ORACLE
INSURANCE

Oracle Health Insurance

Custom Development for

Oracle Health Insurance Back Office

version 1.35

Part number: G49637-01
January 15, 2026

ORACLE

Copyright © 2014, 2026, Oracle and/ or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

This software and documentation may provide access to or information on content, products, and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties
of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will
not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related
notices. For information on third party notices and the software and related documentation in connection with
which they need to be included, please contact the attorney from the Development and Strategic Initiatives
Legal Group that supports the development team for the Oracle offering. Contact information can be found on
the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality described
in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of
your Oracle Software License and Service Agreement, which has been executed and with which you agree to
comply. This document and information contained herein may not be disclosed, copied, reproduced, or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

CHANGE HISTORY

Release Version Changes
10.14.1.0.0 1.0 Creation
10.14.1.0.0 1.1 Minor adjustments
10.14.2.0.0 1.2 Minor adjustments
10.15.1.0.0 13 Minor adjustments ‘Business Event Framework’
Minor adjustments ‘Dynamic PLSQL’
10.15.3.0.0 14 Minor adjustments ‘Modification logging’
Minor adjustments ‘Flex fields’
Added fileoutput in a specific characterset to ‘Custom batch scripts’
10.16.1.0.0 1.5 No changes
10.16.2.0.0 1.6 Added ‘VPD implementation’
10.17.1.0.0 1.7 Added table RBH_VDR_HISTORIE to VPD implementation. Added
instructions for the use of custom developed PL/SQL objects in system views.
Minor adjustments on column bound checks, added the ‘Direct?” checkbox
10.17.1.1.0 1.8 Added ‘Indexed access of Flex field Values’
10.17.2.0.0 1.9 Added description for how to purge data from logging tables
10.17.2.2.0 1.10 Adjustments for enhanced batch ‘Tracing’ functionality, a debug level and
specific stored pl/sql units can be specified.
10.18.1.0.0 1.11 Small adjustment regarding the reference of script OZG_DIRECT.grt.
10.18.1.2.0 1.12 Corrected information about indexes not being present on change logging
tables and enhanced description of open database.
10.18.2.0.0 1.13 Removed references to C2B web services.
10.19.1.0.0 1.14 No changes. Republished with different part nr.
10.19.1.2.0 1.15 Added description how to put JMS messages on a database queue with JMS
payload.
10.19.1.3.0 1.16 Added Service Consumers as separate chapter
10.19.2.0.0 117 Paragraph is added about using message handling calls in pl/sql definitions.
10.20.1.0.0 1.18 Interface layout ALG_EVENT_INTERFACE_PCK modified
System and account mapping views grant structure changed
OHI_BATCH_ROLE documented
10.20.2.0.0 1.19 Appendix H Service consumer examples added
10.20.3.0.0 1.20 Adapted the description of the VPD view layer as the implementation has
slightly changed due to a more strict database 19¢ security implementation.
Added jms header property for the service consumer implementation
10.20.6.0.0 1.21 Documented that use of MERGE statements is not supported.
10.21.1.0.0 1.22 No changes, republished with new part number.
10.21.2.0.0 1.23 Adapted the description and Ul examples of the Business Event Framework
10.22.1.0.0 1.24 No changes, republished with new part number.
10.23.1.0.0 1.25 No changes, republished with new part number.
10.23.4.0.0 1.26 Added some helper queries in appendix G; Using a JMS payload queue
10.23.5.0.0 1.27 Removed English views from 3.1.2
Added appendix G
10.23.7.0.0 1.28 Second appearance of appendix G renamed to appendix I
Minor change in the code logic of appendix 1
10.23.8.0.0 1.29 Added subparagraph “Handling the exception queue” to appendix G.
10.24.1.0.0 1.30 Republished with new part number.
BATCH privileges in Batch user
10.24.5.0.0 1.31 paragraph 8.1.4 added
10.24.8.0.0 1.32 added Appendix | - Time travel in OHI (for testing purposes only)
10.25.1.0.0 1.33 Republished with new part number.
Time travel > 6 years not supported
10.25.7.0.0 1.34 Note added in Appendix E - Modification Mechanism for Policies and
Relations
10.26.1.0.0 1.35 No changes, republished with new part number.

Custom Development within OHI Back Office Introduction ii

Contents
1. | Hakay'eTe 6 Taxu (o) o WERNRRUUN SRR PRSP 1
1.1. J AN S Lo S T3 a1 TR PR 1
1.2. SCOPE . e e 1
1.3. DOCUMENEATION ..ttt e e st e e e sate e e eenaaeesennaeeeeas 2
1.4. RELEIOIICES ...ttt ettt s e et et e e st e e aeeeaee s 2
2. OVEIVICW ettt ettt et e e et e e e eate e e eeatt e e s sttt e s saateeessanaeessnnseeesanseeessnnes 3
2.1. BUSINESS RUIES......oocuviiceiiieeiieeeeeeeee ettt 4
2.2. An ‘Open to Custom Code” Database.........c.cccoveverereuirnerenneerneeneneneennens 5
2.3. FLOX FIOLAS ..ottt ettt e eae e e s e e senaaeas 5
24. Dynamic PL/SQL ... 6
2.5. Business Event FramewoOrkKccccooiiiiiiiiiiiiiceeeee e 6
2.6. Custom Batch SCIIPLSc.covveveirieirrieicirecnec ettt 6
2.7. HTTP LINKS .ottt ettt ettt e e eaeeeeaee s 6
2.8. OHI Back Office BUSINESS SEIVICES........uoeiveueieiieiiieieeeee ettt eeaeeeeas 7
2.9. JMS MESSAGINE......ocviiiiiiiiiiiiiiiicc e 7
3. An ‘Open to Custom Code” database........c.cccccvveveerreinneinnecnneinneceeeenens 8
3.1. Tables ANd VIEWSc.eoocuiiieiieeie ettt e eaees 8
3.2. AUTNOTIZATION ...ttt et e e et e e et e e s eaaeeeeas 9
3.3. VPD implementationccccccocieiiiiiiniiiiicicceee s 10
34. Datamodel helpcccovveinriiininicinrccne e 16
3.5. Modification IoGINgG.........cceueueueuiiiiiirrceccccerre e 17
3.6. TTACING vt 24
4. FLOX FIOLAS ..ottt e e st e e e e e e eaaeessenaeeeean 25
4.1. CONCEPLS .ttt ettt sttt st er et saeneene 25
4.2. Flex Field CharacteriStiCS.......cuiiviiiiuiiiiiieieiieeeeieeeie ettt ettt 26
4.3. Flex Field definitionocuoiuiiiiiiiiicieceee et 27
4.4. Flex Field MaiNtenancecoooviviieeiieieeiee ettt seete e s eae e 29
4.5. Indexed access of Flex Field values.........ccooovvviviiiieciiiiieeeeeeeeeeeeeee e 29
5. Dynamic PL/SQL ..o 31
5.1. Ho0ks for PL/SQL COAEcveiiiiiiiieiieiieieieriesie ettt eve e veessessens 31
5.2. Dynamic PLSQL Definitionccccooviiiiiiiiiiiiiniiniccccicnins 31
5.3. Column boUNA CHECKSeviieiieeeeeeeeeee et 34
5.4. WIiting CUStOM COAEvumiiiiiiiiecccccc et 40
6. Business Event FrameWOTIKcccoovuiiiiiiiiiiciiiceeeeeeeeeeeete e 41
6.1. (@ 273 74 ()7 41
6.2. Signaling EVentscccooiiiiiiiiicccc 41
6.3. Responding to EVENESc.ccoooviiiiiiiiiiiccceccc 42
6.4. Combining Signaling and Response TYpesccccccovvrueuercuccirinnnnennnes 42
6.5. Framework COMPONENtS...........ccoceeverireeieieiemeieiieinirsseeieveneieeeeeseseseseennes 43
6.6. Developing Your Own Business Events............c.cccocooviiiiniiiiicniene, 48
6.7. Processing Business EVeNts..........cccooovoiiiiiiiiicceeccce 52
6.8. EXQMIPLES......oiiiiiiiiiiir ettt 53
6.9. Trouble shooting the event framework...........cccovvveeeccciinnnnnnnnnes 59
7. Custom BatCh SCIIPLS ...c.ceoiviriririeieicieicicirrr e 60
7.1. APPIOACK ... 60

Custom Development within OHI Back Office

Introduction iii

10.

11.

12.
13.
14.
15.

16.
17.
18.
19.

20.

7.2. |37 L el o IR O F=T<) TR 61

7.3. Registrationcccciiiiiiiiiiiiicicc s 61
74. Export script definition..........cccccciiinnnninicicciccirrreecceecc e 64
7.5. Generator: Bulk Processing Batch - Overview ..o, 64
7.6. Generator: Bulk Processing Batch - Details............cccooeecciiiinnnnnnne, 65
7.7. Generator: CSV Export Batch........cccovveieieueuiiciiiininnececcccteenenseennes 71
7.8. Generator: CSV Import Batchooeeueiiiiiinnneeecccccenenenes 72
7.9. Generator: XML Import batchc.ccccvvecneciniicnicinecnececcnen 73
710, Other OUtPUL SCIIPLS ..veuevereiiriireiiieceerrccecereeeeee et reseees 73
711. Module installation SCIIPtcccevvereirirriinirieininceeeeereeere e 73
7.12. Creating output in a specific characterset..........c.cccocovrveverercccinnnrnneenes 73

HTTP LINKS....ooiiiiiiiiiiiiiie s 74
8.1. CoNfIgUIAtION ... 74

OHI Back Office BUusiness SEIViICes..........c.covvueuruiuemiuiiinininiiieieeeeneceeeeeeseeenes 80
9.1. ATChItECUTE. ... 80
9.2. Implementation..........ccociiiiiiiiiicicc e 80
9.3. Find, Get and WIIte SEIVICES......uuviveeieeeeeeee et eeeereeeeeeeeeeesseeeeeeane 81
94. WIite SEIVICES.. ..ot 81
9.5. Error Handling.........cccooovvireiiiiiiinneeeccccccnneeeee e 85

Service CONSUIMETSc.civiiuiiiiiiiiiii e 86
10.1. WSDL transformation..........ccoceeirciiiiniciinicinncececcrcecsiee e 86
10.2. Request and Response JMS payload queuescccocoeueueuccuciininnrnnnes 87
10.3. Message Processing..........ccooviiiiiiiiiniiiiiiiniiiiciecns 87
10.4. Custom calls on Service COMSUIMETSc.ceverueueirieuirinieisieieeeerieeeeeneeas 89

Custom Development Practices............ccoeeoiniiiciniiiiniiiinccccscecreeees 90
11.1. Create a custom SChEMAc.cceuiuiiriniriicciccccc e 90
11.2. Use an abstraction Iayer.........c.ccccccooivnnnnnicciiiiiinnreeceeeceereeeeenes 90
11.3. Define your transactions..........c.ccocceerrerererieueuemeueeininisneeeneeeenceeseseseeaenes 91
114, LOCKINE c.oviiiiiiiciiiiiiii e 92
11.5. Use Named Parametersccoeeirrieiiiiicinniciiicceneeeeieeseieeeeneneens 92
11.6. Profile yOUT COE ..o 93
11.7. ClOSE OPEIN CUISOTScveeiriiineiiaierieeeeeee et seseseesesesaeanes 93
11.8. Coding Standards............cccocoeieiiiiiiiiiiiniiiiiiicc e 93

Deprecated Interfacing optionscccoovviiiiiiiiininiiccis 94

Appendix A - Business event framework datamodel..............ccccoccoiiniiniinn. 1

Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK.......4

ApPPendix C = TTaCINEGc.ccvrrrririeicieiciierr et 2
I5. 1. ACHVALION .ot e 2
15.2. How to Access Trace LOgs........ccooovviviioiiiiiiiiiiiiiciccccc e 3
15.3. Instrumentation of Custom Code.........cocoeueueuiuiuiiiininnreececceeee e 3

Appendix D - What you should know about CDM RuleFrame........................ 4

Appendix E - Modification Mechanism for Policies and Relations 5

Appendix F - Dynamic PL/SQL TyPes........cccccovvrininiiiiinnnncccccceeenes 6

Appendix G - Using a JMS payload queuse.............ccccceeueuiiininnninnicciiecnes 8
19.1. Principles for the OHI queue ALG_JMS_QUEUE with JMS payload......... 9
19.2. Points of @atteNtioN.......cccuevririeieueueiciiiiirrrececcee e 9
19.3. Interface Package.........cccooveriiiiiiiiiiiicccee e 10
19.4. Enqueue eXample ... 11
19.5. HelPer QUETIES. ...c.cueuiiiiiicieicieiecict et 13
19.6. Handling the exception qUEUE..........cocouvvveeeeucueucuiiiirnreceee e 14

Appendix H - Service consumer example callscccovrueueeeceininnnnnnnes 17

Custom Development within OHI Back Office Introduction iv

20.1. Check on COV ...t
20.2. Municipal administration (BRP/GBA).......cccccccovurueueueneee

21. Appendix I - Using a predefined list of Personal Numbers (BSN) for testing

23
22. Appendix] - Time travel in OHI (for testing purposes only)

Custom Development within OHI Back Office

Introduction

v

|
1. Introduction

Two of the strengths of the Oracle Health Insurance Back Office application are the
possibilities to configure and customize the application.

Much of the behavior of the application can be influenced through configuration
parameters.

If this is not enough, the application offers facilities to:
e Extend the standard data model with flex fields;
¢ Include custom developed code into the standard processes;
e Define and process custom-defined events;

e Develop custom applications to integrate with OHI Back Office through web
services; or

e Develop custom PL/SQL code to directly access OHI Back Office data and
implement customer specific functionalities (data processing processes,
output producing processes, etc.)

The purpose of this document is to describe these options and help you decide how
to customize OHI Back Office to your needs.

1.1. Audience

This document is primarily written as a technical reference for anyone who needs to
integrate with OHI Back Office or to augment the standard process.

Since this document describes the various options to integrate with OHI Back Office
it may also be of interest to application managers .

The document assumes familiarity with:

e Basic OHI Back Office functionality

e Relational database concepts

e SQLand PL/SQL

e Secure Design and Secure Coding principles

Also the document assumes access to the OHI Back Office Online Help.
1.2. Scope

Within scope:

e Best practices for custom development and customization

e SVL web services

e How to organize custom code

Out of scope:

e Configuration of OHI Back Office

e Localization (translation, application code for local jurisdiction).
e Post-processing XML

e (lient applications

Custom Development within OHI Back Office Introduction 1

¢ Interfacing with BI

e Self-service applications

¢ Coding standards

e Version control for custom developed code

e How to set up a custom schema and access rights (for more information, see the
technical manual Oracle Health Insurance Back Office - Object Authorization)

1.3. Documentation

You may find more detailed technical documentation (like this manual) at
http:/ /docs.oracle.com:

e Browse http:/ /docs.oracle.com

e Navigate ‘Industries > Insurance > Oracle Health Insurance Applications >
Health Insurance Back Office’

Also use OHI Back Office Online Help, available through the Forms application but
also separately accessible by an OHI Back Office specific URL, to get:

e Functional information about the topics

e The menu path of the mentioned screens in this document

1.4. References

DocRef

Document

Doc[1]

Back Office Service Layer Installation & Configuration Manual
(docs.oracle.com)

Doc[2]

Back Office Service Layer User Manual (docs.oracle.com)

Doc|3]

Oracle Health Insurance Back Office Installation, Configuration & DBA
Manual (docs.oracle.com)

Doc[4]

Oracle Health Insurance Back Office - Service Consumer Installation
and Configuration Manual (docs.oracle.com)

Custom Development within OHI Back Office

Introduction

2

http://docs.oracle.com/
http://docs.oracle.com/

2. Overview

OHI Back Office is an “all in one” engine to process claims for health care payers. The
health care is provided by providers who may be contracted beforehand by the
health care payer.

In most cases, the insured members are policy holders for which they collect
premiums. So product definition, health care and collection of premiums are core
processes as well.

An oversimplified functional view

Policies Products

Brandproduct Comb. Claims

Procurement
:

Financials

Relations i .
Deb. Fin. transact. red. Fin. transact
; 1 Lievinty

Figure 1: OHI Back Office “all-in-one’ core processes.

We consider OHI Back Office as an “all-in-one” application, because all data, business
rules and logic to support the core processes reside in a single database. This all-in-
one approach allows maximum consistency for OHI Back Office data and is
instrumental for achieving a high ‘straight-through processing” (STP) ratio with a
fairly limited use of resources in relation to the provided richness in functionality.

The OHI Back Office GUI application allows back office personnel to perform data
entry, adjudication and run background processes. Much of the application logic for
these tasks is implemented in the database.

Desktop tier Application tier Database tier

Oracle Fusion Middleware 12¢
i @

HTTP Server

Business rule layer

Forms Services

Process logic

Browser with

Java Plugin Web Services
or

Java Web Start

Oracle Database 12¢ R2

[rmihge a i OHI Back Office ‘client”

(forms, perl, shell, scripts)

Figure 2: OHI Back Office GUI components

Although OHI Back Office is an “all-in-one” application it is by no means a black box
that cannot be altered. To work for a given customer OHI Back Office provides
several possibilities for customization. To work in an environment with other
applications, OHI Back Office provides various integration facilities. This chapter
gives you an overview of these customization and integration facilities.

Custom Development within OHI Back Office Overview 3

2.1. Business Rules

2.1.1. CDM ruleframe

Business rules are used to keep the OHI Back Office data in a consistent state for
every DML operation. The OHI Back Office has many thousands of business rules
which are implemented through an OHI Back Office tailored and optimized version
of CDM RuleFrame. CDM RuleFrame is a framework originally developed for Oracle
customers to develop their own custom Rule engine within an Oracle database.

The execution of the business rules is largely controlled by database triggers. With so
many business rules these are bound to be many interdependencies, which means
that business rules must always be adhered to and may never be disabled during use
of the application. An exception may be well trained OHI Back Office personnel
implementing customer specific conversions during a maintenance period.

Much of the processing of the business rules takes place when a transaction is
committed to the database. This means that transactions should be defined as logical
units to prevent that (seemingly) unrelated business rules are triggered by closing a
transaction.

Because of their implementation in the database, business rules are tightly integrated
with the data. This results in optimum performance. And, since the business rules
apply to every DML operation on OHI Back Office objects, we created an ‘Open
Database’ in respect to developing interfaces and custom code as you can access the
database with (virtually) any tool that provides database access. Of course this
openness and flexibility comes with great responsibility how to make use of it.

Finally, business rules help to avoid redundant code. Since they are always
automatically applied, most application code does not need to be aware of the
underlying business rules. This makes it easier for us to maintain and control our
application code.

It also makes it viable for you to create custom code for OHI Back Office.

2.1.2. How to determine the set of rules on a table

There are many types of business rules like attribute rules, tuple rules, entity rules,
inter entity rules which can also be devided in dynamic rules and static rules.
There are several ways to determine the set of business rules on a given table.

e Check the constraint definitions in the data dictonary

e Look in alg#business_rules for the more complex static business rules, these
are rules that can be validated at any moment in time

¢ Query on the system messages, business rule messages have the following
format:

o Start with a three letter application system prefix
o Followed by _BR_

o Followed by the three letter table alias which can be found in the
column table_alias in ALG_TABELLEN for the given tablename

o Followed by a three digit sequence number.
o Followed by the classification of the rule.

o SELECT*
FROM ALG_SYSTEEM_MELDINGEN
WHERE CODE like '%_BR_%' escape '\’

Custom Development within OHI Back Office Overview 4

e Use the Online Help which provides an overview per table of the business
rules. This information can also be generated for a specific release which is
discussed later on in this document.

2.2. An ‘Open to Custom Code’ Database

2.3. Flex Fields

You may directly access the OHI Back Office database because the business rules,
implemented in the database itself, work as a protective shield.

You can either use the PL/SQL API packages direct access to the tables to access the
OHI Back Office data, provided that you:

e Do never use the OHI Back Office schema owner accounts to connect to the
database for other purposes that OHI release maintenance activities, typically
executed through OHIPATCH. Always use a custom schema instead; in fact,
your DBA should never grant access and lock the owner accounts when not in
use for applying a new OHI patch/update.

¢ You should never (be able to) change the table definitions, types, packages or
other database objects owned by the OHI Back Office schema’s as this means you
loose your right on OHI support.

e Do never create custom grants from OHI Back Office database objects to your
own schema.

¢ Do never disable business rules (you should never receive the privileges to do so)
in custom code.

¢ Do not insert, update or delete records from technical tables, including log and
audit tables (you should, again, never receive the privileges to do so).

¢ Do not use the MERGE statement as combination of an INSERT and UPDATE
statement. The MERGE command is not supported and does not handle the
resulting insert or update action in a correct manner.

You can use and access every object which has been granted to your account without
violating the above rules provided these are granted in the official supported way
(see the Object Authorization manual) and you have not received any system
privilege that provides more privileges than allowed.

You can use any tool or interface to access the OHI Back Office as long as the
underlying interface is supported by Oracle (for example OCIL, ODBC, JDBC, SQLNet,
ODP.net).

As a standard solution for healthcare payers, the OHI Back Office data model cannot
be altered. However, the OHI Back Office data model can be extended with so-called
flex fields to register additional customer-specific data, for example to record when
members had their last health check or to register parameters for interfacing with
providers.

These flex fields have the following benefits:

e The core data model stays unchanged, which means that OHI Back Office can
support the application as sold to the customer.

e The customer does not need to create a secondary data model, the data of which
must be kept in sync with the OHI Back Office database.

Historically, flex fields were used for claims line processing and to add extra data to
policies and relation data. Soon after, flex field implementations were created for

Custom Development within OHI Back Office Overview 5

2.4. Dynamic PL/SQL

other tables and can now be commonly used on ‘functional tables” (what this means
is discussed in the next chapter).

Flex field support might be further extended in future releases.

OHI Back Office’s support for dynamic PL/SQL is a powerful mechanism which
allows the customer to add customer-specific code to the core OHI Back Office
product.

OHI Back Office has defined several “hooks” in OHI Back Office where custom code
can be added:

e Data entry validation (specific as well as generic for all functional tables and
their columns)

e Address entry and formatting.
e Trigger conditions for events using the ‘Business Event Framework’.

e Core processes such as claims processing, policy collection and payment
processing.

Apart from adding a high level flexibility to the customer our support of dynamic
PL/SQL helps to keep the amount of code in the standard product under control.

2.5. Business Event Framework

With the Business Event Framework you can define customer-specific events and
event handlers.

These events can be time-based, triggered by a change or created by your custom-
designed detection mechanism.

The handlers can be run near real-time in the background, asynchronously, or in
batch processing mode at scheduled moments and are implemented through custom
PL/SQL code.

2.6. Custom Batch Scripts

2.7. HTTP Links

OHI Back Office allows you to create your own batch processing scripts and run
them with the standard batch scheduler.

You are advised to use the built-in OHI Back Office script generator to generate a
framework to control the execution of your custom code, especially if you expect to
be processing large data volumes. The generated framework helps to process large
volumes in manageable chunks, divide the work over parallel sub processes, and
provide the same kind of feedback as the standard scripts.

HTTP Links allow users of the OHI Back Office GUI Application to view or process
related data in an external application. For each HTTP link you can configure a HTTP
request template to the target application and the OHI screens which will display the
HTTP link.

File Edit Window Help

[l (2= [elef= === [+ 2] m] =)]

Figure 3: Toolbar with HTTP links

At runtime the HTTP link will open an extra browser window to send a HTTP
request to the target application, substituting placeholders with runtime values
derived from the current OHI screen.

Custom Development within OHI Back Office Overview 6

Note that the target application must be an HTTP application! And when the
accessed data should not be generally available make sure you implement some form
of a Single Sign On access to prevent a user needs to supply a username and
password for each callout.

2.8. OHI Back Office Business Services

The OHI Back Office Business Services add integration facilities for use in a service
oriented environment. The business services are part of a service layer for retrieving
and updating core OHI Back Office data.

The ‘Find” and ‘Get’ services are used to retrieve data from OHI Back Office. ‘Write’
services are used to store data in the OHI Back Office database.

OHI Back Office Business Services are implemented as PL/SQL services and made
available through synchronous SOAP/HTTP web services.

Note that the OHI Back Office Business Services are technically not related to the
older OHI Connect2BackOffice (C2B) services. Although a licencse for that product
historically has given you the right to use these Business Services.

2.9. JMS Messaging

The OHI Back Office application does come with a standard Oracle Advanced
Queueing queue with a JMS payload implementation. This is a queue meant for
generic use to offer out of the box messaging functionality when needed for
publishing events to the ‘world outside of OHI Back Office’.

As this queue is general purpose it is not optimized for specialized high frequency
messaging tasks. But you can take the delivered queue implementation as an
exampled and implement a customer specific tailored queue in a custom scheme.

For more information regarding this generic please see the [MS payload queue
Appendix.

Custom Development within OHI Back Office Overview 7

3. An ‘Open to Custom Code” database

You may directly access the OHI Back Office database because the business rules,
implemented in the database itself, work as a protective shield.

You may use DML, PL/SQL API packages, or database views to access the OHI Back
Office data, provided that you (see the previous chapter):

e Do not use the OHI Back Office schema owner to connect to the database (use a
custom schema instead);

e Never change the table definitions, types, packages or other database objects
owned by the OHI Back Office schema;

¢ Never create custom grants from OHI Back Office database objects to your own
schema;

e Never disable business rules;

e Do not insert, update or delete records from technical tables (including log and
audit tables).

This means you can and may use and access every object which has been granted to
you by the application defined grant mechanism without violating the above rules.

You can use any tool or interface to access the OHI Back Office as long as the
underlying interface is supported by Oracle (for example OCI, ODBC, JDBC, SQLNet,
ODP.net).

The above means that the use of the OHI application is not supported and not
certified when you do not adhere to these restrictions.

Effectively it is prohibited to:

e Execute any DDL that alters or influences the structure or behavior of OHI
provided database objects within the OHI maintained schemas. So you may
not drop, add, change, disable, enable, when applicable, tables, columns,
indexes, pl/sql code, type definitions, etc. as this is all done by Oracle Health
Insurance (OHI) delivered scripts. Only when instructed by OHI personnel
an exception on this is allowed.

e Add, delete or change object privileges (grants) on the OHI provided objects
or use system privileges to circumvent these object privileges.

It is allowed though to use DDL to reorganize the storage of data objects, so you may
move and for example increase or decrease storage properties like initrans or pctfree
or rebuild indexes. Provided that this may impact the use of OHI and you should
prevent negative consequences and make sure a maintenance window is used for
such actions when this is done offline.

3.1. Tables and views

3.1.1. Tables

These are the different table types in OHI Back Office:
e ‘Functional’ tables
o All DML operations permitted

o organized by functional area (aka sub system) like ALG, FSA, GEB or
VER

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 8

e Technical tables: internal use only by OHI Back Office

e Logging tables:
o used for tracking changes to the functional tables.
o No DML operations permitted

The following naming convention is used to recognize each table type:

Type Name format DML? Characteristics
Functional <SUB SYSTEM>_<NAME> Yes e Functional
e Rulelayer
o Column level grants
Logging <SUB SYSTEM>$<NAME> No = Data changes
* Ondemand
Technical <SUB SYSTEM>#<NAME> No e Process
3.1.2. Views

A similar naming convention is used for the different OHI Back Office view types:

Type Name format Characteristics
— —— — — — — — |
System ALG_<NAME>_SVW e Fixed column list
e Customizable from and where clause
Financial FVS_<NAME>_Sn_VW = For determination of General Ledger
data

= Per financial fact type
= Atleast three fixed mandatory
columns

Translation <SUB SYSTEM>_<ALIAS> VW . Translated values
. Public synonym to underlying table

@ Tip: Query the ALG_TABELLEN table to find the international view name for
each table.

3.2. Authorization
Authorization and access in OHI Back Office is handled on three different levels

1. Database level
Table level select and delete grants in combination with column level insert
and update grants provide a fine grained authorization implementation for
changing data in the database of OHI Back Office.

A Virtual Private Database (VPD) OHI specific implementation can be
activated to hide sensitive column data for users that are not privileged to
access that data for specific records.

2. Application level
Application roles can be used to group a set of modules and provide write
and/or read access to this set of modules by assigning the application role to
a user account.
Multiple application roles can be assigned to one account.

3. Business level
Per user the access to a financial unit or administration unit can be granted.
Per role the access to a brand, broker or group contract can be granted.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 9

@ Note: The application level and business level access is only enforced through
the Forms application.

3.2.1. Roles

Within OHI Back Office several database roles are present:

Name Characteristics

P | (R EP]\PN]\ EP\]Po]UOUEPVEREE]E” ¥KNHH@Z--B9SO| Ee]] }\|] k\pon=-66r-\roinnnn--0i1r--

OZG_ROL = Secure application role for user interface

= May not be directly granted

= For internal use only

= OHI_ROLE_ALL is granted to OZG_ROL

OZG_ROLE_ALL = Rights to all objects needed for executing OHI BO

= May not be directly granted.

= Accounts /GUI users get temporary elevation when needed
(arranged by application).

= For internal use only

OZG_ROL_DIRECT = Rights directly granted to account

= Only used for custom interfaces or custom code accounts

= Not to be used for normal / GUI users

OZG_ROL_SELECT = Read only/query rights
= Not used by the application
OHI_ROLE_BATCH = Only used by the batch account to limit the privileges for that
account

3.2.2. Accounts

Each OHI Back Office environment has a set of accounts:

Name Characteristics
-
OZG_OWNER e Owner of all OHI BO objects (name may differ per customer)
OHI_VIEW_OWNER = Owner of duplicated OHI view definitions needed for the VPD
implementation
(GUI) USER = Peruser
= Elevated to internal OZG_ROL when using forms application
BATCH = Used by the batch scheduler (name may differ per customer)
- Uses OHI_ROLE_BATCH
SVL_USER = User used for the service layer webservices
SVS_OWNER - Used for custom code development
. Should receive same grants as OZG_ROL_DIRECT has, for stored
code
= Itis possible to create more than one custom development schema
OHI_DPS_USER e Used when executing dynamic sql from OHI
. Has the same grants as OZG_ROL_DIRECT
e Contains the ‘system” and ‘financial translation/account mapping’
views which may contain customer specific and configurable
query text
Query accounts - Elevated to OZG_ROL_SELECT

3.3. VPD implementation

3.3.1. Introduction

Oracle Virtual Private Database (VPD) is a database feature that enables shielding
sensitive data at the database level. In OHI Back Office VPD has been implemented
for the tables listed below:

VPD tables

INT_POLISBERICHTEN

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 10

VPD tables
I
INT_VERZEKERDEN
RBH_BURG_STAAT_REGISTRATIES
RBH_EIGEN_REKENINGEN
RBH_RELATIES
RBH_RELATIE_ADRESSEN
RBH_VDR_HISTORIE
VER_AFGEGEVEN_ZORGPASSEN
VER_EESSI_BERICHTEN

For these tables series of columns are identified as ‘sensitive’ as they contain data for
which restricted access can be implemented.

