PROPERTIES command is available only if the connected user is granted the SELECT
ANY DICTIONARY privilege.

The ADVISE command is available only if the connected user is granted:
— the SELECT ANY DICTIONARY privilege

— the SELECT privilege to access SYSTEM.DUMSCOLUMNS and SYSTEM. DUM$DATABASE

Note:

You need access to the DUMS$ tables only if the source and target character
sets indicate that Oracle Database Migration Assistant for Unicode (DMU) is
needed.

7-2

Chapter 7
About the MIGRATEADVISOR Command

7.3 About the MIGRATEADVISOR Command

ORACLE

You can run the CPAT command in SQLcl using ma or migrateadvisor.
This command inclues the following sub-commands:

* Properties: Generates a target properties file for Oracle or Autonomous Database that
provides instance-specific analysis.

< Advise: Analyzes the database and produce reports containing information to assist in a
successful migration.

* Info: Shows version information for CPAT.

Syntax

migrateadvisor help [examples|syntax] |

advise {{-targettype,-t} {ATPS|ATPD|ADWS|ADWD|DEFAULT} } [<-optional-
argument>,...] |

properties [<optional-argument>,...] |

info

The following table lists the required and optional arguments for advise.

Argument Description Default

Required

-targettype,-t (ATPS|ATPD|ADWS | ADWD | None
DEFAULT}

The type of target database to
analyze for migration.

Optional

7-3

Chapter 7
About the MIGRATEADVISOR Command

Argument Description Default

-analysisprops,-a <propertyFile> None

The path and name of a
properties file.

No
te:

The
full
path
is
opti
onal
f
the
full
path
is
not
spe
cifie
d,
cd
<pa
th>

use
das
the
root
f
cd
<pa
th>

not
spe
cifie
d,
then
the
laun
ch
path
is
use
das
the
root

A properties file that was created
using the properties sub-

ORACLE" 7-4

ORACLE

Chapter 7

About the MIGRATEADVISOR Command

Argument Description Default
command while connected to the
target database.

-excludeschemas,-x <schema>[,...] None

The schema or comma-
separated-value list of schemas
to exclude from analysis.

-full, -f

[TRUE:FALSE]
Execute the full set of tests.

FALSE when -schemas is not
specified, otherwise the default is
TRUE

-maxrelevantobjects,-m

<maxRelevantObjects>

The maximum number of
"relevant objects" to be included
in all reports.

This option overrides -
maxtextdatarows for TEXT
reports.

Include all objects

-maxtextdatarows,-n

<maxTextDataRows>

Relevant object rows to be
included in text reports (does not
apply to JSON reports).

-maxrelevantobjects if specified,
otherwise all relevant objects are
included.

-migrationmethod,-mm

{DATAPUMP | DATAPUMP DBLINK|
GOLDENGATE} [, ...]

A comma-separated-value list of
methods or tooling that will be
used to do the migration.
Example: DATAPUMP,
GOLDENGATE

DATAPUMP

-outdir,-0

<directory>

Identifies location for log and
report files.

Current SQLcl directory

-outfileprefix,-p

<outFilePrefix>

A prefix to the standard base file
name of
"premigration_advisor_report".

No prefix

-reportformat,-r

{HTML | JSON | TEXT} [, . . .]

Specify one or more
<reportFormats> where
<reportFormat> is HTML, JSON,
or TEXT.

HTML

-schemas,-s

<schema>[,...]

The schema or comma separated
value list of schemas to analyze.
Example: schemal, schema2

All schemas

-sqltext,-q

Include SQL query used for
checks in TEXT reports.

Do not include sql text in TEXT
reports. Ignored for JSON
reports.

-verbose,-ve

[TRUE | FALSE]

TRUE shows additional
diagnostic output.

FALSE

7-5

Chapter 7
Examples

The following table lists the optional arguments for properties.

Argument Description Default

-outdir,-0 <directory> Current SQLcl directory
Identifies location for log and
report files.

-outfileprefix,-p <outFilePrefix> No prefix

A prefix to the standard base file
name of
"premigration_advisor_report".

7.4 Examples

ORACLE

The following examples illustrate how to use the MIGRATEADVISOR command.

Example 1

Generate the target properties file for Autonomous Database.

-- Set default directory

SQL> cd <directory>

-- Connect to target

SQL> set cloudconfig <config-file>

SQL> connect <autonomous-connect-string>

-- Generate the properties file

SQL> migrateadvisor properties -outfileprefix cloud

Example 2

Create the HTML Advisor report for a single schema using target properties.

-- Set default directory

SQL> cd <directory>

-- Connect to source

SQL> connect <database-connect-string>

-- Generate the report

SQL> migrateadvisor advise -schemas hr -outfileprefix hr -targettype adws -
analysisprops <propertyFile>

Example 3

Create the HTML Advisor report for the full database using target properties.

-- Set default directory

SQL> cd <directory>

-- Connect to source

SQL> connect <database-connect-string>

-- Generate the report

SQL> migrateadvisor advise -outfileprefix fulldb -targettype adws -
analysisprops <propertyFile>

7-6

Chapter 7
Tips and Troubleshooting

Example 4

Create the JSON Advisor report excluding schemas.

-- Set default directory

SQL> cd <directory>

-- Connect to source

SQL> connect <database-connect-string>

-- Generate the report

SQL> migrateadvisor advise -excludeschemas hr,sales -outfileprefix xschemas -
targettype adws -reportformat json

Example 5

Create the HTML Advisor report for multiple schemas including instance tests.

-- Set default directory

SQL> cd <directory>

-- Connect to source

SQL> connect <database-connect-string>

-- Generate the report

SQL> migrateadvisor advise -schemas hr,sales -full -outfileprefix fullmulti -
targettype adws -analysisprops <propertyFile>

Example 6

Create HTML Advisor report for a single schema for migration to an Oracle database with
target properties.

-- Set default directory

SQL> cd <directory>

-- Connect to target

SQL> connect <database-connect-string>

-- Generate the properties file

SQL> migrateadvisor -gettargetproperties -outfileprefix cloud
-- Connect to source

SQL> connect <database-connect-string>

-- Generate the report

SQL> migrateadvisor advise -schemas hr -outfileprefix ora -targettype adws -
analysisprops <propertyFile>

7.5 Tips and Troubleshooting

ORACLE

Some points to note are:

e If the source is an Autonomous Database, running the ADVISE command is not a supported
use of CPAT and the result may be unpredictable.

e The PROPERTIES and ADVISE commands require that the connected user has the SELECT
ANY DICTIONARY privilege.

7-7

ORACLE

Chapter 7
Tips and Troubleshooting

If you do not have the SELECT ANY DICTIONARY privilege, you see the following error:

SQL> grant connect, resource, unlimited tablespace to jdoe identified by
jdoe;
Grant succeeded.

SQL> connect jdoe/jdoe
Connected.

SQL> migrateadvisor advise -schemas hr -outfileprefix pre -targettype adws
-reportformat json

CPAT-1004: SQL error while initializing premigration application.
ORA-00942: table or view does not exist

--Ensure the JDBC connection information is correct. See the log file for
more details.

Additional Information: 255: Internal error - please contact support.
Exception : /Users/xyz/pre premigration advisor report.json

Log file contains:

Caused by: Error : 942, Position : 20, Sgl = SELECT VERSION FROM
VSINSTANCE,

OriginalSgl = SELECT VERSION FROM VS$INSTANCE,

Error Msg = ORA-00942: table or view does not exist

7-8

Using the PGQL Plug-in

Property Graph Query Language (PGQL) is a graph pattern-matching query language for the
property graph data model. The PGQL plug-in enables execution and translation of PGQL
statements from the command line in SQLcl.

The PGQL plug-in for SQLcl is available with Oracle Graph Server and Client Release 20.3
and later releases.

See Also:

Property Graph Query Language for more information about PGQL.

This chapter covers the following topics:

* Downloading and Installing
e About PGQL Commands

 Examples

8.1 Downloading and Installing

You can download the plug-in either from Oracle Software Delivery Cloud (search for "Oracle
Graph Server and Client") or from Oracle Graph Server and Client Downloads.

To install the PGQL plug-in for SQLcl, you need to unzip the downloaded plug-in into the
lib/ext directory of your local SQLcl installation.

8.2 About PGQL Commands

ORACLE

To run PGQL statements against a database, start SQLcl and then turn on PGQL mode by
using the following command:

pgql auto on;

After PGQL mode is turned on, all subsequent SELECT, INSERT, UPDATE, DELETE,
CREATE, and DROP statements are considered as PGQL statements.

You can also provide different arguments when turning on PGQL mode:

pggl auto on [args]

The possible arguments are:

* schema <schema name>: Make queries run against graphs owned by the specified schema.

8-1

https://pgql-lang.org/spec/1.3/
https://edelivery.oracle.com/osdc/faces/Home.jspx
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features/graph-server-and-client/graph-server-and-client-downloads.html

Chapter 8
Examples

* graph <graph name>: Make queries run against the specified graph.

e execute: Turn on PGQL execution.

e executeonly: Turn on PGQL execution and do not show PGQL-to-SQL translation.

e translate: Show PGQL-to-SQL translation.

* translateonly: Show PGQL-to-SQL translation and turn off PGQL execution.

° parallel <parallel>:Run (or translate) PGQL queries using the specified parallel value.

e dynamic sampling <dynamic sampling>: Run (or translate) PGQL queries using the
specified dynamic sampling value.

By default, the schema and graph values are not set, PGQL execution is turned on, and PGQL
to SQL translation is turned off. The default value for parallel is 0, and the default value for
dynamic samplingis 6.

To run SQL statements again, turn PGQL mode off:

pggql auto off;

To reset all parameters to their default values, turn PGQL mode off and then turn on again.

8.3 Examples

ORACLE

This section provides some examples:

e Turn On PGQL Mode

e Create a Property Graph and Execute a Query
» Define a Graph Parameter

* Show SQL Translation Using Parallel Value 2
e Turn Off PGQL Mode

Turn On PGQL Mode

This example turns PGQL mode on. The PGQL prompt appears when PGQL is enabled.
SQL> pggl auto on;

PGQL Auto enabled for graph=[null], execute=[true], translate=[false]
PGQL>

Create a Property Graph and Execute a Query

This example creates a property graph and executes a query against the newly created
"scott_hr" graph.

PGQL> CREATE PROPERTY GRAPH scott hr

2 VERTEX TABLES (
emp KEY (empno) LABEL Employee

PROPERTIES ARE ALL COLUMNS EXCEPT (deptno),
dept KEY (deptno) LABEL Department

PROPERTIES (deptno, dname)

oY U1 > W

8-2

ORACLE

Chapter 8
Examples

7)
8 EDGE TABLES (

9 emp AS works for
10 KEY (empno)
11 SOURCE KEY (empno) REFERENCES emp
12 DESTINATION KEY (deptno) REFERENCES dept
13 NO PROPERTIES
14)

15 OPTIONS (PG_PGQL) ;
Graph created

PGQL> column name format al5;

PGQL> SELECT e.ename AS name
2 FROM MATCH (e:Employee) ON scott hr
3 ORDER by e.ename
4 LIMIT 4;

Define a Graph Parameter

You can define a graph parameter to run all PGQL queries against a particular graph. This
example sets graph to scott_hr. Note that the query does not need an ON clause.

PGQL> pggl auto on graph scott hr;
PGQL Auto enabled for graph=[SCOTT HR], execute=[true], translate=[false]

PGQL> column department format a20;

PGQL> column employees format al0;

PGQL> SELECT d.dname AS department, COUNT (e) AS employees
2 FROM MATCH (e:Employee) -[:works for]-> (d:Department)
3 GROUP BY d
4 ORDER BY employees

5% LIMIT 3;
DEPARTMENT EMPLOYEES
ACCOUNTING 3
RESEARCH 5
SALES 6

Show SQL Translation Using Parallel Value 2

This example shows the SQL translation of a PGQL query using a parallel value of 2. Note that
the SQL translation has a hint using the defined parallel value.

SQL> pgql auto on translateonly parallel 2;

8-3

ORACLE

Chapter 8
Examples

PGQL Auto enabled for graph=[null], execute=[false], translate=[true]
PGQL> SELECT id(n) FROM MATCH (n) ON scott_hr;

SELECT /*+ parallel(2) */ * FROM(SELECT 7 AS "id(n)S$T",
to_nchar(T0$0.VID, 'TM9', 'NLS Numeric Characters=''.,''") AS "id(n)$V",
T0$0.VID AS "id(n)SVN",

to timestamp tz(null) AS "id(n)$VT"

FROM "SCOTT".SCOTT_HRVD$ T0S0) ;

Turn Off PGQL Mode
This example shows how to turn PGQL mode off.

PGQL> pgqgl auto off;

PGQL Auto disabled
SQL>

8-4

SQLcl Command Reference

This chapter covers the following sections:
e AQ (Advanced Queuing)
* AWR

* BACKGROUND

e BLOCKCHAIN_TABLE

« CERTIFICATE

e CODESCAN

e CONNECT

« CONMGR

DG (Data Guard)
 DIRS, PUSHD and POPD
e IMMUTABLE_TABLE

* LIQUIBASE
- MDB

« MLE

* MODELER
« PROJECT
* REST

e SDK

e SET system_variable value
e« SHOW option
e SODA

9.1 AQ (Advanced Queuing)

ORACLE

The AQ command in SQLcl enables you to access the Oracle Database Advanced Queuing
functionality to create queues and queue tables, enqueue and dequeue messages, add and
remove subscribers, and manage transactional event queues (TxXEventQ).

Prerequisites
This command requires the ADMIN role.

You must have some working knowledge of Advanced Queuing and Transactional Event
Queues and be familiar with the concepts, which are explained in the Oracle Database
Advanced Queuing and Transactional Event Queues User's Guide.

9-1

https://docs.oracle.com/en/database/oracle/oracle-database/21/adque/aq-introduction.html#GUID-95868022-ECDA-4685-9D0A-52ED7663C84B
https://docs.oracle.com/en/database/oracle/oracle-database/21/adque/aq-introduction.html#GUID-95868022-ECDA-4685-9D0A-52ED7663C84B

ORACLE

Chapter 9
AQ (Advanced Queuing)

Supported Commands
You can run Advanced Queuing commands in SQLcl using aqg.
To view the help information for Advanced Queuing, enter ag help.

e Create a Queue Table

e Alter a Queue Table

* Drop a Queue Table

e Create a Queue

e Alter a Queue

e Drop a Queue

e Create a Sharded Queue

e Alter a Sharded Queue

e Drop a Sharded Queue

e Create an Exception Queue

« Create a Transactional Event Queue
» Alter a Transactional Event Queue
* Drop a Transactional Event Queue
e Create an EQ Exception Queue

e Start a Queue

e Stop a Queue

* Add a Subscriber

e Alter a Subscriber

* Remove a Subscriber

* Enqueue

e Dequeue

Example

The following example uses Advanced Queuing commands in SQLcl to create a queue, start
the queue, add a subscriber to the queue, enqueue a message and then dequeue it.

--Create a queue named demo2 with multiple consumers and payload type JSON
SQL> aq createteq -name demo2 -mul true -pt JSON

--Show the queue properties
SQL> select name, gid, queue type, enqueue enabled, dequeue enabled, sharded,
queue category, recipients from user queues;

--Start the queue demo2
SQL> aq startqg -name demo?2
SQL> select name, gid, queue type, enqueue enabled, dequeue enabled, sharded,

queue category, recipients from user queues;

--Add subscriber named Bob to queue demo?2

9-2

SQL> ag add subscriber -queue demo2 -name bob;

--Enqueue message "hello" to queue demo2
SQL> ag enqg -name demo2 -p {"message":"hello"};

--Commit the message (send)
SQL> commit;

Chapter 9
AQ (Advanced Queuing)

—-Dequeue from queue demo2 by subscriber named Bob using NEXT MESSAGE

navigation after waiting for 2 seconds

SQL> aq deq -name demo2 -nav NEXT MESSAGE -consumer name bob -wait 2;

9.1.1 Create a Queue Table

Syntax

AQ CREATE QUEUE TABLE/CREATEQT -n[ame] table name
-paylload type] {JSON | RAW | [schema.]type name}]
sto[rage clause] string]

sort[list] string]

mul [tiple consumers] {NO | YES}]

com[ment] string]

-primary[instance] number]

-secondary[instance] number]

-secure {YES | NO}]

-repl[ication mode] {NONE | REPLICATION}]

[
[
[
[
[
[
[
[
[

Parameters
Parameter Description Default
-name, -n <name> Name of a queue table to create. -

-payload type, -pt

-storage clause, -sto

-sort list,-sort

ORACLE

[OBJECT NAME |TYPE NAME |JSON] Type of JSON
the user data stored.

<storage_clause>Storage parameter. NULL

The storage parameter is included in the
CREATE TABLE statement when the queue
table is created. The storage parameter can
be made up of any combinations of the
following parameters: PCTFREE,
PCTUSED, INITRANS, MAXTRANS,
TABLESPACE, LOB, and a table storage
clause.

<sort_list> ENQ_TIME

The columns to be used as the sort key in
ascending order. This parameter has the
following format:
'sort_column_1,sort_column_2' The allowed
column names are priority, eng_time, and
commit_time.

9-3

Chapter 9

AQ (Advanced Queuing)
Parameter Description Default
-multiple consumers,-mul [TRUE | FALSE] False
TRUE: Queues created in the table can only
have one consumer for each message.
FALSE: Queues created in the table can
have multiple consumers for each message.
-comment, -c <comment> NULL
User-specified description of the queue
table.
-primary instance,-primary <primary_instance> 0
The primary owner of the queue table.
Queue monitor scheduling and propagation
for the queues in the queue table are done
in this instance.
-secondary instance, - <secondary_instance> 0
secondary The queue table fails over to the secondary
instance if the primary instance is not
available.
-secure, -sec [TRUE | FALSE] False
TRUE: Use the queue table for secure
gqueues. Secure queues are queues for
which AQ agents must be associated
explicitly with one or more database users.
-replication mode, -repl [0:NONE|1:REPLICATION MODE] 0:NONE
9.1.2 Alter a Queue Table
Syntax
AQ ALTER QUEUE TABLE/ALTERQT -n[ame] table name
[-com[ment] string]
[-primary[instance] number]
[-secondary[instance] number]
[-repl[ication mode] {NONE | REPLICATION}]
Parameters
Parameter Description Default
-name, -n <name> Name of a queue table to alter. -
-comment, -c <comment> NULL
User-specified description of the queue
table.
-primary instance,-primary <primary_instance> 0

ORACLE

The primary owner of the queue table.
Queue monitor scheduling and propagation
for the queues in the queue table are done
in this instance.

9-4

Chapter 9

AQ (Advanced Queuing)
Parameter Description Default
-secondary instance, - <secondary_instance> 0
secondary The queue table fails over to the secondary
instance if the primary instance is not
available.
-replication mode, -repl [0:NONE|1:REPLICATION MODE] 0:NONE
9.1.3 Drop a Queue Table
Syntax
AQ DROP QUEUE TABLE/DROPQT -n[ame] table name
[-for[ce] {NO | YES}]
Parameters
Parameter Description Default
-name, -n <name> Name of a queue table to drop. -
-force,-f [TRUE | FALSE] False
TRUE: All queues in the table are stopped
and dropped automatically.
FALSE: The operation does not succeed if
there are any queues in the table.
9.1.4 Create a Queue
Syntax
AQ CREATE QUEUE/CREATEQ -n[ame] queue name
-tab[le name] [schema.]table name
[-type {NORMAL | EXCEPTION}]
[-max[retries] number]
[-retry[delay] number]
[-retention[time] number]
[-com[ment] string]
Parameters
Parameter Description Default
-name, -n <name> Name of a queue to create. -

-table name,-tab

ORACLE

[schema] .<table name> -

Name of the queue table that will contain
the queue.

9-5

Chapter 9

AQ (Advanced Queuing)
Parameter Description Default
-type, -t [0:NORMAL QUEUE |1:EXCEPTION QUEUE] O:NORMAL QUEUE

-max_retries,-max

-retry delay,-retry

Specifies whether the queue being created
is an exception queue or a normal queue.

<max_retries number> 5

A message is moved to an exception queue
if RETRY_COUNT is greater than
MAX_RETRIES.

RETRY_COUNT is incremented when the
application issues a rollback after executing
the dequeue.

<retry_delay number> 0

Delay time, in seconds, before this message
is scheduled for processing again after an
application rollback.

-comment, -c <comment> NULL
User-specified description of the queue
table.
-retention time,-rtime <retention_time number> 0
[-1:INFINITE] means the message is
retained forever.
Number of seconds that a message is
retained in the queue table after being
dequeued from the queue.
9.1.5 Alter a Queue
Syntax
AQ ALTER QUEUE/ALTERQ -n[ame] queue name
[-max[retries] number]
[-retry[delay] number]
[-retention[time] number]
[-com[ment] string]
Parameters
Parameter Description Default
-name, -n <name> Name of a queue to alter. -

-max_retries,-max

ORACLE

NULL - current value
will not be altered.

<max_retries number>

A message is moved to an exception queue
if RETRY_COUNT is greater than
MAX_RETRIES.

RETRY_COUNT is incremented when the
application issues a rollback after executing
the dequeue.

9-6

Chapter 9
AQ (Advanced Queuing)

Parameter

Description Default

-retry delay,-retry

-retention time,-rtime

-comment, -c

<retry_delay number> NULL - current value

Delay time, in seconds, before this message Will not be altered.
is scheduled for processing again after an

application rollback.

<retention_time number> 0

[-1:INFINITE] means the message is

retained forever.

Number of seconds that a message is

retained in the queue table after being

dequeued from the queue.

<comment> NULL

User-specified description of the queue
table.

9.1.6 Drop a Queue

Syntax

AQ DROP QUEUE/DROPQ -n[ame] queue name

Parameters
Parameter Description Default
-name, -n <name> Name of a queue to drop. -

9.1.7 Create a Sharded Queue

Syntax

AQ CREATE SHARDED QUEUE/CREATESQ -n[ame] queue _name

-sto[rage clause] string]

mul [tiple consumers] {NO | YES}]

-max[retries] number]
-com[ment] string]

retry[delay] number]
-retention time number]

-retention type string]

[
[
[
[
[
[
[
[
[
[
[-repl[ication mode] NONE]

paylload type] {JSON | RAW | [schema.]type name}]

-sort[list] {PRIORITY,ENQ TIME | ENQ TIME}]
-cache[hint] {AUTO | UNCACHED | CACHED }]

Parameters
Parameter Description Default
-name, -n <name> Name of a queue table to create. -

ORACLE

9-7

ORACLE

Chapter 9
AQ (Advanced Queuing)

Parameter

Description Default

-storage clause, -sto

-multiple consumers,-mul

-comment, -c

-payload type, -pt

-retry delay,-retry

-retention time,-rtime

-sort list,-sort

-cache hint, -cache

-retention type, -rtype

-replication mode, -repl

<storage_clause>Storage parameter. NULL

The storage parameter is included in the
CREATE TABLE statement when the queue
table is created. The storage parameter can
be made up of any combinations of the
following parameters: PCTFREE,
PCTUSED, INITRANS, MAXTRANS,
TABLESPACE, LOB, and a table storage
clause.

[TRUE | FALSE] False

TRUE: Queues created in the table can only
have one consumer for each message.

FALSE: Queues created in the table can
have multiple consumers for each message.

<comment> NULL

User-specified description of the queue
table.

[OBJECT NAME|TYPE NAME|JSON|JMS] JMS
Type of the user data stored.

<retry_delay nhumber> 0

Delay time, in seconds, before this message
is scheduled for processing again after an
application rollback.

<retention_time number> 0

[-1:INFINITE] means the message is
retained forever.

Number of seconds that a message is
retained in the queue table after being
dequeued from the queue.

<sort_list> PRIORITY,ENQ_TIME

The columns to be used as the sort key in
ascending order. This parameter has the
following format:
'sort_column_1,sort_column_2' The allowed
column names are priority, enq_time, and
commit_time.

[1:AUTO|2:CACHED| 3:UNCACHED] 1:AUTO

Specifies a hint to sharded queue whether

to cache messages or not. User can specify

following:

* [1:AUTO]: Message cache does best
effort based on available memory.

* [2:CACHED]: Message cache will
cache messages and give preference
to those queues with CACHED hint.

[0: DEQUEUE TIME] 0:DEQUEUE_TIME

The retention time starts after a subshard is
dequeued by all the subscribers. If a new
subscriber seeks back before or to this
subshard, then the retention clock is reset.

[0:NONE|1:REPLICATION MODE] 0:NONE

9-8

Chapter 9

AQ (Advanced Queuing)
9.1.8 Alter a Sharded Queue
Syntax
AQ ALTER SHARDED QUEUE/ALTERSQ -n[ame] queue name
[-max[retries] number]
[-com[ment] string]
[-retry[delay] number]
[-retention time number]
[-cache[hint] {AUTO | UNCACHED | CACHED}]
[-retention type string]
[-repl[ication mode] NONE]
Parameters

Parameter Description Default

-name, -n <name> Name of a queue to alter. -

-max retries,-max <max_retries number> NULL - current value
A message is moved to an exception queue Will not be altered.
if RETRY_COUNT is greater than
MAX_RETRIES.

RETRY_COUNT is incremented when the
application issues a rollback after executing
the dequeue.

-comment, -c <comment> NULL
User-specified description of the queue
table.

-retry delay,-retry <retry_delay number> 0
Delay time, in seconds, before this message
is scheduled for processing again after an
application rollback.

-retention time,-rtime <retention_time number> 0
[-1:INFINITE] means the message is
retained forever.

Number of seconds that a message is
retained in the queue table after being
dequeued from the queue.
-sort list,-sort <sort_list> PRIORITY,ENQ_TIME

ORACLE

The columns to be used as the sort key in
ascending order. This parameter has the
following format:
'sort_column_1,sort_column_2' The allowed
column names are priority, eng_time, and
commit_time.

9-9

Chapter 9

AQ (Advanced Queuing)
Parameter Description Default
-cache hint, -cache [1:AUTO|2:CACHED|3:UNCACHED] 1:AUTO

Specifies a hint to sharded queue whether

to cache messages or not. User can specify

following:

* [1:AUTO]: Message cache does best
effort based on available memory.

e [2:CACHED]: Message cache will
cache messages and give preference
to those queues with CACHED hint.

-retention type,-rtype [0: DEQUEUE TIME] 0:DEQUEUE_TIME

The retention time starts after a subshard is
dequeued by all the subscribers. If a new
subscriber seeks back before or to this
subshard, then the retention clock is reset.

