ORACLE
INSURANCE

Oracle Health Insurance Back
Office

Data Management Technical
Reference

version 3.20

Part number: G49637-01
January 15, 2026

ORACLE

OHI Data Management Technical Reference Guide

Copyright 2013, 2026, Oracle Corporation. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall
be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer
Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury.
If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

This software and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related notices. For
information on third party notices and the software and related documentation in connection with which they need to be
included, please contact the attorney from the Development and Strategic Initiatives Legal Group that supports the
development team for the Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to
deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described in this document remains at the sole discretion
of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Software
License and Service Agreement, which has been executed and with which you agree to comply. This document and
information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without
prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any
contractual agreement with Oracle or its subsidiaries or affiliates.

OHI Data Management Technical Reference Guide

CHANGE HISTORY

Release Version Changes
10.15.1.0.0 | 1.4 e Changes for database 12C
e Small textual changes
10.15.3.0.0 | 1.5 e Added remark for VPD and the created database user for SS/DM
e Added advise for parameter parallel_degree_level for subset export as
well as disabling archive log mode
10.16.1.0.0 | 1.6 e Added remark about deferred segment creation
e Added OHI Data Marts support
10.16.2.0.0 | 1.7 e Added changes for OEM 13C
e Added work-around for subset definition import bug 19828552
10.16.2.2.0 | 1.8 e Pre-processing masking script SDM0001S.pl made compulsory (bug
25252355)
10.17.1.0.0 | 1.9 e Added paragraph 4.2 about masking flex fields
10.17.1.3.0 | 2.0 e Adjust paragraph 3.4, adding creating the subset rule definition file
e Removed workaround for bug 23249155
10.17.2.0.0 | 21 e Updated prerequisites; OEM 13C R2 is now certified
10.18.1.0.0 | 2.2 e Added masking for OHI Data Marts
e Updated prerequisites; Supported version of database plugin changed
t013.2.2.0
10.18.2.0.0 | 2.3 e No changes except part number.
10.18.2.2.0 | 2.4 e Slightly adjusted the recommendations for 10 calibration
10.18.2.3.0 | 2.5 e Added pre masking step
e Added 2 known issues
10.19.1.0.0 | 2.6 e Added option for configuration only subset
e Some minor textual corrections and changes
10.19.1.1.0 | 2.7 e Updated prerequisites; OEM 13C R3 is now certified
10.19.2.0.0 | 2.8 e No changes, republished with new part number.
10.20.1.0.0 | 2.9 e No changes, republished.
10.20.3.0.0 | 3.0 e Adapted for impact of DB 19c certification
10.20.6.0.0 | 3.1 e Small improvements.
e Added the step-by-step execution guide appendix.
10.20.8.0.0 | 3.2 e Added a note to state that the OHI BO Data Management data
subsetting and masking processes cannot be executed on a database
instance (PDB) with an active Oracle Database Vault installation.
e Updated prerequisites; OEM 13C R4 is now certified
10.21.1.0.0 | 3.3 e No changes, republished with new part number.
10.21.4.0.0 | 3.4 e Data masking revised

OHI Data Management Technical Reference Guide

Release Version Changes

10.21.5.0.0 | 3.5 Modified Datamasking instructions
Added Appendix 2 “Masking a custom database schema”

10.22.1.0.0 | 3.6 No changes, republished with new part number.

10.22.6.0.0 | 3.7 Added policy number masking rule in Appendix 2 “Masking a custom
database schema”
Added description in 4.1 to adjust the application from production to
test
Added note in 4.3 and in 4.7 about the need to gather table statistics
again

10.22.7.0.0 | 3.8 Subsetting revised
Added claim number and invoice reference masking rule in Appendix 2
“Masking a custom database schema”

10.22.8.0.0 | 3.9 Corrected sample masking script in paragraph 7.4
Expanded description for subsetting cleanup

10.23.1.0.0 | 3.10 Added custom masking rule for name prefix in appendix 2
Exclude certain column types from custom masking
Allow repeated masking and subsetting
Added option to keep table statistics
Added option to compress OHI Back Office tables during subset or
masking
Added option to make use of NOLOGGING to decrease the time
needed to execute a run
New part number.

10.23.2.0.0 | 3.11 Use of database parameter PARALLEL_FORCE_LOCAL added
Subset prepare steps modified

10.23.5.0.0 | 3.12 Added additional checks and logging in 4.1

10.23.6.0.0 | 3.13 Added a note about the 0% subset option to appendix 1

10.23.7.0.0 | 3.14 Added parameter pi_force_local to procedure job for subset and
masking

10.24.1.0.0 | 3.15 No changes, republished with new part number.

10.24.2.0.0 | 3.16 Added the subset process for OHI Data Marts and moved chapter 5
(old way to create OHI Data Marts subset) to appendix 3

10.24.4.0.0 | 3.17 Additional note about required tablespace added in ‘Checks before
masking’ in paragraph 4.1

10.25.1.0.0 | 3.18 No changes, republished with new part number.

10.25.3.0.0 | 3.19 Output pre-subsetting and pre-masking check modified in paragraph
3.1and 4.1

10.26.1.0.0 | 3.20 No changes, republished with new part number.

Contents

OHI Data Management Technical Reference Guide

Introduction

11
1.2

Subsetting and Masking

Prerequisites

High Level Design

2.1
2.2

Subsetting Process

Data Masking Process

Detailed Process - Subsetting

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Preparing to-be-subset Database (Target Database)
Running Subset on Target Database

Monitoring the subset run

Checking the outcome

Processing errors and restarting

Cleaning up

Repeated subsetting

Detailed Process - Data Masking

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Preparing to-be-masked Database (Target Database)
Masking flex fields

Running Masking on Target Database

Monitoring the masking run

Checking the outcome

Processing errors and restarting

Cleaning up

Repeated data masking

Appendix 1: Define a policy selection

Appendix 2: Masking a custom database schema

6.1
6.2
6.3
6.4

Creating the masking rule set
The use of the PI_COL_* parameters
Execution

Example script

O O wu N N

10
12
12
16
18
18
19
19
19
20

23
24
26
26
27
27
27
28
30
30
32
33
33

OHI Data Management Technical Reference Guide

7 Appendix 3: OHI Data Marts subset alternative
7.1 Preparing OHI Data Marts data-store
7.2 Loading OHI Data Marts

38
38
39

OHI Data Management Technical Reference Guide

1 Introduction

Welcome to the technical reference guide for the Oracle Health Insurance Back Office suite Data
Management application. The OHI Back Office suite comprises the OHI Back Office application (OHI
BO) and the OHI Data Marts application (OHI DM). This reference guide is intended to help you in
using the data subsetting and data masking functionality as provided by the OHI Data Management
product for OHI Back Office and OHI Data Marts.

1.1 Subsetting and Masking

This guide describes how you can create a subset of a given OHI BO or OHI DM data store. The subset
contains less data than the given data store but at the same time is still fully functional for the OHI BO
and OHI DM applications (that is: all data integrity and consistency rules are upheld). Using data
subsetting you create smaller versions of, for instance, production-size OHI BO or OHI DM databases.
These smaller databases can then be provisioned to development teams, test teams, or deployed in
user-acceptance environments. Through data subsetting you can significantly reduce the total
amount of disk storage required to support the various, and often many, non-production OHI BO and
OHI DM environments in your organization.

There are two methods to create a subset of OHI DM. Both methods require a OHI BO subset
environment as the basis, but the way the OHI DM data is subsetted differs:

e Create an empty OHI DM subset environment linked to an OHI BO subset environment and
perform an initial full load of the OHI BO subset into the OHI DM environment. This does not
capture certain corrections made in OHI BO, because only a “snapshot” of the current status
is loaded. This method is described in Appendix 3: OHI Data Marts subset alternative.

e C(Create a subset of an existing data store in OHI DM, based on the source objects (policies,
claims, etc.) that are still present in the subsetted OHI BO data store. This retains the
mutation history (corrections, partial payments, etc.) that is present in OHI DM because of
the incremental loads that were executed in the past. This is the preferred method and is
described in Detailed Process - Subsetting.

This guide also describes how OHI BO and/or OHI DM data stores can be masked. Due to privacy
regulations, organizations are obliged to deal with privacy-sensitive data in a secure manner.
Production environments usually have stringent data access control and auditing mechanisms in
place to ensure that only those who need to access privacy-sensitive data can do so. Typically, those
accessing the various non-production environments are not authorized to see privacy-sensitive data
or the data access control and auditing mechanisms are less stringent, or even absent, in these
environments. With data masking you can mask (scramble, anonymize, pseudonymize) the privacy-
sensitive data elements in non-production OHI BO and/or OHI DM environments. Development and
test teams that use these masked environments are therefore not able to see privacy-sensitive data.
The masked data store is still fully functional for the OHI BO and/or OHI DM application (that is: all
data integrity and consistency rules are upheld).

OHI Data Management Technical Reference Guide

Both subsetting and data masking work mainly on the so-call Fact tables (e.g., policies, claims). The
Dimension tables (containing setup data) are left largely untouched.

