
Siebel

eScript Language Reference

January 2020

Siebel
eScript Language Reference

January 2020

Part Number: F84312-01

Copyright © 1994, 2020, Oracle and/or its affiliates.

Authors: Siebel Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Siebel
eScript Language Reference

Contents

Preface .. i

1 What’s New in This Release 1
What’s New in Siebel CRM 20.1 Update ... 1

What’s New in Siebel CRM 19.1 Update .. 1

2 About Siebel eScript 3
About Siebel eScript ... 3

Overview of Siebel eScript ... 3

About Data Types and Numbers .. 5

About Functions and Methods .. 14

3 Using Siebel eScript 19
Using Siebel eScript ... 19

Using Operators in Siebel eScript ... 19

Coding with Siebel eScript ... 27

Guidelines for Using Siebel eScript .. 35

4 Statements Reference 43
Statements Reference ... 43

Break Statement ... 43

Continue Statement .. 44

Do While Statement .. 45

For Statement ... 46

For In Statement .. 47

Goto Statement .. 48

If Statement ... 49

Switch Statement ... 50

Throw Statement .. 52

Try Statement .. 53

Siebel
eScript Language Reference

While Statement ... 55

With Statement ... 56

5 Methods Reference 59
Methods Reference .. 59

Overview of Methods Reference .. 59

Array Methods .. 60

String Methods ... 69

BLOB Methods .. 83

Buffer Methods ... 89

Date and Time Methods .. 100

UTC Methods .. 117

Global Methods ... 126

Conversion Methods .. 132

Data Querying Methods ... 149

Mathematical Methods ... 154

Regular Expression Methods ... 168

Siebel Library Methods ... 174

Custom Methods ... 181

6 C Language Library Reference 185
C Language Library Reference .. 185

Overview of the Clib Object ... 185

Clib File and Directory Methods ... 187

Clib File Input and Output Methods .. 199

Clib String Methods ... 220

Clib Buffer Methods .. 229

Clib Mathematical Methods ... 232

Clib Date and Time Methods .. 237

Clib Character Classification Methods .. 247

Clib Error Methods ... 252

Other Clib Methods ... 254

7 Siebel eScript Quick Reference 261
Siebel eScript Quick Reference .. 261

File and Directory Methods .. 261

Siebel
eScript Language Reference

String Methods ... 263

Array Methods and Properties .. 265

Mathematical Methods and Properties .. 265

BLOB Methods ... 268

Date and Time Methods .. 268

Buffer Methods and Properties ... 271

Siebel Library Methods ... 272

Conversion Methods .. 272

Character Classification Methods ... 273

Error Handling Methods ... 274

Other Methods ... 274

8 Compilation Error Messages 277
.. 277

Formats That This chapter Uses .. 277

Format Error Messages .. 277

Semantic Error Messages .. 280

Semantic Warnings .. 283

Preprocessing Error Messages .. 285

Siebel
eScript Language Reference

Siebel
eScript Language Reference

Preface

Preface
This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center at https://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides! You can send an email to:
oracle_fusion_applications_help_ww_grp@oracle.com.

i

https://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Siebel
eScript Language Reference

Preface

ii

Siebel
eScript Language Reference

Chapter 1
What’s New in This Release

1 What’s New in This Release

What’s New in Siebel CRM 20.1 Update
No new features have been added to this guide for this release. This guide has been updated to reflect only product
name changes.

What’s New in Siebel CRM 19.1 Update
No new features have been added to this guide for this release. This guide has been updated to reflect only product
name changes.

1

Siebel
eScript Language Reference

Chapter 1
What’s New in This Release

2

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

2 About Siebel eScript

About Siebel eScript
This chapter describes Oracle’s Siebel eScript. It includes the following topics:

• Overview of Siebel eScript

• About Data Types and Numbers

• About Functions and Methods

Overview of Siebel eScript
Siebel eScript is a programming language that is syntactically and semantically compatible with JavaScript. It includes
an editor, debugger, interpreter, and compiler. It runs on the Windows and UNIX operating systems.

JavaScript is typically part of a Web browser and can run while the user is connected to the Internet. Siebel eScript is
part of Siebel CRM. The Siebel Application Object Manager interprets it at run time. You do not require a Web browser
to run it. It provides access to the hard disk and other parts of the Siebel client or Siebel Server. ECMAScript does not
provide this access.

Siebel Tools allows you to configure Siebel CRM without scripting. It is recommended that you use Siebel eScript only
after you determine that you cannot use any other tool. For more information, see the chapter about using Siebel
eScript in Siebel Object Interfaces Reference on Siebel Bookshelf .

About the Script Assist Utility
The Script Assist utility is a feature in Siebel Tools that helps you write ST eScript code. Starting with Siebel CRM version
8.0, Script Assist can access information about object definitions in the runtime repository that your script references,
and then display this information in the Script Assist window.

Script Assist limits the choices you can make according to the information that the runtime repository contains. This
feature helps prevent scripting errors and simplifies the scripting process. For example, it prevents you from writing
code that causes Siebel CRM to write to a read-only field, or to get a value from a field that does not exist in the object. It
displays the required and optional parameters for the following items:

• Siebel methods

• Global methods

• Global functions

• Custom functions

• Methods available for InvokeMethod calls

To identify the object that your script references, Script Assist can use the following object reference key word in a script
and display the appropriate fields for this object:

 this

3

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

For more information about Script Assist, see Using Siebel Tools .

The following information lists the objects and methods that Script Assist can access in the runtime repository.

Object Method

Applet

Script Assist can access the following methods:

• BusComp

• BusObject

Application

Script Assist can access the following methods:

• ActiveBusObject

• ActiveViewName

• GetBusObject

• GetService

Business Component

Script Assist can access the following methods:

• ActivateField

• ActivateMultipleFields

• Associate

• BusObject

• DeActivateFields

• GetAssocBusComp

• GetFieldValue

• GetFormattedFieldValue

• GetMultipleFieldValues

• GetMvgBusComp

• GetPickListBusComp

• GetViewMode

• ParentBusComp

• SetFieldValue

• SetFormattedFieldValue

• SetMultipleFieldValues

Business Object

GetBusComp

Business Service

InvokeMethod

4

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

About Data Types and Numbers
This topic describes data types in Siebel eScript. It includes the following topics:

• About Primitive Data Types

• About Composite Data Types

• Properties and Methods of Common Data Types

• How Siebel eScript Converts Data Types

• About Numbers

For more information, see Determining the Data Type of a Variable.

About Primitive Data Types
A primitive data type is a type of data that Siebel eScript provides as a fundamental part of the code. It does not possess
other properties or functions.

The bool, chars, and float data types must use lowercase.

bool Data Type
The bool data type defines and manipulates a Boolean object. A Boolean value is true or false.

chars Data Type
The chars data type defines and manipulates a string. A chars value is a sequence of alphanumeric characters. It can
include any sequence of 16-bit, unsigned integers.

float Data Type
The float data type defines and manipulates a floating point number.

Integer is not a Siebel eScript data type. You can write code that uses a float variable. Some code that expects an integer
variable converts a float variable to an integer.

undefined Data Type
If Siebel CRM saves nothing in a variable, then it is undefined. An undefined variable occupies space until Siebel CRM
saves a value in it. When Siebel CRM saves a value in a variable, it modifies the type of the variable according to the
value.

The following example determines if a variable is undefined:

var test;
if (typeof test == "undefined")
TheApplication().RaiseErrorText("test is undefined");

5

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

About Composite Data Types
This topic describes the composite data types that Siebel eScript uses. A composite data type is a complex type of data
that can include properties and functions.

Overview of the Object Data Type
The ECMAScript standard uses the following description for an object:

A member of the type Object. It is an unordered collection of properties, each of which includes a primitive value, object,
or function. A function stored in a property of an object is referred to as a method.

Siebel eScript does not use a class hierarchy that conforms to this ECMAScript standard. Instead, it instantiates an
object in the following ways:

• As an Object type

• From an object that it instantiates as an Object type

These objects are new object types that Siebel eScript can use to instantiate other objects. Each object includes an
implicit constructor function that it implements through the following command:

new

You can configure Siebel eScript to add properties dynamically to an object. An object inherits all the properties of the
objects that reside in the ancestral chain of the object.

The object type known as Object is a generic object type. If you declare an object as an Object type, then it does not
inherit properties from any object.

For more information, see Use a Primitive Data Type Instead of an Object Data Type.

Boolean Data Type
The value of a Boolean object is a bool value, which is true or false. It is a property of the Boolean object. If you use a
Boolean variable in a numeric context, then Siebel eScript does the following conversion:

• If the value of a bool variable is true, then it converts this value to 1.

• If the value of a bool variable is false, then it converts this value to 0.

To create a Boolean object, you use the Boolean constructor in the type of expression:

new

String Data Type
The string value is a chars value. Siebel eScript adds it as a property of the String object. A pair of double or single
quotation marks brackets a string. For example:

"I am a string"
'so am I'
"344"

In this example, the 344 string is an array of characters. The number 344 is a value that Siebel eScript can use in a
numeric calculation.

To create a string data type, you use the String constructor in the following type of expression:

6

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

new

Siebel eScript does one of the following, depending on the context:

• Converts a string to a number

• Converts a number to a string

For more information, see How Siebel eScript Converts Data Types.

Number Data Type
The value of a number is a float value. It is a property of the Number object.

To create a number object, you use the Number constructor in the following type of expression:

new

For more information, see About Numbers.

Array Data Type
An array is a series of data that Siebel eScript stores in a variable. Each datum is associated with an index number or
string. The following example illustrates how Siebel eScript stores data in an array:

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

In this example, the Test variable is an array that includes three strings. You can write code that uses an array variable as
one unit. To reference a string individually, you can append the bracketed index of the element after the array name.

To reference a property:

• An array uses an index.

• An object uses a property name or a method name.

For more information, see Array Methods.

null Data Type
The null object indicates that a variable is empty. It does not contain a value, although it might have previously
contained a value. The following term identifies a null data type:

null

The following keyword allows you to compare a value to a null object:

null

null includes a literal representation. The following example is valid:

var test = null;

Siebel eScript can compare any variable that contains a null value to a null literal.

Other Object Types That Siebel eScript Supports
The following information lists other object types that Siebel eScript supports.

7

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

Object Description

Application

For more information, see Siebel Object Interfaces Reference .

BLOB

For more information, see BLOB Methods.

BLOB Descriptor

For more information, see About the blobDescriptor.

Buffer

For more information, see Buffer Methods.

Business Component

For more information, see Overview of Date Methods.

Business Object

For more information, see Siebel Object Interfaces Reference .

CfgItem

The CfgItem object is a Siebel Product Configuration object.

Clib

For more information, see Overview of the Clib Object.

CTIData

For more information, see Siebel CTI Administration Guide .

CTIService

For more information, see Siebel CTI Administration Guide .

Date

For more information, see Overview of Date Methods.

Exception

For more information, see Function Object.

File

For more information, see Clib Open File Method.

Math

For more information, see Mathematical Methods.

Property Set

For more information, see Siebel Object Interfaces Reference .

Regular Expression

For more information, see Regular Expression Methods.

SELib

For more information, see Siebel Library Methods.

Service

For more information, see Siebel Object Interfaces Reference .

Web Applet

For more information, see Siebel Object Interfaces Reference .

8

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

Properties and Methods of Common Data Types
Common data types include properties and methods that you can use with any variable of this type. Any string variable
can use any string method. Examples of common data types include a number or string. For example, assume you use
a numeric variable named VariableA and you must convert it to a string. The following example illustrates how you can
use the toString method to convert a numeric variable to a string:

var VariableA = 5;
var VariableB = num.toString();

After this code finishes, VariableA contains the number 5 and VariableB contains the string 5.

The following methods are common to variables:

• ValueOf method. Returns the value of a variable. Value is an implicit property of some objects, including
number, string, and Boolean objects.

• ToString method. Returns the value of a variable that is expressed as a string. Value is an implicit property of
number and Boolean objects.

How Siebel eScript Converts Data Types
Siebel eScript implicitly converts data types in many mixed-type contexts. You must use conversion methods to make
sure your code does the required conversions. For more information, see Conversion Methods.

Concatenation Can Cause a Conversion
Siebel eScript converts the data type of a typeless variable in the following situations:

• If you write Siebel eScript code that subtracts a string from a number, or that subtracts a number from a string,
then it converts this string to a number and subtracts the two values.

• If you write Siebel eScript code that adds a string to a number, or that adds a number to a string, then it
converts this number to a string and concatenates the two strings.

Siebel eScript must always convert a string to a base 10 number. This string must contain only digits. For example, the
following string does not convert to a number because Text is meaningless as part of a number in Siebel eScript:

110Text

The following examples result in Siebel eScript doing a conversion:

s = "dog" + "house" // s = "doghouse", two strings are concatenated.
t = "dog" + 4 // t= "dog4", a number is converted to a string
u = 4 + "4" // u = "44", a number is converted to a string
v = 4 + 4 // v = 8, two numbers are added
w = 23 - "17" // w = 6, a string is converted to a number

Using a Conversion Method
You must use a conversion method to make sure Siebel eScript does conversions when it adds, subtracts, or does other
arithmetic operations. The following example uses a conversion method to convert a string input to a numeric value:

var n = "55";
var d = "11";

9

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

var division = Clib.div(ToNumber(n), ToNumber(d));

Use can use the parseFloat method of the global object to specify a more stringent conversion. For more information,
see Convert String to Floating-Point Number Method.

You must use a conversion method in situations where Siebel eScript does not do a conversion. Siebel eScript includes
many global methods that convert data types. For more information, see Conversion Methods.

Setting the Data Type Can Cause a Conversion
Siebel eScript does conversions differently depending on if the variable is typeless or strongly typed. For more
information, see Using Strongly Typed and Typeless Variables.

How Siebel eScript Converts a Typeless Variable
If Siebel eScript sets the data type for a typeless variable, then it converts this variable only to another typeless variable.
For example, the following examples result in Siebel eScript converting VariableA to a string:

var VariableA = 7.2;
var VariableB = "seven point 2"
VariableA = VariableB;

How Siebel eScript Converts a Strongly Typed Variable

The following table describes how Siebel eScript converts a strongly typed variable. In this table, assume that Siebel
eScript must convert VariableA to VariableB.

VariableA
Type

VariableB Type

Value chars bool float Object String Number Boolean Other

Value

Same

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

chars

Yes

Same

Yes

Yes

Yes

Yes

Yes

Yes

Yes W

bool

Yes

Yes

Same

Yes

Yes

Yes

Yes

Yes

Yes

float

Yes

Yes, W

Yes

Same

Yes, W

Yes, W

Yes

Yes

Yes, W

Object

Yes

Err

Err

Err

Same

None

None

None

None

String

Yes

Yes

Err

Err

Err

Same

Err

Err

Err

Number

Yes

Err

Err

Yes

Err

Err

Same

Err

Err

Boolean

Yes

Err

Yes

Err

Err

Err

Err

Same

Err

Other

Yes

Err

Err

Err

Err

Err

Err

Err

Same

10

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

The previous table uses the following abbreviations:

• Yes. Siebel eScript converts the variable.

• W. Siebel Tools might display a message when it compiles the script. This message warns that the conversion
might not occur. The warning and conversion depend on the properties of the variables that are involved when
Siebel eScript sets the data type.

• Err. A compilation error occurs.

• None. No conversion is required. A conversion is not typically required to modify an Object variable to a
specialized object type.

• Same. VariableA and VariableB are of the same type.

• Value. Indicates a typeless variable. It describes the conversion that Siebel eScript does in the following
situations:

◦ Convert a strongly typed variable to a typeless variable.

◦ Convert a typeless variable to a strongly typed variable.

• Other. Indicates predefined types and custom types that are not the following types:

◦ Object

◦ String

◦ Number

◦ Boolean

About Numbers
This topic describes the types of numbers that you can use with Siebel eScript. Siebel eScript treats a number that
contains a character other than a decimal point as a string. For example, the number 100,000 is a string, including the
comma. The exception is hexadecimal numbers and scientific notation.

The number types that this topic describes are not data types. You cannot write code that uses one of these number
types as a data type in the declaration of a strongly typed variable. For more information, see Using Strongly Typed and
Typeless Variables.

Integer Numbers
An integer number is a positive whole number, a negative whole number, or zero. Siebel eScript recognizes the
following:

• An integer constant or an integer literal in decimal, hexadecimal, or octal notation.

• A decimal constant or a decimal literal in decimal representation.

You cannot write code that strongly types a variable as an integer. You can write code that uses the float primitive or the
value of the float primitive as an integer. For more information, see Using Strongly Typed and Typeless Variables.

Hexadecimal Numbers
A hexadecimal number is a number that uses base 16 digits. It uses digits from the following sets:

• 0 through 9

11

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

• A through F

• a through f

The following format precedes a hexadecimal number:

0x

A hexadecimal number is not case-sensitive in Siebel eScript.

The following table lists example hexadecimal numbers and their decimal equivalents.

Hexadecimal Number Decimal Number

0x1

1

0x01

1

0x100

256

0x1F

31

0x1f

31

0xABCD

43981

var a = 0x1b2E

var a = 6958

Octal Numbers
An octal number is a number that uses base 8 digits. It includes digits from the following set:

0 through 7

A zero precedes an octal number.

The following table lists example octal numbers and their decimal equivalents.

Octal Number Decimal Number

00

0

05

5

077

63

var a = 0143

var a = 99

12

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

Floating Point Numbers
A floating-point number is a number that includes a whole part and a fractional part. A decimal separates these parts.
For example, 10.33. Some developers refer to a floating-point number as a float. The float data type is not a floating-
point number. For more information, see float Data Type.

For more information, see Preventing a Floating-Point Error.

Floating Decimal Numbers
A floating decimal number is a number that uses the same digits as a decimal integer but uses a period to indicate the
fractional part of the number. For example:

0.32, 1.44, 99.44
var a = 100.55 + .45;

Scientific Numbers
A scientific number is a number that uses decimal digits and exponential notation. The following items represent
exponential notation:

• e

• E

A scientific number is useful if you must use very large or very small numbers. Scientific notation is also known as
exponential notation.

The following table lists example scientific numbers and their decimal equivalents.

Scientific Number Decimal Number

4.087e2

408.7

4.087E2

408.7

4.087e+2

408.7

4.087E-2

0.04087

var a = 5.321e31 + 9.333e-2

var a = 53210000000000000000000000000000 + 0.09333

NaN Numbers
NaN is a value that is an abbreviation for the following phrase:

not a number

NaN is not a data type. NaN does include a literal representation. To test for NaN, you must use the isNaN function. The
following example illustrates this usage:

var Test = "Test String";
if (isNaN(parseInt(Test)))

13

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

TheApplication().RaiseErrorText("Test is Not a Number");

If the parseInt function attempts to parse Test String into an integer, then it returns NaN because Test String does not
represent a number.

Numeric Constants
You can write code that references a numeric constant as a property of the Number object. A numeric constant does not
include a literal representation.

The following table describes some numeric constants.

Numeric Constant Value Description

Number.MAX_VALUE

1.7976931348623157e+308

Largest positive number.

Number.MIN_VALUE

2.2250738585072014e-308

Smallest positive nonzero value.

Number.NaN

NaN

Not a number.

Number.POSITIVE_INFINITY

Infinity

Number greater than MAX_VALUE.

Number.NEGATIVE_INFINITY

-Infinity

Number less than MIN_VALUE.

About Functions and Methods
A function is an independent section of code that does the following:

1. Receives information
2. Performs some action on this information
3. Returns a value to the item that called it

It begins with the following statement:

Function functionname

It ends with the following statement:

End Function

You use the same format as you use with a variable to name a custom function. You can write code that uses any valid
variable name as a function name. It is recommended that you use a name that describes the work that the function
performs.

You can write code that calls a function repeatedly from various objects or script. It is similar to a subroutine. To
call a function, you must know what information the function requires as input and what information it provides as
output. This book describes the predefined functions that come with Siebel eScript. You can write code that uses these
functions any time you use the Siebel eScript interpreter.

14

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

You can write code that uses a function anywhere that you can use a variable. To use a function, you do the following:

• To declare it, you use the function keyword.

• To determine the data that Siebel eScript must pass to the function, you include the function operator. To
include this operator, you use a pair of parentheses immediately after the function name. For example:

TheApplication.RaiseErrorText()

A Siebel VB method is a function that is part of an object or class. It can include a predefined procedure that you can use
to call a function that does an action or a service for an object.

A Siebel VB statement is a complete instruction.

For more information, see Passing a Value to a Function.

Example of a Function
The TheApplication.RaiseErrorText function is an example of a function that allows you to display formatted text if an
error occurs. It does the following work:

• Receives a string from the function that calls it

• Displays this string in an alert box in the Siebel client

• Stops the script

About Function Scope
A function is global. Siebel eScript can call it from anywhere in a script in the object where you declare it. The examples
in this topic achieve the following results:

• The code passes the 3 and 4 literals as parameters to the SumTwo function.

• The SumTwo function includes corresponding a and b variables. These variables contain the literal values that
Siebel eScript passes to the function.

Example of Calling a Function as a Function
The following example calls the SumTwo function:

function SumTwo(a, b)
{
 return (a + b)
}

TheApplication().RaiseErrorText(SumTwo(3, 4));

Example of Using a Method to Call a Function
The following example uses a method of the global object to call the SumTwo function:

function SumTwo(a, b)
{
 return (a + b)
}

TheApplication().RaiseErrorText(global.SumTwo(3, 4));

15

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

The Arguments Property of a Function
The arguments property of a function is a list of the arguments that Siebel eScript passes to the function. The first
argument is arguments[0], the second argument is arguments[1], and so on. You can write code that references the
arguments property for a function only in that same function.

You can configure a function that includes an indefinite number of arguments. The following example uses a variable
number of arguments, and then returns the sum:

function SumAll()
{
 var total = 0;
 for (var ssk = 0; ssk < arguments.length; ssk++)
{
 total += arguments[ssk];
}
 return total;
}

About Recursive Functions
A recursive function is a type of function that calls itself or that calls another function that calls the first function. Siebel
eScript allows recursion. Each call to a function is independent of any other call to this function. If a function calls itself
too many times, then the script runs out of memory and aborts.

In the following example, the factor function calls itself so that it can factor a number. Factoring is an appropriate use of
recursion because it is a repetitive process where the result of one factor uses the same rules to factor the next result:

function factor(i) //recursive function to print factors of i,
{// and return the number of factors in i
 if (2 <= i)
{
 for (var test = 2; test <= i; test++)
{
 if (0 == (i % test))
{
// found a factor, so print this factor then call
// factor() recursively to find the next factor
 return(1 + factor(i/test));
}
}
}
// if this point was reached, then factor not found
 return(0);
}

Error Checking with Functions
If a function fails, then some functions return a special value. Consider the following example:

• To allow a script to read from or write to a file, the Clib.fopen method opens or creates this file.

• If the script calls the Clib.fopen method but this method cannot open a file, then the method returns null.

16

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

• If the script then attempts to read from or write to this file, then Siebel CRM creates an error.

To prevent this error, you can use the following code to determine if Clib.fopen returns null when it attempts to open a
file. If it does return null, then you can write code that aborts the script and displays an error message:

var fp = Clib.fopen("myfile.txt", "r");
var fp = Clib.fopen("myfile.txt", "r");
if (null == fp)//make sure null is not returned
{
 TheApplication().RaiseErrorText("Error with fopen as returned null " +
 "in the following object: " + this.Name() + " " + e.toString() + e.errText());
}

For more information, see Overview of the Clib Object.

Where Data Resides
Data in a script resides in a literal or in a variable. The following example includes variables and literals:

var TestVar = 14;
var aString = "test string";

This code does the following:

• Saves the following literal value to the TestVar variable:

14

• Saves the following literal value to the aString variable:

test string

After you save a literal value in a variable, you can reference this variable anywhere in the script where you declare the
variable.

17

Siebel
eScript Language Reference

Chapter 2
About Siebel eScript

18

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

3 Using Siebel eScript

Using Siebel eScript
This chapter describes how to use Siebel eScript. It includes the following topics:

• Using Operators in Siebel eScript

• Coding with Siebel eScript

• Guidelines for Using Siebel eScript

Using Operators in Siebel eScript
This topic describes operators you can use in Siebel eScript. It includes the following topics:

• Overview of Mathematical Operators

• Using a Shortcut Operation to Do an Arithmetic Operation

• Modifying the Sequence That Siebel eScript Uses to Evaluate an Expression

• Using Logical Operators and Conditional Expressions

• Increasing or Decreasing the Value of a Variable

• Using Less Code to Write an Else Statement

• Concatenating Strings

• Using a Bit Operator

Overview of Mathematical Operators
The following table describes the basic arithmetic operators you can use in Siebel eScript.

Operator Description

=

Make one number equal to another number.

+

Add two numbers.

-

Subtract one number from another number.

*

Multiply two numbers.

/

Divide one number by another number.

% Return a remainder after a division operation. It is a modulo.

19

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Operator Description

The following examples use variables and arithmetic operators:

var i;
i = 2; //i is now 2
i = i + 3; //i is now 5, (2 + 3)
i = i - 3; //i is now 2, (5 - 3)
i = i * 5; //i is now 10, (2 * 5)
i = i / 3; //i is now 3.333..., (10 / 3)
i = 10; //i is now 10
i = i % 3; //i is now 1, (10 mod 3)

If uncertainty exists about how Siebel eScript might evaluate an expression, then it is recommended that you use
parentheses. This recommendation is true even if you do not require parentheses to modify the sequence that Siebel
eScript uses to evaluate expressions.

Using a Shortcut Operation to Do an Arithmetic Operation
A shortcut operation is a combination of the equal operator (=) with another operator. You can use a shortcut operation
to reduce the amount of code you write. This technique does the following:

• To do an operation on the value that precedes the equal operator, it uses the value that comes after the equal
operator.

• Saves the result in the value that precedes the equal operator.

To use a shortcut operation to do an arithmetic operation
• Add an operator immediately before the equal operator.

For example, instead of writing i = i + 3, you can write i += 3.

The following table describes the shortcut operators that you can use in Siebel eScript.

Shortcut Operation Description

+=

Add a value to a variable.

-=

Subtract a value from a variable.

*=

Multiply a variable by a value.

/=

Divide a variable by a value.

%=

Return a remainder after a division operation.

The following example uses shortcut operators:

var i;

20

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

i += 3; //i is now 5 (2 + 3). Same as i = i + 3.
i -= 3; //i is now 2 (5 - 3). Same as i = i - 3.
i *= 5; //i is now 10 (2 * 5). Same as i = i * 5.
i /= 3; //i is now 3.333...(10 / 3). Same as i = i / 3.
i = 10; //i is now 10
i %= 3; //i is now 1, (10 mod 3). Same as i = i % 3.

Modifying the Sequence That Siebel eScript Uses to Evaluate an
Expression
Siebel eScript evaluates the operators in an expression in the following order:

1. Arithmetic operators
2. Comparison operators
3. Logical operators

You can write code that modifies this order.

To modify the sequence that Siebel eScript uses to evaluate an expression
• Use parentheses to group operations.

Siebel eScript performs operations in parentheses before it performs operations that occur outside of parentheses. It
performs multiplication operations and division operations in an expression before it performs addition operations and
subtraction operations. You can use parentheses to modify this sequence.

The following table includes an example of how Siebel eScript calculates a grouped expression.

No Grouping Equivalent Not Equivalent

4 * 7 - 5 * 3 = 13

Siebel eScript calculates this
expression as 28 - 15 = 13.

(4 * 7) - (5 * 3) = 13

Siebel eScript calculates this expression as
28 - 15 = 13.

4 * (7 - 5) * 3 = 24

Siebel eScript calculates this expression as
4 * 2 * 3 = 24.

Using Logical Operators and Conditional Expressions
Note the following:

• A logical operator is a type of operator that compares two values, and then determines if the result is true or
false. A variable or any other expression can include true or false.

• A conditional expression is an expression that does a comparison.

You can use a logical operator to make a decision about the statements that reside in a script to run according to how
Siebel eScript evaluates a conditional expression.

The following table describes the logical operators that you can use in Siebel eScript.

21

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Logical Operator Description

!

Not. Reverse of an expression. If (a+b) is true, then !(a+b) is false.

&&

And. If the value of every expression in the statement is true, then the entire statement is true. For
example, if the first expression is false, then Siebel eScript does not evaluate the second expression
because the entire expression is false.

||

Or. If the value of one expression in the statement is true, then the entire statement is true. For
example, if the first expression is true, then Siebel eScript does not evaluate the second expression
because the entire expression is true.

==

Equality. If the values of all expressions in the statement are equal to each other, then the entire
statement is true. If the value of one expression is not equal to the value of any other expression, then
the entire statement is false.

CAUTION:
The equality operator (==) is different from the assignment operator (=). If you use the assignment
operator to test for equality, then your script fails because Siebel eScript assigns after the expression
to a variable that precedes this expression.

For more information, see Using the Equality Operator with a Strongly Typed Variable.

!=

Inequality. If the value of one expression is different from the value of any other expression, then
the entire statement is true. If the value of all expressions in the statement are equal, then the entire
statement is false.

<

Less than. If the expression is a < b, and if a is less than b, then the statement is true.

>

Greater than. If the expression is a > b, and if a is greater than b, then the statement is true.

<=

Less than or equal to. If the expression is a <= b, and if a is less than or equal to b, then the statement is
true.

>=

Greater than or equal to. If the expression is a >= b, and if a is greater than or equal to b, then the
statement is true.

Example of Using Logical Operators and Conditional Expressions
Assume you design a simple guessing game where you configure Siebel CRM to choose a number between 1 and 100,
and the user attempts to guess the value of this number. The game provides feedback if the user is correct or if the user
answer is higher or lower than the number that the game chooses. The following Siebel eScript code implements this
guessing game. Assume that the GetTheGuess function is a custom function that gets the guess:

var guess = GetTheGuess(); //get the user input, which is 1, 2, or 3
target_number = 2;
if (guess > target_number)
{
 TheApplication().RaiseErrorText(“Guess is too high.”);
}
if (guess < target_number)

22

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

{
 TheApplication().RaiseErrorText(“Guess is too low.”);
}
if (guess == target_number);
{
 TheApplication().RaiseErrorText(“You guessed the number!”);
}

In this example, the action that Siebel eScript performs depends on if the value in the parenthesis in an If statement is
true or false:

• True. It runs the statement block that follows this If statement.

• False. It ignores the statement block that follows this If statement and runs the script that occurs immediately
after the statement block.

Using the Equality Operator with a Strongly Typed Variable
If ST eScript code does an equality operation, then it compares different objects depending on the following types of
variables that are involved in the comparison:

• Typeless variable. It compares object values.

• Strongly typed variable. It compares object identities.

For more information, see Using Strongly Typed and Typeless Variables.

Example of Using the Equality Operator with Strongly Typed Variables
The comparison in the following example involves strongly typed variables. The result is always not equal because
Siebel eScript compares object identities in this example. It does not compare object values:

function foo ()
{
 var oStr1 : String = new String ("aa");
 var oStr2 : String = new String ("aa");
 if (oStr1 == oStr2)
 TheApplication ().RaiseErrorText ("equal");
 else
 TheApplication ().RaiseErrorText ("not equal");
}

Example of Using the Equality Operator with Typeless Variables
The result of the comparison in the following example is always not equal. The variables are typeless. The String is an
object and Siebel eScript does object comparisons in the If statement:

function foo ()
{
 var oStr1 = new String ("aa");
 var oStr2 = new String ("aa");
 if (oStr1 == oStr2)
 TheApplication ().RaiseErrorText ("equal");
 else
 TheApplication ().RaiseErrorText ("no equal");
}

Making Sure Siebel eScript Compares Variable Values in an Equality Operation
This topic describes how to make sure Siebel eScript compares the values of variables that reside in an equality
operation.

23

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

To make sure Siebel eScript compares variable values in an equality operation

• Use the valueOf method.

For example:

function foo ()
{
 var oStr1 = new String ("aa");
 var oStr2 = new String ("aa");
 if (oStr1.valueOf () == oStr2.valueOf ())
 TheApplication ().RaiseErrorText ("equal");
 else
 TheApplication ().RaiseErrorText ("no equal");
}

• Use primitive data types.

For example:

function foo ()
{
 var oStr1 : chars = "aa"
 var oStr2 : chars = "aa";
 if (oStr1 == oStr2)
 TheApplication ().RaiseErrorText ("equal");
 else
 TheApplication ().RaiseErrorText ("no equal");
}

Increasing or Decreasing the Value of a Variable
You can use the increment or decrement operator in the following ways:

• Before a variable. Siebel eScript modifies the variable before it uses it in a statement.

• After a variable. Siebel eScript modifies the variable after it uses it in a statement.

These operators add or subtract 1 from a value. For example, i++ is shorthand for i = i + 1.

To increment or decrement a variable
• To add 1 to a variable, you use the following operator:

++

• To subtract 1 from a variable, you use the following operator:

--

The following example uses increment and decrement operators:

var i;
var j;
i = 4; //i is 4
j = ++i; //j is 5 and i is 5. Siebel eScript incremented i first.
j = i++; //j is 5, i is 6. Siebel eScript incremented i last.
j = --i; //j is 5, i is 5. Siebel eScript incremented i first.
j = i--; //j is 5, i is 4 Siebel eScript incremented i last.

24

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

i++; //i is 5. Siebel eScript incremented i.

Using Less Code to Write an Else Statement
The conditional operator is a type of operator that allows you to use less code when you write an Else statement. A
statement that includes a conditional operator is more difficult to read than an If statement. It is recommended that
you use a conditional operator only if the expressions in the If statements are brief.

The following format illustrates how the question mark (?) represents the conditional operator:

variable = expressionA ? expressionC : expressionC

where:

• expressionA is the expression that Siebel eScript evaluates first.

• expressionB is the expression that Siebel eScript evaluates if expressionA is true. If expressionA is true, then
Siebel eScript replaces the value of the entire expression with the value of expressionB.

• expressionC is the expression that Siebel eScript evaluates if expressionA is true. If expressionA is false, then
Siebel eScript replaces the value of the entire expression with the value of expressionC.

To use less code to write an Else statement
• Use a conditional operator instead of an Else statement.

Examples of Using the Conditional Operator
In the following example, the expression is true and Siebel eScript sets the value of variableA to 100:

variableA = (5 < 6) ? 100 : 200;

Consider the following example:

TheApplication().RaiseErrorText("Name is " + ((null==name) ? "unknown" : name));

If the name variable contains:

• A null value, then Siebel CRM displays the following text:

Name is unknown

• A value that is not null, such as Pat, then Siebel CRM displays the following text:

Name is Pat

Concatenating Strings
Concatenating is the act of stringing two items together in consecutive order. You can write code that concatenates two
or more strings in Siebel eScript.

To concatenate strings
• Use the plus (+) operator between two strings.

25

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Examples of Concatenating Strings
The following example uses the addition (+) operator between two strings:

var proverb = "A rolling stone " + "gathers no moss.";

This example sets the value of the proverb variable to the following text:

A rolling stone gathers no moss.

The following example concatenates a string and a number:

var newstring = 4 + "get it";

This example sets the value of the new string variable to the following text:

4get it

Using a Bit Operator
Siebel eScript includes operators that you can use to work directly on the bits that reside in a byte or in an integer. To
use a bit operator, you must possess knowledge about bits, bytes, integers, binary numbers, and hexadecimal numbers.
In most situations you do not need to use a bit operator.

The following table describes the bit operators you can use in Siebel eScript.

Operator Description Example

<<

Shift left.

i = i << 2

<<=

Equal shift left.

i <<= 2

>>

Signed shift right.

i = i >> 2

>>=

Equal signed shift right.

i >>= 2

>>>

Unsigned shift right.

i = i >>> 2

>>>=

Equal unsigned shift right.

i >>>= 2

&

Bitwise and.

i = i & 1

&=

Equal bitwise and.

i &= 1

|

Bitwise or.

i = i | 1

|=

Equal bitwise or.

i |= 1

26

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Operator Description Example

^

Bitwise xor, exclusive or.

i = i ^ 1

^=

Equal bitwise xor, exclusive or.

i ^= 1

~

Bitwise not, complement.

i = ~i

Coding with Siebel eScript
This topic describes how to do some basic tasks that include Siebel eScript. It includes the following topics:

• Using Script Libraries

• Using Strongly Typed and Typeless Variables

• Declaring and Using Variables

• Determining the Data Type of a Variable

• Passing a Value to a Function

• Preventing a Floating-Point Error

• Using the Literal Value of a Special Character

• Running Browser Script When Siebel CRM Starts a Siebel Application

• Releasing an Object from Memory

• Monitoring the Performance of Your Script

Using Script Libraries
The Siebel eScript engine provides business service script libraries that assist you with developing components that are
reusable and modular, which simplifies upgrades and maintenances. You can use script libraries to call global scripts.
Script libraries provide the following capabilities:

• Allows you to write code that calls a business service function directly from anywhere in the scripting interface
after you declare the business service. You are not required to write code that declares property sets or issue
InvokeMethod calls.

• Allows you to write strongly typed methods for predefined business services. You can then use the Script Assist
utility to write code that calls these business services. For more information, see Using Strongly Typed and
Typeless Variables.

Using script libraries is optional. Siebel CRM supports all code written prior to Siebel 8.0.

Example of Calling a Business Service Function
The following example calls a method directly on the Data Transfer Service without declaring a property set. Calling a
business service method directly results in scripts that are shorter and more readable:

var oBS : Service = TheApplication ().GetService ("Data Transfer Service");

27

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

oBS.SendData ("Name", "John Doe");

Example of a Creating Custom Method for a Business Service
You can write a custom method for a business service and make it available in Script Assist. The following example
creates SendData, which is a custom wrapper method that resides on the Data Transfer Service:

function SendData (sTag : String, sValue : String)
{
 var oPS1 = TheApplication ().NewPropertySet ();
 var oPS2 = TheApplication ().NewPropertySet ();
 oPS1.SetProperty ("Tag", sTag);
 oPS1.SetProperty ("Value", sValue);
 this.InvokeMethod ("SendData", oPS1, oPS2)
}

You can write code that intercepts and modifies the calls to the Data Transfer Service in a central location in the
SendData method.

Displaying a Custom Method in Script Assist
This topic describes how to display a custom method in Script Assist. For more information, see About the Script Assist
Utility. For more information about setting an object property or about using the Server Script Editor to create, save, or
compile a script, see Using Siebel Tools .

To display a custom method in Script Assist

1. Make a custom method available to the script libraries so that you can call it from Script Assist:

a. Save the business service method script.
b. Make sure the script does not contain compile errors.

If a script library calls a function, then the compiler determines if argument types are valid and do not
contain incompatibilities.

c. In Siebel Tools, make sure the External Use property contains a check mark for the business service
object.

2. To access Script Assist from the script editor, press CTRL + SPACE.
3. In your script, enter the name of a business service object followed by a period (.).

Script Assist displays the default and custom scripted methods that are available for the business service object.
4. Choose the method you must add to your script.

Using Strongly Typed and Typeless Variables
A variable can include one of the following:

• Strongly typed. You specify the data type when you declare the variable. ST eScript code supports strong
typing. Siebel CRM binds strong typing when you compile the code.

• Typeless. Siebel CRM determines the data type at run time. ST eScript code supports typeless variables.

A strongly typed variable typically improves performance over a typeless variable.

You can write code that strongly types all of the primitive data types and object data types. For more information, see
About Primitive Data Types and About Composite Data Types.

28

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Creating a Strongly Typed Variable
This topic describes how to create a strongly typed variable.

To create a strongly typed variable
When you declare the variable, make sure you add a colon (:) at the end of the variable name.

For example:

var VariableA:Date = new Date ();
var VariableB:BusObject;
var VariableC:BusComp;

Creating a Typeless Variable
This topic describes how to create a typeless variable.

To create a typeless variable

• Do not specify the data type when you declare the variable.

For example:

var VariableA = 0;
var VariableB = new Date ();
var VariableC = new BusObject;

In this example, Siebel eScript sets the following types:

◦ Sets VariableA as an integer

◦ Sets VariableB as a date

◦ Types VariableC as a business object

The data type that Siebel CRM sets at run time persists until a subsequent operation causes the interpreter to
modify the type again.

Declaring and Using Variables
A variable is an object that stores and represents information in a script. Siebel eScript can modify the value of a variable
but it cannot modify the value of a literal. For example, to display a name literally, you must use the following code
multiple times:

TheApplication().RaiseErrorText("Aloysius Gloucestershire Merkowitzky");

To simplify this code, the following code uses a variable:

var Name = "Aloysius Gloucestershire Merkowitzy";
TheApplication().RaiseErrorText(Name);

The value of the Name variable changes, which allows you to use shorter lines of code and to reuse the same lines of
code.

29

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

About Local and Global Variables
Siebel eScript includes the following types of variables:

• Local. A variable that you declare in a function. You can write code that references a local variable only in the
function where you declare the variable.

• Global. A variable that you declare in one of the following ways:

◦ Declare the variable outside of a function.

◦ Declare the variable in the general declarations section of the application object.

You can write code that references or modify a global variable from the following items:

◦ Any function that is associated with the Siebel object for which you declare the variable.

◦ Any object in a Siebel application where you declare the variable.

◦ Another Siebel application.

◦ If you declare a global variable outside of a function, then you can reference it from any object that
resides in the Siebel application where you declare this variable. For more information, see the following.

If you declare a local variable that uses the same name as a global variable, then you cannot reference this global
variable from the function where you declare this local variable.

Siebel VB includes a Global statement. You cannot use this statement in Siebel eScript.

Declaring a Global Variable Outside of a Function
You can write code that declares a variable in a location other than in the declaration section. For example:

var global1 = 6;
function ABC()
{
 global1 = 8;
 global2 = 6;
}
var global2 = 8;

Using a Local Variable Is Preferable to Using a Global Variable
It is recommended that you use a local variable where possible instead of a global variable for the following reasons:

• A local variable helps you create modular code that is easier to debug and modify.

• A local variable requires fewer resources.

• It is easier for other developers to understand how you use a local variable in a single function than it is to
understand how you use a global variable across an entire Siebel application.

• If a subsequent development team encounters an object that you script with a global variable, then this
team might not understand the use of the global variable. If the team uses this variable, then the team might
introduce defects.

• The scope of a global variable is too large to meet the business requirement and often results in a variable
whose lifecycle is not clear.

Instead of using a global variable, it is recommended that you configure Siebel CRM to pass an object as a parameter to
a function so that you can control the scope of the parameter. If you are considering using a global variable, then you
must consider this usage carefully. If you use a global variable, then do so only rarely and document it thoroughly.

30

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Example of Declaring Local and Global Variables
The following example includes local and global variables:

var globalVariable = 1;
function Function1()
{
 var localVariable1 = 1;
 var localVariable2 = 3;
 Function2(d);
}
function Function2(e)
{
 var localVariable3 = 2
 ...
}

This example illustrates the following concepts:

• The globalVariable variable is global to the object where you declare it because it is declared outside of a
function. Typically you declare all global variables in a general declarations section.

• To create a local variable, you declare it in a function. The following variables are local because this example
declares them in a function:

◦ localVariable1

◦ localVariable2

◦ localVariable3

• This example cannot use localVariable3 in Function1 because it is not defined in this function.

• This example uses the d variable in Function1. It uses the e parameter to pass the d variable to Function2.

The following code includes variables that are available to Function1 and Function2:

Function1(): globalVariable, localVariable1, localVariable2
Function2(): globalVariable, localVariable3, e

Declaring a Variable
This topic describes how to declare a variable.

To declare a variable

• Use the var keyword.

For example:

var perfectNumber;

You can write code that saves a value in a variable when you declare it. For example:

var perfectNumber = 28;

Declaring a Variable In a Statement Block
If you declare a variable in a statement block in a method, then you can reference this variable anywhere in the method,
including from a statement block that resides in the method where you did not declare the variable.

31

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Determining the Data Type of a Variable
You can use the typeof operator to determine and set the data type of a variable.

To determine the data type of a variable
• Use one of the following formats:

◦ var result = typeof variable

◦ var result = typeof(variable)

To improve readability, you can place parentheses around the variable operand, which makes typeof look like
the name of a function rather than an operator keyword. Using these parentheses is functionally the same as
not using them. They have no impact on program execution.

Immediately after Siebel CRM encounters one of these code lines, it sets the contents of the variable to one of the
following string values:

• boolean

• buffer

• function

• object

• number

• string

• undefined

Passing a Value to a Function
This topic describes how to write code that passes a value to a subroutine or a function through a variable or through a
reference.

Passing a Value Through a Variable
Siebel eScript can pass a value to a function through a variable. This variable retains the value that it contained before
Siebel eScript passes it even though the subroutine or function might modify the passed value. The following example
includes this configuration:

var VariableA = 5;
var VariableB = ReturnValue(VariableA);

function ReturnValue(VariableC)
{
 VariableC = 2 * VariableC;
 return VariableC ;
}

32

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

The following occurs in this example:

• VariableA equals 5 and VariableB equals 10.

• VariableC contains a value only while the ReturnValue function runs.

• VariableC does not contain a value after the ReturnValue function finishes.

• Siebel eScript passes VariableA as a parameter to the ReturnValue function and it manipulates this value as
VariableC.

• VariableA retains the value that it contained before Siebel eScript passed it.

Passing a Value Through a Reference
Siebel eScript can pass a variable to a subroutine or a function through a reference. However, you use a variable to pass
a value for most methods. Each method determines if it can receive a value from a variable or a reference.

A subroutine or function can modify the value. The following example includes this configuration:

var VariableA = new Object;
VariableA.name = "Joe";
VariableA.old = ReturnName(VariableA)

function ReturnName(VariableB)
{
 var VariableC = VariableB.name;
 VariableB.name = “Vijay”;
 return VariableC
}

The following occurs in this example:

• Siebel eScript passes VariableA to the ReturnName function through a reference.

• VariableB receives a reference to the object, but it does not receive a copy of this object.

• VariableB can reference every property and method of VariableA.

• The ReturnName function modifies the value in VariableB.name to Vijay. The value in VariableA.name also
becomes Vijay.

• The Return statement passes a value back to the function that calls it. Siebel CRM does not run any code in a
function that follows the Return statement. For more information, see Return Statement of a Function Object.

Preventing a Floating-Point Error

CAUTION: Saving a floating-point number in a variable might cause a loss in precision due to a memory limitation for
decimal-to-binary conversion.

