
` 

62 

Start 

Oracle Health Insurance Back 
Office 

HTTP Service Layer (HSL) 
Installation & Configuration Manual 

 

Version 1.48 

Part number: G49637-01 

January 15, 2026



 

 

 

 

Copyright © 2016, 2026, Oracle and/or its affiliates. All rights reserved. 

This software and related documentation are provided under a license agreement containing restrictions on use 

and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license 

agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, 

distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, 

disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. 

The information contained herein is subject to change without notice and is not warranted to be error-free. If 

you find any errors, please report them to us in writing. 

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf 

of the U.S. Government, the following notice is applicable: 

U.S. GOVERNMENT RIGHTS 

Programs, software, databases, and related documentation and technical data delivered to U.S. Government 

customers are “commercial computer software” or “commercial technical data” pursuant to the applicable 

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, 

disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the 

applicable Government contract, and, to the extent applicable by the terms of the Government contract, the 

additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). 

Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065. 

This software is developed for general use in a variety of information management applications. It is not 

developed or intended for use in any inherently dangerous applications, including applications which may 

create a risk of personal injury. If you use this software in dangerous applications, then you shall be 

responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of 

this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this 

software in dangerous applications. 

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of 

their respective owners. 

This software and documentation may provide access to or information on content, products, and services from 

third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties 

of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will 

not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, 

products, or services. 

Where an Oracle offering includes third party content or software, we may be required to include related 

notices. For information on third party notices and the software and related documentation in connection with 

which they need to be included, please contact the attorney from the Development and Strategic Initiatives 

Legal Group that supports the development team for the Oracle offering. Contact information can be found on 

the Attorney Contact Chart. 

The information contained in this document is for informational sharing purposes only and should be 

considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement 

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in 

making purchasing decisions. The development, release, and timing of any features or functionality described 

in this document remains at the sole discretion of Oracle. 

This document in any form, software or printed matter, contains proprietary information that is the exclusive 

property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of 

your Oracle Software License and Service Agreement, which has been executed and with which you agree to 

comply. This document and information contained herein may not be disclosed, copied, reproduced, or 

distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your 

license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or 

affiliates. 

 

 



  
 

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual iii 
  

CHANGE HISTORY 

 

Release Version Changes 

   

10.16.2.2.0 1.0 • Creation 

10.16.2.2.0 1.1 • Revision 

10.17.1.0.0 1.2 • Changed grant instructions 

10.17.2.0.0 1.3 • Documented hsl.<app>.developermode and hsl.developermode 

• Added reference to Doc[2] (Back Office HTTP Service Layer User Manual) 

10.17.2.1.0 1.4 • Extended set of relevant properties. 

10.17.2.2.0 1.5 • Minor revision of  ‘Creating a HSL database account’ 

• Revised ‘Security Configuration’ 

• Removed ‘Restricting access with custom roles’ from Security Aspects 

• Renamed ‘Security Aspects’ to ‘Additional Security Aspects’ and revised 
contents. 

• Added ‘Deployment Validation’ 

• Added ‘Appendix C – Testing with SoapUI’ 

• Added ‘Appendix D – Generating a WADL file’ 

• Extended set of relevant properties for HSL_CLA.war deployment. 

10.17.2.3.0 1.6 • Added paragraph ‘Examining the Log File’ 

• Added JDK version specific information regarding JSSE configuration. 

10.18.1.0.0 1.7 • Added Appendix E – Authentication and Authorization 

• Added Appendix F – HSL_AUN and HSL_AUZ Services 

• Revised 2.1 including diagram 

• Revised introduction and document title 

10.18.1.2.0 1.8 • Added Appendix G – PSL services 

• Use setUserOverrides.sh instead of modifying startManagedWebLogic.sh and 
Server Start arguments. Support for WLS 12.2.1.3. 

10.18.1.3.0 1.9 • Added warning about patch 28278427 

10.18.1.3.0 1.10 • Revised installation of PSL services 

10.18.1.4.0 1.11 • Updated ‘Additional Security Aspects’  
Mentioned use of Basic Authentication for ‘admin’ requests. 

• Updated ‘setting user context’ in Appendix E 

• Added HTTP codes to ‘Troublehooting’ 

10.18.1.4.0 1.12 • Updated HTTP codes overview in ‘Troubleshooting’ 

• Revised Appendix G – PSL services 

10.18.2.0.0 1.13 • Corrected typo: hsl.auz, not hsl.aur.  

• Rewrote explanation of setUserOverrides.sh 

10.18.2.0.0 1.14 • Services Components: added HSL_AUN and HSL_AUZ 

• WLS Preparation: fixed typos 

• Additional Security Aspects: removed remarks about patch 28278427 (already 
covered by certification matrix) 

10.18.2.1.0 1.15 • Added example properties for new PSL service with shortname zvp 

• Added description of allowedorigins property to protect against cross site 
scripting attack 

10.18.2.2.0 1.16 • Added additional deployment notes for HSL_C2B 

10.18.2.3.0 1.17 • Added Appendix for HSL_JUP 

• Introduction of properties file templates 

10.19.1.0.0 1.18 • No changes. Republished with different part nr. 

10.19.1.4.0 1.19 • Added properties for logdirectory and logfilesuffix 

• The operation of developermode changed 

• Change in properties template is described 

• Updated description of data source creation 

10.19.2.0.0 1.20 • Added description of deployment check verifyInterfaceVersion 

10.20.1.0.0 1.21 • No changes, republished. 

10.20.3.0.0 1.22 • Adapted for impact of DB 19c and FMW12.2.1.4 certification 

10.20.4.0.0 1.23 • Added new recommended Initial Capacity configuration option for data 
sources in Creating a Data Source paragraph 

10.20.7.0.0 1.24 • Introduced HSLBOWS.ear and adapted deployment instructions and 
references to individual web service deployments. 

• Introduced Appendix I as an example of limiting access to web applications 
through the use of a security policy 

10.21.1.0.0 1.25 • No changes, republished with new part number 

10.21.2.0.0 1.26 • Added descriptions about Security Models 



  
 

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual iv 
  

Release Version Changes 

   

10.21.5.0.0 1.27 • Added more information on the Custom Roles security model 

10.21.7.0.0 1.28 • Custom Roles: added instructions 

• Added Statement Timeout 

10.22.1.0.0 1.29 • Replaced base64 encoded strings with place holders; updated paragraph 3.7 for 
CustomRoles. Republished with new part number. 

10.22.2.0.0 1.30 • Added property maxcontentlength 

10.22.5.0.0 1.31 • Added remark about financial unit in hsl.usercontext in paragraph 5.2.3 

10.22.8.0.0 1.32 • Added Authentication with Oracle Access Manager to appendix E. 

10.22.3.0.0 1.33 • No changes, republished with a new part number. 

10.23.1.0.0 1.34 • Removed reference to online swagger editor 

10.23.3.0.0 1.35 • Corrected properties names for loglimit, logcount and logappend (paragraph 
5.2.9, 5.2.10 and 5.2.11) 

• Recommended log level settings for Production (paragraphs 5.2.8, 13.1) 

10.23.6.0.0 1.36 • Clarified impact of certification of Forms & Reports Services 12.2.1.19.0 

10.23.6.0.0 1.37 • Added Authentication with OpenID to appendix E. 

10.23.7.0.0 1.38 • Chapter 4.2 “template listing” (path */templates) removed. 

10.23.7.0.0 1.39 • Added mentions of OpenApi 3.1 support. 

• Added information on the OpenApi 3.1 runtime documentation url. 

• Removed dots from the chapter numbers, e.g. ..3.5.2.1 to 3.5.2.1. 

• Added Appendix I as a regular numbered chapter instead of as an 
unnumbered appendix. 

10.23.8.0.0 1.40 • Added restuserbsn and restuserbsn-role for the HSL_BSNCHECK service 

10.24.1.0.0 1.41 • Republished with new part number.  

• Corrected some typing errors. 

• Removed mention of support for changing the language used for messages in a 
webservice based on the user context as this support has been removed. 

10.24.2.0.0 1.42 

 

• Added restuseragb and restuseragb-role for the HSL_AGBCHECK service 
(service will be delivered in the 10.24.3.0.0 release) 

10.24.5.0.0 1.43 • Corrected some typing errors. 

• Added Appendix J with more information regarding the monitoring and 
diagnostics options provided by Jersey. 

10.24.8.0.0 1.44 • Added a description of an HSL OAuth2.0 setup using Private Key JWT as a 
form of client authentication. As a result of this change the default 
authentication method for the HSL services has changed from BASIC 
Authentication to OAuth2.0.  

• The instructions for setting up the HSL services with BASIC Authentication 
have been moved to Appendix A. 

• Moved the following appendices to Doc[3] as these chapters are only 
applicable to the Private Service Layer (PSL) webservices that support the OHI 
JET web application: 

Appendix E – Authentication and Authorization 
Appendix F – HSL_AUN and HSL_AUZ Services 
Appendix G – HSL_JUP Service 

• Moved the following webservices to PSL: 
HSL_AUN → PSL_AUN 
HSL_AUZ → PSL_AUZ 
HSL_JUP → PSL_JUP 

• Moved the following properties to psl.properties and removed their use for 
HSL: 

hsl.sso.platform 
hsl.sso.openid.authorizationendpoint 
hsl.sso.openid.endsessionendpoint 
hsl.sso.openid.tokenendpoint 
hsl.sso.openid.clientid 
hsl.sso.openid.clientsecret 

• Removed the following properties in hsl.properties: 
hsl.<app>.tokenvalidation.rotor 
hsl.<app>.tokenvalidation.url 
hsl.<app>.tokenvalidation.method 
hsl.<app>.tokenvalidation.headerparams 
hsl.<app>.tokenvalidation.queryparams 
hsl.<app>.tokenvalidation.bodyparams 
hsl.<app>.tokenvalidation.authentication 
hsl.<app>.usercontext.control 
 

10.25.1.0.0 1.45 • No changes, republished with a new part number. 



  
 

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual v 
  

Release Version Changes 

   

10.25.4.0.0 1.46 • Changes in logging (paragraph 5.2.7) 

• Added paragraph outlining the importance of setting up confidential 
applications for the individual check webservices (paragraph 3.5.1) 

• Updated Appendix A – BASIC authentication, generalizing the setup of roles 
and users for the CHECK webservices (restuserbsn, restuserbsn-role, 
restuser<...>, restuser<...>-role) 

10.25.7.0.0 1.47 • Added additional settings in 3.4.5 Creating a datasource  

10.26.1.0.0 1.48 • No changes, republished with new part number. 

  



  
 

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual vi 
  

RELATED DOCUMENTS 

A reference in the text (doc[x]) is a reference to another document about a subject that 
is related to this document. 
Below is a list of related documents: 

Doc[1] Object Authorisation within OHI Back Office (docs.oracle.com) 

Doc[2] Back Office HTTP Service Layer User Manual (docs.oracle.com) 

Doc[3] OHI Back Office JET Application Installation & Configuration Manual 
(docs.oracle.com) 

 



  
 

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual vii 
  

Contents 

1 Introduction ................................................................................................................................................................ 10 

1.1 Licenses ............................................................................................................. 10 

2 Architectural overview ............................................................................................................................................. 11 

2.1 Services components ....................................................................................... 11 

3 Installation of HSL services ...................................................................................................................................... 13 

3.1 Terminology ..................................................................................................... 13 

3.2 Sizing/load aspects ......................................................................................... 13 

3.2.1 Deployment choices ........................................................................................ 14 

3.3 Database installation ....................................................................................... 14 

3.3.1 Creating a HSL database account .................................................................. 14 

3.4 WLS Preparation.............................................................................................. 15 

3.4.1 Requirements ................................................................................................... 17 

3.4.2 Creating a domain ........................................................................................... 17 

3.4.3 Creating Managed Server(s) .......................................................................... 19 

3.4.4 Creating a machine definition ....................................................................... 20 

3.4.5 Creating a data source .................................................................................... 21 

3.4.6 Enable SSL ........................................................................................................ 28 

3.4.7 Setting up a key store ...................................................................................... 29 

3.4.8 Configure Managed Server logging level .................................................... 30 

3.5 OAuth2.0 Authorization and OpenID Connect Authentication ............... 31 

3.5.1 Confidential applications for services with stringent security 
requirements 32 

3.5.2 Client configuration ........................................................................................ 33 

3.5.3 IDCS – confidential application setup .......................................................... 34 

3.5.4 OHS – mod_auth_openidc installation and configuration ........................ 39 

3.5.5 WLS – enable proxy plug-in........................................................................... 40 

3.5.6 WLS – OHS as the only means of accessing HSL services ......................... 41 

3.5.7 HSL service configuration .............................................................................. 42 

3.5.8 Troubleshooting OHS and mod_auth_openidc .......................................... 42 

3.5.9 OHS log message - nzos_Handshake: mod_wl failed ................................ 42 

3.6 (Re)deployment of the HSL Application ...................................................... 43 

3.6.1 Deploy to a single Managed Server .............................................................. 43 

3.6.2 Deploy to multiple Managed Servers ........................................................... 45 

3.6.3 Deploy to WebLogic cluster ........................................................................... 45 

3.6.4 Deploy for multiple environments (DTAP) ................................................. 45 

3.6.5 Validate deployment ....................................................................................... 46 

3.7 Additional Security Aspects .......................................................................... 46 

3.7.1 Cross-Site scripting protection....................................................................... 46 

4 Deployment validation ............................................................................................................................................. 47 



  
 

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual viii 
  

4.1 Testing with Curl ............................................................................................. 47 

4.2 getDatabaseInfo ............................................................................................... 48 

4.3 verifyInterfaceVersion .................................................................................... 49 

4.4 Get Runtime Swagger definition ................................................................... 49 

4.4.1 Saving the Swagger definition to a file ......................................................... 50 

4.5 Troubleshooting ............................................................................................... 50 

5 Configuration Files for HSL services ...................................................................................................................... 52 

5.1 Properties file templates ................................................................................. 52 

5.2 Back Office HSL properties file ..................................................................... 52 

5.2.1 hsl.<app>.jndiname /hsl.jndiname .............................................................. 52 

5.2.2 hsl.<app>.authorization /hsl.authorization ................................................ 53 

5.2.3 hsl.<app>.usercontext /hsl.usercontext ....................................................... 53 

5.2.4 hsl.<app>.developermode /hsl.developermode ........................................ 53 

5.2.5 hsl.<app>. allowedorigins /hsl.allowedorigins .......................................... 54 

5.2.6 hsl.<app>.logdirectory, logfilesuffix, logfile / hsl.logdirectory, 
logfilesuffix, logfile 54 

5.2.7 hsl.<app>.loglevel /hsl.loglevel .................................................................... 55 

5.2.8 hsl.<app>.loglimit /hsl.loglimit .................................................................... 56 

5.2.9 hsl.<app>.logcount /hsl.logcount ................................................................. 56 

5.2.10 hsl.<app>.logappend /hsl.logappend .......................................................... 57 

5.2.11 hsl.<app>.maxcontentlength /hsl.maxcontentlength ................................ 57 

5.2.12 Activating changes to hsl.properties ............................................................ 57 

5.2.13 Troubleshooting hsl.properties ..................................................................... 57 

5.2.14 Keeping hsl.properties up to date ................................................................. 57 

5.3 Examining the Log File ................................................................................... 57 

5.3.1 Changing the log format ................................................................................. 58 

6 Upgrading HSL services ........................................................................................................................................... 60 

7 Appendix A – BASIC authentication ...................................................................................................................... 61 

7.1 Background information ................................................................................ 61 

7.2 Setup security realm ........................................................................................ 62 

7.2.1 Setup WebLogic user for accessing the HSL application ........................... 62 

7.2.2 Set user lockout ................................................................................................ 69 

7.3 Testing with SoapUI ........................................................................................ 69 

7.3.1 Create REST project and import Swagger definiton ................................... 70 

7.3.2 Create a request ............................................................................................... 70 

7.4 Generating a WADL file ................................................................................. 71 

7.4.1 Create a REST project in SoapUI for your HSL application ...................... 71 

7.4.2 Open the Service Viewer for the REST Project ............................................ 71 

7.4.3 Export WADL from your REST project ........................................................ 72 

8 Appendix B – Service Information .......................................................................................................................... 73 

9 Appendix C – Removing a WLS domain ............................................................................................................... 74 

10 Appendix D – HSL C2B services – deployment points of attention ................................................................... 75 

10.1 HSL_C2B deployment aspects ....................................................................... 75 



  
 

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual ix 
  

11 Appendix E – Limiting access to a specific application inside a module ........................................................... 77 

12 Appendix F – Eclipse Jersey Monitoring and Diagnostics ................................................................................... 79 

 

 

 

 
 
 
 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 10 
  

1 Introduction 

The OHI Back Office HTTP Service Layer is an optional component to provide so-
called Use Case services.  