-replication mode, -repl [0:NONE|1:REPLICATION MODE] 0:NONE

9.1.9 Drop a Sharded Queue

Syntax

AQ DROP SHARDED QUEUE/DROPSQ -n[ame] queue name
[-for[ce] {NO | YES}]

Parameters
Parameter Description Default
-name, -n <name> Name of a queue table to drop. -
-force,-£f [TRUE | FALSE] False

TRUE: The sharded queue is dropped even
if the queue is not stopped.

FALSE: The sharded queue is not dropped
even if the queue is not stopped.

9.1.10 Create an Exception Queue

Syntax

AQ CREATE EXCEPTION QUEUE/CREATEEQ -n[ame] queue_name
-sharded[queue name] [schema.]queue name

Parameters
Parameter Description Default
-name, -n <name> NULL

Name of a queue to create.

ORACLE 510

Chapter 9

AQ (Advanced Queuing)
Parameter Description Default
-sharded queue name, - [schema] .<name> FALSE

sharded The name of the sharded queue.

9.1.11 Create a Transactional Event Queue

Note:

This command is only available for Oracle Database release 21c and later versions.

Syntax

AQ CREATE TRANSACTIONAL EVENT QUEUE/CREATETEQ -n[ame] queue name
[-sto[rage clause] string]

[-mul[tiple consumers] {NO | YES}]

[-max[retries] number]

[-com[ment] string]

[-paylload type] {JSON | RAW | JMS | [schema.]type name}]
[-retry[delay] number]

[-retention time number]

[-sort] llSt] {PRIORITY,ENQ TIME | ENQ TIME}]

[-cache] hint} {AUTO | UNCACHED | CACHED}]

[-retention type string]

[-repl[ication mode NONE]

Parameters

Parameter Description Default

-name, -n <name> Name of a queue to create. -
-storage clause, -sto <storage_ clause>Storage parameter. NULL

The storage parameter is included in the
CREATE TABLE statement when the queue
table is created. The storage parameter can
be made up of any combinations of the
following parameters: PCTFREE,
PCTUSED, INITRANS, MAXTRANS,
TABLESPACE, LOB, and a table storage
clause.

-multiple consumers,-mul [TRUE | FALSE] False

TRUE: Queues created in the table can only
have one consumer for each message.

FALSE: Queues created in the table can
have multiple consumers for each message.

ORACLE 011

Chapter 9

AQ (Advanced Queuing)

Parameter Description Default
-max_retries,-max <max_retries number> 5

A message is moved to an exception queue

if RETRY_COUNT is greater than

MAX_RETRIES.

RETRY_COUNT is incremented when the

application issues a rollback after executing

the dequeue.
-comment, -c <comment> NULL

-payload type, -pt

-retry delay,-retry

-retention time,-rtime

-sort list,-sort

-cache hint, -cache

-retention type, -rtype

-replication mode, -repl

User-specified description of the queue
table.

[OBJECT NAME|TYPE NAME|JSON|JMS] JMS
Type of the user data stored.

<retry_delay number> 0

Delay time, in seconds, before this message
is scheduled for processing again after an
application rollback.

<retention_time number> 0

[-1:INFINITE] means the message is
retained forever.

Number of seconds that a message is
retained in the queue table after being
dequeued from the queue.

<sort_list> PRIORITY,ENQ_TIME

The columns to be used as the sort key in
ascending order. This parameter has the
following format:
'sort_column_1,sort_column_2' The allowed
column names are priority, eng_time, and
commit_time.

[1:AUTO|2:CACHED|3:UNCACHED]

Specifies a hint to sharded queue whether

to cache messages or not. User can specify

following:

e [1:AUTO]: Message cache does best
effort based on available memory.

* [2:CACHED]: Message cache will
cache messages and give preference
to those queues with CACHED hint.

[0: DEQUEUE TIME]

The retention time starts after a subshard is
dequeued by all the subscribers. If a new
subscriber seeks back before or to this
subshard, then the retention clock is reset.

[0:NONE|1:REPLICATION MODE]

1:AUTO

0:DEQUEUE_TIME

0:NONE

ORACLE

9-12

Chapter 9
AQ (Advanced Queuing)

9.1.12 Alter a Transactional Event Queue

Note:

This command is only available for Oracle Database release 21c and later versions.

Syntax

AQ ALTER TRANSACTIONAL EVENT QUEUE/ALTERTEQ -nlame] queue name

-max[retries] number]

-com[ment] string]

[

[

[-retry[delay] number]
[-retention time number]
[

[

[

-cache[hint] {AUTO

UNCACHED | CACHED}]
-retention type string]
-repl[ication mode NONE]

Parameters
Parameter Description Default
-name, -n <name> Name of a queue to alter. -

-max_retries,-max

-comment, -c

-retry delay,-retry

-retention time,-rtime

-sort list,-sort

ORACLE

<max_retries number> NULL - current value

A message is moved to an exception queue Will not be altered.
if RETRY_COUNT is greater than
MAX_RETRIES.

RETRY_COUNT is incremented when the
application issues a rollback after executing
the dequeue.

<comment> NULL
User-specified description of the queue

table.

<retry_delay number> 0

Delay time, in seconds, before this message
is scheduled for processing again after an
application rollback.

<retention_time number> 0

[-1:INFINITE] means the message is
retained forever.

Number of seconds that a message is
retained in the queue table after being
dequeued from the queue.

<sort_list> PRIORITY,ENQ_TIME

The columns to be used as the sort key in
ascending order. This parameter has the
following format:
'sort_column_1,sort_column_2' The allowed
column names are priority, enq_time, and
commit_time.

9-13

Chapter 9

AQ (Advanced Queuing)
Parameter Description Default
-cache hint, -cache [1:AUTO|2:CACHED|3:UNCACHED] 1:AUTO

Specifies a hint to sharded queue whether

to cache messages or not. User can specify

following:

* [1:AUTO]: Message cache does best
effort based on available memory.

e [2:CACHED]: Message cache will
cache messages and give preference
to those queues with CACHED hint.

-retention type,-rtype [0: DEQUEUE TIME] 0:DEQUEUE_TIME

The retention time starts after a subshard is
dequeued by all the subscribers. If a new
subscriber seeks back before or to this
subshard, then the retention clock is reset.

-replication mode, -repl [0:NONE|1:REPLICATION MODE] 0:NONE

9.1.13 Drop a Transactional Event Queue

Note:

This command is only available for Oracle Database release 21c and later versions.

Syntax

AQ DROP TRANSACTIONAL EVENT QUEUE/DROPTEQ -n[ame] queue name
[-for[ce] {NO | YES}]

Parameters

Parameter Description Default
-name, -n <name> Name of a queue to drop. -
-force, -f [TRUE | FALSE] FALSE

TRUE: The sharded queue is dropped even
if the queue is not stopped.

FALSE: The sharded queue is not dropped
even if the queue is not stopped.

9.1.14 Create an EQ Exception Queue

Syntax

AQ CREATE EQ EXCEPTION QUEUE/CREATEEQEQ -n[ame] queue_name
-teq[queue name] [schema.]queue name

ORACLE 014

Chapter 9

AQ (Advanced Queuing)
Parameters
Parameter Description Default
-name, -n <name> NULL
Name of a queue to create.
-teq queue name,-teq [schema] .<name> FALSE
The name of the transactional event queue.
9.1.15 Start a Queue
Syntax
AQ START QUEUE/STARTQ -n[ame] queue_name
[-eng[ueue] {ENABLE | KEEP}]
[-deg[ueue] {ENABLE | KEEP}]
Parameters
Parameter Description Default
-name, -n <name> NULL
Name of a queue to enable.
-enqueue, —eng [TRUE | FALSE] TRUE
TRUE: Enable ENQUEUE.
FALSE: Do not alter the current setting.
-dequeue, -deq [TRUE | FALSE] TRUE
TRUE: Enable DEQUEUE.
FALSE: Do not alter the current setting.
9.1.16 Stop a Queue
Syntax
AQ STOP QUEUE/STOPQ -n[ame] queue name
[-eng[ueue] {DISABLE | KEEP}]
[-deg[ueue] {DISABLE | KEEP}]
[-wait {YES | NO}]
Parameters
Parameter Description Default
-name, -n <name> NULL

Name of a queue to disable.

ORACLE

9-15

Chapter 9

AQ (Advanced Queuing)

Parameter Description Default

-enqueue, —eng [TRUE | FALSE] TRUE
TRUE: Enable ENQUEUE.

FALSE: Do not alter the current setting.

-dequeue, -deq [TRUE | FALSE] TRUE
TRUE: Enable DEQUEUE.

FALSE: Do not alter the current setting.

-wait,-w [TRUE | FALSE TRUE
TRUE: Wait if there are any outstanding
transactions.

FALSE: Return immediately either with a
SUCCESS or an error.
9.1.17 Add a Subscriber
Syntax
AQ ADD SUBSCRIBER/ADDSUB -n[ame] subscriber name
-queue[name] queue name
[-subscriber address string]
[-subscriber protocol number]
[-rule string]
[-trans[formation] [schema.]name]
[-queue to queue {NO | YES}] t
[-mode {PERSISTENT | BUFFERED | PERSISTENT OR BUFFERED}]
Parameters

Parameter Description Default

-name, -n Name of a producer or consumer of a -
message.

-queue_name, -queue <name> Name of a queue. -

-subscriber address,-sa <subscriber_address>
Protocol-specific address of the recipient.

If the protocol is 0, then the address is of
the form [schema.]queue[@dblink].
Name of the queue table that will contain
the queue.
-subscriber protocol,-sp <subscriber_protocol> 0

ORACLE

Protocol to interpret the address and
propagate the message.

9-16

Chapter 9

9.1.18 Alter a Subscriber

ORACLE

AQ (Advanced Queuing)
Parameter Description Default
-rule,-r <rule> NULL
A conditional expression based on the
message properties, the message data
properties and PL/SQL functions.
A rule is specified as a Boolean expression
using syntax similar to the WHERE clause
of a SQL query.
You must prefix each attribute with
tab.user_data as a qualifier to indicate the
specific column of the queue table that
stores the payload.
-transformation,-trans <transformation> NULL
Specifies a transformation that will be
applied when this subscriber dequeues the
message.
-queue_to queue, -q2q [TRUE | FALSE] FALSE
TRUE: propagation is from queue-to-queue
-mode, -m [1:PERSISTENT|2:BUFFERED] PERSISTENT
3:PERSISTENT OR BUFFERED]
Delivery mode of the messages the
subscriber is interested in.
Syntax
AQ ALTER SUBSCRIBER/ALTERSUB -n[ame] subscriber name
[-subscriber address string]
[-subscriber protocol number]
—queue[name] [schema.]queue name
[-rule string]
[-trans[formation] [schema.]name]
Parameters
Parameter Description Default
-name, -n Name of a producer or consumer of a -
message.
-queue_name, -queue <name> Name of a queue. -
-subscriber address,-sa <subscriber_address>
Protocol-specific address of the recipient.
If the protocol is 0, then the address is of
the form [schema.]queue[@dblink].
Name of the queue table that will contain
the queue.
-subscriber protocol,-sp <subscriber_protocol> 0

Protocol to interpret the address and
propagate the message.

9-17

Chapter 9

AQ (Advanced Queuing)
Parameter Description Default
-rule,-r <rule> NULL
A conditional expression based on the
message properties, the message data
properties and PL/SQL functions.
A rule is specified as a Boolean expression
using syntax similar to the WHERE clause
of a SQL query.
You must prefix each attribute with
tab.user_data as a qualifier to indicate the
specific column of the queue table that
stores the payload.
-transformation,-trans <transformation> NULL
Specifies a transformation that will be
applied when this subscriber dequeues the
message.
9.1.19 Remove a Subscriber
Syntax
AQ REMOVE SUBSCRIBER/REMOVESUB -n[ame] subscriber name
[-subscriber address string]
[-subscriber protocol number]
-queue[name] [schema.]queue name
Parameters
Parameter Description Default
-name, -n Name of a producer or consumer of a -
message.
-queue name, -queue <name> Name of a queue. -
-subscriber address,-sa <subscriber_address>
Protocol-specific address of the recipient.
If the protocol is 0, then the address is of
the form [schema.]queue[@dblink].
Name of the queue table that will contain
the queue.
-subscriber protocol,-sp <subscriber_protocol> 0

Protocol to interpret the address and
propagate the message.

9.1.20 Enqueue

ORACLE

9-18

Chapter 9

AQ (Advanced Queuing)
Syntax
AQ ENQ[UEUE] -n[ame] queue name
{
-pay[load] payload
\
-file[name] name
}
[-type {JSON | HEX | BINARY}]
[-vis[ibility] {ON _COMMIT | IMMEDIATE}]
[-trans[formation] [schema.]name]
[-mode {PERSISTENT | BUFFERED}]
[-prifority] priority]
[-delfay] delay]
[-exp[iration] expiration]
[-corr[elation] string]
[-rec[ipient list] agents]
[-exc[eption queue] name]
[-sender[agent] name]
[-out msgid string]
Parameters
Parameter Description Default
-name, -n <name> Name of the queue to which this -
message should be enqueued.
-payload, -p Message payload. -
-filename,-file File to read the message payload. -
-payload type, -pt Payload format type. JSON
-visibility,-vis Specifies the transactional behavior of the 2:0N_COMMIT
enqueue request. Possible settings are:
e [2:ON_COMMIT]: The enqueue is part
of the current transaction. The
operation is complete when the
transaction commits. This setting is the
default.
* [1: IMMEDIATE]: The enqueue
operation is not part of the current
transaction, but an autonomous
transaction which commits at the end
of the operation. This is the only value
allowed when enqueuing to a non-
persistent queue.
-mode, -m [1:PERSISTENT|2:BUFFERED| PERSISTENT
3:PERSISTENT OR BUFFERED]
Delivery mode of the messages the
subscriber is interested in.
-priority,-pri Specifies the priority of the message. A 1

ORACLE

smaller number indicates higher priority.

The priority can be any number, including
negative numbers.

9-19

Chapter 9

AQ (Advanced Queuing)

Parameter Description Default
-comment, -c <comment> NULL

User-specified description of the queue

table.
-delay,-del The delay represents the number of 0

seconds after which a message is available

for dequeuing.
-expiration, —exp It determines, in seconds, the duration the -1 - NEVER

message is available for dequeuing.

-correlation, -corr Specifies the name of the queue into which -

the message is moved if it cannot be
processed successfully.

-sender id,-sid The application-sender identification -

specified at enqueue time by the message
producer. Sender name is required for
secure queues at enqueue time.

-out message id,-out msgid System generated identification of the -

message. This is a globally unique identifier
that can be used to identify the message at
dequeue time.

A bind variable can also be used as an
input to store the message id. (Example: -
out_msgid :xyz)

9.1.21 Dequeue

ORACLE

Syntax

AQ
[
{

}
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

DEQ[UEUE] -n[ame] queue name
-cons [umer] name]

-payl[load] payload
\

-file[name] name

-type {JSON | HEX | BINARY}]

-deqlueue] mode {REMOVE | BROWSE | LOCKED | REMOVE NODATA}]
-nav[igation {NEXT MESSAGE | NEXT TRANSACTION | FIRST MESSAGE}]
-vis[ibility] {ON_COMMIT | IMMEDIATE}]

-wait number]

-msgid string]

-corr[elation] string]

-cond[ition] string]

-trans[formation] [schema.]name]

-mode {PERSISTENT | BUFFERED | PERSISTENT OR BUFFERED}]
-for[mat enqueue time] string]

-out msgid string]

-out prifority] number]

-out _del[ay] number]

-out exp[iration] number]

-out corrlelation] string]

-out attempts number]

9-20

Chapter 9

AQ (Advanced Queuing)
[-out exc[eption queue] name]
[-out enqueue time string]
[-out state string]
[-out sender agent name]
[-out original msgid string]
[-out mode string]
Parameters
Parameter Description Default
-name, -n <name> Name of the queue to which this -
message should be dequeued.
-payload, -p Message payload to be written on the -

-filename,-file

-payload type, -pt

-consumer name, -Cons

-dequeue_mode, -dm

-navigation, -nav

ORACLE

console.
File to write the message payload. -
Payload format type. JSON

Only those messages matching the -
consumer name are accessed. If a queue is
not set up for multiple consumers, then this
field should be set to NULL.

Specifies the locking behavior associated -
with the dequeue. Possible settings are:

* [1: BROWSE] : Read the message
without acquiring any lock on the
message. This specification is
equivalent to a select statement.

* [2: LOCKED] : Read and obtain a write
lock on the message. The lock lasts for
the duration of the transaction. This
setting is equivalent to a select for
update statement.

. [3: REMOVE - DEFAULT] : Read the
message and delete it.

* [4: REMOVE_NODATA] : Mark the
message as updated or deleted. The
message can be retained in the queue
table based on the retention properties.

Specifies the position of the message that -

will be retrieved. Possible settings are:

* [1: FIRST_MESSAGE!] : Retrieves the
first message which is available and
matches the search criteria.

¢ [2: NEXT_TRANSACTION] : Skip the
remainder of the current transaction
group (if any) and retrieve the first
message of the next transaction group.

. [3: NEXT_MESSAGE - DEFAULT] :
Retrieve the next message that is
available and matches the search
criteria.

9-21

Chapter 9
AQ (Advanced Queuing)

Parameter Description Default

-visibility,-vis Specifies the transactional behavior of the ~ 2:ON_COMMIT
engqueue request. Possible settings are:

* [2:0ON_COMMIT]: The enqueue is part
of the current transaction. The
operation is complete when the
transaction commits. This setting is the
default.

* [1: IMMEDIATE]: The enqueue
operation is not part of the current
transaction, but an autonomous
transaction which commits at the end
of the operation. This is the only value
allowed when enqueuing to a non-
persistent queue.

-deq wait,-deq w Specifies the wait time if there is currently
no message available which matches the
search criteria. Possible settings are:

e [-1: FOREVER]: Wait forever. This
setting is the default.

* [0: NO_WAIT]: Do not wait.

* [x]: Wait time in seconds. (x seconds)

-correlation, -corr Specifies the name of the queue into which -
the message is moved if it cannot be
processed successfully.

-condition, -con A conditional expression based on the -
message properties, the message data
properties, and PL/SQL functions.

-message_id, msg_id Specifies the message identifier of the -
message to be dequeued. A bind variable
can also be used as an input (Example: -
msgid :xyz).

-transformation, -trans <transformation> NULL

Specifies a transformation that will be
applied after dequeuing the message.

-mode, -m [1:PERSISTENT |2 :BUFFERED| PERSISTENT
3:PERSISTENT OR BUFFERED]

Delivery mode of the messages the
subscriber is interested in.

-out message id,-out msgid System generated identification of the -
message. This is a globally unique identifier
that can be used to identify the message at
dequeue time.

A bind variable can also be used as an
input to store the message id. (Example: -
out_msgid :xyz)

-out priority,-out pri Priority of the message. A smaller number -
indicates higher priority.
A bind variable can also be used as an

input to store the priority. (Example: -
out_priority :xyz)

ORACLE 9.99

Chapter 9
AQ (Advanced Queuing)

Parameter Description Default

-out delay,-out del The delay represents the number of -
seconds after which a message is available
for dequeuing.

A bind variable can also be used as an
input to store the delay. (Example: -
out_delay :xyz)

-out expiration,-out exp The duration the message is available for -
dequeuing.
A bind variable can also be used as an
input to store the expiration. (Example: -
out_expiration :xyz)

-out_correlation,-out corr Correlation identifier of the message to be -
dequeued.

A bind variable can also be used as an
input to store the correlation. (Example: -
out_correlation :xyz)

-out attempts,-out att Number of attempts made to dequeue the -
message.

A bind variable can also be used as an
input to store the attempts. (Example: -
out_attempts :xyz)

-out exception queue, - Name of the queue into which the message
out exc is moved if it cannot be processed
successfully.

A bind variable can also be used as an
input to store the exception queue
(Example: -out_exception_queue :xyz)

-out_enqueue time,-out eqt The time the message was enqueued. -

A bind variable can also be used as an
input to store the enqueue time. (Example: -
out_enqueue_time :xyz)

-out state,-out st State of the message at the time of the -
dequeue.

A bind variable can also be used as an
input to store the state (Example: -
out_state :xyz)

-out sender id,-out sid The application-sender identification -
specified at enqueue time by the message
producer.

A bind variable can also be used as an
input to store the sender id (Example: -
out_sender_id :xyz)

-out _mode,-out m The delivery mode of the messages. -

A bind variable can also be used as an
input to store the mode (Example: -
out_mode :xyz)

ORACLE 0.93

9.2 AWR

Chapter 9
AWR

The awr command creates and retrieves automatic workload repository (AWR) reports for the
currently connected instance. These reports provide metrics on the database’s workload,
performance, and resource usage.

Syntax

awr <create snapshot> | <create report> | <list snapshots>

<create snapshot> := create snapshot (bestfit | lite | typical | all)?
<create report> := create (html | text) <begin-snapshot-id>
<end-snapshot-id>

<list snapshots> := list snap[shots]

where

<create_snapshot>: Creates a new snapshot and prints its id. The optional parameter flush-
level of the snapshot are (BESTFIT, LITE, TYPICAL, ALL).

<create_report>: Creates a new AWR report and writes it to a file called "AWR-<DB_Name>-
<PDB_Name>-<Current Timestamp>.[html|txt]" in the current working directory.

<begin-snapshot-id>: Provides the beginning snapshot id for the AWR report. By default, the
second last snapshot id is taken if no id has been provided.

<end-snapshot-id>: Provides the ending snapshot id for the AWR report. By default, the last
snapshot id is taken if no id has been provided.

<list_snapshots>: Lists the available snapshots in the database.

9.3 BACKGROUND

ORACLE

The BACKGROUND command runs the SQLcl command as a background task.

Syntax

background|bg {OPTIONS} <commandspec>

where <commandspec> is the SQLcl command.

Options
Option Description
-wait4|-w4 <wait4> List of task names to wait for. See Wait4 Command
-taskname|-tn <taskname> Name of the task.

To know the task details, use the Jobs Command.
Examples

SQL> background apex list
SQL> background -taskname task3 -wait4 taskl,task2 apex list

9-24

Chapter 9
BACKGROUND

9.3.1 Jobs Command

The JoBS command lists the details of jobs that are running in the background.

Syntax

jobs|jb {SUBCOMMAND} {OPTIONS}

where SUBCOMMAND can be any of the following:
e Cancel: Cancel a running job.
e Logs: Show job logs.

e Delete: Remove jobs from the list.

Options

Option Description
-id|-i <id> The id of the task.
-taskname|-tn <taskname> Name of the task.
Examples

SQL> jobs -id 2
SQL> jobs logs -id 2
SQL> jobs cancel -id 2

9.3.1.1 Cancel Jobs

This command cancels a running job.

Syntax

jobs|jb cancel|c {OPTIONS}

Options

Option Description
-id|-i <id> The id of the task.
-taskname|-tn <taskname> Name of the task.
Examples

SQL> jobs cancel -id 2

9.3.1.2 Log Jobs

This command shows the log files for jobs.

ORACLE o

Chapter 9
BACKGROUND

Syntax

jobs|jb logs|l {SUBCOMMAND} {OPTIONS}

where SUBCOMMAND is:

delete|d: Delete logfiles for completed jobs.

Options

Option Description
-id|-i <id> The id of the task.
-taskname|-tn <taskname> Name of the task.
Examples

SQL> jobs logs -id 2
SQL> jobs logs delete

9.3.1.3 Delete Jobs

This command removes jobs from the list. This could be either a a specific job, or all jobs, or
only if the job is finished.

Syntax

jobs|jb delete|d {OPTIONS}

Options

Option Description

-id|-i <id> The id of the task.

-taskname|-tn <taskname> Name of the task.

-alll-a Remove all tasks from the list.
-finished|-f Only remove finished tasks from the list.
Examples

SQL> jobs delete -id 2

9.3.2 Wait4 Command

Wait for one or more tasks to finish before continuing the job.

Syntax

wait4|wd {OPTIONS} {PARAMETERS}

Options

ORACLE 996

Chapter 9
BLOCKCHAIN_TABLE

Option Description

-delay|-d <delay> (0) Number of milliseconds to wait before continuing
with processing.

Parameters

Option Description

<tasknames> List of task names to wait for.
Examples

SQL> waitd taskl, task3

9.4 BLOCKCHAIN_TABLE

ORACLE

This command uses an extension of the DBMS BLOCKCHAIN TABLE PL/SQL package. A
blockchain table is an append-only table designed for centralized blockchain applications. V2
blockchain tables support schema evolution, delegate signatures, and countersignatures in
addition to the functionality found in V1 blockchain tables. Blockchain tables support only DER
encoding for X.509 certificates, not PEM encoding.

Syntax

blockchain table|bl [add interval partitioning|addintpartition] |
[countersign row|countersign] | desc | [delete expired rows|del] |
get bytes for row hash | get bytes for row signature | get digest |
get signed digest | [sign row|sign] |

[sign _row with countersignature|signandcountersign] | verify rows |
verify table | verify user chains

The following table provides a description of each sub-command.

Sub-Command Description

add_interval_partitioning | addintpartition Adds interval partitioning to an existing, non-
partitioned, V1 or V2 blockchain table.

countersign_row | countersign Procures a countersignature on a specified row in a
blockchain table.The countersignature is produced
by signing the row data content using the table
owner's private key stored in the database wallet.

desc Describes the details of the blockchain table.

delete_expired_rows | del Deletes some or all expired rows in the blockchain
table.

get_bytes_for_row_hash Returns in row_data the bytes for the particular row

identified (a series of meta-data-value, column-
data-value pairs in column position order) followed
by the hash for the previous row in the chain in the
data format specified.

9-27

Chapter 9
BLOCKCHAIN_TABLE

Sub-Command

Description

get_bytes_for_row_signature

get_digest

get_signed_digest

sign_row | sign

sign_row_with_countersignature |
signandcountersign

verify_rows

verify_table

verify_user_chains

Returns the bytes used to compute a user
signature, a delegate signature, or a
countersignature. For a user signature or a
delegate signature, the command returns in
row_data the bytes in the hash in the row without
any metadata.

Generates and returns a cryptographic hash of the
digest for user-specified rows or for a specified
blockchain table.

Generates and returns the signed digest for user-
specified rows (if specified) in a blockchain table
using the table owner's private key stored in the
database wallet. The particular rows in the digest
are specified by the selector parameter. The default
value of this field is NULL. The signed_bytes,
signed_row_indexes, and schema_certificate_guid
are also returned.

Provides a signature by the current user on the row
content of a previously inserted row.

Enables the user to request a countersignature
from the database. The countersignature is
produced by signing the row data content using the
table owner's private key stored in the database
wallet. This command is an extension of the
SIGN_ROW command

Verifies all rows on all applicable system chains for
the integrity of the hash column value for rows
created in the range of low_timestamp to
high_timestamp. Row signatures can be verified as
an option.

