v _ o/ BN .“

Oracle Fusion
Cloud Sales
Automation

How do | create an application
extension for custom objects?

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom objects?

F88584-21
Copyright © 2024, Oracle and/or its affiliates.

Author: Jiri Weiss

https://docs.oracle.com/pls/topic/lookup?ctx=en%2Flegal&id=cpyr&source=

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?
Get Help i
1 Before You Begin 1
Before You Create an Application Extension
How can | change my project's Extension ID? 2
2 Add a Custom Top Level Object 3
Prerequisites for Using the CX Extension Generator 3

Create a New Application Using the CX Extension Generator

Modify an Existing Custom Application Using the CX Extension Generator 13
Create a Translation Bundle, If You Don't Have One Already 22
Configure a Child Object 23
Display a Panel and Subview Based on a Field Value 44
Configure the Subviews for Appointments and Tasks 51
Create Navigation Menu Entry 65
Configure the Picker 66
Add a Mashup to a Page 90
Add a Rollups Region to a Panel 98
Understanding "Show" Actions 106
Add the CreatedBy and LastUpdatedBy Fields to Notes Panels and Subviews 109
Link to a Smart Action Using a URL 15
% Additional Configuration Tasks 117
Configure the Contents of a Panel 17
Configure the Subview Layout 131
Make Values of a DCL Field Dependent on the Values of Another Field 139
Change Navigation to Pages in Your Sales Application 145
Configure What Information Displays in the Product Catalog 151
4 Global Create Actions and Al Agent Integrations 157
Global Actions in the Sales Dashboard 157

ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?
Create the Global Create Actions for Custom Objects 159
Set Up Global Actions to Launch Al Agents from the Sales Dashboard 159
5 Appendix 161
Manually Configure a Child Object for Related Objects 161

ORACLE

Oracle Fusion Cloud Sales Automation Get Help
How do | create an application extension for custom
objects?

Get Help

There are a number of ways to learn more about your product and interact with Oracle and other users.

Get Help in the Applications

Some application pages have help icons ® to give you access to contextual help. If you don't see any help icons on
your page, click your user image or name in the global header and select Show Help Icons. If the page has contextual
help, help icons will appear.

Get Training

Increase your knowledge of Oracle Cloud by taking courses at Oracle University.

Join Our Community

Use Cloud Customer Connect to get information from industry experts at Oracle and in the partner community. You
can join forums to connect with other customers, post questions, suggest ideas for product enhancements, and watch
events.

Share Your Feedback

We welcome your feedback about Oracle Applications user assistance. If you need clarification, find an error, or just
want to tell us what you found helpful, we'd like to hear from you.

You can email your feedback to oracle_fusion_applications_help_ww_grp@oracle.com.

Thanks for helping us improve our user assistance!

ORACLE

https://www.oracle.com/education/
https://cloudcustomerconnect.oracle.com/pages/home
https://community.oracle.com/customerconnect/categories/idealab-guidelines
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Oracle Fusion Cloud Sales Automation Get Help
How do | create an application extension for custom
objects?

ii

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 1
How do | create an application extension for custom Before You Begin
objects?

1 Before You Begin

Before You Create an Application Extension

Before your team can start creating application extensions, you must first set up Oracle Visual Builder Studio. You only
need to set up VB Studio once for every implementation.

Complete VB Studio implementation steps are documented in the Oracle Cloud Administering Visual Builder Studio
guide. See the topic: How Do | Set Up VB Studio?

Required: Set the Extension ID for Sales

When using VB Studio to extend Sales pages, your extension must use the extension ID: site_cxsales Extension. YOU
set this extension ID when you first set up your project.

A project collects all the people, tools, and processes you need to complete a discrete software effort in VB Studio.
Oracle best practice dictates that you use a single project for all the extension work you do within the Oracle Cloud
Application environment family.

You can create this project using one of two methods discussed in the following video: Create the Visual Builder Studio
Project.

Each method requires a different way to set the extension ID:
- Create a project from a Sales page by clicking the Edit Page in Visual Builder Studio link in the Settings and

Actions menu. This is the recommended method to create a project because it automates the creation of key
VB Studio components. See the topic: Create a Simple Extension.

If you choose this method, then you'll update your project's extension ID to site_cxsales Extension by editing
the extension-level settings. See the topic: Establish Extension-Level Settings.

- Create a project from the Organization home page. See the topic: Manually Create a Project for Extensions.

If you choose this method, then you'll enter the required extension ID when you create your own workspace.
See the topic: Create an Extension.

Note: Be sure to publish your extension so that the updated extension ID becomes the default going forward for
everyone else working on the extension.

Tip: Create Additional Workspaces

At some point in your extension lifecycle, you might need to create a new workspace in an existing project. You may
want to create a new workspace from the main branch if you forget what changes a particular workspace contains, for
example. Follow the instructions in the topic: Clone an Existing Repository.

You can also view the following video: Create a Workspace.

ORACLE

https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-administration&id=VBADM
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-administration&id=GUID-57A423AE-0454-4791-B687-B66A101D9C2D
https://community.oracle.com/customerconnect/discussion/796120/video-create-the-visual-builder-studio-project/#latest
https://community.oracle.com/customerconnect/discussion/796120/video-create-the-visual-builder-studio-project/#latest
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-building-appui&id=GUID-A684FC28-4E8E-48E2-B28A-113D0A45CD52
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-building-appui&id=GUID-823C9461-B296-4BAA-B19F-F993F8BA5A9E
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-administration&id=GUID-E1303FFC-767A-4D87-B914-DE7B520AE799
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-building-appui&id=GUID-67C07EF1-5011-48E4-97FE-E71FCA832FD4
https://docs.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/visual-builder/visualbuilder-building-appui&id=GUID-97715BAA-3B18-44C5-B7E5-A719D380C691
https://community.oracle.com/customerconnect/discussion/796122/video-create-a-visual-builder-studio-workspace/#latest

Oracle Fusion Cloud Sales Automation Chapter 1
How do | create an application extension for custom Before You Begin
objects?

How can | change my project's Extension ID?

When working with a Sales application extension in Oracle Visual Builder Studio, your project's extension ID must be
site_cxsales_Extension. This topic illustrates how to correct the extension ID, if required.

To change the extension ID for a project:

1. In Visual Builder Studio, from the left navigator, click Environments > Deployments.
2. Undeploy any deployments to target servers.

3. Navigate to your workspace and, from the upper menu, click Settings.

Q p ‘ Publish ‘ —

o Share

{3 Settings l

4. Inthe Extension ID field, enter site_cxsales Extension.
5. Build and deploy your extension once more.

ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

2 Add a Custom Top Level Object

Prerequisites for Using the CX Extension Generator

The CX Extension Generator is a tool that automates many of the manual tasks required to build an application
extension from scratch. Before you can build an application using the CX Extension Generator, complete these

prerequisite steps.

Setup Prerequisites Before Using the CX Extension Generator

Setup Step

1. Create and activate a sandbox.

2. Create custom top level objects, as well
as any child objects, related objects, and
relationships.

3. Publish the sandbox.

4. Enable all custom objects that you created for
Adaptive Search and publish your changes.

In addition, create at least one saved search.

ORACLE

Setup Location

Sandboxes work area

Application Composer

Application Composer

Setup and Maintenance work area

- Offering: Sales

- Functional Area: Sales Foundation

More Information

Create and Activate Sandboxes

This chapter provides you with step-by-step
instructions for creating a custom application
using the CX Extension Generator and Oracle
Visual Builder Studio. To build this custom
application, you will need to create a custom
top level object in Application Composer, as well
as a custom child object.

The example objects used in this chapter are a
Payment object and its child object, Payment
Line.

We will also add a panel for a related object,
Shipment.

For more information about creating custom
objects, see Define Objects.

Publish Sandboxes

Publish the sandbox so that you can enable all
custom objects for Adaptive Search, in the next
step.

Note:

If you're already running Visual Builder
Studio, then sign out and sign back in before
continuing to configure your application
extension. Doing this ensures that Visual
Builder picks up the latest published changes
from Application Composer.

Enable Business Objects for Adaptive Search

This step is required because the list page is
dependent on Adaptive Search.

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20067187
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20032788
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20067977
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20072661

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?
Setup Step Setup Location More Information

Show: All Tasks
Task: Configure Adaptive Search

5. Grant the Custom Objects Administration Setup and Maintenance work area Enable Sales Administrators to Test
(ORA_CRM_EXTN_ROLE) role to the user who Configurations in the Sandbox
will create the user interface pages for the . Offering: Sales

custom object.
Functional Area: Users and Security
(All custom top level objects are given access to

this role by default) Task: Manage HCM Role Provisioning

Rules
6. Create your project and workspace. Oracle Visual Builder Studio For instructions about how to create a project
and workspace, refer to the Before You Begin
chapter.
7. Create a translation bundle. Oracle Visual Builder Studio Create a Translation Bundle, If You Don't Have
One Already

Related Topics
« Create a New Application Using the CX Extension Generator

» Modify an Existing Custom Application Using the CX Extension Generator

Create a New Application Using the CX Extension
Generator

The CX Extension Generator is your shortcut to creating applications that extend the functionality of Oracle Sales in
the Redwood User Experience. With just a few quick selections, the CX Extension Generator can create an application
extension with panels, subviews, details pages, and smart actions, that you can download as a single .zip file and then
upload to Oracle Visual Builder Studio. After you upload the files to Visual Builder Studio, you can continue to build out
the extension in Visual Builder Studio and then publish it to your users.

Using CX Extension Generator you can add panels and subviews for child, 1:M (one-to-many), and M:M (many-to-
many) relationships. CX Extension Generator also creates the Details (edit) pages for each object and the required smart
actions that make it possible for users to create and edit individual records.

Prerequisites

« See Prerequisites for Using the CX Extension Generator.

- If you're following along with the examples in this chapter, then create these objects and relationships, as well:
o Objects
- Payment (top-level object)
- Shipment (top-level object)
o Relationships

ORACLE

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20047385
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20047385

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
- PaymentLead1M (one-to-many relationship)
- PaymentShipment1M (one-to-many relationship)
- PaymentContactMM (many-to-many relationship)

Create a New Application

To create an application:

1. In a sandbox, navigate to Application Composer > CX Extension Generator.
2. C(Click Create New Extension.

CAUTION: You can use the Create New Extension button only the first time you configure your application
in the environment. If you use the CX Extension Generator to make further changes after your initial upload
to VBS, then you must import the files back from VBS using the Import Extension button before you start. If
you create a new extension using the Create New Extension button and import your changes to VBS, then
your upload will overwrite all your previous changes.

= {supremo @

CX Extension Generator import Extérrsion

Manage CX Extensions

Create a new extension or import an existing extension from Oracle Visual Builder Studia.

Creati New Extensson

ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

3. Inthe Add objects drawer, select the objects you're using to create the application, and then click Add.

In this example, select Payment and Shipment.

Add objects

Select the objects to create the list, create, detail, and edit pages for.

Objects o
Payment X ‘ ‘ Shipment X

Cancel ‘ Add

The selected objects display on the list page.

CX Extension Generator

Q, Search by object name

Object name £ Resource Name £ Issues <

Payment Payment_c

Shipment ShipmentJiri3_c

| =N SRS L TR A . N BRSNS 0 TR MR

Actions ¥ Generate Files

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

4. Drill down on each object to configure the detail page.

I Note: In the runtime application, the detail page is called the Overview page.

The page displays automatically-generated panels for attachments and notes. You can optionally delete them.

-

Otgect
Paymeént

T Allobjects

Payment - Record Name <

Iem 1 Value 2 Ieema2 Value Rem3 Irermn3 Value

Q
T S— W U W T —
Configure Panel Attachments i} Notes &
Recond Name
E ltem 1 Value i‘ ° Iem 1 Value
Add and configure a new panel.
Recond Name
E tem1 Value lil o I:e:r'?1"~'=|l:=-;

Add

Use the default Configure Panel, which always displays as the first panel, to add new panels.

Note: When you add a panel for an object with a M:M relationship, the generator creates the panel for the
intersection object you created as part of the M:M relationship rather than the object itself.

ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?
5. To add a panel:

a. On the default Configure Panel, click Add.

Configure Panel

Add and configure a new panel.

(aaa |

Chapter 2
Add a Custom Top Level Object

b. Inthe Add Panels drawer, select the custom related objects that you want to create the panels for. These
can be objects with either a 1:M or M:M relationship.

For example, select Shipments.

Add panels

Obijects
Shipments X

Create subview for each panel

Cancel

Add

c. Select the Create subview for each panel checkbox to automatically create a subview along with each

panel.

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

Note: If you don't select this checkbox, then you can add subviews later. See the next step.

d. Click Add.
6. Optionally, click Configure > Subviews to add and remove subviews for each panel.

= Jsupremo 0o '
_ g;;ent v Configure ™
+ Al abjects Smart Actions
Payment - Record Name © Subviews
el ltem1 Value Itemz Label tem2 Value Item3 Label Item3 Value

7. Click Configure > Smart Actions to review the smart actions that the Extension Generator will automatically
create for the objects that you selected.

Tip: You can optionally enhance a smart action's configuration after the Extension Generator creates them.
You do this by editing the smart action in Application Composer (Common Setup > Smart Actions).

Note: If you previously created custom smart actions for a non-fragments implementation of an object, then
you don't need to create new smart actions for use with fragments. Instead, update existing Ul-based custom
smart actions to specify the action type, either Add or Create, as well as the target object and any required
field mapping. For existing REST-based or object function-based custom smart actions, edit the action and
then save without making any changes. These steps ensure that your custom smart actions still work with
new fragment-based extensions.

8. If your application includes more than one object, then use the Object drop-down button to switch between
objects to configure multiple detail pages.

Object
Payment

Payment
Shipment Name <

R —— 2 Label Item2 Value Item3 Label Item3 Value
Q Action Ba

9. After you've completed your changes, you can generate and download the .zip file.

Note: At any time, you can delete your configuration choices from the tool by clicking Actions > Start Over.

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

oo B

Actions ~ Generate Files

—|— Add objects

Bl D Start Over [&

Generate and Download Files

When you're done with your application extension changes, navigate back to the CX Extension Generator list page and
click Generate Files.

CX Extension Generator Actions

Q. Search by object name

Object name Resource Name < Issues = Action
Payment Payment_c @'
Shipment ShipmentJiri3_c |

The CX Extension Generator generates and downloads a .zip file that includes the pages and layouts for your selected
objects.

In addition, the process to create the smart actions is launched.

Note: The process of creating smart actions might take some time to complete. After smart actions are created, you
can manage them in Application Composer and create additional smart actions, if required.

Import the Files into Visual Builder Studio

1. Use the Navigator to navigate to Visual Builder Studio: Configuration > Visual Builder.

10
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
2. C(lick the Menu icon at the top of the page, then click Import.

‘ Publish | =

Share

Settings

4 Import

[2] Export

3. Inthe Import Resources dialog, add your .zip file and click Import.
4. C(lick the Preview button to see your newly created application.

P ©® Q ‘ Publish | =

5. You can now continue to make changes to your application extension in Visual Builder Studio.

For example, you can modify the fields that display in the detail page's header region, or on a subview or create

page. The Extension Generator adds some default fields, but you'll most likely want to add and remove fields
depending on your business needs.

6. If you need more smart actions, you can create them in Application Composer. For example, if you keep the
Notes panel, then you must create a Create Note smart action.

ORACLE

1

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Modify the Gruntfile.js File

Chapter 2
Add a Custom Top Level Object

Once your extension is available in Visual Builder Studio, review the Gruntfile.js and make the following change if the
code doesn't match the below sample. You must make this change before publishing your extension.

1. On the Source tab, edit the Gruntfile.js.

] Source

4 | Q. Filter

1< 4 mextensiom
& 2 .gitignore
|J{~3 Gruntfile.js
i
[Readme.md
@ { } package.json

©

2. Replace the existing JavaScript with the following:

'use strict';

/**

* Visual Builder application build script.

* For details about the application build and Visual Builder-specific grunt tasks

* provided by the grunt-vb-build npm dependency, please refer to

* https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/app-builder-cloud&id=visual-application-

build

*/
module.exports = (grunt) => {
require ('load-grunt-tasks') (grunt) ;
grunt.initConfig({

// disable images minification
"vb-image-minify": {

options: {

skip: true,

}I

}I

// configure requirejs modules bundling
"vb-require-bundle": {

options: {

transpile: false,

minify: true,

emptyPaths: [

"vx/oracle cx_fragmentsUI/ui/self/resources/js/utils/contextHelper",
"vx/oracle cx_fragmentsUI/ui/self/resources/js/utils/actionsHelper",

"vx/oracle_cx fragmentsUI/ui/self/resources/js/utils/callbackHelper",

]l
}I

ORACLE

12

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?
},
I
}i

Create the Row Variable

Create a variable for the detail page. For example:

In Visual Builder Studio, click the App Uls tab.

Expand cx-custom > payment_c, then click the payment_c-detail node.

On the payment_c-detail tab, click the Variables subtab.

Click + Variable.

In the Create Variable dialog, make sure the Variable option is selected and, in the ID field, enter row.
In the Type field, select Object.

Click Create.

NOURWNA

Related Topics
« Overview of Smart Actions

Modify an Existing Custom Application Using the CX
Extension Generator

Once you have a working application extension in Oracle Visual Builder Studio (VBS), you can use the CX Extension
Generator to add additional custom objects and custom panels to custom objects. The CX Extension Generator
automatically generates their custom subviews and required smart actions. To use the tool, download your workspace
as a .zip file from Visual Builder Studio and then import it into the CX Extension Generator.

The process of adding objects and panels is the same as when you're created the application after you import from
Visual Builder Studio. Here's an overview of the steps detailed in this topic:

Export the files from Visual Builder Studio.

Import the files into CX Extension Generator.

Add objects, panels, and subviews.

Generate the modified files for export.

Import the files back into Visual Builder Studio.

Add the panels and subviews to the panel and subview layouts.
Preview the updated application.

NOURWNA

Prerequisites

In Application Composer:

- Create the new custom objects and child objects that you want to add to your existing application.

Export Files from Visual Builder Studio

To update an existing custom application, you must first download the application from your Visual Builder Studio
workspace.

In Visual Builder Studio, click the Menu icon at the top of the page, then click Export.

13
ORACLE

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20072467

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

®@ Q P ‘ Publish ‘ =

o Share

Settings

L0
4 Import
(2]

Export

Import the .Zip File into CX Extension Generator

1. In a sandbox, navigate to Application Composer > CX Extension Generator.
2. Click Import Extension.

= {supremo @

CX Extension Generator

Manage CX Extensions

Create a new extension or import an existing extension from Oracle Visual Builder Studia.

Creati New Extensson

3. Inthe Import Application drawer, select your .zip file and click Import.

The existing objects in your application are now visible in the CX Extension Generator.

Add Objects, Panels, and Subviews

Using CX Extension Generator, you can add additional objects, panels, and subviews. And you can generate smart
actions for them. To delete existing panels, change their order, and configure them, you must use Visual Builder Studio.

1. To add objects, click Actions > Add Objects and add any of the objects you want to configure.

2. Drill down on each object to configure the detail page. In the runtime application, the detail page is called the
Overview page.

Note: The CX Extension Generator displays only the Configure Panel and the panels you add during your
configuration. It doesn't display any of the panels you've added previously.

14
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?
3. To add a panel:
a. On the default Configure Panel, click Add.

Configure Panel

Add and configure a new panel.

aaa |

Chapter 2
Add a Custom Top Level Object

b. Inthe Add Panels drawer, select the custom related objects that you want to create the panels for. These
can be child objects and objects with either a 1:M or M:M relationship.

For example, select Shipments.

Add panels

Objects
Shipments X

Create subview for each panel

Cancel

Add

c. Select the Create subview for each panel checkbox to automatically create a subview along with each

panel.

I Note: If you don't select this check box, then you can add subviews later. See the next step.

ORACLE

15

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?
d. Click Add.

Chapter 2
Add a Custom Top Level Object

Note: When you add a panel for an object with a M:M relationship, the generator creates the panel for
the intersection object you created as part of the M:M relationship rather than the object itself.

e. Optionally, click Configure > Subviews to add and remove subviews for each panel.

= {supremo 0o @3
Oibject]
Payment [ELLL

+ Al objects Smart Actions

Payment - Record Name © Subviews

abel Iltem Value Item.

Q. Action

abel tem2 Value Item3 Label ltem3 Value

f. Click Configure > Smart Actions to review the smart actions that the Extension Generator will
automatically create for the objects that you selected.

Tip: You can optionally enhance a smart action's configuration after the Extension Generator creates
them. You do this by editing the smart action in Application Composer (Common Setup > Smart
Actions). See Overview of Smart Actions.

g. If your application includes more than one object, then use the Object drop-down list to switch between
objects to configure multiple detail pages.

Object
Payment
Payment
Shipment Name ©
AE————) 121 (- A (T >m3 Label Item3 Value
Q Action Bar

h. After you've completed your changes, you can generate and download the .zip file.

Note: At any time, you can delete your configuration choices from the tool by clicking Actions > Start Over.

16
ORACLE

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20072467

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?

oo B

Actions ~ Generate Files

—|— Add objects

Bl \r) Start Over [&

Generate Files

When you're done with your application extension changes, navigate back to the CX Extension Generator list page and
click Generate Files.

The CX Extension Generator generates and downloads a .zip file that includes the pages and layouts for your selected
objects.

Import the Files Back into Visual Builder Studio

The CX Extension Generator generates a .zip file that you can import into Visual Builder Studio.

1. Use the Navigator to navigate to Visual Builder Studio: Configuration > Visual Builder.
2. In Visual Builder Studio, navigate to the workspace that contains your existing application.
3. Click the Menu icon at the top of the page, then click Import.

‘ Publish | =

Share

Settings

4 1mport

[2] Export

4. Inthe Import Resources dialog, add your .zip file and click Import.

Your workspace is updated with the newly added objects and related artifacts, without disturbing the existing
objects in the application.

For Custom Objects You Imported, Add the Panels and Subviews to the
Layout

After you import the custom objects you exported from CX Extension Generator, you must add the imported panels and
subviews to the custom Panel Container and Subview Container layouts.

17
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

Note: You can skip this step if this is the first time you're importing content from CX Extension Generator and you
used the Create New Extension button.

1. Click the Design button.

Live Design

2. Confirm that you're viewing the page in Page Designer.

v Page

Templates

18
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

3. Add the panels you imported to the Panel Container Layout:
a. On the Structure panel, click the Panel Container Layout node.

stoounts-detail | O Sales

Mew to configuring applications?

Let us guickhy show you how you can easily
configure your Fusion App using the editing
tools you see hene

(&) Play video Tell me mone
Components (3¢ Constants (2

™ ex-detadl

- ex-cetail-impl

* [ex-setion-bar

[_cx-single-fisld-update

* 5 Panel Containes Lsyout

« [N Acthdity Feed Pane Template

* [cxfendampl

- ™

cxfewd-card

I carnotesimpl

N cx-mte-impl

™ Action menu button

b. Add the imported panels to the custom layout by clicking Add Panel (the plus icon highlighted in the

screenshot).

ORACLE

19

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

Chapter 2

Add a Custom Top Level Object
objects?
Getting Started m payment_mall x
Page Designer Auction Chaines [7) Event Listeners (2) Ewents (1) Types Wariables j100 Design Time JawaScript JSOM e
Container Rule Set 1 Rules X
[Q, Fiter | + Fule Case 1l b &
M Descrpdion
Extension Rules ()
] Conditions & ' Edit
Case 1
This rule s always apphed.
Sections Included in Rule
= Amsthrent i
= [MHote m
Available Sections
Payment Lines -+
ORACLE

20

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

4. Now repeat the same process for the Subview Container Layout.

accounts-detail | CX Sales

Hew to configuring applications?

Let us quickly show you how you can easily
configure your Fusion App using the editing
tools you see here,

(®) Play video Tell me more

Components (77) Constants (2)

'5:1 Filter
i r". cx-detail
* ™ cx-detail-impl

F accounts - Header Layout

* M cx-action-bar

v E¥ Panel Container Layout

* ™ ox-feed-impl
I =

L]
Y
Y

= E} suthew Container Layout (B %

- 1-"'I Activity Feed Subwiew Templal&

o

saiuadolg

a. On the Structure panel, click the Subview Container Layout node.

Chapter 2
Add a Custom Top Level Object

b. Add the subview layouts to the custom subview layout, by clicking Add Panel (the plus icon next to the

Sections heading).

5. Click the Preview button to see the newly added objects in the application.

ORACLE

21

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?

Create a Translation Bundle, If You Don't Have One
Already

Create a translation bundle where you can later store custom application strings for translation. If you plan to follow the
examples in this chapter, then create the translation bundle and string as indicated below.

1. In Oracle Visual Builder Studio, click the Translation Bundles side tab > + Translation Bundle.

| Translation Bundles + %
4 ‘ Q. Filter
C You don't have any

@ translation bundles

= defined yet.

. —+ Translation Bundle “
-

i

%o

2. Inthe Create Bundle dialog, in the Bundle Name field, enter the name of your translation bundle.

For example, enter customBundle.

3. Click Create.

4. Add any required strings to the translation bundle. For example, in the examples in this chapter, you'll use a
Contacts String.

On the CustomBundle tab, click + String.
In the Key field, enter contacts.
In the String field, enter contacts.
d. Click Create.
5. Also add a string for contact Name.

noo

On the CustomBundle tab, click + String.
In the Key field, enter contactname.

In the String field, enter contact Name.
Click Create.

e ngoo

22
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Configure a Child Object

Chapter 2
Add a Custom Top Level Object

Here's how to add a panel for a child object to the parent and configure the subview for the child object.

Configure the Panel for the Child Object

Configure the panel for the child object using the cx-panel fragment.
To configure the panel region:

In Visual Builder Studio, click the App Uls tab.

On the payment_c-detail tab, click the Page Designer subtab.
Click the Code button.

Live Design Code

1. Next, let's add the fields that you want to display on the panel.

POUNa

a. On the PaymentLineCollection_c tab, click the Rule Sets subtab.

b. Click the Open icon next to the default layout.
c. Click the cx-card fragment.
d. From the list of fields, drag each field to the desired slot.

Expand cx-custom > payment_c, then click the payment_c-detail node.

Q Fin @ - Set oracke_cx_fragmentsUl:cx-card parameters

Fields

A avataritem

Suggested Fields
O # amount ¢
O A pement_id_c
D A Type_e

All Fieleds

O # amount ¢

O A conflictid S —

Drop o field from fields paleite

e. On the Properties pane, click Go to Template.
2. On the Templates subtab, click the Code button.

Live Design Code

3. Add the following parameters to the template code.

<oj-vb-fragment-param name="dynamicLayoutContext" value="{{ $dynamiclLayoutContext }}"></oj-vb-fragment-

param>

<oj-vb-fragment-param name="style" value="avatar-card"></oj-vb-fragment-param>
<oj-vb-fragment-param name="enableActions" value="false"></oj-vb-fragment-param>
<oj-vb-fragment-param name="badgeItemColor" value="oj-badge-success"></oj-vb-fragment-param>

The template code should look similar to the following sample:

ORACLE

23

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?
<!-- Contains Dynamic UI layout templates -->
<template id="defaultTemplate'">
<oj-vb-fragment name="oracle cx_fragmentsUI:cx-card" bridge="[[vbBridge]]">
<oj-vb-fragment-param name="dynamicLayoutContext" value="{{ $dynamicLayoutContext }}"></oj-vb-fragment-
param>

<oj-vb-fragment-param name="style" value="avatar-card"></oj-vb-fragment-param>
<oj-vb-fragment-param name="enableActions" value="false"></oj-vb-fragment-param>

<oj-vb-fragment-param name="badgeItem" value="[[$fields.Type_c.name]]">
</oj-vb-fragment-param>

<oj-vb-fragment-param name="avatarItem" value="[[$fields.avatar.name]]">
</oj-vb-fragment-param>

<oj-vb-fragment-param name="iteml" value="[[$fields.RecordName.name]]">
</oj-vb-fragment-param>

<oj-vb-fragment-param name="item4" value="[[$fields.CreationDate.name]]">
</oj-vb-fragment-param>

<oj-vb-fragment-param name="item2" value="[[$fields.Amount_p.name 11">
</oj-vb-fragment-param>

<oj-vb-fragment-param name="item3" value="[[$fields.CreatedBy.name]]">

</oj-vb-fragment-param>

<oj-vb-fragment-param name="badgeItemColor" value="oj-badge-success"></oj-vb-fragment-param>
</oj-vb-fragment>

</template>

24
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

You can add more fields by returning to the default layout and dragging and dropping, as you did earlier.