Siebel CRM can store a decimal number that does not convert to a finite binary representation with only a
small precision error. For example, the following statement might result in Siebel CRM storing VariableA as
142871.450000000001:

var VariableA = 142871.45

A small precision error will likely have little effect on the precision of a subsequent calculation, depending on the context
where you use the number.

33

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

A number might be too large for the field that Siebel CRM uses to display it, resulting in an error message that is similar
to the following:

Value too long for field %1 (maximum size %2)

To prevent a floating-point error
• Use the Convert Number to Fixed Decimal Method method at an appropriate location in the calculation or when

you save the value in a variable.

For example, use x.toFixed(2) in a calculation instead of using VariableA. For more information, see Convert
Number to Fixed Decimal Method.

Using the Literal Value of a Special Character
Each of the following characters possesses a special programmatic meaning in Siebel eScript:

• Double quotes (")

• Single quote (')

• Semi-colon (;)

• Ampersand (&)

• Hard return

In some situations, you might need to use the literal value of one of these characters. For example:

• Display quotation marks around a phrase in the Siebel client.

• Add a carriage return in a text file.

• Specify a file system path.

To use the literal value of a special character
• Precede the special character with two backslashes (\\).

You must use two backslashes in Siebel eScript. It recognizes a single backslash as indicating that the next
character identifies a character combination. For more information, see How Siebel eScript Handles Special
Characters In a String.

Running Browser Script When Siebel CRM Starts a Siebel
Application
You can configure Siebel CRM to run Browser Script when it starts a Siebel application. Siebel CRM normally runs code
in the declaration section of the Browser Script for a business service when it starts this application. It interprets any
code that exists in the general declaration section as HTML. When it loads this application in the Browser, it attaches
each Browser script as a Script tag in an HTML page. This configuration allows you to use the general declaration
section as the Browser counterpart of the Application Start Server event.

34

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

To run Browser script when Siebel CRM starts a Siebel application
• Use code in the general declaration section of the Browser script.

Releasing an Object from Memory
You must explicitly release from memory the following object types when your code no longer requires them:

• Application

• Business component

• Business object

• Configuration item

• CTI data

• CTI service

• Property set

• Web applet

• Web service

This situation is true for ST eScript for Browser script and for Siebel VB.

To release an object from memory
• Set the object as a Null object.

For more information, see null Data Type.

Monitoring the Performance of Your Script
Siebel eScript engine allows you to monitor the performance of your script in Siebel CRM. You can identify parts of a
script that consumes the most time to process, and then modify it to make it more efficient. Siebel Tools displays profile
information in the Tools Script Performance Profiler window. You can export this information to a text file. For more
information, see Using Siebel Tools .

Guidelines for Using Siebel eScript
This topic describes guidelines for using Siebel eScript. It includes the following topics:

• Make Sure You Use the Correct Format for Names

• Make Sure You Use the Correct Case

• Use Expressions, Statements, and Statement Blocks

• Use a Primitive Data Type Instead of an Object Data Type

• Use White Space to Improve Readability

35

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

• Use Comments to Document Your Code

• Make Sure the JavaScript Interpreter Can Run a Function

This topic describes only some of the guidelines for using Siebel eScript. For more guidelines, see the topic about
guidelines for using Siebel VB and Siebel eScript in Siebel Object Interfaces Reference .

Make Sure You Use the Correct Format for Names
A variable name or a function name must include only the following characters:

• Uppercase ASCII letters. For example, ABCDEFGHIJKLMNOPQRSTUVWXYZ.

• Lowercase ASCII letters. For example, abcdefghijklmnopqrstuvwxyz.

• Digits. For example, 0123456789.

◦ Underscore (_).

◦ Dollar sign ($).

A variable name or a function name must use the following format:

• Must begin with a letter, an underscore (_), or a dollar sign ($).

• Cannot include any special characters. For more information, see Special Characters.

• Cannot include white space. Siebel eScript uses white space to separate names. For more information, see Use
White Space to Improve Readability.

• Cannot include a reserved word. For more information, see Reserved Words.

• Can include any length.

The following example names are valid:

George
Martha7436
annualReport
George_and_Martha_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
_Divide$All()

The following example names are not valid:

1george
2nancy
this&that
Martha and Nancy
What?
=Total()
(Minus)()
Add Both Figures()

Special Characters
The following information lists the characters that Siebel eScript recognizes as special characters.

Special Character Description

< Less than symbol.

36

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Special Character Description

>

Greater than symbol.

&

Ampersand symbol.

|

Pipe symbol.

=

Equal to sign.

!

Exclamation point.

*

Asterisk.

/

Forward slash.

%

Percentage symbol.

^

Caret symbol.

~

Tilde symbol.

?

Question mark.

:

Colon.

{

Open brace.

}

Close brace.

;

Semi-colon.

(

Open parenthesis.

)

Close parenthesis.

[

Open bracket.

]

Close bracket.

.

Period.

‘ Single quote.

37

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Special Character Description

"

Double quote.

'

Apostrophe.

#

Pound symbol.

Reserved Words
The following words have special meaning in Siebel eScript. You cannot write code that uses any of them as a variable
name or a function name:

• break

• case

• catch

• class

• const

• continue

• debugger

• default

• delete

• do

• else

• enum

• export

• extends

• false

• finally

• for

• function

• if

• import

• in

• new

• null

• return

• super

• switch

• this

38

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

• throw

• true

• try

• typeof

• while

• with

• var

• void

Make Sure You Use the Correct Case
Siebel eScript is case-sensitive. For example, the testvar variable is different from the TestVar variable. Each of these
variables can exist in a script at the same time. The following example defines two different variables:

var testvar = 5;
var TestVar = "five";

The name of a method or function in Siebel eScript is case-sensitive. For example, the following code creates an error
on the Siebel Server:

TheApplication().RaiseErrorText("an error has occurred");

The following example creates an error in a Siebel application:

TheApplication().raiseerrortext("an error has occurred");

A control statement is case-sensitive. For example, the following statement is valid:

while

The following statement is not valid:

While

Use Expressions, Statements, and Statement Blocks
An expression includes two or more terms that perform a mathematical or logical operation. These terms are typically
variables or functions that you can use with an operator to produce a string or numeric result. You can write code that
uses an expression to configure Siebel eScript to do the following work:

• Perform a calculation.

• Manipulate a variable.

• Concatenate a string.

The following example statement includes an expression. It computes a sum and saves it in a variable:

var TestSum = 4 + 3

Note the following:

• Siebel CRM runs Siebel eScript code one statement at a time from the beginning of the code to end of the code.

39

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

• You can use a semicolon at the end of a statement, although Siebel eScript does not require this format.

• To make your script easier to read and edit, it is recommended that you write each statement on a separate line,
with or without a semicolon.

• A statement block is a group of statements that Siebel eScript treats as one statement. You use curly brackets
({}) to enclose a statement block. To simplify reading, it is recommended that you indent the statements in a
statement block.

Running Statements In a Loop
A While statement is a type of statement that causes Siebel eScript to run the statement that occurs immediately after
the While statement in a loop. If you enclose multiple statements in curly brackets, then Siebel eScript treats them as
one statement and runs them in the loop. The following example includes this usage:

while(ThereAreUncalledNamesOnTheList() == true)
{
 var name = GetNameFromTheList();
 CallthePerson(name);
 LeaveTheMessage();
}

Siebel eScript treats the three lines that occur after the While statement as one unit. The brackets cause Siebel eScript
to run the script through each line until it calls every name that resides in the list. If you remove these brackets, then it
does the following:

• Runs the loop only for the first line.

• Processes the names on the list but only calls the last name.

Use a Primitive Data Type Instead of an Object Data Type
It is recommended that you use an object only if you must use a property that is specific to this object type. If an
equivalent primitive data type exists, then use the primitive. A primitive data type provides superior performance. An
object data type consumes more resources than a primitive data type.

The following table lists primitive data types that are equivalent to object data types. For example, if you do not need to
use a string-specific object or conversion method, then use the chars primitive instead of a String object.

Primitive Data Type Object Data Type

chars

String

float

Number

bool

Boolean

40

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Use White Space to Improve Readability
A white-space character is a type of character that determines the spacing and placement of text in your code. Each of
the following items is an example of a white-space character:

• Space

• Tab

• Carriage-return

• New line

White space makes your code easier to read. Siebel eScript ignores white space characters.

A line of script ends with a carriage-return character. Each line is typically a separate statement. In some editors a line
ends with a carriage-return and the following linefeed pair:

\r\n

Siebel eScript typically interprets as white space one or more white-space characters that exist between names of
methods and functions. Each of the following Siebel eScript statements are equivalent to one another:

var x=a+b
var x = a + b
var x = a + b
var x = a+
 b

White space separates the names, methods, functions, and variables. For example, ab is one variable name, and a b are
two variable names. The following example is valid:

var ab = 2

The following example is not valid:

var a b = 2

Some developers use spaces and not tabs because tab size settings vary from editor to editor. If a developer uses only
spaces, then the script format is consistent across editors.

Using White Space in a String Literal Can Cause Errors

CAUTION: Siebel eScript treats white space in a string literal differently from how it treats white space that occurs
elsewhere. Placing a line break in a string causes Siebel eScript to treat each line as a separate statement. Each of
these statements contains an error because they are not complete. To avoid this situation, you must keep string
literals on a single line or create separate strings, and then use the string concatenation operator to concatenate them.

For example:

var Gettysburg = "Fourscore and seven years ago, " +
"our fathers brought forth on this continent a " +
"new nation.";

For more information, see Concatenating Strings.

41

Siebel
eScript Language Reference

Chapter 3
Using Siebel eScript

Use Comments to Document Your Code
A comment is text in a script that you can use to document the script. It can describe the intent of the code flow, which
simplifies modifications and debugging. Siebel eScript skips comments. Siebel eScript includes the following types of
comments:

• End-of-line comment. Begins with two forward slashes (//). It ignores any text that occurs from after these
slashes to the end of the current line. It begins interpreting the code that occurs on the next line.

• Statement block comment. Begins with a forward slash and an asterisk (/*). Ends with an asterisk and a forward
slash (*/). Text between these markers is a comment even if the comment extends over multiple lines. You
cannot write code that includes a statement block comment in a statement block comment. You can include an
end-of-line comment in a statement block comment.

The following code includes valid comments:

// this is an end of line comment

/* this is a statement block comment.
This is one big comment block.
// this comment is okay in the statement block.
The interpreter ignores it.
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "This line is not a comment.";

Make Sure the JavaScript Interpreter Can Run a Function
If a function is unique to Siebel eScript, then you must make sure that the JavaScript interpreter that runs the script
supports Siebel eScript functions. Avoid using a function that is unique to Siebel eScript in a script that Siebel CRM
might use with a JavaScript interpreter that does not support the function.

42

Siebel
eScript Language Reference

Chapter 4
Statements Reference

4 Statements Reference

Statements Reference
This chapter describes reference information for statements you can use in Siebel eScript. It includes the following
topics:

• Break Statement

• Continue Statement

• Do While Statement

• For Statement

• For In Statement

• Goto Statement

• If Statement

• Switch Statement

• Throw Statement

• Try Statement

• While Statement

• With Statement

Break Statement
The Break statement does the following:

• Stops the innermost loop of the following statements:

◦ For

◦ While

◦ Do

• Controls the flow in a Switch statement.

Format A
break;

Format B
break label;

The following table describes the arguments you can use with the Break statement.

43

Siebel
eScript Language Reference

Chapter 4
Statements Reference

Argument Description

label

The name of the label that indicates where this statement must resume running the script. This label
includes the name of a method or a function followed by a colon.

Usage
You can write code that uses the Break statement only in the following situations:

• In a loop. Stops the loop if the code no longer requires the loop.

• In a Switch statement. Stops Siebel eScript from running any code that occurs after the Label statement. Causes
Siebel eScript to exit the Switch statement.

If you use the Break statement in a nested loop, then it causes Siebel eScript to stop running the script only in this
nested loop. If the Break statement occurs in a nested loop, then you can use the label argument to indicate the
beginning of the loop that Siebel eScript must stop.

Example
For an example, see Switch Statement.

Continue Statement
The Continue statement starts a new iteration of a loop. It ends the current iteration of a loop, and then begins the next
loop. Siebel eScript evaluates any conditional expressions before the loop reiterates.

Format A
continue;

Format B
continue label;

The following table describes the argument.

Argument Description

label

The name of the label that indicates where to resume running the code. This label includes the name of
a method or a function followed by a colon.

Example
The following example writes the numbers 1 through 6 and 8 through 10, and then the following string:

.Test

44

Siebel
eScript Language Reference

Chapter 4
Statements Reference

The use of the Continue statement after the if (i==7) statement prevents Siebel eScript from running the loop on the
seventh iteration, but keeps running the loop:

var i = 0;
while (i < 10)
{
 i++;
 if (i==7)
 continue;
 document.write(i + ".Test");
}

Do While Statement
The Do While statement processes the code that the statement_block argument identifies repeatedly until the
statement meets the value that the condition argument contains. The condition argument occurs at the end of the loop.
Siebel eScript tests the condition only after the loop runs. A Do While loop always runs at least one time before Siebel
eScript examines the condition.

Format
do
{
 statement_block;
}
while (condition)

The following table describes the arguments you can use with the Do While statement.

Argument Description

statement_block

One or more statements that Siebel eScript runs in the loop.

condition

An expression that describes the condition that Siebel eScript uses to repeat the loop.

Example
The following example increments a value and prints the new value to the screen until the value reaches 100:

var value = 0;
do
{
 value++;
 Clib.sprintf(value);
} while(value < 100);

45

Siebel
eScript Language Reference

Chapter 4
Statements Reference

For Statement
The For statement repeats a series of statements a fixed number of times. Siebel eScript does the following when it runs
the For statement:

1. Evaluates the following expression:

counter = start
2. Does one of the following:

◦ Condition is true or no conditional expression exists. It does the following work:

- Runs the For statement.
- Increments the counter.
- Goes to For Statement.

◦ Condition is false. It does the following work:

- Exits the For statement.
- Runs the code line that occurs immediately after the For statement.

Format
for ([var] counter = start; condition; increment)
{
 statement_block;
}

The following table describes the arguments for the For statement.

Argument Description

counter

A numeric variable for the loop counter.

start

The initial value of the counter.

Usage
If the counter argument is not declared, then you must use the Var statement to declare it. Although it is declared in the
For statement, the scope of the counter variable is local to the entire function that includes the for loop.

If you use multiple counters, then you must use a comma to separate each counter. For example:

for (var i = 1, var j = 3; i < 10; i++, j++)
 var result = i * j;

If you configure Siebel CRM to modify the value in the counter argument other than through the increment that occurs
as a result of running the For statement, then your script might be difficult to maintain or debug.

46

Siebel
eScript Language Reference

Chapter 4
Statements Reference

Example
For an example of the For statement, see Evaluate Expression Method.

For In Statement
The For In statement loops through the properties of an associative array or object. You cannot use it with a
nonassociative array. For more information, see About Associative Arrays.

You cannot write code that references a property that is marked with the DONT_ENUM attribute in a For In statement.
The DONT_ENUM attribute is a predefined attribute that you cannot modify.

Format
for (LoopVar in object)
{
 statement_block;
}

The following table describes the arguments for the For In statement. The statement block runs one time for every
element in the associative array or property of the object.

Argument Description

object

An associative array or object:

• The object must possess at least one defined property.

• The associative array must possess at least one defined element.

LoopVar

A variable that iterates over every element that resides in the associative array or property of the
object.

For each iteration of the loop, the LoopVar argument identifies the name of a property of the object or
an element of the array. You can write code that references it with a statement that uses the following
format:

• object [LoopVar]

• array_name[LoopVar]

Example
The following example creates an object named obj, and then uses the For In statement to read the object properties:

function PropBtn_Click ()
{
 var obj = new Object;
 var propName;
 var msgtext = "";
 obj.number = 32767;
 obj.string = "Welcome to my world";
 obj.date = "April 25, 1945";
 for (propName in obj)

47

Siebel
eScript Language Reference

Chapter 4
Statements Reference

 {
 msgtext = msgtext + "The value of obj." + propName +
 " is " + obj[propName] + ".\n";
 }
 TheApplication().RaiseErrorText(msgtext);
}

Running this code produces the following results:

The value of obj.number is 32767.
The value of obj.string is Welcome to my world.
The value of obj.date is April 25, 1945.

For an example of the For In statement used with an associative array, see About Associative Arrays.

Goto Statement
The Goto statement causes Siebel eScript to go to a specific point in a function. You can write code that directs Siebel
eScript to go to any location in a function. It is recommended that you use a Goto statement only rarely because it
makes it difficult to follow the code flow.

Format
goto label;

The following table describes the argument for the Goto statement.

Argument Description

label

Indicates the code line where Siebel eScript must resume running the code. You must place a label
argument at the point where Siebel eScript must resume running the code.

Example
The following example uses a label argument to loop continuously until the number is greater than 0:

function clickme_Click ()
{
restart:
 var number = 10;
 if (number <= 0)
 goto restart;
 var factorial = 1;
 for (var x = number; x >= 2; x--)
 factorial = (factorial * x);
 TheApplication().RaiseErrorText("The factorial of " +
 number + " is " + factorial + ".");
}

48

Siebel
eScript Language Reference

Chapter 4
Statements Reference

If Statement
The If statement tests a condition and proceeds depending on the result.

Format A
if (condition)
 statement;

Format B
if (condition)
{
 statement_block;
}
[else if (condition)
{
 statement_block;
}]
[else
{
 statement_block;
}]

The following table describes the arguments for the If statement.

Argument Description

condition

An expression that evaluates to true or false.

statement_block

If the expression is:

• True. Siebel eScript runs the statement or statement_block.

• False. Siebel eScript skips the statement or statement_block.

Usage
If you require multiple statements, then use Format B.

The following example includes an If statement:

if (i < 10)
{
 TheApplication().RaiseErrorText("i is less than 10.");
}

If Siebel eScript runs only a single If statement, then the curly brackets are not required. You can use them to clarify your
code.

49

Siebel
eScript Language Reference

Chapter 4
Statements Reference

Else Clause
The else clause is an extension of the If statement. It allows you to run code if the condition in the If statement is false.
The following example includes the else clause:

if (i < 10)
 TheApplication().RaiseErrorText("i is less than 10.");
else
 TheApplication().RaiseErrorText("i is not less than 10.");

Using More Than One If Statement
If you require more than one If statement, then you must use curly brackets to group the statements. For example:

if (i < 10)
{
 i += 10;
 TheApplication().RaiseErrorText ("Original i was less than 10, and has now been
 incremented by 10.");
}
else
{
 i -= 5;
 TheApplication().RaiseErrorText ("Original i was at least 10, and has now been
 decremented by 5.");
}

This example includes an else clause in an If statement. This If statement tests for multiple conditions.

Example
The following example includes an else clause:

if (i < 10)
{
 TheApplication().RaiseErrorText("i is less than 10.")
}
 else if (i > 10)
{
 TheApplication().RaiseErrorText("i is greater than 10.");
}
else
{
 TheApplication().RaiseErrorText("i is 10.");
}

For another example, see Set Time Method.

For more information, see Switch Statement.

Switch Statement
The Switch statement makes a decision according to the value of a variable or expression. It chooses among alternatives
when each choice depends on the value of a single variable. Siebel eScript does the following:

1. Evaluates the switch_variable argument.

50

Siebel
eScript Language Reference

Chapter 4
Statements Reference

2. Compares the values in the Case statements, and then does one of the following depending on if it finds a
match:

◦ Finds a match. Runs the statement block that follows the Case statement whose value matches the value
in the switch_variable argument. It runs until it reaches the end of the statement block or until a Break
statement causes it to exit the statement block.

◦ Does not find a match. If a default statement exists, then it runs the default statement.

Usage
Make sure you end a Case statement with a Break statement.

Format
switch(switch_variable)
{
 case value1:
 statement_block
 break;
 case value2:
 statement_block
 break;
 .
 .
 .
 [default:
 statement_block;]
}

The following table describes the arguments for the Switch statement.

Argument Description

switch_variable

The argument on whose value the course of action depends.

valuen

Values of the switch_variable argument, which are followed by a colon.

statement_block

One or more statements that Siebel eScript runs if the value of switch_variable argument is the value in
the Case statement.

Example
This example configures Siebel CRM to perform an action depending on an account type. In this example, a letter
indicates the type of account:

switch (key[0])
{
case 'A':
 I=I+1;
 break;
case 'B':;
 I=I+2
 break;
case 'C':
 I=I+3;

51

Siebel
eScript Language Reference

Chapter 4
Statements Reference

 break;
default:
 I=I+4;
 break;
}

Siebel eScript runs code in the statement block until it encounters a Break statement. In this example, if you remove the
Break statement that occurs after the I=I+2 statement, then Siebel eScript runs the following code:

• I=I+2

• I=I+3

For more information, see If Statement.

Throw Statement
The Throw statement causes Siebel eScript to stop running code if an error occurs.

Format
throw exception

The following table describes arguments for the Throw statement.

Argument Description

exception

An object in an error class.

Usage
In the following example, the Throw statement stops the script after Siebel CRM displays an error message:

try
{
 do_something;
}
catch(e)
{
 TheApplication().Trace (e.toString()));
throw e;
}

Using the Throw Statement with Nested Try Catch Blocks
If any error occurs while processing a statement in a try block, then Siebel eScript creates an exception. An outer catch
block can handle this exception. For example, assume a section of code includes three levels of try catch blocks:

1. The innermost catch block includes a throw statement. An exception occurs.
2. The catch statement in the level two block catches this exception.
3. The catch statement in the level two block throws this exception to the level one block.

52

Siebel
eScript Language Reference

Chapter 4
Statements Reference

4. The catch block at level one handles this exception.

The following code illustrates this example:

try
 {
 do_something;
 try
 {
 do_something;
 }
 catch(e)
 {
 TheApplication().Trace(e.toString());
 throw e;
 }
 }
 catch(e)
 {
 TheApplication().RaiseErrorText("Error Occurred "+e.toString());
}

Avoiding an Exception Error That Is Not Handled
You can write code that uses the RaiseErrorText method or the RaiseError method instead of the Throw statement to
avoid receiving an unhandled exception error in the text that the Get Buffer Data method returns. If the Siebel Run-
Time Engine creates an error message, or if the Throw statement creates an error message, then Siebel CRM adds the
following text to the error message:

Unhandled Exception

Siebel CRM does this to distinguish an error message that the RaiseErrorText method or that the RaiseError method
creates from an error that the Siebel Run-Time Engine creates or that the Throw statement creates.

For more information, see Get Buffer Data Method and Try Statement.

Try Statement
The Try statement processes an exception. It handles functions that can raise an exception, which is an error condition
that causes the script to branch to another routine. It can include the following clauses:

• Catch clause. Handles the exception. To raise an exception, you use the Throw statement. For more
information, see Throw Statement.

• Finally clause. Performs cleanup work. For example, removing object references.

You can write code that does the following to trap errors that a statement block creates:

• Place code that must trap errors in a Try statement.

• Follow the Try statement with a catch clause. You can write code that uses the exception_handling_block
argument in this catch clause to process the exception.

Format
try
{
 statement_block
}

53

Siebel
eScript Language Reference

Chapter 4
Statements Reference

catch
{
 exception_handling_block
 [throw exception]
}
finally
{
 statement_block_2
}

The following table describes the arguments for the Try statement.

Argument Description

statement_block

A statement block that can create an error.

exception_handling_block

A statement block that processes the error.

exception

An error of a named type.

statement_block_2

A statement block that Siebel eScript always runs unless the Try statement transfers control to
elsewhere in the script.

Example
The following example demonstrates the format of a Try statement that includes a catch clause. In this example, Siebel
eScript continues to run the script after it displays the error message:

try
{
 do_something;
}
catch(e)
{
 TheApplication().RaiseErrorText(Clib.rsprintf(
 "Something bad happened: %s\n",e.toString()));
}

Example Usage of the Finally Clause
The finally clause includes code that Siebel eScript must run before it exits the Try statement, regardless of if a catch
clause stops running the script. You can write code that uses one of the following statements to exit a finally clause:

• Goto

• Throw

• Return

CAUTION: A Return statement in the finally clause suppresses any exceptions that Siebel eScript creates in the
method or that it passes to the method. It skips statements in the finally clause only if the finally clause redirects flow
to another part of the script.

54

Siebel
eScript Language Reference

Chapter 4
Statements Reference

The following example includes a finally clause. Siebel eScript continues running this code after the no_way statement.
It ignores the Return statement:

try
{
 return 10;
}
finally
{
 goto no_way;
}
no_way: statement_block

While Statement
The While statement runs a section of code repeatedly until an expression evaluates to false. It does the following:

1. Examines the expression.
2. If the expression is true, then it does the following:

a. Runs the code in the statement block that occurs after the condition argument.
b. Repeats step 1.

3. If the expression is false, then Siebel eScript runs the code that occurs immediately after the statement block.
A while loop repeats until the value in the condition argument is false.

Format
while (condition)
{

 statement_block;
}

The following table describes the arguments for the While statement.

Argument Description

condition

Includes a value that determines when to stop running the loop. You must enclose this argument in
parentheses.

statement_block

One or more statements that Siebel eScript runs while the condition argument is true.

Example
The following example includes a While statement that includes two lines of code in a statement block:

while(ThereAreUncalledNamesOnTheList() != false)
{
 var name = GetNameFromTheList();
 SendEmail(name);
}

55

Siebel
eScript Language Reference

Chapter 4
Statements Reference

With Statement
The use of the with statement is discouraged. eScript follows the ECMAScript specification and the writers of the
specification have these two statements to make about using the with statement in script.

1. It is potentially confusing.

Note: Use of the with statement is not recommended, as it may be the source of confusing bugs and
compatibility issues.

2. It is not recommended.

Use of the Legacy "with" statement is discouraged in new ECMAScript code. Consider alternatives.
This is an example of how you could encounter logic issues by using the with statement in Siebel eScript:

You have a Business Component with the method "myMethod". You also have a Business Service with the method
"myMethod". In the Business Component script, you have a with statement block using the Business Service as its
argument. In that with statement block you call the method myMethod on the Business Service. You intend to call
myMethod on the Business Service, but the enclosing Business Component's myMethod will be called instead. This is
unexpected but is how the eScript engine works.

Example script in the Account BC where the method "myMethod" exists:

var lBS_service = TheApplication().GetService("MyService");

with(lBS_service)
{
 myMethod();
}//end with

Result: myMethod is called on the Account Business Component, NOT the intended Business Service.

Recommendation: Avoid using the with statement in eScript. It is potentially confusing and may produce logic errors at
runtime when the wrong object is referenced.

The With statement associates a default object with a statement block. It only applies to the code that resides in the
statement block where the With statement occurs, regardless of how Siebel eScript enters or exits the statement block. If
Siebel eScript exits a With statement, then the With statement no longer applies.

You cannot write code that uses a Go to statement or a label to enter or exit the middle of a statement block that resides
in a With statement.

Format
As shown in the following format, you can specify both methods and variables within the With statement.

with (object)
{
method1;
method2;
methodn;
.
.
variable1;
variable2;
variablen;

56

Siebel
eScript Language Reference

Chapter 4
Statements Reference

}

The following table describes the arguments of the With statement.

Argument Description

object

An object where you must use multiple methods.

method1, method2, methodn

Methods that Siebel eScript runs with the object. The With statement prefixes each method with the
object name and a period.

variable1, variable2, variablen

Variables that you define for the With statement.

Example
In the Opportunity business component, in the declarations section, define a variable as follows:

var myVariable = "HELLO";

The following example code includes a With statement that specifies both methods and variables.

var bcOppty;
var boBusObj;
boBusObj = TheApplication().GetBusObject("Opportunity");
bcOppty = boBusObj.GetBusComp("Opportunity");

// The following line defines srowid as a specific ROW_ID we are
//looking for.
var srowid = "1-ABC";
// The following line sets the variable defined in this function to
// "GOODBYE".
var myVariable = "GOODBYE";

try
{
 with (bcOppty)
 {
 SetViewMode(SalesRepView);
 ActivateField("Sales Stage");
 SetSearchSpec("Id", srowid);
 ExecuteQuery(ForwardOnly);

// The following line outputs "HELLO" because myVariable refers to the
// variable defined on the Opportunity BusComp.
 TheApplication().Trace("myVariable is " + myVariable);

// The following line changes the variable defined on Opportunity to
// "SEE YOU!" It does not affect the instance of the variable defined
// in this function.
 myVariable = "SEE YOU!"
}
 }

// The following line outputs "GOODBYE" because myVariable refers to the variable
// defined in this function, which was not touched in the "with" block.
TheApplication().Trace("myVariable is " + myVariable);

finally
{

57

Siebel
eScript Language Reference

Chapter 4
Statements Reference

 bcOppty = null;
 boBusObj = null;
}

The code in the With statement block is equivalent to the following code:

bcOppty.SetViewMode(SalesRepView);
bcOppty.ActivateField("Sales Stage");
bcOppty.SetSearchSpec("Id", srowid);
bcOppty.ExecuteQuery(ForwardOnly);

58

Siebel
eScript Language Reference

Chapter 5
Methods Reference

5 Methods Reference

Methods Reference
This chapter describes reference information for methods that you can use in Siebel eScript. It includes the following
topics:

• Overview of Methods Reference

• Array Methods

• String Methods

• BLOB Methods

• Buffer Methods

• Date and Time Methods

• UTC Methods

• Global Methods

• Conversion Methods

• Data Querying Methods

• Mathematical Methods

• Regular Expression Methods

• Siebel Library Methods

• Custom Methods

Overview of Methods Reference
In addition to the methods that this chapter describes, you can also reference the following items in Siebel eScript. For
detailed information, see the Siebel eScript quick reference chapter in Siebel Object Interfaces Reference

• Applet object

• Application object

• Business component object

• Business service object

• Property set

Usage of the Term Put
The term put means to replace existing data. For example, if you put eight bytes of data to a BLOB object starting at
offset 0, then Siebel CRM replaces data that currently resides in bytes 0 through 7 of the BLOB object with the input
data. This book uses this definition of put throughout this chapter.

59

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Array Methods
This topic includes the following topics:

• Overview of Array Methods

• About Array Functions

• Add Array Elements Method

• Concatenate Array Method

• Create Array Elements Method

• Delete Last Array Element Method

• Get Largest Array Index Method

• Get Subarray Method

• Insert Array Elements Method

• Reverse Array Order Method

• Shift Array Left Method

• Shift Array Right Method

• Sort Array Method

Overview of Array Methods
Note the following:

• An array is a class of object that holds multiple values instead of one value. To reference a single value in an
array, you use an array index number or string that is associated with this value.

• An array element is the value of an array object. It can include any data type. Siebel CRM does not require that
the elements in an array be the same type, and it does not limit the number of elements that an array can
include.

• The index number is a number or a string that identifies the array element. This number follows the array name
and you place it in square brackets.

The following example statements store values in an array:

var array = new Array;
array[0] = "fish";
array[1] = "fowl";
array["joe"] = new Rectangle(3,4);
array[foo] = "creeping things"
array[goo + 1] = "and so on."

Array elements can be noncontiguous. For example, an array can include the following items:

• An element at index 0

• No element at index 1

• An element at index 2

An array typically starts at index 0. It does not typically start at index 1.

60

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example of Using an Array
An array can use a number as an index, so it allows you to work with sequential data. For example, to keep track of
how many jelly beans you eat each day, you can graph your jelly bean consumption at the end of the month. An array
provides a solution for storing such data. For example:

var April = new Array;
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;

In this example, one variable contains all the data. You can write code that examines the value of April[x] to determine
how many jelly beans you ate on day x. For example:

for(var x = 1; x < 32; x++)
TheApplication().Trace("On April " + x + " I ate " + April[x] +

 " jellybeans.\n");

About Array Functions
You use the following operator and an array function to create an array:

new

The following table describes different ways that you can use the array function.

Example Array Function Description

var a = new Array();an This code initializes the following variable as an array with no elements:

a

The parentheses are optional.

var b = new Array(31); This code creates an array that includes 31 array elements. If you must create an array that includes a
predefined number of array elements, then you can use the number of elements as a argument of the
Array function when you declare the array.

var c = new Array(5, 4,
3, 2, 1, "blast off");

This code creates an array that includes six elements:

• c[0] is set to 5.

• c[1] is set to 4.

• And so on up to c[5], which is set to the string "blast off".

The first element of the array is c[0]. It is not c[1].

You can write code that passes elements to the Array function, which creates an array that contains the
arguments that your code passes.

61

Siebel
eScript Language Reference

Chapter 5
Methods Reference

You can write code that creates an array dynamically. If you write code that uses an index in brackets to reference a
variable, then the variable becomes an array. If you use this technique to create an array, then you cannot use the
methods and properties with an associative array.

About Associative Arrays
An associative array is a type of array that uses a string as an index element. This capability is useful if you must
associate a value with a specific name. For example, you can create a month array where the elements are the names of
the months and the values are the number of days in the month.

You use a string as an index to reference items in an associative array. For example:

array_name["color"] = "red";
array_name["size"] = 15;

The associative array is the only type of array that you can use with the following type of statement:

for in

This statement loops through every element in an associative array or object, regardless of how many elements it
contains. For more information, see For In Statement.

Siebel CRM uses a hash table to implement the associative array, so the elements are not in an order that an indexed
array uses, and you cannot use array methods with an associative array, such as split, join, or length.

Example of Using an Associative Array
The following example creates an associative array of months and days, and totals the number of days:

// open file
var fp = Clib.fopen("c:\\months.log", "at");
// populate associative array
var months = new Array();
months["November"] = 30;
months["December"] = 31;
months["January"] = 31;
months["February"] = 28;
// iterate through array items
var x;
var total = 0;
for (x in months)
 {
 // write array items name and value to file
 Clib.fputs(x + " = " + months[x] + "\n",fp);
 // Add this month’s value to the total
 total = total + months[x];
 }
Clib.fputs ("Total = " + total + "\n",fp);
//close file
Clib.fclose(fp);

The following is the output from this example:

November = 30
December = 31
January = 31
February = 28
Total = 120

62

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Add Array Elements Method
The Add Array Elements method adds the elements that you define in the element argument to the end of the array. It
adds these elements in the order that you define these arguments.

Format

 arrayName.push([element1,element2, ..., elementn])

The following table describes the arguments for the Add Array Elements method.

Argument Description

element1, element2, . . . elementn

A list of elements to add to the array.

Example
The following example includes the Add Array Elements method:

var a = new Array(1,2);
TheApplication().RaiseErrorText(a.push(5,6) + " " + a);
// Displays 4 1,2,5,6, the length and the new array.

Concatenate Array Method
The Concatenate Array method concatenates all the elements of an array into a string. It returns a concatenated string
that includes individual array element values that are separated by commas. It does not include any input arguments.

Format

 concat()
toLocaleString()

Converting a Concatenated Array to Another Language
The toLocaleString statement works just like the concat statement but it converts the string to another language
according to the locale setting.

Example
The following example includes the Concatenate Array method:

var v = new Array;
v[0] = 7;
v[1] = 3;
v.concat(); // The result would be "7,3"

63

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Create Array Elements Method
The Create Array Elements method creates a string of array elements. It returns a string that contains the array
elements. A comma or the separatorString argument separates each element.

Format

 arrayName.join([separatorString])

The following table describes the arguments for the Create Array Elements method.

Argument Description

separatorString

A string of characters that occur between consecutive elements of the array. If you do not use a
separatorString argument, then you can use a comma.

Usage
Commas separate the array elements by default. The following example sets the value that the string variable contains
to 3,5,6,3:

var a = new Array(3, 5, 6, 3);
var string = a.join();

To separate the array elements, you can write code that passes another string as an optional argument to the Create
Array Elements method.

Example
The following example creates a string that contains a value of 3*/*5*/*6*/*3:

var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

Delete Last Array Element Method
The Delete Last Array Element method does the following work:

1. Gets the length of the current Array object.
2. If the length is defined or is not 0, then it does the following:

a. Returns the last element.
b. Deletes the last element.
c. Decreases the length of the current array object by one.

3. If the length is undefined or is 0, then it returns an undefined value.
The Delete Last Array Element method works on the end of an array. You must use the Array Shift method to work on
the beginning of an array.

64

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 arrayName.pop()

Example
The following example includes the Delete Last Array Element method:

var a = new Array("four");
TheApplication().RaiseErrorText("First pop: " + a.pop() + ", Second pop: " +
a.pop());
// First displays the last (and only) element, the string "four".
// Then displays "undefined" because the array is empty after
// the first call removes the only element.

Get Largest Array Index Method
The Get Largest Array Index method returns the number of the highest index that the array contains, plus 1. This return
value does not necessarily include the actual number of elements in an array because Siebel eScript does not require
elements to be contiguous.

Format

 arrayName.length

Example
The following example includes two arrays:

var ant = new Array; var bee = new Array;
ant[0] = 3 bee[0] = 88
ant[1] = 4 bee[3] = 99
ant[2] = 5
ant[3] = 6

The length property of ant and bee is equal to 4 even though ant includes twice as many array elements as bee. To
remove array elements, you can write code that modifies the value of the length property. For example, if you write code
that modifies ant.length to 2, then ant loses any elements that occur after the first two elements, and Siebel CRM loses
the values that it stored at the other indices. If you set bee.length to 2, then bee includes the following elements:

• bee[0], with a value of 88

• bee[1], with an undefined value

Get Subarray Method
The Get Subarray method gets the array elements that exist in a range starting with the value that the first element
argument identifies and ending with the value that the last element argument identifies. It returns a new array.

Format

65

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 slice (
 first element
 ,
 last element
)

The following table describes the arguments for the Get Subarray method.

Argument Description

first element

The first element that this method returns.

last element

The last element minus one that this method returns.

Example
The following example includes the Get Subarray method:

var v = new Array;
var u;
v[0] = 7;
v[1] = 3;
v[2] = 4;
v[3] = 5;
u = v.slice (1, 3); // u creates new array containing v[1] and v[2] values. For
example, u[0] = 3, u[1] = 4.
v.shift(); // Now v[0] is 3, v[1] is 4

Insert Array Elements Method
The Insert Array Elements method inserts array elements into an array. It returns an array that includes the elements
that it removed from the original array. It does the following work:

1. Beginning at the value that the start argument specifies, it deletes the number of array elements that the
deleteCount argument specifies.

2. Inserts these deleted elements into the newly created return array in the same order that it uses to delete them.
3. To make room for new elements, it adjusts the elements in the current array object.
4. Inserts the array elements that you specify in the element1, element2, . . . elementn argument. It inserts these

elements sequentially in the space that it creates in step 3.

Format

 arrayName.splice(start, deleteCount[, element1, element2, . . . elementn])

The following table describes the arguments for the Insert Array Elements method.

Argument Description

start

Identifies the index where this method inserts the new array elements. This method does the following:

66

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

• If start is negative, then it uses the value of the length of the array plus start. It inserts at the
position counting back from the end of the array. For example, the following code inserts from the
last element in the array:

start = -1

• If start is larger than the index of the last element, then it uses the length of the array. It appends
new elements to the end of the array.

deleteCount

Identifies the number of array elements to remove from the array. If deleteCount is larger than the
number of elements that exist in the array, then this method removes all of the elements.

element1, element2, . . . elementn

A list of elements that this method inserts in the array.

Example
The following example includes the Insert Array Elements method:

var a = new Array(1, 2, 3, 4, 5);
TheApplication().RaiseErrorText(a.splice(1,3,6,7) + " " + a);
// Displays 2,3,4 1,6,7,5
// Beginning at element in position 1, three elements (a[1], a[2], a[3] = 2,3,4)
// are replaced with 6,7.

Reverse Array Order Method
The Reverse Array Order method reverses the order of the array elements so that the last element becomes the first
element. It returns the elements in reverse order. It returns this reverse order in the arrayName argument. It reverses the
existing array. It does not return a new array.

Format

 arrayName.reverse()

Example
The following example includes the Reverse Array Order method:

var communalInsect = new Array;
communalInsect[0] = "ant";
communalInsect[1] = "bee";
communalInsect[2] = "wasp";
communalInsect.reverse();

This example produces the following array:

communalInsect[0] == "wasp"
communalInsect[1] == "bee"
communalInsect[2] == "ant"

67

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Shift Array Left Method
The Shift Array Left method shifts all array elements by one position back. The first element is lost. It returns the
modified array. It does not include any input arguments.

Format

 shift()

Example
The following example includes the Shift Array Left method:

var v = new Array;
v[0] = 7;
v[1] = 3;
v[2] = 4;
v[3] = 11;
v.shift(); // now v[0] becomes 3, v[1] becomes 4, v[2] becomes 11

Shift Array Right Method
The Shift Array Right method shifts array elements one position forward. Siebel eScript assigns the argument values
sequentially starting from the first element in the array. It fills the remaining array elements with values from the
original array starting with the first value.

Format

 unshift
 (integer)

You can include any number of arguments.

Example
The following example includes the Shift Array Right method:

var v = new Array;
v[0] = 7;
v[1] = 3;
v[2] = 4;
v[3] = 5;
v.unshift (11, 12); // v[0] is 11 now, v[1] is 12, v[2] is 7 , v[3] is 3

Sort Array Method
The Sort Array method sorts array elements into an order that you specify. It returns the sorted array elements.

68

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 arrayName.sort([compareFunction])

The following table describes the arguments for the Sort Array method.

Argument Description

compareFunction

Specifies the sort order. This method does the sort differently depending on if you include the
compareFunction argument:

• Include the compareFunction argument. It sorts array elements according to the return value that
the compare function contains.

• Do not include the compareFunction argument. It converts array elements to strings before it
sorts them. It sorts numbers in ASCII order, comparing them in numerical order. For example, 32
comes before 4. The compareFunction argument allows you to modify this sort behavior.

Example
The following example uses the Sort Array method with and without a compare function:

function compareNumbers(a, b)
{
 return a - b;
}
var a = new Array(5, 3, 2, 512);
var fp = Clib.fopen("C:\\log\\Trace.log", "a");
Clib.fprintf(fp, "Before sort: " + a.join() + "\n");
a.sort(compareNumbers);
Clib.fprintf(fp, "After sort: " + a.join() + "\n");
Clib.fclose(fp);

This example does the following:

1. Displays the results of a sort without the function.
2. Uses the following function to sort the numbers:

compareNumbers(a, b)

In this function, if a and b are two array elements that Siebel eScript compares, then Siebel eScript does the
following:

◦ If compareNumbers(a, b) is less than zero, then it gives b a lower index than a.

◦ If compareNumbers(a, b) returns zero, then it does not modify the order of a and b.

◦ If compareNumbers(a, b) is greater than zero, then it gives b a higher index than a.

String Methods
This topic describes string methods. It includes the following topics:

• Overview of String Methods

69

Siebel
eScript Language Reference

Chapter 5
Methods Reference

• Change String to Lowercase Method

• Change String to Uppercase Method

• Create String From Substring Method

• Create String From Unicode Values Method

• Get Character From String Method

• Get Unicode Character From String Method

• Get Regular Expression From String Var Method

• Get String Length Method

• Parse String Method

• Replace String Method

• Search String for Substring Method

• Search String for Last Substring Method

• Search StringVar for Regular Expression Method

Overview of String Methods
The value property of a string object describes a sequence of text characters. In this topic, the term string represents the
value of an instance of the string object. Other properties of the string object describe the string value and methods of
the string object that manipulate the string value.

To indicate that a text literal is a string, you enclose it with quotation marks. In the following example, the first statement
places the hello string in the word variable. The second statement sets the word variable to have the same value as the
hello variable:

var word = "hello";
word = hello;

To declare a string you can use single quotes instead of double quotes. No difference exists between these quotes in
Siebel eScript.

This topic uses the following formats:

• stringVar. Indicates a string variable. To use a property or to call a method, a specific instance of a variable
must precede the period.

• String name. Indicates a static method of the string object. It does not apply to a specific instance of the string
object.

How Siebel eScript Handles Special Characters In a String
A quotation mark is an example of a special character. To use a special character in a string, you must use a specific
combination of characters that represent the special character. This combination allows Siebel CRM to understand how
you intend it to use the character. For example, a quotation mark that is part of a string or a quotation mark that marks
the end of the string.

The following table shows the character combinations that represent special characters. You cannot write code that
uses these character combinations in a string that is enclosed by back quotes. For more information, see the following
section.

70

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Character Combination Special Character That the Character Combination Represents

\a

Audible bell.

\b

Backspace.

\f

Form feed.

\n

Newline.

\r

Carriage return.

\t

Tab.

\v

Vertical tab.

\’

Single quote.

\”

Double quote.

\\

Backslash character.

\0###

Octal number. For example: '\033' is the octal number.

\x##

Hex number. For example: '\x1B' is the hex number.

\0

Null character. For example: '\0' is the null character.

\u####

Unicode number. For example: '\u001B' is the Unicode number.

Back Quote Usage in a String
To configure Siebel eScript to not translate a character combination that typically represents a special character, you can
use the following back quote:

`

If you use the back quote, then Siebel eScript interprets the character combination as a part of the string. For example,
the following code lines illustrate different ways to reference a file name:

"c:\\autoexec.bat" // traditional C method
'c:\\autoexec.bat' // traditional C method
`c:\autoexec.bat' // alternative Siebel eScript method

If a string includes a back quote, then you cannot include a special character that is represented by a back slash followed
by a letter in that string. For example, \n.

71

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Most versions of JavaScript do not support a string that includes a back quote. If you plan to use your script in some
form of JavaScript other than Siebel eScript, then do not use back quotes.

Change String to Lowercase Method
The Change String to Lowercase method modifies every character that resides in the stringVar variable that is in
uppercase to the lowercase equivalent. It returns a copy of this string that includes all lowercase characters.

Format

 stringVar.toLowerCase()

Example
The following example assigns the value e. e. cummings to the variable poet:

var poet = "E. E. Cummings";
poet = poet.toLowerCase();

Change String to Uppercase Method
The Change String to Uppercase method modifies every character that resides in the stringVar variable that is in
lowercase to the uppercase equivalent. It returns a copy of this string that includes all uppercase characters.

Format

 stringVar.toUpperCase()

Example
The following example accepts a file name as input and displays it in uppercase:

 var filename = "c:\\temp\\trace.txt";;
 TheApplication().RaiseErrorText("The filename in uppercase is "
+filename.toUpperCase());

Create String From Substring Method
The Create String From Substring method returns a new string. Note the following:

• This string includes characters that the stringVar variable contains according to the start position and the end
position that you specify.