Use Case services constitute a group of specific operations aiming to support use 
cases that are common for Dutch healthcare payers. Examples of typical use cases: 
requesting a new policy, adding an insured member, changing insured products, 
changing payment method etc. 

OHI BO Use Case Services are implemented through the HTTP Service Layer (HSL). 

The services in this service layer are based on RESTful Services technology which has 
the following advantages for current web application frameworks (like AngularJS 
and Oracle JET): 

• Accessible through HTTP (for example through JavaScript). 

• Supports (JavaScript friendly) JSON as input and output formats. 

• Standardized interface language through using HTTP verbs (GET, POST, 
PUT, PATCH, DELETE)’ 

• Standardized set of exceptions through HTTP error codes. 

This HTTP Service Layer is intended to ease integration in a Service Oriented 
environment.  

This document describes the generic technical details regarding the HTTP Service 
Layer, how to install and update it and how to change configuration settings. 

1.1 Licenses 

Customers are required to have the appropriate license for using the HTTP Service 
Layer. Customers who have acquired a Connect to Back Office (C2B) license or an 
OHI SOAP Service Layer (SVL) license are currently permitted to install and use the 
web service component of the HTTP Service Layer. This is valid until further notice. 

The corresponding PL/SQL services may not be used when no Connect to Back 
Office license, SOAP Service Layer license or HTTP Service Layer license has been 
obtained. 

For further information please consult your OHI sales representative. 

 

 
Attention:  OHI Back Office releases 10.23.6.0.x and higher are certified 

against Fusion MiddleWare 12.2.1.4.0 and - on top of that - Forms & Reports 

12.2.1.4.0 or 12.2.1.19.0. Because the Fusion MiddleWare (FMW) version is 

the same and the OHI Web Services do not use any of the Forms & Reports 

functionality, this document will refer to an installation of Fusion Middleware 

12.2.1.4.0. It should make no difference which version of Forms & Reports (if 

any) is installed on top of FMW 12.2.1.4.0. 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 11 
  

2 Architectural overview 

This chapter gives a high-level architectural overview of the current HTTP Service 
Layer implementation. 

2.1 Services components 

The functionality of each service is implemented through a PL/SQL service package. 
The service interface is provided through a Java layer. 
Eclipse Jersey (JAX-RS reference implementation) and EclipseLink MOXy are used to 
serialize and deserialize JSON objects and for input validation.  
JDBC is used to map Java objects to SQL objects and vice versa. 
The PL/SQL service package performs the required operations, using operation 
parameters and inbound objects to communicate with the OHI Back Office database. 
 

 

 

  



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 12 
  

 

The high-level schema below shows how the services are deployed. It also shows the 
database connection to OHI which uses a database account with restricted access to 
execute the HSL service implementation in PL/SQL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WebLogic Server 
 
 
 
 
 
 
 
 
 
 
 

Database server 

HSL database account 
with limited privileges 

OHI object schema owner 
 
PL/SQL code for HSL 
SQL types for HSL 
 

Managed server: OHIBOWebservices (example name) 
 
 
 
 
 
 
 

Datasource

 

 JDBC Connectionpool 

HSLBOWS.ear 

HSL_POL.war 
HSL_CLA.war 
HSL_C2B.war 
HSL_REL.war 
HSL_BSN.war 
HSL_ZPN.war 
 
 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 13 
  

3 Installation of HSL services 

This chapter describes the steps to (re)install the HSL services. 

This chapter contains the following parts to separate the various work areas: 

• Sizing/load aspects 

• Database installation 

• WLS preparation 

• Identity Provider configuration 

• Oracle HTTP Server (OHS) preparation 

• Setting up an OAuth2.0 resource server through the use of the 
mod_auth_openidc module for OHS. 

• Security configuration 

• (Re)deployment of the HSL application 

• Additional Security aspects 

3.1 Terminology 

Note the following use of terminology: 

• HSL stands for HTTP Service Layer. The underlying technology is based on 
RESTful service technology. 

• A HSL service has one or more service operations. 

• Each HSL service resides in its own HSL application (which is packaged as a 
WAR file). 

• The HSL applications are packaged together as an EAR file, which is deployed to 
the WebLogic application server. 

3.2 Sizing/load aspects 

From the “Introduction” and the “Architectural overview” chapters it should be clear 
that the HSL services are functionally implemented through PL/SQL in the database. 

The Java layer providing the REST interface handles request and response messages. 
It validates an incoming request, calls the PL/SQL service implementation to perform 
the required operation and transforms the result into a response message. 

This choice means that the larger part of the processing is carried out on the database 
server and only a small part is handled on the application server.  
Since the architecture for HSL is similar to the SVL services, the distribution of loads 
on the application and database server is expected to be comparable. 
 

Tests with 10.24.x.x.x releases showed that for relatively small request and response 
messages and easy to process HSL service operations the related application and 
database CPU load are in the same order of magnitude. But when the size of a 
request and/or response message grows, the time needed for the related 
deserialization and serialization increases linearly with the size of the message, which 
may result in considerably more CPU load on the application server than on the 
database server. Exceptions are service operations that demand a lot a of processing 
on the database server, such as registering or changing a policy and immediately, 
synchronously, processing all possible related acceptance checks. 
 
Based on SVL experience, most of the simpler service operations on a well-sized and 
well-performing production environment should not take more than 0.2 up to 0.5 
second in total elapsed time when measured on the WebLogic Server. Of this elapsed 
time a comparable amount of time should be spent by the application and database 
server handling the call, as mentioned before. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 14 
  

More complicated calls and service calls that return large data sets may take more 
time but usually should not exceed response times of more than a few seconds. As an 
example, if it would be offered, a typical premium calculation call should be executed 
within a second and a fetching a large set of claim lines (several hundreds) should 
usually be returned within 5 to 10 seconds. 

3.2.1 Deployment choices 

The overall load on the OHI application resulting from HSL service calls is customer 
specific and may change over time.  

HSL services are likely to be used by customer-facing applications. Although it may 
technically be possible to deploy HSL services to the same application server running 
the Forms GUI for internal users, you should be aware of the peak loads from HSL 
services during commercial campaigns. These loads may well exceed your normal 
capacity. You should devise your own strategy to cope with these extra loads. This 
strategy may include using separate application servers for internet users, potentially 
using a separate database with cached data for information requests, throttling 
inbound requests, etc. 

If you choose to install HSL services on the application server for the Forms GUI it is 
advisable to actively monitor the respective loads of Forms processes, SVL processes 
and HSL processes. This allows you to pick up trends to help you refine your 
infrastructure strategy. 

Especially if you have multiple applications using the same HSL services, it may help 
to use a service bus to create a ‘separation of concerns’. The service bus allows you to 
map the HSL interface specification to a customer-specific interface which means less 
maintenance on the client applications when deploying a new version of a HSL 
service. As long as the mapping on the service bus can be synchronized with the HSL 
service interface, the code of client applications can remain the same. 

Stringent requirements for high availability and failover are also reasons to consider a 
service bus, combined with a load balancer, as a go-between. 

3.3 Database installation 

All database components of the HTTP Service Layer are owned by the OHI Back 
Office schema and are installed through the OHI Back Office release installation 
procedure. 

To use the database components of the HTTP service layer, one or more database 
accounts must be created with HTTP Service Layer access privileges.  

Before creating the account(s), check if you are licensed to use the HTTP Service 
Layer.  

We expect that you are familiar with the DBA tasks of an Oracle database 
administrator in the instructions that follow. 

Please check if you have a database object (package) HSL_UTIL_PCK in the OHI Back 
Office schema. If not, something went wrong regarding the installation of the HTTP 
Service Layer code. If this is incorrect, please contact the OHI Support department. 

If the package is present in your database, you can continue with the database part of 
the installation. 

3.3.1 Creating a HSL database account 

The OHI Back Office schema owns the PL/SQL code to implement the HTTP Service 
Layer but this account may never be directly used to execute the services. 

The use of a separate database account to access the HTTP Service Layer components 
reduces the risk of accessing unauthorized OHI data and makes that account 
accountable for HSL actions. The HSL account(s) only need a minimum of object 
privileges to the HSL database objects. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 15 
  

One or more HSL accounts can be created: 

• Default HSL account for use with WebLogic application server 
This account is configured in the HSL properties file as the default account for 
HSL service requests. 

• Optional additional HSL accounts for use with WebLogic application server. 
These may be configured in the HSL properties file for one or more specific 
services. 

• Additional HSL account for use with bespoke PL/SQL code development by the 
customer. Please follow the directions in Doc[1].  

The following steps are needed to setup a HTTP Service Layer database account: 

1. Create a schema owner, for example HSL_USER.  Determine the password 
policy, temporary tablespace, etc. according to your company standards but 
beware there is no interactive login which might show expiration messages 
for the password due to the enforced password policy. 

2. Grant create session system privilege to this account. 

3. Grant the HTTP Service Layer object privileges: logon as the OHI Back Office 
schema owner, enable server output, and run 
 
alg_security_pck.HSL_grants 
(pi_owner   => '<ohibo_owner>' 
,pi_grantee => '<hsl_user_account>' 
) 

 
Example: 
 
execute 
alg_security_pck.HSL_grants 
(pi_owner   => 'OZG_OWNER' 
,pi_grantee => 'HSL_USER'); 

 
IMPORTANT: This command needs be run only once at this moment. While 
installing subsequent OHI BO updates, the privileges of the HSL user 
accounts are automatically updated. 
However, if you run into ORA-01403 errors during the execution of 
webservice operation, your first check should be to run this command in 
SQL*Plus, enabling server output before running, and see whether missing 
grant privileges were granted. 

3.4 WLS Preparation 

When the database account has been created and granted successfully, a WebLogic 
Server environment (software home) must be prepared for deploying the HSL 
application. 

We expect that you are familiar with the WebLogic concepts like ‘Domain’, ‘Managed 
Server’, ‘Cluster’, etc. 

These are your options: 

• Use the same WebLogic environment (ORACLE_HOME) which is used for 
servicing the OHI Back Office user interface and batches. In this case you should 
create a new WebLogic domain (with a new Admin Server) for the HSL 
applications to prevent interference with the GUI application. 

• Deploy the HSL applications in a separate WebLogic environment (possibly on a 
separate server). This allows you to separately upgrade or patch the different 
WebLogic environments or implement a workload distribution. 
 
Deploy HSL applications to multiple environments for better scalability. Be sure 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 16 
  

to deploy each HSL application only once in a Managed Server or a cluster of 
Managed Servers. 

• For testing purposes, you may want to have multiple versions within the same 
domain. In that case you should have a separate Managed Server for each 
deployment. 

Some remarks about installing in a separate WebLogic environment: 

• The OHI Back Office GUI application (Forms) installation requires a 
WebLogic Server “Infrastructure” installation. That means the domain 
created for Forms needs to have its own database schemas with OPSS and 
Audit database tables (created by RCU, the Repository Configuration Utility). 
For the HTTP Service Layer domain these schemas are not required provided 
you do not select more components during the domain configuration than 
described. 

• When installing in a separate WebLogic Server environment, use a different 
Installer: use the “Generic” installer instead of the “FMW Infrastructure” 
installer. When installing in a separate WebLogic environment make sure the 
correct components are installed when creating the Domain. You need at 
least:  

o WebLogic Advanced Web Services for JAX-WS Extension - 

12.2.1.4.0 [oracle_common] 

o WebLogic JAX-WS SOAP/JMS Extension                  - 

12.2.1.4.0 [oracle_common] 

When you have not installed these components your web services will 
respond with ‘There are error messages.’ All info in the 
functionalFaultType will contain question marks (???). 

The instructions in the following paragraphs cover the setup of a new domain 
including the setting up of Managed Servers, a machine definition, data sources, etc. 

This will support the following scenarios: 

✓ Creating a separate domain with a single Managed Server 

✓ Creating a separate domain with a cluster of 2 Managed Servers 

✓ Adding a Managed Server to an existing domain 

Using setUserOverrides.sh 

Traditionally, Server Start arguments for the WebLogic Managed Server had to be 
added in multiple locations (depending on the way the Managed Servers were 
started): 

• Via the Admin console: in the tab “Server Start” in the field “Arguments” for 
Admin Servers and Managed Servers 

• In the script $DOMAIN_HOME/bin/startManagedWebLogic.sh for 
Managed Servers 

• In script $DOMAIN_HOME/bin/startWebLogic.sh for Admin Servers 

WebLogic 12.1.2 introduced a better way to pass Server Start arguments to the 
WebLogic servers. See document “How To Customize Env Parameters Via 
'setUserOverrides.sh' File (In WLS 12.1.2.0.0 ~ 12.2.1.4.0) (Doc ID 2138183.1)” on My 
Oracle Support for details. 

By using setUserOverrides.sh the Server Start arguments only need to be maintained 
in one place. This document will assume you use this new method, and it will only 
give instructions for setting the Server Start arguments using this method. The file is 
located here: 

$DOMAIN_HOME/bin/setUserOverrides.sh 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 17 
  

3.4.1 Requirements 

The following requirements/limitations must be taken into account: 

✓ A certified WebLogic Server version including JAX-WS (SOAP/JMS) 
extensions. The HSL services must be deployed on a single Managed Server 
or a cluster of Managed Servers (the ‘target’). 

✓ The HSL services may not be deployed on a Managed Server which is also 
used for hosting the OHI GUI application (Forms). The Managed Server may 
not belong to a cluster used for deploying the GUI application. 

✓ One deployment can only service one single OHI Back Office environment (it 
connects to a specific connection pool which accesses a specific OHI Back 
Office ‘instance’). 