Verifies all rows whose creation-time falls between
the minimum value for the row-creation time from
begin_bytes_file and the maximum value for row-
creation time from end_bytes_file, and returns the
number of successfully verified rows.

Verifies rows of one or more user chains when the
user chains feature is enabled on the blockchain
table.

Example

The following example shows different ways to select rows for operations in a blockchain table.

e Use one of the following commands to select a row using positional parameters (instance

id, chain id, sequence id).

bl countersign row -tab <TABLE NAME> -inst <INSTANCE ID> -ch <CHAIN ID> -
seq <SEQUENCE ID> -countersignalgo <ALGORITHM> -cscg <CERTIFICATE GUID> -

ORACLE

9-28

Chapter 9
BLOCKCHAIN_TABLE

bytes file <PATH TO FILE>/countersignBytes.txt -csig
<COUNTERSIGNATURE VARIABLE>

bl get bytes for row hash -tab <TABLE NAME> -inst <INSTANCE ID> -ch
<CHAIN ID> -seq <SEQUENCE ID> -uchain <USER_CHAIN>

bl get bytes for row signature -tab <TABLE NAME> -inst <INSTANCE ID> -ch
<CHAIN ID> -seq <SEQUENCE ID> -row data file <PATH TO FILE>/test2.txt

bl sign row -tab <TABLE NAME> -inst <INSTANCE ID> -ch <CHAIN ID> -seq
<SEQUENCE_ID> -row hash <ROW HASH> -signature file <PATH TO FILE>/
ulrl sign.dat -cert guid <CERTIFICATE GUID> -algo <ALGORITHM>

bl signandcountersign -tab <TABLE NAME> -inst <INSTANCE ID> -ch <CHAIN ID>
-seq <SEQUENCE ID> -row hash <ROW HASH> -signature file <PATH TO FILE>/
ulrll sign.dat -cert guid <CERTIFICATE GUID> -algo <ALGORITHM>

* Use one of the following commands to select a row using key column parameters.

blockchain table countersign row -tab <TABLE NAME> -kclname <COLUMN NAME> -
kclval <COLUMN VALUE> -countersignalgo <ALGORITHM> -cscg

<CERTIFICATE GUID> -bytes file <PATH TO FILE>/countersignBytes.txt -csig
<COUNTERSIGNATURE VARIABLE>

bl get bytes for row hash -table name <TABLE NAME> -kclname <COLUMN NAME> -
kclval <COLUMN_VALUE>

bl get bytes for row signature -tab <TABLE NAME> -kclname <COLUMN NAME> -
kclval <COLUMN VALUE> -row data file <PATH TO FILE>/ulrl.dat

bl sign row -tab <TABLE NAME> -kclname <COLUMN NAME> -kclval
<COLUMN_VALUE> -signature file <PATH TO FILE>/ulr2 sign.dat -cert guid
<CERTIFICATE GUID> -algo <ALGORITHM>

bl signandcountersign -tab <TABLE NAME> -kclname <COLUMN NAME> -kclval
<COLUMN VALUE> -signature file <PATH TO FILE>/ulrl2 sign.dat -cert guid
<CERTIFICATE GUID> -algo <ALGORITHM>

9.4.1 add_interval_partitioning

Adds interval partitioning to an existing, non-partitioned, V1 or V2 blockchain table.

Syntax

blockchain table|bl add interval partitioning|addintpartition {OPTIONS}

Options

ORACLE 9.90

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

Required
-table name|-tab <table name>

-interval number|-intnum
<interval number>

-interval frequencyl|-intfreq
<interval frequency>

-first high timestamp|-firsthigh
<first high timestamp>

Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case sensitive,
embedded white
space table and
schema name should
be entered as
"""Alp ha"".""Be
$a""". The parser
parses these values
as

"Alp ha"."Be $a"

Specifies the interval number that determines how
often the database creates partitions for the
blockchain table.

Specifies the interval frequency that determines
how frequently the database creates partitions for
blockchain tables within a specified interval set by
the interval number setting. Supported values
are YEAR, MONTH, DAY, HOUR, MINUTE.
Specifies a timestamp that determines the upper

boundary of the first partition in the blockchain
table.

Example

Partition the BCTAB1 blockchain table with a daily frequency, beginning on January 23, 2024, at

12:47:29.

bl addintpartition -tab "ul.""bctabl""" -intnum 1 -intfreq "DAY" -firsthigh

"23-JAN-24 12.47.29.182463000"

9.4.2 countersign_row

Procures a countersignature on a specified row in a blockchain table.The countersignature is
produced by signing the row data content using the table owner's private key stored in the

ORACLE

database wallet.

Syntax

blockchain table|bl countersign row|countersign {OPTIONS}

9-30

ORACLE

Options

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

Required
-table name|-tab <table name>

-instance id|-inst <instance id>

-chain id|-ch <chain id>

-sequence_id|-seq <sequence id>

Optional
-keycoll name|-kclname <keycoll name>

-keycoll valuel|-kclval <keycoll value>

-keycolZ2 name|-kcZname <keycolZ name>
-keycol2 valuel|-kc2val <keycol2 value>
-keycol3 name|-kc3name <keycol3 name>

-keycol3 valuel|-kc3val <keycol3 value>

Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case-sensitive,
embedded white
space, table and
schema name must
be entered as
"""Alp ha"".""Be
$a""". The parser
parses these values
as

"Alp ha"."Be $a"

Specifies the instance that inserted the row. If
specified, this limits the operation to rows inserted
by the given instance.

Specifies the chain containing the row. If specified,
this limits operation to rows assigned to the
specified chain. By default, there are 32 chains in
each instance, and they are numbered from 0 to
31.

Specifies the position of the row on the specified
chain.

Specifies the name of the key column.
Specifies the value of the key column.

Specifies the name of the second column in a
composite key.

Specifies the value of the second column in a
composite key.

Specifies the name of the third column in a
composite key.

Specifies the value of the third column in a
composite key.

9-31

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-countersignature algorithm|-
countersignalgo
<countersignature algorithm>

-bytes file <bytes file>

-countersignature|-csig
<countersignature>

-countersign cert guid|-cscg
<countersign cert guid>

-content version <content version>

Specifies the cryptographic hash algorithm to use
for the countersignature. The default value of this
field is

DBMS BLOCKCHAIN TABLE.SIGN ALGO DEFAULT.
If specified, the parameter must be one of the
following acceptable string constants:

« RSA SHA2 256

+ RSA SHA2 384
« RSA SHA2 512

Specifies the name of the file that contains the
signed countersignature bytes.

Specifies the digital signature on the bytes returned
inbytes file. Thisis an OUT parameter option,
used for storing the output value of the command in
a bind variable.

Specifies a unique identifier for the certificate of the
blockchain table owner stored in the database that
may be used to verify the countersignature. This is
an OUT parameter option, used for storing the
output value of the command in a bind variable.

Specifies the version of the data contents and

('V2_DIGEST') layout that are used as input to the
countersignature algorithm. Only V2 DIGEST is
supported in this release.

Example

Countersign the row in the BCTAB1 blockchain table where COL1 equals 200.

bl countersign -tab ul.bctabl -kclname "COL1" -kclval "200"

9.4.3 desc

Describes the details of the blockchain table.

Syntax

blockchain table|bl desc {OPTIONS}

Option

Option

Description

Required

ORACLE

9-32

Chapter 9
BLOCKCHAIN_TABLE

Option Description

-table name|-tab <table name> Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case-sensitive,
embedded white
space, table and
schema name should
be entered

asll " llAlp_hall n . n IIB
e $a""". The parser
parses these values
as

"Alp_hall . llBe sall

9.4.4 delete_expired rows

Deletes some or all expired rows in the blockchain table.

Syntax

blockchain table|bl delete expired rows|del {OPTIONS}

Options

Option Description

Required

ORACLE 0.33

Chapter 9
BLOCKCHAIN_TABLE

Option Description

-table name|-tab <table name> Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case-sensitive,
embedded white
space, table and
schema name should
be entered
as:"""Alp ha"".""
Be $a""". The
parser parses these
values as:

"Alp ha"."Be $a"

Optional

-before timestamp|-before Specifies a timestamp to determine deletion of

<before timestamp> expired rows. Set this parameter according to the

B NLS_TIMESTAMP_FORMAT or

NLS_TIMESTAMP_TZ_FORMAT. The default value

for this parameter is NULL.

e If the parameter value is NULL, all expired rows
in the table are deleted.

* If the parameter value is not NULL and is older
than the timestamp calculated based on the
current time and the row retention period, then
rows with timestamps earlier than the
parameter value are deleted.

* If the parameter value is not NULL and is more
recent than the timestamp calculated based on
the current time and row retention period, the
calculated timestamp is used, resulting in the
deletion of all expired rows.

-rowcount <rowcount> Requests the number of rows deleted. This is an
OUT parameter option, used for storing the output
value of the command in a bind variable.

Example

Delete expired rows from the BCTAB1 blockchain table where expiry occurred before January
23, 2024, at 11:00 AM, and store the number of deleted rows in the bind variable row count.

blockchain table delete expired rows -table name """bcta b1""" -
before timestamp 23-JAN-23 11.00.00 AM -rowcount ":countl"

ORACLE o.34

9.4.5 get_bytes_for row_hash

Returns in row_data the bytes for the particular row identified (a series of meta-data-value,
column-data-value pairs in column position order) followed by the hash for the previous row in

ORACLE

the chain in the data format specified.

Syntax

Chapter 9
BLOCKCHAIN_TABLE

blockchain table|bl get bytes for row hash {OPTIONS}

Options

Option

Description

Required
-table name|-tab <table name>

-instance_id|-inst <instance id>

-chain id|-ch <chain id>

-sequence_id|-seq <sequence_ id>

Optional
-data format|-df <data format>

-row _data file <row data file>

Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case-sensitive,
embedded white
space, table and
schema name should
be entered

as:" " HAlp hall n . nn
Be $a""".The
parser parses these
values as:

"Alp_ha" . "Be $a"

Specifies the instance that inserted the row. If
specified, this limits the operation to rows inserted
by the given instance.

Specifies the chain containing the row. If specified,
this limits operation to rows assigned to the
specified chain. By default, there are 32 chains in
each instance, and they are numbered from O to
31.

Specifies the position of the row on the specified
chain.

Specifies the version of the data layout for the hash
in the specified row. Must be 1 in this release. By
default, the value of this option is set as 1.

Specifies the file in which the generated
row_data bytes are saved.

9-35

Chapter 9
BLOCKCHAIN_TABLE

Option Description

-user chain|-uchain <user chain> Specifies the name of the user chain when the
bytes for the cryptographic hash on the user chain
are desired. If the option is not specified, the
system chain's cryptographic hash bytes are
assumed as the desired output.

-keycoll name|-kclname <keycoll name> Specifies the name of the key column.

-keycoll value|-kclval <keycoll value> Specifies the value of the key column.

-keycol2 name|-kc2name <keycol2 name> Specifies the name of the second column in a
composite key.

-keycol2 valuel|-kc2val <keycol2 value> Specifies the value of the second columnin a
composite key.

-keycol3 name|-kc3name <keycol3 name> Specifies the name of the third column in a
composite key.

-keycol3 valuel|-kc3val <keycol3 value> Specifies the value of the third columnin a
composite key.

-pdb_guid <pdb_guid> Specifies the identifier of the pluggable database
that inserted the row for a V2 blockchain table. If
specified, restricts attention to system chains
inserted by the specified pluggable database. It
must be NULL for a V1 blockchain table.

Examples

Retrieve the row hash bytes for the row in the BCTAB1 blockchain table identified by
INSTANCE_ID =1, CHAIN_ID = 27, and SEQUENCE_ID = 2.

blockchain table get bytes for row hash -tab ul.bcTABl -inst 1 -ch 27 -seq 2

9.4.6 get_bytes for row_signature

Returns the bytes used to compute a user signature, a delegate signature, or a
countersignature.

For a user signature or a delegate signature, the command returns in row data the bytes in the
hash in the row without any metadata. No other columns are involved, either in the row or in
the previous row. For a countersignature, the routine returns in row_data the bytes that are
input to the digital signature algorithm that computes a countersignature on the row.

Syntax

blockchain table|bl get bytes for row signature {OPTIONS}

Options

Option Description

Required

ORACLE 0.36

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-table name|-tab [table name]

Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case-sensitive,
embedded white
space, table and
schema name should
be entered
as:"""Alp ha"".""
Be $a""".The
parser parses these
values as:

"Alp ha"."Be $a"

One of the following: instance_id or chain_id and sequence_id or keycoll_name and keycoll_value

-instance id|-inst [instance id]

-chain_id|-ch [chain id]

-sequence_id|-seq <sequence id>

-keycoll name|-kclname <keycoll name>
-keycoll value|-kclval <keycoll value>

Optional
-data format|-df <data format>

-row_data file <row data file>
-keycol2 name|-kcZname <keycolZ name>
-keycol2 valuel|-kc2val <keycol2 value>
-keycol3 name|-kc3name <keycol3 name>

-keycol3 valuel|-kc3val <keycol3 value>

ORACLE

Specifies the instance that inserted the row. If
specified, this limits the operation to rows inserted
by the given instance.

Specifies the chain containing the row. If specified,
this limits operation to rows assigned to the
specified chain. By default, there are 32 chains in
each instance, and they are numbered from 0 to
31.

Specifies the position of the row on the specified
chain.

Specifies the name of the key column.
Specifies the value of the key column.

Specifies the version of the data layout for the hash
in the specified row. Must be 1 in this release. By
default, the value of this option is set as 1.

Specifies the file in which the generated
row_data bytes are saved.

Specifies the name of the second column in a
composite key.

Specifies the value of the second column in a
composite key.

Specifies the name of the third column in a
composite key.

Specifies the value of the third column in a
composite key.

9-37

Chapter 9
BLOCKCHAIN_TABLE

Option Description

-pdb _guid <pdb guid> Specifies the identifier of the pluggable database
that inserted the row for a V2 blockchain table. If
specified, restricts attention to system chains
inserted by the specified pluggable database. It
must be NULL for a V1 blockchain table.

-type <type> The valid values are USER, DELEGATE, and
COUNTERSIGNATURE. DELEGATE and USER may be
used interchangeably. The default value is USER.

Examples

Retrieve the row signature bytes for the row in the BCTAB1 blockchain table where COL1 = 100,
and store the output in the row data file ulrl.dat.

bl get bytes for row signature -tab ul.bctabl -kclname "COL1" -kclval "100" -
row data file <PATH TO FILE>/ulrl.dat

9.4.7 get_digest

Generates and returns a cryptographic hash of the digest for user-specified rows or for a
specified blockchain table.

Syntax

blockchain table|bl get digest {OPTIONS}

Options

Option Description

Required

ORACLE 0.38

Chapter 9
BLOCKCHAIN_TABLE

Option Description

-table name|-tab <table name> Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case sensitive,
embedded white
space table and
schema name should
be entered as

nmn llAlp_hall " . " IIBe
$a""". The parser
parses these values
as

llAlp_hall . IIBe $all

-digest <digest> Specifies the output variable containing the
hexadecimal representation of the digest. This is
an OUT parameter option, used for storing the
output value of the command in a bind variable.

Optional

-selector <selector> Specifies the condition: A WHERE clause without
the WHERE keyword.

-selector file <selector file> Specifies the name of the file which stores the
condition, a WHERE clause without the WHERE
keyword.

-bytes file <bytes file> Specifies the name of the file that contains the
digest.

-digest file <digest file> Specifies the name of the file that contains the

binary representation of the digest. The digest
value contains a header followed by an array of
row-info.

-row data file <row data file> Specifies the file in which the generated
row data bytes are saved.
-row indexes file <row indexes file> Specifies the name of the file that contains the
JSON representation of the type
ORABCTAB ROW ARRAY T.
-algorithm|-algo <algorithm> Specifies the cryptographic hash algorithm to use.
The parameter must be one of the following
constants:
e SHA2 256
+ SHA2 384
+ SHA2 512

Examples

ORACLE 9.39

Chapter 9
BLOCKCHAIN_TABLE

Generate a digest for the rows in the BCTABR1 blockchain table where COL1 =100 or COL1 =
400, and store the digest in the file dig. txt.

blockchain table get digest -tab ul.bctabl -selector "COL1=100 OR COL1=400" -
digest file <PATH TO FILE>/dig.txt

9.4.8 get_signed_digest

ORACLE

Generates and returns the signed digest for user-specified rows (if specified) in a blockchain
table using the table owner's private key stored in the database wallet.

The particular rows in the digest are specified by the selector parameter. The default value of
this field is NULL. The signed bytes, signed row indexes, and schema certificate guid
are also returned.

Syntax

blockchain table|bl get signed digest {OPTIONS}

Options
Option Description
Required
-table name|-tab <table name> Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.
Note:
Case sensitive,
embedded white
space table and
schema name should
be entered as
nn HAlp_haH " . " HBe
$a""". The parser
parses these values
as
"Alpiha" . "Be $an
-digest <digest> Specifies the output variable that contains the

hexadecimal representation of the signed digest.
This is an OUT parameter option, used for storing
the output value of the command in a bind variable.

-digest file <digest file> Specifies the name of the file that contains the
binary representation of the signed digest.

Optional

-selector <selector> Specifies the condition: A WHERE clause without
the WHERE keyword.

9-40

ORACLE

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-selector file <selector file>

-bytes file <bytes file>
-row_data file <row data file>

-row_indexes file <row_indexes file>

-cert guid|-cg <cert guid>

-algorithm|-algo <algorithm>

Specifies the name of the file which stores the
condition, a WHERE clause without the WHERE
keyword.

Specifies the name of the file that contains the
digest that is signed.

Specifies the file in which the generated
row data bytes are saved.

Specifies the name of the file that contains the
JSON representation of the type
ORABCTAB ROW ARRAY T.

Specifies the Global Unique Identifier (GUID) for
the certificate. This is an OUT parameter option,
used for storing the output value of the command in
a bind variable.

Specifies the cryptographic hash algorithm to use.
The default value of this field is

DBMS BLOCKCHAIN TABLE.SIGN ALGO DEFAULT.
If specified, the parameter must be one of the
following package constants:

« RSA SHA2 256

* RSA SHA2 384

¢ RSA SHA2 512

Examples

Generate a signed digest for the BCTAB1 blockchain table and store the digest in the bind

variable hex.

blockchain table get signed digest -table name ul.bctabl -digest ":hex"

9.4.9 sign_row

This command can be used by the current user to provide a signature on the row content of a
previously inserted row. The transaction that inserted the row into the blockchain table must be
committed before the SIGN Row command is executed.

Syntax

blockchain table|bl sign row|sign {OPTIONS}

Options

Option

Description

Required

9-41

ORACLE

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-table name|-tab <table name>

-cert quid|-cg <cert guid>

-instance id|-inst <instance id>

-chain id|-ch <chain id>

-sequence_id|-seq <sequence id>

-signature|-sig <signature>

-algorithm|-algo <algorithm>

Optional
-row_hash <row hash>

-signature file <signature file>

Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case sensitive,
embedded white
space table and
schema name should
be entered as

nmn llAlp_hall " . " IIBe
$a""". The parser
parses these values
as:

llAlp_hall . IIBe $all

Specifies the Global Unique Identifier (GUID) for
the certificate.

Specifies the instance that inserted the row. If
specified, this limits the operation to rows inserted
by the given instance.

Specifies the chain containing the row. If specified,
this limits operation to rows assigned to the
specified chain. By default, there are 32 chains in
each instance, and they are numbered from 0 to
31.

Specifies the position of the row on the specified
chain.

Specifies the bind variable which holds the
hexadecimal representation of the user's digital
signature on the hash value stored in the row.

Specifies the algorithm used to create the digital
signature. The parameter must be one of the
following acceptable string constants:

e RSA SHA2 256

+ RSA SHA2 384

¢ RSA SHA2 512

Specifies the expected value of the hash in the row
to be signed, if non-Null. If NULL, the hash in the
row to be signed is not checked. Default value is
NULL.

Specifies the file name which holds the binary
representation of the user's digital signature on the
hash value stored in the row.

9-42

ORACLE

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-private key for signature|-prvtkey
<private key for signature>

-wallet path|-wallet <wallet path>

-wallet password|-walletpw
<wallet password>

-wallet private key alias|-
walletpvtkeyalias

<wallet private key alias>
-wallet private key password|-

walletpvtkeypw
<wallet private key password>

-keycoll name|-kclname <keycoll name>
-keycoll value|-kclval <keycoll value>

-keycol2 name|-kcZname <keycol2 name>
-keycol2 valuel|-kc2val <keycol2 value>
-keycol3 name|-kc3name <keycol3 name>
-keycol3 valuel|-kc3val <keycol3 value>

-data format|-df <data format>

-pdb_guid <pdb guid>

-type <type>

Specifies the private key file used to generate a
signature using the signature bytes for a particular
row. The generated signature is further used for
signing a particular row. The private key is cleared
out from memory upon signature generation.

Specifies the location of the Wallet. If
“private_key_for_signature’ is not provided, the
private key is extracted and used from the wallet at
the specified path.

Specifies the password for accessing the local
wallet. The password is cleared upon use and is
not retained. If a local wallet password is not
provided, a prompt appears for interactive entry.

Specifies the private key for signature generation. If
not specified, the system tries to retrieve the private
key associated with the provided CERT GUID from
the local wallet.

Specifies the password required to access the
private key stored in the specified wallet path.

Specifies the name of the key column.
Specifies the value of the key column.

Specifies the name of the second column in a
composite key.

Specifies the value of the second column in a
composite key.

Specifies the name of the third column in a
composite key.

Specifies the value of the third column in a
composite key.

Specifies the version of the data layout for the hash
in the specified row. Must be 1 in this release. By
default, the value of this option is set as 1.

Specifies the identifier of the pluggable database

that inserted the row for a V2 blockchain table. It
must be NULL for a V1 blockchain table.

The valid values for type are USER and DELEGATE.
These values may be used interchangeably. The
default value is USER.

Examples

Sign the row in the BCTABI blockchain table identified by the bind variables INSTANCE ID,
CHAIN ID, and SEQUENCE_ID, using the certificate ID in the bind variable CERTID, the row hash

in ROWHASH, and the RSA SHA2 512 algorithm.

blockchain table sign row -tab ul.bctabl -inst ":instid" -ch ":chainid" -seq

":seqid" -row hash
"RSA_SHA2 512"

":rowhash" -sig ":signature" -cg ":certid" -algo

9-43

9.4.10 sign_row_with_countersignature

Enables the user to request a countersignature from the database.

ORACLE

Chapter 9
BLOCKCHAIN_TABLE

This command is an extension of the SIGN Row command. The countersignature is produced
by signing the row data content using the table owner's private key stored in the database
wallet. A row in a blockchain table can be countersigned only if the row belongs to the current

epoch for the blockchain table.

Syntax

blockchain table|bl sign row with countersignature|signandcountersign

{OPTIONS}

Options

Option

Description

Required
-table name|-tab <table name>

Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case sensitive,
embedded white
space table and
schema name should
be entered as

nmn "Alp hall n . n HBe
$a""". The parser
parses these values
as

"Alp_ha" . "Be $a"

One of the following is required: instance_id, or chain_id and sequence_id, or keycoll_name and

keycoll_value

-instance id|-inst <instance id>

-chain_id|-ch <chain id>

-sequence id|-seq <sequence id>

-keycoll name|-kclname <keycoll name>

-keycoll value|-kclval <keycoll value>

Specifies the instance that inserted the row. If
specified, this limits the operation to rows inserted
by the given instance.

Specifies the chain containing the row. If specified,
this limits operation to rows assigned to the
specified chain. By default, there are 32 chains in
each instance, and they are numbered from 0 to
31.

Specifies the position of the row on the specified
chain.

Specifies the name of the key column.
Specifies the value of the key column.

9-44

ORACLE

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

One of the following: signature, or signature_file, or private_key_for_signature, or wallet_path

-signature|-sig <signature>

-signature file <signature file>

-private key for signature|-prvtkey
<private key for signature>

-wallet path|-wallet <wallet path>
-cert quid|-cg <cert guid>

-algorithm|-algo <algorithm>

Optional
-row_hash <row hash>

-wallet password|-walletpw
<wallet password>

-wallet private key alias|-
walletpvtkeyalias

<wallet private key alias>
-wallet private key password|-

walletpvtkeypw
<wallet private key password>

-keycol2 name|-kcZname <keycol2 name>
-keycol2 valuel|-kc2val <keycol2 value>
-keycol3 name|-kc3name <keycol3 name>
-keycol3 valuel|-kc3val <keycol3 value>

-data format|-df <data format>

-type <type>

Specifies the bind variable which holds the
hexadecimal representation of the user's digital
signature on the hash value stored in the row.

Specifies the file name which holds the binary
representation of the user's digital signature on the
hash value stored in the row.

Specifies the private key file used to generate
signature using the signature bytes for a particular
row. The generated signature is further used for
signing a particular row. The private key is cleared
out from memory upon signature generation.

Specifies the location of the local wallet.

Specifies the Global Unique Identifier (GUID) for
the certificate.

Specifies the algorithm used to create the digital
signature. The parameter must be one of the
following acceptable string constants:

« RSA SHA2 256

+ RSA SHA2 384
+ RSA SHA2 512

Specifies the expected value of the hash in the row
to be signed, if non-Null. If NULL, the hash in the
row to be signed is not checked. Default value is
NULL.

Specifies the password for accessing the local
wallet. The password is cleared upon use and is
not retained. If a local wallet password is not
provided, a prompt appears for interactive entry.
Specifies the private key for signature generation. If
not specified, the system tries to retrieve the private
key associated with the provided CERT GUID from
the local wallet.

Specifies the password required to access the
private key stored in the specified wallet path.

Specifies the name of the second column in a
composite key.

Specifies the value of the second column in a
composite key.

Specifies the name of the third column in a
composite key.

Specifies the value of the third column in a
composite key.

Specifies the version of the data layout for the hash
in the specified row. Must be 1 in this release. By
default, the value of this option is set as 1.

The valid values for type are USER and DELEGATE.

These values may be used interchangeably. The
default value is USER.

9-45

ORACLE

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-countersignature algorithm|-
countersignalgo
<countersignature algorithm>

-bytes file <bytes file>
-countersignature|-csig

<countersignature>

-countersign cert guid|-cscg
<countersign cert guid>

-content version <content version>

-pdb_guid <pdb guid>

Specifies the cryptographic hash algorithm to use
for the countersignature. The default value of this
field is

DBMS BLOCKCHAIN TABLE.SIGN ALGO DEFAULT.
If specified, the parameter must be one of the
following acceptable string constants:

« RSA SHA2 256

+ RSA SHA2 384
« RSA SHA2 512

Specifies the name of the file that contains the
signed countersignature bytes.

Specifies the digital signature on the bytes returned
inbytes file. Thisis an OUT parameter option,
used for storing the output value of the command in
a bind variable.