• The length of this new string is equal to the value of the end argument minus the value of the start argument.

• It does not return the character that resides at the end position. If you do not specify the end argument, then it
returns the characters from the value you specify in the start argument to the end of the string that resides in
the stringVar variable.

72

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 stringVar.substring(start[, end])

The following table describes the arguments for the Create String From Substring method.

Argument Description

start

An integer that identifies the starting position of the string that this method returns.

end

An integer that identifies the ending position plus 1 of the last character of the string that this method
returns.

Example
For an example, see Replace String Method.

Create String From Unicode Values Method
The Create String From Unicode Values method converts Unicode values to a string. It uses Unicode values that you
specify to determine the characters that are part of the string that it creates.

The String name is a property of the String constructor, so you use with this method instead of the variable name that
you use with an instance method. Siebel eScript assumes that the values in the arguments that it passes to this method
are Unicode values.

For more information, see Clib Convert Character to ASCII Method.

Format
String.fromCharCode(code1, code2, ... coden)

The following table describes the arguments for the Create String From Unicode Values method.

Argument Description

code1, code2, ... coden

Each argument is an integer that identifies a Unicode code number.

Example 1
The following example sets the string1 variable to AB:

var string1 = String.fromCharCode(0x0041,0x0042);

Example 2
The following example uses the decimal Unicode values of the characters to create a string:

73

Siebel
eScript Language Reference

Chapter 5
Methods Reference

var seblStr = String.fromCharCode(83, 105, 101, 98, 101, 108);

This example provides a string that contains the following characters:

Siebel

For another example, see Write Byte to Buffer Method.

Get Character From String Method
The Get Character From String method returns the character that resides at a specific location in a string. The length of
this character is 1.

To get the first character in a string, you use position 0. For example:

var string1 = "a string";
var firstchar = string1.charAt(0);

To get the last character in a string, you use length minus 1. For example:

var lastchar = string1.charAt(string1.length - 1);

If the value in the position argument is not between 0 and the value of stringVar.length minus 1, then this method
returns an empty string.

Format

 stringVar.charAt(position)

The following table describes the arguments for the Get Character From String method.

Argument Description

position

An integer that describes the position in the string of the character that this method returns. The
position of the first character in the string is 0.

Get Unicode Character From String Method
The Get Unicode Character From String method returns the Unicode value of the character that resides at a specific
position in a string. It returns a 16-bit integer between 0 and 65535. The value of the position argument identifies this
position. If no character exists at this position, then it returns the following value:

NaN

This method uses the same arguments as the Get Regular Expression From String method. For more information, see
Get Character From String Method. For more information, see the following topics:

• Clib Convert Character to ASCII Method

• Change String to Lowercase Method

• Create String From Unicode Values Method

74

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 string Var.char CodeAt(position)

Usage
To get the first character in a string, you use position 0. For example:

var string1 = "a string";
string1.charCodeAt(0);

To get the last character in a string, you use length minus 1. For example:

string1.charCodeAt(string1.length - 1);

If the value in the position argument is not between 0 and the value of stringVar.length minus 1, then the Get Unicode
Character From String method returns an empty string.

Example
The following eScript code configures Siebel CRM to allow the user to only enter characters that are part of the Latin
character set. These characters must possess a Unicode value of less than 128. The user enters these characters in the
First Name field. You add this code to the Contact business component. The Get Unicode Character From String method
evaluates the Unicode value of each character that the user enters in the field that the FieldValue argument specifies:

function BusComp_PreSetFieldValue (FieldName, FieldValue)
{
// prevent non latin characters in First Name field
if (FieldName == "First Name")
 {
 for (var i=0;i<FieldValue.length;i++)
 {
 var co = FieldValue.charCodeAt(i);
 if (co > 127)
 {
 TheApplication().RaiseErrorText("Only characters from latin character
set are allowed!");
 }
 }
 }
return (ContinueOperation);
}

Get Regular Expression From StringVar Method
The Get Regular Expression From StringVar method searches stringVar for a regular expression. It returns one of the
following:

• If it finds a match, then it returns an array of strings that includes information about each string and the
property sets for these strings.

• If it does not find the regular expression, then it returns the following value:

Null

75

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format
stringVar.match(regexp)

The following table describes the arguments for the Get Regular Expression From StringVar method.

Argument Description

regexp

A regular expression that you describe as a literal or as a variable.

Usage without Setting the Global Attribute
If you use the Get Regular Expression From StringVar method with the g global attribute not set on the regular
expression, then this usage is the same as with the Get Regular Expression From String method. For more information,
see Get Regular Expression from String Method and Get Regular Expression from String Method.

Usage with Setting the Global Attribute
If you use the Get Regular Expression From StringVar method, and if you set the g global attribute on the regular
expression, and if this method finds a match, then it does the following:

• Returns element 0 of the return array as the first text in the string that matches the primary pattern of the
regular expression.

• Returns each subsequent element of the return array as the next text in the string that matches the primary
pattern of the regular expression, and that starts after the last character of the previous match. It does not
return any matches that overlap other matches.

For example, assume the following is true:

• The primary pattern of the regular expression is a.. (the letter a followed by any two characters).

• The string is abacadda.

In this situation the return array includes the following:

• aba

• add

It does not include aca.

If you set the g global attribute on the regular expression, then usage for the Get Regular Expression From StringVar
method is very different than usage for the Get Regular Expression From String method.

For more information, see Get Regular Expression from String Method.

Example 1
The following example uses the Get Regular Expression From StringVar method with a regular expression whose global
attribute is not set:

function fn ()
{
 var myString = new String("Better internet");
 var myRE = new RegExp(/(.).(.er)/i);
 var results = myString.match(myRE);

76

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 var resultmsg = "";
 for(var i =0; i < results.length; i++)
 {
 resultmsg = resultmsg + "return[" + i + "] = " + results[i] + "\n";
 }
 TheApplication().RaiseErrorText(resultmsg);
}
fn ();

This example provides the following output:

return[0] = etter \\First text that contains primary pattern ...er (any three
 \\characters followed by "er")

return[1] = e \\First text that matches the first subpattern (.) (any single
 \\character) in the first text that matches the primary pattern

return[2] = ter \\First text that matches the second subpattern (.er) (any single
 \\character followed by "er") in the first text that matches
 \\the primary pattern

Example 2
The following example uses the Get Regular Expression From StringVar method with a regular expression whose global
attribute is set. The method returns matches of the primary pattern of the regular expression that do not overlap:

function fn ()
{
 var str = "ttttot tto";
 var pat = new RegExp("t.t", "g");
 var rtn = str.match(pat);
 var resultmsg = "";
 for(var i =0; i < rtn.length; i++)
 {
 resultmsg = resultmsg + "match [" + i + "] = " + rtn[i] + "\n";
 TheApplication().RaiseErrorText(resultmsg);
 }
}
fn ();

This code produces the following output. This output does not include the ttt instance that starts at position 1 or the t t
instance because these instances start in other strings that the Get Regular Expression From StringVar method returns:

match [0] = ttt
match [1] = tot

Get String Length Method
The Get String Length method returns an integer that describes the length of the string.

Format

 stringVar.length

Example 1
The following example displays the number 14, which is the number of characters in the string. The position of the last
character in the string is equivalent to the value in stringVar.length minus 1, because the position begins at 0, not at 1:

77

Siebel
eScript Language Reference

Chapter 5
Methods Reference

var string1 = "No, thank you.";
TheApplication().RaiseErrorText(string1.length);

Example 2
The following example returns the length of a name that the user enters, including spaces:

var userName = "Christopher J. Smith";
TheApplication().RaiseErrorText("Your name has " +
 userName.length + " characters.");

Parse String Method
The Parse String method parses a string into an array of strings according to the delimiters that you specify in the
delimiter argument. Note the following:

• It returns an array of strings, each of which begins at an instance of the delimiter character.

• It does not include the delimiter in any of the strings.

• If you do not specify the delimiter argument or if this argument contains an empty string (""), then it returns an
array of one element, which includes the original string.

• It is the inverse of arrayVar.join.

For more information, see Create Array Elements Method.

Format

 stringVar.split([delimiter])

The following table describes the arguments for the Parse String method.

Argument Description

delimiter

The character where this method splits the value stored in stringVar.

Example
The following example splits a typical Siebel command line into separate elements. It creates a separate array element
at each space character. You must configure Siebel CRM to modify the string with character combinations so that Siebel
eScript can understand it. The cmdLine variable must occur on a single line. In this book this variable wraps to a second
line:

function Button3_Click ()
{
 var msgText = "The following items occur in the array:\n\n";
 var cmdLine = "C:\\Siebel\\bin\\siebel.exe /c
\'c:\\siebel\\bin\\siebel.cfg\' /u SADMIN /p SADMIN /d Sample"
 var cmdArray = cmdLine.split(" ");
 for (var i = 0; i < cmdArray.length; i++)
 msgText = msgText + cmdArray[i] + "\n";
 TheApplication().RaiseErrorText(msgText);
}

78

Siebel
eScript Language Reference

Chapter 5
Methods Reference

This example produces the following result:

The following items occur in the array:
C:\Siebel\bin\siebel.exe
/c
'C:\siebel\bin\siebel.cfg'
/u
SADMIN
/p
SADMIN
/d
Sample

Replace String Method
The Replace String method uses the regular expression that you define in the pattern argument to search a string. If it
finds a match, then it replaces the string it finds with the string that you define in the replexp argument.

Format

 stringVar.replace(pattern, replexp)

The following table describes the arguments for the Replace String method.

Argument Description

pattern

Regular expression that this method finds in a string.

replexp

A replacement expression that can include one of the following items:

• String

• String that includes regular expression elements

• Function

Special Characters You Can Use in a Replacement Expression
The following table describes the special characters that you can use in a replacement expression.

Character Description

$1, $2 … $9

The text that the regular expression matches. This text resides in a set of parentheses in the string. For
example, $1 replaces the text that the Replace String method matches in the first regular expression it
encounters that resides in a set of parentheses.

$+

Same as the $1, $2 … $9 characters, except with the $+ character the replacement occurs in the regular
expression that resides in the last set of parentheses.

$&

The text that a regular expression matches.

79

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Character Description

$`

The text that precedes the text that a regular expression matches.

$'

The text that comes after the text that a regular expression matches.

\$

The dollar sign character.

Example
The following example includes the Replace String method:

var rtn;

var str = "one two three two one";

var pat = /(two)/g;
// rtn == "one zzz three zzz one"

rtn = str.replace(pat, "zzz");
// rtn == "one twozzz three twozzz one";

rtn = str.replace(pat, "$1zzz");
// rtn == "one 5 three 5 one"

rtn = str.replace(pat, five());
// rtn == "one twotwo three twotwo one";

rtn = str.replace(pat, "$&$&”);
function five()
{

 return 5;
}

Search String for Substring Method
The Search String for Substring method searches the stringVar variable for the entire string that you specify in the
substring argument. It returns the position of the first occurrence of this string.

If any of the following situations is true, then it returns a value of negative 1:

• It does not find the value that you specify in the substring argument.

• The value you specify in the offset argument is outside the range of positions in the string.

Values you enter for arguments are case-sensitive.

Format
stringVar.indexOf(substring [, offset])

The following table describes the arguments for the Search String for Substring method.

80

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

substring

One or more characters that this method searchs.The substring argument can contain a single
character.

offset

The position in the string where this method starts searching. This method does the following
according to how you set the offset argument:

• You specify the offset argument. Starts searching at the position that you specify in the offset
argument.

• You do not specify the offset argument. Starts searching at position 0.

Example 1
The following example returns the position of the first a character that occurs in the string. In this example, the first a
character occurs at position 2:

var string = "what a string";
var firsta = string.indexOf("a")

Example 2
The following example returns 3, which is the position of the first a character in the string when starting from the
second character of the string:

var magicWord = "abracadabra";
var secondA = magicWord.indexOf("a", 1);

Related Topics
For more information, see the following topics:

• Clib Search String for Character Method

• Clib Search String for Character Set Method

• Search String for Last Substring Method

Search String for Last Substring Method
The Search String for Last Substring method searches the stringVar variable for the string that you specify in the
substring argument. It returns the position of the last occurrence of this string in a string.

If any of the following situations is true, then it returns a value of negative 1:

• It does not find the value that you specify in the substring argument.

• The value you specify in the offset argument is outside the range of positions in the string.

Note the following:

• To limit the search to a string of leftmost characters of the string, you can use the offset argument.

• The first character of the substring must occur at a position that is no greater than the offset.

81

Siebel
eScript Language Reference

Chapter 5
Methods Reference

• If the value you specify in the substring argument does not occur entirely before or at the offset, then the
Search String for Last Substring method still returns the position of the substring that it finds.

This method uses the same arguments as the Search String for Substring method. For more information, see Search
String for Substring Method.

Format

 stringVar.lastIndexOf(substring [, offset])

This method does the following according to how you specify the offset argument:

• You do specify the offset argument. It searches the string up to the position that you specify in the offset
argument, and then returns the rightmost position where the substring begins. It does not consider any
substring that occurs after the position that you specify in the offset argument.

• You do not specify the offset argument. It returns the rightmost position in the entire string where the substring
begins.

Example 1
The following example returns the position of the last occurrence of the a character in the string. It returns a value of 5:

var string = "what a string";
string.lastIndexOf("a")

Example 2
The following example returns the position of the last occurrence of the abr string, beginning at a position that is not
greater than 8. It returns a value of 7:

var magicWord = "abracadabra";
var lastabr = magicWord.lastIndexOf("abr", 8);

Search StringVar for Regular Expression Method
The Search StringVar for Regular Expression method searches a string for a regular expression. It returns one of the
following:

• If it finds the regular expression, then it returns the position of this regular expression.

• If it does not find the regular expression, then it returns negative 1.

You can write code that runs this method in server script or browser script.

This method uses the same argument as the Get Regular Expression From StringVar method. For more information, see
Get Regular Expression From String Var Method.

Format

 stringVar.search(regexp)

Example
The following example uses the Search StringVar for Regular Expression method:

82

Siebel
eScript Language Reference

Chapter 5
Methods Reference

function Test(sValue)
{
 //Validate for 5 digit numbers
 var sCheck = /^\d{5}$/; //regular expression defining a 5 digit number
 if(sValue.search(sCheck)==0)
 {
 return("Valid");
 }
 else
 {
 return("Invalid");
 }
}

BLOB Methods
This topic includes the following topics:

• About the blobDescriptor

• Get BLOB Data Method

• Get UTC Hours Method

• Write BLOB Data Method

About the BLOB Descriptor
The blobDescriptor object describes the structure of a BLOB (binary large object). If you must configure Siebel CRM to
send an object to a process other than the Siebel eScript interpreter, such as to a Windows API function, then you must
configure it to create a blobDescriptor object that describes the order and type of data of this object. This description
describes how to store the properties of the object in memory. You use it with methods such as the Siebel Library Call
DLL method or the Clib Read From File method. For more information, see Siebel Library Call DLL Method and Clib Read
From File Method.

A BLOB descriptor includes the same data properties as the object it describes. You must set a value for each property
that specifies how much memory is required to store the data that the property holds. To refer to the arguments passed
to the constructor function, you use the following keyword:

this

You can think of this keyword conceptually as this object. Consider the following object:

Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

To configure Siebel eScript to pass data to the following items, you typically use a BLOB descriptor:

• Siebel eScript data structure, which is similar to JavaScript

• C program or a C++ program

• Clib method

These items expect a rigid and precise description of the values that Siebel eScript passes.

83

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example of Using a BLOB Descriptor
The following example creates a blobDescriptor object that describes the Rectangle object:

var bd = new blobDescriptor();

bd.width = UWORD32;
bd.height = UWORD32;

In this example, you can use Siebel eScript to pass the bd variable as a blobDescriptor argument to a function that
requires a blob descriptor. The values set for the properties depend on what the receiving function expects. In this
example the function that Siebel CRM calls expects to receive an object that includes two 32-bit words or data values. If
you write a BLOB descriptor for a function that expects to receive an object that contains two 16-bit words, then set the
value for the two properties to UWORD16.

Values You Must Use with a BLOB Descriptor
The following table describes the values that you must use with blobDescriptor object properties. To indicate the
number of bytes that are required to store the property, you use one of these values. If the BLOB descriptor describes
an object property that is a string, then you must set the corresponding property to a numeric value that is larger than
the length of the longest string that the property can hold. You can write code that omits an object method from a BLOB
descriptor.

Value Description

WCHAR

Handled as a native Unicode string.

UWORD8

Stored as an unsigned byte.

SWORD8

Stored as an integer.

UWORD16

Stored as an unsigned 16-bit integer.

SWORD16

Stored as a signed 16-bit integer.

UWORD24

Stored as an unsigned 24-bit integer.

SWORD24

Stored as a signed 24-bit integer.

UWORD32

Stored as an unsigned 32-bit integer.

SWORD32

Stored as a signed 32-bit integer.

FLOAT32

Stored as a floating-point number.

FLOAT64

Stored as a double-precision floating-point number.

STRINGHOLDER

Indicates a value that Siebel eScript saves in a string. Siebel eScript passes this value to a function. This
function saves this string. Siebel eScript does the following work:

84

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Value Description

1. Allocates 10,000 bytes to contain the string.
2. Truncates this length to the appropriate size.
3. Removes any terminating null characters.
4. Initializes the properties of the string.

Get BLOB Data Method
This Get BLOB Data method reads data from a binary large object. It returns the data from the BLOB.

Format A
Blob.get(blobVar, offset, dataType)

You use format A for byte, integer, or float data.

Format B
Blob.get(blobVar, offset, bufferLen)

You use format B for byte data.

Format C
Blob.get(blobVar, offset, blobDescriptor dataDefinition)

You use format C for object data.

Arguments
The following table describes the arguments for the Get BLOB Data method.

Argument Description

blobVar

The name of the binary large object that this method manipulates.

offset

The position in the BLOB that Siebel CRM uses to read the data.

dataType

An integer value that identifies the data format in the BLOB. The dataType argument must include one
of the values you must use with a BLOB descriptor. For more information, see Values You Must Use
with a blobDescriptor.

bufferLen

An integer that specifies the size of the buffer in bytes.

blobDescriptor dataDefinition

A blobDescriptor object that identifies the data format in the BLOB.

85

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example
The following example describes how to get values from a BLOB object:

function GetBlobVal()
{
 var a, b, c;
 a = "";
 b = 1234;
 c = 12345678;
 // Call a function to build the Blob
 var blob = BuildBlob(a, b, c);
 TheApplication().TraceOn("c:\\temp\\blob.txt","Allocation","All");
 // Get the values from the blob object
 // The first variable is string
 var resultA = Blob.get(blob,0,1000);
 // The second variable is an integer
 var resultB = Blob.get(blob,1000,UWORD16);
 // The third variable has a type of float
 var resultC = Blob.get(blob,1002,FLOAT64);
 TheApplication().Trace(resultA);
 TheApplication().Trace(resultB);
 TheApplication().Trace(resultC);
}

function BuildBlob(a, b, c)
{
 var blob;
 a = "Blob Test Value From Function";
 var offset = Blob.put(blob, 0, a, 1000);
 offset = Blob.put(blob, offset, b*2, UWORD16);
 Blob.put(blob, offset, c*2, FLOAT64);
 return blob;
}

Get BLOB Size Method
The Get BLOB Size method determines the size of a BLOB object. It returns the number of bytes that this BLOB object
contains. It returns this value in the blobVar argument.

Format A
// Format A
Blob.size(blobVar[, SetSize])

// Format B
Blob.size(dataType)

// Format C
Blob.size(bufferLen)

// Format D
Blob.size(blobDescriptor dataDefinition)

86

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Arguments
The following table describes the arguments for the Get BLOB Size method. If you specify any of the following
arguments, then Siebel CRM uses the values you specify to convert Siebel eScript data to a BLOB, and to covert BLOB
data to Siebel eScript data:

• dataType

• bufferLen

• dataDefinition

Argument Description

blobVar

The name of the binary large object that this method examines.

setSize

An integer that determines the size of the BLOB. If you specify the SetSize argument, then this method
does the following work:

• Modifies the size of the BLOB that you identify in the blobVar argument to the value you specify in
the SetSize argument

• Returns a value in the setSize argument

dataType

An integer value that describes the format of the data in the BLOB. The dataType argument must
include one of the values that you use with a BLOB descriptor. For more information, see Values You
Must Use with a blobDescriptor.

bufferLen

An integer that describes the number of bytes in the buffer.

blobDescriptor dataDefinition

A blobDescriptor object that describes the format of the data in the BLOB.

Write BLOB Data Method
The Write BLOB Data method writes data to a binary large object. It returns an integer that identifies the byte offset of
the byte that occurs after the end of the data that this method writes. If it writes data at the end of the BLOB, then this
integer identifies the size of the BLOB.

You can write code that adds data at any position in a BLOB. The data length is variable. This method does not pad each
data element with null values as a way to make every data element a uniform length. The exact length depends on the
CPU. Thirty two bytes is a common length.

For more information, see Usage of the Term Put.

Format A
// Format A
Blob.put(blobVar[, offset], data, dataType)

// Format B
Blob.put(blobVar[, offset], buffer, bufferLen)

87

Siebel
eScript Language Reference

Chapter 5
Methods Reference

// Format C
Blob.put(blobVar[, offset], srcStruct, blobDescriptor dataDefinition)

To pass the contents of an existing BLOB that resides in the srcStruct argument to the blobVar argument, you can use
format C.

Arguments
The following table describes the arguments for the Write BLOB Data method.

Argument Description

blobVar

The name of the binary large object that this method manipulates.

offset

The position in the BLOB where this method adds data. If you do not provide a value for the offset
argument, then this method does one of the following depending on if the BLOB is defined:

• BLOB is defined. Adds data at the end of the BLOB.

• BLOB is not defined. Adds data at offset 0.

data

The data that this method writes.

dataType

The format of the data in the BLOB. This method converts the data to the format that you specify
in the dataType argument, and then copies this data to the position that you specify in the offset
argument.

If the value that you specify in the dataType argument is not the length of a byte buffer, then the
dataType argument must include one of the values you use with a BLOB descriptor. For more
information, see Values You Must Use with a blobDescriptor.

buffer

A variable that contains a buffer.

bufferLen

An integer that specifies the buffer length.

srcStruct

A BLOB that contains the data that this method writes.

blobDescriptor dataDefinition

A blobDescriptor object that describes the format of the data in the BLOB.

Example
Assume you send a data pointer to an external C library. Assume the library expects data in the following packed C
structure:

struct foo
{
 signed char a;
 unsigned int b;
 double c;
};

The following example creates a structure from three corresponding variables and returns the offset of the next
available byte:

88

Siebel
eScript Language Reference

Chapter 5
Methods Reference

function BuildFooBlob(a, b, c)
{
 var offset = Blob.put(foo, 0, a, SWORD8);
 offset = Blob.put(foo, offset, b, UWORD16);
 Blob.put(foo, offset, c, FLOAT64);
 return foo;
}

The following example creates a structure from three corresponding variables but does not include an offset:

functionBuildFooBlob(a, b, c)
{
 Blob.put(foo, a, SWORD8);
 Blob.put(foo, b, UWORD16);
 Blob.put(foo, c, FLOAT64);
 return foo;
}

Buffer Methods
This topic describes buffer methods. It includes the following topics:

• Overview of Buffer Methods

• About Buffer Constructors

• Create Buffer Method

• Get Buffer Data Method

• Get Cursor Position Value From Buffer Method

• Get String From Buffer Method

• Put String in Buffer Method

• Put Value in Buffer Method

• Write Byte to Buffer Method

• Buffer Size Property

• Cursor Position in Buffer Property

• Data in Buffer Property

• Use Big Endian in Buffer Property

• Use Unicode in Buffer Property

Overview of Buffer Methods
A buffer method allows you to manipulate data at a very basic level. It is required if the relative position of data in
memory is important. You can configure Siebel CRM to store any type of data in a buffer object.

You can configure Siebel CRM to create a new buffer object from the following items:

• Nothing.

• A string, a buffer, or a buffer object. Siebel CRM copies the contents of the string, buffer, or buffer object to the
new buffer object.

89

Siebel
eScript Language Reference

Chapter 5
Methods Reference

The examples for buffer methods in this chapter use the bufferVar argument as a generic argument name. Siebel CRM
assigns a buffer object to this generic argument.

About Buffer Constructors
This topic describes the formats you can use to create a buffer object.

The following table describes the buffer constructor arguments that are common to formats A, B, C, and D.

Argument Description

unicode

You can use one of the following values:

• True. Siebel eScript creates the new buffer as a Unicode string regardless of whether the input
string is Unicode or not.

• False. Siebel eScript creates the new buffer as an ASCII string regardless of whether the input
string is Unicode or not. False is the default value.

bigEndian

You can use one of the following values:

• True. Siebel eScript stores the largest data values in the most significant byte.

• False. Siebel eScript stores the largest data values in the least significant byte. False is the default
value.

Format A
new Buffer([size] [, unicode] [, bigEndian]);

The following table describes the buffer constructor arguments that are specific to format A.

Argument Description

size

The size of the new buffer that Siebel eScript creates. You can do one of the following:

• Specify the size argument. Siebel eScript creates the new buffer with the size you specify and fills
it with null bytes.

• Do not specify the size argument. Siebel eScript creates the new buffer with a size of 0. You can
configure it to dynamically extend the new buffer later.

Format B
new Buffer(string [, unicode] [, bigEndian]);

Format B creates a new buffer object from a string that you provide. A line of code that uses format B creates a new
buffer object from the buffer provided. Siebel CRM copies the contents of the buffer into the new buffer object. The
unicode argument and the bigEndian argument do not affect this conversion, although they do set the relevant flags for
future use.

The following table describes the buffer constructor arguments that are specific to format B.

90

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

string

The string that Siebel eScript uses as input to create the buffer.

If the string argument contains a Unicode string, then Siebel eScript creates the buffer as a Unicode
string. To use a Unicode string, you must enable Unicode in the Siebel application. To override this
behavior, you can specify false in the optional unicode argument.

The size of the buffer depends on if the string is a Unicode string:

• The string is a Unicode string. The size of the buffer is twice the length of the input string.

• The string is not a Unicode string. The size of the buffer is the length of the input string.

A buffer constructor does not add a terminating null byte at the end of the string.

Format C
new Buffer(buffer [, unicode] [, bigEndian]);

The following table describes the buffer constructor arguments that are specific to format C.

Argument Description

buffer

The buffer that Siebel eScript uses as input to create the new buffer.

Format D
new Buffer(bufferobject);

A line of code that uses format D creates a new buffer object from another buffer object. Siebel CRM copies the contents
of the buffer object to the new buffer verbatim, including the cursor position, size, and data.

The following table describes the buffer constructor arguments that are specific to format D.

Argument Description

bufferobject

The buffer object that Siebel eScript uses as input to create the new buffer.

Example
The following example creates new buffer objects:

function BufferConstruct()
{
 TheApplication().TraceOn("c:\\temp\\BufferTrace.doc","Allocation","All");
 // Create empty buffer with size 100
 var buff1 = new Buffer(100 , true , true);
 // Create a buffer from string
 var buff2 = new Buffer("This is a buffer String constructor example", true);
 // Create buffer from buffer
 var buff3 = new Buffer(buff2,false);
 try
 {

91

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 with(buff1)
 {
 // Add values from 0-99 to the buffer
 for(var i=0;i<size;i++)
 {
 putValue(i);
 }
 var val = "";
 cursor=0;
 // Read the buffer values into variable
 for(var i=0;i<size;i++)
 {
 val += getValue(1)+" ";
 }
 // Trace the buffer value
 TheApplication().Trace("Buffer 1 value: "+val);
 }
 with(buff2)
 {
 // Trace buffer 2
 TheApplication().Trace("Buffer 2 value: "+getString());
 }
 // Trace buffer 3
 with(buff3)
 {
 TheApplication().Trace("Buffer 3 value: "+getString());
 }
 }
 catch(e)
 {
 TheApplication().Trace(e.toString());
 }
}

Create Buffer Method
The Create Buffer method extracts the data that exists between two positions in a buffer. It returns this data in a new
buffer object. This method does the following:

• If the value that the beginning argument contains is less than 0, then it treats this value as 0, which is the
beginning of the buffer.

• If the value that the end argument contains is beyond the end of the buffer, then it uses null bytes to increase
the size of the new buffer. It does not modify the source buffer. It duplicates the values of the unicode argument
and the bigEndian argument in the new buffer.

• Sets the length of the new buffer to the value that the end argument contains minus the value that the
beginning argument contains.

Format

 bufferVar.subBuffer(beginning, end)

The following table describes the arguments for the Create Buffer method.

Argument Description

beginning The position in the source buffer where this method begins to extract data.

92

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

end

The position in the source buffer where this method stops extracting data.

How the Create Buffer Method Sets the Cursor
The following table describes how the Create Buffer method sets the cursor.

Original Cursor Position How the Create Buffer Method Sets the Cursor

Between the value that the beginning
argument contains and the value that the
end argument contains.

Sets the cursor position to a new relative position in the new buffer.

Before the value that the beginning
argument contains.

Sets the cursor position to 0 in the new buffer.

After the value that the end argument
contains.

Sets the cursor position to the end of the new buffer.

Example
The following example creates a new buffer named language and displays the contents of this buffer in a string named
Siebel eScript. The Siebel eScript text begins in the nineteenth position:

var loveIt= new Buffer("I love coding with Siebel eScript!");
var language = loveIt.subBuffer(19, (loveIt.size - 1))
TheApplication().RaiseErrorText(language);

Related Topics
For more information, see Get String From Buffer Method.

Get Buffer Data Method
The Get Buffer Data method returns a string that contains the same data that the buffer contains. If necessary, it does
a Unicode conversion according to the value of the Use Unicode in Buffer property. For more information, see Throw
Statement.

Format

 bufferVar.toString()

Example
The following example uses the Get Buffer Data method:

try

93

Siebel
eScript Language Reference

Chapter 5
Methods Reference

{
 do_something;
}
catch(e)
{
 TheApplication().RaiseErrorText(Clib.rsprintf(
 "Something bad happened: %s\n",e.toString()));
}

Get Cursor Position Value From Buffer Method
The Get Cursor Position Value From Buffer method returns the value that a position contains from a buffer. This
position is the position where the cursor currently resides. To determine where to read from the buffer, you can use the
Cursor property. For more information, see Cursor Position in Buffer Property.

Format

 bufferVar.getValue([valueSize][, valueType])

The following table describes the arguments for the Get Cursor Position Value From Buffer method.

Argument Description

valueSize

A positive number that describes the number of bytes that the this method reads. You can use any of
the following values:

• 1

• 2

• 3

• 4

• 8

• 10

The default value is 1.

These values must not conflict with any values you use with the valueType argument. For more
information, see the following section.

valueType

The type of data that the this method reads. You can use one of the following values:

• Signed

• Unsigned

• Float

Signed is the default value.

94

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Values You Can Use with the ValueSize and ValueType Arguments
The following table describes the value combinations you can use with the valueSize argument and the valueType
argument. The values of the valueSize argument and the valueType argument must match the structure of the data that
the Get Cursor Position Value From Buffer method reads. Any other combination causes an error.

Value in the valueSize Argument Value in the valueType Argument

1

signed, unsigned

2

signed, unsigned

3

signed, unsigned

4

signed, unsigned, float

8

float

Get String From Buffer Method
The Get String From Buffer method returns a string that starts at the current cursor position in a buffer and continues
for the number of bytes that you specify in the length argument. It reads the string according to the value of the
unicode flag of the buffer. It does not add a terminating null byte even if you do not provide a length argument.

Format

 bufferVar.getString([length])

The following table describes the arguments for the Get String From Buffer method.

Argument Description

length

The length of the string to return, in bytes. If you do not specify the length argument, then this method
reads the data until it encounters one of the following items:

• A null byte

• The end of the buffer

95

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Put String in Buffer Method
The Put String in Buffer method replaces existing data in a buffer with a string that you specify. It replaces data starting
at the current position of the cursor. This method does one of the following depending on if the Unicode flag in the
buffer object is set:

• Set. It puts the string in the buffer object as a Unicode string. It increments the cursor by twice the length of the
string.

• Not set. It puts the string in the buffer object as an ASCII string. It increments the cursor by the length of the
string.

This method does not add a terminating null byte at end of the string.

To put a null string in the buffer object, you can use the following code:

buf1.putString("Hello"); // Put the string into the buffer
buf1.putValue(0); // Add terminating null byte

Format

 bufferVar.putString(string)

The following table describes the arguments for the Put String in Buffer method.

Argument Description

string

The string literal that this method puts in the buffer object, or the string variable whose value it puts in
the buffer object.

Example
The following example places the language string in the exclamation buffer and displays the modified contents of the
explanation buffer:

function eScript_Click ()
{
 var exclamation = new Buffer("I enjoy coding with . . .");
 var language = "Siebel eScript.";
 exclamation.cursor = 20;
 exclamation.putString(language);
 TheApplication().RaiseErrorText(exclamation);
}

This modification is a string that contains the following value:

I enjoy coding with Siebel eScript.

Related Topics
For more information, see the following topics:

• Usage of the Term Put.

96

Siebel
eScript Language Reference

Chapter 5
Methods Reference

• Get String From Buffer Method.

Put Value in Buffer Method
The Put Value in Buffer method replaces existing data in a buffer with a value that you specify. It replaces data starting
at the current position of the cursor. It puts the value that the buffer contains at the current cursor position, and then
automatically increments the cursor value by the value that the value argument contains.

To put a value at a specific position and preserve the cursor position, you can add code that is similar to the following:

var oldCursor = bufferItem.cursor; // Save the cursor position
bufferItem.cursor = 20; // Set to new position
bufferItem.putValue(foo); // Put bufferItem at offset 20
bufferItem.cursor = oldCursor // Restore cursor position

For more information, see Usage of the Term Put.

Format

 bufferVar.putValue(value[, valueSize][, valueType])

The following table describes the arguments for the Put Value in Buffer method.

Argument Description

value

A number.

valueSize

valueType

The description for the valueSize argument and the valueType argument for the Put Value in Buffer
method is the same as the description for these arguments for the Get Cursor Position Value From
Buffer method. For more information, see Get Cursor Position Value From Buffer Method.

Avoiding Digit Loss
To put the value in the buffer, the Put Value in Buffer method uses byte ordering according to the current value that the
bigEndian argument contains. If it puts a smaller float value, such as 4, then digits are lost. It converts a value such as 1.4
to a value that is approximately 1.39999974. This conversion is insignificant and you can ignore it.

Note the following example:

bufferItem.putValue(1.4,8,"float");
bufferItem.cursor -= 4;
if(bufferItem.getValue(4,"float") != 1.4)
// This is not necessarily true due to significant digit loss.

To prevent this situation, you can set the valueSize argument to 8 instead of 4. You can use a valueSize of 4 for a
floating-point value, but be aware that some digit loss might occur. This loss might not be significant enough to affect
most calculations.

97

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Write Byte to Buffer Method
The Write Byte to Buffer method writes a byte to a buffer at a position that you specify.

Format

 bufferVar[offset]

The following table describes the arguments for the Write Byte to Buffer method.

Argument Description

offset

A number that describes a position in the buffer that the bufferVar method identifies. This method
does one of the following:

• Places a byte at the offset position.

• Reads data from the offset position.

Note the following:

• If the value that the offset argument contains is less than 0, then this method uses 0.

• If the value that the offset argument contains is greater than the length of the buffer, then this
method uses null bytes to increase the size of the buffer.

Usage
The Write Byte to Buffer method is an array-like version of the Get Cursor Position Value From Buffer method and the
Put Value in Buffer method except that the Write Byte to Buffer method works only with bytes. You can write code that
gets or sets these values. For example, the following code sets the goo variable to the value of a byte. This byte resides
in the buffer at offset position 5:

goo = foo[5]

The following code sets the value of position 5 in the foo buffer to the value that the goo variable contains:

foo[5] = goo

This code assumes the value that the goo variable contains is a single byte value.

Every get or put operation uses eight-bit signed words (SWORD8). If you must work with character values, then you
must convert these values to their ANSI equivalent or Unicode equivalent.

Related Topics
For more information, see the following topics:

• Usage of the Term Put

• Get Cursor Position Value From Buffer Method

• Put Value in Buffer Method

98

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Buffer Size Property
The Buffer Size property is the size of the buffer object. You can write code that sets a value for the Buffer Size property.
For example:

inBuffer.size = 5

Siebel CRM does the following:

• If the buffer size increases beyond the current maximum size of the buffer, then it uses null bytes to fill the
additional positions.

• If the buffer size decreases so that the cursor position is beyond the end of the buffer, then it moves the cursor
position to the end of the modified buffer.

For more information, see Cursor Position in Buffer Property.

Format

 bufferVar.size

Cursor Position in Buffer Property
The Cursor Position in Buffer property stores the current position of the buffer cursor. Note the following:

• The value of the cursor position is always between 0 and the value that the Buffer Size property contains.

• If you use Siebel eScript to set the cursor beyond the end of a buffer, then it increases the buffer to
accommodate the new position. It fills the new positions with null bytes.

• If you use Siebel eScript to set the cursor to a value that is less than 0, then it places the cursor at position 0 of
the buffer.

Format

 bufferVar.cursor

Example
For examples, see Get String From Buffer Method and Create Buffer Method.

Data in Buffer Property
The Data in Buffer property is a reference to the internal data of a buffer. You can write code that uses it as a temporary
value to pass buffer data to a function that does not recognize a buffer object.

Format

 bufferVar.data

99

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Use Big Endian in Buffer Property
The Use Big Endian in Buffer property is a Boolean flag that specifies to use big endian byte ordering if Siebel CRM calls
the Get Cursor Position Value From Buffer method or the Put Value in Buffer method. Siebel CRM stores bytes according
to the following settings:

• Use Big Endian in Buffer property is true. Stores the bytes in descending order of significance.

• Use Big Endian in Buffer property is false. Stores the bytes in ascending order of significance.

Siebel CRM sets this value when it creates a buffer. You can configure it to modify this value at any time.

The Use Big Endian in Buffer property defaults to the state of the operating system and processor.

If a data value includes more than one byte, then the following occurs:

• The byte that contains the smallest units of the value is the least significant byte.

• The byte that contains the largest units of the value is the most significant byte.

Format

 bufferVar.bigEndian

Use Unicode in Buffer Property
The Use Unicode in Buffer property is a Boolean flag that specifies whether to use a Unicode string when calling the Get
String From Buffer method or the Put String in Buffer method. Siebel CRM sets the value for the Use Unicode property
when it creates a buffer. You can configure it to modify this value. This property defaults to false.

Format

 bufferVar.unicode

Example
The following example sets the Use Unicode in Buffer property of a new buffer to true:

var aBuffer = new Buffer();
aBuffer.unicode = true;

Date and Time Methods
This topic describes date and time methods. It includes the following topics:

• Overview of Date Methods

• About the Date Constructor

• Convert Date and Time to String Method

100

Siebel
eScript Language Reference

Chapter 5
Methods Reference

• Convert Date to Integer Method

• Convert Date String to Date Object Method

• Convert Integer Date to JavaScript Date Method

• Convert Date to GMT String Method

• Get Day of Month Method

• Get Day of Week Method

• Get Full Year Method

• Get Hours Method

• Get Milliseconds Method

• Get Minutes Method

• Get Month Method

• Get Seconds Method

• Get Time Method

• Get Time Zone Offset Method

• Get Year Method

• Set Date Method

• Set Full Year Method

• Set Hours Method

• Set Milliseconds Method

• Set Minutes Method

• Set Month Method

• Set Seconds Method

• Set Time Method

• Set Year Method

Overview of Date Methods
Siebel eScript provides the following ways to work with dates:

• The standard date object in JavaScript.

• The Clib object that implements routines from the C programming language. For more information, see C
Language Library Reference.

The following methods convert dates in the format of one date system to the format of the other date system:

• Date.fromSystem

• Date.toSystem

This chapter describes the JavaScript Date object.

To indicate the name of a variable that you create to hold a date value, this chapter uses dateVar.

Format for Calling a Date Method
To call a date method, you must precede the method name with a specific instance of a variable followed by a period.
For example, assume you create a date object named aDate. To call the getDate method, you use the following format:

101

Siebel
eScript Language Reference

Chapter 5
Methods Reference

aDate.getDate

Siebel CRM uses a literal value to call a static method, such as Date.parse. The beginning of a static method includes the
following format:

Date.

These methods are part of the date object instead of an instance of the Date object.

Caution About Using Two-Digit Dates
Siebel eScript uses the ECMAScript standard for two-digit dates, which might be different from the formats that other
applications use, including Siebel CRM.

CAUTION: To prevent a year 2000 (Y2K) problem, avoid using a two-digit date in your Siebel eScript code.

Values for Dates and Times
The following table describes values for months, days, hours, minutes, and seconds. Many Siebel eScript objects use
these same values.

Time Period Description

month

A month, specified as an integer from 0 to 11. January is 0 and December is 11.

day

A day of the month, specified as an integer from 1 to 31. The first day of the month is 1. The last day of
the month is 28, 29, 30, or 31.

hours

An hour, specified as an integer from 0 to 23. Midnight is 0 and 11 PM is 23.

minutes

A minute, specified as an integer from 0 to 59. The first minute of an hour is 0 and the last minute of
an hour is 59.

seconds

A second, specified as an integer from 0 to 59. The first second of a minute is 0 and the last second of
a minute is 59.

millisecond

A millisecond, specified as an integer from 0 through 999. The first millisecond is 0 and the last
millisecond is 999.

About the Date Constructor
The Date constructor instantiates a new date object. If you include an argument, then it returns a date object that
includes the date according to the argument. To create a date object that Siebel CRM sets to the current date and time,
you can use the new operator as you would with any object.

Format A
// Format A

102

Siebel
eScript Language Reference

Chapter 5
Methods Reference

var dateVar = new Date;

// Format B
var dateVar = new Date(milliseconds);

//Format C
var dateVar = new Date(dateString);

// Format D
var dateVar = new Date(year, month, day);

//Format E
var dateVar = new Date(year, month, day, hours, minutes, seconds);

Arguments
The following table describes arguments for the date constructor.

Argument Description

dateString

A string that includes a date and optional time.

year

A year. If the year is between 1950 and 2050, then you can include only the final two digits. Otherwise,
 you must include four digits. For more information, see Caution About Using Two-Digit Dates.

month

For more information, see Values for Dates and Times.

day

For more information, see Values for Dates and Times.

hours

For more information, see Values for Dates and Times.

minutes

For more information, see Values for Dates and Times.

seconds

For more information, see Values for Dates and Times.

milliseconds

The number of milliseconds since January 1, 1970.

Usage for Format B
Format B returns a date and time that includes the number of milliseconds since midnight, January 1, 1970. Using
milliseconds is a standard way of including dates and times. It simplifies calculating the amount of time between one
date and another. It is recommended that you configure Siebel CRM to convert a date to milliseconds before it performs
a calculation on the date.

Usage for Format C
Format C accepts a string that includes a date and an optional time. The format for this string includes one or more of
the following fields, in any order:

month day, year hours:minutes:seconds

103

Siebel
eScript Language Reference

Chapter 5
Methods Reference

For example:

"October 13, 1995 13:13:15"

This string specifies a date of October 13, 1995 and a time of one thirteen and 15 seconds PM. In a 24 hour format, this
value is 13:13 hours and 15 seconds. The time specification is optional. If you include it, then the seconds specification is
optional.

Siebel CRM can pass the result of the BusComp.GetFieldValue(datetime field) method to the date constructor. The
GetFieldValue method always returns date fields using the following format: MM/DD/YYYY hh:mm:ss.

Siebel CRM interprets the time in a date string as local time, according to the time zone setting of the operating system.
If you require Siebel CRM to interpret the time as UTC time, then you can append GMT to the date string. For example:

"07/09/2004 14:22:00 GMT"

If a business component field includes a UTC time rather than a local time, then you can append GMT to the code to
configure Siebel CRM to pass is to the date constructor. For example:

var utctime = new Date(GetFieldValue("UTC Time") + " GMT");

Usage for Format D and E
Format for formats D and E are self-explanatory. You configure Siebel CRM to pass arguments to them as integers.

Example
The following example includes a date constructor:

var aDate = new Date(1802, 6, 23)

This example creates a date object that contains a date of July 23, 1802.

Convert Date and Time to String Method
The Convert Date and Time to String method returns a string that includes the date and time of a date object according
to the time zone of the computer that runs the script. It returns this date in the following format:

Day Mon dd yyyy hh:mm:ss TimeZone

If you use this code in Siebel eScript, then the code runs on the Siebel Server. The Siebel Server might or might not
reside in the same time zone where the user resides. If you use this code in JavaScript, then the code runs on the user
computer and uses the time zone of the user computer.

Format

 dateVar.toLocaleString()
dateVar.toString()

Example
The following example displays the local time from the computer clock, the UTC time, and the Greenwich mean time
(GMT):

var aDate = new Date();
var local = aDate.toLocaleString();

104

Siebel
eScript Language Reference

Chapter 5
Methods Reference

var universal = aDate.toUTCString();
var greenwich = aDate.toGMTString();
TheApplication().RaiseErrorText("Local date is " + local +
 "\nUTC date is " + universal +
 "\nGMT date is " + greenwich);

This example provides the following results:

Local date is Fri Aug 12 15:45:52 2005
UTC date is Fri Aug 12 2005 23:45:52 GMT
GMT date is Fri Aug 12 2005 23:45:52 GMT

Related Topics
For more information, see the following topics:

• Clib Get Date and Time Method

• Clib Convert Integer to GMT Method

• Clib Convert Integer to Local Time Method

Convert Date to Integer Method
The Convert Date to Integer method converts a date object to a system time format that is in the same format as the
format that the Clib Convert Time to Integer method returns. To create a date object from a variable in system time
format, see Get Day of Week Method.

Format
Date.toSystem()

Example
The following example converts a date object to a system format that methods of the Clib object can use:

var Sys Date = obj Date.toSystem();

Convert Date String to Date Object Method
The Convert Date String to Date Object method converts a date string to a date object. It returns a date object that
includes the date in the dateString argument.

Format
Date.parse(dateString)

The following table describes the arguments for the Convert Date String to Date Object method.

Argument Description

dateString

A string that uses the following format:

weekday, Month dd, yyyy hh:mm:ss

105

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

Usage
To call the Convert Date String to Date Object method, you use the date constructor rather than a variable. You must use
the following format:

Friday, October 31, 1998 15:30:00 -0800

where:

The last number in the string is the offset from Greenwich mean time.