If the HSL application must be deployed more than once (for servicing different OHI 
Back Office environments) each deployment should be on its own Managed Server or 
Cluster. 

HSL can be deployed on the same Managed Servers as SVL and PSL. 

3.4.2 Creating a domain 

Before creating a Domain, be sure to understand the difference between a “FMW 
Infrastructure” and a “Generic” WebLogic installation, and the consequences. Make 
sure the environment variable DOMAIN_HOME is not set. 

If you create the new WebLogic Domain from the same software home as the Forms 
Domain, you must choose the same “Domain Mode” (Development or Production), 
to avoid errors during startup of the new Managed Server(s). 

For creating a new WebLogic domain, please use the Configuration Wizard (typically 
in the common/bin folder of the WebLogic Server home, so for example 
$MW_HOME/oracle_common/common/bin/config.sh) or use your own 

scripting. 

Specify the domain location. This is inside the WebLogic Home by default, but you 
can specify a location outside the WebLogic Home. The last part of the location will 
be the Domain Name. 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 18 
  

When creating a new domain select at least the options as shown below. 

 

 

In the next screens, specify the username and password for the domain administrator 
account. When prompted for developer or production mode choose production mode 
and pick a JDK. 

In this documentation we choose to configure only the Administration Server using 
the wizard. The Administration Server can be used as the starting point for additional 
configuration options you may want to choose later: 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 19 
  

For the Administration Server a free port number must be specified. Enable SSL to 
support secure connections. An example using non default ports is shown below. 

 

 

3.4.3 Creating Managed Server(s) 

Start the Administration Server (of the existing or newly created domain) using the 
startWebLogic.sh script (this is present in the root folder of the domain folder, which 
you created through the Configuration Wizard).  

After it has started, logon to the console and choose the Servers option in the left 
panel: 

 

In the Change Center choose Lock & Edit to get into editing mode. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 20 
  

 

This enables the New option in the ‘Summary of Servers’ overview: 

 

You need to provide a name and listening port for the Managed Server. For easy 
reference you may want to include the domain name in the name of the Managed 
Server, for example ‘ms_ohi_hsl’. 

At this point you should decide whether or not to make the Managed Server part of a 
Cluster. 

If no Cluster exists you can create one; if there is an existing Cluster you can make the 
Managed Server a member of the Cluster. 

3.4.4 Creating a machine definition 

It is recommended to create a machine definition to make it easier to start up 
Managed Servers: 

 

You can now assign Managed Servers to the new machine definition. In the example 
below Managed Server ms_ohi_hsl is assigned to Machine1. 

 

If you start a Node Manager you can use the console to start the Managed Servers. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 21 
  

You need to associate the machine with the Node Manager so that the Node Manager 
can start the Managed Server within the domain of the machine definition. 

Do this in the Node Manager tab for the machine definition like in the example 
below: 

 

Make sure the listen address is the actual listen address that is used by the Node 
Manager. This is passed as first parameter to the 
$WL_HOME/server/bin/startNodeManager.sh shell script. The correct value 

can be found as ListenAddress in the file nodemanager.properties. 

This address can be changed in the file nodemanager.properties which is located in 
the <domain home>/nodemanager folder. This is necessary when you have a node 
manager per domain. 

You need to create a boot.properties file for the new Managed Server for the domain 
in the domain home Managed Server ../data/nodemanager.  

This is done automatically when you start the Managed Server in the console (after 
you have started the AdminServer for the domain). 

When you are running in Development Mode, a boot.properties file is automatically 
created for the AdminServer. 

Because you are running in Production Mode, you need to create the file yourself, in 
the $DOMAIN_HOME/servers/AdminServer/security folder. This file is used when 
the AdminServer is started by the script startWebLogic.sh. If the file is not present, 
the script prompts for the username/password. The same goes for the Managed 
Servers when you start them through a script. 

3.4.5 Creating a data source 

The HSL application needs a data source to connect with the OHI Back Office 
database.  

To create a data source, navigate in the Domain Structure panel on the left to the data 
sources option. Choose ‘Lock & Edit’ so you can create a new data source. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 22 
  

 

Create a new ‘Generic data source’ in case of a ‘regular’ database instance: 

 

When the data source connects to a RAC data source it is more useful to choose for 
‘GridLink Data Source’ as this can respond to instance state changes. 

Next, choose a name for the data source to reflect its purpose. For example, you may 
want to reference the database name: DS_OHI_prd or DS_VOHI_DEV. 

Next specify a JNDI name. The JNDI name will be used in the properties file for 
starting the HSL application. 

Specify ‘Oracle’ as the database type (for GridLink this is a predefined value). 

An example: 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 23 
  

 

Next you need to specify a database driver. For regular database instances, use 
“Oracle’s Driver (Thin) for Service connections; Versions: Any”.  



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 24 
  

 

If you are using RAC (or considering using RAC) choose the thin RAC driver if you 
created a regular data source (we do not advise this anymore, but in previous 
versions of this manual this was the usual option). Do NOT use the XA driver.  

When you have chosen to create a GridLink data source use “Oracle’s Driver (Thin) 
for GridLink Connections, Versions: Any”. 

Choose the following Transaction Options: 

• ‘Supports Global Transactions’ 

• ‘One-Phase Commit’ (this is why you don’t need the XA driver) 

Example: 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 25 
  

 

Next specify the connection details like the example on the page below. Be sure to use 
values which are valid for your environment. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 26 
  

 

On the next page the result of your answers will be shown. You can test the 
connection with the data shown (the table name is not relevant). 

When you navigate to the next page you can select the targets where the data source 
should be deployed to. In the example below only the Managed Server shown will be 
used for deploying the data source to. 

 

Press Activate Changes to conclude your configuration. 

At this point, go back to your data source and re-open the connection pool tab.  

Initial Capacity setting 

Consider setting the ‘Initial Capacity’ to 0. During the setup of new connections a 
health check, if you configured this (for more information see the OHI Release 
Installation manual), claims a shared lock that might stall (patch) sessions and vice 
versa. 

Setting this option to zero implies no connections are set up after the connection pool 
is initialized but only on demand. Press Lock & Edit and set the option to 0 and press 
Save. 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 27 
  

Test Connections On Reserve 
Test Frequency 
Test Table Name 
Seconds to Trust an Idle Pool Connection 

When “Statement Timeout” (see below) is set an execution of a statement can be 
interrupted. This could lead to the following error in subsequent calls:  
 
“The current transaction is not allowed, because the current PL/SQL definition is defined as 
'Query only'!'” 
 
To prevent this error for subsequent calls, set the following properties in the 
advanced settings of the Connection Pool tab: 

• Test Connection On Reserve: checked 

• Test Frequency: 0 seconds 

• Test Table Name: SQL begin alg_public_pck.session_health_check(); end; 

• Seconds to Trust an Idle Pool Connection: 0 seconds  

 

 

Wrap Data Types setting 

Navigate to the ‘Advanced’ part. 

Ensure that the option ‘Wrap Data Types’ is unchecked. This setting is needed for 
passing CLOB objects to and from the database and when activated slows down 
execution. Uncheck this option and press Save and Activate the change. 
 
Example: 

 

Statement Timeout 

Consider activating the ‘Statement Timeout’. This is the time after which a statement 
currently being executed will time out. This can be used to limit the impact of run-
away queries (e.g. if a bad execution plan is chosen or a wildcard search is not 
selective). Especially in scenarios where the requestor (e.g. OSB) stops listening after 
a certain period – and possibly retries the same operation several times – continued 
execution of these long running queries can overload the database. This can have 
serious effects on the performance of other web services. In those cases, it is better to 
cancel the query (after a period that is a little longer than the timeout of the 
requestor).  

Queries that are cancelled will result in a technical fault: 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 28 
  

ORA-01013: user requested cancel of current operation 

 or  
ORA-03111: break received on communication channel 

Note that it is possible to specify different data sources for different web services (see 
properties file for the HSL web services). This can be used to specify different 
timeouts for different web services. You could create a data source with a long 
timeout for web services that usually take longer and one for web services that are 
normally quick. 

Be aware that the ‘Statement Timeout’ is only about database processing. Any 
processing of output by the Middle Tier is not included in this period.  

To activate ‘Statement Timeout’, go back to your data source and re-open the 
connection pool tab.  

 

Navigate to the ‘Advanced’ part and change the default value of -1 to a value (in 
seconds) that is appropriate for your situation. 

 

Press ‘Save’ and ‘Activate Changes’ to conclude your configuration. You may have to 
restart your Managed Server to activate this setting. 

3.4.6 Enable SSL 

The HSL services are preconfigured to use a default policy which uses SSL. 
Therefore, you need to enable SSL for every Managed Server to which you deploy the 
HSL application. 

Go to the Managed Server configuration and enable SSL in the ‘Configuration > 
General’ tab: 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 29 
  

 

In previous versions of WebLogic, you needed to configure the Java Secure Socket 
Extension (JSSE) if the JDK version was below JDK 1.8.0_162. Because the minimum 
JDK version for WebLogic 12.2.1.4.0 is JDK 1.8.0_221, no further action is needed. 

3.4.7 Setting up a key store 

For testing purposes, you may want to use the built-in keystore as shown below in 
the ‘Configuration > Keystores’ tab for the Managed Server: 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 30 
  

 

Note that in a production environment it is not safe to use the demo keystore. 

For more information about configuring keystores please read the WebLogic 
documentation. As a starter you can use this address: Configuring Keystores 

It contains references to pages which describe in more detail how to obtain private 
keys, digital certificates, etc.  

You should take action and not rely on the demo keystore! 

 

3.4.8 Configure Managed Server logging level 

The standard logging level for a Managed Server regarding security issues is 
intentionally non-informative to discourage fraudulent users. 

A typical security-related error message looks like: 

‘Unknown exception, internal system processing error.’ 

In non-production environments it might be useful to enable more verbose logging, 
this can be achieved with the following Server Start argument for the Managed 
Server: 

-Dweblogic.wsee.security.debug=true 

 

Create a new file $DOMAIN_HOME/bin/setUserOverrides.sh and add the 
following text: 

#!/bin/bash 

echo Adding Settings from UserOverrides.sh 

 

# global settings (for all servers) 

# this will decrease start up times 

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/secmg/identity_trust.html#GUID-7F03EB9C-9755-430B-8B86-17199E0C01DC


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 31 
  

JAVA_OPTIONS="-Djava.security.egd="file:/dev/./urandom" ${JAVA_OPTIONS}" 

export JAVA_OPTIONS 

CONFIG_JVM_ARGS="-Djava.security.egd=file:/dev/./urandom ${CONFIG_JVM_ARGS}" 

export CONFIG_JVM_ARGS 

 

# specify additional java command line options for the Admin Server 

#if [ "${SERVER_NAME}" = "${AS_NAME}" ] 

#then 

# 

#fi 

#export JAVA_OPTIONS 

 

# specify additional java command line options for specific servers 

if [ "${SERVER_NAME}" = "ms_ohi_hsl" ] 
then 

  # add settings for HSL 

  # Custom Setting for ms_ohi_hsl to set debug level for SSL 

  JAVA_OPTIONS="-Dweblogic.wsee.security.debug="true" ${JAVA_OPTIONS}" 

fi 

export JAVA_OPTIONS 

Replace the server name ms_ohi_hsl with your server name. 

When startup times of your service calls are important and the security of the 
connection is less important you may consider to specify an alternative for retrieving 
cryptographically strong random numbers (included above): 

 

JAVA_OPTIONS="-Djava.security.egd="file:/dev/./urandom" ${JAVA_OPTIONS}" 

Restart the Managed Server to enable the newly set option.  

3.5 OAuth2.0 Authorization and OpenID Connect Authentication 

As part of OHI release 10.24.8.0.0 a new way of securing the HSL webservices has 
been introduced. This setup is based on the OAuth2.0 authorization framework. As 
an alternative the services can be secured using Basic authentication, details for 
which can be found in Appendix A. The setup described in this chapter is the 
preferred option for securing the HSL services. 

The setup uses a commonly used open-source module for the Apache HTTP server. 
This module can also be used for the Oracle HTTP server (OHS). The module allows 
OHS to act as an OAuth2.0 Resource Server, protecting access to the HSL services.  

After client applications authenticate against an Authorization Server (which for the 
purposes of this manual will be Oracle Identity Cloud Service, in short IDCS, but 
could also be Microsoft Entra ID, formerly known as Azure AD) they will receive an 
access token. The Resource Server validates the access tokens the client received from 
the Identity Provider, sets headers and forwards the request to the HSL services, or 
denies access based on the validation result. 

After setting up all the required components you will have a setup that allows client 
applications to authenticate themselves to IDCS, receiving an access token in the form 
of a JSON Web Token (JWT) as a part of this interaction. The JWT can then be added 
as part of the Authorization HTTP header to requests to the OAuth2.0 Resource 
Server (OHS in this manual). The resource server provides the only means of 
accessing the HSL services, acting as an intermediary (also known as a reverse proxy) 
that forwards requests to the HSL services upon successful validation of the access 
token. Schematically, a successful first interaction will look like this: 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 32 
  

 

 

The description of the required configuration will start with the client and will 
continue inward, toward the HSL services. Along the way the components 
themselves, and the interactions between them will be discussed in more detail. 

3.5.1 Confidential applications for services with stringent security requirements 

 

OHI Web Services require a non-guessable UUID as an identifier of the object the 
caller wants information about.  

To start the conversation, the caller therefore needs to get the UUID of the object. For 
certain types of objects, it is not sufficient to supply a single guessable identifier, as 
that is deemed insecure. 

For example, relations (persons) can be identified by their ‘BurgerServiceNummer’ 
(BSN)(Social Security number), but these BSNs come from a publicly known range, so 
a malicious caller could simply do repeated call with random numbers from the BSN 
range, get the UUIDs for each and use those to retrieve a lot of confidential 
information about the persons.  

To prevent this abuse, two security measures have been implemented: 

• To start the conversation with the regular OHI Web Services, a second data 
element is required in addition to the first, guessable identifier. For persons, 
the date of birth must be supplied in addition to the BSN. Only if these match 
will the regular OHI Web Service return the UUID of the person. 

• The second data element can only be retrieved from a special check service 
that requires a separate authentication. For persons, this check service will 
return the date of birth for the supplied BSN. 

It is important that these check operations are authenticated separately from the 
regular webservice operations, to implement this additional line of defense. 

Each individual check service should have an individual authentication, to make sure 
a breach of authentication of one check service does not compromise the other check 
services. 

When using OpenID Connect specification (OIDC) for authentication, it is of vital 
importance to set up so-called ‘confidential applications’ with unique private keys to 
support separate authentication for the individual check services in your Identity 
Cloud Service. See paragraph 3.5.3. 

For more information refer to Doc[2] paragraph 3.4. 

When using Basic authentication this separate authentication can be realized through 
separate sets of credentials as outlined in Appendix A. A future version of this 
document will provide steps outlining the setup of confidential applications for 
services with more stringent security requirements. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 33 
  

 

 

3.5.2 Client configuration 

Before a client may request access to a protected resource like the HSL services it 
must first authenticate itself. OAuth2.0 only describes authorization and leaves 
authentication of clients to be implemented by other specifications. The OpenID 
Connect specification (OIDC) builds on the OAuth2.0 framework standardizing 
mechanisms for clients to authenticate against Authorization Servers. What follows is 
a description of how a client application authenticates itself to IDCS using the Private 
Key JWT method of OIDC. 