A reason for restricting access to columns is that they contain data that may be used
to identify a person on who the record and its associated records apply (like name,
date of birth, social security nr, phone nr, email address, physical address).

Within OHI a VPD implementation has been realized which nullifies column values
for sensitive columns in records for which a user has no access. The record itself will
always be returned.

When using any of these table names in custom code be aware of the following
implications:

¢ Individual columns in specific records may be nullified as a result of VPD
setup. When this happens the OHI Back Office user executing the code is not
allowed to see this data for privacy reasons.

¢ Inaddition, these records may not allowed to be updated or deleted by
specific users. Doing so will result in an error message: ALG187:
“Modification is not allowed”.

When for example certain custom batch processing functions require access to all
data these should be executed using an OHI Back Office user that is authorized to
query and modify this data.

In the following paragraphs the building blocks of the VPD implementation will be
discussed including the implications for custom development.

3.3.2. VPD policies

The VPD policy is the definition in the database that is used to determine what data
should be shielded and from which (database) users.

There are two different policy fypes.

1. For tables that contain sensitive information in a column that is also part of
an index, rowlevel policies are used.

2. For tables that do not contain sensitive information that is part of an index
column-level policies are used.

Column level policies apply to this subset of VPD tables and they are used to shield
the data in specific columns based on the access privilege:

VPD tables with column level policy

INT_POLISBERICHTEN
INT_VERZEKERDEN
RBH_VDR_HISTORIE
VER_AFGEGEVEN_ZORGPASSEN
VER_EESSI_BERICHTEN

Row level policies apply to this subset of VPD tables:

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 11

VPD tables with row level policy

RBH_BURG_STAAT_REGISTRATIES
RBH_EIGEN_REKENINGEN
RBH_RELATIES
RBH_RELATIE_ADRESSEN

e Because of the rowlevel policy type the use of the ‘for update of
<column specification>’clause in a SQL statement or cursor definition
will result in an error if any column in the designated <column
specification> contains sensitive information.

As the column specification is only documentative this can be easily resolved
by changing the column specification of the for update clause to for example
the primary key column or any other column(s) not containing sensitive
information.

e As for OHI application code it is important to always retrieve a record even
when the calling user has no access to the sensitive column values in a row
the rowlevel policy is more or less transformed to a functional column-level
policy for the calling code. How this is achieved is described in the next
paragraphs.

3.3.3. The VPD (& multi-language translation) view layer

The OHI Back Office implementation of VPD uses a “view layer’ to enable data hiding
at column level without disabling indexed access of the table on “sensitive’ columns.

The view layer is based on a 2-level view approach of which the contents depends on
whether the ‘sensitive columns’ are part of an index or not. The top level view is
named the VPD view and uses another “policy” view on which the row or column
level VPD policy applies.

The VPD view always returns a record, even when the underlying used policy view
has a record level policy.

In this way records that contain unauthorized column values can still be returned (as
with a row-level policy such a record would not be returned from the table or view
the policy applies to).

This is implemented by the top level VPD view on top of a table that contains
sensitive column data and is done in a quite similar way as the already existing views
for tables that contain translatable columns. This means that the implications for
these VPD views also apply for the already existing views containing multi-language
translatable columns (a limited set of mostly configuration setup tables).

Instead of directly access to a VPD eligible table, access (select/insert/update/delete)
to the associated VPD view is granted for custom development.

Any (PL/)SQL reference to a VPD table is redirected to the corresponding VPD view
by means of a public synonym. This means that when selecting records from the table
using the table name the user is actually retrieving data from a view that filters any
sensitive data in accordance with the VPD setup. Prefixing the table name with the
table owner does not work and is not allowed as access to the table is not granted.

For the same reason any DML against the table is actually performed on a view. The
DML is passed on to the table and how this is done depends on whether the
underlying view uses a row level or a column level policy. When a row level policy
view is used the implementation of the VPD view requires using trigger code
implemented by an “instead of trigger” on the view. This trigger code checks if the
user executing the DML is entitled to perform DML on the records involved based on

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 12

the VPD role based data authorization setup. When a column level policy view is
used the view definition can pass on the DML without the need of an instead of
trigger. DML authorization is implemented by a row level trigger on the underlying
table.

The view layer has the following implications for custom development when using a
VPD table:

e Use of an application owner prefix to specify a VPD table (e.g.
OZG_OWNER.RBH_RELATIES) is not supported. This will not work
because no privileges are granted for a VPD table. Any existing grants will
always be revoked during OHI release installations using the default setting
of the object privilege script.

e Use of the RETURNING INTO clause is not supported for VPD tables
because at runtime a view having an instead-of trigger is referenced instead
of the table. This construct should be recoded manually in a different way, by

retrieving the record after the insert, to prevent the error message: ORA-
22816: “Unsupported feature with RETURNING clause”.

e The same restriction also applies for tables that can be translated, although
custom DML against these tables will not occur frequently.

e Inserts in custom code that specify an explicit null value for a column that
has a default value specification will still implement the default value as the
instead-of trigger does not make any distinction between non specified or
null specified column values in the insert on the view.

The VPD and translation types of tables can be identified using the query:

select tab.naam
from alg tabellen tab
where tab.vertaalview naam is not null;

There are multiple methods to retrieve server derived data without the use of the
RETURNING INTO clause. In most cases the generated primary key (ID column) is
needed after creation of a new record using the INSERT statement. This value is
generated by a sequence. For returning this value one of the following two
approaches may be used.

1. The first approach is to generate the sequence value before the actual INSERT
using the nextval function and to pass this value in the INSERT statement
as the value for the ID column. To enable this the ID column of all VPD- and
translatable views is insert-allowed. In addition the generation of a new
relation number (NR column) is available for custom development by means
of API_RBH_UTIL_PCK.get_next_rel_nr.

Because multiple database sessions may be generating sequence values at the
same time, using the current value of a sequence is not reliable for this goal.
The currval function may return a value generated in another session and
should *not* be used.

2. A second approach is to use a separate SELECT statement to retrieve the
generated sequence value from the database The record that was inserted
should be identified using a unique key other than the ID column. If this is
not available the first approach should be used. Please note that columns in a
unique key may contain NULL values as they may be optional.

In some cases also other column values will be needed as a returning value. This can
be due to server derived column values or changed data as a result of business rules
that have fired.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 13

3.3.4. Separate view owner schema

In the previous paragraph the use of a public synonym has been introduced that
redirects access of the VPD table to the VPD view. To shield private data effectively
this translation must take place any time a VPD table is referenced.

For this reason all views are duplicated to a separate OHI_VIEW_OWNER schema.
This excludes system views and account mapping views(in fact “data transformation
views’, not to confuse them with the multi-language translation) views which can be
defined and created from within the application. Also views that define the VPD and
multi-language translation view layer itself are excluded.

This ensures that any reference to a VPD table from within these views will be
translated to the corresponding VPD view using the public synonym.

Instead of the original view residing in the application owner schema the duplicated
view in the view owner schema (OHI_VIEW_OWNER) is granted for custom
development.

3.3.,5. System and account mapping views

When a custom developed object (for example a package or table) is used in a system-
or account mapping view, upon creation the SELECT privilege on this view will be
granted to the roles OHI_ROLE_ALL and OZG_ROL_SELECT. Therefore, to prevent
error ORA-01720: “Grant option does not exist for <OBJECT>", this object must be
granted to OHI_DPS_USER using the “WITH GRANT OPTION’ clause.

3.3.6. Invokers rights

To redirect access of the VPD table to the VPD view in PL/SQL (using the public
synonym) almost all OHI application standard PL/SQL is compiled as invokers
rights unit. This also means that this PL/SQL will be executed using the privileges of
the invoker (caller) instead of the definer (the owner of the program unit).

More information on invoker versus definer rights can be found in the Oracle
Database documentation.

When using definer rights for a program unit underlying called objects in the same
schema do not need to be granted explicitly as they are owned by the same database
schema. Using invoker rights however privileges for these objects may be missing if
these are not also granted to that caller (which will for sure be the case as not all
objects may be accessed by the caller).

To resolve this situation the database feature Code Based Access Control (CBAC) is
used. The privileges needed to access underlying objects are granted to the database
role OHI_ROLE_ALL. This database role is granted to all OHI Back Office PL/SQL
units. As a result PL/SQL units that have been granted for custom development will
execute using the privileges of this role.

Be aware of the following implication related to the use of CBAC grants:

¢ Manually recreating OHI Back Office PL/SQL objects will cause the CBAC
grant to be revoked. Although this action is not allowed, it may cause errors
in the OHI Back Office application when this is accidentally done by a DBA
or developer which has received access to the OHI object owner account. As
a precaution measure do not open OHI object code with a privileged account
that can change these objects. If this situation occurs, use the OHIPATCH
menu to re-issue the CBAC grants using OHIPATCH step 120.

More information on CBAC can be found in the Oracle Database documentation.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 14

New and existing custom developed batches generated using the batch framework
(by means of SYS_GEN_PCK) will result in definer right PL/SQL packages. This
means that the objects referenced by these custom batches that are also owned by the
custom database schema do not need to be granted separately. To be more clear, for
custom code there is no need to use invokers rights pl/sql objects towards OHI
objects as the definer/owner of such code already has limited privileged access to
OHI objects.

3.3.7. Performance aspects

Custom PL/SQL code and separate SQL queries will be using the VPD view layer
when accessing the VPD tables listed previously. This will result in a higher resource
usage on the database server because:

e Authorization should be checked for each single record to see whether the
OHI Back Office user involved is allowed to see and modify the data. In most
cases this will not be noticed because it is just a small part of the application
logic as a whole but in some situations this may result in a slower response to
database requests.

e The SQL query optimizer that determines the best access path will possibly
follow a different route than before (and potential inefficient route), which
may result in slower response times. Although the focus during development
was to minimize this effect, this may be noticeable at times.

There is one known issue regarding the use of the VPD view layer: The optimizer
does not seem to consider the use of function based indexes when this is appropriate
without the use of an additional (dummy) condition.

An example:

The VPD table RBH_RELATIES contains a number of function based indexes,
such as the ones defined on the concatenation of column values of
UPPER_NAAM and UPPER_NAAM?2. This is index RBH_REL_15 defined as
RHB_REL_INDEX_CONCAT_NAAM(UPPER_NAAM,UPPER_NAAM_2).

This index is used frequently within OHI application code when querying for a
record in RBH_RELATIES having a specific last name. Because of the VPD view
layer this function based index will not be used by default, which might result in
poor performance.

By adding a dummy condition on the required column UPPER_NAAM the SQL
optimizer is able to ‘find” (use) the index again. The dummy condition to add in
this situation would be UPPER_NAAM = UPPER_NAAM. The fact that this is a
required column is essential for being able to added a dummy equals condition
like this one, as with an option column certain records would possibly be
excluded from the result set because of NULL values. In such a situation a
different dummy condition needs to be applied if deemed necessary.

3.3.8. Additional measures taken

If needed, the column sequence of a table definition is automatically resequenced
upon installation of an OHI release. This ensures that the column sequence of the
VPD table in a %rowtype PL/SQL variable definition which is used during
compilation time is equal to the column sequence of the VPD view based %rowtype
variable which is used at runtime.

This enforcing of a standardized column order will prevent rowtype mismatches
when using the SELECT * construct to fetch a row having the %rowtype of the view
into a %rowtype variable having the %rowtype of the corresponding VPD table.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 15

3.4. Datamodel help

Because of the column resequence executed during installation this aspect has no
consequences for custom development but you may notice it when describing a table.
Colums that were recently added no longer appear at the end of the table definition.

As this resequence is only a dictionary change the actual order of columns as stored
within a block is not changed and may differ from the definition order.

One of the difficulties when starting to write custom code for OHI is the huge
number of tables and relations between the tables. However, there are a few pointers
to help you find your way around the data model.

3.4.1. Forms frontend

The first help for the programmer are the OHI screens themselves. If there is an item
in a screen for which you want to know the location in the database, i.e. the table and
the column, move the cursor to this field and select information from the help menu
(Menu option: Help — Information), see Figure 4

File Edit windnwmmckomce LTC Insurance |nformation Data Marts Connect Einanc

RIS s e RGN

Whatis This?

Keyboard Help Ctrl+F1

Policyholder JUAREZ HU

Show Error Ctrl+F28
Policy Number 10000001 Ext. 100000

Information Brand ps = | |Plan Seguro

g Group Contract

Broker

Members Meod. Combinations Act

Figure 4: Information in the forms frontend

In this example the focus is on the policy holder number in the add policy screen,
which means that you will get specific information about this field.

In figure x we called up information about a policy product start date. The
information screen shows information about the screen (e.g. its module code
ZRG2202F) and the database. But most importantly it shows the table name and the
column name for the start date, both in Dutch and in English. As a bonus, it shows
the record ID of the data that is currently shown. This might very useful when
debugging some code.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 16

¢ Infoscherm

Oracle Health Insurance Back Office .
Copyright (c) 1996-2023 Oracle Corporation DRAC LE

All Rights Rezerved

Gebruiker GGROEN Tabel (NL} FSA_BEDRUFSONDERDELEN
Datum 08-06-2023 16:55 Veld (L) O

Subsysteem Financieel systeem

Wodule FINGOO1F

WModule versie 4114
OHI BO versie 10.23.5.0.TC14 (06-06-2023 20:30:%

Record id 10000000000047
Library versie 22603
Menuversie 4.49 (OZGMENU) Tl A
Forms versie 122140 Module info Creatie op 22-11-2018 08:37:27
Creatie door WWUNAND
Database BATEAZS Mutatie bron -1
Database versie 19.17.0.0.0 Mutatie op 05-08-2019 13:34:47
Root Container CDB1980 Mutatie door WWUNAND
Unigke naam CDB19B0 Tabel info
Instance id 1
Instance naam CDB19B0 LENELETEAE
Service naam bateaZd w‘
Tekenset ALIZUTFB
Sessionid 107148552
Sessie info

Figure 5: Detailed information per forms field

3.5. Modification logging

This chapter describes the operation of the modification logging functionality
(logging of changes in data) that is available within the OHI BO application.

3.5.1. Why modification logging?

There are various reasons and requirements for equipping an application with
modification logging. These can be summarized as follows:

e Traceability
Allows to trace who performed a specific modification and when.

e Modification reports
Provides input for simple overviews of the data modified within a specific
period. This can serve a number of purposes.

e Interface support
Save modification details for passing on to other applications in the correct
sequence and manner.

Because the application is used by different organizations with varying requirements,
modification logging within OHI BO is flexible, enabling fulfillment of the various
requirements by means of configuration.

3.5.2. Operation summary

A generic type of modification logging activation has been implemented in the OHI
Back Office application, which enables management of each individual table.
Consequently, each OHI Back Office functional table has its own table. Furthermore,
there is a central log table (ALG_MUTATIE_LOG) in which modifications to specific
tables can be logged.

Specific modification logging levels can be activated by means of specific indicators
that can be configured per table in the ALG_TABELLEN table.

Modification logging is not activated by default. There is no screen for this activation.
Consequently, the relevant columns will have to be updated using (PL/)SQL (with
the aid of the ALG_LOGGING_PCK) if required.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 17

There are three types of configuration settings:

1. SOORT_LOGGING
If modification logging (insert, update and delete operations) must be
performed in the log table for the table you should set SOORT_LOGGING to:
N(ot), B(asic), enabling retrieval of all modifications with the minimum of
additional data storage, or U (for Extensive), such that complete records
(both new and old values in the event of updates) are placed in the log table.

The latter is used to facilitate easier tracing of who performed which
transactions. It is very useful and faster/easier to retrieve what kind of
change has been executed but requires more storage space.

2. NIVEAU_LOGGING
If modifications must be logged in the central log table
ALG_MUTATIE_LOG set NIVEAU_LOGGING to: N(ot), S(tatement) or for
every R(ecord). As a result, the central table can be used to immediately
establish the modification types performed, as well as the sequence, and
which table(s), without all of the tables having to be examined separately.

3. NUMMERING_LOGGING
If sequence numbers must be distributed set NUMMERING_LOGGING to:
N(ot), database T(ransaction) number per set of changes which are contained
in one transaction, with a sequence number within transaction per record
which is changed, or G(lobal). Global means that an overall modification ID
is distributed per statement (insert, update or delete) in addition to the
transaction ID and sequence numbers.

A transaction number is used to track a single Oracle transaction (commit) in
detail, while the global (statement) numbers are used to determine the

overall sequence of statements executed in different transactions.

3.5.3. Default auditing columns

Every 'standard' functional tables has the following set of columns which is also
important for modification logging:

Column Characteristics

ID e System generated ID

e Uniquely identifies a row within the table

e Lends itself for use in generic queries and interfaces.
CREATIE_DOOR . The user who created the row

. Refers to ALG_FUNCTIONARISSEN
CREATIE_MOMENT . The time when the row was created

= Precision: one second
CREATIE_BRON_ID . The system or interface that was used to create row.

. Refers to ALG_BRONNEN
. Optional, set by alg_context_pck.set_bron_id

LAATSTE_MUTATIE_DOOR . The user who last updated the row.
L] Refers to ALG_FUNCTIONARISSEN
LAATSTE_MUTATIE_MOMENT e The time when the row was last updated
. Precision: one second
LAATSTE_MUTATIE_BRON_ID . The system or interface that was last used to update
the row.

. Refers to ALG_BRONNEN
= Optional, set by alg_context_pck.set_bron_id

An example of a table (ALG_BRONNEN, see later) is displayed below (the first
column and final six columns are the above - mentioned seven columns):

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 18

ID NOT NULL NUMBER(14)

CODE NOT NULL VARCHAR2 (10)
OMS NOT NULL VARCHAR2 (200)
CREATIE BRON _ID NUMBER (14)
CREATIE MOMENT DATE

CREATIE DOOR NUMBER (14)

LAATSTE MUTATIE BRON ID NUMBER(14)
LAATSTE MUTATIE MOMENT DATE
LAATSTE MUTATIE DOOR NUMBER (14)

When a row is initially created the ‘last modification” (LAATSTE_MUTATIE)
columns have the same values as the corresponding ‘creation” (CREATIE) columns.

Because the references to ALG_BRONNEN and ALG_FUNCTIONARISSEN are
nullable, the parent rows may be deleted even if there are still referenced.

Implementing a foreign key constraint at this low level would have too much impact
on the performance. It is therefore the responsibility of the customer to keep the
ALG_BRONNEN and ALG_FUNCTIONARISSEN tables aligned with the referencing
tables.

3.5.4. Configurable modification logging

Because of the various configuration possibilities, the data model features an entity
that contains the tables used in the application. This entity also enables entry of
various settings per table.

Consequently, modification logging can be configured for each individual table.

However, this only applies to the regular ‘functional” data tables (please see the
paragraph about availability of modification logging later on). There is no
modification logging for technical tables containing system maintained or temporary
data, etc.

In general, it can be assumed that the greater the accessibility of the logging data, the
higher the required overhead and the greater the storage space required.

Logging must also enable relatively rapid retrieval of specific modifications for
disclosure to other parties, for example.

In the light of the above, an implementation method has been chosen that can meet
the following configuration requirements which have served as base requirements by
means of three settings:

1. Logging?
Is it necessary to log modifications?

2. Logincluding complete record with new(est) values?
In the event of logging, is it necessary to log only old and modifiable values
during an update (after all, the current table contains the new values and
fixed values), or is it necessary to log all of the new values in addition to the
old values for the purpose of simplicity?

In such cases the records are immediately saved in the logging table with all
of the new values in the event of inserts. Furthermore, in the event of
updates, all new values are saved in the same record with the modifiable old
values.

In the event of updates and deletions, the auditing values from the last
update or deletion are placed in the modification record, in addition to the
timestamp of the previous modification, regardless of the setting for logging
new values.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 19

This can be used to immediately determine the validity of the data (old
modification timestamp up to and including the new modification
timestamp). In the event of deletions the record is always saved in its entirety
if logging is activated to avoid the values being lost.

The unique record ID is always recorded for every logging activity,
regardless of the DML operation (insert/update/delete).

This approach enables recording of logging information with minimum
overhead if required. This only applies to the previously modifiable values in
old columns for which all modifications are traceable.

3. Logunique sequential modification ID in log record?
Is it necessary to record a detailed modification ID in the log record that
determines a unique sequence number for all modifications in the
application? This number is required additional to a timestamp, as a large
number of modifications can be performed within the same second.

Consequently, an ID of this type is necessary to determine the sequence of
modifications over various records and/or tables.

Because this number must be generated for each SQL statement (DML) and
each record across all tables, the ID generator, although well optimized, may
become a 'hot spot', which means it should be used only if necessary.

4. Log statement ID in central overall modification table?
Because the modifications performed within a specific period should easily
be retrieved without the need to scan a lot or all of the tables, it is possible to
indicate that DML statements that have actually resulted in a modification
must be recorded in a central transaction log table (in which an entry is made
stating that a record has been inserted in a specific table, for example).

The type of statement (insert, update, delete), executing user account and
(optional, see next bullet) involved record are then recorded for the table
concerned.

5. Should the modification ID also be logged centrally for all records?
If the modification flow must be produced in greater detail for passing on
modifications to another system in exactly the correct sequence, it is possible
to indicate that the detailed modification ID must also be recorded centrally
for each record, i.e. in the central table. This may result in a greater number of
entries in the central table including a record ID.

Consequently, at this stage only the central table can be used to determine
what record types are required from the modification tables in order to
reconstruct an outgoing transaction without the various separate log tables
having to be scanned (that would be very inefficient to reproduce
transactions that span a set of unknown tables; all log tables would need to
be scanned for each transaction).

6. Logcommit ID in log table?
For certain traceability activities (as well as software problems, for example)
it can be desirable to establish which modifications were performed within a
specific database transaction and in what sequence.

This can also be desirable in order to make it relatively easy to see by means
of which transactions a user produced a specific modification.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 20

This functionality can be activated by means of the generation of a commit ID
(an ID for each transaction being committed) in the log table with a sequence
number within the commit ID for each modified record (across the various
tables).

Please note that commit IDs do not necessarily indicate the actual execution
order (for example if multiple short transactions before a long transaction
that was started earlier).

7. Should the commit ID also be logged in the central logging table for all
records?
The commit ID (commit ID + sequence number per record) can be included
in the central table to facilitate easy establishment of the total composition of
a logical transaction.

As you see, logging to a log takes place at record level, and not at column level. This
is because logging at column level is harder to configure, hardly adds value and has a
worse effect on performance.

3.5.5. Example

As an example, let us look at ALG$BRONNEN, the log table for ALG_BRONNEN:

MUTATIE OPERATIE NOT NULL VARCHAR2 (1)
MUTATIE ID NUMBER (14)
COMMIT ID NUMBER (14)
SEQ IN COMMIT NUMBER (10)
O$0OMS VARCHAR2 (200)
OSLAATSTE MUTATIE BRON ID NUMBER (14)
O$SLAATSTE MUTATIE MOMENT DATE
OSLAATSTE MUTATIE DOOR NUMBER (14)

ID NUMBER (14)
CODE VARCHARZ2 (10)
OMS VARCHAR2 (200)
CREATIE BRON ID NUMBER (14)
CREATIE MOMENT DATE

CREATIE DOOR NUMBER (14)
LAATSTE MUTATIE BRON ID NUMBER (14)
LAATSTE MUTATIE MOMENT DATE

LAATSTE MUTATIE DOOR NUMBER (14)

The modification type (Insert, Update or Delete) contains the type of operation that
led to the creation of the log record.

The modification ID and the commit ID are given values if so configured.

The columns in the table that can be modified by the user or by means of the code are
included twice: once as old columns (the name is based on the column name in the
original table, prefixed with O$) and again as ‘new’ columns (same column names as
in the original table).

Columns that cannot be modified are included as ‘new’ columns, for example the ID
column.

When basic logging is activated for the sole reason of traceability, a record containing
all modifiable columns with the values prior to the record modification (regardless of
whether the modifiable column concerned has also been modified) is saved in the
event of a modification to a modifiable column.

This makes it possible to reconstruct any past situation in combination with the
current record (uniquely identified by means of its ID).

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 21

The name of a log table can be derived from the original table (see “Tables and
views’). For example ALG$BRONNEN is the log table for ALG_BRONNEN.
Likewise, ALG#SOURCESS$ is the 1:1 view on ALG$BRONNEN.

When the composition of a transaction, and the sequence in which modifications are
performed across the various tables, needs to be established without large numbers
of scans of all log tables, it is possible to use additional logging of references to the log
tables in the central overall log table.

The central OHI BO log table ALG_MUTATIE_LOG is structured as follows:

MUTATIE OPERATIE NOT NULL VARCHAR2 (1)
TAB _ID NOT NULL NUMBER(14)
RECORD ID NUMBER (14)

COMMIT ID NUMBER (14)

SEQ IN COMMIT NUMBER (14)

MUTATIE ID NUMBER (14)

MUTATIE DOOR NUMBER (14)

MUTATIE MOMENT DATE

This table contains a reference to the table containing the table names, which
facilitates easy tracing of the table in which the centrally logged modification was
performed. The column containing the Record ID refers to the unique number per
table issued to each record.

@ Note: The COMMIT _ID is not the same as the SYSTEM COMMIT NUMBER
(SCN).

@ Note: The ID column contains the unique ID of the row in the original table.
Note that since many modifications to the same row can be logged, this ID is
not unique!

@ Note: There are no application defined indexes present on log tables except for

when classic purging functionality has been present on such a table, in which
case the ID column is indexed.

3.5.6. Activation

The settings for modification logging are maintained in the ALG_TABELLEN table.

The ALG_LOGGING_PCK package can be used to control the activation and
deactivation of logging/journaling of functional tables.

Alternatively, these settings can be set by manually updating the ALG_TABELLEN
table.

The ALG_LOGGING_PCK offers the following routines that require a table name as
parameter value to implement the functionality:

e DISABLE_LOGGING - disables logging to the central table but leaves
logging/journaling records to the log table as specified earlier

e DISABLE JOURNALLING - completely disables any kind of logging for the
table, whether it is the central table or the table-specific log table

e ENABLE_JOURNALLING_BASIC - enable logging to the log table with the
least amount of details (requires less space than full journaling)

e ENABLE_JOURNALLING_FULL - enable logging to the log table while
storing the complete record and old and new values

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 22

e ENABLE_LOGGING_STMT - enables logging of statement executions on a
table to the central log table with transaction id and modification id sequence
numbers being assigned

e ENABLE_LOGGING_ROW - enable logging of each involved row that is
changed by statement execution to the central log table with transaction id
and modification id sequence numbers being assigned

e PURGE_LOG_TABLE - purge the data from the central log table and the
specific log table until the given date (see separate paragraph for more
details)

@ Note: When specifying a table name, be sure to use the original table name,
for example ALG_BRONNEN instead of ALG#SOURCES_

If you want to use other combinations, for example logging of statements to the
central log table but without a global modification id being assigned, you should
update the ALG_TABELLEN table directly.

The best way to determine what is suitable for your situation is to just start with
enabling logging on some tables, enforce some statements that generate logging and
evaluate the results in the log tables and central log table.

Note that changes to the modification logging may not immediately effective:

e Of course you need to commit your changes in order to make them visible for
other sessions.

e The settings for modification logging are cached at the session level. In order
to force a reload, sessions must be restarted.

The above-mentioned configuration options per table are available for all regular
functional tables that are directly available for executing inserts, update or deletes.
These tables implement business rule validation through a series of triggers and
constraint definitions. The business rule validation mechanism implements also this
modification logging functionality.

This means that other tables, which cannot directly be modified, do not offer this
functionality. Such tables are typically maintained by the application. These
application-maintained (or code-maintained) tables are often referred as “technical’
tables in comparison with the user maintainable tables as ‘functional” tables. The
technical tables can be recognized as having a ‘#’ sign on the fourth position of their
name.

The standardized way of granting insert, update, delete and select privileges makes
sure only the regular ‘functional” tables can be changed.

3.5.7. Impact of release upgrades

When a new OHlI release is installed an important requirement is to minimize the
required installation time in order to have a minimal downtime of the application.

For that reason changes in the data structure or in the data as result of an OHI release
installation (a single patch, a patch set or a major release) are often optimized. These
optimizations may result in the following consequences for the logging data
(although they often do not apply):

e Changes due to a scripted update are not logged

e The table structure is changed and the current contents are converted in the
table (by adding for example a default value for a new column) while the
logging table is not updated

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 23

3.6. Tracing

e A table may be newly (re)created where the existing data is converted to the
new structure; these changes will not be reflected in the logging table

e The log table might need to be recreated or dropped; in which situation the
old contents are dropped

These consequences do not apply to the central logging table.

Although these consequences might look severe, the heavier the consequence the less
often it occurs. And it must be considered that these are completely scripted
repeatable operations. For a potential impact of these types of unlogged changes we
advise to determine the “delta’ between the situations before and after a release
installation to judge whether such modifications are relevant for the derived
functionality. Only when there are consequences these must be implemented on the
derived environment.

In the rare situation when traceability is required and a log table is cleared we advise
to export the table contents before implementing the release installation on the
production environment. The saved contents can be used for a custom conversion or
later retrieval when necessary.

3.5.8. Purging logged data

DML operations are not granted to the individual users on the logging tables.

To purge data for a given log table the procedure PURGE_LOG_TABLE is available
in the ALG_LOGGING_PCK. The procedure expects a table name and a date in the
past upon which changes should be purged (so including that date).

The function will purge all the data for the given (functional) tablename from the
specific log table and the central log table. The data will be purged until the given
date. However, to prevent recent and potential still relevant data is purged this date
should be at least one year in the past. As purging is done using full table scans even
purging one log record may still take considerable time, depending on the log data
which is present.

The application code of OHI Back Office has been instrumented to trace the PL/SQL
code as it is executed. Both the CAPI packages, batch packages and underlying
packages of the OHI Back Office Business Services have been instrumented.

By turning on tracing you get a detailed overview to help you analyze the program
flow. This is useful if you want to understand a problem or need to send extra
information to customer support.

Another use may be to instrument your custom code with trace calls.

See “‘Appendix C - Tracing’ for details.

Custom Development within OHI Back Office An ‘Open to Custom Code’ database 24

4. Flex Fields

As a standard solution for healthcare payers, the OHI Back Office data model cannot
be altered. However, the OHI Back Office data model can be extended with so-called
flex fields to register additional customer-specific data, for example to record when
members had their last health check or to register parameters for interfacing with
providers.