The following items use this format:

• The dateVar.toGMTString method

• Email applications

• Internet applications

You can omit the day of the week, time zone, time specification, and seconds field. For example, consider the following
code:

var aDate = Date.parse(dateString);

This code is equivalent to the following code:

var aDate = new Date(dateString);

Example
The following example results in a value of 9098766000:

var aDate = Date.parse("Friday, October 31, 1998 15:30:00 -0220");
TheApplication().RaiseErrorText(aDate);

Convert Date to GMT String Method
The Convert Date to GMT String method converts a date object to a string according to Greenwich mean time. It returns
the date that Siebel CRM sets in dateVar. It returns this date as a string in the following format:

Day Mon dd hh:mm:ss yyyy GMT.

Format

 dateVar.toGMTString()

Example
The following example accepts a number of milliseconds as input and converts it to GMT time as the number of
milliseconds before or after the time on the computer clock:

function clickme_Click ()
{

106

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 var aDate = new Date;
 var milli = 200000;
 aDate.setUTCMilliseconds(milli);
 TheApplication().RaiseErrorText(aDate.toGMTString());
}

Related Topics
For more information, see the following topics:

• Clib Get Date and Time Method

• Convert UTC Date to Readable Date Method

Convert Integer Date to JavaScript Date Method
The Convert Integer Date to JavaScript Date method converts a time from the format that the Clib Convert Time to
Integer method returns to a standard JavaScript date object. To call the Convert Integer Date to JavaScript Date method,
you use the date constructor rather than a variable.

Format
Date.fromSystem(time)

The following table describes the arguments for the Convert Integer Date to JavaScript Date method.

Argument Description

time

A variable that holds a system date.

Example
The following example creates a date object from date information obtained through Clib:

var SysDate = Clib.time();
var ObjDate = Date.fromSystem(SysDate);

Related Topics
For more information, see the following topics:

• Clib Create Temporary File Name Method

• About the Date Constructor

• Convert Date to Integer Method

Get Day of Month Method
The Get Day of Month method returns the day of the month of a date object. For more information, see Values for Dates
and Times.

107

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 dateVar.getDate()

Example
The following example returns a value of 7, the day part of the date object:

function Button2_Click ()
{
 var MyBirthdayDay = new Date("1958", "11", "7");
 TheApplication().RaiseErrorText("My birthday is on day " +
 MyBirthdayDay.getDate() + ".");
}

Get Day of Week Method
The Get Day of Week method returns the day of the week of a date object as a number from 0 through 6. Sunday is 0
and Saturday is 6.

Format

 dateVar.getDay()

Example
To get the name of the corresponding weekday, you can create an array that contains the names of the days of the
week, and then compare the return value to the array index. The following example gets the day of the week when New
Year’s Day occurs:

function Button1_Click ()
{
 var weekDay = new Array("Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday");
 var NewYearsDay = new Date("2004", "1", "1");
 var theYear = NewYearsDay.getFullYear()
 var i = 0;
 while (i < NewYearsDay.getDay())
 {
 i++;
 var result = weekDay[i];
}
 TheApplication().RaiseErrorText("New Year’s Day falls on " + result + " in " +
theYear + ".");
}

This example displays the following text:

New Year’s Day falls on Thursday in 2004.

Get Full Year Method
The Get Full Year method returns the year of a date object as a number with four digits.

108

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 dateVar.getFullYear()

Example
For examples, see the following topics:

• Get Day of Week Method

• Set Milliseconds Method

• Set Time Method

Get Hours Method
The Get Hours method returns the hour of a date object. For more information, see Values for Dates and Times.

Format

 dateVar.getHours()

Example
The following example returns the number 12, which is the hours portion of the specified time:

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getHours());

Get Milliseconds Method
The Get Milliseconds method returns the milliseconds part of a date object as a number from 0 through 999. When
given a date in milliseconds, it returns the last three digits of the millisecond date. If this value is negative, then it returns
the result of the last three digits subtracted from 1000. For more information, see Values for Dates and Times.

Format

 dateVar.getMilliseconds()

Example
The following example gets the time from the system clock. The number of milliseconds past the beginning of the
second occurs at the end of the message:

var aDate = new Date;
 TheApplication().RaiseErrorText(aDate.toString() + " " +
 aDate.getMilliseconds());

109

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Get Minutes Method
The Get Minutes method returns the minutes portion of a date object. For more information, see Values for Dates and
Times.

Format

 dateVar.getMinutes()

Example
The following example returns the number 13, which is the minutes portion of the specified time:

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getMinutes());

Get Month Method
The Get Month method returns the month of a date object. For more information, see Values for Dates and Times.

Format

 dateVar.getMonth()

Example
The following example returns the number 10, with the result of adding 1 to the month portion of the specified date:

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getMonth() + 1);

Get Seconds Method
The Get Seconds method returns the seconds portion of a date object as a number from 0 through 59. For more
information, see Values for Dates and Times.

Format

 dateVar.getSeconds()

Example
The following code returns the number 14, which is the seconds portion of the specified date:

var aDate = new Date("October 31, 1986 12:13:14");
TheApplication().RaiseErrorText(aDate.getSeconds());

110

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Get Time Method
The Get Time method returns the number of milliseconds for a date object. It returns this value as an integer. This
integer includes the number of seconds between midnight on January 1, 1970, GMT, and the date and time that the date
object specifies.

Format

 dateVar.getTime()

Example
The following example returns a value of 245594000. To convert this value to a value that a person can interpret, you
can use the Convert Date and Time to String method or the Convert Date to GMT String Method method:

var aDate = new Date("January 3, 1970 12:13:14");
TheApplication().RaiseErrorText(aDate.getTime());

Related Topics
For more information, see the following topics:

• Convert Date and Time to String Method

• Convert Date to GMT String Method

• Clib Get Date and Time Method

• Clib Convert Integer to GMT Method

• Clib Convert Integer to Local Time Method

• Clib Convert Time to Integer Method

Get Time Zone Offset Method
The Get Time Zone Offset method returns the difference, in minutes, between UTC time and local time that it calculates
as the UTC time minus the local time. For example, Central European Time (CET) is UTC plus 60. On a computer that is
set to the CET time zone, the Get Time Zone Offset method returns a value of negative 60.

Format

 dateVar.getTimezoneOffset()

Example
The following example calculates the difference from UTC, in hours, of your location, according to the setting in the
Windows Control Panel:

var aDate = new Date();
var hourDifference = Math.round(aDate.getTimezoneOffset() / 60);
TheApplication().RaiseErrorText("Your time zone is " +
 hourDifference + " hours from GMT.");

111

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Get Year Method
The Get Year method returns the year portion of a date object as the offset from a base year of 1900. The offset is
positive for any year that occurs after 1900 and is negative for any year that occurs before 1900. For example, if the
value of dateVar is a date in the year 2004, then dateVar.getYear equals 104.

Format

 dateVar.getYear()

Set Date Method
The Set Date method sets the day of dateVar to the value you specify in the dayOfMonth argument.

Format

 dateVar.setDate(dayOfMonth)

The following table describes the arguments for the Set Date method.

Argument Description

dayOfMonth

The day of the month to set in dateVar as an integer from 1 through 31. For more information, see
Values for Dates and Times.

Setting the Day to a Value That Exceeds 31
You can add any number of days to a date. Siebel eScript automatically converts the number of days to the correct
month and year. For example, to add the number of days to a date, you can use the following script:

//script to add 7 days to a date
 var dtNextWeek = new Date();
 dtNextWeek.setDate(dtNextWeek.getDate()+7);

//script to add 76 days to a date
 var dtNextWeek = new Date();
 dtNextWeek.setDate(dtNextWeek.getDate()+76);

Set Full Year Method
The Set Full Year method sets the year of a date object to a four digit year. Optionally, you can use Siebel eScript to set
the month of the year argument to the month argument, and the date of the month argument to the date argument. You
must express the year in four digits.

112

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 dateVar.setFullYear(year[, month[, date]])

The following table describes the arguments for the Set Full Year method.

Argument Description

year

The year to set in dateVar as a four digit integer.

month

The month to set in dateVar as an integer from 0 through 11. For more information, see Values for
Dates and Times.

date

The date to set in dateVar as an integer from 1 through 31.

Set Hours Method
The Set Hours method sets the hour of a date object to an hour of a 24-hour clock. You can optionally set the UTC
minute, second, and millisecond. For more information, see Values for Dates and Times.

Format

 dateVar.setHours(hour[, minute[, second[, millisecond]]])

The following table describes the arguments for the Set Hours method.

Argument Description

hour

minute

second

millisecond

For more information, see Values for Dates and Times.

Set Milliseconds Method
The Set Milliseconds method sets the millisecond of a date object to a date expressed in milliseconds relative to the
system time. The value of dateVar becomes equivalent to the number of milliseconds from the time on the system
clock. You can use a positive number for a later time and a negative number for an earlier time.

113

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 dateVar.setMilliseconds(millisecond)

The following table describes the arguments for the Set Milliseconds method.

Argument Description

millisecond

For more information, see Values for Dates and Times.

Example
The following example accepts a number of milliseconds as input and converts it to the date relative to the date and
time in the computer clock:

function test2_Click ()
{
 var aDate = new Date;
 var milli = 7200000;
 aDate.setMilliseconds(milli);
 var aYear = aDate.getFullYear();
 var aMonth = aDate.getMonth() + 1;
 var aDay = aDate.getDate();
 var anHour = aDate.getHours();
 switch(anHour)
 {
 case 0:
 anHour = " 12 midnight.";
 break;
 case 12:
 anHour = " 12 noon.";
 break;
 default:
 if (anHour > 11)
 anHour = (anHour - 12) + " P.M.";
 else
 anHour = anHour + " A.M.";
 }
 TheApplication().RaiseErrorText("The specified date is " + aMonth + "/" + aDay +
"/" + aYear + " at " + anHour);
}

The number 7200000 milliseconds is two hours. If you run this code on November 22, 2005 between 3 P.M. and 4 P.M.,
then it provides the following result:

The specified date is 11/22/2005 at 5 P.M.

Set Minutes Method
The Set Minutes method sets the minute of dateVar to the value you specify in the minute argument. You can optionally
set the minute argument to a specific second and millisecond. For more information, see Values for Dates and Times.

Format

114

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 dateVar.setMinutes(minute[, second[, millisecond]])

The following table describes the arguments for the Set Minutes method.

Argument Description

minute

second

millisecond

For more information, see Values for Dates and Times.

Set Month Method
The Set Month method sets the month of dateVar to the value you specify in the month argument. You can optionally
set the day of month to the date argument. For more information, see Values for Dates and Times.

Format

 dateVar.setMonth(month[, date])

The following table describes the arguments for the Set Month method.

Argument Description

month

The month to set in dateVar as an integer from 0 through 11.

date

The date of the month argument to set in dateVar as an integer from 1 through 31.

Set Seconds Method
The Set Seconds method sets the second of dateVar to the value you specify in the second argument. You can optionally
use this method to set the second argument to the value that you specify in the millisecond argument.

Format

 dateVar.setSeconds(second[, millisecond])

The following table describes the arguments for the Set Seconds method.

115

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

second

millisecond

For more information, see Values for Dates and Times.

Set Time Method
The Set Time method sets dateVar to a date that Siebel CRM determines from the value you specify in the milliseconds
argument , calculated from January 1, 1970, GMT. To set a date earlier than this date, you can use a negative number.

Format

 dateVar.setTime(milliseconds)

For more information about the milliseconds argument, see Values for Dates and Times.

Example
The following example uses a number of milliseconds as input and converts it to a date and hour:

function dateBtn_Click ()
{
 var aDate = new Date;
 var milli = -4000;
 aDate.setTime(milli);
 var aYear = aDate.getFullYear();
 var aMonth = aDate.getMonth() + 1;
 var aDay = aDate.getDate();
 var anHour = aDate.getHours();
 switch(anHour)
 {
 case 0:
 anHour = " 12 midnight.";
 break;
 case 12:
 anHour = " 12 noon.";
 break;
 default:
 if (anHour > 11)
 anHour = (anHour - 12) + " P.M.";
 else
 anHour = anHour + " A.M.";
 }
 TheApplication().RaiseErrorText("The specified date is " +
 aMonth + "/" + aDay + "/" + aYear + " at " + anHour);
}

For example, if you enter a value of -345650, then this code provides the following result:

The specified date is 12/31/1969 at 3 P.M.

116

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Set Year Method
The Set Year method sets the year of a date object as a two digit or four digit year that you specify.

Format

 dateVar.setYear(year)

The following table describes the arguments for the Set Year method.

Argument Description

year

The year to set in dateVar. You can write code that uses one of the following values in the year
argument:

• A two digit integer for a year that occurs in the twentieth century

• A four digit integer for a year that does not occur in the twentieth century

UTC Methods
This topic describes UTC methods. It includes the following topics:

• Convert UTC Date to Readable Date Method

• Get UTC Date Method

• Get UTC Day of Month Method

• Get UTC Day of Week Method

• Get UTC Full Year Method

• Get UTC Hours Method

• Get UTC Milliseconds Method

• Get UTC Minutes Method

• Get UTC Month Method

• Get UTC Seconds Method

• Set UTC Date Method

• Set UTC Full Year Method

• Set UTC Hours Method

• Set UTC Milliseconds Method

• Set UTC Minutes Method

• Set UTC Month Method

• Set UTC Seconds Method

117

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Convert UTC Date to Readable Date Method
The Convert UTC Date to Readable Date returns a string that includes the UTC date of dateVar in a format that a human
can read. This string uses the following format:

Day Mon dd yyyy hh:mm:ss TimeZone

Format

 dateVar.toUTCString()

Example
For an example, see Convert Date and Time to String Method.

Related Topics
For more information, see the following topics:

• Clib Get Date and Time Method

• Convert Date to GMT String Method

• Convert Date and Time to String Method

Get UTC Date Method
The Get UTC Date method returns an integer that includes the number of milliseconds before or after midnight January
1, 1970 of the date and time that you specify. To call this method, you use the date constructor rather than a variable.
This method interprets the arguments as referring to GMT time. For more information, see Values for Dates and Times.

Format
Date.UTC(year, month, day, [, hours[, minutes[, seconds]]])

The following table describes the arguments for the Get UTC Date method.

Argument Description

year

An integer that contains the year. To represent a year that occurs in the twentieth century, you can use
two digits. For more information, see Caution About Using Two-Digit Dates.

month

day

hours

minutes

For more information, see Values for Dates and Times.

118

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

seconds

Example
The following example uses the Get UTC Date method:

function clickme_Click ()
{
 var aDate = new Date(Date.UTC(2005, 1, 22, 10, 11, 12));
 TheApplication().RaiseErrorText("The specified date is " +
 aDate.toUTCString());
}

This example provides the following result:

The specified date is Sat Jan 22 2005 10:11:12 GMT

Related Topics
For more information, see About the Date Constructor.

Get UTC Day of Month Method
The Get UTC Day of Month method returns the UTC day of the month of dateVar as a number from 1 to 31. For more
information, see Values for Dates and Times.

Format

 dateVar.getUTCDate()

Example
The following example displays 1, the hour portion of the date, followed by the GMT equivalent, which can include the
same value:

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local day of the month is " +
 aDate.getHours() +"\nGMT day of the month is " +
 aDate.getUTCHours());

Get UTC Day of Week Method
The Get UTC Day of Week method returns the UTC day of the week of a date object as a number from 0 through 6. For
more information, see Values for Dates and Times.

Format

119

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 dateVar.getUTCDay()

Example
The following example displays the day of the week for May 1, 2005 in local time and in UTC time:

function Button2_Click ()
{
 var localDay;

 var UTCDay;

 var MayDay = new Date("May 1, 2005 13:30:35");

 var weekDay = new Array("Sunday", "Monday", "Tuesday",

 "Wednesday", "Thursday", "Friday", "Saturday");
 for (var i = 0; i <= MayDay.getDay();i++)
 localDay = weekDay[i];

 var msgtext = "May 1, 2005, 1:30 PM falls on " + localDay;
 for (var j = 0; j <= MayDay.getUTCDay(); j++)

 UTCDay = weekDay[j];

 msgtext = msgtext + " locally, \nand on " + UTCDay + " GMT.";
 TheApplication().RaiseErrorText(msgtext);
}

Get UTC Full Year Method
The Get UTC Full Year year method returns the UTC year of a date object as a four digit number.

Format

 dateVar.getUTCFullYear()

Example
The following example displays 2005, the year portion of the date, followed by the GMT equivalent, which can include
the same value:

var aDate = new Date("January 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local year is " + aDate.getYear() +
 "\nGMT year is " + aDate.getUTCFullYear());

Get UTC Hours Method
The Get UTC Hours Method returns the UTC hour of a date object as a number from 0 through 23. For more
information, see Values for Dates and Times.

Format

120

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 dateVar.getUTCHours()

Example
The following example displays a value of 13, which is the hour portion of the date, followed by the GMT equivalent:

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local hour is “ + aDate.getHours() +
 "\nGMT hour is " + aDate.getUTCHours());

Get UTC Milliseconds Method
The Get UTC Milliseconds method returns the UTC millisecond of a date object as a number from 0 through 999. For
more information, see Values for Dates and Times.

Format

 dateVar.getUTCMilliseconds()

Get UTC Minutes Method
The Get UTC Minutes method returns the UTC minute of a date object as a number from 0 through 59. For more
information, see Values for Dates and Times.

Format

 dateVar.getUTCMinutes()

Example
The following example displays a value of 24, which is the minutes portion of the date, followed by the GMT equivalent:

var aDate = new Date("May 1, 2005 13:24:35");
TheApplication().RaiseErrorText("Local minutes: " + aDate.getMinutes() +
 "\nGMT minutes: " + aDate.getUTCMinutes());

Get UTC Month Method
The Get UTC Month method returns the UTC month of a date object as a number from 0 through 11. For more
information, see Values for Dates and Times.

Format

 dateVar.getUTCMonth()

121

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example
The following example displays a value of 5, which is the month portion of the date determined by adding 1 to the value
that the Get UTC Month method returns. This value is followed by the GMT equivalent which is determined by adding 1
to the value that the Get UTC Month method returns:

var aDate = new Date("May 1, 2005 13:24:35");
var locMo = aDate.getMonth() + 1;
var GMTMo = aDate.getUTCMonth() + 1
TheApplication().RaiseErrorText("Local month: " + locMo +"\nGMT month: "
 + GMTMo);

Get UTC Seconds Method
The Get UTC Seconds method returns the UTC second of a date object as number from 0 through 59. For more
information, see Values for Dates and Times.

Format

 dateVar.getUTCSeconds()

Set UTC Date Method
The Set UTC Date method sets the UTC day of a date object to a number from 1 through 31 according to the value you
set in the dayOfMonth argument.

Format

 dateVar.setUTCDate(dayOfMonth)

The following table describes the arguments for the Set UTC Date method.

Argument Description

dayOfMonth

The day of the UTC month to set in dateVar as an integer from 1 through 31. For more information, see
Values for Dates and Times.

Set UTC Full Year Method
The Set UTC Full Year method sets the UTC year of a date object to a four digit year that you specify in the year
argument.

Format

122

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 dateVar.setUTCFullYear(year[, month[, date]])

The following table describes the arguments for the Set UTC Full Year method.

Argument Description

year

The UTC year to set in dateVar as a four digit integer. You must express the year in four digits.

month

date

As an option, you can use the month argument and the date argument to set the month and date of
the year. For more information, see Values for Dates and Times.

Example
The following example does the following work:

• To assign the date of the 2000 summer solstice, it uses the Set UTC Full Year method

• To assign time to a date object, it uses the Set UTC Hours method

• Determines the local date and displays it

This example uses the following code:

function dateBtn_Click ()
{
 var Mstring = " A.M., Standard Time.";
 var solstice2K = new Date;
 solstice2K.setUTCFullYear(2000, 5, 21);
 solstice2K.setUTCHours(01, 48);
 var localDate = solstice2K.toLocaleString();
 var pos = localDate.indexOf("2000")
 var localDay = localDate.substring(0, pos - 10);
 var localHr = solstice2K.getHours();
 if (localHr > 11)
 {
 localHr = (localHr - 12);
 Mstring = " P.M., Standard Time.";
 }
 var localMin = solstice2K.getMinutes();
 var msg = "In your location, the solstice is on " + localDay +
 ", at " + localHr + ":" + localMin + Mstring;
 TheApplication().RaiseErrorText(msg);
}

This example produces the following result:

In your location, the solstice is on Tue Jun 20, at 6:48 P.M., Standard Time.

Set UTC Hours Method
The Set UTC Hours method sets the UTC hour of a date object to a specific hour of a 24-hour clock as a number from 0
through 23. As an option, you can also set the UTC minute, second, and millisecond.

123

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format

 dateVar.setUTCHours(hour[, minute[, second[, millisecond]]])

The following table describes the arguments for the Set UTC Hours method.

Argument Description

hour

minute

second

millisecond

For more information, see Values for Dates and Times.

Example
For an example, see Set UTC Full Year Method.

Set UTC Milliseconds Method
The Set UTC Milliseconds method sets the UTC millisecond of a date object to a date expressed in milliseconds relative
to the UTC equivalent of the system time. The value of dateVar becomes equivalent to the number of milliseconds from
the UTC equivalent of the time on the system clock. You can use a positive number for later times or a negative number
for earlier times.

Format

 dateVar.setUTCMilliseconds(millisecond)

The following table describes the arguments for the Set UTC Milliseconds method.

Argument Description

millisecond

The UTC millisecond to set in dateVar as a positive or negative integer. For more information, see
Values for Dates and Times.

Example
The following example gets a number of milliseconds as input and converts it to a UTC date and time:

function dateBtn_Click ()
{
 var aDate = new Date;
 var milli = 20000;

124

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 aDate.setUTCMilliseconds(milli);
 var aYear = aDate.getUTCFullYear();
 var aMonth = aDate.getMonth() + 1;
 var aDay = aDate.getUTCDate();
 var anHour = aDate.getUTCHours();
 var aMinute = aDate.getUTCMinutes();
 TheApplication().RaiseErrorText("The specified date is " +
 aMonth +
 "/" + aDay + "/" + aYear + " at " + anHour + ":" +
 aMinute + ", UTC time.");
}

If run at 5:36 P.M., PST (Pacific Standard Time), on August 22, 2005, then this example produced the following result:

The specified date is 8/23/2005 at 1:36 UTC time.

Set UTC Minutes Method
The Set UTC Minutes method sets the UTC minute of a date object to a minute that you specify in the minute argument.

Format

 dateVar.setUTCMinutes(minute[, second[, millisecond]])

The following table describes the arguments for the Set UTC Minutes method.

Argument Description

minute

second

millisecond

As an option, you can use the second argument to set the minute to a specific UTC second and the
millisecond argument to set the minute to a UTC millisecond. For more information, see Values for
Dates and Times.

Set UTC Month Method
The Set UTC Month method sets the UTC month of a date object to a specific month.

Format

 dateVar.setUTCMonth(month[, date])

The following table describes the arguments for the Set UTC Month method.

125

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

month

The UTC month to set in dateVar as an integer from 0 through 11. As an option, you can set this
argument to the value that the date argument contains. For more information, see Values for Dates and
Times.

date

The UTC date of the month argument to set in dateVar as an integer from 1 through 31.

Set UTC Seconds Method
The Set UTC Seconds method sets the UTC second of the minute of a date object to a second that you specify.

Format

 dateVar.setUTCSeconds(second[, millisecond])

The following table describes the arguments for the Set UTC Seconds method.

Argument Description

second

millisecond

As an option, you can set the second argument to a value that you specify in the millisecond argument.
For more information, see Values for Dates and Times.

Global Methods
This topic describes global methods. It includes the following topics:

• Overview of Global Methods

• Create COM Object Method

• Get Array Length Method

• Set Array Length Method

• Undefine Method

Overview of Global Methods
A global method is a method of the global object.

A global variable is a member of a global object. To reference a global property, you do not need to use an object name.
For example, to reference the Is NaN method that tests to determine if a value is equal to the special value NaN, you can
use the format that this topic describes. For more information, see Is NaN Method.

126

Siebel
eScript Language Reference

Chapter 5
Methods Reference

The global methods that this book describes are unique to the Siebel eScript implementation of JavaScript. These
methods are not part of the ECMAScript standard. Avoid using them in a script that you might use with a JavaScript
interpreter that does not support them.

You can use format A or format B to call a global method.

Format A

 globalMethod(value);

Format A treats the globalMethod argument as a function. You cannot use format A in a function that includes a local
variable that has the same name as a global variable. To reference the global variable in this situation, you must use the
global keyword.

Format B
global.globalMethod(value);

Format B treats the globalMethod argument as a method of the global object.

Arguments
The following table describes the arguments of a global object.

Argument Description

globalMethod

The method that the global object applies.

value

The value that the global object applies to the method that you specify in the globalMethod argument.

Related Topics
For more information, see the following topics:

• NaN Numbers

• Conversion Methods

Create COM Object Method
The Create COM Object method instantiates a COM object. It returns a successful COM object or an undefined object.

Note: To allow your scripts to access the file system and run commands such as COMCreateObject, you must
explicitly allow access. This is accomplished by adding these System Preferences. This does not mean you are not
allowing the script to run. It means any script that calls to the file system to run commands will cause a runtime error.

127

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Runtime Scripts System Access (default is false)
A Runtime Script is the script that you write in the Administration - Business Service Screen. Since these Business
Service Methods are not compiled, they are less secure. Not all client-side Business Services need to access the file
system to run commands, but if yours do, you must explicitly allow them access to the file system by adding this System
Preference and setting its value to true.

Compiled Scripts System Access (default is true)
The Business Service Script that you write in Web Tools or Siebel Tools is compiled. By default these methods are
allowed to access the file system and run commands such as COMCreateObject. If you want to disallow any compiled
Business Service Script from accessing the file system and running commands on it you must add this System
Preference and set its value to false.

Format
COMCreateObject(objectName)

The following table describes the arguments for the Create COM Object method.

Argument Description

objectName

The name of the object that this method creates.

Usage
You can configure Siebel CRM to pass any type of variable to the COM object that it calls. You must make sure the
variable type is valid for the COM object. The following variable types are valid:

• String

• Number

• Object pointer

Siebel CRM can run the Create COM Object method only in server script. It cannot run this method in browser script.

A DLL that the Create COM Object method instantiates must be thread-safe.

Using the Dispatch Identifier to Call a COM Method
Siebel CRM calls the method of a COM object in Siebel eScript in the same way that it calls this method in Siebel VB. In
this context, a COM object is an object that the Create COM Object method instantiates.

To use the DISPID (Dispatch Identifier) of a COM method to call that COM method, you make an IDispatch::Invoke
call in the COM technology. To identify methods, properties, and arguments, you use the Dispatch Identifier in the
IDispatch::Invoke call.

You can write code that uses only the following arguments:

• BSTR (basic string). An eScript string.

• VARIANT. A universal data type.

128

Siebel
eScript Language Reference

Chapter 5
Methods Reference

• SAFEARRAY. Similar to a typical C array, but also includes information about the number of elements in the
array.

You cannot use Siebel eScript to call the method of a COM object that includes the LPCSTR argument for the string
argument of that method. In this situation, you must use the BSTR argument.

Example
The following example instantiates Microsoft Excel as a COM object and makes it visible:

var ExcelApp = COMCreateObject("Excel.Application");
// Make Excel visible through the Application object.

ExcelApp.Visible = true;

ExcelApp.WorkBooks.Add();
// Place some text in the first cell of the sheet

ExcelApp.ActiveSheet.Cells(1,1).Value = "Column A, Row 1";
// Save the sheet

var fileName = "C:\\demo.xls";

ExcelApp.ActiveWorkbook.SaveAs (fileName);
// Close Excel with the Quit method on the Application object

ExcelApp.Application.Quit();
// Clear the object from memory

ExcelApp = null;
return (CancelOperation);

An application, such as Microsoft Excel, might change from version to version, so it might be necessary for you to
modify your code to address these modifications. This example code was tested on Excel 2003.

Get Array Length Method
The Get Array Length method returns the length of a dynamically created array. This method is unique to Siebel eScript.
For more information, see Make Sure the JavaScript Interpreter Can Run a Function.

Note the following:

• You can write code that uses the Get Array Length method only with a dynamically created array. You cannot
use it with an array that is not created with the Array constructor and the new operator.

• The length property is not available for a dynamically created array. A dynamically created array must use the
Get Array Length method or the Set Array Length method when working with an array length.

• If you work with an array that the array constructor and the new operator creates, then you must use the length
property of the array.

For more information, see Set Array Length Method.

Format
getArrayLength(array[, minIndex])

The following table describes the arguments for the Get Array Length method.

129

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

array

The name of the array whose length this method must get.

minIndex

The index of the lowest element where this method starts counting.

The first element of an array is typically at index 0. If you specify the minIndex argument, then Siebel
CRM uses it to set to the minimum index, which is zero or less.

Related Topics
For more information, see the following topics:

• About Array Functions

• Get Largest Array Index Method

• Set Array Length Method

Set Array Length Method
The Set Array Length method sets the first index and length of an array. It sets the length of the array argument to a
range that the minIndex argument and the length argument define.

If you specify all three arguments for this method, then the following occurs:

• The minIndex argument is the minimum index of the resized array.

• The length argument is the length of the resized array.

• If an element resides outside the length of the resized array, then that element becomes undefined.

If you only specify two arguments, then this method uses the second argument as the length argument and sets the
minimum index of the resized array to 0 by default.

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

Format
setArrayLength(array[length])

The following table describes the arguments for the Set Array Length method.

Argument Description

array

The name of the array whose length this method must set.

length

The length of the array.

130

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Use Caution If You Define an Array That Includes a Negative Index
Use caution if you defined an array that includes a negative index.

CAUTION: ST eScript code does not support a negative array index. If you define an array that includes a negative
index, and if you use T eScript code to define this array in a Siebel application prior to release 7.8, then you must
redefine the index range for this array and any references according to index values. As an alternative to using the Set
Array Length method to set the array length, you can use the length property of the array object.

Related Topics
For more information, see the following topics

• Get Array Length Method

• Get Largest Array Index Method

Undefine Method
The Undefine method undefines a variable, object property, or value. Assume Siebel CRM defines a value, and then a
defined method returns true for this value. If you use the Undefine method with this value, then the Is Defined method
returns false. Undefining a value is not the same as setting a value to null.

The following example sets the n variable to 2, and then undefines the n variable:

var n = 2;
undefine(n);

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

Format
undefine(value)

The following table describes the arguments for the Undefine method.

Argument Description

value

The variable or object property that this method must undefine.

Example
The following example creates an object named o, and then defines an o.one property. It then undefines this property
but the o object remains defined:

var o = new Object;
o.one = 1;
undefine(o.one);

131

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Conversion Methods
This topic describes conversion methods. It includes the following topics:

• Overview of Conversion Methods

• Convert String to Floating-Point Number Method

• Convert String to Integer Method

• Convert Number to Exponential Notation Method

• Convert Number to Fixed Decimal Method

• Convert Number to Precision Method

• Convert Special Characters to URL Method

• Convert Unicode to ASCII Method

• Convert Value to Boolean Method

• Convert Value to Buffer Method

• Convert Value to Bytes Method

• Convert Value to Integer Method

• Convert Value to Integer 32 Method

• Convert Value to Unsigned Integer 16 Method

• Convert Value to Unsigned Integer 32 Method

• Convert Value to Number Method

• Convert Value to Object Method

• Convert Value to String Method

• Evaluate Expression Method

Overview of Conversion Methods
You might encounter a situation where you must specify or control the types of variables or data. Some conversion
methods include one argument that is a variable or data item that Siebel eScript converts to the data type that you
specify in the name of the method. For example, the following code creates two variables:

var aString = ToString(123);
var aNumber = ToNumber("123");

In this example, Siebel eScript does the following work:

• To create the aString variable, it converts the number 123 to a string.

• To create the aNumber variable, it converts the string value "123" to a number.

It already created the aString variable with a value of "123", so the second code line can use the following format:

var aNumber = ToNumber(aString);

132

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Convert String to Floating-Point Number Method
The Convert String to Floating-Point Number method converts an alphanumeric string to a floating-point decimal
number. It returns a floating-point decimal number. If it cannot convert to a number the value that the string argument
contains, then it returns the following value:

NaN

For more information, see NaN Numbers.

Format
parseFloat(string)

The following table describes the arguments for the Convert String to Floating-Point Number method.

Argument Description

string

The string that this method must convert.

How the Convert String to Floating-Point Number Method Handles the String
The first character that is not a white space character must be a digit or a minus sign (-). For more information, see Use
White Space to Improve Readability.

The Convert String to Floating-Point Number method does the following:

• Ignores white space characters that occur at the beginning of the string

• Treats the first period (.) in the string as a decimal point

• Treats any digits that follow the first period as the fractional part of the number

• Stops reading the string at the first nonnumeric character that occurs after the decimal point

• Ignores the first nonnumeric character it encounters

• Ignores all characters that occur after the first nonnumeric character

• Converts the result into a number

Example
The following example returns a result of negative 234.37:

var num = parseFloat(" -234.37 profit");

Convert String to Integer Method
The Convert String to Integer method converts an alphanumeric string to an integer. It returns an integer. If it cannot
convert the value that the string argument contains to a number, then it returns the following value:

133

Siebel
eScript Language Reference

Chapter 5
Methods Reference

NaN

For more information, see NaN Numbers.

Format
parseInt(string [,radix])

The following table describes the arguments for the Convert String to Integer method.

Argument Description

string

The string that this method converts.

radix

The base of the number system that this method uses in the return value. For example, if you set the
radix argument to 8, then it returns the value as an octal number.

Usage
If you do not specify the radix argument or if the value that the radix argument contains is zero, then the Convert String
to Integer method uses a value of 10 for the radix unless the value that the string argument contains begins with one of
the following values:

• The character pairs 0x or 0X. It uses a value of 16 for the radix.

• A zero and a valid octal digit. It uses a value of 8 for the radix. Any number zero through seven is a valid octal
digit.

CAUTION: If the passed string includes a leading zero, such as 05, then the Convert String to Integer method
interprets the number as on octal. An argument that it interprets as an invalid octal creates a return value of zero. The
values 08 and 09 are examples of invalid octal values.

This method handles the string in the same way as the Convert String to Floating-Point Number method. For more
information, see Convert String to Floating-Point Number Method.

Example
The following example returns a result of negative 234:

var num = parseInt(" -234.37 profit");

Convert Number to Exponential Notation Method
The Convert Number to Exponential Notation method converts a number to exponential notation. It returns the number
that the numberVar variable contains, expressed in exponential notation to the number of decimal places that you
specify in the len argument.

Format
numberVar.toExponential(len)

134

Siebel
eScript Language Reference

Chapter 5
Methods Reference

The following table describes the arguments for the Convert Number to Exponential Notation method.

Argument Description

len

The number of decimal places in the significant digits portion of the number.

How the Convert Number to Exponential Notation Method Handles the Len
Argument
The Convert Number to Exponential Notation method does one of the following depending on one of the following
values that the len argument contains:

• Less than the number of significant decimal places that the numberVar variable contains. It does one of the
following:

◦ If the number is five or greater, then it rounds the result up.

◦ If the number is less than five, then it rounds the result down.

• Greater than the number of significant decimal places that the numberVar variable contains. It pads the extra
places with zeroes.

• Negative. It creates an error.

Using a Multivalue List to Avoid Unexpected Rounding
If you must use a value that exceeds 253, then it is recommended that you use a calculated field that uses the sum of a
multivalue list instead of using Siebel eScript. If Siebel CRM performs an operation that results in a value that exceeds
253, then it rounds this value to 253.

The largest number that the Siebel eScript engine can hold is 253. This number is equivalent to the following values:

• 9.00719925 x 1015, with rounding

• 9,007,199,254,740,992, without rounding

Example
The following example uses the Convert Number to Exponential Notation method:

var num = 1234.567
var num3 = num.toExponential(3) //returns 1.235e+3
var num2 = num.toExponential(0) //returns 1e+3
var num9 = num.toExponential(9) //returns 1.234567000e+3
var smallnum = 0.0001234
var smallnum2 = smallnum.toExponential(2) //returns 1.2e-4
var smallnumerr = smallnum.toExponential(-1) //throws error

Convert Number to Fixed Decimal Method
The Convert Number to Fixed Decimal method converts a number according to the decimal places that you specify. It
returns the number that it converts. It allows you to express a number that includes a number of decimal places that you
specify. For example, to express the results of a currency calculation that includes two decimal places.

135

Siebel
eScript Language Reference

Chapter 5
Methods Reference

This method does the same work as the Convert Number to Exponential Notation method. For more information, see
Convert Number to Exponential Notation Method.

This method uses the same argument as the Convert Number to Exponential Notation method. For more information,
see Convert Number to Exponential Notation Method.

Format
numberVar.toFixed(len)

Example
The following example uses the Convert Number to Fixed Decimal method:

var profits=2487.8235
var profits3 = profits.toFixed(3) //returns 2487.824
var profits2 = profits.toFixed(2) //returns 2487.82
var profits7 = profits.toFixed(7) //returns 2487.8235000
var profits0 = profits.toFixed(0) //returns 2488
var profitserr = profits.toFixed(-1) //throws error

Convert Number to Precision Method
The Convert Number to Precision method converts a number to a number that includes a number of significant digits.
It returns the converted number contained in the numberVar variable, expressed to the number of significant digits that
you specify in the len argument.

This method allows you to express a number at a desired length. For example, the result of a scientific calculation might
only require accuracy to a specific number of significant digits.

This method does one of the following depending on if the value that the len argument contains is:

• Less than the number of significant decimal places that exist in the value that the numberVar variable contains.
It does one of the following:

◦ If the number is five or greater, then it rounds the result up.

◦ If the number is less than five, then it rounds the result down.

• Greater than the number of significant decimal places that exist in the value that the numberVar variable
contains. It pads the extra digits with zeroes and adds a decimal point, if necessary.

This method uses the same argument as the Convert Number to Exponential Notation method. For more information,
see Convert Number to Exponential Notation Method.

Format
numberVar.toPrecision(len)

Example
The following example uses the Convert Number to Precision method:

var anumber = 123.45
var a6 = anumber.toPrecision(6) //returns 123.450
var a4 = anumber.toPrecision(4) //returns 123.5
var a2 = anumber.toPrecision(2) //returns 1.2e+2

136

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Convert Special Characters to URL Method
The Convert Special Characters to URL method replaces special characters that a string contains with character
combinations so that Siebel CRM can use the string with a URL. It returns a modified string.

Format
escape(string)

The following table describes the arguments for the Convert Special Characters to URL method.

Argument Description

string

A string that contains the characters that this method replaces.

Usage
The character combinations include Unicode values. For a character in the standard ASCII set, this is the hexadecimal
ASCII code of the character preceded by a percentage symbol (%). The standard ASCII set includes decimal values 0
through 127.

The following items remain in the string:

• Uppercase letters

• Lowercase letters

• Numbers

• Ampersand (@)

• Asterisk (*)

• Plus sign (+)

• Underscore (_)

• Period (.)

• Forward slash (/)

This method replaces other characters with their respective Unicode sequence.

Example 1
The following example encodes a string. It does not replace the ampersand (@) or asterisk (*) characters:

var str = escape("@#$*96!");

This example provides the following result:

"@%23%24*96%21"

Example 2
The following example encodes a string:

137

Siebel
eScript Language Reference

Chapter 5
Methods Reference

var encodeStr = escape("@#$*%!");

This example provides the following result:

"@%23%24*%25%21"

Convert Unicode to ASCII Method
The Convert Unicode to ASCII method converts Unicode character combinations that exist in a string to equivalent ASCII
characters. It returns the revised string.

Format
unescape(string)

The following table describes the arguments for the Convert Unicode to ASCII method.

Argument Description

string

A string literal or string variable that contains the Unicode character combinations that this method
converts.

Example
The following example displays the string in the argument. The Convert Unicode to ASCII method converts the Unicode
character combinations to printable characters. The %20 is the Unicode representation of the space character. The
following example normally displays on a single line because a new line cannot break a string:

TheApplication().RaiseErrorText(unescape("http://obscushop.com/texis/
%20%20showcat.html?catid=%232029

rg=r133"));

This example produces the following result:

http://obscushop.com/texis/ showcat.html?catid=#2029

rg=r133

Convert Value to Boolean Method
The Convert Value to Boolean method converts a value to the Boolean data type. It returns a value that depends on the
data type of the value that the value argument contains. This method is unique to Siebel eScript. For more information,
see Make Sure the JavaScript Interpreter Can Run a Function.

Format
ToBoolean(value)

The following table describes the arguments for the Convert Value to Boolean method.

138

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

value

The value that this method converts to a Boolean value.

Values That the Convert Value to Boolean Method Returns
The following table describes the values that the Convert Value to Boolean method returns.

Data Type Return Value

Boolean

Value that the value argument contains.

buffer

This method returns one of the following values depending on if the buffer is empty:

• Buffer is empty. It returns false.

• Buffer is not empty. It returns true.

null

False

number

This method returns one of the following values:

• If the value that the value argument contains is one of the following, then it returns false:

• 0

• +0

• -0

• NaN

• If the value that the value argument contains is not 0, +0, -0, or NaN, then it returns false.

For more information, see NaN Numbers.

object

True

string

This method returns one of the following values depending on if the string is empty:

• The string is empty. It returns false.

• The string is not empty. It returns true.

undefined

False

Convert Value to Buffer Method
The Convert Value to Buffer method converts the value that the value argument contains to a sequence of ASCII bytes.
It then places this value in a buffer. These bytes depend on the data type of the value that the value argument contains.

139

Siebel
eScript Language Reference

Chapter 5
Methods Reference

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

Format
ToBuffer(value)

The following table describes the arguments for the Convert Value to Buffer method.

Argument Description

value

The value that this method saves to a buffer.

Values That the Convert Value to Buffer Method Returns
The following table describes the values that the Convert Value to Buffer method returns.

Data Type Return Value

Boolean

This method returns one of the following values:

• If the value that the value argument contains is false, then it returns the following value:

false

• If the value that the value argument contains is not false, then it returns the following value:

true

null

This returns the following string:

null

number

This method returns a value depending on which of the following values the value argument contains:

• NaN. It returns the following value:

NaN

• +0 or -0. It returns the following value:

0

• POSITIVE_INFINITY or NEGATIVE_INFINITY. It returns the following value:

Infinity

• A number. It returns a string that includes this number.

For more information on the number object, see NaN Numbers.

object

This method returns the following string:

[object Object]

string This method returns the text of the string.

140

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Data Type Return Value

undefined

This method returns the following string:

undefined

Convert Value to Bytes Method
The Convert Value to Bytes method converts the value that the value argument contains to bytes, and then places
this value in a buffer. This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript
Interpreter Can Run a Function.

This method does not convert a Unicode value to a corresponding ASCII value. For example, it stores the Unicode string
Hit as the following value:

\OH\Oi\Ot

This value is the following hexadecimal sequence:

00 48 00 69 00 74

Format
ToBytes(value)

The following table describes the arguments for the Convert Value to Bytes method.

Argument Description

value

The value that this method converts to bytes, and then places in a buffer.

Convert Value to Integer Method
The Convert Value to Integer method converts the value that the value argument contains to an integer in the range of
negative 2 15 through 2 15 minus 1. The equivalent nonexponential range is negative 32,768 through 32,767. It returns a
value depending on which of the following values the value argument contains:

• NaN. It returns the following value:

+0

• +0. It returns the following value:

-0

• POSITIVE_INFINITY or NEGATIVE_INFINITY. It returns the result.

• A number. It rounds the integer part of this number toward zero, and then returns the integer.

141

Siebel
eScript Language Reference

Chapter 5
Methods Reference

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

This method uses the same arguments as the Convert Value to Integer 32 method. For more information, see Convert
Value to Integer 32 Method.

Format
ToInteger(value)

Usage
To avoid an error, you must first pass the value that the value argument contains to the Is NaN method or to the Convert
Value to Number method. To use the Convert Value to Number method, you can include a statement that uses the
following format:

var x;

x = toNumber(value);

(if x == 'NaN')
.
. [error -handling statements];
.
else
 ToInteger(value);

The Convert Value to Integer method truncates rather than rounds the value it receives. It rounds numbers toward 0. For
example, it rounds negative 12.88 to negative 12. It rounds 12.88 to 12.

Related Topics
For more information, see the following topics:

• NaN Numbers

• Round Number Method

Convert Value to Integer 32 Method
The Convert Value to Integer 32 method converts the value that the value argument contains to an integer in the
range of negative 2 31 through 2 31 minus 1. The equivalent nonexponential range is negative 2,147,483,648 through
2,147,483,647. It returns a value depending on which of the following values the value argument contains:

• NaN. It returns the following value:

NaN

• +0 or -0. It returns the following value:

0

• POSITIVE_INFINITY or NEGATIVE_INFINITY. It returns the following value:

Infinity

• A number. It rounds the integer part of this number toward zero, and then returns the integer.

142

Siebel
eScript Language Reference

Chapter 5
Methods Reference

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function and NaN Numbers.

Format
ToInt32(value)

The following table describes the arguments for the Convert Value to Integer 32 method.

Argument Description

value

The value that this method converts.

Usage
To avoid an error, you must first pass the value that the value argument contains to the Is NaN method or to the Convert
Value to Number method. To use the Is NaN method, you include a statement that uses the following format:

if (isNaN(value))
.
. [error-handling statements];
.
else
 ToInt32(value);

The Convert Value to Integer 32 method truncates rather than rounds the value it receives, so it rounds numbers toward
0. For example, it rounds negative 12.88 to negative 12. It rounds 12.88 to 12.

Convert Value to Unsigned Integer 16 Method
The Convert Value to Unsigned Integer 16 method converts the value that the value argument contains to an integer in
the range of 0 through 2

16

minus 1. The nonexponential value is 0 through 65,535. It returns a value depending on which of the following values
the value argument contains:

• NaN. It returns the following value:
+0

• +0. It returns the following value:
0

• POSITIVE_INFINITY. It returns the following value:
Infinity

• Any other value. It returns the absolute value of the integer part of the number, rounded toward 0. The
absolute value does not include a positive sign or a negative sign.