Public-key cryptography is used as a means for the client to prove to the 
Authorization Server it is communicating with a known client. This works by having 
the client application sign a JSON Web Token (JWT) with its private key. The JWT 
serves as an intermediate credential that can be sent to an Authorization Server along 
with a request for a specific scope of access to a protected resource. The protected 
resource here being an HSL service. The received JWT (called the authorization grant 
in OAuth2.0 parlance) is verified by IDCS by checking the signature with the public 
key counterpart that has been uploaded in advance as part of the IDCS setup 
(described in the next chapter). Note that values between ‘<>’ are placeholder values 
and need to be replaced with values obtained from IDCS. 

The header of the JWT consists of the following: 

{ 
 "alg": "RS256", 
 "typ": "JWT", 
 "kid": "<KEY ID>" 
} 

The body of the JWT consists of a number of claims: 

{ 
 "iss": "<CLIENT_ID>", 
 "sub": "<CLIENT_ID>", 
 "aud": "https://identity.oraclecloud.com/", 
 "jti": "<UUIDv4>", 
 "iat": "<Unix time>", 
 "exp": "<Unix time + 5 minutes>" 
} 

 

Explanation: 

• alg: algorithm used to encrypt the JWT 

• typ: Token type. 

• kid: Key ID. The alias given to the uploaded public key (configured in the 
next chapter). 

• iss: Issuer. As the client creates the authorization grant, the client itself is the 
issuer. 

• sub: Subject. Refers to the client the grant is used to request an access token 
for. 

• aud: Audience. Identifies the Authorization Server as an intended audience. 

• jti: JWT ID. Unique identifier for the token. 

• iat: Issued At. Time at which the JWT is issued. 

• exp: Expiration time after which the JWT must not be accepted for processing 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 34 
  

To create a validly signed JWT it is recommended to use one of the readily available 
libraries that offer such functionality. See https://jwt.io/libraries for several options 
in a variety of programming languages. 

Before the signed JWT can be used, IDCS needs to be configured to receive it. 

 

3.5.3 IDCS – confidential application setup 

To be able to access protected resources the client application first needs an access 
token from the authorization server. In this case IDCS. The server needs to be setup 
beforehand. This is done by setting up a confidential application for an HSL client 
application. 

A confidential client is considered confidential for its ability to keep a secret. 
Specifically, to keep its private key secret as we’re using public key cryptography for 
signing and verifying JWT’s. 

To add a new confidential application, navigate from the cloud console to the 
relevant identity domain (“Test domain” in the following description). From the 
domain overview navigate to “Integrated application.” From there the “Add 
application” button can be used to start the setup. 

 

Provide a name and description for the new application. 

If the service account that’s used to access the HSL applications is managed through 
IDCS then consider enabling the “Enforce grants as authorization” option.  

https://jwt.io/libraries


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 35 
  

Press next and add a Resource Server configuration. 

 

Enter a primary audience and create relevant scopes. As we’re configuring access to 
the HSL services ‘hsl’ is used here as the primary audience (primary recipient of 
access tokens generated by IDCS). Scopes describe what kinds of resources are 
available to other applications. We’ll use the scope(s) defined here to restrict or allow 
access to resources by client applications by adding them in the context of specific 
resources in the configuration of OHS later on. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 36 
  

 

Moving on to the client configuration, starting with the allowed grant types.  

The only allowed option in this case is the client credentials flow. The client 
credentials grant flow permits a client application to use its own credentials (signed 
JWT) to authenticate when calling IDCS endpoints, instead of having to impersonate 
a user, for example.  

You’ll note the URLs in the configuration below are left empty. As the application is 
capable of requesting access to protected resources based on its own credentials there 
is no use for logout or redirect URLs. The application would simply be able to request 
a new token with which it can access a resource.  

The client type option is set to “Confidential” as the client application using this 
configuration is capable of keeping its private key secret. 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 37 
  

 

Through the “Certificate” option the public key counterpart of the private key of the 
client application can be uploaded and provided an alias. The alias is the kid or Key 

Id used in the JWT in paragraph 3.5.1. IDCS uses the alias/key id to be able to verify 
using the correct public key that requests for access tokens using the JWT signed by 
the client applications private key are in fact signed with the private key that only the 
client application should have access to. 

 

If able, it is advisable to restrict access to the IDCS application through the “Client IP 

Address” option by entering one or more network perimeters. Ask your network 

engineers for help setting this up. 

Lastly, tokens issued by IDCS on behalf of this configuration should be restricted to 

specifically authorized resources. The resources previously configured must be 

added here.  

 
Note that upon going through the workflow and configuring the client configuration 

for the first time, the “Resource server configuration” that was previously set up 

hasn’t yet been saved, so it won’t show up in the “Add scope” window. Press next 

and on the “Web tier policy” window press previous. The scopes configured in the 

resource server configuration are now saved and can be added through the “Add 

scope” window. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 38 
  

Setting up a Web tier policy and/or app gateway in OCI is considered out of scope 

here. Reference the OCI documentation for more information on this component 

through: https://docs.oracle.com/en-us/iaas/Content/Identity/applications/add-

confidential-application.htm. 

 

The configuration of the confidential application in IDCS is now complete. The 

application can be activated after pressing finish. 

With IDCS set up, the signed JWT created in the previous section can be used to 
retrieve an access token. To find out where the JWT should be sent to, reference the 
well-known endpoint. Every application registration in IDCS is provided a publicly 
accessible endpoint that serves its OpenID configuration document. To determine the 
URI of the configuration document's endpoint for your application, append the well-
known OpenID configuration path to your applications registration's URL: 
https://idcs-abcdef123456ghijk7890.identity.oraclecloud.com/.well-known/openid-
configuration 

The signed JWT is sent via an HTTP POST request to the activated IDCS application, 

e.g. 

curl --header ‘Accept: application/json’ --header ‘Content-

Type: application/x-www-form-urlencoded’ --request POST 

https://idcs- idcs-
abcdef123456ghijk7890.identity.oraclecloud.com/oauth2/v1/token?

grant_type=client_credentials&scope=<SCOPE>&client_assertion_ty

pe=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-

bearer&client_assertion=<SIGNED JWT> 

SCOPE: specific scope (of access) that the client wants to receive an access token for. 
In the case of IDCS this is a combination of the primary audience and the specific 
scope access is requested for. Based on the configuration outlined above that would 
be ‘hslapi:full’. 

On a successful request an access token should be returned. The access token can be 
used as a bearer token for requests to the OHS instance and indirectly the HSL 
services, e.g. 

curl -s -H 'Accept: application/json; Charset=utf-8' -H 

'Accept-Language: en-US' -H 'Authorization: Bearer 

eyJ4NXQjUzI[... omitted for brevity ...]' --get 

'https://example.com:7580/HSL_CLA/cla/v1/vervoerDeclaratie/100' 

 

3.5.3.1 Key management and rotation 

Care should be taken to protect the private key used by the client application. As 
access to this key constitutes access to protected resources. The resources a key 
provides access to, should be tailored to the application and should be as narrow in 

https://docs.oracle.com/en-us/iaas/Content/Identity/applications/add-confidential-application.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/applications/add-confidential-application.htm


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 39 
  

scope as possible. A way to achieve that for any given application is by setting up 
and configuring a specific confidential application in IDCS (with its own private key 
and scope of access) for that application.  

In addition, a key needs to be rotated periodically as part of a healthy security 
posture. Factors that should be considered when defining a key management policy 
(and specifically a key rotation period) are considered out of scope for this document. 
For a more in-depth discussion regarding key management see the following report 
by the US National Institute of Standards and Technology (NIST): 
https://doi.org/10.6028/NIST.SP.800-57pt1r5. With regards to the key rotation 
period (also known as the cryptoperiod), chapter 5.3 of the report describes 1 to 2 
years per rotation to be acceptable. 

3.5.4 OHS – mod_auth_openidc installation and configuration 

The next step is to configure OHS to act as an OAuth2.0 

Resource Server for HSL services. In this example we will use 

the OHS component as it is installed in combination with the 

Oracle Forms product. Note that without OHS serving as a 

reverse proxy in front of the HSL services, the services are 

left unprotected! It is vitally important to have a reverse 

proxy that includes OAuth2 token verification, like the setup 

outlined in this paragraph, in front of the HSL webservices. 

The HSL services will only execute rudimentary checks on 

incoming requests to verify they are forwarded by a proxy-like 

application. 

The apache module mod_auth_openidc should be installed on the OHI BO 
application tier. It is available from the ol8_appstream dnf/yum repository. To install 
it, login as root and run: dnf install mod_auth_openidc 

After a successful installation locate and record the location of the installed module. 
The module needs to be registered in the OHS configuration for OHS to be able to 
load it as a part of its startup. Typically, the module can be found using: rpm -ql 
mod_auth_openidc | grep mod_auth_openidc.so 

The module might be installed at something like: 
/usr/lib64/httpd/modules/mod_auth_openidc.so 

Next  
 
Login as oracle to the OHI BO Application Tier and go to the OHS moduleconf 
directory: 
oraset DOMFRS12214 

(or use “. ozg_init.env” to set the environment variables for the WLS domain) 
cd 

$DOMAIN_HOME/config/fmwconfig/components/OHS/instances/ohs12214

/moduleconf 

Create or edit an OHS configuration file, ending with .conf, in this moduleconf 
directory as these are normally all included by the OHS httpd.conf file. Name it e.g. 
OHIBO.HSL.conf: 
 

LoadModule auth_openidc_module 

/usr/lib64/httpd/modules/mod_auth_openidc.so 
<IfModule auth_openidc_module> 

 
  OIDCOAuthVerifyJwksUri https://idcs- idcs-

abcdef123456ghijk7890.identity.oraclecloud.com/admin/v1/Signing

Cert/jwk 
  <LocationMatch "^/HSL" > 
    AuthType oauth20 
    <RequireAll> 
      Require valid-user 
      Require claim “scope:api:full” 

https://doi.org/10.6028/NIST.SP.800-57pt1r5


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 40 
  

      Require claim aud:hsl 
    </RequireAll> 

 
    SetHandler weblogic-handler 
    WebLogicHost localhost 
    WebLogicPort 9522 
    SecureProxy ON 
    WLSSLWallet 

"${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYP

E}/instances/${COMPONENT_NAME}/keystores/default" 
    WLProxySSL ON 
  </LocationMatch> 
</IfModule> 

This configuration manages a couple of things. It specifies where the 
mod_auth_openidc module can obtain the public key counterpart of the key IDCS 
used to sign access tokens through the ‘OIDCOAuthVerifyJwksUri’ option. This key 
is obtained the first time a request hits a location protected by OHS, in this case all 
locations starting with ‘/HSL’. The signing key is cached for a configurable amount 
of time, which is an hour by default. Incoming requests that send along JWT’s will be 
verified to have been signed by IDCS are additionally required to contain a 
configurable set of claims. Here the scope and audience claim are used as an example. 

Through standard Apache Require-directives access can be managed to resources. 
See https://httpd.apache.org/docs/2.4/howto/access.html for more information. 

3.5.4.1 mod_auth_openidc and mod_oauth2 

In an upstream version of the mod_auth_openidc module the developer has split-off 
the OAuth2.0 Resource Server functionality into its own module called mod_oauth2. 
This module might in the future be made available via the OL dnf/yum repositories. 
It offers identical functionality to what is currently provided by the 2.4.9.4-5 version 
of mod_auth_openidc in the OL8 and OL9 dnf/yum repositories with regards to an 
OAuth2.0 Resource Server implementation and can be used interchangeably. 

3.5.5 WLS – enable proxy plug-in 

For WebLogic to be able to proxy requests back and forth to OHS the following 
configuration is required to be executed for all managed servers that will be used to 
serve requests for HSL resources. Login to the WebLogic console and navigate to the 
relevant managed server from the ‘Servers’ link in the sidebar.  

 

From the configuration page of the managed server navigate to the ‘advanced’ 
section: 

https://httpd.apache.org/docs/2.4/howto/access.html


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 41 
  

 
Next, make sure the ‘WebLogic Plug-In Enabled’ option is set to yes. 

 

3.5.6 WLS – OHS as the only means of accessing HSL services 

As the access to the HSL webservices is secured through OHS, it is vitally important 
that there are no other ways of accessing the HSL webservices without going through 
OHS.   

If OHS and the WLS managed server should run on the same host the following 
configuration can be used to allow for the WLS managed server to be only accessible 
locally on that host. This is achieved through setting the “Listen Address” in the 
configuration of the managed server to localhost. 

 

If OHS (or another application serving the same purpose) and the HSL services don’t 
reside on the same host, access to the HSL services should still be routed via the 
reverse proxy to protect the services. Whether this could be setup transparently via 
firewall rules or as part of a cloud-based solution is considered out-of-scope for this 
manual. Include your network administrator in this conversation. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 42 
  

3.5.7 HSL service configuration 

The HSL services are configured through the hsl.properties file. Chapter 5 describes 
the possible configuration properties the file might contain in more detail. For the 
purposes of the OAuth2.0 setup it should be noted that the following properties must 
be present in the configuration file: 

• hsl.<app>.authorization (or when this property isn’t set the fallback 

hsl.authorization property). The property must have the value TOKEN. 

• hsl.<app>.allowedorigins (or when this property isn’t set the fallback 

hsl.allowedorigins property). This property must contain the host and 

port combination of the OHS reverse proxy, e.g. https://example.com:7580 

3.5.8 Troubleshooting OHS and mod_auth_openidc 

To troubleshoot OHS the following statements can be added to the HSL OHS 
configuration (httpd.conf) to enable debug logging: 

    LogLevel info auth_openidc:debug weblogic:debug 

The LogLevel-directive sets a default log level of info for all log messages except the 
mod_auth_openidc module and weblogic. They get a level of debug. 

3.5.9 OHS log message - nzos_Handshake: mod_wl failed 

If the OHS log should contain something like the following messages: 

[2000-01-01T12:01:22.1000+02:00] [OHS] [ERROR:32] [OH99999] 

[weblogic] [host_id: example.com] [host_addr: 100.100.100.1] 

[pid: 1059400] [tid : 140178737800960] [user: oracle] [ecid: 

0067NOLxtkk9d_eUtaXvWH0042d8000002] [rid: 0] [VirtualHost: 

main] nzos_Handshake: mod_wl failed (29024) 
[2000-01-01T12:01:22.2000+02:00] [OHS] [ERROR:32] [OH99999] 

[weblogic] [host_id: example.com] [host_addr: 100.100.100.1] 

[pid: 1059400] [tid : 140178737800960] [user: oracle] [ecid: 

0067NOLxtkk9d_eUtaXvWH0042d8000002] [rid: 0] [VirtualHost: 

main] wl_ssl_open : SSL Handshake failed onserror : Success, 

error : 29024, status : 2 
[2000-01-01T12:01:22.3000+02:00] [OHS] [ERROR:32] [OH99999] 

[weblogic] [client_id: 10.10.10.1] [host_id: example.com] 

[host_addr: 100.100.100.1] [pid: 1059400] [tid: 

140178737800960] [user: oracle] [ecid: 

0067NOLxtkk9d_eUtaXvWH0042d8000002] [rid: 0] [VirtualHost: 

example.com:7580] <0067NOLxtkk9d_eUtaXvWH0042d8000002> 

*******Exception type [NO_RESOURCES] (Could not open secure 

connection) raised at line 1829 of URL.cpp 
[2000-01-01T12:01:22.4000+02:00] [OHS] [ERROR:32] [OH99999] 

[weblogic] [client_id: 10.10.10.1] [host_id: example.com] 

[host_addr: 100.100.100.1] [pid: 1059400] [tid: 

140178737800960] [user: oracle] [ecid: 

0067NOLxtkk9d_eUtaXvWH0042d8000002] [rid: 0] [VirtualHost: 

example.com:7580] Trying GET 

/OHI/EXAMPLE/HSL_CLA/cla/v1/vervoerDeclaratie/1000 at backend 

host '::1/9522; got exception 'NO_RESOURCES: [os error=0,  line 

1829 of URL.cpp]: Could not open secure connection' 

and if OHS is configured for an SSL connection to WLS refer to Doc ID 1665711.1 on 
My Oracle Support for more information and a likely fix. 