The intended audience for this technical reference guide is the DBA group that administers the
various OHI BO and OHI DM environments inside an organization. This technical reference guide
contains four chapters.

1. Introduction
The chapter you are currently reading. This chapter introduces you to the data subsetting and
data masking packages of the OHI BO application.

2. High Level Design
In chapter 2 you find a high-level design of the data subsetting and data masking processes as
they have been designed to operate on a data store of the OHI BO application.

3. Detailed Process
In chapters 3 and 4 you find a step-by-step description of the data subsetting and data
masking processes. By following these steps, you can create a subset of the OHI BO
application data store and mask this data store.

Subsetting and data masking are implemented in the database of OHI and do not require additional
applications.

OHI Data Management Technical Reference Guide

1.2 Prerequisites

The OHI BO Data Management data masking process requires the following components
e A non-production OHI Back Office environment with the appropriate release
The OHI BO Data Management data subsetting process requires the following component:

e A non-production OHI Back Office environment with the appropriate release

The OHI DM Data Management data masking process requires the following components:

e A non-production OHI Data Marts environment with the appropriate release
e The “seed” value used when masking the linked BO environment

The OHI DM Data Management data subsetting process requires the following components:

e A subsetted non-production OHI Back Office environment with the appropriate release
e A non-production OHI Data marts environment with the appropriate release
o for the preferred method: with data that matches the pre-subsetted linked OHI BO
environment
o for the method described in Appendix 3: OHI Data Marts subset alternative: empty

2 High Level Design

This chapter contains a high-level overview of the data subsetting and data masking processes as they
apply to the OHI BO and OHI DM applications.

2.1 Subsetting Process

Subsetting is performed in-place. The subset process is run on a target database, which can then be
resized to reduce the storage requirements. Subsetting is performed by either executing a stored
procedure or scheduling a database job in the target environment.

Figure 2.1 shows a high-level overview of this process.

OHI Data Management Technical Reference Guide

Gath
Pre =TS Post

Gather rules table

rocessin
P o metadata

processing

Figure 2.1: High level overview of the subset process.

To end up with a database that is smaller than the original (i.e., takes up less disk space), the DBA
needs to rename the original tablespaces and create new tablespaces with the original prescribed
names, using new, smaller, data files before starting the subsetting process. This means the database
will temporarily require more disk space.

For the set of tables to be subsetted (based on the subset rules), the metadata is gathered and stored
in a processing table. The metadata contains the definition of the table and its indexes, constraints
and triggers.

During the subset process this data is processed per table.

The next step is to rename the original table and create a new table, based on the stored metadata of
the original table (that now has been renamed). This newly created table is than filled with the data
from the original table with the subset rule(s) applied to it.

Next the constraints and indexes are added to the tables and if all steps are successful the original
(renamed) tables are dropped. This will free the original, renamed tablespaces and data files. These
can then be dropped by the DBA.

Chapter 3 contains a detailed description of the subset process.

2.2 Data Masking Process

Data masking is performed in-place. The masking process is run on a target database. Masking is
performed by either executing a stored procedure or scheduling a database job in the target
environment.

Figure 2.2 shows a high-level overview of this process.

OHI Data Management Technical Reference Guide

Pre Gather P
. Gather rules table Mask tables .
processing processing

metadata

Figure 2.2: High level overview of masking process.

For the set of tables to be masked (based on the masking rules), the metadata is gathered and stored
in a processing table. The metadata contains the definition of the table and its indexes, constraints
and triggers.

During the masking process this data is processed per table.

If a tablespace name is provided the original table is first moved to this tablespace so no additional
space is used in the original tablespace. The specified tablespace can be created temporarily and may
be removed afterwards.

The next step is to rename the original table (either in the original tablespace or in the specified
tablespace) and create a new table, in the original tablespace, based on the stored metadata of the
original table (that has been renamed). This newly created table is than filled with the data from the
original table with the masking rules applied to it. Next, the constraints and indexes are added to the
table and if all steps are successful the original (renamed) table is dropped, and the next table will be
processed.

Chapter 4 contains a detailed description of the data masking process.

11

OHI Data Management Technical Reference Guide

3 Detailed Process - Subsetting

The subset process executes "in-place" within an existing OHI Back Office or OHI DataMarts
environment.

3.1 Preparing to-be-subset Database (Target Database)

Obviously, subsetting should never be executed on a production environment. Therefore, it is
required to adjust the value of the application environment parameter in the OHI system parameter
record to “Test” instead of “Production” (alg_systeem_parameters.applicatie_omgeving).

In OHI Back Office this can be done by modifying the value in the window SYS1010F “General system
parameter” on the tab “Other user settings”.

In an OHI Data Marts the environment type can be set by executing the following statement as
schema owner:

update alg_ systeem parameters

set applicatie_omgeving = 'T'

<,:ommit;

Before subsetting the target database, it is advisable to create a backup of the database. Depending
on the size of the archive log destination file system, it may be advisable to disable archive logging
during the subset process, and, when required, re-enable it afterwards and create a new initial full
backup.

Recommended database configuration during subsetting

Before running the subset process on the target database, the database should be configured to
maximize performance. The following parameters are recommended (and might deviate from
parameters required for OHI Back Office or OHI Data Marts at runtime):

e parallel max servers :default value (>1) or (for example) twice the number of
available CPU threads, to enable parallel query during subsetting
® pga aggregate target :parallel_max_servers * 1GB

Subsetting an Autonomous Data Warehouse

When subsetting is performed for OHI Data Marts on an ADW environment it is recommended to use
the “high” connection service.

Checks and actions before subsetting OHI Back Office

The subset program creates an empty copy of the original table for each table that is part of a subset
rule and inserts the data based on the rule. This means that the subset program requires a certain
amount of free space in the original tablespaces.

OHI Data Management Technical Reference Guide

One of the goals of a subset is to reduce the size of a test environment. Just deleting data won’t
release the storage used by the database. The existing tablespaces and underlying data files must be
removed to free up disk space. Because the tablespace names are prescribed by OHI and checked
during release installations, we need to end up with the original tablespace names.

That is the reason the subset process for OHI Back Office requires the following steps:

e The DBA renames all tablespaces containing the tables and indexes that occur in a subset

rule. These tablespaces are:
0zG_FACT FIN IND
0zG_FACT FIN TAB
0ZG_FACT REL_IND
0ZG_FACT REL TAB
0ZG_FACT SYS IND
0zG_FACT SYS TAB
0ZG_FACT ZRG_IND
0ZG_FACT ZRG TAB

Arbitrary new names can be chosen, as these tablespaces need to be removed at the end of
the subset process.

e The DBA creates a new set of (smaller) tablespaces with these original names:
0zG_FACT FIN IND
0zG_FACT FIN TAB
0zG_FACT REL IND
0ZG_FACT REL TAB
0ZG_FACT SYS IND
0ZG_FACT SYS TAB
0zG_FACT ZRG_IND
0ZG_FACT ZRG_TAB

e The subset process renames the existing full-size tables and indexes in the renamed
tablespaces

e The subset process creates copies of the original tables and indexes with the original names
in the new tablespaces. These contain the subset of the data. The subset process deletes the
original (renamed) tables and indexes, freeing the original (renamed) tablespaces.

e The DBA drops the empty renamed tablespaces and underlying data files, freeing up the disk
space

Note: the tables are “moved” to the prescribed tablespace, even if they were originally located in the
wrong tablespace.

Sufficient quota for these new tablespaces should be granted to the application owner and the
default tablespace should be set to OZG_FACT_ZRG_TAB for the application owner again.

To verify this, the following procedure can be called:
set serveroutput on
exec sdm driver pck.pre check(pi_action => 'S');

The output looks like the following:

INFO Environment is not yet a subset

INFO : Database is in restricted session mode

INFO : Batch scheduler is not active

INFO : VPD is not active

INFO : Parameter 'job_queue processes' is set to 15 with a 'pga aggregate limit' of 12Gb
INFO :

INFO : Instance parameters

13

OHI Data Management Technical Reference Guide

INFO : cpu_count: 8

INFO : parallel adaptive multi_user: FALSE
INFO : parallel degree limit: CPU

INFO : parallel force local: TRUE

INFO : parallel max servers: 8

INFO : parallel min_time_threshold: 30
INFO : parallel_servers_target: 8

INFO : parallel_ threads per cpu: 1

INFO : pga_aggregate_ limit: 12G

INFO : pga_aggregate_target: 1G

INFO : sga_max size: 16G

INFO : sga_target: 3G

INFO : shared pool_size: 512M

INFO : workarea size policy: AUTO

INFO : Default tablespace is: OZG_FACT_ ZRG_TAB

INFO :

INFO : Tablespace sizes

INFO : —-=-——— - - m - m e m o
INFO: OZG_DIM FIN IND : 0,014 Gb
INFO: OZG_DIM FIN TAB : 0,007 Gb
INFO: OZG_DIM REL_IND : 0,011 Gb
INFO: OZG_DIM REL TAB : 0,007 Gb
INFO: OZG_DIM SYS IND : 0,245 Gb
INFO: OZG_DIM SYS TAB : 0,376 Gb
INFO: OZG_DIM ZRG_IND : 1,445 Gb
INFO: OZG_DIM ZRG_TAB : 1,045 Gb
INFO: OZG_FACT FIN IND : 1,133 Gb
INFO: OZG_FACT FIN TAB : 1,167 Gb
INFO: OZG_FACT REL_IND : 0,885 Gb
INFO: OZG_FACT REL TAB : 0,622 Gb
INFO: OZG_FACT SYS_IND : 1,485 Gb
INFO: OZG_FACT SYS_TAB : 6,486 Gb
INFO: OZG_FACT_ZRG_IND : 2,057 Gb
INFO: OZG_FACT_ZRG_TAB : 1,634 Gb
INFO: OZG_LOG_IND : 0,007 Gb
INFO: OZG_LOG_TAB : 0,102 Gb
INFO: <**total**> : 18,726 Gb

INFO : pre-check for subsetting is succesful

For performance reasons it is best to de-activate all maintenance background jobs to prevent for
example a parallel statistics gathering job uses unnecessary resources that delay the subset process.