Specifies a unique identifier for the certificate of the
blockchain table owner stored in the database that
may be used to verify the countersignature. This is
an OUT parameter option, used for storing the
output value of the command in a bind variable.

Specifies the version of the data contents and
layout that are used as input to the
countersignature algorithm. Only V2 DIGEST is
supported in this release.

Specifies the identifier of the pluggable database

that inserted the row for a V2 blockchain table. It
must be NULL for a V1 blockchain table.

Examples

Sign and countersign the row in the U1.BCTABR1 blockchain table identified by the bind
variables :INST ID, :CHAIN ID, and :SEQ ID, using the row hash :ROWHASH, the certificate
ID :CERT 1ID2, and the RSA SHA2 512 algorithm. The signature is generated using the

content from the file ulrll sign.dat.

bl signandcountersign -tab ul.bctabl -inst ":inst id" -ch ":chain id" -seq
":seq id" -row _hash ":row hash" -signature file
<PATH TO FILE>/ulrll sign.dat -cert guid ":cert id2" -algo "RSA SHA2 512"

Perform signature and countersignature on the row in the U1.BCTAB1 blockchain table
identified by :INST ID,:CHAIN ID, and :SEQ ID, using the row hash :ROWHASH, signer
certificate ID :CERT_ID2, and returns the countersigner certificate ID :CERT GUID used for
countersignature. The RSA_SHA2 512 algorithm is used for both signing and countersigning.
The signature is generated using the file ulrll sign.dat, and the countersignature is
provided in hex format using :CSIG and the binary format using countersignBytes. txt.

blockchain table sign row with countersignature -tab ul.bctabl -inst
":inst id" -ch ":chain id" -seq ":seq_id" -row hash ":row hash" -

signature file

<PATH TO FILE>/ulrll sign.dat -cert guid ":cert id2" -algo "RSA SHA2 512" -
cscg ":cert guid" -bytes file <PATH TO FILE>/countersignBytes.txt -csig

":csig"

-countersignalgo "RSA SHA2 512"

9-46

Chapter 9
BLOCKCHAIN_TABLE

e Sign and countersign the row in the U1.BCTAB1 blockchain table where COL1 = 1200, using
the certificate ID :CERT ID2 and the RSA SHA2 512 algorithm. The signature is generated
from the file ulr12 sign.dat.

bl signandcountersign -tab ul.bctabl -kclname "COL1" -kclval "1200" -
signature file <PATH TO FILE>/ulrl2 sign.dat -cert guid ":cert id2" -algo
"RSA SHA2 512"

9.4.11 verify_rows

Verifies all rows on all applicable system chains for the integrity of the hash column value for
rows created in the range of low timestamp t0o high timestamp. Row signatures can be
verified as an option. An appropriate exception is triggered if the integrity of chains is
compromised.

Syntax

blockchain table|bl verify rows {OPTIONS}

Options
Option Description
Required
-table name|-tab <table name> Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.
Note:
Case sensitive,
embedded white
space table and
schema name should
be entered as
nmn "Alp ha" " . " "Be
$a""". The parser
parses these values
as
"Alp_ha" . "Be $a"
Optional

ORACLE 9-47

Chapter 9
BLOCKCHAIN_TABLE

Option Description

-low timestamp|-low <low_ timestamp> Specifies the low end of the time range. If specified,
the low end of the time range is used for verifying
rows. The default value is NULL. Use double quotes
to enclose the value.

Note:

The low_timestamp
should be specified
as per the
NLS_TIMESTAMP_F
ORMAT or
NLS_TIMESTAMP_T
Z_FORMAT.

-high timestamp|-high <high timestamp> Specifies the high end of the time range. If
specified, the high end of the time range is used for
verifying rows. The default value is NULL. Use
double quotes to enclose the value.

Note:

The

high timestamp
should be specified
as per the
NLS_TIMESTAMP_F
ORMAT or
NLS_TIMESTAMP_T
Z_FORMAT.

-instance id|-inst <instance id> Specifies the instance that inserted the row. If
specified, this limits the operation to rows inserted
by the given instance.

-chain id|-ch <chain id> Specifies the chain containing the row. If specified,
this limits operation to rows assigned to the
specified chain. By default, there are 32 chains in
each instance, and they are numbered from O to
31.

-rowcount <rowcount> Specifies the number of rows verified. This is an
OUT parameter option, used for storing the output
value of the command in a bind variable.

ORACLE 0.48

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-skip user signature|-skipuser

-skip delegate signature|-skipdlg

-skip countersignature|-skipctr

-pdb _guid <pdb guid>

Specifies true or false for SKIP USER SIGNATURE.

The default value is FALSE.

* If SKIP USER SIGNATURE is specified (set to
true), the blockchain verify rows SQLcl
command bypasses the validation of user
signature if it is present on any row.

» If SKIP USER SIGNATURE is not specified (set
to false), the hash and user signature are both
verified for any row if they are present,
otherwise only the hash is verified.

Specifies true or false for

SKIP DELEGATE SIGNATURE. The default value is

FALSE.

. If SKIP DELEGATE SIGNATURE is specified
(set to true), the blockchain verify rows
SQLcl command bypasses the validation of
delegate signature if it is present on any row.

. If SKIP DELEGATE SIGNATURE is not
specified (set to false), the hash and delegate
signature are both verified for any row if they
are present, otherwise only the hash is
verified.

Specifies true or false for

SKIP COUNTERSIGNATURE. The default value is

FALSE.

. If SKI P COUNTERSIGNATURE is specified (set
to true), the blockchain verify rows SQLcl
command bypasses the validation of
countersignature if it is present on any row.

» If SKIP_COUNTERSIGNATURE is not specified
(set to false), the hash and countersignature
are both verified for any row if they are
present, otherwise only the hash is verified.

Specifies the identifier of the pluggable database
that inserted the rows for a V2 blockchain table. It
must be NULL for a V1 blockchain table.

Examples

Verify the integrity of all rows in the BCTAB1 blockchain table.

blockchain table verify rows -table name ul.bctabl

9.4.12 verify_table

Verifies signatures and system chains for all rows where the creation time falls between the
minimum value for the row-creation time from begin bytes file and the maximum value for
row-creation time from end_bytes file. The OUT parameter row count returns the number of

successfully verified rows.

Syntax

blockchain table|bl verify table {OPTIONS}

ORACLE

9-49

ORACLE

Options

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

Required
-end bytes file <end bytes file>

-begin bytes file <begin bytes file>

Optional
-rowcount <rowcount>

-skip user signature|-skipuser

-skip delegate signature|-skipdlg

Specifies a digest populated by a call to either
PL/SQL API's

(GET_SIGNED BLOCKCHAIN DIGEST,

GET SIGNED BLOCKCHAIN DIGEST FOR SELECT
ED ROWS, GET BLOCKCHAIN DIGEST, or

GET BLOCKCHAIN DIGEST FOR SELECTED ROWS

)

or
by executing SQLcl command (blockchain_table
get_digest or get_signed_digest command).

Specifies a digest populated by a call to either
PL/SQL API's

(GET SIGNED BLOCKCHAIN DIGEST,

GET SIGNED BLOCKCHAIN DIGEST FOR SELECT
ED ROWS, GET BLOCKCHAIN DIGEST, or
GET_BLOCKCHAIN_DIGEST_FOR_SELECTED_ROWS)

or
by executing SQLcl command (blockchain_table
get_digest or get_signed_digest command) before
the end bytes file is populated.

Specifies the number of rows verified. This is an
OUT parameter option, used for storing the output
value of the command in a bind variable.

Specifies true or false for SKIP USER_SIGNATURE.

The default value is FALSE.

e If SKIP _USER_SIGNATURE is specified (set to
true), the blockchain verify table SQLcl
command bypasses the validation of user
signature if it is present on any row.

i If SKIP USER SIGNATURE is not specified (set
to false), the hash and user signature are both
verified for any row if they are present,
otherwise only the hash is verified.

Specifies true or false for

SKIP DELEGATE SIGNATURE. The default value is

FALSE.

» If SKIP DELEGATE SIGNATURE is specified
(set to true), the blockchain verify table
SQLcl command bypasses the validation of
delegate signature if it is present on any row.

. If SKIP DELEGATE SIGNATURE is not
specified (set to false), the hash and delegate
signature are both verified for any row if they
are present, otherwise only the hash is
verified.

9-50

Chapter 9
BLOCKCHAIN_TABLE

Option Description

-skip countersignature|-skipctr Specifies true or false for
SKIP COUNTERSIGNATURE. The default value is
FALSE.

e If SKIP COUNTERSIGNATURE is specified (set
to true), the blockchain verify table SQLcl
command bypasses the validation of
countersignature if it is present on any row.

i If SKIP_ COUNTERSIGNATURE is not specified
(set to false), the hash and countersignature
are both verified for any row if they are
present, otherwise only the hash is verified.

Examples

Verify the digests defined by the end bytes file 1atest.txt and the begin bytes file prevl. txt,
and store the count of verified rows in the bind variable rowcount.

blockchain table verify table -end bytes file <PATH TO FILE>/latest.txt -
begin bytes file <PATH TO FILE>/prevl.txt -rowcount ":temp"

9.4.13 verify_user_chains

ORACLE

Verifies rows of one or more user chains when the user chains feature is enabled on the
blockchain table.

Syntax

blockchain table|bl verify user chains {OPTIONS}

Options

Option Description

Required

9-51

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-table name|-tab <table name>

-user chain|-uchain <user chain>
Optional

-rowcount <rowcount>

-keycoll valuel|-kclval <keycoll value>
-keycol2 valuel|-kc2val <keycol2 value>

-keycol3 value|-kc3val <keycol3 value>

-low timestamp|-low <low_ timestamp>

ORACLE

Specifies a name for the blockchain table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case sensitive,
embedded white
space table and
schema name should
be entered as :

nn HAlp_haH " . " HBe
$a""". The parser
parses these values
as:

"Alp_ha" . "Be $an

Specifies the name of the row version given when
the blockchain table was created.

Specifies the number of rows verified. This is an
OUT parameter option, used for storing the output
value of the command in a bind variable.

Specifies the value of the key column.

Specifies the value of the second column in a
composite key.

Specifies the value of the third column in a
composite key.

Specifies the low end of the time range. If specified,
the low end of the time range is used for verifying
rows. The default value is NULL. Use double quotes
to enclose the value.

Note:

The low_timestamp
should be specified
as per
NLS_TIMESTAMP_F
ORMAT or
NLS_TIMESTAMP_T
Z_FORMAT.

9-52

ORACLE

Chapter 9
BLOCKCHAIN_TABLE

Option

Description

-high timestamp|-high <high timestamp>

-skip user signature|-skipuser

-skip delegate signature|-skipdlg

-skip countersignature|-skipctr

Specifies the high end of the time range. If
specified, the high end of the time range is used for
verifying rows. The default value is NULL. Use
double quotes to enclose the value.

Note:

The

high timestamp
should be specified
as per
NLS_TIMESTAMP_F
ORMAT or
NLS_TIMESTAMP_T
Z_FORMAT.

Specifies true or false for SKIP USER_SIGNATURE.

The default value is FALSE.

e If SKIP USER SIGNATURE is specified (set to
true), the blockchain verify user chains
SQLcl command bypasses the validation of
user signature if it is present on any row.

» If SKIP USER SIGNATURE is not specified (set
to false), the hash and user signature are both
verified for any row if they are present,
otherwise only the hash is verified.

Specifies true or false for

SKIP DELEGATE SIGNATURE. The default value is

FALSE.

. If SKIP DELEGATE SIGNATURE is specified
(set to true), the blockchain
verify user chains SQLcl command
bypasses the validation of delegate signature if
it is present on any row.

d If SKIP DELEGATE SIGNATURE is not
specified (set to false), the hash and delegate
signature are both verified for any row if they
are present, otherwise only the hash is
verified.

Specifies true or false for

SKIP COUNTERSIGNATURE. The default value is

FALSE.

* If SKIP_COUNTERSIGNATURE is specified (set
to true), the blockchain verify user chains
SQLcl command bypasses the validation of
countersignature if it is present on any row.

* If SKIP_COUNTERSIGNATURE is not specified
(set to false), the hash and
COUNTERSIGNATURE are both verified for
any row if they are present, otherwise only the
hash is verified.

9-53

Chapter 9
CERTIFICATE

Option Description

-pdb guid <pdb guid> Specifies the identifier of the pluggable database
that inserted the rows for a V2 blockchain table. It
must be NULL for a V1 blockchain table.

Examples

Verify the rows of BCTAB1 COL2 user chain in the BCTAB1 blockchain table.

bl verify user chains -tab ul.bctabl -uchain "bctabl col2"

9.5 CERTIFICATE

9.5.1 Add

ORACLE

Use the certificate command to add and delete X.509 certificates. This command uses an
extension of the DBMS USER CERTS PL/SQL package. The DBMS USER_CERTS PL/SQL package
uses ADD CERTIFICATE and DROP CERTIFICATE subprograms to add and delete X.509
certificates which are used for signature verification for blockchain tables by the current user.

The sub-commands are:

e Add

* Add_Copy
e Drop

e List

Adds an X.509 certificate.

Note:

e Pass the full path of the cert_file on the client machine.

e The certificates should be present on the client machine.

Syntax

certificate add {OPTIONS}

Options

Option Description

Required

-cert file | -cf <cert file> Specifies the X.509 certificate (saved as a file)
used for signature verification of blockchain tables.

Optional

9-54

Chapter 9
CERTIFICATE

Option

Description

-cert guid | -cg <cert guid>

-wallet path | -wallet <wallet path>()

-wallet password | -walletpwd
<wallet password>()

-wallet certificate alias |-
walletcertalias
<wallet certificate alias>()

Specifies the Global Unique Identifier (GUID) for
the certificate. This is an OUT parameter option,
used for storing the output value of the command in
a bind variable.

Specifies the location of the wallet. If “cert_file" is
not provided, the certificate is extracted from the
specified wallet and added to the user_certs$ table.

Specifies the password of the local wallet. The
password is removed upon use and is not retained.
If a wallet password is not provided, then you are
prompted to enter the password.

Specifies the alias of the certificate to be added.

Example

SQL> certificate add -cf <PATH TO FILE>/u2 cert.der

9.5.2 Add_Copy

ORACLE

Copies an X.509 certificate from one pluggable database to another while retaining its original

GUID.

Note:

Syntax

certificate add copy {OPTIONS}

» Pass the full path of the cert_file on the client machine.

* The certificates should be present on the client machine.

Options

Option Description

Required

-cert file | -cf <cert file> Specifies the X.509 certificate (saved as a file)
used for signature verification of blockchain tables.

-cert guid | -cg <cert guid> Specifies the Global Unique Identifier (GUID) for
the certificate.

Optional

-username | -uname <username> Specifies the user name. If specified, the certificate

is added to the schema associated with the
mentioned user name.

9-55

9.5.3 Drop

9.5.4 List

Chapter 9
CODESCAN

Example

SQL> certificate add copy -cf <PATH TO FILE>/u2 cert.der -cg <ORIGINAL GUID> -
uname "ul"

Drops a certificate. This is used for signature verification of blockchain tables.

Syntax

certificate drop {OPTIONS}

Options
Option Description
Required
-cert guid | -cg <cert guid> Specifies the Global Unique Identifier (GUID) for
the certificate.
Example

SQL> certificate drop -cg ":cg"

Lists all previously added certificates that can be used for signature verification of blockchain
tables.

Syntax

certificate list|ls

Example

SQL> certificate list

9.6 CODESCAN

ORACLE

Identifies issues with the code using the Trivadis Coding Guidelines, which is available on
GitHub.

Syntax

codescan { -path dir | -format {json|text} | -ignore ruleNo | -output file | -
settings file }

where

9-56

Chapter 9
CONNECT

e -path checks SQL, PLS and PLB files in the directory for SQL Best Practice violations and
generates a report of the issues found.

e -format formats the output as structured JSON. For example:

[{"file": "/private/tmp/tst.sql", "warnings": [
{line:35, pos:15, ruleNo:"G-1050",
msg:"Avoid using literals in your code" },...]1...].

* -output saves the report in a new file.
e -ignore skips specified rule checks.

° -settings imports CODESCAN settings from the JSON file. Currently, only the ignore
attribute is supported, example, {"ignored": ["G-1050", "G-4010"]}.

Set Codescan
Controls warning messages that are triggered for SQLcl command line code quality issues.

Syntax

set codescan {ON | OFF}

where 0N turns on warnings for SQL and PL/SQL best practice violations. The default is OFF.

Example

SQL>set codescan on
SQL>BEGIN
BEGIN
null;
END;
END;
/

SQL best practice warning (1,7): G-1010: Try to label your sub blocks

PL/SQL procedure successfully completed.

9.7 CONNECT

Connection types in SQLcl:
e KERBEROS

« NAME

« OCl

« ORACLE
« OREST
* RADIUS
« SOCKS
« THIRD

ORACLE 9-57

9.7.1 KERBEROS Connection Type

ORACLE

e WALLET

Chapter 9
CONNECT

Connect to a database using Kerberos authentication. The connection spec parameter has the

following form:

[/]1[@<url>]

Note:

Only Kerberos connections using [/][@<url>] are supported in SQLcl. Active Directory

is not supported.

See Enabling Kerberos Authentication in Oracle Database Security Guide for more information
about Kerberos authentication in Oracle Database.

Options

Option

Description

-kerberos, ker

Specifies a KERBEROS connection type.

-krb5_config, krb5c

Specifies a non-default Kerberos configuration
file. This property is specified only when SQLcl is
started. These can be passed in by using the
relevant -D system property name or
environmental variables.

-krb5ccname, krb5cc

Specifies a non-default Kerberos credential file.

-url Specifies the URL. This is an alternative to
providing it in the connection spec parameter.

-role, r Specifies the database role. This is an alternative
to providing it in the connection spec parameter.

-edition, ed Specifies the Oracle database edition. This is an
alternative to providing it in the connection spec
parameter.

-verbose, v Requests output of diagnostic information about
the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Example

To connect to a database using KERBEROS:

SQL> CONNECT -kerberos /@myhost:1521/myservice

See Also:

9-58

https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-kerberos-authentication.html

Chapter 9
CONNECT

Support for Kerberos for troubleshooting information

9.7.2 NAME Connection Type

Connect to a database using a stored connection definition. Stored connections are identified
using a unique connection name. For more information about stored connections, see

CONMGR.

Options

Option Description

-name, n Specifies a connection type using a stored
connection definition.

-user, u Specifies the user name. This is an alternative to
providing it in the connection spec parameter.

-url Specifies the URL. This is an alternative to

providing it in the connection spec parameter.

-password, pw

Specifies the password. This is an alternative to
providing it in the connection spec parameter.

-role, r Specifies the database role. This is an alternative
to providing it in the connection spec parameter.

-edition, ed Specifies the Oracle database edition. This is an
alternative to providing it in the connection spec
parameter.

-verbose, v Requests output of diagnostic information about
the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Examples

To connect using a stored connection:

SQL> CONNECT -name my connection

To connect using a stored connection as a different user:

SQL> CONNECT -name myuser/mypassword@my connection

or

SQL> CONNECT -name myuser@my connection

ORACLE 059

https://docs.oracle.com/en/database/oracle/oracle-database/21/jjdbc/client-side-security.html

Chapter 9
CONNECT

9.7.3 OCI Connection Type

Connect to a database using OCI. Before connecting to OClI, it is necessary to specify the
profile to use. For example, OCI PROFILE frankfurt.

The connection spec parameter has the following form:

ocidl.databasetoolsconnection.<id>.

Options

Option Description

-0Ci Specifies an OCI connection type.

-rest, rt Specifies that the connection should be
established using REST.

-proxy, p Specifies the network proxy to use.

-verbose, v Requests output of diagnostic information about
the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Example

To connect using an OCID:

SQL> CONNECT ocidl.databasetoolsconnection.ocl.xxxyyyyzz.aabbccd

9.7.4 Oracle Connection Type

ORACLE

Connect to a database using Oracle Relational Database Management System.

The connection spec parameter has the following form:
<username>[/<password>] [@<url>] [as <role>] [edition= <edition>]

where

e <username> may be <proxyuser>[<username>] if a proxy user is required. Note that the
brackets around user name are required syntax.

e The <url> can take either of the following forms:

//<host>:<port>/<service>
<host>:<port>/<service>

or it may be a TNS name or an LDAP specification.

9-60

9.7.5 OREST Connection Type

ORACLE

Chapter 9

CONNECT
Options
Option Description
-oracle, o Specifies an Oracle connection type.
-user, u Specifies the user name. This is an alternative to

providing it in the connection spec parameter.

-password, pw

Specifies the password. This is an alternative to
providing it in the connection spec parameter.

-url Specifies the URL. This is an alternative to
providing it in the connection spec parameter.

-role, r Specifies the database role. This is an alternative
to providing it in the connection spec parameter.

-edition, ed Specifies the Oracle database edition. This is an
alternative to providing it in the connection spec
parameter.

-verbose, v Requests output of diagnostic information about
the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Example

To connect using EZCONNECT:

SQL> CONNECT myuser/passwd@myhost:1521/myservice

Connect to a database using REST. The connection spec parameter has the form:

<username> [/<password>] [@<url>] [as <role>] [edition= <edition>]

The <url> can take the form:

http://<host>:<port>/ords/<schema>

Options

Option Description

-orest, or Specifies a connection type that uses REST.
-user, u Specifies the user name. This is an alternative to

providing it in the connection spec parameter.

-password, pw

Specifies the password. This is an alternative to
providing it in the connection spec parameter.

-url

Specifies the URL. This is an alternative to
providing it in the connection spec parameter.

9-61

Chapter 9

CONNECT
Option Description
-role, r Specifies the database role. This is an alternative
to providing it in the connection spec parameter.
-edition, ed Specifies the Oracle database edition. This is an
alternative to providing it in the connection spec
parameter.
-verbose, v Requests output of diagnostic information about

the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Example

To connect using REST:

SQL> CONNECT myuser/passwd@http://myhost:9213/ords/myschema

9.7.6 RADIUS Connection Type

ORACLE

Connect to a database using RADIUS authentication. The connection spec parameter has the
form:

[<username>] [/<password>] [@<url>]

RADIUS can also be configured to authenticate using <number> from two-factor authenication:

[<username>]/ [<password>] [<number from device or command>] [<Qurl>]

¢ Note:

Challenge response two-factor authentication for RADIUS is not supported in this
release.

See Configuring RADIUS Authentication in Oracle Database Security Guide for more
information about RADIUS authentication.

Options

Option Description

-radius, rad Specifies a RADIUS connection type.

-user, u Specifies the user name. This is an alternative to
providing it in the connection spec parameter.

-password, pw Specifies the password. This is an alternative to

providing it in the connection spec parameter.

9-62

https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-radius-authentication.html

Chapter 9

CONNECT
Option Description
-url Specifies the URL. This is an alternative to
providing it in the connection spec parameter.
-role, r Specifies the database role. This is an alternative
to providing it in the connection spec parameter.
-edition, ed Specifies the Oracle database edition. This is an
alternative to providing it in the connection spec
parameter.
-verbose, v Requests output of diagnostic information about

the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Example

To connect using RADIUS:

SQL> CONNECT -radius myuser/passwd@myhost:1521/myservice

See Also:

e Support for RADIUS for troubleshooting information

9.7.7 SOCKS Connection Type

ORACLE

Connect to a database using a SOCKS proxy. Before connecting, set up the proxy process on
the local machine by using the ssh command. For example:

ssh -N -D 127.0.0.1:1087
opc@123.456.789.120.

The connection spec parameter has the form:

[<username>] [/<password>] [@<url>]

Options

Option Description

-socks|s Specifies a SOCKS connection type.
-socksproxy|sp Specifies the socks proxy.

-cloudconfig, cc Specifies the wallet to establish the connection.
-proxy, p Specifies the network proxy to use.

-user, u Specifies the user name. This is an alternative to

providing it in the connection spec parameter.

9-63

https://docs.oracle.com/en/database/oracle/oracle-database/21/jjdbc/client-side-security.html#GUID-5748543A-EA85-4263-93C8-A79B2D5DBB8C

Chapter 9

CONNECT
Option Description
-password, pw Specifies the password. This is an alternative to
providing it in the connection spec parameter.
-url Specifies the URL. This is an alternative to
providing it in the connection spec parameter.
-role, r Specifies the database role. This is an alternative
to providing it in the connection spec parameter.
-edition, ed Specifies the Oracle database edition. This is an
alternative to providing it in the connection spec
parameter.
-verbose, v Requests output of diagnostic information about

the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Example

To set the SOCKS and wallet properties and then connect:
SQL> SET socksproxy socks5h://localhost:1080

SQL> SET cloudconfig mywallet.zip
SQL> CONNECT myuser/passwd@mycloudtns

Alternatively, do it using one command:

SQL> CONNECT -socksproxy socks5h://localhost:1080 -cloudconfig mywallet.zip
myuser/passwd@mycloudtns

9.7.8 THIRD Connection Type

ORACLE

Connect to a third-party database. You need to add the appropriate driver jar to <sqlcl-
root>/1lib/drivers/. For example, for MYSQL you can download mysql-connector-
java-8.0.30.jar

The connection spec parameter is specific to the database but generally takes the form:

<username>[/<password>]@jdbc:<dbtype>://<host>:<port>

Options

Option Description

-third, t Specifies a THIRD connection type.

-user, u Specifies the user name. This is an alternative to

providing it in the connection spec parameter.

9-64

9.7.9 WALLET Connection Type

ORACLE

Chapter 9
CONNECT

Option

Description

-password, pw

Specifies the password. This is an alternative to
providing it in the connection spec parameter.

-url Specifies the URL. This is an alternative to
providing it in the connection spec parameter.

-role, r Specifies the database role. This is an alternative
to providing it in the connection spec parameter.

-edition, ed Specifies the Oracle database edition. This is an
alternative to providing it in the connection spec
parameter.

-verbose, v Requests output of diagnostic information about
the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Example

To connect to MySQL:

SQL> CONNECT myuser/passwd@jdbc:mysqgl://myhost:9906

Connect to a database using a wallet. The connection spec parameter has the form:

[<username>] [/<password>] [@<url>]

Options
Option Description
-wallet, w Specifies a WALLET connection type.

-cloudconfig, cc

Specifies the wallet to establish the connection.

-Proxy, p

Specifies the network proxy to use.

-user, u

Specifies the user name. This is an alternative to
providing it in the connection spec parameter.

-password, pw

Specifies the password. This is an alternative to
providing it in the connection spec parameter.

-url Specifies the URL. This is an alternative to
providing it in the connection spec parameter.

-role, r Specifies the database role. This is an alternative
to providing it in the connection spec parameter.

-edition, ed Specifies the Oracle database edition. This is an

alternative to providing it in the connection spec
parameter.