You can also add fields to the panel using the Properties pane. To do this, click the Fragment Container node in
the Structure pane.

[payment_c-detail x

4@ PaymentLineCollection_c x

Rule Sets (1) Fields Templates (1) Actions
¢ Templates defaultTemplate
‘ Q. Filter, Alt+F =

Components
B

BEE@m B B

Foldout Layout

Foldout Layout Horizontal Template
Pattern

Foldout Layout Vertical Template
Pattern

Foldout Panel
Gantt Page Pattern
General Drawer Template

General Overview Page Template

— Ganaral Muanaes Page Tamnlate

‘ Q. Filter ‘ =

* EJ Template (defavitTemplate)

l' ™ Fragm!:nt(ontalncr]

Structure

B Fragment Input Parameter (¢
[EragmentlnputPaameter (¢

[3 Fragment Input Parameter (s
B Fragment Input Parameter (e
[Eraementlnout Parameter (€
Eragment lnput Paramster (i

[_Fraosment Inniit Paramester (i

< Return to pa

L= < T = R T A T S

O e
WOk = @

14

Event Liste

<l--
<temp
<07
<

MAA A A A A A A A A A A A A

<
</o]
</tem

<temp]
<0j-a

Lk

Then, add your desired custom object fields using the Input Parameter fields on the Properties pane.

ORACLE

25

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

¢ Fragment Container

General Events All

D

Fragment

™ cx-card
Application Components

No description provided.

Go to Fragment

Input Parameters

Select

avatarltem

| [$fields.avatar.name]]

A badgeltem

l [[$fields.Type_c.name]]

A badgeltemColor

oj-badge-success

>K dynamicLayoutContext ~

1}

salpadoag

ORACLE

26

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?

4. Test the panel that you added by previewing your application extension from the payment_c-list page.

a. From the payment_c-list page, click the Preview button to see your changes in your runtime test
environment.

P ® Q ‘ Publish | =

The screenshot below illustrates what the list page looks like with data.

All Payments Ao

O Try seadching by key Al Filer

— [= - CEErA T S W
&3 Resulis
Paymient Name 5 Creation Date = Last Updated Date S Actions

0 Payment, Octimoice 101922 10003 P 11,17/25 4:2% AM
O Payment for Order 1020 1171722 206 AM 11/17/23 4:42 AM
O 1172 for October 15 erder 1173422 737 PM 12719722 5:23 PM
O mew7_Rect /7722 616 P 1177722 816 PM
O Mot 1177722 6:45 PM 1177722 645 PM

b. Click any record on the list page to drill down to the detail page.

The following screenshot highlights the panel.

| Note: In your testing, the panel might be empty.

27
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

supremo

+ Al Payments

Payment for Laptops @

Amount 5000 Payment Date 3/28/23
3
/ﬁl_yment Lines \
m Wells Payment Secondary
2,000

haresh.pahilajani@oracle.com
3/29/23 9:53 PM

Secondary

)

BOA Payment

1,000
haresh_pahilajani@oracle com
32923 9:52 PM

N

l\,'u'-\-.- All Payment Lines [.le

Chapter 2
Add a Custom Top Level Object

Hext:Payment for Printers

[; Payment Details

The link at the bottom of the panel navigates the user to the subview. Learn how to configure the

subview in Configure the Subview for Child Objects.
5. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the

Git repository).

\-sales.git /20220830

ol Git B
4. Q. Filter

C ¥ Changed (1) Commit
&

i

@

B

EO]

OO detail
Switch Branch

Commit

Pull

Merge
Reset to HEAD

Ke

ORACLE

28

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?

Configure the Subview for Child Objects

This topic explains how to build the subview using fragments.

What's a Subview?

Since the real estate of a panel is small, users can click a View All link to navigate to a second page that displays all
records.

Here's a screenshot of a View All Contacts link on a panel. Notice that, in this example, the panel itself has room to
display only one contact, John Cook, although a total of three records exist. Users can click the View All Contacts link to
see all three contacts.

Contacts

IC John Cook

sendmail-test-discard@oracle.com

View All Contacts (3)

Here's a screenshot of a subview. A subview includes a basic information region at the top and a table. If you create
a custom panel for a child or related object, then you must create this page, as well. You can create this page using a
fragment.

= OnRacLE
LR TerTr—

Pinnacle Technologies: Contacts

29
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Create the Payment Lines Subview

Let's create the subview for our payment records. To do this, we'll add a new dynamic container to the detail page in

Page Designer.

1.
2.
3.
4.
Page
v Page
Templates

In Visual Builder Studio, click the App Uls tab.

Expand cx-custom > payment_c, and then click the payment_c-detail node.
On the payment_c-detail tab, click the Page Designer subtab.

Confirm that you are viewing the page in Page Designer.

5. Click the Code button.

Live

Design

Code

6. Inthe Filter field, enter dynamic container.

7. Drag and drop the dynamic container component to the detail page canvas, outside the previous dynamic
container that holds the panels. This dynamic container will hold the subview.

8. Inthe code for the dynamic container, replace containerLayoutl With subviewContainerLayout.

</oj-dynamic

£ o) -dynamic

container

container layout="PanelsContainerLayout”™ layout-provider="[[$metadata.dynami

>

<oj-dynamic-container [Layout="SubviewContainerLavoutl'Jlayout-provider="[[$metadata.dynamicc

9. On the payment_c-detail tab, click the JSON subtab.

ORACLE

Chapter 2
Add a Custom Top Level Object

30

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

10. In the detail page's JSON, rename the two instances of containerLayoutl t0 SubviewContainerLayout.

The two instances appear in the "1ayouts" section and in the "templates" section. Here's where the instance
appears in the "templates" section.

"templates”: {

"leads": {
"title": "Leads",
"description": "",
"extensible™: "byReference”,
"@dt": {
"type": "section”,
"layout™: "PanelsContainerLayout™
}
¥
"paymentLines”: {
"title": "Payment Lines",

"description™: "V,
"extensible™: "byReference”,

"adtt: {
"type": "section”,
"layout"”: "PanelsContainerLayout”
¥
¥

"template1l™: {
"title": "Default Ssection”,
"extensible": "byReference”,

ll@ﬁt" : {
"type": "section”,
"layout”: "containerLayout2"

}
}

Create the section template that will be used for the subview.

1. On the payment_c-detail tab, click the Page Designer subtab.
2. Onthe Properties pane, in the Case 1region, click the Add Section icon, and then click New Section.
3. In the Title field, enter a title for the section using the REST child object name, such as paymentLinecollection_c.

31
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. Inthe ID field, change the value to paymentLinecollection_c.

| Note: You can retrieve the REST child object name from the service connection endpoint.

Gl Services + [payment_c-detail = 45 PayrmentLineCollection ¢ x 3 cx-oustom X
4y Service Connecliond Backends Overvbew Servers Headers Souarce & Metadats
»
QL Fine .
E] DELETE SRR Delete
.
» Attachment
i} Fuoen Dependendies
>
[b Apphcation Companents e
o » CXSales * PaymentContactMMInter_Src_Payment_cToPaymentContactMMInter_c_Tgt
% » Paymen‘ll_inecdletlinn_c]
5. Click OK.

6. Delete the pefault Section.

Display Logic

© :
Condition
Always Show
Sections -

PaymentLineCollection_c

ORACLE

32

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

7. Manually update the template's JSON with the correct subview name.

a. On the Payment_c-detail tab, click the JSON subtab.

b. Inthe section for the SubviewContainerLayout section template layout, replace the sectionTemplateMap
and displayProperties values to match the name of the subview, PaymentLineCollection_c.

In our example, this is what the SubviewContainerLayout sectionTemplateMap and displayProperties
should look like:

Q] payment_c-detail x

Page Designer Actions Event Listeness Events Types Variables (2 lavaScript JSON Semings
57 b
58 "SubviewContainerLayout™: {
59 "label”: "Container Rule Set 1",
] "layoutType": "container”,
“layouts™: {
62 "case1l™: {
"label": "Case 1",
"layoutType”: "container”,
"layout™: {
66 "sectionTemplateMap™: {
67 |'PaymentLineCollection_c”| "paymentLinecollectionc”
68)

69 "displayProperties”: [
|"'PaymentLinecollection c™ |

]

72 }

73 }

s

"rules”: [
"containerLayout2-rulel”

)]

78 b

ol

Configure the Subview Layout
We previously added the subview dynamic container to the page, as well as the section template.

Build the structure of the subview using the cx-subview fragment.

1. On the Properties pane, click the PaymentLineCollection_c section that you just added.

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
PaymentLineCollection_c template.

2. Click the Code button.

Live Design Code

3. On the Components palette, in the Filter field, enter cx-subview.

33
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. Drag and drop the cx-subview fragment to the template editor, between the paymentLineCollectionC template

tags.
% sayment_c-detall = %H.IEIIII'.'I'. € X ‘E“}I mentLineCollection ¢ x
Page Designer Actions Event Listeners Events Typies Variables (3 lavascript 150N Setlings
2 Q, ex-subview o = < Return to page
@
5 TS
a A a2 M ¥
E Fragments @ 20 <template id="leads">
=3 2 "
b 21 </template>
22
= <template id="paymentLineCollectionC™>
26 </template>

5. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to

replace payment__c_Id and PaymentLineCollection_c With the appropriate values for your custom top level and
child objects. Retrieve these values from the service connection endpoint.

L] Services S [y payment _c-detall x €} orcustom X
& Service Connections Backends Overview Servers Headers Source /) Endpoints /) Metadata
-
o

~ PaymentLineCollection_c

s Payment_c/(Payment__c_ld}/child/PaymentLineCollection_c¢

&> cx-custom ¥ . ¥ £ ¥ 1

Get Mary Get all

] From Dependencies m v :
L) v Application Components [posT DS Create

<template id="paymentLineCollectionC">

<oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx_fragmentsUI:cx-subview">
<oj-vb-fragment-param name="resource"

value='[[{"name": $flow.constants.objectName,
$application.constants.serviceConnection }]]'>
</oj-vb-fragment-param>

<oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute":
"desc" }]1 11'>

</oj-vb-fragment-param>
<oj-vb-fragment-param name="query"
value='[[[{"type": "selfLink", "params":
oj-vb-fragment-param>
<oj-vb-fragment-param name="child" value='[[{"name":
"relationship": "Child"}]]'></oj-vb-fragment-param>
<oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
<oj-vb-fragment-param name="extensionId" value="[[$application.constants.extensionId]]"></oj-vb-
fragment-param>

"primaryKey": "Id", "endpoint":

"LastUpdateDate", "direction":

[{"key": "Payment c_ Id", "value": $variables.id }]}] 1]1'></

"PaymentLineCollection_c", "primaryKey": "Id",

</oj-vb-fragment>

34

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

</template>

This table describes the parameters that you can provide for the subview:

Parameters for Subview
Parameter Name Description
sortCriteria Specify how to sort the data on the subview, such as sort by last updated date and descending
order.
query Include criteria for querying the data on the subview.
child Enter the REST child object name for the child object that the panel is based on.

Configure the subview layout.

1. Click the Layouts tab, then click PaymentLineCollection_c.
2. On the PaymentLineCollection_c tab, click + Rule Set to create a new rule set for the layout.

In the Create Rule Set dialog, in the Component field, select Dynamic Table.
In the Label field, enter subviewLayout.
In the ID field, change the value to subviewLayout.
d. Click Create.
3. Add the fields that you want to display in the layout.

n oo

a. Click the Open icon next to the default layout.

b. From the list of fields, select the fields that you want to display on the subview table. The fields display as
columns in the order that you click them, but you can rearrange them.

35
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

4. Create an event so that users can be automatically navigated back to the subview after editing the payment.

a. On the payment_c-detail tab, click the Page Designer subtab.
b. Confirm that you are viewing the page in Page Designer.

v Page

Templates

c. Click the Code button.

Live Design Code

d. Inthe code for the detail page, click the oj-vb-£fragment tag.

Page =

1 taj-vh-Fmgmmt |l|r-' ge="[[

On-w1e nge-g

ue="[] ‘r
value="[]
values"[[{ “pane

text” walue="[[{"flowContext": &Fflow.v:

ayouts"PanelsContainerLayout”™ ',<|_\'::,." provider | | dmetadata.

j-dynamic 1tainer youte="SubviewContainerLayout™ layout-provider="[[$metadata.dyr I
12

On the Properties pane for the cx-detail fragment, click the Events subtab.

i. Click + New Event > On 'viewChangeEvent'.
ii. Drag an Assign Variables action onto the canvas.

ili. Onthe Properties pane, next to the Variable field, click the Select Variable icon.
iv. Inthe Variable window, under the Page heading, click view.

36
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?

Variable Create

view{ A

Page
A id
AL puid

.‘i\u view

Flow

{} context

Extension

A $extension.path

v. Inthe Value field, enter {{ payload.view }}.

37
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
5. Comment out the subview's dynamic container component from the payment_c-detail page.

a. Click the payment_c-detail tab, then click the Page Designer subtab.
b. Click the Code button.
c. Select Page from the drop-down list.

[EJ payment_c-detail X 4@ PaymentLineCollection_c X
Page Designer Actions Event Listeners Events Types Variab
[l 1 il —
: [Qrwenr | =
Y
5 fragme
(=4 ~ Redwood Patterns
£ v Page view-c
- Advanced Create and Edit Page _vb-fr
Template Templates
-vb-fr
g Bottom Drawer Template 5 <oj-vb-fr
Q _ . =
[Create Edit Drawer Template 6 <0j-vb-fr
) 7 <o0j-vb-fr
Dashboard Landing Page Template 2 </oi-vb-fraem

d. Comment out the dynamic container component that you added for the subview.

1 <0j-vb-fragment bridge="[[vbBridge]]” name="oracle_cx_fragmentsUI:cx-detail™ class="oj
2 on-view-change-event="[[$listeners.fragmentViewChangeEvent]] >

3 <0j-vb-fragment-param name="resources” value="[[{'Payment_c’ : {"puid’: $variable
4 <0j-vb-fragment-param name="header” wvalue="[[{ resource’: $flow.constants.objecth
5 <oj-vb-fragment-param name="actionBar”™ wvalue="[[{ "applicationId”: "ORACLE-IS55-A
] <0j-vb-fragment-param name="panels” wvalue="[[{ "panelsMetadata™: $metadata.dynami
7 <oj-vb-fragment-param name="context”™ wvalue="[[{'flowContext’: $flow.variables.con
8 <foj-vb-fragment>

9 <l --oj-dynamic-container layout="PanelsContainerLayout” layout-provider="[[$metadata.
(] </oj-dynamic-container--»
11 ‘| dynamic-container layout="SubviewContainerLayout®™ layout-provider="[[$metadata
12 </o7-dynamic cu-nai-m

13

6. Add an Actions menu to the subview.
To do this, create a custom field, actions Menu.

On the PaymentLineCollection_c tab, click the Fields subtab.
Click + Custom Field.

In the Create Field dialog, in the Label field, enter actions Menu.
In the ID field, the value should be actionsMenu.

In the Type field, select String.

Click Create.

-0 9 n T

Map the custom field to the field template.

a. On the PaymentLinesCollection_c tab, click the JSON subtab.
b. In the subviewLayout section, add this code:

38
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

"fieldTemplateMap": {
"actionsMenu" : "actionMenuTemplate"

}

The resulting code will look like this:

"SubviewLayout”: {
"type": “"cx-custom”,
"layoutType": "table",
"label™: "SubViewlLayout",
"rules™: [

"isDefault2"

1
"layouts™: {

"default™: {
"layoutType": "table",
"layout”: {

"displayProperties™: [
"RecordName"”,
"Amount c”,

"Type_c"
]
¥
"usedIn™: [
"isDefault2"”
]
¥

1

L]
"fieldTemplateMap”: {

}

‘ "actionsMenu” : "actionMenuTemplate”

h

Add the custom field to the subview table.

Click SubViewLayout.
Click the Open icon next to the default layout.

angoo

Click the PaymentLineCollection_c tab > Rule Sets subtab.

From the list of fields, click the actionsMenu field to add it to the subview table.

ORACLE

39

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

7. The Actions menu provides both an Edit and Delete action. Users click Edit to edit a payment line.

Create a layout for the edit payment line page.

~~ -~

Type < Actions Menu <

Secondary

Sed Edit

Delete

a. On the PaymentLineCollection_c tab, click < Rule Set to return to the main Rule Sets page where you can
create a new rule set.

i. Click + Rule Set.
ii. Inthe Create Rule Set dialog, in the Component field, select Dynamic Form.
ili. Inthe Label field, enter editLayout.
iv. Inthe ID field, change the value to editLayout.
v. Click Create.
b. Add the fields that you want to display in the layout.

i. Click the Open icon next to the default layout.
ii. Click Select fields to display.

iii. From the list of fields, select the fields that you want to display on the edit payment line page. The
fields display as columns in the order that you click them, but you can rearrange them.

c. On the Properties pane for this layout, in the Max Columns field, enter 2.

You might need to click < Form to see the properties for the layout.

40
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?

8. Test the subview by previewing your application extension from the payment_c-list page.

a. From the payment_c-list page, click the Preview button to see your changes in your runtime test
environment.

P ® Q ‘ Publish | =

The screenshot below illustrates what the list page looks like with data.

All Payments Ao

O | Try searching by ke Adkd Filter

— [= - CEErA T S W
65 Results
Paymient Name 5 Creation Date = Last Updated Date S Actions

0 Payment, Octimoice 101922 10003 P 11,17/25 4:2% AM
O Paymeng for Order 1020 1171722 2:06 AM 1117023 4:42 AM
O Paymens 112 for October 15 crder 11/3/22 73T P 12/19/22 523 PM
O /7722 616 P 1177722 816 PM
O Mot 1177722 6:45 PM 1177722 645 PM

b. If data exists, you can click any record on the list page to drill down to the detail page. The detail page,
including header region and panels, should display.

Note: The screenshot below illustrates what a panel looks like with data. In your testing, the panel
might be empty.

A1
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

supremo

Chapter 2
Add a Custom Top Level Object

1+ All Payments

Payment for Laptops @

Amount 5,000 ayment Date 3/28/23

Eyment Lines \

m Wells Payment
2,000

haresh.pahilajani@oracle.com
3/29/23 9:53 PM

BOA Payment
1,000
haresh.pahilajani@oracle.com

\ 32923 9:52 PM _/

lVlr.'—r.l All Payment Lines [.J.Jl

Secondary

Secondary

Hext:Payment for Printers

[; Payment Details

c. Click the View All link to drill down to the subview.

* i Payments.

Payment for Laptops <
™ 5,000 menil Dale 3/ 28423

¥

= Go o Ovrvies

Payment Lines
FaymentLine Hame = Amount Type =
Whells, Payment 3000 Secondary
BOA Payment 1000 Secondary

5 Payment Detaas

Actions Menu

d. Click the Actions > Edit to edit the payment line.

ORACLE

42

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?
Payment Lines
vl Payment 5000
Shcanary i

9. Save your work by using the Push Git command.

« Workspace2 > .git/20220830

ol Git 3 D deai
4, | Q. Filter Switch Branch
C » Changed (1) Commit, Commit

o Pull

&

® Merge

Reset to HEAD
o T

Display a Smart Action on a Child Object Subview Only for a
Specific Parent Object

When you create a subview for a child object, you might need to create smart actions that apply specifically to that
subview.

Suppose, for example, that you used the CX Extension Generator to display a list of shipments on payments, with
Shipments being a child object of Payments. CX Extension Generator automatically creates the Add smart action that

43
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2

Add a Custom Top Level Object

users enter in the Action Bar to add shipments to payments, but it doesn't create any smart action to remove the entry.
Here are the steps to create the smart action and make it available only on the Payment subview.

1. Create the Remove smart action as a REST-based smart action as described in the topic Create REST-Based
Smart Actions. Be sure to enter the name of the parent object in the Context region of the Availability page.

2. In VB Studio open the parent object's detail page and view the Template code (App Uls > Payment_c_detail >

Code > Page > Template

= -._.“ T |
T — T cai - e
1
. . By ¥ i bt Pror s e . i
By " ot D e) -
[T 5 B e Pt
a I o -c
o ! !
- 1 Crmam s Tam i
1 [=
i
& Y .
-
[=5 o
3 Pemgmaees - [-
* r\:!a-\...-n el T e

3. Find the template for the subview in the code, and add the following parameter:

<oj-vb-fragment-param name=“enableActions” value='[[{“enabled”: “true”, “enableContext”:

oj-vb-fragment-param>

Insert it right before the </oj-vb-fragment> tag.

“true”}]] r ></

mp-_ﬂmrﬂ c-ditail iy Bhipmant e

Pape Deslgngr Action Chains (1) Evend Listensrs 1) Events Types Varables(s) Design Teme JovaSoript JSON Settings
n Templates =
E B9 wa]=vi-fragment-paran nases”sxtension]d” values" [[Sapplication.constants.extensiond |]"mcfof-wh=frageent-params
E an </oj-vb-1rageent>
81 «/tesplates
92
- 91 <tesplate id="Shipsent_PaymentShipsent1M_TgtSubwiewTemplate™s
E 04 <0 f=wb=1rageent bridges"[[vbBridgel]™ nases"sracle cx fragsentsll]:ce-subvimd">
a3 o] -vi-fragment-paran nase="rescarce”
a6 walues'[[{"namg™: “Shipssnt_c*, "prisaryley”: =Id", “endpoint™: fagplication.constants.serviceConmection })] =</a)
a7 «0] =yb-Trageent-parsa ndde="4ortCriteria™ waluve="[[[{"attribute”: “"LaitUpdateDate” "direction”: =dedsc™ }) 1]'=
Ga wfio] =vb=1ragment-parame
a3 =0) == rageent-paras AkSes"guery”
108 walves'[[[{"type™: “gbe”, “params”: [{"key™: "Payment_Id_PaymentShipsentIM®, “value™: Svariables.id }H 1)'=
181 <fa]-vb-1ragsent -parass
182 <0 -vb-fragment-paran name="context” wvalue="[[{ } J]I==
183 <f@]=vi=1 ragaent-parass
=6 -yh-fragment-pargs rgme="gxtentionld™ vilyps"| 0, {onst ant REng ion “aefnf-yh-{ ragsent-narges

185 ag] =wt=frageent-paran nasgs~enableActions” values' [[{™enabled”: “treme™, “enafleContext”: “true™}]] "st/oj-vh=1 ragsent-params

106 =/aj-vb-1 rageents
187 </templates

Display a Panel and Subview Based on a Field Value

You can display different sets of panels (and their corresponding subviews) based on the value of a field.

To do this, create a panel layout or subview layout, and then add a field value condition. If a record's field matches the

specified value, then the associated layout displays. If not, then a different layout displays.

ORACLE

44

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=u30244466
https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=u30244466

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
This topic illustrates how an account's type, either Customer or Prospect, changes the panel and subview layout on an
account detail page.

Prerequisite

To create a layout condition that references a field value, you must first enable this feature so that panels and subviews
are loaded to the page only after evaluating the header.

In Visual Builder Studio, click the App Uls side tab.

Navigate CX Sales > cx-sales > accounts > accounts-detail.

On the accounts-detail page, click the Variables subtab.

In the Constants region, click the deferRelatedDataload constant.
On the Properties pane, in the Default Value field, select True.

A UN

If you want to add a field value condition to panel and subview container layouts, then you must set this value
to true.

Create a New Panel Layout

Once you have enabled the feature, you can now add a field value condition to a panel layout. Let's add a condition to
the account detail page.

1. Navigate to Visual Builder Studio from an account record.
2. On the accounts-detail page, click the Page Designer subtab.

45
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

3. Onthe Structure panel, click the Panel Container Layout node.

-
4
¢ §
=
g 2
E
S
S
=
G &
@
B
Co
e
=
E
iR

[accounts-detail = %Accnunls *

Page Designer Actions Event Listeners Eve

Q Filter, Alt+F ‘

~ Redwood Patterns

[Bottom Drawer Template

B8 Card

[B Create Edit Drawer Template
[Detail Panel

& Diagram Builder

& Diagram Node

B Empty State

| Mamars] Divsssiar Tamsl st

[Q Filter

* ™ cx-detail

v ™ cx-detail-impl

‘8 accounts - Header Layout

|~ E3 panel Container Layout |

* [Activity Feed Panel Template (ac

* ™ x-feed

i n cx-feed-card

™ cx-note

™ cx-note

ORACLE

46

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

4. On the Properties pane, next to Sales Admin Case, click the Duplicate icon.

Panel Container

Layout Application Comp...

General Sections (18)

From Dependencies (Read-only)

>+ Sales Admin Case ®
Condition @
cxcore.utils.userinfo.getRoles().includes(...
Sections
Duplicate Account Panel X Sales
Template
Opportunity Panel X Sales
Template
Linked Account Panel X Sales
Template
subscriptions Panel X Sales
Template

Invoices Panel Template | CXSales

Account Team Panel

CX Sal
Template =

salladoiy

5. Next to the Sales Admin Case (Copy) panel layout's condition, click the Expression Editor icon.

>4 Sales Admin Case (Copy) ® .

Condition @ hd

6. Inthe Expression Editor dialog, replace the existing expression with this new one, just for testing:

$base.page.variables.row.Type=='ZCA_CUSTOMER'
7. Click Save.

ORACLE

47

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?
8.

Delete the Opportunity Panel Template.

Chapter 2
Add a Custom Top Level Object

With the field condition specified above, this means that accounts of type Customer won't see the

Opportunities panel on the account detail page.

Panel Container

Layout Application Comp...

General Sections(16)

>+ Sales Admin Case (Copy) @ B :
Condition () fx =

$base.pagevariables.row.Type=="2CA_C...

Sections -
Duplicate
Account
Panel
Template
Opportunity
Panel Cxsales | B}, A =~ '@
Template

Linked

Account

Panel

Template
subscriptions

Panel CX Sales
Template

Invoices

Panel CX Sales
Template

Account

Team

Panel

Template

CX Sales

CX Sales

CX Sales

sanuadolg

9. From the accounts-list page, click the Preview button to see your changes in your runtime test environment.

> (@) Q ‘ Publish |

ORACLE

48

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

10. Onthe My Team's Accounts page, click any account.

o If the account is of type Customer, then you won't see the Opportunities panel.

T My Tean's Accounts

Pinnacle Technologies <

(=]
-— - ErA W W
Duplicate Accounts Linked Customers Subscriptions
Az vou add duplicate account As you add financial customer After the first subscription is
records, vou'll see them here. records, vou'll see them here, created, you can view the

summary information here.

o If the account is of type Prospect, then the Opportunities panel does display.

LT S—

Pinnacle Technologies <

— s e wra wr

Duplicate Accounts / Opportunities M Linked Customers Subscriptions
As you add duplicate account ki As you add financial castomer After the first subscription is
records, youTl see them here. § 2277748 recards. you'll see them here. ereated, you oa

Sody

32 -\i

Lllmlr Tech Solar -~

~

Create a New Subview Layout

Next, add the field condition to the subview layout, as well. It's important to add the field condition to the subview
layout. Otherwise, the Show Opportunities smart action is still available from the Action Bar even when the account is a
customer.

49
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?

T My Tean's Accourds

Pinnacle Technologies <

T . T |
Filter show app
Duplicate Accounts Linked Customers Subscriptions
As you add duplicate account As vou add financial customer After the first subscription is
records, vou'll see them here, records, you'll see them here, created, you can view the
summary information here.

ou A WN

© N

10.

Navigate to Visual Builder Studio from any subview page, which you can navigate to from any panel on an
account record.

On the accounts-detail page, click the Page Designer subtab.

On the Structure panel, click the Subview Container Layout node.

On the Properties pane, next to Subview Container Layout, click the Duplicate icon.

Next to the Subview Container Layout (Copy) subview layout's condition, click the Expression Editor icon.
In the Expression Editor dialog, add this expression:

$base.page.variables.row.Type=='ZCA_CUSTOMER'
Click Save.
Delete the Opportunity Subview Template.

With the field condition specified above, this means that accounts of type Customer won't see the Show
Opportunities smart action on the account detail page.
From the accounts-list page, click the Preview button to see your changes in your runtime test environment.

On the My Team's Accounts page, click any account and make sure that the account is of type Customer. The
Opportunities panel shouldn't display.

+ My Team's Accounts

Pinnacle Technologies <

S T A W —
Duplicate Accounts Linked Customers Subscriptions
Az vou add duplicate account As you add financial customer After the first subscription is
records, vou'll see them here. records, vou'll see them here, created, you can view the

summary information here.