 

 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 43 
  

3.6 (Re)deployment of the HSL Application 

The HSL web applications are packaged in a single archive named ‘HSLBOWS.ear’. 
This EAR file must be deployed to WLS. 

The EAR file containing the HSL applications resides in the $OZG_BASE/java 
directory on the application server containing the OHI Back Office software release.  

You can copy this to another location if required. 

Ensure that the .ear file is located on the WLS Admin Server host (this is the server 
running the WLS Administration Console). 

Note that you cannot use an older EAR file with a newer OHI Back Office release and 
vice versa. 

The following scenarios are discussed: 

• Deploy to a single Managed Server 

• Deploy to multiple Managed Servers 

• Deploy to a WebLogic cluster 

• Deploy for DTAP (development, test, acceptance, production) 

3.6.1 Deploy to a single Managed Server 

 

3.6.1.1 Deploy EAR file 

In the Domain Structure pane, select the Deployments branch. This will show the 
applications that have already been deployed. 

If you want to shorten this list, use ‘Customize this table’ to exclude the libraries.  

Select ‘Lock & Edit’ to enter editing mode, this will enable the ‘Install’ button which 
you need to use next. 

In the new window, locate the .ear file on the WLS server, select one and press ‘Next’: 

 

Select ‘Install this deployment as an application’, press ‘Next’ and select the target(s) 
for deployment. In the example below only Managed Server ms_ohi_hsl is chosen. 

 

Press ‘Next’ and decide on a deployment name and select “Custom Roles and 
Policies” as the security model to use with the application. At this point the version of 
the EAR file is also shown. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 44 
  

 

Regarding source accessibility, select ‘Copy this application….’ if you want to remove 
the EAR file from its current location. 

Finish the configuration. 

Beware that – in Production mode - you need to Activate your changes in order to 
enable the web services. At that moment the deployment will show status ‘Prepared’. 

By selecting the deployment in the Control tab and pressing Start → Servicing all 
requests the State will change to ‘Active’ (assuming your Managed Server is in 
‘Running’ state, the hsl.properties file has been specified and can be found). 

3.6.1.2 Specify configuration file 

Before using the web services, implement the following actions as described below. 
These actions have to be executed only once. There is no need to repeat them when 
you update a deployment or delete and install it again. 

Add a Server Start argument by adding a line to the file 
$DOMAIN_HOME/bin/setUserOverrides.sh created earlier. Add the line to the part 
for the HSL server, as indicated below: 

# specify additional java command line options for specific servers 

if [ "${SERVER_NAME}" = "ms_ohi_hsl" ] 

then 

  # add settings for HSL 

  # Custom Setting for ms_ohi_hsl to set debug level for SSL 

  JAVA_OPTIONS="-Dweblogic.wsee.security.debug="true" ${JAVA_OPTIONS}" 

  # Set location for HSL properties file 

  JAVA_OPTIONS="-Dhsl.properties="/u01/app/oracle/product/OHI/vohi/hsl.properties" ${JAVA_OPTIONS}" 

fi 

export JAVA_OPTIONS 

• Make sure to keep the parts with ${JAVA_OPTIONS} on the same line 

This example uses a properties file with the name hsl.properties which is located in 
the $OZG_BASE folder of your OHI Back Office application server environment, but 
you can specify any name and location. 
 
The contents of this file are discussed in Chapter 5 ”Configuration files for HSL 
services”).  



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 45 
  

When completed, (re)start the Managed Server. This can be done from the WebLogic 
Admin console, or from the command line with the following commands; 

cd $DOMAIN_HOME/bin 

./startManagedWebLogic.sh ms_ohi_hsl http://localhost:7061 

 

The example above contains the Managed Server’s name as first parameter and the 
listen address of the Admin Server of the domain as second parameter 

Check in the <ManagedServer>.log file and/or in the <ManagedServer>.out file in 
$DOMAIN_HOME/servers/<ManagedServer>/logs directory of your Managed 
Server whether the command line contains the arguments as specified above. 

NOTE: If the file specified by hsl.properties cannot be read, messages as below will show up 
in the WebLogic console and in the <ManagedServer>.log file:  

java.lang.RuntimeException: Property file could not be loaded. 

…. 

java.io.FileNotFoundException: 

/u01/domains/OHIDEV01/conf/psl.properties (No such file or directory) 

 

3.6.2 Deploy to multiple Managed Servers 

You may deploy the application to more than one target. 

Example: if you choose to target the application to Managed Servers MS1 and MS2, 
the application will be available on separate end points. The URLs of these end points 
will only differ in port number. 

If you choose this scenario, be aware that each Managed Server should have different 
Server Start argument values (hsl.properties). 

3.6.3 Deploy to WebLogic cluster 

You may deploy the application on all the Managed Servers of a cluster. This may be 
needed for better scalability. Be aware to use some form of load balancing to allow 
the use of a single endpoint by the  end users. 

The best way to implement this type of deployment depends on your specific 
situation. 

If you are planning a load balanced environment with multiple Managed Servers in a 
WebLogic cluster it is vital that the configuration of every Managed Server is aligned 
with the others.  

3.6.4 Deploy for multiple environments (DTAP) 

If you use several OHI-related environments to support the various DTAP (Develop-
Test-Accept-Production) stages, you may want to have different versions of the HSL 
application running at the same time. 

To implement this, you need to: 

• Create at least one Managed Server for each of the DTAP stages. 

• Create a data source for each OHI Back Office database and deploy that data 
source only to the corresponding Managed Server(s). 

• Create an hsl.properties file for each Managed Server. 

• Configure each Managed Server to start up with the appropriate 
hsl.properties. 

• Deploy the appropriate version of the HSL application to its corresponding 
Managed Server(s) and give it a unique deployment name to identify its 
deployment. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 46 
  

3.6.5 Validate deployment 

Be aware that the URLs displayed in the Admin Console cannot be used to test or 
validate the deployment. 

 

Also note that, even with the correct URLs, you cannot use a browser to test, because 
the request needs to include a Request Header “Accept:application/json”.  

You may get no response, or a reply like this: 

<exceptionResponse> 

<internalStatus>Not Acceptable</internalStatus> 

<message>Wrong value for Accept</message> 

</exceptionResponse> 

Instead, use curl, as described in chapter 4 “Deployment validation” or SoapUI, as 
described in Appendix D “Testing with SoapUI”. 

3.7 Additional Security Aspects 

Since HSL services provide an additional channel to access OHI Back Office data, you 
must prevent unauthorized use of the HSL applications. 

Please consult the ‘Oracle Health Insurance Security Aspects’ guide for more 
information about OHI Back Office security aspects. 

In order to prevent the exposure of sensitive data or unauthorized changes to the 
OHI Back Office data, access of the HSL applications should be limited to trusted 
systems and interfaces. When access to the HSL applications is secured through OHS 
(as it is for Single Sign-On using OpenID Connect), it is vitally important that there 
are no other ways of accessing the HSL webservices without going through OHS. 

Finally, note that it is your responsibility as an administrator to secure the HSL 
services within your organization. 

3.7.1 Cross-Site scripting protection 

As a measure to prevent against potential cross site scripting attacks you can limit the 
callers of the REST services by specifying a set of trusted origins. The set of origins 
can be added as a space-separated list to the property ‘allowedorigins’.   



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 47 
  

4 Deployment validation 

Especially when deploying a HSL application for the first time, it makes sense to 
validate that the HSL application is in working order. 

Before you begin, check in the WLS Admin Console that the deployment status of the 
HSL application is active.  

The following validation tests can be performed by the administrator: 

• getDatabaseInfo operation 

• Get Runtime Swagger definition 

The getDatabaseInfo operation requires a JDBC connection between the HSL 
application and the OHI BO database, so you are not only testing the deployment 
itself but also the integration between the HSL application and the OHI database. 

If a validation test fails see the paragraph ‘Troubleshooting’ below to find and resolve 
the problem. 

The validation tests described below assume that you test with ‘curl’. 

4.1 Testing with Curl 

An operation of the HSL application can be invoked with many HTTP client tools. 
One of these tools is curl, which is present on any Linux/Unix server. 
Assuming that you have terminal access to the Linux server running the reverse 
proxy in front of the HSL services, curl is a good tool to run the deployment 
validation tests. 

Use ‘curl --version’ to check the curl version. Ensure that you are running curl 

7.35.0 or higher as that supports the required SSL implementation. 

First an access token needs to be retrieved from an identity provider. Continuing 
with the setup outlined in chapter 3, we’ll use IDCS as an example.  

curl --header ‘Accept: application/json’ --header ‘Content-

Type: application/x-www-form-urlencoded’ --request POST 

https://idcs-

250703492t3452395h234985236eb5525.identity.oraclecloud.com/oaut

h2/v1/token?grant_type=client_credentials&scope=hslapi%3Afull&c

lient_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-

assertion-type%3Ajwt-bearer&client_assertion=<SIGNED JWT> 

Explanation of the used options and placeholders: 

• --header ‘Accept: application/json’ 
We’d like IDCS to send the access token and accompanying information back in 
json format. 

• --header ‘Content-Type: application/x-www-form-urlencoded’ 
This header specifies the way in which the information sent as part of the IDCS 
url has been formatted. 

• --request POST 

add HTTP POST verb 

If, or rather when, IDCS accepts the signed JWT, the access token is sent as part of a 

json payload that includes metadata about the requested access and token, e.g. the 

expiry time of the access token or the scope of access. The access token itself is 

contained in the ‘access_token’ field of the payload. We’ll use this token in the 

upcoming curl requests in this chapter. 

A typical invocation of an HSL operation using curl would look like this 

curl --dump-header - --request <verb> --insecure --header 

“Accept:application/json” --header “Authorization: Bearer 

<access token>” <url> 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 48 
  

Explanation of the used options and placeholders: 

• --dump-header - 

Dump response headers to stdout 

• --request <verb> 

add HTTP verb (GET/PUT/POST/PATCH/DELETE) 

• --insecure 

Allow curl to run HTTP requests without checking SSL certificates. 

• --header “Accept:application/json” 

Add request header to require a response in application/json format. 
This is required for every HSL operation. 

• --user <user> 

The username of the WLS user used for Basic Authentication. 
The <user> must refer to an existing WLS user. 
Note that curl will prompt for a password if it is not given on the command line. 

• <access token> 
Access token retrieved from an identity provider. 

• <url> 
The path to the HSL operation. 

The url format is https://server:port/application/path where 

server This must be one of the managed servers protected by a 
reverse proxy that includes a OAuth2 resource server 
implementation, like the OHS setup as specified in chapter 3 
of this manual. In addition, the managed server must be 
listed in the WLS console as an active target for the HSL 
application. 

port The SSL port of the reverse proxy running the HSL application. 

application This is the name of the HSL application as listed on the WLS 
deployment page. 

For example, HSL_POL, HSL_REL, HSL_CLA or HSL_C2B. 

path The path to this operation.  
Each operation is uniquely identified by a <path> + <verb> 
combination. 

Path examples: ‘/dbinfo’ or ‘api/swagger.json’ 

In the following example, information on the database connection is requested from 
the HSL_POL application on the local WLS host running a managed server accessed 
via an OHS instance that serves as a reverse proxy at SSL port 7094: 

curl --dump-header - --insecure --header “Authorization: Bearer 

yJ4NXQjUzI1NiI6IlRyYmlwdUM0YjJGbzBBeXJ6dm9IVGpZRlhLQX...[omitte

d for brevity]” --header “Accept:application/json” 

https://localhost:7094/HSL_POL/dbinfo 

4.2 getDatabaseInfo 

This operation provides information about the database connection between the HSL 
application and the OHI BO database.  
If you are familiar with OHI BO’s SVL services, note that the getDatabaseInfo 
operation is comparable with the ‘isAlive’ operation implemented in every SVL 
service. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 49 
  

This operation requires a working database connection and invokes the PL/SQL 
implementation package specific to the HSL application. 

The getDatabaseInfo operation is invoked through  

https://server:port/application/dbinfo 

In the following example the getDatabaseInfo of the HSL_POL application accessed 
via an OHS instance that serves as a reverse proxy on SSL port 7094 in front of our 
local WLS host is invoked through curl.  

curl --dump-header - --insecure --header “Authorization: Bearer 

yJ4NXQjUzI1NiI6IlRyYmlwdUM0YjJGbzBBeXJ6dm9IVGpZRlhLQX...[omitte

d for brevity]” --header “Accept:application/json” 

https://localhost:7094/HSL_POL/dbinfo 

The output is a JSON object with information about the database connection and the 
PL/SQL package implementing the HSL application in the OHI BO database: 

{ 

 "basePath": https://localhost:7094/HSL_POL/pol, 

 "database": "BDDEV1722", 

 "instance": "CDB02", 

 ”jndiName": "HSL_BDDEV1722", 

 "plsqlPackage": "hsl_pol_sp_pck $Revision: 4.21 $", 

 "user": "HSL_USER", 

 "userContext": "MANAGER" 

} 

4.3 verifyInterfaceVersion 

This operation checks whether the deployed version at the application server and the 
corresponding objects as installed in the database do match with each other. 

The verifyInterfaceVersion operation is invoked through 

https://server:port/application/api/verifyInterfaceVersion 

In the example below the operation is called for application HSL_CLA: 

curl --dump-header - --insecure --header “Authorization: Bearer 

yJ4NXQjUzI1NiI6IlRyYmlwdUM0YjJGbzBBeXJ6dm9IVGpZRlhLQX...[omitte

d for brevity]” --header “Accept:application/json” 

https://localhost:7410/HSL_CLA/api/verifyInterfaceVersion 

The output is a JSON object like: 

{ 
  "items": 
    [{"name":"plsqlSwaggerRevision","value":"4.47.1.1"} 
    ,{"name":"warSwaggerRevision","value":"4.47.1.1"} 
    ,{"name":"match","value":"true"} 
    ] 
} 

It states whether both versions do match (true) or not (false). They should match and 
if not, you should find out what went wrong, is the problem at the database side of 
the application server deployment side. 