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

143

Siebel
eScript Language Reference

Chapter 5
Methods Reference

This method uses the same argument as the Convert Value to Integer 32 method. For more information, see Convert
Value to Integer 32 Method.

Format
ToUint16(value)

Usage
To avoid an error, you must first pass the value argument to the Is NaN method or to the Convert Value to Number
method. To use the Convert Value to Number method, you can include a statement that uses the following format:

var x;i
x = toNumber(value);
(if x == 'NaN')
.
. [error -handling statements];
.
else
 ToUint16(value);

The Convert Value to Unsigned Integer 16 method truncates rather than rounds the value it receives, so it rounds
numbers toward 0. For example, it rounds 12.88 to 12.

Related Topics
For more information, see the following topics:

• NaN Numbers

• Round Number Method

Convert Value to Unsigned Integer 32 Method
The Convert Value to Unsigned Integer 32 method converts the value that the value argument contains to an integer in
the range of 0 through 2

32

minus 1. The nonexponential value is 0 through 4,294,967,296. It returns the same value as the Convert Value to
Unsigned Integer 16 method. For more information, see Convert Value to Unsigned Integer 16 Method.

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

This method uses the same argument as the Convert Value to Integer 32 method. For more information, see Convert
Value to Integer 32 Method.

Format
ToUint32(value)

Usage
To avoid an error, you must first pass the value argument to the Is NaN method or to the Convert Value to Number
method. To use the Convert Value to Number method, you can include a statement that uses the following format:

144

Siebel
eScript Language Reference

Chapter 5
Methods Reference

if (isNaN(value))
.
. [error-handling statements];
.
else
 ToUint32(value);

The Convert Value to Unsigned Integer 32 method truncates rather than rounds the value it receives, so it rounds
numbers toward 0. For example, it rounds 12.88 to 12.

Related Topics
For more information, see the following topics:

• NaN Numbers

• Round Number Method

Convert Value to Number Method
The Convert Value to Number method converts the value that the value argument contains to a number. It returns a
value that depends on the original data type of the value that the value argument contains. Convert Value to Bytes
Method describes these data types.

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

This method uses the same argument as the Convert Value to Integer 32 method. For more information, see Convert
Value to Integer 32 Method.

Format
ToNumber(value)

Values That the Convert Value to Number Method Returns
The following table describes values that the Convert Value to Number method returns.

Data Type Return Value

Boolean

This method returns one of the following values, depending on if the value that the value argument
contains is:

• False. It returns the following value:

+0

• True. It returns the following value:

1

buffer

string

This method returns one of the following values, depending on if the conversion is:

• Successful. It returns the value that the value argument contains.

• Not successful. It returns the following value:

145

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Data Type Return Value

NaN

For more information on the number object, see NaN Numbers.

null

0

number

This method returns the value that the value argument contains.

object

undefined

NaN

Related Topics
For more information, see Round Number Method.

Convert Value to Object Method
The Convert Value to Object method converts the value that the value argument contains to an object. It returns a value
that depends on the data type of the value that the value argument contains.

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

This method uses the same argument as the Convert Value to Integer 32 method. For more information, see Convert
Value to Integer 32 Method.

Format
ToObject(value)

Data Types of the Value That the Convert Value to Object Method Returns
The following table describes data types of the value that the Convert Value to Object method returns.

Data Type Returns

Boolean

A new Boolean object that includes the value that the value argument contains.

number

A new number object that includes the value that the value argument contains.

string

A new string object that includes the value that the value argument contains.

object

The value that the value argument contains.

146

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Data Type Returns

null

undefined

A run-time error.

Convert Value to String Method
The Convert Value to String method converts the value that the value argument contains to a string. It returns a value
in the format of a Unicode string. The contents of this string depends on the data type of the value that the value
argument contains.

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

This method uses the same argument as the Convert Value to Integer 32 method. For more information, see Convert
Value to Integer 32 Method.

Format
ToString(value)

Values That the Convert Value to String Method Returns
The following table describes values that the Convert Value to String method returns.

Data Type Return Values

Boolean

This method returns one of the following values, depending on if the value that the value argument
contains is:

• False. It returns the following value:

false

• Not false. It returns the following value:

true

null

This method returns the following string:

null

number

This method returns a value depending on which of the following values the value argument contains:

• NaN. It returns the following value:

NaN

• +0 or -0. It returns the following value:

0

147

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Data Type Return Values

• Infinity. It returns the following value:

Infinity

A number. It returns a string that includes this number.

For more information on the number object, see NaN Numbers.

object

This method returns the following string:

[object Object]

string

This method returns the value that the value argument contains.

undefined

This method returns the following string:

undefined

Example
For an example, see Evaluate Expression Method.

Evaluate Expression Method
The Evaluate Expression method evaluates the value that the expression argument contains. It returns the value that it
evaluates in the expression argument. If the expression argument is a string, then this method attempts to interpret the
string as if it is JavaScript code. If this method:

• Interprets the string. It returns the value in the expression argument.

• Cannot interpret the string. It returns the following value:

undefined

If the expression is not a string, then this method returns the value that exists in the expression argument. For example,
calling eval(5) returns the value 5.

Format
eval(expression)

The following table describes the arguments for the Evaluate Expression method.

Argument Description

expression

The expression that this method must evaluate.

148

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example
The following example describes the result of using the Evaluate Expression method on different types of expressions.
This method does the following work:

• Interprets the string in the test[0] variable because it can interpret this string as a JavaScript statement.

• Does not interpret the string in the test[1] variable or the test[3] variable because it cannot interpret either
string as a JavaScript statement. It returns a value of undefined for each of these variables.

This example includes the following code:

function clickme_Click ()
{
 var msgtext = "";
 var a = 7;
 var b = 9;
 var test = new Array(4);
 var test[0] = "a * b";
 var test[1] = ToString(a * b);
 var test[2] = a + b;
 var test[3] = "Strings are undefined.";
 var test[4] = test[1] + test[2];
 for (var i = 0; i < 5; i++)
 msgtext = msgtext + i + ": " + eval(test[i]) + "\n";
 TheApplication().RaiseErrorText(msgtext);

Running this code produces the following result:

0: 63
1: undefined
2: 16
3: undefined
4: undefined

Data Querying Methods
This topic describes data querying methods and objects that contain information. It includes the following topics:

• Is Defined Method

• Is Finite Method

• Is NaN Method

• Exception Object

• Function Object

Is Defined Method
The Is Defined method tests if a variable or object property is defined. It returns one of the following values:

• The item is defined. It returns the following value:

True

• The item is not defined. It returns the following value:

149

Siebel
eScript Language Reference

Chapter 5
Methods Reference

False

This method is unique to Siebel eScript. For more information, see Make Sure the JavaScript Interpreter Can Run a
Function.

Format
defined(var)

The following table describes the arguments for the Is Defined method.

Argument Description

var

The variable or object property you must query.

Example
The following example includes two uses of the Is Defined method. The first use examines a variable named t. The
second use examines an object named t.t:

var t = 1;

 if (defined(t))

 TheApplication().Trace("t is defined");

 else

 TheApplication().Trace("t is not defined");
 if (!defined(t.t))

 TheApplication().Trace("t.t is not defined"):

 else

 TheApplication().Trace("t.t is defined");

Related Topics
For more information, see Undefine Method.

Is Finite Method
The Is Finite method determines if the value that the value argument contains is a finite number. It returns one of the
following values:

• It can convert the value to a number. It returns the following value:
True

• The value evaluates to any of the following items. It returns False:

◦ NaN

◦ POSITIVE_INFINITY

150

Siebel
eScript Language Reference

Chapter 5
Methods Reference

◦ NEGATIVE_INFINITY

For more information, see NaN Numbers.

This method uses the same argument as the Is NaN method. For more information, see Is NaN Method.

Format
isFinite(value)

Is NaN Method
The Is NaN method determines if the value that the value argument contains is a number. It returns one of the following
values:

• The value is a number. It returns the following value:

True

• The value is not a number. It returns the following value:

False

If the value argument references an object, then the Is NaN method always returns true because an object reference is
not a number. For more information on the number object, see NaN Numbers.

Format
isNaN(value)

The following table describes the arguments for the Is NaN method.

Argument Description

value

The variable or expression that this method evaluates.

Example
The following examples use the Is NaN method:

IsNaN("123abc") //returns true
IsNaN("123") //returns false
IsNaN("999888777123") //returns false
IsNaN("The answer is 42") //returns true

Related Topics
For more information, see Is Finite Method.

151

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Exception Object
If an operation fails, then the Siebel eScript engine creates an exception in the exception object.

The following table describes the arguments for the exception object.

Argument Description

errCode

Contains the error number.

errText

Contains a textual description of the error.

Example
The following example includes an exception object:

try
}
 var oBO = TheApplication().GetService(“Incorrect name”);
}
catch (e)
}
 var sText = e.errText;
 var nCode = e.errCode;
}

Function Object
A Function object contains the definition of a function that you define in Siebel eScript. It returns the code that you
configure this function to return. For more information, see Return Statement of a Function Object.

Format A
function funcName([arg1 [, ..., argn]])
{
 body
}

In format A you declare a function, and then call it in your code. It is the standard way to define a function.

Format B
var funcName = new Function([arg1 [, ..., argn,]] body);

In format B you explicitly create a function. If you use format B to create a function object, then Siebel CRM evaluates
it each time it uses this function. This configuration is not as efficient as format A because Siebel CRM compiles a
declared function only one time instead of evaluating it every time it uses the function.

152

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Arguments
The following table describes the arguments for a function object.

Argument Description

funcName

The name of the function.

arg1 [, …, argn]

An optional list of arguments that the function accepts.

body

The lines of code that the function runs.

Example 1
The following example uses format A to declare a function named AddTwoNumbers. It uses AddTwoNumbers as the
name of the function:

function AddTwoNumbers (a, b)
{
 return (a + b);
}

Example 2
The following example uses format B to create a function named AddTwoNumbers. It uses the Function constructor
to create a variable named AddTwoNumbers. The value of this variable is a reference to the function that the Function
constructor creates:

AddTwoNumbers = new Function ("a", "b", "return (a + b)");

Length Property of a Function Object
The length property returns the number of arguments that the function expects.

Format

 funcName.length

The following table describes the arguments for the length property.

Argument Description

funcName

The name of the function that the length property uses to return the number of arguments.

Return Statement of a Function Object
The Return statement passes a value back to the function that called it.

Format
return value

153

Siebel
eScript Language Reference

Chapter 5
Methods Reference

The following table describes the arguments for the Return statement.

Argument Description

value

Contains a value from the function that calls the Return statement.

Usage
Siebel CRM does not run any code in a function that occurs after a Return statement.

If you define a return type for a custom function, then you must explicitly return a value of the same type that the
function header specifies. All control paths must lead to a Return statement.

Example 1
The function in the following example returns a value that is equal to the number that Siebel CRM passes to it multiplied
by 2, and then divided by 5:

function DoubleAndDivideBy5(a)
{
 return (a*2)/5
}

Example 2
The following example does the following work:

• Uses the value from the function in Return Statement of a Function Object

• Calculates the following expression:

n = (10 * 2) / 5 + (20 * 2) / 5

• Displays the value for n, which is 12:

function myFunction()
{
 var a = DoubleAndDivideBy5(10);
 var b = DoubleAndDivideBy5(20);
 TheApplication().RaiseErrorText(a + b);
}

Mathematical Methods
This topic describes mathematical methods. It includes the following topics:

• Overview of Mathematical Methods

• Properties of the Math Object

• Get Absolute Value Method

• Get Arc Cosine Method

154

Siebel
eScript Language Reference

Chapter 5
Methods Reference

• Get Arcsine Method

• Get Arctangent Method

• Get Arctangent 2 Method

• Get Ceiling Method

• Get Cosine Method

• Get Exponential Method

• Get Floor Method

• Get Logarithm Method

• Get Maximum Method

• Get Minimum Method

• Get Quotient Method

• Get Random Number Method

• Get Remainder Method

• Get Sine Method

• Get Square Root Method

• Get Tangent Method

• Raise Power Method

• Round Number Method

For more information on the number object, see NaN Numbers.

Overview of Mathematical Methods
Some math methods return data in radians. To convert radians to degrees, you can use the following formula:

radians multiplied by (180/Math.PI).

Properties of the Math Object
This topic describes properties of the math object.

Base E Property
The Base E property stores the number value for e, which is the base for natural logarithms. The value of e internally is
approximately 2.7182818284590452354.

Format
Math.E

Logarithm 2 E Property
The Logarithm 2 E property stores the number value for the base 2 logarithm of e, which is the base of the natural
logarithms. The value of the base 2 logarithm of e internally is approximately 1.4426950408889634. The value of the
Logarithm 2 E property is approximately the reciprocal of the value of Math Logarithm 2 property.

155

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format
Math.LOG2E

Logarithm 10 E Property
The Logarithm 10 E property is the number value for the base 10 logarithm of e, which is the base of the natural
logarithms. The value of the base 10 logarithm of e internally is approximately 0.4342944819032518. The value of the
Logarithm 10 E property is approximately the reciprocal of the value of the Natural Logarithm 10 property.

Format
Math.LOG10E

Natural Logarithm 2 Property
The Natural Logarithm 2 property stores the number value for the natural logarithm of 2. The value of the natural
logarithm of 2 internally is approximately 0.6931471805599453.

Format
Math.LN2

Math Natural Logarithm 10 Property
The Natural Logarithm 10 property stores the number value for the natural logarithm of 10. The value of the natural
logarithm of 10 internally is approximately 2.302585092994046.

Format
Math.LN10

PI Property
The Pi property holds the number value for pi, which is the ratio of the circumference of a circle to the diameter of the
circle. This value internally is approximately 3.14159265358979323846.

Format
Math.PI

Square Root 1/2 Property
The Square Root 1/2 property stores the number value for the square root of ½. This value internally is approximately
0.7071067811865476. The value of the Square Root 1/2 property is approximately the reciprocal of the value of the
Square Root 2 property.

Format
Math.SQRT1_2

Square Root 2 Property
The Square Root 2 property stores the number value for the square root of 2. This value internally is approximately
1.4142135623730951.

156

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format
Math.SQRT2

Get Absolute Value Method
The Get Absolute Value method returns the absolute value of the value that the number argument contains. If it cannot
convert this value to a number, then it returns NaN.

Format
Math.abs(number)

The following table describes the arguments for the Get Absolute Value method.

Argument Description

number

A numeric literal or numeric variable.

Get Arc Cosine Method
The Get Arc Cosine method returns the arc cosine of the value that the number argument contains, expressed in radians
from 0 to pi. If any of the following situations are true, then it returns NaN:

• The method cannot convert the value to a number.

• The value is greater than 1 or less than negative 1.

This method uses the same argument as the Get Absolute Value method. For more information, see Get Absolute Value
Method.

Format
Math.acos(number)

Get Arcsine Method
The Get Arcsine method returns an approximate arcsine of the value that the number argument contains expressed in
radians in the range of negative pi/2 through pi/2. If any of the following situations are true, then this method returns
NaN:

• It cannot convert the value to a number.

• The value is greater than 1 or less than negative 1.

This method uses the same argument as the Get Absolute Value method. For more information, see Get Absolute Value
Method.

157

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format
Math.asin(number)

Get Arctangent Method
The Get Arctangent method returns an approximate arctangent of the value that the number argument contains,
expressed in radians and ranging from negative pi/2 through pi/2.

This method assumes the value that the number argument contains is the ratio of the following sides of a right triangle:

• The side that is opposite of the angle that this method must calculate

• The side that is adjacent to the angle

It returns a value for this ratio.

This method uses the same argument as the Get Absolute Value method. For more information, see Get Absolute Value
Method.

Format
Math.atan(number)

Example for the Get Arctangent Method
The following example calculates the roof angles that are necessary for a house that includes the following dimensions:

• An attic ceiling height of 8 feet at the roof peak

• A 16 foot span from the outside wall to the center of the house

The Get Arctangent method returns the angle in radians. To convert the value to degrees, it multiplies it by 180/PI. To
examine how the Get Arctangent method is different from the Get Arctangent 2 method, you can compare it to the
example in the Get Arctangent 2 Method topic. These examples return the same value:

function RoofBtn_Click ()

{

 var height = 8;

 var span = 16;

 var angle = Math.atan(height/span)*(180/Math.PI);
 TheApplication().RaiseErrorText("The angle is " +

 Clib.rsprintf("%5.2f", angle) + " degrees.")

}

Get Arctangent 2 Method
The Get Arctangent 2 method returns an approximate arctangent of the value that the y argument contains divided by
the value that the x argument contains, expressed in radians and ranging from negative pi through pi.

158

Siebel
eScript Language Reference

Chapter 5
Methods Reference

To determine the quadrant of the result, this method uses the signs of the arguments. It is intentional and traditional
that the argument named y is the first argument and the argument named x is the second argument.

Format
Math.atan2(y, x)

The following table describes the arguments for the Get Arctangent 2 method.

Argument Description

y

The value on the y axis.

x

The value on the x axis.

Example for the Get Arctangent 2 Method
The following example finds the roof angle necessary for a house. It is identical to the example for the Get Arctangent
method except this example uses the Get Arctangent 2 method. For more information, see Get Arctangent Method:

function RoofBtn2_Click ()

{

 var height = 8;

 var span = 16;

 var angle = Math.atan2(span, height)*(180/Math.PI);
 TheApplication().RaiseErrorText("The angle is " +

 Clib.rsprintf("%5.2f", angle) + " degrees.")

}

Get Ceiling Method
The Get Ceiling method returns the smallest integer that is not less than the value that the number argument contains.
If this argument already contains an integer, then this method returns the value of this argument. If it cannot convert
the value to a number, then it returns the following value:

NaN

This method uses the same argument as the Get Absolute Value method. For more information, see Get Absolute Value
Method.

Format
Math.ceil(number)

159

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example
The following example creates a random number between 0 and 100 and displays the integer range where the number
falls. Each run of this code produces a different result:

var x = Math.random() * 100;
 TheApplication().RaiseErrorText("The number is between " +
 Math.floor(x) + " and " + Math.ceil(x) + ".");

Get Cosine Method
The Get Cosine method returns an approximate cosine of the value that the number argument contains, expressed
in radians.The return value is between negative 1 and 1. The angle can be positive or negative. If this method cannot
convert the value to a number, then it returns the following value:

NaN

This method uses the same argument as the Get Absolute Value method. The only difference is that the number
argument for the Get Cosine method includes an angle in radians. For more information, see Get Absolute Value
Method.

Format
Math.cos(number)

Example
The following example finds the length of a roof, given the roof pitch and the distance of the house from the center of
the house to the outside wall of the house:

function RoofBtn3_Click ()
{
 var pitch;
 var width;
 var roof;
 pitch = 35;
 pitch = Math.cos(pitch*(Math.PI/180));
 width = 75;
 width = width / 2;
 roof = width/pitch;
 TheApplication().RaiseErrorText("The length of the roof is " +
 Clib.rsprintf("%5.2f", roof) + " feet.");
}

Get Exponential Method
The Get Exponential method returns e raised to the power of x where:

• e is the base of the natural logarithms. The value of e internally is approximately 2.7182818284590452354.

• x is the value that the number argument contains.

If this method cannot convert the value that the number argument contains to a number, then it returns the following
value:

160

Siebel
eScript Language Reference

Chapter 5
Methods Reference

NaN

Format
Math.exp(number)

The following table describes the arguments for the Get Exponential method.

Argument Description

number

The exponent value of the base of e.

Related Topics
For more information, see the following topics:

• Base E Property

• Math Natural Logarithm 10 Property

• Logarithm 10 E Property

• Get Logarithm Method

• Logarithm 2 E Property

• Logarithm 10 E Property

Get Floor Method
The Get Floor method returns the greatest integer that is not greater than the value that the number argument
contains. If this value is already an integer, then it returns the value that the number argument contains. If this method
cannot convert the value that the number argument contains to a number, then it returns the following value:

NaN

This method uses the same argument as the Get Absolute Value method. For more information, see Get Absolute Value
Method.

Format
Math.floor(number)

Example
For an example, see Get Ceiling Method.

Get Logarithm Method
The Get Logarithm method returns an approximate natural logarithm of the value that the number argument contains.

161

Siebel
eScript Language Reference

Chapter 5
Methods Reference

This method uses the same argument as the Get Absolute Value method. For more information, see Get Absolute Value
Method.

Format
Math.log(number)

Using the Get Logarithm Method and Raise Power Method with Large Numbers
For a large number, you must use the Get Logarithm method. The number 999^1000 (999 to the 1000th power) is
an example of a large number. If you use the Raise Power method instead of the Get Logarithm method with a large
number, then the Raise Power method returns the following value:

Infinity

Example
This example uses the Get Logarithm method to determine which of the following numbers is larger:

• 999^1000 (999 to the 1000th power)

• 1000^999 (1000 to the 999th power):

function Test_Click ()
{
 var x = 999;
 var y = 1000;
 var a = y*(Math.log(x));
 var b = x*(Math.log(y))
 if (a > b)
 TheApplication().
 RaiseErrorText("999^1000 is greater than 1000^999.");
 else
 TheApplication().
 RaiseErrorText("999^1000 is not greater than 1000^999.");
}

Get Maximum Method
The Get Maximum method returns the larger of the values in the x argument and the y argument. If it cannot convert
the value that the number argument contains to a number, then it returns the following value:

NaN

Format
Math.max(x, y)

The following table describes the arguments for the Get Maximum method.

Argument Description

x

A numeric literal or numeric variable.

y A numeric literal or numeric variable.

162

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

Related Topics
For more information, see Get Minimum Method.

Get Minimum Method
The Get Minimum method returns the smaller of the values that the x argument and the y argument contain. If it cannot
convert the value that the number argument contains to a number, then it returns the following value:

NaN

This method uses the same argument as the Math Maximum method. For more information, see Get Maximum
Method.

Format
Math.min(x, y)

Get Quotient Method
The Get Quotient method returns the quotient after a division operation that the Clib Divide method performs. You use
this method in conjunction with the Clib Divide method.

Format

 intVar.quot

The following table describes the arguments for the Get Quotient method.

Argument Description

intVar

Any variable that contains an integer.

Example
For an example, see Clib Divide Method.

Get Random Number Method
The Get Random Number method creates, and then returns a pseudo-random number between 0 and 1. It uses no
arguments.

163

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Where possible, you must use the Get Random Number method instead of the Clib Create Random Number method.
You use the Clib Create Random Number method only if you must use the Clib Initialize Random Number Generator
method to create an initial value for the random number generator. For more information, see the following topics:

• Clib Create Random Number Method

• Clib Initialize Random Number Generator Method

Format
Math.random()

Example
The following example creates a random string of characters in a range. The Get Random Number method sets the
range between lowercase letter a through lowercase letter z:

function Test_Click ()
{
 var str1 = "";
 var letter;
 var randomvalue;
 var upper = "z";
 var lower = "a";
 upper = upper.charCodeAt(0);

 lower = lower.charCodeAt(0);
 for (var x = 1; x < 26; x++)
 {
 randomvalue = Math.round(((upper - (lower + 1)) *
 Math.random()) + lower);
 letter = String.fromCharCode(randomvalue);
 str1 = str1 + letter;
 }
 TheApplication().RaiseErrorText(str1);
}

Get Remainder Method
The Get Remainder method returns the remainder after a division operation that the Clib Divide method performs. You
use this method in conjunction with the Clib Divide method.

Format

 intVar.rem

The following table describes the arguments for the Get Remainder method.

Argument Description

intVar

Any variable that contains an integer.

164

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example
For an example, see Clib Divide Method.

Get Sine Method
The Get Sine method returns the sine of an angle, expressed in radians. It returns the sine of the value that the number
argument contains. The return value is between negative 1 and 1. If this method cannot convert the value that the
number argument contains, then it returns the following value:

NaN

Format
Math.sin(number)

The following table describes the arguments for the math sine method.

Argument Description

number

A numeric expression that contains a number that includes the size of an angle, expressed in radians.
This number can be positive or negative.

Get Square Root Method
The Get Square Root method returns the square root of the value that the number argument contains. If the value that
the number argument contains is a negative number or if this method cannot convert this value to a number, then it
returns the following value:

NaN

This method uses the same argument as the Get Absolute Value method. For more information, see Get Absolute Value
Method.

Format
Math.sqrt()

Get Tangent Method
The Get Tangent method returns the tangent of the value that the number argument contains. If it cannot convert the
value that the number argument contains, then it returns the following value:

NaN

165

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Format
Math.tan(number)

The following table describes the arguments for the Get Tangent method.

Argument Description

number

A numeric expression that contains the number of radians in the angle whose tangent this method
returns.

Raise Power Method
The Raise Power method raises the value that the x argument contains to the power of the value that the y argument
contains. It returns the result in the x argument. For more information, see Get Logarithm Method.

Format
Math.pow(x, y)

The following table describes the arguments for the Raise Power method.

Argument Description

x

The number that this method raises.

y

The power to which this method raises the value that the x argument contains.

Example
This example uses the Raise Power method to determine which of the following numbers is larger:

• 99^100 (99 to the 100th power)

• 100^99 (100 to the 99th power):

function Test_Click ()
{
 var a = Math.pow(99, 100);
 var b = Math.pow(100, 99);
 if (a > b)
 TheApplication().RaiseErrorText("99^100 is greater than 100^99.");
 else
 TheApplication().RaiseErrorText("99^100 is not greater than 100^99.");
}

166

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Round Number Method
The Round Number method does the following:

• If the fractional part is equal to or greater than 0.5, then it rounds the value in the number argument up.

• If the fractional part is less than 0.5, then it rounds the value in the number argument down.

It rounds a positive number or a negative number to the nearest integer.

It returns the integer that is closest in value to the value that the number argument contains.

This method uses the same argument as the Get Absolute Value method. For more information, see Get Absolute Value
Method.

Format
Math.round(number)

Example
The following example uses the Round Number method:

var a = Math.round(123.6);
var b = Math.round(-123.6)
TheApplication().RaiseErrorText(a + "\n" + b)

This example provides the following results:

124
negative 124

Avoiding Precision Loss Due to Rounding
The following example illustrates precision loss due to rounding:

var n = 34.855;
n = n* 100;
var r = Math.round(n)

The value of the n variable is 3485.499999999999995 instead of 3485.5. Rounding this value results in a value of 3485
instead of 3486.

The following example avoids loss of precision due to rounding:

var n = parseFloat(34.855);
n = parseFloat(n1b*100.0);
var r = Math.round(n);

If you multiply or divide a value, and then round that value, then rounding might not be precise. Multiplication and
division can cause precision loss.

167

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Regular Expression Methods
This topic describes regular expression methods. It includes the following topics:

• Overview of Regular Expression Methods

• Properties of Regular Expressions

• Compile Regular Expressions Method

• Get Regular Expression from String Method

• Is Regular Expression in String Method

Overview of Regular Expression Methods
A regular expression is an object instance of a character pattern that is associated with attributes that ECMAScript uses
to perform a character pattern search of a string. A regular expression uses the following short format:

RegExp

For more information, see ECMAScript specifications.

Properties of Regular Expressions
This topic describes properties of regular expressions. The Siebel ST eScript engine supports these properties.
Throughout this topic, the term regexp represents an object instance of a regular expression.

You can write code that uses the Compile Regular Expressions method to modify the attribute of a regular expression
instance for one of these properties. For example, if you must write code that modifies the global attribute of a regular
expression instance. For more information, see Compile Regular Expressions Method.

Regular Expression Global Property
The Regular Expression Global property is a read-only property that indicates the value of the global attribute of an
instance of the regular expression object. The value it returns depends on the attribute:

• The value g is an attribute of the regular expression. It returns the following value:

True

• The value g is not an attribute of the regular expression. It returns the following value:

False

Format
regexp.global

Example
The following example uses the regular expression global property:

// Create RegExp instance with global attribute.

168

Siebel
eScript Language Reference

Chapter 5
Methods Reference

var pat = /^Begin/g;
//or
var pat = new RegExp("^Begin", "g");
//Then pat.global == true.

Regular Expression Ignore Case Property
The Regular Expression Ignore Case property is a read-only property that indicates the value of the ignoreCase attribute
of an instance of the regular expression object. The value it returns depends on the attribute:

• The value i is an attribute of the regular expression. It returns the following value:

True

• The value i is not an attribute of the regular expression. It returns the following value:

False

Format
regexp.ignoreCase

Example
The following example uses the Regular Expression Ignore Case property:

// Create RegExp instance with ignoreCase attribute.
var pat = /^Begin/i;
//or
var pat = new RegExp("^Begin", "i");
//Then pat.ignoreCase == true.

Regular Expression Multiline Property
The Regular Expression Multiline property is a read-only property that indicates the value of the multiline attribute of an
instance of the regular expression object. It determines if Siebel CRM performs a pattern search in multiline mode. The
value it returns depends on the attribute:

• The value m is an attribute of the regular expression. It returns the following value:

True

• The value m is not an attribute of the regular expression. It returns the following value:

False

Format
regexp.multiline

Example
The following example uses the Regular Expression Multiline property:

// Create RegExp instance with multiline attribute.
var pat = /^Begin/m;
//or
var pat = new RegExp("^Begin", "m");
//Then pat.multiline == true.

169

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Regular Expression Source Property
The Regular Expression Source property is a read-only property that stores the regular expression that Siebel CRM uses
to find matches in a string, not including the attributes.

Format
regexp.source

Example
The following example uses the Regular Expression Source property:

var pat = /t.o/g;
// Then pat.source == "t.o"

Compile Regular Expressions Method
The Compile Regular Expressions method modifies the pattern and attributes for the current instance of a regular
expression object. It allows you to use a regular expression instance multiple times with modifications to the
characteristics of this instance. You use it with a regular expression that the constructor function creates. You do not use
this method with the literal notation.

Format
regexp.compile(pattern[, attributes])

The following table describes the arguments for the Compile Regular Expressions method.

Argument Description

pattern

A string that contains a new regular expression.

attributes

A string that contains new attributes. If you include the attributes argument, then this string must be
empty, or it must contain one or more of the following characters:

• i. Sets the ignoreCase property to true.

• g. Sets the global property to true.

• m. Sets the multiline property to true.

Example
The following example uses the Compile Regular Expressions method:

var regobj = new RegExp("now");
// use this RegExp object
regobj.compile("r*t");
// use it some more
regobj.compile("t.+o", "ig");
// use it some more

170

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Related Topics
For more information, see the following topics:

• Regular Expression Global Property

• Regular Expression Ignore Case Property

• Regular Expression Multiline Property

• Regular Expression Source Property

Get Regular Expression from String Method
The Get Regular Expression from String method searches the string that you specify in the str argument for a regular
expression. It returns one of the following depending on if it finds this regular expression:

• It finds the regular expression. It returns an array of strings that includes information about each match it
finds and the property sets for these matches.

• It does not find the regular expression. It returns the following value:

Null

Format
regexp.exec(str)

The following table describes the arguments for the Get Regular Expression from String method.

Argument Description

str

A string that this method searches for a regular expression.

Usage Without Setting the Global Attribute
Assume you configure Siebel CRM to run the Get Regular Expression from String method, you do not set the g global
attribute on the regular expression instance, and the method finds a match. In this situation, the array elements that it
returns include the following information:

• Element 0. The first text in the string that matches the primary regular expression.

• Element 1. The text that the first subpattern of the regular expression instance matches. It encloses this
subpattern in parentheses.

• Element 2 through element n. Each subsequent element uses the same format as element 1.

The returned array includes the following properties:

• Length property. The number of text matches that exist in the returned array.

• Index property. The start position of the first text that matches the primary regular expression.

• Input property. The target string that the method searched.

171

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Usage With Setting the Global Attribute
Assume you configure Siebel CRM to run the Get Regular Expression from String method but you do set the g global
attribute on the regular expression instance. In this situation, this method returns the same result as if the global
attribute is not set but the behavior is more complex, which allows more operations. It does the following work:

1. Begins searching at the position in the target string that the this.lastIndex property specifies.
2. After it finds a match, it sets the this.lastIndex property to the position after the last character in the matched

text.

The this.lastIndex property possesses read and write capabilities. To find all matches of a pattern, you can configure
this method to set the this.lastIndex property to the start position of the previous match that it found plus 1. This
configuration causes this method to loop through a string. When it does not find a match, it resets the this.lastIndex
property to 0.

Using the Get Regular Expression from String Method and the Get Regular
Expression from String Var Method
The behavior of the Get Regular Expression from String method and the Get Regular Expression from StringVar method
varies depending on if you set the global attribute on the regular expression:

• You do not set the global attribute. The methods return the same array. The return values and the index and
input properties are the same.

• You do set the global attribute. The methods return different arrays.

For more information, see Get Character From String Method.

Example 1
The following example calls the Get Regular Expression from String method from a regular expression whose global
attribute is not set:

function fn ()
{
 var myString = new String("Better internet");
 var myRE = new RegExp(/(.).(.er)/i);
 var results = myRE.exec(myString);
 var resultmsg = "";
 for(var i =0; i < results.length; i++)
 {
 resultmsg = resultmsg + "return[" + i + "] = " + results[i] + "\n";
 }
 TheApplication().RaiseErrorText(resultmsg);
}
fn ();

This example provides the following output:

return[0] = etter \\First text that contains primary pattern ...er (any three
 \\characters followed by "er")

return[1] = e \\First text matching the first subpattern (.) (any single
 \\character) in the first text matching the primary pattern

return[2] = ter \\First text matching the second subpattern (.er) (any single
 \\character followed by "er") in the first text matching
 \\the primary pattern

172

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example 2
The following example calls the Get Regular Expression from String method from a regular expression whose global
attribute is set. This method returns all matches that exist of the primary pattern in a string of the regular expression,
including matches that overlap:

function fn ()
{
 var str = "ttttot tto";
 var pat = new RegExp("t.t", "g");
 var resultmsg = "";
 while ((rtn = pat.exec(str)) != null)
 {
 resultmsg = resultmsg + "Text = " + rtn[0] + " Pos = " + rtn.index
 + " End = " + (pat.lastIndex - 1) + "\n";
 pat.lastIndex = rtn.index + 1;
 }
 TheApplication().RaiseErrorText(resultmsg)
}
fn ();

This example provides the following output:

Text = ttt Pos = 0 End = 2
Text = ttt Pos = 1 End = 3
Text = tot Pos = 3 End = 5
Text = t t Pos = 5 End = 7

Related Topics
For more information, see the following topics:

• Get Character From String Method

• Is Regular Expression in String Method

Is Regular Expression in String Method
The Is Regular Expression in String method determines if a string includes a regular expression. It returns one of the
following values:

• If the string includes a regular expression, then it returns the following value:

True

• If the string does not include a regular expression, then it returns the following value:

False

This method uses the same arguments as the Get Regular Expression from String method. For more information, see
Get Regular Expression from String Method.

Format
regexp.test(str)

173

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Usage
The Is Regular Expression in String method is equivalent to regexp.exec(str)!=null.

You can write code that uses the Is Regular Expression in String method with the global attribute set on the regular
expression instance. This functionality uses the lastIndex property in the same way as the Get Regular Expression from
String method. For more information, see Get Regular Expression from String Method.

Example
The following example includes the Is Regular Expression in String method:

var str = "one two three tio one";
var pat = /t.o/;
rtn = pat.test(str);
// Then rtn == true.

Siebel Library Methods
This topic describes the Siebel library methods that Siebel eScript uses to call external libraries and applications. It
includes the following topics:

• Siebel Library Call DLL Method

• Siebel Library Get Pointer Address Method

• Siebel Library Peek Method

• Siebel Library Write Data Method

Siebel Library Call DLL Method
The Siebel Library Call DLL method calls a procedure from a dynamic link library in Microsoft Windows or a shared
object in UNIX. It returns an integer.

Windows Format
SElib.dynamicLink(Library, Procedure, Convention[, [desc,] arg1, arg2, arg3, ..., argn])

UNIX Format
SElib.dynamicLink(Library, Procedure[, arg1, arg2, arg3, ...argn])

In UNIX, Siebel CRM cannot use the Siebel Library Call DLL method to pass more than 22 arguments. These 22
arguments include the shared library name and the procedure name. You can configure Siebel CRM to pass up to 20
more arguments.

The following table describes the arguments for the Siebel Library Call DLL method.

Argument Description

Library

The library argument can include the following:

• In Microsoft Windows, the name of the DLL that contains the procedure.

174

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

• In UNIX, the name of a shared object. You must specify the fully qualified path name.

Procedure

The name or ordinal number of the procedure in the library dynamic link method.

Convention

The calling convention.

desc

Passes a Unicode string. For example, WCHAR.

arg1, arg2, arg3, ..., argn

Arguments for the Siebel Library Call DLL method.

Usage for the Convention Argument
The following table describes the calling conventions you must use with the Siebel Library Call DLL method.

Value Description

CDECL

STDCALL

Send the argument that appears last in the list first. For example, consider the following format:

SElib.dynamicLink(Library, Procedure, Convention[, [desc,] arg1,
arg2, arg3])

If arg1, arg2, and arg3 are defined, then this method sends the arguments in the following order:

• arg3

• arg2

• arg1

The caller reads the arguments.

The STDCALL value is almost always used in Win32.

PASCAL

Send the argument that appears first in the list first. For example, consider the following format:

SElib.dynamicLink(Library, Procedure, Convention[, [desc,] arg1,
arg2, arg3])

If arg1, arg2, and arg3 are defined, then this method sends the arguments in the following order:

• arg1

• arg2

• arg3

The callee reads the arguments.

Usage If An Argument Is Not Defined
Siebel CRM passes values as 32-bit values. If an argument is not defined when Siebel CRM calls the Siebel Library Call
DLL method, then it assumes that the argument is a 32-bit value. It passes the address of a 32-bit data element to the
Siebel Library Call DLL method. This method then sets the value.

175

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Usage If an Argument Is a Structure
SELib is a feature that Siebel eScript uses to call functions in the native DLLs. These DLLs can contain functions
implemented in a third party language, such as C or C++. In this situation, an argument can include a structure.

If an argument is a structure, then it must include a structure that defines the binary data types in memory. Siebel CRM
does the following:

1. Copies the structure to a binary buffer.
2. Calls the method.
3. Converts the binary data back into the data structure according to the rules defined in the Write BLOB

Data method and the Clib Read From File method. It performs data conversion according to the current
BigEndianMode setting.

For more information, see Write BLOB Data Method and Clib Read From File Method.

Example 1
The following example describes a proxy DLL that uses denormalized input values, creates the structure, and calls a
method in the destination DLL:

#include <windows.h>
_declspec(dllexport) int __cdecl
score (
 double AGE,
 double AVGCHECKBALANCE,
 double AVGSAVINGSBALANCE,
 double CHURN_SCORE,
 double CONTACT_LENGTH,
 double HOMEOWNER,
 double *P_CHURN_SCORE,
 double *R_CHURN_SCORE,
 char _WARN_[5])
{
 *P_CHURN_SCORE = AGE + AVGCHECKBALANCE + AVGSAVINGSBALANCE;
 *R_CHURN_SCORE = CHURN_SCORE + CONTACT_LENGTH + HOMEOWNER;
 strcpy(_WARN_, "SFD");
 return(1);
}

Example 2
The following example calls a DLL. This code uses the buffer for pointers and characters:

function TestDLLCall3()
{
 var AGE = 10;
 var AVGCHECKBALANCE = 20;
 var AVGSAVINGSBALANCE = 30;
 var CHURN_SCORE = 40;
 var CONTACT_LENGTH = 50;
 var HOMEOWNER = 60;
 var P_CHURN_SCORE = Buffer(8);
 var R_CHURN_SCORE = Buffer(8);
 var _WARN_ = Buffer(5);
SElib.dynamicLink("jddll.dll", "score", CDECL,
 FLOAT64, AGE,
 FLOAT64, AVGCHECKBALANCE,
 FLOAT64, AVGSAVINGSBALANCE,
 FLOAT64, CHURN_SCORE,
 FLOAT64, CONTACT_LENGTH,
 FLOAT64, HOMEOWNER,

176

Siebel
eScript Language Reference

Chapter 5
Methods Reference

 P_CHURN_SCORE,
 R_CHURN_SCORE,
 WARN);
var r_churn_score = R_CHURN_SCORE.getValue(8, "float");
var p_churn_score = P_CHURN_SCORE.getValue(8, "float");
var nReturns = r_churn_score + p_churn_score;
return(nReturns);
}

Other Examples
The following example calls a DLL function in the default codepage:

var sHello = "Hello";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, sHello);

The following example calls a DLL function that passes Unicode strings:

var sHello = "Hello";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, WCHAR, sHello);

The following example calls a DLL function that passes Unicode and nonUnicode strings:

var sHello = "Hello";
var sWorld = "world";
Selib.dynamicLink("MyLib.dll", "MyFunc", CDECL, WCHAR, sHello, sWorld);

The following example calls an external application and passes arguments 0, 0, and 5 to it:

SElib.dynamicLink("shell32", "ShellExecuteA", STDCALL, 0, "open",
"c:\\Grabdata.exe", 0, 0, 5).

Related Topics
For more information, see Clib Send Command Method.

Siebel Library Get Pointer Address Method
The Siebel Library Get Pointer Address method gets the address in memory of the first byte of data in a buffer variable.
It returns the address of the pointer to the buffer variable. For more information, see Buffer Methods.

CAUTION: A pointer is valid only until a script modifies the variable that the bufferVar argument identifies or until the
variable goes out of scope in a script. Placing data in the memory that this variable occupies after such a modification
is not recommended. Be careful not to place more data than this memory can hold.

Format
SElib.pointer(bufferVar])

The following table describes the arguments for the Siebel Library Get Pointer Address method.

Argument Description

bufferVar

The name of a buffer variable.

177

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Example
The following example includes the Siebel Library Get Pointer Address method:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

This example produces the following output:

COMMENT,Now
COMMENT,Pow

Related Topics
For more information, see the following topics:

• BLOB Methods

• Clib Get Memory Method

Siebel Library Peek Method
The Siebel Library Peek method reads, and then returns data from a position in memory.

Format
SElib.peek(address[, dataType])

The following table describes the arguments for the Siebel Library Peek method.

Argument Description

address

Identifies the address in memory that this method uses to read data.

dataType

The type of data that this method returns. You can specify one of the following types:

• UWORD8

• SWORD8

• UWORD16

• SWORD16

• UWORD24

• SWORD24

178

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Argument Description

• UWORD32

• SWORD32

• FLOAT32

• FLOAT64

• FLOAT80

The default value is UWORD8.

You can add the following prefix on some types:

• S for signed

• U for unsigned

The numeric suffix specifies the number of bytes to get. An example of a numeric suffix is 8 or 16.

FLOAT80 is not available in Win32.

Example
The following example uses the Siebel Library Peek method:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

This example produces the following output:

COMMENT,Now
COMMENT,Pow

Related Topics
For more information, see the following topics:

• Get BLOB Data Method

• Clib Get Memory Method

• Clib Read From File Method

Siebel Library Write Data Method
The Siebel Library Write Data method writes data to a specific position in memory. It returns the address of the byte that
immediately follows the data that it writes.

179

Siebel
eScript Language Reference

Chapter 5
Methods Reference

CAUTION: If your code directly accesses memory, then you must use this code with caution. To avoid moving data
unexpectedly, you must clearly understand how the Siebel Library Write Data method affects memory.

Format
SElib.poke(address, data[, dataType])

The following table describes the arguments for the Siebel Library Write Data method.

Argument Description

address

The starting address in memory where this method writes data.

data

The data that this method writes in memory. The data type of this data must match the type that you
specify in the dataType argument.

dataType

For more information, see Siebel Library Peek Method.

Example
The following example includes the Siebel Library Write Data method:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var v = new Buffer("Now");
// Collect "Now", the original value, for display.
TheApplication().Trace(v);
// Get the address of the first byte of v, "N"
var vPtr = SElib.pointer(v);
// Get the "N"
var p = SElib.peek(vPtr);
// Convert "N" to "P"
SElib.poke(vPtr,p+2);
// Display "Pow"
TheApplication().Trace(v);
TheApplication().TraceOff();

This example produces the following output:

COMMENT,Now
COMMENT,Pow

Related Topics
For more information, see the following topics:

• Write BLOB Data Method

• Clib Get Memory Method

• Clib Read From File Method

180

Siebel
eScript Language Reference

Chapter 5
Methods Reference

Custom Methods
This topic describes custom methods. It includes the following topics:

• Overview of Custom Methods

• How the Constructor Function Creates an Object

• How a Function Is Assigned to an Object

• About Object Prototypes

Overview of Custom Methods
You can group variables and functions together in one variable, and then reference them as a group. A compound
variable of this sort is an object where each individual item of the object is a property.

An object property is similar to a variable or a constant. An object method is similar to a function. To reference an object
property, you use the name of the object and the name of the property, separated by a period:

object name.property

You can write code that uses any valid variable name as a property name. The following example assigns values to the
width and height properties of a rectangle object, calculates the area of a rectangle, and then displays the result:

var Rectangle;
Rectangle.height = 4;
Rectangle.width = 6;
TheApplication().RaiseErrorText(Rectangle.height * Rectangle.width);

An object allows you to work with groups of data in a consistent way. For example, instead of using a single object
named Rectangle, you can use multiple Rectangle objects, where each of these objects includes a separate value for
width and a separate value for height.

How the Constructor Function Creates an Object
A constructor function creates an object template. To create a rectangle object, the following example uses a
constructor function:

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

The following keyword references the arguments that the constructor function receives:

this

You can think of the this keyword as meaning this object.

Example of Using a Constructor Function
To create a rectangle object, the following example uses the new operator to call the constructor function:

181

Siebel
eScript Language Reference

Chapter 5
Methods Reference

var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);

This code creates the following rectangle objects:

• Joe, with a width of 3 and a height of 4

• Sally, with a width of 5 and a height of 3

This example creates a Rectangle class and two instances of this class. A constructor function creates objects that
belong to the same class. Every object that a constructor function creates is an instance of that class.

Class instances share the same properties, although a single class instance can possess more unique properties. For
example, adding the following code to the example adds a motto property to the joe rectangle. The sally rectangle does
not include a motto property:

joe.motto = "Be prepared!";

How a Function Is Assigned to an Object
An object can contain a function and variables. A function assigned to an object is a method of that object.

A function defining a method uses the this operator to reference an object variable. The following example is a method
that computes the area of a rectangle:

function rectangle_area()
{
 return this.width * this.height;
}

Siebel CRM passes no arguments to this function, so it is meaningless unless an object calls it. This object provides
values for this.width and this.height.