50

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?
11. Test the field condition on the subview layout by checking to see if the Show Opportunities smart action is still
available from the Action Bar. It shouldn't be visible anymore if the account is a customer.

+ My Teans Accounts

Pinnacle Technologies @

Martin Hoope Type Cusbarmer

O show opg

Filter shaw app . ssmstis |
Duplicate Accounts Linked Customers Subscriptions
As you add duplicate account As vou add financial enstomer After the first subscription is
records, vou'll see them here. records, vou'll see them here. created, vou can view the

summary information here.

Configure the Subviews for Appointments and Tasks

Using Oracle Visual Builder Studio, you can make it possible for users to create and view appointments and tasks right
from a custom object's detail page.

What's the Scenario?

This example shows you how to create subtabs for appointments and tasks on a Payment custom object and how to
enable users to view and create tasks and appointments directly from each payment's Action Bar. The view and delete
actions are already provided for you, but you must create the Create smart actions for tasks and for appointments.

51
ORACLE

Oracle Fusion Cloud Sales Automation

Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?
T Pasent page

Payment for Laptops @

Owner EXTN EXTH_AM3 Last Update Date 1/4/24 8:24 AM Last Updated By EXTH_AMS

| © create Appointment x

'1 Create Appaintment] =

Create Activity

Create Contact
| Create Note
Create Order
| Create Task |

A3

Order for May
1424 8:13 AM
EXTH_AM3

Order for Apr
1/4,/24 8:09 AM
EXTH_AMS

When you're finished with the setup in this example, you'll end up with separate subtabs for tasks and appointments.

Here's a screenshot of a sample Tasks subtab. The subtab includes 3 separate views highlighted by callouts: All Tasks,
Open Tasks, and Overdue Tasks. For each task, there are 3 available actions: Mark Complete, Edit and Delete Task.

T Parwel page

Payment for Laptops < : Tasks

Do EXTHENTM_AMY Last Upstate Diste L0720 00 MM Lawt Upisted By EXTH_AME

S M
NN W = “—

L e

G oo

Alffaks OpsnTasks Chesrdes Tmic

Sulesd T B Biste = [

Prioriby T Babus T A Lz
Tarsh e Loy Prge=prt 528 EXTHIENTH_AMY gt vy Mot parted 1=
Tkl WS EXTH EXTN_AnS et ©pemplene Mok =
)
et Tirsy

The Appointments subtab includes 2 separate views highlighted by callouts in the following screenshot: All
Appointments and Upcoming Appointments. The available actions are: Edit and Delete Appointment.

52
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?
L —
Pavment for Laptops < : Appointments [pows
vt EXTH EXTH_AME Larst Upsiate Diute 14034 804 MM Larsn Uipsdaned By EXTH_AMS
L=} A
— e e B TR S T -w.
4= Lo e Dvervias Aldpponbments Uptominphpesi mimenty
Subject 7 SoprtDwie - Cwmear = Atieity Type = Location S Ations
hppel 178724 150 PM EXTHEXTH_AMS Mating
hog2 17824 430 P EXTH EXTH_AMS Masting
Appointmen lof Jan Payment 14/ 24 V050 AM ENTH EXTH_AME Mesting
- ©
Durbete Apperrtrren]
Prerequisites

In Application Composer, Create a 1:M relationship between your custom object and the Activity object. In this example,
we're adding the relationship for the Payment custom object.

Create Smart Actions for Appointments and Tasks

1. In a sandbox, open Application Composer.

2. C(Click Smart Actions.

3. Create separate Create smart actions for tasks and appointments.
a. Onthe Smart Actions list page, click Create.

The application displays a guided process with 7 steps to complete in order.

Note: For your entries to be saved when creating smart actions, you must click Submit (available in the
last step in the guided process). You can always go back and make changes after submitting.

b. Inthe Kind of Action step, select Ul-based action.
c. Click Continue.
d. Inthe Basic Details step, enter the following on the Payment object:

Field Name Entries for Tasks Entries for Appointments
Name Create Task Create Appointment
Object Payment Payment

53
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?

Field Name Entries for Tasks Entries for Appointments

Action ID You can accept the default. You can accept the default.

e. Click Continue.
f. In the Availability step, enter the following:

Field Name Entries for Tasks and Appointments

Application Sales

Ul Availability List page

Action ID You can accept the default.

Role Filter Optionally, specify the job roles that can use this smart action. No entry means that all job

roles can use this action.

g. Click Continue.
h. Inthe Action Type step, make the following entries:

Field Name Entries for Tasks Entries for Appointments
Type Create Create

Subtype Task Appointment

Target Object Activity Activity

54
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?

Field Name Entries for Tasks Entries for Appointments

Object Subtype Task Appointment

i. While in the Action Type step, in the Field Mapping section add two field mapping conditions.
j- Click Add (callout 1in the screenshot)

Field Mapping o Add
* * * i,
Mame O Type > Value £ Actions
Attribute e & &
Cancel Continue

k. Inthe Actions column, click Edit (the pencil icon highlighted by callout 2)
I. Make the following entries:

Field Name Entries for Tasks Entries for Appointments

Name Payment ID Activities (Payment_id_ Payment ID Activities (Payment_id_
Activities) Activities)

Type Attribute Attribute

Value Record ID (Id) Record ID (Id)

m. Click Done to save the row.
n. Click Add again and add the second condition. The entries are the same for tasks and appointments
except for the Value where you must type either TASK or APPOINTMENT.

Field Name Entries for Tasks Entries for Appointments
Name Activity (ActivityFunctionCode) Activity (ActivityFunctionCode)
Type User-entered User-entered

55
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?

Field Name Entries for Tasks Entries for Appointments

Value TASK APPOINTMENT

0. Click Done.

p. Click Continue twice to skip over the Ul-Based Action Details step. This step doesn't apply to Redwood
Sales.

q. Optionally enter a confirmation message in the Confirmation Message step. The confirmation message
appears briefly after the user creates the record.

r. Click Continue.

s. On the Review and Submit step, click Submit.

Create the Subviews

Create new templates for the subviews that display the appointments and tasks created for a payment. You will
configure the actual subviews in the next section.

In Visual Builder Studio, click the App Uls tab.

Expand cx-custom > payment_c, then click the payment_c-detail node.
On the payment_c-detail tab, click the Page Designer subtab.

Click the Code button.

PUWNa

| Live Design Code

5. Confirm that you're viewing the page in Page Designer.

‘ Page = |
v Page
Templates

56
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

6. Remove the comment tags for the dynamic container components that contains the panels and any subviews.

2 cx fragmentsUl:cx-detall”™ classs"o7-tlex-1te
3

1 wid, "id": $variables.id, "endpoint’: Sapplic
5
o

"extensionId”: f$application.constants.ex
o9
18 value=" B g i™: "ORACLE-ISS-APP", "resource”: {"name”: $flow.constants.objectn
11 j f
12 "panels’
13 lata": fmetadata.dynamicContainerMetadata, "wview™: $page.variables.wv
14
15 07 ment-param name="context"” value="[[{ flowContext': $flow.variables.context}]]"»<|
16 i
17
18 tmetadata.dynamicConta
19
28 "[[$metadata.dynamicCont
21
22
23

7. Highlight the <oj-dynamic-container> tags for the subviews.

<div class="o0j-flex"»

<0j-dynamic-container layout="SubviewContainerLayout™ layout-provider="[[$metadata.dynamicCo

class="0j-flex-item 0j-sm-12 oj-md-12"»¢/0]-dynamic-container >

<fdiv>

8. On the Properties pane, in the Case 1region, click the Add Section icon, and then click New Section.
9. In the Title field, enter a title for the section, such as tasks.

10. In the ID field, accept the value tasks.

11. Click OK.

12. Repeat steps to create a second section: appointments.

13. Add the following code for activity translations below imports:

"translations": {

"activityBundle": {

"path": "faResourceBundle/nls/oracle.apps.crmCommon.activities.resource.activityManagement"
}

}I

Configure the Subview Layouts

Next, build the structure of the subviews using the cx-subview fragment.

1. Onthe payment_c-detail tab, click the Page Designer subtab.

57
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

2. Onthe Properties pane, click the tasks section that you just added.

Display Logic
+ Case

Case 1
Condition

Always Show

Sections
Attachment Panel
Note Panel

tasks

appointments

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the

tasks template.
Click the Code button.

Live

Design Code

On the Components palette, in the Filter field, enter cx-subview.
Drag and drop the cx-subview fragment to the template editor, between the tasks template tags.

E 0 cxpnt-vislization &6
D oo @ .
Wy can s Ay “rn-4" i Cormpanant 4%
Taifangs N
51

r

¥

Q Fise s 54
55

L3 Fragerant Ingest Parsmaster ™

= O Terrgisie [PodeTubarw Tamploie] ir
n

= [Frageent Conisines

B Fomgeranit st Paenemarinr fresmarce) &

B Feagement nput Pacamatter fuery) 61
BY Fempetnit st Paremsiter fsrded -
BY Finpmbnit It Paraimeter fohll] :'_t
; B} Frapremnt ingrut Paramelar (Eabfma [
P O oy :

«fiemplates

sienplate Ld=MoleiebviceTonplate™>
w8 | =wi=Trageent Brisges™[[veBridge] | names"orac
g =ighs | ragaent-parsn nases™resourie”
walues® [[{"mame™: §71low. conSTants.00) et
<) -yt 1 rageent -parase
5| =wh=Trageent-Sarsa nase="guery”

walupa®[[[™type®: “selfiink™, “parass™: [{
o i il T C gt | = i
<g] -wh-Trageent-paran names"5fyle™ walue="[["3
) =wb-Traguent-garsn namex™chi ld

walvge® [[{"AMEe™: "Wole®, “prissryley™: =14

] =il TP BYRERT-REFM AASSeTFoTeALIAATA™ v lus
o e 1§ BGRER L
teeplates

<tesfiate id="tasks®s}
19

[b“ wu-nadeora
</ tenplla

ORACLE

58

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

6. Add the following parameters to the fragment code so that the code looks like the below sample. For the query
parameter, be sure to replace the foreign key payment 1d PaymentToactivities With the appropriate value.

Note: The format of the foreign key field's name is always <Source object name>_ld_<Relationship name>.

<oj-vb-fragment-param name="resource"

value='[[{"name": "activities", "primaryKey": "ActivityId","puid": "ActivityNumber", "endpoint":
"cx" , "alias" : "tasks"}]]'></oj-vb-fragment-param>
<oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate",6 '"direction":

"desc" }] 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="query" value='[[[{"type": "gbe", "provider": "adfRest", "params": [{"key":
"Payment Id PaymentToActivities", "value":$variables.id }]}]]]'></oj-vb-fragment-param>
<oj-vb-fragment-param name="context" value="[[{}]]1">

</oj-vb-fragment-param>

<oj-vb-fragment-param name="extensionIld" value="oracle cx_salesUI"></oj-vb-fragment-param>
<oj-vb-fragment-param name="types" value='[[$functions.getTaskSubviewTypesData ($page.variables.id,
$page.translations)]]'></oj-vb-fragment-param>

<oj-vb-fragment-param name="title" value="Tasks"></oj-vb-fragment-param>

<oj-vb-fragment-param name="subviewLayoutId" value="[['SubViewlLayoutForTasks']]"></oj-vb-fragment-
param>

7. Return to step 2 and complete the same steps for the appointments section.

Add the following parameters to the fragment code so that the code looks like the below sample. For the query
parameter, be sure to replace the foreign key payment 1d PaymentToactivities With the appropriate value.

Note: The format of the foreign key field's name is always: <Source object name>_ld_<Relationship name>.

<oj-vb-fragment-param name="resource"

value='[[{"name": "activities", "primaryKey": "ActivityId","puid": "ActivityNumber", "endpoint":
"ex" , "alias" : "appointments"}]]'></oj-vb-fragment-param>
<oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate",b"direction":

"desc" }] 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="query"

value='[[[{"type": "gbe", "params": [{"key": "Payment_ Id PaymentToActivities", "value":
$variables.id }]1}] 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="context" value="[[{}]]1">

</oj-vb-fragment-param>

<oj-vb-fragment-param name="extensionIld" value="oracle_ cx_salesUI"></oj-vb-fragment-param>
<oj-vb-fragment-param name="types"

value='[[$functions.getAppointmentSubviewTypesData ($page.variables.id, $page.translations)]]'></oj-
vb-fragment-param>

<oj-vb-fragment-param name="title" value="Appointments"></oj-vb-fragment-param>
<oj-vb-fragment-param name="subviewlLayoutId" value="[['SubViewLayoutForAppointments']]"></oj-vb-
fragment-param>

This table describes some of the parameters that you can provide for the subview:

Parameter Name Description

sortCriteria Specify how to sort the data on the subview, such as sort by last updated date and descending
order.

query Include criteria for querying the data on the subview.

types Pass a JavaScript function, either getTaskSubviewTypesData or

getAppointmentSubviewTypesData. These functions enable the tabs on each subview, such

59
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

Parameter Name Description

as All Tasks, Open Tasks, and Overdue Tasks, as well as All Appointments and Upcoming
Appointments.

8. In the previous step, you added the types parameter to each subview fragment to pass a JavaScript function,
either getTaskSubviewTypesData or getAppointmentSubviewTypesData.

In this step, manually add the functions to the JavaScript:
a. Onthe payment_c-detail tab, click the JavaScript subtab.

b. Add the below functions. Be sure to replace the foreign key rayment_Id_PaymentToactivities With the
appropriate value.

define(['vx/oracle_cx salesUI/ui/self/applications/cx-sales/resources/utils/CrmCommonUtils’, 'vx/
oracle cx_salesUI/ui/self/applications/cx-sales/resources/utils/FormatUtils'],
(CrmCommonUtils,FormatUtils) => {
'use strict';

class PageModule {
}

PageModule.prototype.getTaskSubviewTypesData = function (id, translation) {
const typesData = [];

typesData.push ({

"resource": "activities",

"query": [{

"type": "gbe",

"provider": "adfRest",

"params": [

{

"key": "Payment Id PaymentToActivities",

"value": id

}I

{

"key": "ActivityFunctionCode",
"value": "TASK"

}

1

.,

"isDefault": true,

"sortCriteria": [{
"attribute": "LastUpdateDate",
"direction": "descending"

H,
"title": "AllTasks",
"id": "AllTasks"

})

typesData.push ({

"resource": "activities",

"query": [{

" type " . llqbe " ,

"provider": "adfRest",

"params": [

{

"key": "Payment Id PaymentToActivities",

"value": id

}I

{

"key": "ActivityFunctionCode",
"value": "TASK"

60
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

} 4

{

"key": "StatusCode",
"operator": "$in",
"value": "NOT_STARTED,IN PROGRESS,ON_ HOLD"
}

1

1,

"isDefault": true,
"sortCriteria": [{
"attribute": "DueDate",
"direction": "ascending"
}] 4

"title": "OpenTasks",
"id": "OpenTasks"

3

typesData.push ({

"resource": "activities",
"query": [{

" type " : llqbe " ,
"provider": "adfRest",
"params": [

{

"key": "Payment Id PaymentToActivities",
"value": id

}I

{

"key": "ActivityFunctionCode",

"value": "TASK"

}I

{

"key": "DueDate",

"operator": "$1lt",

"value": FormatUtils.getFormattedDate (new Date())
}I

{

"key": "StatusCode",

"operator": "$in",

"value": "NOT_ STARTED,IN PROGRESS,ON_ HOLD"
}

]

}]I

"isDefault": true,

"sortCriteria": [{
"attribute": "DueDate",
"direction": "descending"

,
"title":"OverdueTasks",
"id": "OverdueTasks"

|

return { "style": "tab", "items": typesData };

}i

PageModule.prototype.getAppointmentSubviewTypesData = function (id, translation) {

const typesData = [];

typesData.push ({

"resource": "activities",
"query": [{

" type " : llqbe " ,
"provider": "adfRest",
"params": [

{

61
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?
"key": "Payment Id PaymentToActivities",
"value": id
} ’
{
"key": "ActivityFunctionCode",
"value": "APPOINTMENT"
}
1
,
"isDefault": true,
"sortCriteria": [{
"attribute": "SortDate",
"direction": "ascending"
1,
"title": "AllAppointments",
"id": "AllAppointments"
I
typesData.push ({
"resource": "activities",
"query": [{
"type": "gbe",
"provider": "adfRest",
"params": [
{
"key": "Payment Id PaymentToActivities",
"value": id
} 4
{
"key": "ActivityFunctionCode",
"value": "APPOINTMENT"
} 4
{
"key": "ActivityEndDate",
"operator": "$ge",
"value": new Date() .toISOString()
}
1
,
"isDefault": true,
"sortCriteria": [{
"attribute": "ActivityStartDate",
"direction": "ascending"
1,
"title": "UpcomingAppointments",
"id": "UpcomingAppointments"
I
return { "style": "tab", "items": typesData };
}i
return PageModule;
3
9. Comment out the dynamic container components from the payment_c-detail page:
a. Click the payment_c-detail tab, then click the Page Designer subtab.
b. Click the Code button.
c. Add the subview label for tasks and appointments in the actionBar parameters:
<oj-vb-fragment-param name="actionBar"
value='[[{ "applicationId": "ORACLE-ISS-APP", "resource": {'"name": "Payment c", "primaryKey":
"Id", "puid": "Id", "value": $variables.puid }, "subviewlLabel": {"tasks" : "Tasks",
"appointments" : "Appointments"}}]1'>
</oj-vb-fragment-param>
62

ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

d. Comment out the dynamic container components that contain the panels and subviews.

2 <oj-vb-fragment bridges"[[vbBridge]]” name="oracle ¢x fragmentsUl:cx-detail™ classs“oj-flex-ite
3 <0j-vh-f ment - param names="reésources”

4 value="[[{'Payment_c"' : {"puid’: $variables.puid, 'id": $variables.id, 'endpoint’: Sapplic
5 <foj-vb-fragment -params>

B <oj-vbh-fragment -param name="header"

7 value="[[{'resource’: $flow.constants.objectName, "extensionId®: Sapplication.constants.ex
8 <foj-vb-fragment - param>

9 <oj-vb-fragment -param name="actionBar”

18 value="[[{ "applicationId™: "ORACLE-ISS-APP", "resource”: {"name”: $flow.constants.objectn
11 </oj-vb-fragment -param>

12 <oj-vb-fragment - param names="panels”

13 value="[[{ "panelsMetadata™: $metadata.dynamicContainerMetadata, “view™: $page.variables.v
14 <foj-vb-fragment - param»

15 <oj-vb-fragment-param name="context” value="[[{'flowContext': $flow.variables.context}]]"»<
16 <fo]j-vb-fragment>

17

18 <o]-dynamic-container layout="PanelsContainerLayout” layout-provider="[[$metadata.dynamicConta
19 class="oj-flex-item o0j-sm-12 of-md-1"»</0j-dynamic-containe

28 <oj-dynamic-container layout="subviewContainerLayout™ layout-provider="[[$metadata.dynamicConts
21 namic-containers

22

23

Test Your Subviews

Test the subview by previewing your application extension from the payment_c-list page.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

2.

The screenshot below illustrates what the list page looks like with data.

= {supremo O Q
All Payments actions ™
O Try searching by keywore add a filver Akl Filnis

63 Results
Payment Mame 2 Creation Date < Last Updated Date 2 Actions
O Paymens, Octinvoice 1015722 10:03% PM 117725 425 AM
O Paymaent for Order 1020 1171722 2:06 AM 1117723 4:42 AM
a Payment 11,2 for Octaber 15 order 11/3/22 T3TPMA 1219022 523 PM
O Mo T_Rec 1 117722 616 P V177722 616 P
O Mow5EV1 /7722 645 P 117722 &:45 P

ORACLE

63

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?

3. Create a task and an appointment by entering Create Task and Create Appointment in the Action Bar.
* Pasent page

Payment for Laptops ©

Owrer EXTH EXTH_AM3S Last Update Date 1/4/24 8:24 AM Last Updated By EXTN_AM3

O greate Appointment x

ﬂ Create Appolniment] =)
Create Activity

Create Contact
© Create Note
Create Order

I Create Task |

.5

Order for May
1/4/24 8:15 AM
EXTH_AMS

Order for Apr
1424 809 AM
EXTN_AME

After creating a task and an appointment, view the records you created by entering Show Tasks and Show
Appointments in the Action Bar.

4. In the list page, drill down into the record you created to view the subtabs and actions.

Save Your Work to Git

Save your work by using the Push Git command:

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the Git
repository).

64
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

gen-sales.git/20220830 .

ol Git E:] D detail
4. Q. Filter Switch Branch
&= » Changed (1) Commit. Commit

e Pull

.

ey Merge

| Reset to HEAD
(%) Q

Create Navigation Menu Entry

After you create a custom application in Oracle Visual Builder Studio, you must create a Navigator entry for your custom
application. This topic explains how to add an entry to the Navigator for your custom object.

Prerequisites

1. In Oracle Visual Builder Studio, create the list page for your custom application.
2. In Fusion Applications, create a sandbox with the Structure tool enabled.

Create the Navigator Menu Entry

1. From the sandbox menu bar, click Tools > Structure.

2. Click Create > Create Page Entry.

3. Enter these details:

In the Name field, enter the Navigator menu text, such as payments.

In the Icon field, click the search icon to pick an icon for this navigator entry.
Click OK.

In the Group field, select the group that makes sense for your business needs, such as Redwood Sales.
In the Show on Navigator field, keep the default: Yes.

In the Show on Springboard field, keep the default: Yes.

In the Mobile Enabled field, keep the default: No.

In the Link Type field, select VB Studio Page.

In the Focus View ID field, enter /index.html.

o

~ 70 -0 2n T

65
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

In the Web Application field, search for and select: ORA_FSCM_UL.

Click OK.

In the Application Stripe field, enter crm.

In the VB Studio Flow field, enter the flow name, application.

In the VB App Ul field, enter the App Ul, cx-custom.

In the VB Page Name field, enter the page name including the container/flow name prefix, such as
container/payment_c/payment c-list.

4. Click Save and Close.

5. Open your list page in Visual Builder Studio.

6. Click the Preview button to see your changes in your runtime test environment.

053 -7«

a. From the list page, click the Home icon at the top of the page.
b. From the Navigator, click the new Payments entry under Digital Sales.
c. You should be navigated back to your custom object's list page.

7. Publish your sandbox.

Note: If you need to make changes to this Navigator menu entry in the future, you can do so from a new
sandbox.

Configure the Picker

A picker enhances a regular list of values field so that users can quickly find the record they need. Depending on setup,
pickers can display either a list of saved searches to pick from, or a list of results most relevant to the user's context.
Pickers are already available on certain standard fields and can't be modified, although you can configure new pickers
for those fields, if needed. You can also configure pickers for custom list of values fields. Use the cx-picker fragment in
Oracle Visual Builder Studio to configure new pickers.

Here's an example of a field without a picker. Without a picker, the field has a button that users can click to view a list of
values.

66
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

Create Payment

Cwner

Payment Name Ben Eaton

Required

Account

Tata Consultancy Services
Siemens Healthcare

Eevil Carp

Supremo Industries LE
Volunteer Fire Depart

Tata Sons Pvt Ltd

Ironside Manufacturing

Epic Manufacturing

=

This basic list of values makes it possible to filter on a value that the user enters into the field. For example, if the user

enters pi, then a list of accounts whose names include pi display for selection.

ORACLE

67

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Account

Pl

Capital Bank

Pinnacle Seolutions

Pinnacle Technologies

Pinnacle Technologies

Epic Manufacturing

Washington Hospital Systems

Chapter 2
Add a Custom Top Level Object

This basic filtering functionality is helpful, but for better user experience, use the cx-picker template to enable a wider
range of search features on a field.

What's a CX-Picker?

A cx-picker is a special kind of picker on a dynamic choice list field. With cx-pickers, users can search on more than
one attribute of a record, not just on a single attribute. For example, in an Account picker, users can search not just on
account name, but also on address, and contact name. The screenshot below illustrates a search on city name.

Account

austir

Barton Systems

Health Foods Bowie Street
MNexus Inngvations
Pinnacle Technologies

Wells Fargo

Address <

2131 Barton Hills Dr, AUSTIN, TX 78704

550 Bowie Street, AUSTIN, TX 78703

T7-12, Bristol Avenue AUSTIN, TEXAS 78737

500 Congress Avenue AUSTIN, TX 78701

2300 Oracle Way AUSTIN, TX

Prirmary
Contact

Esteban Galvan
Sherry Maloof
Andrew Scott
Anthony Smith

Matias Jet

City 2

Austin

Austin

Austin

Austin

Austin

In addition, pickers are more powerful than the standard search on a field because, depending on setup, pickers can
display either a list of saved searches or a list of results most relevant to the user's context.

In Sales in the Redwood UX, pickers can be based on either Adaptive Search or ADF REST.

- Adaptive Search Pickers

Provide enhanced keyword searches on an object and support saved searches.

- ADF REST pickers

Provide limited keyword searches and don't support saved searches.

ORACLE

68

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

CX-Picker Fragment Parameters

Chapter 2
Add a Custom Top Level Object

The following two tables list the required and optional parameters that you can use to configure the picker.

Required Parameters
Parameter Sample Value
dynamicLayoutContext [[$dynamicLayoutContext]]
resource [[{"name":
"accounts", "displayField":
"OrganizationName",
"endpoint":"cx-
custom", "primaryKey":"PartyId" } 1]
Optional Parameters
Parameter Sample Value
extensionld [['oracle_cx_salesUI']]
pickerLayoutld PickerLayout

ORACLE

Description

This parameter is set by default. If the picker
field displays in the Create page or the Edit
page, then you don't have to change it.

The default value is $dynamicLayoutContext.

Use this parameter to pass the target object
name and end point:

- name: The REST API name for the picker
object.

- endpoint: The prefix used in the service
connection of the resource.

The endpoint can have values such as: cx,
cx-custom, and so on.

. displayField: The field value that's
displayed in the picker field after the user
makes a selection.

If not provided, then the picker displays
the first field in the picker layout.

- additionalFields: Array that specifies
additional fields shown in the picker.

Description

Application ID used in VB Studio that provides
prefix for the endpoint.

Values can be one of the following:
» oracle_cx salesUI
+ oracle_cx fragmentsUI

- site_cxsales_Extension

This parameter points to the rule set whose
layout controls how the picker appears at
runtime.

The default value, which you don't have to
change, is PickerLayout, the ID of the Picker
Layout rule set that's predefined for each
object including custom objects.

69

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?
Parameter Sample Value
context [[{'defaultSavedSearchId':

'cd899dfd-e671-4ba3-8e89-
a27558494ea9'’',
'hideSavedSearches': false}]]

ORACLE

Chapter 2
Add a Custom Top Level Object

Description

If you need to create a custom rule set, then
create the rule set as a dynamic table and
ensure that the values for the Label and ID
fields are identical. Then add the ID to this
parameter.

Controls the behavior of saved searches in cx-
pickers that use Adaptive Search.

When you configure a picker to display a list
of saved searches, then the user can speed
up searches by selecting a saved search in the
picker to filter the records for the search.

By default, the picker filters the records using
the default saved search enabled for that object
using the Manage Saved Searches Ul.

The saved searches displayed in the list depend
on access permissions of the signed-in user.

You can use the following properties in the
context parameter to control the behavior of
the saved searches and specify which saved
search is selected as the default when the
picker is loaded:

- hideSavedSearches

Use this property to show or hide the
saved searches in a picker when you're
using the query parameter:

o Avalue of false displays the list of saved
searches and the saved search selected
by default is the one identified in the
defaultSavedSearchld parameter.

o A value of true displays no saved
searches and the picker doesn't use
the default saved search identified in
defaultSavedSearchld.

o If youdon't provide a value, then no saved
searches are displayed in the picker for the
object.

- defaultSavedSearchid

Use this property to specify which saved
search is used by default to show data on
initial load. You can provide either the ID
of a saved search or enter 1istDefault
to display the default for the object. If you

70

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?
Parameter Sample Value Description

don't enter a value, or provide an incorrect
one, listDefault is used.

If you use the query parameter and don't
use this property, then the picker uses the
custom query.

Note: If you don't use the query parameter,
then the picker:

o Always displays saved searches.

o [f defaultSavedSearchid isn't
mentioned, then the application displays
"Default Search View" as the default.
This list shows user relevant items for
the given object.