 

4.4 Get Runtime Swagger definition 

Each HSL application has an operation to generate a Swagger definition which 
documents the operations and the objects of the HSL service.  
This documentation is not only useful to client application developers but can also be 
used as the basis for code generation. 

The Swagger 2.0 and OpenApi 3.1 standards are supported by many leading software 
vendors including Oracle. They are documented on https://www.openapis.org. 

The Swagger 2.0 definition can be retrieved as follows: 

https://www.openapis.org/


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 50 
  

• https:/server:port/application/api/swagger.json 

Returns the Swagger definition in JSON format 

• https:/server:port/application/api/swagger  

Returns the Swagger definition in JSON format 

• https:/server:port/application/api/swagger.yaml 

Returns the Swagger definition in YAML format 

The OpenApi 3.1 definition can be retrieved as follows: 

• https:/server:port/application/api/openapi.json 

Returns the OpenApi definition in JSON format 

• https:/server:port/application/api/openapi  

Returns the OpenApi definition in JSON format 

• https:/server:port/application/api/openapi.yaml 

Returns the OpenApi definition in YAML format 

In the following example we retrieve the runtime Swagger definition of the POL 
service: 

curl --dump-header - --insecure --header “Authorization: Bearer 

yJ4NXQjUzI1NiI6IlRyYmlwdUM0YjJGbzBBeXJ6dm9IVGpZRlhLQX...[omitte

d for brevity]” --header “Accept:application/json” 

https://localhost:7094/HSL_POL/api/swagger.json 

The output is a JSON object containing the Swagger definition of the deployed HSL 
application. 

For retrieving the YAML format beware that you specify x-yaml in the -H argument: 

curl --dump-header - --insecure --header “Authorization: Bearer 

yJ4NXQjUzI1NiI6IlRyYmlwdUM0YjJGbzBBeXJ6dm9IVGpZRlhLQX...[omitte

d for brevity]” --header “Accept:application/json”  

https://localhost:7094/HSL_POL/api/swagger.yaml 

 

4.4.1 Saving the Swagger definition to a file 

Curl can also write the response of an invocation to a file, using the ‘--output 

<filename>’ option 

In the example below we save the online Swagger definition of the POL service 
running on localhost at SSL port 7094 to a file called ‘saved_swagger.json’: 

curl --dump-header - --insecure --header “Authorization: Bearer 

yJ4NXQjUzI1NiI6IlRyYmlwdUM0YjJGbzBBeXJ6dm9IVGpZRlhLQX...[omitte

d for brevity]” --header “Accept:application/json” --output 

“saved_swagger.json” 

https://localhost:7094/HSL_POL/api/swagger.yaml 

4.5 Troubleshooting 

If the deployment validation fails, first check that the following items have been 
configured correctly: 

• hsl.properties configuration file (see next chapter) 
This sets the data source for your HSL application. 

• hsl.properties Server Start argument  
This parameter tells the HSL application where to find the hsl.properties file.  
If the hsl.properties parameter refers to a non-existing file, the HSL 
application cannot be started by WLS and its state will be ‘Failed’. 

• Data source configured in hsl.properties configuration file 
This data source is used to create the JDBC connection between the HSL 
application and the OHI BO database 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 51 
  

• HSL database account 
This account in the OHI BO database has access to the PL/SQL components 
used by the HSL application. 

• The configuration of the reverse proxy (OHS in the context of this manual) 
See paragraph 3.5.7 for more information on how to enable debug output for 
OHS. 

Troubleshooting tips: 

• Edit the hsl.properties file and set ‘developermode=true’ for your HSL 
application. 

• Restart the managed server for your application. 
Error messages will now be included in the output (normally they are 
suppressed from the output). 

• Reproduce the request with curl. Be sure to use the ‘dumpheader’ option (--

dump-header) to dump the response headers. 

The table below may help you to pinpoint the problem: 

 

HTTP Message Problem Action 

 WLS Console: 
java.lang.RuntimeException: 
Property file could not be 
loaded. 

The configuration file could not 
be loaded when starting the 
HSL application. 

Restart application after ensuring 
that the file referred to by the 
‘hsl.properties’ Server Start 
argument exists and is readable.  

500 Unable to resolve ‘xyz' The jndiname property for this 
application does not refer to a 
valid data source. 

Examine hsl.properties and ensure 
that the application’s jndiname 
points to a valid datasource. 

500 ORA-06550:line 1.. The required HSL objects 
cannot be accessed by the 
database user related to the data 
source. 

Verify that the data source points to 
a HSL database account. 

Verify that the HSL database account 
has access to the HSL objects (see 
‘Creating a HSL database account’ 
above).  

401 Missing Authentication 
Scheme 

No authorization header has 
been supplied as part of the 
request 

Add an authorzation header that 
includes the access token that was 
retrieved from the identity provider 
to the request. 

401 Unauthorized or Forbidden Invalid or expired access token Add a valid  

422 Functional Error A syntactically correct request 
could not be completed due to a 
functional error or business rule 
violation. 

Adapt the request or the database 
situation so the cause of the failure is 
prevented. 

412 Precondition Failed Another user already updated 
these data. 

Refresh data and try again. 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 52 
  

5 Configuration Files for HSL services 

In the previous chapter a properties file was referenced in the web service application 
server deployment description. This chapter provides more information about that 
file. 

5.1 Properties file templates 

With the OHI Back Office release installation, a properties file template called 
hsl.properties.template is distributed to the $OZG_BASE/conf/Back-Office directory. 
Each OHI Back Office release may overwrite this template with an updated version. 
The hsl.properties.template can be used as an example to create your own 
hsl.properties file (for example in $OZG_BASE/conf).  

Please note that all values are examples. You should consider if these values are 
appropriate for your installation and replace them with your own values if needed. 
Values indicated with <<SOME_NAME>> in the templates are placeholders and must 

be replaced. This notation is intended to make scripted deployment easier. 

Also make sure not to set log level to FINE, FINER or FINEST in production mode, 
use SEVERE or WARNING instead. 

5.2 Back Office HSL properties file 

The location of the Back Office properties file for the HSL services is specified as a 
Server Start argument for a Managed Server with: 

  -Dhsl.properties=<filename>  

This file contains properties to configure the various deployed HSL applications: 

• Datasource to connect the HSL application to the OHI database. 

• Default OHI employee (Dutch: functionaris) on whose behalf a request is 
executed. This can (should?) be generic name (e.g. HSL_FUNC_USER) without a 
corresponding database account. It is only used for the auditing columns in the 
OHI BO tables. 

• Logging configuration. 
Note that HSL services use Java Util Logging (JUL). You may find more 
information about the configuration options of JUL on the internet. 

In the subsection below, the properties are described in more detail, where “<app>” 
is a placeholder for the service name, like “rel”, “pol” or “polis” (see the properties 
file template for more examples). 

5.2.1 hsl.<app>.jndiname /hsl.jndiname 

The JNDI name of the data source to connect this HSL application to the OHI 
database is configured in hsl.<app>.jndiname. If not set, this value defaults to the 

value of the hsl.jndiname property.  

There is no default value if hsl.jndiname is not set, which will result in an error. 

Setting hsl.<app>.jndiname allows you to use different data sources for different 

HSL applications.  A different data source may connect to the same database using a 
different account, or to a different database altogether.  
As an example, you may want to use HSL_PRD for the REL service and HSL_RO 
(‘read only’) for the POL service to avoid changes to the policies in the production 
database. 

Note that you must use // for each forward slash in the JNDI name. 

Example: 

hsl.jndiname=jdbc//HSL_BDDEV1622 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 53 
  

5.2.2 hsl.<app>.authorization /hsl.authorization 

By default, HSL service operations require OAUTH2 authentication. The setting must 
be set to TOKEN for this form of authentication to take effect.  

As a fallback, Basic authentication is provided as a minimal policy to reduce the risk 
of unauthorized access and network sniffing. Basic authentication requires HTTPS 
communication and providing a WebLogic username/password with each call. 

To enforce basic authentication, the value of hsl.<app>.authorization or the 

default hsl.authorization property, should be set to BASIC.  

5.2.3 hsl.<app>.usercontext /hsl.usercontext 

The OHI employee (Dutch: functionaris) on whose behalf a request is executed.  

Setting hsl.<app>.usercontext allows you to set an OHI employee per HSL 

application. If not set, this value defaults to the value of the hsl.usercontext 

property. 

The user context is inserted in the call context which is included in the call to the 
PL/SQL implementation procedure. Note that the PL/SQL implementation may set a 
different OHI employee based on the request data. 

This user context determines the user identity that is used for performing and also 
logging changes to the data. The value must be the Oracle username of a registered 
BackOffice user (in Dutch: “Functionaris”). 
This user context will also be used to determine the access to the financial units when 
applicable (in Dutch: "Bedrijfstoegang"). 

Notes: 

• the usercontext must always be set, even if 
hsl.<app>.usercontext.control is set to TOKEN 

• the user context from the hsl.properties file may be overwritten in the SQL at the 
HSL application level, for the specific service or even operation. This should be 
documented in the functional specification(s) which apply to the given HSL 
application. 

• This value should not match the technical database account (HSL_USER) used for 
the Data Source. HSL_USER should not be registered as a BackOffice 
user/employee.  

• Conversely, the BackOffice user/employee should be a generic user without a 
database account. The “Oracle username” should not have a matching database 
account. 

• Do not use the value “MANAGER”. Records created and updated by HSL 
functionality should be recognizable as such. Using MANAGER will make it 
impossible to distinguish those records from records created or updated by batch 
procedures run by MANAGER and conversion scripts run during release 
installations, as these latter ones use hardcoded MANAGER. 

Example: 

hsl.usercontext=HSL_FUNC_USER 

5.2.4 hsl.<app>.developermode /hsl.developermode 

For security reasons, a response for a failed request contains minimal information so 
that potential hackers cannot use this information to misuse the HSL services. For 
functional errors, being either a BAD REQUEST or an OHI business rule violation, 
the functional error is returned. For all other errors, the error message will be 
replaced with ‘Non-disclosed’. The original error message is written to the log file. 

If hsl.<app>.developermode is set to ‘true’, the response for a failed request 

contains the original error message for all errors. If not set, this value defaults to the 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 54 
  

value of the hsl.developermode property. If hsl.developermode is not set, 

developermode is disabled. 

Note that in production mode it is strongly advised to delete the 
hsl.developermode and hsl.<app>.developermode property from the 

hsl.properties file. 

See Doc[2] (‘Error Handling’) for the differences in error handling between developer 
mode and non-developer mode. 

5.2.5 hsl.<app>. allowedorigins /hsl.allowedorigins 

For security reasons, to provide protection from cross-site scripting attacks, you can 
limit the callers of the REST services by specifying a set of trusted origins. See also the 
separate paragraph with ‘Additional Security Aspects’ earlier in this document 
describing this property. 

If hsl.<app>.allowedorigins is not set, this value defaults to the value of the 

hsl.allowedorigins property. If hsl.allowedorigins is not set, protection is 

not enabled. 

Note that in production mode it is strongly advised to set explicitly trusted origins 
through this property. 

An example: 

hsl.allowedorigins=https://server.domain.com:7430, https://localhost:8000 

 

5.2.6 hsl.<app>.logdirectory, logfilesuffix, logfile / hsl.logdirectory, logfilesuffix, logfile 

hsl.<app>.logdirectory / hsl.logdirectory 

hsl.<app>.logfilesuffix / hsl.logfilesuffix 

hsl.<app>.logfile   hsl.logfile 

 

To minimize maintenance, the properties hsl.logdirectory and 

hsl.logfilesuffix can be used instead of the hsl.<app>.logfile property. 

With hsl.logdirectory, a generic logdirectory can be defined. When there is no 

fully qualified logfile defined in hsl.<app>.logfile, the log file for the HSL 

application will be written to this location. 

With hsl.logfilesuffix a generic logfile name suffix can be defined. When no 

hsl.<app>.logfile property is defined, it will default to “hsl.<app>.log”, but 

when the suffix is set the logfile will default to “hsl.<app>.<logfilesuffix>.log”. 

When hsl.logdirectory is set, the hsl.<app>.logfile property no longer has 

to be set. The HSL application will be able to determine the log file name and location 
from hsl.logdirectory (and optionally hsl.logfilesuffix). This means 

that you will not have to add properties for new HSL applications. 

These properties can also be set at app level: hsl.<app>.logdirectory and 

hsl.<app>.logfilesuffix, but that will not help to reduce the configuration 

effort.  

hsl.<app>.logfile can only be set at <app> level. 

Default values: 

• hsl.<app>.logdirectory: no default value 

• hsl.<app>.logfilesuffix: no default value 

• hsl.<app>.logfile: “hsl.<app>.log” 

Note: 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 55 
  

• The directory referenced in hsl.<app>.logdirectory / 

hsl.logdirectory must exist and must be writable by the OS user 

running the WLS application server. 

• The hsl.<app>.logfile property can be a filename only or a fully 

qualified path including a filename. 

Examples: 

• hsl.logdirectory=/u01/log 
hsl.logfilesuffix=BOPROD_AS1 

hsl.<app>.logfile is not set 
This wil result in logfiles for all HSL applications as follows: 
/u01/log/hsl.<app>.BOPROD_AS1.log 

 
This is the recommended setup. 

• hsl.logdirectory=/u01/log 

hsl.logfilesuffix is not set  

hsl.<app>.logfile is not set 
 
This wil result in logfiles for all HSL applications as follows: 
/u01/log/hsl.<app>.log 

 
NOTE: do not use this setup for multiple OHI Environments and/or multiple 
Managed Servers (e.g. in a clustered environment) to log to the same 
directory. Locking issues will occur. Use different (sub) directories for each 
OHI Environment and Managed Server or use the logfilesuffix to create 
unique file names. 

• hsl.logdirectory is not set  

hsl.logfilesuffix is not set  
hsl.<app>.logfile=/u01/log/hsl.myownname.log  

 
This wil result in logfiles per HSL applications as follows: 
/u01/log/hsl.myownname.log 

 
HSL applications that have no setting for hsl.<app>.logfile will try to 
create a logfile in the WLS domain directory (which is likely to cause issues):  
/<WLS domain directory>/hsl.<app>.log 

 
This setup is not recommended. 

5.2.7 hsl.<app>.loglevel /hsl.loglevel 

The severity level that determines which log messages should be written is controlled 
by hsl.<app>.loglevel. If not set, this value defaults to the value of the 

hsl.loglevel property. If the global property is also not set, the default value is 

SEVERE. 

Logging levels: SEVERE, WARNING, INFO, CONFIG, FINE, FINER or FINEST. 

The following logging levels are currently used: SEVERE, WARNING, FINER and 
FINEST. These levels are used as follows: 

Level Usage 

SEVERE Severe is used for technical error, where it is expected that 
the user cannot do anything to solve the issue and that a 
system administrator is needed to solve the issue. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 56 
  

WARNING Warning is used for functional errors, where it is expected 
that the user can change something and try again. This log-
level is used when an error occurs with one of the following 
HTTP response codes: 

• HTTP 400: Bad Request 

• HTTP 401: Unauthorized 

• HTTP 404: Not Found 

• HTTP 412: Optimistic lock 

• HTTP 422: OHI business rule violation 

• HTTP 423: Locked 

FINER Finer is used for tracking and tracing. This can be used when 
an unexpected error occurs, and tracing information is 
required for debugging purposes. 