9-65

Chapter 9

CONMGR

Option Description

-verbose, v Requests output of diagnostic information about
the connection.

Parameters

Parameter Description

<connectionspec> Provides the connection specification for the
target database.

Example

To set the wallet property and then connect:

SQL> SET cloudconfig mywallet.zip
SQL> CONNECT myuser/passwd@mycloudtns

Alternatively, do it using one command:

SQL> CONNECT -cloudconfig mywallet.zip myuser/passwd@mycloudtns

9.8 CONMGR

The sub-commands are:

* Clone

* Import
e List

* Show

e Test

9.8.1 Clone Connections

ORACLE

Clones an existing connection. By default, the credentials stored with the original connection
are used for the new connection. To change the user name, the -user option can be used. If
the user changes, a password prompt is displayed unless the -nopwd option is used

Syntax

connmgr |cm clone {OPTIONS} {PARAMETERS}

Options
Option Description Default
-original, -0 The name of the source Required

connection being cloned.

9-66

9.8.2 Import Connections

ORACLE

Chapter 9
CONMGR

Option Description Default
-nopwd Whether to create the -
connection without a stored
password.
-user, -u The user name to store with the -
connection. If no user name is
specified, you may be prompted
to provide one when using the
connection, depending on the
authentication configuration.
Parameters
Parameter Description
<name> The name of the connection. Connection names
are case-sensitive.
Example

To clone an existing connection:

SQL> CONNMGR CLONE -original original name newname
SQL> CONNMGR CLONE -original original name -user newuser newname

Import one or more connections to the common connection store.

Connect files may contain encrypted passwords and other credentials.

When importing connections with encrypted passwords, the encryption key is required to
decrypt the passwords. The encryption key may be provided with the import command by first
securing it with a secret. For more information about using a secret, see SECRET Command.
If no key is provided with the import command, a prompt is displayed to request the key.

The passwords can be removed from imported connections by specifying the -

strip passwords option.

Syntax

connmgr |cm import {OPTIONS}

Options

{PARAMETERS }

9-67

Chapter 9
CONMGR

Option

Description

-duplicates | d | dups

{ignore|rename|replace}

Indicates how to handle imported connections

whose names match an existing connection.

e IGNORE: Skips the duplicate connections.

e RENAME: Renames the duplicate
connections by appending a unique number
to the end of the name.

° REPLACE: Replaces the existing connection
with the new connection.

-key

The public name of a secret that protects the
encryption key used to encrypt passwords in the
file.

< Note:

If the encryption
key is invalid, the
connections are
imported with the
passwords
removed.

-strip_passwords | s | strip

Indicates that encrypted passwords be stripped
from imported connections.

Parameters

Parameter Description

path A single file or directory containing one or more
connections to import. If the path is an archive
file, the archive is checked for a single
connection definition. If the path is a JSON file, it
is checked for legacy connection definitions. If
the path is a directory, it is checked for more
archives containing connection definitons.

Example

To create a secret for the encryption key and specify the secret name when importing

connections from a file:

SQL> SECRET SET mySecret <encryption key>

SQL> CONNMGR IMPORT -KEY mySecret myconns.json

9.8.2.1 SECRET Command

This command is used to securely store secret values in memory. The Connection Manager
(connmgr) commands enable the use of the secret name to identify secure values such as
passwords and encryption keys. Using the secret name in this way ensures that secure values

ORACLE

9-68

ORACLE

Chapter 9
CONMGR

are not displayed on the command line and do not persist in command history. Secure values

cannot be retrieved with the SECRET command.

Syntax

secret {SUBCOMMAND}

where the subcommands are:

e Set

e List

e Unset
Set

Sets a name for a secret value. The secret name can be used with commands that support

secure values.

Syntax

secret set {PARAMETERS}

Parameters

Parameter

Description

secret_name

The public name that can be used to represent a
secure value.

secret_value

The protected secret value that is associated
with the secret name.

List
Lists the currently stored secret names.

Syntax

secret list

Unset

Removes the secret value for the secret name.

Syntax

secret unset <secret name>

where secret_name is the public name used to represent a secret value.

Example

9-69

Chapter 9
CONMGR

Set a name for a secret value and use it to import connections.

SQL> secret set my name myEncryptionKey
secret my name stored
SQL> connmgr import -encryption key my name conns.json

9.8.3 List Connections

List the names of the connections.

Syntax

cnnmgr |cm list

Example

To list the names of connections, enter:

SQL> CONNMGR LIST

9.8.4 Show Connections

Shows the details for a connection, including the connection URL and the user name (if
stored). Additional details are displayed depending on the stored connection description.

Syntax

connmgr |cm show {PARAMETERS}

Parameters

Parameter Description

<name> The name of the connection. Connection names
are case-sensitive.

Example

To show the details for MyConnection:

SQL> CONNMGR SHOW MyConnection

9.8.5 Test Connections

ORACLE

A test connection is opened and then closed. This test connection does not affect the current
SQLcl connection. The credentials stored with the connection are used for the test. If no
password is stored, the user is prompted for the password. If the -user option is used, the
provided user is tested instead. A password will need to be provided when prompted.

9-70

Chapter 9
DG (Data Guard)

Syntax

connmgr |cm test {OPTIONS} {PARAMETERS}

Options

Option Description

-user, -u Specify a user name instead of using the one
stored with the connection definition. Case-
sensitive user names are quoted to preserve
case.

Parameters

Parameter Description

<name> The name of the connection. Connection names
are case-sensitive.

Example

To test the connection MyConnection for user name SCOTT:

SQL> CONNMGR TEST MyConnection
SQL> CONNMGR TEST -USER SCOTT MyConnection

9.9 DG (Data Guard)

Enables you to manage Oracle Data Guard broker for Oracle Database release 21c only.

See Data Guard Commands in Oracle Data Guard Broker for information about Data Guard
commands and parameters.

9.10 DIRS, PUSHD and POPD

With these commands, you can view and work with the directory stack (a list of recently-visited
directories) and change the current working directory in Linux and other Unix type operating
systems.

e dirs: Displays the list of currently saved directories.
e pushd: Adds directories to the stack.
» popd: Removes directories from the stack.

Refer to the SQLcl command-line help for more information about these commands.

9.11 IMMUTABLE_TABLE

This command uses an extension of the DBMS IMMUTABLE TABLE PL/SQL package.

Immutable tables are read-only tables that protect data against unauthorized modification.
These tables also prevent against accidental data modifications that may be caused by human

ORACLE 071

https://docs.oracle.com/en/database/oracle/oracle-database/21/dgbkr/oracle-data-guard-broker-commands.html#GUID-FC402EF5-D633-4A46-BE8C-4EDC6A340886

Chapter 9
IMMUTABLE_TABLE

errors. The DBMS IMMUTABLE TABLE PL/SQL package enables you to delete the expired rows in

an immutable table and add interval partitioning.

The sub-commands are:

e Add Interval Partitioning
e Delete Expired Rows

e Describe Table

9.11.1 Add Interval Partitioning

ORACLE

Adds interval partitioning to an existing, non-partitioned, V1 or V2 immutable table.

Syntax

immutable table|im add interval partitioning|addintpartition {OPTIONS}

Options

Option

Description

Required
-table name|-tab <table name>

-interval number|-intnum
<interval number>

-interval frequencyl|-intfreqg
<interval frequency>

-first high timestamp|-firsthigh
<first high timestamp>

Specifies a name for the immutable table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case sensitive,
embedded white
space table and
schema name should
be entered as

nmn "Alp hall n . n HBe
$a""". The parser
parses these values
as

"Alp_ha" . "Be $a"

Specifies the interval number that determines how
often the database creates partitions for the
immutable table.

Specifies the interval frequency that determines
how frequently the database creates partitions for
immutable tables within a specified interval set by
the interval number setting. Supported values
are YEAR, MONTH, DAY, HOUR, and MINUTE.
Specifies a timestamp that determines the upper

boundary of the first partition in the immutable
table.

9-72

9.11.2 Delete Expired Rows

Chapter 9
IMMUTABLE_TABLE

Deletes some or all of the expired rows from the immutable table. This command does not
commit if the database release is 19¢ or 21c. This command commits if the database release

is at least 23ai.

Syntax

immutable table|im delete expired rows|del {OPTIONS}

Options

Option

Description

Required

-table name|-tab <table name>

Optional
-before timestamp|-before
<before timestamp>

ORACLE

Specifies a name for the immutable table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

Note:

Case sensitive,
embedded white
space table and
schema name should
be entered as
"""Alp ha"".""Be
$a""". The parser
parses these values
as

"Alp ha"."Be $a"

Specifies a timestamp to determine deletion of
expired rows. Set this parameter according to the
NLS_TIMESTAMP_TZ_FORMAT or
NLS_TIMESTAMP_FORMAT. The default value for
this parameter is NULL.

* If the parameter value is NULL, all expired
rows in the table are deleted.

e If the parameter value is not NULL and is older
than the timestamp calculated based on the
current time and the row retention period, then
rows with timestamps earlier than the
parameter value are deleted.

* If the parameter value is not NULL and is more
recent than the timestamp calculated based on
the current time and row retention period, the
calculated timestamp is used, resulting in the
deletion of all expired rows.

9-73

Chapter 9
LIQUIBASE

Option

Description

-rowcount <rowcount>

Requests the number of rows deleted. This is an
OUT parameter option, used for storing the output
value of the command in a bind variable.

0.11.3 Describe Table

Describes the details of the specified immutable table.

Syntax

immutable table|im desc {OPTIONS}

Option

Description

Required
-table name|-tab <table name>

Specifies a name for the immutable table. The
name can be preceded by the respective schema
name. To specify a case-sensitive schema or table
name, enclose the entire name in double quotes
and then enclose the individual names in double,
double quotes.

9.12 LIQUIBASE

Database Diff Commands

New Command

Description

diff

Writes description of differences between two databases to
standard out.

diff-changelLog

Adds any differences between the databases specified to a
changelog. Can append in any of the supported changelog
formats.

Database Rollback Commands

New Command

Description

rollback Rolls back the database to the state it was in when the
tag was applied.
rollback-sql A helper command that produces the raw SQL

Liquibase would run when using the rollbackByTag
command.

rollback-to-date

Rolls back the database to the state it was in at the
given date/time.

rollback-to-date-sq|l

A helper command that allows you to inspect the SQL
Liquibase will run while using the rollback-to-date
command.

rollback-count

Rolls back the last <value> changesets.

rollback-count-sqg|l

Writes SQL to roll back the last <value> changesets to
STDOUT.

ORACLE

9-74

ORACLE

Chapter 9
LIQUIBASE

New Command

Description

future-rollback-sql

Writes SQL to roll back the database to the current state
after the changes in the changelog have been applied.

future-rollback-count-sgl

Generates the SQL that Liquibase would use to
sequentially revert the number of changes associated
with undeployed changesets, which are added to a
changelog file.

future-rollback-from-tag-sq|l

Produces the raw SQL Liquibase would need to roll back
all undeployed changes made up to the specified tag.

Database Snapshot Commands

New Command

Description

data

Generate changelogs for the data.

generate-apex-object

Generate apex objects from a database

generate-controlfile

Generate an empty control file that you can use to start a new
changelog.

generate-db-object

Generate database objects from a database

generate-ords-module, generate-ords-
schema

Generate ords objects from a database

generate-schema

Generate all supported objects in a schema and controller file.

generate-changelog

Generate a changelog from a database when adding
Liquibase to a new project. This is synonymous with snapshot
with the exception of saving the output as XML in the
changelog.

shapshot

Gathers the current database schema and displays that
information to STDOUT. With options, can save the schema in
JSON format, and that JSON shapshot can serve as a
comparison database.

update-to-tag-sql

A helper command that inspects the SQL code Liquibase will
run when using the update-to-tag <tag> command.

Database Update Commands

New Command

Description

update

Updates the database to the current version.

update-sql

A helper command that enables you to inspect the SQL code
that Liquibase will run when using the update command.

update-count

Applies the next <value> changesets.

update-count-sql

Writes SQL to apply the next <value> changesets to
STDOUT.

update-testing-rollback

Updates the database, then rolls back changes before
updating again.

update-to-tag

Applies sequential changes to your database from the newest
changeset to the changeset with the tag you specified and
applied earlier.

update-to-tag-sql

A helper command that inspects the SQL code Liquibase will
run when using the update-to-tag <tag> command.

9-75

ORACLE

Documentation Commands

Chapter 9
LIQUIBASE

New Command

Description

db-doc

Generates Javadoc-like documentation based on current
database and changelog.

Maintenance Commands

New Command

Description

calculate-checksum

Calculates and prints a checksum for the changeset with the
specified id in the following format: filepath::id::author.

changelog-sync

Marks all changes as executed in the database.

changelog-sync-sql

Writes SQL to mark all changes as executed in the database to
STDOUT.

changelog-sync-to-tag

Marks all undeployed changesets from your changelog up to
and including the specified tag as executed in your database.

changelog-sync-to-tag-sql

Produces the raw SQL that Liquibase would run when using the
changelog-sync-to-tag command to mark all undeployed
changesets associated with the specified tag as executed in
your database.

clear-checksums

Removes current checksums from database. On next update
changesets that have already been deployed will have their
checksums recomputed, and changesets that have not been
deployed will be deployed.

drop-all

Drops all database objects owned by the user.

list-locks

Lists who currently has locks on the database changelog.

mark-next-changeset-ran

Mark the next changeset as executed in the database.

mark-next-changeset-ran-sql

Inspects the SQL Liquibase will run while using the mark-next-
changeset-ran command.

release-locks

Releases all locks on the database changelog.

tag

"Tags" the current database state for future rollback.

tag-exists

Checks whether the given tag already exists.

unexpected-changesets

Produces a list of changesets that were run in the database but
do not exist in the current changelog.

validate

Checks the changelog for errors.

Status Commands

New Command

Description

history

Lists all deployed changesets and their deploymentids.

status

Outputs the count (or list, if --verbose) of changesets that have
not been deployed.

9.12.1 calculate-checksum

Calculates and prints a checksum for the changeset with the given ID in the format

filepath::id::author..

9-76

Syntax

Liquibase|lb calculate-checksum|cac {OPTIONS}

Chapter 9
LIQUIBASE

The calculate-checksum command is typically used to compute an MD5 checksum, which
serves as a unique identifier for the changeset. As a result, you can see whether the
changeset has been changed and whether it has to be deployed differently. The MD5SUM
column in the DATABASECHANGELOG table contains a checksum of the changeset and any
change made in the changeset will result in a different checksum.

Options
Option Description Default
Required
-changelog-file|-chf The root changelog file. -
-changeset-identifier|-chi Changeset ID identifier of form -
filepath::id::author.
Optional
-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.
-debug|-de Enable debug output. -
-default-schema-name|-desn The default schema name to use for the -
database connection.
-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: ~defaults-
file/tmp/liquibase.properties
-liquibase-schema-name |- Schema to use for Liquibase objects. -
lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name | -1btn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-search-path|-sep Complete list of locations to search for files -
such as changelog files.
You can specify multiple paths by
separating them with commas.
-secure-parsing|-scp If true, remove functionality from file True
parsers, which can be used insecurely.
An example is disabling remote XML entity
support.
-output-default-schemal|- Controls whether names of objects in the False

ouds

default schema are fully qualified or not. If
false, only objects outside the default
schema are fully qualified.

ORACLE

9-77

Chapter 9
LIQUIBASE

Example

Calculate a checksum for changeset:

SQL> 1b calculate-checksum --changelog-file countries table.xml --changeset-
identifier

countries table.xml::382e5lcedfbfc7ba59568dd09dcd4ell0b9fbeca: : (USER) -
Generated

SQL> liquibase calculate-checksum changelog.oracle.sql::myID 123::Steve

9.12.2 changelog-sync

ORACLE

Marks all changes as executed in the database.

Syntax

Liquibase|lb changelog-sync|chs {OPTIONS}

Uses include:

* Creating a new baseline database.
e Excluding objects from a database.

e Marking a change as executed. The change was created manually.

Options

Option Description Default

Required
-changelog-file|-chf The root changelog file. -
Optional

-contexts|-co Context string to use for filtering -

which changes to operate on.

Name of table to use for tracking -
change history.

-database-changelog-table-

name | -dactn

-debug|-de

-default-schema-name|-desn The default schema name to use -
for the database connection.

Fully qualified path to the -
properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties

Enable debug output. -

-defaults-file|-def
<defaults-file> {FILE}

-labels|-1la Label expression to use for -
filtering the changes to operate

on.

-liquibase-schema-name |-
1bsn

-liquibase-tablespace-
name |-1btn

Schema to use for Liquibase -

objects.

Tablespace to use for Liquibase
objects.

9-78

Chapter 9
LIQUIBASE

Option

Description Default

-logl|-lo

-search-path|-sep

-secure-parsing|-scp

-output-default-schemal-
ouds

Enable logging. -

Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

Complete list of locations to -
search for files such as
changelog files.

You can specify multiple paths by
separating them with commas.

If true, remove functionality from True
file parsers that could be used
insecurely.

An example is disabling remote
XML entity support.

Controls whether names of False
objects in the default schema are

fully qualified or not. If false, only
objects outside the default

schema are fully qualified.

Example

Mark changes as executed in the database:

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target and execute command
SQL> connect <db-connect-string>
SQL> 1b changelog-sync -changelog-file countries table.xml

9.12.3 changelog-sync-sql

Output the raw SQL used by Liquibase when running changelogsync.

ORACLE

Syntax

Liquibase|lb changelog-sync-sql|chss {OPTIONS}

Options

Option

Description Default

Required
-changelog-file|-chf
Optional
-contexts|-co

-database-changelog-table-
name | -dactn

The root changelog file. -

Context string to use for filtering -
which changes to operate on.

Name of table to use for tracking -
change history.

9-79

ORACLE

Chapter 9
LIQUIBASE

Option Description Default
-debug|-de Enable debug output. -
-default-schema-name|-desn The default schema name to use -
for the database connection.
-defaults-file|-def Fully qualified path to the -
properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties
-labels|-1la Label expression to use for -
filtering the changes to operate
on.
-liquibase-schema-name|- Schema to use for Liquibase -
1bsn objects.
-liquibase-tablespace- Tablespace to use for Liquibase -
name | -1btn objects.
-log|-1lo Enable logging. -
Standard logging is INFO level
(no debug flag).
Debug logging is FINEST level
(both log and debug flag).
-output-default-schemal|- Control whether names of objects False
ouds in the default schema are fully
qualified or not. If false, only
objects outside the default
schema are fully qualified.
-output-file|-ouf The name of the file to write the -
output to.
-search-path|-sep Complete list of locations to -
search for files such as
changelog files.
You can specify multiple paths by
separating them with commas.
-secure-parsing|-scp If true, remove functionality from True

file parsers, which can be used
insecurely.

An example is disabling remote
XML entity support.

Example

Generate SQL to mark changes as executed in the database:

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target and execute command
SQL> connect <db-connect-string>
SQL> 1b changelog-sync-sql -changelog-file countries table.xml -outputfile

countries synch.sql

9-80

ORACLE

9.12.4 changelog-sync-to-tag

Chapter 9
LIQUIBASE

Marks all undeployed changesets as executed starting from the top of the changelog file and
moving down up to and including the tag.

Syntax

Liquibase|lb changelog-sync-to-tag|chstt {OPTIONS}

Options
Option Description Default
Required
-changelog-file|-chf The root changelog file. -
-tag|-ta <tag> The tag to be used during the -
execution of command.
Optional
-contexts|-co Context string to use for filtering -
which changes to operate on.
-database-changelog-table- Name of table to use for tracking -
name | -dactn change history.
-debug|-de Enable debug output. -
-default-schema-name|-desn The default schema name to use -
for the database connection.
-defaults-file|-def Fully qualified path to the -
<defaults-file> {FILE} properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties
-labels|-1la Label expression to use for -
filtering the changes to operate
on.
-liquibase-schema-name|- Schema to use for Liquibase -
1bsn objects.
-liquibase-tablespace- Tablespace to use for Liquibase -
name | -1btn objects.
-log|-1lo Enable logging. -
Standard logging is INFO level
(no debug flag).
Debug logging is FINEST level
(both log and debug flag).
-search-path|-sep Complete list of locations to -
search for files such as
changelog files.
You can specify multiple paths by
separating them with commas.
-secure-parsing|-scp If true, remove functionality from True

file parsers, which can be used
insecurely.

An example is disabling remote
XML entity support.

9-81

Chapter 9
LIQUIBASE

Option

Description

Default

-output-default-schemal-
ouds

Controls whether names of

objects in the default schema are

fully qualified or not. If false, only
objects outside the default
schema are fully qualified.

False

Example

Mark changes as executed in the database up to and including tag.

cd <lb-changes-directory>

-- Edit changelog file and add tagDatabase entries for versions.
-- Execute command using a tag specified in tagDatabase in the changelog file.
SQL> 1b changelog-sync-to-tag -tag versionl -changelog-file controller.xml

9.12.5 changelog-sync-to-tag-sql

Output the raw SQL used by Liquibase when running changelogSyncToTag.

ORACLE

Syntax

Liquibase|lb changelog-sync-to-tag-sqgl|chstts {OPTIONS}

Options

Option

Description

Default

Required
-changelog-file|-chf
-tag|-ta <tag>

Optional
-contexts|-co

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def
<defaults-file> {FILE}

-labels|-1la

-liquibase-schema-name |-
1bsn

-liquibase-tablespace-
name | -1btn

The root changelog file.

The tag to be used during the
execution of the command.

Context string to use for filtering
which changes to operate on.

Name of table to use for tracking
change history.

Enable debug output.

The default schema name to use
for the database connection.

Fully qualified path to the
properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties
Label expression to use for

filtering the changes to operate
on.

Schema to use for Liquibase
objects.

Tablespace to use for Liquibase
objects.

9-82

Chapter 9
LIQUIBASE

Option Description Default
-log|-1lo Enable logging. -
Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

-output-default-schema|- Control whether names of objects False
ouds in the default schema are fully

qualified or not. If true they are

qualified. If false, only objects

outside the default schema are

fully qualified.
-output-file|-ouf The name of the file to write the -
output to.
-search-path|-sep Complete list of locations to -

search for files such as
changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from True
file parsers, which can be used
insecurely.

An example is disabling remote
XML entity support.

Example

Mark changes as executed in database up to and including tag.

cd <lb-changes-directory>

-- Edit changelog file and add tagDatabase entries for versions.

-- Execute command using a tag specified in tagDatabase in the changelog file.
SQL> 1b changelog-sync-to-tag-sqgl -tag versionl -changelog-file
controller.xml -outputfile synch.sqgl

9.12.6 clear-checksums

ORACLE

Clears all checksums and nullifies the MD5SUM column of the DATABASECHANGELOG table so
that they will be recomputed on the next database update.

Syntax

Liquibase|lb clear-checksums|clc {OPTIONS}

Options

Option Description Default
-database-changelog-table- Name of table to use for tracking -
name|-dactn change history.

-debug|-de Enable debug output. -

9-83

9.12.7 data

ORACLE

Chapter 9
LIQUIBASE

Option Description Default
-default-schema-name|-desn The default schema name to use -
<default-schema-name> for the database connection.
-defaults-file|-def Fully qualified path to the -
<defaults-file> {FILE} properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties
-liquibase-schema-name |- Schema to use for Liquibase -
lbsn <liquibase-schema- objects.
name>
-liquibase-tablespace- Tablespace to use for Liquibase -
name|-lbtn <liquibase- objects.
tablespace-name>
-log|-1lo Enable logging. -
Standard logging is INFO level
(no debug flag).
Debug logging is FINEST level
(both log and debug flag).
-secure-parsing|-scp If true, remove functionality from True
file parsers that could be used
insecurely.
An example is disabling remote
XML entity support.
-output-default-schemal- Control whether names of objects False

ouds

in the default schema are fully
qualified or not. If false, only
objects outside the default
schema are fully qualified.

Example

Clear checksums:

-- Connect to target and execute command.
SQL> connect <db-connect-string>

SQL> clear-checksums

Generate changelogs for the data. Creates a changelog for data from all objects or as filters

are specified.

Syntax

Liquibase|lb datal|da {OPTIONS}

9-84

ORACLE

Chapter 9
LIQUIBASE

Options
Option Description Default
-data-output-directory|- Directory to write data to, only -
daod <data-output- applicable when <DIFF_TYPE>
directory> includes data.
-database-changelog-table- Name of table to use for tracking -
name | -dactn <database- change history.
changelog-table-name>
-debug|-de Enable debug output. -
-default-schema-name|-desn The default schema name to use -
<default-schema-name> for the database connection.
-defaults-file|-def Fully qualified path to the -
<defaults-file> {FILE} properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties
-exclude-objects|-exo Objects to exclude from diff. -
<exclude-objects>
-include-objects|-ino Objects to include in diff. -
<include-objects>
-include-schema|-ins If true, the schema is included in False
<include-schema> generated changesets.
-include-tablespace|-int Include the tablespace attribute in False
<include-tablespace> the changelog.
-liquibase-schema-name|- Schema to use for Liquibase -
lbsn <liquibase-schema- objects.
name>
-liquibase-tablespace- Tablespace to use for Liquibase
name|-lbtn <liquibase- objects.
tablespace-name>
-log|-1lo Enable logging. -
Standard logging is INFO level
(no debug flag).
Debug logging is FINEST level
(both log and debug flag).
-output-default-schema|- Controls whether names of False

ouds

-output-filel|-ouf <output-
file>

-overwrite-files|-ovf

-schemas|-sc <schemas>

-search-path|-sep <search-
path>

objects in the default schema are
fully qualified or not. If false, only
objects outside the default
schema are fully qualified.

The name of the file to write the
output to.

Overwrite any existing files in
directory. This will not affect other
files.

Schemas to include operation.

Complete list of locations to
search for files such as
changelog files. Multiple paths
can be specified by separating
them with commas.

9-85

ORACLE

Chapter 9
LIQUIBASE

Option

Description

Default

-secure-parsing|-scp
<secure-parsing>

Keep functionality from file
parsers which could be used

insecurely. Examples include (but

not limited to) disabling remote
XML entity support.

True

9.12.8 db-doc

Generates JavaDoc documentation for the existing database and changelogs.

Syntax

Liquibase|lb db-doc|dbd {OPTIONS}

Options

Option

Description

Default

Required
-changelog-file|-chf
<changelog-file>
-output-directory|-oud
<output-directory>

Optional
-database-changelog-table-
name | ~dactn <database-
changelog-table-name>
-debug|-de
-default-schema-name|-desn
<default-schema-name>

-defaults-file|-def
<defaults-file> {FILE}

-liquibase-schema-name|-
1lbsn <liquibase-schema-
name>

-liquibase-tablespace-
name | -1btn <liquibase-
tablespace-name>

-logl|-lo

The root changelog file.