The following code assigns the method to an object:

function rectangle_area()
{
 return (this.width * this.height);
}
 function Rectangle(width,height)
{
 this.width = width;
 this.height = height;
 this.area = rectangle_area;
}

The method is available to any instance of the class. The following example sets the value of area1 to 12 and the value of
area2 to 15:

var joe = new Rectangle(3,4);
var sally = new Rectangle(5,3);
var area1 = joe.area;
var area2 = sally.area;

182

Siebel
eScript Language Reference

Chapter 5
Methods Reference

About Object Prototypes
An object prototype lets you specify a set of default values for an object. If Siebel eScript accesses an object property
that is not assigned a value, then it consults the prototype. If this property exists in the prototype, and if this property
contains a value, then Siebel eScript uses that value for the object property.

How an Object Prototype Conserves Memory
An object prototype helps you to make sure that every instance of an object uses the same default values and that these
instances conserve the amount of memory that Siebel CRM requires to run a script. The joe and sally rectangles are
each assigned an area method when they are created in How a Function Is Assigned to an Object. Siebel CRM allocates
memory for this function twice, even though the method is exactly the same in each instance. To avoid this redundant
memory, you can place the shared function or property in an object prototype. In this situation, every instance of the
object uses the same function instead of each instance using a copy of the function.

Example of Using an Object Prototype
The following example creates a rectangle object with an area method in a prototype:

function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

Rectangle.prototype.area = rectangle_area;

The following code can now reference the rectangle_area method as a method of any Rectangle object:

var area1 = joe.area();
var area2 = sally.area();

Adding Methods and Data to an Object Prototype
You can write code that adds methods and data to an object prototype at any time. You must define the object class but
you do not have to create an instance of the object before you assign prototype values to it. If you assign a method or
data to an object prototype, then Siebel CRM updates every instance of that object to include the prototype.

If you attempt to write to a property that Siebel CRM assigns through a prototype, then it creates a new variable for the
newly assigned value. It uses this value for the value of this instance of the object property. Other instances of the object
still refer to the prototype for their values. The following example specifies joe as a special rectangle whose area is equal
to three times the width plus half the height:

function joe_area()
{
 return (this.width * 3) + (this.height/2);
}
joe.area = joe_area;

183

Siebel
eScript Language Reference

Chapter 5
Methods Reference

This code creates a value for joe.area that supersedes the prototype value. In this example, this value is a function. The
sally.area property is still the default value that this prototype defines. The joe instance uses the new definition for the
area method.

You cannot write code that declares a prototype in a function scope.

184

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

6 C Language Library Reference

C Language Library Reference
This chapter describes reference information for the C language library you can use in Siebel eScript. It includes the
following topics:

• Overview of the Clib Object

• Clib File and Directory Methods

• Clib File Input and Output Methods

• Clib String Methods

• Clib Buffer Methods

• Clib Mathematical Methods

• Clib Date and Time Methods

• Clib Character Classification Methods

• Clib Error Methods

• Other Clib Methods

Overview of the Clib Object
The Clib (C library) object includes functions that are part of the standard library of the C programming language. It
includes methods that can reference files, directories, strings, the environment, memory, and characters. It also includes
time functions, error functions, sorting functions, and math functions. Siebel CRM supports the Clib library in Windows
servers and UNIX servers. It does not support the Clib library for Browser script.

The Clib object is a wrapper you can use to call a function in the standard C library as implemented for a specific
operating system. The methods that this chapter describes might behave differently on different operating systems.

Using Siebel eScript Methods Instead of Clib Methods
The following table lists each Clib method that has an equivalent method in Siebel eScript. These methods are
redundant because their functionality already exists in Siebel eScript. Where possible, you must use the Siebel eScript
method instead of the equivalent Clib method. In some situations the Clib method is preferred and is more consistent in
a section of script. For example, when working with a string routine that expects a null string.

Siebel eScript Method Clib Method Description

Get Absolute Value Method

abs

Calculates absolute value.

Get Arc Cosine Method

acos

Calculates the arc cosine.

185

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Siebel eScript Method Clib Method Description

Get Arcsine Method

asin

Calculates the arc sine.

Get Arctangent Method

atan

Calculates the arc tangent.

Get Arctangent 2 Method

atan2

Calculates the arc tangent of a fraction.

Convert String to Floating-Point
Number Method

atof

Converts a string to a floating-point number.

Convert String to Integer Method

atoi

Converts a string to an integer.

Automatic conversion

atol

Converts a string to a long integer.

Get Ceiling Method

ceil

Rounds a number up to the nearest integer.

Get Cosine Method

cos

Calculates the cosine.

Get Exponential Method

exp

Calculates the exponential function.

Math absolute

fabs

Calculates the absolute value of a floating-point number.

Get Floor Method

floor

Rounds a number down to the nearest integer.

% operator, modulo

fmod

Calculates the remainder.

Math absolute

labs

Returns the absolute value of a long.

Get Logarithm Method

log

Calculates the natural logarithm.

Get Maximum Method

max

Returns the largest of one or more values.

Get Minimum Method

min

Returns the smallest of one or more values.

Raise Power Method

pow

Calculates x to the power of y.

Get Sine Method

sin

Calculates the sine.

Get Square Root Method

sqrt

Calculates the square root.

+ operator

strcat

Appends one string to another.

== operator strcmp Compares two strings.

186

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Siebel eScript Method Clib Method Description

= operator

strcpy

Copies a string.

Get String Length Method

strlen

Gets the length of a string.

Change String to Lowercase
Method

strlwr

Converts a string to lowercase.

Automatic conversion

strtod

Converts a string to decimal.

Automatic conversion

strtol

Converts a string to long.

Change String to Uppercase
Method

strupr

Converts a string to uppercase.

Get Tangent Method

tan

Calculates the tangent.

string.toLowerCase

tolower

Converts a character to lowercase.

string.toUpperCase

toupper

Converts a character to uppercase.

The phrase automatic conversion in the Siebel eScript Method column means that Siebel eScript implicitly performs
a conversion. For example, when comparing Siebel eScript to the atol Clib method, if the variable that will hold the
converted string is of type Number, then Siebel eScript implicitly converts the string from a string to a long integer.

Clib File and Directory Methods
This topic describes Clib methods to create, open, lock, close, and delete files. It also describes methods to manipulate
directories. It includes the following topics:

• Overview of Clib File and Directory Methods

• Clib Close File Method

• Clib Create Temporary File Method

• Clib Create Temporary File Name Method

• Clib Delete File Method

• Clib Lock File Method

• Clib Open File Method

• Clib Rename File Method

• Clib Reopen File Method

• Clib Change Directory Method

187

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

• Clib Create Directory Method

• Clib Get Current Working Directory Method

• Clib Remove Directory Method

Overview of Clib File and Directory Methods
Siebel eScript can interpret a backslash (\) as a character combination. If you create a Windows path name, then you
must include two backslashes to prevent this interpretation. For example:

• To change the working directory to C:\Applications\Myfolder, you use the following command:

Clib.chdir(“C:\\Applications\\Myfolder”);

• To use a UNC path to access a computer on your network, use four backslashes (\\\\) before the computer
name:

Clib.system("copy \\\\server01\\share\\SR.txt D:\\SR.txt ");

For general usage information that applies to these methods, see Overview of Clib File Input and Output Methods.

Clib Close File Method
The Clib Close File method writes to disk the data that currently resides in the buffer for a file. It then closes this file. It
returns one of the following values:

• If successful, then it returns the following value:

Zero

• If not successful, then it returns the following value:

EOF

The file pointer is no longer valid after this call.

Format
Clib.fclose(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For more information,
see Clib Clear Error Method.

Example
The following example creates and writes to a text file, and then closes this file. It also tests for an error condition. If an
error occurs, then it displays a message and clears the buffer:

function Test_Click ()
{
 var fp = Clib.fopen('c:\\temp000.txt', 'wt');
 Clib.fputs('abcdefg\nABCDEFG\n', fp);
 if (Clib.fclose(fp) != 0)
 {
 TheApplication().RaiseErrorText('Unable to close file.' +
 '\nContents are lost.');

188

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

 }
 else
 Clib.remove('c:\\temp000.txt');
}

For more information, see Clib Clear Buffer Method.

Clib Create Temporary File Method
The Clib Create Temporary File method creates and opens a temporary binary file. It automatically removes the file
pointer and the temporary file when Siebel CRM closes the file or when the code finishes. It returns one of the following
values:

• If successful, then it returns the file pointer of the file that it created.

• If not successful, then it returns the following value:

Null

The location of where it creates the temporary file depends on how Clib is implemented on the operating system you
use.

Format
Clib.tmpfile()

Example
For an example, see Clib Get Characters to Next Line Method.

Clib Create Temporary File Name Method
The Clib Create Temporary File Name method creates a temporary file name. This name is not the same as the name of
any existing file and it is not the same as any file name that this method returns while this code runs. It returns the file
name as a string in the str argument.

Format
Clib.tmpnam([str])

The following table describes the arguments for the Clib Create Temporary File Name method.

Argument Description

str

A container that holds the name of the temporary file.

189

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Delete File Method
The Clib Delete File method deletes a file. It returns one of the following values:

• If successful, then it returns the following value:

0

• If not successful, then it returns the following value:

Negative 1

Format
Clib.remove(filename)

The following table describes the arguments for the Clib Delete File method.

Argument Description

filename

A string or string variable that contains the name of the file that this method deletes.

Clib Lock File Method
The Clib Lock File method locks or unlocks a file for simultaneous use by multiple processes. It returns one of the
following values:

• If successful, then it returns the following value:

0

• If not successful, then it returns a nonzero integer.

Format
Clib.flock(filePointer, mode)

The following table describes the arguments for the Clib Lock File method.

Argument Description

filePointer

The file that this method locks or unlocks. The Clib Open File method or the Clib Create Temporary File
method can return this file name.

mode

You can specify one of the following values:

• LOCK_EX. Lock for exclusive use.

• LOCK_SH. Lock for shared use.

190

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

• LOCK_UN. Unlock.

• LOCK_NB. Nonblock.

Usage
The Clib Lock File method applies or removes an advisory lock on the file that the filePointer argument identifies.
An advisory lock is a type of lock that allows cooperating processes to perform consistent operations on a file. Other
processes might still reference the files, so inconsistencies might occur.

Locking allows the following types of locks:

• Shared lock. Multiple processes can use shared locks on the same file at the same time. Read permission is
required to obtain a shared lock.

• Exclusive lock. The following configurations cannot exist on one file at the same time:

◦ Multiple exclusive locks

◦ Shared locks and an exclusive lock

Write permission is required to obtain an exclusive lock.

If you use the Clib Lock File method to:

• Lock a file that a calling process already locked, then it removes the old lock type and replaces it with the new
lock type. The Lock method locks individual files and not segments.

• Lock a file that is already locked and:

◦ You do not specify LOCK_NB in the mode argument, then it pauses the lock request until the file is free.

◦ Specify LOCK_NB in the mode argument, then the call fails and this method returns an EWOULDBLOCK
error.

Siebel eScript does not support the Clib Lock File method in a Unicode environment. It always returns 0 in a Unicode
environment.

Clib Open File Method
The Clib Open File method opens the file that you specify in the filename argument. It opens it in the mode that you
specify in the mode argument. It returns one of the following values:

• If successful, then it returns a file pointer to the file that it opened.

• If not successful, then it returns the following value:

Null

If this method successfully opens a file, then it clears the error status for this file and initializes a buffer for automatic
buffering of read and write activity with the file.

Several Clib methods require an argument named filePointer. It is often the return value of a Clib Open File call.

191

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.fopen(filename, mode, bUseBOM)

The following table describes the arguments for the Clib Open File method.

Argument Description

filename

Any valid file name that does not include a wildcard character.

mode

One of the required characters that specify a file mode followed by optional characters. For more
information, see Clib Open File Method.

bUseBOM

true: Add the Byte Order Mark (BOM) to the file.

false: Don't add the Byte Order Mark (BOM) to the file.

Usage for the Mode Argument
The following table describes usage for the mode argument. The mode argument is a string that includes one of the
following required characters, and then followed by other optional characters:

• r

• w

• a

Argument Mode Required

r

Opens the file for reading. The file must already exist.

w

Opens the file for writing. If the file does not exist, then Siebel eScript creates the file.

a

Opens the file in append mode.

Yes. You must
include one of
these arguments.

b

Opens the file in binary mode. If you do not specify b, then this method opens the file in
text mode and performs an end-of-line translation.

No

t

Opens the file in text mode. For a non-ASCII character:

• You use the u argument.

• You do not use the t argument.

No

u

Opens the file in Unicode mode as UTF-16 or Little Endian. For example:

Clib.fopen(“filename.txt”, “rwu”)

You can use the u mode for ASCII and non-ASCII characters.

No

192

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Mode Required

+

Opens the file for reading and writing.

No

Because some systems expect text files without the Byte Order Mark (BOM) included in the file, a new parameter will
prevent the inclusion of a BOM in a file. Previously all text files written to from Siebel eScript included the BOM in the file
as a default.

Clib.fopen(filename, mode, bUseBOM)

Default value of bUseBOM is true which will, when writing the file, write the byte order mark to the file.

If a byte order mark is not required in the file, then the third parameter should have the value “false”.

For example, var oFile = Clib.fopen("c:\\temp\\firstfile.txt","w", false);

Examples
Example 1

The following example opens the ReadMe text file for text mode reading and displays each line in that file:

var fp:File = Clib.fopen("ReadMe","rt");
if (fp == null)
 TheApplication().RaiseErrorText("\aError opening file for reading.\n")
else
{
 while (null != (line=Clib.fgets(fp)))
 {
 Clib.fputs(line, stdout)
 }
}
Clib.fclose(fp);

Example 2

The following example opens a file, writes a string to that file, and then uses the default codepage to read the string
from this file:

var oFile = Clib.fopen("myfile","rw");
if (null != oFile)
{
 var sHello = "Hello";
 var nLen = sHello.length;
 Clib.fputs(sHello, oFile);
 Clib.rewind(oFile);
 Clib.fgets (nLen, sHello, oFile);
}

Example 3

The following example opens a file, writes a string to this file, then uses Unicode to read the string from this file:

var oFile = Clib.fopen("myfile","rwu");
if (null != oFile)
{
 var sHello = "Hello";
 var nLen = sHello.length;
 Clib.fputs(sHello, oFile);
 Clib.rewind(oFile);
 Clib.fgets (nLen, sHello, oFile);

193

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

}

Example 4

The following example specifies a file path:

function WebApplet_ShowControl (ControlName, Property, Mode, &HTML)
{
if (ControlName == "GotoUrl")
 {
 var fp = Clib.fopen("c:\\test.txt","wt+");
 Clib.fputs("property = " + Property + "\n", fp);
 Clib.fputs("mode = " + Mode + "\n",fp);
 Clib.fputs("ORG HTML = " + HTML + "\n",fp);
 Clib.fclose(fp);
 HTML = "<td>New HTML code</td>";
 }
return(ContinueOperation);

Related Topics

For more information, see the following topics:

• Clib Create Temporary File Method

• Clib Get Environment Variable Method

Clib Rename File Method
The Clib Rename File method renames a file. It returns one of the following values:

• If successful, then it returns the following value:

0

• If not successful, then it returns the following value:

Negative 1

Format
Clib.rename(oldName, newName)

The following table describes the arguments for the Clib Rename File method.

Argument Description

oldName

A string that contains the name of the file that this method renames. This name can be an absolute file
name or a relative file name.

newName

A string that contains the new file name.

194

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Reopen File Method
The Clib Reopen File method closes the file associated with a file pointer. It then opens a file and associates it with the
file pointer of the file that it closed. You can use it to redirect one of the predefined file handles to a file or from a file.
These file handles include stdout, stderr, and stdin. It returns one of the following values:

• If successful, then it returns a copy of the old file pointer.

• If not successful, then it returns the following value:

Null

Format
Clib.freopen(filename, mode, oldFilePointer,bUseBOM)

The following table describes the arguments for the Clib Reopen File method.

Argument Description

filename

The name of the file that this method opens.

mode

One of the file modes specified in Clib Open File method. For Unicode, you can use the same u flag
that you can use in the Clib Open File method.

oldFilePointer

The file pointer to the file that the Clib Reopen File method closes and where it associates the file that
you specify in the filename argument.

bUseBOM

true: Add the Byte Order Mark (BOM) to the file.

false: Do not add the Byte Order Mark (BOM) to the file.

Because some systems expect text files without the Byte Order Mark (BOM) included in the file, a new parameter will
prevent the inclusion of a BOM in a file. Previously all text files written to from Siebel eScript included the BOM in the file
as a default.

Clib.freopen(filename, mode, oldFilePointer, bUseBOM)

Default value of bUseBOM is true which will, when writing the file, write the byte order mark to the file.

If a byte order mark is not required in the file, then the third parameter should have the value “false”.

For example, here the file pointer oFile has previously been created in the script and points to the secondfile.txt file.

Clib.freopen("c:\\temp\\secondfile.txt", "w", oFile, true);

Example
The following example uses the same file pointer to write to two different files:

var oFile = Clib.fopen("c:\\temp\\firstfile","w");
if (oFile == null)
{

195

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

 TheApplication().RaiseErrorText("File not found.");
}
Clib.fprintf(oFile, "Writing to first file\n");
Clib.freopen("c:\\temp\\secondfile", "w", oFile);
if (oFile == null)
{
 TheApplication().RaiseErrorText("File not found.");
}
Clib.fprintf(oFile, "Writing to second file\n");
Clib.fclose(oFile);

Related Topics
For more information, see the following topics:

• Clib Open File Method

• Clib Get Environment Variable Method

Clib Change Directory Method
The Clib Change Directory method modifies the current directory for the Siebel application. It returns one of the
following values:

• If successful, then it returns the following value:

0

• If not successful, then it returns the following value:

Negative 1

If you restart the Siebel Server, then Siebel CRM automatically resets the current directory depending on one of the
following operating systems that you use:

• Windows. The current directory on the Siebel Server that the Windows operating system recognizes.

• UNIX. The home directory of the administrator who restarts the Siebel Server.

Format
Clib.chdir(dirPath)

The following table describes the arguments for the Clib Change Directory method.

Argument Description

dirpath

The directory path that this method makes current. This path can be absolute or relative.

Example
The following example uses the Clib Change Directory method to change the current working directory of the Siebel
application. The default Siebel working directory is SIEBEL_ROOT\bin. For example, if you install the Siebel client in the C:
\sea81\client directory, then the default working directory is C:\sea81\client\bin:

function Application_Start (CommandLine)

196

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

{
// Start Tracing
 TheApplication().TraceOn("c:\\temp\\SiebTrace.txt","Allocation","All");
 var currDir = Clib.getcwd();
 TheApplication().Trace("Current directory is " + Clib.getcwd());

// Create a new directory
 var msg = Clib.mkdir('C:\\Clib test');

// Display the error flag created by creating directory;
// Must be 0, indicating no error.
 TheApplication().Trace(msg);

// Change the current directory to the new 'Clib test'
 Clib.chdir("C:\\Clib test");
 TheApplication().Trace("Current directory is " + Clib.getcwd());
// Delete 'Clib test'
 Clib.chdir("C:\\");
 Clib.rmdir("Clib test");
// Attempting to make a removed directory current gives an error
 msg = Clib.chdir("C:\\Clib test");
 TheApplication().Trace(msg);
}

This example produces the following result:

Current directory is D:\sea81\client\BIN
0
Current directory is C:\Clib test
-1

Clib Create Directory Method
The Clib Create Directory method creates a directory. It returns one of the following values:

• If successful, then it returns the following value:

0

• If not successful, then it returns the following value:

negative 1

Format
Clib.mkdir(dirpath)

The following table describes the arguments for the Clib Create Directory method.

Argument Description

dirpath

A string that contains a valid directory path. This directory can be an absolute path or a relative path.

This method uses this string to create the directory. If you do not specify the dirpath argument, then it
creates the directory in the C:\siebel\bin directory.

197

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Get Current Working Directory Method
The Clib Get Current Working Directory method returns the entire path of the current working directory. The default
current working directory is the directory where you install the Siebel application.

If a script uses the Clib Change Directory method or a similar method to change the current working directory, then the
current working directory returns to the original value after the script finishes.

Format
Clib.getcwd()

Example
The following example displays the current directory in a message box. The script then makes the root directory the
current directory, creates a new directory, removes that directory, and then attempts to make the removed directory
current:

function Button_Click ()
{
 var currDir = Clib.getcwd();
 TheApplication().Trace("Current directory is " + Clib.getcwd());
 var msg = Clib.mkdir('C:\\Clib test');
// Display the error flag created by creating directory;
// Must be 0, indicating no error.
 TheApplication().Trace(msg);

// Change the current directory to the new 'Clib test'
 Clib.chdir("C:\\Clib test");
 TheApplication().Trace("Current directory is " + Clib.getcwd());
// Delete 'Clib test'
 Clib.chdir("C:\\");
 Clib.rmdir("Clib test");
// Attempting to make a removed directory current yields error flag
 msg = Clib.chdir("C:\\Clib test");
 TheApplication().Trace(msg);
}

This example displays the following output:

Current directory is C:\SIEBEL\BIN
0
Current directory is C:\Clib test
-1

Clib Remove Directory Method
The Clib Remove Directory method removes a directory. It returns one of the following values:

• If successful, then it returns the following value:
0

• If not successful, then it returns the following value:
Negative 1

198

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.rmdir(dirpath)

The following table describes the arguments for the Clib Remove Directory method.

Argument Description

dirpath

The directory that this method removes. This argument can reference an absolute path or a relative
path.

Clib File Input and Output Methods
This topic describes Clib file input and output methods. It includes the following topics:

• Overview of Clib File Input and Output Methods

• Format Characters for Methods That Print and Scan

• Clib Clear Buffer Method

• Clib End of File Method

• Clib Get Character Method

• Clib Get Characters to Next Line Method

• Clib Get Cursor Position Method

• Clib Get Relative Cursor Position Method

• Clib Move Cursor to Beginning of File Method

• Clib Read From File Method

• Clib Restore Cursor Position Method

• Clib Set Cursor Position Method

• Clib Scan and Convert File Method

• Clib Scan and Convert from Input Device Method

• Clib Unget Method

• Clib Write Character Method

• Clib Write Formatted String Method

• Clib Write String to File Method

• Clib Write to File Method

Overview of Clib File Input and Output Methods
Siebel eScript handles file input and file output operations in a way that is similar to the C programming language and
the C++ programming language. These languages do not directly read to or write from files. With Siebel eScript, you

199

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

must first configure the language to open a file. To do this, you typically pass the name of this file to the Clib Open File
method.

File input and file output methods in Siebel eScript read the file into a buffer in memory and return a file pointer, which
is a pointer that references the beginning of the buffer. The file stream is the data that the buffer contains. Reading and
writing occurs relative to the buffer, which is not written to disk unless you explicitly use the Clib Clear Buffer method to
clear the buffer or use the Clib Close File method to close the file.

Format Characters for Methods That Print and Scan
A method that prints or scans uses a format string to format the data that the method reads and writes.

Format Characters for Methods That Print
This topic describes format characters for methods that print. The following methods can perform print operations:

• Clib Write Formatted String Method

• Clib Get Formatted String Method

• Clib Write Formatted String Method

Each of these methods prints each character while it reads the input until the method encounters a percentage symbol
(%). This symbol instructs that method to use the following format to print a value:

%[flags][width][.precision]type

To include the % symbol as a character in the string, you use two consecutive percentage symbols (%%).

Characters That Format Values
The following table describes characters that format a value.

Character Description Example Statement and Output

-

Left justification in the field with space padding or right
justification with zero or space padding.

fprintf(file, "[%-8i]", 26);

[26]

+

Force numbers to begin with a plus symbol (+) or a minus
symbol (-).

fprintf(file, "%+i", 26);

+26

space

A negative value that begins with a minus symbol (-). A
positive value begins with a space.

fprintf(file, "[% i]", 26);

[26]

#

Append one of the following symbols to the pound (#)
character to display the output in one of the following
forms:

• o. Prefix a zero to nonzero octal output.

fprintf(file, "%#o", 26);

032

fprintf(file, "%#x", 26);

200

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Character Description Example Statement and Output

• x or X. Prefix 0x or 0X to the output, which indicates
hexadecimal.

• f. Include a decimal point even if no digits follow the
decimal point.

• e or E. Include a decimal point even if no digits
follow the decimal point, and display the output in
scientific notation.

• g or G. Include a decimal point even if no digits
follow the decimal point, display the output in
scientific notation, depending on precision, and
leave trailing zeros in place.

0x1A

fprintf(file, "%#.f", 26);

26.

fprintf(file, "%#e", 26);

2.600000e+001

fprintf(file, "%#g", 26);

26.0000

f

Floating-point of the format [-]dddd.dddd.

fprintf(file, "%f", 26.735);

26.735000

e

Floating-point of the format [-]d.ddde+dd or [-]d.ddde-
dd.

fprintf(file, "%e", 26.735);

2.673500e+001

E

Floating-point of the format [-]d.dddE+dd or [-]d.dddE-
dd.

fprintf(file, "%E", 26.735);

2.673500E+001

g

Floating-point number of f or e type, depending on
precision.

fprintf(file, "%g", 26.735);

26.735

G

Floating-point number of F or E type, depending on
precision.

fprintf(file, "%G", 26.735);

26.735

c

Character. For example, a, b, or 8.

fprintf(file, "%c", 'a');

a

s

String.

fprintf(file, "%s", "Test");

Test

Characters That Determine Width
The following table describes characters that determine width.

Character Description Example Statement and Output

n

At least n characters are output. If the value is less
than n characters, then Siebel eScript pads that
precedes the output with spaces.

fprintf(file, "[%8s]", "Test");

[Test]

201

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Character Description Example Statement and Output

0n

At least n characters are output pads that precedes
the output with zeros.

fprintf(file, "%08i", 26);

00000026

*

The next value in the argument list is an integer that
specifies the output width.

fprintf(file, "[%*s]", 8, "Test");

[Test]

Characters That Determine Precision
The following table describes characters that determine precision. If you specify precision, then you must begin the
precision format with a period (.) and you must use one of the forms described in Format Characters for Methods That
Print.

Character Description Example Statement and Output

.0

For floating-point type. No decimal point is output.

fprintf(file, "%.0f", 26.735);

26

.n

Output is n characters. If the value is a floating-point
number, then the output is n decimal places.

Assume you specify a Width value and a .n Precision
value when you format a floating point number. In this
situation, to determine the width of the output and
to determine if it must pad the output, the method
counts the decimal point and the characters that
occur before and after the decimal point. For example:

fprintf(file, "%10.2f", 26.735);

[26.73]

fprintf(file, "%.2f", 26.735);

26.73

.*

The next value in the argument list is an integer that
specifies the precision width.

fprintf(file, "%.*f", 1, 26.735);

26.7

Characters That Determine Character Type
The following table describes characters that determine character type.

Character Description Example Statement and Output

d,i

Signed integer.

fprintf(file, "%i", 26);

26

u

Unsigned integer.

fprintf(file, "%u", -1);

202

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Character Description Example Statement and Output

4294967295

o

Octal integer.

fprintf(file, "%o", 26);

32

x

Hexadecimal integer using 0 through 9 and a, b, c, d,
 e, or f.

fprintf(file, "%x", 26);

1a

X

Hexadecimal integer using 0 through 9 and A, B, C, D,
 E, or F.

fprintf(file, "%X", 26); 1A

f

Floating-point of the format [-]dddd.dddd.

fprintf(file, "%f", 26.735);

26.735000

e

Floating-point of the format [-]d.ddde+dd or
[-]d.ddde-dd.

fprintf(file, "%e", 26.735);

2.673500e+001

E

Floating-point of the format [-]d.dddE+dd or
[-]d.dddE-dd.

fprintf(file, "%E", 26.735);

2.673500E+001

g

Floating-point number of f or e, depending on
precision.

fprintf(file, "%g", 26.735);

26.735

G

Floating-point number of F or E, depending on
precision.

fprintf(file, "%G", 26.735);

26.735

c

Character. For example, a, b, 8.

fprintf(file, "%c", 'a');

a

s

String.

fprintf(file, "%s", "Test");

Test

Format Characters for Methods That Scan
This topic describes format characters for methods that scan. The following methods can perform a scan operation:

• Clib Scan and Convert File Method

• Clib Scan and Convert from Input Device Method

203

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Note the following:

• The format string includes character combinations that specify the type of data.

• The format string specifies input sequences and how the method must convert the input.

• The method maps each character to the input as it reads the input until it encounters a percentage symbol (%).

• The percentage symbol causes the method to read the value, and then store it in an argument that follows the
format string.

• Each argument that occurs after the format string receives the next parsed value from the next argument in the
list of arguments that occur after the format string.

Arguments In a Method That Performs a Scan Operation
An argument in a method that performs a scan operation uses the following format:

%[*][width]type

The following table describes usage of the * (asterisk) and the width argument. If you specify the width, then the input is
an array of characters of the length that you specify.

Argument Description

*

Suppresses assigning this value to any argument.

width

Sets the maximum number of characters to read. If the method encounters a white-space character or
a nonconvertible character, then it stops reading these characters. For more information, see Use White
Space to Improve Readability.

The following table describes the values you can use for the type argument .

Type Value Description

d,D,i,I

Signed integer.

u,U

Unsigned integer.

o,O

Octal integer.

x,X

Hexadecimal integer.

f,e,E,g,G

Floating-point number.

s

String.

[abc]

String that includes the characters in brackets, where A–Z represents the range A to Z.

[^abc]

String that includes the following character in brackets:

204

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Type Value Description

not

Example
The following example creates a file named myfile.txt and stores a float number and a string. It then rewinds the stream
and uses fscanf to read the values:

function WebApplet_Load()
{
 var f;
 var str;
 var pFile = Clib.fopen ("c:\\myfile.txt","w+");
 Clib.fprintf (pFile, "%f %s", 3.1416, "PI");
 Clib.rewind (pFile);
 Clib.fscanf (pFile, "%f", f);
 Clib.fscanf (pFile, "%s", str);
 Clib.fclose (pFile);
 Clib.printf ("I have read: %f and %s \n",f,str);
}

This example produces the following output:

I have read: 3.141600 and PI

Clib Clear Buffer Method
The Clib Clear Buffer method writes to disk the data that exists in the buffer depending on the following value in the
filePointer argument:

• Is not null. It writes to disk any data that exists in the buffer only for the file that the filePointer argument
identifies.

• Is null. It writes to disk any data that exists in the buffer for all open files.

This method returns one of the following values:

• If successful, then it returns the following value:

0

• If not successful, then it returns the following value:

EOF

Format
Clib.fflush(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For more information,
see Clib Clear Error Method.

Related Topics
For more information, see Clib Get Environment Variable Method.

205

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib End of File Method
The Clib End of File method determines if the file cursor is at the end of the file that the filePointer argument identifies.
It returns one of the following values:

• If the file cursor is at the end of the file, then it returns the following value:
A nonzero integer

• If the file cursor is not at the end of the file, then it returns the following value:
0

Format
Clib.feof(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For more information,
see Clib Clear Error Method.

Clib Get Character Method
The Clib Get Character method returns one of the following values:

• The next character from the buffer of the file that the filePointer argument identifies. It returns this value as a
byte converted to an integer.

• If a read error occurs or if the cursor is at the end of the file, then it returns the following value and stores the
error number in the errno property:
EOF

Format
Clib.getc(filePointer)
Clib.fgetc(filePointer)

The arguments for these methods are the same as the arguments for the Clib Clear Error method. For more information,
see Clib Clear Error Method.

In most situations, to avoid an error with macro usage, you must use Clib.fgetc.

Clib Get Characters to Next Line Method
The CLib Get Characters to Next Line method returns one of the following values:

• A string that includes the characters that exist in a file from the current position of the file cursor up to and
including the next newline character.

• If an error occurs or if it reaches the end of the file, then it returns the following value:
Null

206

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.fgets([maxLen,] filePointer)

The following table describes the arguments for the Get Characters to Next Line method.

Argument Description

maxLen

The maximum length of the string that this method returns if it does not encounter a newline
character.

If the File Mode is Unicode, then the maxLen argument is the length in Unicode characters.

If you do not specify the maxLen argument, then Siebel eScript uses the default limit of 999 characters.

filePointer

A file pointer that the Clib Open File method returns.

Example
The following example writes a string that contains an embedded newline character to a temporary file. To return and
display the output, it then reads from the file twice:

function Test_Click ()
{
 var x = Clib.tmpfile();
 Clib.fputs("abcdefg\nABCDEFG\n", x);
 Clib.rewind(x);
 var msg = Clib.fgets(x) + " " + Clib.fgets(x);
 Clib.fclose(x);
 TheApplication().RaiseErrorText(msg);
}

This example produces the following output:

abcdefg
ABCDEFG

Caution About Using the Get Characters to Next Line Method with Non-ASCII
Characters
If the string that the Get Characters to Next Line method returns includes a non-ASCII character, then you must
configure Siebel CRM to open in Unicode the file that the filePointer argument specifies.

CAUTION: If Siebel CRM opens the file in text mode, then this method treats any non-ASCII character it encounters
as an end-of-line character and stops reading the current line. As a result, this method might truncate the string that
it returns. If the file does not use an encoding standard that is compatible with Unicode, then you must first configure
Siebel CRM to transform it to UTF-8 or UTF-16 with the appropriate byte-order mark (BOM) placed at the beginning of
the file. For more information, see Clib Open File Method.

Related Topics
For more information, see Clib Write String to File Method.

207

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Get Cursor Position Method
The Clib Get Cursor Position method gets the current position of the file cursor in the file that the filePointer argument
identifies. It stores this value in the position argument.

Format
Clib.fgetpos(filePointer, position)

The following table describes the arguments for the Get Pointer Position method.

Argument Description

filePointer

A file pointer that the Clib Open File method returns.

position

The current position of the pointer in the file that the filePointer argument identifies.

Example
The following example restores the cursor position. It does the following work:

1. Writes two strings to a temporary text file.
2. To save the position where the second string begins, it uses the Clib Get Cursor Position method.
3. To set the file cursor to the saved position, it uses the Clib Set Cursor Position method:

function Test_Click ()
{
 var position;
 var fp = Clib.tmpfile();
 Clib.fputs("Melody\n”, fp);
 Clib.fgetpos(fp, position)
 Clib.fputs("Lingers\n", fp);
 Clib.fsetpos(fp, position);
 var msg = Clib.fgets(fp));
 Clib.fclose(fp);
 TheApplication().RaiseErrorText(msg);
}

Clib Get Relative Cursor Position Method
The Clib Get Relative Cursor Position method gets the position of the file cursor of an open file relative to the beginning
of the file. It returns one of the following values:

• If successful, then it returns the current position of the file cursor.

• If not successful, then it returns the following value and stores the error value in the errno property:

Negative 1

208

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

The cursor position in a text file might not correspond exactly with the byte offset in the file. A text file is a file that is not
opened in binary mode.

Format
Clib.ftell(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For more information,
see Clib Clear Error Method.

Clib Move Cursor to Beginning of File Method
The Clib Move Cursor to Beginning of File method moves the file cursor to the beginning of a file. This method is
identical to the Clib Set Cursor Position method with the mode argument set to SEEK_SET and the offset argument set
to 0. The only difference is that the Clib Move Cursor to Beginning of File method also clears the error indicator for the
file.

Format
Clib.rewind(filePointer)

The arguments for this method are the same as the arguments for the Clib Clear Error method. For more information,
see Clib Clear Error Method.

Usage With a Unicode File
Siebel CRM uses UTF-16 encoding when it writes to a file in Unicode. The first two bytes of the file are always the BOM
(Byte Order Mark). If the Clib Move Cursor to Beginning of File method calls a Unicode file, then it references BOM
(-257) and not the first valid character. To skip the BOM, you must configure Siebel CRM to call the Clib Get Character
Method or the Clib File Get Character Method method at least one time. For more information, see Clib Get Character
Method.

Example
For an example, see Clib Get Characters to Next Line Method.

Clib Read From File Method
The Clib Read From File method reads data from an open file that you specify in the filePointer argument. It then stores
this data in an argument, buffer, or BLOB that you specify. If this argument, buffer, or BLOB does not exist, then this
method creates it. It returns one of the following values:

• If successful, then it returns the number of elements it read.

• If you specify the destBuffer argument, then it returns the number of bytes read, up to the value you specify in
the bytelength argument.

• If you specify the varDescription argument, then it returns one of the following values:

◦ 1 if it reads the data

◦ 0 if a read error occurs or if it encounters the end of file

209

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

// Format A
Clib.fread(destBuffer, bytelength, filePointer)

// Format B
Clib.fread(destVar, varDescription, filePointer)

// Format C
Clib.fread(blobVar, blobDescriptor, filePointer)

Arguments
The following table describes the arguments for the Clib Read From File method.

Argument Description

destBuffer

The buffer to contain the data that this method reads.

bytelength

The number of bytes that this method reads.

filePointer

A file pointer that the Clib Open File method returns.

destVar

A container to hold the data that this method reads.

varDescription

The format of the data that this method reads. For more information, see Clib Read From File Method.

blobVar

The BLOB where this method writes data.

blobDescriptor

The BLOB descriptor for the value you specify in the blobVar argument.

Format of the Data That the Clib Read From File Method Reads
The following table describes the format of the data that the Clib Read From File method reads. You specify this
format in the varDescription argument. If the destVar argument must hold a single datum, then you must set
the varDescription argument to one of these formats. If the destVar contains blob data, then you must specify a
blobdescriptor argument. A blobdescriptor can also consist of varDescriptions for the individual elements of the
blobdescriptor.

Value Description

UWORD8

Stored as an unsigned byte.

SWORD8

Stored as a signed byte.

UWORD16

Stored as an unsigned, 16-bit integer.

SWORD16

Stored as a signed, 16-bit integer.

210

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Value Description

UWORD24

Stored as an unsigned, 24-bit integer.

SWORD24

Stored as a signed, 24-bit integer.

UWORD32

Stored as an unsigned, 32-bit integer.

SWORD32

Stored as a signed, 32-bit integer.

FLOAT32

Stored as a floating-point number.

FLOAT64

Stored as a double-precision, floating-point number.

The following code includes example formats:

ClientDef = new blobDescriptor();
ClientDef.Sex = UWORD8;
ClientDef.MaritalStatus = UWORD8;
ClientDef._Unused1 = UWORD16;
ClientDef.FirstName = 30; ClientDef.LastName = 40;
ClientDef.Initial = UWORD8;

Usage for the Clib Read From File Method
The Siebel eScript usage of fread differs from the standard C library usage in that the C library reads an array of numeric
values or structures into consecutive bytes in memory. The Clib Read From File method reads data in the byte-order
that the current value of the BigEndianMode global variable describes.

Example
The following example reads the following items from the fp file:

• Reads the 16-bit i integer

• Reads the 32-bit f float

• Reads the 10-byte buffer from the buf buffer:

if (!Clib.fread(i, SWORD16, fp) || !Clib.fread(f, FLOAT32, fp)
|| 10 != Clib.fread(buf, 10, fp))
 TheApplication().RaiseErrorText("Error reading from file.\n");
}

Clib Restore Cursor Position Method
The Restore Cursor Position method sets the current file cursor to a position that you specify. You can use it to restore
the file cursor to a position that the Clib Get Cursor Position returns. It returns one of the following values:

• If successful, then it returns the following value:

0

211

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

• If not successful, then it returns nonzero and stores the error value in the errno property.

Format
Clib.fsetpos(filePointer, position)

The following table describes the arguments for the Restore Cursor Position method.

Argument Description

filePointer

A file pointer that the Clib Open File method returns.

position

The value that the Clib Get method returns.

Example
For an example, see Clib Get Cursor Position Method.

Related Topics
For more information, see the following topics:

• Clib Get Cursor Position Method

• Clib Get Relative Cursor Position Method

Clib Set Cursor Position Method
The Clib Set Cursor Position method sets the position of the file cursor of an open file. It returns one of the following
values:

• If successful, then it returns the following value:
0

• If not successful, then it returns a nonzero value.

Format
Clib.fseek(filePointer, offset[, mode])

The following table describes the arguments for the Clib Set Cursor Position method.

Argument Description

filePointer

A file pointer that the Clib Open File method returns.

offset

The number of bytes that the Clib Set Cursor Position method moves the file cursor, starting with the
value that you specify in the mode argument.

The cursor position in a text file might not correspond exactly with the byte offset in the file. A text file
is a file that is not opened in binary mode.

212

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

mode

You can specify one of the following values:

• SEEK_CUR. Relative to the current position of the file cursor.

• SEEK_END. Relative to the end of the file.

• SEEK_SET. Relative to the beginning of the file. If you do not specify the mode argument, then
this method uses SEEK_SET.

Related Topics
For more information, see the following topics:

• Clib Get Cursor Position Method

• Clib Get Relative Cursor Position Method

• Clib Move Cursor to Beginning of File Method

Clib Scan and Convert File Method
The Clib Scan and Convert File method reads data from a file and stores data items that exist in this file in a series of
arguments. It returns one of the following values:

• If successful, then it returns the number of input items it converted and stored.

• If an input failure occurs before the conversion, then it returns the following value:

EOF

Format
Clib.fscanf(filePointer, formatString, var1, var2, ..., varn)

The following table describes the arguments for the Clib Scan and Convert File method.

Argument Description

filePointer

A file pointer that the Clib Open File method returns.

formatString

A string that contains format instructions that the Clib Open File method uses to read each data item in
the file.

var1, var2, ..., varn

Variables that the Clib Open File method uses to store the values that it formats.

213

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Usage
This method does the following work:

1. Reads input from the file that the filePointer argument identifies.
2. Matches characters that exist in the file with characters that the formatString argument specifies until it reaches

a percentage symbol (%).

The percentage symbol causes this method to read and store the values in the arguments that occur after the
string that the formatString argument identifies.

3. Parses each match that occurs after the value of the formatString argument.

As it parses each match, it stores the result in a variable argument, such as var1, var2, ..., and varn. If a matching
failure occurs, then the number of matches it parses might be fewer than the number of variable arguments
you specify.

An argument specification uses the following format:

%[*][width]type

For values for these items, see Format Characters for Methods That Scan.

You must make sure that the file it reads is open and includes read access.

Example
The following example uses the Clib Scan and Convert File method with various options on the arguments:

var int1;
var int2;
var hour;
var min;
var sec;
var str;

var file = Clib.fopen("c:\\temp\\fscanf.txt", "r");
TheApplication().TraceOn("c:\\temp\\testoutput.txt", "allocation", "all");

// Simple scanf:
// input line e.g.: "Monday 10:18:00"
Clib.fscanf(file, "%s %i:%i:%i\n", str, hour, min, sec);
TheApplication().Trace(str + ", " + hour + ", " + min + ", " + sec);

// Using width specifier:
// input line e.g.: "1234567890"
Clib.fscanf(file, "%5i%5i\n", int1, int2);
TheApplication().Trace(int1 + ", " + int2);

// Reading hexadecimal integers and suppressing assignment to a variable:
// input line e.g.: "AB3F 456A 7B44"
Clib.fscanf(file, "%x %*x %x\n", int1, int2);
TheApplication().Trace(int1 + ", " + int2);

// Using character ranges:
// input line e.g.: "helloHELLO"
Clib.fscanf(file, "%[a-z]\n", str);
TheApplication().Trace(str);

Clib.fclose(file);

214

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

This example produces the following output:

COMMENT,"Monday, 10, 18, 0"
COMMENT,"12345, 67890"
COMMENT,"43839, 31556"
COMMENT,hello

Clib Scan and Convert from Input Device Method
The Clib Scan and Convert from Input Device method reads input from an input device and stores the data in
arguments. It reads from the keyboard unless the Clib Reopen File method redirects it to another file as stdin. It returns
one of the following values:

• If successful, then it returns the number of variables where it assigned data.

• If not successful, then it returns the following value:

EOF

This method does not read the input until the user presses the ENTER key. This method is identical to the Clib Scan and
Convert File method with stdin set as the first argument. For more information, see Clib Scan and Convert File Method.

Format
Clib.sscanf([formatString] [,var1, var2, ..., varn])

Clib Unget Method
The Clib Unget method pushes a character back into a file. It returns one of the following values:

• If successful, then it returns the value that the char argument contains.

• If not successful, then it returns the following value:

EOF

If this method pushes a character back into a file, then it converts the character that you specify in the char argument
to a byte. It only pushes back one character. After the unget, this character is again available in the file for subsequent
retrieval. You might need to use this method to read up to, but not including, a newline character. You can then use it to
push the newline character back into the file buffer.

Format
Clib.ungetc(char, filePointer)

The following table describes the arguments for the Clib Unget method.

Argument Description

char

The character that this method pushes back. It puts back one character to the file stream that it reads.
It moves the seek position of the file pointer by one character position.

filePointer A file pointer that the Clib Open File method returns.

215

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

Clib Write Character Method
The Clib Write Character method writes a character, converted to a byte, to a file that you specify. It returns one of the
following values:

• If successful, then it returns the value that the char argument contains.

• If not successful, then it returns the following value:
EOF

The following type of character that the char argument contains determines how this method writes the character:

• String. It writes the first character of the string to the file.

• Number. It writes the character that corresponds to the Unicode value for this number to the file.

Format
Clib.fputc(char, filePointer)
Clib.putc(char, filePointer)

Clib.fputc writes a character to a file. Clib.putc writes a character to the screen. In most situations, to avoid an error with
macro usage, you must use Clib.fputc.

The following table describes the arguments for the Clib Write Character method.

Argument Description

char

A one character string or variable that contains a single character.

filePointer

A file pointer that the Clib Open File method returns.

Clib Write Formatted String Method
The Clib Write Formatted String method writes a formatted string to a file.

Format
Clib.fprintf(filePointer, formatString)

The following table describes the arguments for the Clib Write Formatted String method.

Argument Description

filePointer A file pointer that the Clib Open File method returns.

216

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

formatString

A string that contains formatting instructions for each data item that the Clib Write Formatted String
method writes. For more information, Format Characters for Methods That Print and Scan.

