
Oracle Fusion
Cloud Sales
Automation

How do I create an application
extension for custom objects?

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom objects?

F88584-21

Copyright © 2024, Oracle and/or its affiliates.

Author: Jiri Weiss

https://docs.oracle.com/pls/topic/lookup?ctx=en%2Flegal&id=cpyr&source=

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Contents

Get Help .. i

1 Before You Begin 1
Before You Create an Application Extension .. 1

How can I change my project's Extension ID? ... 2

2 Add a Custom Top Level Object 3
Prerequisites for Using the CX Extension Generator ... 3

Create a New Application Using the CX Extension Generator ... 4

Modify an Existing Custom Application Using the CX Extension Generator ... 13

Create a Translation Bundle, If You Don't Have One Already ... 22

Configure a Child Object .. 23

Display a Panel and Subview Based on a Field Value ... 44

Configure the Subviews for Appointments and Tasks ... 51

Create Navigation Menu Entry ... 65

Configure the Picker .. 66

Add a Mashup to a Page ... 90

Add a Rollups Region to a Panel ... 98

Understanding "Show" Actions ... 106

Add the CreatedBy and LastUpdatedBy Fields to Notes Panels and Subviews ... 109

Link to a Smart Action Using a URL ... 115

3 Additional Configuration Tasks 117
Configure the Contents of a Panel .. 117

Configure the Subview Layout ... 131

Make Values of a DCL Field Dependent on the Values of Another Field ... 139

Change Navigation to Pages in Your Sales Application ... 145

Configure What Information Displays in the Product Catalog .. 151

4 Global Create Actions and AI Agent Integrations 157
Global Actions in the Sales Dashboard ... 157

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Create the Global Create Actions for Custom Objects ... 159

Set Up Global Actions to Launch AI Agents from the Sales Dashboard .. 159

5 Appendix 161
Manually Configure a Child Object for Related Objects ... 161

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Get Help

Get Help
There are a number of ways to learn more about your product and interact with Oracle and other users.

Get Help in the Applications
Some application pages have help icons to give you access to contextual help. If you don't see any help icons on
your page, click your user image or name in the global header and select Show Help Icons. If the page has contextual
help, help icons will appear.

Get Training
Increase your knowledge of Oracle Cloud by taking courses at Oracle University.

Join Our Community
Use Cloud Customer Connect to get information from industry experts at Oracle and in the partner community. You
can join forums to connect with other customers, post questions, suggest ideas for product enhancements, and watch
events.

Share Your Feedback
We welcome your feedback about Oracle Applications user assistance. If you need clarification, find an error, or just
want to tell us what you found helpful, we'd like to hear from you.

You can email your feedback to oracle_fusion_applications_help_ww_grp@oracle.com.

Thanks for helping us improve our user assistance!

i

https://www.oracle.com/education/
https://cloudcustomerconnect.oracle.com/pages/home
https://community.oracle.com/customerconnect/categories/idealab-guidelines
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Get Help

ii

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 1
Before You Begin

1 Before You Begin

Before You Create an Application Extension
Before your team can start creating application extensions, you must first set up Oracle Visual Builder Studio. You only
need to set up VB Studio once for every implementation.

Complete VB Studio implementation steps are documented in the Oracle Cloud Administering Visual Builder Studio
guide. See the topic: How Do I Set Up VB Studio?

Required: Set the Extension ID for Sales
When using VB Studio to extend Sales pages, your extension must use the extension ID: site_cxsales_Extension. You
set this extension ID when you first set up your project.

A project collects all the people, tools, and processes you need to complete a discrete software effort in VB Studio.
Oracle best practice dictates that you use a single project for all the extension work you do within the Oracle Cloud
Application environment family.

You can create this project using one of two methods discussed in the following video: Create the Visual Builder Studio
Project.

Each method requires a different way to set the extension ID:

• Create a project from a Sales page by clicking the Edit Page in Visual Builder Studio link in the Settings and
Actions menu. This is the recommended method to create a project because it automates the creation of key
VB Studio components. See the topic: Create a Simple Extension.

If you choose this method, then you’ll update your project's extension ID to site_cxsales_Extension by editing
the extension-level settings. See the topic: Establish Extension-Level Settings.

• Create a project from the Organization home page. See the topic: Manually Create a Project for Extensions.

If you choose this method, then you’ll enter the required extension ID when you create your own workspace.
See the topic: Create an Extension.

Note: Be sure to publish your extension so that the updated extension ID becomes the default going forward for
everyone else working on the extension.

Tip: Create Additional Workspaces
At some point in your extension lifecycle, you might need to create a new workspace in an existing project. You may
want to create a new workspace from the main branch if you forget what changes a particular workspace contains, for
example. Follow the instructions in the topic: Clone an Existing Repository.

You can also view the following video: Create a Workspace.

1

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-administration&id=VBADM
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-administration&id=GUID-57A423AE-0454-4791-B687-B66A101D9C2D
https://community.oracle.com/customerconnect/discussion/796120/video-create-the-visual-builder-studio-project/#latest
https://community.oracle.com/customerconnect/discussion/796120/video-create-the-visual-builder-studio-project/#latest
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-building-appui&id=GUID-A684FC28-4E8E-48E2-B28A-113D0A45CD52
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-building-appui&id=GUID-823C9461-B296-4BAA-B19F-F993F8BA5A9E
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-administration&id=GUID-E1303FFC-767A-4D87-B914-DE7B520AE799
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-building-appui&id=GUID-67C07EF1-5011-48E4-97FE-E71FCA832FD4
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-building-appui&id=GUID-97715BAA-3B18-44C5-B7E5-A719D380C691
https://community.oracle.com/customerconnect/discussion/796122/video-create-a-visual-builder-studio-workspace/#latest

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 1
Before You Begin

How can I change my project's Extension ID?
When working with a Sales application extension in Oracle Visual Builder Studio, your project's extension ID must be
site_cxsales_Extension. This topic illustrates how to correct the extension ID, if required.

To change the extension ID for a project:

1. In Visual Builder Studio, from the left navigator, click Environments > Deployments.
2. Undeploy any deployments to target servers.

3. Navigate to your workspace and, from the upper menu, click Settings.

4. In the Extension ID field, enter site_cxsales_Extension.
5. Build and deploy your extension once more.

2

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2 Add a Custom Top Level Object

Prerequisites for Using the CX Extension Generator
The CX Extension Generator is a tool that automates many of the manual tasks required to build an application
extension from scratch. Before you can build an application using the CX Extension Generator, complete these
prerequisite steps.

Setup Prerequisites Before Using the CX Extension Generator

Setup Step Setup Location More Information

1. Create and activate a sandbox.

Sandboxes work area Create and Activate Sandboxes

2. Create custom top level objects, as well
as any child objects, related objects, and
relationships.

Application Composer This chapter provides you with step-by-step
instructions for creating a custom application
using the CX Extension Generator and Oracle
Visual Builder Studio. To build this custom
application, you will need to create a custom
top level object in Application Composer, as well
as a custom child object.

The example objects used in this chapter are a
Payment object and its child object, Payment
Line.

We will also add a panel for a related object,
 Shipment.

For more information about creating custom
objects, see Define Objects.

3. Publish the sandbox.

Application Composer Publish Sandboxes

Publish the sandbox so that you can enable all
custom objects for Adaptive Search, in the next
step.

Note:
If you're already running Visual Builder
Studio, then sign out and sign back in before
continuing to configure your application
extension. Doing this ensures that Visual
Builder picks up the latest published changes
from Application Composer.

4. Enable all custom objects that you created for
Adaptive Search and publish your changes.

In addition, create at least one saved search.

Setup and Maintenance work area

• Offering: Sales

• Functional Area: Sales Foundation

Enable Business Objects for Adaptive Search

This step is required because the list page is
dependent on Adaptive Search.

3

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20067187
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20032788
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20067977
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20072661

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Setup Step Setup Location More Information

• Show: All Tasks

• Task: Configure Adaptive Search

5. Grant the Custom Objects Administration
(ORA_CRM_EXTN_ROLE) role to the user who
will create the user interface pages for the
custom object.

(All custom top level objects are given access to
this role by default.)

Setup and Maintenance work area

• Offering: Sales

• Functional Area: Users and Security

• Task: Manage HCM Role Provisioning
Rules

Enable Sales Administrators to Test
Configurations in the Sandbox

6. Create your project and workspace.

Oracle Visual Builder Studio

For instructions about how to create a project
and workspace, refer to the Before You Begin
chapter.

7. Create a translation bundle.

Oracle Visual Builder Studio

Create a Translation Bundle, If You Don't Have
One Already

Related Topics
• Create a New Application Using the CX Extension Generator

• Modify an Existing Custom Application Using the CX Extension Generator

Create a New Application Using the CX Extension
Generator
The CX Extension Generator is your shortcut to creating applications that extend the functionality of Oracle Sales in
the Redwood User Experience. With just a few quick selections, the CX Extension Generator can create an application
extension with panels, subviews, details pages, and smart actions, that you can download as a single .zip file and then
upload to Oracle Visual Builder Studio. After you upload the files to Visual Builder Studio, you can continue to build out
the extension in Visual Builder Studio and then publish it to your users.

Using CX Extension Generator you can add panels and subviews for child, 1:M (one-to-many), and M:M (many-to-
many) relationships. CX Extension Generator also creates the Details (edit) pages for each object and the required smart
actions that make it possible for users to create and edit individual records.

Prerequisites
• See Prerequisites for Using the CX Extension Generator.

• If you're following along with the examples in this chapter, then create these objects and relationships, as well:
◦ Objects

- Payment (top-level object)
- Shipment (top-level object)

◦ Relationships

4

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20047385
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20047385

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

- PaymentLead1M (one-to-many relationship)
- PaymentShipment1M (one-to-many relationship)
- PaymentContactMM (many-to-many relationship)

Create a New Application
To create an application:

1. In a sandbox, navigate to Application Composer > CX Extension Generator.
2. Click Create New Extension.

CAUTION: You can use the Create New Extension button only the first time you configure your application
in the environment. If you use the CX Extension Generator to make further changes after your initial upload
to VBS, then you must import the files back from VBS using the Import Extension button before you start. If
you create a new extension using the Create New Extension button and import your changes to VBS, then
your upload will overwrite all your previous changes.

5

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. In the Add objects drawer, select the objects you're using to create the application, and then click Add.

In this example, select Payment and Shipment.

The selected objects display on the list page.

6

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. Drill down on each object to configure the detail page.

Note: In the runtime application, the detail page is called the Overview page.

The page displays automatically-generated panels for attachments and notes. You can optionally delete them.

Use the default Configure Panel, which always displays as the first panel, to add new panels.

Note: When you add a panel for an object with a M:M relationship, the generator creates the panel for the
intersection object you created as part of the M:M relationship rather than the object itself.

7

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

5. To add a panel:

a. On the default Configure Panel, click Add.

b. In the Add Panels drawer, select the custom related objects that you want to create the panels for. These
can be objects with either a 1:M or M:M relationship.

For example, select Shipments.

c. Select the Create subview for each panel checkbox to automatically create a subview along with each
panel.

8

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Note: If you don't select this checkbox, then you can add subviews later. See the next step.

d. Click Add.
6. Optionally, click Configure > Subviews to add and remove subviews for each panel.

7. Click Configure > Smart Actions to review the smart actions that the Extension Generator will automatically
create for the objects that you selected.

Tip: You can optionally enhance a smart action's configuration after the Extension Generator creates them.
You do this by editing the smart action in Application Composer (Common Setup > Smart Actions).

Note: If you previously created custom smart actions for a non-fragments implementation of an object, then
you don't need to create new smart actions for use with fragments. Instead, update existing UI-based custom
smart actions to specify the action type, either Add or Create, as well as the target object and any required
field mapping. For existing REST-based or object function-based custom smart actions, edit the action and
then save without making any changes. These steps ensure that your custom smart actions still work with
new fragment-based extensions.

8. If your application includes more than one object, then use the Object drop-down button to switch between
objects to configure multiple detail pages.

9. After you've completed your changes, you can generate and download the .zip file.

Note: At any time, you can delete your configuration choices from the tool by clicking Actions > Start Over.

9

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Generate and Download Files
When you're done with your application extension changes, navigate back to the CX Extension Generator list page and
click Generate Files.

The CX Extension Generator generates and downloads a .zip file that includes the pages and layouts for your selected
objects.

In addition, the process to create the smart actions is launched.

Note: The process of creating smart actions might take some time to complete. After smart actions are created, you
can manage them in Application Composer and create additional smart actions, if required.

Import the Files into Visual Builder Studio
1. Use the Navigator to navigate to Visual Builder Studio: Configuration > Visual Builder.

10

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2. Click the Menu icon at the top of the page, then click Import.

3. In the Import Resources dialog, add your .zip file and click Import.
4. Click the Preview button to see your newly created application.

5. You can now continue to make changes to your application extension in Visual Builder Studio.

For example, you can modify the fields that display in the detail page's header region, or on a subview or create
page. The Extension Generator adds some default fields, but you'll most likely want to add and remove fields
depending on your business needs.

6. If you need more smart actions, you can create them in Application Composer. For example, if you keep the
Notes panel, then you must create a Create Note smart action.

11

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Modify the Gruntfile.js File
Once your extension is available in Visual Builder Studio, review the Gruntfile.js and make the following change if the
code doesn't match the below sample. You must make this change before publishing your extension.

1. On the Source tab, edit the Gruntfile.js.

2. Replace the existing JavaScript with the following:

'use strict';

/**
 * Visual Builder application build script.
 * For details about the application build and Visual Builder-specific grunt tasks
 * provided by the grunt-vb-build npm dependency, please refer to
 * https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/app-builder-cloud&id=visual-application-
build
 */
module.exports = (grunt) => {
 require('load-grunt-tasks')(grunt);
 grunt.initConfig({
 // disable images minification
 "vb-image-minify": {
 options: {
 skip: true,
 },
 },
 // configure requirejs modules bundling
 "vb-require-bundle": {
 options: {
 transpile: false,
 minify: true,
 emptyPaths: [
 "vx/oracle_cx_fragmentsUI/ui/self/resources/js/utils/contextHelper",
 "vx/oracle_cx_fragmentsUI/ui/self/resources/js/utils/actionsHelper",
 "vx/oracle_cx_fragmentsUI/ui/self/resources/js/utils/callbackHelper",
],
 },

12

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

 },
 });
};

Create the Row Variable
Create a variable for the detail page. For example:

1. In Visual Builder Studio, click the App UIs tab.
2. Expand cx-custom > payment_c, then click the payment_c-detail node.
3. On the payment_c-detail tab, click the Variables subtab.
4. Click + Variable.
5. In the Create Variable dialog, make sure the Variable option is selected and, in the ID field, enter row.
6. In the Type field, select Object.
7. Click Create.

Related Topics
• Overview of Smart Actions

Modify an Existing Custom Application Using the CX
Extension Generator
Once you have a working application extension in Oracle Visual Builder Studio (VBS), you can use the CX Extension
Generator to add additional custom objects and custom panels to custom objects. The CX Extension Generator
automatically generates their custom subviews and required smart actions. To use the tool, download your workspace
as a .zip file from Visual Builder Studio and then import it into the CX Extension Generator.

The process of adding objects and panels is the same as when you're created the application after you import from
Visual Builder Studio. Here's an overview of the steps detailed in this topic:

1. Export the files from Visual Builder Studio.
2. Import the files into CX Extension Generator.
3. Add objects, panels, and subviews.
4. Generate the modified files for export.
5. Import the files back into Visual Builder Studio.
6. Add the panels and subviews to the panel and subview layouts.
7. Preview the updated application.

Prerequisites
In Application Composer:

• Create the new custom objects and child objects that you want to add to your existing application.

Export Files from Visual Builder Studio
To update an existing custom application, you must first download the application from your Visual Builder Studio
workspace.

In Visual Builder Studio, click the Menu icon at the top of the page, then click Export.

13

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20072467

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Import the .Zip File into CX Extension Generator
1. In a sandbox, navigate to Application Composer > CX Extension Generator.
2. Click Import Extension.

3. In the Import Application drawer, select your .zip file and click Import.

The existing objects in your application are now visible in the CX Extension Generator.

Add Objects, Panels, and Subviews
Using CX Extension Generator, you can add additional objects, panels, and subviews. And you can generate smart
actions for them. To delete existing panels, change their order, and configure them, you must use Visual Builder Studio.

1. To add objects, click Actions > Add Objects and add any of the objects you want to configure.
2. Drill down on each object to configure the detail page. In the runtime application, the detail page is called the

Overview page.

Note: The CX Extension Generator displays only the Configure Panel and the panels you add during your
configuration. It doesn't display any of the panels you've added previously.

14

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. To add a panel:
a. On the default Configure Panel, click Add.

b. In the Add Panels drawer, select the custom related objects that you want to create the panels for. These
can be child objects and objects with either a 1:M or M:M relationship.