The directory where the
documentation is generated.

Name of table to use for tracking
change history.

Enable debug output.

The default schema name to use
for the database connection.

Fully qualified path to the
properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties
Schema to use for Liquibase
objects.

Tablespace to use for Liquibase
objects.

Enable logging.

Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

9-86

9.12.9 diff

ORACLE

Chapter 9
LIQUIBASE

Option Description Default

-search-path|-sep <search- Complete list of locations to -
path> search for files such as
changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from True
<secure-parsing> file parsers that could be used
insecurely.

An example is disabling remote
XML entity support.

-output-default-schema|- Controls whether names of False
ouds <output-default- objects in the default schema are
schema> fully qualified or not. If false, only

objects outside the default
schema are fully qualified.

Example

Generate db documentation:
-- Set default output path
SQL> cd <output-files-path>

-- Generate doc
SQL> 1b db-doc -output-directory ./dbdoc -changelog-file controller.xml

Compare two databases.
Syntax

Liquibase|lb diff|di {OPTIONS}

Options
Option Description Default
Required
-reference-password|-rep The reference database -
password.
-reference-url|-reur The JDBC reference database -

connection URL.
-reference-username|-reu The reference database -

username.
Optional
-database-changelog-table- Name of table to use for tracking -
name|-dactn change history.
-debug|-de Enable debug output. -
-default-schema-|-desn The default schema name to use -

for the database connection.

9-87

ORACLE

Chapter 9
LIQUIBASE

Option

Description

Default

-defaults-file|-def

-diff-types|-dit

-exclude-objects|-exo
<exclude-objects>

-include-objects|-ino
<include-objects>

-include-schema|-ins
<include-schema>

-include-tablespace|-int
<include-tablespace>

-liquibase-schema-name|-
lbsn

-liquibase-tablespace-
name | -1btn

-logl|-lo

-overwrite-files|-ovf

-search-path|-sep <search-
path>

-secure-parsing|-scp

-output-default-schemal-
ouds

-output-file|-ouf

Fully qualified path to the
properties file you want to use.
Example: ~-defaults-
file/tmp/
liquibase.properties

Types of objects to compare.

Objects to exclude from diff.

Objects to include in diff.

If true, the schema will be
included in generated
changesets.

Include the tablespace attribute in
the changelog.

Schema to use for Liquibase
objects.

Tablespace to use for Liquibase
objects.

Enable logging.

Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

Overwrite any existing files in
directory. This will not affect other
files.

Complete list of locations to
search for files such as
changelog files. Specify multiple
paths by separating them with
commas.

If true, remove functionality from
file parsers that could be used
insecurely.

An example is disabling remote
XML entity support.

Controls whether names of
objects in the default schema are
fully qualified or not. If false, only
objects outside the default
schema are fully qualified.

The name of the file to write the
output to.

catalogs, tables, views, columns,
indexes, foreignkeys,
primarykeys, uniqueconstraints,
data, storedprocedures,
sequences{catalogs| tables|
views| columns| indexes|
foreignkeys| primarykeys|
unigueconstraints| data|
storedprocedures| sequences}

False

False

True

False

9-88

Chapter 9
LIQUIBASE

Option Description Default
-reference-default-schema- The reference default schema -
name | -redsn name to use for the database

connection
-schemas|-sc Schemas to include operation. -
Examples

Compare two databases and spool output.

-- Set default output path

SQL> cd <output-files-path>

SQL> spool diff.sqgl

-- Connect to target database

SQL> connect <db-connect-string>

-- Compare to a reference database

SQL> 1lb diff -reference-url <reference-db-url> -reference-username <reference-
db-user> -reference-password <reference-db-password>

SQL> spool off

Compare tables, indexes and views between two databases.

-- Set default output path

SQL> cd <output-files-path>

SQL> spool diff.sql

-- Connect to comparison database

SQL> connect <db-connect-string>

-- Compare to a reference database

SQL> 1b diff -diff-types tables, indexes,views -reference-url <db-url>
-reference-username <db-user> -reference-password <db-password>

9.12.10 diff-changeLog

ORACLE

Compare two databases to produce changesets and write them to a changelog file.
Syntax

Liquibase|lb diff-changelog|dic {OPTIONS}

Options
Option Description Default
Required
-reference-password|-rep The reference database -
password.
-reference-url|-reur The JDBC reference database -

connection URL.

-reference-username|-reu The reference database -
username.

9-89

Chapter 9
LIQUIBASE

Option

Description

Default

ORACLE

Optional
-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

-diff-types|-dit

-exclude-objects|-exo
-include-objects|-ino

-include-schema|-ins
-include-tablespace|-int

-liquibase-schema-name|-
1bsn

-liquibase-tablespace-
name | -1btn

-logl|-lo

-overwrite-files|-ovf

-schemas|-sc

-search-path|-sep

-secure-parsing|-scp

Name of table to use for tracking
change history.
Enable debug output.

The default schema name to use
for the database connection.

Fully qualified path to the
properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties

Types of objects to compare

Objects to exclude from diff
Objects to include in diff

If true, the schema is included in
generated changesets.

Include the tablespace attribute in
the changelog

Schema to use for Liquibase
objects.

Tablespace to use for Liquibase
objects.

Enable logging.

Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).
Overwrite any existing files in the

directory. This will not affect other
files.

Schemas to include in diff
Complete list of locations to

search for files such as
changelog files.

You can specify multiple paths by
separating them with commas.

If true, remove functionality from
file parsers that could be used
insecurely.

An example is disabling remote
XML entity support.

catalogs, tables, views, columns,
indexes, foreignkeys,
primarykeys, unigueconstraints,
data, storedprocedures,
sequences{catalogs| tables|
views| columns| indexes]|
foreignkeys| primarykeys|
uniqueconstraints| data|
storedprocedures| sequences}

False

False

True

9-90

Chapter 9
LIQUIBASE

Option Description Default
-output-default-schema|- Controls whether names of False
ouds objects in the default schema are

fully qualified or not. If false, only
objects outside the default
schema are fully qualified.

-output-file|-ouf The name of the file to write the -
output to.

Examples

Create changelog to synchronize two databases.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target database

SQL> connect <db-connect-string>

-- Compare to a reference database and create a changelog to synchronize them
SQL> 1b diff-changelog -changelog-file diff.xml -reference-url <db-url> -
reference-username <db-user> -reference-password <db-password>

Create changelog to synchronize table excluding employees between two databases.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to comparison database

SQL> connect <db-connect-string>

-- Compare tables to a reference database

SQL> 1b diff-changelog -changelog-file diff.xml -diffTypes=tables -exclude-
objects employees -reference-url <db-url>

-reference-username <db-user> -reference-password <db-password>

9.12.11 drop-all

Drops all database objects owned by the user.
Syntax

Liquibase|lb drop-all|dra {OPTIONS}

Options

Option Description Default
-database-changelog-table- Name of table to use for tracking -

name | -dactn change history.

-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use -
for the database connection.

ORACLE 0.91

Chapter 9
LIQUIBASE

Option Description Default

-defaults-file|-def Fully qualified path to the -
properties file you want to use.
Example: ~-defaults-
file/tmp/
ligquibase.properties

-liquibase-schema-name|- Schema to use for Liquibase -
1bsn objects.
-liquibase-tablespace- Tablespace to use for Liquibase -
name | -1btn objects.
-log|-1lo Enable logging. -
Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

-output-default-schema|- Control whether names of objects False
ouds in the default schema are fully

qualified or not. If true they are

qualified. If false, only objects

outside the default schema are

fully qualified.

-search-path|-sep Complete list of locations to -
search for files such as
changelog files.
You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from True
file parsers, which can be used
insecurely.

An example is disabling remote
XML entity support.

-schemas|-sc Schemas to include operation. -

Example

To drop all database objects owned by the user, enter:

SQL> 1b drop-all

9.12.12 future-rollback-count-sql

Generates SQL that is used to sequentially revert the specified number of undeployed
changes.

Syntax

Liquibase|lb future-rollback-count-sqgl|furcs {OPTIONS}

ORACLE 0.9

ORACLE

Chapter 9
LIQUIBASE

Options

Option Description Default

Required

-changelog-file|-chf The root changelog file. -

-count |-cu The number of changes to roll back. -

Optional

-contexts|-co Context string to use for filtering which -
changes to operate on.

-database-changelog-table- Name of table to use for tracking change -

name | -dactn history.

-debug|-de Enable debug output. False

-default-schema-name|-desn

-defaults-file|-def

-labels|-1la

-liquibase-schema-name |-
lbsn

-liquibase-tablespace-
name | -1lbtn

-logl|-lo

-output-default-schemal-
ouds

-output-file|-ouf

-search-path|-sep

-overwrite-files|-ovf

-secure-parsing|-scp

The default schema name to use for the
database connection.

Fully qualified path to the properties file you
want to use. Example: —defaults-
file/tmp/liquibase.properties

Label expression to use for filtering the
changes to operate on.

Schema to use for Liquibase objects.

Tablespace to use for Liquibase objects.

Enable logging.

Standard logging is INFO level (no debug
flag).

Debug logging is FINEST level (both log and
debug flag).

Control whether names of objects in the
default schema are fully qualified or not. If
true, they are qualified. If false, only objects
outside the default schema are fully
qualified.

The name of the file to write the output to.

Complete list of locations to search for files
such as changelog files.

You can specify multiple paths by
separating them with commas.

Overwrite any existing files in the directory.
This will not affect other files.

If true, remove functionality from file
parsers, which can be used insecurely.

An example is disabling remote XML entity
support.

False

True

Example

Generate SQL to roll back the specified number of undeployed changes.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

9-93

Chapter 9
LIQUIBASE

SQL> connect <db-connect-string>
-- Generate SQL to roll back 1 undeployed change
SQL> 1b future-rollback-count-sgl -count 1 -changelog-file controller.xml

9.12.13 future-rollback-from-tag-sql
Generates SQL to revert future undeployed changes up to the specified tag.

Syntax

Liquibase|lb future-rollback-from-tag-sql|furfts {OPTIONS}

Options

Option Description Default
Required

-changelog-file|-chf The root changelog file. -
-tag|-ta Generic 'tag to apply action to'. -
Optional

-contexts|-co Context string to use for filtering which -

changes to operate on.

-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.

-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the
database connection.

-defaults-file|-def Fully qualified path to the properties file you
want to use. Example: —defaults-
file/tmp/liquibase.properties

-labels|-1la Label expression to use for filtering the -
changes to operate on.
-liquibase-schema-name |- Schema to use for Liquibase objects. -
lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name | -1lbtn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-output-default-schema|- Control whether names of objects in the False
ouds default schema are fully qualified or not. If

true, they are qualified. If false, only objects
outside the default schema are fully

qualified.
-output-filel|-ouf The name of the file to write the output to. -
-overwrite-files|-ovf Overwrite any existing files in the directory. -

This will not affect other files.

ORACLE 0.04

Chapter 9
LIQUIBASE

Option Description Default

-search-path|-sep Complete list of locations to search for files -
such as changelog files.

You can specify multiple paths by

separating them with commas.
-secure-parsing|-scp If true, remove functionality from file True

parsers, which can be used insecurely.

An example is disabling remote XML entity
support.

Example

Generate SQL to roll back undeployed changes to tag.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>

-- Generate SQL to roll back 1 undeployed change

SQL> 1b future-rollback-count-sgl -count 1 -changelog-file controller.xml
-- Edit changelog file and add tagDatabase entries for versions

-- Generate SQL to roll undeployed changes back to versionl

SQL> 1b future-rollback-from-tag-sql -tag versionl -changelog-file
controller.xml

9.12.14 future-rollback-sq

Generate the raw SQL needed to roll back future undeployed changes.

Syntax

Liquibase|lb future-rollback-sql|furs {OPTIONS}

Options

Option Description Default
Required

-changelog-file|-chf The root changelog file. -
Optional

-contexts|-co Context string to use for filtering which -

changes to operate on.
-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.
-debug|-de Enable debug output. -
-default-schema-name|-desn The default schema name to use for the -
database connection.
-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: ~-defaults-
file/tmp/liquibase.properties

ORACLE 0.05

Chapter 9
LIQUIBASE

Option Description Default
-labels|-1la Label expression to use for filtering the -
changes to operate on.
-liquibase-schema-name |- Schema to use for Liquibase objects. -
lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name | -1lbtn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-output-default-schema|- Control whether names of objects in the False
ouds default schema are fully qualified or not. If

true, they are qualified. If false, only objects
outside the default schema are fully

qualified.
-output-filel|-ouf The name of the file to write the output to. -
-overwrite-files|-ovf Overwrite any existing files in the directory. -
This will not affect other files.
-search-path|-sep Complete list of locations to search for files -

such as changelog files.

You can specify multiple paths by

separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers True

that could be used insecurely.

An example is disabling remote XML entity
support.

Example

Generate SQL to roll back undeployed changes.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>

-- Generate SQL to roll back 1 undeployed change

SQL> 1b future-rollback-count-sgl -count 1 -changelog-file controller.xml
-- Generate SQL to rollback all undeployed changes

SQL> 1b future-rollback-sgl -changelog-file controller.xml

9.12.15 generate-apex-object

Generates the changeset for an APEX object.
Syntax

Liquibase|lb generate-apex-object|geao {OPTIONS}

ORACLE 0.96

ORACLE

Chapter 9
LIQUIBASE

Options

Option Description Default

-applicationid|-api ID for application to be exported. -

-changesby|-chb Expects string parameter. Limit - -
list values to changes by the
given user.

-changessince|-chs Expects date parameter (YYYY- -
MM-DD). Limit -list values to
changes since the given date.

-contexts|-co Context string to use for filtering -
which changes to operate on.

-debug|-de {true|false} -
Enable debug output.

-deploymentsystem|-desy Deployment system for exported -
feedback.

-dir|-di Save all files in the given -
directory. Example: -dir
some/sub/directory

-exporiginalids|-dxoi Export will not emit ids as they -
were when the application was
imported.

-runalways|-ra {true|false} False

-expaclassignments|-exacl

-expcomments | -exco
-expcomponents | -exc

-expfeedback|-exfe

-expfeedbacksince|-exfs

-expfiles|-exfi
-expirnotif|-exir
-expminimal | -exmi
-expnosubscriptions|-exns
-exppubreports|-exre
-expsavedreports|-exsr
-expsupportingobjects|-

€XS0

-expteamdevdata|-exte

Set runAlways attribute to true in
changelog.

Export ACL user role
assignments.

Export developer comments.

Export team development
feedback for all workspaces or
identified by -workspaceid.

Export team development
feedback since date in the format
YYYYMMDD.

Export all workspace files
identified by -workspaceid.

Export all interactive report
notifications.

Only export workspace definition,
users, and groups.

Do not export references to
subscribed components.

Export all user saved public
interactive reports.

Export all user saved interactive
reports.

Pass (Y)es, (N)o or (I)nstall to
override the default.

Export team development data for

all workspaces or identified by -
workspaceid.

9-97

Chapter 9
LIQUIBASE

Option Description Default
-exptranslations|-extr Export the translation mappings -

and all text from the translation

repository
-exptype | -exty Comma delimited list of export

types to perform:

e APPLICATION_SOURCE:
export an APEX application
using other parameters
passed.

« EMBEDDED_CODE: Export
code such as SQL, PL/SQL
and Javascript. APEX
ignores all other options
when EMBEDDED_CODE is
selected.

e CHECKSUM-SH1: Export a
SHA1 checksum that is
independent of IDs and can
be compared across
instances and workspaces.

¢ CHECKSUM-SH256: Export
an SHA-256 checksum that
is independent of IDs and
can be compared across
instances and workspaces.

+ READABLE_JSON: Export a
readable version of the
application metadata in
JSON format.

 READABLE_YAML: Export a
readable version of the
application metadata in
YAML format.

-expworkspace | -exwo Export workspace identified by - -
workspaceid or all workspaces if -
workspaceid not specified.

-fail-on-error|-foe {true|false} False
Set failonError attribute to true in
changelog.

-instance|-in Export all applications. -

-skipexportdate|-ked Include export date in application -
export files.

-labels|-1la Label expression to use for -
filtering which changes to operate
on.

-list|-11 Lists applications installed in the -
database.

-log|-1lo {true|false} -

Enable logging.
Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

ORACLE 0.98

Chapter 9
LIQUIBASE

Option Description Default
-nochecksum|-noch Overwrite existing files even if the -
contents have not changed.
-overwrite-files|-ovf Overwrite any existing files in the =
directory. This will not affect other
files.
-split|-sp {true|false} False

-workspaceid|-woi

This makes the export split the
files into directories based on the
object types.

Workspace ID to export all -
applications to or the workspace
to be exported.

9.12.16 generate-changelog

Writes changelog XML to copy the current state of the database to standard output or a file
(uses core Liquibase functionality).

Syntax

Liquibase|lb generate-changelog|gec {OPTIONS}

Options

Option

Description Default

-data-output-directory|-
daod

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-diff-types|-dit

-exclude-objects|-exo
-include-objects|-ino

-include-schema|-ins
-include-tablespace|-int

-liquibase-schema-name|-
1bsn

ORACLE

Directory to write data to. -

Name of table to use for tracking
change history.

Enable debug output. -

The default schema name to use
for the database connection.

Types of objects to compare

catalogs, tables, views, columns,
indexes, foreignkeys,
primarykeys, uniqueconstraints,
data, storedprocedures,
sequences{catalogs| tables|
views| columns| indexes|
foreignkeys| primarykeys|
uniqueconstraints| data|
storedprocedures| sequences}

Objects to exclude from diff -
Objects to include in diff -

If true, the schema is included in False

generated changeSets.

Include the tablespace attribute in False
the changelog

Schema to use for Liquibase -
objects.

9-99

Chapter 9
LIQUIBASE

Option Description Default
-liquibase-tablespace- Tablespace to use for Liquibase -

name | -1lbtn objects.

-log|-1lo Enable logging. -

Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

-output-default-schema|- Control whether names of objects False
ouds in the default schema are fully

qualified or not. If true they are

qualified. If false, only objects

outside the default schema are

fully qualified.
-output-filel|-ouf <output- The name of the file to write the -
file> output to.
-overwrite-files|-ovf Overwrite any existing files in the -
directory. This will not affect other
files.
-defaults-file|-def Fully qualified path to the -

properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties

-schemas|-sc Schemas to include in diff -

-search-path|-sep Complete list of locations to -
search for files such as
changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|cp If true, remove functionality from True
file parsers that could be used
insecurely.

An example is disabling remote
XML entity support.

Examples

Generate XML files for a database.
-- Set default output path
SQL> cd <output-files-path>

-- Generate xml files
SQL> 1b generate-changelog

Generate XML files for specific schemas in a database.

SQL> 1b generate-changelog -schemas hr,sales

9.12.17 generate-controlfile

Generates an empty control file that you can use to start a new changelog.

ORACLE 9100

Syntax

Liquibase|lb generate-controlfile {OPTIONS}

Chapter 9
LIQUIBASE

Options
Option Description Default
Required
-changelog-file|-chf The root changelog file. -
Optional
—-debug|-de Enable debug output. -
-log|-1lo Enable logging. -
Standard logging is INFO level
(no debug flag).
Debug logging is FINEST level
(both log and debug flag).
Example

Generate control file:

--Set default output path
SQL> cd <output-files-path>
SQL> 1b generate-controlfile

9.12.18 generate-db-object

Writes change log XML to copy the current state of the database object to a file.

ORACLE

Syntax

1b generate-db-object|geo {OPTIONS}

Options
Option Description Default
-database-changelog-table- Name of table to use for tracking -
name | -dactn <database- change history.
changelog-table-name>
-debug|-de Enable debug output -
-default-schema-name|-desn The default schema name to use -
<default-schema-name> for the database connection.
-defaults-file|-def Fully qualified path to the -
properties file you want to use.
Example: —-defaults-
file/tmp/
liquibase.properties
-fail-on-error|-foe Set failonError attribute to true in False

changelog.

9-101

Chapter 9
LIQUIBASE

Option Description Default
-liquibase-schema-name |- Schema to use for Liquibase -
lbsn <liquibase-schema- objects.

name>

-liquibase-tablespace- Tablespace to use for Liquibase -
name|-lbtn <liquibase- objects.

tablespace-name>

-log|-1lo Enable logging -
-object-name | -obn Name of the object. -
-object-type| -obt Type of object. -
-output-default-schema|- Control whether names of objects False
ouds <output-default- in the default schema are fully

schema> qualified or not. If false, only

objects outside the default
schema are fully qualified.

-search-path|-sep Complete list of locations to -
search for files such as
changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from True
file parsers, which can be used
insecurely.

An example is disabling remote
XML entity support.

-sql|-sg Generate a sql file along with the -
changelog showing the DDL for
the object. This sql is not
intended to be used for anything
other than review.

-replace|-re Set replacelfExists attribute to -
true in changelog.

-runalways|-ra Set runAlways attribute to false in -
changelog

-runonchange|-rc Set runOnChange attribute to -

true in changelog.

Example

Generate the XML file for a specific object.

-- Set default output path

SQL> cd <output-files-path>

-- Generate xml files

SQL> 1b generate-object -object-type table -object-name employees

9.12.19 generate-ords-module

Generates the code necessary to reproduce a module and all children using the ORDS APIs.

ORACLE 9107

9.12.20 generate-ords-schema

ORACLE

Syntax

Liquibase|lb generate-ords-module|geom {OPTIONS}

Options

Chapter 9
LIQUIBASE

Option

Description

Default

Required
-module-name | -mon

Optional
-debug|-de

-exclude-enable-schema| -

exes
-exclude-privs|-exp

-logl|-lo

-overwrite-files|-ovf

The module name for which to
generate code.

Enable debug output.

Dictates whether the
enable_schema call will be
included in the export.

Dictates whether privileges will be

included in the export.

Enable logging.

Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

Overwrite any existing files in the
directory. This will not affect other

files.

Example

Generate ORDS module object:

-- Set default output path
SQL> cd <output-files-path>

-- Generate XML files

SQL> 1b generate-ords-module

Generates the code necessary to reproduce all modules and children using the ORDS APIs.

Syntax

Liquibase|lb generate-ords-schema|geos {OPTIONS}

Options
Option Description Default
-debug|-de Enable debug output. -

-exclude-enable-schemal| -

exes

Dictates whether the

enable_schema call is included in

the export.

9-103

Chapter 9
LIQUIBASE

Option

Description Default

-exclude-privs|-exp

-logl|-lo

-overwrite-files|-ovf

Dictates whether privileges will be -
included in the export.

Enable logging. -
Standard logging is INFO level

(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

Overwrite any existing files in the -

directory. This will not affect other
files.

9.12.21 generate-schema

Writes changelog XML to copy the current state of the database to files.

ORACLE

Syntax

Liquibase|lb generate-schemal|ges {OPTIONS}

This command uses custom extension functionality. XML files are generated defining the DDL
for each object in the database. A controller XML file is created or updated identifying the
individual XML files generated. The files are used to deploy using UPDATE commands.

Options

Option

Description Default

-contexts|-co

-database-changelog-table-
name | -dactn

-debug|-de

-fail-on-error|-foe

Context string to use for filtering -
which changes to operate on.

Name of table to use for tracking DATABASECHANGELOG
change history

Enable debug output. -

{true|false} False

Set failonError attribute to true in
changelog.

9-104

Chapter 9
LIQUIBASE

Option

Description

Default

-filter|-fi

-grants|-gr

-labels|-1la

-logl|-1lo

-overwrite-files|-ovf

-perform-detail-parse|-
pdp

-replace|-re

-runalways|-ra

-runonchange|-rc

-split|-sp

ORACLE

The filter value is the right-hand
side of a SQL comparison, that is,
a SQL comparison operator (=,!=,
and so on) and the value
compared against. The value
must contain parentheses and
quotation marks where
appropriate. For example: "IN
(DEPT'EMP")" The filter value is
combined with the object attribute
corresponding to the object name
to produce a WHERE condition in
the query that fetches the objects.
In the preceding example, objects
named DEPT and EMP are
retrieved. By default, all named
objects of object_type are
selected.

Export Object, System and Role
grants.

Label expression to use for
filtering which changes to operate
on.

Enable logging.

Standard logging is INFO level
(no debug flag).

Debug logging is FINEST level
(both log and debug flag).

Overwrite any existing files in the
directory. This will not affect other
files.

Setting this flag will cause all
functions, procedures and
packages to undergo a complete
parse to determine
dependencies. This addistional
processesing will cause the
generation to take more time.
This flag should only be used
when there is a sorting issue in
functions, procedures or
packages.

Set replacelfExists attribute to
true in changelog.

Set runAlways attribute to false in
changelog.

Set runOnChange attribute to
true in changelog.

This makes the export split the
files into directories based on the
object types.

9-105

Chapter 9
LIQUIBASE

Option Description Default

-sql|-sqg Generate a SQL file along with -
the changelog showing the DDL
for the object. This SQL is not
intended for anything other than
review.

-synonyms | -sy Export public synonymns. -

Examples

Generate XML files into separate directories.
-- Set default output path
SQL> cd <output-files-path>

-- Generate xml files
SQL> 1b generate-schema -split

Generate XML files using a filter to include specific object types.

SQL> 1b generate-schema -filter "IN ('DEPARTMENTS','EMPLOYEES')"

9.12.22 history

ORACLE

List all deployed changesets and their deployment ID.
Syntax

Liquibase|lb history|hi {OPTIONS}

Options

Option Description Default
Required

-changelog-file|-chf The root changelog file. -
Optional

-contexts|-co <contexts> Context string to use for filtering the -
changes to operate on.

-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.
-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties

-labels|-la <labels> Label expression to use for filtering the -

changes to operate on.
-liquibase-schema-name |- Schema to use for Liquibase objects. -
lbsn

9-106

Chapter 9
LIQUIBASE

Option

Description Default

-liquibase-tablespace-
name |-1btn

-logl|-1lo

-search-path|sep

-secure-parsing|-scp

-output-default-schemal-
ouds

Tablespace to use for Liquibase objects. -

Enable logging. -
Standard logging is INFO level (no debug
flag).

Debug logging is FINEST level (both log and
debug flag).

Complete list of locations to search for files -
such as changelog files.

You can specify multiple paths by
separating them with commas.

If true, remove functionality from file True
parsers, which can be used insecurely.

An example is disabling remote XML entity
support.

Controls whether names of objects in the False
default schema are fully qualified or not. If

false, only objects outside the default

schema are fully qualified.

Example

Show the deployment history.

-- Connect to target

SQL> connect <db-connect-string>

SQL> 1b history

0.12.23 list-locks

List the hostname, IP address, and timestamp of the Liquibase lock record.

ORACLE

Syntax

Liquibase|lb list-locks|1lil {OPTIONS}

The DATABASECHANGELOGLOCK table is read to show lock details based on the connection.