Note: Please deactivate Virtual Private Database (VPD) when this is activated in the OHI Back Office
schema.

Checks and actions before subsetting OHI Data Marts

The subset program creates an empty copy of the original table for each table that is part of a subset
rule and inserts the data based on the rule. This means that the subset program requires a certain
amount of free space in the original tablespaces.

One of the goals of a subset is to reduce the size of a test environment. Just deleting data won’t
release the storage used by the database.

To facilitate this the existing tablespaces and underlying data files can be removed afterwards to free
up disk space in a non-Autonomous Data Warehouse environment. Because the tablespace names
are prescribed by OHI, we need to end up with the original tablespace names.

That is the reason the subset process for OHI Data Marts supports the following steps:

e The DBA renames all tablespaces containing the tables and indexes that occur in a subset
rule. These tablespaces are:

OHI Data Management Technical Reference Guide

DWH_DYND
DWH_DYNI
DWH_STAD
DWH_STAT

Arbitrary new names can be chosen, as these tablespaces need to be removed at the end of
the subset process.

The DBA creates a new set of (smaller) tablespaces with these original names:
DWH_DYND
DWH_DYNI
DWH STAD
DWH STAI

The subset process renames the existing full-size tables and indexes in the renamed
tablespaces

The subset process creates copies of the original tables and indexes with the original names
in the new tablespaces. These contain the subset of the data. The subset process deletes the
original (renamed) tables and indexes, freeing the original (renamed) tablespaces.

The DBA drops the empty renamed tablespaces and underlying data files, freeing up the disk
space and shrinks the other applicable tablespaces of the OHI Data Marts environment as the

data in the tables within these tablespaces are truncated.

Note: the tables are “moved” to the prescribed tablespace, even if they were originally located in the
wrong tablespace.

Sufficient quota for these new tablespaces should be granted to the application owner

Note: In an Autonomous Data Warehouse environment there is only one fixed tablespace called
DATA. As there is no option to rename or (re)create a tablespace on such ADW environment the
above steps are optional.

NOLOGGING and FORCE LOGGING

To decrease the time needed to create a subset the subset tooling uses the NOLOGGING option to
insert the rows in the table and create subsequent indexes on this table. To allow the use of this
NOLOGGING option the database should not should not be running in FORCE LOGGING mode.
When using the NOLOGGING option a full back up has to be made (before and) after the subset
process as a recovery without the required archive- and redo log files is not possible.

PARALLEL_FORCE_LOCAL

When the subset is run on a RAC environment with multiple instances available, the database
parameter PARALLEL_FORCE_LOCAL can be set to FALSE. In this way the queries used by the subset
can make use of the available instances instead of restricting execution to one instance. In this case,
the subset needs to be run while connected to a database service that can use these multiple
instances.

Set the parameter PARALLEL_FORCE_LOCAL back to TRUE before using the OHI application after the
creation of the subset if this was set to FALSE at the start of the subset.

To verify this, the following procedure can be called:
set serveroutput on
exec sdm driver pck.pre check(pi_action => 'S');

15

OHI Data Management Technical Reference Guide

The output looks like the following:
Environment is not a production environment
Environment is not yet a subset.

Database is in restricted session mode

INFO : Tablespace sizes

INFO @ === oo oo o o
INFO : DWH_DYND : 8,780 Gb
INFO : DWH_DYNI : 2,700 Gb
INFO : DWH_STAD : 1,563 Gb
INFO : DWH_STAI : 0,714 Gb
INFO : OZG_DIM SYS_IND : 0,002 Gb
INFO : OZG_DIM SYS_TAB : 0,001 Gb
INFO : OZG_FACT_ SYS_IND : 0,022 Gb
INFO : OZG_FACT_ SYS_TAB : 0,018 Gb
INFO : OZG_LOG_TAB : 0,001 Gb
INFO : STG_DYND : 2,641 Gb
INFO : STG_DYNI : 0,059 Gb
INFO : STG_STAD : 2,423 Gb
INFO : STG_STAI : 0,153 Gb
INFO : WBXRUN : 0,063 Gb
INFO : <**total**> : 19,140 Gb

INFO : pre-check for subsetting is succesful

3.2 Running Subset on Target Database

The subset of an OHI Back Office environment is created based on a given set of policy numbers via a
so called policy selection, see appendix 1 for more explanation. The subset of an OHI Data Marts
environment is not directly driven by this policy selection but by gathering the policy (and other)
numbers available in the OHI Back Office subset environment that it is linked to.

Because of this, an OHI Back Office environment based on a subset should be connected and
available via the default database link in the OHI Data Marts environment where the subset will be
created. Therefore, the OHI Back Office environment should not be in restricted session mode during
the preparation and initialization phase of the subset process of an OHI Data Marts environment.

Note: As subsetting for OHI Data Marts uses the policy numbers from the OHI Back Office
environment it is a requirement that both environments are either masked or not yet masked prior to
the start of the OHI DM data subset process. Creating a subset on a non-masked OHI Data Marts
environment from a masked OHI Back Office subset environment will result in an almost empy OHI
Data Marts environment.

To start the subset process a database job can be created. To do this execute the following command
as the OHI database schema owner:

begin
sdm_driver_ pck.job
(pi_action => 'S’
, pi_masking seed => null
, pi_masking tablespace => null
, pi_subset policy_selection => <The name of the policy selection>
, Pi_job_class => 'DEFAULT_JOB_CLASS'
, pi_force query => 'N'
, pi_force dml = 'Y’
, pi_force_ddl = 'Y'

, pi_parallel policy manual => 'Y'
, Pi_gather_ stats = 'Y’

OHI Data Management Technical Reference Guide

, Pi_compress_bo => 'N'
, pi_force_local => 'N'

)
end;

/

This will start a database scheduler job with the name OHI_SUBSET and run the
SDM_DRIVER_PCK.SUBSET procedure.

It is also possible to start the subset procedure directly in the calling session, but this will require you
to keep the executing SQL*Plus session open and alive.

The parameters have the following impact/effect during the subset process:

PI_ACTION: S for Subset

PI_MASKING_SEED: not used for subsetting

PI_MASKING_TABLESPACE: not used for subsetting

PI_SUBSET_POLICY_SELECTION: The name of the policy selection that acts as the basis for the
subset to be created in an OHI Back Office environment. See appendix 1 for more
explanation.

Note: This parameter is not used in a subset for OHI Data Marts and can be left blank. For
OHI Data Marts the OHI Back Office subset environment is used as source.

PI_JOB_CLASS: The scheduler job class this job will use as a resource group.
PI_FORCE_QUERY: when Y(es) the session is set to FORCE parallel query, when N(o) the
session is set to ENABLE parallel query

PI_FORCE_DML: when Y(es) the session is set to FORCE parallel DML, when N(o) the session
is set to ENABLE parallel DML

PI_FORCE_DDL: when Y(es) the session is set to FORCE parallel DDL, when N(o) the session is
set to ENABLE parallel DDL

PI_PARALLEL_POLICY_MANUAL: when Y(es) the session is set to MANUAL for the parameter
PARALLEL_DEGREE_POLICY, when N(o) the session is set to AUTO for the parameter
PARALLEL_DEGREE_POLICY.

Note: This parameter will not be set in an Autonomous Data Warehouse environment.
PI_GATHER_STATS: When Y(es) table and index statistics will be gathered at the end of the
subset run, when N(o) the gather statistics step is omitted in the subset run. A recent set of
Statistics is necessary for the performance of the application during normal use.

When K(eep) the original table and column statistics will be reused. This way a smaller
database can act as if it was a full production database in regards to query execution.

Note: Gathering of statistics will be executed with the same settings as in step 820 of
OHIPATCH. The time limit of step 820 does not apply here.

PI_COMPRESS_BO: when Y(es) the tables in the subset will be compressed using Oracle
Advanced Compression if no compression is present. When N(o) is chosen no compression is
applied nor removed from the tables in the subset.