For example, select Shipments.

c. Select the Create subview for each panel checkbox to automatically create a subview along with each
panel.

Note: If you don't select this check box, then you can add subviews later. See the next step.

15

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

d. Click Add.

Note: When you add a panel for an object with a M:M relationship, the generator creates the panel for
the intersection object you created as part of the M:M relationship rather than the object itself.

e. Optionally, click Configure > Subviews to add and remove subviews for each panel.

f. Click Configure > Smart Actions to review the smart actions that the Extension Generator will
automatically create for the objects that you selected.

Tip: You can optionally enhance a smart action's configuration after the Extension Generator creates
them. You do this by editing the smart action in Application Composer (Common Setup > Smart
Actions). See Overview of Smart Actions.

g. If your application includes more than one object, then use the Object drop-down list to switch between
objects to configure multiple detail pages.

h. After you've completed your changes, you can generate and download the .zip file.

Note: At any time, you can delete your configuration choices from the tool by clicking Actions > Start Over.

16

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20072467

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Generate Files
When you're done with your application extension changes, navigate back to the CX Extension Generator list page and
click Generate Files.

The CX Extension Generator generates and downloads a .zip file that includes the pages and layouts for your selected
objects.

Import the Files Back into Visual Builder Studio
The CX Extension Generator generates a .zip file that you can import into Visual Builder Studio.

1. Use the Navigator to navigate to Visual Builder Studio: Configuration > Visual Builder.
2. In Visual Builder Studio, navigate to the workspace that contains your existing application.
3. Click the Menu icon at the top of the page, then click Import.

4. In the Import Resources dialog, add your .zip file and click Import.

Your workspace is updated with the newly added objects and related artifacts, without disturbing the existing
objects in the application.

For Custom Objects You Imported, Add the Panels and Subviews to the
Layout
After you import the custom objects you exported from CX Extension Generator, you must add the imported panels and
subviews to the custom Panel Container and Subview Container layouts.

17

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Note: You can skip this step if this is the first time you're importing content from CX Extension Generator and you
used the Create New Extension button.

1. Click the Design button.

2. Confirm that you're viewing the page in Page Designer.

18

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. Add the panels you imported to the Panel Container Layout:
a. On the Structure panel, click the Panel Container Layout node.

b. Add the imported panels to the custom layout by clicking Add Panel (the plus icon highlighted in the
screenshot).

19

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

20

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. Now repeat the same process for the Subview Container Layout.

a. On the Structure panel, click the Subview Container Layout node.
b. Add the subview layouts to the custom subview layout, by clicking Add Panel (the plus icon next to the

Sections heading).
5. Click the Preview button to see the newly added objects in the application.

21

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Create a Translation Bundle, If You Don't Have One
Already
Create a translation bundle where you can later store custom application strings for translation. If you plan to follow the
examples in this chapter, then create the translation bundle and string as indicated below.

1. In Oracle Visual Builder Studio, click the Translation Bundles side tab > + Translation Bundle.

2. In the Create Bundle dialog, in the Bundle Name field, enter the name of your translation bundle.

For example, enter CustomBundle.
3. Click Create.
4. Add any required strings to the translation bundle. For example, in the examples in this chapter, you'll use a

Contacts string.

a. On the CustomBundle tab, click + String.
b. In the Key field, enter Contacts.
c. In the String field, enter Contacts.
d. Click Create.

5. Also add a string for Contact Name.

a. On the CustomBundle tab, click + String.
b. In the Key field, enter ContactName.
c. In the String field, enter Contact Name.
d. Click Create.

22

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Configure a Child Object
Here's how to add a panel for a child object to the parent and configure the subview for the child object.

Configure the Panel for the Child Object
Configure the panel for the child object using the cx-panel fragment.

To configure the panel region:

1. In Visual Builder Studio, click the App UIs tab.
2. Expand cx-custom > payment_c, then click the payment_c-detail node.
3. On the payment_c-detail tab, click the Page Designer subtab.
4. Click the Code button.

1. Next, let's add the fields that you want to display on the panel.
a. On the PaymentLineCollection_c tab, click the Rule Sets subtab.
b. Click the Open icon next to the default layout.
c. Click the cx-card fragment.
d. From the list of fields, drag each field to the desired slot.

e. On the Properties pane, click Go to Template.
2. On the Templates subtab, click the Code button.

3. Add the following parameters to the template code.
<oj-vb-fragment-param name="dynamicLayoutContext" value="{{ $dynamicLayoutContext }}"></oj-vb-fragment-
param>
 <oj-vb-fragment-param name="style" value="avatar-card"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="enableActions" value="false"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="badgeItemColor" value="oj-badge-success"></oj-vb-fragment-param>

The template code should look similar to the following sample:

23

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

<!-- Contains Dynamic UI layout templates -->
<template id="defaultTemplate">
<oj-vb-fragment name="oracle_cx_fragmentsUI:cx-card" bridge="[[vbBridge]]">
 <oj-vb-fragment-param name="dynamicLayoutContext" value="{{ $dynamicLayoutContext }}"></oj-vb-fragment-
param>
 <oj-vb-fragment-param name="style" value="avatar-card"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="enableActions" value="false"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="badgeItem" value="[[$fields.Type_c.name]]">
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="avatarItem" value="[[$fields.avatar.name]]">
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="item1" value="[[$fields.RecordName.name]]">
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="item4" value="[[$fields.CreationDate.name]]">
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="item2" value="[[$fields.Amount_c.name]]">
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="item3" value="[[$fields.CreatedBy.name]]">
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="badgeItemColor" value="oj-badge-success"></oj-vb-fragment-param>
 </oj-vb-fragment>
</template>

24

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

You can add more fields by returning to the default layout and dragging and dropping, as you did earlier.

You can also add fields to the panel using the Properties pane. To do this, click the Fragment Container node in
the Structure pane.

Then, add your desired custom object fields using the Input Parameter fields on the Properties pane.

25

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

26

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. Test the panel that you added by previewing your application extension from the payment_c-list page.

a. From the payment_c-list page, click the Preview button to see your changes in your runtime test
environment.

The screenshot below illustrates what the list page looks like with data.

b. Click any record on the list page to drill down to the detail page.

The following screenshot highlights the panel.

Note: In your testing, the panel might be empty.

27

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

The link at the bottom of the panel navigates the user to the subview. Learn how to configure the
subview in Configure the Subview for Child Objects.

5. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

28

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Configure the Subview for Child Objects
This topic explains how to build the subview using fragments.

What's a Subview?
Since the real estate of a panel is small, users can click a View All link to navigate to a second page that displays all
records.

Here's a screenshot of a View All Contacts link on a panel. Notice that, in this example, the panel itself has room to
display only one contact, John Cook, although a total of three records exist. Users can click the View All Contacts link to
see all three contacts.

Here's a screenshot of a subview. A subview includes a basic information region at the top and a table. If you create
a custom panel for a child or related object, then you must create this page, as well. You can create this page using a
fragment.

29

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Create the Payment Lines Subview
Let's create the subview for our payment records. To do this, we'll add a new dynamic container to the detail page in
Page Designer.

1. In Visual Builder Studio, click the App UIs tab.
2. Expand cx-custom > payment_c, and then click the payment_c-detail node.
3. On the payment_c-detail tab, click the Page Designer subtab.
4. Confirm that you are viewing the page in Page Designer.

5. Click the Code button.

6. In the Filter field, enter dynamic container.
7. Drag and drop the dynamic container component to the detail page canvas, outside the previous dynamic

container that holds the panels. This dynamic container will hold the subview.
8. In the code for the dynamic container, replace containerLayout1 with SubviewContainerLayout.

9. On the payment_c-detail tab, click the JSON subtab.

30

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

10. In the detail page's JSON, rename the two instances of containerLayout1 to SubviewContainerLayout.

The two instances appear in the "layouts" section and in the "templates" section. Here’s where the instance
appears in the "templates" section.

Create the section template that will be used for the subview.

1. On the payment_c-detail tab, click the Page Designer subtab.
2. On the Properties pane, in the Case 1 region, click the Add Section icon, and then click New Section.
3. In the Title field, enter a title for the section using the REST child object name, such as PaymentLineCollection_c.

31

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. In the ID field, change the value to PaymentLineCollection_c.

Note: You can retrieve the REST child object name from the service connection endpoint.

5. Click OK.
6. Delete the Default Section.

32

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

7. Manually update the template's JSON with the correct subview name.

a. On the Payment_c-detail tab, click the JSON subtab.
b. In the section for the SubviewContainerLayout section template layout, replace the sectionTemplateMap

and displayProperties values to match the name of the subview, PaymentLineCollection_c.

In our example, this is what the SubviewContainerLayout sectionTemplateMap and displayProperties
should look like:

Configure the Subview Layout
We previously added the subview dynamic container to the page, as well as the section template.

Build the structure of the subview using the cx-subview fragment.

1. On the Properties pane, click the PaymentLineCollection_c section that you just added.

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
PaymentLineCollection_c template.

2. Click the Code button.

3. On the Components palette, in the Filter field, enter cx-subview.

33

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. Drag and drop the cx-subview fragment to the template editor, between the paymentLineCollectionC template
tags.

5. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
replace Payment__c_Id and PaymentLineCollection_c with the appropriate values for your custom top level and
child objects. Retrieve these values from the service connection endpoint.

<template id="paymentLineCollectionC">
 <oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx_fragmentsUI:cx-subview">
<oj-vb-fragment-param name="resource"
 value='[[{"name": $flow.constants.objectName, "primaryKey": "Id", "endpoint":
 $application.constants.serviceConnection }]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate","direction":
 "desc" }]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="query"
 value='[[[{"type": "selfLink", "params": [{"key": "Payment__c_Id", "value": $variables.id }]}]]]'></
oj-vb-fragment-param>
 <oj-vb-fragment-param name="child" value='[[{"name": "PaymentLineCollection_c", "primaryKey": "Id",
 "relationship": "Child"}]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="extensionId" value="[[$application.constants.extensionId]]"></oj-vb-
fragment-param>

 </oj-vb-fragment>

34

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

</template>

This table describes the parameters that you can provide for the subview:

Parameters for Subview

Parameter Name Description

sortCriteria Specify how to sort the data on the subview, such as sort by last updated date and descending
order.

query Include criteria for querying the data on the subview.

child Enter the REST child object name for the child object that the panel is based on.

Configure the subview layout.

1. Click the Layouts tab, then click PaymentLineCollection_c.
2. On the PaymentLineCollection_c tab, click + Rule Set to create a new rule set for the layout.

a. In the Create Rule Set dialog, in the Component field, select Dynamic Table.
b. In the Label field, enter SubViewLayout.
c. In the ID field, change the value to SubViewLayout.
d. Click Create.

3. Add the fields that you want to display in the layout.

a. Click the Open icon next to the default layout.
b. From the list of fields, select the fields that you want to display on the subview table. The fields display as

columns in the order that you click them, but you can rearrange them.

35

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. Create an event so that users can be automatically navigated back to the subview after editing the payment.

a. On the payment_c-detail tab, click the Page Designer subtab.
b. Confirm that you are viewing the page in Page Designer.

c. Click the Code button.

d. In the code for the detail page, click the oj-vb-fragment tag.

e. On the Properties pane for the cx-detail fragment, click the Events subtab.

i. Click + New Event > On 'viewChangeEvent'.
ii. Drag an Assign Variables action onto the canvas.

iii. On the Properties pane, next to the Variable field, click the Select Variable icon.
iv. In the Variable window, under the Page heading, click view.

36

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

v. In the Value field, enter {{ payload.view }}.

37

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

5. Comment out the subview's dynamic container component from the payment_c-detail page.

a. Click the payment_c-detail tab, then click the Page Designer subtab.
b. Click the Code button.
c. Select Page from the drop-down list.

d. Comment out the dynamic container component that you added for the subview.

6. Add an Actions menu to the subview.

To do this, create a custom field, Actions Menu.

a. On the PaymentLineCollection_c tab, click the Fields subtab.
b. Click + Custom Field.
c. In the Create Field dialog, in the Label field, enter Actions Menu.
d. In the ID field, the value should be actionsMenu.
e. In the Type field, select String.
f. Click Create.

Map the custom field to the field template.

a. On the PaymentLinesCollection_c tab, click the JSON subtab.
b. In the SubViewLayout section, add this code:

,

38

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

 "fieldTemplateMap": {
 "actionsMenu" : "actionMenuTemplate"
 }

The resulting code will look like this:

Add the custom field to the subview table.

a. Click the PaymentLineCollection_c tab > Rule Sets subtab.
b. Click SubViewLayout.
c. Click the Open icon next to the default layout.
d. From the list of fields, click the actionsMenu field to add it to the subview table.

39

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

7. The Actions menu provides both an Edit and Delete action. Users click Edit to edit a payment line.

Create a layout for the edit payment line page.

a. On the PaymentLineCollection_c tab, click < Rule Set to return to the main Rule Sets page where you can
create a new rule set.

i. Click + Rule Set.
ii. In the Create Rule Set dialog, in the Component field, select Dynamic Form.

iii. In the Label field, enter EditLayout.
iv. In the ID field, change the value to EditLayout.
v. Click Create.

b. Add the fields that you want to display in the layout.

i. Click the Open icon next to the default layout.
ii. Click Select fields to display.

iii. From the list of fields, select the fields that you want to display on the edit payment line page. The
fields display as columns in the order that you click them, but you can rearrange them.

c. On the Properties pane for this layout, in the Max Columns field, enter 2.

You might need to click < Form to see the properties for the layout.

40

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

8. Test the subview by previewing your application extension from the payment_c-list page.

a. From the payment_c-list page, click the Preview button to see your changes in your runtime test
environment.

The screenshot below illustrates what the list page looks like with data.

b. If data exists, you can click any record on the list page to drill down to the detail page. The detail page,
including header region and panels, should display.

Note: The screenshot below illustrates what a panel looks like with data. In your testing, the panel
might be empty.

41

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

c. Click the View All link to drill down to the subview.

d. Click the Actions > Edit to edit the payment line.

42

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

9. Save your work by using the Push Git command.

Display a Smart Action on a Child Object Subview Only for a
Specific Parent Object
When you create a subview for a child object, you might need to create smart actions that apply specifically to that
subview.

Suppose, for example, that you used the CX Extension Generator to display a list of shipments on payments, with
Shipments being a child object of Payments. CX Extension Generator automatically creates the Add smart action that

43

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

users enter in the Action Bar to add shipments to payments, but it doesn't create any smart action to remove the entry.
Here are the steps to create the smart action and make it available only on the Payment subview.

1. Create the Remove smart action as a REST-based smart action as described in the topic Create REST-Based
Smart Actions. Be sure to enter the name of the parent object in the Context region of the Availability page.

2. In VB Studio open the parent object's detail page and view the Template code (App UIs > Payment_c_detail >
Code > Page > Template

3. Find the template for the subview in the code, and add the following parameter:

<oj-vb-fragment-param name=“enableActions” value=‘[[{“enabled”: “true”, “enableContext”: “true”}]]’></
oj-vb-fragment-param>

Insert it right before the </oj-vb-fragment> tag.

Display a Panel and Subview Based on a Field Value
You can display different sets of panels (and their corresponding subviews) based on the value of a field.

To do this, create a panel layout or subview layout, and then add a field value condition. If a record's field matches the
specified value, then the associated layout displays. If not, then a different layout displays.

44

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=u30244466
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=u30244466

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

This topic illustrates how an account's type, either Customer or Prospect, changes the panel and subview layout on an
account detail page.

Prerequisite
To create a layout condition that references a field value, you must first enable this feature so that panels and subviews
are loaded to the page only after evaluating the header.

1. In Visual Builder Studio, click the App UIs side tab.
2. Navigate CX Sales > cx-sales > accounts > accounts-detail.
3. On the accounts-detail page, click the Variables subtab.
4. In the Constants region, click the deferRelatedDataLoad constant.
5. On the Properties pane, in the Default Value field, select True.

If you want to add a field value condition to panel and subview container layouts, then you must set this value
to true.

Create a New Panel Layout
Once you have enabled the feature, you can now add a field value condition to a panel layout. Let's add a condition to
the account detail page.

1. Navigate to Visual Builder Studio from an account record.
2. On the accounts-detail page, click the Page Designer subtab.

45

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. On the Structure panel, click the Panel Container Layout node.

46

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. On the Properties pane, next to Sales Admin Case, click the Duplicate icon.

5. Next to the Sales Admin Case (Copy) panel layout's condition, click the Expression Editor icon.

6. In the Expression Editor dialog, replace the existing expression with this new one, just for testing:

$base.page.variables.row.Type=='ZCA_CUSTOMER'

7. Click Save.

47

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

8. Delete the Opportunity Panel Template.

With the field condition specified above, this means that accounts of type Customer won't see the
Opportunities panel on the account detail page.

9. From the accounts-list page, click the Preview button to see your changes in your runtime test environment.

48

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

10. On the My Team's Accounts page, click any account.

◦ If the account is of type Customer, then you won't see the Opportunities panel.