If another foreign key is available, then
the picker displays Related <object
name>s as the default list. For example,
if you select and account on the Create
opportunity page, then the Contact
picker shows the Related Contacts list
with contacts belonging to the selected
account.

- persistSelectedSavedSearch

You can use this Boolean property to
remember the previously-selected saved
search.

createConfig [[{"enabled": false} Use this parameter to specify whether you want
the Create option in the picker list.

This parameter is enabled by default and
applies to both ADF and Adaptive Search
pickers.

isDefaultSavedSearchEnabled "true" If true, then the application uses the
List Default saved search by default. A
defaultSavedSearchld supersedes this setting.

This parameter isn't applicable if the “query”
parameter is used to provide a custom query.
label "Custom Picker" Label for the picker field. If not provided, the
field's label is used.
pickerNameField Field name displays when a row is selected.
If not used, the picker displays the field

you specified when you created the DCL in
Application Composer.

7
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
Parameter Sample Value Description
query Adaptive Search Query Example: You can provide one or more custom queries to

ORACLE

[[{"type" . "qbe" ,

filter the data shown on the picker.

"provider": "adaptive", The query can accept either a single JS object
"label": "Created after June", or an Array of objects. Each object corresponds
"adaptiveQuery" : true, to a separate custom query.

"params": [{ #"op":
"$gt",#"attribute":
"CreationDate",

"value":
"2025-06-30T00:00:00.000+0000" }]
} 11

Note: The time stamp must use the format:

YYYY-MM-DDTHH:MM:SS.sss+TZ.

ADF REST Query#Example:

[[[{"type": "gbe", "provider":
"adfRest",

"params": [{"key": "PartyNumber",
"operator":

"equals", "value": "CDRM

2345" 1111 11

When an array is provided, each query show up
as a separate entry along with the other Saved
searches in the saved search menu (the 3 dots
icon next to the picker).

The JS object takes the following properties:

. type

Use the type gbe (query by example) to
form a custom query.

For complex queries you can use
conjunctions like AND and OR.

- provider

To use Adaptive Search as the data source,
use: "provider": "adaptive"

To use ADF REST as the data source,
enter: "provider": "adfRest"

- adaptiveQuery
Set to true when using Adaptive Search as
the provider. You can use the same query

as the one used in Adaptive Search REST
APIs.

- params: Uses an array of JS objects with
the following properties.

If more than one object is provided,

then the filters in them are combined at
runtime using the AND operator.

When provider = adaptive and
adaptiveQuery = true:

o attribute: field to be used for the filter

o Op:operator that can be used are the
following: $Seq(equals), $in(in), $ne(not

72

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?
Parameter Sample Value Description

equals), $gt (greater than), $lt (less than),
Swi (within)
o Vvalue: Value of the field for filtering data

o values : Use with operators such as $in
when more than one values are provided

o value2: Use only if the operator is Swi

When provider = adfRest:

o key: ADF REST Field name

o operator:

Supported operators: equal, notequals,
startswith, endswith, contains, between,
isblank, isnotblank, gt(greater than), It
(less than), ge (greater than or equal to), le
(less than or equal to), and in

o Value: Value for the filter criteria. For the
in operator, pass the value as a comma-
separated string: "OPEN,CLOSED"

o value2: To be used if the operator is
between.

- label

This is used to give a label to this query
option. If not specified, the default
value shown is “Filtered <object
name>s”.

For example, the label displays Filtered
Accounts if the query is on the Account
object.

- default:

Value is either true or false. The

custom query with a default of true,

is the default when more than one
custom queries are specified and when
defaultSavedSearchld isn't provided in

context.
sortCriteria [[[{ attribute: 'Name', Specifies_the default sort criteria used for the
direction: 'ascending' }] 1] default view:

- attribute: name of the field that you're
using to sort the data

- direction: sort direction, either
'ascending' or 'descending'

value Use this parameter to specify the default value
to be preselected when the picker is loaded.
The parameter value is the value of the primary
key of the object row.

73
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

Picker Example Scenario

This topic illustrates the setup of a picker based on Adaptive Search. In this example, we'll add an Account picker to a
Create Payment page so that users can search for and associate an account with a payment record.

In this example, you'll do the following:

1. In Application Composer, create a custom dynamic choice list field.
2. In Visual Builder Studio:

a. Add the dynamic choice list field to a page layout.
b. Associate the field with a field template that uses the picker fragment.
c. Configure the picker layout.

Prerequisites

Before creating the custom Account field, you must:
1. Complete the Adaptive Search setup, if working with a custom object.

If you're configuring a picker for a field on a custom object, then make sure that you've enabled the custom
object for Adaptive Search. The operation of a picker depends on what's already set up in Adaptive Search.

A picker searches against all Adaptive Search fields that are enabled for keyword search. To enable additional
attributes for search, see the topic Make Additional Fields Searchable.

2. Create your own workspace in Visual Builder Studio if you don't yet have one.
If you're configuring a picker for a custom dynamic choice list field that's not yet published, then make sure

your workspace is associated with your Cloud Applications sandbox.
3. Add the Common Application Components dependency to your workspace.

To add a dependency, click the Dependencies side tab in Visual Builder Studio.

Use the search field to find the Common Application Components dependency and then click Add.

4. This example assumes that you've got a custom Payment object with pages already configured in Visual Builder
Studio.

You can use the CX Extension Generator to set this up quickly. See Create a New Application Using the CX
Extension Generator.

1. Create the Custom Dynamic Choice List Field

To get started, create a custom dynamic choice list field on a custom object, Payment, in Application Composer. This
dynamic choice list field displays account records.

Note: Creating a custom field is a data model change. Create all data model changes in Application Composer before
creating application extensions in Visual Builder Studio. You don't have to publish your sandbox before working in
Visual Builder Studio, however, since your workspace is associated with your current sandbox.

To create the custom dynamic choice list field:

1. Ensure you're in an active sandbox.
2. In Application Composer, navigate to the Payment object > Fields node.

74
ORACLE

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20076705

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

3. Create a custom dynamic choice list field with these values:

Field Value

Display Label Account

Name Account

Related Object Account

List Selection Display Value Organization Name

Note: For pickers that don't use Adaptive Search, you can use Application Composer to add a filter to the dynamic
choice list field to constrain the values that users see in the picker. For example, you might want the picker to display
only accounts that are based in a specific country or city. This type of filter isn't supported in Adaptive Search, so
Adaptive Search pickers won't honor them.

When you create a dynamic choice list field in Application Composer, two fields are created:

- Afield for use with classic, non-Redwood Oracle applications. The naming convention for this standard field is
customfield_c.

In this example, the Account_c field is automatically created. You can see and modify this field in Application
Composer and Visual Builder Studio.

- Afield for use with Redwood Sales. The naming convention for this standard field is customfield_Id_c.

In this example, the Account_ld_c field is automatically created and displays in Visual Builder Studio only. This
is the field that you add to Redwood Sales page layouts.

You can now add the Account_Ild_c field to a page layout in Visual Builder Studio. We'll do that in the next section.

2. Add the Field to a Page Layout

Let's add your custom field to a page layout. In this example, we'll add the field to a create page. Typically, you'd also add
the field to an edit page.

1. Inthe Sales in Redwood UX, navigate to the page that displays the area you want to extend. In this example,
navigate to the Payments list page.

75
ORACLE

Oracle Fusion Cloud Sales Automation

Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object

objects?
2. Under the Settings and Actions menu, select Edit Page in Visual Builder Studio.

Settings and Sign Out
Actions

Personalization

Set Preferences

Administration

| Edit Page in Visual Builder Studio ||

Troubleshooting

Run Diagnostics Tests
Applications Help

About This Application

3. Select the project that's already set up for you. If only one project exists, then you will automatically land in that

project.

4. Visual Builder Studio automatically opens your workspace. If more than one workspace exists, however, then
you must first pick your workspace.

5. When you enter into your workspace in Visual Builder Studio, click the Layouts side tab.

6. On the Layouts side tab, click the Payment_c node.

-} Layouts -+

4 ‘ Q. Filter

€ » 4&' Qrder ¢
o 7| 4B Ravment.s
47 Note

&
4 PaymentLinesCollection_c
® » %Shigmem C

7. On the Payment_c tab, Rule Sets tab, click the Create Layout rule set.

| Note: Optionally repeat these same steps for the Edit Layout rule set.

ORACLE

76

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

8. C(lick the Open icon to edit the default layout.

% Payment ¢ X

Rule Sets 2 Create Layout ~

Rule Sets (9) Fields Templates (5) Actions (11) Ev

‘ Q. Filter

o

Layouts

E default

RO @

Chapter 2
Add a Custom Top Level Object

9. Scroll through the list of fields to find your custom dynamic choice list field. Visual Builder Studio shows the

internal APl name, not the display name.

| Tip: To find your field more quickly, use the Filter field. For example, enter account into the Filter field.

% Payment_c X

Rule Sets (3) Fields Templates (5)

Rule Sets » Create Layout » Layout default

Actions (11)

Qo) -

Fields

i

Suggested Fields

A Account_c

A Account_ld_c

O A AccountCountry_c

ORACLE

77

Chapter 2
Add a Custom Top Level Object

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?
10. Select the field, Account_ld_c, from the field list.

When you select a field, it displays in the list of fields to the right, at the bottom of the list. You can optionally
use the field's handle to drag the field to the desired location.

Select fields to display

A RecordName

A OraZexOwner_ld_c (Owner Picker Template)

I=
()
[m]
Q
[
=
3
_
=3
Iﬁ
X
e ——

If you were to preview the create page at this point, then the Account field that displays is a simple list with only
basic search filtering.

Account
-

Pl

Pinnacle Technologies
Pinnacle Technologies

Capital Bank

Epic Manufacturing
Washington Hospital Systems

Pinnacle Seolutions

To add a picker to the field, you must associate the field with a field template that uses the picker fragment.
Let's do that next.

3. Associate the Field with a Field Template

Let's add a picker to your custom dynamic choice list field to give users enhanced searching functionality. To do this,
you associate the field with a field template that uses the picker fragment.

Note: The following steps illustrate the required picker parameters, but you can set other parameters, as well.

1. Make sure that you're still on the Rule Sets tab, viewing the default layout.

78
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?
2. Click the Account_ld_c field.

Select fields to display

A RecordName

A OraZexOwner_ld_c (Owner Picker Template)

3. Onthe Properties pane, above the Template field, click Create.

create in the next step.

4. Inthe Create Template dialog, in the Label field, enter a label for the template.

In this example, enter AccountPickerTemplate.

MNane

PubDNS
Create Template
Label ~
AccountPickerTemplate]
D" \ 3
accountPickerTemplate \ ‘ _
Description \
Enable Extensions @
==
Template Create
|~

Op

salyadoig

ORACLE

Chapter 2
Add a Custom Top Level Object

Note: If you're doing these steps a second time for the Edit Layout rule set's layout, then in the Template
field, you don't need to create a field template. Instead, you can select the template that you're about to

79

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?
5. Click Create.

Chapter 2
Add a Custom Top Level Object

Visual Builder Studio creates a placeholder template with a basic structure, including an Input Text node which
you can see on the Structure pane.

= Redwood Fasiarns

oM

i Bomeen Drasver Template
B Caterlar

B Card

[H Create B Drawver Temglae
O Detsd Pacel

i Dragram Builder

Strictie

i AccountPicker Temglate | =
Y Filner, Al+E

= e

€ Return to layout

$labelHing

PR Cavas = || sut

Live Desipn Code

7. Click the Code button.

Design

Live

Code

8. In the template editor, select the accountPickerTemplate template tags.

< Return to page

52

53 <template-id="accountPickerTemplate">
54 </template>

55

9. On the Components palette, in the Filter field, enter cx-picker.
10. Drag and drop the cx-picker fragment to the template editor, between the template tags.

6. Delete the default Input Text node from the Structure pane by right-clicking the node and clicking Delete.

A% Payment_c *
Rule Sets % Fields Templates (2] Actions Event Listeners (i1 Events Types Variables
Templates AccountPickerTemplate =
a |] I E?(-pltkl!;l I * = < Retumn to page
2~ Fragments @ } . . .
E 53 <template - id="accountPickerTemplate™>
(=]
]} Ir\l cx-picker I o) o </templatex
55

1"

ORACLE

Make sure the fragment code is selected, as illustrated in this screenshot.

80

Oracle Fusion Cloud Sales Automation

How do
objects?

| create an application extension for custom

£ Return to page

57

53 <template id="accountPickerTemplate”>
54 <oj-vb-fragment bridge="[[vbBri]

56 <foj-vb-fragment >
<ftemplates

Live

Design

11" ‘name="oracle cx fragmentsul:cx-picker”>
<0j-vb-fragment - param - name="dynamicLayoutContext™ value="[[- fdynamicLayoutC

Code

EER

same thing.
Search Exchange
| Q Filter =

B VSHIIGUE [IWF ILRGE SISy
~ ™ Fragment Container
Fragment Input Parameter (resource)
Fragment Input Parameter (extensionic
Fragment Input Parameter (dynamicla

¥ [Template (accountPicker Template)

~| ™ Fragment Container

Fragment Input Parameter (dynamicla

Structure

Chapter 2
Add a Custom Top Level Object

Tip: On the Structure pane, selecting the Fragment Container node for the picker template accomplishes the

12. On the Properties pane for the cx-picker fragment, in the Input Parameters section, set values for the required

picker parameters.

For additional parameters that you can set for the cx-picker fragment, see CX-Picker Fragment Parameters

section.

4. Configure the Picker Layout

Finally, select which fields display in the picker by modifying the Picker Layout rule set. This rule set's layouts control

how the picker looks at runtime.

The Picker Layout rule set and default layout are predefined for each object, including custom objects.

ORACLE

81

Oracle Fusion Cloud Sales Automation

Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object

objects?
In this example, we're adding an Account picker which means we must modify the Picker Layout rule set for the
Account object.

1. On the Layouts side tab, click the CX Sales > Accounts node.

-} Layouts +
| Q. Filter

4

13 » 4&, Order_c
& » “4pRauments
=

» 4& Shipment_c

K
From Dependencies
¥ (X 5Sales

3 4& Accounts

2. Onthe Accounts tab, Rule Sets tab, click the Picker Layout rule set.
3. Duplicate the default layout and then click the Open icon to edit the default_copy layout.

% Accounts X

Rule Sets (23) Fields Templates (21) Actions Even
Rule Sets Picker Layout ([CXSales| ™

@) :

: Qe o=
e | J

m

|

El default_copy [a|O 1

From Dependencies
~ oracle_cx_salesUI

Bl default

4. Scroll through the list of fields to add any desired fields to the picker layout.

| Tip: To find your field more quickly, use the Filter field. For example, enter city into the Filter field.

ORACLE

82

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

5. Select the field, City, from the field list.

Chapter 2
Add a Custom Top Level Object

When you select a field, it displays in the list of fields to the right, at the bottom of the list. You can optionally

use the field's handle to drag the field to the desired location.

% Accounts X

Rule Sets (23) Fields Templates (2 Actions Event Listeners Events
Rule Sets Picker Layout | CX Sales Layout default_copy -
8 I Q ciny x| @ ~ Select fields to display
2
i
All Fields

A OrganizationName

* [O1} PrimaryAddress A FormattedAddress

O A PrimaryAddress.City

A PrimaryContactName

(e

Test the Picker Flow

You can now test the picker that you added to the list of values field.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

P © Q

‘ Publish | =

2. The screenshot below illustrates what the list page looks like with data.

All Payments
o Tiys
— ——
63 Results
Payment Name 2 Creation Date < Last Updated Date <
O Paymens, Oct invoice 10719422 10:03 PM 11717023 4:23 AM
O Paymens for Grder 1020 1101722 2:06 AM 1117723 4:42 AM
O Payment 11/2 for Octaber 15 ordér 1173722 737 P 12/19/22 523 PM
0 Hev7_Rect 1177722 616 FM 1177722 816 PM
O HevsiA 117722 6:45 PM 1177722 &:45 PM

Acticrrs. T

Add Filnes

Hctions

3. Inthe Action Bar, enter create payment.
4. C(lick Create Payment.

The Create Payment drawer displays.

5. Inthe Create Payment drawer, click the three dots next to the Account field to view the list of saved searches.

ORACLE

83

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

US Account hd e

Create Account

+

=a Default Search View v

=a Al Accounts

% My Accounts

= My Favorite Accounts
% My List for Accounts
ﬁ My Team's Accounts

6. If you enter some text into the field, the picker leverages Adaptive Search to return matched results. In the

example below, we've entered pinnacle tech.

Account

pinnacle tech| A |
Name < Address = Primary Contact 2
Pinnacle Technologies 400 Congress Avenue AUSTIN, TX 78701 Anthony Smith
Pinnacle Technologies 400 Pinnacle Way,SEATTLE, WA Cole Mitchell

City <
Austin

Seattle

In the picker, try searching on a city, for example, austin, SO you can see how you can search on other record

attributes.
Account = —
austir
Name % Address © 22::::':' S City ¢
Barton Systems 2131 Barton Hills Dr, AUSTIN, TX 78704 Esteban Galvan Austin
Health Foods Bowie Street 550 Bowie Street AUSTIN, TX 78703 Sherry Maloof Austin
Nexus Innavations 7-12, Bristol Avenue AUSTIN, TEXAS 78737 Andrew Scott Austin
Pinnacle Technologies 400 Congress Avenue AUSTIN, TX 78701 Anthony Smith Austin
Wells Fargo 2300 Oracle Way, AUSTIN, TX Matias Jet Austin

ORACLE

84

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

7. Once you're happy with how the picker looks, repeat these same steps for the edit layout.

When configuring a second layout, you don't have to create a new field template and configure the picker
fragment again; you can select the field template that you created in this procedure.

You also don't need to configure the picker layout a second time.
8. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

« Workspace2 > extend-next-gen-sales.git/20220830 :
ol Git @ D detail
4. Q. Filter Switch Branch
&= » Changed (1) Commit. Commit
e Pull
e
@ Merge
| Reset to HEAD
(%) Q

Display Different Fields in a Picker

Depending on how you use the context parameter in the cx-picker fragment, you can display different fields in the
picker at runtime. For example, the picker could display either Field A or Field B.

To display different fields in a picker, use the context parameter. You'll also have to do the following:

- create a custom variable
update the picker layout display properties in the picker object's JSON

Let's look at an example using the Account picker documented in Configure the Picker.

In this example, the picker you already created includes both the Address and Primary Contact fields.

85
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

Chapter 2
Add a Custom Top Level Object

objects?

Account e

austir] N ‘ o ‘
Name < Address < Primary + City =

Contact

Barton Systems 2131 Barton Hills Dr, AUSTIM, TX 78704 Esteban Galvan Austin
Health Foods Bowie Street 550 Bowie Street AUSTIN, TX 78703 Sherry Maloof Austin
Nexus Innavations 7-12, Bristol Avenue AUSTIN, TEXAS 78737 Andrew Scott Austin
Pinnacle Technologies 500 Congress Avenue AUSTIN, TX 78701 Anthony Smith Austin
Wells Fargo 2300 Oracle Way AUSTIN, TX Matias Jet Austin

Using the context parameter, you can instead show either the Address or Primary Contact field, depending on the value

of a custom variable.

Here's how to set this

1. Create the Cu

First, create the custom variable on the picker's object:

1. On the Layouts side tab, click the CX Sales > Accounts node.

up:

stom Variable

» |4b Accounts

(- Layouts -
4 |Q Filter
-
G » %Order_c
& » 4% Ravmentc

3 %Shipment_c
[3

From Dependencies

3

¥ (X Sales

cuhAhUN

Click Create.

On the Accounts tab, click the Variables subtab.
Click + Variable.
In the Create Variable dialog, make sure the Variable option is selected and, in the ID field, enter showcontact.
In the Type field, select Boolean.

ORACLE

86

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

2. Add the Condition to the Picker Display Properties

Next, add the condition (which field to show depending on the value of the variable) to the picker layout display
properties in the Account object's JSON.

1. On the Accounts tab, click the JSON subtab.
2. Find the picker layout display properties.

w

9
1@
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Rule Sets (23)

Iy

% Accounts X

Fields Templates (21) Actions

"addLayouts": {

1

"default_copy": {

Event Listeners

"expression”: "[[‘default_copy']]1"

}

"addsubLayouts™: {

"/PickerLayout™: {

"default copy": {
"layoutType": "table",
"layout™: {

"displayProperties”: [
"OrganizationName”,

"FormattedAddress”,
"PrimaryContactiame”,

"City”
1
"fieldTemplateMap”: {},
"readonly": true
I
"usedIn": [
"default_copy"

3. Inthe display properties section, replace the two lines for the "Formattedaddress" and "primaryContactName"
fields with a single line:

"{{ $componentContext.showContact ? 'PrimaryContactName' :

'FormattedAddress' }}",

ORACLE

87

Oracle Fusion Cloud Sales Automation

Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object

objects?

3. Set the Value of the Variable in the Picker Fragment

Finally, define the value of the variable (true or false) in the picker fragment itself.

1. On the Layouts side tab, click the Payment_c node.

-} Layouts +
‘ Q. Filter

4

4 PaymentLinesCollection_c

® » 4 Shipment.s

2. Onthe Payment_c tab, Templates tab, click the AccountPickerTemplate template.

ORACLE

88

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

3. Make sure the fragment code is selected, as illustrated in this screenshot.

£ Return to page
X4
53 <template id="accountPickerTemplate™s

54 <oj-vb-fragment bridge="[[vbEr

56 <foj-vb-fragment>
<ftemplates

Live l Design

ge]]” name="oracle cx_fragmentsUI:cx-picker”> S

<0j-vb-fragment - param - name="dynamicLayoutContext™ value="[[- fdynamicLayoutC o

Code

same thing.
Search Exchange

| Q. Filter

B VSHIIGUE [IWF ILRGE SISy
~ ™ Fragment Container
Fragment Input Parameter (resource)
Fragment Input Parameter (extensionic
Fragment Input Parameter (dynamicla

= Template (accountPickerTemplate)

~| ™ Fragment Container

Fragment Input Parameter (dynamicla

Structure

Chapter 2
Add a Custom Top Level Object

Tip: On the Structure pane, selecting the Fragment Container node for the picker template accomplishes the

4. On the Properties pane for the cx-picker fragment, in the Input Parameters section, set the value for the
context parameter. You can set the showContact variable to true or false:

[[{'showContact':true} 1]
or

[[{'showContact':false}]]

ORACLE

89

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

4. Test Your Setup

You can now test each variable setting.

1. Preview your extension and test the picker with the showContact variable as true:

Account hd

Name < Primary Contact| City <

BlueSky Manufacturing

Time Variance Authority Tara Minnuts Kimberling City

2. Next, preview your extension and test the picker with the showContact variable as false:

Account

Name 2 > City <

BlueSky Manufacturing

Time Variance Authority 76 South,KIMBERLING CITY, MO 65686 Kimberling City

Add a Mashup to a Page

For any Redwood Sales object, standard or custom, you can configure its detail page to include a mashup that
references a publicly available URL. You create the mashup in Oracle Visual Builder Studio.

For example, you can add a Wikipedia page to a payment's detail page. At runtime, when the user views a payment, the
user can enter Show Wikipedia into the Action Bar. The Show Wikipedia action lets the user view a related Wikipedia
page without having to leave the payment record.

Add a Mashup to a Detail Page

Let's walk through an example of adding a mashup. In this example, we'll add a mashup to a payment's detail page.

In Visual Builder Studio, click the App Uls tab.

Expand cx-custom > payment_c, then click the payment_c-detail node.
On the payment_c-detail tab, click the Page Designer subtab.

Click the Code button.

PUWNa

Live Design Code

90
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

5. Confirm that you are viewing the page in Page Designer.

v Page

Templates

6. Remove the comment tags for the dynamic container components that contain the panels and subviews.

2 <oj-vb-fragment bridge="[[vbBridge]]” names="oracle c¢x_fragmentsUI:cx-detall”™ class="oj-flex-ites
3 <0j-vb-fragment -param name="resources”

4 value="[[{'Payment_c" : {'puid’: $variables.puid, "id": $variables.id, "endpoint’: Sapplic
5 </oj-vb-fragment - param>

6 <oj-vb-fragment-param name="header"”

7 value="[[{'resource’: $flow.constants.objectName, "extensionId®: Sapplication.constants.ex
8 <foj-vb-fragment -param>

9 <oj-vb-fragment -param name="actionBar”
18 value="[[{ "applicationId™: "ORACLE-ISS-APP", "resource”: {"name”: $flow.constants.objectn
11 <foj-vb-fragment -param>
12 <oj-vb-fragment - param names="panels”
13 value="[[{ "panelsMetadata": $metadata.dynamicContainermetadata, "wiew™: $page.variables.wv
14 <foj-vb-fragment - param>»
15 <0j-vb-fragment -param name="context"” wvalue="[[{ flowContext': $flow.variables.context}]]"»<
16 </0]j-vb-fragment>
17
18 ¢o]-dynamic-container layout="PanelsContainerLayout" layout-provider="[[$metadata.dynamicConta
19 class="oj-flex-item oj-sm-12 oj-md-1"></07-dynamic-containers
20 <oj-dynamic-container layout="SubviewContainerLayout™ layout-provider="[[$metadata.dynamicCont
21 < /o] -dynamic -containers
23

7. Highlight the <oj-dynamic-container> tags for the subviews.

<div class="o0j-flex"»

<oj-dynamic-container layout="SubviewContainerLayout™ layout-provider="[[$metadata.dynamicCol

class="0j-flex-item oj-sm-12 oj-md-12"></0j-dynamic-container>

<fdive

o

On the Properties pane, in the Case 1 region, click the Add Section icon, and then click New Section.
9. In the Title field, enter a title for the section, such as wikipedia.

10. Inthe ID field, change the value to wikipedia.

11. Click OK.

9N
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

12. Manually update the template's JSON with the correct subview name.

a. On the payment_c-detail tab, click the JSON subtab.

b. Inthe section for the SubviewContainerLayout section template layout, replace the sectionTemplateMap

and displayProperties Values to match the subview's ID name, wikipedia.

In our example, this is what the SubviewContainerLayout sectionTemplateMap and displayProperties

should look like:

"layouts": {
"subviewContainerLayout"”: H
"label™: "Container Rule Set 1",

"layoutType": "container",
"layouts": {
"casel": {

"label": “Case 1",

"layoutType": "container”,

"layout™: {
"sectionTemplateMap™: {

Fs

"displayProperties”: [

"PaymentLinesCollection c¢",
]
}
}

bs

“rules”: [
"containerLayoutl-rule2”

]
}s

"PaymentLinesCollection_c": "paymentLinesCollectionC”,
“wikipedia”

13. Still on the payment_c-detail tab, click the Page Designer tab.

ORACLE

92

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
14.

15.

16.

17.

On the Properties pane, click the Wikipedia section that you just added.

Display Logic
-+ Case
Case 1 ® :

Condition
Always Show

Sections +
PaymentLinesCollection_c

Wikipedia

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
mashup template.
Click the Code button.

Live Design Code

In the template editor, find the mashup template tags.

< Return to page

38

39 <template id="wikipedia">
40 ¢/template>

11

Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
update the values for the titie and url parameters as needed.

<template id="wikipedia">

<oj-vb-fragment bridge="[[vbBridge]]" name="oracle cx fragmentsUI:cx-url">
<oj-vb-fragment-param name="dynamicLayoutContext" value="{}"></oj-vb-fragment-param>
<oj-vb-fragment-param name="mode" value="embedded"></oj-vb-fragment-param>
<oj-vb-fragment-param name="title" value="Wikipedia"></oj-vb-fragment-param>
<oj-vb-fragment-param name="url" value="https://en.wikipedia.org/wiki/"></oj-vb-fragment-param>
</oj-vb-fragment>

</template>

This table describes the parameters that you can provide for a mashup:

Parameters for Mashup
Parameter Name Description
title Enter the title of the mashup, which displays in the subview Ul.

93

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?
Parameter Name Description
url Enter the mashup's URL.
94

ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 2

Add a Custom Top Level Object

18. Comment out the dynamic container component from the payment_c-detail page.

a. Click < Return to page.

