ORACLE
INSURANCE

Oracle Health Insurance Back
Office

HTTP Service Layer (HSL) User Manual

Version 1.28

Part number: G49637-01
January 15, 2026

ORACLE’

Copyright © 2011, 2026, Oracle and/ or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing,.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are “commercial computer software” or “commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications
which may create a risk of personal injury. If you use this software in dangerous applications, then
you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to
ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/ or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred
due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include
related notices. For information on third party notices and the software and related documentation
in connection with which they need to be included, please contact the attorney from the
Development and Strategic Initiatives Legal Group that supports the development team for the
Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should
be considered in your capacity as a customer advisory board member or pursuant to your beta trial
agreement only. It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the
terms and conditions of your Oracle Software License and Service Agreement, which has been
executed and with which you agree to comply. This document and information contained herein
may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior
written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

CHANGE HISTORY

Release Version Changes
10.16.2.3.0 0.1 New (internal) document CDO 15195
Removed references to XML
10.17.1.4.0 0.2 Revised document.
10.17.1.4.0 0.3 Revised document
Added chapter on ‘Language Aspects’
10.17.1.4.0 04 Processed feedback from review by EVI
10.17.1.4.0 0.5 Processed feedback from review by KOS
10.17.1.4.0 1.0 Some minor textual changes, increased to version nr 1.0
10.17.2.0.0 11 Revised URLs for retrieving Swagger definition
Revised comments for PL/SQL client code fragment
Revised ‘Error Handling’ paragraph.
Added ‘Input Validation’ paragraph
10.17.2.2.0 1.2 Revised HSL Technical Principles
Added ‘Basic Authentication” to Terminology
10.18.1.0.0 13 Changed title
Added ‘security aspects’ to introduction with reference to Doc[1] for OAUTH2
and OPTIONS support
Revised security item in “HSL technical principles’
w10.18.1.3.0 | 14 Updated HTTP return codes
Added paragraph about optimistic locking
10.18.1.4.0 1.5 Added ‘How to bypass optimistic locking’ to optimistic locking paragraph
10.18.1.4.0 1.6 Updated HTTP Return Codes
Updated ‘Optimistic Locking’
10.18.2.0.0 17 Design Principles - updated
HSL Technical Principles - updated
Error Handling - clarified text
Language Aspects: removed remarks about domain-based enumerations
Language Aspects: removed ‘Intended Behaviour’ paragraph
10.18.2.2.0 1.8 Added specific usage aspects regarding HSL_C2B service operations.
10.18.2.3.0 1.9 Some minor textual changes.
10.19.1.0.0 1.10 No changes. Republished with different part nr.
10.19.1.2.0 111 Documented x-ohibo-modification section in runtime swagger in the Service
Definition structure paragraph.
10.19.1.4.0 1.12 Error handling: operation of developermode changed
10.19.2.0.0 1.13 Updated HTTP Return Codes and Optimistic locking
10.20.1.0.0 1.14 No changes, republished.
10.20.6.0.0 1.15 Interfacing Decisions slightly enhanced
10.21.1.0.0 1.16 Changes in optimistic locking paragraph.
New part number.
10.22.1.0.0 1.17 No changes, republished with new part number.
10.23.1.0.0 1.18 No changes, republished with new part number.
10.23.3.0.0 1.19 9.1. Oracle account: updated parameters of alg_security_pck.hsl_grants
10.23.4.0.0 1.20 Index page fixed; missing chapter 9 added
10.23.7.0.0 1.21 x-ohibo-revision deleted (revision is now in info.version)
Changes related to OpenAPI 3.1
Response code 409 added
Added chapter for idempotency, tracing and archiving
10.23.8.0.0 1.22 URL for runtime OpenAPI document added for OpenAPI 3.1 services
Retention policy on idempotency keys added
10.24.1.0.0 1.23 Republished with new part number.
Removed H3.2.2 as overriding the language at runtime has been removed.
Clarified that unless changed Dutch will be the default language used for the
responses of HSL webservice operations.
Removed all references to the Accept-Language HTTP header as support for
changing the session language through the use of this header has been
removed.
10.24.7.0.0 1.24 Changes in Idempotency paragraph
Changes in HTTP Return codes paragraph
Changes in OHIBO-Specific extensions paragraph

Back Office HTTP Service Layer User Manual

Release

Version

Changes

10.24.8.0.0

1.25

Updated documentation to reflect the new default authentication and
authorisation setup outlined in Doc[1]

10.25.1.0.0

1.26

Republished with new part number.
Appendix B added resource identification

10.25.4.0.0

1.27

Appendix B renamed to better reflect what it is about

Introduced paragraph regarding IDOR and sensitive data risk

Addressed the introduction of the OpenAPI 3.1 based service in paragraph 2.1
Updated outdated information and implemented textual changes in several
chapters to better reflect the current functionality

Description added for date-time validation rules

10.26.1.0.0

1.28

HTTP response code 201 removed (no longer used), HTTP response code 204
added. New part number.