These flex fields have the following benefits:

e The core data model stays unchanged, which means that OHI Back Office can
support the application as sold to the customer.

e The customer does not need to create custom tables, which must be kept in sync
with the OHI Back Office database.

Historically, flex fields were used for claims line processing and to add extra data to
policies and relation data. Soon after, flex field implementations were created for
other tables as well.

Flex field support will be extended in future releases.
4.1. Concepts

The current generic flex field implementation is introduced in release 10.13.1.0.
These flex fields can be accessed in the GUI application through the key combination
CTRL-SHIFT-F2.

Current support for flex fields:

Historic Generic

Included in XML output X -

Included in CSV output - -

Access through GUI X X

Query through GUI - -

Create or drop flex fields through GUI Y Y

TAPI support for on-cascade delete of flex fields Y Y

PLSQL supplied packages to support queries on flex | - -
fields and flex field values

PLSQL supplied packages to support to perform - -
DML on flex fields and flex field values

PLSQL supplied packages to support to create or - -
drop flex fields and flex field values

Access through (SVL) web services X X

Allow dynamic SQL to validate flex fields - -

In time both flex field implementations will be consolidated into a single solution.

Custom Development within OHI Back Office Flex Fields 25

4.1.1. Related

The claims processing code uses a specific flex field mechanism which is used to add
context-specific data to the claims calculations. In time this mechanism may be
migrated to the current generic flex field implementation.

4.2. Flex Field Characteristics

These characteristics apply to the current generic implementation.

4.2.1. Flex field Types

In practice there are two flex field types:

e attributes
A number, character string or date value, which may be restricted to a range
or set of values.

e key references
The value contains a reference to an existing row in the OHI Back Office
database.

e carerole
Key reference to a care provider.

e relation role
Key reference to a relation

Both “care role” and ‘relation role” are precursors of the new key reference
implementation and may be migrated to a key reference in due course.

4.2.2. Filters

There are two types of filters for flex fields:

e Flex field scope
Indicates in which context a flex field value can be used (core processing).

e Flex field group
Evaluates whether a group of flex fields can be set at all.

4.2.3. Flex Field Scope

Indicates for which context a flex field value can be used.
Possible contexts are:

e Benefit extent

e Benefit threshold

e Premium amount

e Registered

e Yearly deductible amount

A flex field may have multiple scope records.
Note also that flex field scope records are temporal (time-valid).

4.2.4. Flex Field Groups

The flex field group definition can be used to restrict the use of a group of flex fields
for a given row in the master table.

In that case, a dynamic PL/SQL unit, configured for this group definition, is
evaluated to decide whether the group of flex fields can be set.

Custom Development within OHI Back Office Flex Fields 26

This evaluation takes place:

e When selecting from the REF_EWE_VW view (for example in the flex field
maintenance screen (ZRG7205F))

¢ When inserting flex field values for the given master table (for example
through PL/SQL or web services).

Note:

e This is a much more restrictive filter than the flex field scope (which allows
the flex field to be set and allows its use in a given context).

e The dynamic PL/SQL code can access the columns of the master row
through tbl_rec.<column_name>.

e Since the evaluation of the PL/SQLdefinition is done dynamically, a later
evaluation may be more restrictive. In that case previously defined flex fields
will still apply.

The flex field group definition is also used to display the flex fields in a group in
ZRG7205F.

4.3. Flex Field definition

Screens:

e ZRG7027F - Maintaining Entity Flex Fields
e ZRG7019F - Flex Field
e ZRG7206F - Flex field Group

Typically you would start with ZRG7027F:

#x Entity Flex Field

Functional Description XSS Table [REF_ELEMENTAIRE_VERG_ELEWENTEN
Entity Flex Fislds | Scope
No. Flex Field M C VS U UType Data Type Length T OverlapScenario StartDate EndDate Listof Values Cascade Delete
“M_v[ecv_aanTaLooDPERVERIC) [T T [afiioute <|(tumens =) 10| 3 [avtomatic =)[01-01-1580 | [[-]
[[2[ev_atccone O DD D TR [atrbute < [aphanume... <|[" 8] [avtomaic =][o1-01-1980 | [[-]
["[s [ev_pisPenseernoNORARI | (T (T [T [attrioute ~|[numeric _ ~|| 4] 2 [automatic ~[o1-01-1390 || [[-]
| [s[eLv_no voorkeuRsPRODL | [[[/ I [Aatibute = |[Apnanume.. =) 1| ¥/ [sutomatic __ =][01-01-1950 | [[-
I”| 7 |ecvmkooeroevEEtRED [[T O T [Abute)[humerie <) 8| 2/ [auomatic [=J[o1-01-1080 | [[-]
[e [ecv_mkooreris COCICI O O [attrbute <[Numerie <) 16| 61 [automatic __ +][01-01-180 | [[-]
|| o|eLv_PropurkTeROERMEND | [/ [[K [Attrioute =) [Aphanume.. =|| 2| & [Automatic ~J[o1-01-1990 | [[-
I”[+3|erviRvenummERT T OO0 O [Atdbute)[Numerie)™ 6| 0F [Automatic [~J[o1-01-1080 | [[-]
[[15ELv_RvG NUMMER 2 O O W [trbute <] (Aphanume. <] 2| [automstic __~][01-01-1380 | [[-]
[1e[ev_rve nummer 2 O OO0 OO [Atrbute =[Numerie =] &] 0+ [Automatic ~J[o1-01-1990 [[[-]
["[1s[werkmessreeR Awez [[[/2 [andoute ~|[Aphanume.. =]| 1| &/ [automatic ~][01-01-2010 | [[-]
- |7 [1e[ecv_vercosomesPRUS [[T I T [afivbute <|[bumerie =J| 16| 6V [Avtomatic | =][01-01-1580 || [-
Allowed Values
(Lower) Value Upper Value Description

Figure 6: Maintain Entity Flex Fields

4.3.1. Candidate tables for flex fields

Run the following query which will list all tables for which flex fields can be defined:

select naam from alg tabellen
where ind eigenschappen = 'J' order by 1;

Custom Development within OHI Back Office Flex Fields 27

4.3.2. Allowed values

You may specify the criteria for the value of a flex field, for example using ranges
(lower + upper boundary) or allowed values (low value + description).

If you do not specify any allowed values, any valid value for the given data type is

acceptable.
[& Entity Flex Field -
Functional Description Table [AWB_AWBZ_PATIENTEN
Entity Flex Fields | Scope
No. Flex Field M C VS U UType Data Type Length T Overlap Scenario StartDale EndDate Listof Values Cascade Defete

@[1|wocaTE ceHuwD W O CIC T R [atre =] Aphanume.. =] 1| O/ <Jlor-01-1905 | [[-]
["[1caso mp_eeHuwn W OO aphanume... ~|| 1] ~|[o1-01-1980 | [[-]
[2|parmier oPeENOWEN ¥ [[[| ¥ [Attribute [aphanume... <[1] T ~|lo1-01-1985 -]
BT epesES s r]]
r_il— = = = (= | = | |
r_il— = = = (= | r |]
[T] s e i T I | J [[[J
[T] sy I | I I [[[J
r 1 | = | |
] 1 | r | |
|—_ 1 e | =) | |

=5 (B R R I |] Il
Allowed Values

(Lower) Value Upper Valus Description

8 |0 n
[T[n W
r

R [[

= [[

Figure 7: Specify allowed values

4.3.3. Time-valid flex fields

If you define a flex field to be time-valid, you should also specify the overlap scenario
(automatic, permitted, non-permitted).

Do not confuse the validity of the flex field value with the validity of the flex field
definition.

4.3.4. Multi-value flex fields

A multi-value flex field is used to hold a set (or array) of values valid at the same
point in time.

For example, for registering multiple parameters when registering details to connect
with an interface.

4.3.5. Key Reference

The flex field value refers to a record in another table.

Use “List of Values’ to select a LOV query to present the runtime user with a LOV
screen from which to select the FK reference.

Think about setting ‘cascade delete’:

e N the deletion process for the parent of the key reference will only succeed
if there are no flex field values referencing to it.

e Y :the deletion process for the parent will remove the flex field values
referencing to it.

You may want the context menu to start the List Of Values Definitions Screen
(SYS1152F):

Custom Development within OHI Back Office Flex Fields 28

[= List of Values

Name CONTACTPERSONEN Title Contactpersonen
Table |RBH_RELATES
Restriction |\, here sub_type = dom_subtype_relnatuurlijke_persoonS |~ Sort
and nrnotin (select tw.rel_nr
from rbh_rol_teewijzingen rtw

)

B

ltems
No. Prompt Hint Text Perc. Column S0L Expression

.|_1|Nummer | mlNR |
[2[naam [[50/ naam [
E | [|
] | [|
] | [|
] | [|
T | [|
C | [|
C | [|
E | [|

Figure 8: Set up a list of values
4.4. Flex Field maintenance

Flex fields for the current generic implementation are maintained with ZRG7205F
which is invoked through the CTRL-SHIFT-F2 key combination:

File Edit Window Help

=l (28] (982 [F[%] ¥ [¥]] 2] @] [[0
T

%2 Public Holiday

Public Holiday Date
01- 013

Flex Fields of Public Holidays

Group Flex Fiekd Value StartDate EndDate Description 1. 5tD
= | [ELLENLANGEGROEPCODE |Relatie: 1432468700 Oppelaar
il [Diagnosis Code List Ind. 5
7] [Entity Flex Field GEBRUIKER PAS_PREMES
| [muLTPLE [Test eigenschap atfanumeriek | WAARDEZ [[waardez |
| leroEr2 [Test eigenschap datum [01-01-2013 [01-01-2013 | | |
Il [aard versteking | | | | |
[[Py |aanduiding prestatiecodelist (01) | 1) [| |
Iy |sanduiding prestatiecodelist (02) | [[| |
R |Ref. Diagn. Code List Ind. [[[| |
-l [Aantal origineel [0l [I I

\Aantal uitgevoerde prestaties 121,01
Adres bultenlands orgaan 1

[Aantal omvang geindiceerd produc
|adres buiteniands orgaan 2

|pate of Order

|Feestdag

s
18-01-2013 |

(e e (e

Figure 9: Entering values for Entity Flex Fields
4.5. Indexed access of Flex Field values

Normally flex field values will be queried within scope of their ‘parent” record. For
example, if the length (in centimeters) of a specific person is recorded using a flex
field, this property will be accessed using the index that contains the reference to the
person record itself. When a large set of person records is queried for a specific value
of that flex field (regardless of the person), this is not efficiently supported by default
(a full table scan is required as indexed access is not possible by default). However, a
facility is present in OHI Back Office that enables indexed querying of flex field
values stored in table REF_EIGENSCHAP_WAARDEN. There is support for entity

Custom Development within OHI Back Office Flex Fields 29

flex fields of data type CHAR and NUMBER. For making an entity flex fields” values
‘Searchable’ see the online help on this subject.

This facility should be used with great care. In most implementations of OHI Back
Office the flexfield value table is one of the largest tables in terms of number of
records. If too many flex fields are made ‘Searchable’ this will have a negative impact
on performance and storage reuirements. The index may become rather large to
support this access path. Time is also involved in updating the index when new value
records are added for these flex fields.

Because the indexes used are function based, the function used to populate the index
should also be called when querying for specific flex field values.

For indexed access of the flex field definition (column EGE_ID): ref ewe index ege (
ewe.ege id, ewe.tech ind index) = <ID of the flex field definition>

For indexed access of flex field values of type CHAR (column WAARDE_CHAR):

ref ewe index char(ewe.waarde char, ewe.tech ind index) = <VALUE of the flex
field>

For indexed access of flex field values of type NUMBER (column
WAARDE_NUMBER): ref ewe index number (ewe.waarde number,

ewe.tech ind index) = <VALUE of the flex field>

It is advised to use the condition on the flex field definition and the flex field value
simultaneously. The optimizer can determine the best access path using these
function calls.

Example query:

select record_id

from ref eigenschap waarden ewe

where ref ewe index ege(ewe.ege id, ewe.tech ind index) = 10000000000248 --
1 ege id

and ref ewe index number (ewe.waarde char, ewe.tech ind index) < 190 --

1 length

’

Custom Development within OHI Back Office Flex Fields 30

5. Dynamic PL/SQL

OHI Back Office’s support for dynamic PL/SQL is a powerful mechanism which
allows the customer to add customer-specific code to the core OHI Back Office
product.

OHI Back Office has defined several “hooks” in OHI Back Office where custom code
can be added e.g. for:

Data entry validation
Address entry and formatting
Trigger conditions for the Business Event Framework

Core processes such as claims processing, policy collection and payment
processing.

Apart from adding a high level of flexibility to the customer our support of dynamic
PL/SQL helps to keep the amount of code in the standard product under control.

Note that all dynamic PL/SQL code is executed under the OHI_DPS_USER account
(more info in the “Authorization” paragraph of the ‘Open Database’ chapter).

If you want to call other custom developed packages from dynamic SQL you should:

5.1. Hooks for PL/SQL code

Grant execution privileges of your custom developed packages to
OHI_DPS_USER

Create public synonyms for your custom developed packages or prefix calls
to your custom developed package with the package owner.

OHI Back Office has defined several “hooks” in OHI Back Office where custom code
can be added:

Column value validation

Commission calculation

Claims Processing

Policy Creation

Policy Collection

Population Register Check

XML Processing

Address Entry

Address Display

Trigger conditions for the Business Event Framework

Payment Processing

It is expected that this list will grow in time.

5.2. Dynamic PLSQL Definition
The process of adding dynamic PL/SQL boils down to this:

Select the hook or ‘scope” where you want to insert custom code.

Custom Development within OHI Back Office Dynamic PL/SQL 31

e Create the custom code in the format required by the ‘subtype” associated
with the scope.

e Extend the application to specific tables or columns if you are adding a
column validation.

e After testing, revise the debug level.

5.2.1. Setup

The PLSQL definition is maintained in the screen “Dynamic PL/SQL Definition”
(SYS1139F)

‘73 Dynamic PL/SQL Definition

Name |CK_EGP_FARMACIE
Description |Check farmacie procedure
Scope | Restriction ~|[Check -]
Column Bound Type | v|
System Message | |
Explanation |
Body cursor c_dov

(v_der_nr geb_declaratie_regelz dcr_nritype

, v_volgnr geb_declaratie_regels. volgnristype

}is

aalart 1

Debug Mode | -| Active [

Dynamic PL/SCQL Tables - Single Column Dynamic PL/SCL Tables - Multi Column

Table Column System Meszage Inzert Update Delete

= |
[a
<L
[
~[

OO 0O 0OR
O 000K
000 0Ood

Figure 10: Dynamic PL/SQL definition
In addition to the online help for the SYS1139F screen, note:
¢ When making changes, ensure that “Active” is unchecked.

e The upper part of the screen is used to define the custom PL/SQL code and
in which context (scope/subtype) it is used.

e Make sure that the ‘name” and ‘explanation’ clarify the purpose of your
custom code.

e The ‘body’ attribute is initialized with sample PL/SQL code when you select
the scope for the first time.

e The attribute ‘column bound type” as well as the ‘tables” and ‘columns’ tabs
in the bottom part of the screen are meaningful only if you have selected the
‘column bound’ scope, ie. if you are going to validate database column
values.

5.2.2. Scope and subtype

Dynamic PL/SQL is executed at runtime by the OHI Back Office code.

Custom Development within OHI Back Office Dynamic PL/SQL 32

The “scope” defines WHEN the PL/SQL code is executed.

The “subtype” defines HOW the PL/SQL code should look like, i.e. the input and
output parameters.

The scope and the sub type of a scope together constitute a Dynamic PL/SQL Usage
Type or “usage type’ for short.

You cannot create new usage types, but you can query the predefined usage types in
the SYS1138F screen (Dynamic PL/SQL Usage Type).

The SYS1138F screen is particularly useful to find the possible bind variables and
output types.

Subtype | Check 'l
Scope |Cclumn bound "|
Query [w?
Description Interface definitie:

Input:

COLUNMN_WALUE : waarde uit kelom van betrokken dynamisch PLSQL tabel
NEW_REC : record met kolomwaarden van op te voeren gegevens
OLD_REC : record met kolomwaarden van oude gegevens (van voor de wijziging)

Output:
boolean (waarde true of false)

Debug Mode | -
Active [

Figure 11: Dynamic PL/SQL Usage Type

@ Note: bind variables
Some pieces of dynamic PL/SQL are defined to use bind variables. If you
want to omit a bind variable from your code, OHI will fail to bind a value to
your code at runtime and abort with an error. This means that the bind
variable must be in the code, even if it is just in comments.

Please find a more detailed list with hooks in “Appendix F - Dynamic PL/SQL
Types'.

5.2.3. Throwing or adding messages

It is possible and allowed to use the message handling routines from the package
SYS_MESSAGE_HANDLING_PCK, like GIVE_ERROR or GIVE_INFORMATION.

The message handling is not interactive, which means a message can interrupt the
code by raising an exception or does not interrupt and does proceed with processing
the code after the call of the message routine.

When you throw an error this raises an exception (unless you specify an exception
should not be raised). In other situations it depends on the context what happens to
the message: in a batch context the message is stored in the database but in an

Custom Development within OHI Back Office Dynamic PL/SQL 33

interactive situation it is added to the stack and only shown when at a later stage
during the same process call an error is thrown.

The advantage of using this explicit calls of message routines is that you can use
different messages for different values and/or pass values for substitution
parameters in a message. So this offers more freedom than specifying only a message
code for a “check’ like discussed in the paragraphs that follow.

An example (where the substitution parameter should be in the actual message, the
default text is only meant as documentation and for when the message is not present
in the message definition table to have a fallback):

sys_message handling pck.give error
(pi_msg code => 'ALG2222'
, pi msg default text =>
'The provided value should be positive.'
, pi msg parmvalue tab =>
sys message handling pck.msg parmvalue tabtype
(sys message_handling pck.msg parmvalue rec
(pi_sequence nr => 1

, pi name => 'Value'
, pi value char => 1 record.amount
)
)
, pl raise exception => true

);

5.3. Column bound checks

Column-bound checks are executed when inserting, updating or updating records.

Many of these column-bound checks have been implemented by OHI Back Office, so
you will only need to create additional checks.

Examples of column-bound checks:
e Syntax check of dynamic PL/SQL code
e Check whether an IBAN number is valid

e Validate that the end date of a record must be at least 14 days after the start
date.

A column-bound check evaluates to ‘true’ or ‘false’. There is no ‘somewhat true’.

If all column values for a given row are evaluated to ‘true’, the DML operation
(insert, update, delete) will continue.

If one or more checks evaluate to ‘false” the DML operation will abort and the error
message defined for the failed column check will be shown.

Note that a single column-bound check can be applied to more than one table,

provided that each column is of the same type and name as the column in your
custom PL/SQL code.

5.3.1. Single column checks

A single column bound check uses one column to check. A typical example of a single
column bound check is the validation of a format mask for the given column.

Let’s use the following example in which a telephone number must always begin
with a “+” sign. The telephone number is stored with a relation, so it is a check on a

Custom Development within OHI Back Office Dynamic PL/SQL 34

column in the relation screen. If the telephone number does not start with a “+” an
error will be presented to the user.

5.3.1.1.

Error message definition

Custom error messages must be defined using the screen “System Messages” (Menu
option: System / Management / General / System Messages”), as shown in Figure x.

We will not discuss message creation here in depth, but will only mention a few

points:

Custom messages can have any code, but it is good practice to start them
with the code “SVS”. Although not enforced for messages most of the custom
code(s) in OHI must start with SVS.

Custom messages must belong to the subsystem “External batches”.

Instruction

Code Message W?S5 W P Subsystem Seq. No.
= l[5V5_PHONE_NUMBER_CHK [The phone number doesnt have the right format ¥ W [O [Externalbatches v || 1850
I | oooo]
I | Sl=l s} e—
i | El=I=N=] e— -
] | il =) e—
T | SISICl =] m— -
Help Text s Legacy Code |

Work Instructions Message Parameters Context Menu Options

Batch

Figure 12: shows the definition of an error message for our example.

5.3.1.2.

PL/SQL definition

Next step is creating the Dynamic PL/SQL definition. This is done in four steps:

1.

Create a Dynamic PL/SQL definition. This means we need to choose a Name
(or Code), a Description, the Scope (“column bound” in this case), a Column

Bound Type (“Single-Column” in this case) and the System Message that we

defined in the previous paragraph.

Note that the Active check box must be unchecked. The reason for this is that
the record must be saved before we can add Tables and Columns in the lower
section. But saving the record with the Active flag checked will cause OHI to
check the syntax of the PL/SQL code which needs a reference to the tables
and columns, which in turn have not been added yet. (See Figure 13).

Custom Development within OHI Back Office Dynamic PL/SQL 35

78 Dynamic PL/SQL Definition

Name |cK_EGP_FARMACIE
Description |C.h eck farmacie procedure
Scope | Restriction +|| check -|
Column Bound Type | v|
System Message | |
Explanation |
Body cursor c_doy

(w_dcr_nr geb_declaratie_regels.dor_nr¥stype

, w_wolgnr geb_declaratie_regels volgnristype

bis

aalart 1

Debug Mode | 'l Active [y

Dynamic PL/SCL Tables - Multi Column

System Message Inzert Update Delste

OO 00K
O 0O 00 sl
OO0 O0O0Od

Figure 13: step of creation of a Column Bound check.

2. Add the tables and columns in the lower block, in the “single column” tab. In
our case this means that we have to provide the Relations table and two
columns, because there are two telephone numbers that can be stored in the
Relations table.

Currently only the Dutch table and column names are accepted as input.

In our example we only need to check the value upon insertion or update of
the telephone number, so only the Insert and Update check boxes are
checked. See Figure 14.

Dynamic PL/SCL tables - single column Dynamic PL/SQL tables - multi column

Table Column System Message Insert Update Delete
~[[RBH_RELATES [TELEFOONNUMMER [WV ¥
B [reH_RELaTES |TWEEDE_TELEFOONNR || [~ ¥ [
AL | I o 0O O
] | | O o o«
=T | | 0 0 O

Figure 14: Adding table and columns to PL/SQL definition.

3. Create the actual PL/SQL. See below for the code for our example.

-- declaration section
-- bind variable: :COLUMN VALUE
1 retval boolean := true;
begin
-- body section

Custom Development within OHI Back Office Dynamic PL/SQL 36

if :COLUMN VALUE is not null

then
1 retval := substr(:COLUMN VALUE,1,1) = '+';
end 1f;
return 1 retval;
end;
Note:

a. The code can use three variables:

The bind variable - :COLUMN_VALUE, which contains the new
value of the column.

The variables OLD_REC and NEW_REC which contain the old and
new record for the same row. When inserting, the OLD_REC
contains only null values. When deleting, NEW_REC is empty. Only
in case of an update do both OLD_REC and NEW_REC have values.

b. The code must return a boolean value. If the new value passes the
test TRUE must be returned, in which case the new value will be
committed to the database (if no other error occurs!). If FALSE is
returned the message provided in the Dynamic PL/SQL definition
will be displayed to the user, and the new value will not be
committed to the database.

c. :COLUMN_VALUE is a read-only value. You cannot change this to
fix a problem.

d. Be aware of NULL values. When activated the column bound check
is performed always regardless whether the column has a value or
not, or whether it changed or not. Hence the check on the NULL
value in the code in Figure x.

4. Activate the Dynamic PL/SQL (Figure x).

Body

— declaration section: define curzors and variables here
— bind variable: :COLUMN_WALUE

Debug Mode

|

Figure 15: Activating the dynamic PL/SQL definition.

5.3.2. Multi column checks

A multi column bound check uses more than one column for its check, but is in all
regards similar to a single column bound check.

Let’s use the following example: an organization must have a web site. An
organization is stored in the same Relations table as a regular person. There is,
however, a column indicating whether a relation is an organization or a person. This
column needs to be checked together with the field for the URL.

5.3.2.1. Message definition

Just as for the single column check we need an appropriate error message. Figure 16
shows our message. Again we have the code of the message start with SVS.

Custom Development within OHI Back Office Dynamic PL/SQL 37

T SYSIEM MESSAORS 5 iriririr i o e e e el] K|

Message W?S W P Subsystem Seq. MNo.
[An organization must have a web site. ke O [’E
| ELLat | e—
| E[TENE) e— -
| Sk) e— -
| El1at | e—
[O

O O
Figure 16: Error message for multi column bound check example.
5.3.2.2. PL/SQL Definition

The PL/SQL definition differs in only one field with a single column bound check.
The Column Bound Type must be set to Multi-Column. See Figure 17.

Again we need to make sure that the check is not activated yet, in order to prevent
OHI from checking the PL/SQL code syntax.

The message we provide is the one from the previous paragraph.

"3 Dynamic PL/SQL definition

Name [svs_URL_cHECK

Description |check that an organization has a web URL.

Scope [colmn boung ~|[check -]
Column Bound Type | julti-Column -
System Message [5vs_URL_cHECK An organization must have a web site.
Explanation |

External Routine |

Body — declaration section: define cursers and variables here
— bind variable: :COLUMN_WALUE

I rahral hanlaan -= tria-

Debug Mode | -| Active [

Figure 17: Dynamic PL/SQL definition for Multi Column Bound Check.

Next is the selection of tables and columns, on the second tab in the bottom of the
screen (Figure 18). The table name must be provided in Dutch, as must the column
names. The table is RBH_RELATIES and the columns we are interested in are
SUB_TYPE and URL.

Dynamic PL/SQL tables - gingle column Dynamic PL/SCL tables - multi column

Table System Message Ingert Update Delete
= B RBH_RELATES | ¥ M O
=l | O O O
Dynamic PLASGQL columns
Column
2] [ure
~ I [zue_TveE

Figure 18: Table and column definitions for multi column bound checks.

Now for the PL/SQL code. This is shown in Figure x. Note that it is not needed to
check new_rec.sub_type for a null value as this field is mandatory in OHL If the
sub_type is equal to ‘O’, which means the relation is an organization, the return value
is determined by checking the URL column for null. If it is not null a url has been
provided for the organization and true will be returned, otherwise false.

Note that the bind variable : COLUMN_VALUE cannot be used as OHI does not
know which of the specified column values should be used. Only the variables
OLD_REC and NEW_REC can be used. But even though the bind variable cannot be

Custom Development within OHI Back Office Dynamic PL/SQL 38

used it still must be mentioned in the code. So put it in the comments (which, by the
way, is done by default).

Example code

-- declaration section
-- bind variable: :COLUMN VALUE
1 retval boolean := true;
begin
-- body section
if new _rec.sub_type = 'O'
then
1 retval := new _rec.url is not null;
end 1if;
return 1 retval;
end;

After saving the dynamic PL/SQL definition can be activated in the same way as for
single column bound checks, see Figure 15.

5.3.3. Direct or postponed checks

In some cases a check needs additional information from other records wich can be
mutated in the same transaction. This could be as simple as a check on the minimum
or maximum number of allowed details for a certain master.

A direct check, or statement level check, immediately checks after the creation,
update or deletion of a record if this record complies with the check. Deactivating the
‘Direct?” checkbox will postpone the check until the whole logical transaction is
ended. This allows you to check the situation that all data is changed from the master
as well as the detail records and complies to the check.

& Dynamic PL/SQL Definition -

Name

Description |Controle op formaat AGB-code

Scope [column bound |[\aiidation function |
Column Bound Type | Single-column)
System Message KOLDYNCON_AGB_NL The provider code has an invalid format
Explanation [Als de slash verwiiderd is, moet de AGB-code bestaan uit 7 of 8 nullen of alle combinaties
Body — declaration section: define cursors and variables here -

— bind variable: :COLUMN_VALUE —
|_retval boolean := true;
begin

Debug Mode [off =1 Active [
IRUET RS FETe IR ET SR LRl Dynamic PL/SQL Tables - Multi Column

Table Column System Message Insert Update Deletion
+ B(z25_zoRG_ReLATES [AGB_CODE [¥ ¥
[l [[O O C
u| [| e ol
L[l | Tl] [
=T | | O C

5.3.4. Activating and deactivating column bound checks

When unexpected code errors occur on screen, these may be related to the use of
column bound checks, both single and multi column. To quickly determine whether
such a column bound check is responsible for the error there are two ways:

1. Deactivate the dynamic PL/SQL definition. This will prevent the execution of
the check. The disadvantage of this approach is that the check will be
disabled for all tables and columns it is applied to.

Custom Development within OHI Back Office Dynamic PL/SQL 39

2. Use the screen “Tables” (Menu option: System / Management / General /
Tables, tab: Column bound checks). This enables the developer to selectively
disable the check for a single column bound check. Furthermore, the table
provides an overview over all checks that were put in place on a table. Figure
19 shows the list of custom checks that were defined for the relations table.

"vo Tables

Table [RBH_RELATES Description [Relations

Column Bound Checks Ewvent Definitions

Description Column Type Active Ingert Update Delete Active
TGS [heck telephone number [TELEFoONNUMMER v W 7]

[[svs_PHONE_NUMBER_C/[Check telephone number [TweEDE_TELEFDONNR
[[svs_uRL_crEck [check that an organization has a web URL. ||

LI |

ODOO00000000000000 & &
D000 00000000000 /&
ODOO00000000000000 K &
ODO0O000000O0O000000000
DO0O0000000000000 K&

|

| |

| |

| |

| |

| |

: | |
<[| |
| |

| |

| |

| |

| |

| |

| |

Figure 19: Listing of all column bound checks for table RBH_RELATIES.

5.4. Writing custom code

It is advisable to create a PL/SQL package in your custom schema and limit your
Dynamic PL/SQL code to packaged function calls.

Example:

Suppose you have currently your Dynamic PL/SQL body like this:

-— :COLUMN_ VALUE

1 retval boolean := true;
begin

if api_rbh util pck.get rns vrij tekstveld(pi_rsn id => new_rec.rsn_id) =
'IBAN CONTROLE'

then
1 retval := api rbh util pck.check iban(pi rekeninggegeven =>
new_rec.rekeninggegeven) ;
end if;

return 1 retval;
end;

You can create your own validation function and limit the dynamic PL/SQL code to:

-- :COLUMN VALUE - reference to bind variable
begin
return custom.validate pck.check iban(pi_erk => new rec);
end;
The advantages:
* You can keep all your custom validations in one place.
e Itis easier to move your code from one environment to another.

¢ You can use your favorite tools to develop and test your code.

Custom Development within OHI Back Office Dynamic PL/SQL 40

|
6. Business Event Framework

With the Business Event Framework you can define customer-specific events and
event handlers.

These events can be time-based, triggered by a change or created by your custom-
designed detection mechanism.