< Return to page

33 value="[[{ "name': $flojy
34 <oj-vb-fragment-param name;
35 </0j-vb-fragment>

36

37 «/template>

38

39 «<template id="wikipedia">»

49 <0j-vb-fragment bridge="[[vbj
a1 <oj-vb-fragment-param name;
a2 <oj-vb-fragment-param name;
a3 <oj-vb-fragment-param name;
44 <0j-vb-fragment-param name;
45 </oj-vb-fragment>

46 themplate>

a7

b. Click the Code button.

c. Comment out the dynamic container components that contain the panels and subviews.

t bridges"[[vbBridge]]” names="oracle cx fragmentsUl:cx-detail™ class="oj-flex-ite

4 Wrces
value="[[{ Payment_c" id': $variables.puid, "id": $variables.id, 'endpoint’: $applic
<foj-vb-fragment -param>
<oj-vbh-fragment -param name="header"

value="[[{'resource’: $flow.constants.objectName, 'extensionId’: $application.constants.ex
<foj-vb-fragment -param>
<oj-vb-fragment -param name="actionBar”

value="[[{ "applicationId™: "ORACLE-ISS-APP", "resource”: {"name”: $flow.constants.objectn
</oj-vb-fragment -param>
<oj-vb-fragment - param names="panels”

value="[[{ "panelsMetadata": $metadata.dynamicContainermetadata, "wiew™: $page.variables.v
<foj-vb-fragment - param»
<0j-vb-fragment -param name="context"” wvalue="[[{ flowContext': $flow.variables.context}]]"»<

¢f0]-vb-fragment>

¢o]-dynamic-container layout="PanelsContainerLayout" layout-provider="[[$metadata.dynamicConta
class="oj-flex-item oj-sm-12 oj-md-1"></0j-dynamic-container>
<oj-dynamic-container layout="SubviewContainerLayout™ layout-provider="[[$metadata.dynamicCont

< /o] -dynamic -containers

Note: To add more subviews, you must first un-comment the dynamic container component so that
you can add a new section for each desired subview.

19. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

> ©® Q ‘ Publish | =

ORACLE

95

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
20. The resulting preview link will be:

https://<servername>/fscmUI/redwood/cx-custom/payment c/payment c-list
21. Change the preview link as follows:

https://<servername>/fscmUI/redwood/cx-custom/application/container/payment_c/payment c-list

I Note: You must add /application/container to the preview link.

The screenshot below illustrates what the list page looks like with data.

All Payments Actions T

S Try searching by ke Al Filtes

— —— TN CEES S
63 Results
Payment Name 2 Creation Date < Last Updated Date < Actions

O #a 10719422 10:03 PM 11717023 4:23 AM
O Payment for Qrder 1020 1141722 2:06 AM 117723 4:42 AN
O 1 C ! 1173722 737 P 12/19/22 523 PM
(] 117422 616 PM 11722 16 PM
O Movskvi 1177422 6045 P 1177722 &45 P

22. If data exists, you can click any record on the list page to drill down to the detail page. The detail page, including
header region and panels, should display.

23. Inthe Action Bar, enter show wikipedia.

T All Payments

Payment for Laptops ©

Amount 1,000 Discount 5%

» show wikipedia X

W Show Wikipedia

96
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

24. C(Click Show Wikipedia.

The Wikipedia mashup displays:

T Al Payments

Payment for Laptops @
nt 1,000 [nt 5%

= Goto Dveivies

Wikipedia

=) WIKIPEDIA

The Frw Eseycloperdia

Qs Search

Man Page Ta

Welcome to Wikipedia

the Tren encyclopeda thal asvone can o

&7 kst

From today's featured article I the|

Intersiate $ (1-50) is an east-wes! ransconsnental = Stor

iragway and the longest Intersialn Mighway in the caug

Unked States at 3021 miles. (4,862 km). i runs from Madi

Seattle. Washington, to B it dam:

passing through the P, PR

Wesl, Greal Plains, ® An e

R AT e Fighroiny S80vis 13 Sitis and has 15 & mare

oonbiguous Uiniied Siaies

ORACLE

97

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

25. Save your work by using the Push Git command.

Chapter 2
Add a Custom Top Level Object

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the

Git repository).

< Workspace2 > extend-next-gen-sales.git/20220830 .

L Q Filter

» Changed (1) Commit

o Git B

Switch Branch

Cormmit

Pull

Merge

Reset to HEAD

O detail

Ke

Add a Rollups Region to a Panel

Rollups summarize data across records, for an attribute of a business object and its related objects. The summarized
value of a rollup appears as a business metric inside a panel on an object's detail page. You can add new rollups to a

panel using Oracle Visual Builder Studio.

Where Do Rollups Appear?

Rollups appear inside panels on an object's detail page.

You can add rollups, either predefined or custom, to panels for both custom and standard objects. Some panels for

standard objects are already delivered with a rollups region.

Here's a screenshot of a rollup that displays in a panel for a payment.

ORACLE

98

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?

T All Payments

Payment for Laptops ©

EEEE] Fevrent Dste /3123 Amount 1000 Discount 5%
H

- M UL _—
Payment Lines Shipment Contacts from Bundle

i . 70060 Manual 1 Shigament Brandon C Hooper
4 /723841 P BAT2IFIZAM
Tillerey Payrreert
£ 1000 Mamual Shigament Gustay Sebald
817723 723 TS PM BAT2I3F12AM

1000 Dwrector
BOA Payment
2,000 - May Shiprivent Walsh Hooger
&/5723 677723 4.29 AM B/17/23 158 AM
1,000
S Bank Payment
W =000 Apr Shapment John Hooper
&/5723 L=l 67725 257 AM 810723 38 PM
4,000
Wells Payment
W R Mar Shipment Justin Garmble
&1723 L=l o625 9:21PM S/13/23 T:51 PM
3000 WP, Purchasging
i Il Pasger Li I i il i i Il C acts fr Bu

You can add a predefined or custom rollup to a panel.
Before adding a custom rollup, you must first create the custom rollup.
1. In Application Composer:
o For the desired object, create a rollup object and fields.

o Then, create and publish the fields as rollups.

2. Inthe Sales Setup and Maintenance work area, in the Configure Adaptive Search task, enable the rollup object
and attributes.

In the following example, we'll use a rollup object, called RollupObject, created for the Payment object. The RollupObject
object has these fields:

- Number of Payment Lines (number field)

- Total Amount (currency field)

Create the Rollup Layout and Rule Set

To add a rollup to a panel, you must first create a layout for the rollup. You can then add the rollup layout to the panel.
Let's look at an example of adding a rollup to the Payment Lines panel on a payment's detail page.

First, create the rollup layout:

1. In Visual Builder Studio, click the Layouts tab, then click the Create Layout icon.

99
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

B

objects?
-] Layouts
4 ‘ Q. Filter
L] L
=

- & Payment_c

Nej
& 4 Shipment_c
i) 47 Contacts

4 PaymentContactMMInter_Src_

4 PaymentLinesCollection_c

2. Inthe Create Layout dialog, click the REST resource for your child object.

Chapter 2
Add a Custom Top Level Object

In our example, the rollup object is called RollupObject. So, expand cx-custom and click Payment_c/

RollupObject_c.

Create Layout

B

-

Payment_c/Paym
entLinesCollectio
n_c

Choose the source of your data

7

\

Payment_c,/Rollup

“\

E.

Object_c

/

3. Click Create.

Next, create the associated rule set.

1. On the RollupObject_c layout tab, click + Rule Set to create a new rule set for the layout.

a. Inthe Create Rule Set dialog, in the Component field, select Dynamic Form.

b. Inthe Label field, enter PaymentLinesRollup.
c. Inthe ID field, change the value to PaymentLinesRollup.

d. Click Create.

ORACLE

100

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
2. Add the rollup fields to the layout.

a. Click the Open icon next to the default layout.

4%, RollupObject ¢ x

Rule Sets (1) Fields Templates Actions Event List

¢ Rule Sets lPaEmentLinesﬂolluel

LR o

El default O 1

Layouts

b. Click the cx-panel-rollup fragment.

This fragment provides the format for the rollup region.

™ cx-panel-rollup Application Comp...

oracle_cx_fragmentsUl:cx-panel-rollup

c. The rollup layout includes two slots. From the list of fields, drag a rollup field to the desired slot.

For example, drag the TotalAmount_c field to the item2 slot.

% RoflupObject © =

Rule Sets (1) Frelds Templates Actions Event Listeners Events Types WVarlables JanvaSeript FSOM Settings
¢ RuleSets PaymentLinesRollup Layout default
£ O Fillter & ~ Set oracle_cx_fragmentsUl.cx-panel-rollup parameters
T
[
A, item

ﬂ i#* HumberOiPaymentLin

§
l_ # NumberOfPaymentLines_c I

. :
O A Payment_id_ A toarm

|:| A RecordMame
D #* Shigementimount_¢

O # TotalShipmeni_c

Add the Rollups Region to the Panel

In the previous section, you configured the rollups region using a layout and rule set.

101
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object

objects?
Next, add the rollups region to a panel by adding a parameter to the panel's page and template. Here's how:

In Visual Builder Studio, click the App Uls tab.

Expand cx-custom > payment_c, then click the payment_c-detail node.
Click the payment_c-detail tab, then click the Page Designer subtab.
Click the Code button.

PN

| Live Design Code

5. Select Templates from the drop-down list.

[E'.] payment_c-detail X

Page Designer Actions (3) Event Listeners (1) Events Tvp
Z ‘ Q. Filter, Alt+F | = | Templates ~

= .

5

% ~ Redwood Patterns Page

=]

“ Bottom Drawer Template

v Templates

Calendar

T

6. Add the following parameter to the fragment code.

<oj-vb-fragment-param name="rollupLayoutId" value="PaymentLinesRollup"></oj-vb-fragment-param>

Be sure to replace the rollupLayoutid parameter's value with the appropriate value.

The resulting template code should look something like this:

<template id="paymentLines">
<oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx_fragmentsUI:cx-panel">

<oj-vb-fragment-param name="resource"

value='[[{"name": $flow.constants.objectName, "primaryKey": "Id", "endpoint":
$application.constants.serviceConnection }]]'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate",b "direction":
"desc" }]1 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="query"

value='[[[{"type": "selfLink", "params": [{"key": "Payment__c_Id", "value": $variables.id }1}]1 11'></
oj-vb-fragment-param>

<oj-vb-fragment-param name="child" value='[[{"name": "PaymentLinesCollection c", "primaryKey": "Id",
"relationship": "Child"}]]'></oj-vb-fragment-param>

<oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>

<oj-vb-fragment-param name="extensionId" value="{{ $application.constants.extensionId }}"></oj-vb-
fragment-param>

<oj-vb-fragment-param name="rollupLayoutId" value="PaymentLinesRollup"></oj-vb-fragment-param>

</oj-vb-fragment>

102
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

</template>

Chapter 2
Add a Custom Top Level Object

17 J<oj-vb

18 <foj

<ftemplate

Select Page from the drop-down list.

Page

v Page

Templates

8. Replace the existing resource parameter with the following code:

<oj-vb-fragment-param name="resource"
value="[[{'name':'Payment c',

'RollupObject c'}]1">

'puid': $variables.puid,
Sapplication.constants.serviceConnection ,'extensionId': $application.constants.extensionld,

'id': $variables.id, 'endpoint':

'rollup':

Be sure to replace all attribute values with the appropriate values for your scenario.

The resulting code should look something like this:

<oj-vb-fragment bridge="[[vbBridge]]" name="oracle_cx fragmentsUI:cx-detail" class="oj-flex-item oj-

sm-12 oj-md-11"

on-view-change-event="[[$listeners.fragmentViewChangeEvent]]">

<oj-vb-fragment-param name="resource"
value="[[{'name':'Payment c',

'RollupObject c'}]1">

<oj-vb-fragment-param name="header" value="[[{'resource': $flow.constants.objectName,

'puid': $variables.puid,
$application.constants.serviceConnection ,'extensionId': $application.constants.extensionld,

'id': $variables.id, 'endpoint':

'rollup':

'extensionId':

$application.constants.extensionId }]]"></oj-vb-fragment-param>

<oj-vb-fragment-param name="actionBar" value='[[{

"applicationId":

"ORACLE-ISS-APP",

"subviewLabel":

{"PaymentContactMMInter Src Payment cToPaymentContactMMInter c_Tgt":

$translations.CustomBundle.Contacts ()},

nId" ,

"puid":

"resource":
"Id", "value": $variables.puid }}]]'></oj-vb-fragment-param>

{"name": $flow.constants.objectName,

"primaryKey":

<oj-vb-fragment-param name="panels" value='[[{ "panelsMetadata": $metadata.dynamicContainerMetadata,

"view": $page.variables.view }]]'></oj-vb-fragment-param>
<oj-vb-fragment-param name="context" value="[[{'flowContext':
fragment-param>

<oj-vb-fragment-param name="row" value="{{ $variables.row }}"></oj-vb-fragment-param>

</oj-vb-fragment>

ORACLE

$flow.variables.context}]]"></oj-vb-

103

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

Test Your Panel

Test the rollups by previewing your application extension from the payment_c-list page.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

> ©® Q ‘ Publish | =

The screenshot below illustrates what the list page looks like with data.

All Payments Actions T

= | Try searching by losw Add Filter

—— TN CEES S
63 Results
Payment Name 2 Creation Date < Last Updated Date < Actions

O Paymens, Oct invoice 101522 1005 P AT/ 25425 AN
O Payment for Order 1020 1101722 2:06 AM 1117723 4:42 AM
O Payment 11/2 for Octaber 15 ordér 1173722 737 P 12/19/22 523 PM
O Hev7_Rect 1177722 616 FM 1177722 816 PM
O HevsiA 1147722 6:45 P 1177722 &:45 PM

104
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 2
Add a Custom Top Level Object

2. If data exists, you can click any record on the list page to drill down to the detail page. The detail page, including
header region and panels, should display.

You should now see the Payment Lines panel on the detail page, with a region for rollups.

T Al Payments

Payment for Laptops <@

payment ot 531723

» Try e Note

nount 1,000 Discount 5%

Payment Lines

7.000

BCE
e} X
) 3

Zillrw Payrivnt
1000
BA1T/23

BOA, Payrient

2,000 (Primary)

&/5/23

S Bank Payment
IV =000
&/5/23

Wells Payment

L 1,000
6/1/23

Wigswr All Pasrment Lines (4]

Shipment

Mamual1 Shigment
L0 67723841 PM

Mamual Shiparent
&/7723 315 PM
1000

May Shipment
677723 4:29 AM
1000

Apr Shipment
67725 257 AM
4000

Mar Shipment
G625 %21 PM
3,000

0000

View All Shipment (7)

Contacts from Bundle

Brandon C Hooper
AT TIIAM

Gustay Sebald
B/17723 312 AM
Director

Walsh Hooger

B/17/23 2:58 AM

Jahn Hooper
B/ 1623 &3 PM

hustin Garmible
51323 T:51 PM
WP, Purchasing

Wiew All Contacts from Bundle [12)

ORACLE

105

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

3. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the

Git repository).
« Workspace2 > extend-next-gen-sales.git/20220830
ol Git @ D detail
A O\ Filter Switch Branch
» Changed (1) Commit. Commit
Pull
Merge

Reset to HEAD

Ke

|°¢'|D@E>‘b®

Understanding "Show" Actions

Whenever you add a subview, a Show action is automatically created. The Show action displays in the Action Bar so that
users can display the related subview. Show actions are not smart actions and you don't need to manually create them.
The only change you might want to make for Show actions is the label. Each Show action string is hard-coded but you
can change it to a string that can be translated.

What's a Show Action?

Show actions are similar to smart actions because they are both available from the Action Bar. However, Show actions
are not smart actions. Instead, Show actions are actions that are automatically displayed specifically so that users can
navigate to subviews for various objects.

For example, these Show actions were automatically created when you added subviews for the below objects:

106
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

Payment for Laptops ©

Owner Pahilajani Haresh Last Update Date 11/29/23 1:57 AM Creation Date 5/31/23 5:57 AM

© show|Attachments *

B show Attachments
Show Contacts
Show Notes

Show Payment Lines

Show Shipment

Show Action Labels

The labels for Show actions are derived from each subview's display property. The display property was specified when
the section was initially added for the subview. You can view subview display properties on the detail page's JSON.

% payment_c-detall x

Page Designe Actions Event Listeners Events Types Variables (2 JavaSeript JSON Settings
a2 "subviewContainerLayout”: {

43 "label™: "Container Rule Set 1%,

a4 "layoutType™: "container”,

as "layouts”™: {

a6 “casel™: {

47 "label": "Case 1",

A8 "layoutType”: “container”,

49 "layout™: {

50 “sectionTemplateMap”: {

51 "PaymentLinesCollection_c™: "PaymentLinesCollection_cSubviewTemplate”,
52 "Attachment™: “AttachmentSubviewTemplate"”,
53 "Note": "NoteSubviewTemplate™,

54 "Wikipedia": “"wikipedia”

55 L

56 |"displayProperties”] [

57 "PaymentLinesCollection ¢”,

58 "Attachment™,

59 "Note™,

61]

62 }

Since Show action labels are automatically derived from the display property strings, the labels are hard-coded and not
translatable. If needed, you can make them translatable.

Create a Translatable String

Let's look at an example. If you add a subview for a mashup that displays Wikipedia, then the Show Wikipedia action is
automatically created without any action required on your part.

107
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

T All Payments

Payment for Laptops ©

Amount 1,000 Discount 5%

> show wikipedia X

W Show Wikipedia

But, maybe you have users who need to see the Show Wikipedia string in Korean. In that case, you can change the hard-
coded string to a string that's translatable.

To create translatable Show actions:

1. Add the translatable string to your custom translation bundle.

See Create a Translation Bundle, If You Don't Have One Already.
2. Create a constant that refers to the string in your translation bundle.

a. Onthe payment_c-detail tab, click the Variables subtab.
Click + Variable.

c. Inthe Create Variable dialog, make sure the Constant option is selected and, in the ID field, enter
subviewLabel.

d. Inthe Type field, select Object.
e. Click Create.

f. On the Properties pane for the new subviewLabel constant, in the Default Value field, enter the
reference to the string that you added to the translation bundle.

Use the following format, where the first wikipedia instance is the subview's display property and the
second wikipedia instance is the string key that you added to the translation bundle:

{"Wikipedia":"[[$translations.CustomBundle.wikipedia() 1]"}
Be sure to replace the translation bundle name and string with your own information, as needed.

If you have multiple subviews and you need translatable Show actions for each one, then you can add
that to the default value for the subviewLabel constant. For example:

{
"PaymentContactMMInter Src_Payment cToPaymentContactMMInter c Tgt":"[[$translations.CustomBundle.Contact:
"Wikipedia":"[[$translations.CustomBundle.wikipedia()]1"

}

108
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?
3. Add the new subviewLabel constant to the payment_c-detail page's cx-detail fragment code.
a. On the payment_c-detail tab, click the Page Designer subtab.
b. Click the Code button.

Live Design Code

c. Add the subviewLabel constant to the "actionBar" parameter in the fragment code, as follows:
"subviewLabelExtension": $page.constants.subviewLabel
The fragment code should look like the below sample. Be sure to replace payment _c with your custom

object's REST API name.

<oj-vb-fragment bridge="[[vbBridge]]" name="oracle cx fragmentsUI:cx-detail" class="oj-flex-item
oj-sm-12 oj-md-12">

<oj-vb-fragment-param name="resources" value="[[{'Payment c' : {'puid': $variables.id, 'id':
$variables.id, 'endpoint': $application.constants.serviceConnection }}]]"></oj-vb-fragment-
param>

<oj-vb-fragment-param name="header" value="[[{'resource': $flow.constants.objectName,

'extensionId': $application.constants.extensionId }]]"></oj-vb-fragment-param>
<oj-vb-fragment-param name="actionBar"

value='[[{ "applicationId": "ORACLE-ISS-APP", "resource": {"name": $flow.constants.objectName,
"primaryKey": "Id", "puid": "Id", "value": $variables.puid }, "subviewLabelExtension":
$page.constants.subviewLabel }]]'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="panels" value='[[{ "panelsMetadata":
$metadata.dynamicContainerMetadata, "view": $page.variables.view }]]'></oj-vb-fragment-param>
<oj-vb-fragment-param name="context" value="[[{'flowContext': $flow.variables.context}]]"></oj-
vb-fragment-param>

<oj-vb-fragment-param name="row" value="{{ $page.variables.row }}"></oj-vb-fragment-param>
</oj-vb-fragment>

Add the CreatedBy and LastUpdatedBy Fields to Notes
Panels and Subviews

Users can add notes to a record, and those notes will display on a Notes panel as well as on a Notes subview page. As
an administrator, you can optionally display the CreatedBy and LastUpdatedBy fields for each note. If you add either
of these fields to a Note layout, then you must use a specific field template so that the user names display correctly at
runtime. This topic illustrates how to add the correct field template.

In this example, we'll add the LastUpdatedBy field to the Notes panel and subview that display on a Payment record. You
can follow the same set of steps if you want to display the CreatedBy field, as well.

Update the Field Templates File

In the field templates file, add a new field template.

1. In Visual Builder Studio, click the Source side tab.

2. Onthe Source side tab, navigate to extension1 > sources > dynamicLayouts > self > field-templates-
overlay.html.

109
ORACLE

Chapter 2
Add a Custom Top Level Object

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?
3. Inthe field-templates-overlay.html file, add this field template:

<template id="userNameTemplate'>
<oj-vb-fragment name="oracle_ cx_ fragmentsUI:cx-profile" bridge="[[vbBridge]]">
<oj-vb-fragment-param name="user" value="[[{ 'userName' : $value() }]]"></oj-vb-fragment-param>

</oj-vb-fragment>
</template>

Add the LastUpdatedBy Field to the Panel

Add the LastUpdatedBYy field to the Notes panel that displays on a Payment record.

1. In Visual Builder Studio, click the Layouts side tab.
2. On the Layouts side tab, click the Payment_c > Note node.
3. Click the Rule Sets subtab.
4. C(lick the Panel Card Layout rule set.
5. Click the Open icon to edit the default layout.
O payment clist x | 4 Note x
Rule Sets (4) Fields (1) Templates (3) Actions Eve
Rule Sets Panel Card Layout ~
P . .
Qe o=
s |)
-
E default O &

6. Select the field, LastUpdatedBy, from the field list and drag to the desired location on the panel layout.

| 1ﬂ¥|]lE‘IlI_r-]i‘>t ® %Nnt? *

Rule Sets (4) Fields Templates (3 Actions Event Listeners Events Types
A Notelitle
A LastUpdateDate

| & A Lastupdatedsy A\ item2
OA LastUpdateLogin A LastUpdateDate
O A Noteld
O A NoteMumber A item3
A NoteTitle A LastUpdatedBy]
M A NereTyr

7. Associate the LastedUpdatedBy field with the userNameTemplate field template:

a. On the Note tab, click the JSON subtab.
b. Inthe "PanelCardLayout" section, add a "fieldTemplateMap" section with a row for the LastedUpdatedBy

field:

10
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 2
Add a Custom Top Level Object

r
"fieldTemplateMap": {
"LastUpdatedBy": "userNameTemplate"
}

The resulting JSON will look like this:

4% Mote x

Rule Sets (4) Fields (1) Templates (3) Actions Event Listeners JavaScript
55 "panelcardLayout™: {

56 "type": "cx-custom”,

57 "layoutType": "form",

58 "label™: "Panel Card Layout”,

59 "rules": [

60 "panelsContainerLayout-rulel”

61 1,

62 "layouts™: {

63 "default”: {

64 "layoutType": "form",

65 "layout": {

66 "displayProperties™: [

67 "NoteTxt",

68 "LastUpdateDate",

69 "LastUpdatedBy"

70 1,

71 "templateId": "PanelCardTemplate”,
72 "labelEdge™: "none"

73

74 },

75 "usedIn": [

76 "PanelsContainerLayout-rulel”
77]

78 1

79 Y,

80 "fieldTemplateMap”: {

81 | “LastUpdatedBy": "userNameTemplate™
82 }

JS0N

ORACLE

m

Chapter 2
Add a Custom Top Level Object

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Add the LastUpdatedBy Field to the Subview

1. Switch to the Sub View Layout rule set.

0 payment_c-list x 4& Note x
Rule Sets (4) Fields (1) Templates (3) Actions Eve
Rule Sets . Panel Card Layout ~

‘ Q Fir Dynamic Form ‘

Create Layout

Layouts

[def:
Edit Layout

[Sub View Layout]

2. C(lick the Open icon to edit the default layout.
3. Select the field, LastUpdatedBy, from the field list, and drag to the desired location on the subview layout.

For example, drag the field to the item2 slot.

4& Note x

Templates (3) Actions Event Listeners Events Types

A item1

‘ A NoteTitle |

A item2

‘ A LastUpdatedBy |

4. Associate the LastedUpdatedBy field with the userNameTemplate field template:

a. Onthe Note tab, click the JSON subtab.
b. Inthe "SubViewLayout" section, update the existing "fieldTemplateMap" section with a row for the

LastedUpdatedBy field:

’

"fieldTemplateMap": {

12
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2

How do | create an application extension for custom Add a Custom Top Level Object
objects?

"NoteTxt": "noteTemplate",

"LastUpdatedBy": "userNameTemplate"

}

Test the Flow

You can now test the Notes panel and subview to confirm that they both display the name of the person who last
updated the note.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

2. The resulting preview link will be:

https://<servername>/fscmUI/redwood/cx-custom/payment_c/payment c-list
3. Change the preview link as follows:

https://<servername>/fscmUI/redwood/cx-custom/application/container/payment c/payment c-list

I Note: You must add /application/container to the preview link.

The screenshot below illustrates what the list page looks like with data.

All Payments Actions
<7 Adld Filnes
— [= - CEErA T S W

65 Results
Paymient Name 5 Creation Date % Last Updated Date S Actions
O Paryrneng, Oct invoice 10419722 10003 P 117725425 AM
O Paymeng for Order 1030 1171722 2:06 AM 1117023 4:42 AM
O Payment 1172 for Octaber 15 orde 1173422 737 PM 12719722 5:23 PM
O /7722 616 P 1177722 816 PM
O MoviEV1 117722 645 P 117722 645 PM

4. C(lick any existing payment to view its detail page.
In the Action Bar, enter create Note.
6. Click Create Note.

ui

The Create Note drawer displays.
7. Create a note and then click Create.

8. On the Notes panel, you should see the newly created note, along with the full user name, not the ID, of the
person who last updated the note.

13
ORACLE

Oracle Fusion Cloud Sales Automation

How do
objects?
9.

10.

| create an application extension for custom

Click View All Notes to view the Notes subview.

Chapter 2
Add a Custom Top Level Object

The subview should also display the full user name, not the ID, of the person who last updated the note.

T Payments

Payment for Laptops1 < : Notes

Crverer EXTH EXTH_AMS ast Update Date 01-09-2024 11205 PM Last Updated By EXTH_AMS
O Ty Add Contoct

LB B TR B S — A TSR
= Go to Overview

Today March 1, 2024 R

[P Testfor payrent
Bdant Hooper

Test for payment

P test

ENTH EXTN_AMS
Test1

Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

< Workspace2 > extend-next-gen-sales.git/20220830

ol Git (5) D detai
A Q Filter Switch Branch

& » Changed (1) Commit. Commit

s Pull

.

@ Merge

B Reset to HEAD
) £

ORACLE

14

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

Link to a Smart Action Using a URL

You can construct a URL that calls a smart action in the Redwood version of Sales. Construct this URL whenever needed
and then use it as a deep link. Depending on the smart action added to the URL, clicking the link will either execute a
smart action without involving a Ul (to delete a record, for example) or navigate directly to an open drawer on a Sales
page (to create a record, for example).

To construct the URL, append the smart action ID as a parameter to the detail page URL.

1. Obtain the smart action ID.

You can retrieve the smart action ID from Application Composer.
2. Obtain the URL of the detail page.

For example:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?
id=300000008600956&puid=38005&view=foldout

3. Append the smart action ID parameter as follows:

&actionId=<smart action ID>

4. The resulting URL can be used to link to a smart action:
For example:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?
id=300000008600956&puid=38005&view=foldout&actionId=SDA-Delete-accounts

Note that once the action is completed, the URL changes to:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?
id=300000008600956&puid=38005&view=foldout&actionId=completed

15
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 2
How do | create an application extension for custom Add a Custom Top Level Object
objects?

16
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks
objects?

5 Additional Configuration Tasks

Configure the Contents of a Panel

An individual record's detail page includes key information displayed in a region of panels. Each panel contains
information related to the record, such as related contacts and opportunities. Most panels display information in a list
format. You can configure these lists using Oracle Visual Builder Studio.

What's Inside a Panel?