Note: An appropriate licence for Advanced Compression is required when using this option.
Note: This parameter is not used in a subset for OHI Data Marts and can be left blank
PI_FORCE_LOCAL: When N(o) the session parameter parallel_force_local will be set to false,
allowing the use of all available instances in a RAC configuration during the process.

All parameters are provided with a default which is the OHI recommended setting.

17

OHI Data Management Technical Reference Guide

These settings will make maximum use of the available resources. If it is not possible or if you don’t
want to use the maximum available resources, you can set these parameters to the other possible
value.

3.3 Monitoring the subset run

There is no direct output during the subset run. However, information about the run is stored in a
table.

The current action is shown in the first row in the following query which can be run under the OHI
schema owner. The schema owner in the queries is the owner of the tables the subset is run for:
select mlg.*

from sdm#log mlg

where mlg.schema owner = '<schema owner>'
order by mlg.id desc;

After the initialization phase is done, the overall progress can be monitored by looking at the status
of the tables with the following query:
select ssd.base table

, ssd.status
from sdm#statement data ssd

where ssd.object type = 'TABLE'
and ssd.usage_ type = 'SUBSET'
and ssd.schema owner = '<schema owner>'

order by ssd.id;

Tables with status D(one) have been processed successfully.

3.4 Checking the outcome

After the subset job and/or procedure is finished a report can be created to check on the process and
possible errors. To create the report the following script can be run under the subset schema owner:

col spool_tijdstip new_value 1_spool_tijdstip noprint
select to_char(sysdate,'YYYYMMDD HH24 MI_SS') spool_tijdstip
from dual

/

set trimspool on

set trim on

set pages 0

set linesize 1000

set long 10000000

set longchunksize 10000000
set feedback off

set showmode off

set flush off

set verify off

spool SUBSET REPORT &l spool_ tijdstip..html

select * from table(sdm driver pck.report(pi_full => 'N'))
/

spool off
undefine 1_spool_tijdstip

This will create an HTML file with the following information

e Provided parameter values

OHI Data Management Technical Reference Guide

e Instance and session information
e Generic run information

e Top 20 long running actions

e Any errors that occurred

When the parameter pi_full is provided with the value ‘Y’ the report will provide a full report of all
executed steps. This option can be requested by OHI Support to investigate issues.

3.5 Processing errors and restarting

If one or more errors occurred the process can be restarted by using the same parameters, after
mitigating the cause of the error, e.g., by increasing a tablespace size.

In that case, the process will detect an incomplete previous run and only process the tables that are
not yet successfully processed.

3.6 Cleaning up

The (renamed) tablespaces that held the original data (as described earlier) can be dropped now, to
release the extra disk space used and decrease the size of the environment.

Note: make sure you check no objects are left in these tablespaces. The subset process has “moved”
all OHI Back Office objects, but you may have custom objects (that should not be present) in these
tablespaces. Use this query to detect remaining tables:

select * from dba_tables
where tablespace_ name like '%PRESUBSET';

Table CREATE$JAVASLOBSTABLE cah be deleted.

Revert the changes made to the database parameters, before using the database as an OHI Back
Office runtime environment.

Note: For correct operation of the application, it is necessary to have an actual set of table and index
statistics. If gathering statistics is omitted during the subset process (via the parameter
PI_GATHER_STATS) these statistics should be gathered manually before using the application. Not
having a recent set of statistics could result in a different experience in the performance of the
application.

3.7 Repeated subsetting

It is possible to repeat subsetting on the same environment. This can be used to test the subsetting
functionality of a newer release after installation on an environment that was subsetted before.

19

OHI Data Management Technical Reference Guide

4 Detailed Process - Data Masking

The data masking process executes "in-place" within an existing OHI BO or OHI DM data store.

4.1 Preparing to-be-masked Database (Target Database)

Data masking can be performed on a full-size OHI BO or OHI DM data store, or on a subset OHI BO or
OHI DM data store.

Note: A subset of an OHI DM data store can be obtained by performing an initial load from a subset
OHI BO environment, see Appendix 3: OHI Data Marts subset alternative. With this method, you
would first mask that OHI BO data store before performing an initial load to construct the companion
OHI DM data store. Masking an OHI DM data store is typically used for a full sized OHI DM
environment.

Note: If you mask an OHI BO data store, you should either:
e Mask the linked OHI DM data store using the same “seed”
or

e Refresh the contents of the linked OHI DM data store by performing an initial load from a
subset OHI BO environment, see Appendix 3: OHI Data Marts subset alternative

Obviously, the masking process takes more time on full-size data stores. During masking, tables with
sensitive columns are temporarily duplicated (this is further explained in Section 4.3). For this reason,
it is necessary to check that tablespaces holding the tables either have enough free space available or
are able to grow (auto extend) during the masking process. Upon completion of data masking a
database (or tablespace) reorganization of some kind will have to be performed to reclaim the then
remaining free space. See Section 4.3 (PI_MASKING_TABLESPACE) for a way to prevent having to
execute such a reorganization.

Obviously, masking should never be executed on a production environment. Therefore, it is required
to adjust the value of the application environment parameter in the OHI system parameter record to
“Test” instead of “Production” (alg_systeem_parameters.applicatie_omgeving).

In OHI Back Office this can be done by modifying the value in the window SYS1010F “General system
parameter” on the tab “Other user settings”.

In an OHI DataMarts the environment type can be set by executing the following statement as
schema owner:

update alg_systeem parameters

set applicatie_omgeving = 'T'

’

commit;

Before masking the target database, it is advisable to create a backup of the database. Depending on
the size of the archive log destination file system, it may be advisable to disable archive logging

OHI Data Management Technical Reference Guide

during the masking process, and, when required, re-enable it afterwards and create a new initial full
backup.

Recommended database configuration during masking

Before running the masking process on the target, it should be configured to maximize performance.
The following parameters are recommended (and might deviate from parameters required for OHI
Back Office or OHI Data Marts at runtime):

e parallel max servers: default value (>1) or (for example) twice the number of
available CPU threads, to enable parallel query during masking
® pga aggregate target:parallel_max_servers * 1GB

Masking an Autonomous Data Warehouse

When masking is performed for OHI Data Marts on an ADW environment it is recommended to use
the “high” connection service.

Checks before masking

The masking program processes one table at a time. It creates a copy of the original table and deletes
that copy after the table has been masked successfully. This means that the masking program
requires a certain amount of free space in the original tablespace or in the specified “temporary”
tablespace. If the masking of a table fails, the copy is not removed (to support a quick retry after the
cause of the failure has been addressed), and processing continues with the next table.

Therefore, the free space needed will be at least the size of the largest table, plus a reserve for any
tables that fail to be processed successfully.

NOTE:

When the masking is performed on a so-called snapshot clone, all tables that are part of the
masking will be recreated and written. Therefore the required amount of disk storage will be at
least the amount of all the tables and indexes in the masking set in the snapshot master.
Masking a snapshot clone is therefore not efficient in terms of disk storage.

To get an indication of the minimum free space that needs to be available, a pre-check can be
executed on the target database before the masking is started.

This check will check some environment settings and will provide a list of the top tables in size, per
tablespace that is part of the masking set. The check also reports the total size used for the tables
and indexes that are part of the masking process.

The pre-check can be executed by running the following command as schema owner in SQL*Plus:

set serveroutput on
exec sdm driver pck.pre check(pi_action => 'M');

The output looks like the following:

Pre masking checks

INFO : Environment is not a production environment

INFO : Environment is not yet masked

INFO : Database is in restricted session mode

INFO : Batch scheduler is not active

INFO : Back Office parameter 'Default country code' is set to 'NL'

INFO : Parameter 'job_queue_processes' is set to 15 with a 'pga_aggregate limit' of 12GB

21

OHI Data Management Technical Reference Guide

INFO :

INFO : Instance parameters

INFO : cpu_count: 8

INFO : job_queue processes: 15

INFO : parallel adaptive multi_user: FALSE
INFO : parallel degree limit: CPU

INFO : parallel force local: TRUE

INFO : parallel max servers: 8

INFO : parallel min_time_threshold: 30
INFO : parallel servers_target: 8

INFO : parallel threads per cpu: 1
INFO : pga_aggregate_ limit: 12G

INFO : pga_aggregate_target: 1G

INFO : sga_max size: 16G

INFO : sga_target: 3G

INFO : shared pool size: 512M

INFO : workarea size policy: AUTO

INFO :

INFO : Largest table to be masked for each tablespace

INFO : Tablespace Table Size Tablespace free
INFO @ —— === mm e -
INFO : OZG_DIM FIN TAB : FSA BEDRIJFSONDERDELEN 0.00 GB, 9.75 GB
INFO : OZG_DIM REL TAB : RBH BANKEN 0.00 GB, 9.76 GB
INFO : OZG_DIM SYS_TAB : ALG_GROEPEN 0.00 GB, 9.25 GB
INFO : OZG_DIM ZRG_TAB : ZAS_ ZORGPARTIJKOPPELINGEN 0.16 GB, 8.40 GB
INFO : OZG_FACT FIN TAB: FSA VORD_JOURN_REGELS 0.27 GB, 8.29 GB
INFO : OZG_FACT REL TAB: RBH RELATIE_ ADRESSEN 0.23 GB, 8.97 GB
INFO : OZG_FACT_SYS TAB: ALGH#MELDINGEN 0.77 GB, 1.07 GB
INFO : OZG_FACT ZRG_TAB: REF_EIGENSCHAP_ WAARDEN 1.30 GB, 1.03 GB
INFO : Total allocated size of tables to be masked: 4.867 GB

INFO : Total allocated size of indexes on tables to be masked: 5.478 GB

INFO : pre-check for masking is succesful

NOTE:

Even if a separate temporary tablespace is used to store the original table during the masking
process, sufficient (additional) space per tablespace should be available in the original/target
tablespace to store the masked tables. Although the tablespace can and will be reused when the
table is recreated, some extra space can be needed as the required percent free per block is applied
during the insert of the data in the table. This can take up more space than the free space used in the
current blocks, if the required percentage has changed over time. Also, the datablocks of the original
table can be fragmented in the tablespace and recreating the table therefore might use another
section in the tablespace.