The handlers can be run near real-time or in batch processing mode and are
implemented through custom PL/SQL code. Note that the custom PL/SQL is
executed under the OHI_DPS_USER account.

6.1. Overview

Specific hooks are required in the OHI Back Office application for customers to
develop custom event handling using the OHI Back Office database. The Business
Event Framework can be used to signal specific events in the OHI Back Office
application. These events can arise from creating or modifying data or by the passing
of time. The framework is also used to define how an event should be handled.

Since the majority of custom development for OHI Back Office implementations is
PL/SQL based, the framework is implemented in PL/SQL.

The Business Event Framework provides two options both for signaling and
responding. These options can be combined for each business event to create the
most suitable environment for handling the event.

An example of how the Business Event Framework can be used is when a member
supplies the health care payer with their change of address after relocating. The
health care payer has an integrated customer relationship management (CRM)
system and uses the change of address event to automatically trigger an update to the
CRM database.

6.2. Signaling Events

The Business Event Framework offers two options for signaling events and both are
described in this section.

6.2.1. Detected Events

Detected events are events that are signaled by querying the data in one or more
tables. A decision to register the event is based on the results of the query. The event
is registered based on the data that was found at the moment the data was queried.
This moment can be controlled by scheduling Process Business Events (SYS5001S)
batch (see Starting Business Event).

For example, a relation record is updated at 08.30, 11.15 and 14.50 hours. When the
batch is scheduled to run at 15.00, the data from the last modification (14.50) will be
evaluated. The data for the record as at 09.00 or 12.00 cannot be signaled by a
detected event.

Detected events are best used in situations where the intermediate modifications are
not important or where the passing of time is the trigger for the event.

6.2.2. Triggered Events

Triggered events are signaled the moment they occur. Using database triggers an
event is evaluated and registered. Unlike the detected events, intermediate changes
can be signaled. In the relation record example, which is updated at 08.30, 11.15 and
14.50, a triggered event can be registered for all three updates.

Custom Development within OHI Back Office Business Event Framework 41

Events can be signaled separately based how the data is modified, for example insert,
update or delete.

Triggered events are used to signal data modifications immediately.

6.3. Responding to Events

The Business Event Framework offers two options for responding to events and both
are described in this section.

6.3.1. Batch Response

To process signaled events in a batch the signaled events must be stored in an OHI
Back Office table. The moment the event is signaled, either through a detected event
or a triggered event, the event is saved to table ALG#EVENTS. The Process Business
Events (SYS5001S) batch handles the events. The batch can be scheduled to run at the
correct intervals (see Starting Business Event).

@ Note: No duplicate events
Duplicate events will not be stored when saving events to a table. In case a
relation or policy is signaled multiple times for the same event, the table will
hold only one occurrence of the event. If the same data manipulation type is
performed twice for an event on a table and record, only the first will result in
an event.

After successful processing of the event, the same event could be detected
again.

6.3.2. Near Real Time

When an event should be signaled the moment it occurs, events can be stored to a
queue. An OHI Back Office background process is continuously listening to the
queue. Events are taken from the queue and processed immediately.
@ Note: Queued events are processed by a separate process (with its own
database session). This may result in locking issues if the handler and the
originating process both want to update the same record.

6.4. Combining Signaling and Response Types

Four definitions result from the two types of events together with two storage
options. This section describes the situations where each definition can be used.

TABLE

(ALGSEVENTS)

Detector
S

Add event
(ALG_EVENT_INTERFACE_PCK ADD_EVENT)

A

Handler

\

) QUEUE
Trigger (ALG_EVENT_QUEUE)

Custom Development within OHI Back Office Business Event Framework 42

Figure 20: Flows of an event process

6.4.1. Detected Events, Storing to a Table

This event definition is suitable when there is no urgency to act on specific events and
individual data changes are not important. For example, there is an event that
produces an overview of all policies modified in the previous week. A record of all
the individual modifications does not have to be kept. A check on the last date the
record was updated is sufficient in this example.

Detected events are also the only events able to act on situations not triggered by data
manipulation but the passing of time. For example, a member reaches 18 years of age
or a record having a specific status for a number of days. Triggered events are not
suitable for this since no data is changed and therefore no database trigger will signal
the event.

6.4.2. Triggered Events, Storing to a Table

This event definition is suitable when the action of the event has no urgency but the
individual data modifications are important. For example, a triggered event can be
used when an event should be registered when a policy reaches the final status. A
detected event is less suitable for this because at the time the detection batch is
running the policy could have been updated to another status. This results in the
policy being skipped by the detection run and no event is registered.

6.4.3. Detected Events, Storing to the Queue

Although technically possible, this type of event is not practical. Detected events are
processed in the same batch run. There is not much difference between the moment
an event is registered and the moment it is processed. Therefore processing these
events using the queue will not provide much of an advantage. The queue will have a
large load to process when lots of events are detected.

When multiple occurrences of the same event are required storing to the queue
should also be used.

6.4.4. Triggered Events, Storing to the Queue

This event type is best suited when individual updates are important and immediate
action is required. For example, the member should receive a welcome email when
their policy reaches the final status.

6.5. Framework Components

This chapter describes all the components within the OHI Back Office application for
setup, registering and responding to business events.

6.5.1. Event Definition

The Event Definition (SYS1149F) window is used for defining an event in OHI Back
Office. It supports the setup of Business Events and Internal Events. Internal Events
are maintained by OHI Back Office and not part of this guide.

Custom Development within OHI Back Office Business Event Framework 43

& Event Definition M= B3

Subtype
Name

Handler
Active v Retry?

Business event Internal event

Type - Detector Last Detection
Status - Run
Storage - Begin handler End handler
Purge Failure Purge Success
. Table Insert Check Function Update Check Function Deletion Check Function Active

Figure 21: Maintain Event Definitions

Data in the Event definition block.

Field Description

Subtype The type of event, Business or Internal. Internal events are maintained by
OHI and not part of this Custom Development Guide

Name The name of the event, maximum length 30 characters.

Description The description of the event, maximum length 100 characters.

Handler The (package) procedure for handling the event. Applicable for all events.

Active Indicates whether the event is active or not.

Retry? Indicates if the event occurrence should be re-applied in case of an error
during the excecution of the handler

Data in the Business Event block.

Field Description

Type How the event is signaled, allowable values are: Detected and Triggered.

Detector The (package) procedure for registering this event. Only applicable for
detected events.

Last Detection The timestamp of the last processing run. Only applicable for detected
events.

Storage Where are signaled events stored?, Allowable values are: Table and Queue.

Status The status of a processing run. Only applicable for detected events.

Run Number The last number of the processing run. Only applicable for detected events.

Begin Handler The (package) procedure for the begin handler. Only applicable for events
with storage set to Table.

End Handler The (package) procedure for the end handler. Only applicable for events
with storage set to Table.

Purge Interval Success The purge interval for events that have been successfully processed. Only
applicable for events with storage set to Table.

Purge Interval Failure The purge interval for events that have failed. Only applicable for events
with storage set to Table.

Data in the Tables block.

Description

Holds the name of the table the event is designed for.

Custom Development within OHI Back Office Business Event Framework 44

Field Description

Insert Indicates whether events should be signaled when a new record in this
table is created.

Check function The name of the dynamic PL/SQL definition used to evaluate the Insert
event. Only allowed in case the Insert indication is checked.

Update Indicates whether events should be signaled when a record in this table is
updated.

Check function The name of the dynamic PL/SQL definition used to evaluate the Update
event. Only allowed in case the Update indication is checked.

Delete Indication whether events should be signaled when a record in this table is
deleted.

Check function The name of the dynamic PL/SQL definition used to evaluate the Delete
event. Only allowed in case the Delete indication is checked.

The event tables block is only applicable for triggered events.

The event can be fine-tuned with the check functions to only signal the desired
situation. See the next section for a more detailed description of these functions.

6.5.2. Dynamic PLSQL Definition

For triggered events it makes sense to evaluate the contents of the record triggering
the event, before deciding whether the event should be registered.

You can create your own PLSQL definition to evaluate the old and new values of the
record which triggered the event. You may use the Dynamic PLSQL Definition
window (SYS1139F) to register your definition.

& Dynamic PL/SQL Definition _JOf x|

Hame EVT_CK_ZVWP
Description Decide if an event should be created
Scope Event + || validation function -
Column Bound Type -
System Meszage
Explanation
Body |_retval boolean := true; -

begin

return |_retval;
end,
w

Debug Mode = Direct? [v| Active [w

Dynamic PL/SQL Tables - Single Column 1 Dynamic PL/SCQL Tables - Multi Column

Table Column System Message Insert Update Deletion

e | [] [] []

Figure 22: Add a trigger condition for an event

The Scope must be set to “Event” for PL/SQL definitions used within the Business
Event Framework. This window is also used to maintain PL/SQL definitions used
elsewhere within OHI Back Office. Only the fields applicable for the Business Event
Framework are described.

Custom Development within OHI Back Office Business Event Framework 45

Field Description

Name The name of the PL/SQL definition, maximum length 20 characters.

Description The description of the PL/SQL definition, maximum length 50 characters.

Scope Should be set to Event to be able to select the definition in the Event Definition
(SYS1149F) window.

Body The actual code of the PL/SQL definition. The event will be registered when the
function returns a true value.

The PLSQL Body contains the actual code used to evaluate whether an event should
be registered. The code must return a Boolean value to indicate this. In case true is
returned the event will be signaled. In case the function returns false, it will not. The
old and new values are available as c1d_rec and new rec.

In the following dynamic PLSQL code, an event is only registered if the new status =

‘D’
/* new_rec and old rec are set by the calling function */
1 rv boolean := false;
begin

1l rv :=

(
nvl (old rec.status,’XYZ’) != nvl(new rec.status,’XYZzZ’)
and
new rec.status = ‘D’

)7
return 1 rv;
end;

Note that the two tabs at the bottom of the SYS1139F window (Dynamic PL/SQL
tables - single column) and (Dynamic PL/SQL tables - multi columns) are not used
within the context of the Business Event Framework.

@ Note: “Active’ indication
When committing a dynamic PL/SQL definition with the indication “Active’
checked, OHI Back Office will try to validate the code of the Body section.
When creating a new PL/SQL definition the table that will be used is
unknown to OHI Back Office. Therefore the “Active” indication should not be
checked when first creating the PL/SQL definition. After linking it to a table in
the Event Definition (SYS1149F) window it can be turned on.

6.5.2.1. Passing old_rec and new_rec to your custom developed packages

If you want to pass old_rec and new_rec to a custom packaged function you should
pass them as

API_<APPLICATION_SYSTEM>_<TABLE_ALIAS>_PCK.APISROW_TYPE

For example:

/* Compare two GEB ZORG_VOORNEMEN PERIODES */
function test event
(
p_zvp old in api geb zvp pck.api$row type
, P_zvp new in api geb zvp pck.apiSrow type
)

Return boolean;

Custom Development within OHI Back Office Business Event Framework 46

As said before, the dynamic code is executed under the OHI_DPS_USER account.
This means that any custom developed packages called by your code should be
granted to OHI_DPS_USER and must have a public synonym (or be prefixed with the
schema name).

6.5.3. Event Definition Package

The ALG_EVENT_INTERFACE_PCK can be used to define event definitions. This
offers the same functionality as the OHI Back Office Event Definition window with
the exception of defining the tables for a Triggered event. The functionality for
installing and de-installing an event is available for backward compatibility.

The package also holds procedures that are used for event handling and several
utilities.

See Appendix B for a full description of the parameters for each procedure and
function in the package.

Event Definition

e Install
Available as a procedure and a function returning the ID of the event. This
can be used for the event definition. When the given event already exists
(based on the name of the event) it will update the event definition, otherwise
a new event definition will be registered with the values supplied.

e De-install
This procedure is available twice. Once to remove an event with a given
name and once to remove it based on the ID of the event definition.

Event Handling

e Add_event
Three procedures with this name are available to store an event to the table.
One receives the name of the event as a parameter, the second the ID of the
event definition. The parameter code holds the identification of the record in
OHI Back Office that caused the event. The third procedure stores an event to
the Business Event Framework queue. It receives one parameter of type:

ALG_EDE_PAYLOAD TP

To be able to change the storage clause of an event from table to queue the
code should be a string with the following format:
table_id##record_id##dml_type, where dml_type can be ‘I'(Insert), ‘U’
(Update) or ‘D’ (Delete)

e purge_all events
This procedure is available twice, based on the name of the event definition
and based on the ID of the event definition. It will remove all events and
event errors for the given event.

e reapply_failed_event
This procedure is also available twice, based on the name of the event
definition and based on the ID of the event definition. It will change the
status of a event stored in the table from ‘Failed” to "New’. This procedure
should be called from within the detector plugin. Providing a specific event
will reset only the provided event for the given event definition. When no
event is provided all failed events for the given definition will be reset.

Utility

Custom Development within OHI Back Office Business Event Framework 47

e type_payload_to_code Can be used to transform object type
alg_ede_payload_tp to the code parameter of the add_event procedure.

e code_payload_to_type Available twice, used to convert the code parameter
of the add_event procedure to object type alg_ede_payload_tp. Available
with the name and the ID of the event definition.

6.5.4. Event Handling Package

Events are handled by the framework package ALG_EVENT_PCK. This is an internal
OHI Back Office package and is therefore not available for custom development. It
contains the same functions and procedures as the ALG_EVENT_INTERFACE_PCK.

6.5.5. Process Business Event Batch

The Process Business Events (SYS5001S) batch has been developed to support starting
the Business Event Framework by the OHI Back Office batch scheduler. The batch is
needed to signal Detected events and to process events which are stored in the
ALG#EVENTS table. The batch can be scheduled using OHI Back Office Submit
Batch Request (SYSS003F) window. It has the name of the event as a parameter
allowing for different run intervals per defined event.

6.5.6. Background Process

Background process OHI_EVENT_JOB_x is used to handle events with storage set to
queue. The process is started and stopped simultaneously with the OHI Back Office
batch process.

The process monitors the Business Event Framework queue. Events are taken from
the queue and processed using the ALG_EVENT_PCK package.

With the Back Office parameter ‘No. of processes for event framework’ the number of
processes listing to the event queue can be set.

6.6. Developing Your Own Business Events

First the business event should be analyzed to determine the best suited registering
and handling types. Triggered events are best suited when the event signals data
manipulation and it is important to signal each individual action. Detected events can
be used for end-of-day status reports or for events not caused by data changes but by
the passing of time.

The storage of the event should be set to Queue when, as soon as the event is
signaled, immediate action is required. It can be set to Table when the action to the
event is less urgent and can occur at a scheduled times.

6.6.1. Detected events

In the Event Definition window set the Type to Detected. The Detector field is
mandatory for this type of event.

6.6.1.1. Detector

The field holds the (package) procedure, which is used to register the business event.
The procedure receives the timestamp of the last time it was started and the name of
the business event. The Business Event Framework will commit after executing the
detector.

For example where an event should count the number of policies, the detector in the
event definition could be:

Custom Development within OHI Back Office Business Event Framework 48

my event pck.detect nr policies
The procedure definition could look like:

procedure detect nr policies
(pi_event name in alg event definities.naam%type
, Pi_start date in date

) 7

Each event occurrence can be stored using the add_event procedure in the
ALG_EVENT_INTERFACE_PCK package.

6.6.1.2. Adding events

Detected events should either be saved to the ALG#EVENTS table or to the Business
Event Framework queue. This can be done by calling the add_event procedure in the
ALG_EVENT_INTERFACE_PCK package.

Dependent on the storage clause for the event the appropriate add_event can be
called. For events stored in the table this would be:

alg event interface pck.add event

(pi_name in alg event definities.naam$%type
, Pl code in alg#events.code

, Pl date in alg#events.master date%type

);

Or:

alg event interface pck.add event

(pi_ede id in alg event definities.id%type
, P1_code in alg#events.code

, Pl date in alg#events.master date%type

);

For events stored in the queue this is:

alg event interface pck.add event
(pi_ede payload in alg ede payload tp
) ;

If the storage type of an event is modified in the Event Definition (SYS1149F) window
the add_event will continue to work and the received parameters will be converted to
match the storage type. Although it can have a (minor) impact on performance it is
not necessary to change the detector-program code.

6.6.1.3. Example

The following code shows an example of an event to signal all new relations created
since the last time this event was processed.

procedure my detector
(pi _event name in alg event definities.naam%type
, Pl _start date in date
) is
cursor c_events
(vi date from date
) 1s
select rel.id
from rbh relaties rel
where rel.creatie moment >= c events.vi date from
1 tab id alg tabellen.id%type;
1 dml type varchar2(l) := 'I';
begin
-- Determine table id
1 tab id := rbh rel capi.g tab id;

Custom Development within OHI Back Office Business Event Framework 49

for r rec in c events (pi start date)
loop
-—- Store to a table
alg event interface pck.add event
(pi_name => pi event name
, pli code => r rec.id
);
end loop;
end my detector;

6.6.2. Triggered events

In the Event Definition window set the Type to Triggered. For events of this type the
Detector field is not available since the event is signaled using OHI Back Office
database triggers.

6.6.2.1. Tables

The second block is only available for triggered events. The table of the event can be
defined and the action on the table can be set using the Insert, Update or Delete
indications.

6.6.2.2. Evaluation

Evaluation functions are available for defining additional criteria for registering an
event. These functions can be set up in the Dynamic PL/SQL Definition window.

6.6.2.3. Example

A triggered event can be set up to signal all policies that reach a final status. Since
policies cannot be created with the final status, the only action to monitor is update.
To prevent registering other updates to the policy the following dynamic PL/SQL
can be created, the scope of the dynamic PL/SQL should be set to Event. The body

can hold:

-— declaration section: define cursors and variables here
1 retval boolean := true;

begin

-—- body section:
-— return boolean value --
return new rec.status = 'D'
and new_rec.status <> old rec.status;
end;

Since this PL/SQL definition will be linked to the VER_POLISSEN table in the event
definition window the new_rec and old_rec variables will hold all fields available in
that table.

6.6.3. Batch Handled Events

Events with storage clause set to table will be handled by the Process Business Events
batch.

6.6.3.1. Begin Handler

The (package) procedure defined for the begin handler in the event definition is
called once. This can be used for example to open a file for writing log messages. The
framework will commit after executing the begin handler.

The (package) procedure receives the following parameters:
e The name of the event

e The run number of the process

Custom Development within OHI Back Office Business Event Framework 50

e The date of the last processed run

my event pck.begin handler
(pi name in varchar2
, Pi run nr in number
, pi date detection in date

) 7
6.6.3.2. Handler

The handler is called for each instance of the event. The framework will commit after
executing the handler. The handler (package) procedure receives the following
parameters:

e The code of the event
e The date that was passed when registering the event

e The date the event was registered

my event pck.handler

(pi_name in varchar2

, pi_date source in date

, pi_date detection in date

) 7
6.6.3.3. End handler

The end handler is called once after processing all events. For example this can be
used to save information about the process run such as the total number of events
processed, the number of failed events or close the file opened in the begin handler.
The framework will commit after executing the end handler.

my event pck.end handler

(pi _name in varchar?

, Pl _run nr in number

, pi date detection in date
) ;

6.6.3.4. Purge intervals

Purging old event records is a batch function. It is possible to set up the intervals in
the Event Definition window. It is possible to have different values for failed events
since investigation may take longer than successful events.

The batch will remove records from the ALG#EVENTS tables at the end of the run.

6.6.4. Near Real Time Events

Events stored to a queue are processed by a continuous Background Process. Since
each event is processed individually no begin handler or end handler is available for
these events. Only the handler is applicable.

6.6.4.1. Handler

The OHI Back Office event package will take an event from the queue and call the
handler defined in Event Definition window. The (package) procedure for this
handler receives an object as parameter. This object contains the following
information.

e The ID of the event definition

e The ID of the table the signaled record is stored in
e The record ID

e The DML type that caused the event

Custom Development within OHI Back Office Business Event Framework 51

The handler can be defined as:

my event pck.queued event handler

) 14

(pi load in alg ede payload tp

This handler determines of course what is done with the event. In the situation that
publishing the even through a JMS queue is a requirement this can be done as
described in the Appendix regarding the use of a [MS messaging queue.

6.6.5. Custom Plug-ins

The event tables and event framework are pre-installed in the OHI Back Office
database. The custom plug-ins for the detector and handlers of the events must be
implemented in a separate database schema.

The following is assumed for the purpose of this installation procedure:

The event definition is called my_event

The custom components are combined in a single package called
my_event_pck

The my_event_pck.install procedure creates and configures an event
definition for my_event

The OHI components are owned by database schema ozg_owner
The database schema for bespoke software is called my_schema

The business event framework is started by the ozg_batch schema. However
all dynamic PLSQL code is executed under OHI_DPS_USER.

The installation consists of the following steps:

Ensure that public synonyms and access privileges are created for the
ozg_owner components that are accessed by the my_event_pck package (you
may only use the objects granted by the $OZG_BASE/OZG_DIRECT.grt
sqlplus script for this; consult the Object Authorization manual for how to
use this script)

Ensure that my_schema has execute privileges for
ozg_owner.alg_event_interface_pck (should be taken care of in the previous
step but in previous releases the grant was missing)

Compile the package specification and package body for my_event_pck
under the database schema my_schema

Create a public synonym my_event_pck for my_schema.my_event_pck

Grant execute privileges for my_schema.my_event_pck to the
OHI_DPS_USER schema.

Run my_event_pck.install under my_schema to install the definition for
my_event or set up the event definition using the Event Definition window.

6.7. Processing Business Events

Processing business events is dependent of the business event definition. Detected
events are registered by the Process Business Events batch. Triggered events are
started by database triggers.

Custom Development within OHI Back Office Business Event Framework 52

6.8. Examples

6.7.1. Process Business Events Batch

The Process Business Events (SYS5001S) batch has been developed to start up a
business event processing run. The batch can be scheduled using the Submit Batch
Request (SYSS003F) window.

& Submit Batch Request _jo) x|

Batch 5%550015 ||Process Business Events

Submit Request |

Batch Request
Humber 10000000022347 Start Time 16-02-2021 05:00
Printer - Freguency Every hour -
Processes Retrievable [] Optimizer Mode ALL_ROWS -
Max. Hours Trace [Exceed Exceeded Trace
#to Procezs Debuglevel Uit | Programma's
Service

FParameters

= [Event definition AZR_MPD_FRT Value AZR_WPD_PRT

Ref. Point -
Correction
- Ref. Date

Dependencies

Dependent on Started Time
:. Func -

-

Figure 23: Sample of scheduling Process Business Events (5YS5001S) batch
In the screenshot business event "AZR_MOD_PRT’ will start every hour.
The batch serves two purposes and is only needed for these types of events:

1. Signal Detected events. For detected events the program code defined by the
Detector is executed once. See Detector for a more detailed description of the
detector. This step is skipped for triggered events.

2. Process events stored in a table. Events stored in the table are processed. First
the specified Begin Handler is called once. Per event the Handler is called to
process the event. After processing all events the End Handler is called once.
After the end handler the batch purges old events. This step is skipped for
events stored in the queue.

@ Note: Detection and Processing in one run
For Detected events storing the events to a table and registering and
processing the events happen in the same processing run.

6.7.2. Queued Events

Events stored to the queue are processed by a dedicated process monitoring the
business event queue. Events are taken from the queue and the handler is called to
process the event.

The dedicated process is started and stopped together with the OHI Back Office batch
scheduler.

This chapter contains examples of how to set up events to be handled by the Business
Event Framework.

Custom Development within OHI Back Office Business Event Framework 53

6.8.1. Detected Event, Store to a Table

This example shows an event to signal all relations that have been updated since the
last time the event was run. It writes the identification of the relations to a file. Since
there is no need to act on individual updates and no immediate action is required
upon the change, a detected event storing to a table will suffice.

6.8.1.1. Event definition

& Event Definition HE=B3
Subtype Business event b
Name: OH_DEMO_D_T -|Example Detected to Table
Handler OHI_EVENT_DEMO_PCK.HANDLER_T
Active v Retry? I

Business event Internal event

Type Detected «| Detector OH|_EVENT_DEMO_PCK.DETEC ~ Last Detection
Status - Run
Storage Tabel - Begin handler OHI_EVENT_DEMO_PCK.START End handler | DEMO_PCK.END_HANDLER_T
Purge Failure kg Purge Success 10
. Table Insert Check Function Update Check Function Deletion Check Function Active
- [[l [

4]

Figure 24: Example event definition named OHI_DEMO_D_T

Example OHI_DEMO_D_T is a detected event (Type is set to Detected) and it will
store events to the ALG#EVENTS table (Storage set to Table).

6.8.1.2. Detector

The detector of the event in this example is
OHI_EVENT_DEMO_PCK.DETECTOR_T. Typically the code of a detector consists of
a query to select the records to be registered and a call the
ALG_EVENT_INTERFACE_PCK package to save the identification of the selected
records:

procedure detector t
(pi_name in varchar?
, pi date from in date
) is
begin
for 1 rec in (select rel.id
’ rel.laatste mutatie moment
from rbh relaties rel
where rel.laatste mutatie moment >=
pi date from
)
loop
alg event interface pck.add event
(pi_name => pi name
,P1i _code => to char(l rec.id)
,pi date => 1 rec.laatste mutatie moment
):
end loop;
end detector t;

Custom Development within OHI Back Office Business Event Framework 54

6.8.1.3. Begin handler

The begin handler OHI_EVENT_DEMO_PCK.START_HANDLER_T in this example
is used to open the file for writing the identifications of the relations.

procedure start handler t

(pi name in varchar?2
, Pi run nr in number
, pi_date detection in date
) is
1 filename varchar2 (100) ;
1 location varchar2 (100) := 'OzG TMP';
1 max linesize constant binary integer := 32767;
begin
1 filename := i name] |

"ll

to char(pi run nr) ||

"ll

to_char (pi date detection, 'YYYYMMDDHH24MISS') | |

.txt!';

a file handle := utl file.fopen
(1 location
, 1 filename
,'a'
, 1 max linesize
) ;
end start handler t;

6.8.1.4. Handler

The handler OHI_EVENT_DEMO_PCK.HANDLER_T of the example writes the data
to the opened file. The code parameter contains the identification of the relation
record. It could be used to select more detailed information from the relation record.
For instance who and when the last modification was made. Since this is a detected
event the data would however only reflect the last modification.

procedure handler t

(pi_code in varchar?
, pi_date source in date

, Pl date detection in date

) 1is

begin

utl file.put line

(a file handle

, pi code] |
t=>]
to char (pi date detection, 'YYYY-MM-DD HH24:MI:SS'") ||
t=>]
to char (pi date source, 'YYYY-MM-DD HH24:MI:SS')

) 7

end handler t;

6.8.1.5. End handler

The end handler OHI EVENT DEMO PCK.END HANDLER T in this example is used
to close the file.

procedure end handler t

(pi name in varchar?2
, Pi _run nr in number

, pi_date detection in date

Custom Development within OHI Back Office Business Event Framework 55

) is

begin
if utl file.is open(a_file handle)
then
utl file.fclose(a file handle);
end 1if;

end end handler t;

6.8.1.6. Scheduling the event

All steps for the detected event have finished. The event can be scheduled to run
using Submit Batch Request (SYSS003F) window.

« Submit Batch Request
Batch 5¥5350015 | |Process Business Events
Submit Regquest |
Batch Request
Number 10000000022348 Start Time
Printer Freguency -
Processes Retrizgvable [Optimizer Mode ALL_ROWS -
Max. Hours Trace [Exceed Exceeded Trace
#to Process Debuglevel | Uit | Programma's
Service
Parameters
» |l Event definition Value OHI_DEMO_D_T
Ref. Point -
Correction
- Ref. Date
Dependencies
Dependent on Started Time
:,. Func =
-

Figure 25: Submit a batch request to run event OHI_DEMO_D_T

6.8.2. Triggered Event, Store to the Queue

This example shows how to define an event that will be registered when a new
record is created.

6.8.2.1. Evaluation Function

First step is creating the evaluation function which will be used in the event
definition. OHI Back Office will validate the entered PL/SQL code when it is saved.
Since the PL/SQL Definition has not yet been linked to a table this validation will fail.
Therefore the indicator ‘Active’ should not be checked. In that case the PL/SQL code
is disabled and will not be validated.

Custom Development within OHI Back Office Business Event Framework 56

¢ Dynamic PL/SQL Definition

Hame EVT_CK_40

Description Check if value equals 40

Scope Event - || Validation function -

Column Bound Type -

System Message

Explanation

Body begin =
open c_rell v_rel_nr==new_rec.rel_nr};
fetch c_rel e
into |_rel_gender;

Debug Mode - Direct? [v Active v/

Dynamic PL/SCQL Tables - Single Column ‘L Dynamic PL/SCL Tables - Multi Column

Table Column System Message Insert Update Deletion

B | [] [] []

ol

Figure 26: Event evaluation function activation

The complete Body of the PL/SQL definition is not visible, it contains:

cursor c_rel
(v_rel nr in rbh relaties.nr%type
) 1s
select rel.n geslacht gender
from rbh relaties rel
where rel.nr = ¢ rel.v_rel nr
1 rel gender rbh relaties.n geslacht%type;
1 retval boolean := true;
begin
open c rel(v_rel nr => new _rec.rel nr);
fetch c_rel
into 1 rel gender;
close c _rel;

1 retval := 1 rel gender =1
and new_rec.code = '40'
return 1 retval;
end;

The example shows that when a record is created for a male relation and the code is
equal to ‘40" the function will return true and an event will be registered.

Since it is linked to the RBH_DERDEN_CODERINGEN table in the event definition,
the new_rec will hold all the new values of the record. It can be used for more
sophisticated evaluation than this example.

6.8.2.2. Event definition

The screenshot shows example event definition named OHI_DEMO_T_Q. Itis a
triggered event (Type is set to Triggered) and it will store events to Business Event
Framework queue (Storage set to Queue). This type of event will be signaled by
database triggers so a separate Detector is not needed. A begin handler and end
handler are not required when the storage clause is set to Queue as the events will be
handled.

Custom Development within OHI Back Office Business Event Framework 57

& Event Definition M = 3

Subtype Business event il
Name OHI_DEMO_T_Q -|Example Triggered to Queue
Handler OHI_EVENT_DEMO_PCK.HANDLER_Q
Active I Retry? I
Business event Internal event
Type Triggered - Detector Last Detection
Status - Run
Storage Queue - Begin handler End handler
Purge Failure Purge Success
Table Insert Check Function Update Check Function Deletion Check Function Active
~ B [RBH_DERDEN_CODERINGEN [ZRF T CK_ar - [[[

1]

Figure 27: Add a table and evaluation function to a triggered event

The event will be signaled by the creation of a record in the
RBH_DERDEN_CODERINGEN table when the dynamic PL/SQL definition
EVT_CK 40 returns true.