Back Office HTTP Service Layer User Manual

ii

RELATED DOCUMENTS

A reference in the text (doc[x]) is a reference to another document about a subject that
is related to this document.
Below is a list of related documents:

Doc[1] OHI Back Office HTTP Service Layer (HSL) Installation & Configuration
Manual (docs.oracle.com)

Doc[2] OHI Back Office JET Application Installation & Configuration Manual
(docs.oracle.com)

Doc[3] Custom Development for Oracle Health Insurance Back Office
(docs.oracle.com)

Back Office HTTP Service Layer User Manual i

Contents
T INErOAUCHON ... e 3
1.1 SECUTIEY ASPECES.....uiiiiiiicii e 3
1.2 Purpose of This DOCUMENL........c.ccceirirreriririeieieieieeeierneeeretevereeeeseseseees 3
2 Design Principles ... 5
21 HSL Interfacing DeCiSIONSc.ccceiirirriririeicicicicciieeeeeee s 5
2.2 HSL Technical Principles........coccoveiinieerneieniecineictnerceneeesreresesneneennen 8
3 Generic usage aspects of HSL SEIVICESccccceuiiininniiiieicciciiireeeeeeeeaene 11
3.1 Language SUPPOTLccocciiiiiiiiiicii s 11
3.2 Creating HTTP requests ..., 11
3.21 HTTP Request Headers........cccovveueuiiinninieicicininieicicittneecicceneseieveeeceseenes 11
33 Idempotency, tracing and archiving...........ccoecvceiniicicicnciiiccne, 12
331 IdemMPOLENCYocucuiiiiiiiicicci e 12
332 TIACING ..ot 12
333 ATChIVING .o 13
3.4 More Secure Direct Object References and sensitive data protection13
3.5 HTTP VEIDS ...t 14
3.6 HTTP Return Codes.......ccovuiuiiiiiiiiiiiiiccieceereeteeeee e 15
3.7 Optimistic LOCKINGcccoviviiiiiiiiiiiiiiiccccecs 16
3.71 How to bypass optimistic IoCKING..........ccceeuiuiiiniiiriiiiiiinrccccrrcceceee 17
3.8 INPut Validation.......c.covveernieirinieininiecinetctnieiceneiceseeseese e nese e saenene 17
3.9 Error Handling..........ccooviiiniiiiiiiiiiccccccccccs 18
3.9.1 Developer mode and Production mode...........ccccoouiuiuiiinnniiiiiiiiicicne 18
3.9.2 Developer MOME........cccouvieuiueiniriniieiciiietee ettt sttt 19
4 Service DefinitioN........ccovirieiiueueiiiiiiiirrrre e 20
41 Viewing the OpenAPI Definition ..., 20
42 Understanding OpenAPL..........ccccccoinrieieccieneeeee e 21
43 SEUCEUTE .. 21
431 Paths and OPerationsc.c.cccovreueueiinnniereeerennneereettstesesereseeesesessesesesestseseenes 22
4.4 OHIBO-Specific XteNSIONScceuiiriiiriiiriiiiiciicicirireeeeeeceeas 22
4471 ENUMETAtIONS.....ccoiiiiiiiiiiiiiiiicic e s 23
5 Configuration information ... 24
6 Singular resource OPerations.............ccceeucuiiiriniririinieiccic s 25
6.1.1 Default MEMDETS........c.ciiiiiiiciiiie e 25
6.2 GET oo 25
6.21 Default filters: ..o 25
6.2.2 HTTP returIn COAES.......cuiuiiiiiiiciiiiinicicctie et 25
6.3 PUT .o 26
6.3.1 Default filters ... 26
6.3.2 HTTP returIn COAES........cuimiiiiiiiiiiiiiiecccct e 26
6.4 POST ... 26
6.41 Default filterso 26
6.4.2 HTTP retuIN COAES......ocuimiiiiiicieiiiriceecitt et 26
6.5 PATCH. ..ot 26