◦ If the account is of type Prospect, then the Opportunities panel does display.

Create a New Subview Layout
Next, add the field condition to the subview layout, as well. It's important to add the field condition to the subview
layout. Otherwise, the Show Opportunities smart action is still available from the Action Bar even when the account is a
customer.

49

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

1. Navigate to Visual Builder Studio from any subview page, which you can navigate to from any panel on an
account record.

2. On the accounts-detail page, click the Page Designer subtab.
3. On the Structure panel, click the Subview Container Layout node.
4. On the Properties pane, next to Subview Container Layout, click the Duplicate icon.
5. Next to the Subview Container Layout (Copy) subview layout's condition, click the Expression Editor icon.
6. In the Expression Editor dialog, add this expression:

$base.page.variables.row.Type=='ZCA_CUSTOMER'

7. Click Save.
8. Delete the Opportunity Subview Template.

With the field condition specified above, this means that accounts of type Customer won't see the Show
Opportunities smart action on the account detail page.

9. From the accounts-list page, click the Preview button to see your changes in your runtime test environment.

10. On the My Team's Accounts page, click any account and make sure that the account is of type Customer. The
Opportunities panel shouldn't display.

50

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

11. Test the field condition on the subview layout by checking to see if the Show Opportunities smart action is still
available from the Action Bar. It shouldn't be visible anymore if the account is a customer.

Configure the Subviews for Appointments and Tasks
Using Oracle Visual Builder Studio, you can make it possible for users to create and view appointments and tasks right
from a custom object's detail page.

What's the Scenario?
This example shows you how to create subtabs for appointments and tasks on a Payment custom object and how to
enable users to view and create tasks and appointments directly from each payment's Action Bar. The view and delete
actions are already provided for you, but you must create the Create smart actions for tasks and for appointments.

51

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

When you're finished with the setup in this example, you'll end up with separate subtabs for tasks and appointments.

Here's a screenshot of a sample Tasks subtab. The subtab includes 3 separate views highlighted by callouts: All Tasks,
Open Tasks, and Overdue Tasks. For each task, there are 3 available actions: Mark Complete, Edit and Delete Task.

The Appointments subtab includes 2 separate views highlighted by callouts in the following screenshot: All
Appointments and Upcoming Appointments. The available actions are: Edit and Delete Appointment.

52

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Prerequisites
In Application Composer, Create a 1:M relationship between your custom object and the Activity object. In this example,
we're adding the relationship for the Payment custom object.

Create Smart Actions for Appointments and Tasks
1. In a sandbox, open Application Composer.
2. Click Smart Actions.
3. Create separate Create smart actions for tasks and appointments.

a. On the Smart Actions list page, click Create.

The application displays a guided process with 7 steps to complete in order.

Note: For your entries to be saved when creating smart actions, you must click Submit (available in the
last step in the guided process). You can always go back and make changes after submitting.

b. In the Kind of Action step, select UI-based action.
c. Click Continue.
d. In the Basic Details step, enter the following on the Payment object:

Field Name Entries for Tasks Entries for Appointments

Name Create Task Create Appointment

Object Payment Payment

53

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Field Name Entries for Tasks Entries for Appointments

Action ID You can accept the default. You can accept the default.

e. Click Continue.
f. In the Availability step, enter the following:

Field Name Entries for Tasks and Appointments

Application Sales

UI Availability List page

Action ID You can accept the default.

Role Filter Optionally, specify the job roles that can use this smart action. No entry means that all job
roles can use this action.

g. Click Continue.
h. In the Action Type step, make the following entries:

Field Name Entries for Tasks Entries for Appointments

Type Create Create

Subtype Task Appointment

Target Object Activity Activity

54

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Field Name Entries for Tasks Entries for Appointments

Object Subtype Task Appointment

i. While in the Action Type step, in the Field Mapping section add two field mapping conditions.
j. Click Add (callout 1 in the screenshot)

k. In the Actions column, click Edit (the pencil icon highlighted by callout 2)
l. Make the following entries:

Field Name Entries for Tasks Entries for Appointments

Name Payment ID Activities (Payment_id_
Activities)

Payment ID Activities (Payment_id_
Activities)

Type Attribute Attribute

Value Record ID (Id) Record ID (Id)

m. Click Done to save the row.
n. Click Add again and add the second condition. The entries are the same for tasks and appointments

except for the Value where you must type either TASK or APPOINTMENT.

Field Name Entries for Tasks Entries for Appointments

Name Activity (ActivityFunctionCode) Activity (ActivityFunctionCode)

Type User-entered User-entered

55

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Field Name Entries for Tasks Entries for Appointments

Value TASK APPOINTMENT

o. Click Done.
p. Click Continue twice to skip over the UI-Based Action Details step. This step doesn't apply to Redwood

Sales.
q. Optionally enter a confirmation message in the Confirmation Message step. The confirmation message

appears briefly after the user creates the record.
r. Click Continue.
s. On the Review and Submit step, click Submit.

Create the Subviews
Create new templates for the subviews that display the appointments and tasks created for a payment. You will
configure the actual subviews in the next section.

1. In Visual Builder Studio, click the App UIs tab.
2. Expand cx-custom > payment_c, then click the payment_c-detail node.
3. On the payment_c-detail tab, click the Page Designer subtab.
4. Click the Code button.

5. Confirm that you're viewing the page in Page Designer.

56

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

6. Remove the comment tags for the dynamic container components that contains the panels and any subviews.

7. Highlight the <oj-dynamic-container> tags for the subviews.

8. On the Properties pane, in the Case 1 region, click the Add Section icon, and then click New Section.
9. In the Title field, enter a title for the section, such as tasks.

10. In the ID field, accept the value tasks.
11. Click OK.
12. Repeat steps to create a second section: appointments.
13. Add the following code for activity translations below imports:

 "translations": {
 "activityBundle": {
 "path": "faResourceBundle/nls/oracle.apps.crmCommon.activities.resource.activityManagement"
 }
 },

Configure the Subview Layouts
Next, build the structure of the subviews using the cx-subview fragment.

1. On the payment_c-detail tab, click the Page Designer subtab.

57

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2. On the Properties pane, click the tasks section that you just added.

'

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
tasks template.

3. Click the Code button.

4. On the Components palette, in the Filter field, enter cx-subview.
5. Drag and drop the cx-subview fragment to the template editor, between the tasks template tags.

58

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

6. Add the following parameters to the fragment code so that the code looks like the below sample. For the query
parameter, be sure to replace the foreign key Payment_Id_PaymentToActivities with the appropriate value.

Note: The format of the foreign key field's name is always <Source object name>_Id_<Relationship name>.

<oj-vb-fragment-param name="resource"
 value='[[{"name": "activities", "primaryKey": "ActivityId","puid": "ActivityNumber", "endpoint":
 "cx" , "alias" : "tasks"}]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate","direction":
 "desc" }]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="query" value='[[[{"type": "qbe","provider": "adfRest", "params": [{"key":
 "Payment_Id_PaymentToActivities", "value":$variables.id }]}]]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{}]]">
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="extensionId" value="oracle_cx_salesUI"></oj-vb-fragment-param>
<oj-vb-fragment-param name="types" value='[[$functions.getTaskSubviewTypesData($page.variables.id,
 $page.translations)]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="title" value="Tasks"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="subviewLayoutId" value="[['SubViewLayoutForTasks']]"></oj-vb-fragment-
param>

7. Return to step 2 and complete the same steps for the appointments section.

Add the following parameters to the fragment code so that the code looks like the below sample. For the query
parameter, be sure to replace the foreign key Payment_Id_PaymentToActivities with the appropriate value.

Note: The format of the foreign key field's name is always: <Source object name>_Id_<Relationship name>.

<oj-vb-fragment-param name="resource"
 value='[[{"name": "activities", "primaryKey": "ActivityId","puid": "ActivityNumber", "endpoint":
 "cx" , "alias" : "appointments"}]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate","direction":
 "desc" }]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="query"
 value='[[[{"type": "qbe", "params": [{"key": "Payment_Id_PaymentToActivities", "value":
 $variables.id }]}]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{}]]">
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="extensionId" value="oracle_cx_salesUI"></oj-vb-fragment-param>
<oj-vb-fragment-param name="types"
 value='[[$functions.getAppointmentSubviewTypesData($page.variables.id, $page.translations)]]'></oj-
vb-fragment-param>
 <oj-vb-fragment-param name="title" value="Appointments"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="subviewLayoutId" value="[['SubViewLayoutForAppointments']]"></oj-vb-
fragment-param>

This table describes some of the parameters that you can provide for the subview:

Parameter Name Description

sortCriteria Specify how to sort the data on the subview, such as sort by last updated date and descending
order.

query Include criteria for querying the data on the subview.

types Pass a JavaScript function, either getTaskSubviewTypesData or
getAppointmentSubviewTypesData. These functions enable the tabs on each subview, such

59

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Parameter Name Description

as All Tasks, Open Tasks, and Overdue Tasks, as well as All Appointments and Upcoming
Appointments.

8. In the previous step, you added the types parameter to each subview fragment to pass a JavaScript function,
either getTaskSubviewTypesData or getAppointmentSubviewTypesData.

In this step, manually add the functions to the JavaScript:
a. On the payment_c-detail tab, click the JavaScript subtab.
b. Add the below functions. Be sure to replace the foreign key Payment_Id_PaymentToActivities with the

appropriate value.

define(['vx/oracle_cx_salesUI/ui/self/applications/cx-sales/resources/utils/CrmCommonUtils','vx/
oracle_cx_salesUI/ui/self/applications/cx-sales/resources/utils/FormatUtils'],
 (CrmCommonUtils,FormatUtils) => {
 'use strict';

 class PageModule {
 }

PageModule.prototype.getTaskSubviewTypesData = function (id, translation) {
 const typesData = [];

 typesData.push({
 "resource": "activities",
 "query": [{
 "type": "qbe",
 "provider": "adfRest",
 "params": [
 {
 "key": "Payment_Id_PaymentToActivities",
 "value": id
 },
 {
 "key": "ActivityFunctionCode",
 "value": "TASK"
 }
]
 }],
 "isDefault": true,
 "sortCriteria": [{
 "attribute": "LastUpdateDate",
 "direction": "descending"
 }],
 "title": "AllTasks",
 "id": "AllTasks"
 });

 typesData.push({
 "resource": "activities",
 "query": [{
 "type": "qbe",
 "provider": "adfRest",
 "params": [
 {
 "key": "Payment_Id_PaymentToActivities",
 "value": id
 },
 {
 "key": "ActivityFunctionCode",
 "value": "TASK"

60

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

 },
 {
 "key": "StatusCode",
 "operator": "$in",
 "value": "NOT_STARTED,IN_PROGRESS,ON_HOLD"
 }
]
 }],
 "isDefault": true,
 "sortCriteria": [{
 "attribute": "DueDate",
 "direction": "ascending"
 }],
 "title": "OpenTasks",
 "id": "OpenTasks"
 });

 typesData.push({
 "resource": "activities",
 "query": [{
 "type": "qbe",
 "provider": "adfRest",
 "params": [
 {
 "key": "Payment_Id_PaymentToActivities",
 "value": id
 },
 {
 "key": "ActivityFunctionCode",
 "value": "TASK"
 },
 {
 "key": "DueDate",
 "operator": "$lt",
 "value": FormatUtils.getFormattedDate(new Date())
 },
 {
 "key": "StatusCode",
 "operator": "$in",
 "value": "NOT_STARTED,IN_PROGRESS,ON_HOLD"
 }
]
 }],
 "isDefault": true,
 "sortCriteria": [{
 "attribute": "DueDate",
 "direction": "descending"
 }],
 "title":"OverdueTasks",
 "id": "OverdueTasks"
 });

 return { "style": "tab", "items": typesData };
};

 PageModule.prototype.getAppointmentSubviewTypesData = function (id, translation) {
 const typesData = [];

 typesData.push({
 "resource": "activities",
 "query": [{
 "type": "qbe",
 "provider": "adfRest",
 "params": [
 {

61

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

 "key": "Payment_Id_PaymentToActivities",
 "value": id
 },
 {
 "key": "ActivityFunctionCode",
 "value": "APPOINTMENT"
 }
]
 }],
 "isDefault": true,
 "sortCriteria": [{
 "attribute": "SortDate",
 "direction": "ascending"
 }],
 "title": "AllAppointments",
 "id": "AllAppointments"
 });

 typesData.push({
 "resource": "activities",
 "query": [{
 "type": "qbe",
 "provider": "adfRest",
 "params": [
 {
 "key": "Payment_Id_PaymentToActivities",
 "value": id
 },
 {
 "key": "ActivityFunctionCode",
 "value": "APPOINTMENT"
 },
 {
 "key": "ActivityEndDate",
 "operator": "$ge",
 "value": new Date().toISOString()
 }
]
 }],
 "isDefault": true,
 "sortCriteria": [{
 "attribute": "ActivityStartDate",
 "direction": "ascending"
 }],
 "title": "UpcomingAppointments",
 "id": "UpcomingAppointments"
 });
 return { "style": "tab", "items": typesData };
 };

 return PageModule;
});

9. Comment out the dynamic container components from the payment_c-detail page:
a. Click the payment_c-detail tab, then click the Page Designer subtab.
b. Click the Code button.
c. Add the subview label for tasks and appointments in the actionBar parameters:

<oj-vb-fragment-param name="actionBar"
 value='[[{ "applicationId": "ORACLE-ISS-APP", "resource": {"name": "Payment_c", "primaryKey":
 "Id", "puid": "Id", "value": $variables.puid }, "subviewLabel": {"tasks" : "Tasks",
 "appointments" : "Appointments"}}]]'>
 </oj-vb-fragment-param>

62

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

d. Comment out the dynamic container components that contain the panels and subviews.

Test Your Subviews
Test the subview by previewing your application extension from the payment_c-list page.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

2. The screenshot below illustrates what the list page looks like with data.

63

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. Create a task and an appointment by entering Create Task and Create Appointment in the Action Bar.

After creating a task and an appointment, view the records you created by entering Show Tasks and Show
Appointments in the Action Bar.

4. In the list page, drill down into the record you created to view the subtabs and actions.

Save Your Work to Git
Save your work by using the Push Git command:

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the Git
repository).

64

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Create Navigation Menu Entry
After you create a custom application in Oracle Visual Builder Studio, you must create a Navigator entry for your custom
application. This topic explains how to add an entry to the Navigator for your custom object.

Prerequisites
1. In Oracle Visual Builder Studio, create the list page for your custom application.
2. In Fusion Applications, create a sandbox with the Structure tool enabled.

Create the Navigator Menu Entry
1. From the sandbox menu bar, click Tools > Structure.
2. Click Create > Create Page Entry.
3. Enter these details:

a. In the Name field, enter the Navigator menu text, such as Payments.
b. In the Icon field, click the search icon to pick an icon for this navigator entry.
c. Click OK.
d. In the Group field, select the group that makes sense for your business needs, such as Redwood Sales.
e. In the Show on Navigator field, keep the default: Yes.
f. In the Show on Springboard field, keep the default: Yes.

g. In the Mobile Enabled field, keep the default: No.
h. In the Link Type field, select VB Studio Page.
i. In the Focus View ID field, enter /index.html.

65

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

j. In the Web Application field, search for and select: ORA_FSCM_UI.
k. Click OK.
l. In the Application Stripe field, enter crm.

m. In the VB Studio Flow field, enter the flow name, application.
n. In the VB App UI field, enter the App UI, cx-custom.
o. In the VB Page Name field, enter the page name including the container/flow name prefix, such as

container/payment_c/payment_c-list.
4. Click Save and Close.
5. Open your list page in Visual Builder Studio.
6. Click the Preview button to see your changes in your runtime test environment.

a. From the list page, click the Home icon at the top of the page.
b. From the Navigator, click the new Payments entry under Digital Sales.
c. You should be navigated back to your custom object's list page.

7. Publish your sandbox.

Note: If you need to make changes to this Navigator menu entry in the future, you can do so from a new
sandbox.

Configure the Picker
A picker enhances a regular list of values field so that users can quickly find the record they need. Depending on setup,
pickers can display either a list of saved searches to pick from, or a list of results most relevant to the user's context.
Pickers are already available on certain standard fields and can't be modified, although you can configure new pickers
for those fields, if needed. You can also configure pickers for custom list of values fields. Use the cx-picker fragment in
Oracle Visual Builder Studio to configure new pickers.

Here's an example of a field without a picker. Without a picker, the field has a button that users can click to view a list of
values.

66

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

This basic list of values makes it possible to filter on a value that the user enters into the field. For example, if the user
enters pi, then a list of accounts whose names include pi display for selection.

67

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

This basic filtering functionality is helpful, but for better user experience, use the cx-picker template to enable a wider
range of search features on a field.