Options

Option

Description Default

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

Name of table to use for tracking change -
history.
Enable debug output. -

The default schema name to use for the -
database connection.

Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties

9-107

Chapter 9
LIQUIBASE

Option Description Default
-liquibase-schema-name |- Schema to use for Liquibase objects. -
1lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name | -1btn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-search-path|-sep <search- Complete list of locations to search for files

path> such as changelog files. Specify multiple
paths by separating them with commas.

-secure-parsing|-scp If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity

support.
-output-default-schema|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

9.12.24 mark-next-changeset-ran

ORACLE

Marks the next change you apply as executed in your database.

Syntax

Liquibase|lb mark-next-changeset-ran|mancr {OPTIONS}

The mark-next-changeset-ran command is used when deploy errors occur due to Liquibase
not being synchronized with changes made outside of Liquibase.

Options

Option Description Default
Required

-changelog-file|-chf The root changelog file. -
Optional

-database-changelog-table- Name of table to use for tracking change -

name | -dactn history.

-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: ~-defaults-
file/tmp/liquibase.properties

-liquibase-schema-name |- Schema to use for Liquibase objects. -
lbsn

9-108

Chapter 9
LIQUIBASE

Option

Description Default

-liquibase-tablespace-
name |-1btn

-logl|-1lo

-search-path|-sep

-secure-parsing|-scp

-output-default-schemal-
ouds

Tablespace to use for Liquibase objects. -

Enable logging. -
Standard logging is INFO level (no debug
flag).

Debug logging is FINEST level (both log and
debug flag).

Complete list of locations to search for files -
such as changelog files.

You can specify multiple paths by
separating them with commas.

If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity
support.

Controls whether names of objects in the False
default schema are fully qualified or not. If

false, only objects outside the default

schema are fully qualified.

9.12.25 mark-next-changeset-ran-sql

Writes the SQL used to mark the next change you apply as executed in your database.

ORACLE

Syntax

Liquibase|lb mark-next-changeset-ran-sql|mancrs {OPTIONS}

Options

Option

Description Default

Required
-changelog-file|-chf
Optional

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

-liquibase-schema-name|-
lbsn

-liquibase-tablespace-
name | -1lbtn

The root changelog file. -

Name of table to use for tracking change -
history.

Enable debug output. -

The default schema name to use for the
database connection.

Fully qualified path to the properties file you
want to use. Example: ~-defaults-
file/tmp/liquibase.properties

Schema to use for Liquibase objects.

Tablespace to use for Liquibase objects.

9-109

Chapter 9
LIQUIBASE

Option Description Default
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-output-default-schema|- Control whether names of objects in the False
ouds default schema are fully qualified or not. If
true, they are qualified. If false, only objects
outside the default schema are fully
qualified.
-overwrite-files|-ovf Overwrite any existing files in the directory. -
This will not affect other files.
-search-path|-sep Complete list of locations to search for files -
such as changelog files.
You can specify multiple paths by
separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers -
that could be used insecurely.
An example is disabling remote XML entity
support.
-output-file|-ouf The name of the file to write the output to. -
9.12.26 release-locks
Remove the Liquibase lock record from the DATABASECHANGELOG table.
Syntax
Liquibase|lb release-locks|rel {OPTIONS}
Options
Option Description Default

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

-liquibase-schema-name |-
lbsn

-liquibase-tablespace-
name | -1lbtn

ORACLE

Name of table to use for tracking change
history.

Enable debug output.

The default schema name to use for the
database connection.

Fully qualified path to the properties file you
want to use. Example: ~-defaults-
file/tmp/liquibase.properties

Schema to use for Liquibase objects.

Tablespace to use for Liquibase objects.

9-110

Chapter 9
LIQUIBASE

Option

Description Default

-logl|-lo

-search-path|-sep <search-
path>

-secure-parsing|-scp

-output-default-schemal-
ouds

Enable logging. -
Standard logging is INFO level (no debug
flag).

Debug logging is FINEST level (both log and
debug flag).

Complete list of locations to search for files -
such as changelog files. Specify multiple
paths by separating them with commas.

If true, remove functionality from file True
parsers, which can be used insecurely.

An example is disabling remote XML entity
support.

Controls whether names of objects in the False
default schema are fully qualified or not. If

false, only objects outside the default

schema are fully qualified.

9.12.27 rollback

Roll back changes made to the database based on the specified tag.

ORACLE

Syntax

Liquibase|lb rollback|rb {OPTIONS}

The rollback command is used to revert all changes that were made to the database after a
defined tag. All deployed changes are rolled back until the tag row in the DATABASECHANGELOG

table.

Options

Option

Description Default

Required
-changelog-file|-chf
-tagl|-ta

Optional
-contexts|-co

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

-labels|-1la

The root changelog file. -

The tag to use during the execution of the
command.

Context string to use for filtering which -
changes to operate on.

Name of table to use for tracking change -
history.
Enable debug output. -

The default schema name to use for the -
database connection.

Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties
Label expression to use for filtering the -
changes to operate on.

9-111

Chapter 9
LIQUIBASE

Option Description Default
-liquibase-schema-name|- Schema to use for Liquibase objects. -
1lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name | -1btn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-rollback-script|-ros Rollback script to execute. -
-search-path|-sep Complete list of locations to search for files -

such as changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from file True
parsers, which can be used insecurely.

An example is disabling remote XML entity

support.
-output-default-schema|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

Example

Roll back changes to tag.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>

-- Apply update for versions adding new tag for each version
SQL> 1b update -changelog-file controller.xml

SQL> 1b tag -tag versionl

SQL> 1b update -changelog-file controller.xml

SQL> 1b tag -tag version2

-- Roll back to versionl

SQL> 1b rollback-sgl -tag versionl -changelog-file controller.xml

9.12.28 rollback-count

ORACLE

Roll back the specified number of changes made to the database.
Syntax

Liquibase|lb rollback-count|rbc {OPTIONS}

The rollback-count command is used to revert the specified number of changes to the
database starting from the most recent changes.

9-112

ORACLE

Chapter 9
LIQUIBASE

Options
Option Description Default
Required
-changelog-file|-chf The root changelog file. -
-count |-cu The number of changes to apply. -
Optional
-contexts|-co Context string to use for filtering which -
changes to operate on.
-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.
-debug|-de Enable debug output. -
-default-schema-name|-desn The default schema name to use for the -
database connection.
-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties
-labels|-1la Label expression to use for filtering the -
changes to operate on.
-liquibase-schema-name| - Schema to use for Liquibase objects. -
1lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name | -1lbtn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-rollback-script|-ros Rollback script to execute. -
-search-path|-sep Complete list of locations to search for files -
such as changelog files.
You can specify multiple paths by
separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers True
that could be used insecurely.
An example is disabling remote XML entity
support.
-output-default-schema|- Controls whether names of objects in the False

ouds

default schema are fully qualified or not. If
false, only objects outside the default
schema are fully qualified.

Example

Roll back the specified number of changes.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>
-- Apply update for versions adding new tag for each version
SQL> 1b update -changelog-file controller.xml

9-113

SQL> 1b update -changelog-file controller.xml

-- Roll back to versionl

Chapter 9
LIQUIBASE

SQL> 1b rollback-count -count 1 -changelog-file controller.xml

9.12.29 rollback-count-sq

Generate the SQL to roll back the specified number of changes.

ORACLE

Syntax

Liquibase|lb rollback-count-sql|rbcs {OPTIONS}

The rollback-count command is used to revert the specified number of changes to the
database starting from the most recent changes.

Options

Option Description Default

Required

-changelog-file|-chf The root changelog file. -

-count | -cu The number of changes to apply. -

Optional

-contexts|-co Context string to use for filtering which -
changes to operate on.

-database-changelog-table- Name of table to use for tracking change -

name | -dactn history.

-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: ~-defaults-
file/tmp/liquibase.properties

-labels|-1la Label expression to use for filtering the -
changes to operate on.

-liquibase-schema-name |- Schema to use for Liquibase objects. -

lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name |-1btn

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-output-default-schema|- Control whether names of objects in the False

ouds

-output-file|-ouf

-overwrite-files|-ovf

default schema are fully qualified or not. If
true they are qualified. If false, only objects
outside the default schema are fully
qualified.

The name of the file to write the output to.

Overwrite any existing files in the directory.
This will not affect other files.

9-114

Chapter 9
LIQUIBASE

Option

Description

Default

-rollback-script|-ros

-search-path|-sep <search-
path>

-secure-parsing|-scp

Rollback script to execute.

Complete list of locations to search for files
such as changelog files in. Specify multiple
paths by separating them with commas.

If true, remove functionality from file parsers -

that could be used insecurely.

An example is disabling remote XML entity
support.

Example

Generate SQL to roll back the specified number of changes.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>

-- Apply update for versions

SQL> 1b update -changelog-file controller.xml
SQL> 1b update -changelog-file controller.xml

-- Roll back to versionl

SQL> 1b rollback-count-sgl -countl -changelog-file controller.xml

9.12.30 rollback-sql

Generate the SQL to roll back changes made to the database after a defined tag.

ORACLE

Syntax

Liquibase|lb rollback-sgl|rbs {OPTIONS}

The SQL will contain all deployed changes being rolled back until the tag row in the

DATABASECHANGELOG table.

Options
Option Description Default
Required
-changelog-file|-chf The root changelog file. -
-tag|-ta The tag to use during the execution of the -
command.
Optional

-contexts|-co

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

Context string to use for filtering which
changes to operate on.

Name of table to use for tracking change
history.
Enable debug output.

The default schema name to use for the
database connection.

9-115

Chapter 9
LIQUIBASE

Option Description Default
-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties
-labels|-1la Label expression to use for filtering the -
changes to operate on.
-liquibase-schema-name|- Schema to use for Liquibase objects. -
lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name | -1btn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-output-default-schema|- Control whether names of objects in the False
ouds default schema are fully qualified or not. If
true they are qualified. If false, only objects
outside the default schema are fully
qualified.
-output-file|-ouf The name of the file to write the outputto. -
-overwrite-files|-ovf Overwrite any existing files in the directory. -
This will not affect other files.
-rollback-script|-ros Rollback script to execute. -
-search-path|-sep Complete list of locations to search for files -
such as changelog files.
You can specify multiple paths by
separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers True

that could be used insecurely.

An example is disabling remote XML entity
support.

Example

Generate SQL to roll back the specified number of changes.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>

-- Apply update for versions adding new tag for each version
SQL> 1b update -changelog-file controller.xml

SQL> 1b tag -tag versionl

SQL> 1b update -changelog-file controller.xml

SQL> 1b tag -tag version?2

-- Roll back to versionl

SQL> 1b rollback-sql -tag versionl -changelog-file controller.xml

9.12.31 rollback-to-date

Roll back changes made to the database back to the specified date and time.

ORACLE

9-116

Syntax

Chapter 9
LIQUIBASE

Liquibase|lb rollback-to-date|rbtd {OPTIONS}

The rollback-to-date command is used to revert changes from today's date to the specified

date and time..

Options
Option Description Default
Required
-changelog-file|-chf The root changelog file. -
-date|-da [Date to use when determining what -
changes to apply. The date format is YYYY-
MM-DD HH:MM:SS. If including time,
enclose the entire date/time in double
quotes.
Optional

-contexts|-co

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

-labels|-1la

-liquibase-schema-name|-
1bsn

-liquibase-tablespace-
name |-1btn

-logl|-1lo

-rollback-script|-ros

-search-path|-sep

-secure-parsing|-scp

ORACLE

Context string to use for filtering which -
changes to operate on.

Name of table to use for tracking change -
history.

Enable debug output. -

The default schema name to use for the
database connection.

Fully qualified path to the properties file you
want to use. Example: ~-defaults-
file/tmp/liquibase.properties

Label expression to use for filtering the -
changes to operate on.

Schema to use for Liquibase objects.

Tablespace to use for Liquibase objects.

Enable logging. -
Standard logging is INFO level (no debug
flag).

Debug logging is FINEST level (both log and
debug flag).

Rollback script to execute. -

Complete list of locations to search for files
such as changelog files.

You can specify multiple paths by

separating them with commas.

If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity
support.

9-117

Chapter 9
LIQUIBASE

Option Description Default
-output-default-schema|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

Example

Roll back to the specified date and time.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>

-- Apply update update on 2022-09-01

SQL> 1b update -changelog-file controller.xml
-- Apply update on 2022-09-02

SQL> 1b update -changelog-file controller.xml
-- Apply update on 2022-09-03

SQL> 1b update -changelog-file controller.xml
-- Roll back to versionl

SQL> 1b rollback-to-date -date 2022-09-02 -changelog-file controller.xml

9.12.32 rollback-to-date-sq

ORACLE

Generate SQL to roll back changes made to the database back to the specified date and time.
Syntax

Liquibase|lb rollback-to-date-sqgl|rbtds {OPTIONS}

The rollback-to-date-sql command is used to generate SQL to revert changes from today's
date to the specified date and time.

Options
Option Description Default
Required
-changelog-file|-chf The root changelog file. -
-date|-da [Date to use when determining what -
changes to apply. The date formatis YYYY-
MM-DD HH:MM:SS. If including time,
enclose the entire date/time in double
quotes.
Optional
-contexts|-co Context string to use for filtering which -

changes to operate on.

-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.

-debug|-de Enable debug output. -

9-118

ORACLE

Chapter 9
LIQUIBASE

Option Description Default
-default-schema-name|-desn The default schema name to use for the -
database connection.
-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: ~-defaults-
file/tmp/liquibase.properties
-labels|-1la Label expression to use for filtering the -
changes to operate on.
-liquibase-schema-name |- Schema to use for Liquibase objects. -
lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name |-1lbtn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-output-default-schema|- Control whether names of objects in the False
ouds default schema are fully qualified or not. If
true they are qualified. If false, only objects
outside the default schema are fully
qualified.
-output-file|-ouf The name of the file to write the output to. -
-overwrite-files|-ovf Overwrite any existing files in the directory. -
This will not affect other files.
-rollback-script|-ros Rollback script to execute. -
-search-path|-sep Complete list of locations to search for files -
such as changelog files.
You can specify multiple paths by
separating them with commas.
-secure-parsing|-scp If true, remove functionality from file True

parsers, which can be used insecurely.
An example is disabling remote XML entity

support.

Example

Generate SQL to roll back the specified date.

-- Set default output path
SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>

-- Apply update on 2022-09-01

SQL> 1b update -changelog-file controller.xml
-- Apply update on 2022-09-02

SQL> 1b update -changelog-file controller.xml
-- Apply update on 2022-09-03

SQL> 1b update -changelog-file controller.xml

-- Roll back to versionl

SQL> 1b rollback-to-date-sgl -date 2022-09-02 -changelog-file controller.xml

9-119

9.12.33 snapshot

Capture the current state of a target database.

ORACLE

Syntax

Chapter 9
LIQUIBASE

Liquibase|lb snapshot]|sn {OPTIONS}

The snapshot command is used to:

e Review and track changes in your target database

e Compare a previous database state to an online database

e Compare a previous database state to another snapshot

Options

Option

Description Default

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

-liquibase-schema-name |-
lbsn

-liquibase-tablespace-
name | -1btn

-logl|-lo

-output-file|-ouf

-overwrite-files|-ovf

-schemas|-sc

-search-path|-sep

-secure-parsing|-scp

-snapshot-format|-snf

Name of table to use for tracking change -
history.

Enable debug output. -

The default schema name to use for the
database connection.

Fully qualified path to the properties file you
want to use. Example: —defaults-
file/tmp/liquibase.properties

Schema to use for Liquibase objects. -

Tablespace to use for Liquibase objects.

Enable logging. -
Standard logging is INFO level (no debug
flag).

Debug logging is FINEST level (both log and
debug flag).

The name of the file to write the output to.

Overwrite any existing files in the directory.
This will not affect other files.

Schemas to include in diff. -

Complete list of locations to search for files
such as changelog files.

You can specify multiple paths by
separating them with commas.

If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity
support.

Output format to use (JSON, YAML, or TXT) -

9-120

Chapter 9
LIQUIBASE

Option

Description

Default

-output-default-schemal-

Controls whether names of objects in the

False

ouds default schema are fully qualified or not. If
false, only objects outside the default
schema are fully qualified.

Example

Generate a snapshot capturing the current state of a database.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target

SQL> connect <db-connect-string>

-- Take a snapshot

SQL> 1b snapshot -snapshot-format json -outputfile snaptgt20220901.json

0.12.34 status

Generate a list of pending changesets.

Syntax

Liquibasel|lb status|st {OPTIONS}

Options

Option

Description

Default

Required
-changelog-file|-chf
Optional
-contexts|-co

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

-labels|-1la

-liquibase-schema-name |-
1bsn

-liquibase-tablespace-
name | -1btn

ORACLE

The root changelog file.

Context string to use for filtering which
changes to operate on.

Name of table to use for tracking change
history.
Enable debug output.

The default schema name to use for the
database connection.

Fully qualified path to the properties file you
want to use. Example: ~-defaults-
file/tmp/liquibase.properties

Label expression to use for filtering the
changes to operate on.

Schema to use for Liquibase objects.

Tablespace to use for Liquibase objects.

9-121

Chapter 9
LIQUIBASE

Option Description Default

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).

Debug logging is FINEST level (both log and
debug flag).

-search-path|-sep Complete list of locations to search for files -
such as changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity

support.
-verbose|-ve Verbose flag True
-output-default-schema|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

Example

Report the number of undeployed changesets and identify them.
-- Set default output path
SQL> cd <output-files-path>

-- Check the status
SQL> 1b status -verbose -changelog-file controller.xml

9.12.35 tag

Mark the current database state with the specified tag to use for roll back.
Syntax

Liquibase|lb tag|ta {OPTIONS}

For example, you can use the tag to mark the current database state for version, release, and
so on. The tag is added to the last row in the DATABASECHANGELOG table.

Options

Option Description Default

Required

-tag|-ta The tag to use during the execution of the -
command.

Optional

-database-changelog-table- Name of table to use for tracking change -

name | -dactn history.

-debug|-de Enable debug output. -

ORACLE 0195

Chapter 9
LIQUIBASE

Option Description Default

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you
want to use. Example: ~defaults-
file/tmp/liquibase.properties

-liquibase-schema-name|- Schema to use for Liquibase objects. -

1lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name | -1btn

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-search-path|-sep Complete list of locations to search for files -

such as changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity

support.
-output-default-schemal|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

Example

Create initial tag and version tags.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target and add base tag

SQL> connect <db-connect-string>

SQL> 1b tag -tag baseversionl

-- Apply update for version adding and add new tag for each version
SQL> 1b update -changelog-file controller.xml

SQL> 1b tag -tag versionl

9.12.36 tag-exists

Verify the existence of the specified tag.
Syntax

Liquibasel|lb tag-exists|tae {OPTIONS}

ORACLE 9193

Chapter 9
LIQUIBASE

Options

Option Description Default

Required

-tag|-ta The tag to use during the execution of the -
command.

Optional

-database-changelog-table- Name of table to use for tracking change -

name | -dactn history.

-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you
want to use. Example: —defaults-
file/tmp/liquibase.properties

-liquibase-schema-name|- Schema to use for Liquibase objects. -

lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name|-1lbtn

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-search-path|-sep Complete list of locations to search for files -

such as changelog files.

You can specify multiple paths by

separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers True

that could be used insecurely.

An example is disabling remote XML entity

support.
-output-default-schema|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

9.12.37 unexpected-changesets

ORACLE

Generate a list of changesets that have been executed but are not in the current changelog.

Syntax

Liquibase|lb unexpected-changesets|unc {OPTIONS}

This command detects and compares the changes between the DATABASECHANGELOG table and
the current changelog and reports:

* Changesets in the DATABASECHANGELOG table that do not exist in the current changelog.

e Previously deployed changesets that were deleted from your current changelog.

9-124

ORACLE

Chapter 9
LIQUIBASE

Report unexpected changesets.

-- Set default output path
SQL> cd <output-files-path>

Options
Option Description Default
Required
-changelog-file|-chf The root changelog file. -
Optional
-contexts|-co Context string to use for filtering which -
changes to operate on.
-database-changelog-table- Name of table to use for tracking change -
name|-dactn history.
-debug|-de Enable debug output. -
-default-schema-name|-desn The default schema name to use for the -
database connection.
-defaults-file|-def Fully qualified path to the properties file you -
<defaults-file> {FILE} want to use. For example, defaults-
file /tmp/
liquibase.properties
-labels|-1la Label expression to use for filtering the -
changes to operate on.
-liquibase-schema-name|- Schema to use for Liquibase objects. -
lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name |-1btn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-output-default-schema|- Control whether names of objects in the False
ouds default schema are fully qualified or not. If
true they are qualified. If false, only objects
outside the default schema are fully
qualified.
-output-file|-ouf The name of the file to write the output to. -
-overwrite-files|-ovf Overwrite any existing files in the directory. -
This will not affect other files.
-search-path|-sep Complete list of locations to search for files -
such as changelog files.
You can specify multiple paths by
separating them with commas.
-secure-parsing|-scp If true, remove functionality from file True
parsers, which can be used insecurely.
An example is disabling remote XML entity
support.
-verbose |-ve Verbose flag True
Example

9-125

Chapter 9
LIQUIBASE

-- Connect to target and run command
SQL> connect <db-connect-string>
SQL> 1b unexpected-changesets -changelog-file controller.xml

9.12.38 update

Deploy any changes in the changelog file that have not been deployed.
Syntax

Liquibase|lb update|up {OPTIONS}

When you run the update command, the changesets in the changelog file are read
sequentially. The unique identifiers (file::id::author) in the file are compared to those stored in
the DATABASECHANGELOG table.

< If the unique identifiers do not exist, Liquibase will apply the changeset to the database.

« If the unique identifiers exist, the MD5Sum of the changeset is compared to the one in the
database.

If they are different, Liquibase will produce an error message that someone has changed it
unexpectedly.

If the status of the runOnChange or runAlways changeset attribute is set to TRUE,
Liquibase will re-apply the changeset. Example: <changeSet id="2" author="bob"
runAlways="true">

Options

Option Description Default
Required

-changelog-file|-chf The root changelog file. -
Optional

-contexts|-co Context string to use for filtering which -

changes to operate on.
-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.
-debug|-de Enable debug output. -
-default-schema-name|-desn The default schema name to use for the -
database connection.
-defaults-file|-def Fully qualified path to the properties file you
want to use. Example: —defaults-
file/tmp/liquibase.properties

-labels|-1la Label expression to use for filtering the -
changes to operate on.

-liquibase-schema-name |- Schema to use for Liquibase objects. -

1lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name |-1lbtn

ORACLE 9196

Chapter 9
LIQUIBASE

Option Description Default

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).

Debug logging is FINEST level (both log and
debug flag).

-search-path|-sep Complete list of locations to search for files
such as changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity

support.
-show-summary|-shs <show- Produces a summary list of any changesets SUMMARY
summary> {OFF|SUMMARY | skipped and why they were skipped. Valid
VERBOSE } values are OFF, SUMMARY, and
VERBOSE.
-output-default-schema|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

-override-app-alias|-ovaa Override value to be used for the APEX -
application alias.

-override-app-id|-ovai Override value to be used for the APEX -
application id.

-override-app-schema|-ovas Override value to be used for the APEX -
workspace schema.

-override-app-workspace|- Override value to be used for the APEX -
ovaw application workspace.

9.12.39 update-count

ORACLE

Deploy the specified number of changes from the changelog file.
Syntax

Liquibase|lb update-count|upc {OPTIONS}

The update-count command applies changes and updates changesets sequentially, starting
from the top of the changelog file until the number specified is reached.

< If the unique identifiers do not exist, Liquibase will apply the changeset to the database.

< If the unique identifiers exist, the MD5Sum of the changeset is compared to the one in the
database.

If they are different, Liquibase will produce an error message that someone has changed it
unexpectedly.

If the status of the runOnChange or runAlways changeset attribute is set to TRUE,
Liquibase will re-apply the changeset. Example: <changeSet id="2" author="bob"
runAlways="true">

9-127

Chapter 9
LIQUIBASE

Options

Option Description Default
Required

-changelog-file|-chf The root changelog file. -
-count |-cu The number of changes to apply. -
Optional

-contexts|-co Context string to use for filtering which -

changes to operate on.
-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.
-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you
want to use. Example: —defaults-
file/tmp/liquibase.properties

-labels|1- Label expression to use for filtering the -
changes to operate on.

-liquibase-schema-name| - Schema to use for Liquibase objects. -

1lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name | -1lbtn

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-search-path|-sep Complete list of locations to search for files -

such as changelog files.

You can specify multiple paths by

separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers True

that could be used insecurely.

An example is disabling remote XML entity

support.
-show-summary|-shs <show- Produces a summary list of any changesets SUMMARY
summary> {OFF|SUMMARY | skipped and why they were skipped. Valid
VERBOSE } values are OFF, SUMMARY, and
VERBOSE.
-output-default-schema|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

Example

Update database with the specified number of changesets in the changelog file.

SQL> cd <lb-changes-directory>
SQL> 1b update -changelog-file controller.xml -count 2

ORACLE 9198

9.12.40 update-count-sq|

Generate the SQL to deploy the specified number of changes for review before running the

ORACLE

update command.

Syntax

Liquibase|lb update-count-sql |upcs {OPTIONS}

Chapter 9
LIQUIBASE

Liquibase uses the raw SQL to apply database changes you have added to the changelog file.

Options

Option Description Default

Required

-changelog-file|-chf The root changelog file. -

-count |-cu The number of changes to apply. -

Optional

-contexts|-co Context string to use for filtering which -
changes to operate on.

-database-changelog-table- Name of table to use for tracking change -

name | -dactn history.

-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties

-labels|-1la Label expression to use for filtering the -
changes to operate on.

-liquibase-schema-name |- Schema to use for Liquibase objects. -

1lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name | -1lbtn

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-output-default-schema|- Control whether names of objects in the False

ouds

-output-file|-ouf

-overwrite-files|-ovf

-search-path|-sep

default schema are fully qualified or not. If
true they are qualified. If false, only objects
outside the default schema are fully
qualified.

The name of the file to write the output to.

Overwrite any existing files in the directory.
This will not affect other files.

Complete list of locations to search for files
such as changelog files.

You can specify multiple paths by
separating them with commas.

9-129

Chapter 9
LIQUIBASE

Option

Description Default

-secure-parsing|scp

If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity
support.

9.12.41 update-sq|

Generate the SQL identified in the changelog for review before running the update command.

ORACLE

Syntax

Liquibase|lb update-sqgl|ups {OPTIONS}

Liquibase uses the raw SQL to apply database changes you have added to the changelog file.