As a rule of thumb it is advised to have the size of the largest table + 25% per tablespace available.
The largest table per tablespace is reported in the above mentioned pre_check procedure.

NOLOGGING and FORCE LOGGING

To decrease the time needed to mask an environment the masking tooling uses the NOLOGGING
option to insert the rows in the table and create subsequent indexes on this table. To allow the use of
this NOLOGGING option the database should not should not be running in FORCE LOGGING mode.
When using the NOLOGGING option a full back up has to be made (before and) after the masking
process as a recovery without the required archive- and redo log files is not possible.

PARALLEL_FORCE_LOCAL

OHI Data Management Technical Reference Guide

When the subset is run on a RAC environment with multiple instances available the database
parameter PARALLEL_FORCE_LOCAL can be set to FALSE. In this way the queries used by the masking
process can make use of the available instances instead of restricting to one instance. The masking
process needs to be run on a database service which can use these multiple instances in this case.

Afterwards this parameter needs to be set to TRUE when using the OHI Back Office application again.
JOB_QUEUE_PROCESSES

The database parameter JOB_QUEUE_PROCESSES should be set to at most 10 times the amount of
GB set for the parameter PGA_AGGREGATE_LIMIT. If, for example, the pga_aggregate_limit is set to
10GB, the maximum for job_queue_processes is 100.

RESTRICTED SESSION MODE

Before the masking can be executed the database must be set in restricted session mode to prevent
unwanted access to the schema. When masking a OHI Datamarts environment the OHI Back Office
environment acting as the source environment for the OHI Datamarts environment should NOT be in
restricted session mode during the preparation and initialization phase of the masking process.

During this phase the setup for the flex field masking will be synchronized from the OHI Back Office
environment to the OHI Data Marts environment. The next chapter describes how to setup the flex
fields for masking in the OHI Back Office environment.

4.2 Masking flex fields

Flex fields are flexible, like the name says, and your organization can determine what they are used
for and what is stored in them. As such, it may be that certain flex fields contain sensitive information
that should also be masked.

In the OHI BO application it is possible to indicate if the value for a specific flex field should be
masked. In window ZRG7019F (Flex field) the indication “Mask?” can be set to “Yes” in order to mask
the value for this flex field. If set to “No” (default value) masking will not take place. Masking the OHI
DM application will also use this setup in OHI BO.

23

OHI Data Management Technical Reference Guide

Type o Attribute { Care Role [Relation I Key Reference
Description |FLE)(FIELD DESCRIPTION

Protnt [Flex field prompt

Help Text [

Data Type [iphanumeric v| Uppercase [voe = Length [20 [

sk
Allowed |aives E

[Lowwer) Walue Upper Yalue Description

| |
| |
| |
, | |
1 | |
| |
| |
| |
| |
| |

Note: The value of a flex field can be used to influence the logic of processes like the claims
processing. Masking of these flex fields can interfere with this logic and may lead to unpredictable
and/or undesirable results. Therefore, the advice is to mask only those flex fields that are actually
privacy-sensitive.

Note: The setup will be used during the masking process for OHI Back Office as well as OHI Data
Marts. It is advised to do the setup before masking both environments so both masking runs will use
the same setup. Changing the setup in between runs will cause differences in the masking sets.

4.3 Running Masking on Target Database

To start the masking process a database job can be created. To do this, execute the following
command as the OHI database schema owner:

begin
sdm_driver_ pck.job
(pi_action => 'M'
, pi_masking_ seed => <your ‘secret’ integer value>
, pi_masking tablespace => 'SCRATCH_TBS'
, pi_subset policy_ selection => null
;, Pi_job_class => 'DEFAULT JOB_CLASS'
, pi_force query => 'N'
, pi_force dml = 'Y'
, pi_force ddl = 'Y’
, pi_parallel policy manual => 'Y'
, Pi_gather_ stats => 'Y’
, Pi_compress_bo => 'N'
, pi_force local => 'N'
);
end;
/

This will start a database scheduler job with the name OHI_MASKING and run the
SDM_DRIVER_PCK.MASK procedure.

It is also possible to start the mask procedure directly in the calling session, but this will require you
to keep the executing SQL*Plus session open and alive.

OHI Data Management Technical Reference Guide

The parameters do have the following impact/effect during the masking process:

e PI_ACTION: M for Masking

e PI_MASKING_SEED: this can have a value between 0 and 4294967295. This will randomize
the masking output and prevent identical masked strings for identical source strings for
different OHI Back Office customers.

Note: If you want to mask an OHI Back Office environment and a OHI Data Marts
environment that should be coupled together make sure the value of the seed is the same, so
make sure to store it in a safe place.

e PI_MASKING_TABLESPACE: when provided each table to be masked will be moved to this
tablespace before it is masked. For this an existing but empty tablespace should be provided.
If no tablespace is provided the temporary table object is created in the same tablespace as
the table to be masked. Providing a tablespace might increase the masking time, because the
tables to be masked will first have to be moved to the chosen tablespace, but will have the
benefit (after dropping this tablespace) that the size of the original tablespaces is not
significantly increased after masking.

Note: In an Autonomous Data Warehouse environment there is only one fixed tablespace
called DATA. As there is no option to create a tablespace on such ADW environment this
parameter can be left with the default value

e Pl _JOB_CLASS: The scheduler job class this job will use as a resource group. For an
Autonomous Data Warehouse environment use the job class best fit for the resource-
intensive masking job, e.g., ‘HIGH'.

e PI_FORCE_QUERY: when Y(es) the session is set to FORCE parallel query, when N(o) the
session is set to ENABLE parallel query

e PI_FORCE_DML: when Y(es) the session is set to FORCE parallel DML, when N(o) the session
is set to ENABLE parallel DML

e PI_FORCE_DDL: when Y(es) the session is set to FORCE parallel DDL, when N(o) the session is
set to ENABLE parallel DDL

e PI_PARALLEL_POLICY_MANUAL: when Y(es) the session is set to MANUAL for the parameter
PARALLEL_DEGREE_POLICY, when N(o) the session is set to AUTO for the parameter
PARALLEL_DEGREE_POLICY.

Note: This parameter will not be set in an Autonomous Data Warehouse environment.

e Pl_GATHER_STATS: When Y(es) table and index statistics will be gathered at the end of the
masking run, when N(o) the gather statistics step is omitted in the masking run. A recent set
of Statistics is necessary for the performance of the application.

When K(eep) the original table and column statistics will be reused
Note: Gathering of statistics will be executed with the same settings as in step 820 of
OHIPATCH. The time limit of step 820 does not apply here.

e PI_COMPRESS_BO: when Y(es) the tables in the masking set will be compressed using Oracle
Advanced Compression if no compression is present. When N(o) is chosen no compression is
applied nor removed from the tables in the masking set. This option is only applicable when
masking an OHI Back Office database.

Note: An appropriate licence for Advanced Compression is required when using this option.

e Pl_FORCE_LOCAL: When N(o) the session parameter parallel_force_local will be set to false,
allowing the use of all available instances in a RAC configuration during the process

25

OHI Data Management Technical Reference Guide

All parameters are provided with a default which is the OHI recommended setting, except for the
tablespace name.

These settings will make maximum use of the available resources. If it is not possible or if you don’t
want to use the maximum available resources, you can set these parameters to the other possible
value.

4.4 Monitoring the masking run

There is no direct output during the masking run. However, information about the run is stored in a
table.

The current action is shown in the first row in the following query which can be run under the OHI
schema owner. The schema owner in the queries is the owner of the tables that are (being) masked:
select mlg.*

from sdm#log mlg

where mlg.schema owner = '<schema owner>'
order by mlg.id desc;

After the initialization phase is done, the overall progress can be monitored by looking at the status
of the tables with the following query:

select ssd.base table

, ssd.status

from sdm#statement data ssd

where ssd.object type = 'TABLE'

and ssd.usage_ type = '"MASKING'

and ssd.schema owner = '<schema owner>'

order by ssd.id;

Tables with status D(one) have been processed successfully.