@ Note: ‘Active’ indication

After the PL/SQL Definition has been linked to a table the ‘Active” indication
in the Dynamic PL/SQL Definition window must be checked to validate and
enable the code.

6.8.2.3. Handler

The events are handled by OHI_EVENT_DEMO_PCK.HANDLER_Q. It takes the
identification of the record from the object type it receives as parameter and sends an
email to notify another department for instance.

procedure handler g
(pi_load in alg ede payload tp
) is

1 conn utl smtp.connection;

1 code varchar2(100);

procedure send header
(pi_name in varchar?
, pi header in varchar?2
) 1is
begin

ult smtp.write data

(1 conn

;, pPi name || ": "|

pi header || UTL TCP.CRLF

)

end send header;

begin
1 code := alg event interface pck.type payload to code
(pi _ede payload => pi load
) ;
1 conn := utl smtp.open connection ('smtpsrv.mycompany.com') ;

utl smtp.helo(1 _conn, 'mycompany.com');

Custom Development within OHI Back Office Business Event Framework 58

utl
utl
utl

smtp.mail (1 conn, 'sender@mycompany.com');
smtp.rcpt (1 conn, 'recipient@mycompany.com');
smtp.open data (1l _conn);

send_header ('From', '”Sender” <sender@mycompany.com>");
send header ('To', '”“Recipient” <recipient@mycompany.com>");
send header ('Subject', 'Relation created');

utl

utl
utl
end;

smtp.write date(1 conn
, UTL_TCP.CRLF |
'Relation with code '||1l code]l|
' has been created. '
)
smtp.close data(1 conn);
smtp.quit(1 _conn);

6.9. Trouble shooting the event framework

Sometimes a triggered and or queued event seems not to do anything. The following
list gives some handhelds where to look for.

Custom Development within OHI Back Office

Is the batch scheduler running? The event processes are monitored by the
batch scheduler. If the batch scheduler is not running the event processing
jobs are probably neither.

Is the value for the Back Office Parameter "No. of processes for event
framework’ not set to a value less or equal to 0? This parameter set the
amount of active workers to process the queue.

Are the worker jobs running? Check as owner in user_scheduler_jobs for
active/running jobs with a name like ‘OHI_EVENT_JOB_n_I”, where nis a
numeric value.

Is the event active? Make sure the active indicator both at event level as well
as table level are activated. Also a check condition when being defined
should be active.

Is the handler package granted to the OHI_DPS_USER scheme of OHI Back
Office? This will be the user executing the call defined in the handler.

Look into the table ALG#EVENT_ERRORS to see if there are issues when the
process tries to execute the handler function.

Business Event Framework 59

__|
7. Custom Batch Scripts

OHI Back Office allows you to create your own batch processing scripts and run
them with the standard batch scheduler. Batches can be purely PL/SQL or they can
be Perl or OS Shell scripts. They can be scheduled to run immediately or at a
predetermined time.

For PL/SQL batches you are advised to use the built-in OHI Back Office script
generator to generate a framework to control the execution of your custom code,
especially if you expect to be processing large data volumes. The generated
framework helps to process large volumes in manageable chunks and provide the
same kind of feedback as the standard scripts.

7.1. Approach
A custom batch script is handled in the same way as a standard script.
This means that:

e Most batch scripts process a large amount of data, and report results, often
after performing DML operations on the selected data.

e A custom batch script must be registered as a script
e A custom batch script is run under the BATCH account

e While creating a request for a custom batch script, the end user may enter
script parameters.

e Atruntime the custom batch script may evaluate the script parameters.

e When a custom batch script completes or aborts it must register its end state
in the batch requests table.

e A script must be created to export the batch definition from the test database
to the production database.

The typical flow for a batch script looks like this:

CHECK
REQUEST
PARAMETERS

4

SELECT ROWS PROCESS ROW

Figure 28: Typical process for a batch script

7.1.1. Create or generate?

Although you may want to manually create all code for your batch script, you are
strongly advised to start with a template created by the generator built into OHI Back
Office and modify this to your needs.

The generator (SYS_GEN_PCK) creates a framework to process the data in small
chunks with multiple parallel processes.

Custom Development within OHI Back Office Custom Batch Scripts 60

7.2. Batch user

7.3. Registration

The framework helps you to define the data to be processed by defining the selection
of the data, the so called process units, and process the data chunk by chunk which
usually is record by record over multiple threads.

Note that the custom batch scripts based on these templates provide the same
throughput statistics as standard batch scripts created by OHI Back Office.

The generator supports the following batch types:
e Bulk DML processing batches with support for parallel execution
e SV file export
e (CSV file import
e XML file import

Note that a batch is not executed with the account of the OHI user who created the
batch request. Instead, the batch scheduler connects to the OHI Back Office database
with a specific database user. This username is defined in a system parameter and is
usually “BATCH”. In the rest of this document we assume the batch account is
named BATCH.

The user BATCH must be able to access the database objects needed to process the
batch request. For OHI objects, access this is arranged through role
OHI_ROLE_BATCH which is granted the minimum set of privileges on OHI objects,
to prevent potential misuse of the privileges of the batch account.

You are not allowed to grant additional privileges on OHI objects directly to user
BATCH or role OHI_ROLE_BATCH. Instead, you must make sure your custom
batches - regardless of the type of batch script - use the OHI objects only via custom
database objects (views, packages, etc) that have the required privileges on the OHI
objects.

The database objects for custom batches reside in a custom schema, for example

SVS_OWNER. The BATCH user must be granted access to these database objects, by
means of grants to the user itself or to the role OHI_ROLE_BATCH.

7.3.1. Batch

The definition of a batch is maintained in the screen “Batch” (SYS1008F). In this
screen you can define or check the main batch characteristics, like the batch code,
whether it can spawn parallel processes, whether it is a PL/SQL, Perl or OS shell
script etc.

Custom Development within OHI Back Office Custom Batch Scripts 61

Code [[
Layout [[Batch Type |File intertace -
Processing Report | [Output Type [asc -]
Data File ‘ | Optional Sets Minimum Maccimum |
Batch Windouw: Print Automatically [Qutput Control [
Output Graup [[Optimizer Mode |aLL_Rows -|
hdinimum Runtime Service |
Output Descrigtion | W Errors [iarmings v Informational
Maix. Subprocesses Macz. Mo. of Haurs [Mesw Standard [Lapsed [~ Parallel Supported
Overtime Allovwed [Baselines [vertime Trace [Stopped [T Parallel
System Message Exclusions XED Versions
Description MoLOY LOW Restriction Yalidation
| o | \
| O | | \
| O | \
| O | \
Mo. Parameter Desctiption M E Prompt Mame in Batch COperator Column
N [OO 7l
-0 | ool | |
Default value Reference Date | vl Correction Days
Hirt |

Figure 29: Batch definition

Also the batch parameters can be defined or checked here. Parameter definitions can
be shared between different batches, which means that if one is to use an already
defined parameter, care has to be taken that the definition of the parameter is not
inadvertently changed.

Parameters are always grouped in parameter sets. E.g. the location of a file might be
specified by two grouped parameters: the directory and the file name. Most of the
time, however, a parameter set will contain just one parameter.

Parameter sets have a few checks. If provided the values may only be chosen from a
list of values, maybe with additional restrictions. They can also be checked using a
parameter set validation.

Also a list of values can be set to be used. The restriction on the list of values depends
on the particular list of values. It is best to look for the use of an actual list of values to
see how it is used and how it can be restricted. Besides the predefined lists of values
also a dynamic list of values can be used.

@ Note: The LOV for the dynamic value list is SYS2019L and the LOV restriction
should contain the name of the dynamic value list. The column field at last
contains the sequence number of the column in the dynamic value list..

Figure 30 shows the screen for defining parameter set validations. It defines a
validation as it might be used for selecting relations that are physical persons.

Custom Development within OHI Back Office Custom Batch Scripts 62

'."?_EI Parameter Set Validation

Time Valid
Code Description Table WHERE Clause |
B BEEE [rerson W . [RBH#RELATIONS_ sub type=' No ~
[| 0. | |
[| 0. | |
[| 0. | |
[| 0. | |
A | 0. | | -
A | | 0. | |
2Bl | 0. | |
=0 | 0. | |
[] | 0. | |
[] | 0. | |
[] | O | |
[] | O | |
[] | O | |
=L | O. | |

Figure 30: Defining a validation on the type of relation.

Relations in OHI can be either persons or organizations. Both are stored in the same
table and are distinguished based on the sub type. The parameter set validation here
is called SVSPERS. The checkmark tells OHI that it is based on a table, which is given
in the field Table. To make sure that the relation is a person (the actual validation) a
where clause is specified, that checks the sub_type which must be ‘N’ for (natural)
persons.

7.3.2. Dynamic List of values

In the screen “List of Values” (SYS1152F) a custom list of values can be defined. This
list of values uses tables of OHI Back Office. If the use of a custom table is required
than this table should be used in a “System view” (5Y54001F). This system view can
be used as the “table” of the list of values.

@ Note: The table or (system) view used as table source in the list of values

should also have one numeric column named ID. It is not required to use the
ID column as a column in the list of values.

7.3.3. Batch Settings

For batches created with SYS_GEN_PCK a couple of settings are important.

e Code and description: The code is the identifier of the batch and should start
with SVS

e Batch type: defines the type of batch and should be
o SQL*Plus for standard mutating batches and CSV report files
o CSV for incoming CSV files
o XML for incoming XML files

e New Standard? Indicator must be activated

Custom Development within OHI Back Office Custom Batch Scripts 63

e Required parameters: Some batch scripts do have a set of required
parameters. See SYS_GEN_PCK for the required set of parameters per type
of script.

e The value of the field “Name in script” at the parameter set component
should be the same as used in the definition of the parameter in the call to
SYS_GEN_PCK

7.4. Export script definition

The definition of a batch as defined in the screen “Batch” (SYS1008F) can be extracted
to an installation script that can be used to install this definition in other OHI
environments, e.g. test or production.

The procedure write_module_ins_file in SYS_GEN_PCK takes care of this.

Sys gen pck.write module ins file

(pi module => 'SVS0001s"

, pi_file location => 'OZG_TMP'

);

The file will be placed in the database directory provided at the parameter
pi_file_location and is called the provided module code (pi_module) with the
extension .ins.

Besides the batch module also the system message will be present in the file as long
as the message(s) starts with the module code.

7.5. Generator: Bulk Processing Batch - Overview

The procedure SYS_GEN_PCK.BATCH_SOURCES can be used to generate pre-
defined templates for batch processing.

The generation results in a couple of files:
¢ MODULE.sql
e MODULE.ins
e MODULE_PCK.pck
e MODULE_CUST_PCK.pck

7.5.1. MODULE.sql

The sql file will be called by the batch scheduler when a batch request is created for
this module. It will start the batch by executing the run procedure in the
MODULE_PCK package. This file should not be changed and be placed in the sql
directory of the application server of the environment.

7.5.2. MODULE.ins

The ins file contains data that is used by some system messages and should be
executed in a sql session in the database.

NB. This is not the final module installation script, see chapter 7.11 Module
installation script for that.

7.5.3. MODULE_PCK.pck

This package contains all the generic code to run a batch. This file should not be
modified and should be compiled in the database.

This package takes care of the initialization of the batch, the transaction and
exception handling and makes callouts the MODULE_CUST_PCK package.

Custom Development within OHI Back Office Custom Batch Scripts 64

7.5.4. MODULE_CUST_PCK.pck

This package contains all the custom code of the batch and is the one source that must
be provided with the required business logic for this batch.

7.5.5. Basic PL/SQL Batch flow

A PL/SQL batch generated with SYS_GEN_PCK typically follows the flow as shown
in figure x

Before processing

Check parameters uni

- v

|‘%“|

)
Before processing
hook

- v

)
Query units

Process unit

[Process succes } [Process failure }

After processing
00|

After processing
units

=
=

Figure 31: batch process flow

The green blocks contain the batch specific code and have to be implemented. These
units are present in the MODULE_CUST_PCK. The red units contain the generic
batch code and are present in the MODULE_PCK.

7.6. Generator: Bulk Processing Batch - Details

7.6.1. Define the batch definition

A (bulk) processing batch first selects rows for processing and then processes each
row:

Custom Development within OHI Back Office Custom Batch Scripts 65

CHECK
REQUEST
PARAMETERS

SELECT ROWS » PROCESS ROW

Figure 32: Select and process rows
Before designing the batch you should decide:
What operation should be performed on which data?

The 'which data' determines your selection criteria, the 'what operation' determines
the processing.

Note:

e The simplest version is a selection of rows on which you directly perform the
DML.

e It may also be that the DML action triggers an update to a master record. In
that case you would like to handle all the details for the same master in the
same session/sub-process to avoid locking issues. In this second case, you
also have to ask whether you want that is committed when all details are
processed or that you want to commit per detail itself.

e A variation on this is that you want to perform two different actions with the
same master. The second action is determined by the result of the first action.

e Avariant of 1 and 2 together is a cursor which is executed per row from the
selection.

Base module
(selection and
processing)

Selection unit =
processing unit?

Selection unit

Y
Base module Commit on selected row?

Ty (selection only)

Lookup module
(processing)

~ @@

One processing unit?

2-n
selection N
unit

Processing based on the
same (master) row?

<LEVEL>
LOOKUP

Y

Lookup module
(processing)

~ @@

Figure 33: Determine the batch definition setup

The batch template consists of several parts in one call. An example call is available in
the package specification of the package SYS_GEN_PCK.

Custom Development within OHI Back Office Custom Batch Scripts 66

The different parts are:
e The batch module
e 0-nbatch parameters
e 1-nbatch groups
1-n batch units per group
7.6.1.1. Define the batch module
The batch is the actual module as defined in the screen “Batch” (SYS1008F).

sys_gen_ pck.batch sources

(pi_file location => '0ZG_TMP'

, pi_module name => 'Svs0001S"

, Pl ind count processed => true

, pi_parameter tab => sys_gen pck.batch parameter tabtype

(sys_gen pck.batch parameter rec
(pi_name => .

Provide a valid database directory for the parameter pi_file_location. This is the
directory the files will be created in. The parameter pi_module_name contains the
code of the batch module as defined in the screen “Batch”. With the parameter
pi_ind_count_processed set to true a couple of system messages will be created to
report when the batch request is completed about:

e the total amount of workunits

e the amount of successful processed units

e the amount of work units with an error
7.6.1.2. Define the batch parameters

The batch parameters are used to influence the behavior of the batch based on the
input provided by the user when creating the batch request.

Each batch parameter should be added to the call of BATCH_SOURCES

sys _gen pck.batch parameter rec

(pi name => 'P MER CODE'

, pi table name => 'VER POLISSEN'

, pi_column name => 'MER_CODE'

, pi_data type => 'VARCHAR2'

, pi data length => 5

, pl data precision => 0

, Pl _comment => 'The code of the brand'
)

The parameter pi_name must have the same name/code as defined in the screen
“Batch” in the field “Name in script”.

7.6.1.3. Define the processing unit(s)

The processing unit has two components, the “group” defines the selection and the
“unit ” defines the processing unit.

, Pi group tab => sys gen pck.batch group tabtype
(sys_gen pck.batch group rec

(pi_table name => 'VER POLISSEN'

, pi_alias => 'POL'

, pi label => 'Policies'

, pi identification => 'NR'

, pi_level => 'BASE'

, pi_alias fu => 'POL’

, pi_unit tab => sys_gen pck.batch unit tabtype

The group implements the selection part of the batch. The provided table and column
are used to create a basic query which can be adjusted later on. The alias (parameter
pi_alias) is used to identify the group throughout the batch and should be unique
within the batch. The parameter pi_level can have one of the two values “BASE” or

Custom Development within OHI Back Office Custom Batch Scripts 67

“LOOKUP” and is used for the transaction level. The label (pi_label) is used in the
messages created by the batch to report on the processed amount of work.

The parameter pi_alias_fu needs some explanation, sometimes the workload defined

in either the group or the unit is not the actual workload to be reported, e.g. when the

batch uses a grouping of data to be processed. A function will be provided to record

the actual amount of data per group of unit when applicable. To use this option the

alias of the parameter pi_alias_fu should be a different one than the alias of the group

of unit.

@ Note: The group expects a unique single numeric value per processing unit,

e.g. arecord id, a policy number or a relation number (parameter
pi_identification).

, pi_unit_tab => sys_gen_pck.batch_unit_tabtype
('sys_gen_pck.batch_unit_rec
(pi_table_name =>'VER_POLISSEN'

, pi_alias =>'POL'
, pi_label => 'Policies'
, pi_alias_fu =>'POL'

)
)

The unit implements the worker process. It can be the same unit as defined at the
group or another unit when within the defined group a more detailed processing is
needed. If a unit is based on another alias (pi_alias) a second query will be generated
to transform the selected record from the group into a more detailed record structure
for the unit.
@ Note: One batch can consist of one or more groups and each group exists of
one or more units. One group with one unit is the most common type.

7.6.2. Implementation

When the sources are generated the actual implementation can be done. The
<MODULE>_CUST_PCK custom package is the only source that needs to be
modified for the implementation.

The custom package has several functions and procedures. For "_xyz" the alias you
defined for your batch group or unit should be substituted when reading this.

@ Note: Don’t add transaction code like rollback or commit in your custom
implementation as well as a “when others” exception handler as this is dealt
by the main package.

See Figure 31 for a schematic flow of the different functions and procedures and their
place in the process
7.6.2.1. Function get_revision

This function determines the revision of the batch as it is shown in the .out file
produced by the batch request.

It is called once in the main batch request
7.6.2.2. Function parameters_ok
In the function parameters_ok the script parameters can be validated.

Using batch request validation is preferred over implementing validation here as it
prevents the batch request from being submitted. If any value is not correct a

Custom Development within OHI Back Office Custom Batch Scripts 68

message can be written and the boolean value "false" is returned. This causes the
batch to stop and the status "Error" is recorded.

It is called once in the main batch request
7.6.2.3. procedure before_processing

The purpose of this procedure is to execute specific actions once when the batch is
started. For example initialization or creating a master record to be referred to by
details that are generated during batch processing.

It is called once in the main batch request
7.6.2.4. function query_xyz
The query_<alias> function prepares the processing units.

The parameter pi_volgnr in the procedure alg_batch_pck.ins_svh_bulk determines
the order in which the units are processed.

If more than one subprocess is started process (1) will handle row 1 and process 2

will handle row 2 etc.

@ Note: Implementing an 'DUP_VAL_ON_INDEX' exception handler will not
work as the inserts in the table will be done in bulk and the last set will be
done post processing the function 'query_xyz'. When, in the exceptional case
you need to trap the ' DUP_VAL_ON_INDEX' please add a call at the start of
the function to 'ALG_BATCH_PCK.SET_IGNORE_DUPVAL'.

It is called once in the main batch request

7.6.2.5. procedure after_processing

The purpose of this procedure is to execute specific actions once when the batch is
finished. For example cleaning up temporary data, generating a message based on
the manual counts, etc.

It is called once in the main batch request
7.6.2.6. cursor a_c_xyz

In the package specification a cursor can be defined. This will be the case if a
Structure is provided with a different unit compared to the group.

The query_xyz function queries the rows from the base usage and during processing
a single row is presented to this cursor (v_record_id).

Using this cursor the selection from the lookup usage can be performed. Each row
from the resulting set will be presented to the process_xyz procedure. The order of
the query result is the order of the rows processed by the process_xyz procedure.

It is called once per record from the group selection in the subprocess batch request.
7.6.2.7. procedure update_shg

The procedure update_shg is meant to customize recording of the number of records
that was processed successfully or with errors using manual messages.

Using the procedure alg_batch_pck.toevoegen_shg the message is initialized.
Updating the number of processed records must be coded manually.

An update is chosen because otherwise too many records would be created causing
trouble when purging batch requests.

Custom Development within OHI Back Office Custom Batch Scripts 69

Updating is done using an autonomous transaction and does not influence
processing.

7.6.2.8. procedure before_process_xyz

The purpose of this procedure is to execute specific actions once when the group is
started. For example initialization of a package variable.

It is called once per group in the subprocess batch request

7.6.2.9. procedure after_process_xyz

The purpose of this procedure is to execute specific actions once when the group is
finished. For example cleaning up temporary data, generating a message based on
the manual counts, etc.

It is called once per group in the subprocess batch request

7.6.2.10. procedure process_success_xyz

This procedure can be used to write a message saying that processing was successful
or to maintain a specific counter.

Sometimes an indicator needs to be updated when the transaction was successful.
Such an action can be performed here too.

It is called once per record (unit) in the subprocess batch request
7.6.2.11. procedure process_error_xyz

This procedure can be used to write a message saying that processing was not
successful or to maintain a specific counter.

Transactions are not allowed. Recording or updating manual messages is allowed
provided procedure update_shg en alg_batch_pck.toevoegen_shg are used. These
messages are processed using an autonomous transaction.

It is called once per record in the subprocess batch request in case of an error.

7.6.2.12. procedure process_xyz
The procedure process_<alias> carries out the 'real' processing per processing unit.

In the process_<alias> procedure each row can be validated if it is suited for
processing. If it is not, an error message can be written. In that case processing the
row will be stopped.

It is called once per record (unit) in the subprocess batch request

7.6.3. Messages

Per record an system message can be created for informational purpose or to record
an error. In case of an error the current record is skipped from being processed and
the next record will be processed.

An example error message will look like

sys message handling pck.give error
(pi msg code => 'svs0001s004"
, pi_msg default text => 'Record #1# does not comply to the specifications.'
, pi_msg _parmvalue tab => sys message handling pck.msg parmvalue tabtype
(sys message handling pck.parmvalue

Custom Development within OHI Back Office Custom Batch Scripts 70

(pi sequence nr => 1
, pi value number => pi record id
)
, sys_message handling pck.parmvalue
(pi sequence nr => 2

;, pi_value_char => 'CHECKOO1A'
)
)
, pli_raise exception => true
, pi_table_ id => 123
, pi record id => pi record id

)i

Be sure to register the system message in the screen “System messages” (SYS1002F).
Also note that each parameter value cannot exceed a length of 120 characters and the
total length of a message with the parameters substituted cannot exceed a length of
2000 characters.

7.7. Generator: CSV Export Batch

The procedure sys_gen_pck.export_csv_sources creates a template for a script to
write the result of a query into a CSV (comma separated value) file. Note that the way
the template is created enables translation of the report label and the report items into
the customer’s language using the OHI translation mechanism (see the .ins script).

Notes on parameters:

pi_file_location: the database directory where the output files are written.

pi_module_name: the name of the module in format SVS<nnnn>R (max. 8
positions).

pi_schema_owner: the (custom) schema owner of the compiled package.

pi_table_name: base table of the selection that generates the output. Within
the generated package a default query is created on the base table and the
specified items/columns. This query can be extended using any additional
joins of tables and/or views.

pi_alias: alias identifying the base table of the selection.
pi_label: functional name of the records to be exported.

pi_item_tab: setup of all report items (columns) with their definitions: within
this parameter the report_item_rec function defines each column in the CSV
report. The columns are included into the default query in the generated
package.

pi_parameter_tab: setup of the parameters for the main procedure. Returns
the record structure for the definition of a batch parameter. The derived type
definition by specifying a table and column prevails over an explicit type
definition. Data type is required, however.

Sample call:

begin

(

ys_gen pck.export csv sources

pi file location => '0ZG TMP'

pi module name => 0004R"

pi schema owner => _ OWNER'

pi table name => 'RBH RELATIES'
pi alias => 'REL'

pi label => 'Relations'

\

pi item tab sys gen pck.report item tabtype
(

sys gen pck.report item rec
(

pi name => 'REL NUMBER'
, pi_table name => 'RBH RELATIES'
, pl column name => 'NR'

Custom Development within OHI Back Office Custom Batch Scripts 71

, Pl parameter tab

) 7
end;

)

pi data type
pi data length

=>
=>

pi data precision =>

pi prompt

=>

'NUMBER'

10

0

'Relation number'

sys gen pck.report item rec

pi_name
pi_table name
pi_column_ name
pi data type
pi data length
pi prompt

=>
=>
=>
=>
=>
=>

'NAME'
'RBHiRELATIES'
'NAAM'
'VARCHAR2'

255

'Formatted name'

sys gen pck.report item rec

pi name

pi_ table name
pi_column_ name
pi data type
pi prompt

pi_name

pi table name
pi_column_ name
pi data type
pi data length
pi prompt

=>
=>
=>
=>
=>

=>
=>
=>
=>
=>
=>

"DATE_OF BIRTH'
'RBHiRELATIES'
'N_DATUM GEBOORTE'
'DATE'

'Date of birth'

ys_gen pck.report item rec

'GENDER'

'RBH RELATIES'
'"N_GESLACHT'
'"VARCHAR2'

1

'Gender’'

=> sys gen pck.batch parameter tabtype

(

sys_gen pck.batch pa

)

pi_name
pi data type
pi_data_length

ram
=>
=>
=>

pi data precision =>

pi_comment

=>

eter rec
'P_DIRECTORY'
'VARCHAR2'

30

0

'Database directory

where the CSV file is written to'

sys_gen pck.batch parameter rec

pi name

pi table name
pi column name
pi data type

=>
=>
=>
=>

'P_SUB TYPE'
'RBH RELATIES'
"SUB TYPE'
"VARCHAR2'

NOTE: the parameter P_DIRECTORY is required. Additional parameters can be
added. As a result of what is specified above, the SVS<nnnn>R_PCK will contain:

e parameter validation

e record type for the record to be retrieved

e write the header text with the prompts (translated when applicable)

e write the records one by one into the file using the named columns

The SVS<nnnn>R_CUST_PCK performs the actual data processing and contains a
generated query: a select on the base table using all specified columns. The query can
be modified /extended but the column aliases must match the definition in the

SVS<nnnn>R_PPCK.
7.8. Generator: CSV Import Batch

The procedure sys_gen_pck.import_csv_sources creates a template to import and
process a CSV file into the OHI Back Office database.

A maximum of twenty columns can be processed. The process_row procedure
processes row by row the CSV file.

Custom Development within OHI Back Office

Custom Batch Scripts

72

7.9. Generator: XML Import batch

The procedure sys_gen_pck.import_xml_sources creates a template to import and
process a XML file. It uses XQuery to process the data stored in an XMLTYPE
datatype.

7.10. Other output scripts

It is possible to write your own scripts without using the template generator.

7.11. Module installation script

Once the script is defined in the application it could be necessary to have the same
configuration on another environment like the production database.

The definition of a script, including the system messages for this specific script can be
exported into an installation file which than can be run against any other OHI Back
Office environment to create the same script definition.

The procedure sys_gen_pck.write_module_ins_file creates the file, typically with the
namingconvention <module code>.ins.

Sample call:
begin

sys gen pck.write module ins file
(pi_module => 'SVS0004R'
, pi_file location => 'OZG_TMP'
)
end;
The system messages will be included based on the code of the system message. For

this the first part of the message code should be equal to the module code.

7.12. Creating output in a specific characterset

One of the things a custom batch can do is creating a file, like a CSV file. As the
database has the AL32UTES8 characterset all output by default will be in this
characterset.

Each script has the opportunity to create the output in a specific characterset. To do
this the characterset should be set at the script itself and one should use the supplied
functions from ALG_BATCH_PCK: create_file, write_line and close_file as well as a
call to alg_batch_pck.set_charset. This last call is not required when using one of the
batch templates provided in SYS_GEN_PCK.

NB. When using UTL_FILE to create or process a file no explicit conversion will be
done to another characterset and AL32UTES is presumed.

Custom Development within OHI Back Office Custom Batch Scripts 73

8. HTTP Links

8.1. Configuration

HTTP Links allow users of the OHI Back Office GUI Application to view or process
related data in an external application. For each HTTP link you can configure a HTTP
request template to the target application and the OHI screens which will display the
HTTP link.

File Edit Window Help

[l (2R [elef= === [5 2] m] = RE]e]]

Figure 34: HTTP link buttons

At runtime the HTTP link will open an extra browser window to send a HTTP
request to the target application, substituting placeholders with runtime values
derived from the current OHI screen.

Note that the target application must be an HTTP application!
Up to nine HTTP links can be defined per screen.

Configuration of an HTTP link in OHI is done using two configuration screens, one
for defining the URL and its parameters (HTTP-Link) and one for assigning a link to
a menu button for an OHI screen (Module HTTP-Links).

8.1.1. HTTP-Link

The HTTP-Link screen (Menu option: System / Management / General / HTTP-
Link) is used to define the URL and an optional tooltip and or icon (see Figure 35:
Link definition screen).

To specify a link the following parameters must be supplied:

Parameter Description Mandatory
-
Description The name of the link. This name will be used in the next screen Yes
to identify the link
Tooltip A short name for the link that will be shown when the user No
hovers with the mouse over the button
Icon An alternative icon No
URL The URL to link to. When using parameters some syntax rules Yes
apply.
Active An indicator for activating or deactivating the link. Yes

If the Active indicator is not checked the link is disabled in any screen where it is
used. If the Active indicator is checked it depends on the Active indicator for the
particular screen where the link is used whether or not the link is enabled.

When using parameters some extra syntax rules are applicable for the URL. See the
description for the next screen below for the correct formatting of the URL.

Custom Development within OHI Back Office HTTP Links 74

& Hitp-koppeling

Figure 35: Link definition screen

It is recommended to specify a tooltip. If no tooltip is specified an ugly “N/A”
appears when hovering over the button, instead of a useful description (See Figure
36), especially when no alternative icon is used. When more than one link is specified
without custom icons or tooltips one needs to know by heart what the correct button
is.

| [@]e] = & &

Figure 36: without and with tooltip

Adding an alternative icon for a link is a little bit more laborious. It is described in the
“Installation, Configuration and DBA Manual”.

8.1.2. Module HTTP-Links

In the previous screen the HTTP-link was defined, but the link was not attached to a
screen. This attachment is done through the screen “Module HTTP-Links”

(Menu option: System / Management / General / Module HTTP-Links). The screen
is shown in Figure 37.

Custom Development within OHI Back Office HTTP Links 75

[g¢ Hitp-koppeling per venster

J

ARty Iy Iy Iy iy By ||

|

Figure 37: Linking HTTP-links to screens and defining variables

In the upper block of the screen the actual linking between an HTTP-Link and a
screen (module) is done. These parameters are described in the table below. There
should be no surprises.