What's a CX-Picker?
A cx-picker is a special kind of picker on a dynamic choice list field. With cx-pickers, users can search on more than
one attribute of a record, not just on a single attribute. For example, in an Account picker, users can search not just on
account name, but also on address, and contact name. The screenshot below illustrates a search on city name.

In addition, pickers are more powerful than the standard search on a field because, depending on setup, pickers can
display either a list of saved searches or a list of results most relevant to the user's context.

In Sales in the Redwood UX, pickers can be based on either Adaptive Search or ADF REST.

• Adaptive Search Pickers

Provide enhanced keyword searches on an object and support saved searches.

• ADF REST pickers

Provide limited keyword searches and don't support saved searches.

68

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

CX-Picker Fragment Parameters
The following two tables list the required and optional parameters that you can use to configure the picker.

Required Parameters

Parameter Sample Value Description

dynamicLayoutContext

[[$dynamicLayoutContext]]

This parameter is set by default. If the picker
field displays in the Create page or the Edit
page, then you don't have to change it.

The default value is $dynamicLayoutContext.

resource

[[{"name":
 "accounts","displayField":
"OrganizationName",
"endpoint":"cx-
custom","primaryKey":"PartyId" }]]

Use this parameter to pass the target object
name and end point:

• name: The REST API name for the picker
object.

• endpoint: The prefix used in the service
connection of the resource.

The endpoint can have values such as: cx,
 cx-custom, and so on.

• displayField: The field value that's
displayed in the picker field after the user
makes a selection.

If not provided, then the picker displays
the first field in the picker layout.

• additionalFields: Array that specifies
additional fields shown in the picker.

Optional Parameters

Parameter Sample Value Description

extensionId [['oracle_cx_salesUI']] Application ID used in VB Studio that provides
prefix for the endpoint.

Values can be one of the following:

• oracle_cx_salesUI

• oracle_cx_fragmentsUI

• site_cxsales_Extension

pickerLayoutId

PickerLayout

This parameter points to the rule set whose
layout controls how the picker appears at
runtime.

The default value, which you don't have to
change, is PickerLayout, the ID of the Picker
Layout rule set that's predefined for each
object including custom objects.

69

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Parameter Sample Value Description

If you need to create a custom rule set, then
create the rule set as a dynamic table and
ensure that the values for the Label and ID
fields are identical. Then add the ID to this
parameter.

context [[{'defaultSavedSearchId':
'cd899dfd-e671-4ba3-8e89-
a27558494ea9',
'hideSavedSearches': false}]]

Controls the behavior of saved searches in cx-
pickers that use Adaptive Search.

When you configure a picker to display a list
of saved searches, then the user can speed
up searches by selecting a saved search in the
picker to filter the records for the search.

By default, the picker filters the records using
the default saved search enabled for that object
using the Manage Saved Searches UI.

The saved searches displayed in the list depend
on access permissions of the signed-in user.

You can use the following properties in the
context parameter to control the behavior of
the saved searches and specify which saved
search is selected as the default when the
picker is loaded:

• hideSavedSearches

Use this property to show or hide the
saved searches in a picker when you're
using the query parameter:

◦ A value of false displays the list of saved
searches and the saved search selected
by default is the one identified in the
defaultSavedSearchId parameter.

◦ A value of true displays no saved
searches and the picker doesn't use
the default saved search identified in
defaultSavedSearchId.

◦ If you don't provide a value, then no saved
searches are displayed in the picker for the
object.

• defaultSavedSearchId

Use this property to specify which saved
search is used by default to show data on
initial load. You can provide either the ID
of a saved search or enter listDefault
to display the default for the object. If you

70

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Parameter Sample Value Description

don't enter a value, or provide an incorrect
one, listDefault is used.

If you use the query parameter and don't
use this property, then the picker uses the
custom query.

Note: If you don't use the query parameter,
 then the picker:

◦ Always displays saved searches.

◦ If defaultSavedSearchId isn't
mentioned, then the application displays
"Default Search View" as the default.
This list shows user relevant items for
the given object.

If another foreign key is available, then
the picker displays Related <object
name>s as the default list. For example,
 if you select and account on the Create
opportunity page, then the Contact
picker shows the Related Contacts list
with contacts belonging to the selected
account.

• persistSelectedSavedSearch

You can use this Boolean property to
remember the previously-selected saved
search.

createConfig [[{"enabled": false} Use this parameter to specify whether you want
the Create option in the picker list.

This parameter is enabled by default and
applies to both ADF and Adaptive Search
pickers.

isDefaultSavedSearchEnabled "true" If true, then the application uses the
List Default saved search by default. A
defaultSavedSearchId supersedes this setting.

This parameter isn't applicable if the “query”
parameter is used to provide a custom query.

label "Custom Picker" Label for the picker field. If not provided, the
field's label is used.

pickerNameField Field name displays when a row is selected.

If not used, the picker displays the field
you specified when you created the DCL in
Application Composer.

71

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Parameter Sample Value Description

query Adaptive Search Query Example:

[[{"type": "qbe",
"provider": "adaptive",
"label": "Created after June",
"adaptiveQuery" : true,
"params": [{ #"op":
 "$gt",#"attribute":
"CreationDate",
"value":
 "2025-06-30T00:00:00.000+0000" }]
}]]

Note: The time stamp must use the format:
YYYY-MM-DDTHH:MM:SS.sss+TZ.

ADF REST Query#Example:

[[[{"type": "qbe", "provider":
 "adfRest",
"params": [{"key": "PartyNumber",
 "operator":
"equals", "value": "CDRM_
2345" }]}]]]

You can provide one or more custom queries to
filter the data shown on the picker.

The query can accept either a single JS object
or an Array of objects. Each object corresponds
to a separate custom query.

When an array is provided, each query show up
as a separate entry along with the other Saved
searches in the saved search menu (the 3 dots
icon next to the picker).

The JS object takes the following properties:

• type

Use the type qbe (query by example) to
form a custom query.

For complex queries you can use
conjunctions like AND and OR.

• provider

To use Adaptive Search as the data source,
 use: "provider": "adaptive"

To use ADF REST as the data source,
 enter: "provider": "adfRest"

• adaptiveQuery

Set to true when using Adaptive Search as
the provider. You can use the same query
as the one used in Adaptive Search REST
APIs.

• params: Uses an array of JS objects with
the following properties.

If more than one object is provided,
 then the filters in them are combined at
runtime using the AND operator.

When provider = adaptive and
adaptiveQuery = true:

◦ attribute: field to be used for the filter

◦ op: operator that can be used are the
following: $eq(equals), $in(in), $ne(not

72

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Parameter Sample Value Description

equals), $gt (greater than), $lt (less than),
 $wi (within)

◦ value: Value of the field for filtering data

◦ values : Use with operators such as $in
when more than one values are provided

◦ value2: Use only if the operator is $wi

When provider = adfRest:

◦ key: ADF REST Field name

◦ operator:

Supported operators: equal, notequals,
startswith, endswith, contains, between,
 isblank, isnotblank, gt(greater than), lt
(less than), ge (greater than or equal to), le
(less than or equal to), and in

◦ value: Value for the filter criteria. For the
in operator, pass the value as a comma-
separated string: "OPEN,CLOSED"

◦ value2: To be used if the operator is
between.

• label

This is used to give a label to this query
option. If not specified, the default
value shown is “Filtered <object
name>s”.

For example, the label displays Filtered
Accounts if the query is on the Account
object.

• default:

Value is either true or false. The
custom query with a default of true,
 is the default when more than one
custom queries are specified and when
defaultSavedSearchId isn't provided in
context.

sortCriteria [[[{ attribute: 'Name',
 direction: 'ascending' }]]]

Specifies the default sort criteria used for the
default view:

• attribute: name of the field that you're
using to sort the data

• direction: sort direction, either
'ascending' or 'descending'

value Use this parameter to specify the default value
to be preselected when the picker is loaded.
The parameter value is the value of the primary
key of the object row.

73

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Picker Example Scenario
This topic illustrates the setup of a picker based on Adaptive Search. In this example, we'll add an Account picker to a
Create Payment page so that users can search for and associate an account with a payment record.

In this example, you'll do the following:

1. In Application Composer, create a custom dynamic choice list field.
2. In Visual Builder Studio:

a. Add the dynamic choice list field to a page layout.
b. Associate the field with a field template that uses the picker fragment.
c. Configure the picker layout.

Prerequisites
Before creating the custom Account field, you must:

1. Complete the Adaptive Search setup, if working with a custom object.

If you're configuring a picker for a field on a custom object, then make sure that you've enabled the custom
object for Adaptive Search. The operation of a picker depends on what's already set up in Adaptive Search.

A picker searches against all Adaptive Search fields that are enabled for keyword search. To enable additional
attributes for search, see the topic Make Additional Fields Searchable.

2. Create your own workspace in Visual Builder Studio if you don't yet have one.

If you're configuring a picker for a custom dynamic choice list field that's not yet published, then make sure
your workspace is associated with your Cloud Applications sandbox.

3. Add the Common Application Components dependency to your workspace.

To add a dependency, click the Dependencies side tab in Visual Builder Studio.

Use the search field to find the Common Application Components dependency and then click Add.
4. This example assumes that you've got a custom Payment object with pages already configured in Visual Builder

Studio.

You can use the CX Extension Generator to set this up quickly. See Create a New Application Using the CX
Extension Generator.

1. Create the Custom Dynamic Choice List Field
To get started, create a custom dynamic choice list field on a custom object, Payment, in Application Composer. This
dynamic choice list field displays account records.

Note: Creating a custom field is a data model change. Create all data model changes in Application Composer before
creating application extensions in Visual Builder Studio. You don't have to publish your sandbox before working in
Visual Builder Studio, however, since your workspace is associated with your current sandbox.

To create the custom dynamic choice list field:

1. Ensure you're in an active sandbox.
2. In Application Composer, navigate to the Payment object > Fields node.

74

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20076705

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. Create a custom dynamic choice list field with these values:

Field Value

Display Label

Account

Name

Account

Related Object

Account

List Selection Display Value

Organization Name

Note: For pickers that don't use Adaptive Search, you can use Application Composer to add a filter to the dynamic
choice list field to constrain the values that users see in the picker. For example, you might want the picker to display
only accounts that are based in a specific country or city. This type of filter isn't supported in Adaptive Search, so
Adaptive Search pickers won't honor them.

When you create a dynamic choice list field in Application Composer, two fields are created:

• A field for use with classic, non-Redwood Oracle applications. The naming convention for this standard field is
customfield_c.

In this example, the Account_c field is automatically created. You can see and modify this field in Application
Composer and Visual Builder Studio.

• A field for use with Redwood Sales. The naming convention for this standard field is customfield_Id_c.

In this example, the Account_Id_c field is automatically created and displays in Visual Builder Studio only. This
is the field that you add to Redwood Sales page layouts.

You can now add the Account_Id_c field to a page layout in Visual Builder Studio. We'll do that in the next section.

2. Add the Field to a Page Layout
Let's add your custom field to a page layout. In this example, we'll add the field to a create page. Typically, you'd also add
the field to an edit page.

1. In the Sales in Redwood UX, navigate to the page that displays the area you want to extend. In this example,
navigate to the Payments list page.

75

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2. Under the Settings and Actions menu, select Edit Page in Visual Builder Studio.

3. Select the project that's already set up for you. If only one project exists, then you will automatically land in that
project.

4. Visual Builder Studio automatically opens your workspace. If more than one workspace exists, however, then
you must first pick your workspace.

5. When you enter into your workspace in Visual Builder Studio, click the Layouts side tab.
6. On the Layouts side tab, click the Payment_c node.

7. On the Payment_c tab, Rule Sets tab, click the Create Layout rule set.

Note: Optionally repeat these same steps for the Edit Layout rule set.

76

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

8. Click the Open icon to edit the default layout.

9. Scroll through the list of fields to find your custom dynamic choice list field. Visual Builder Studio shows the
internal API name, not the display name.

Tip: To find your field more quickly, use the Filter field. For example, enter account into the Filter field.

77

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

10. Select the field, Account_Id_c, from the field list.

When you select a field, it displays in the list of fields to the right, at the bottom of the list. You can optionally
use the field's handle to drag the field to the desired location.

If you were to preview the create page at this point, then the Account field that displays is a simple list with only
basic search filtering.

To add a picker to the field, you must associate the field with a field template that uses the picker fragment.
Let's do that next.

3. Associate the Field with a Field Template
Let's add a picker to your custom dynamic choice list field to give users enhanced searching functionality. To do this,
you associate the field with a field template that uses the picker fragment.

Note: The following steps illustrate the required picker parameters, but you can set other parameters, as well.

1. Make sure that you're still on the Rule Sets tab, viewing the default layout.

78

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2. Click the Account_Id_c field.

3. On the Properties pane, above the Template field, click Create.

Note: If you're doing these steps a second time for the Edit Layout rule set's layout, then in the Template
field, you don't need to create a field template. Instead, you can select the template that you're about to
create in the next step.

4. In the Create Template dialog, in the Label field, enter a label for the template.

In this example, enter AccountPickerTemplate.

79

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

5. Click Create.

Visual Builder Studio creates a placeholder template with a basic structure, including an Input Text node which
you can see on the Structure pane.

6. Delete the default Input Text node from the Structure pane by right-clicking the node and clicking Delete.
7. Click the Code button.

8. In the template editor, select the accountPickerTemplate template tags.

9. On the Components palette, in the Filter field, enter cx-picker.
10. Drag and drop the cx-picker fragment to the template editor, between the template tags.

11. Make sure the fragment code is selected, as illustrated in this screenshot.

80

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Tip: On the Structure pane, selecting the Fragment Container node for the picker template accomplishes the
same thing.

12. On the Properties pane for the cx-picker fragment, in the Input Parameters section, set values for the required
picker parameters.

For additional parameters that you can set for the cx-picker fragment, see CX-Picker Fragment Parameters
section.

4. Configure the Picker Layout
Finally, select which fields display in the picker by modifying the Picker Layout rule set. This rule set's layouts control
how the picker looks at runtime.

The Picker Layout rule set and default layout are predefined for each object, including custom objects.

81

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

In this example, we're adding an Account picker which means we must modify the Picker Layout rule set for the
Account object.

1. On the Layouts side tab, click the CX Sales > Accounts node.

2. On the Accounts tab, Rule Sets tab, click the Picker Layout rule set.
3. Duplicate the default layout and then click the Open icon to edit the default_copy layout.

4. Scroll through the list of fields to add any desired fields to the picker layout.

Tip: To find your field more quickly, use the Filter field. For example, enter city into the Filter field.

82

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

5. Select the field, City, from the field list.

When you select a field, it displays in the list of fields to the right, at the bottom of the list. You can optionally
use the field's handle to drag the field to the desired location.

Test the Picker Flow
You can now test the picker that you added to the list of values field.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

2. The screenshot below illustrates what the list page looks like with data.

3. In the Action Bar, enter Create Payment.
4. Click Create Payment.

The Create Payment drawer displays.
5. In the Create Payment drawer, click the three dots next to the Account field to view the list of saved searches.

83

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

6. If you enter some text into the field, the picker leverages Adaptive Search to return matched results. In the
example below, we've entered pinnacle tech.

In the picker, try searching on a city, for example, austin, so you can see how you can search on other record
attributes.

84

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

7. Once you're happy with how the picker looks, repeat these same steps for the edit layout.

When configuring a second layout, you don't have to create a new field template and configure the picker
fragment again; you can select the field template that you created in this procedure.

You also don't need to configure the picker layout a second time.
8. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

Display Different Fields in a Picker
Depending on how you use the context parameter in the cx-picker fragment, you can display different fields in the
picker at runtime. For example, the picker could display either Field A or Field B.

To display different fields in a picker, use the context parameter. You'll also have to do the following:

• create a custom variable

• update the picker layout display properties in the picker object's JSON

Let's look at an example using the Account picker documented in Configure the Picker.

In this example, the picker you already created includes both the Address and Primary Contact fields.

85

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Using the context parameter, you can instead show either the Address or Primary Contact field, depending on the value
of a custom variable.

Here's how to set this up:

1. Create the Custom Variable
First, create the custom variable on the picker's object:

1. On the Layouts side tab, click the CX Sales > Accounts node.

2. On the Accounts tab, click the Variables subtab.
3. Click + Variable.
4. In the Create Variable dialog, make sure the Variable option is selected and, in the ID field, enter showContact.
5. In the Type field, select Boolean.
6. Click Create.

86

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2. Add the Condition to the Picker Display Properties
Next, add the condition (which field to show depending on the value of the variable) to the picker layout display
properties in the Account object's JSON.

1. On the Accounts tab, click the JSON subtab.
2. Find the picker layout display properties.

3. In the display properties section, replace the two lines for the "FormattedAddress" and "PrimaryContactName"
fields with a single line:

"{{ $componentContext.showContact ? 'PrimaryContactName' : 'FormattedAddress' }}",

87

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. Set the Value of the Variable in the Picker Fragment
Finally, define the value of the variable (true or false) in the picker fragment itself.