4.5 Checking the outcome

After the masking job and/or procedure is finished a report can be created to check on the process
and possible errors. To create the report the following script can be run under the masked schema
owner

col spool_tijdstip new_value 1_spool_tijdstip noprint
select to_char(sysdate, 'YYYYMMDD HH24 MI_SS') spool_tijdstip
from dual

/

set trimspool on

set trim on

set pages 0

set linesize 1000

set long 10000000

set longchunksize 10000000
set feedback off

set showmode off

set flush off

set verify off

spool MASKING REPORT &l spool_ tijdstip..html

select * from table(sdm driver pck.report(pi_full => 'N'))
/

OHI Data Management Technical Reference Guide

spool off
undefine 1_spool_tijdstip

This will create an HTML file with the following information

e Provided parameter values

e Instance and session information
e Generic run information

e Top 20 long running actions

e Any errors that occurred

When the parameter pi_full is provided with the value ‘Y’ the report will provide a full report of all
executed steps. This option can be requested by OHI Support to investigate issues.

4.6 Processing errors and restarting

If one or more errors occurred the process can be restarted by using the same parameters, after
mitigating the cause of the error, e.g., by increasing a tablespace size.

In that case, the process will detect an incomplete previous run and only process the tables that are
not yet successfully masked.

4.7 Cleaning up

If you supplied a value for PI_MASKING_TABLESPACE (to move the tables with sensitive columns to an
empty tablespace, as described earlier) you can drop that tablespace now, to release the extra disk
space used by the masking process.

Revert the changes made to the database parameters before using the database as an OHI Back
Office or OHI Data Marts runtime environment.

Note: For correct operation of the application, it is necessary to have an actual set of table and index
statistics. If gathering statistics is omitted during the masking process (via the parameter
PI_GATHER_STATS) these statistics should be gathered manually before using the application. Not
having a recent set of statistics could result in a different experience in the performance of the
application.

4.8 Repeated data masking

It is possible to repeat data masking on the same environment. This can be used to test the data
masking functionality of a newer release after installation on an environment that was masked
before.

27

OHI Data Management Technical Reference Guide

5 Appendix 1: Define a policy selection

A policy selection within OHI Back Office is used to determine which rows should be included in the
subset.

In this section the setup of the policy selection is explained in more detail.

A policy selection is a set of policy numbers. Typically, you should determine a representative set of
policies to be included in your subset, as this forms the base of the data that will be included in the
subset. All policy related data, including relevant claims, will be incorporated in the subset. So,
determining a well-considered policy selection is an important aspect in setting up your subset
environment.

Note: Regression and integration tests may require certain types of data or cases to be present. Make
sure to include these in your policy selection.

There are two ways you can create a policy selection:

1. Use the OHI Back Office Policy Selection window to setup a policy selection.
2. Use SQL*Plus to directly populate the underlying two tables of a policy selection.

The figure below shows the window ZRG2070F “Policy Selection”. You have to enter a name for the
policy selection (this name will be input for one of the steps later on). The description is optional. All
other items can be left empty or at their default value. In the second block you enter all required
policy numbers.

W v 2R #22E FXE® A o ? H & %

Name

Description

To Use As

Brand

Broker

Group Contract
Target Gr. Umbrelia
Collection

® Restriction ' Exclusion

As of Date

8]

Branded Prod. Combi. | [[[

[Generate Default vaie | Clear Selection

Policyholder

Group Contr. Broker Target Group

Seq. No.

Policy Product Combinations

Branded Product

Coverage

Structure D Struc. YD Step Care Obligation

<[

=

Unique policy sele
Record: 111

ction name

The Policy Selection window.

The two underlying tables for the Policy Selection screen are depicted in Figure 3.2. They are:

OHI Data Management Technical Reference Guide

e VER _POLIS_SELECTIES, and
e VER POL_PER POS.

It might be more convenient to use a SQL tool, such as SQL*Plus, to create the necessary rows
manually in these tables.

VER_POLIS_SELECTIES Policy selection name

Involved policy numbers

VER_POL_PER_POS

Figure 3.2: Policy selection tables.

For example, the following two insert statements set up a policy selection named
SAMPLE_OF_5_PERCENT that holds a random sample of 5% of the total number of policies available
in the source database.
insert into ver polis_selecties (naam) values('SAMPLE OF 5 PERCENT') ;
insert into ver_ pol_per pos (pos_id, pol_nr)
select (select id from ver polis_selecties where naam = 'SAMPLE OF 5 PERCENT')
, nr

from ver polissen SAMPLE (5) ;
commit;

Of course, you can execute multiple insert into ver_pol_per pos Statements with different
selections to add policies to the policy selection.

For running these statements, you need an account with (temporary) insert privileges on these tables
unless you use the OHI BO table owner account, which is strongly discouraged given the security
impact.

Note: Creating a policy selection without adding policies to this selection, so no rows for the selection
in VER_POL_PER_POS, will create a so called 0% subset during the subset process. A 0% subset is a
subset with all setup and configuration data, including brokers, healthcare providers and group
contracts, but without policy and claims data and without the financial data (payables and
receivables).

29

OHI Data Management Technical Reference Guide

6 Appendix 2: Masking a custom database schema

This appendix provides a step-by-step guide to mask a custom database schema that contains data
extracted from an OHI environment. This is done in the same way and with the same rules as for the
OHI environment.

This guide is not meant to mask any database with any dataset. Only data from an OHI environment
in a custom development schema can be masked, with the limitation that no additional masking rules
other than those provided and used to mask an OHI environment can be used and are supported.

6.1 Creating the masking rule set

It is assumed that the custom development schema is in the same database as the OHI database
schema and that the custom development schema has been granted (directly!!) all privileges that
have been granted to the OZG_ROL_DIRECT role.

Note that is is not possible to mask hidden, virtual or identity columns.

Each table and/or column that should be masked should be registered via the procedure
sdm_driver_pck.add_custom_rule.

This procedure has the following interface:

procedure add custom_rule

pPi_schema_owner in
pi_table name in
pi_column name in
pi_masking rule in
pi_col_gender in
pi_col_first name in
pi_col_last_name in
pPi_col_country in
Pi_col_street in
pPi_col _city in
pi_col _postal_code in
Pi_col_house_number in

~ N N S S S S S S S SN~
~.

The parameters

sdmifcustom_schema_masking.
sdmicustom_schema masking.
sdmicustom_schema masking.
sdmifcustom_schema_masking.
sdmifcustom_schema_masking.
sdm#custom_schema masking.
sdmicustom_schema masking.
sdmifcustom_schema_masking.
sdmifcustom_schema_masking.
sdmifcustom_schema _masking.
sdmicustom_schema _masking.
sdmifcustom_schema_masking.

schema_owner%type

table_ name$type

column_ name%type

masking rule%type

col_gender%type default null

col first name%type default null
col_ last name%type default null
col_country%type default null
col_street%type default null

col _city%type default null

col postal_ code$type default null
col _house number$%type default null

e PI_SCHEMA_OWNER: The custom development database schema that holds the table that is
to be masked. It is possible to register tables from multiple database schemas, but each
masking run will only process tables from one schema and run from that schema.

e PI_TABLE_NAME: The table name of the table to be masked or truncated

e PI_COLUMN_NAME: The column name which should be masked; must be left empty when
the table should be truncated

e PI_MASKING_RULE: The masking rule(*) that should be applied to the column or table

e PI_COL_GENDER: Column name (or expression) of the column containing the gender value

e PIL_COL_FIRST_NAME: Column name (or expression) of the column containing the first name

value

e PIL_COL_LAST_NAME: Column name (or expression) of the column containing the last name

value

e PI_COL_COUNTRY: Column name (or expression) of the column containing the country value
e PI_COL_STREET: Column name (or expression) of the column containing the street value

OHI Data Management Technical Reference Guide

e PIL_COL_CITY: Column name (or expression) of the column containing the city value

e PI_COL_POSTAL_CODE: Column name (or expression) of the column containing the postal
code value

e PI_COL_HOUSE_NUMBER: Column name (or expression) of the column containing the house
number value

(*) Available masking rules for the parameter PI_MASKING_RULE are:

e TRUNCATE: truncate the table, in other words all rows are removed leaving an empty table

e NULL_VALUE: the column value is removed

e TRANSLATE: replaces the content with dummy data depending on the datatype of the
column.

e TRANSLATE_UNIQUE: replaces the content of a varchar column with dummy characters, but
will make sure the content will keep its uniqueness

e DATE: adjust the date to the 1%, 11'" or 21 of the month, can be used e.g., for a date of birth

e REL_NR: replaces the relation number with a new calculated relation number

e POL_NR: replaces the policy number with a new calculated policy number

e DCR_NR: replaces the claim number with a new calculated claim number

e KENMERK: replaces an invoice reference number with a new number

e BSN: replaces the existing social security number with a new calculated social security
number

e PHONE_1: masks a phone number

e PHONE_2: masks a phone number with a different pattern

e FAX: masks a fax number

e BANK: replaces the bank account number with a new calculated bank account number (IBAN)

e LASTNAME: replaces the last name of a person with a new last name

e PREFIX_NAME: replaces the lastname prefix of a person with a new prefix

e FIRSTNAME: replaces the first name of a person with a new first name

e FIRSTNAME_LETTER: replaces the first letter of the first name of a person with a new first
letter based on the new first name

e EMAIL: replaces the email of a person with a new email based on the new first and last name
of that person

e STREET: replaces the street part of an address with a fake street

e CITY: replaces the city part of an address with a fake city

e COUNTRY: replaces the country part of an address with a fixed one if this is not the Dutch
country code

e HOUSENUMBER: replaces the house number of an address

e POSTAL_CODE: replaces the postal code part of an address with a fake postal code

e POSTAL_CODE_LETTER: replaces the character part of a Dutch postal code with a fake
character part

e POSTAL_CODE_NUMBER: replaces the numerical part of a Dutch postal code with a fake
numerical part

31

OHI Data Management Technical Reference Guide

6.2 The use of the PI_COL_* parameters

Masking is based on the data in the given row. Sometimes the name of the column itself is enough,

sometimes additional data is required.