FINEST Also used for tracking and tracing, but for the low-level 
objects that have a very high frequency. 

The logging levels FINER and FINEST should only be used for debugging. 

 
Example: 

hsl.loglevel=SEVERE 

 WARNING: When setting the loglevel to FINER or FINEST 

this may lead to extensive log messages being recorded which 

can slow down the processing of service requests considerably. 

Response times measured while using such detailed log levels 

are clearly affected and should not be considered as 

representative for regular use. 

 WARNING: for production environments, set the loglevel to 

SEVERE or WARNING, to avoid logging of sensitive data. 

5.2.8 hsl.<app>.loglimit /hsl.loglimit 

The maximum size of the log file (in bytes) is controlled by hsl.<app>.loglimit. 

If not set, this value defaults to the value of the hsl.loglimit property. If the 

global property is also not set, the default value is 1000000 (1Mb). 

When the size of the log file reaches this limit, the log is rolled over to the next log 
file. 

Note that a value of 0 means ‘unlimited’. 

Example: 

hsl.loglimit=5000000 

5.2.9 hsl.<app>.logcount /hsl.logcount 

The number of log files to use in the log file rotation is controlled by 
hsl.<app>.logcount. If not set, this value defaults to the value of the 

hsl.logcount property. If the global property is also not set, the default value is 1. 

A value of 1 means that only 1 log file is created, and no log rotation takes place. 
When the log.limit is reached, the log file is overwritten and its previous contents are 
lost.   

Set the log.count to 2 or higher to avoid overwriting the log file once it is full. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 57 
  

Example 

hsl.logcount=2 

5.2.10 hsl.<app>.logappend /hsl.logappend 

Configure hsl.<app>.logappend if logging can be appended to existing log files. 

If not set, this value defaults to the value of the hsl.logappend property. If the 

global property is also not set, the default value is true. 

If false, a new log file will be created when rotating log files. 

Example: 

hsl.logappend=false 

5.2.11 hsl.<app>.maxcontentlength /hsl.maxcontentlength 

For security reasons, to provide denial of service attack protection, the maximum size 
on an incoming request is limited to the maxcontentlength. If the request exceeds this 
length, HTTP 406 Not Acceptable is returned. 

If hsl.<app>.maxcontentlength is not set, this value defaults to the value of the 

hsl.maxcontentlength property. If hsl.maxcontentlength is also not set, a 

default of 100.000 is applied. 

It is advised not to set this property to a value higher than 500.000. 

An example: 

hsl.maxcontentlength=100000 

5.2.12 Activating changes to hsl.properties 

To activate changes to hsl.properties you must restart the managed server. 

5.2.13 Troubleshooting hsl.properties 

Note the following if you have trouble starting up with a new hsl.properties file: 

• an empty value for ANY property will block any HSL application from starting 
up. 
Example: 
hsl.jndiname= 

• lines starting with ‘#’ are ignored. 

• empty lines are ignored. 

• do not use whitespace characters in property lines (even at the end). Whitespace 
characters are tabs and spaces. Inserting whitespace characters may result in a 
malfunction in the operation of HSL services. 

5.2.14 Keeping hsl.properties up to date 

When new HSL properties are released through (patch) releases of OHI Back Office, 
the installation instructions will tell you to change the hsl.properties file if required. 
Also, an updated properties file template will be released, as described in the 
previous section ‘Properties file templates’. 

5.3 Examining the Log File 

When encountering long-running HSL operations, examining the log file allows you 
to break down the roundtrip into different components. 

Ensure that the log level for the HSL application is set to FINE. 

If the log level is set to FINEST, writing log messages alone may require significant 
time and may account for much of the time spent in the HSL operation. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 58 
  

If you changed the log level, you must restart the Managed Server to activate the new 
log properties. 

Next, look up the long-running operation in the log file. The example shows log 
messages of a fictitious operation: 

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: begin getDossierRegels 
Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService getLanguage 
FINE: getLanguage() returns: nl-NL 
Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: expand=all 
Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: limit=10000 
Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: number=35 
Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: offset=0 
Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.CCallContext 

toJDBCObject 
FINE: enter toJDBCObject 
Mar 08, 2018 5:09:40 PM com.oracle.insurance.ohibo.hpo.CCallContext 

toJDBCObject 
FINE: leave toJDBCObject 
Mar 08, 2018 5:09:41 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: Before calling PL/SQL operation 
Mar 08, 2018 5:09:59 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: After calling PL/SQL operation 
Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.exception.ExceptionUtil 

handleReturnContext 
FINE: start handleReturnContext 
Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.exception.ExceptionUtil 

handleReturnContext 
FINE: end handleReturnContext 
Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: Before mapping SQL object to Java object 
Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: After mapping SQL object to Java object 
Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: http code=200 
Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: Before creating response 
Mar 08, 2018 5:10:22 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: After creating response 
Mar 08, 2018 5:10:22 PM com.oracle.insurance.ohibo.hpo.HpoService 

getDossierRegels 
FINE: end getDossierRegels 

From this fragment we may derive the following information: 

• Total roundtrip is about 43s (5:09:39 - 5:10:22) 

• PL/SQL execution: 18s (5:09:41 - 5:09:59) 

• Mapping SQL object to Java object:<1s 

• Creating response with JSON string:<1s 

5.3.1 Changing the log format 

The default format for logging timestamps is not suitable for sub-second operations.  
Logging timestamps in milliseconds since 01-01-1970 is needed if you want to analyse 
sub-second operations. 

To override the default format, create a configuration file with the following contents: 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 59 
  

# override default format for timestamps in milliseconds since 01-01-1970. 
java.util.logging.SimpleFormatter.format=%1$tQ %2$s%n%4$s: %5$s%6$s%n 

You now need to activate this configuration for the managed server to which the HSL 
application is deployed: 

• Start WebLogic Console 

• Choose Environments > Servers > managed_server 

• Add -Djava.util.logging.config.file=your_config_file to the Server 
Start parameters. Add a line to the file 
$DOMAIN_HOME/bin/setUserOverrides.sh you created earlier. Add the line to 
the part for the HSL server: 

  JAVA_OPTIONS="-Djava.util.logging.config.file=”your_config_file” {JAVA_OPTIONS}" 

• Restart the Managed Server. 

• Call the HSL operation and check that the subsequent log messages show log 
messages in milliseconds since 01-01-1970 

The output should now look like: 

1520867075960 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: begin getDossierRegels 
1520867075971 com.oracle.insurance.ohibo.hpo.HpoService getLanguage 
FINE: getLanguage() returns: nl-NL 
1520867075974 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: expand=all 
1520867075974 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: limit=10000 
1520867075975 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: number=11 
1520867075975 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: offset=0 
1520867075976 com.oracle.insurance.ohibo.hpo.CCallContext toJDBCObject 
FINE: enter toJDBCObject 
1520867075977 com.oracle.insurance.ohibo.hpo.CCallContext toJDBCObject 
FINE: leave toJDBCObject 
1520867075978 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: Before calling PL/SQL operation 
1520867092723 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: After calling PL/SQL operation 
1520867092728 com.oracle.insurance.ohibo.exception.ExceptionUtil 

handleReturnContext 
FINE: start handleReturnContext 
1520867092729 com.oracle.insurance.ohibo.exception.ExceptionUtil 

handleReturnContext 
FINE: end handleReturnContext 
1520867092730 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: Before mapping SQL object to Java object 
1520867093066 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: After mapping SQL object to Java object 
1520867093068 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: http code=200 
1520867093072 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: Before creating response 
1520867093073 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: After creating response 
1520867093074 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels 
FINE: end getDossierRegels 

This log output of a fictitious operation gives us the following information: 

• Total roundtrip is 17114 ms (1520867093074 - 1520867075960) 

• PL/SQL execution: 16745 ms (1520867092723 – 1520867075978) 

• Mapping SQL object to Java object: 336 ms (1520867093066   - 1520867092730) 

• Creating response with JSON string: 1 ms 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 60 
  

6 Upgrading HSL services 

Future OHI releases may include a new EAR file for HSL services. 

To deploy a new version of an existing HSL application, follow the steps below: 

✓ Check your web service properties file (typically hsl.properties) and 
implement necessary changes for your release. For information about the 
contents please see the previous chapter. 

✓ Logon to the Admin Server console of the domain where the web services are 
deployed. 

✓ Navigate to the deployments pane. 

✓ Choose the ‘Lock & Edit’ option. 

✓ If you already have a Retired version of the deployment, mark the check box 
in front of the retired deployment and delete it. 

✓ Navigate to the deployment that must be updated and mark the check box in 
front of it. 

✓ Press the Update button. 

✓ Determine whether the same source path still applies (typically a new 
version is delivered in the $OZG_BASE/java folder of your environment but 
your organisation may have additional distribution methods implemented). 
When the correct .ear file is selected press Next. 

✓ You now have two options for ‘retiring’ the previous version. Because 
normally the Back Office application is not available during patching, you 
can retire the previous version ‘immediately’, meaning using a timeout of 1 
second: 
 

Press ‘Finish’ to retire the previous version and continue. 
 
 

✓ Choose ‘Activate Changes’. 

✓ Refresh the screen a few seconds after having activated the changes.  

✓ Inform the communities which use the web services of the availability and 
publish the latest URIs to the swagger definitions to them.  

It the old deployment cannot be deleted when updating, stop the deployment with 
the ‘Force’ option and deploy it again completely (using the ‘Install’ option for 
deployments). In some cases (depending on the changes) you may need to repeat the 
Deployment delete/install when the install results in errors. If the deployment keeps 
failing, you may have to restart the Managed Server(s) as a last resort. 

After this the deployment state of the web services should be Active again (be sure 
the Managed Server(s) is/are running, otherwise start it/them to get this result). 

If not, check whether your OHI database environment and deployed version are 
correct, meaning that their version levels correspond with each other. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 61 
  

7 Appendix A – BASIC authentication 

By default, OAUTH2 is used as the authorization method of the HSL webservices. 
BASIC authentication is offered as a fallback option. This form of authentication 
involves sending cleartext credentials over a secure encrypted connection (for the 
purposes of this document, HTTPS). Setting up the HSL webservices for basic 
authentication involves multiple parts. 

The following steps are needed to set up minimal security for the HSL application: 

• Set up the WebLogic security realm 

• Setup a WebLogic user for accessing the HSL application 

• Configure the key store 

7.1 Background information 

Before you can install the HSL application using BASIC authentication, you need to 
decide on a Security Model for the HSL Webservices.  See Comparison of Security 
Models for Web Applications and EJBs for an introduction of the different Security 
Models. Your choice will depend on the security standards set by your company. 

A very short summary: 

• DD Only (Deployment Descriptors Only): choose this option if the default 
policies and role-mapping are desired and the WebLogic user “restuser” is 
allowed to execute the HSL Web Services (or “restuserbsn” for the 
HSL_BSNCHECK service, or “restuseragb” for the HSL_AGBCHECK 
service, or for other CHECK services “restuser<...>” for the 
HSL_<...>CHECK service). 

• Custom Roles: choose this option if the default policies are desired, but with 
a customizable role. The default policies are linked to the role “restuser-role” 
(or “restuserbsn-role” for the HSL_BSNCHECK service, “restuser<...>-role” 
for the HSL_<...>CHECK service, etc.), which needs to be created using the 
Admin Console. If this role is not created and assigned, all requests will be 
refused with HTTP 403 “Unauthorized”. 

• Custom Roles and Policies: choose this option if you want to overrule the 
default policy of each web service and create customizable roles, e.g. to limit 
access to certain of the HSL Webservices.  

NOTE: The HSL application must be deployed with Custom Roles and Policies to use 
token validation.  

Within the context of the ‘DD Only’ security model the following WebLogic users 
hold special significance:  

• “restuser” (for all services except HSL_BSNCHECK and HSL_<...>CHECK) 

• “restuserbsn” (specific for the HSL_BSNCHECK service) or   

• “restuser<...>” (specific for the HSL_<...>CHECK service). 

Within the context of the ‘Custom Roles’ security model the following WebLogic 
roles hold special significance:  

• “restuser-role” (for all services except HSL_BSNCHECK and 
HSL_<...>CHECK) 

• “restuserbsn-role” (specific for the HSL_BSNCHECK service) or   

• “restuser<...>-role” (specific for the HSL_<...>CHECK service). 

 

In the rest of this chapter the special ‘check’ services, discussed hereafter, will only be 
documented for the ‘bsn’ and ‘...’ service. The same instructions apply to the other 
check services as well. 

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/roles/secejbwar.html#GUID-D38B3272-AD78-450A-9BED-29CDA571C31A
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/roles/secejbwar.html#GUID-D38B3272-AD78-450A-9BED-29CDA571C31A


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 62 
  

The specific users and roles for check services like the HSL_BSNCHECK and 
HSL_<...>CHECK (restuserbsn, restuserbsn-role, restuser<...> and restuser<...>-role) 
were created as an extra security measure to prevent users that gain unauthorized 
access to the restuser or a WebLogic user with the restuser-role, to easily crawl data 
from a lot of our services. 

Most of the newer HSL services require a relation UUID (or another UUID that was 
retrieved using the relation UUID first) to retrieve data. In order to retrieve this 
relation UUID of a member it is required to supply the social security number of the 
relation as well as the relation’s date of birth. The social security number can be 
retrieved using the HSL_BSNCHECK service.  

In order to retrieve the relation UUID of a provider it is required to supply the AGB-
code and the provider id of the relation. The provider id can be retrieved using the 
HSL_AGBCHECK service. 

Because the HSL_BSNCHECK and ‘the other’ services are authorized to different 
users, a person with bad intentions needs to compromise multiple different accounts 
to be able to crawl all services (without causing many failing calls, which should 
notify a system administrator that there is suspicious activity).  

7.2 Setup security realm 

Create a security realm if this has not already been done (normally realm ‘myrealm’ 
will already be present). 

The security realm ‘myrealm’ as shown below will be used to configure the security 
at application level. 

 

If there are no other security realms, this will be the default security realm. 

 

7.2.1 Setup WebLogic user for accessing the HSL application 

Each operation of an HSL service requires basic authentication. This means that each 
call must be made as an authenticated WebLogic user. 

Depending on the Security Model you choose for deployment, the WebLogic user 
that makes the Web Services requests must have additional authorization. 

7.2.1.1 DDOnly 

The name of the default WebLogic user to access the HSL services is defined in a 
preconfigured deployment descriptor in the EAR file. This default name is ‘restuser’ 
for all services except HSL_BSNCHECK and HSL_<...>CHECK for which the names 
are ‘restuserbsn’ and ‘restuser<...>’. 

If the HSL application is deployed with the default security model (DD Only), the 
WebLogic user ‘restuser’ must be created and used as authentication when invoking 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 63 
  

the HSL service operations (or ‘restuserbsn’ for the HSL_BSNCHECK service or 
‘restuser<...>’ for the HSL_<...>CHECK service). 