1. On the Layouts side tab, click the Payment_c node.

2. On the Payment_c tab, Templates tab, click the AccountPickerTemplate template.

88

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. Make sure the fragment code is selected, as illustrated in this screenshot.

Tip: On the Structure pane, selecting the Fragment Container node for the picker template accomplishes the
same thing.

4. On the Properties pane for the cx-picker fragment, in the Input Parameters section, set the value for the
context parameter. You can set the showContact variable to true or false:

[[{'showContact':true}]]

or

[[{'showContact':false}]]

89

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. Test Your Setup
You can now test each variable setting.

1. Preview your extension and test the picker with the showContact variable as true:

2. Next, preview your extension and test the picker with the showContact variable as false:

Add a Mashup to a Page
For any Redwood Sales object, standard or custom, you can configure its detail page to include a mashup that
references a publicly available URL. You create the mashup in Oracle Visual Builder Studio.

For example, you can add a Wikipedia page to a payment's detail page. At runtime, when the user views a payment, the
user can enter Show Wikipedia into the Action Bar. The Show Wikipedia action lets the user view a related Wikipedia
page without having to leave the payment record.

Add a Mashup to a Detail Page
Let's walk through an example of adding a mashup. In this example, we'll add a mashup to a payment's detail page.

1. In Visual Builder Studio, click the App UIs tab.
2. Expand cx-custom > payment_c, then click the payment_c-detail node.
3. On the payment_c-detail tab, click the Page Designer subtab.
4. Click the Code button.

90

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

5. Confirm that you are viewing the page in Page Designer.

6. Remove the comment tags for the dynamic container components that contain the panels and subviews.

7. Highlight the <oj-dynamic-container> tags for the subviews.

8. On the Properties pane, in the Case 1 region, click the Add Section icon, and then click New Section.
9. In the Title field, enter a title for the section, such as Wikipedia.

10. In the ID field, change the value to Wikipedia.
11. Click OK.

91

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

12. Manually update the template's JSON with the correct subview name.

a. On the payment_c-detail tab, click the JSON subtab.
b. In the section for the SubviewContainerLayout section template layout, replace the sectionTemplateMap

and displayProperties values to match the subview's ID name, Wikipedia.

In our example, this is what the SubviewContainerLayout sectionTemplateMap and displayProperties
should look like:

13. Still on the payment_c-detail tab, click the Page Designer tab.

92

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

14. On the Properties pane, click the Wikipedia section that you just added.

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
mashup template.

15. Click the Code button.

16. In the template editor, find the mashup template tags.

17. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
update the values for the title and url parameters as needed.

<template id="wikipedia">
 <oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx_fragmentsUI:cx-url">
 <oj-vb-fragment-param name="dynamicLayoutContext" value="{}"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="mode" value="embedded"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="title" value="Wikipedia"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="url" value="https://en.wikipedia.org/wiki/"></oj-vb-fragment-param>
 </oj-vb-fragment>
</template>

This table describes the parameters that you can provide for a mashup:

Parameters for Mashup

Parameter Name Description

title Enter the title of the mashup, which displays in the subview UI.

93

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Parameter Name Description

url

Enter the mashup's URL.

94

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

18. Comment out the dynamic container component from the payment_c-detail page.

a. Click < Return to page.

b. Click the Code button.
c. Comment out the dynamic container components that contain the panels and subviews.

Note: To add more subviews, you must first un-comment the dynamic container component so that
you can add a new section for each desired subview.

19. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

95

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

20. The resulting preview link will be:

https://<servername>/fscmUI/redwood/cx-custom/payment_c/payment_c-list

21. Change the preview link as follows:

https://<servername>/fscmUI/redwood/cx-custom/application/container/payment_c/payment_c-list

Note: You must add /application/container to the preview link.

The screenshot below illustrates what the list page looks like with data.

22. If data exists, you can click any record on the list page to drill down to the detail page. The detail page, including
header region and panels, should display.

23. In the Action Bar, enter Show Wikipedia.

96

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

24. Click Show Wikipedia.

The Wikipedia mashup displays:

97

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

25. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

Add a Rollups Region to a Panel
Rollups summarize data across records, for an attribute of a business object and its related objects. The summarized
value of a rollup appears as a business metric inside a panel on an object's detail page. You can add new rollups to a
panel using Oracle Visual Builder Studio.

Where Do Rollups Appear?
Rollups appear inside panels on an object's detail page.

You can add rollups, either predefined or custom, to panels for both custom and standard objects. Some panels for
standard objects are already delivered with a rollups region.

Here's a screenshot of a rollup that displays in a panel for a payment.

98

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Prerequisites
You can add a predefined or custom rollup to a panel.

Before adding a custom rollup, you must first create the custom rollup.

1. In Application Composer:

◦ For the desired object, create a rollup object and fields.

◦ Then, create and publish the fields as rollups.

2. In the Sales Setup and Maintenance work area, in the Configure Adaptive Search task, enable the rollup object
and attributes.

In the following example, we'll use a rollup object, called RollupObject, created for the Payment object. The RollupObject
object has these fields:

• Number of Payment Lines (number field)

• Total Amount (currency field)

Create the Rollup Layout and Rule Set
To add a rollup to a panel, you must first create a layout for the rollup. You can then add the rollup layout to the panel.

Let's look at an example of adding a rollup to the Payment Lines panel on a payment's detail page.

First, create the rollup layout:

1. In Visual Builder Studio, click the Layouts tab, then click the Create Layout icon.

99

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2. In the Create Layout dialog, click the REST resource for your child object.

In our example, the rollup object is called RollupObject. So, expand cx-custom and click Payment_c/
RollupObject_c.

3. Click Create.

Next, create the associated rule set.

1. On the RollupObject_c layout tab, click + Rule Set to create a new rule set for the layout.

a. In the Create Rule Set dialog, in the Component field, select Dynamic Form.
b. In the Label field, enter PaymentLinesRollup.
c. In the ID field, change the value to PaymentLinesRollup.
d. Click Create.

100

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2. Add the rollup fields to the layout.

a. Click the Open icon next to the default layout.

b. Click the cx-panel-rollup fragment.

This fragment provides the format for the rollup region.

c. The rollup layout includes two slots. From the list of fields, drag a rollup field to the desired slot.

For example, drag the TotalAmount_c field to the item2 slot.

Add the Rollups Region to the Panel
In the previous section, you configured the rollups region using a layout and rule set.

101

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Next, add the rollups region to a panel by adding a parameter to the panel's page and template. Here's how:

1. In Visual Builder Studio, click the App UIs tab.
2. Expand cx-custom > payment_c, then click the payment_c-detail node.
3. Click the payment_c-detail tab, then click the Page Designer subtab.
4. Click the Code button.

5. Select Templates from the drop-down list.

6. Add the following parameter to the fragment code.

<oj-vb-fragment-param name="rollupLayoutId" value="PaymentLinesRollup"></oj-vb-fragment-param>

Be sure to replace the rollupLayoutId parameter's value with the appropriate value.

The resulting template code should look something like this:

<template id="paymentLines">
 <oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx_fragmentsUI:cx-panel">
 <oj-vb-fragment-param name="resource"
 value='[[{"name": $flow.constants.objectName, "primaryKey": "Id", "endpoint":
 $application.constants.serviceConnection }]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate","direction":
 "desc" }]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="query"
 value='[[[{"type": "selfLink", "params": [{"key": "Payment__c_Id", "value": $variables.id }]}]]]'></
oj-vb-fragment-param>
 <oj-vb-fragment-param name="child" value='[[{"name": "PaymentLinesCollection_c", "primaryKey": "Id",
 "relationship": "Child"}]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="extensionId" value="{{ $application.constants.extensionId }}"></oj-vb-
fragment-param>
 <oj-vb-fragment-param name="rollupLayoutId" value="PaymentLinesRollup"></oj-vb-fragment-param>
</oj-vb-fragment>

102

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

</template>

7. Select Page from the drop-down list.

8. Replace the existing resource parameter with the following code:

<oj-vb-fragment-param name="resource"
 value="[[{'name':'Payment_c', 'puid': $variables.puid, 'id': $variables.id, 'endpoint':
 $application.constants.serviceConnection ,'extensionId': $application.constants.extensionId, 'rollup':
 'RollupObject_c'}]]">

Be sure to replace all attribute values with the appropriate values for your scenario.

The resulting code should look something like this:

<oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx_fragmentsUI:cx-detail" class="oj-flex-item oj-
sm-12 oj-md-11"
 on-view-change-event="[[$listeners.fragmentViewChangeEvent]]">
 <oj-vb-fragment-param name="resource"
 value="[[{'name':'Payment_c', 'puid': $variables.puid, 'id': $variables.id, 'endpoint':
 $application.constants.serviceConnection ,'extensionId': $application.constants.extensionId, 'rollup':
 'RollupObject_c'}]]">
 <oj-vb-fragment-param name="header" value="[[{'resource': $flow.constants.objectName, 'extensionId':
 $application.constants.extensionId }]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="actionBar" value='[[{ "applicationId": "ORACLE-ISS-APP",
 "subviewLabel": {"PaymentContactMMInter_Src_Payment_cToPaymentContactMMInter_c_Tgt":
 $translations.CustomBundle.Contacts()}, "resource": {"name": $flow.constants.objectName, "primaryKey":
 "Id", "puid": "Id", "value": $variables.puid }}]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="panels" value='[[{ "panelsMetadata": $metadata.dynamicContainerMetadata,
 "view": $page.variables.view }]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{'flowContext': $flow.variables.context}]]"></oj-vb-
fragment-param>
 <oj-vb-fragment-param name="row" value="{{ $variables.row }}"></oj-vb-fragment-param>
</oj-vb-fragment>

103

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Test Your Panel
Test the rollups by previewing your application extension from the payment_c-list page.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

The screenshot below illustrates what the list page looks like with data.

104

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

2. If data exists, you can click any record on the list page to drill down to the detail page. The detail page, including
header region and panels, should display.

You should now see the Payment Lines panel on the detail page, with a region for rollups.

105

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

Understanding "Show" Actions
Whenever you add a subview, a Show action is automatically created. The Show action displays in the Action Bar so that
users can display the related subview. Show actions are not smart actions and you don't need to manually create them.
The only change you might want to make for Show actions is the label. Each Show action string is hard-coded but you
can change it to a string that can be translated.

What's a Show Action?
Show actions are similar to smart actions because they are both available from the Action Bar. However, Show actions
are not smart actions. Instead, Show actions are actions that are automatically displayed specifically so that users can
navigate to subviews for various objects.

For example, these Show actions were automatically created when you added subviews for the below objects:

106

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Show Action Labels
The labels for Show actions are derived from each subview's display property. The display property was specified when
the section was initially added for the subview. You can view subview display properties on the detail page's JSON.

Since Show action labels are automatically derived from the display property strings, the labels are hard-coded and not
translatable. If needed, you can make them translatable.

Create a Translatable String
Let's look at an example. If you add a subview for a mashup that displays Wikipedia, then the Show Wikipedia action is
automatically created without any action required on your part.

107

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

But, maybe you have users who need to see the Show Wikipedia string in Korean. In that case, you can change the hard-
coded string to a string that's translatable.

To create translatable Show actions:

1. Add the translatable string to your custom translation bundle.

See Create a Translation Bundle, If You Don't Have One Already.
2. Create a constant that refers to the string in your translation bundle.

a. On the payment_c-detail tab, click the Variables subtab.
b. Click + Variable.
c. In the Create Variable dialog, make sure the Constant option is selected and, in the ID field, enter

subviewLabel.
d. In the Type field, select Object.
e. Click Create.
f. On the Properties pane for the new subviewLabel constant, in the Default Value field, enter the

reference to the string that you added to the translation bundle.

Use the following format, where the first Wikipedia instance is the subview's display property and the
second wikipedia instance is the string key that you added to the translation bundle:

{"Wikipedia":"[[$translations.CustomBundle.wikipedia()]]"}

Be sure to replace the translation bundle name and string with your own information, as needed.

If you have multiple subviews and you need translatable Show actions for each one, then you can add
that to the default value for the subviewLabel constant. For example:

{
 "PaymentContactMMInter_Src_Payment_cToPaymentContactMMInter_c_Tgt":"[[$translations.CustomBundle.Contacts()]]",
 "Wikipedia":"[[$translations.CustomBundle.wikipedia()]]"
}

108

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. Add the new subviewLabel constant to the payment_c-detail page's cx-detail fragment code.
a. On the payment_c-detail tab, click the Page Designer subtab.
b. Click the Code button.

c. Add the subviewLabel constant to the "actionBar" parameter in the fragment code, as follows:

"subviewLabelExtension": $page.constants.subviewLabel

The fragment code should look like the below sample. Be sure to replace Payment_c with your custom
object's REST API name.

<oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx_fragmentsUI:cx-detail" class="oj-flex-item
 oj-sm-12 oj-md-12">
 <oj-vb-fragment-param name="resources" value="[[{'Payment_c' : {'puid': $variables.id, 'id':
 $variables.id, 'endpoint': $application.constants.serviceConnection }}]]"></oj-vb-fragment-
param>
 <oj-vb-fragment-param name="header" value="[[{'resource': $flow.constants.objectName,
 'extensionId': $application.constants.extensionId }]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="actionBar"
 value='[[{ "applicationId": "ORACLE-ISS-APP", "resource": {"name": $flow.constants.objectName,
 "primaryKey": "Id", "puid": "Id", "value": $variables.puid }, "subviewLabelExtension":
 $page.constants.subviewLabel }]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="panels" value='[[{ "panelsMetadata":
 $metadata.dynamicContainerMetadata, "view": $page.variables.view }]]'></oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{'flowContext': $flow.variables.context}]]"></oj-
vb-fragment-param>
 <oj-vb-fragment-param name="row" value="{{ $page.variables.row }}"></oj-vb-fragment-param>
</oj-vb-fragment>

Add the CreatedBy and LastUpdatedBy Fields to Notes
Panels and Subviews
Users can add notes to a record, and those notes will display on a Notes panel as well as on a Notes subview page. As
an administrator, you can optionally display the CreatedBy and LastUpdatedBy fields for each note. If you add either
of these fields to a Note layout, then you must use a specific field template so that the user names display correctly at
runtime. This topic illustrates how to add the correct field template.

In this example, we'll add the LastUpdatedBy field to the Notes panel and subview that display on a Payment record. You
can follow the same set of steps if you want to display the CreatedBy field, as well.

Update the Field Templates File
In the field templates file, add a new field template.

1. In Visual Builder Studio, click the Source side tab.
2. On the Source side tab, navigate to extension1 > sources > dynamicLayouts > self > field-templates-

overlay.html.

109

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. In the field-templates-overlay.html file, add this field template:
<template id="userNameTemplate">
<oj-vb-fragment name="oracle_cx_fragmentsUI:cx-profile" bridge="[[vbBridge]]">
<oj-vb-fragment-param name="user" value="[[{ 'userName' : $value() }]]"></oj-vb-fragment-param>
</oj-vb-fragment>
</template>

Add the LastUpdatedBy Field to the Panel
Add the LastUpdatedBy field to the Notes panel that displays on a Payment record.

1. In Visual Builder Studio, click the Layouts side tab.
2. On the Layouts side tab, click the Payment_c > Note node.
3. Click the Rule Sets subtab.
4. Click the Panel Card Layout rule set.
5. Click the Open icon to edit the default layout.

6. Select the field, LastUpdatedBy, from the field list and drag to the desired location on the panel layout.

7. Associate the LastedUpdatedBy field with the userNameTemplate field template:
a. On the Note tab, click the JSON subtab.
b. In the "PanelCardLayout" section, add a "fieldTemplateMap" section with a row for the LastedUpdatedBy

field:

110

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

,
 "fieldTemplateMap": {
 "LastUpdatedBy": "userNameTemplate"
 }

The resulting JSON will look like this:

111

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Add the LastUpdatedBy Field to the Subview

1. Switch to the Sub View Layout rule set.

2. Click the Open icon to edit the default layout.
3. Select the field, LastUpdatedBy, from the field list, and drag to the desired location on the subview layout.

For example, drag the field to the item2 slot.

4. Associate the LastedUpdatedBy field with the userNameTemplate field template:

a. On the Note tab, click the JSON subtab.
b. In the "SubViewLayout" section, update the existing "fieldTemplateMap" section with a row for the

LastedUpdatedBy field:

,
 "fieldTemplateMap": {

112

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

 "NoteTxt": "noteTemplate",
 "LastUpdatedBy": "userNameTemplate"
 }

Test the Flow
You can now test the Notes panel and subview to confirm that they both display the name of the person who last
updated the note.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

2. The resulting preview link will be:

https://<servername>/fscmUI/redwood/cx-custom/payment_c/payment_c-list

3. Change the preview link as follows:

https://<servername>/fscmUI/redwood/cx-custom/application/container/payment_c/payment_c-list

Note: You must add /application/container to the preview link.

The screenshot below illustrates what the list page looks like with data.