For instance a gender is needed to differentiate between male and female first names.
The table below shows which additional columns are needed for each masking rule. If the rule is not
mentioned in this table, no additional columns are required.

Some of the required column parameters may seem unnecessary, e.g., a pi_col_postal_code for the
column with/for the postal code, but these are required for the correct implementation.

Rule Additional Parameters

FIRSTNAME

PI_COL_GENDER

FIRSTNAME_LETTER

PI_COL_GENDER, PI_COL_FIRST_NAME

PREFIX_NAME

PI_COL_LAST_NAME

EMAIL

PI_COL_GENDER, PI_COL_FIRST_NAME,
PI_COL_LAST_NAME

STREET

PI_COL_COUNTRY, PI_COL_POSTAL_CODE,
PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also
present in the table, also the following are
required:

PI_COL_STREET, PI_COL_CITY

CITY

PI_COL_COUNTRY, PI_COL_POSTAL_CODE,
PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also
present in the table, also the following are
required:

PI_COL_STREET, PI_COL_CITY

COUNTRY

PI_COL_COUNTRY, PI_COL_POSTAL_CODE,
PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also
present in the table, also the following are
required:

PI_COL_STREET, PI_COL_CITY

HOUSENUMBER

PI_COL_COUNTRY, PI_COL_POSTAL_CODE,
PI_COL_HOUSENUMBER

OHI Data Management Technical Reference Guide

If addresses outside of the Netherlands are also
present in the table, also the following are
required:

PI_COL_STREET, PI_COL_CITY

POSTAL_CODE PI_COL_COUNTRY, PI_COL_POSTAL_CODE,
PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also
present in the table, also the following are
required:

PI_COL_STREET, PI_COL_CITY

POSTAL_CODE_LETTER PI_COL_COUNTRY, P|_COL_POSTAL_CODE,
PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also
present in the table, also the following are
required:

PI_COL_STREET, PI_COL _CITY

POSTAL_CODE_NUMBER PI_COL_COUNTRY, P|_COL_POSTAL_CODE,
PI_COL_HOUSENUMBER

If addresses outside of the Netherlands are also
present in the table, also the following are
required:

PI_COL_STREET, PI_COL _CITY

The PI_COL columns can contain the actual column name as well as an expression.

6.3 Execution

Masking of a custom development schema is done with the same interface as for OHl itself.

The procedure sdm_driver_pck.job, or sdm_driver_pck.mask, should be executed under the custom
development schema owner. To be able to run the job, the owner of the custom schema must have
the privileges ‘CREATE JOB’ and ‘EXECUTE ON DBMS_SCHEDULER'.

6.4 Example script

The following script is an example showing a possible setup.
NB. The procedure SDM_DRIVER_PCK.DEL_CUSTOM_SCHEMA will remove all rules for the given
custom development schema.

This example assumes your script is the “master” that is maintained, and the rules are re-created
whenever there is a change in your custom schema that impacts the masking.

For this example, the following custom development tables are used:

create table SVS_PERSONEN
(ID NUMBER not null,

33

OHI Data Management Technical Reference Guide

BSN VARCHAR2 (20) not null,
ACHTERNAAM VARCHAR?2 (240) ,
VOORNAAM VARCHAR?2 (240) ,
GEBDATUM DATE not null,
GESLACHT VARCHAR2 (1) not null,
REKENINGNUMMER VARCHAR?2 (40) ,
DEC_CODE VARCHAR2 (30) ,

EMAIL VARCHAR2 (240) ,

UZOVI VARCHAR?2 (36) ,

MERK VARCHAR2 (5) not null,
ZV_PAKKET VARCHAR2 (5) ,
AV_PAKKET VARCHAR2 (5) ,

NOTITIES VARCHAR2 (4000)

)
ALTER TABLE SVS_PERSONEN ADD CONSTRAINT SVS_PSN_PK PRIMARY KEY (ID);
ALTER TABLE SVS_PERSONEN ADD CONSTRAINT SVS_PSN_UK1 UNIQUE (BSN);

create table SVS_ADRESSEN

(ID NUMBER not null,
DATUM_INGANG DATE not null,
BSN VARCHAR2 (20) not null,
PC_LETTER VARCHAR2 (2) ,
PC_NR NUMBER (4) ,
HUISNR NUMBER (5) ,

LAND VARCHAR2 (2) ,

BUITENLAND STRAAT VARCHAR2 (35) ,
BUITENLAND_ POSTCODE VARCHAR? (15) ,
BUITENLAND_ PLAATS VARCHAR? (35) ,
NOTITIES VARCHAR2 (4000)

)

ALTER TABLE SVS_ADRESSEN ADD CONSTRAINT SVS_ADR PK PRIMARY KEY (ID);

ALTER TABLE SVS_ADRESSEN ADD CONSTRAINT SVS_ADR FK_PSN FOREIGN KEY (BSN) REFERENCES
SVS_PERSONEN (BSN) ;

create table SVS_TEKSTEN

(ID NUMBER not null,
BSN VARCHAR2 (20) not null,
TEKST VARCHAR2 (4000)

)

ALTER TABLE SVS_TEKSTEN ADD CONSTRAINT SVS_TKN PK PRIMARY KEY (ID);

ALTER TABLE SVS_TEKSTEN ADD CONSTRAINT SVS_TKN FK PSN FOREIGN KEY (BSN) REFERENCES
SVS_PERSONEN (BSN) ;

INSERT INTO SVS_PERSONEN(ID, BSN, ACHTERNAAM, VOORNAAM, GEBDATUM, GESLACHT, REKENINGNUMMER,
DEC_CODE, EMAIL, UZOVI, MERK, ZV_PAKKET, AV_PAKKET, NOTITIES)

VALUES (1, '826897083', 'Jansen', 'Jan',to_date('01-06-1980', 'DD-MM-

YYYY'),'M', 'NL69INGB0123456789"', 'KLT13405', 'jansen_j@example.org', '0000','DDZ','ZVNAT', 'ALLIN'
, 'Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.');

INSERT INTO SVS ADRESSEN(ID, DATUM INGANG, BSN, PC_LETTER, PC_NR, HUISNR, LAND,
BUITENLAND STRAAT, BUITENLAND POSTCODE, BUITENLAND PLAATS, NOTITIES) VALUES(1,to_date('01-01-
1990', 'DD-MM-YYYY'), '826897083', 'CB', '1071' , 29, 'NL',NULL,NULL,NULL,NULL);

INSERT INTO SVS_TEKSTEN(ID, BSN, TEKST) VALUES (1,'826897083', 'Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do ejiusmod tempor incididunt ut labore et dolore magna
aliqua.');

INSERT INTO SVS_TEKSTEN(ID, BSN, TEKST) VALUES (2,'826897083','Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat');

COMMIT;

begin
-- clear the rules for the schema SVS_OWNER
sdm_driver pck.del custom_schema(pi_schema owner => 'SVS_OWNER');

--table SVS_TEKSTEN should be made empty
sdm_driver pck.add custom rule
(pi_schema owner => 'SVS_OWNER'

, pPi_table_name
, Pi_column_name
, pi_masking rule

)

sdm_driver pck.add
(pi_schema_ owner

, pPi_table_name

, Pi_column name

, pi_masking rule

)i

sdm_driver pck.add
(pi_schema_ owner

, pi_table name

, Pi_column name

, Pi_masking rule

)i

-- Gender in OHI is
-- the custom data

sdm_driver pck.add_:
(pi_schema_owner

, pi_table name

, pi_column_name

, pi_masking rule

, pPi_col_gender

)

OHI Data Management Technical Reference Guide

=> 'SVS_TEKSTEN'
=> null
=> 'TRUNCATE'

custom_rule
=> 'SVS_OWNER'
=> 'SVS_PERSONEN'
=> 'BSN'
=> 'BSN'

custom_rule
=> 'SVS_OWNER'
=> 'SVS_PERSONEN'
=> 'ACHTERNAAM'
=> 'LASTNAME'

stored as 1 or 2; example shows a conversion if

gender column has another domain set for the GENDER
custom_rule

=> 'SVS_OWNER'