A panel often contains a list, which you can configure. Here's an example of a list inside a panel:

Pinnacle Technologies ©

Activities Hierarchy Contacts Opportunities Leads

B B 1 Openariny

Lists can display up to 5 records, depending on screen size. If the screen size is small, then the list automatically adjusts
to display fewer records. However, users can click the View All link that displays at the bottom of the panel to navigate to
a second page to see all records in the list. This second page is called the subview.

What Can You Change in a List?

In Visual Builder Studio, you can modify the information that displays in each list.
You can:

- Add and remove fields

- Change the display order of fields in the list

This topic illustrates how to change the display order of fields that display on panels on an account's detail page. We'll
look at both the Contacts panel and Opportunities panel.

To configure the subview, see Configure the Subview Layout.

Change the Display Order of Contact Panel Fields

Let's change the display order of fields in a panel list. In this example, we'll switch the order of the email and phone
number fields on the Contacts panel on the Account detail page.

17
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks
objects?

Contacts

Joshua Baker
VP, Global

=3 Procurement m

joshua.baker_exei-_.. J[+]
+1(958) 555-1288

Forrest Gump
(W Chief Innovator
+1(713) 660-8512

Roger Glass

Director, Purchasing
roger glass_exei-test@oraclepd..
+1(551) 555-7539

View All Contacts (3)

1. In Visual Builder Studio, navigate to the Layouts tab and expand the CX Sales node > Accounts >
AccountContact.

The AccountContact node contains the rule sets for the Contacts panel on the Account object.

18
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?

1 Layouts =

4 Q. Filter

& y 4 Payment_c

S From Dependencies

o » Application Components

¥ (X Sales
3
- 4& Accounts
=

47 AccountContact

4 AccountRollup

P

47 AccountTeam

&

47 Address
47 ContactPoint
47 Note

47 SalesTeamMeml

Note: When configuring the contents of a panel, consider what kind of relationship the panel's object has
with the primary object. In this case, the Account object has a many-to-many relationship with Contact. This
means that you'll find layouts for the Contact object on the AccountContact node, nested under the Accounts
node.

19
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 3
Additional Configuration Tasks

2. O

n the AccountContact tab > Rule Sets subtab, click the Panel Card Layout.

accounts-detail X ccountContact X
4 Rule Sets (4) Fields Templates (4) Actions Event Listeners
© | Q. Filter
S .

~ Dynamic Form

N

Add Layout | cxsales
2 Page region where users can add a contact for an account.

Edit Layout | Oxsales
=

Page region where users can edit a contact of an account.

'

Panel Card Layout | Otsales
Page region where users can view account contact details in panel.

¢

~ Dynamic Table

Sub View Layout | O¢sales
Page region where users can view account contacts in sub view.

Both a default layout as well as a default rule are displayed for the Panel Card Layout.

=] [a....n.n..-.—.. ® A Arcerelomact ¥
. Panel Carnd Layow (Oxiaim) =
-] E Display Logic &
I
5 + e E) Stait by Supicating thve buit-n rube:
= fsom Dependonchrs
-] e Ak Trom Orperbencie tread aniy) ()
o I oo IiDetau e
u [+
. &——v| roum

ORACLE

120

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks
objects?

3. Click the Duplicate Rule icon.

Display Logic @

¢ > (1 Start by duplicating the built-in rule

Tell me more
From Dependencies (read-only) @

isDefault | CXSales f
’ p return El

4. Inthe Duplicate Rule dialog, accept the default rule name or enter a new name. The name you enter here is
both the rule name and also the layout name, so enter a layout name that makes sense for you.

Also, make sure that the Also create a copy of the layout checkbox is selected.

Duplicate Rule X

Name ~

isDefault_copy

Also create a copy of the layout

‘ Cancel | Duplicate

5. Click Duplicate.

The new rule displays at the top of the list of existing rules, which means that this rule will be evaluated first at
runtime. If the rule's conditions are met, then the associated layout is displayed to the user.

In this example, we're not adding any conditions which means that the associated layout will always be
displayed.

121
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 3
Additional Configuration Tasks

6. Modify the rule's copied layout.

a. Click the Open icon to edit the copied layout.

Display Logic @

\

isDefault_copy &

return

Click to add condition

isDefault_copy

- @~

al

isDefault

A </¥ return default

CX Sales

From Dependencies (read-only) @

b. Scroll down the list of fields in the layout until you locate the email and phone fields.

(m] [y accounis detail x

Ay AccoumiContact X

& Rule Sets 4 Fuelds Templates (3 A i
T LA Lona ety
= O A ContactSouceSystem
=] O A ContactiourceSystemBelenence\alue
& O A Creseosy
O A CrestecBymodule
= O A cCreaicnDate
L 0 © DecisionMaierFlag
&) O A pepartent
0O A DeparimeniCode
@

0 & Do siFsg

O & poEmaiFiag
0 & pooiCaliFlag
[© DoloiEmailFlag
0 A Emaitsddress

B 1} Emasitastiess el

Ewvenl

tlisteners Events (s
A e

{ } ContaciMame_hyperhnk

A tem2

A PersonlobTitle

A ttem3

{ } EmailAddress_email

A ttemd

{ } FormamiedPronstumber_phone

A4 Heem5 itemS only works with style a5 Tabel-cand

da Floceibla ol

JanvaSongpt

150N

Semings

c. Delete each field from the Item3 and Item4 slots, and then add the fields back. This time, however, switch
the order so that the phone field is in the ltem3 slot and the email field is in the ltem4 slot.

ORACLE

122

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?
= | E&dl’.(l‘lull'b-d!l‘ = ‘%Auﬂulﬂ(ul:lﬂ(l =
F Rule Sets (4) Fieldds Templates (4 A thans Event Listeners Events (51 Types Variables JavaSoript el Seftings
& O A Createdty A, tem
e O A createdgybode { } Contactiarne_mperink -
O A CreationDate
F O = DecisionMakerFlag A, Herd
o O A Department A PertonlobTite -
O A pepartmentCode
@ 0 = potailFiag frem
] 0 © DokmaiFlag { } FarmattedPhoneMurmnber_phone =
@ 0 =2 DoKotCaliFlag A e
O & pototEmailFisg
DAE . { } EmailAddress_email =
B2} Emsittaidress_emai A\ HemS item only works with style a5 Tabel-caed”
O (5] EmairverincationDate
0 A EmasinverificationSeacus

123
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

7. Click the Preview button to see your changes in your runtime test environment.

P ® Q

‘ Publish | =

Chapter 3
Additional Configuration Tasks

The preview link must include the application/container sSegments in the URL. If not, then change the preview

link using the following example URL:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?
id=300000003513233&puid=7050&view=foldout

T My Team's Accounts

Pinnacle Technologies ©

Account Score 180 Industry High technology

Activities

Connect with this Account

The last interaction with Pinnacle
Technologies was 21 days ago on the

View Details Dismitss

Pending

= Automatic Task:...
Susan Morgan
4/28/23

Recent
Identify Key decision mak...

Gutpa Atanu
6/6/23 6:00 PM

View All Activities (37)

Address 3903 Ambassador Caffery Pkwy,LAFA]

Contacts

Joshua Baker

VP, Global
Procurement

+1(958) 555-1288
joshua baker_exei- ™

~N
o

Forrest Gump
Chief Innovator
+1(713) 660-8512

Roger Glass
Director, Purchasing

‘T3 A M) |

+1(551) 555-7539
rogm.glass_exe&-test@cuacleptl./

. TREDLO T |

View All Contacts (3)

Change the Display Order of Opportunity Panel Fields

In this example, we'll switch the order of the sales stage and effective date fields on the Opportunities panel on the

Account object.

ORACLE

124

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 3
Additional Configuration Tasks

Opportunities

Potential Revenue

$ 3,744,140

June 2023 Opportunity
L al

01 - Qualification
7/18/23

Q2 Gas Generator Expansion
$ 271,865
07 - Closed

6/6/23

Diesel Engine Fall Opportunity
$0
01 - Qualification

6/25/23

Houston Tesla plant
$0
01 - Qualification

A3

View All Opportunities (23)

1. In Visual Builder Studio, navigate to the Layouts tab and expand the CX Sales node > Opportunities.

The Opportunities node contains the rule sets for the Opportunities panel on the Account object.

ORACLE

125

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?
Layouts +
: Q Filter
w (X 5ales
C

b ‘%Accnunts

» 47 Activities

b & Assets
4 CampaignMembers
47 Campaigns
47 CatalogProductGrol
47 Competitors

» 4 Contacts

@D@Dbﬁ]]

47 ConversationMessa
» 4 Deals
» 47 HubOrganizations
» 4 Interactions

» 4 Leads

» 4 Opportunities

» 4 PartnerContacts
» 4 Partners

47 Products

47 ProgramEnrollment

Note: When configuring the contents of a panel, consider what kind of relationship the panel's object has
with the primary object. In this case, the Account object has a one-to-many relationship with Opportunity.
This means that you'll find layouts for the Opportunity object on the Opportunities node.

126
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 3
Additional Configuration Tasks

2. On the Opportunities tab > Rule Sets subtab, click the Panel Card Layout.

+ 0

]

9D9E§'bm}

Layouts
Q. Filter

W LOMTETS

& ConversationMessa
& Deals

4 HubOrganizations
& Interactions.

& Leads

4 Opportunities

4 PartnerContacts
& Partners

4 Products

& ProgramEnreliment
4 Receivablesinvoices
& Resources

& SalesOrders

4 ServiceRequests
& SubscriptionProduc

4 Territories

I:a'l accounts-detall %

Rule Sets (12)

4 Opportunities =

Fields Templates (12 Actions Event Listeners

Q, Filter

~ Dynamic Form

Create Layout | cx sales
Opportunity Create Layout

Dashboard Card Layout | Cx Sales
Page region displaying oppartunity in dashboand,

Edlit Layout | cx Sabes.
Opportunity Edit Layout

Header Layout | X Sales
Opportunity Details Header Layout

Panel Card Layout | X sabes
Page region where users can view opportunities in a panel.

Panel Card Layout For Pariner | Cx Sabes
Page regon whete USers can view opportunines on summarny panel for Parner

Single Field Update Layout | cx Sales
Single Field Update Layouwt

Ewents (%

Both a default layout as well as a default rule are displayed for the Panel Card Layout.

&
B
(o

i]

L]
o
L

I'bumu.h et

Buile S5 (121

€ Prabe Sy

4 Oppoanaaties. =

Fiekts Templalesii2] | Adtiin

Paned Cord Lt | Ciben . %

Friuss Djurssstivar s

e bl

Bl ol

[+ . PR
L [Stawt by duplicating the Bulit.in nae
Frcmm Dompurenbers b 1wl wedyh (71
[T
v rovurn [E] defoutt x

3. Click the Duplicate Rule icon.

»

Display Logic @

[Start by duplicating the built-in rule
Tell me more

From Dependencies (read-only) @

lsDefault3

return

CX Sales

default

x

ORACLE

127

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?

4. Inthe Duplicate Rule dialog, accept the default rule name or enter a new name. The name you enter here is
both the rule name and also the layout name, so enter a layout name that makes sense for you.

Also, make sure that the Also create a copy of the layout checkbox is selected.

Duplicate Rule X

Name ~

1sDefault3_co p\,-{

Also create a copy of the layout

| Cancel ‘ Duplicate

5. Click Duplicate.

The new rule displays at the top of the list of existing rules, which means that this rule will be evaluated first at
runtime. If the rule's conditions are met, then the associated layout is displayed to the user.

In this example, we're not adding any conditions which means that the associated layout will always be
displayed.

128
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

6. Modify the rule's copied layout.

a. Click the Open icon to edit the copied layout.

Display Logic @
|
>
isDefault3_copy & B .

Click to add condition

return [isDetaultd copy - x

From Dependencies (read-only) (5

isDefaults | CX Sales.

ry <\ return defaulr

b. Scroll down the list of fields in the layout until you locate the sales stage and effective date fields.

I%acwum-s-delml * %Ugecrtunlilrﬁ ®

2 Rule Sets (12) Fields Templates (12 Actions Event Listeners Events (3
& OA BdgtAmount A item1

O A BdgtAmitCurcyld
= { } Mame_hyperlink

O [E BudgetavailableDate
O [& BudgetedFiag A item2

= :

a [B3 ChampionFlag A Revenue -

O { } childrevenue
@ |:| A ClosePenoad item3
B O A comments A, SalesStage
® O A conflictid

A itemd
O A CreatedBy
O A creationDate [5] EffectiveDate

s

Types

Variables

c. Delete each field from the Item3 and Item4 slots, and then add the fields back but switch the order.

ORACLE

129

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?
accounts-detail x Opportunities X
2 [accounts detan %
4 Rule Sets (12) Fields Templates (13) Actions Event Listeners Events (9)
€ A Revenue l { } Name_hyperlink l
=) O }RevenuePartnerPrimar-,r
O { } RevenueTerritory A item2
© [0 A RiskLevelCode [A Revenue » |
i O A salesAccountUniqueName
(A item3 N
e O A salesChannelCd
O A salesMethod | EffectiveDate |
B
O A salesMethodld
A\ itemd
LR A salesStage
SalesStage x
D A Suessagai \A stesseee x|

130
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

7. Click the Preview button to see your changes in your runtime test environment.

P ® Q

‘ Publish |

Chapter 3
Additional Configuration Tasks

The preview link must include the application/container segments in the URL. If not, then change the preview
link using the following example URL:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?

id=300000003513233&puid=7050&view=foldout

T My Teser's Accounis

180

Pinnacle Technologies <@

v Highechnology #

1903 Armbassadar Catfery Ploay LAFAYETTE. LA 70503 ittt wewen, Pirnache

Activities

Pending

Recent

Mecount Updated
By Guipa Aranu

Wiew All Activities (37)

Wi Durtails Drumins

Connect with this Account

Contacts

Joshua Baker

WP, Globa

Fosrest Gump
Chied Innovator

Roger Glass
E Director, Purchasing

s e et —

Opportunities

$3744140

une 2023 Opportunity
0
01 - L}n,o".luu;n

Q2 Ga3 Generstor Expansion
£ 271,865

07 - Cloged

Ddesel Engine Fall Opportunity
50

01- 6-.ﬂ‘:ll.|:l::?l

Heuston Tesla plant

50
_n et atinn

“\

0%

5)

~

=/

AR Opporunities (23]

Configure the Subview Layout

An object's detail page includes a region of panels with information. Each panel, however, can display only a few records
due to panel size. To see all records, users can navigate to a second page called a subview. This topic illustrates how to
modify those subview pages using Oracle Visual Builder Studio.

What's Inside the Subview?

A subview contains a list of all records that the panel, due to limited real estate, can't display.

For example, here's an example of an account detail page with 5 panels:

ORACLE

131

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

Chapter 3
Additional Configuration Tasks

L T in
Pinnacle Technologies © [——
- s wereesiogy Y0 Aemtssscion Cafery Py LAFRETTL LA 70523 oy - . " P—
— ——
Activities Hierarchy Cantacts. Opportunities Leads
ol wER i e = o Lt A s
R P n - o & FERe— .
= - i Ernarars Bennor,
ot | A
n [-
5 Autemans e (-] 1 s [::I .".'.',."
e i ﬂ Dt g
p il : = T [Ho—ry—
B e iy B S S it
) e T
8 s 4 Y =

Notice how each panel displays only a few records.

To see all records, users can click the View All link that displays at the bottom of the panel.

Here's an example of some View All links. Note that after the link itself, a number indicates the number of total records

listed on the subview.

Opportunities Leads
Patential Revenue
£ 3,744,140 Diesel Engine Lead

Forrest Gump
+1(713) 660-8512
June 2023 Opportunity

30 o 0% Grindelwald Opportunity

01 - Qualification Joshua Baker

7/18/23 +1(958) 555-1288
jbaker@pinnacle.com

Q2 Gas Generator Expansion

£ 271,865 Spartanburg New Site Lead
07 - Closed Forrest Gump

+1(713) 660-8512

£0 +1(650) 506-7000
01 > Qualification

&/25/2%

Diesel Engine Fall Opportunity Battery Backup
suh

Solar installation
Houston Tesla plant
$0
01 - Qualification e

| View All Opportunities (23) | View All Leads (8)

The subview displays all those records in a table.

ORACLE

132

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?
= | supremo od B

Pinnacle Technologies & Opportunities [

Ly

What Can You Change in a Subview Table?

In Visual Builder Studio, you can modify the information that displays in a subview table.

You can:

- Add and remove columns
- Change the display order of columns in the table

This topic illustrates how to change the display order of columns in a subview table. We'll look at the Opportunities
subview that's available from an account detail page.

Change the Display Order of Opportunity Subview Columns

Let's change the display order of columns in a subview table. In this example, we'll switch the order of the sales stage
and win probability columns on the Opportunities subview, accessed from the Opportunities panel on the Account
detail page.

133
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

PR ——

Pinnacle Technologies < : Opportunities
a1 e

£ [RS — st iy Brweryd AT Lk W

[y—

—

o AT £ Al

1. In Visual Builder Studio, navigate to the Layouts tab and expand the CX Sales node > Opportunities.

The Opportunities node contains the rule sets for the Opportunities panel on the Account object.

3 Layouts -+
& l Q Filter
w (X Sales
&
b ‘%Accuunts
» 4 Activities
b 4 Assets

8
e
0 4 CampaignMembers
47 Campaigns

® 47 CatalogProductGrot
B 47 Competitors
S » 47 Contacts

47 ConversationMessa
» 4 Deals
» 47 HubOrganizations

» 47 Interactions

b 4 Leads

» 47 Opportunities

» 4 PartnerContacts
» 4 Partners

47 Products

47 ProgramEnrollment

ORACLE

134

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

2. Onthe Opportunities tab > Rule Sets subtab, click the Sub View Layout.

Dashboard Layout | €x Sales

Table displaying opportunities in dashboard.

Picker Layout | €x Sales

Layout for Opportunity picker

(| [}, accounts-detafl x 4@ Opportunities x
4 Rule Sets (12) Fields Templates (13) Actions Event Listeners Events (9)
€ | Q Filter |
8 .
~ Dynamic Form

© Page region where users can view opportunities in a panel.
© Panel Card Layout For Partner | Cxsales

Page region where users can view opportunities on summary panel for Partner
@ - ™

Single Field Update Layout | cx sales
B Single Field Update Layout
& Dynamic Table

Sub View Layout | Cxsales

Page region where users can view opportunities in sub view.

O [psuowtses x | 4 Oppornenme x
& ReeSenqn P Templei(n | Ao Evestlisieners Events Tpes
& € Rusen SubViewloout (Gimas v
e % Q e m Display Logic &
e T |
1 pen Riepestors by
e v aacte_sauall From Deprnciencten (erad-anby] ()
o B oo hifiefaltd | Ok
wm (B defoust
© & reum 6

[y Stant by duplicsting the Bullt.in nake

3. Click the Duplicate Rule icon.

Display Logic @

:

From Dependencies (read-only) (3

[E Start by duplicating the built-in rule

Tell me more \

isDefaultd | O Sales

default &

retunn

Both a default layout as well as a default rule are displayed for the Sub View Layout.

ORACLE

135

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?

4. Inthe Duplicate Rule dialog, accept the default rule name or enter a new name. The name you enter here is
both the rule name and also the layout name, so enter a layout name that makes sense for you.

Also, make sure that the Also create a copy of the layout checkbox is selected.

Duplicate Rule X

Name ~

isDefaLl1t4_copy1

Also create a copy of the layout

‘ Cancel | Duplicate

5. Click Duplicate.

The new rule displays at the top of the list of existing rules, which means that this rule will be evaluated first at
runtime. If the rule's conditions are met, then the associated layout is displayed to the user.

In this example, we're not adding any conditions which means that the associated layout will always be
displayed.

136
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 3
Additional Configuration Tasks

6. Modify the rule's copied layout.

a. Click the Open icon to edit the copied layout.

Display Logic @

>

isDefaultd_copy

Click to add condition

$ >

return isDefaulid_copy

B @ -

From Dependencies (read-only) (3

isDafaultd

A <_ return

O Sales

5 defoult

b. Inthelist of fields in the layout, use the handle next to the win probability field to move it above the sales

stage field.
[a:ncrmlnl-\.-ﬂr'l.m ® %tln poriunities x
s Rule Sets (12) Fielbds Templates (13 Acthons Event Listeners Events (%
& £ PuleSets Sub View Layout | £X Sabes Layout isDefaultd_copy =
g8 & |Q e ® - Select fields to display
]
=
= Suggested Fiekds {1 Hame_twperink i@ Virrual field car
o O # PredictedwinProbability_c
windrob A Reverue
-]
Al Fagls.
[E) EffectiveDate
B O A AccountParyMumber
L O A Actionshenu)
A SalesStage
O[] aiotjectHints
O[] Assessments 4 WinProb
O A Asseud
O A Assetmiusnber
D A AgsetProduct

Types

Variables

LarvaScript

TS0

N

Seftings

Here's a screenshot of the final location of the win probability field.

ORACLE

137

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

7. Click the Preview button to see your changes in your runtime test environment.

Chapter 3

Additional Configuration Tasks

Select fields to display

{ } Name_hyperlink @ Virtual field can be rendered only with a field template

A Revenue

=] EffectiveDate

A SalesStage

> ©® Q ‘ Publish | =

The preview link must include the application/container segments in the URL. If not, then change the preview

link using the following example URL:

https://<servername>/fscmUI/redwood/cx-sales/application/container/accounts/accounts-detail?

id=300000003513233&puid=7050&view=foldout

P

Pinnacle Technologies 2 : Opportunities

——

ORACLE

138

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks
objects?

Make Values of a DCL Field Dependent on the Values of
Another Field

You can create a field, such as a dynamic choice list field (DCL), that displays different values depending on the values

of a different field. In this example, we'll create a DCL field for the Create Contact page that shows addresses for the
account associated with the contact. Salespeople can use the field to select an address for the contact from the available
account addresses.

Create the Dynamic Choice List Field

Tip: View the following video on Oracle Cloud Customer Connect for a summary of the setup in Oracle Visual Builder
Studio: Dependent DCL Field.

1. Open Application Composer in a sandbox.
2. Intheleft panel, make sure that CRM Cloud is selected in the Application field.
3. Expand the Contact standard object.
4. C(lick Fields.
5. Inthe Fields page, click Actions > Create.
6. Select the Choice List (Dynamic) option.
7. Inthe Create Dynamic Choice List: Basic Information page, enter the following:
Field Sample Entry Explanation
Display Label Bill-To Address The label users see in the Ul.
Display Width 40 Width of the box displaying the address
elements.
Name BillToAddress Unique internal name.

8. Leave the Constraints with the default selected values.
9. Click Next.
10. On the List of Values page, make these entries:

Field Sample Entry Explanation
Related Object Address The source of the values.
List Selection Display Value Country You can select any of the values as these

aren't used for this use case.

11. You can leave the other sections blank.
12. Click Submit.

139
ORACLE

https://community.oracle.com/customerconnect/discussion/796399/video-dependent-dcl-field#latest

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks

objects?

Specify the DCL Field Behavior and Add It to the Layout

1. Open Visual Builder Studio.
2. C(lick the Layouts tab.
3. Onthe Layouts tab, click CX Sales > Contacts.

= ‘Workspace CX 3 X fusionadmin-2024(

& Your extension doesn't have any
g layouts yet.
'ﬂ, Tell me mare
+ Layout
ii4
g Frgms Dependencies
* M Sales

¥ & Accounts
% & Activities
b &y Assets
4.'" Campaipniemberns
Ay Campaigns
& CatalogProductGroups
& ClassCodes
& Competitars
- %(nnrxh
& Address
4 ContactPoing
&r ContactFollup

4 Mote

&r SalesTeamMember

140
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

4. C(Click Rule Sets > Create Layout (CX Sales).

Chapter 3
Additional Configuration Tasks

B Geuntfibe.js [payment c-list [contmcts-list dr ContactPoint & ContactRollup
Rule Sats | EO'::: Walidaticns Templates (13 Action Chairs Evert Listensrs Evenits Types
I'-‘ Filrar

=~ Dynamic Form

Add Layout | Cx Sales

Pape region vheds users Chn Bokd B Conlet

Conference Contact Picker | O Sales

Contact Pichoer Layout used inside web conference fragment

2

Create Layout | Cisales @

:'EEE NEgOn WNETE USETS Can Cresbs & OoMLacT

(& 5105

Dashboard Card Layout

Page region displaying contact in deshboard

5. Duplicate the default rule with the Also create a copy of the layout option selected.

6. Add a rule condition to the new rule.
7. Click Open on the new layout rule to open the layout copy.

xSty Croste Ligowt | (i Sae | 7

T

Display Loglc &

EY nDwleai] doey

Frias bersaiival et
= gk o abesli
B e

Prom Deprademcie fread onky) (]

* e eetum [

Bule Setu (g} P e Frrplate Ao Chains leafeript SO Sefing

8. Find the PersonDEO_Bill_To_Address_id_c (Bill-to Address) field and add it to the layout (highlighted by

callout 1in the following screenshot)
9. Create a variable for the field template:

Still in the Contact layout tab, click Variables

Click Create Variables (callout 1in the following screenshot).
Enter a variable ID, such as billToAddresses.

For Type, select Any.

angoo

ORACLE

141

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 3

Additional Configuration Tasks

10. Create a field template that you'll need for the layout:

a.

Click the Rule Sets tab.

b. Click Create for the Template field (callout 2) in the Field (right-hand) pane.

Select fields o display

A Sehutoryintroduction

,'.L.' Firitlarme

B Midcletlaens

B Lasthmme

A JobTide

A BzcoumPartyld [Aecoum Piker Template)

[1 FormattedidoriPhoneMumber_pheone 6 Virtosl field con be ¢

{ 1 Formameclicdress_sddress (Lhe Account Scdess Templabe)

[} Emsiliddeess_email W Cerual Beld can be rendered anly wrth s feld terg

enidened orlly v

[1 FormattecdMobilehumber_phone B Vierual Beld can b renckered anly wis

h s bl tereplat

th & Hesdl templat

Ay PersonDED Sil_To_Address_ld_c

3

¢ Form Field

Shaw Field
Abyvaryd

-

PersanDED_B0_Te_Address_ld ¢

Lashae] Hint
Ball_To_dickdress

Teenplute e Crate

Herw
) Resd Only

) Required

Codusmine Spaen
R
Max Rews

User Assistance Denssty

In the Create Template window, enter a name with no spaces, such as billToAddressTemplate and leave
the Enable Extension option selected.

Click Create.
Click the Code option

Here's sample code to enter:

<template id="billToAddress">

<oj-select-single label-hint="billToAddressID" data="[[$variables.billToAddresses]]"
value="{{$value}}"></oj-select-single>

</template>

ORACLE

142

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

11. Create an action chain that does the following:

o Check if the updated field in the record is the account Party ID.
o If the account Party ID is updated, then store that Party ID in the constant accountPartyNumber
o Create a REST call that returns all of the addresses for that Party ID

o Store the returned addresses (FormattedAddresses) in an array.

Chapter 3

Additional Configuration Tasks

o Assign the values in the array to the variable billToAddresses which will be part of the Create Contact UL.

a. On the Contacts tab, click Action Chains.

[paymens_c-list [contacis-kst dr ContactPoim

& JevaSeript

& Con

Action Chalns Ewvent Listeners Events Types Varlables 2 Jarea Script

Create Action Chain

o -
[

Diesoripticn

You don't have an

Action chains define application laglc

Click Create Action Chain (+Action Chain).

c. Inthe Create Action Chain window, leave the Java Script option selected and enter any name as an ID, in

this example: GetAddresses.
d. Click Create.
e. Switch to the Code view and enter the code:
f. Here's a sample:

define ([
'vb/action/actionChain’,
'vb/action/actions’,
'vb/action/actionUtils’',
'ojs/ojarraydataprovider',
1, (

ActionChain,

Actions,

ActionUtils,
ArrayDataProvider

ORACLE

143

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks
objects?
) => {
'use strict';
class test extends ActionChain {
/**
* @param {Object} context
* @param {Object} params
* @param {{row:object,related:object|[],fieldsToShow:string[]}} params.previous
* @param
{{row:object,previousRow:object,modifiedField:string,pickedRowsData:object,parentRow:object,mode:string}}
params.event
* @return {{row:object,related:object[],fieldsToShow:string[]}}
*/
async run(context, { previous, event }) {
const { $layout, $extension, $responsive, $user } = context;
if (event.modifiedField === 'AccountPartyId') {
const accountPartyNumber = event.pickedRowsData ['accounts.AccountPartyId'];
const addressesResponse = await Actions.callRest(context, {
endpoint: 'oracle_cx_salesUI:cx/getall_accounts—Address',
uriParams: {
'accounts_Id': accountPartyNumber.PartyNumber,
}l
})
if (addressesResponse.ok) {
const billToAddresses = addressesResponse.body.items.map ((address)=> {return
{label:address.FormattedAddress,value:address.FormattedAddress}}) ;
$layout.variables.billToAddresses = new ArrayDataProvider (billToAddresses,
{keyattributes:"value"}) ;
}
}
if (event.modifiedField === 'PersonDEO BillToAddress_Id c'){
debugger;
}

return previous;
}
}

return test;

}) s

12. Create an event listener for the field template:

Click the Event Listeners tab.
Click the Create Listener button (+Event Listener).
In the Create Event Listener page, select ContactsOnFieldValueChangeEvent.
Click Next
Select the action chain you just created. In this example, GetAddresses.
f. Click Finish.
13. Test your field:

Pan o9

a. Click the Preview button to test your newly-created field.

b. On the Contacts list page, enter Create Contact in the Action Bar.
c. Select an account that includes a number of addresses.
d. Click in the Bill-To-Address field to select an address.