Parameter Description Mandatory?
Module The code of the module. Yes
Button A number from 1 to 9 Yes
Description The name of the link as specified in the screen HTTP-Link Yes
Active Indicator enabling or disabling the link for the Module. Yes

The Lower block of the screen is the really interesting part. Here the possible
parameters are defined that can be used in the HTTP request when clicking on the
button for the link. Every row in the lower block specifies a single parameter for the
selected link in the upper block:

Parameter Description Mandatory?
Module Variable The Dutch name of the variable in the OHI screen Yes
Request Variable The request variable as it occurs in the URL specified in the No

screen HTTP-Link
Parameter The request parameter as it appears in the URL Yes
Function An optional extension and formatting step before the data is No

inserted in the URL.

8.1.3. Example

Let’s use an (admittedly unrealistic) example: suppose we set up an HTTP-Link as in
Figure 38: Example HTTP Link. It is a link to a well known website and we will use it
to search for videos that a relation registered in OHI has posted. Who knows, maybe

he has posted videos of him or herself participating in dangerous sports?

Custom Development within OHI Back Office

HTTP Links 76

[\ & Htip-koppeling

http:#fwwew . youtube. comiresult] |

Figure 38: Example HTTP Link

We will then attach the link to the Maintain Relation screen, which is module
REL1001F. Also the family name and first name(s) have to be included in the URL.
Figure 38 shows how to do it.

[# Http-koppeling pervenster

Onderhouden relatie Y outube

P e

=first_name=

<last_name=

Figure 39: Example set up for a link

Note that when specifying the URL and the request variables the angular brackets (<
and >) are not optional.

Now when entering a record of a relation with, say, last name Doe and first name
John and clicking on the button that holds our link, the values will be substituted:

http://www.youtube.com/results?search query=<first name>%20<last_ name>
becomes:

http://www.youtube.com/results?search query=John%20Doe

The browser will link to this URL in a new page.

@ Note: Any blanks (spaces) in the resulting URL parameter values will be
replaced by %20 automatically.

8.1.4. Module HTTP-Link function usage

The function, implemented via a dynamic PLSQL definition, can be used to format
the substitute variable or to extend the parameter string with more or other
information not part of the available module variables.

In the following example the pre-authorization number is used to retrieve the client
name and pre-authorization reference number (kenmerk). The URL we will use is:

https:/ /mydomain.dms/search?q=<nummer>. The function will supply the actual
parameter(s) and their values as one output string.

Custom Development within OHI Back Office HTTP Links 77

https://mydomain.dms/search?q=%3cnummer%3e

g¢ Hitp-koppeling per venster

Onderhouden zorgvoornemen |Bijlagen obv nurnrne_gj I

1 1 1 8 o S

<NUMMEr= OHK_ZRG3001F_1_1

1 1 I

The dynamic PLSQL definition OHK_ZRG3001F_1_1 is the function that provides the
value for parameter q with the reference number and client name based on the pre-
authorization number:

& Dynamisch PLSCL definitie

_DHK ZRGINOTF_1_1

cursor c¢_zvn({ v_nr in number)

is
select zvn.kenmerk
. { select rel.n_voorletters [|" "||rel.naam
from rbh relaties rel
where rel.nr = zvn.r cli rel nr
| a3 naam
from geb_zorg VOOrMEmEns =vhn
where ZzZVn.nr = c_zVR.V_Or

1l rec c_zvnirowtype:
1_retval varchar2(4000):= "";
begin
open c_zvn{ v_nr => :COLUMN VALUE);
fetch c_zvn
into 1_rec:
close c_zvn;

if 1 _rec.kenmerk is null
then

raise_application_error (-20000, "5VS00014REFERENCE") ;
end i£;

1 _retval := :COLUMN VRLUE||'sreference='||l_rec.kenmerk||'sname='||l_rec.naam;
return 1_retval;
end;

oK I Annuleren)

In this example an error is raised if there is no reference number present for the
current pre-autorization. This will be shown in the calling form:

Custom Development within OHI Back Office HTTP Links 78

72 Missing parameter value: REFEREMCE.

To raise an error use the following syntax:

raise_application_error(-20000, [MESSAGE_CODE]’);
or
raise_application_error(-20000, [MESSAGE_CODE]#[SUBSTITUTE VALUE]’);

Replace the [MESSAGE CODE] with the code of the (custom) message and if the
message has a substitute variable the [SUBSTITUTE VALUE] with the text for this
variable.

In the above example message SVS0001 has the following text: “Missing parameter
value: #1#.”

When the substitution is correct it could look like this:

https:/mydomain.dms/search?q=10001574 &reference=REF1234&name=].%20Doe

Custom Development within OHI Back Office HTTP Links 79

https://mydomain.dms/search?q=10001574&reference=REF1234&name=J.%20Doe

9. OHI Back Office Business Services

The OHI Back Office Business Services add integration facilities for a service oriented
environment. The business services are part of a service layer for retrieving and
updating core OHI Back Office data.

The ‘Find” and ‘Get’ services are used to retrieve data from OHI Back Office. ‘Write’
services are used to store data in the OHI Back Office database.

OHI BO Business Services are implemented as PL/SQL services and made available
through synchronous SOAP/HTTP web services.

31 Party Portals/Applications

.

Service Bus

I |

OHI Business Services

OHI Back Office

Figure 40: OHI Business Services
9.1. Architecture
The OHI Back Office Business Services share the following characteristics:

e Segmentation into ‘Find’, ‘Get’, “Write” and miscellaneous services to keep
the complexity of each service within bounds.

e Each business service is implemented as a web service operation.
e Each web service is based on a WSDL which references versioned XSD files.

e Each web service is implemented as a SOAP 1.1/HTTP, document-style web
service.

e Each business service is atomic and stateless (‘fire and forget’)

e Each ‘Write” business service must be idempotent, which means that the
response and effect must be the same for different calls with the same data.

e The actual work is carried by a PL/SQL ‘service’. The web service acts as an
interface between the caller and the PL/SQL service.

A more complete set of characteristics can be found in Doc[2].
9.2. Implementation

The starting point is a WSDL designed by OHI Back Office. The WSDL defines each
operation with its inbound and outbound messages. The messages and underlying

Custom Development within OHI Back Office OHI Back Office Business Services 80

XSD types are defined in versioned XSD files. Where appropriate, XSD types use
enumerations to translate OHI domain values to meaningful values.

SVL web services consist of the following components:

e A Java web service (WAR file) based on a WSDL designed by OHI Back
Office. For each WSDL operation, the Java web service maps the inbound and
outbound objects to SQL types which are processed by;

e aPL/SQL web service package which contains the business logic to
transform and process the;

e SQL types which hold the content of the inbound and outbound objects.

9.2.1. Difference with C2B architecture

The C2B services were generated from data derived from Designer to call existing
PL/SQL packages. Although this “inside out approach’ lent itself well for 100% code
generation, the resulting web services were rigid and required application developers
to transform objects to the format used internally by OHI and vice versa.

The SVL services are designed ‘outside in” which means that every component can be
derived to an XSD definition. This allows greater flexibility and contributes to a more
user friendly XML content.

9.2.2. The PL/SQL Service

The development of a business service starts with an XSD. Once the XSD for a web
service is completed, the SQL type for holding element data are generated as well the
Java classes to process XML content to object instances and vice versa.

The PL/SQL part of the web service is handled by a ‘PL/SQL service’ : a PL/SQL
package which implements each business service as a packaged function, using SQL
types for processing content.

9.3. Find, Get and Write Services

9.4. Write Services

There are four types of service:

e Find services
These are typically for retrieving a list of objects to select from: many objects,
few details.

e Getservices
A ’“get’ service returns a single object with detailed information.

e Write services
Write an object to the OHI Back Office database.

e Miscellaneous services
Examples: a service to get the next free relation number or a service which
acts as a “service consumer’ to an external web service.

With these different service types it should be possible to build a client application
and keep the complexity of each service within bounds.

The current, second-generation of write services supports idempotent behavior,
selective updates and processes time-valid data. The first service of this new breed is
the WriteRelation service.

Custom Development within OHI Back Office OHI Back Office Business Services 81

The existing first-generation ‘write” services will be migrated to the new paradigm
over time.

9.4.1. Idempotent behavior

‘Write” services should have idempotent behavior to ensure that each subsequent call
to a business service with the same data will return the same response and have the
same effect as the first call.

Note that this requirement does not apply for ‘Find” and ‘Read” services, because the
contents of the data base may have changed between subsequent service calls.

9.4.2. Selective updates

‘Write” services are used both for inserting and updating data into the OHI Back
Office data base. When updating, “write” services support selective updates to allow
the caller to send a partial message. The advantage is that the calling application only
needs to know a subset of the data which can be processed by the business message.
For example a self-service application only needs to have very little data to allow an
end user to update his residential address.

In the example below, the name and phone number are set for relation 1864856800:

<vll:Person>
<vll:relationNumber>1864856800</vll:relationNumber>
<vll:name>Bakker</v1ll:name>
<v1ll:phoneNumber>06-51227410</v11:phoneNumber>
</v1ll:Person>

If we want to change the name, we can simply pass the new name:

<vll:Person>
<vll:relationNumber>1864856800</vl1l:relationNumber>
<vll:name>Slager</vll:name>

</v1l:Person>

We can also wipe the contents of a column, for example the phone number:

<vll:Person>
<vll:relationNumber>1864856800</vl1l:relationNumber>
<v1ll:phoneNumber></v11l:phoneNumber>
</v1l:Person>

9.42.1. ‘Zero’ update

Leaving out a tag means that its related data is left untouched. This is the cornerstone
for selective updates.

9.4.2.2. Use xsi:nil to remove existing values

With empty tags you can wipe lists and simple string values. If you want to wipe
values which are enumerations or other data types, you should use the nil attribute,
like below:

<vll:startDate xsi:nil="true”/>

Note that the xsi namespace should refer to http:/ /www.w3.org/2001/XMLSchema-
instance.

9.4.2.3. Lists

Lists can have 0 or more elements which together are enclosed in a list-tag, like in the
example below:

<vll:Person>
<vll:relationNumber>1864856800</vll:relationNumber>

Custom Development within OHI Back Office OHI Back Office Business Services 82

<vll:bankAccountList>
<vll:bankAccount>
<vll:accountNumber>
NL42RAB0O0111750768
</vll:accountNumber>
<vll:bankRelationNumber>
1525725800
</v1ll:bankRelationNumber>
<vll:bankAccountType>IBANAccount</vll:bankAccountType>
<vll:countryCode>NL</v1l:countryCode>
<vll:currencyCode>EUR</v1ll:currencyCode>
</v1l:bankAccount>
</v1ll:bankAccountList>
</v1ll:Person>

To support selective updates, lists are optional. If you do not want to update a list of
details, just omit the list and its surrounding list tag:

<vll:Person>
<vll:relationNumber>1527308300</vl1l:relationNumber>
<!--<vll:bankAccountList/> —-->

</v1l:Person>

Likewise , if you want to delete the list, use an empty list tag:

<vll:Person>
<vll:relationNumber>1527308300</vl1l:relationNumber>
<vll:bankAccountList/>

</v1ll:Person>

@ Note: if you add a list to the request you must include all elements. You
cannot add a list with a single element just to update the single element. In
that case all other elements will be deleted.

9.4.2.4. Time-valid lists

Time-valid lists are used to create and update data with a start and end date, such as
addresses, marital statuses etc.

They share some characteristics with ordinary lists:

e Time valid lists are optional: the list related data in the OHI Back Office
database are not updated if you omit the list tag altogether.

e All list-related data in the OHI Back Office are deleted if you specify an
empty list tag.

The difference is that you can use time-valid lists to update the current situation
without removing past data.

Consider the following example to register that Peter is no longer married since 1
January 2013:

<vll:maritalStatusList>
<vll:maritalStatus>
<vll:startDate>2013-01-01</vl1l:startDate>
<vll:maritalStatus>
dissolved marriage / dissolved registered partnership
</vll:maritalStatus>
</vll:maritalStatus>
</vll:maritalStatusList>

This information is processed as follows:

Custom Development within OHI Back Office OHI Back Office Business Services 83

e The start date of 1 January 2013 is used as a reference date.

e Peter’s previous marital status record (married) is ended by 31 December
2012

e Peter’s marital status records starting after the reference date are deleted (if
they exist)

e A new marital status record to indicate Peter’s current status is created with a

start date of 1 January 2013.
9.4.2.5. Segmented time-valid lists

The mechanism described above is too coarse for processing time-valid information

like addresses, since you may have different home and postal addresses at any point

in time.
This is solved with segmented time-valid lists: this means that the list is processed
once for every segment, for example “address type’.

Consider the following example where John’s home address is updated:

<vll:addressList>
<vll:address>
<vll:startDate>2010-06-04</v1l:startDate>
<vll:addressType>Home</v1l:addressType>
<vll:street>Haverstraat</vll:street>
<vll:houseNumber>41</v11l:houseNumber>
<vll:postalCode>3511NB</v1l:postalCode>
<vll:countryCode>NL</v1ll:countryCode>
</v1ll:address>
</vll:addressList>

This information is processed as follows:

e The start date of 4 June 2010 is used a reference date for John’s home
addresses

e John's previous home address is ended at 3 June 2010

¢ John's home addresses starting after the reference date are deleted.
¢ A new home address is registered starting 4 June 2010

e John's postal addresses remain untouched.

We can update John's home addresses and postal addresses in one go:

<vll:addressList>
<vll:address>
<vll:startDate>2010-06-04</v1l:startDate>
<vll:addressType>Home</vll:addressType>
<vll:street>Haverstraat</vll:street>
<v1ll:houseNumber>41</vl1l:houseNumber>
<vll:postalCode>3511NB</v1l:postalCode>
<vll:countryCode>NL</v1l:countryCode>
</v1l:address>
<vll:address>
<vll:startDate>2010-07-01</vl1l:startDate>
<vll:addressType>Postal</vll:addressType>
<vll:street>Postbus</vll:street>
<v1l:houseNumber>306</v11l:houseNumber>
<vll:postalCode>3300AH</v1l:postalCode>
<vll:countryCode>NL</v1l:countryCode>
</v1ll:address>
</vl1ll:addressList>

Custom Development within OHI Back Office OHI Back Office Business Services

84

9.5. Error Handling

Note that an empty address list will delete all John's addresses:

<vll:addressList>
</v1ll:addressList>

@ Note: segmentation is not necessarily restricted to a single element (like

address type in this case)

@ Note: consult the functional specification to find out whether a time-valid list
is segmented and which elements are used for segmentation.

9.4.2.6. XSD types for Write services.

When examining an XSD for a web service with “Write” operations you will find that
the complex types used by Write Services are prefixed with ‘PX’".

You will also find that these complex types largely consist of optional elements. This
is needed to support selective updates.

There is a downside to this optionality: if you leave out many elements when
entering new data, your inbound XML will still validate correctly against the XSD.

However when sending the request, the OHI Back Office business rules come into
play and raise exceptions if your data is incomplete or incorrect.

It would be too complex to document which business rules you may encounter.

Our advice for validating a client application using a ‘Write” service would be to
always include various tests with new data.

Two types of SOAP faults when running a web service operation:

e Functional SOAP fault: indicates an error which occurred in the PL/SQL
service.
In many cases the functional SOAP fault will contain CDM Rule Frame error
messages rather than error messages created specifically for the business
services.

e Technical SOAP fault: any other fault except a functional SOAP fault.

Custom Development within OHI Back Office OHI Back Office Business Services 85

|
10. Service Consumers

Service Consumers are ‘clients’ for web services (often also named ‘business
services’) that are called by OHI Back Office. These web services are maintained by
other parties like VECOZO.

OHI Back Office provides a calling interface to communicate with these services. Part
of the solution offered by OHI Back Office is the optional use of an Oracle Service Bus
(OSB) project that is provided by OHI.

This chapter deals with situations where you as OHI customer have decided not to
use the OSB project definition delivered by OHI. In these situations, a custom
solution is needed.

The chapter contains next to that a paragraph describing how to implement custom
code calls to the pl/sql packages that implement the web service calls within the OHI
Back Office database.

For a high level overview of the Service Consumer solution architecture please
consult Doc[4]. That document describes the background and requirements for the
Service Consumer solution. It provides a context for the functionality provided by
the OSB project definition that needs to be replaced when the OSB project definition
is not used.

The document also provides details about how to access the queues that are needed
in any custom solution. A high level architectural overview of the regular
implementation using the OSB is shown below.

Proxy Pipeline Business
Service

‘ Eﬁsﬂﬁo;q SisiEei ‘

OHI Extern

Although queues are being used to transport the messages, the pl/sql call in the
process itself acts as a synchronous process waiting for a response before continuing.

10.1. WSDL transformation

A service consumer is a client implementing the call to a (external) web service. At
this moment all external services consumed by OHI are SOAP based web services
based on a so called WSDL. That is a file with extension .wsdl that contains the
‘contract definition’ for the web service. These WSDL files are provided by the owner
of the service.

For security and maintenance reasons OHI Back Office provides its own slightly
modified version of these WSDL files.

These OHI WSDL files can be found in the $OZG_BASE/xml folder on the
application server of an OHI Back Office environment. The WSDL files can be
recognized by the following pattern: SVLxxxxC.wsdl, where xxxx is a number
between 0000 and 9999.

Custom Development within OHI Back Office Service Consumers 86

In most cases only the target namespaces in the WSDL file have been altered to force
at least a proxy between the OHI Back Office call and the outside world. In some
cases some more changes have been made to the WSDL in order to use it with the
OHI Back Office implementation.

10.2. Request and Response JMS payload queues

When a request from OHI Back Office is issued to an external web service, a JMS
(Java Message Service, a standard) structured message with a JMS payload is placed
on an Oracle Advanced Queuing (AQ) queue in the OHI database. The name of the
queue is ALG_SVC_REQUEST_QUEUE.

In this JMS message a JMS message type is set with the code of the service, which is
the same as the name of the WSDL, to be able to identify the type of the message. A
correlation id is added as standard JMS property to identify the specific message
instance.

After the message is put on the request queue the calling process waits for the
response message, with the same correlation id, to appear on another AQ Queue in
the database. This response queue has the name ALG_SVC_RESPONSE_QUEUE.
This queue also expects a JMS payload.

The response message is recognized by the same correlation id as provided for the
request message. If no response for the correlation id is received by the calling
process within a given period (the expiration time) the calling process will raise a
timeout error.

10.3. Message Processing

The AQ Queues in the database can be exposed in WebLogic as so called foreign
server JMS queues. For more detail please see Doc[4]. These JMS Queues adhere to
the Java Messaging Standard and can be used to enqueue and dequeue messages by
any technology that adheres to the JMS standard, such as Java, Service Bus, etc. Part
of the Service Consumer solution provided by OHI is an Oracle Service Bus (OSB)
project to dequeue the message from the request queue, send it to the external
provider, and place the response back as a message on the response queue. As stated
this project is optional to use. If the OSB platform is not available for use it is also
possible to process these messages with a custom solution that implements the same
functionality.

This paragraph assumes the OSB project definition as provided for OHI Back Office is
not used and instead a custom solution is used.

There are several ways to get the message from the request queue, such as dequeuing
in the database, dequeuing with a JMS client from Weblogic, etc. The message from
the queue can than be sent to the service provider, after transforming it from the OHI
Back Office WSDL format to the service provider WSDL format. This may be done in
the same custom process or maybe left to a separate proxy service. The corresponding
response needs to be placed on the response queue.

It is important to provide the same correlation id in the JMS property of the response
message that was provided in the request message. This is the only way for OHI to
link the correct response message to the request message.

Make sure you adjust/transform the response message from the service provider to
the OHI Back Office version of the WSDL before placing the response message on the
response queue, it has to be adjusted/transformed from the definition of the service
provider to the definition as known by OHI Back Office.

Custom Development within OHI Back Office Service Consumers 87

@ Note: In most, but not all, cases only the namespaces in the message itself need
to be modified.

@ Note: The response message will be validated against the xsd definitions from
the OHI Back Office WSDL files when the message is processed. Not

complying with these xsd files will result in an error when the response

message is dequeued from the response queue and web service call processing

will be terminated for this message.

The response with the correct correlation id needs to be enqueued within the
configured timeout, otherwise the response will not be processed., because the calling
process (an OHI process in the database) will stop waiting for the response message
and return an error.

If the response message arrives after the calling process has timed out, the response
message will stay on the response queue until the retention time set on the queue,
default 24 hours as set by OHI Back Office, unless an expiration period has been set
on the response message. This expiration period causes the response message to be
placed in the exception queue if the message is not handled by the calling OHI Back
Office process within that expiration period.

Database account OHI_JMS_QUEUE_USER can be used to dequeue and enqueue a
message from the queues directly or to view the queue contents. The tables
implementing these queues (and their corresponding error/exception queues) are
described in Doc[4], in the Troubleshooting chapter, paragraph “6.3 Querying
Database Advanced Queues”.

In summary:

e A request message for a web service call is placed on database queue
ALG_SVC_REQUEST_QUEUE.

e The type of service call for the request is identified by a JMS type and the
individual call is identified by the JMS correlation id.

¢ Inthe JMS header property ‘soapaction’ the urn for the soapaction, as
provided in the binding part of the wsdl, is made available

e The request contents is based on the OHI Back Office version of the WSDL
which is available in the $OZG_BASE/ xml folder.

e A custom solution needs to

o immediately dequeue web service request messages from the request
queue

o implement a call to the correct web service (proxy)that transforms
the message from the OHI WSDL to the WSDL of the external
provider, calls the external provider and transforms the reponse from
the WSDL of the external provider to the OHI WSDL bfore returning
it to the custom solution

o enqueue the response on the response queue instanteneously.

This all needs to be done in a fraction of a second or a few seconds at the
most. By default a maximum processing time of 15 seconds is configured
before the calling process fails.

e The corresponding response message must be placed on database queue
ALG_SVC_RESPONSE_QUEUE.

Custom Development within OHI Back Office Service Consumers 88

e The response message correlation id must be the correlation id from the
request message.

e The contents of the response message needs to comply with the OHI Back
Office version of the WSDL.

e We strongly advise to specify an expiration time for each response message.

e The database queues can be accessed as regular JMS queues by configuring
Foreign Queue definitions in a WebLogic domain. How to do this is decribed
in Doc[4].

10.4. Custom calls on service comsumers

The previous paragraphs contain a description how to implement a custom solution
for calling the external web services using the request and response queues as
communication means.

The majority of the (Dutch localization) service consumers are being called by the
processes in OHI Back Office itself. However some can/must be implemented by
calling them through dynamic pl/sql code in a policy acceptance check or a policy
completion step.

For that purpose a special interface package is available that implements the call to
the external web service. These packages are named ‘SVC_SVLxxxxC_AQ_PCK’
where xxxx stands for the 4-digit numer per service. The Service Consumer
Installation & Configuration manual contains an overview of the SVLxxxxC service
codes and their names.

In appendix H some code examples are available as reference, to show how such calls
can be implemented.

10.4.1. Error handling

When the call fails for some reason, the exceptions are handled in a standard way.

In case a time-out occurs a specific error is raised containing the correlation id of the
request and the used value for the time-out.

In other situations the standard OHI error handling is used in which more regular
‘functional” errors are distinguished from fatal technical errors (for example when a
table cannot extend to store more records).

When a call fails due to some error that occurred during the call and which resulted
in SOAP faults it might be helpful to process the SOAP fault that was returned. For
that purpose the calling package offers one or more “get” functions (depending on the
WSDL of the specific service definition) through which the SOAP fault structure can
be retrieved. As an example, package SVC_SVL1009C_AQ_PCK contains a function
GET_FUNCTIONALFAULTTYPE as well as GET_TECHNICALFAULTTYPE.

In the standard error handling it is always checked whether there is a standard SOAP
fault present and if so it is signaled by a specific OHI error which is raised and which
contains the leading part of the SOAP fault. When stored as event or script message a
more complete SOAP fault is stored as context for the message.

Custom Development within OHI Back Office Service Consumers 89

__|
11. Custom Development Practices

By giving you an ‘open database’, OHI Back Office gives you great freedom to
develop your own code.

With freedom comes responsibility.

As we explained in the ‘Overview’ chapter, OHI Back Office is an “all in one” engine
to process claims and policies for health care payers.

A badly written piece of custom code can slow down the core processes for which it
is intended or even block the operation of other, unrelated processes.

What follows here is a minimum of tips to prevent these risks.
11.1. Create a custom schema

You should create a custom schema because you are not allowed to connect to the
OHI Back Office schema, let alone create your own database objects in the OHI Back
Office schema.

11.1.1. How many schema’s do you need?

You may have multiple custom applications which interface with OHI Back Office,
for example a self-service portal, custom batch processing scripts, and an interface

which processes CRM data into OHI Back Office.

Each of these applications may be created by a different team and have a different

release schedule.

In that case, a custom schema per application makes it easier to manage these
different applications and split the post-installation work and testing efforts
whenever a new OHI Back Office release is installed.

@ Note: For security reasons it is for obvious reasons not allowed to define an
OHI officer with the same name as the schema.

11.2. Use an abstraction layer

We cannot stop progress, so OHI Back Office will keep evolving with every new
release. This means many smaller or larger changes to the OHI Back Office data
model and PL/SQL packages.

Adapting your custom code to the new release should be as little work as possible .

Using an abstraction layer for your custom code helps you to reduce the amount of
code and more importantly, the number of references to the OHI Back Office data
model and PL/SQL functions.

This is what your abstraction layer should do:
e Make your code DRY
e Encapsulate business logic with packaged procedures.
e Create custom views to query OHI Back Office data.
e Use the OHI Back Office TAPI’s for DML operations.

e Call custom packaged functions from Dynamic PLSQL hooks

Custom Development within OHI Back Office Custom Development Practices 90

11.2.1. Make your code DRY

DRY means Don’t Repeat Yourself. It is all about replacing duplicate code with your
own functions and function calls until you arrive at the minimum amount of code
which can still be easily understood and maintained. This has nothing to do with
OHI Back Office, it is just good programming practice.

11.2.2. Encapsulate business logic with packaged procedures

The purpose here is to reduce the amount of code which directly depends on OHI
Back Office.

If you have large chunks of custom PL/SQL code, split each chunk in ‘control” code
(the part which evaluates parameters etc.) and functional code (the part which does
the processing). Put the processing part in one or more packaged procedures, so that
your controlling code does not do much more than call packaged procedures.

Now review your packaged procedures to separate business logic from DML logic
(the code which refers directly to OHI Back Office database objects). Put the DML
logic in packaged functions.

Caveat: when defining parameters for your custom packaged functions, do not refer
to the OHI Back Office tables to keep the dependency of OHI Back Office code to a
minimum.

11.2.3. Create custom views

Whenever the OHI Back Office data model changes, it is much less work to revise a
small number of views than to repair many individual queries, because views create
another abstraction level.

When defining these views it may be attractive to “stack” views on top of each other
and reach an even higher abstraction level. However, this may hurt the performance
of your custom code.

As soon as you need to improve the performance of your custom development code,
replace ‘stacked’ views with individual views based directly on the OHI Back Office
tables.

11.2.4. Call custom packaged functions from Dynamic PLSQL hooks

Create your own custom packaged procedures to be called by the Dynamic PLSQL
hooks in OHI Back Office.

11.3. Define your transactions

The simplest definition of a transaction is ‘everything that happens between two
commits’.

A better definition (Wikipedia) is ‘A database transaction, by definition, must be
atomic, consistent, isolated and durable (ACID)’. In order to comply with this
definition you should design your transactions as the smallest unit of work can be
committed or rolled back.

The notion of the smallest unit of work is important because the longer the duration
of a transaction, the more tables and rows are locked which cannot be updated by
other processes at the same time.

The notion of a “unit’ of work is important as well: a well-designed transaction
ensures that each time the same actions are performed. If a transaction is defined as a
limited set of operations it is easier to debug and reduce side-effects. The limited set
of operations also makes it easier to predict the duration of the transaction.

General rules:

Custom Development within OHI Back Office Custom Development Practices 91

11.4. Locking

e Long sessions will keep tables and rows locked and will hinder other
processes.

e Do not put transaction control statements in lower-level routines.

e If you anticipate to process hundreds of thousands of rows within a single
transaction it may be wise to create multiple transactions.

11.3.1. Transactions and CDM RuleFrame

OHI Back Office uses CDM RuleFrame to enforce business rules, many of which are
only evaluated when the transaction is closed or committed.

You may use

e Api_algemeen_pck.start_api_transactie
Calls qms_transaction.open_transaction to open a CDM Rule Frame
transaction.

e Api_algemeen_pck.einde_api_transactie
Calls qms_transaction_mgt.close_transaction to close the CDM Rule Frame
transaction.

Structuring your transaction is important to avoid confusing results when the rules
on the Rule Stack are finally evaluated.

More information about CDM RuleFrame in “Appendix D - What you should know
about CDM RuleFrame’.

If your code does not explicitly lock database rows, the locks in your session will be
implicit locks resulting from updates on individual rows. These locks will be released
when you commit or roll back your transaction.

This strategy would be OK if the application does not have long running transactions.

Since OHI Back Office is batch oriented, your code should always take into account
that:

e along running process may have locked the same data that your code tries to
update.

e another process may be waiting for you to release the locks you have
(implicitly) set in your transaction.

e aworst case scenario may evolve if your code waits to lock a row while other
processes are waiting to lock the rows already locked by your code.

The safest advice is to:
e donot use ‘lock table’ statements
e use ‘select for update nowait’ cursors if you intend to update data.

If one of the selected rows is already locked by another transaction, the “select for
update nowait’ cursor will raise a ‘resource_busy’ exception.

It is then up to you to process the ‘resource_busy’ exception. By default your
transaction will be rolled back and control will be handed to the calling program.

11.5. Use Named Parameters

When calling an OHI Back Office function or procedure, you can choose to make the
call with “positional” or ‘named” parameters.

Custom Development within OHI Back Office Custom Development Practices 92

1 rel no := api en relation details.adjudicate manually
(1234567800
IDI
'Approved by management'
)i

Figure x: call with positional parameters

1 rel no := api en relation details.adjudicate manually
(p no =>123467800
, p_new_status => 'D'

, p_explanation => 'Approved by management'

)i
Figure x: call with parameters

Using named parameters makes your code easier to understand and maintain. It also
makes your code less dependent of a specific version of OHI Back Office because as
long as no mandatory parameters are added to the OHI Back Office function, it will
compile. On the other hand, if Oracle adds mandatory parameters, the compilation
will raise a syntax error which tells you which function call failed to compile.

11.6. Profile your code

As a whole, OHI Back Office works best if there are no long running transactions.
Your custom code may hinder other processes if it takes too long to run due to badly
performing queries.