Back Office HTTP Service Layer User Manual i

6.5.1 Default fIlEEISocvievieeiceeceeeeeeeeeeeeeeeete ettt ettt enaeerean 26

6.5.2 HTTP TetUIN COAES.......cuiuiiiiiiiciciiiiricie ettt 26
6.6 DELETE. ...ttt ettt ettt st s 27
6.6.1 Default FIIEETScooviriiiiiiiiiiiictct ettt 27
6.6.2 HTTP TetuIN COAES.....ocviuiiiiiiicieiiiieiectcitt ettt e 27
7 Collection reSOUICe OPETALIONS.......c.ceervereuiriereiriereeirieretnretetrreneeesrereesse e reresesaeseeenen 28
711 Default MEMDETS......c.cucuiiiiiricicicirreec ettt
7.2 GET ...t
721 Default filterSccovivieiiiiiiiieicicicirre et
7.2.2 HTTP return codes
73 PUT ...ttt
74 POST ..ttt ettt
741 Default filterS ...c.covvirieeeiiiiinirieiciciee ettt
7.4.2 HTTP return codes
7.5 PATCH . ..ottt s
7.6 DELETE ...ttt ettt
8 HATEOAS LINKS....oouiiiiiiiieirieteenesteestesee ettt st ettt et 31
9 Invocation from PL/SQL......ccccoiiiiiiiriiineeneeenee et 32
9.1 Oracle ACCOUNL ...c.coueueirieiiiriciiinieictrteetset ettt ettt s e 33
9.2 Which Package?cooiiiiiiiiiicccecee e 33
9.3 Mapping Operations to Packaged Procedures............ccccocciniiiniinnn. 34
9.4 Invoking an Operation...........ccccccciirrrnrreeeecccrree s 34
9.5 SQL AYPES....oiiiiiiiiiiicicc e 35
9.5.1 Service-specific types and common typesccccceeueiiiiiiiniiiiiiis 35
9.5.2 Call Context
9.5.3 RetUIT CONMEEXE ..c.ooviiiiiiiiiiiiciiiieccce s 36
9.54 Built-in functionality of HSL tyPes.......ccccceuriririiirircicciirrreccicicieieeeeeeeeeees 37
9.6 GET EXQMPLE ..ottt ettt neb e 37
10 Language ASPECES.........ccciiiiiiiiiiiiiiiiii e 39
10.1 Current BeRavioUTcocouiiriiiiiniiecee et
TO.1. 1 MESSAGES ...ttt
10.1.2 Language-dependent data
10.1.3 Known Issue: HSL_POL Service........ccocevivueuiriruiinreinicinieinieiieereineeereeseenesnenes 39
10.1.4 Known Issue: HSL_REL SEIVICEccccuuiiiiuiiiiieieeeeeee ettt et saeee e 39
11 TerMINOLOZYeviiniiiiieiccccc e 40
12 Appendix A - HSL C2B services - Usage points of attentioncoeeeeee. 43
121 Transaction handling ... 43
122 IAeMPOLENCE......ooveviiriiiiiieieericictetet ettt ettt 43
13 Appendix B - Resource identification IDOR compatibility mode.................... 44
13.1 Specifying resource identification compatibility for UUID-based IDs44

Back Office HTTP Service Layer User Manual ii

Back Office HTTP Service Layer User Manual

|
1 Introduction

The OHI Back Office HTTP Service Layer (HSL) is used to implement operations for
so-called Use Case Services. These services support (parts of) typical processes
relevant to OHI BO customers.

The end-user applications that will use these operations are likely to be used by self-
service users (insured members, care providers etc) but also by call-center operators.

The HTTP Service Layer is based on RESTful services technology which has the
following advantages for current web application frameworks (like Angular]S and
Oracle JET):

e accessible through HTTP

e supports JSON as input and output formats

e standardized interface language through using HTTP verbs (GET, POST, PUT,
PATCH, DELETE, OPTIONS)

e standardized set of exceptions through HTTP error codes
It is a strict security requirement not to expose the HSL service directly to the internet
but hide the HSL service behind an intermediary service. This has the following

advantages:

e end user security and when applicable relevant data authorization can be
implemented in the intermediary service.

e support a central monitoring and security implementation.

e allows additional code and helps to bridge interface changes in subsequent
versions of the OHI-supplied services in a central location, only once.