To set up the WebLogic users ‘restuser’, ‘restuserbsn’ and ‘restuser<...>’, select ‘Users 
and Groups’ for your security realm:  

 

Add ‘restuser’ to the pool of WebLogic users and do the same for ‘restuserbsn’ and 
‘restuser<...>’: 

 

7.2.1.2 CustomRoles 

If you choose Security Model “Custom Roles”, create and/or customize the roles 
“restuser-role”, “restuserbsn-role” and “restuser<...>-role” now. See Securing 
Resources Using Roles and Policies for Oracle WebLogic Server for more information 
on how to setup a secure role. 

To create the role, assign it to a Group and add WebLogic users to that Group (make 
sure you create separate groups, one for the “restuser-role”, one for the “restuserbsn-
role” and so on for the “restuser<...>-role”): 

Choose “Security Realm” -> your realm -> “Users and Groups” -> “Groups” 

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/roles/secroles.html#GUID-79645C45-C982-454D-A22C-6115B86EDAD3
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/roles/secroles.html#GUID-79645C45-C982-454D-A22C-6115B86EDAD3


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 64 
  

 

Click the button “New”. 

In the next screen, fill in a name and a description 

 

Click the button “OK”. 

Choose “Security Realm” -> your realm -> “Roles and Policies” -> “Realm Roles”. 

Expand the Node “Global Roles” and click on the node “Roles”. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 65 
  

 

In the next screen, click the button “New”. 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 66 
  

In the next screen, fill in the name of the pre-defined role “restuser-role”, or 
“restuser<...>-role” (depending on which group is being created) and click the button 
“OK”. 

 

Back in the screen “Global Roles”, click on the role “restuser-role” or “restuser<...>-
role” you have just created. In the next screen, click on the button “Add Conditions” 
below “Role Conditions:” 

 

In the next screen, select “Group” and click button “Next”. 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 67 
  

In the next screen, enter the name of the Group you created before, and click the button 
“Add” to move the name to the box below. Then click button “Finish” 

 

This should result in: 

 

Do not forget to click button “Save”. 

Now add an existing or new user to the Group to authorize that user for HSL, using 
the Security Model “CustomRoles“. To create a new user, see the step above, for 
DDOnly. 

To add a user to the Group: 

Choose “Security Realm” -> your realm -> “Users and Groups” -> “Users”. Click on 
the user you want to authorize. In the next screen, move the Group you created to the 
right, and click the button “Save”. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 68 
  

 

 

7.2.1.3 CustomRolesAndPolicies 

If you do not want to authenticate the HSL application using the predefined weblogic 
users ‘restuser’, ‘restuserbsn’ and ‘restuser<...>’ and/or the predefined roles 
‘restuser-role’, ‘restuserbsn-role’ and ‘restuser<...>-role’, and instead you want to 
change the default permissions for individual Web Services or Web Service methods 
in the HSL application, you can choose to deploy using ‘Custom Roles and Policies’.  

 

 Attention:  deploying HSL with ‘Custom Roles and Policies’ but not adding 

your own roles and policies will allow any authenticated WebLogic user to 

execute the application. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 69 
  

 

7.2.1.4 Using a custom security policy for a deployed application 

The WebLogic console allows the administrator to specify a custom security policy 
for HSL applications deployed using ‘Custom Roles and Policies’.  
For example, a custom security policy can be used: 

• to limit access to a specified list of named WebLogic users; or  

• to limit access to a group of WebLogic users; or 

• to limit access to WebLogic users with a specific role; or 

• to limit access to a specific web module; or 

• to limit access to a specific web service operation inside a module (see 
Appendix G for an example) 

• or a combination of the above. 

 

7.2.2 Set user lockout 

While setting up HSL services for testing you may want to disable user lockout. 
In a production environment you should enable user lockout to discourage 
fraudulent use. Navigate to the Security Realm and use the ‘Configuration > User 
Lockout’ tab. 

 

 

7.3 Testing with SoapUI 

SoapUI is a tool for testing web services which can be downloaded from 
http://www.soapui.org. 

It is especially useful for functional testing of the HSL application. 

http://www.soapui.org/


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 70 
  

WLS 12c has removed the support for the security protocols SSLv3 and TLS 1.1, 
because they are now considered insecure.  
This means you must access the HSL application with a client that uses TLS 1.2. 

Unlike earlier versions, SoapUI 5.3 and 5.4 enable TLS 1.2 by default. The examples 
below assume SoapUI 5.4 or higher. 

7.3.1 Create REST project and import Swagger definiton 

• Follow the instructions in ‘Get Runtime Swagger Definition (curl)’ to retrieve the 
runtime Swagger definition from the HSL application and save the output to a 
file (for example ‘saved_swagger.json’) 

• Create a new REST project (empty value for URL) 

• Choose ‘Project > Import Swagger’ and select the saved Swagger definition. 

The operations of the HSL application are now discovered: 

 

You may now create requests for the operations provided by this HSL application. 

 NOTE: Upon release of this document there was no SoapUI 

version available that provided the ‘Import Swagger’ 

functionality for OpenApi 3.1 documents. Resources/testcases 

and mockservers can’t be automatically generated but can be 

entered manually. 

 

7.3.2 Create a request 

Once you have imported the Swagger definition you may create a request for each of 
the operations.  

In the example below we create a request for the getDatabaseInfo operation: 

• Double-click on  ‘Request 1’ of the requested operation 
(in our case /dbinfo > getDatabaseInfo). 

• Set the endpoint for the request to https://<server>:<port> 

For example https://127.0.0.1:7094. 

• Select ‘Headers’ and add a HTTP request header with Header value ‘Accept’ and 
with Value value ‘application/json’. 

• Add other HTTP request headers as required (not needed for this example) 

https://127.0.0.1:7094/


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 71 
  

• Select ‘Auth’ to add Basic Authentication for the WLS user. 
If you deployed with the ‘DD Only’ deployment model the WLS user should be 
‘restuser’ (or ‘restuserbsn’ for the HSL_BSNCHECK service or ‘restuser<...>’ for 
the HSL_<...>CHECK service). 

• Set ‘pre-emptive authentication’. 

• Run the request. 

The request window should now look like this: 

 

7.4 Generating a WADL file 

A WADL (Web Application Description Language) file may be required by Oracle 
Service Bus or other middleware to describe your HSL application. 

The current HSL applications cannot be used to generate WADL files directly. 

However, a WADL file can be easily generated from the online Swagger definition 
using SoapUI. 

This involves the following steps: 

• Create a REST project in SoapUI for your HSL application 

• Open the Service Viewer for the REST project 

• Export WADL from your REST project 

7.4.1 Create a REST project in SoapUI for your HSL application 

Follow the instructions in ‘Testing with SoapUI’ (chapter 7.3) to set up SoapUI for 
testing with your HSL application. 

7.4.2 Open the Service Viewer for the REST Project 

Click on the ‘WADL Content’ to see the WADL description. 
Your screen may look like this: 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 72 
  

 

7.4.3 Export WADL from your REST project 

Save the buffer to a WADL file. 

Alternatively, you may right-click on the service within the REST project (highlighted 
in the screen shot below): 

 

And select ‘Export WADL’ to create the WADL for this application. 

 

 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 73 
  

8 Appendix B – Service Information 

The following URI provides version information about a running HSL application: 

https://server:port/application/dbinfo 

 

For example: 

https://localhost:7002/HSL_POL/dbinfo 

This will return a JSON object like below: 

{ 
  "basePath": "https://localhost:7002/HSL_POL/pol", 
 "database": "BTSPC19", 
 "instance": "CDB19", 
 "jndiName": "HSL_BTSPC19", 
 "plsqlPackage": "hsl_pol_sp_pck $Revision: 4.39 $", 
 "user": "HSL_USER", 
 "userContext": "MANAGER" 
} 

Information: 

• basePath 
Format: https://server:port/application/context 

This is the base URI for all operations in this service. 

• database 
The name of the database associated with the current database connection 

• instance 
Instance name of the database associated with the current database connection. 

• jndiName 
The JNDI name of the database connection (specified in the hsl.properties file) 

• plsqlPackage 
The PL/SQL package which implements the operations of the HSL service. 
The revision number refers to the version of the PL/SQL package. 

• user 
The database account used to log on to the database. 

• user context 
The default OHI employee on whose behalf service operations are performed, as 
specified in the hsl.properties file. 
 

https://localhost:7002/HSL_POL/dbinfo


  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 74 
  

9 Appendix C – Removing a WLS domain 

In case you want to restructure your environment or recreate a domain you can 
remove an existing domain. 

In order to do this, make sure all servers for the domain are stopped and make sure 
there is no Node Manager process running which ‘guards’ this domain. 

Next perform the following actions: 

✓ Completely remove your domain directory including all contents. 

✓ Remove any reference in start and stop scripts to this domain. 

✓ Remove, if present, the domain from the <WebLogic 
home>\oracle_common\common\nodemanager\nodemanager.domains. 

✓ Remove the domain from the domain-registry.xml file which is located in the 
Middleware home folder ($MW_HOME). 

For more information, please reference the standard WebLogic documentation. 
 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 75 
  

10 Appendix D – HSL C2B services – deployment points of attention 

Starting with OHI Back Office release 10.17.2.2.0, a set of web service operations has 
been made available in the HTTP Service Layer to replace the ‘old’ Connect to Back 
Office (C2B) services that modified policies and relations. These SOAP envelope-
based services were first delivered in 2006 and have been used for a long time by 
many OHI customers to send all kinds of policy and relation modification requests to 
OHI Back Office. 

However, as years went by, these services were kept up to date from a functional 
perspective but received no technical updates. From a technical and security 
perspective, they could no longer be supported, because they were based on by now 
obsolete Java libraries and did not support any form of security. 

In 2015 it was announced the C2B services would become obsolete and be replaced 
by more use case driven HSL services. This intention was frustrated because 
customers could not agree on a uniform set of commonly accepted service definitions 
to replace the C2B services.  It also became clear that OHI customers could not easily 
say goodbye to the functionally well-known behaviour of the old C2B services. The 
impact of implementing a new set of functionally different services was perceived as 
difficult and as a change that would have a large impact on the business. 

So, as more strict security requirements demanded phasing out of the old C2B 
services, time ran out to develop completely new C2B use case services. This resulted 
in a compromise, where OHI Development would implement a new set of C2B 
business operations according to the technology used for the existing, modern HTTP 
Service Layer services, but their functional behaviour would be kept identical, as 
much as possible.  

As a result, the C2B ‘Use Case services’ clearly differ from the other Use Case services 
that were developed from scratch. The C2B Use Case services should be seen as 
‘classic C2B operations’ being implemented with more modern technology but with a 
minimum of effort. No new functionality has been added and no new requirements 
were set, to keep the implementation costs low. It was deemed better to invest later 
on in new functionality. 

This clearly influences the way the C2B Use Case services should be deployed and 
used. This paragraph focuses on these aspects. Please bear in mind that the old C2B 
services descend from an OHI era in which it was agreed documentation was not 
part of the contractual obligations and usage knowledge was transferred as part of 
consulting activities. 

10.1 HSL_C2B deployment aspects 

The ‘old’ C2B operations were made available in 2 different versions: 

• A synchronous deployment 

• An asynchronous deployment 

The asynchronous deployment version required a hard-coded JMS queue and 

contained a Message Driven Bean that dequeued the message and called the service. 

This bean could only be deployed to one WebLogic Managed Server and as such was 

not scalable. Any submitted messages were processed in First in First out (FIFO) 

order. This had a fortunate side-effect:  2 changes on the same policy were always 

processed in the correct order provided they were put on the queue in the correct 

order. 

In the new C2B implementation the asynchronous deployment is no longer 
supported by code in the application. Modern queueing and service implementations 
offer this functionality out of the box and as such only a synchronous implementation 
can be deployed. Queues with delayed asynchronous processing should be 
implemented through standard middleware functionality and put in front of the 
synchronous implementation. 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 76 
  

This has deployment implications: 

• Scalability is still relatively poor as it is expected messages are processed in 
FIFO order and it is assumed that changes on the same policy are offered and 
processed non-concurrently. This means the number of processing threads 
must be kept to a minimum, preferably one or only a few, provided that 
dequeuing and processing takes care of the order of processing. A C2B 
operation for adding a new policy and possibly ending an existing one (a 
typical functionality from the old C2B SOAP Services) is a relatively resource 
consuming operation, in which up to a several hundred standard and custom 
‘policy checks’ and other business rules are fired and during which a full 
copy of the policy to be approved may be created, changed and dropped. 
This may lead to a response time of several seconds even on modern 
infrastructure. This response time may increase when synchronous policy 
processing calls also lead to synchronous webservice callouts towards 
external providers, like ‘BRP’ (formerly ‘GBA’) and ‘VECOZO’. 

• Large amounts of stored messages that may have piled up during a 
maintenance downtime of OHI Back Office should not be processed through 
a burst of many parallel threads but must be digested in an ordered manner 
of (at most) a few parallel processes. 

  



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 77 
  

11 Appendix E – Limiting access to a specific application inside a module 

When HSL applications are deployed using ‘Custom Roles and Policies’ additional 
options are available to limit the access to a web application or operation. WebLogic 
can be configured to limit access through the use of a security policy. To give an idea 
as to what configuration might involve, an example is shown below.  

First, expand the HSLBOWS EAR file, revealing the individual HSL applications. 

 

Now to fully disable the HSL_REL service, enter its configuration page by clicking on 
the link. Click on the tab ‘Security’ in the resulting page. Finally enter the ‘Policies’ 
sub-tab. 

 

As we want to disable access to this specific application in its entirety, adding a 
policy with an URL pattern of ‘*’ is enough. After the creation of the policy, rules and 
conditions need to be defined that will be enforced through the policy. Enter the 
policy’s configuration page through clicking on the link named after the URL pattern 
of the newly created policy.  

A number of options are available on the following page to narrow, limit or deny 
access to a web application. Add a condition and choose the predicate ‘Deny access to 
everyone’ from the predicate list. The added condition becomes active immediately 



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 78 
  

after saving the policy at which point all access to the HSL_REL web application is 
denied. 

 

Note that the created policies survive an update of the ear-file but not a complete 
reinstall (deletion and subsequent installation of the ear-file). This allows for setting 
up policies as a one-time configuration step and having all future updates adhere to 
the same (strict) set of policies. 

 

  



  

Oracle Health Insurance Back Office - HTTP Service Layer (HSL) Installation and Configuration Manual 79 
  

12 Appendix F – Eclipse Jersey Monitoring and Diagnostics 

The HSL and PSL webservices use Jersey to expose data from a OHI Back Office 
application through a RESTful interface. Jersey provides functionality for monitoring 
JAX-RS/Jersey applications. Application monitoring is useful when you need to 
identify the performance hot-spots in a JAX-RS application or observe execution 
statistics of particular resources. The information collected in this manner is 
accessible through multiple applications and/or interfaces. See "Monitoring RESTful 
Web Services and Clients” for more information. 

 WARNING: RESTful webservice monitoring is enabled by 

default by WLS. In some cases, this may result in increased 

memory consumption. You can disable the monitoring feature 

at the WLS domain level, and at the application level. See 

Disabling RESTful Web Service Application Monitoring. 

 

 

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/restf/monitor-restful-service.html
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/restf/monitor-restful-service.html
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/restf/monitor-restful-service.html#GUID-16A1B66C-F733-4EC9-B8CE-075F51EC6BE5