=> 'SVS_PERSONEN'

=> 'VOORNAAM'

=> 'FIRSTNAME'

=> 'DECODE (GESLACHT,''M'',1,''V'', 2, GESLACHT) '

sdm_driver pck.add custom rule

(pi_schema_owner
, pi_table name

, pi_column_name
, pi_masking rule

)

=> 'SVS_OWNER'
=> 'SVS_PERSONEN'
=> 'GEBDATUM'

=> 'DATE'

sdm_driver pck.add custom_rule

(pi_schema_owner
, pi_table name

, Pi_column name
, pi_masking rule

)i

=>
=>
=>
=>

'SVS_OWNER'
'SVS_PERSONEN'

' REKENINGNUMMER '
"BANK'

sdm_driver pck.add custom_rule

(pi_schema_ owner

, pi_table name

, Pi_column name

, pi_masking rule

, Pi_col_gender

; Pi_col first name
Pi_col_last_name

)i

'SVS_OWNER'
'SVS_PERSONEN'
"EMAIL'
'"EMAIL'
'GESLACHT'

' VOORNAAM'

' ACHTERNAAM'

sdm_driver pck.add custom_rule

(pi_schema_ owner
, pi_table name

, Pi_column name
, Pi_masking rule

)i

=> 'SVS_OWNER'
=> 'SVS_PERSONEN'

=> 'DEC_CODE'

=> 'TRANSLATE UNIQUE'

sdm_driver pck.add custom rule

(pi_schema owner
, pi_table name

, Pi_column_name
, Pi_masking rule

)i

-- NOTE: although the SVS_PERSONEN.BSN is masked by a rule

=> 'SVS_OWNER'
=> 'SVS_PERSONEN'
=> 'NOTITIES'
=> 'TRANSLATE'

above, all other

BSN columns

-- should be masked in the same way; there is no automatic detection of the same type of

OHI Data Management Technical Reference Guide

-- columns or foreign key relation dependencies
sdm_driver pck.add custom rule

(pi_schema_owner => 'SVS_OWNER'

, pi_table name => 'SVS_ADRESSEN'
, Pi_column_name => 'BSN'

, Pi_masking rule => 'BSN'

)

sdm_driver_ pck.add custom_rule

(pi_schema_ owner => 'SVS_OWNER'

, pPi_table_name => 'SVS_ADRESSEN'

, pi_column name => 'PC_LETTER'

, pi_masking rule => 'POSTAL_CODE_ LETTER'
, Pi_col_country => ""'NL'"'

, Pi_col _postal code => 'PC_NR||PC_LETTER'
Pi_col_house_number => 'HUISNR'

-- NOTE: although a country code column is present in this table (column LAND)

-- this example uses a literal value for the country code

-- In this specific example we ‘know’ that it is a Dutch (NL) specific postal code

-- NOTE: In this case the postal code is in the table separated into two columns.

-- you can use a concatenation to make these two columns act as one for the masking rule
sdm_driver pck.add custom rule

(pi_schema owner => 'SVS_OWNER'

, pi_table name => 'SVS_ADRESSEN'

, Pi_column name => '"PC_NR'

, pi_masking rule => 'POSTAL_CODE_NUMBER'
, pi_col_country => ""'NL'"'

, pPi_col postal code => 'PC_NR||PC_LETTER'
, pi_col_house_number => 'HUISNR'

sdm_driver pck.add custom rule

(pi_schema_ owner => 'SVS_OWNER'

, pi_table name => 'SVS_ADRESSEN'

, Pi_column name => 'BUITENLAND STRAAT'
, pi_masking rule => 'STREET'

, pi_col_country => 'LAND'

, Pi_col_street => 'BUITENLAND_ STRAAT'
, Pi_col _city => 'BUITENLAND PLAATS'

, Pi_col postal code => 'BUITENLAND POSTCODE'
; pi_col_house_number => 'HUISNR'
)i

sdm_driver_ pck.add custom_rule

(pi_schema_ owner => 'SVS_OWNER'

, pi_table name => 'SVS_ADRESSEN'

, Pi_column name => 'BUITENLAND POSTCODE'
, pi_masking_ rule => 'POSTAL_ CODE'

, Pi_col_country => 'LAND'

, Pi_col_street => 'BUITENLAND_ STRAAT'

, pi_col _city => 'BUITENLAND PLAATS'

, Pi_col postal code => 'BUITENLAND POSTCODE'
, pPi_col house_number => 'HUISNR'
)i

sdm_driver pck.add custom_rule

(pi_schema owner => 'SVS_OWNER'

, pi_table name => 'SVS_ADRESSEN'

, pi_column_name => 'BUITENLAND PLAATS'
, Pi_masking rule => 'CITY'

, Pi_col_country => 'LAND'

, Pi_col_street => 'BUITENLAND_ STRAAT'
, pi_col _city => 'BUITENLAND PLAATS'

, Pi_col postal code => 'BUITENLAND POSTCODE'
; pi_col house_number => 'HUISNR'

OHI Data Management Technical Reference Guide

-- NOTE: besides a literal or concatenation also simple sql functions like NVL are supported
sdm_driver pck.add custom rule

(pi_schema_owner

, pi_table name

, Pi_column_name

, Pi_masking rule

, Pi_col_country

, Pi_col_street

, Pi_col_city

, Pi_col_postal_ code

;, pi_col house_number =

=>

'SVS_OWNER'
'SVS_ADRESSEN'

"HUISNR'

' HOUSENUMBER '

"LAND '

'"BUITENLAND STRAAT'

'BUITENLAND_ PLAATS'

"NVL (PC_NR| | PC_LETTER, BULITENLAND POSTCODE) '
"HUISNR'

sdm_driver pck.add custom_rule

(pi_schema_ owner

, pPi_table_name

, pi_column name

, pi_masking rule

, Pi_col_country

, Pi_col_street

, Pi_col _city

, Pi_col postal_ code

;, Pi_col_house_number =

'SVS_OWNER'

'SVS_ADRESSEN'

"LAND '

' COUNTRY '

’LAND’

'BUITENLAND_STRAAT'

'BUITENLAND_PLAATS'

'NVL (PC_NR| | PC_LETTER, BUITENLAND POSTCODE) '
"HUISNR'

sdm_driver pck.add custom rule

(pi_schema_owner

, pi_table name

, Pi_column_name

, Pi_masking rule

);

-- NOTE: Don’t forget
commit;

end;

/

=>
=>

'SVS_OWNER'
'SVS_ADRESSEN'
'NOTITIES'
'NULL_VALUE'

commit the transactions

37

OHI Data Management Technical Reference Guide

7 Appendix 3: OHI Data Marts subset alternative

OHI Data Marts (OHI DM) is certified to extract data from sub-setted and/or data-masked OHI Back
Office (OHI BO) data stores.

The following types of OHI BO data stores are supported:

e subsetted
e subsetted and data-masked
e data-masked

From release 10.18.1.0.0 onwards, OHI DM can be data-masked itself as well. The process to mask
OHI DM is described in chapter 4.

When a subset OHI DM environment is needed you could also use the method described in this
chapter, as opposed to creating a subset via the software as described in chapter 3. The main
difference using this approach is the fact that this method does not have the history in the dataset of
multiple load runs with the data mutations in time.

Whether or not the source OHI BO environment is already masked determines whether the resulting
OHI DM environment is masked. With this method for creating a subset OHI DM environment, an
initial load is needed from the OHI BO subset environment.

When you need a full size masked OHI DM environment the masking process from Detailed Process -
Data Masking can be applied.

Theoretically you can create a subset OHI BO environment and corresponding OHI DM environment
and then mask them both independently, but this is more time consuming and more error-prone
than using a subset masked OHI BO environment to create the corresponding OHI DM environment.

7.1 Preparing OHI Data Marts data-store

An empty OHI DM data store is required to be able to load data from a subsetted and/or data-masked
OHI BO data store into OHI DM. The SQL script OBDRESET.sql (available within 0ZG_TEMPLATES.zip) is
provided to create an empty OHI DM data store by truncating all the necessary OHI DM tables. This
script can be run using SQL*Plus while connected as the OBD_OWN account.

We strongly advise to create a clone from an existing OHI DM environment which is at the same OHI
patch-level as the OHI BO data store and use this cloned environment to run the SQL script
OBDRESET.sql against. Make sure the database link SRC_OPENZORG is referring to the correct OHI BO
data store.

NOTE: This SQL script should never be used within a production environment!

OHI Data Management Technical Reference Guide

7.2 Loading OHI Data Marts

Performing loads from a subsetted and/or data-masked OHI BO environment is identical to loading
from a normal OHI BO environment. See the OHI Back Office online help for information on loading
(topic ‘Loading OHI Data Marts’).

You can proceed with a full initial load from the OHI BO subset environment by not specifying up to
which moment to load. Or you choose to first load older data up to a specific date and divide the
work in this way, by using additional incremental loads for later periods to load.

39