The functional implementation of the HSL services is done in PL/SQL.

A generated Java layer exposes the HSL services through the Weblogic Application
Server as RESTful services.

Using PL/SQL as the basis for HSL service means that the HSL operations can also be
accessed through PL/SQL within the OHI Back Office database. This may provide a

performance benefit because it bypasses the overhead of the Weblogic Application
Server and obviates the need to serialize and deserialize objects.

1.1 Security Aspects

The default security setup for the HSL services is outlined in Doc[1]. The default
security setup for the PSL services is outlined in Doc[2]

1.2 Purpose of This Document

This document describes the generic aspects of the HTTP Service Layer.

Back Office HTTP Service Layer User Manual

The functionality and interface of each service is described in a so-called OpenAPI
schema which can be retrieved once the service is deployed to the application server.

A terminology list is included at the end of this document.

For information regarding installation and configuration of OHI Back Office HTTP
service layer components please use Doc[1].

Back Office HTTP Service Layer User Manual

2 Design Principles

The HTTP Service Layer is based on RESTful service concepts and the following
architecture decisions:

e PL/SQL is used to implement the functionality, using SQL types as content
containers

e the HTTP interface layer is implemented in Java and exposed through WLS and
PL/SQL

e a]Java class model is used to pass data from SQL types and vice versa
e Javais used to generate metadata and schema information

e Javais used for technical validation of request data (datatype, presence of
mandatory data etc).

To avoid confusion and prevent dependency with the existing SOAP-based SVL
components, the HSL services will have their own SQL types and tooling.

Where possible, existing Java libraries and frameworks such as JPA-RS, Jersey, MOXy
and JDBC are used to handle the interfacing.

The diagram below shows the various parts of a HSL service:

@ WLS runtime process
e | WLS libraries

_______J___/

Service WAR

Java libraries

FUSEL EwEs - > Java service class
package - =
A &} A
8

']

SQL types model » Java class model
A \
Request Response Metadata
JSON JSON JSON/YAML

The components shown in grey are maintained by OHI BO.
21 HSL Interfacing Decisions

This paragraph describes the interfacing decisions taken by OHI Back Office which
may affect how you write and test your client applications.

Back Office HTTP Service Layer User Manual

As is common in a service oriented environment, over time changes are needed to
stay up to date with evolving technology, new security threats and updated world
wide standards. This means you need to be prepared to update your implementation
regularly over time when new OHI releases are delivered and deployed. In most of
the situations OHI will prevent breaking changes during a release upgrade but this
cannot always be fully prevented and may be dependent on you implementation.

An example of such changes is that a new “second” generation of RESTful
webservices has been introduced during the releases delivered in the winter of
2023/2024. Up to that moment webservice definitions were delivered using a
Swagger specification and definitions were in English. The second generation
webservices are delivered and based on an OpenAPI 3.1 specification instead of
Swagger and are always using the Dutch language.

This second generation of webservices supports a series of additional functionalities
requested by customers and adheres to additional security requirements.

e Idempotent behavior based on an identifier passed as input parameter.

e Traceability of changes by passing an identifier that is stored and associated with
changed OHI BO data records.

e The option to archive an incoming json message that contains changes.

e Sensitive data is no longer passed as path parameter. Instead, body parameters
are used.

e Insecure direct object references (IDOR) are no longer used to prevent misuse of
operations by iterating over relatively easily guessable identifiers.

e Publish functionality to publish messages to a JMS queue is no longer mixed with
regular RESTful service functionality and migrated to queue based operations
(QSL operations instead of HSL).

More information can be found in the next chapter.

The design standards below are used for both generations of webservices but in some
situations there is a little difference.

1. Terminology, terms and documentation will be in the English language. An
exception are the new OpenAPI specifications, these are in Dutch.

Rationale: the service layer is typically used by developers who are used to
technical documentation regarding tooling and webservice technology in
English. But as the functionality of OHI Back Office is typically for the Dutch
market, the OpenAPI specifications in Dutch can more easily be matched to
the functional terms used within the application.

2. A Use Case service is designed to perform a specific set of tasks.

Rationale: this allows a more compact object model for each service and
makes writing client applications more straightforward.

3. A HSL service operation typically applies on a resource.

Rationale: The key abstraction of information in REST is a resource

10.