Options

Option

Description Default

Required
-changelog-file|-chf
Optional
-contexts|-co

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

-defaults-file|-def

-labels|-1la

-liquibase-schema-name|-
1bsn

-liquibase-tablespace-
name |-1btn

-logl|-lo

-output-default-schemal-
ouds

-output-file|-ouf

The root changelog file. -

Context string to use for filtering which -
changes to operate on.

Name of table to use for tracking change -
history.
Enable debug output. -

The default schema name to use for the
database connection.

Fully qualified path to the properties file you -
want to use. Example: ~-defaults-
file/tmp/liquibase.properties
Label expression to use for filtering the -
changes to operate on.

Schema to use for Liquibase objects.

Tablespace to use for Liquibase objects.

Enable logging. -
Standard logging is INFO level (no debug

flag).

Debug logging is FINEST level (both log and
debug flag).

Control whether names of objects in the False
default schema are fully qualified or not. If

true they are qualified. If false, only objects

outside the default schema are fully
qualified.

The name of the file to write the output to. -

9-130

Chapter 9
LIQUIBASE

Option Description Default
-overwrite-files|-ovf Overwrite any existing files in the directory. -

This will not affect other files.
-search-path|-sep Complete list of locations to search for files -

such as changelog files.

You can specify multiple paths by

separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers True

-override-app-alias|-ovaa
-override-app-id|-ovai
-override-app-schema|-ovas

-override-app-workspace|-
ovaw

that could be used insecurely.

An example is disabling remote XML entity

support.
Override value to be used for the APEX
application alias.

Override value to be used for the APEX
application id.

Override value to be used for the APEX
workspace schema.

Override value to be used for the APEX
application workspace.

9.12.42 update-testing-rollback

Updates database, then rolls back changes before updating again. It provides testing of

ORACLE

rollback funtionality.

Syntax

Liquibase|lb update-testing-rollback|uptr {OPTIONS}

Use only when all pending changelogs have been verified as ready to be deployed.

A multi-step operation is used and runs in sequential order:

update changesetl; update changeset2; update changeset3\

rollback changeset3; rollback changeset2; rollback changesetl

update changesetl; update changeset2; update changeset3

Options

Option

Description

Default

Required
-changelog-file|-chf
Optional
-contexts|-co

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

The root changelog file.

Context string to use for filtering which
changes to operate on.

Name of table to use for tracking change
history.

Enable debug output.

The default schema name to use for the
database connection.

9-131

Chapter 9
LIQUIBASE

Option Description Default

-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties

-labels|-1la Label expression to use for filtering the -
changes to operate on.
-liquibase-schema-name|- Schema to use for Liquibase objects. -
lbsn
-liquibase-tablespace- Tablespace to use for Liquibase objects. -
name | -1btn
-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).
-output-default-schema|- Control whether names of objects in the False
ouds default schema are fully qualified or not. If

true they are qualified. If false, only objects
outside the default schema are fully

qualified.
-output-file|-ouf The name of the file to write the outputto. -
-overwrite-files|-ovf Overwrite any existing files in the directory. -

This will not affect other files.

-search-path|-sep Complete list of locations to search for files -
such as changelog files.

You can specify multiple paths by

separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers -

that could be used insecurely.

An example is disabling remote XML entity
support.

9.12.43 update-to-tag

Deploy changes sequentially from the newest changeset up to and including the changeset
with the specified tag.

Syntax

Liquibase|lb update-to-tag|uptt OPTIONS

The update-to-tag command will deploy changes only when you have previously added a tag
Database Change Type in your changelog file. You cannot use the update-to-tag command
with the reference to a tag created in the DATABASECHANGELOG table using the tag command.
An update-to-tag-sql should always be run to review the SQL before running update-to-tag.

Options

Option Description Default

Required

ORACLE 9132

Chapter 9
LIQUIBASE

Option Description Default

-changelog-file|-chf The root changelog file. -

-tag|-ta The tag to use during the execution of the -
command.

Optional

-contexts|-co Context string to use for filtering which -

changes to operate on.
-database-changelog-table- Name of table to use for tracking change -
name | -dactn history.
-debug|de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you
want to use. Example: —defaults-
file/tmp/liquibase.properties

-labels|-1la Label expression to use for filtering the -
changes to operate on.

-liquibase-schema-name |- Schema to use for Liquibase objects. -

1lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name | -1lbtn

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-search-path|-sep Complete list of locations to search for files -

such as changelog files.

You can specify multiple paths by
separating them with commas.

-secure-parsing|-scp If true, remove functionality from file parsers
that could be used insecurely.

An example is disabling remote XML entity

support.
-show-summary|-shs <show- Produces a summary list of any changesets SUMMARY
summary> {OFF|SUMMARY | skipped and why they were skipped. Valid
VERBOSE} values are OFF, SUMMARY, and
VERBOSE.
-output-default-schema|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

Example

Update database with the changesets up to and including the changeset with the specified
database tag.

SQL> cd <lb-changes-directory>
-- Edit changelog file and add tagDatabase entries for versions
-- Execute an update-to-tag using a tag specified in tagDatabase in the

ORACLE 9133

changelog file

Chapter 9
LIQUIBASE

SQL> 1b update-to-tag -tag versionl -changelog-file controller.xml

9.12.44 update-to-tag-sql

Generate the SQL from the newest changeset up to and including the changeset with the

ORACLE

specified tag.

Syntax

Liquibase|lb update-to-tag-sqgl|uptts {OPTIONS}

An update-to-tag-sql should always be run to review the SQL before running update-to-tag The
update-to-tag-sql command will generate SQL when you have previously added a tag
Database Change Type in your changelog file. You cannot use the update-to-tag command
with the reference to a tag created in the DATABASECHANGELOG table using the tag cde

command.

Options

Option Description Default

Required

-changelog-file|-chf The root changelog file. -

-tag|-ta The tag to use during the execution of the -
command.

Optional

-contexts|-co Context string to use for filtering which -
changes to operate on.

-database-changelog-table- Name of table to use for tracking change -

name | -dactn history.

-debug|-de Enable debug output. -

-default-schema-name|-desn The default schema name to use for the -
database connection.

-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties

-labels|-1la Label expression to use for filtering the -
changes to operate on.

-liquibase-schema-name|- Schema to use for Liquibase objects. -

1lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name | -1btn

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-output-default-schema|- Control whether names of objects in the False

ouds

default schema are fully qualified or not. If
true they are qualified. If false, only objects
outside the default schema are fully
qualified.

9-134

Chapter 9
LIQUIBASE

Option

Description Default

-output-file|-ouf

-overwrite-files|-ovf

-search-path|-sep

-secure-parsing|-scp

The name of the file to write the output to. -

Overwrite any existing files in the directory. -
This will not affect other files.

Complete list of locations to search for files -
such as changelog files.

You can specify multiple paths by
separating them with commas.

If true, remove functionality from file parsers True
that could be used insecurely.

An example is disabling remote XML entity
support.

Example

Update database with the changesets up to and including the changeset with the specified
database tag.

SQL> cd <Ib-changes-directory>
-- Edit changelog file and add tagDatabase entries for versionl
SQL> 1b update-to-tag-sgl -tag versionl -changelog-file controller.xml

9.12.45 validate

Validate the changelog for errors that may cause an UPDATE to fail.

ORACLE

Syntax

Liquibasel|lb validate|va {OPTIONS}

The following checks are done:

XML, YAML, JSON, and SQL structure

Referenced files exist

Required or prohibited attributes are correct for your database

Duplicated id, author, and file combinations

Checksum errors

Options

Option

Description Default

Required
-changelog-file|-chf
Optional

-database-changelog-table-
name | -dactn

-debug|-de

-default-schema-name|-desn

The root changelog file. -

Name of table to use for tracking change -
history.

Enable debug output. -

The default schema name to use for the -
database connection.

9-135

Chapter 9
LIQUIBASE

Option Description Default

-defaults-file|-def Fully qualified path to the properties file you -
want to use. Example: —defaults-
file/tmp/liquibase.properties

-liquibase-schema-name |- Schema to use for Liquibase objects. -

1lbsn

-liquibase-tablespace- Tablespace to use for Liquibase objects. -

name | -1lbtn

-log|-1lo Enable logging. -
Standard logging is INFO level (no debug
flag).
Debug logging is FINEST level (both log and
debug flag).

-search-path|-sep Complete list of locations to search for files -

such as changelog files.

You can specify multiple paths by

separating them with commas.
-secure-parsing|-scp If true, remove functionality from file parsers True

that could be used insecurely.

An example is disabling remote XML entity

support.
-output-default-schemal|- Controls whether names of objects in the False
ouds default schema are fully qualified or not. If

false, only objects outside the default
schema are fully qualified.

Example

Validate before running UPDATE.

-- Set default output path

SQL> cd <output-files-path>

-- Connect to target and validate

SQL> connect <db-connect-string>

SQL> 1b validate -changelog-file controller.xml

0.12.46 version

ORACLE

Display version information.
Syntax

Liquibase|lb version|ve

Options
Option Description Default
-debug|-de Enable debug output. -

9-136

9.13 MDB

ORACLE

Chapter 9

MDB
The MDB command enables the import of tables and data from MDB (Microsoft Access
Database) files into an Oracle database schema.
You can run the MDB command in SQLcl using mdb.
To view the help information for MDB, enter help mdb.
The following two sub-commands are supported, enabling listing or copying data from a
Microsoft Access database file.
List Data
Lists tables or saved queries (views) that exist in the specified MDB file and outputs the list.
Syntax
mdb list {OPTIONS}
Options
Option Description
Required
-file|-fi <file> Path of the Microsoft Access database file.
Optional
-tables|-tabs Only the tables that exist in the specified Microsoft
Access file.
-views|-vw Only the views or saved queries that are saved in
the Microsoft Access database.
Examples

List all tables and saved queries in an MDB file.
mdb list -file mdb file.mdb
Copy Data

Copy tables or views from the Microsoft Access database to the Oracle Database.

Syntax

mdb copy {OPTIONS}

Options

Option Description

Required

-file|-fi <file> Path of the Microsoft Access database file.
Optional

9-137

9.14 MLE

ORACLE

Chapter 9
MLE

Option

Description

-tables|-tabs
-views|-vw

-prefix|-pr <prefix>
-table|-tab <table>

-mode | -mo <mode> {APPEND|REPLACE | SKIP|
TRUNCATE} (REPLACE)

Only the tables that exist in the specified Microsoft
Access file.

Only the views or saved queries that are saved in
the Microsoft Access database.

Name to add before the table or view table names.

Copy a specific table from MDB file into Oracle
Database.

Specify the mode of operation for handling existing

data in the destination table. The available options

are:

» replace: If the target table exists, drop it, then
recreate it and add the new data.

e append: Add the new data to the existing data
in the target table, if any.

» truncate: Clear all existing data in the target
table before adding the new data.

» skip: If the target table already exists, do
nothing. Otherwise, create the table and add
the new data.

Examples

Copy all from MDB file to Oracle Database.

SQL> mdb copy -file mdb file.mdb

Replace the existing target table by dropping it if it exists, then recreate it and add the data.

SQL> mdb copy -table employees -file mdb file.mdb -mode replace

Use the MLE command to load JavaScript libraries to the database as MLE modules.

The sub-commands are:

e Create Module
e Alter Module

Prerequisites
This command requires:

¢ Oracle Database Release 23ai.

e The CREATE TABLE privilege is required for the create-module sub-command. If creating a
module in another schema, then the CREATE ANY TABLE privilege is required.

« System privileges documented in the Oracle Database JavaScript Developer's Guide.

9-138

https://docs.oracle.com/en/database/oracle/oracle-database/23/mlejs/mle-security.html#GUID-EC5A5EB9-E7C4-4D42-B37D-82D4FB2E7AAD

9.14.1 Create Module

ORACLE

Creates an MLE module.

Syntax

mle create-module {OPTIONS}

Options

Chapter 9
MLE

Option

Description

Required
-filename <filename>

-module-name <module>

Optional

-bundler <bundler> {rollup}
-bundler-config <bundler-config> {file}

-if-not-exists

-language <language>

-metadata <metadata>

-metafile <metafile>

-sbom <sbom> {syft}
-replace

-schema <schema>
-verbose

-version <version>

Specifies the path to a valid JavaScript file.

Specifies the name of the module to create in the
current schema.

Specifies the name of a supported program that
can bundle a JavaScript file with its dependencies.
See JavaScript with External Dependencies.

Specifies the name of a configuration file for the
bundler program.

Creates the module only if it does not exist.

Specifies the name of a supported programming
language. The default value is JavaScript.

Specifies any valid JSON text that describes the
module. This option is mutually exclusive with -
metafile.

Specifies the path to a valid JSON file that
describes the module. This option is mutually
exclusive with -metadata.

Specifies the name of a supported program that
can create a Software Bill of Materials.

Replaces the module if it exists or create one if it
does not exist.

Specifies the name of an alternate schema to own
the module.

Emits additional diagnostic information as the
command makes progress.

Specifies the version of the programming language.

JavaScript with External Dependencies

The Create Module sub-command can load a JavaScript file that refers to other JavaScript
modules. To accomplish this, the MLE command bundles the specified JavaScript file with all
its dependencies and uses the external rollup command.

¢ Install rollup and syft

For bundling external dependencies, install rollup. For SBOM (Software Bill of Materials),
install syft. You can use brew install for both.

e Configuring rollup execution

9-139

https://rollupjs.org/tutorial/
https://rollupjs.org/tutorial/
https://github.com/anchore/syft
https://brew.sh/

Chapter 9
MLE

The intended usage for bundling is to bundle a single JavaScript file that has external
dependencies. For example, if bundling should exclude one or more external
dependencies, then those exclusions would be specified in a configuration file specified
with the -bundler-config option. Not all bundling requires a configuration. In any case, the
single JavaScript file to bundle is always specified with the -filename option, even if the
input filename is specified in the configuration file.

Mutating dependency

If you create an MLE module from a.js, modify c.js, and then create another MLE module
from b.js, then you have two MLE modules with a mutated dependency, c.js. To avoid this,
reorganize the code so that you create three MLE modules and avoid the bundling.

Debugging

When a bundled JavaScript file is created by the host command (using the -bundler
option), the resulting JavaScript file is not an exact representation of what exists on the file
system. Therefore, when you attach a debugger to the MLE module's execution, you do
not know which external JavaScript file and line number you are viewing.

9.14.2 Alter Module

ORACLE

Change an existing MLE module.

Syntax

mle alter-module {OPTIONS}

Options

Option Description

Required

-module-name <module> The name of the module to change in the current
schema.

-metadata <metadata> Any valid JSON text that describes the module.
This option is mutually exclusive with -metafile.

-metafile <metafile> The path to a valid JSON file that describes the
module. This option is mutually exclusive with -
metadata.

Optional

-if-exists Modify the module only if it exists.

-verbose Emit additional diagnostic information as the
command makes progress.

-schema <schema> The name of an alternate schema that owns the
module.

Examples

Modify an existing MLE module by updating the metadata and specifying the module
name.

SQL> mle alter-module -metadata '{"name":"getOrderTotal",
"version":"1.1"}' -module-name abc

9-140

Chapter 9
MODELER

* Display the MLE module metadata.

SQL> select metadata from user mle modules where module name = 'ABC'

9.15 MODELER

ORACLE

The MODELER command provides a command-line interface for Oracle SQL Developer Data
Modeler features.

The options available are:

° modeler help <command>— Displays help information about the specified modeler
command.

e modeler ddl <parameters>— Generates the Data Definition Lanaguage statements from
the selected Data Modeler design.

e modeler report <parameters>— Generates the report from the selected Data Modeler
design.

MODELER DDL
Generates the Data Definition Lanaguage statements from the selected Data Modeler design.

Syntax

MODELER DDL -design <file> -relmodel <name> [-outputfile <name>]

Parameters

Parameter Description

-design (d) <file> Full path to the design's file name.

-relmodel (rm) <name> Name of the relational model.

-dbsite (ds) <name> (Optional) Name of the physical model database
site. If this is not specified, then the default
relational database management system site for
the provided relational model is used.

-outputfile (o) <file> Full path to the output file for the generated DDL
content.

-systemTypesDir (td) <path> Full path to the system types directory.

-settingsFile (s) <file> Full path to the exported Data Modeler settings file.

-ddlConfigFile (c) <file> Full path to the exported DDL configuration file.

Example

modeler ddl -design "C:/Designs/SH.dmd" -relmodel "SH" -outputfile "C:/
DDL.sqgl"

MODELER REPORT

Generates the report from the selected Data Modeler design.

9-141

Chapter 9
PROJECT

Syntax

MODELER REPORT -design <file> -type <type> [-title <name>] -filename <name> -
outputpath <path>

Parameters

Parameter Description

-design (d) <file> Full path to the design's file name.

-type (tp) Specify the type of report. Available types are:
Tables, TableViews, TablesAndViews, Entities,
EntityViews, EntitiesAndViews, Domains.

-filename (f) <name> Name of the generated HTML file.

-outputpath (o) <path> Full path to the folder for the generated HTML
content. The report file is put in that folder and a
"css" sub-directory with the CSS files used is
created.

-relmodel (rm) <name> Name of the relational model (for Tables and Table
Views only).

-title (tt) <name> (Optional) Title of the report.

-standardTemplate (st) <name> Name of the template for a standard report,
defining the set of report sections to include
(optional). If this is not specified, all report sections
are included.

-customTemplate (ct) <name> (Optional) Name of the template for a custom
report.

-reportConfTemplate (c) <name> (Optional) Name of the template that defines the
set of objects and subviews to include in the report.

-companyname (cn) <name> (Optional) Name of the company.

-systemTypesDir (td) <path> Full path to the system types directory.

-settingsFile (s) <file> Full path to the exported Data Modeler settings file.

Example

modeler report -design "C:/Designs/SH.dmd" -type "Tables" -filename
"SHTablesReport" -outputpath "C:/Reports"

9.16 PROJECT

ORACLE

The command in SQLcl for Database CI/CD extension is project. It contains several sub-
commands that are used as part of the process to help developers manage database changes
and create serialized transactions.

Syntax
project|proj [init|in] | [export|ex] | [config|cfg] | [gen-artifactl|ga] |
[deployldp] | [release|re] | [verifylv] | [stage|st]

The following table provides a description of each sub-command.

9-142

0.16.1 init

ORACLE

Chapter 9
PROJECT

Sub-Command Description

init|in Initializes a new project. This command can be run in a new Git
repository or in an existing repository.

config|cfg Enables you to view and manage your project configuration
properties. This command allows you to look at the current
configuration that is used by each of the project commands.

export|ex Exports database objects into your repaository.

stage|st Creates Liquibase changelogs or changesets for all source files and
custom SQL files. The stage command is used along with the
export command.

release|re Moves the current set of work into a release state and starts a new

body of work. The release command takes the contents of the dist/
next folder and renames it to a given version number, then creates a
new next folder under dist.

gen-artifact|ga

Generates an artifact representing the current state of your project.

deploy|dp

Deploys the artifact on a target database.

verify|v

Provides the means to test various aspects of your project

(snapshots, changes, overall project).

Initializes a new project.

Syntax

project|proj init|in {OPTIONS}

Options

Option

Description

Required
-name | -n <name>

Optional
-schemas|-s <schemas>

-directory|-d <directory>

-connection-name|-con <connection-name>

-makeroot | -mr

-debug|-de

-verbose|-v

Specifies a name for the project.

Specifies a comma-separated list of schemas to
export.

Specifies the path of the directory where the
project should be created. If no path is specified,
the project is created in the current directory.
Specifies the SQLcl connection name. If you do not
provide a connection name and are connecting
through a named connection, the system
automatically adds that connection name to the
connectionName configuration property. If no
named connection is used, the connectionName
property remains empty.

Creates a root folder named after the project and
stores all files in this directory.

Displays the debug information in the output.

Displays in the output additional details about the
current process.

9-143

ORACLE

Examples

< Initialize a project with the following details:

— Project name: apexsb

Chapter 9
PROJECT

— Schemas to export: apexsb_data,apexsb

— Directory: /workspace/projects/

— SQLcl connection name: apexsb_conn

SQL> project init -name apexsb -schemas apexsb data,apexsb -d /workspace/

projects -con apexsb_conn

9.16.2 export

Exports database objects to your repository.

Syntax

project|proj export|ex {OPTIONS}

Options
Option Description
-list|-1 Lists all objects in alphabetical order. The list of

-objects|-o0 <objects>

-schemas|-s <schemas>

-threads |-t <threads>

-debug|-de

-verbose|-v

objects to export is output based on the current
parameters.

Specifies comma-separated list of objects to
export. For example, HR.COUNTRIES.

Specifies a comma-separated list of schemas to
export. For example, HR.

Specifies the number of concurrent threads to use
with cloned JDBC connections for executing
DBMS METADATA.getDDL. The default value is five.

Displays the debug information in the output.

Displays additional details about the current
process, in the output.

Example

Export custom export filters from .dbtools/filters/project.filters.

SQL> project export -debug -list -objects REGIONS,COUNTRIES -schemas

HR, SCOTT -threads 4

9.16.3 config

Enables you to view and manage the project configuration properties.

Syntax

project|proj config|cfg {SUBCOMMAND}

{OPTIONS}

9-144

ORACLE

Chapter 9

PROJECT
Options
Option Description
Required
-list|-11 Lists your current configuration settings
Optional
-name |-n <name Specifies the config parameter name that can be
used when filtering or editing.
-debug|-de Displays the debug information in the output.
-verbose|-v Displays additional details about the current
process, in the output .
Examples

List the configuration for the sqlcl.version parameter. Use -verbose to include default value
and description.

project config -list -name sqglcl.version -verbose

Sub-Commands

The sub-commands are:

e set: To add or update project configuration parameters.

* delete: To remove a config parameter from the project configuration.

Add or Update a Configuration Parameter

Use the set command to add a new configuration parameter or update the existing one.

Syntax

project|proj config|cfg set|s {OPTIONS}

Options

Option Description

Required

-name |-n <name> Specifies the name for the project.

-value|-va <value> Specifies the value that should be assigned to the
configuration parameter.

Optional

-debug|-de Displays the debug information in the output.

-verbose|-v Displays additional details about the current
process, in the output .

Example

Set the parameter export.demo.demoComments t0 true.

SQL> project config set -name export.demo.demoComments -type BOOLEAN -value
TRUE -verbose

9-145

Chapter 9
PROJECT

Remove Configuration Parameter
Use the delete command to remove a configuration parameter from the project configuration.

Syntax

project|proj config|cfg delete|d {OPTIONS}

Options

Option Description

-name |-n <name> Specifies the configuration parameter name that
can be used when filtering or editing.

-debug|-de Displays the debug information in the output.

-verbose|-v Displays additional details about the current

process, in the output.

9.16.4 gen-artifact

Generates an artifact representing the current state of your project.

Syntax

project|proj gen-artifact|ga {OPTIONS}

Options

Option Description

-name |-n <name> Specifies a custom name for the artifact.

-format|-fo <format> Specifies the desired compression format.
Supported values are, zip or tgz.

-version|-ve <version> Specifies the artifact version.

-force|-f Overwrites the artifact if it exists.

-debug|-de Displays the debug information in the output.

-verbose|-v Displays additional details about the current
process, in the output.

Example

Generate an artifact named R1-1 in zip format. The artifact is saved in the artifact folder.

SQL> project gen-artifact -name R1 -version 1 -format zip -verbose

9.16.5 deploy

Deploys the artifact on a target database.

Syntax

project|proj deployl|dp {OPTIONS}

ORACLE 9146

Chapter 9

PROJECT
Options
Option Description
Required
-file|-fs <file> {FILE} Specifies the artifact file location path.
Optional
-debug|-de Displays the debug information in the output.
-verbose|-v Displays additional details about the current
process, in the output.
Example

Extract the artifact file from the specified path. The command executes @dist/install.sql
and initiates the Liquibase installer on the target database.

SQL> project deploy -file /Users/userl/Desktop/projectl/artifact/R1l1-1.zip -
verbose

0.16.6 release

Moves the current set of work into a release state and starts a new body of work.

Syntax

project|proj release|re {OPTIONS}

Options

Option Description

Required

-version|-ve <version> Specifies the release version to label the release.

Optional

-debug|-de Displays the debug information in the output.

-verbose|-v Displays additional details about the current
process, in the output.

Example

Package a unit of work into a release.

SQL> project release -version 1.0

9.16.7 verify

Tests various aspects of your project (snapshots, changes, overall project).
The sub-commands are:
« verify-stage: To execute all the verify tests registered for the stage group.

* snapshot: To execute all the verify tests registered for the snapshot group.

ORACLE 9-147

Chapter 9
PROJECT

Verify Tests for the Stage Group
Use the verify-stage command to execute all the verify tests registered for the stage group.

Syntax

project|proj verify|v verify-stagel|st {OPTIONS}

Options

Option Description

Optional

-debug|-de Displays the debug information in the output.
-verbose|-v Displays additional details about the current

process, in the output.

Verify Tests for the Snapshot Group
Use the snapshot command to execute all the verify tests registered for the snapshot group.

Syntax

project|proj verify|v snapshot|ss {OPTIONS}

Options

Option Description

-debug|-de Displays the debug information in the output.
-verbose|-v Displays additional details about the current

process, in the output.

9.16.8 stage

ORACLE

Creates Liquibase changelogs or changesets for all source files and custom SQL files.

It is used along with the export command. It can also be used to add other custom changesets
as part of the change. This generates a file to add SQL and SQLcl commands with a Liquibase
SQL changeset header. This file will be added to the changelog hierarchy automatically.

Syntax

project|proj stagel|st {SUBCOMMAND} {OPTIONS}

Options

Option Description

-branch-name | -bn Specifies the branch name for comparison. If not
provided, the value from the configuration file
(git.defaultBranch) is used, with develop as
the default.

-debug|-de Displays the debug information in the output.

9-148

Chapter 9
REST

Option Description

-verbose|-v Displays additional details about the current
process, in the output.

Examples

Create a new directory under dist/releases/next specifying the branch name.
SQL> project stage -branch-name branchl
Add a Custom File to Stage

Use the add-custom command to add a custom file to stage.

Syntx

project|proj stagel|st add-custom|ac {OPTIONS}

Options

Option Description

Required

-file-name|-fn <file-name> Specifies the name for the custom file.

Optional

-debug|-de Displays the debug information in the output.

-verbose|-v Displays additional details about the current
process, in the output.

Example

Add featurel.sql custom file.

SQL> project stage add-custom -file-name featurel.sql

9.17 REST

ORACLE

REST enables you to export Oracle REST Data Services 3.x services. This is applicable for
Oracle REST Data Services release 3.0.5 or later. If you have an earlier version of Oracle
REST Data Services, you will need to upgrade. See the Installing Oracle REST Data Services
section in Oracle REST Data Services Installation, Configuration, and Development Guide for
detai