4. Click any existing payment to view its detail page.
5. In the Action Bar, enter Create Note.
6. Click Create Note.

The Create Note drawer displays.
7. Create a note and then click Create.
8. On the Notes panel, you should see the newly created note, along with the full user name, not the ID, of the

person who last updated the note.

113

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

9. Click View All Notes to view the Notes subview.

The subview should also display the full user name, not the ID, of the person who last updated the note.

10. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

114

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Link to a Smart Action Using a URL
You can construct a URL that calls a smart action in the Redwood version of Sales. Construct this URL whenever needed
and then use it as a deep link. Depending on the smart action added to the URL, clicking the link will either execute a
smart action without involving a UI (to delete a record, for example) or navigate directly to an open drawer on a Sales
page (to create a record, for example).

To construct the URL, append the smart action ID as a parameter to the detail page URL.

1. Obtain the smart action ID.

You can retrieve the smart action ID from Application Composer.
2. Obtain the URL of the detail page.

For example:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?
id=300000008600956&puid=38005&view=foldout

3. Append the smart action ID parameter as follows:

&actionId=<smart action ID>

4. The resulting URL can be used to link to a smart action:

For example:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?
id=300000008600956&puid=38005&view=foldout&actionId=SDA-Delete-accounts

Note that once the action is completed, the URL changes to:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?
id=300000008600956&puid=38005&view=foldout&actionId=completed

115

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

116

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

3 Additional Configuration Tasks

Configure the Contents of a Panel
An individual record's detail page includes key information displayed in a region of panels. Each panel contains
information related to the record, such as related contacts and opportunities. Most panels display information in a list
format. You can configure these lists using Oracle Visual Builder Studio.

What's Inside a Panel?
A panel often contains a list, which you can configure. Here's an example of a list inside a panel:

Lists can display up to 5 records, depending on screen size. If the screen size is small, then the list automatically adjusts
to display fewer records. However, users can click the View All link that displays at the bottom of the panel to navigate to
a second page to see all records in the list. This second page is called the subview.

What Can You Change in a List?
In Visual Builder Studio, you can modify the information that displays in each list.

You can:

• Add and remove fields

• Change the display order of fields in the list

This topic illustrates how to change the display order of fields that display on panels on an account's detail page. We'll
look at both the Contacts panel and Opportunities panel.

To configure the subview, see Configure the Subview Layout.

Change the Display Order of Contact Panel Fields
Let's change the display order of fields in a panel list. In this example, we'll switch the order of the email and phone
number fields on the Contacts panel on the Account detail page.

117

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

1. In Visual Builder Studio, navigate to the Layouts tab and expand the CX Sales node > Accounts >
AccountContact.

The AccountContact node contains the rule sets for the Contacts panel on the Account object.

118

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Note: When configuring the contents of a panel, consider what kind of relationship the panel's object has
with the primary object. In this case, the Account object has a many-to-many relationship with Contact. This
means that you'll find layouts for the Contact object on the AccountContact node, nested under the Accounts
node.

119

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

2. On the AccountContact tab > Rule Sets subtab, click the Panel Card Layout.

Both a default layout as well as a default rule are displayed for the Panel Card Layout.

120

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

3. Click the Duplicate Rule icon.

4. In the Duplicate Rule dialog, accept the default rule name or enter a new name. The name you enter here is
both the rule name and also the layout name, so enter a layout name that makes sense for you.

Also, make sure that the Also create a copy of the layout checkbox is selected.

5. Click Duplicate.

The new rule displays at the top of the list of existing rules, which means that this rule will be evaluated first at
runtime. If the rule's conditions are met, then the associated layout is displayed to the user.

In this example, we're not adding any conditions which means that the associated layout will always be
displayed.

121

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

6. Modify the rule's copied layout.

a. Click the Open icon to edit the copied layout.

b. Scroll down the list of fields in the layout until you locate the email and phone fields.

c. Delete each field from the Item3 and Item4 slots, and then add the fields back. This time, however, switch
the order so that the phone field is in the Item3 slot and the email field is in the Item4 slot.

122

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

123

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

7. Click the Preview button to see your changes in your runtime test environment.

The preview link must include the application/container segments in the URL. If not, then change the preview
link using the following example URL:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?

id=300000003513233&puid=7050&view=foldout

Change the Display Order of Opportunity Panel Fields
In this example, we'll switch the order of the sales stage and effective date fields on the Opportunities panel on the
Account object.

124

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

1. In Visual Builder Studio, navigate to the Layouts tab and expand the CX Sales node > Opportunities.

The Opportunities node contains the rule sets for the Opportunities panel on the Account object.

125

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Note: When configuring the contents of a panel, consider what kind of relationship the panel's object has
with the primary object. In this case, the Account object has a one-to-many relationship with Opportunity.
This means that you'll find layouts for the Opportunity object on the Opportunities node.

126

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

2. On the Opportunities tab > Rule Sets subtab, click the Panel Card Layout.

Both a default layout as well as a default rule are displayed for the Panel Card Layout.

3. Click the Duplicate Rule icon.

127

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

4. In the Duplicate Rule dialog, accept the default rule name or enter a new name. The name you enter here is
both the rule name and also the layout name, so enter a layout name that makes sense for you.

Also, make sure that the Also create a copy of the layout checkbox is selected.

5. Click Duplicate.

The new rule displays at the top of the list of existing rules, which means that this rule will be evaluated first at
runtime. If the rule's conditions are met, then the associated layout is displayed to the user.

In this example, we're not adding any conditions which means that the associated layout will always be
displayed.

128

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

6. Modify the rule's copied layout.

a. Click the Open icon to edit the copied layout.

b. Scroll down the list of fields in the layout until you locate the sales stage and effective date fields.

c. Delete each field from the Item3 and Item4 slots, and then add the fields back but switch the order.

129

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

130

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

7. Click the Preview button to see your changes in your runtime test environment.

The preview link must include the application/container segments in the URL. If not, then change the preview
link using the following example URL:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?

id=300000003513233&puid=7050&view=foldout

Configure the Subview Layout
An object's detail page includes a region of panels with information. Each panel, however, can display only a few records
due to panel size. To see all records, users can navigate to a second page called a subview. This topic illustrates how to
modify those subview pages using Oracle Visual Builder Studio.

What's Inside the Subview?
A subview contains a list of all records that the panel, due to limited real estate, can't display.

For example, here's an example of an account detail page with 5 panels:

131

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Notice how each panel displays only a few records.

To see all records, users can click the View All link that displays at the bottom of the panel.

Here's an example of some View All links. Note that after the link itself, a number indicates the number of total records
listed on the subview.

The subview displays all those records in a table.

132

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

What Can You Change in a Subview Table?
In Visual Builder Studio, you can modify the information that displays in a subview table.

You can:

• Add and remove columns

• Change the display order of columns in the table

This topic illustrates how to change the display order of columns in a subview table. We'll look at the Opportunities
subview that's available from an account detail page.

Change the Display Order of Opportunity Subview Columns
Let's change the display order of columns in a subview table. In this example, we'll switch the order of the sales stage
and win probability columns on the Opportunities subview, accessed from the Opportunities panel on the Account
detail page.

133

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

1. In Visual Builder Studio, navigate to the Layouts tab and expand the CX Sales node > Opportunities.

The Opportunities node contains the rule sets for the Opportunities panel on the Account object.

134

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

2. On the Opportunities tab > Rule Sets subtab, click the Sub View Layout.

Both a default layout as well as a default rule are displayed for the Sub View Layout.

3. Click the Duplicate Rule icon.

135

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

4. In the Duplicate Rule dialog, accept the default rule name or enter a new name. The name you enter here is
both the rule name and also the layout name, so enter a layout name that makes sense for you.

Also, make sure that the Also create a copy of the layout checkbox is selected.

5. Click Duplicate.

The new rule displays at the top of the list of existing rules, which means that this rule will be evaluated first at
runtime. If the rule's conditions are met, then the associated layout is displayed to the user.

In this example, we're not adding any conditions which means that the associated layout will always be
displayed.

136

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

6. Modify the rule's copied layout.

a. Click the Open icon to edit the copied layout.

b. In the list of fields in the layout, use the handle next to the win probability field to move it above the sales
stage field.

Here's a screenshot of the final location of the win probability field.

137

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

7. Click the Preview button to see your changes in your runtime test environment.

The preview link must include the application/container segments in the URL. If not, then change the preview
link using the following example URL:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?

id=300000003513233&puid=7050&view=foldout

138

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Make Values of a DCL Field Dependent on the Values of
Another Field
You can create a field, such as a dynamic choice list field (DCL), that displays different values depending on the values
of a different field. In this example, we'll create a DCL field for the Create Contact page that shows addresses for the
account associated with the contact. Salespeople can use the field to select an address for the contact from the available
account addresses.

Create the Dynamic Choice List Field
Tip: View the following video on Oracle Cloud Customer Connect for a summary of the setup in Oracle Visual Builder
Studio: Dependent DCL Field.

1. Open Application Composer in a sandbox.
2. In the left panel, make sure that CRM Cloud is selected in the Application field.
3. Expand the Contact standard object.
4. Click Fields.
5. In the Fields page, click Actions > Create.
6. Select the Choice List (Dynamic) option.
7. In the Create Dynamic Choice List: Basic Information page, enter the following:

Field Sample Entry Explanation

Display Label Bill-To Address The label users see in the UI.

Display Width 40 Width of the box displaying the address
elements.

Name BillToAddress Unique internal name.

8. Leave the Constraints with the default selected values.
9. Click Next.

10. On the List of Values page, make these entries:

Field Sample Entry Explanation

Related Object Address The source of the values.

List Selection Display Value Country You can select any of the values as these
aren't used for this use case.

11. You can leave the other sections blank.
12. Click Submit.

139

https://community.oracle.com/customerconnect/discussion/796399/video-dependent-dcl-field#latest

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Specify the DCL Field Behavior and Add It to the Layout

1. Open Visual Builder Studio.
2. Click the Layouts tab.
3. On the Layouts tab, click CX Sales > Contacts.

140

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

4. Click Rule Sets > Create Layout (CX Sales).

5. Duplicate the default rule with the Also create a copy of the layout option selected.
6. Add a rule condition to the new rule.
7. Click Open on the new layout rule to open the layout copy.

8. Find the PersonDEO_Bill_To_Address_id_c (Bill-to Address) field and add it to the layout (highlighted by
callout 1 in the following screenshot)

9. Create a variable for the field template:

a. Still in the Contact layout tab, click Variables
b. Click Create Variables (callout 1 in the following screenshot).
c. Enter a variable ID, such as billToAddresses.
d. For Type, select Any.

141

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

10. Create a field template that you'll need for the layout:

a. Click the Rule Sets tab.
b. Click Create for the Template field (callout 2) in the Field (right-hand) pane.

c. In the Create Template window, enter a name with no spaces, such as billToAddressTemplate and leave
the Enable Extension option selected.

d. Click Create.
e. Click the Code option
f. Here's sample code to enter:

<template id="billToAddress">
 <oj-select-single label-hint="billToAddressID" data="[[$variables.billToAddresses]]"
 value="{{$value}}"></oj-select-single>
</template>

142

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

11. Create an action chain that does the following:

◦ Check if the updated field in the record is the account Party ID.

◦ If the account Party ID is updated, then store that Party ID in the constant accountPartyNumber

◦ Create a REST call that returns all of the addresses for that Party ID

◦ Store the returned addresses (FormattedAddresses) in an array.

◦ Assign the values in the array to the variable billToAddresses which will be part of the Create Contact UI.

a. On the Contacts tab, click Action Chains.

b. Click Create Action Chain (+Action Chain).
c. In the Create Action Chain window, leave the Java Script option selected and enter any name as an ID, in

this example: GetAddresses.
d. Click Create.
e. Switch to the Code view and enter the code:
f. Here's a sample:

define([
 'vb/action/actionChain',
 'vb/action/actions',
 'vb/action/actionUtils',
 'ojs/ojarraydataprovider',
], (
 ActionChain,
 Actions,
 ActionUtils,
 ArrayDataProvider

143

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

) => {
 'use strict';
 class test extends ActionChain {
 /**
 * @param {Object} context
 * @param {Object} params
 * @param {{row:object,related:object[],fieldsToShow:string[]}} params.previous
 * @param
 {{row:object,previousRow:object,modifiedField:string,pickedRowsData:object,parentRow:object,mode:string}}
 params.event
 * @return {{row:object,related:object[],fieldsToShow:string[]}}
 */
 async run(context, { previous, event }) {
 const { $layout, $extension, $responsive, $user } = context;
 if (event.modifiedField === 'AccountPartyId') {
 const accountPartyNumber = event.pickedRowsData ['accounts.AccountPartyId'];
 const addressesResponse = await Actions.callRest(context, {
 endpoint: 'oracle_cx_salesUI:cx/getall_accounts-Address',
 uriParams:{
 'accounts_Id': accountPartyNumber.PartyNumber,
 },
 });
 if (addressesResponse.ok){
 const billToAddresses = addressesResponse.body.items.map((address)=> {return
 {label:address.FormattedAddress,value:address.FormattedAddress}});
 $layout.variables.billToAddresses = new ArrayDataProvider(billToAddresses,
{keyattributes:"value"});
 }
 }
 if (event.modifiedField === 'PersonDEO_BillToAddress_Id_c'){
 debugger;
 }
 return previous;
 }
 }
 return test;
});

12. Create an event listener for the field template:

a. Click the Event Listeners tab.
b. Click the Create Listener button (+Event Listener).
c. In the Create Event Listener page, select ContactsOnFieldValueChangeEvent.
d. Click Next
e. Select the action chain you just created. In this example, GetAddresses.
f. Click Finish.

13. Test your field:

a. Click the Preview button to test your newly-created field.

b. On the Contacts list page, enter Create Contact in the Action Bar.
c. Select an account that includes a number of addresses.
d. Click in the Bill-To-Address field to select an address.

144

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Change Navigation to Pages in Your Sales Application
Using the Dispatcher feature in Application Composer, you can change which page opens when a salesperson clicks
on a record name link on pages in both standard and custom objects. You can redirect links on the list pages, detail
pages, and the edit/create pages. The redirected link can open standard or custom pages and subviews. You can specify
different destinations for different job roles.

Clicking the opportunity name link on the opportunity list page, for example, normally opens the opportunity detail
page, which provides an overview of key activities, contacts, products, and other information. Getting to what a
customer is interested in purchasing requires an extra click. If salespeople are more interested in what the customer
is buying than in a general overview, then you can open the subview that lists the opportunity products and revenue
directly, saving that extra click.

If you created a simple custom object, you can even skip the detail page altogether and open the edit page instead.

How Dispatcher Works
Using the Dispatcher, you can create a set of rules that can open different pages for different job roles. Each dispatcher
rule replaces the URLs pointing to the same location. Dispatcher doesn't identify individual links on the page. If a page
includes multiple links that go to the same destination, all are replaced. You can even redirect a URL in all the pages in
the application to a new destination with one rule.

Creating a rule involves 4 steps:

1. Rule Details, where you specify if the rule applies to everyone in the organization or to specific job roles.
2. Navigation Details, where you enter the scope of the redirection rule and both the old and the new destination.
3. Overlapping Rules, where you specify the order in which to process any overlapping rules.
4. Review and submit.

What you enter in the Navigation Details step is key, so here's an overview of the 5 sections in this step. You must scroll
down to see the last section. Detailed instructions for creating rules follow.

Section Description

Navigation Component (1) In this release, you can redirect only links from the object name link.

Location of the Navigation Component (2) The scope of the links you want to redirect. You can redirect the links in all the pages of the Sales
application, in a specific object, or narrow the scope to a specific page.

Standard Destination of the Navigation
Component (3)

The current destination for the link you're redirecting. You can redirect the links on the list page, the
detail page, the edit page, and the create page.

Note: Using Dispatcher, you can't redirect links in subviews.

New Destination of the Navigation
Component (4)

The new destination page for the link. Subviews are part of the detail page.
So, if you're redirecting the link to a subview, you select the detail page.

Query Parameter Mapping (5) If you're redirecting a link to a subview, then you identify the subview by adding a constant with a value
that you obtain from the subview URL.

145

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Section Description

If you're redirecting to an edit page, you add the constant: mode = edit.

The variables are standard for all standard objects and custom objects created by the CX Extension
Generator.

146

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Example Entries for Redirecting Opportunity List Page Links to the Product
Revenue Page
Here's what to enter in the Navigation Details step sections to redirect the opportunity name links on the opportunity
list page to the Products subview.

• Location of Navigation Component

You're restricting the redirection to the links on the opportunity List page, so make these entries:

Field Entry

Application CX Sales

Page opportunities

2nd Page field opportunities-list

• Standard Destination of the Navigation Component

Normally, the application opens the detail page when users click the opportunity name on the List page.

Field Entry

Application CX Sales

Page opportunities

2nd Page field opportunities-detail

147

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

• New Destination of the Navigation Component
You're redirecting the navigation to a subview of the detail page, so your entries are the same as for the
standard destination. Subviews are part of the detail page.