Back Office HTTP Service Layer User Manual

(dissertation of Fielding outlining RESTful principles).

In OHI BO, a resource is an object which can be accessed through a service
operation and which can (normally) be mapped on a OHI BO entity such as a
policy, claim, person etc.

A collection resource is a list of singular resources. Example: a collection resoutrce
claimCollectionisa list of claim resources.

The functionality of HSL services is implemented in PL/SQL.

Rationale: implementing the functionality in the database is more efficient
and saves many roundtrips compared to implementing application

functionality in the middle tier.

The operations of a HSL application may be accessed directly through
PL/SQL and via the Weblogic Application server.

Rationale: allows PL/SQL to access the same functionality as the HTTP
interface (although its use may be different).

The interface definition is aligned with Oracle internal standards.
Examples: resource concepts, HATEOAS links, pagination, metadata.

Rationale: align with internal Oracle requirements (most of which also
improve integration facilities out of the box).

Each service is based on a Swagger 2.0 or OpenAPI 3.1 schema.

Rationale: apart from being an internal requirement within Oracle, Swagger
2.0 and OpenAPI 3.1 specifications provide a readable and detailed interface
description which can be used by analysts, programmers and testers.

Each service has its own objects.

Apart from common definitions for (primitive) scalar types, no objects are

shared between services.

Rationale: since the changes to a class model of a service are local to that
service, these changes have no impact on other services.

Inbound and outbound resources may be in JSON format.

Rationale: required by Oracle internal standards.

JSON (Javascript Object Notation) has become the de facto standard for
serializing objects in Internet applications.

Note that XML format is not supported.

POST/PUT operations assume that the inbound resource is a complete
object.

When validating the inbound object, an exception will be raised if one of the
required fields is not present.

Rationale: consistent with HTTP convention.

11.

12.

13.

14.

15.

16.

Back Office HTTP Service Layer User Manual

PATCH operations assume that the inbound resource may be an incomplete
object.

When processing the inbound object, only those fields which are set are
validated.

Rationale: consistent with HTTP convention.

The Java layer provides basic validation for parameters and inbound objects
Rationale: provide feedback to the calling application as soon as possible.
Note that domain-based enumeration values are validated in the PL/SQL
layer.

Rationale: avoid calling the database back end unnecessarily.

Path templating is used to clarify the meaning of parameters.

Example of a template path : /v1/relation/{rel_nr}

Rationale: allows various fields to identify resources and sub resources.
Each resource URI must have a version number.

The initial version of a resource is v1.

Rationale: required by Oracle internal standards.

The HSL objects are separate from the SVL objects.

Rationale: avoid interdependency with SVL services.

The HSL services are designed for application-to-application interface and
should never be exposed for direct calls in some form of user environment.
Any form of authentication, authorization or data access is always the
responsibility of the calling application.

Rationale: To prevent any incompatibility with any form of authentication or
authorization of the calling application the services can be used for many

interface scenario’s, to support for example the development of portal
applications or to develop an automated interface with a third party.

22 HSL Technical Principles

The following technical principles may be of interest for client application developers
and administrators:

1.

WebLogic Server will be used as the standard application server deployment
platform.

The recommended setup is based around OAuth2 and OpenID Connect,
see Doc[1] for more information.

The service calls will be stateless, which implies that subsequent service calls
are not aware of each other.

10.

Back Office HTTP Service Layer User Manual

Rationale: characteristic of all HTTP applications.
A single service operation will contain one atomic transaction.

Rationale: a service operation should be designed to leave the database in a
consistent state. If a single operation is implemented through multiple
transactions, which would be an exception, each transaction should leave the
database in a consistent state.

Locking is kept to a minimum.

Rationale: HSL service operations are stateless and designed for short
running transactions.

Records will be locked with the “select for update nowait” option
immediately before being updated. If a record cannot be locked, an error
message is returned and the transaction is rolled back.

When applicable, ‘optimistic locking’ is used, ie. the contents of the resource
are checked using an MD5 checksum based on a previous known state to
decide whether the situation is not changed since that state, so the update of
a resource can be applied without risking to overwrite other not observed
changes.

Standard HTTP return codes are used.
Rationale: standard practice in line with Oracle internal standards.
Functional faults will support language dependent error messages.