You should ensure that your uses the database resources efficiently:

e Open SQLDeveloper
e Connect to a non-production OHI database with production-like volumes
e Copy each query to the workspace
e Select ‘explain’ to explain your query
e lteratively refine your query
If you don’t use SQLDeveloper, use EXPLAIN PLAN (See SQL Reference for details).
11.7. Close open cursors

When possible use cursor-for loops. Apart from requiring less code, cursor-for loops
automatically close their cursors. This is important to avoid the “ora-01000 maximum
open cursors exceeded’ exception.

If you explicitly open a cursor, for example to fetch a single row, you should close the
cursor as soon as possible. If an exception is raised before the cursor is closed, the
cursor remains open and must be explicitly closed (test with %ISOPEN).

11.8. Coding Standards

We did not include any naming or formatting conventions because we felt these
would confuse the issues discussed. But using coding standards makes your code
more maintainable and more secure (providing you also apply secure coding
standards).

Custom Development within OHI Back Office Custom Development Practices 93

12. Deprecated Interfacing options

The following interfacing options are still available but will be obsolete in a future
release:

e APIlayer (PL/SQL Functional API)

e APl views (if these still exist)

Custom Development within OHI Back Office Deprecated Interfacing options 94

13. Appendix A - Business event framework datamodel

ALG_EVENT DEFINITIES

This table holds the event definitions

NAAM (Name) This is a logical name for the event type, for example: AZR_MODIFY_PARTY.
OMS (Description) For example: Export updates to parties to the XYZ system.
DETECTOR A custom plug-in procedure which is called to detect events for this event definition. Example:

azr_mod_prt_pck.detector.

BEGIN_HANDLER

A plug-in procedure that must be called once before processing events for this type, for example to create a
.csv file to which all event data will be written.

HANDLER

A plug-in procedure which is called for every event that must be processed. Example: my_event_pck.handler.

END_HANDLER

A plug-in procedure which is called once after all events have been processed, for example to close a .csv file
to which all event data were written.

LAATSTE_DETECTIE_DATUM
(last_detection_date)

Used by the framework to record the last date when the detection mechanism was used.

STATUS Updated by the framework to avoid multiple starts of the framework for this event definition. The status can
be: ‘K’ (ready) or ‘L” (running).
RUN_NR Managed by the framework. All events that were detected in a single run are given the same run number for

later processing and reporting.

SCHONINGSINTERVAL_VERWERKT
(Purge interval processed)

Defines when (successfully) processed events for this definition may be purged. The default interval is 7 days.

SCHONINGSINTERVAL_MISLUKT
(Purge interval failed)

Defines when failed events for this definition may be purged. The default interval is 27 days.

IND_ACTIEF (Active indicator)

Indicates whether the event is currently active.

ALG_EVENT_INIT_WIJZIGINGEN

This table holds the tables which are monitored by the event for triggered events.

EDE_ID Foreign key to ALG_EVENT_DEFINITIES.

TAB_ID Foreign key to ALG_TABELLEN.

IND_INSERT Indicates whether insert actions on the table should be signaled.
DPS_ID_INSERT Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the insert trigger.
IND_UPDATE Indicates whether update actions on the table should be signaled.
DPS_ID_UPDATE Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the update trigger.
IND_DELETE Indicates whether delete actions on the table should be signaled.

DPS_ID_DELETE

Foreign key to ALG_DYN_PLSQL_DEFINITIES to fine-tune the delete trigger.

Custom Development within OHI Back Office

Appendix A - Business event framework datamodel 1

ALG_EVENT INIT WIJZIGINGEN

This table holds the tables which are monitored by the event for triggered events.

IND_ACTIEF (Active indicator) Indicates whether the event is currently active.

ALG#EVENTS

This table stores events with storage clause set to Table.

EDE_ID Foreign key to the ALG_EVENT_DEFINITIES table for the event definition that signaled this event.
EDE_RUN_NR Set by the framework to group event occurrences. The highest run number is stored in the event definition.
CODE Code retrieved by the detection plug-in for use as a key to process the event. In most cases this will be the

primary key that can be used to find the data with which the event is to be processed. To be compatible with
storing the event to the queue this should be in format table_id##record_id##DML-type.

STATUS Records the processing status of an event occurrence. Possible values: ‘N’ (new), ‘O’ (pending), “V’
(processed), ‘M’ (failed).

DATUM_ORIGINEEL (original date) An optional column that can be used to determine the processing order.

CREATIE_MOMENT (creation date) This standard column is used for processing in the correct order if the DATUM_ORIGINEEL has not been set.

ALG#EVENT_ERRORS

This table holds errors during the handling of an event

EDE_ID Refers to the event definition that detected this event.

TAB_ID Foreign key to ALG_TABELLEN, source table of the record

RECORD_ID Refers to the record of the changed record. Together with TAB_ID this uniquely identifies the record in OHI
Back Office.

DML_TYPE What DML action caused the event

EET_ID Refers to the event in ALG#EVENTS table.

CODE Code for event processing.

CREATIE_MOMENT (creation date) Timestamp when the error occurred

FOUTCODE (Error code) The code of the error occurred.

FOUTMELDING (Error message) The error message for the error that occurred.

Custom Development within OHI Back Office Appendix A - Business event framework datamodel 2

ALG_EDE_PAYLOAD_TP

The object for storing events to the queue

EDE_ID Refers to the event definition that detected this event.

TAB_ID Foreign key to ALG_TABELLEN, source table of the record

RECORD_ID Refers to the record of the changed record. Together with TAB_ID this uniquely identifies the record in OHI
Back Office.

DML_TYPE What DML action caused the event

Custom Development within OHI Back Office Appendix A - Business event framework datamodel 3

14. Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK

Procedures Parameters
Name Description Name Type Description
Install Creates an event definition in the database. pi_name alg_event_definities.naam %type The name of the event definition.
Also available as function returning
alg_event_definities.id % type. pi_description alg_event_definities.oms%type The description of the event definition.
pi_event_type alg_event_definities.type_signalering% type | Indicates how the event is signaled.
Allowable values:
D for Detected events
T for Triggered events
pi_storage alg_event_definities.type_opslag%type Indicates how events are stored.
Allowable values:
T for Table
Q for Queued
pi_handler alg_event_definities.handler%type The (package) procedure for the handler
of the event.
pi_detector alg_event_definities.detector %type The (package) procedure for the detector
of the event.
pi_begin_handler alg_event_definities.begin_handler% type The (package) procedure for the begin
handler of the event.
pi_end_handler alg event_definities.end_handler%type The (package) procedure for the end
handler of the event.
pi_purge_processed | alg_event_definities.schoningsinterval_ Determines after how many days
verwerkt%type successfully processed events can be
deleted from the event table.
pi_purge_failed alg_event_definities.schoningsinvterval_ Determines after how many days failed
misluktftype events can be deleted from the event
table.
deinstall Removes an event definition form the pi_name alg_event_definities.naam%type The name of the event definition to be
database. When events still exist for this removed from the database.
definition an error is given.
deinstall Removes an event definition form the pi_ede_id alg_event_definities.id %type The ID of the event definition to be
database. When events still exist for this removed from the database.
definition an error is given.
purge_all_events Removes all events for the given event pi_name alg_event_definities.naam%type The name of the event for which all the
definition from the database. Can be used event occurrences will be removed.
prior to the deinstall procedure to remove all
events.
purge_all_events Removes all events for the given event pi_ede_id alg_event_definities.id %type The ID of the event definition for which
definition from the database. Can be used all the event occurrences will be removed
prior to the deinstall procedure to remove all
events.
reapply_failed_ event pi_name alg_event_definities.naam %type the unique name of the event definition

Custom Development within OHI Back Office

Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK 4

of an event to add an occurrence of the event
to the event table or queue.

In case the storage type of the event is set to
Table, the event is only created when there is
no existing event with the given code for the
event definition with a status N(ew).

In case the storage type of the event is set to
Queue, the event is always placed on the
queue.

Procedures Parameters
Name Description Name Type Description
Reset events with the status 'Failed' from a pi_code alg#events.code%type the identifying code of the event
previous run.
reapply_failed_event | Reset events with the status 'Failed' from a pi_ede_id alg event_definities.id %type the unique identifier of the event
previous run. definition
pi_code alg#events.code % type the identifying code of the event
add_event This procedure must be called by the detector | pi_name alg_event_definities.naam%type The name of the event definition.
of an event to add an occurrence of the event pi_code alg#events.code%type The identifying code of the event. Must
to the event table or queue. be in format:
When the storage type of the event is set to Table_id##record_id##dml_type. E.g.
Table, the event is only created in case there is 1234##876##U.
no existing event with the given code for the pi_date alg#events.master_date%type Optional timestamp for ordering event
event definition with a status N(ew). handling.
When the storage type of the event is set to - - -
Queue, the event is always placed on the pi_delay number Optional; number of seconds to wait
queue. before a message can be dequeued after
the message is set on the queue
add_event This procedure must be called by the detector | pi_ede_id alg_event_definities.id %type The ID of the event definition.
of an event to add an occurrence of the event pi_code alg#events.code % type The identifying code of the event. Must
to the event table of queue. be in format:
When the storage type of the event is set to Table_id##record_id##dml_type. E.g.
Table, the event is only created in case there is 1234##876##U.
no existing event with the given code for the pi_date alg#events.master_date%type Optional timestamp for ordering event
event definition with a status N(ew). handling.
When the storage type of the event is set to - - -
Queue, the event is always placed on the pi_delay number Optional; number of seconds to wait
queue. before a message can be dequeued after
the message is set on the queue
add_event This procedure must be called by the detector | pi_ede_payload alg_ede_payload_tp The object type containing the data of the

event.

pi_delay

number

Optional; number of seconds to wait
before a message can be dequeued after
the message is set on the queue

type_payload_to_
code

Function which converts a storage type Queue
payload type to a storage type Table format.
Returns alg#events.code in the format
table_id##record_id##dml_type. E.g.
1234##876##U

pi_ede_payload

alg_ede_payload_tp

The object type containing the data of the
event.

pi_name

alg_event_definities.naam %type

The name of the event definition.

Custom Development within OHI Back Office

Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK

Returns alg_ede_payload_tp.

Procedures Parameters
Name Description Name Type Description
code_payload_to_ Function which converts a storage type Queue | pi_code alg#events.code%type The identifying code of the event. Must
type payload type to a storage type Table format. be in format:
Returns alg_ede_payload_tp. Table_id##record_id##dml_type. E.g.
1234##876##U.
code_payload_to_ Function which converts a storage type Queue | pi_ede_id alg_event_definities.id %type The id of the event definition.
type payload type to a storage type Table format. pi_code alg#events.code%type The identifying code of the event. Must

be in format:
Table_id##record_id##dml_type. E.g.
1234##876##U.

Custom Development within OHI Back Office

Appendix B - Business event interface ALG_EVENT_INTERFACE_PCK

6

15. Appendix C - Tracing

The application code of OHI Back Office has been instrumented to trace the PL/SQL code as it is executed. Both the CAPI
packages, batch packages and underlying packages of the OHI Back Office Business Services have been instrumented.

By turning on tracing you get a detailed overview to help you analyze the program flow. This is useful if you want to debug or
understand a problem.

You can also instrument your custom code with trace calls.

This tracing information is stored in technical tables as described in this Appendix.

15.1. Activation

15.1.1. Tracing a Batch Request

7

You can activate tracing for a batch request by setting the pop-list “Debug level” to “Profile”, “Debug” or “Debug finer”, when
creating the request in the submit script request screen (screen module SYSS003F). For some batches it is even possible to limit
tracing information to specific pl/sql procedure or functions to prevent many thousands of useless traces lines are registered
which make it harder to zoom in on the actual wanted information. This limitation is activated by entering one or more packaged
routine names, like “pckx.prcy; pckz.prew’.

Batch |7RG30095 | [Process Claim

[Submit Reguest
Batch Request
Mumber [1 0000000009303 Start Time r =
Printer | Freguency | ~|
Processes [Retricvabile Optimizer Mode |ALL ROWS ~|

hlax. Hours Trace Exceed 5
#to Process Debuglevel | Uit v| Programma's |

15.1.2. Tracing a Forms Session

You can trace a form by setting the indicator “Debug” in the screen for user authorizations (screen module SYS1017F):

Custom Development within OHI Back Office Appendix C - Tracing 2

User M_ Manager Initials MGR
Code |GrP [Groep

Printer Queue | |

Direct-Dial Mumber li Adminigtrator [

Room Number [}

15.2. How to Access Trace Logs
The log information is written into two tables:

e ALG#TRACE_SESSION: This table contains session information per debug session, like the session id, the user and
module code in case of a forms session.

e ALG#TRACE_LOG: This table contains all the data of a trace per session. It also records the PL/SQL object and the
procedure stack of the call to the trace package (ALG_TRACE_LOG).

With the OHI Back Office parameter “DebuglLines” the maximum amount of trace records per session can be set as a session can
create a huge set or records.

Records in ALG#TRACE_SESSION and ALG#TRACE_LOG will be purged automatically after a certain threshold. This
threshold can be set with the BackOffice parameter “RetentieTLG”.

15.3. Instrumentation of Custom Code

You can instrument your own code using the various procedures of the ALG_TRACE_PCK package:

Procedure Description

Enable Activate a debug session

Disable De-activate the debug session

Enter Should be called at the start of a function or procedure. Helps following the flow
Leave Should be called at the end of a function or procedure.

Log Provide extra logging

Force_write Force writing of debug information from memory to the table

@ Note: Avoid the use of disable / enable in low level code.

Custom Development within OHI Back Office Appendix C - Tracing 3

L __|
16. Appendix D - What you should know about CDM RuleFrame

If you develop custom code to work with OHI Back Office you should know a few things about CDM RuleFrame:

e CDM RuleFrame was developed by Oracle Consulting around 1999.

e CDM RuleFrame uses Oracle Designer as its repository.

e OHI Back Office uses CDM RuleFrame to enforce business rules.

e In 2004-2005, the OHI Back Office team revised parts of CDM RuleFrame to solve performance issues.

e CDM RuleFrame has its own concept of a transaction to add functionality to the standard Oracle transaction.

e During the CDM RuleFrame transaction, rules are pushed to the ‘Rule Stack’: when a DML action is performed on a row in a
table, the generated database trigger code calls the appropriate function in the table-specific TAPI package. This function
puts those rules which cannot be evaluated immediately on Rule Stack for later evaluation.

e The rules that were pushed on the Rule Stack will be evaluated only when the CDM Rule Frame transaction is closed.
¢ You can avoid building a ‘random’ Rule Stack by explicitly defining your CDM Rule Frame transaction.
e You can start a CDM Rule Frame transaction in your custom code by calling api_algemeen_pck.start_api_transactie

¢ You can end a CDM Rule Frame transaction by calling api_algemeen_pck.einde_api_transactie or calling COMMIT

Custom Development within OHI Back Office Appendix D - What you should know about CDM RuleFrame 4

L __|
17. Appendix E - Modification Mechanism for Policies and Relations

OHI Back Office has a “‘modification mechanism’ to allow changes to policies and relations without hindering the core processes
like claims processing.

OHI Back Office can be configured to allow direct DML on relations or to use the modification mechanism.

If the mechanism is used, the policy or relation that is to be updated is cloned, together with related child tables, for example
addresses, discounts etc.

The cloned rows have negative ID’s which are the negative value of the original (positive) ID. As the clone is being updated, the
original rows are untouched, which allows the core processes to continue.

The cloning of a policy can be done with the API_EN_POLICY_AND_DETAILS.MODIFY function. The equivalent function for a
relation is API_EN_RELATION_DETAILS.MODIFY.

The cloned policy or relation can be updated at will. However a delete on an already existing row in the original version cannot
be performed. If it is required to remove such a record the column “MODIFICATION_STATUS” (“mutatie_status”) should be set
with the capital letter “V” (from the Dutch term ‘verwijderen’).

Once the user has completed the updates to the cloned policy or relation, the status of the clone is set to ‘READY’. The clone must
then be approved manually or by a batch process (ZRG4021S).

Once the changed version has been approved, the clone data is merged with the original data and the clone is removed.
To merge the clone with the original policy use the function API_EN_POLICY_AND_DETAILS.APPLY.
The set of functions to manipulate a policy in the api API_EN_POLICY_AND_DETAILS are:

Function Description

Modify Make a copy of a policy

Apply Merge the modified copy with the original

Remodify In case of issues when applying the copy go back to the “Pending modification” status
Cancel Purge the copy policy

Modification_pending Check if there is already a copy of the policy

Note: If you are calling the API's from from a service bus and encounter error: “The current transaction is not allowed, because
the current PL/SQL definition is defined as 'Query only'!”, see paragraph 3.4.5 of the “Oracle Health Insurance Back Office -
HTTP Service Layer (HSL) Installation and Configuration Manual.”

Custom Development within OHI Back Office Appendix E - Modification Mechanism for Policies and Relations 5

18. Appendix F - Dynamic PL/SQL Types

The following dynamic PL/SQL types are available in the given processed. Column bound checks are available on every
functional table.

Name Type Purpose
Adresveld (Address field) Check Validate the data of an address field against a address reference table
Adpresveld bepaling () Text Determine address components based on e.g. the postal code in the
proce dure OHI Back Office screens
Back Office parameter 0 Check Provide a validation on the values entered in the Back Office
parameter values
Betaalactie (Payment) Text Provide a payment description used by the XML output for payments
Betalingsverkeerregel (Payment matching Text Determine the correct source (payment or collection) for this payment
detail) procedure | detail
Commissieberekening (Commission calculation) | Text Calculate commission
procedure
Commissieberekeningdatum (Commission Text Set the calculation date
calculation date) procedure
Commissieberekeningverzoek (Commission Text Request a commission calculation
calculation request) procedure
Commissieregelevaluatie (Commission rule Text Evaluate a commission rule
evaluation) procedure
Declaratieregel (Claimline) Check Validate a claimline
Event (Event) Check Provide a trigger condition for the triggered events in the Business
event framework
GBA-controle (Population register check) Check Perform a check for a relation against a population register
Incassoactie (Collection) Text Provide a payment description used by the XML output for collections
Kolomgebonden (Column bound) Check Perform a custom column bound check
Naamcomponent (Name Component) Check Validate the data of a name component
Polis (Policy) Check Perform a policy acceptance check
Poliscompleteerstap (Complete policy) Text Adfi additional data to a policy in the apply policy process (complete
procedure | POiY)
Restrictie (Restriction) Check Can be used to check if an entity flexfield is allowed on a subset of the
data for the entity
Standaardantwoord op dekkingsvraag (Default | Text Provide a default answer for a benefit question
answer to benefit question)
XML (XML) Text ?ldd custom data on a record when performing an import of a XML
ile

Custom Development within OHI Back Office Appendix F - Dynamic PL/SQL Types 6

Name Type Purpose

Zorgvoornemenperiode (Pre-authorization Check
period)

Custom Development within OHI Back Office Appendix F - Dynamic PL/SQL Types 7

L __|
19. Appendix G - Using a JMS payload queue

Starting with OHI BO release 10.19.1.2.0 a first database queue has been made available that can be used to
store/publish/enqueue JMS (Java Message Service) messages. The queue is named ALG_JMS_QUEUE. This queue is available
for customers to publish custom JMS messages when a certain event within OHI Back Office occurs (e.g. using the Business
Event Framework). This provides customers a possibility to receive and process these messages somewhere outside OHI Back
Office in an application and execute custom actions on the message there..

A PL/SQL API routine is available to put messages on the queue. For dequeuing messages for use outside OHI Back Office, the
database account OHI_JMS_QUEUE_USER should be created, as described in the OHI Back Office installation and configuration
manual. This account can be used to directly access the database and dequeue messages or to create a data source that is used in
WebLogic to provide a JMS queue to any JMS client.

In later releases, OHI has introduced more JMS queues to publish standard messages. Customers cannot publish messages on
these queues (except the ALG_SVC_RESPONSE_QUEUE) but do need to dequeue and process messages from most of these

queues.
Queue Name Description Customer actions
ALG_JMS_QUEUE Customers can develop customizations in OHI to Enqueue (inside the OHI
enqueue custom messages. database)
Dequeue (inside or outside the
OHI database)
ALG_OHI_JMS_QUEUE Queue for OHI standard messages that must be Dequeue (outside the OHI
processed by customers database)
ALG_OHI_JMS_QUEUE_2 Queue for OHI standard messages that must be Dequeue (outside the OHI
processed by customers database)
ALG_SVC_REQUEST_QUEUE Queue for OHI messages for external partners. Dequeue (outside the OHI
Responses must be enqueued by customer in database)
ALG_SVC_RESPONSE_QUEUE
ALG_SVC_RESPONSE_QUEUE | Queue for messages from external partners. Only for | Enqueue (from outside the
responses to requests in the OHI database)
ALG_SVC_REQUEST_QUEUE
ALG_EVENT_QUEUE Internal queue for the Autonomous Processing None
Framework (AVEF).

The remainder of this appendix will concentrate on using the ALG_JMS_QUEUE in custom development.

Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 8

19.1. Principles for the OHI queue ALG_JMS_QUEUE with JMS payload

It has been agreed with the OHI customers to provide a JMS messaging queue in the database with standard configuration. There
are many options regarding the use of JMS messaging and the configuration of a JMS queue. Because the requirements for future
use and specific customer implementations are unknown, we a best practice queue that is configured for general use. Future
enhancements may change this or even introduce additional queues..

19.2. Points of attention

OHI offers a queue, not a topic. This means that only one consumer can consume a message.

Rationale: A queue can have multiple parallel consumer processes. This makes the processing of messages scalable. A
topic allows only one consuming process per client. This limits throughput due to the serial processing. It was agreed
that by the OHI customer will republish the message on a separate topic outside OHI when multiple different consumers
for a message are needed.

No specific ordering or priority functionality is supported.
Rationale: Ordering or priority functionality applies to all messages on the queue. Because the queue needs to support
different message types this cannot be supported with a generic queue.

Message type TextMessage is chosen for the payload body type.
Rationale: There is a need for structured text messages, most likely XM, JSON or fixed length character. Given the
flexible way this type can be used this specific message type offers the best options for the expected use of the queue.

The queue will be persisted in the database, meaning it is not a memory-only queue.
Rationale: When an event occurs within OHI BO, publishing is part of the transaction that commits the event. In this way
event publishing is reliable and robust: the message is not lost when there is an availability failure.

The standard Correlationld property will be filled with a standard identification provided by OHI Back Office.

Rationale: This identification can be used to follow the handling of the event when it is processed outside OHI. When the
OHlI-provided APl is used to enqueue messages the Correlationld is filled with a unique OHI-provided sequence number
is used. This sequence number is unique over this and the other OHI JMS queues. It is possible to dequeue a message
with a specific Correlationld. (NOTE: messages on the other OHI JMS queues can have a GUID (Globally Unique ID) in
addition to the Correlationld).

Several different types of JMS messages can be published on this queue. To differentiate between the message type the
standard JMS property JMSType is used.

Rationale: By dequeuing with a condition on this property only a specific message type can be handled by a specific
dequeue process.

As there is no clear expectation regarding the future usage and no clear requirement the following points of attention:

Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 9

19.3. Interface package

There is no specific optimization to guarantee performance when there are many unprocessed (still to be dequeued)
messages on the queue. For example: When the queue holds more than 100.000 messages of a certain JMSType that have
not been dequeued, this will have a negative impact on dequeuing a single message with a specific Correlationld or with
a different JMSType than the majority of the messages. We advise to dequeue all types of messages within a relatively
short time after becoming available.

Message sizes of all types should be kept relatively small to prevent a situation where additional storage and processing
overhead of one specific type might delay the processing of other types. A message text payload of more than 4000
characters should generally be prevented when using this generic queue. If messages become larger it is strongly advised
to first investigate the expected amount of larger messages that is to be processed in a certain period of time an test with
realistic loads to see if the processing times are acceptable.

Given the very general nature of the queue the queue itself is a compromise. It can service all types of messages but as
such it not optimized for any usage. The queue is not meant to handle large amounts of messages for a specific purpose.
Please be aware of the limitations this imposes. The queue is not expected to handle all possible use cases optimally. It
may not be suitable for specific high loads or special types of messages. A separate tailored queue definition might be
required. OHI does not support situations where the queue is overloaded or misused given the limitations of the generic
definition of the queue. As such the OHI customers are responsible for a sensible use. This includes the configuration and
capacity of the processing infrastructure, both in the OHI database and the external applications that dequeue the
messages.

A PL/SQL package is offered for putting JMS messages on the queue, named ALG_JMS_INTERFACE_PCK. This package offers
an enqueue procedure, an enqueue function and a dequeue function.

19.3.1. Enqueue procedure

The interface definition of the procedure is shown below:

procedure enqueue

pi queue in varchar?

pi type in varchar?

pi payload in clob

pi expiration in number default sys.dbms_ag.never

pi property list in jms property list tab

The name of the queue, ALG_JMS_QUEUE, should be provided for the first parameter (this is checked).

The message type is a customer-defined string of at most 100 characters.

Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 10

The payload is the actual textual message and may be a CLOB. OHI development advises to limit the length to 4000 characters as
this is less resource intensive.

The expiration parameter specifies the number of seconds until the message is too old to dequeue and expires. When no value is
passed it defaults to the constant sys.dbms_aq.never (actual value -1), meaning the message will not expire and wait forever
to be dequeued.

The property list definition provides functionality to add user properties to the JMS header. It is a list of varchar2 or number
properties using the following definition in the package specification:

type jms property is record (str value varchar2(2000)
, num_value number --double
)7
type jms_property list tab is table of jms property
index by wvarchar2 (100)
Beware: when both the str_value and the num_value are filled the num_value is ignored.

The message enqueue action is part of the surrounding transaction so the message will only become visible to dequeue processes
when the containing transaction has been committed.

19.3.2. Enqueue function

The enqueue function has the same input definition as the enqueue procedure. It returns the generated correlation id as a number
value. This id is unique over the different JMS payload queues within OHI Back Office

19.3.3. Dequeue function

The dequeue function in this package is currently only meant for OHI internal use and not documented.

19.4. Enqueue example

This paragraph describes a simplified example for handling the situation that a policy is created and finalized (status ‘Definitief’)
for the first time, while the policy was initiated by an external party that called the registration web service (like for example the
‘Independer’ channel).

When such a policy has been fully accepted for the first time and is finalized the policy number and its current state (which might
already have been changed as this processing is asynchronous) needs to be returned.

The example below shows a basic Business Event Framework (BEF) ‘handler’ that expects an Independer reference to be stored in
a specific flex field within OHI Back Office. This references must be included in the confirmation message to Independer.

Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 11

The example is basic, meaning that exception and error handling, usage of the correlation id, unexpected situations and
preventing duplicate work is not addressed (only a simple ‘happy flow” scenario is covered).

The handler adds 2 user properties to the JMS header by means of the property list.

procedure handler
(pi_event in alg ede payload tp
)yis

cursor c_pol

(v_id in ver polissen.id%type

) 1is
select pol.nr
p pol.status
p ewe.waarde char as independer ref
from ver polissen pol
’ ref eigenschap waarden ewe
, ref entiteit eigenschappen ege
’ ref eigenschappen eig
where pol.id = c pol.v_id
and eig.oms = 'INDEPENDER#'
and ege.eig id = eig.id
and ewe.ege id = ege.id
and ewe.tab id = pol.pol tab id
and ewe.record id = pol.id

1 pol rec c _pol%rowtype;

1 corr id number;

1 payload clob := '';

1 1st ozg owner.alg jms interface pck.jms property list tab;
1 prp 1 ozg owner.alg jms interface pck.jms property;

1 prp 2 ozg owner.alg jms interface pck.jms property;

begin
open c¢ pol(v_id => pi event.record id);
fetch c pol
into 1 pol rec;
close c _pol;

1 payload := 1 payload]|'<MSG>"';
1 payload := 1 payload]||'<POL>'||to _char(l pol rec.nr)||'</POL>"';
1 payload := 1 payload]||'<STATUS>'| |to char(l pol rec.status)||'</STATUS>';

Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 12

1 payload := 1 payload]|'</MSG>"';

1 prp 1l.str value
1 1st ('INDEPENDER#'
1 prp 2.str value

1 pol rec.independer ref;
:= 1 prp 1;
to char (sysdate, 'YYYYMMDDHH24MISS');

I~

1 1st ('ENQ DATE#') := 1 prp 2;

1 corr id := ozg owner.alg jms_interface pck.enqueue
(pi_gueue => 'ALG_JMS QUEUE'

, pi_type => 'INDEPENDER'

, pPi payload => 1 payload

, Pl _expiration => 60

, Pi1 _property list => 1 1lst

commit;
end handler;

19.5. Helper queries

Although the usual and supported way to read data from a queue is by means of a dequeue operation, the data on the queue
itself can be inspected via a SQL query. For analysis and custom development purposes, to get an idea how the actual messages
look in a pre-production or test environment, the following queries are provided “as is”. Note that this does not dequeue the
message.

A query on the queue table can be best performed on the view on top of the queue table as this view shows the correct date time
information based on the used timezone and daylight saving settings e.g.

select jms.queue

’ jms.msg_state

’ jms.eng_time

, jms.deg_time

’ jms.retry count

P jms.user data.header.type

nvl (jms.user data.text lob, to clob(jms.user data.text vc) payload
fron1aq$alg#jms _queue_tab jms

The default queue for messages created by OHI is ALG_OHI_JMS_QUEUE. The payload for this queue can be in binary format
for excel files (xIsx extension) or text like XML or JSON format.

To get such text messages in a “pretty print” format including the JMS-header properties, the following query can be used. Again:
this is only intended for test and development purposes and not for actual processing of the message from the queue.

select ohi jms.enqg time
’ ohi jms.deqg time
, ohi jms.enqg user_ id
Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 13

p ohi jms.user data.header.type header type
’ tqu.type uitvoer
, (select listagg(name||' = '||nvl(str value,num value),chr(10))

within group (order by 1)

from table(ohi jms.user data.header.properties)

) header properties
p case when tqu.type uitvoer = 'XML'
then XMLSERIALIZE (CONTENT XMLTYPE (nvl(ohi jms.user data.text lob
, to _clob(ohi jms.user data.text vc)

)
) as clob INDENT SIZE = 2)
when tqu.type uitvoer = 'JSON'
then JSON_SERIALIZE (nvl(ohi jms.user data.text lob
, to _clob(ohi jms.user data.text vc

)
) returning clob pretty)
else nvl (ohi jms.user data.text lob, to clob(ohi jms.user data.text vc))
end text payload
’ ohi jms.user data.bytes lob as binary payload
from agSalg#ohi jms queue tab ohi jms
left outer join alg#type queue berichten tqu
on tqu.headertype = ohi jms.user data.header.type
order by 1 desc

19.6. Handling the exception queue

In a ‘normal’ situation a message will be ‘removed’ from the queue by a dequeue operation, meaning it cannot be dequeued once again. The
actual removal of the queue table, the table that implements the storage of the queued messages, is dependent on the retentiontime of that queue.
If the dequeue process fails during the dequeue operation (the dequeue transaction fails) and the number of failed dequeue operations exceeds
the number of retries allowed on the specific queued message, or when the message is expired before a successful dequeue is performed (when
an expiration is defined for the message), the message is placed on the so called ‘exception queue’.