144
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks
objects?

Change Navigation to Pages in Your Sales Application

Using the Dispatcher feature in Application Composer, you can change which page opens when a salesperson clicks

on a record name link on pages in both standard and custom objects. You can redirect links on the list pages, detail
pages, and the edit/create pages. The redirected link can open standard or custom pages and subviews. You can specify
different destinations for different job roles.

Clicking the opportunity name link on the opportunity list page, for example, normally opens the opportunity detail
page, which provides an overview of key activities, contacts, products, and other information. Getting to what a
customer is interested in purchasing requires an extra click. If salespeople are more interested in what the customer
is buying than in a general overview, then you can open the subview that lists the opportunity products and revenue
directly, saving that extra click.

If you created a simple custom object, you can even skip the detail page altogether and open the edit page instead.

How Dispatcher Works

Using the Dispatcher, you can create a set of rules that can open different pages for different job roles. Each dispatcher
rule replaces the URLs pointing to the same location. Dispatcher doesn't identify individual links on the page. If a page
includes multiple links that go to the same destination, all are replaced. You can even redirect a URL in all the pages in

the application to a new destination with one rule.

Creating a rule involves 4 steps:

1. Rule Details, where you specify if the rule applies to everyone in the organization or to specific job roles.

2. Navigation Details, where you enter the scope of the redirection rule and both the old and the new destination.
3. Overlapping Rules, where you specify the order in which to process any overlapping rules.

4. Review and submit.

What you enter in the Navigation Details step is key, so here's an overview of the 5 sections in this step. You must scroll
down to see the last section. Detailed instructions for creating rules follow.

Section Description

Navigation Component (1) In this release, you can redirect only links from the object name link.

Location of the Navigation Component (2) = The scope of the links you want to redirect. You can redirect the links in all the pages of the Sales
application, in a specific object, or narrow the scope to a specific page.

Standard Destination of the Navigation The current destination for the link you're redirecting. You can redirect the links on the list page, the
Component (3) detail page, the edit page, and the create page.

I Note: Using Dispatcher, you can't redirect links in subviews.

New Destination of the Navigation The new destination page for the link. Subviews are part of the detail page.
Component (4) So, if you're redirecting the link to a subview, you select the detail page.
Query Parameter Mapping (5) If you're redirecting a link to a subview, then you identify the subview by adding a constant with a value

that you obtain from the subview URL.

145
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 3

Additional Configuration Tasks

Section Description

If you're redirecting to an edit page, you add the constant: mode = edit.

The variables are standard for all standard objects and custom objects created by the CX Extension

Generator.

Dispatcher Rubes

Navigation details

Select the objects and pages that support this rule’s navigation, including the
navigation compeonent’s new destination.

Navigation component

Location of the navigation component

Apehere
Page
Agupibic s
O 5<.;Ies o opportunities - opportunities-list -

Standard destination of the navigation component

Page
Apphication = apportunities - opporiunities-deta =
CX Sales

.:_.-. [cinpateher ey
New destination of the navigation component

Page
Bgplicaties .
CX Sales o e apporiunites s opportunites-deta =

Cancel Continue

Rule details

Navigation details

Overlapping rules

Review and submit

ORACLE

146

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?
Query parameter mapping

Parameter Type * Parameter Name * Parameter Value * Actions

Constant wiew ChildRevenue af ‘Iﬂl

Variable puid pict g m

Variable id id F

Cancel Continue

Example Entries for Redirecting Opportunity List Page Links to the Product
Revenue Page

Here's what to enter in the Navigation Details step sections to redirect the opportunity name links on the opportunity
list page to the Products subview.

- Location of Navigation Component

You're restricting the redirection to the links on the opportunity List page, so make these entries:

Field Entry
Application CX Sales

Page opportunities
2nd Page field opportunities-list

- Standard Destination of the Navigation Component

Normally, the application opens the detail page when users click the opportunity name on the List page.

Field Entry

Application CX Sales

Page opportunities

2nd Page field opportunities-detail

147
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks
objects?
- New Destination of the Navigation Component
You're redirecting the navigation to a subview of the detail page, so your entries are the same as for the
standard destination. Subviews are part of the detail page.

Field Entry

Application CX Sales

Page opportunities

2nd Page field opportunities-detail

- Query Parameter Mapping
To redirect to the Product subview, you add a constant with the value of ChildRevenue:

Field Entry
Parameter Type Constant
Parameter Name view
Parameter Value ChildRevenue

Steps to Create and Activate Dispatcher Rules

Open Application Composer outside a sandbox.
Click Dispatcher.
On the Dispatcher page, click Create.
In the Rule Details page, enter a name for the rule.
In the Rule Conditions section, specify the audience for the rule. You have two options:
o Make the rule apply to the all job roles in the organization by turning on Apply Rule Globally.

o Apply the rule to specific job roles you enter in the Role Filter field.

VEWNA

Click Continue to move to the Navigation Details step.
In the Location of the Navigation Component section, specify the scope of the rule:
o To have the link redirected on all pages, turn on Anywhere.

o Narrow the scope of the redirection to an object and page:
- Inthe Application field, select either CX Sales for standard pages, or CX Custom.
- Inthe Page fields, make these selections:
a. Inthe first Page field, select the object.
b. Inthe 2nd Page field, specify the page type:

N©o

Available Values Description

any Redirects links on all pages for the object.

148
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?

Available Values Description

list Redirects links on the list page.

edit Redirects links on the edit and create pages.

detail Redirects links on the detail page.

8. Inthe Standard Destination of the Navigation Component section, enter the current navigation destination.
Your entries identify the URL to be replaced.

a. Inthe first Page field, select the object.
b. Inthe 2nd Page field, select the page.

Available Values Description

detail The detail page (called the Overview page at runtime).
edit The edit/view page.

list The list page.

9. Inthe New Destination of the Navigation Component section, enter the new navigation destination.

a. Inthe first Page field, select the object.
b. Inthe 2nd Page field, select the page.

Available Values Description
detail Redirects to the detail page or subview.
edit Redirects to the edit or the create page.

If you're redirecting to the edit page, then you must also add the constant mode = edit in
the Query Parameter Mapping section.

If you don't add a constant, the user is redirected to the Create page.

list Select to redirect to the list page.

149
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks
objects?

10. If you're redirecting the link to a subview or to the edit page, then you must add a constant in the Query
Parameter Mapping section:

a. Click Add.
b. If you're redirecting to the edit page, then make the following entries:

Field Entry
Parameter Type Constant
Parameter Name mode
Parameter Value edit

c. If you're redirecting to a subview, then enter the following:

Field Entry

Parameter Type Constant

Parameter Name view

Parameter Value Enter the last part of the subview URL following view=.

Here's an example of a URL for the Products subview on an opportunity:

https://<domain>/fscmUI/redwood/cx-sales/application/container/opportunities/opportunities-detail?
id=300000009863286&puid=39003&view=ChildRevenue

Note: For standard subviews and subviews generated by the CX Extension Generator, the application
automatically adds 2 parameters: the variables puid and id. These parameters are required.

Here's a screenshot of the Query Parameter Mapping section

Callout Description
1 The Add button.
2 Constant entry.

150
ORACLE

Oracle Fusion Cloud Sales Automation

Chapter 3

How do | create an application extension for custom Additional Configuration Tasks
objects?

Callout Description

3 The 2 required variables are included automatically.

1"
12

13.
14.
15.

Quiery parameter mapping

Parameter Type * Parameter Mame * Parameter Value * Actions
efum'.dn‘. e ChildRevenue F W
Variabile E puid puid g W
ariable id il g !
Cancel Continue

Click Continue to move to the Overlapping Rules step.

Review the order of any rules with overlapping functionality and specify the order of priority by dragging them
into position using the handles on each row. The rule at the top gets executed first.

Click Continue to move to the Review and Submit step.
Click Submit.
On the Dispatcher list page, select Action > Mark Active.

Configure What Information Displays in the Product
Catalog

Here's how to configure what information displays in the product catalog in your Sales in the Redwood User Experience
application. You can configure both product groups and products and you can configure different layouts for different
roles in your organization.

Before you start, make sure that the product catalog includes products, product groups, and the attributes that you

want to

expose. Attributes that are blank don't show up in the UL.

You open Visual Builder Studio from the Product Catalog page and the page must show what you're configuring:
product groups and a product under the Recent heading.

Configure Product Groups

1.

Open an opportunity.

151

ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?
2. Enter Catalog in the Action Bar and select Browse Catalog.

3.

4.

T My Open Opportunities

New PowerMax Center ©

O catalog

M| Browse Catalog

Filter catalog

RV Status Open Win Probability 20 Close Date 11/30/24 Owner Jane Solis

X

Chapter 3

Additional Configuration Tasks

In the Product Catalog page, click your profile and select Settings and Actions > Edit Page in Visual Builder

Studio to open Visual Builder Studio (VBS).

= / supremo

Settings and Sign Cut
Actions
New PowerMax Center: Product Catalog

Personalization
T

Set Preferences

= Filter by Territory 2 Enter a Praduct Administration

ei dit Page in Visual Builder Studio

Troubleshooting

Owverview

All Categories

Run hagnosiics Tests

Applications Help
Supremo Power)

Aboul This Application
Supremo Solar

Recent

—

Solar Panel - w/Next-Gen Graphene Cell (420 Wart)

Our Next-Gen Graphene PV solar panel provides and industry-leadin

$ using hig

[L
gh efficiency solar cells made from our patented next-gen % 505 Each @

hene-based materials for high module conversion efficiency, long-term

g
oL stability and

t f ity. Virtwally maintenance free. High transmittance, low
iron tempered f_:?‘\.*-'\. for durabilit ¥ and ennanced iImpact res stance

In the central VBS panel, click one of the product groups in the page under the All Categories heading to

display a border for the Product Group Card Layout (callout 1in the following screenshot).

ORACLE

152

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 3
Additional Configuration Tasks

5. Under the Rule Set heading in the right pane, click the Product Group Card Layout link (callout 2).

e [=} | Fitro Carrwaz = Buts X | mute W | Live [Design
= ¥ supremo
undefined: Product Catalog Cancel
N T M PSS | 1]
= Filter by Terrftory X .\F!u
Crverview
all Categories
[L s L T L m:d.-cl-un_q:-d Lyt
.'Suprfmupmm'r {:-EJ
Supremao Solar {-I:)
Recent

£

catalogProductGroups - Product Geoup Card
Lyt

Appha #tion {omp

T Guick Actions

Suppesied Actions

% Open Rubs S8t Editer

Layout

dr catalogProduciCeoups

Dibsject

B petall_catalogProductGroups

FRule Set

% Product Group Card Layout o
Lot Preview

Resobyed by displey loghc -

6. Duplicate the default layout and open it by clicking the Open button highlighted in the following screenshot.

Bole Sota (15} Fiekdi Valdetons Templebes Mction, Chaires Evevt Lisbmars. Evensts Fyoued

['2)

= BOH Semng
Fude Srts Covate Lingoust | O iabes |+
i Display Loglc @
B aouins com
Friwn el s Bl oopw B @ -]
- ke iu_tabeslll
0 Suier.arisMame ity eouati Wb

setwrn [aDefeuhl opy - E £
Fresn Dupradarie {read only) I_?,.
albeipuie? | Cx Sakey

#—r mm E

ORACLE

153

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 3
Additional Configuration Tasks

7. You can drag additional fields from the Fields tab. Or you can remove and reorder them.

Procduct Group Card Layouwt | CX Sakes

:f"{ Filae @ -

Feelds

O A allewDupcselartensFlag
[A& alewSeectionFlag

[A AsischmeniEntityMame
|:| { } Anschments

[A pepsh

LJ A FilserByTM

[A FirssProdGrpld

L] A intemmaltame

[LastUpdateDate

|:| A Medeonbighnributes

O A ModetFamily

O A MedeiLine

0 A Medeitiaere

O A cverridedliowSelafliany™

O A earentPreduptreugld

reductGroupDencrmid
B ProduciGroupDescription
L] A ProductGroupld

f ProduciGroupMame

Layout sDefault_copy 2 ~

Set oracle £ _fI.IH et sLlex |Jr1.ll:ll.ll\'.|'i. ard paramelers

A badgaltem

A iteml
A ProductGrouphlsme
A item?

A ProduciGroupDescription

A item3

A

A itemd

A itemS

i itemld

A, style

8. Preview your configuration by clicking the Preview button.

P © Q

‘ Publish | =

9. Click Publish to make your configuration permanent.

Configure Products

The steps to configure products is very similar to configuring product groups. The main difference: To easily identify
the layout, you must display a product under the Recent heading of the product catalog. You can do this by adding a
product to the opportunity from the catalog and then adding another.

Here's a screenshot of the product catalog showing a product under the Recent heading.

ORACLE

154

Oracle Fusion Cloud Sales Automation Chapter 3
How do | create an application extension for custom Additional Configuration Tasks

objects?

New PowerMax Center: Product Catalog Cancel Save
T S o ey AT TN ESESS I A A AL | /)

(=] Filter by Temitory X Enter a Product u B
L

Overview

All Categories

Supremo Power @}
Supremo Solar @
Recent

Solar Panel - w/Next-Gen Graphene Cell (420 Watt)

Qur Next-Gen Graphene PV solar panel provides and industry-leading 420 Watts
output, using high efficiency solar cells made from our patented next-gen % 505 Each @
graphene-based materials for high module conversion efficiency, long-term

output stability and reliakility. Virtually maintenance free. High transmittance, low
iron tempered glass for durability and enhanced impact resistance

Here's a recap of the detailed steps:

Open an opportunity.

Enter Catalog in the Action Bar and select Browse Catalog.

Add a product to the opportunity from the catalog and save.

Add a second product. The first product should appear under the Recent heading.

From the Product Catalog page, click Settings and Actions > Edit Page in Visual Builder Studio to open
Visual Builder Studio.

Click the product in the page under the Recent heading to display a border for the Product Card Layout
(callout 1in the following screenshot).

A WNRA

o

155
ORACLE

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

7. Under the Rule Set heading in the right pane, click the Product Card Layout link (callout 2).

10.
1"

= ~ 2 |3 @ Quick e
= / supremo y @ wlw Quick Actions.

Sugpested Actions

undefined: Product Catalog Cancel o Copam B it et
L —e R B T T ot LTSSt~ T T Layina
& b
= Fils by Sevnwy. X Ent t yﬂ e

B getall_prodecin

o Fue Sat
All Categories %, Broduct Cad e 9

Supaenen Power @ Laycrst Prevview
Sppaherd by detpley kagic
Supaeno Solar @
Recent

Solar Panel - wi et I.'-¢lo¢|1-r Coll 420 Wast)

4505 Each (B

In the Display Logic pane, duplicate the default layout and open it.

Drag additional fields from the Fields tab. You can also remove and reorder fields.
Preview your configuration by clicking the Preview button.

Click Publish to make your configuration permanent.

ORACLE

Chapter 3

Additional Configuration Tasks

156

Oracle Fusion Cloud Sales Automation Chapter 4
How do | create an application extension for custom Global Create Actions and Al Agent Integrations
objects?

4 Global Create Actions and Al Agent
Integrations

Global Actions in the Sales Dashboard

Salespeople can use a special type of smart action, called a global action, to create records and launch Al agents directly
from the Sales Dashboard search bar. Standard smart actions are always used in the context of a particular object and
record. Global actions don't depend on context, and so can be used in the sales dashboard search bar.

As salespeople start making entries in the search bar, the enabled global actions are listed automatically.

Sales Dashboard

(=2 =

<+ Create Certification
&, Get Product Advice
<+ Create Account

—|— Create Appointment

=+ Create Asset

Global Actions that Create Records for Standard Sales Objects

For standard sales objects, the "create" global actions are enabled by default for all sales dashboard users.
In Application Composer, open the Smart Actions work area. Here you can:
- See the list of all global create actions, by entering Global as a filter.

Disable any actions you don't want to use for all users.

Restrict the actions to specific job roles by duplicating the actions and editing the duplicates.

157
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 4

How do | create an application extension for custom Global Create Actions and Al Agent Integrations
objects?
Smart Actions
o B8 =
T S R © R T S e M

Name 2 Object = Application 2 Type = Enabled = Duplicate
Create Asset Global Sales Yes > lﬁ
Create Lead Global Sales Yes - O
Create Opportunity Global Sales Yes -)
Create Appointment Global Sales Systermn ‘s - l_'n
Create Contact Global Sales System Yes - lﬁ
Create Task Global Sales Systern Yes - O
Create Account Global Sales System Yes = IO

Global Create Smart Actions for Custom Objects

When you use the CX Extension Generator to create the Ul for your custom object, all of the standard smart actions are
created for you, including the global create smart action for use in the sales dashboard.

If you used the CX Extension Generator prior to the 25B update for your custom object, or if you didn't use it at all, then
generate the global create action for each object in the Extension Generator as described in the topic Create the Global
Create Actions for Custom Objects.

On the Smart Actions page, you can take the same actions on the generated smart actions as on those available for
standard sales objects. You can:

- See thelist of all global create actions, by entering Global as a filter.

- Disable any actions you don't want to use for all users.

- Restrict the actions to specific job roles by duplicating the smart actions and editing the duplicates.

Smart Action to Open an Al Agent

You create the global action to launch an Al agent in the Smart Action work area in Application Composer. For detailed
steps, see the topic Set Up Global Actions to Launch Al Agents from the Sales Dashboard.

158
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 4
How do | create an application extension for custom Global Create Actions and Al Agent Integrations

objects?

Create the Global Create Actions for Custom Objects

Global create actions are create actions you can use from the Sales Dashboard. If you used the CX Extension Generator
to generate the custom object Ul before the 25B update, or if you didn't use the CX Extension Generator at all, follow
these steps to create the global create smart action. Starting with the 25B update, all the standard smart actions are
created for you, including the global create smart action for use in the sales dashboard.

1. In a sandbox, open Application Composer.
2. Click CX Extension Generator.
3. Click Create New Extension.

There's no need to import files from Oracle Visual Builder Studio for creating smart actions.
4. Add the custom object.
5. Click Generate Extensions.

The application generates the standard smart actions, including the Create global smart action, and
automatically downloads a .zip file.

Note: If sales pages for this custom object already exist in Oracle Visual Builder Studio, then don't import
the.zip file. You can discard it.

Set Up Global Actions to Launch Al Agents from the
Sales Dashboard

Here's how to create smart actions that salespeople can use to launch Al Agents from the search bar in the sales
dashboard.

Note: For information on how to create and publish Al agents see the topic Deploy Sales Al Agents using RAG tools.

1. Enter into a sandbox that's enabled for Application Composer.
. In Application Composer, click Smart Actions, available under Common Setup heading.
3. Onthe Smart Actions page, click Create.

Application Composer displays the Create Smart Action guided process in a new browser tab.
4. On the Kind of Action page:

a. Click the Global action option to indicate that you're creating an action for the Sales Dashboard.
b. Click Continue.

5. On the Basic Details page:
a. Inthe Name field, enter a display name for the action.

b. The Action ID field automatically generates a value based on your entry. You can update the ID with
another unique value.

This value must be unique across all smart actions.

159
ORACLE

https://docs.oracle.com/en/cloud/saas/readiness/sales/25b/sfau-25b/25B-sf-automation-wn-f37038.htm#Steps-to-Enable

Oracle Fusion Cloud Sales Automation Chapter 4
How do | create an application extension for custom Global Create Actions and Al Agent Integrations
objects?
c. Click Continue.
6. On the Availability page:

a. Inthe Application field, Sales is the only option and it's selected automatically. Global smart actions
aren't available in Service.

b. Inthe Role Filter field, you can select the roles that can view the action.

If you don't select a role, then the action will be available to all roles.
c. Click Continue.
7. On the Action Type page:

a. Inthe Type field, select Al Agent.
b. From the Agent Code list, select the published Al agent.
c. Click Continue.
8. Leave the Confirmation Message page blank and click Continue.
9. On the Review and Submit page, review the action's configuration and click Submit when ready.

160
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

5 Appendix

Manually Configure a Child Object for Related Objects

This appendix describes how to manually configure the panel and subview for a child custom object for related objects.

Note: If you've used CX Extension Generator to create the object Uls, you can skip this chapter. The CX Extension
Generator completes these configurations for you.

Add a Standard Object Panel for Related Objects (One-to-Many)

You can configure an object's detail page by adding panels for related objects. This makes it easy for users to see—on a
single page - all pertinent information related to a record. You can add custom object panels or standard object panels.
This topic illustrates how to add a standard object panel to an object's detail page (when the panel object is related via a
one-to-many relationship).

What's the Scenario?

Let's look at an example. In this example, the Payment object has a one-to-many relationship with the Lead object. At
runtime, users should be able to create leads for a payment, and view those leads on the Payment detail page.

Setup Overview
To enable users to create leads for a payment, we'll add a Leads panel and subview to the Payment detail page.

1. First, create the Create Lead smart action in Application Composer.

See Prerequisite: Create Smart Action.
2. Add anew Leads panel to the Payment detail page.

See Add the Leads Panel to the Payment Detail Page.
3. After adding the Leads panel, you can then add the subview.

See Add a Subview for the Leads Panel.

Prerequisite: Create Smart Action

The Create Lead smart action displays from the Action Bar on both the Payment detail page and Leads subview. Users
can select the Create Lead smart action to navigate to a create lead page.

Note: If you previously created a Create Lead smart action for a non-fragments implementation, then you don't need
to create a new smart action for this use case. Instead, update your existing smart action to specify the Create action

type, object, and field mapping. This ensures that your custom smart action still works with this new fragment-based

extension.

161
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix

objects?

If you haven't yet created a Create Lead smart action, then create one now:

VAWNRA

o

1

1n
12.

© 0 ™

Create a sandbox.

In Application Composer, under the Common Setup menu, click Smart Actions.
At the top of the page, click Create.

On the Kind of Action page, click Ul-based action and then click Continue.

On the Basic Details page, in the Name field, enter the smart action name.

For example, enter create Lead.
In the Object field, select the one-to-many relationship's source object.

In this case, select Payment and then click Continue.

On the Availability page, in the Application field, select Sales.

In the Ul Availability field, select List Page and click Continue.

On the Action Type page, in the Type field, select Create.

In the Target Object field, under the Top Level Object heading, select the one-to-many relationship's target
object.

For example, select Sales Lead.
In the Field Mapping region, click Add.
In the Actions column, click the Edit icon and then set these field values:

Field Mapping m

Mame = o Type Yo Value = £ Actions

Attribute Defaults
Column Value
Name Select the field on the one-to-many relationship's target object that holds the source object's ID
and relationship name. This is a standard field on the target object (Sales Lead).
The format of the field name is always <Source object name> Id <Relationship
name>. For example, select Payment ID PaymentLead1M (Payment_ld_PaymentLead1M).
Note:
You won't see this field on the target object in Application Composer.
Type Attribute
Value Select Record ID (Id). This is a standard field on the source object (Payment).

This means that when users create a lead, the create smart action defaults the payment's ID
into the lead record's Payment ID PaymentLead1M (Payment_ld_PaymentLead1M) attribute.

162

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5

How do | create an application extension for custom Appendix
objects?
Column Value
13. Click Done.

14. Click Continue.
15. On the Action Details page, in the Navigation Target field, select Local and then click Continue.

16. On the Review and Submit page, click Submit.

Add the Leads Panel to the Payment Detail Page

To add a new Leads panel to the Payment detail page:

In Visual Builder Studio, click the App Uls tab.

Expand cx-custom > payment_c, then click the payment_c-detail node.
On the payment_c-detail tab, click the Page Designer subtab.

Click the Code button.

P UWNA

| Live Design Code

5. Confirm that you are viewing the page in Page Designer.

‘ Page = |
v Page
Templates

6. Add the following code to the canvas, just below the closing </oj-vb-fragment> tag of the cx-detail fragment:

<oj-dynamic-container layout="PanelsContainerLayout" layout-

provider="[[$metadata.dynamicContainerMetadata.provider]]1"
class="oj-flex-item oj-sm-12 oj-md-1"></oj-dynamic-container>

<oj-dynamic-container layout="SubviewContainerLayout" layout-

provider="[[$metadata.dynamicContainerMetadata.provider]]">
</oj-dynamic-container>

7. Highlight the <oj-dynamic-container> tags for the panels.

<07 -dynamic cortainer layout="PanelsContainerLayout™ layout-provider="[[$metadata.dynamicConta
class="oj-flex-item o0j-sm-12 oj-md-1"></0]-dynamic-container>

163
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

8. On the Properties pane, in the Case 1region, click the Add Section icon, and then click New Section.

Dynamic Container = 5-9
=
]
General Sections(2) Events All ;—D*-
v
ID
Container Template Create
| Ad
Display Logic
~+ Case |
Case 1 ® :
Condition (2) fx -
Always Show
Sections
PaymentLinesCaollection_c Add Section

9. In the Title field, enter a title for the section, such as Leads Panel.
10. In the ID field, keep the value of 1eadspanel.

Note: Don't use the REST object name for this ID because you'll use the REST object name when you create
the subview.

11. Click OK.
12. On the Properties pane, click the Leads Panel section that you just added.

Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
Leads panel template.
13. Click the Code button.

Live Design Code

14. Onthe Components palette, in the Filter field, enter cx-panel.

164
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix

objects?
15. Drag and drop the cx-panel fragment to the template editor, between the leadsPanel template tags.

Q_.,,-..-_....-\-,. lotall

Page Desigrver Actions (3 Ewent Listeners Ewents Types WVariables (4

Q Cx-praniel X £ Returm Lo page

~ Fragments @ 1

|“ cx-panel I
137

Components

bBridge]]” name

Data

16. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
replace leads and payment Id PaymentLeadlM With the appropriate values for your related object name and

foreign key field.

Note: The format of the foreign key field's name is always <source object name> Id <Relationship name>. YOU
can also retrieve the field name by doing a REST describe of the target object (leads).

<template id="leadsPanel">
<oj-vb-fragment bridge="[[vbBridge]]" class="oj-sp-foldout-layout-panel"
name="oracle cx_fragmentsUI:cx-panel">

<oj-vb-fragment-param name="resource" value='[[{"name": "leads", "primaryKey": "Id", "endpoint":
chH }]] |>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="sortCriteria" wvalue='[[[{"attribute": "LastUpdateDate", "direction":

"desc" }] 11'>
</oj-vb-fragment-param>

<oj-vb-fragment-param name="query"

value='[[[{"type": "gbe", "params": [{"key": "Payment_ Id PaymentLeadlM", "value":
$variables.id }1}] 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
<oj-vb-fragment-param name="extensionId" value="{{ $application.constants.extensionId }}"></oj-vb-
fragment-param>

</oj-vb-fragment>
</template>

This table describes some of the parameters that you can provide for a custom panel.

Parameters for Custom Panel

Parameter Name Description

sortCriteria Specify how to sort the data on the panel, such as sort by last updated date and descending
order.

query Include criteria for querying the data on the panel.

17. Click < Return to page.
18. Click the Code button.
19. You're ready to add the subview next.

165
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix

objects?

Tip: Once you add the panel to the panel region, that's all that's required. The standard object panel comes
configured with a set of attributes to display by default. If you want to configure the panel, however, then you can do
so. See Configure the Contents of a Panel.

You can test the panel after you add the subview. Let's do that next.

Add a Subview for the Leads Panel

After adding a related object panel to your custom object's detail page, add the subview next.