Example
The following example uses the Clib Write Formatted String method with various values for the formatString argument:

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)
{
 if (MethodName == "fprintfsamples")
 {
 var intgr = 123456789;
 var flt = 12345.6789;
 var hour = 1;
 var min = 7;
 var sec = 0;
 var str = "Hello World";
 var file = Clib.fopen("c:\\temp\\fprintf.txt", "w");

 // Simple formatting:
 Clib.fprintf(file, "(1) %s, it is now %i:%i:%i pm.\n", str, hour, min, sec);
 Clib.fprintf(file, "(2) The number %i is the same as %x.\n", intgr, intgr);
 Clib.fprintf(file, "(3) The result is %f.\n", flt);

 // Flag values:
 // "+" forces a + or - sign; "#" modifies the type flag "x"
 // to prepend "0x" to the output. (Compare with the simple
 // formatting example.)
 Clib.fprintf(file, "(4) The number %+i is the same as %#x.\n", intgr, intgr);

 // Width values:
 // The width is a minimal width, thus longer values
 // are not truncated.
 // "2" fills with spaces, "02" fills with zeros.
 var myWidth = 2;
 Clib.fprintf(file, "(5) %5s, it is now %2i:%02i:%02i pm.\n", str, hour, min,
 sec);

 // Precision values:
 // ".2" restricts to 2 decimals after the decimal separator.
 // The number will be rounded appropriately.
 Clib.fprintf(file, "(6) The result is %.2f.\n", flt);

 // A combined example:
 // <space> displays space or minus;
 // "+" displays plus or minus;
 // "020" uses a minimal width of 20, padded with zeros;
 // ".2" displays 2 digits after the decimal separator;
 // "*" uses the next argument in the list to specify the width.
 Clib.fprintf(file, "(7) The values are:\n%+020.2f\n% 020.2f\n% *.2f", flt,
 intgr, 20, intgr);

 Clib.fclose(file);

 return (CancelOperation);
 }
 return (ContinueOperation);
}

217

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

This example produces the following output:

(1) Hello World, it is now 1:7:0 pm.
(2) The number 123456789 is the same as 75bcd15.
(3) The result is 12345.678900.
(4) The number +123456789 is the same as 0x75bcd15.
(5) Hello World, it is now 1:07:00 pm.
(6) The result is 12345.68.
(7) The values are:
+0000000000012345.68
0000000123456789.00
123456789.00

Clib Write String to File Method
The Write String to File method writes a string to a file that you specify. It returns one of the following values:

• If successful, then it returns a nonnegative value.

• If not successful, then it returns the following value:

EOF

Format
Clib.fputs(string, filePointer)

The following table describes the arguments for the Write String to File method.

Argument Description

string

A string literal or a variable that contains a string.

filePointer

A file pointer that the Clib Open File method returns.

Example
For an example, see Clib Get Characters to Next Line Method.

Clib Write to File Method
The Clib Write to File method writes data to a file. It returns one of the following values:

• If successful, then it returns the number of elements it wrote

• If not successful, then it returns the following value:

0

Siebel eScript usage of fwrite differs from the standard C library usage. The C library writes arrays of numeric values or
structures from consecutive bytes in memory. This is not necessarily true in Siebel eScript.

218

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format A
Clib.fwrite(sourceVar, varDescription, filePointer)

Format B
Clib.fwrite(sourceVar, bytelength, filePointer)

Arguments
The following table describes the arguments for the Clib Write to File method.

Argument Description

bytelength

Number of bytes that this method writes.

sourceVar

The source that this method uses to get the data that it writes.

varDescription

A value that depends on the type of object that the sourceVar argument identifies.

filePointer

The file where this method writes data.

Usage for the varDescription Argument
The following table describes values you must set for the sourceVar argument and the varDescription argument. For
example, if you use the sourceVar argument to identify a buffer, then you must set the varDescription argument to the
length of that buffer, in bytes.

Value of the sourceVar Argument Value of the varDescription Argument

Buffer

Length of the buffer, in bytes.

Object

Value of the object descriptor.

A single datum

One of the values listed in Clib Read From File Method.

Example
The following example writes the following data into the fp file:

• The 16-bit i integer

• The 32-bit f float

• The 10-byte buf buffer:

if (!Clib.fwrite(i, SWORD16, fp) || !Clib.fwrite(f, FLOAT32, fp)
 || 10 != fwrite(buf, 10, fp))
{
 TheApplication().RaiseErrorText("Error writing to file.\n");

219

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

}

Clib String Methods
This topic describes Clib string methods. It includes the following topics:

• Clib Append String Method

• Clib Compare Strings Method

• Clib Convert String to Lowercase Method

• Clib Copy String Method

• Clib Get Formatted String Method

• Clib Get Last Substring Method

• Clib Get Substring Method

• Clib Search String for Character Method

• Clib Search String for Character Set Method

• Clib Search String for Not Character Set Method

• Clib Write Formatted String Method

Clib Append String Method
The Clib Append String method copies characters from one string to the end of another string. It appends up to the
value that you specify in the maxLen argument of the string that you specify in the sourceString argument. It does not
copy any character that occurs after a null byte. It returns the appended string that the destString argument contains.

The length of the destString argument is the lesser of the maxLen argument or the length of the sourceString argument.

Format
Clib.strncat(destString, sourceString, maxLen)

The following table describes the arguments for the Clib Append String method.

Argument Description

sourceString

The string that this method uses to get the characters that it adds.

destString

The string where this method adds characters.

maxLen

The maximum number of characters to add.

Example
The following example uses the Clib Append String method:

220

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

var string1 = "I love to ";
var string2 = "ride hang-gliders and motor scooters.";
Clib.strncat(string1, string2, 17);
TheApplication().RaiseErrorText(string1);

This example returns the following string:

"I love to ride hang-gliders"

Related Topics
For more information, see Clib Copy String Method.

Clib Compare Strings Method
The Clib Compare Strings method performs a comparison between two strings, one byte at a time. It returns one of the
following values:

• If the strings are identical, then it returns the following value:

0

• If the ASCII code of the first unmatched character in the string1 argument is:

◦ Less than that of the first unmatched character in the string2 argument, then it returns a negative
number.

◦ Greater than that of the first unmatched character in the string2 argument, then it returns a positive
number.

It stops the comparison if one of the following situations occurs:

• It encounters a mismatch between strings.

• It encounters a terminating null byte.

Format
Clib.stricmp(string1, string2)
Clib.strcmpi(string1, string2)
Clib.strncmp(string1, string2, maxLen)
Clib.strncmpi(string1, string2, maxLen)
Clib.strnicmp(string1, string2, maxLen)

You can use one of the following:

• Search that is case-sensitive. You use Clib.strncmp.

• Search that is not case-sensitive. You use Clib.stricmp or Clib.strcmpi. In a comparison that is not case-
sensitive, A and a are the same.

The Clib.strncmp, Clib.strncmpi, and Clib.strnicmp methods stop the comparison when one of the following situations
occurs:

• It has compared the number of bytes that you specify in the maxLen argument.

• It encounters a terminating null byte.

The following table describes the arguments for the Clib Compare Strings method.

221

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

string1

A string or a variable that contains a string that this method compares against the string that the
string2 argument contains.

string2

A string or a variable that contains a string that this method compares against the string that the
string1 argument contains.

maxLen

The number of bytes to compare.

Clib Convert String to Lowercase Method
The Clib Convert String to Lowercase method converts a string to lowercase. It starts at position 0 of the str argument
and ends immediately before the terminating null byte. It returns the value of the str argument all in lowercase.

Format
Clib.strlwr(str)

The following table describes the arguments for the Clib Convert String to Lowercase method.

Argument Description

str

The string that this method modifies to lowercase.

Clib Copy String Method
The Clib Copy String method copies characters from one string to another string. It returns the ASCII code of the first
character of the string that you specify in the destString argument. You can write code that copies from one part of a
string to another part of the same string.

Format
Clib.strncpy(destString, sourceString, maxLen)

This method uses the same arguments as the Clib Append String method. For more information, see Clib Append String
Method. Note the following differences that the Clib Copy String method performs:

• The number of characters it copies is the lesser of the value of the maxLen argument and the length of the
sourceString argument.

• If the value that the MaxLen argument contains is greater than the length of the value that the sourceString
argument contains, then it fills the remainder of the destination string with null bytes.

• If the string you specify in the destString argument is not defined, then it defines this string.

222

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Get Formatted String Method
The Clib Get Formatted String method returns a formatted string as a numeric literal or as an argument.

If you use this method to format a floating point number to a specific number of decimal points, then it returns the
value rounded to the number of decimal points that you specify. For example, if you use the following code to format
the num argument, then it returns the num argument rounded to 2 decimal points:

Clib.rsprintf(“%.2f”, num)

Format
Clib.rsprintf([formatString] [,var1, var2, ..., varn])

The following table describes the arguments for the Clib Get Formatted String method.

Argument Description

formatString

A string that includes character combinations that describe how to treat arguments. For more
information on the format strings you can use with this method, see Format Characters for Methods
That Print and Scan.

var1, var2, ..., varn

Variables that this method formats according to the format that you define in the formatString
argument.

Example
Each of the following code lines includes an example of using the Clib Get Formatted String method followed by the
resulting string:

var TempStr = Clib.rsprintf("I count: %d %d %d.",1,2,3) //"I count: 1 2 3"
var a = 1;
var b = 2;
TempStr = Clib.rsprintf("%d %d %d",a, b, a+b) //"1 2 3"

Clib Get Last Substring Method
The Clib Get Last Substring method searches a string for the last occurrence of a character. It returns one of the
following values:

• If it finds the character, then it returns a string that includes the following items:

• Begins at the rightmost occurrence of the value that you specify in the char argument

• Ends with the rightmost character of the string that you specify in the string argument

• If it does not find the character, then it returns the following value:

Null

223

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

It is recommended that you use the Clib Get Last Substring method only if you cannot use the equivalent standard
JavaScript method.

Format
Clib.strrchr(string, char)

The following table describes the arguments for the Clib Get Last Substring method.

Argument Description

string

A string literal or string variable that contains the character that this method searches.

char

The character that this method searches for.

Example
The following example uses the Clib Get Last Substring method:

var str = "I don’t like soggy cereal."
var substr = Clib.strrchr(str, 'o');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " + substr);

This example provides the following result:

str = I don’t like soggy cereal.
substr = oggy cereal.

Related Topics
For more information, see Create String From Substring Method.

Clib Get Substring Method
The Clib Get Substring method searches a string for the first occurrence of a string. It returns one of the following
values:

• If it finds the string that you specify in the findString argument, then it returns the string that:

◦ Begins at the first occurrence of the value that you specify in the findString argument.

◦ Ends at the end of the string that you specify in the sourceString argument.

• If it does not find the string that you specify in the findString argument, then it returns the following value:

Null

It searches the string that you specify in the sourceString argument from the beginning of this string.

It is recommended that use the Clib Get Substring method only if you cannot use the equivalent standard JavaScript
method.

224

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.strstr(sourceString, findString)
Clib.strstri(sourceString, findString)

You can use one of the following:

• Search that is case-sensitive. You use Clib.strstr.

• Search that is not case-sensitive. You use Clib.strstri.

The following table describes the arguments for the Clib Get Substring method.

Argument Description

sourceString

The string that this method searches.

findString

The string that this method must find.

Example 1
The following example uses Clib.strstr:

function Test1_Click ()
{
 var str = "We have to go to Haverford."
 var substr = Clib.strstr(str, 'H');
 TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " +substr);
}

This example provides the following result:

str = We have to go to Haverford
substr = Haverford

Example 2
The following example uses Clib.strstri:

function Test_Click ()
{
 var str = "We have to go to Haverford."
 var substr = Clib.strstri(str, 'H');
 TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " +substr);
}

This example provides the following result:

str = We have to go to Haverford.
substr = have to go to Haverford.

Related Topics
For more information, see Create String From Substring Method.

225

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Search String for Character Method
The Clib Search String for Character method searches a string for a character that you specify. It returns one of the
following values:

• If it finds the character, then it returns the offset of the first occurrence of the character that you specify in the
char argument. This offset is the number of characters in the string from the beginning to the first occurrence,
starting with 0.

• If it does not find the character, then it returns the following value:

Null

It is recommended that you use the Clib Search String for Character method only if you cannot use the equivalent
standard JavaScript method.

Format
Clib.strchr(string, char)

The following table describes the arguments for the Clib Search String for Character method.

Argument Description

string

A string literal or a string variable that contains the character for which this method searches.

char

The character for which this method searches.

Example
The following example uses the Clib Search String for Character method:

var str = "I can't stand soggy cereal."
var substr = Clib.strchr(str, 's');
TheApplication().RaiseErrorText("str = " + str + "\nsubstr = " + substr);

This example products the following results:

I can't stand soggy cereal.
stand soggy cereal.

Clib Search String for Character Set Method
The Clib Search String for Character Set method searches a string for a set of characters that you specify in the charSet
argument. It returns one of the following values:

• If it finds this set, then it returns the offset of the first character of the first occurrence of the set that you
specify in the charSet argument. This offset is the number of characters in the string from the beginning to the
first occurrence, starting with 0.

• If it does not find this set, then it returns the length of the string.

226

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.strcspn(string, charSet)
Clib.strpbrk(string, charSet)

Clib.strcspn is similar to Clib.strpbrk, except that Clib.strpbrk returns the set that begins at the first character found while
Clib.strcspn returns the offset number for that character.

The following table describes the arguments for the Clib Search String for Character Set method.

Argument Description

string

A literal string or a variable that contains the character set for which this method searches.

charSet

A literal string or a variable that is the character set for which this method searches.

Usage for the Clib Search String for Character Set Method
The Clib Search String for Character Set method searches for characters starting at the beginning of the string that you
specify in the string argument. The search is case-sensitive, so you must use uppercase and lowercase characters in the
charSet argument.

It is recommended that you use the Clib Search String for Character Set Method method only if you cannot use the
equivalent standard JavaScript method.

Example
The following example demonstrates the difference between Clib.strcspn and Clib.strpbrk:

var string = "There's more than one way to climb a mountain.";
var rStrpbrk = Clib.strpbrk(string, "dxb8w9k!");
var rStrcspn = Clib.strcspn(string, "dxb8w9k!");
TheApplication().RaiseErrorText("The string is: " + string +
 "\nstrpbrk returns a string: " + rStrpbrk +
 "\nstrcspn returns an integer: " + rStrcspn);

This example provides the following results:

The string is: There’s more than one way to climb a mountain.
strpbrk returns a string: way to climb a mountain.
strcspn returns an integer: 22

Clib Search String for Not Character Set Method
The Clib Search String for Not Character Set method searches a string for a set of characters that is not part of the value
that you specify in the charSet argument. It returns one of the following values:

• If it finds all characters of the string that you specify in the charSet argument, then it returns the length of the
string.

• If it does not find all characters of the string that you specify in the string argument, then it returns the offset of
the first character that is not a member of the character set that you specify in the charSet argument.

227

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.strspn(string, charSet)

This method uses the same arguments as the Clib Search String for Character Set method. Usage is also the same. For
more information, see the following topics:

• Clib Search String for Character Set Method

Example
The following example searches for the value in the string argument, and then returns the position of w, counting from
0:

var string = "There is more than one way to swim.";
var rStrspn = Clib.strspn(string, " aeiouTthrsmn");
TheApplication().RaiseErrorText("strspn returns an integer: " + rStrspn);

This example provides the following results:

strspn returns an integer: 23

Clib Write Formatted String Method
The Clib Write Formatted String method writes output to a string variable according to a format that you define. It
returns one of the following values:

• If successful, then it returns the number of characters it wrote in the buffer.

• If not successful, then it returns the following value:

EOF

You are not required to define the string value. It is large enough to hold the result.

Format
Clib.sprintf(stringVar, formatString, var1, var2, ..., varn)

This method performs the same work and uses the same arguments as the Clib Formatted String method except it
also includes the stringVar argument. This argument identifies the name of the variable where the Clib Write Formatted
String method writes the formatted string. For more information, Clib Get Formatted String Method.

Example
The following example uses the Clib Write Formatted String method with various format string arguments:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var a, b, c;
a = 5;
b = 2;

Clib.sprintf(c, "First # %d + Second # %d is equal to %03d",a,b, a+b);
TheApplication().Trace("Output : " + c);

Clib.sprintf(c, "\n First # %d \n Second # %d \n => %d",12,16, 12+16)
TheApplication().Trace("Output : " + c);

228

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

var x, y, z, n;
var x = "Ali is 25 years old";
var y = "he lives in Ireland.";
var n = Clib.sprintf(z, "\n %s and %s",x,y) ;

TheApplication().Trace("Output : " + z);
TheApplication().Trace("Total characters: " + n);

var a = 16.51;
var b = 5.79;
var c;

Clib.sprintf(c, "%.3f / %.3f is equal to %0.3f",a,b, parseFloat(a/b));
TheApplication().Trace("Output : " + c);

TheApplication().TraceOff();

This example produces the following result:

02/18/04,18:37:35,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,3964,3836
02/18/04,18:37:35,COMMENT,Output : First # 5 + Second # 2 is equal to 007
02/18/04,18:37:35,COMMENT,"Output :
 First # 12
 Second # 16
 => 28"
02/18/04,18:37:35,COMMENT,"Output :
 Ali is 25 years old and he lives in Ireland."
02/18/04,18:37:35,COMMENT,Total characters: 46
02/18/04,18:37:35,COMMENT,Output : 16.510 + 5.790 is equal to 2.851
02/18/04,18:37:35,STOP

Clib Buffer Methods
This topic describes Clib buffer methods. It includes the following topics:

• Clib Get Memory Method

• Clib Compare Memory Method

• Clib Copy Memory Method

• Clib Set Memory Method

Clib Get Memory Method
The Clib Get Memory method searches a buffer for the first occurrence of a character that you specify. It returns one of
the following values:

• If it finds the character you specify, then it returns the contents of the buffer starting at that character.

• If it does not find the character you specify, then it returns the following value:

Null

Format
Clib.memchr(bufferVar, char[, size])

The following table describes the arguments for the Clib Get Memory method.

229

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

bufferVar

A buffer or a variable that references a buffer.

char

The character that this method attempts to locate.

size

The number of bytes of the buffer that this method searches. It does one of the following depending
on if you specify a size:

• You do specify a size. It searches at the beginning of the buffer and continues until it reaches the
point in the buffer that you indicate in the size argument. For example, if you specify the size as
1024, then it searches the first 1024 bytes of the buffer.

• You do not specify a size. It searches the entire buffer from the first byte.

Clib Compare Memory Method
The Clib Compare Memory method compares the contents of two buffers. It returns one of the following values:

• If the value in the buf1 argument is less than the value in the buf2 argument, then it returns a negative number.

• If the value in the buf1 argument is greater than the value in the buf2 argument, then it returns a positive
number.

• If the value in the buf1 argument is the same as the value in the buf2 argument, then it returns 0.

Format
Clib.memcmp(buf1, buf2[, length])

The following table describes the arguments for the Clib Compare Memory method.

Argument Description

buf1

A variable that contains the name of a buffer.

buf2

A variable that contains the name of a buffer.

length

The number of bytes that this method compares. It does one of the following depending on how you
specify the length argument:

• You specify the length argument. It compares the buffers from the first byte up to the length that
you specify. For example, if you specify 1024 as the length, then it compares the first 1024 bytes
of the buffer.

• You do not specify the length argument. It compares the full length of the buffers.

If one buffer is shorter than the other buffer, then it compares the buffers from the beginning byte up
to the length of the shorter buffer.

230

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Copy Memory Method
The Clib Copy Memory method copies bytes from a source buffer to a destination buffer.

Format
Clib.memcpy(destBuf, srcBuf[, length])
Clib.memmove(destBuf, srcBuf[, length])

Siebel eScript protects data from being overwritten, so Clib.memmove performs exactly the same work as Clib.memcpy.

The following table describes the arguments for the Clib Copy Memory method.

Argument Description

destBuf

The name of a buffer or a variable that references a buffer. If this buffer does not exist, then this
method creates it.

srcBuf

The buffer that this method uses to get the data that it copies.

length

The number of bytes that this method copies. If you do not specify the length argument, then it copies
the entire contents of the buffer.

Clib Set Memory Method
The Clib Set Memory method sets the bytes in a buffer to a character that you specify.

Format
Clib.memset(bufferVar, char[, length])

The following table describes the arguments for the Clib Set Memory method.

Argument Description

bufferVar

The name of a buffer or a variable that references a buffer. If this buffer does not exist, then this
method creates it.

char

The character to which this method sets the bytes of the buffer.

length

The number of bytes that this method writes. This method does one of the following:

• If the buffer is shorter than the value you specify in the length argument, then it increases the size
of this buffer so that the size is equal to the value in the length argument.

231

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

• If you do not specify the length argument, then it sets the length argument to the size of the
buffer, starting at position 0.

Clib Mathematical Methods
This topic describes Clib mathematical methods. It includes the following topics:

• Clib Create Random Number Method

• Clib Divide Method

• Clib Get Floating Point Number Method

• Clib Get Hyperbolic Cosine Method

• Clib Get Hyperbolic Sine Method

• Clib Get Hyperbolic Tangent Method

• Clib Get Integer Method

• Clib Get Normalized Mantissa Method

• Clib Initialize Random Number Generator Method

Clib Create Random Number Method
The Clib Create Random Number method creates a pseudo-random number between 0 and RAND_MAX, inclusive. The
value of RAND_MAX depends on the operating system. It is typically 32,768.

The initial value of the random number generator and earlier calls to the Clib Create Random Number method affects
the sequence of pseudo-random numbers. For more information, see Clib Initialize Random Number Generator Method.

Format
Clib.rand()

Related Topics
For more information, see Get Random Number Method.

Clib Divide Method
The Clib Divide method performs integer division and returns a quotient and remainder.

Format
Clib.div(numerator, denominator)
Clib.ldiv(numerator, denominator)

Siebel eScript does not distinguish between integers and long integers, so clib.div and clib.ldiv are identical.

232

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

The following table describes the arguments for the Clib Divide method.

Argument Description

numerator

The number that this method divides.

denominator

The number by which this method divides the numerator.

Clib Divide Method describes the structure of the return value.

Element Description

.quot

quotient

.rem

remainder

Example
The following example accepts two numbers as input from the user, divides the first number by the second number, and
then displays the result:

var division = Clib.div(ToNumber(n), ToNumber(d));
 TheApplication().RaiseErrorText("The quotient is " + division.quot + ".\n\n" +
"The remainder is " + division.rem + ".");

If run this example with the values of n=9 and d=4, then it produces the following result:

The quotient is 2.
The remainder is 1.

Clib Get Floating Point Number Method
The Clib Get Floating Point Number method calculates a floating-point number given a mantissa and an exponent. It
returns the result of the calculation. It calculates a floating-point number from the following equation:

mantissa multiplied by 2 ^ exponent

This method is the inverse of the Get Normalized Mantissa method. For more information, see Clib Get Normalized
Mantissa Method.

Format
Clib.ldexp(mantissa, exponent)

The following table describes the arguments for the Clib Get Floating Point Number method.

233

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

mantissa

The number on which this method operates.

exponent

The exponent that this method uses.

Clib Get Hyperbolic Cosine Method
The Clib Get Hyperbolic Cosine method calculates and returns the hyperbolic cosine of x.

Format
Clib.cosh(number)

The following table describes the arguments for the Clib Get Hyperbolic Cosine method.

Argument Description

number

The hyperbolic cosine of the number that this method returns.

Clib Get Hyperbolic Sine Method
The Clib Get Hyperbolic Sine method calculates and returns the hyperbolic sine of a floating point number.

Format
Clib.sinh(floatNum)

The following table describes the arguments for the Clib Get Hyperbolic Sine method.

Argument Description

floatNum

A floating-point number or a variable that contains a floating-point number. This method calculates
the hyperbolic sine of this number.

Clib Get Hyperbolic Tangent Method
The Clib Get Hyperbolic Tangent method calculates and returns the hyperbolic tangent of a floating-point number.

234

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.tanh(floatNum)

The following table describes the arguments for the Clib Get Hyperbolic Tangent method.

Argument Description

floatNum

A floating-point number or a variable that contains a floating-point number that this method
calculates.

Clib Get Integer Method
The Clib Get Integer method calculates and returns the integer part of a decimal number. The effect is identical to that
of the Convert Value to Integer method. For more information, see Convert Value to Integer Method.

Format
Clib.modf(number, var intVar)

The following table describes the arguments for the Clib Get Integer method.

Argument Description

number

The floating-point number that this method splits.

intVar

Contains the integer part of the number.

Example
The following example passes the same value to the Clib Get Integer method and to the Convert Value to Integer
method. The result is the same for each method:

function eScript_Click ()
{
 Clib.modf(32.154, var x);
 var y = ToInteger(32.154);
 TheApplication().RaiseErrorText("modf yields " + x +
 ".\nToInteger yields " + y + ".");
}

This example produces the following result:

modf yields 32
ToInteger yields 32.

235

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Get Normalized Mantissa Method
The Clib Get Normalized Mantissa method converts a number into a normalized mantissa in a value in the range of 0.5
through 1.0, and then calculates an integer exponent of 2 so that the number is equivalent to the following value:

mantissa multiplied by 2 ^ exponent

It returns one of the following values:

• A normalized mantissa in the range of 0.5 through 1.0

• 0

A mantissa is the decimal part of a natural logarithm.

Format
Clib.frexp(number, exponent)

The following table describes the arguments for the Clib Get Normalized Mantissa method.

Argument Description

number

The number on which this method operates.

exponent

The exponent that this method uses.

Clib Initialize Random Number Generator Method
The Clib Initialize Random Number Generator method initializes a random number generator.

Format
Clib.srand(seed)

The following table describes the arguments for the Clib Initialize Random Number Generator method.

Argument Description

seed

The number that the random number generator uses as a starting point.

If you do not specify the seed argument, then this method uses a random number that is specific to the
operating system.

236

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Related Topics
For more information, see the following topics:

• Get Random Number Method

• Clib Create Random Number Method

Clib Date and Time Methods
This topic describes Clib date and time methods. It includes the following topics:

• Overview of Clib Date and Time Methods

• About the Objects That Each Clib Time Method Returns

• Clib Convert Integer to GMT Method

• Clib Convert Integer to Local Time Method

• Clib Convert Time to Integer Method

• Clib Convert Time Object to Integer Method

• Clib Get Date and Time Method

• Clib Get Formatted Date and Time Method

• Clib Get Local Date and Time Method

• Clib Get Difference in Seconds Method

• Clib Get Tick Count Method

Overview of Clib Date and Time Methods
The Clib time object measures time in the following ways:

• As an integral value of the number of seconds that have occurred since January 1, 1970.

• As a time object that includes properties for the day, month, year, and so on. This time object is distinct from
the standard JavaScript date object.

Note the following:

• The time object is for use with the date and time functions in the Clib object.

• You cannot write code that uses a date object property with a time object or a time object property with a date
object.

• Although the time object is different than the date object, these objects contain similar data.

The following table information lists the integer properties for the timeInt argument of the Clib time object.

Value for the timeInt Argument Integer Property

tm_sec

Second after the minute, from 0.

tm_min Minutes after the hour, from 0.

237

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Value for the timeInt Argument Integer Property

tm_hour

Hour of the day, from 0.

tm_mday

Day of the month, from 1.

tm_mon

Month of the year, from 0.

tm_year

Years since 1900, from 0.

tm_wday

Days since Sunday, from 0.

tm_yday

Day of the year, from 0.

tm_isdst

Flag for Daylight Savings Time.

About the Objects That Each Clib Time Method Returns
The following table information lists the object that each Clib time method returns. Time includes a variable in the Time
object format, while timeInt includes a time value that is an integer.

Method Object Returned

Clib Get Date and Time Method

Time

Clib Get Tick Count Method

CPU tick count

Clib Divide Method

timeInt

Clib Get Difference in Seconds Method

timeInt

Clib Convert Integer to GMT Method

timeInt

Clib Convert Integer to Local Time Method

timeInt

Clib Convert Time Object to Integer
Method

Time

Clib Get Formatted Date and Time Method

Time

Clib Create Temporary File Name Method timeInt

238

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Method Object Returned

Clib Convert Integer to GMT Method
The Clib Convert Integer to GMT method uses the integer value that the Clib Convert Time to Integer method returns
and converts it to a time object that includes the current date and time expressed as Greenwich mean time (GMT).

It is recommended that you use the Clib Convert Integer to GMT method only if you cannot use the equivalent standard
JavaScript method. Note the following code:

var now = Clib.asctime(Clib.gmtime(Clib.time())) + "GMT";

This code is exactly equivalent to the following standard JavaScript code:

var aDate = new Date;
var now = aDate.toGMTString()

Format
Clib.gmtime(timeInt)

This method uses the same arguments as the Clib Get Date and Time method. For more information, see Clib Get Date
and Time Method.

Example
The following example returns the current GMT date and time:

TheApplication().RaiseErrorText(Clib.asctime(Clib.gmtime(Clib.time())));

It returns this value as a string that uses the following format:

Day Mon dd hh:mm:ss yyyy:

Related Topics
For more information, see the following topics:

• Get Day of Month Method

• Convert Date to GMT String Method

• Get Time Method

• Get UTC Day of Month Method

• Clib Divide Method

239

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Convert Integer to Local Time Method
The Clib Convert Integer to Local Time method returns the value of the timeInt argument as a time object. It is
recommended that you use this method only if you cannot use the equivalent standard JavaScript method. Note the
following code:

var now = Clib.asctime(Clib.localtime(Clib.time()));

This code is exactly equivalent to the following standard JavaScript code:

var aDate = new Date;
var now = aDate.toLocaleString()

Format
Clib.localtime(timeInt)

This method uses the same arguments as the Clib Get Date and Time method. For more information, see Clib Get Date
and Time Method.

Related Topics
For more information, see the following topics:

• Get Day of Month Method

• Get Time Method

• Get UTC Day of Month Method

Clib Convert Time to Integer Method
The Clib Return Time in Integers method returns the current time expressed in integers. The time format is not
specifically defined except that it includes the current time according to the closest approximation that the operating
system can make.

The following code assigns the current local time to the timeInt argument:

Clib.time(timeInt) and timeInt = Clib.time()

Format
Clib.time([[var] timeInt])

The following table describes the arguments for the Return Time in Integers method.

Argument Description

timeInt

Holds the value that this method returns. You must declare this argument as a variable.

240

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Example
For examples, see the following topics:

• Clib Divide Method

• Clib Convert Integer to GMT Method

• Clib Convert Integer to Local Time Method

• Clib Get Formatted Date and Time Method

• Clib Get Difference in Seconds Method

Related Topics
For more information, see the following topics:

• Convert Date to Integer Method

• Get Day of Month Method

Clib Convert Time Object to Integer Method
The Clib Convert Time Object to Integer method converts a time object to the time format that the Clib Convert Time to
Integer method returns. It returns one of the following values:

• If it can convert the value in the Time argument, then it returns the value that the Time argument contains
expressed as an integer.

• If it cannot convert the value in the Time argument, then it returns negative 1.

It sets any element of the Time argument that is not defined to 0 before it performs the conversion. This method is the
opposite of the Convert Integer to Local Time method that converts a time integer to a time object.

Format
Clib.mktime(Time)

The following table describes the arguments for the Clib Convert Time Object to Integer method.

Argument Description

Time

A time object.

Example
The following example uses the Clib Convert Time Object to Integer method to format a time so that Siebel eScript can
use it with the Clib Get Difference in Seconds method:

// create time object and set time to midnight:
var midnightObject = Clib.localtime(Clib.time());
midnightObject.tm_hour = 0;
midnightObject.tm_min = 0;
midnightObject.tm_sec = 0;

241

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

// use mktime to convert Time object to integer:
var midnight = Clib.mktime(midnightObject);

// difftime can now use this value:
var diff = Clib.difftime(Clib.time(), midnight);
TheApplication().Trace("Seconds since midnight: " + diff);

This example produces the following result:

COMMENT,Seconds since midnight: 59627

For an example that describes the difference between the formats that asctime and mktime use, see Clib Get Date and
Time Method.

Related Topics
For more information, see the following topics:

• Get Day of Month Method

• Get Time Method

• Get UTC Day of Month Method

Clib Get Date and Time Method
The Clib Get Date and Time method returns a string that includes the date and time that it extracts from a time object.
The string it returns uses the following format:

Day Mon dd hh:mm:ss yyyy

For example, Wed Aug 10 13:21:56 2005.

Format
Clib.asctime(Time)

The following table describes the arguments for the Clib Get Date and Time method.

Argument Description

Time

A time object.

Example
The following example describes the difference between the asctime and mkdir formats for time:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");

var tm = Clib.localtime(Clib.time());
var tmStr = Clib.asctime(tm);
var tmVal = Clib.mktime(tm);

TheApplication().Trace("Time String : " + tmStr);
TheApplication().Trace("Time Value : " + tmVal);

242

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

TheApplication().TraceOff();

This example produces the following result:

03/05/04,12:26:30,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,6532,6584
03/05/04,12:26:30,COMMENT,"Time String : Fri Mar 05 12:26:30 2004"
03/05/04,12:26:30,COMMENT,Time Value : 1078489590
03/05/04,12:26:30,STOP

Related Topics
For more information, see the following topics:

• Get Day of Month Method

• Get Time Method

• Get UTC Day of Month Method

Clib Get Formatted Date and Time Method
The Clib Get Formatted Date and Time method creates a string that includes the date, time, or the date and time. It
returns a formatted string that contains these values.

Format
Clib.strftime(stringVar, formatString, Time)

The following table describes the arguments for the Clib Get Formatted Date and Time method.

Argument Description

stringVar

A variable that holds the time in a string.

formatString

A string that describes how to format the value in the stringVar argument. Conversion characters
represent this format. For more information, see the following section.

Time

A time object that the Clib Convert Integer to Local Time method returns. For more information on the
time object, see Overview of Clib Date and Time Methods.

Conversion Characters That the Return Formatted Date and Time Method Uses
The following table describes conversion characters that the Return Formatted Date and Time method uses.

Character Description Example

%a

Abbreviated weekday name.

Sun

%A

Full weekday name.

Sunday

243

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Character Description Example

%b

Abbreviated month name.

Dec

%B

Full month name.

December

%c

Date and time.

Dec 2 06:55:15 1979

%d

Two digit day of the month.

02

%H

Two digit hour of the 24-hour day.

06

%I

Two digit hour of the 12-hour day.

06

%j

Three digit day of the year from 001.

335

%m

Two digit month of the year from 01.

12

%M

Two digit minute of the hour.

55

%p

AM or PM.

AM

%S

Two digit seconds of the minute.

15

%U

Two digit week of the year where Sunday is the
first day of the week.

48

%w

Day of the week where Sunday is 0.

0

%W

Two digit week of the year where Monday is the
first day of the week.

47

%x

The date.

Dec 2 1979

%X

The time.

06:55:15

%y

Two digit year of the century.

79

%Y

The year.

1979

%Z

The name of the time zone, if known.

EST

%%

The percentage symbol.

%

244

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Example 1
The following example displays the full day name and month name of the current day:

var TimeBuf;
Clib.strftime(TimeBuf,"Today is %A, and the month is %B",
 Clib.localtime(Clib.time()));
TheApplication().RaiseErrorText(TimeBuf);

The display is similar to the following:

Today is Friday, and the month is July

Example 2
The following example uses various conversion characters to format the value that the Clib Get Formatted Date and
Time method returns:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");

var tm, tmStrFmt;
tm = Clib.localtime(Clib.time());

Clib.strftime(tmStrFmt, "%m/%d/%Y",tm);
TheApplication().Trace("Time String Format: " + tmStrFmt);

Clib.strftime(tmStrFmt, "%A %B %d, %Y",tm);
TheApplication().Trace("Time String Format: " + tmStrFmt);

TheApplication().TraceOff();

This example produces the following result:

03/05/04,12:44:01,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,6848,6708
03/05/04,12:44:01,COMMENT,Time String Format: 03/05/2004
03/05/04,12:44:01,COMMENT,"Time String Format: Friday March 05, 2004"
03/05/04,12:44:01,STOP

Clib Get Local Date and Time Method
The Clib Get Local Date and Time method returns a string that includes the date and time, adjusted for the local time
zone. It is equivalent to the following code:

Clib.asctime(Clib.localtime(timeInt));

where:

• timeInt is the date and time that the Clib Get Date and Time method returns.

Format
Clib.ctime(timeInt)

The following table describes the arguments for the Clib Get Local Date and Time method.

Argument Description

timeInt The date and time value that this method returns.

245

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Argument Description

Example
The following example returns the current date and time:

TheApplication().RaiseErrorText(Clib.ctime(Clib.time()));

It returns this date and time in a string that uses the following format:

Day Mon dd hh:mm:ss yyyy

Clib Get Difference in Seconds Method
The Clib Get Difference in Seconds method returns the difference in seconds between two times.

Format
Clib.difftime(timeInt1, timeInt0)

The following table describes the arguments for the Clib Get Difference in Seconds method.

Argument Description

timeInt0

An integer time value that this method returns.

timeInt1

An integer time value that this method returns.

Example
The following example displays the difference in seconds between two times:

function difftime_Click ()
{
 var first = Clib.time();
 var second = Clib.time();
TheApplication().RaiseErrorText("Elapsed time is " +
 Clib.difftime(second, first) + " seconds.");
}

Clib Get Tick Count Method
The Clib Get Tick Count method returns the current processor tick count. The count starts at 0 when Siebel CRM starts
running and increments the number of times per second according to operating system settings.

246

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.clock()

Clib Character Classification Methods
This topic describes Clib character classification methods that the Clib object supports. It includes the following topics:

• Overview of Clib Character Classification Methods

• Clib Is Alphabetic Method

• Clib Is Alphanumeric Method

• Clib Is ASCII Method

• Clib Is Control Method

• Clib Is Digit Method

• Clib Is Lowercase Method

• Clib Is Printable Method

• Clib Is Printable Not Space Method

• Clib Is Punctuation Mark Method

• Clib Is Space Method

• Clib Is Uppercase Method

• Clib Is Hexadecimal Method

Overview of Clib Character Classification Methods
Siebel eScript does not include character types. For example, a char character is actually a string that is one character in
length. Actual usage is similar to the C programming language. For example, the following Clib Is Alphanumeric method
works properly:

var t = Clib.isalnum('a');

var s = 'a';
var t = Clib.isalnum(s);

This code displays the following output:

true
true

The Clib Is Alphanumeric method in the following example causes errors because the each argument to each statement
is a string that contains more than one character:

var t = Clib.isalnum('ab');

var s = 'ab';
var t = Clib.isalnum(s);

A character classification method returns one of the following values:

• True

247

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

• False

Clib Is Alphabetic Method
The Clib Is Alphabetic method returns True if the value you specify in the char argument is one of the following values:

• An alphabetic character from A through Z

• An alphabetic character from a through z

If the value you specify is not one of the these values, then it returns Null.

Format
Clib.isalpha(char)

The following table describes the arguments for the Clib Is Alphabetic method.

Argument Description

char

A single character or a variable that contains a single character.

Clib Is Alphanumeric Method
The Clib Is Alphanumeric method returns True if the value you specify in the char argument is one of the following
values:

• An alphabetic character from A through Z

• An alphabetic character from a through z

• A digit from 0 through 9

If the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.isalnum(char)

Clib Is ASCII Method
The Clib Is ASCII method returns True if the value you specify in the char argument is an ASCII code from 0 to 127. If the
value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

248

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.isascii(char)

Clib Is Control Method
The Clib Is Control method returns True if the value you specify in the char argument is a control character that an ASCII
code from 0 through 31 represents. If the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.iscntrl(char)

Clib Is Digit Method
The Clib Is Digit method returns True if the value you specify in the char argument is a decimal digit from 0 through 9. If
the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.isdigit(char)

Clib Is Lowercase Method
The Clib Is Lowercase method returns True if the value you specify in the char argument is a lowercase alphabetic
character from a through z. If the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.islower(char)

Clib Is Printable Method
The Clib Is Printable method returns True if the value that you specify in the char argument is a printable character that
you can enter from the keyboard and that an ASCII code 32 through 126 represents. If the value you specify is not one of
the these values, then it returns Null.

249

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.isprint(char)

Clib Is Printable Not Space Method
The Clib Is Printable Not Space method returns True if the value you specify in the char argument is a printable
character other than the space character that ASCII code 32 represents. If the value you specify is not one of the these
values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.isgraph(char)

Clib Is Punctuation Mark Method
The Clib Is Punctuation Mark method returns True if the value that you specify in the char argument is a punctuation
mark that you can enter from the keyboard. If the value you specify is not one of these values, then it returns Null.

This method returns True if one of the following ASCII codes represents the punctuation mark:

• 33 through 47

• 58 through 63

• 91 through 96

• 123 through 126

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.ispunct(char)

Clib Is Space Method
The Clib Is Space method returns True if the value you specify in the char argument is a white space character. If the
value you specify is not one of the these values, then it returns Null.

The following table describes the items for which the Clib Is Space method returns a value of true.

250

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Description ASCII Value

Horizontal tab

9

Newline

10

Vertical tab

11

Form feed

12

Carriage return

13

Space character

32

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

For more information, see Use White Space to Improve Readability.

Format
Clib.isspace(char)

Clib Is Uppercase Method
The Clib Is Uppercase method returns True if the value you specify in the char argument is an uppercase alphabetic
character from A through Z. If the value you specify is not one of the these values, then it returns Null.

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.isupper(char)

Clib Is Hexadecimal Method
The Clib Is Hexadecimal method returns True if the value you specify in the char argument is a hexadecimal character. If
the value you specify is not one of the these values, then it returns Null.

A hexadecimal character is one of the following:

• A number from 0 through 9

• An alphabetic character from a through f.

• An alphabetic character from A through F.

251

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Format
Clib.isxdigit(char)

Clib Error Methods
This topic describes clib error methods. It includes the following topics:

• Clib Clear Error Method

• Clib Get Error Number Method

• Clib Get Error Message Method

• Clib Save Error Message In String Method

• Clib Error Number Property

Clib Clear Error Method
The Clib Clear Error method clears the error status and resets the end-of-file flag for a file that you specify. For usage
information, see Overview of Clib File Input and Output Methods.

Format
Clib.clearerr(filePointer)

The following table describes the arguments for the Clib Clear Error method.

Argument Description

filePointer

Identifies the file name.

Clib Get Error Number Method
The Clib Get Error Number method determines if an error has occurred in the buffer where Siebel eScript reads a file. It
returns one of the following values:

• If no error exists, then it returns the following value:

0

• If an error exists, then it returns the error number.

Format
Clib.ferror(filePointer)

252

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

The arguments for this method are the same as the arguments for the Clib Clear Error method. For more information,
see Clib Clear Error Method.

Related Topics
For more information, see Clib Error Number Property.

Clib Get Error Message Method
The Clib Get Error Message method returns the descriptive error message that is associated with the error number that
the error number property identifies. When some methods fail to run properly they store a number in the error number
property. This number corresponds to the type of error encountered. The Clib Get Error Message method converts this
error number to a descriptive string and returns it.

Format
Clib.strerror(ToNumber(Clib.errno)

Related Topics
For more information, see Clib Error Number Property.

Clib Save Error Message In String Method
The Clib Save Error Message In String method is identical to the Clib Get Error Message except if you specify the errmsg
argument, then the Save Error Message In String method saves the error message in this argument as a string.

Format
Clib.perror([errmsg])

The following table describes the arguments for the Save Error Message In String method.

Argument Description

errmsg

An argument that contains the message that describes the error.

Clib Error Number Property
The Clib Error Number property stores an error number if a method fails to run correctly. Many methods in the Clib and
Siebel library objects set errno to a nonzero value when an error occurs. Siebel eScript implements errno as a macro to
the internal function errno. For more information, see Siebel Library Methods.

253

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Format
Clib.errno

Usage
To return the error number stored in the Clib.errno property, you use the following ToNumber conversion method:

ToNumber(Clib.errno)

For more information, see Convert Value to Number Method.

You cannot use Siebel eScript code to modify the errno property. It is available only for read-only access.

You can configure Siebel CRM to reference the error message that is associated with a Clib error number. For more
information, see Clib Get Error Message Method.

Other Clib Methods
This topic describes other Clib methods. It includes the following topics:

• Clib Convert Character to ASCII Method

• Clib Modify Environment Variable Method

• Clib Get Environment Variable Method

• Clib Send Command Method

• Clib Search Array Method

• Clib Sort Array Method

Clib Convert Character to ASCII Method
The Clib Convert Character to ASCII method clears every bit of the value that the char argument contains except for the
seven least significant bits. The result is a seven-bit C representation of the character. It returns this value as a seven-bit
ASCII representation.

If the value you specify in the char argument is already a seven-bit ASCII character, then it does not clear any bits and
returns the character.

Format
Clib.toascii(char)

The arguments for this method are the same as the arguments for the Clib Is Alphabetic method. For more information,
see Clib Is Alphabetic Method.

Example
The following example returns the close parenthesis character:

TheApplication().RaiseErrorText(Clib.toascii("©"));

254

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Related Topics
For more information, see Clib Is ASCII Method.

Clib Modify Environment Variable Method
The Clib Modify Environment Variable method creates an environment variable, sets the value of an existing
environment variable, or removes an environment variable. It returns one of the following values:

• If it is successful, then it returns the following value:

0

• If it is not successful, then it returns negative 1.

The Clib Modify Environment Variable method does the following:

• Sets the environment variable that the varName argument identifies to the value that the stringValue argument
contains.

• Any modification that it makes to an environment variable persists only while the Siebel eScript code and any
process that this code calls is running. After this code runs, the environment variable reverts to the value it
contained before this method modified this value.

• Automatically removes any environment variable it creates after it finishes.

Format
Clib.putenv(varName, stringValue)

The following table describes the arguments for the Clib Modify Environment Variable method.

Argument Description

varName

The name of an environment variable, enclosed in quotes.

stringValue

The value that this method assigns to the environment variable, enclosed in quotes.

If the value in the stringValue argument is null, then this method removes the environment variable that
the varName argument identifies.

Example
The following example creates an environment variable and assigns a value to it. To confirm that the variable was
created, it then traces the return value:

TheApplication().TraceOn("c:\\eScript_trace.txt","allocation","all");
var a = Clib.putenv("TEST","test value");
TheApplication().Trace("TEST : " + a);
TheApplication().Trace("TEST= " + Clib.getenv("TEST");
TheApplication().TraceOff();

This example produces the following result:

03/05/04,16:56:28,START,7.5.3 [16157] LANG_INDEPENDENT,SADMIN,3388,7448

255

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

03/05/04,16:56:28,COMMENT,TEST : 0
03/05/04,16:56:28,COMMENT,TEST= test value
03/05/04,16:56:28,STOP

Clib Get Environment Variable Method
The Get Environment Variable method returns the value of an environment variable.