There can be a situation that, depending on the content of the message or the reason of the failed dequeue operation, the message as present on
the exception queue needs to be reprocessed by the dequeue process (and of course when the reason of failing has been resolved, when it is
expected the dequeue operation will now succeed). Typically this re-enqueuing of the failed message is needed when there is no functional
process available to enqueue the exact same message again.

A dequeue from the exception queue is possible and it will dequeue the ‘failed” message based on the message 1D, which is required for such a
dequeue operation. This message can than be put on the regular queue again with a new enqueue operation.

The following steps are an example of what is required to perform such an operation.

First create a custom user (or use an existing custom development user, but for this example we will use a new user).
Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 14

As a SYSDBA:

create user quser identified by quser;
grant create session to quser;

grant 0ZG_ROL DIRECT to quser;

grant execute on DBMS AQ to quser;

Now we need to receive the grants to dequeue from the exception queue and enqueue to the regular JMS queue.

As OHI owner (e.g. OZG_OWNER):

begin
dbms agadm.grant gqueue privilege
(privilege => 'ENQUEUE'
queue_ name => 'ALG_OHI JMS QUEUE'
grantee => 'QUSER'

grant option => false

~ N N~ N~

’

dbms agadm.grant gqueue privilege

(privilege => 'DEQUEUE'
, queue name => 'AQ$ ALG#OHI JMS QUEUE TAB E'
, grantee => 'QUSER'

, grant option => false
)
end;

/

In this case we use ALG_OHI_JMS_QUEUE, but ALG_OHI_JMS_QUEUE_2 and ALG_JMS_QUEUE can be used as well. For the correct
exception queue just put AQ$_ in front of the normal queue name and _TAB_E at the end of the queue name. Now the user is ready to reapply a
message from the exception queue.

Coonect to the custom user:
sglplus quser@prod
First the correct message and the message ID needs to be identified:

select * from agSalg#ohi jms queue tab where queue = 'AQS ALG#OHI JMS QUEUE TAB E';

This query shows all messages on the exception queue of the ALG_OHI_JMS_QUEUE JMS queue. The column MSG_ID contains the message 1D
we need to perform the operation, so note this ID for further use. For our example we assume the message id is
“A11EA3184BA60AF6E05362DSF20ABISE” .

The following pl/sql script can be used to reapply the message with ID A11EA3184BA60AF6E05362DSF20ABISE:
Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 15

declare

1 message sys.aq$_jms message;
1 message_ id raw (16) ;
1 dequeue options sys.dbms_aqg.dequeue options_ t;
1 message properties sys.dbms ag.message properties t;
1 enqueue options sys.dbms ag.enqueue options t;
begin
1 dequeue options.msgid := '"A11EA3184BA60AF6EO05362D8F20AB98E'; -- <== provide the correct MSG ID
1 dequeue options.wait = 07
1 dequeue options.visibility := sys.dbms_ag.on commit;
1 dequeue options.dequeue mode := sys.dbms aqg.remove;
1 dequeue options.navigation := sys.dbms_aqg.first message;

--prefix the queuename with the correct OHIBO schema owner
--change 0ZG _OWNER with te correct OHIBO scheama owner if this is not 0ZG OWNER
sys.dbms aqg.dequeue

(queue name => 'OZG OWNER.AQS$S ALG#OHI JMS QUEUE TAB E'
’ dequeae_options => l_de&ueue_optigns B B B B

, message properties => 1 message properties

’ payload_ => l_message_

, msgid => l:message_id

)7

1 enqueue options.visibility := sys.dbms_ag.on commit;

--prefix the queuename with the correct OHIBO scheama owner
--change 0ZG _OWNER with te correct OHIBO scheama owner if this is not 0ZG_OWNER
sys.dbms ag.enqueue

(queue name => 'OZG_OWNER.ALG OHI JMS QUEUE'

, enqueue options => 1 enqueue options

, message properties => 1 message properties

, payload => 1 message

, msgid => 1 message_id

) ;

commit; -- dequeue and enqueue operation are done in one single transaction
end;
/

After this the message is again available on the regular queue for processing with the same properties as the original message.

Custom Development within OHI Back Office Appendix G - Using a JMS payload queue 16

L __|
20. Appendix H - Service consumer example calls

In this appendix examples are shown in which calls to external web services ara made through the standard offered service
consumer pl/sql routines for this goal.

Within OHI Back Office a limited set of standardized web service consumers (often also name “clients’) is offered for calling web
services as provided by Vecozo and some other parties. Most of these services are called by means of standard OHI processes. See
also the chapter about Service Consumers for more information.

However, a few external web services can also be consumed/called by custom code processing triggers and in order to get an
idea how this looks like the examples in this appendix are shown.

For a complete set of service consumers offered please consult the OHI Back Office - Service Consumer Installation &
Configuration Manual.

The example code in the following paragraphs can be used in a policy acceptance check or a policy completion step. These are
based on the service consumers for retrieving residence information (BRP/GBA) and a check on the legal right to be insured
(COV).

Goal is also to give a little insight in options how to handle potential errors that may occur as a result of the call.
20.1. Check on COV

In a policy acceptance check the legal right to have a Dutch health insurance can be checked by calling the COV service. The
result of this call will be the result of the policy check.

The example below can give you an idea how such a check can be implemented. This example is specific for (depends on) a
certain setup and can be optimized but is just here as a reference to give you an easy start.

Please see the online help of OHI Back Office for the exact and correct setup of a policy acceptance check.

The function shown below is typically part of a custom code package (an ‘SVS’ package) and can be used to call in the dynamic
pl/sql code that implements a policy check. The called get_pol_nr function is a local function in the same package.

function controle op verzekeringsrecht

return Boolean

(pi_pol nr in ver polissen.nr%type
, po_msg varl out varchar?2

, Po_msg_var2 out varchar2

, po_msg var3 out varchar?

, po_msg varé out varchar2

, po_msg varb out varchar2

, pi_controle in varchar2

)

i

-- Date By Version Description
-- 01-01-2016 J.DOE 9.9 COV-check uitvoeren

Custom Development within OHI Back Office Appendix H - Service consumer example calls 17

1 retval boolean := true;
1 gevonden polis boolean;

1 response svc _sv11010c_tns controleerresponse tp;
1 pol nr ver polissen.nr%type := get pol nr(pi pol nr => pi pol nr);
begin

po msg varl := null;

po_msg var2 := null;

po msg var3 := null;

po msg var4d := null;

po_msg var5 := null;

-- Loop door nieuwe ZVW deelnames
for r dee in (select dee.cli rel nr

, dee.datum ingang

’ rel.n datum geboorte datum geboorte
, rel.n sofi nr bsn

’ cco.mer code

, cco.c_nummer extern

from ver deelnames dee

join ver polisproducten plt

on dee.plt id = plt.id

join pas_pakketten pak

on pak.code = plt.mpr pce pak code
join ver pol collectieve contracten pcc
on pcc.pol nr = plt.pol nr

and dee.datum ingang between pcc.datum ingang

and nvl (pcc.datum einde,dee.datum ingang)
join ver collectieve contracten cco

on cco.nr = pcc.cco_nr
join rbh relaties rel
on rel.nr = dee.cli rel nr
where plt.pol nr = 1 pol nr
and dee.mutatiestatus = dom mutatie status.nieuw$
and pak.type verzekering = dom typen verzekering.zorgverzekeringswet$
)
loop
if r dee.mer code = 'ALINI1'
and r dee.c nummer extern = 2
then
1 response := sv11010c_impl pck.controleer cov
(pi bsn => r dee.bsn
, pi _geboortedatum => r dee.datum geboorte
, pi peildatum => r dee.datum_ingang
)i
1 gevonden polis := false;

if 1 response.m controleerresult.m resultaat is not null
and 1 response.m controleerresult.m zoekresultaten.m zoekresultaat.count > 0
then

Custom Development within OHI Back Office Appendix H - Service consumer example calls 18

for 1 index in
1 response.m controleerresult.m zoekresultaten.m zoekresultaat.first..
1 response.m controleerresult.m zoekresultaten.m zoekresultaat.last
loop
if 1 response.m controleerresult.m zoekresultaten.m zoekresultaat(l index).m resultaat =
'Gevonden'
then
1 gevonden polis := true;
end if;
end loop;
else
--No result
1 gevonden polis := false;
end 1if; -- verzoek akkoord
-- Process result

if 1 gevonden polis - Insured elsewhere
then
if pi controle = 'P0030'
and 1 pol nr > 0
then
-- New policy
1 retval := false;
po msg varl := r dee.cli rel nr;
po msg var2 := to char(r dee.datum ingang, 'dd-mm-yyyy'):;
elsif pi controle = 'PO0O31'
and 1 pol nr <0
then
-- Existing policy, process manually
1 retval := false;
po msg varl := r dee.cli rel nr;
po msg var2 := to char(r dee.datum ingang, 'dd-mm-yyyy'):;
end if;
end 1if;
end if;
end loop;

return l_retval;

end controle op verzekeringsrecht;

The call to this service, a policy acceptance check dynamic pl/sql definition may look like:

begin
return svs_owner.svs_dps_pck.controle op verzekeringsrecht
(pi pol nr => :pol nr

;, po_msg _varl => po msg varl
, PO _msg var2 => po msg var2
, pPo_msg_var3 => po_msg_var3
, po _msg var4 => po msg varé
Custom Development within OHI Back Office Appendix H - Service consumer example calls 19

, po_msg varb5 => po msg varb
, pi controle => 'P0030"'
)7

end;

The above conforms to the interface definition for policy checks as can be queried within OHI Back Office per dynamic pl/sql
usage type. For your convenience, this is the definition as used for this specific check:

Interface definition:

Input:
:pol nr (number): the number of the policy, will be in #1#

Output:

boolean (value true or false)

po msg _varl (varchar2(100)): free format text for message, will be in #2#
po msg _var2 (varchar2(100)): free format text for message, will be in #3#
po _msg var3 (varchar2(100)): free format text for message, will be in #4#
po _msg vard4 (varchar2(100)): free format text for message, will be in #5#
po msg _var5 (varchar2(100)): free format text for message, will be in #6#

20.2. Municipal administration (BRP/GBA)

Besides the check on the fact if a policy member is a dutch resident the GBA service can also be used to obtain additional
information like the known address (beware this is only allowed for specific pre-defined health insurance related purposes and
make sure you comply with the AVG/GDPR regulations).

This additional information can be used in a policy completion step to register this address in OHI Back Office.

The code below is just an example for reference purposes and needs to be adjusted to your requirements. It is incomplete code
contained in an anonymous pl/sql block, offered for your inspiration.

It also contains an example of error handling code where the service consumer specific function is used to retrieve the returned
SOAP error information.

Custom Development within OHI Back Office Appendix H - Service consumer example calls 20

declare
1 vraag

1 identificatie svc _sv11006c_identificatie tp
svc_sv11006c_categorieen tp
svc_sv11006c_categorie tp
svc_sv11006c_rubrieken tp
svc_sv11006c_rubriek tp

1 categorieen
1 categorie

1 rubrieken

1 rubriek

1 bsn number;

1 dummy code

e ohi br exception

pragma exception init
begin

-- Use the provided policy nr to

- 1 bsn is filled

svc_sv11006c_tns gbavvraag tp
1 antwoord svc_sv11006c_tns gbavantwoord tp
1 gbavfout svc sv11006c_gbavfout tp

svc_sv11006c_tns gbavvraag tp();
:= svc_sv11006c_tns gbavantwoord tp();
svc_sv11006c_gbavfout tp();

svc_sv11006c_identificatie tp();
svc_sv11006c_categorieen tp();

= svc_sv1l1006c categorie tp();
svc_sv11006c_rubrieken tp();
svc_sv11006c_rubriek tp();

varchar2 (2000) ;
exception;
(e_ohi br exception,

-20998) ;

get hold of a BSN

(or multiple but you need to adjust the code for that)

1 identificatie.m indicatie = null;

1 identificatie.m interneafnemer := 1234567; -- adapt
1 identificatie.m gebruiker = null;

1 identificatie.m profielnaam = null;

1 identificatie.m internkenmerk = 7654321;

1 rubriek.m nummer = '0120'; --BSN

1 rubriek.m naam = null;

1 rubriek.m waarde = 1 bsn;

1 rubriek.m omschrijving := null;

1 rubrieken.m rubriek.extend(1l);

1 rubrieken.m rubriek(l rubrieken.m rubriek.count)

lOll;
null;

1 categorie =
1 categorie

1 categorie

.Mm_nummer
.Mm_naam
.m_rubrieken

1 rubriek;

-—-PERSON

1 rubrieken;

1 categorieen.m categorie.extend(1l);

1 categorieen.m categorie(l categorieen.m categorie.count)

1 vraag.m plaatsindicatieverzoek
1 vraag.m identificatie
1 vraag.m categorieen

1 categorie;

= 0;
1 identificatie;

1 categorieen;

svc _sv11006c_aq pck.stelGbavVraag(pi request => 1 vraag, po response => 1 antwoord);

--do something useful with the data as returned in the 1 antwoord response structure

exception

Custom Development within OHI Back Office

Appendix H - Service consumer example calls 21

when e ohi br exception

then
-- error code = -20998
-- a soap fault might be returned from svc sv11006c ag pck
-- check if it is a fault from the provider or a generic one
1 gbavfout := svc sv11006c_aqg pck.get gbavfout;
if 1 gbavfout.has data
then
if 1 gbavfout.m foutletter||l gbavfout.m foutcode = 'G33"'
then
-- unknown BSN/BSN not found returned from GBA
-- do something useful like logging a message
elsif
then
end 1if;
else
-- some other error, we will not handle it, reraise
raise;
end 1if;
end;

NB. To get the soap fault type call the specific fault function for this service in the exception handler.

Custom Development within OHI Back Office Appendix H - Service consumer example calls 22

L __|
21. Appendix I - Using a predefined list of Personal Numbers (BSN) for testing

This appendix describes an example of how to create a specific set of BSN’s, in order to test interfaces with third party providers,
e.g. with the Dutch origanizations VECOZO, DIGID or BRP.

To test an external interface of a third party provider, the third party usually provides a specific set of BSN's to be used in the test
communication. All other cases outside this specific set of numbers are usually rejected by the third party.

The example code in the following paragraph can be used to create a correct responsefile (a VO107 file) to mimic the
communication with the municipal administration (BRP). This file is needed to get a valid status for the registration of this set of
numbers in a test environment. The example code (svl_utils_pck.write_VO107) can be run in a sql session in a custom
development database schema or incorporated into a custom batch as described in chapter 7.

The steps before and after the creation of this VO107 file are described in the Online Help of OHI Back Office.

create or replace package svs util pck
is
-- Create a V0107 response file
-— pi_rse naam: Name of the relation selection containing all the relations
-- pi dbd naam: Name of the database directory object for the file to be created in
procedure write V0107
(pi_rse naam rbh relatieselecties.naam%type
, pi dbd naam alg db directories vw.naam$%type
)i

end svs_util pck;

/

create or replace package body svs_util pck
is

procedure write vol07 line(pi line in varchar2)
is
-— Write the line to a file
-— Position 265 has an X
begin
alg batch pck.write line(pi text => rpad(pi line,264)|]|'X");
end;

function generate a nummer
(pi_a nummer in rbh relaties.n a nummerstype

Custom Development within OHI Back Office Appendix I - Using a predefined list of Personal Numbers (BSN) for testing 23

) return number

is
-- Generate a A-nummer
1 n a nummer rbh relaties.n a nummer%type := pi a nummer;
1 n a text varchar2 (10) ;

begin

-- determine the current greatest "a-nummer"
if pi a nummer is null

then

select nvl(max(rel.n_a_nummer)

into
from

’

ln a

nummer

rbh relaties rel

end 1if;
-— determine the next valid a-nummer

loop

1 n a nummer

:= 1 n a nummer +

,1010101025)

1;

--convert number to text to get each digit seperatly

1n

a_ text

:= lpad(to char(l n

-—check if the number conforms

if

and
and
and
and
and
and
and
and
and
and

and

substr(
substr (1
substr(
substr (
substr (
substr (
substr (
substr (
substr(
substr (
(mod(s

1
1
1
1
1
1
1
1

, 1
) 1
)
(mod (

l_

n a text, 1,1) !=

a nummer),10,'0");
to the correct format
IOI

)

~n a text, 1,1) != substr(l n a text, 2,1)
~n a text, 2,1) != substr(l n a text, 3,1)
~n a text, 3,1) != substr(l n a text, 4,1)
~n a text, 4,1) != substr(l n a text, 5,1)
~n a text, 5,1) != substr(l n a text, 6,1)
~n a text, 6,1) != substr(l n a text, 7,1)
~n a text, 7,1) != substr(l n a text, 8,1)
~n a text, 8,1) != substr(l n a text, 9,1)

_n_a_text, 9,1) != substr(l n a text, 10,1)

ubstr(l n a text, l 1) +

ubstr(l n a text, 1) +

ubstr(l n a text, 1) +

ubstr(l n a text, 1) +

ubstr(l n a text, 1) +

ubstr(l n a text, 1) +

ubstr(l n a text, 1) +

ubstr(l n a text, 1) +

ubstr(l n a text, 1) +

ubstr(l n a text, 10 1)

1

n (0, 5)

l*substr(l n a text, 1,1) +

2*substr(l n a text, 2,1) +

4*substr(l n a text, 3,1) +

8*substr(l n a text, 4,1) +
Custom Development within OHI Back Office

Appendix I - Using a predefined list of Personal Numbers (BSN) for testing 24

le*substr(l n a text, 5,1) +
32*substr(l n a text, 6,1) +
64*substr(l n a text, 7,1) +
128*substr(l n a text, 8,1) +
256*substr(l n a text, 9,1) +
512*substr(l n a text,10,1)
, 11) =0
)
then
return 1 n a nummer;
end if;
end loop;

end generate a nummer;

procedure write VO107
(pi_rse naam rbh relatieselecties.naam%type
, pi dbd naam alg db directories vw.naam$%type
) 1is
-- Create a V0107 responsefile
-— pli_rse naam: Name of the relation selection containing all the relations
-— pi dbd naam: Name of the database directory for the file to be created in
1 n a nummer rbh relaties.n a nummer%type := null;
begin
-- This is only allowed to run on a test environment NEVER on production
for r syp in (select syp.applicatie omgeving
from alg systeem parameters syp
where syp.applicatie omgeving = dom omgeving.test$
)
loop
-- loop through all GBA consumers
for r gar in (select gar.rel_nr
, gar.identificatie
from rbh gba afnemers gar
)
loop
-- Create a V0107 per GBA consumer
alg batch pck.create file(pi filename => 'VO107 '||r gar.identificatie||'.txt',pi file location => pi dbd naam);
-- Reply Ap0l messages with an Ag0l
for r gbt in (select gbt.rel nr

p rel.n sofi nr bsn

, nvl(rel.n voornamen,rel.n naamcomponent 1) voornamen
, rel.n voorvoegsels

, rel.naam

’ rel.n datum geboorte datum geboorte

p case rel.n geslacht

when 1 then 'M'
Custom Development within OHI Back Office Appendix I - Using a predefined list of Personal Numbers (BSN) for testing 25

4

r
from
join
on
join

on
left
on
wher
and
and
and
and
and

)
loop
-— get the next
1 n a nummer :=

write vol07 line

Custom Development within OHI Back

when 2 then 'V'
else 'O
end geslacht
case rel.n naam aanduiding
when '0' then 'N'
when 'l' then 'E'
when '2' then 'P'
when '3' then 'V'
end naam aanduiding
lan.code nen nationaliteit nationaliteit
rel.n voorvoegsels 2
rel.n naam 2

case when rel.reden einde = dom redenen einde.overleden$ then rel.datum einde end datum overlijden

case when rel.n ind geheim = 'J' then 1 else 0 end ind geheim
rbh gba berichten gbt
rbh relaties rel
rel.nr = gbt.rel nr
(select rpr.rel nr
from rbh relatieselecties rse
join rbh rel per rse rpr
on rpr.rse id = rse.id
where rse.naam = pi rse naam
) rpr -- limit the set to the given relation selection
rpr.rel nr = gbt.rel nr
outer join rbh landen lan
rel.n lan code = lan.code
e gbt.gar rel nr = r gar.rel nr
gbt.status = dom gba bericht statussen.verzonden$
gbt.bericht code = dom gba bericht codes.plaatsen afnemersindicatie$ -- Ap0l
rel.n_ind afnemer gba is null -- consumer indication not yet set
rel.n sofi nr is not null
not exists

(select 1

from rbh gba berichten gbtl

where gbtl.rel nr = gbt.rel nr

and gbtl.gar rel nr = gbt.gar rel nr

and gbtl.bericht code in(dom gba bericht codes.gegevens agv_plaatsing afn in$ -- Ag0I
, dom gba bericht codes.beantw plaatsen afn ind voa$)

and gbtl.datum tijd verwerking > gbt.datum tijd verwerking

) —— no response yet to this Ap0Ol

a-nummer that complies to the correct format
generate_a nummer (pi_a nummer => 1 n_a nummer);
(pi_line => 'A'
I'lrpad (' ',57)
| |[dom gba bericht codes.gegevens agv plaatsing afn in$ -- position 59 t/m 62: Ag0l
Ilrpad (' ',18)
| |[rpad(nvl (to_char(l n a nummer),' '),10) -- a-nummer 81 t/m 90
Office Appendix I - Using a predefined list of Personal Numbers (BSN) for testing 26

| lrpad (' ',10)
| |[rpad(to _char(r gbt.rel nr),40) -- comment 101 t/m 140
| |[rpad (" ',42)
| |[rpad(r gar.identificatie,7) -- Internal consumer 183 t/m 189
| |lrpad ("' ', 3)
(

| [1lpad(r gbt.bsn,9,'0") -- bsn 193 t/m 201
) i
write vol07_line(pi_line => 'B010110 I
write vol07 line(pi line => 'B010120 I
write vol07_line(pi_line => 'B010210 I
write vol07 line(pi line => 'B010230 I
write vol07_line(pi_line => 'B010240 I
write vol07 line(pi line => 'B010310 1I'||to char(r gbt.datum geboorte,'yyyymmdd')) ;
write volO7 line(pi line => 'B010410 1I'||to char(r gbt.geslacht));
(I
(I
(I
(I
(I
(I
I

| lto char(l n a nummer)) ;
| (
| (
| (
| (
| (
| (
write vol07 line(pi line => 'B016110 '"|lto_char(r gbt.naam aanduiding));
| (
| (
| (
| (
| (
| (

|to _char(r gbt.bsn));

|to char (r gbt.voornamen)) ;

|to _char (r gbt.n voorvoegsels));
|to char (r gbt.naam)) ;

write vol07 line(pi line => 'B040510 |to_char(r gbt.nationaliteit));

write vol07 line(pi line => 'B050230 |to char(r gbt.n voorvoegsels 2));

write vol07 line(pi line => 'B050240 |to_char(r_gbt.n naam 2));

write vol07 line(pi line => 'B050610 |to char (trunc(sysdate), 'yyyymmdd')) ;

write vol07 line(pi line => 'B060810 |to _char(r gbt.datum overlijden, 'yyyymmdd'));
write vol07 line(pi line => 'B077010 |to char(r gbt.ind geheim));

for r rea in (select rea.postcode

, rea.huisnr postbus
, rea.datum ingang
, rea.lan code
, rea.straat
, rea.plaats
’ rea.adresregel 1
, lan.code gba land
, lan.naam
from rbh relatie adressen rea
join rbh landen lan
on rea.lan code = lan.code
where rea.rel nr = r gbt.rel nr
and rea.type adres = dom_typen locatie.relatievestigingsadres$
and rea.datum einde is null
)
loop
if r rea.lan code = 'NL'
then
write volO7 line(pi line => 'B081030 1I'||to char(r rea.datum ingang, 'yyyymmdd'));
write vol07 line(pi line => 'B081120 1I'||to char(r rea.huisnr postbus));
write vol07 line(pi_line => 'B081160 I'||r_ rea.postcode);
else

write volO7 line(pi line => 'B080910 I'[['1999'"); -- RNI
write vol07 line(pi line => 'B081310 1I'||rpad(r rea.naam,240)||r rea.code gba land);
write volO7 line(pi line => 'B081320 1I'||to char(r rea.datum ingang, 'yyyymmdd'));
write vol07 line(pi line => 'B081330 1I'||r rea.straat);
write vol07 line(pi_line => 'B081340 1I'||r_ rea.plaats);

Custom Development within OHI Back Office Appendix I - Using a predefined list of Personal Numbers (BSN) for testing 27

write vol07 line(pi line => 'B081350 1I'||r rea.adresregel 1);
end if;
end loop;
end loop;
-- Reply Av0l messages with a NULL
for r gbt in (select gbt.rel nr
N , rel.n_sgfi_nr bsn

, rel.n a nummer
, case when rel.n ind geheim = 'J' then 1 else 0 end ind geheim
from rbh gba berichten gbt
join rbh relaties rel
on rel.nr = gbt.rel nr
join (select rpr.rel nr
from rbh relatieselecties rse
join rbh rel per rse rpr
on rpr.rse_id = rse.id
where rse.naam = pi rse naam
) rpr -- limit the set to the given relation selection
on rpr.rel nr = gbt.rel nr
where gbt.gar rel nr = r gar.rel nr
and gbt.status = dom gba bericht statussen.verzonden$
and gbt.bericht code = dom gba bericht codes.verwijderen afnemersindicatie$ -- Av0I
and rel.n ind afnemer gba is not null -- consumer indication not yet removed
and rel.n sofi nr is not null
and not exists (select 1

from rbh gba berichten gbtl

where gbtl.rel nr = gbt.rel nr

and gbtl.gar rel nr = gbt.gar rel nr

and gbtl.bericht code = dom gba bericht codes.verwerkbevestiging null beric$
and gbtl.datum tijd verwerking > gbt.datum tijd verwerking

) —— no reply to this Av0l yet
)

loop
write vol07 line(pi line => 'A'
| [rpad (" ',57)
| |dom_gba bericht codes.verwerkbevestiging null berich -- 59 t/m 62: Null
| lrpad (" ',18)
| |rpad(nvl (to _char(r gbt.n a nummer),' '),10) -- a-nummer 81 t/m 90
| lrpad (" ',10)
| | rpad(to_char(r gbt.rel nr),40) -- comment 101 t/m 140
| lrpad (" ',42)
| |[rpad(r_gar.identificatie,7) -- Internal consumer 183 t/m 189
[[rpad (" ', 3)
| | lpad(r gbt.bsn,9,'0") -- bsn 193 t/m 201
);
end loop;

alg batch pck.close file;
end loop; -- r gar
Custom Development within OHI Back Office Appendix I - Using a predefined list of Personal Numbers (BSN) for testing 28

end loop; —--r syp
end write V0O107;

end svs util pck;

/

Custom Development within OHI Back Office Appendix I - Using a predefined list of Personal Numbers (BSN) for testing 29

22. Appendix J - Time travel in OHI (for testing purposes only)

This appendix describes an example of how perform time travelling in OHI.
Time travelling can be used to test the working of the application at a specific period in time like a year transition, or to test the
effect of late payments and the dunning process.

Time traveling is only allowed on a OHI test environment and travelling back in time is not allowed.

When the above is violated an error will be raised when starting a form, JET page, script or job in the Autonomous Event
Framework (AVF). The action will not be started. You will need to refresh you environment with a copy that does not violate
these requirements.

The errors messages are:
e Time travelling is not allowed on a production environment!
e Travelling back in time is not allowed!

You must be aware that after time travel, your OHI Test environment is no longer usable for normal test activities and must
be refreshed.

Note: Time travelling is based on the sysdate value of the database. Not all dates/times in the application and database are based
on sysdate; some are based on a timestamp which is not affected by time travelling. Certain parts may still reflect the actual date
and time. This is not a bug but based on the use of a timestamp instead of the sysdate variable. Activating time travel in an active
test environment may also show unexpected results like a very long runtime for a batch request, if this request was started before
the time travel was activated.

Note: time travel should not jump more than 6 years at once. Doing so will result in errors in .e.g. the determination of intervals
related to last run time of internal jobs, etc.
Note: If you want to time travel in OHI Data Marts, you should also time travel in OHI Back Office, with the same fixed date, so

both are in sync, as in a normal situation without time travel.

Time travel is activated in the database by fixating the sysdate value to a fixed predefined value, by setting the database
parameter FIXED_DATE. This can be set as the OHI schema owner or with a DBA role by executing the following statement:

alter system set fixed date = '2027-07-18-19:57:00"' scope=both;

Note: scope=memory implies that restarting the database will automatically mean traveling back in time and invalidating your
OHI environment.

This date is fixed and won’t change in time. We strongly recommend not starting tests with this fixed date, without letting time
pass. The OHI Back Office application will not behave normally if time does not pass (e.g. when checking the progress of

Custom Development within OHI Back Office Appendix] - Time travel in OHI (for testing purposes only) 30

scheduled batch jobs, etc.). To make time pass, you can create a scheduler job to change this fixed date with a certain interval.
Execute the following command as the the OHI schema owner or with a DBA role:

begin
DBMS SCHEDULER.CREATE JOB
(Job_name => 'MyOHIchangeFixedData'
, Job_type => 'PLSQL BLOCK'
, Job_action => 'begin execute immediate ''alter system set fixed date = '"'"''"'''
|| to_char(sysdate + 1/1440,''YYYY-MM-DD-HH24:MI:SS'")
[|"'"""""" scope=both''; end;'
, start date => systimestamp
, repeat interval => 'FREQ=MINUTELY; INTERVAL=1;'
, enabled => TRUE
);
end;
/

This job will run every real minute and increment the fixed date and time with a minute.

To stop the time travel the following needs to be executed as the OHI schema owner or with an account with a DBA-role:

Begin
DBMS SCHEDULER.DROP_JOB(job _name => 'MyOHIchangeFixedData');
DBMS SCHEDULER.purge log(job name => 'MyOHIchangeFixedData');
end;

/
alter system set fixed date=none scope=both;

Note: As the sysdate is an older date than the date used for time travel the OHI Back Office application will now throw an error
when staring a form, JET page, script or event job as this is seen as travelling back in time. Travelling back in time can cause all
sorts of strange behaviour; hence this check.

Custom Development within OHI Back Office Appendix] - Time travel in OHI (for testing purposes only) 31