1. On the payment_c-detail page, highlight the <oj-dynamic-container> tags for the subviews.

<div class="o0j-flex"»
<oj-dynamic-container layout="SubviewContainerLayout" layout-provider="[[$metadata.dynamicCo
class="o0j-flex-item oj-sm-12 oj-md 1/'){,-'(1_i-dyn.am1't-trJr:lrn'llFr}

<fdiv>
2. Onthe Properties pane, in the Case 1 region, click the Add Section icon, and then click New Section.
3. Inthe Title field, enter a title for the section, such as reads.

4. Inthe ID field, keep the value of 1eads.

Note: Use the REST API object name for this ID.

5. Click OK.
6. On the Properties pane, click the Leads section that you just added.
Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the

leads template.
7. Click the Code button.

Live Design Code

8. Onthe Components palette, in the Filter field, enter cx-subview.
9. Drag and drop the cx-subview fragment to the template editor, between the leads template tags.

% payment_c-detail x
Page Designer Actions (3 Event Listeners Events Types Variables (4 JavaScript
Z Q. ex-subyiew x l = < Return to page
Z
-] E 142
a o 1 F4_"7 "
£ ragments ® 143 <template- 1d="leads" >
=]
<™ ex-subview 144 </template>
145
= 146

10. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
replace leads and payment Id PaymentLeadlM With the appropriate values for your object and foreign key field.

Note: The format of the foreign key field's name is always <source object name> Id <Relationship name>. YOU
can also retrieve the field name by doing a REST describe of the target object (leads).

166
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?
<template id="leads">
<oj-vb-fragment bridge="[[vbBridge]]" name="oracle cx fragmentsUI:cx-subview">

<oj-vb-fragment-param name="resource" value='[[{"name": "leads", "primaryKey": "Id", "endpoint":
llcxll }]] I>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="sortCriteria" wvalue='[[[{"attribute": "LastUpdateDate",6 "direction":

"desc" }] 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="query"

value='[[[{"type": "gbe", "params": [{"key": "Payment_ Id_ PaymentLeadlM", "value":
$variables.id }]1}] 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
<oj-vb-fragment-param name="extensionId" value="{{ $application.constants.extensionId }}"></oj-vb-
fragment-param>

</oj-vb-fragment>
</template>

This table describes some of the parameters that you can provide for the subview:

Parameters for Subview
Parameter Name Description
sortCriteria Specify how to sort the data on the subview, such as sort by last updated date and descending
order.
query Include criteria for querying the data on the subview.

11. Comment out the dynamic container components from the payment_c-detail page.

a. Click < Return to page.
b. Click the Code button.
c. Comment out the dynamic container components that contain the panels and subviews.

2 ¢of-vb-fragment bridges"| name racle ¢x fragmentsUl:cx-detail™ class j-Tlex-1te

ROROR R

Note: To add more panels and subviews, you must first un-comment the dynamic container
components.

167
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

Tip: Once you add the subview, that's all that's required. The subview for a standard object comes configured with
a set of attributes to display by default. If you want to configure the subview, however, then you can do so. See
Configure the Subview Layout.

Test Your Panel and Subview
Test the subview by previewing your application extension from the payment_c-list page.

1. From the payment_c-list page, click the Preview button to see your changes in your runtime test environment.

2. The resulting preview link will be:

https://<servername>/fscmUI/redwood/cx-custom/payment c/payment c-list
3. Change the preview link as follows:

https://<servername>/fscmUI/redwood/cx-custom/application/container/payment_c/payment c-list

I Note: You must add /application/container to the preview link.

The screenshot below illustrates what the list page looks like with data.

All Payments Ao

O Try seadching by ke Al Filer

— - CEErA T S W
&3 Resulis
Paymient Name 5 Creation Date = Last Updated Date S Actions

0 Payment, Octimoice 101922 10003 P 11,17/25 4:2% AM
O Payment for Order 1020 11/1/22 2:06 AM 11/17/23 4:42 AM
O Payment 11/2 for Octaber 15 crder 1173422 737 PM 12719722 5:23 PM
O /7722 616 P 1177722 816 PM
O He 1177722 6:45 PM 1177722 645 PM

ORACLE

168

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

objects?

Chapter 5
Appendix

4.

If data exists, you can click any record on the list page to drill down to the detail page. The detail page, including

header region and panels, should display.

You should now see a Sales Leads panel.

¥ Al epis

Payment for Laplops & [FE T
— —
Payment Lines Shipment Antschments Sales Leads
B P Mlarm 8 Vg T ER—
O = Qw . EE: --
u 5 B ° s St v
TN
2 -
ey 7 -
B e &
SN wmiam G
[epra—
e o e &

ORACLE

169

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

Chapter 5
Appendix

5. Inthe Action Bar, select the Create Lead action.

1 All Payments

Payment for Laptops ©
Payment Date 5/31/23 Amount 1,000 Discount 5%

‘ > deate Contact

W Create Contact

Create Lead

Create Payment Line

Create Shipment

The Create Lead page displays. Here's an example of a general Create Lead page:

P

Brew ODohorls ODumos L =TT E T e

After creating a lead, you should be navigated to the lead's detail page. Click the browser back button to return

to the Payment detail page where the new lead displays in the Sales Leads panel.

ORACLE

170

Oracle Fusion Cloud Sales Automation

How do | create an application extension for custom

Chapter 5
Appendix

objects?
= supremo
I'..:\I:-:u:.:;t fior Laptops &
F_mn-ntr.um ﬂb-mlnt c_wr:uufmmlundh
B - QU
@ T
- Yo
o ‘_“".’_'_':""‘.'..

— ——

Adtachments Sales Leads

&

6. On the Sales Leads panel, click the link for the lead you just created to navigate to the lead's detail page.

Click the browser back button.

7. Click the View All link to drill down to the subview.

Pavisent for Lapiops @ : Sales Leads

i

—— A =

8. On the Sales Leads subview, click a lead to navigate to the lead's detail page.

Click the browser back button.

ORACLE

171

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

9. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

< Workspace2 > extend-next-gen-sales.git/20220830
ol Git @ D detail
A O\ Filter Switch Branch
&= » Changed (1) Commit. Commit
e Pull
;
® Merge
| Reset to HEAD
(%) Q

Add a Custom Object Panel for Related Objects (One-to-Many)

You can enhance an object's detail page by adding panels for related objects. This makes it easy for users to see—on a
single page — all pertinent information related to a record. You can add custom object panels or standard object panels.
This topic illustrates how to add a custom object panel to an object's detail page (when the panel object is related via a
one-to-many relationship).

What's the Scenario?

In our example relationship, the Payment object has a one-to-many relationship with the Shipment object. At runtime,
users should be able to create shipments for a payment, and view those shipments on the Payment detail page. To
enable this, we need to add a Shipments panel to the Payment detail page.

172
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix

objects?

Setup Overview

To add a related object panel to a custom object's detail page, you must complete a few steps first. Here's an overview of
the required steps.

1. Complete these steps for your related object:

a. Make sure that the CX Extension Generator generated the pages and layout for the related object, in this
case, for the Shipment object.

See Create a New Application Using the CX Extension Generator.
b. Create the required create smart action for the related object in Application Composer.

For example, create a Create Shipment smart action.

The Create Shipment smart action displays from the Action Bar on both the Payment detail page and
Shipments subview. Users can select the Create Shipment smart action to navigate to a create shipment
page.

2. You can then add a new related object panel to the custom object's detail page.

See Add the Shipment Panel to the Payment Detail Page.
3. After adding the panel, you can then create and configure the subview.

See Configure the Subview for Related Objects (One-to-Many).

Add the Shipment Panel to the Payment Detail Page

To add a new panel for shipments to the Payment detail page:

In Visual Builder Studio, click the App Uls tab.

Expand cx-custom > payment_c, then click the payment_c-detail node.
On the payment_c-detail tab, click the Page Designer subtab.

Click the Code button.

P UWNa

| Live Design Code

5. Confirm that you are viewing the page in Page Designer.

‘ Page ~ |
v Page
Templates

173
ORACLE

https://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=u30241268

Oracle Fusion Cloud Sales Automation Chapter 5

How do | create an application extension for custom Appendix
objects?
6. Remove the comment tags for the dynamic container components that contains the panels and any subviews.
2 0] -vb-fra t bridges"[[vbBridge]]™ name="oracle cx_fragmentsUl:cx-detail™ class="oj-flex-ite
3 <07j-vb- ment - param names urces”
value="[[{'Payment_c' : {"puid’: $variables.puid, "id": $variables.id, 'endpoint’: $applic
5 <foj-vb-fragment - param>
B <oj-vbh-fragment -param name="header"
7 value="[[{'resource’: $flow.constants.objectName, "extensionId®: Sapplication.constants.ex
8 </oj-vb-fragment - param>
9 <oj-vb-fragment -param name="actionBar”
18 value="[[{ "applicationId™: “ORACLE-ISS-APP", "resource”: {"name”™: $flow.constants.objectng
11 </oj-vb-fragment -param>
12 <oj-vb-fragment - param names="panels”
13 value="[[{ "panelsMetadata™: $metadata.dynamicContainerMetadata, “view™: $page.variables.v
14 <foj-vb-fragment - param»
15 <0j-vb-fragment -param name="context"” wvalue="[[{ flowContext': $flow.variables.context}]]"»<
16 ¢f0]-vb-fragment>
17
18 ¢o]-dynamic-container layout="PanelsContainerLayout" layout-provider="[[$metadata.dynamicConta
19 class="oj-flex-item oj-sm-12 oj-md-1"></07-dynamic-containers
20 <oj-dynamic-container layout="SubviewContainerLayout™ layout-provider="[[$metadata.dynamicConty
21 < /o] -dynamic -containers
2
23
7. ngh]]ght the <oj-dynamic-container> tags for the panels.
m'j-dynamic-corkainer‘ layout="PanelsContainerLayout™ layout-provider="[[$metadata.dynamicConta
class="oj-flex-item o0j-sm-12 oj-md-1"></0]-dynamic-container>
8. On the Properties pane, in the Case 1region, click the Add Section icon, and then click New Section.
9. In the Title field, enter a title for the section, such as shipments.
10. Inthe ID field, change the value to shipmentsPanel.
Note: Don't use the REST object name for this ID because you'll use the REST object name when you create
the subview.
11. Click OK.
12. On the Properties pane, click the Shipments section that you just added.
Page Designer navigates you to the template editor, still on the payment_c-detail tab, where you can design the
Shipments panel template.
13. Click the Code button.
Live Design Code
14. Onthe Components palette, in the Filter field, enter cx-panel.
15. Drag and drop the cx-panel fragment to the template editor, between the shipments template tags.

[Epawnent_c-clelail x

Page Designer Actions (1 Event Listeners (1 Events Types Variables (2 JavaScript
u Q cx-panel x — < Return to page

5 a9

o ~ Fragments S P "
E - ® 50 <template id="shipments”>
(W] i = h’

52 <ftemplate>
53

Data

174

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?
16. Add the following parameters to the fragment code so that the code looks like the below sample. Be sure to
replace shipment c and rayment Id PaymentShipment1M With the appropriate values for your related object name
and foreign key field, and retain the proper capitalization of the custom object name.

Note: The format of the foreign key field's name is always <source object name> Id <Relationship name>. YOU
can also retrieve the field name by doing a REST describe of the target object (Shipment).

<template id="shipments">

<oj-vb-fragment bridge="[[vbBridge]]" class="oj-sp-foldout-layout-panel"

name="oracle cx_fragmentsUI:cx-panel">
<oj-vb-fragment-param name="resource" value='[[{"name": "Shipment c", "primaryKey": "Id", "endpoint":
$application.constants.serviceConnection }]1]'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="sortCriteria" value='[[[{"attribute": "LastUpdateDate",6 "direction":
"desc" }] 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="query"

value='[[[{"type": "gbe", "params": [{"key": "Payment_ Id PaymentShipmentlM", "value":
$variables.id }]1}] 11'>

</oj-vb-fragment-param>

<oj-vb-fragment-param name="context" value="[[{}]]"></oj-vb-fragment-param>
<oj-vb-fragment-param name="extensionId" value="{{ $application.constants.extensionId }}"></oj-vb-
fragment-param>

</oj-vb-fragment>
</template>

This table describes some of the parameters that you can provide for a custom panel.

Parameters for Custom Panel

Parameter Name Description

sortCriteria Specify how to sort the data on the panel, such as sort by last updated date and descending
order.

query Include criteria for querying the data on the panel.

17. In the previous step, you configured the panel template. Next, let's configure the layout for the panel.
18. Click the Layouts tab, then click the Shipment_c node.

-} Layouts -+

E |O\ Filter

152 » 4& Payment_c
= ~ | 4@ Shinment.c
4@ MNote

&
19. On the Shipment_c tab, click the Panel Card Layout rule set.

175
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 5
Appendix

20. Add the fields that you want to display on the panel.

a.
b.

Click the Open icon next to the default layout.

Each panel includes specific slots. From the list of fields, drag each field to the desired slot.

For example, drag and drop the RecordName field to the item1 slot. If an Id field is present in that slot, you

can remove it.

I:&, payment_c-detail x

[A LastUpdateDate

O A LastUpdatedBy
OA LastUpdateLogin
O[] Note

O A OraZcxOwner_c

D A OraZcxOwner_ld_c
[A payment_ld_Paymen
O A Phone_c

A\ RecordName

O A RecordNumber
% ShipmentDate_c

|:| [] smartActions

|:| A\ UserLastUpdateDate

Rule Sets (4) Fields Templates (4

4;_:_., Shipment_c %

Actions

ipment1M

Event Listeners Events Types

A item1

A RecordName

A item2
‘ ShipmentDate_c
A item3

A itemd

A item5 item5 only works with style

Drag and drop other desired fields to the appropriate slots. For example, drag the ShipmentDate_c field
to the item2 slot, and the Email_c field to the item3 slot.

ORACLE

176

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom

objects?

Chapter 5
Appendix

21. Comment out the dynamic container components from the payment_c-detail page.

a. Click the payment_c-detail tab, then click the Page Designer subtab.
b. Click < Return to page.

c. Click the Code button.

d. Select Page from the drop-down list.

[payment _c-detail x 4% PaymentLineCollection ¢

Page Designer Actions Event Listeners Events

=

Types Variab)

| Q) Filter, Alt+F ‘ -

b
[
£
2 ~ Redwood Patterns Page fragme
g & view-c
= Advanced Create and Edit Page _vb_fr
Template Templates vh-fr
I Bottom Drawer Template 5 <0j-vb-fr
1%}
(] =) 1
[B Create Edit Drawer Template 6 <0] -vb-fr
7 <0j-vb-fr
= Dashboard Landing Page Template 2 </oi-vb-fraem

e. Comment out the dynamic container components that contain the panels and subviews.

15
16
17
18
19
28
21
22
23

<oj-vb-fragment bridges"[[vbBridge]]” name="oracle cx fragmentsuUl:cx-detail™ class="oj-flex-iter

<oj-vb-fragment -param name="resources”

value="[[{'Payment_c' : {"puid’': $variables.puid, "id": $variables.id, 'endpoint’': $applic

<foj-vb-fragment -param>
<oj-vb-fragment-param name="header"”

value="[[{'resource’: $flow.constants.objectName, 'extensionId': $application.constants.ex

<foj-vb-fragment - param>
<0]-vb-fragment -param name="actionBar”

value="[[{ "applicationId™: "ORACLE-ISS-APP", "rescurce”: {"name™:

L
<foj-vb-fragment - param>
<oj-vb-fragment-param name="panels”
value="[[{ "panelsMetadata”: $metadata.dynamicContainermMetadata,
<foj-vb-fragment - params

“wiew™:

$flow.constants.objectn

tpage.variables.v

<0]-vb-fragment -param name="context"” wvalue="[[{ flowContext': $flow.variables.context}]]7»«

¢fo-vb-fragment>

<o]-dynamic-container layout="PanelsContainerLayout” layout-provider="[[$metadata.dynamicConta

class="oj-flex-item oj-sm-12 oj-md-1"»</o]-dynamic-containers

<oj-dynamic-container layout="subviewContainerLayout™ layout-provider="[[$metadata.dynamicCont

</oj-dynamic-containers

You can test the panel after you add the subview. Let's do that next.

Note: To add more panels to the panel region, you must first un-comment the dynamic container
component so that you can add a new section for each desired panel.

ORACLE

177

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

Configure the Subview for Related Objects (One-to-Many)

If your custom object has relationships with other objects, then users can add related object records directly from the
custom object's detail page. To enable this, you must build two things: a new subview for the related object and an
Add dialog that can be launched from the detail page. This topic illustrates how to create a subview for a related object
(related via a one-to-many relationship).

In our example, the Payment object has a one-to-many relationship with the Order object. At runtime, the user should
be able to add an order to a payment.

That's the scenario that we'll address in this topic.

Setup Overview
Enabling the addition of related object records involves multiple steps in Oracle Visual Builder Studio:

1. Create the subview for the related object.

This topic describes this process.
2. Create alink field on the subview table.

Users can click the link field to drill down to the related object record's details.
3. Build the Add dialog so that users can add the related object record to the custom object record.
4. Build the Delete dialog so that users can delete the related object record from the custom object record.
5. Add the Delete icon to the subview table so that users can access the Delete dialog.

Application Composer Prerequisites
Before creating the Add dialog, you must complete these prerequisite steps in Application Composer, inside a sandbox.

1. Create the one-to-many relationship for your custom object.

In our example, we want users to be able to add an order to a payment. In this case, create a one-to-many
relationship between Payment as the source object and Order as the target object.

The relationship's display name can be something like PaymentOrder.
2. You must also create the Add smart action.

The Add smart action displays from the Action Bar on both the detail page and subview. Users can select the
Add smart action to launch the Add dialog.
3. Publish your sandbox.

Note: If you're already running Visual Builder Studio, then sign out and sign back in before continuing to
configure your application extension. Doing this ensures that Visual Builder picks up the latest published
changes from Application Composer.

Visual Builder Studio Prerequisites

After completing the Application Composer prerequisites, you must complete these steps in Visual Builder Studio
before adding the Add dialog to the detail page.

1. First, create a variable for the detail page.

178
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

a. Click the detail tab, then click the Variables subtab.

b. Click + Variable.

c. Inthe Create Variable dialog, make sure the Variable option is selected and, in the ID field, enter

enableAddOrder.

d. Inthe Type field, select Boolean.

e. Click Create.

f. On the Properties pane, in the Default Value field, click false.

2. Let's add a new string to the translation bundle:

a. On the customBundle tab, click + String.
b. Inthe Key field, enter orderName.

c. Inthe String field, enter order Name.

d. Click Create.

After adding an order to a payment, the user will be navigated to the order subview page. The user can click the order
name, which is a link field, to navigate to the Order detail page.

In our example, the Order object is a custom object. Let's create an order detail page and create page so that you can
test the link field.

1. Click the App Uls tab.
2. Expand the cx-objects node.
3. Click the + icon next to cx-objects to create a new flow.

. App Uls +
4 ‘ Q Filter

\Ca b [assets -+
5 ~ L1 cx-objects -+
" » main -+

» [J Resources

3 Fragments -+

w

» [Resources

—

[

0 From Dependencies
(2

» Digital Sales

» Unified Application

In the Create Flow dialog, in the Flow ID field, enter the flow name, such as order.
Click the + icon next to the order node to add pages to your custom application.
Click Create Page.

Create two pages:

NOo vk

179
ORACLE

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

o 1list
o create
o detail

8. Enable navigation to your custom application.

Click the order flow's create tab > Settings subtab.
Select Let other App Uls navigate to this page.
Click the order flow's detail tab > Settings subtab.
Select Let other App Uls navigate to this page.
Click the order flow's list tab > Settings subtab.
Select Let other App Uls navigate to this page.
Click the order tab > Settings subtab.

In the Default Page field, select list.

i. Select Let other App Uls navigate to this page.

S 0 20 OO

9. When you created the order flow, an order-start page was automatically created.

Delete the order-start node by right-clicking and clicking Delete.
10. Next, create a variable for the order flow's detail page.

Click the detail tab, then click the Variables subtab.

ORACLE

Chapter 5
Appendix

180

Oracle Fusion Cloud Sales Automation
How do | create an application extension for custom
objects?

11. Click + Variable.

Chapter 5
Appendix

a. Inthe Create Variable dialog, make sure the Variable option is selected and, in the ID field, enter iaq.

b. Click Create.

c. Onthe Properties pane, in the Input Parameter section, click Enabled.

d. Click Pass On URL.

Variable

General Events

‘1d

Description

id

*

Type

Create

‘ String

‘ - ‘

Access for Application Extensions *

‘ No Access Read Only Read/Write |

Input Parameter

‘ Disabled Enabled Required |

Pass On URL

salyiadoig

Finally, create a new service connection to your related object. In our example, we will create a service connection to the

Order_c object.

1. Click the Services tab.

2. Click + Service Connection > Select from Catalog.

3. Click Sales and Service.

ORACLE

181

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

4. C(lick the pencil icon next to CrmRest and enter your custom object name.

Create Service Connection

crmRest

https://fuscdrmsmc302-fa-ext.us.oracle.com:443 fcrmRestApi/rest fsb:Payments/en/latest.9 /describe

'D\ Filte ects/E t Select All

For example, enter order_c.
5. Inthe Metadata Retrieval Option field, select Dynamically retrieve metadata.
6. In the Filter Objects/Endpoints field, enter your custom object name to filter the list.

For example, enter order.
7. Click the check box for your custom object.

For example, Order_c.
8. C(lick Create.

Create Event Listener and Action Chain
1. Next, create an event listener and action chain.

Click the payment flow's detail tab, then click the Event Listeners subtab.

Click + Event Listener.

In the Create Event Listener dialog, in the Filter Events field, enter beforeinvokesmartactionEvent.
Click beforelnvokeSmartActionEvent.

Click Next.

Click the + icon next to Page Action Chains.

In the New Page Action Chain field, enter addorderBeforeInvokeSAChain.

Click Finish.

2. Let's modify the action chain.

SR 0 Qn T

a. On the refreshed Event Listeners page, next to the new AddOrderBeforelnvokeSAChain event listener,
click Go to Action Chain.

b. Drag an If logic action to the Start node.
c. On the Properties pane for the If action, in the Condition field, enter the following:

[[$variables.event.smartActionId === 'CUST-AddOrder-Payment_c']]
Note: CUST-AddOrder-Payment_c is the Add Order smart action that you previously created.
d. Let's configure the true branch for the If logic action.

i. Dragan Assign Variables action to the true branch.
ii. On the Properties pane, next to the Variables heading, click Assign.

182
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix

objects?

iii. Inthe Assign Variables dialog:

On the Target side, click enableAddOrder.
In the text entry box, enter true.

Click the Static option.

Click Save.

engo

Create the Order Subview
Next, create a new subview for the orders that you're adding to a payment. This is where you'll add the Add Order

dialog.

1
2,
3.

On the payment flow's detail tab, click Page Designer.
Click the Design button.
In the Structure view, click the Dynamic Container node inside the Drilldown slot.

This is the dynamic container that we added when we first created the framework of the detail page. This
dynamic container holds the detail page's subview pages.

Note: In the Structure view, you can see two Dynamic Container nodes. One dynamic container holds the
foldout panels. The other dynamic container holds the subview pages. We're using the dynamic container
that holds the subview pages.

* [il] Grid Row
¥ [{][Foldout Layout
P <> div@overview (Horizontal Overview)
» [=l Dialog [[$transiations...actionConfirmationDialog Title()
v E3 Dynamic Container
» Payment Lines (paymentlLinesZ2)
4 Related (related)
¥ > div@dnlldown

» @ Hyperlink (Bind Text)

v E Dynamic Container

» AccountsSubview (accountsSubview)

» PaymentlLinesSubview (paymentlLinesSubview)

On the Properties pane, click + Case.
In the Condition field, enter:

$variables.view === 'Order PaymentOrder Tgt'

This is the same value that you set in the navigation parameter for the Add Order smart action.
Next to the Section heading, click the Add Section icon, and then click New Section.
Enter a title for the section, such as orderssubview, and click OK.

183

ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

8. On the Properties pane, click the OrdersSubview link.

Display Logic

J>—| ~+ Case

b case3 © B :
Condition ® fx =

$variablesview === "Order_Paym...

Sections +
OrdersSubview] By ~ ~ T

Page Designer navigates you to the template editor where you can design the subview template.
9. On the Components palette, in the Filter field, enter pynamic Table.
10. Drag and drop the Dynamic Table component to the Structure view.

[E] detail x

Page Designer. Actions (7) Event Listeners (7) Events (1)

0 | Q. dynamic table X =
5 . J

S

E ~ Dynamic Components

s]

et | Dynamic Table

=

& Youcan alsg try searching for "dynamic table” at Camponent Exchange. .

Search Exchange

| Q Filte

11. On the Properties pane for the Dynamic Table node, in the Class field, enter oj-sm-width-£ull.

184
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

12. On the Properties pane, click the Quick Start tab.

a. Click Configure Layout.
b. Inthe Configure Layout dialog, pick the related object's endpoint.

In our example, click Payment_c/Order_PaymentOrder_Tgt.

Configure Layout

Choose the sowce of your data

~ Paymeni g

e & °&

b o datavivaskystion owes e e
Click Next.

d. Inthe Labelfield, enter the rule set name. In our example, enter subview.
e. Click the fields that you want to include in this subview.

o

In our example, click RecordName and CurrencyCode.
f. Click Next.

Map the Page > Variables > id variable on the Sources side to the <primarykey>_Id (in our example,
Payment__c_Id) on the Target side.

0

Click the Expression option.

On the Target side, click the onlyData parameter.

In the text entry box, enter true and click the Static Content option.
On the Target side, click the totalResults parameter.

In the text entry box, enter true and click the Static Content option.
Click Finish.

3 mFe T

185
ORACLE

Oracle Fusion Cloud Sales Automation Chapter 5
How do | create an application extension for custom Appendix
objects?

13. Here's a final look at where the Order subview should be located within the Dynamic Container:

* [il] Grid Row
¥ [{][Foldout Layout
b <> div@overview (Horizontal Overview)
» [E] Dialog [[$transiations...actionConfirmationDialog Title()]
» E2 Dynamic Container
¥ {3 div@drilldown
» @ Hyperlink (Bind Text)
¥ E? Dynamic Container
4 AccountsSubview (accountsSubview)

4 PaymentlLinesSubview (paymentlLinesSubview)

4 OrdersSubview (ordersSubview)

14. Save your work by using the Push Git command.

Navigate to the Git tab, review your changes, and do a Git push (which does both a commit and a push to the
Git repository).

< Workspace2 > extend-next-gen-sales.git/20220830

o Gt (5) D detai
A Q Filter : Switch Branch

& » Changed (1) Commit. Commit

e/ Pull

.

@ Merge

B Reset to HEAD
Q S

186
ORACLE

	How do I create an application extension for custom objects?
	Get Help
	Before You Begin
	Before You Create an Application Extension
	How can I change my project's Extension ID?

	Add a Custom Top Level Object
	Prerequisites for Using the CX Extension Generator
	Create a New Application Using the CX Extension Generator
	Modify an Existing Custom Application Using the CX Extension Generator
	Create a Translation Bundle, If You Don't Have One Already
	Configure a Child Object
	Configure the Panel for the Child Object
	Configure the Subview for Child Objects
	Display a Smart Action on a Child Object Subview Only for a Specific Parent Object

	Display a Panel and Subview Based on a Field Value
	Configure the Subviews for Appointments and Tasks
	Create Navigation Menu Entry
	Configure the Picker
	Display Different Fields in a Picker

	Add a Mashup to a Page
	Add a Rollups Region to a Panel
	Understanding "Show" Actions
	Add the CreatedBy and LastUpdatedBy Fields to Notes Panels and Subviews
	Link to a Smart Action Using a URL

	Additional Configuration Tasks
	Configure the Contents of a Panel
	Configure the Subview Layout
	Make Values of a DCL Field Dependent on the Values of Another Field
	Change Navigation to Pages in Your Sales Application
	Configure What Information Displays in the Product Catalog

	Global Create Actions and AI Agent Integrations
	Global Actions in the Sales Dashboard
	Create the Global Create Actions for Custom Objects
	Set Up Global Actions to Launch AI Agents from the Sales Dashboard

	Appendix
	Manually Configure a Child Object for Related Objects
	Add a Standard Object Panel for Related Objects (One-to-Many)
	Add a Custom Object Panel for Related Objects (One-to-Many)
	Configure the Subview for Related Objects (One-to-Many)