Format
Clib.getenv(varName)

The following table describes the arguments for the Get Environment Variable method.

Argument Description

varName

The name of an environment variable, enclosed in quotes.

Example
The following example returns the value of the PATH environment variable:

TheApplication().RaiseErrorText("PATH= " + Clib.getenv("PATH"));

Clib Send Command Method
The Clib Send Command method sends a command to the command processor for the operating system and opens an
operating system window where it runs. After completing the command, it closes this window. It returns the value that
the command processor returns. For an alternative that does not open a window, see Siebel Library Call DLL Method.

Format
Clib.system(commandString)

The following table describes the arguments for the Clib Send Command method.

Argument Description

commandString

Contains the name of a valid operating system command. This value can include a formatted string
followed by variables. For more information, see Format Characters for Methods That Print.

Example
The following example displays a directory in a DOS window:

Clib.system("dir /p C:\\Backup");

256

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

Clib Search Array Method
The Clib Search Array method searches an array for a value that you specify. It returns one of the following values:

• If it finds the value you specify in the key argument, then it returns an array variable that matches the value you
specify in the key argument.

• If it does not find the value you specify in the key argument, then it returns the following value:

Null

It only searches through array elements that include a positive index. It ignores array elements that include a negative
index.

Format
Clib.bsearch(key, arrayToSort, [elementCount,] compareFunction)

The following table describes the arguments for the Clib Search Array method.

Argument Description

key

The value for which this method searches.

arrayToSort

The name of the array that this method searches.

elementCount

The number of array elements that this method searches. If you do not specify the elementCount
argument, then it searches the entire array.

compareFunction

A custom function that can affect the sort order. The value for the compareFunction argument must
include the following items:

• The key argument as the first argument

• A variable from the array as the second argument

Example
The following example uses Clib.qsort and Clib.bsearch to locate a name and related item in a list:

(general) (ListCompareFunction)
function ListCompareFunction(Item1, Item2)
{
 return Clib.strcmpi(Item1[0], Item2[0]);
}
(general) (DoListSearch)
function DoListSearch()
 // create array of names and favorite food
 var list =
 {
 {“Brent”, “salad”},
 {"Laura", "cheese" },
 { "Alby", "sugar" },
 { "Jonathan","pad thai" },

257

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

 { "Zaza", "grapefruit" },
 { "Jordan", "pizza" }
 };

 // sort the list
 Clib.qsort(list, ListCompareFunction);
 var Key = "brent";
 // search for the name Brent in the list
 var Found = Clib.bsearch(Key, list, ListCompareFunction);
 // display name, or not found
 if (Found != null)
 TheApplication().RaiseErrorText(Clib.rsprintf
 ("%s's favorite food is %s\n", Found[0][0],Found[0][1]));
 else
 TheApplication().RaiseErrorText("Can not find name in list.");
}

Clib Sort Array Method
The Clib Sort Array method sorts elements in an array, starting with index 0, and then continuing to the value that you
specify in the elementCount argument minus 1. This method differs from the Sort Array method in standard JavaScript
in the following ways:

• The Clib Sort Array method can sort a dynamically created array.

• The Sort Array method in standard JavaScript works only with an array that an Array statement explicitly
creates.

Format
Clib.qsort(array, [elementCount,]compareFunction)

The following table describes the arguments for the Clib Sort Array method.

Argument Description

array

The array that this method sorts.

elementCount

The number of elements in the array, up to 65,536.

If you do not specify the elementCount argument, then this method sorts the entire array.

compareFunction

A custom function that can affect the sort order.

Example
The following example prints a list of colors sorted in reverse alphabetical order, ignoring case:

// initialize an array of colors
 var colors = { "yellow", "Blue", "GREEN", "purple", "RED",
"BLACK", "white", "orange" };
// sort the list using qsort and our ColorSorter routine
 Clib.qsort(colors,ReverseColorSorter);
// display the sorted colors
 for (var i = 0; i <= getArrayLength(colors); i++)

258

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

 Clib.puts(colors[i]);

 function ReverseColorSorter(color1, color2)
// do a simple string that is not case-sensitive
// comparison, and reverse the results too
{
 var CompareResult = Clib.stricmp(color1,color2)
 return(_CompareResult);
}

This example produces the following output:

yellow
white
RED
purple
orange
GREEN
Blue
BLACK

Related Topics
For more information, see Sort Array Method.

259

Siebel
eScript Language Reference

Chapter 6
C Language Library Reference

260

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

7 Siebel eScript Quick Reference

Siebel eScript Quick Reference
This chapter describes summary information for Siebel eScript methods and properties. It includes the following topics:

• File and Directory Methods

• String Methods

• Array Methods and Properties

• Mathematical Methods and Properties

• BLOB Methods

• Date and Time Methods

• Buffer Methods and Properties

• Siebel Library Methods

• Conversion Methods

• Character Classification Methods

• Error Handling Methods

• Other Methods

File and Directory Methods
This topic describes file and directory methods.

File Manipulation Methods
The following table describes file control methods.

Method Description

Clib Close File Method

Closes an open file.

Clib Create Temporary File Method

Creates a temporary file.

Clib Create Temporary File Name Method

Gets a temporary file name.

Clib Delete File Method

Deletes a file.

Clib Lock File Method

Handles file locking and unlocking.

261

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Clib Open File Method

Opens a file.

Clib Rename File Method

Renames a file.

Clib Reopen File Method

Reopens a file.

File Manipulation Methods
The following table describes file manipulation methods.

Method Description

Clib Clear Buffer Method

Writes to disk the data that exists in the buffer, and then clears the buffer.

Clib End of File Method

Determines if the file cursor is at the end of the file.

Clib Get Character Method

Gets a character from the buffer.

Clib Get Characters to Next Line Method

Gets a string that includes characters from the cursor to the next newline character.

Clib Get Cursor Position Method

Gets the current position of the file cursor.

Clib Get Relative Cursor Position Method

Gets the position of the file cursor relative to the beginning of the file.

Clib Move Cursor to Beginning of File
Method

Moves the file cursor to the beginning of a file.

Clib Read From File Method

Reads data from a file.

Clib Restore Cursor Position Method

Sets the current file cursor to a position that you specify.

Clib Scan and Convert from Input Device
Method

Reads input from an input device and stores the data in arguments.

Clib Set Cursor Position Method

Sets the cursor position in a file.

Clib Unget Method

Pushes a character back to a file.

Clib Write Character Method

Writes a character to a file.

262

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Clib Write Formatted String Method

Writes a formatted string to a file.

Clib Write String to File Method

Writes a string to a file.

Clib Write to File Method

Writes data to a file.

Directory Manipulation Methods
The following table describes directory methods.

Method Description

Clib Change Directory Method

Changes directory.

Clib Create Directory Method

Creates a directory.

Clib Get Current Working Directory Method

Gets the current working directory.

Clib Remove Directory Method

Removes a directory.

String Methods
The following table describes string and byte array methods.

Method Description

Change String to Lowercase Method

Converts a string to lowercase.

Change String to Uppercase Method

Converts a string to uppercase.

Clib Append String Method

Concatenates a portion of one string to another string.

Clib Compare Strings Method

Performs a comparison between two strings.

Clib Convert String to Lowercase Method

Converts a string to lowercase.

263

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Clib Copy String Method

Copies a part of one string to another string.

Clib Get Formatted String Method

Returns a formatted string.

Clib Get Last Substring Method

Searches a string for the last occurrence of a character.

Clib Get Substring Method

Searches a string for a string.

Clib Search String for Character Method

Searches a string for a character.

Clib Search String for Character Set
Method

Searches a string for a set of characters.

Clib Search String for Not Character Set
Method

Searches a string for a character that is not in a set of characters.

Clib Write Formatted String Method

Writes formatted output to a string.

Compile Regular Expressions Method

Modifies the pattern and attributes that Siebel CRM uses with the current instance of a regular
expression object.

Create String From Substring Method

Returns a section of a string.

Create String From Unicode Values Method

Converts Unicode values to a string.

Get Character From String Method

Returns the character that resides at a location in a string.

Get Regular Expression from String Method

Returns an array of strings that match a regular expression.

Get Unicode Character From String Method

Returns the Unicode value of the character that resides at a specific position in a string.

Is Regular Expression in String Method

Indicates if a string includes a regular expression.

Parse String Method

Parses a string and returns an array of strings according to a separator.

Replace String Method

Replaces a string with a string that you define.

Search String for Last Substring Method

Returns the position of the last instance of a substring.

Search StringVar for Regular Expression
Method

Returns the position of a regular expression.

264

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Array Methods and Properties
The following table describes array methods and properties.

Method or Property Description

Add Array Elements Method

Appends new elements to the end of an array.

Clib Search Array Method

Searches an array for a value that you specify

Clib Sort Array Method

Sorts elements in an array.

Create Array Elements Method

Creates a string of array elements.

Delete Last Array Element Method

Returns the last element of the current array object, and then removes the element from the array.

Get Array Length Method

Returns the length of a dynamically created array.

Get Largest Array Index Method

Returns a number that includes the largest index of an array, plus 1.

Insert Array Elements Method

Inserts new elements into an array.

Reverse Array Order Method

Reverses the order of elements of an array.

Set Array Length Method

Sets the size of an array.

Sort Array Method

Sorts array elements.

Mathematical Methods and Properties
This topic describes mathematical methods and properties.

Numeric Methods
The following table describes numeric methods.

265

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Clib Create Random Number Method

Creates a pseudo-random number.

Clib Divide Method

Performs integer division and returns a quotient and remainder.

Clib Get Floating Point Number Method

Calculates a floating-point number given a mantissa and an exponent.

Clib Get Integer Method

Returns the integer part of a decimal number.

Clib Get Normalized Mantissa Method

Breaks a real number into a mantissa and an exponent as a power of 2.

Clib Initialize Random Number Generator
Method

Creates an initial value for the random number generator.

Get Absolute Value Method

Returns the absolute value of an integer.

Get Ceiling Method

Returns the smallest integer that is not less than the value that the number argument contains.

Get Exponential Method

Computes the exponential function.

Get Floor Method

Returns the greatest integer that is not greater than the value that the number argument contains.

Get Logarithm Method

Calculates the natural logarithm.

Get Maximum Method

Returns the largest of one or more values.

Get Minimum Method

Returns the smallest of one or more values.

Get Random Number Method

Returns a random real number between 0 and 1.

Get Square Root Method

Calculates the square root.

Raise Power Method

Calculates x to the power of y.

Round Number Method

Rounds a value up or down.

Trigonometric Methods
The following table describes trigonometric methods.

266

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Clib Get Hyperbolic Cosine Method

Calculates the hyperbolic cosine.

Clib Get Hyperbolic Sine Method

Calculates the hyperbolic sine.

Clib Get Hyperbolic Tangent Method

Calculates the hyperbolic tangent.

Get Arc Cosine Method

Calculates the arc cosine.

Get Arcsine Method

Calculates the arcsine.

Get Arctangent 2 Method

Calculates the arc tangent of a fraction.

Get Arctangent Method

Calculates the arc tangent.

Get Cosine Method

Calculates the cosine.

Get Sine Method

Calculates the sine.

Get Tangent Method

Calculates the tangent.

Mathematical Properties
The following table describes mathematical properties, each of which is a numeric constant.

Property Description

Base E Property

Returns the value of e, which is the base for natural logarithms.

Logarithm 10 E Property

Returns the value of the base 10 logarithm of e.

Logarithm 2 E Property

Returns the value of the base 2 logarithm of e.

Math Natural Logarithm 10 Property

Returns the value of the natural logarithm of 10.

PI Property

Returns the value of pi.

Square Root 1/2 Property

Returns the value of the square root of ½.

Square Root 2 Property Returns the value of the square root of 2.

267

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Property Description

BLOB Methods
The following table describes BLOB methods.

Method Description

Get BLOB Data Method

Reads data from a specified position in a BLOB.

Get UTC Hours Method

Determines the size of a BLOB.

Write BLOB Data Method

Writes data to a specified position in a BLOB.

Date and Time Methods
The following table describes date and time methods.

Method Description

Clib Convert Integer to GMT Method

Converts a date and time to GMT.

Clib Convert Integer to Local Time Method

Converts an integer to local time.

Clib Convert Time Object to Integer
Method

Converts a time object to an integer.

Clib Get Difference in Seconds Method

Computes the difference between two times.

Clib Get Formatted Date and Time Method

Writes a formatted date and time to a string.

Clib Get Local Date and Time Method

Returns a string that includes the local date and time.

Clib Get Tick Count Method

Returns the current processor tick count.

Convert Date and Time to String Method

Converts a date and time to a string.

268

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Convert Date String to Date Object Method

Converts a date string to a date object.

Convert Date to GMT String Method

Converts a date object to a GMT string.

Convert Date to Integer Method

Converts a date object to an integer.

Convert Integer Date to JavaScript Date
Method

Converts an integer date to a JavaScript date.

Convert UTC Date to Readable Date
Method

Converts a UTC date to a format that a human can read.

Get Day of Month Method

Returns the day of the month.

Get Day of Week Method

Returns the day of the week.

Get Full Year Method

Returns the year as a four digit number.

Get Hours Method

Returns the hour.

Get Milliseconds Method

Returns the millisecond.

Get Minutes Method

Returns the minute.

Get Month Method

Returns the month.

Get Seconds Method

Returns the second.

Get Time Method

Returns the date and time, in milliseconds, of a date object.

Get Time Zone Offset Method

Returns the difference, in minutes, from GMT.

Get UTC Day of Month Method

Returns the UTC day of the month.

Get UTC Day of Week Method

Returns the UTC day of the week.

Get UTC Full Year Method

Returns the UTC year as a four digit number.

Get UTC Hours Method

Returns the UTC hour.

Get UTC Milliseconds Method

Returns the UTC millisecond.

269

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Get UTC Minutes Method

Returns the UTC minute.

Get UTC Month Method

Returns the UTC month.

Get UTC Seconds Method

Returns the UTC second.

Get Year Method

Returns the year as a two digit number.

Set Date Method

Sets the day of the month.

Set Full Year Method

Sets the year as a four digit number.

Set Hours Method

Sets the hour.

Set Milliseconds Method

Sets the millisecond.

Set Minutes Method

Sets the minute.

Set Month Method

Sets the month.

Set Seconds Method

Sets the second.

Set Time Method

Sets the date and time in a date object, in milliseconds.

Set UTC Date Method

Sets the UTC day of the month.

Set UTC Full Year Method

Sets the UTC year as a four digit number.

Set UTC Hours Method

Sets the UTC hour.

Set UTC Milliseconds Method

Sets the UTC millisecond.

Set UTC Minutes Method

Sets the UTC minute.

Set UTC Month Method

Sets the UTC month.

Set UTC Seconds Method

Sets the UTC second.

Set Year Method

Sets the year as a two digit number.

270

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Buffer Methods and Properties
The following information lists buffer methods and properties.

Method or Property Description

Clib Compare Memory Method

Compares the contents of two buffers.

Clib Copy Memory Method

Copies bytes from a source buffer to a destination buffer.

Clib Get Memory Method

Searches a buffer for the first occurrence of a character.

Clib Set Memory Method

Sets the bytes in a buffer to a character that you specify.

Create Buffer Method

Returns a section of a buffer.

Create Buffer Method

Returns a new buffer object that includes the data between two positions.

Cursor Position in Buffer Property

Stores the current position of the buffer cursor.

Data in Buffer Property

A reference to the internal data of a buffer.

Get Buffer Data Method

Returns a string that contains the same data as the buffer.

Get Cursor Position Value From Buffer
Method

Returns the value of the current cursor position in a buffer.

Get String From Buffer Method

Returns a string that starts from the current cursor position.

Put String in Buffer Method

Puts a string into a buffer.

Put Value in Buffer Method

Puts a value into a buffer.

Siebel Library Get Pointer Address Method

Gets the address in memory of a buffer variable.

Use Big Endian in Buffer Property

Stores a Boolean flag for bigEndian byte ordering.

Use Unicode in Buffer Property

Stores a Boolean flag that specifies whether to use Unicode strings when calling the Get String from
Buffer method or the Put String in Buffer method.

Write Byte to Buffer Method

Provides access to individual bytes in the buffer.

271

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Siebel Library Methods
The following table describes methods that can manipulate data at specific memory locations in the Siebel Library.

Method Description

Siebel Library Get Pointer Address Method

Gets the address in memory of a buffer variable.

Siebel Library Peek Method

Reads and returns data from a position in memory

Siebel Library Write Data Method

Writes data to a specific position in memory.

Conversion Methods
The following table describes conversion methods.

Method Description

Convert Number to Exponential Notation
Method

Converts a number to exponential notation.

Convert Number to Fixed Decimal Method

Converts a number to a specific number of decimal places.

Convert Number to Precision Method

Converts a number to a specific number of significant digits.

Convert Special Characters to URL Method

Replaces special characters in a string.

Convert String to Floating-Point Number
Method

Converts an alphanumeric string to a floating-point decimal number.

Convert String to Integer Method

Converts an alphanumeric string to an integer number.

Convert Unicode to ASCII Method

converts Unicode characters to equivalent ASCII characters.

Convert Value to Boolean Method

Converts a value to the Boolean data type.

Convert Value to Buffer Method

Converts a value to a buffer.

Convert Value to Integer Method Converts a value to an integer.

272

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Convert Value to Number Method

Converts a value to a number.

Convert Value to Object Method

Converts a value to an object.

Convert Value to String Method

Converts a value to a string.

Convert Value to String Method

Converts a value to a string.

Convert Value to Unsigned Integer 16
Method

Converts a value to an unsigned integer.

Convert Value to Unsigned Integer 32
Method

Converts a value to an unsigned large integer.

Evaluate Expression Method

Returns the value in the expression argument.

Character Classification Methods
The following table describes character classification methods.

Method Description

Clib Is Alphabetic Method

Determines if a character is alphabetic.

Clib Is Alphanumeric Method

Determines if a character is alphanumeric.

Clib Is ASCII Method

Determines if a character is an ASCII character.

Clib Is Control Method

Determines if a character is a control.

Clib Is Digit Method

Determines if character is a decimal digit.

Clib Is Hexadecimal Method

Determines if a character is a hexadecimal-digit character.

Clib Is Lowercase Method

Determines if a letter is a lowercase alphabetic letter.

Clib Is Printable Method

Determines if a character is a printable character.

273

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Clib Is Printable Not Space Method

Determines if character is a printing character except for space.

Clib Is Punctuation Mark Method

Determines if a character is a punctuation character.

Clib Is Space Method

Determines if a character is a white-space character.

Clib Is Uppercase Method

Determines if a character is an uppercase alphabetic character.

Is Finite Method

Determines if a value is finite.

Is NaN Method

Determines if a value is not a number (NaN).

Error Handling Methods
The following table describes error handling methods.

Method Description

Clib Clear Error Method

Clears the error status and resets the end-of-file flag for a file.

Clib Get Error Message Method

Returns the error message associated with an error number.

Clib Get Error Number Method

Returns the error number.

Clib Save Error Message In String Method

Saves an error message in a string.

Throw Statement

Stops running code if an error occurs.

Other Methods
The following table describes uncategorized methods.

Method Description

Clib Convert Character to ASCII Method

Converts a character to ASCII.

274

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

Method Description

Clib Get Environment Variable Method

Returns the value of an environment variable.

Clib Modify Environment Variable Method

Creates or modifies environment variable.

Clib Send Command Method

Causes the operating system to run a command.

Siebel Library Call DLL Method

Calls a procedure from a dynamic link library in Microsoft Windows or a shared object in UNIX.

Undefine Method

Makes a variable undefined.

275

Siebel
eScript Language Reference

Chapter 7
Siebel eScript Quick Reference

276

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

8 Compilation Error Messages

Compilation Error Messages
This chapter describes error messages that Siebel eScript creates when Siebel Tools compiles ST eScript code. It
includes the following topics:

• Format Error Messages

• Semantic Error Messages

• Semantic Warnings

• Preprocessing Error Messages

Formats That This chapter Uses
This chapter uses the following formats:

• The error prefix is the text that displays for all errors in a group of errors. For example,
Syntax error at Line line# position character#:

• The message is the unique part of an error message that applies only to a single error. The message can
include text appended after an error prefix, or it can include the entire error message.

Format Error Messages
The following table describes error messages that can result from incorrect script format. A format error message starts
with the following error prefix: Syntax error at line line# position character#.

Message Example Cause

Expected ':'

Example 1
function main ()
{
 var a = false;
 var b = a ? 1, 2;
 //expect : after 1
}

Example 2
function main ()
{
 var a = {prop1:1, prop2};
// expect : after prop2
}

Example 3

A colon (:) character is required in the context
but you did not provide one. To correct the
error, you do the following:

• In an expression using the conditional
operator, make sure you include a colon
between the second and third operands.

• In a Switch statement, make sure you
include a colon after the value in the Case
statement. For example, see example 3.

277

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

Message Example Cause

function main ()
{
 var a = 1;
 var b;
 switch (a)
 {
 case 1
 //expect : after 1
 b =a;
 default
//expect : after default
 b = 0;
 }
}

Expected ';'

function main ()
{
 for (i=1; i<10 i++)
//miss ; after i<10
 {
 ...
 }
}

A semi-colon (;) character is required in the
context but you did not provide one.

A semi-colon is used to end a statement. Make
sure you do the following:

• End each statement with a semi-colon.

• Include a semi-colon in the For Loop
statement.

Expected '('

function main <>
//expect (after main
{
 ...
}

The open parenthesis (() and the close
parenthesis ()) do not pair up.

Expected ')'.

Not applicable

The open parenthesis (() and the close
parenthesis ()) do not pair up.

Expected ']'.

function main ()
{
 var a = new Array (10);
 a[10 = 1;
//expect] after a[10 = 1
}

The open bracket ([) and the close bracket (])
do not pair up.

Expected '{'.

function main ()
var a = new Array (1);
//expect { before var

The open brace ({) and the close brace (}) do
not pair up.

Expected '}'.

Not applicable The open brace ({) and the close curly brace
(}) do not pair up.

Expected
identifier.

function ()
// Expect an identifier after
// function */
{
 ...
}
function main ()
{

A name is required in the context but you did
not provide one. The name can include one of
the following items:

• Variable

• Property

278

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

Message Example Cause

 var;
// Expect an identifier after var
}

• Array

• Function name

Invalid token.

function main ()
{
 var a = "\u000G";
// '\u000G' is an invalid
// unicode character combination
}
function main ()
{
 var a = "\u0G";
// '\u0G' is an invalid hex
// character combination
}

An invalid Unicode character combination or
an invalid hex character combination exists.

Expected while.

function main ()
{

 {
 ...
 }
// Expect while on this line
}

The Do While statement is not complete. A
while method is required to complete the
statement but you did not provide one.

Throw must be
followed by an
expression on the
same line.

try
{
var a =
TheApplication().GetService(“Incorrect
name”);
}
catch(e)
{
 throw ;
// The Throw statement expects an
// expression which is not supplied

// It must be: throw e;

}

The Throw statement must be followed by a
name that identifies an exception on the same
line, but you did not provide an expression of
this type.

Invalid continue
statement.

function main ()
{
 continue;
// Continue is not in a loop
}

The Continue statement is not in the body of
one of the following items:

• Do while

• While

• For

• For in

Invalid Break
statement.

function BreakError()
{
 break;
// Break is not in a valid loop
}

The Break statement is not in the body of one
of the following items:

• Do while

• While

279

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

Message Example Cause

• For

• For in

Invalid return
statement. Return
statement cannot
be used outside
the function body.

function fn ()
{
 ...
}
return;
// Return is outside the function body.

A Return statement exists outside the body
of a function but it must exist in the body of a
function.

Invalid left-hand
side value.

function main ()
{
 new Object () = 1;
// new Object () is not a valid
// left value
}

The preceding value in an assignment
operation must be compatible with the value
assigned.

In the example, the New Object statement
is an invalid left-hand value for the equal (=)
assignment operator. The valid preceding value
must contain a variable.

Invalid regular
expression.

var oRegExp:RegExp;
oRegExp = /[a-c*/;
// The regular expression is
// missing the closing]. It
// must be [a-c]*.

The regular expression is invalid. For example,
 the closing bracket (]) is missing.

Semantic Error Messages
The following table describes error messages that can result from semantic errors when Siebel Tools compiles ST
eScript code. A semantic error message starts with the following error prefix: Semantic Error around line line#. For more
information, see Semantic Warnings.

Message Examples Cause

Argument argument_label either
type does not correct or is not
defined.

function main ()
{
fn (new Date(), new Date());
// type of the second parameter
// mismatches with function
// definition and cannot be
// implicitly converted to
// 'Number' type
}

function fn (arg1: chars, arg2:
Number)
{
 TheApplication().RaiseErrorText
 ("fn");
}
main ();

The argument passed to the function
is not of the data type specified in the
function definition, or is not defined
in the function definition.

In the example, the arg2 parameter
must be of type Number, as specified
in the function definition, but the
function passes the parameter, which
is in the following string format:

new date

280

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

Message Examples Cause

No such predefined property
property_label in class object_
type.

function main ()
{
 delete "123".prop1;
// prop1 is not a property of
// String object. Also, because
// the String object is
// constructed here by implicitly
// converting "123", prop1
// cannot be created dynamically.
}

The property is not defined in the
class object.

In this example, you can specify
only string object properties. The
following property is not a property
of the string object:

Prop1

[] operator can only apply to
Object, Buffer or Array class.

Not applicable The script is trying to use the []
operator for a type other than an
object, buffer, or array.

Type mismatch: L: left_type; R:
right_type.

Example 1
function TypeMismatch()
{
 var BC:BusComp;
 var MyDate:Date = new Date();
 BC =MyDate;
// MyDate is not the same data type
// as strongly typed variable BC
}

Example 2
function fn () { var a: String; a = new Date
 (); //Type mismatch: strongly typed //String
 is assigned a Date. }

A value that belongs to one data
type is assigned to a strongly typed
variable of another data type. For
more information, see Using Strongly
Typed and Typeless Variables.

Return type is wrong. Defined
return type is return_type.

function fn (): Array
{
 return new Date ();
}

fn ();

The actual return type is different
from the defined return type. Siebel
CRM cannot implicitly convert the
actual return type to the defined
type.

No such label label defined.

switch(switch_variable)
{
 case value1:
 statement_block
 break labl;
 // where labl is not a valid label
 .
 .
 .
 [default:
 statement_block;]
}

The label referenced in a Break
statement or a Goto statement is
defined. You must make sure the
label name is correct and that the
label is defined in the code.

In the example, if the Break
statement is to resume at the labl
location, then you must define the
labl label.

Continue out of loop.

function ContinueOut()
{
 var i =0
 while (i<3)
 {
 i++;
 continue Mylabel;
// Mylabel label is defined

A continue command attempts to
branch to a label that is not in a loop.

281

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

Message Examples Cause

//outside of the while loop.
 }
 Mylabel:
 var a=1;
}

Label redefined.

function LabelError()
{
 Outer:
 for (var i = 0; i < 5; i++)
 {
 var j = 0;
 Inner:
 while (j!=5)
 {
 j++;
 continue Inner;
 Inner: //Label Inner is
 //redefined.
 var b=1;
 }
 }
}

A label already exists that possesses
the same name.

function function_label is double
defined.

function fn ()
{
 TheApplication().RaiseErrorText
("fn");
}
function fn ()
// second declaration of function
// fn is not allowed
{
 TheApplication().RaiseErrorText
 ("fn again");
}

A function already exists that
possesses the same name.

In the example, you must define the
function with a name other than the
following name:

fn

Calling function function_label
with insufficient number of
arguments.

function main ()
{
 fn ();
// does not provide enough
//parameters
}
function fn (arg1: chars, arg2:
chars)
{
 ...
}

You did not provide all of the
arguments that the function requires.

The number of arguments you
include must equal the number
specified in the function definition.

In the example, the following
function requires two character
arguments:

fn

Cannot access property
property_name on native type.

function main ()
{
 var a:chars = "123";
 a.m_prop = "123";
// chars is a primitive, so it
// has no properties
}
main ();

You cannot write code that assigns
a property to a variable that is of a
primitive data type, such as char,
 float, or bool.

In the example, because chars is
a primitive data type, you cannot
assign it to the following property:

a.m_prop

282

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

Message Examples Cause

Object_name is an invalid object
type.

function main ()
{
 var a: Obj1 = "123";
// where Obj1 is an invalid object
// type

}
main ();

If you use Siebel eScript that is
strongly typed, then you must specify
a valid data type in the declaration of
the variable.

In the example, the following variable
is not a defined object type

obj1

For more information, see Using
Strongly Typed and Typeless
Variables.

Indiscriminate usage of goto.

function main ()
{
 var obj = new Object();
 with (obj)
 {
 labl:
 TheApplication().RaiseErrorText
 ("in with");
 }
goto labl;
}
main ();

This script uses a Goto statement to
attempt a branch to a With statement
block from outside of the With
statement block.

Semantic Warnings
A semantic warning notifies you that a script will run but it might produce unexpected results or it might not be
efficient. A semantic warning does not display during compilation. To view them in Siebel Tools, you choose Debug, and
then Check Syntax.

The following table describes semantic warnings in eScript when Siebel Tools compiles ST eScript code. Semantic
warnings start with the following prefix: Semantic Warning around line line#. For more information, see Semantic Error
Messages.

Message Example Cause

Undefined identifier identifier.
Global object will be used to
locate the identifier.

function main ()
{
 obj = new Object();
 // obj is created without being // declared
 with var.
}
main ();

An undeclared variable created in a
function is not locally defined. Instead,
 it is created as a property of the Global
object.

Variable variable might not be
initialized.

function main ()
{
 var a;

The variable declared is not explicitly
assigned a value. It is recommended

283

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

Message Example Cause

 TheApplication().RaiseErrorText
 (a);
}
main ();

that you initialize a variable to a default
value when you declare it. For example:

 var a="";

In the example, you must assign the
following variable a value so Siebel
CRM can display it in the RaiseErrorText
function:

a

Label 'label' is unused and can be
removed.

function main ()
{
 var a = 1;
 labl:
// labl is unused
 TheApplication().RaiseErrorText
 (a);
}
main ();

A label is defined in the function but
none of the following statements use
it. In this situation, you can remove this
label:

• Continue

• Break

• Goto

Calling function function_label
with insufficient number of
arguments.

function main ()
{
// It is a warning condition
// instead of an error if the
// missing argument is not
// strongly typed.*/
 var c = fn ();
}

function fn (a, b)
{
 return a+b;
}
main ();

You did not provide all of the arguments
that the function requires.

The number of arguments you provide
must equal the number of arguments
specified in the function definition.

Type conversion from data_type1
to data_type2 cannot succeed.

function main ()
{
 var n: float = "123";
}

When the data type of a variable does
not match the value assigned to the
variable, the Siebel eScript engine
attempts to convert the data type.
This conversion process might not be
successful.

In the example, the following string
value is assigned to a variable that is of
a float data type:

123

The Siebel eScript engine attempts to
convert this string to a float data type.

No such method method_name.

function main ()
{
 fn ();

The specified method is not defined or
the method name is incorrect.

In the example, you must define fn.

284

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

Message Example Cause

}
main ();

Variable variable is double
declared.

Example 1
function fn ()
{
 for (var n = 0 ; n < 3 ; n++)
 {
 ...;
 }
 for (var n = 0 ; n < 3 ; n++)
 // n is double declared in //
the scope of fn.
 {
 ...;
}
fn ();

Example 2
function main ()
{
 var string1 = "a string";
 var string1 = “another string”;
 // string1 must not be
redeclared.
}
main ();

A local variable is declared more than
once.

To avoid this warning for the common
case in Example 1, you can do the
following:

• Declare the counter variable
outside of the for definition.

• Use the counter variable without
var in the for definition.

For example:

function fn ()
{
var n;
for (n = 0 ; n < 3 ; n++)
{
...
}
for (n = 0 ; n < 3 ; n++)
{
...
.

In Example 2, the multiple declarations
result in Siebel eScript assigning each
declaration that occurs after the first
declaration as a simple assignment
but with the unnecessary overhead of
declaring a variable. Instead, you can
use a simple assignment after the first
declaration. For example:

string1 = “another
string”

Preprocessing Error Messages
The following table describes the preprocessing error message created when Siebel Tools compiles ST eScript code.
A preprocessing error message indicates a compatibility issue when Oracle’s Siebel Tools compiles ST eScript code. A
preprocessing error message starts with the following prefix: PreProcess Error.

Message Example Cause

Cannot open include file file_
path.

#include "mystuff.js"
//where mystuff.js does not exist

The path to the file in an Include
statement is not valid.

285

Siebel
eScript Language Reference

Chapter 8
Compilation Error Messages

The #include directive instructs the preprocessor to treat the contents of a specified file as if these contents exist in the
source program at the same location where the directive occurs. You can organize constants and other definitions in
include files, and then use #include directives to add these definitions to any source file.

286

	eScript Language Reference
	Preface
	Using Oracle Applications
	Documentation Accessibility
	Contacting Oracle

	What’s New in This Release
	What’s New in Siebel CRM 20.1 Update
	What’s New in Siebel CRM 19.1 Update

	About Siebel eScript
	About Siebel eScript
	Overview of Siebel eScript
	About the Script Assist Utility

	About Data Types and Numbers
	About Primitive Data Types
	bool Data Type
	chars Data Type
	float Data Type
	undefined Data Type

	About Composite Data Types
	Overview of the Object Data Type
	Boolean Data Type
	String Data Type
	Number Data Type
	Array Data Type
	null Data Type
	Other Object Types That Siebel eScript Supports

	Properties and Methods of Common Data Types
	How Siebel eScript Converts Data Types
	Concatenation Can Cause a Conversion
	Setting the Data Type Can Cause a Conversion

	About Numbers
	Integer Numbers
	Hexadecimal Numbers
	Octal Numbers
	Floating Point Numbers
	Floating Decimal Numbers
	Scientific Numbers
	NaN Numbers
	Numeric Constants

	About Functions and Methods
	Example of a Function
	About Function Scope
	The Arguments Property of a Function
	About Recursive Functions
	Error Checking with Functions
	Where Data Resides

	Using Siebel eScript
	Using Siebel eScript
	Using Operators in Siebel eScript
	Overview of Mathematical Operators
	Using a Shortcut Operation to Do an Arithmetic Operation
	Modifying the Sequence That Siebel eScript Uses to Evaluate an Expression
	Using Logical Operators and Conditional Expressions
	Example of Using Logical Operators and Conditional Expressions
	Using the Equality Operator with a Strongly Typed Variable

	Increasing or Decreasing the Value of a Variable
	Using Less Code to Write an Else Statement
	Examples of Using the Conditional Operator

	Concatenating Strings
	Examples of Concatenating Strings

	Using a Bit Operator

	Coding with Siebel eScript
	Using Script Libraries
	Example of Calling a Business Service Function
	Example of a Creating Custom Method for a Business Service
	Displaying a Custom Method in Script Assist

	Using Strongly Typed and Typeless Variables
	Creating a Strongly Typed Variable
	Creating a Typeless Variable

	Declaring and Using Variables
	About Local and Global Variables
	Using a Local Variable Is Preferable to Using a Global Variable
	Example of Declaring Local and Global Variables
	Declaring a Variable
	Declaring a Variable In a Statement Block

	Determining the Data Type of a Variable
	Passing a Value to a Function
	Passing a Value Through a Variable
	Passing a Value Through a Reference

	Preventing a Floating-Point Error
	Using the Literal Value of a Special Character
	Running Browser Script When Siebel CRM Starts a Siebel Application
	Releasing an Object from Memory
	Monitoring the Performance of Your Script

	Guidelines for Using Siebel eScript
	Make Sure You Use the Correct Format for Names
	Special Characters
	Reserved Words

	Make Sure You Use the Correct Case
	Use Expressions, Statements, and Statement Blocks
	Running Statements In a Loop

	Use a Primitive Data Type Instead of an Object Data Type
	Use White Space to Improve Readability
	Using White Space in a String Literal Can Cause Errors

	Use Comments to Document Your Code
	Make Sure the JavaScript Interpreter Can Run a Function

	Statements Reference
	Statements Reference
	Break Statement
	Continue Statement
	Do While Statement
	For Statement
	For In Statement
	Goto Statement
	If Statement
	Switch Statement
	Throw Statement
	Try Statement
	While Statement
	With Statement

	Methods Reference
	Methods Reference
	Overview of Methods Reference
	Usage of the Term Put

	Array Methods
	Overview of Array Methods
	Example of Using an Array

	About Array Functions
	About Associative Arrays
	Example of Using an Associative Array

	Add Array Elements Method
	Concatenate Array Method
	Create Array Elements Method
	Delete Last Array Element Method
	Get Largest Array Index Method
	Get Subarray Method
	Insert Array Elements Method
	Reverse Array Order Method
	Shift Array Left Method
	Shift Array Right Method
	Sort Array Method

	String Methods
	Overview of String Methods
	How Siebel eScript Handles Special Characters In a String

	Change String to Lowercase Method
	Change String to Uppercase Method
	Create String From Substring Method
	Create String From Unicode Values Method
	Get Character From String Method
	Get Unicode Character From String Method
	Get Regular Expression From StringVar Method
	Get String Length Method
	Parse String Method
	Replace String Method
	Search String for Substring Method
	Search String for Last Substring Method
	Search StringVar for Regular Expression Method

	BLOB Methods
	About the BLOB Descriptor
	Example of Using a BLOB Descriptor
	Values You Must Use with a BLOB Descriptor

	Get BLOB Data Method
	Get BLOB Size Method
	Write BLOB Data Method

	Buffer Methods
	Overview of Buffer Methods
	About Buffer Constructors
	Create Buffer Method
	Get Buffer Data Method
	Get Cursor Position Value From Buffer Method
	Get String From Buffer Method
	Put String in Buffer Method
	Put Value in Buffer Method
	Write Byte to Buffer Method
	Buffer Size Property
	Cursor Position in Buffer Property
	Data in Buffer Property
	Use Big Endian in Buffer Property
	Use Unicode in Buffer Property

	Date and Time Methods
	Overview of Date Methods
	Format for Calling a Date Method
	Caution About Using Two-Digit Dates
	Values for Dates and Times

	About the Date Constructor
	Convert Date and Time to String Method
	Convert Date to Integer Method
	Convert Date String to Date Object Method
	Convert Date to GMT String Method
	Convert Integer Date to JavaScript Date Method
	Get Day of Month Method
	Get Day of Week Method
	Get Full Year Method
	Get Hours Method
	Get Milliseconds Method
	Get Minutes Method
	Get Month Method
	Get Seconds Method
	Get Time Method
	Get Time Zone Offset Method
	Get Year Method
	Set Date Method
	Set Full Year Method
	Set Hours Method
	Set Milliseconds Method
	Set Minutes Method
	Set Month Method
	Set Seconds Method
	Set Time Method
	Set Year Method

	UTC Methods
	Convert UTC Date to Readable Date Method
	Get UTC Date Method
	Get UTC Day of Month Method
	Get UTC Day of Week Method
	Get UTC Full Year Method
	Get UTC Hours Method
	Get UTC Milliseconds Method
	Get UTC Minutes Method
	Get UTC Month Method
	Get UTC Seconds Method
	Set UTC Date Method
	Set UTC Full Year Method
	Set UTC Hours Method
	Set UTC Milliseconds Method
	Set UTC Minutes Method
	Set UTC Month Method
	Set UTC Seconds Method

	Global Methods
	Overview of Global Methods
	Create COM Object Method
	Get Array Length Method
	Set Array Length Method
	Undefine Method

	Conversion Methods
	Overview of Conversion Methods
	Convert String to Floating-Point Number Method
	Convert String to Integer Method
	Convert Number to Exponential Notation Method
	Convert Number to Fixed Decimal Method
	Convert Number to Precision Method
	Convert Special Characters to URL Method
	Convert Unicode to ASCII Method
	Convert Value to Boolean Method
	Convert Value to Buffer Method
	Convert Value to Bytes Method
	Convert Value to Integer Method
	Convert Value to Integer 32 Method
	Convert Value to Unsigned Integer 16 Method
	Convert Value to Unsigned Integer 32 Method
	Convert Value to Number Method
	Convert Value to Object Method
	Convert Value to String Method
	Evaluate Expression Method

	Data Querying Methods
	Is Defined Method
	Is Finite Method
	Is NaN Method
	Exception Object
	Function Object
	Length Property of a Function Object
	Return Statement of a Function Object

	Mathematical Methods
	Overview of Mathematical Methods
	Properties of the Math Object
	Base E Property
	Logarithm 2 E Property
	Logarithm 10 E Property
	Natural Logarithm 2 Property
	Math Natural Logarithm 10 Property
	PI Property
	Square Root 1/2 Property
	Square Root 2 Property

	Get Absolute Value Method
	Get Arc Cosine Method
	Get Arcsine Method
	Get Arctangent Method
	Get Arctangent 2 Method
	Get Ceiling Method
	Get Cosine Method
	Get Exponential Method
	Get Floor Method
	Get Logarithm Method
	Get Maximum Method
	Get Minimum Method
	Get Quotient Method
	Get Random Number Method
	Get Remainder Method
	Get Sine Method
	Get Square Root Method
	Get Tangent Method
	Raise Power Method
	Round Number Method

	Regular Expression Methods
	Overview of Regular Expression Methods
	Properties of Regular Expressions
	Regular Expression Global Property
	Regular Expression Ignore Case Property
	Regular Expression Multiline Property
	Regular Expression Source Property

	Compile Regular Expressions Method
	Get Regular Expression from String Method
	Is Regular Expression in String Method

	Siebel Library Methods
	Siebel Library Call DLL Method
	Siebel Library Get Pointer Address Method
	Siebel Library Peek Method
	Siebel Library Write Data Method

	Custom Methods
	Overview of Custom Methods
	How the Constructor Function Creates an Object
	Example of Using a Constructor Function

	How a Function Is Assigned to an Object
	About Object Prototypes
	How an Object Prototype Conserves Memory
	Example of Using an Object Prototype
	Adding Methods and Data to an Object Prototype

	C Language Library Reference
	C Language Library Reference
	Overview of the Clib Object
	Using Siebel eScript Methods Instead of Clib Methods

	Clib File and Directory Methods
	Overview of Clib File and Directory Methods
	Clib Close File Method
	Clib Create Temporary File Method
	Clib Create Temporary File Name Method
	Clib Delete File Method
	Clib Lock File Method
	Clib Open File Method
	Clib Rename File Method
	Clib Reopen File Method
	Clib Change Directory Method
	Clib Create Directory Method
	Clib Get Current Working Directory Method
	Clib Remove Directory Method

	Clib File Input and Output Methods
	Overview of Clib File Input and Output Methods
	Format Characters for Methods That Print and Scan
	Format Characters for Methods That Print
	Format Characters for Methods That Scan

	Clib Clear Buffer Method
	Clib End of File Method
	Clib Get Character Method
	Clib Get Characters to Next Line Method
	Clib Get Cursor Position Method
	Clib Get Relative Cursor Position Method
	Clib Move Cursor to Beginning of File Method
	Clib Read From File Method
	Clib Restore Cursor Position Method
	Clib Set Cursor Position Method
	Clib Scan and Convert File Method
	Clib Scan and Convert from Input Device Method
	Clib Unget Method
	Clib Write Character Method
	Clib Write Formatted String Method
	Clib Write String to File Method
	Clib Write to File Method

	Clib String Methods
	Clib Append String Method
	Clib Compare Strings Method
	Clib Convert String to Lowercase Method
	Clib Copy String Method
	Clib Get Formatted String Method
	Clib Get Last Substring Method
	Clib Get Substring Method
	Clib Search String for Character Method
	Clib Search String for Character Set Method
	Clib Search String for Not Character Set Method
	Clib Write Formatted String Method

	Clib Buffer Methods
	Clib Get Memory Method
	Clib Compare Memory Method
	Clib Copy Memory Method
	Clib Set Memory Method

	Clib Mathematical Methods
	Clib Create Random Number Method
	Clib Divide Method
	Clib Get Floating Point Number Method
	Clib Get Hyperbolic Cosine Method
	Clib Get Hyperbolic Sine Method
	Clib Get Hyperbolic Tangent Method
	Clib Get Integer Method
	Clib Get Normalized Mantissa Method
	Clib Initialize Random Number Generator Method

	Clib Date and Time Methods
	Overview of Clib Date and Time Methods
	About the Objects That Each Clib Time Method Returns
	Clib Convert Integer to GMT Method
	Clib Convert Integer to Local Time Method
	Clib Convert Time to Integer Method
	Clib Convert Time Object to Integer Method
	Clib Get Date and Time Method
	Clib Get Formatted Date and Time Method
	Clib Get Local Date and Time Method
	Clib Get Difference in Seconds Method
	Clib Get Tick Count Method

	Clib Character Classification Methods
	Overview of Clib Character Classification Methods
	Clib Is Alphabetic Method
	Clib Is Alphanumeric Method
	Clib Is ASCII Method
	Clib Is Control Method
	Clib Is Digit Method
	Clib Is Lowercase Method
	Clib Is Printable Method
	Clib Is Printable Not Space Method
	Clib Is Punctuation Mark Method
	Clib Is Space Method
	Clib Is Uppercase Method
	Clib Is Hexadecimal Method

	Clib Error Methods
	Clib Clear Error Method
	Clib Get Error Number Method
	Clib Get Error Message Method
	Clib Save Error Message In String Method
	Clib Error Number Property

	Other Clib Methods
	Clib Convert Character to ASCII Method
	Clib Modify Environment Variable Method
	Clib Get Environment Variable Method
	Clib Send Command Method
	Clib Search Array Method
	Clib Sort Array Method

	Siebel eScript Quick Reference
	Siebel eScript Quick Reference
	File and Directory Methods
	File Manipulation Methods
	File Manipulation Methods
	Directory Manipulation Methods

	String Methods
	Array Methods and Properties
	Mathematical Methods and Properties
	Numeric Methods
	Trigonometric Methods
	Mathematical Properties

	BLOB Methods
	Date and Time Methods
	Buffer Methods and Properties
	Siebel Library Methods
	Conversion Methods
	Character Classification Methods
	Error Handling Methods
	Other Methods

	Compilation Error Messages
	
	Formats That This chapter Uses
	Format Error Messages
	Semantic Error Messages
	Semantic Warnings
	Preprocessing Error Messages