Field Entry

Application CX Sales

Page opportunities

2nd Page field opportunities-detail

• Query Parameter Mapping
To redirect to the Product subview, you add a constant with the value of ChildRevenue:

Field Entry

Parameter Type Constant

Parameter Name view

Parameter Value ChildRevenue

Steps to Create and Activate Dispatcher Rules
1. Open Application Composer outside a sandbox.
2. Click Dispatcher.
3. On the Dispatcher page, click Create.
4. In the Rule Details page, enter a name for the rule.
5. In the Rule Conditions section, specify the audience for the rule. You have two options:

◦ Make the rule apply to the all job roles in the organization by turning on Apply Rule Globally.

◦ Apply the rule to specific job roles you enter in the Role Filter field.
6. Click Continue to move to the Navigation Details step.
7. In the Location of the Navigation Component section, specify the scope of the rule:

◦ To have the link redirected on all pages, turn on Anywhere.

◦ Narrow the scope of the redirection to an object and page:
- In the Application field, select either CX Sales for standard pages, or CX Custom.
- In the Page fields, make these selections:

a. In the first Page field, select the object.
b. In the 2nd Page field, specify the page type:

Available Values Description

any Redirects links on all pages for the object.

148

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Available Values Description

list Redirects links on the list page.

edit Redirects links on the edit and create pages.

detail Redirects links on the detail page.

8. In the Standard Destination of the Navigation Component section, enter the current navigation destination.
Your entries identify the URL to be replaced.

a. In the first Page field, select the object.
b. In the 2nd Page field, select the page.

Available Values Description

detail The detail page (called the Overview page at runtime).

edit The edit/view page.

list The list page.

9. In the New Destination of the Navigation Component section, enter the new navigation destination.

a. In the first Page field, select the object.
b. In the 2nd Page field, select the page.

Available Values Description

detail Redirects to the detail page or subview.

edit Redirects to the edit or the create page.

If you're redirecting to the edit page, then you must also add the constant mode = edit in
the Query Parameter Mapping section.

If you don't add a constant, the user is redirected to the Create page.

list Select to redirect to the list page.

149

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

10. If you're redirecting the link to a subview or to the edit page, then you must add a constant in the Query
Parameter Mapping section:

a. Click Add.
b. If you're redirecting to the edit page, then make the following entries:

Field Entry

Parameter Type Constant

Parameter Name mode

Parameter Value edit

c. If you're redirecting to a subview, then enter the following:

Field Entry

Parameter Type Constant

Parameter Name view

Parameter Value Enter the last part of the subview URL following view=.

Here's an example of a URL for the Products subview on an opportunity:

https://<domain>/fscmUI/redwood/cx-sales/application/container/opportunities/opportunities-detail?

id=300000009863286&puid=39003&view=ChildRevenue

Note: For standard subviews and subviews generated by the CX Extension Generator, the application
automatically adds 2 parameters: the variables puid and id. These parameters are required.

Here's a screenshot of the Query Parameter Mapping section

Callout Description

1 The Add button.

2 Constant entry.

150

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Callout Description

3 The 2 required variables are included automatically.

11. Click Continue to move to the Overlapping Rules step.
12. Review the order of any rules with overlapping functionality and specify the order of priority by dragging them

into position using the handles on each row. The rule at the top gets executed first.
13. Click Continue to move to the Review and Submit step.
14. Click Submit.
15. On the Dispatcher list page, select Action > Mark Active.

Configure What Information Displays in the Product
Catalog
Here's how to configure what information displays in the product catalog in your Sales in the Redwood User Experience
application. You can configure both product groups and products and you can configure different layouts for different
roles in your organization.

Before you start, make sure that the product catalog includes products, product groups, and the attributes that you
want to expose. Attributes that are blank don't show up in the UI.

You open Visual Builder Studio from the Product Catalog page and the page must show what you're configuring:
product groups and a product under the Recent heading.

Configure Product Groups
1. Open an opportunity.

151

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

2. Enter Catalog in the Action Bar and select Browse Catalog.

3. In the Product Catalog page, click your profile and select Settings and Actions > Edit Page in Visual Builder
Studio to open Visual Builder Studio (VBS).

4. In the central VBS panel, click one of the product groups in the page under the All Categories heading to
display a border for the Product Group Card Layout (callout 1 in the following screenshot).

152

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

5. Under the Rule Set heading in the right pane, click the Product Group Card Layout link (callout 2).

6. Duplicate the default layout and open it by clicking the Open button highlighted in the following screenshot.

153

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

7. You can drag additional fields from the Fields tab. Or you can remove and reorder them.

8. Preview your configuration by clicking the Preview button.

9. Click Publish to make your configuration permanent.

Configure Products
The steps to configure products is very similar to configuring product groups. The main difference: To easily identify
the layout, you must display a product under the Recent heading of the product catalog. You can do this by adding a
product to the opportunity from the catalog and then adding another.

Here's a screenshot of the product catalog showing a product under the Recent heading.

154

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

Here's a recap of the detailed steps:

1. Open an opportunity.
2. Enter Catalog in the Action Bar and select Browse Catalog.
3. Add a product to the opportunity from the catalog and save.
4. Add a second product. The first product should appear under the Recent heading.
5. From the Product Catalog page, click Settings and Actions > Edit Page in Visual Builder Studio to open

Visual Builder Studio.
6. Click the product in the page under the Recent heading to display a border for the Product Card Layout

(callout 1 in the following screenshot).

155

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

7. Under the Rule Set heading in the right pane, click the Product Card Layout link (callout 2).

8. In the Display Logic pane, duplicate the default layout and open it.
9. Drag additional fields from the Fields tab. You can also remove and reorder fields.

10. Preview your configuration by clicking the Preview button.
11. Click Publish to make your configuration permanent.

156

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 4
Global Create Actions and AI Agent Integrations

4 Global Create Actions and AI Agent
Integrations

Global Actions in the Sales Dashboard
Salespeople can use a special type of smart action, called a global action, to create records and launch AI agents directly
from the Sales Dashboard search bar. Standard smart actions are always used in the context of a particular object and
record. Global actions don't depend on context, and so can be used in the sales dashboard search bar.

As salespeople start making entries in the search bar, the enabled global actions are listed automatically.

Global Actions that Create Records for Standard Sales Objects
For standard sales objects, the "create" global actions are enabled by default for all sales dashboard users.

In Application Composer, open the Smart Actions work area. Here you can:

• See the list of all global create actions, by entering Global as a filter.

• Disable any actions you don't want to use for all users.

• Restrict the actions to specific job roles by duplicating the actions and editing the duplicates.

157

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 4
Global Create Actions and AI Agent Integrations

Global Create Smart Actions for Custom Objects
When you use the CX Extension Generator to create the UI for your custom object, all of the standard smart actions are
created for you, including the global create smart action for use in the sales dashboard.

If you used the CX Extension Generator prior to the 25B update for your custom object, or if you didn't use it at all, then
generate the global create action for each object in the Extension Generator as described in the topic Create the Global
Create Actions for Custom Objects.

On the Smart Actions page, you can take the same actions on the generated smart actions as on those available for
standard sales objects. You can:

• See the list of all global create actions, by entering Global as a filter.

• Disable any actions you don't want to use for all users.

• Restrict the actions to specific job roles by duplicating the smart actions and editing the duplicates.

Smart Action to Open an AI Agent
You create the global action to launch an AI agent in the Smart Action work area in Application Composer. For detailed
steps, see the topic Set Up Global Actions to Launch AI Agents from the Sales Dashboard.

158

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 4
Global Create Actions and AI Agent Integrations

Create the Global Create Actions for Custom Objects
Global create actions are create actions you can use from the Sales Dashboard. If you used the CX Extension Generator
to generate the custom object UI before the 25B update, or if you didn't use the CX Extension Generator at all, follow
these steps to create the global create smart action. Starting with the 25B update, all the standard smart actions are
created for you, including the global create smart action for use in the sales dashboard.

1. In a sandbox, open Application Composer.
2. Click CX Extension Generator.
3. Click Create New Extension.

There's no need to import files from Oracle Visual Builder Studio for creating smart actions.
4. Add the custom object.
5. Click Generate Extensions.

The application generates the standard smart actions, including the Create global smart action, and
automatically downloads a .zip file.

Note: If sales pages for this custom object already exist in Oracle Visual Builder Studio, then don't import
the.zip file. You can discard it.

Set Up Global Actions to Launch AI Agents from the
Sales Dashboard
Here's how to create smart actions that salespeople can use to launch AI Agents from the search bar in the sales
dashboard.

Note: For information on how to create and publish AI agents see the topic Deploy Sales AI Agents using RAG tools.

1. Enter into a sandbox that's enabled for Application Composer.
2. In Application Composer, click Smart Actions, available under Common Setup heading.
3. On the Smart Actions page, click Create.

Application Composer displays the Create Smart Action guided process in a new browser tab.
4. On the Kind of Action page:

a. Click the Global action option to indicate that you're creating an action for the Sales Dashboard.
b. Click Continue.

5. On the Basic Details page:

a. In the Name field, enter a display name for the action.
b. The Action ID field automatically generates a value based on your entry. You can update the ID with

another unique value.

This value must be unique across all smart actions.

159

https://docs.oracle.com/en/cloud/saas/readiness/sales/25b/sfau-25b/25B-sf-automation-wn-f37038.htm#Steps-to-Enable

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 4
Global Create Actions and AI Agent Integrations

c. Click Continue.
6. On the Availability page:

a. In the Application field, Sales is the only option and it's selected automatically. Global smart actions
aren't available in Service.

b. In the Role Filter field, you can select the roles that can view the action.

If you don't select a role, then the action will be available to all roles.
c. Click Continue.

7. On the Action Type page:

a. In the Type field, select AI Agent.
b. From the Agent Code list, select the published AI agent.
c. Click Continue.

8. Leave the Confirmation Message page blank and click Continue.
9. On the Review and Submit page, review the action's configuration and click Submit when ready.

160

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

5 Appendix

Manually Configure a Child Object for Related Objects
This appendix describes how to manually configure the panel and subview for a child custom object for related objects.

Note: If you've used CX Extension Generator to create the object UIs, you can skip this chapter. The CX Extension
Generator completes these configurations for you.

Add a Standard Object Panel for Related Objects (One-to-Many)
You can configure an object's detail page by adding panels for related objects. This makes it easy for users to see – on a
single page – all pertinent information related to a record. You can add custom object panels or standard object panels.
This topic illustrates how to add a standard object panel to an object's detail page (when the panel object is related via a
one-to-many relationship).

What's the Scenario?
Let's look at an example. In this example, the Payment object has a one-to-many relationship with the Lead object. At
runtime, users should be able to create leads for a payment, and view those leads on the Payment detail page.

Setup Overview
To enable users to create leads for a payment, we'll add a Leads panel and subview to the Payment detail page.

1. First, create the Create Lead smart action in Application Composer.

See Prerequisite: Create Smart Action.
2. Add a new Leads panel to the Payment detail page.

See Add the Leads Panel to the Payment Detail Page.
3. After adding the Leads panel, you can then add the subview.

See Add a Subview for the Leads Panel.

Prerequisite: Create Smart Action
The Create Lead smart action displays from the Action Bar on both the Payment detail page and Leads subview. Users
can select the Create Lead smart action to navigate to a create lead page.

Note: If you previously created a Create Lead smart action for a non-fragments implementation, then you don't need
to create a new smart action for this use case. Instead, update your existing smart action to specify the Create action
type, object, and field mapping. This ensures that your custom smart action still works with this new fragment-based
extension.

161

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

If you haven't yet created a Create Lead smart action, then create one now:

1. Create a sandbox.
2. In Application Composer, under the Common Setup menu, click Smart Actions.
3. At the top of the page, click Create.
4. On the Kind of Action page, click UI-based action and then click Continue.
5. On the Basic Details page, in the Name field, enter the smart action name.

For example, enter Create Lead.
6. In the Object field, select the one-to-many relationship's source object.

In this case, select Payment and then click Continue.
7. On the Availability page, in the Application field, select Sales.
8. In the UI Availability field, select List Page and click Continue.
9. On the Action Type page, in the Type field, select Create.

10. In the Target Object field, under the Top Level Object heading, select the one-to-many relationship's target
object.

For example, select Sales Lead.
11. In the Field Mapping region, click Add.
12. In the Actions column, click the Edit icon and then set these field values:

Attribute Defaults

Column Value

Name

Select the field on the one-to-many relationship's target object that holds the source object's ID
and relationship name. This is a standard field on the target object (Sales Lead).

The format of the field name is always <Source object name>_Id_<Relationship
name>. For example, select Payment ID PaymentLead1M (Payment_Id_PaymentLead1M).

Note:
You won't see this field on the target object in Application Composer.

Type

Attribute

Value

Select Record ID (Id). This is a standard field on the source object (Payment).

This means that when users create a lead, the create smart action defaults the payment's ID
into the lead record's Payment ID PaymentLead1M (Payment_Id_PaymentLead1M) attribute.

162

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

Column Value

13. Click Done.
14. Click Continue.
15. On the Action Details page, in the Navigation Target field, select Local and then click Continue.
16. On the Review and Submit page, click Submit.

Add the Leads Panel to the Payment Detail Page
To add a new Leads panel to the Payment detail page:

1. In Visual Builder Studio, click the App UIs tab.
2. Expand cx-custom > payment_c, then click the payment_c-detail node.
3. On the payment_c-detail tab, click the Page Designer subtab.
4. Click the Code button.

5. Confirm that you are viewing the page in Page Designer.

6. Add the following code to the canvas, just below the closing </oj-vb-fragment> tag of the cx-detail fragment:

<oj-dynamic-container layout="PanelsContainerLayout" layout-
provider="[[$metadata.dynamicContainerMetadata.provider]]"
 class="oj-flex-item oj-sm-12 oj-md-1"></oj-dynamic-container>
<oj-dynamic-container layout="SubviewContainerLayout" layout-
provider="[[$metadata.dynamicContainerMetadata.provider]]">
 </oj-dynamic-container>

7. Highlight the <oj-dynamic-container> tags for the panels.

163

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

8. On the Properties pane, in the Case 1 region, click the Add Section icon, and then click New Section.

9. In the Title field, enter a title for the section, such as Leads Panel.
10. In the ID field, keep the value of leadsPanel.

Note: Don't use the REST object name for this ID because you'll use the REST object name when you create
the subview.

11. Click OK.
12. On the Properties pane, click the Leads Panel section that you just added.

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
Leads panel template.

13. Click the Code button.

14. On the Components palette, in the Filter field, enter cx-panel.

164

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

15. Drag and drop the cx-panel fragment to the template editor, between the leadsPanel template tags.

16. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
replace leads and Payment_Id_PaymentLead1M with the appropriate values for your related object name and
foreign key field.

Note: The format of the foreign key field's name is always <Source object name>_Id_<Relationship name>. You
can also retrieve the field name by doing a REST describe of the target object (leads).

<template id="leadsPanel">
 <oj-vb-fragment bridge="[[vbBridge]]" class="oj-sp-foldout-layout-panel"
 name="oracle_cx_fragmentsUI:cx-panel">
<oj-vb-fragment-param name="resource" value='[[{"name": "leads", "primaryKey": "Id", "endpoint":
 "cx" }]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate","direction":
 "desc" }]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="query"
 value='[[[{"type": "qbe", "params": [{"key": "Payment_Id_PaymentLead1M", "value":
 $variables.id }]}]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="extensionId" value="{{ $application.constants.extensionId }}"></oj-vb-
fragment-param>
 </oj-vb-fragment>
</template>

This table describes some of the parameters that you can provide for a custom panel.

Parameters for Custom Panel

Parameter Name Description

sortCriteria Specify how to sort the data on the panel, such as sort by last updated date and descending
order.

query Include criteria for querying the data on the panel.

17. Click < Return to page.
18. Click the Code button.
19. You're ready to add the subview next.

165

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

Tip: Once you add the panel to the panel region, that's all that's required. The standard object panel comes
configured with a set of attributes to display by default. If you want to configure the panel, however, then you can do
so. See Configure the Contents of a Panel.

You can test the panel after you add the subview. Let's do that next.

Add a Subview for the Leads Panel
After adding a related object panel to your custom object's detail page, add the subview next.

1. On the payment_c-detail page, highlight the <oj-dynamic-container> tags for the subviews.

2. On the Properties pane, in the Case 1 region, click the Add Section icon, and then click New Section.
3. In the Title field, enter a title for the section, such as Leads.
4. In the ID field, keep the value of leads.

Note: Use the REST API object name for this ID.

5. Click OK.
6. On the Properties pane, click the Leads section that you just added.

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
leads template.

7. Click the Code button.

8. On the Components palette, in the Filter field, enter cx-subview.
9. Drag and drop the cx-subview fragment to the template editor, between the leads template tags.

10. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
replace leads and Payment_Id_PaymentLead1M with the appropriate values for your object and foreign key field.

Note: The format of the foreign key field's name is always <Source object name>_Id_<Relationship name>. You
can also retrieve the field name by doing a REST describe of the target object (leads).

166

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

<template id="leads">
 <oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx_fragmentsUI:cx-subview">
 <oj-vb-fragment-param name="resource" value='[[{"name": "leads", "primaryKey": "Id", "endpoint":
 "cx" }]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate","direction":
 "desc" }]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="query"
 value='[[[{"type": "qbe", "params": [{"key": "Payment_Id_PaymentLead1M", "value":
 $variables.id }]}]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="extensionId" value="{{ $application.constants.extensionId }}"></oj-vb-
fragment-param>
 </oj-vb-fragment>
</template>

This table describes some of the parameters that you can provide for the subview:

Parameters for Subview

Parameter Name Description

sortCriteria Specify how to sort the data on the subview, such as sort by last updated date and descending
order.

query Include criteria for querying the data on the subview.

11. Comment out the dynamic container components from the payment_c-detail page.
a. Click < Return to page.
b. Click the Code button.
c. Comment out the dynamic container components that contain the panels and subviews.

Note: To add more panels and subviews, you must first un-comment the dynamic container
components.

167

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

Tip: Once you add the subview, that's all that's required. The subview for a standard object comes configured with
a set of attributes to display by default. If you want to configure the subview, however, then you can do so. See
Configure the Subview Layout.

Test Your Panel and Subview
Test the subview by previewing your application extension from the payment_c-list page.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

2. The resulting preview link will be:

https://<servername>/fscmUI/redwood/cx-custom/payment_c/payment_c-list

3. Change the preview link as follows:

https://<servername>/fscmUI/redwood/cx-custom/application/container/payment_c/payment_c-list

Note: You must add /application/container to the preview link.

The screenshot below illustrates what the list page looks like with data.

168

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

4. If data exists, you can click any record on the list page to drill down to the detail page. The detail page, including
header region and panels, should display.

You should now see a Sales Leads panel.

169

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

5. In the Action Bar, select the Create Lead action.

The Create Lead page displays. Here's an example of a general Create Lead page:

After creating a lead, you should be navigated to the lead's detail page. Click the browser back button to return
to the Payment detail page where the new lead displays in the Sales Leads panel.

170

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

6. On the Sales Leads panel, click the link for the lead you just created to navigate to the lead's detail page.

Click the browser back button.
7. Click the View All link to drill down to the subview.

8. On the Sales Leads subview, click a lead to navigate to the lead's detail page.

Click the browser back button.

171

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

9. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

Add a Custom Object Panel for Related Objects (One-to-Many)
You can enhance an object's detail page by adding panels for related objects. This makes it easy for users to see – on a
single page – all pertinent information related to a record. You can add custom object panels or standard object panels.
This topic illustrates how to add a custom object panel to an object's detail page (when the panel object is related via a
one-to-many relationship).

What's the Scenario?
In our example relationship, the Payment object has a one-to-many relationship with the Shipment object. At runtime,
users should be able to create shipments for a payment, and view those shipments on the Payment detail page. To
enable this, we need to add a Shipments panel to the Payment detail page.

172

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

Setup Overview
To add a related object panel to a custom object's detail page, you must complete a few steps first. Here's an overview of
the required steps.

1. Complete these steps for your related object:

a. Make sure that the CX Extension Generator generated the pages and layout for the related object, in this
case, for the Shipment object.

See Create a New Application Using the CX Extension Generator.
b. Create the required create smart action for the related object in Application Composer.

For example, create a Create Shipment smart action.

The Create Shipment smart action displays from the Action Bar on both the Payment detail page and
Shipments subview. Users can select the Create Shipment smart action to navigate to a create shipment
page.

2. You can then add a new related object panel to the custom object's detail page.

See Add the Shipment Panel to the Payment Detail Page.
3. After adding the panel, you can then create and configure the subview.

See Configure the Subview for Related Objects (One-to-Many).

Add the Shipment Panel to the Payment Detail Page
To add a new panel for shipments to the Payment detail page:

1. In Visual Builder Studio, click the App UIs tab.
2. Expand cx-custom > payment_c, then click the payment_c-detail node.
3. On the payment_c-detail tab, click the Page Designer subtab.
4. Click the Code button.

5. Confirm that you are viewing the page in Page Designer.

173

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=u30241268

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

6. Remove the comment tags for the dynamic container components that contains the panels and any subviews.

7. Highlight the <oj-dynamic-container> tags for the panels.

8. On the Properties pane, in the Case 1 region, click the Add Section icon, and then click New Section.
9. In the Title field, enter a title for the section, such as Shipments.

10. In the ID field, change the value to ShipmentsPanel.

Note: Don't use the REST object name for this ID because you'll use the REST object name when you create
the subview.

11. Click OK.
12. On the Properties pane, click the Shipments section that you just added.

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
Shipments panel template.

13. Click the Code button.

14. On the Components palette, in the Filter field, enter cx-panel.
15. Drag and drop the cx-panel fragment to the template editor, between the shipments template tags.

174

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

16. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
replace Shipment_c and Payment_Id_PaymentShipment1M with the appropriate values for your related object name
and foreign key field, and retain the proper capitalization of the custom object name.

Note: The format of the foreign key field's name is always <Source object name>_Id_<Relationship name>. You
can also retrieve the field name by doing a REST describe of the target object (Shipment).

<template id="shipments">
 <oj-vb-fragment bridge="[[vbBridge]]" class="oj-sp-foldout-layout-panel"
 name="oracle_cx_fragmentsUI:cx-panel">
<oj-vb-fragment-param name="resource" value='[[{"name": "Shipment_c", "primaryKey": "Id", "endpoint":
 $application.constants.serviceConnection }]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate","direction":
 "desc" }]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="query"
 value='[[[{"type": "qbe", "params": [{"key": "Payment_Id_PaymentShipment1M", "value":
 $variables.id }]}]]]'>
 </oj-vb-fragment-param>
 <oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="extensionId" value="{{ $application.constants.extensionId }}"></oj-vb-
fragment-param>
 </oj-vb-fragment>
</template>

This table describes some of the parameters that you can provide for a custom panel.

Parameters for Custom Panel

Parameter Name Description

sortCriteria Specify how to sort the data on the panel, such as sort by last updated date and descending
order.

query Include criteria for querying the data on the panel.

17. In the previous step, you configured the panel template. Next, let's configure the layout for the panel.
18. Click the Layouts tab, then click the Shipment_c node.

19. On the Shipment_c tab, click the Panel Card Layout rule set.

175

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

20. Add the fields that you want to display on the panel.

a. Click the Open icon next to the default layout.
b. Each panel includes specific slots. From the list of fields, drag each field to the desired slot.

For example, drag and drop the RecordName field to the item1 slot. If an Id field is present in that slot, you
can remove it.

Drag and drop other desired fields to the appropriate slots. For example, drag the ShipmentDate_c field
to the item2 slot, and the Email_c field to the item3 slot.

176

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

21. Comment out the dynamic container components from the payment_c-detail page.

a. Click the payment_c-detail tab, then click the Page Designer subtab.
b. Click < Return to page.
c. Click the Code button.
d. Select Page from the drop-down list.

e. Comment out the dynamic container components that contain the panels and subviews.

Note: To add more panels to the panel region, you must first un-comment the dynamic container
component so that you can add a new section for each desired panel.

You can test the panel after you add the subview. Let's do that next.

177

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

Configure the Subview for Related Objects (One-to-Many)
If your custom object has relationships with other objects, then users can add related object records directly from the
custom object's detail page. To enable this, you must build two things: a new subview for the related object and an
Add dialog that can be launched from the detail page. This topic illustrates how to create a subview for a related object
(related via a one-to-many relationship).

In our example, the Payment object has a one-to-many relationship with the Order object. At runtime, the user should
be able to add an order to a payment.

That's the scenario that we'll address in this topic.

Setup Overview
Enabling the addition of related object records involves multiple steps in Oracle Visual Builder Studio:

1. Create the subview for the related object.

This topic describes this process.
2. Create a link field on the subview table.

Users can click the link field to drill down to the related object record's details.
3. Build the Add dialog so that users can add the related object record to the custom object record.
4. Build the Delete dialog so that users can delete the related object record from the custom object record.
5. Add the Delete icon to the subview table so that users can access the Delete dialog.

Application Composer Prerequisites
Before creating the Add dialog, you must complete these prerequisite steps in Application Composer, inside a sandbox.

1. Create the one-to-many relationship for your custom object.

In our example, we want users to be able to add an order to a payment. In this case, create a one-to-many
relationship between Payment as the source object and Order as the target object.

The relationship's display name can be something like PaymentOrder.
2. You must also create the Add smart action.

The Add smart action displays from the Action Bar on both the detail page and subview. Users can select the
Add smart action to launch the Add dialog.

3. Publish your sandbox.

Note: If you're already running Visual Builder Studio, then sign out and sign back in before continuing to
configure your application extension. Doing this ensures that Visual Builder picks up the latest published
changes from Application Composer.

Visual Builder Studio Prerequisites
After completing the Application Composer prerequisites, you must complete these steps in Visual Builder Studio
before adding the Add dialog to the detail page.

1. First, create a variable for the detail page.

178

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

a. Click the detail tab, then click the Variables subtab.
b. Click + Variable.
c. In the Create Variable dialog, make sure the Variable option is selected and, in the ID field, enter

enableAddOrder.
d. In the Type field, select Boolean.
e. Click Create.
f. On the Properties pane, in the Default Value field, click false.

2. Let's add a new string to the translation bundle:

a. On the customBundle tab, click + String.
b. In the Key field, enter OrderName.
c. In the String field, enter Order Name.
d. Click Create.

After adding an order to a payment, the user will be navigated to the order subview page. The user can click the order
name, which is a link field, to navigate to the Order detail page.

In our example, the Order object is a custom object. Let's create an order detail page and create page so that you can
test the link field.

1. Click the App UIs tab.
2. Expand the cx-objects node.
3. Click the + icon next to cx-objects to create a new flow.

4. In the Create Flow dialog, in the Flow ID field, enter the flow name, such as order.
5. Click the + icon next to the order node to add pages to your custom application.
6. Click Create Page.
7. Create two pages:

179

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

◦ list

◦ create

◦ detail

8. Enable navigation to your custom application.

a. Click the order flow's create tab > Settings subtab.
b. Select Let other App UIs navigate to this page.
c. Click the order flow's detail tab > Settings subtab.
d. Select Let other App UIs navigate to this page.
e. Click the order flow's list tab > Settings subtab.
f. Select Let other App UIs navigate to this page.

g. Click the order tab > Settings subtab.
h. In the Default Page field, select list.
i. Select Let other App UIs navigate to this page.

9. When you created the order flow, an order-start page was automatically created.

Delete the order-start node by right-clicking and clicking Delete.
10. Next, create a variable for the order flow's detail page.

Click the detail tab, then click the Variables subtab.

180

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

11. Click + Variable.

a. In the Create Variable dialog, make sure the Variable option is selected and, in the ID field, enter id.
b. Click Create.
c. On the Properties pane, in the Input Parameter section, click Enabled.
d. Click Pass On URL.

Finally, create a new service connection to your related object. In our example, we will create a service connection to the
Order_c object.

1. Click the Services tab.
2. Click + Service Connection > Select from Catalog.
3. Click Sales and Service.

181

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

4. Click the pencil icon next to CrmRest and enter your custom object name.

For example, enter Order_c.
5. In the Metadata Retrieval Option field, select Dynamically retrieve metadata.
6. In the Filter Objects/Endpoints field, enter your custom object name to filter the list.

For example, enter order.
7. Click the check box for your custom object.

For example, Order_c.
8. Click Create.

Create Event Listener and Action Chain
1. Next, create an event listener and action chain.

a. Click the payment flow's detail tab, then click the Event Listeners subtab.
b. Click + Event Listener.
c. In the Create Event Listener dialog, in the Filter Events field, enter beforeInvokeSmartActionEvent.
d. Click beforeInvokeSmartActionEvent.
e. Click Next.
f. Click the + icon next to Page Action Chains.

g. In the New Page Action Chain field, enter AddOrderBeforeInvokeSAChain.
h. Click Finish.

2. Let's modify the action chain.

a. On the refreshed Event Listeners page, next to the new AddOrderBeforeInvokeSAChain event listener,
click Go to Action Chain.

b. Drag an If logic action to the Start node.
c. On the Properties pane for the If action, in the Condition field, enter the following:

[[$variables.event.smartActionId === 'CUST-AddOrder-Payment_c']]

Note: CUST-AddOrder-Payment_c is the Add Order smart action that you previously created.

d. Let's configure the true branch for the If logic action.

i. Drag an Assign Variables action to the true branch.
ii. On the Properties pane, next to the Variables heading, click Assign.

182

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

iii. In the Assign Variables dialog:

a. On the Target side, click enableAddOrder.
b. In the text entry box, enter true.
c. Click the Static option.
d. Click Save.

Create the Order Subview
Next, create a new subview for the orders that you're adding to a payment. This is where you'll add the Add Order
dialog.

1. On the payment flow's detail tab, click Page Designer.
2. Click the Design button.
3. In the Structure view, click the Dynamic Container node inside the Drilldown slot.

This is the dynamic container that we added when we first created the framework of the detail page. This
dynamic container holds the detail page's subview pages.

Note: In the Structure view, you can see two Dynamic Container nodes. One dynamic container holds the
foldout panels. The other dynamic container holds the subview pages. We're using the dynamic container
that holds the subview pages.

4. On the Properties pane, click + Case.
5. In the Condition field, enter:

$variables.view === 'Order_PaymentOrder_Tgt'

This is the same value that you set in the navigation parameter for the Add Order smart action.
6. Next to the Section heading, click the Add Section icon, and then click New Section.
7. Enter a title for the section, such as OrdersSubview, and click OK.

183

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

8. On the Properties pane, click the OrdersSubview link.

Page Designer navigates you to the template editor where you can design the subview template.
9. On the Components palette, in the Filter field, enter Dynamic Table.

10. Drag and drop the Dynamic Table component to the Structure view.

11. On the Properties pane for the Dynamic Table node, in the Class field, enter oj-sm-width-full.

184

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

12. On the Properties pane, click the Quick Start tab.

a. Click Configure Layout.
b. In the Configure Layout dialog, pick the related object's endpoint.

In our example, click Payment_c/Order_PaymentOrder_Tgt.

c. Click Next.
d. In the Label field, enter the rule set name. In our example, enter subview.
e. Click the fields that you want to include in this subview.

In our example, click RecordName and CurrencyCode.
f. Click Next.

g. Map the Page > Variables > id variable on the Sources side to the <primarykey>_Id (in our example,
Payment__c_Id) on the Target side.

h. Click the Expression option.
i. On the Target side, click the onlyData parameter.
j. In the text entry box, enter true and click the Static Content option.

k. On the Target side, click the totalResults parameter.
l. In the text entry box, enter true and click the Static Content option.

m. Click Finish.

185

Oracle Fusion Cloud Sales Automation
How do I create an application extension for custom
objects?

Chapter 5
Appendix

13. Here's a final look at where the Order subview should be located within the Dynamic Container:

14. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

186

	How do I create an application extension for custom objects?
	Get Help
	Before You Begin
	Before You Create an Application Extension
	How can I change my project's Extension ID?

	Add a Custom Top Level Object
	Prerequisites for Using the CX Extension Generator
	Create a New Application Using the CX Extension Generator
	Modify an Existing Custom Application Using the CX Extension Generator
	Create a Translation Bundle, If You Don't Have One Already
	Configure a Child Object
	Configure the Panel for the Child Object
	Configure the Subview for Child Objects
	Display a Smart Action on a Child Object Subview Only for a Specific Parent Object

	Display a Panel and Subview Based on a Field Value
	Configure the Subviews for Appointments and Tasks
	Create Navigation Menu Entry
	Configure the Picker
	Display Different Fields in a Picker

	Add a Mashup to a Page
	Add a Rollups Region to a Panel
	Understanding "Show" Actions
	Add the CreatedBy and LastUpdatedBy Fields to Notes Panels and Subviews
	Link to a Smart Action Using a URL

	Additional Configuration Tasks
	Configure the Contents of a Panel
	Configure the Subview Layout
	Make Values of a DCL Field Dependent on the Values of Another Field
	Change Navigation to Pages in Your Sales Application
	Configure What Information Displays in the Product Catalog

	Global Create Actions and AI Agent Integrations
	Global Actions in the Sales Dashboard
	Create the Global Create Actions for Custom Objects
	Set Up Global Actions to Launch AI Agents from the Sales Dashboard

	Appendix
	Manually Configure a Child Object for Related Objects
	Add a Standard Object Panel for Related Objects (One-to-Many)
	Add a Custom Object Panel for Related Objects (One-to-Many)
	Configure the Subview for Related Objects (One-to-Many)