Rationale: although the first generation of services is in English the functional
error messages returned will use the multi-language support as present in
the OHI Back Office application. Changing the language involves changing
the preferred language for the OHI user (‘functionaris”) that is specified as
calling user in the hsl.properties file during the service deployment and this
impacts all operation calls for that user. This functionality may still be useful
when a message text is “overruled” by your organization.

Standard Java logging is used for error, informative and debug level log
messages.

Rationale: by adhering to a common standard logging mechanism this will be
easier to configure and use for system administrators who are experienced
with Java based application management.

HSL services are synchronous services.

Rationale: at this stage, asynchronous services are not in scope.

Additional technical requirements will be implemented as much as possible
through applying standard solutions that are compatible with WebLogic

Server.

Rationale: focus on delivering functionality and making use of standard
components instead of developing proprietary solutions.

Back Office HTTP Service Layer User Manual

11. Date and Date-Time values are assumed to be in local time.

Rationale: OHI Back Office currently supports local time only.

Back Office HTTP Service Layer User Manual

3 Generic usage aspects of HSL services

Due to the high level of standardization of HSL services the interface of each HSL
service is much the same.

The remainder of this document describes the generic aspects of HSL services.

3.1 Language support
The default session language is the language set for the HSL user account (defaults to
Dutch unless changed).

3.2 Creating HTTP requests

It is assumed that you know how to create HTTP requests to call HSL service
operations.

If you are testing, there are many ways to send HTTP requests to a HSL application.
You may want to use the Google Chrome app Postman, SoapUI, ReadyAPI or curl. In
our examples we will use curl to send an HTTP request to the HSL application.

3.21 HTTP Request Headers
For incoming requests, the HTTP request headers are tested as indicated in the
following table:
Request Header Optional? Regular expression Example value
Accept N Napplication/json(*; *charset=utf-8)* | application/json
Content-Type Y Aapplication/json(*; *charset=utf-8)* | application/json;
charset=utf-8
Content-Length Y [0-9]+ 123

Note: if the request is for /api/swagger.yaml, the value for the “Accept’ header
should be “application/yaml’.

3.3

3.3.1

Back Office HTTP Service Layer User Manual

Idempotency, tracing and archiving

Idempotency

For the OpenAPI 3.1 based services, the mutating operations also implement
functionality to enforce idempotency, to record tracing information and to archive
messages.

3.3.2

Tracing

Idempotency implies that a certain operation can be applied many times, without
changing the result.

Imagine an operation that creates a new insurance policy and returns the new policy
number. If this operation is not idempotent, it will create a new policy and return a
new policy number each time it is called (even if all the parameters are the same).
This is unwanted behavior if somewhere in your IT environment communication
hickups occur and an automatic retry is executed of a service call when the response
is not received while the operation in fact has been executed.

If this operation is idempotent, it will only create a new policy the first time it is
called. The next time it is called with the same parameters, it will not create a new
policy, but just return the policy number of the existing policy (the same policy
number as after the first call).

Mutating ‘second generation” HSL operations (specified in OpenAPI 3.1) specify an
optional header parameter ‘berichtld’. This parameter can be used to supply an
idempotency key (typically a UUID = Universally Unique IDentifier) to enforce
idempotency.

When a ‘berichtld’ is supplied for the first time, the request is executed as intended.
When the same “berichtld” is supplied for the second time for the same operation, the
request is not executed but only returns the response of the initial request.

The ‘berichtld” does not have to be unique across different operations but should be
for each unique call of the same operation, although it is recommended to use a
unique identifier across all operations.

The typical lifespan of an idempotency key is not very long (usually minutes to
hours). Therefore, the idempotency keys and associated response messages have a
retention time after which they are deleted. The retention time can be set by using the
Back Office parameter ‘Retentie idempotentie log’, which is set to 1 day by default. In
addition to this retention time, idempotency keys are no longer valid after the service
operation is changed by a release installation, meaning the idempotency key is no
longer used and messages with the same idempotency key will return a conflict
status (HTTP 409) for the duration of the retention of the idempotency log.

Mutating operations specified in OpenAPI 3.1 specify an optional header parameter
‘traceerld’. With this parameter, a tracing key (typically a UUID) can be supplied.

When a “traceerld’ is supplied, this key is recorded (in table alg#uid waarden)
along with the operation ID and the records that were changed during the execution
of the request (in table alg#uid ohi referenties) . Records thatare changed
are only recorded from OHI release 10.23.8.0.0 onwards.

Back Office HTTP Service Layer User Manual

The “traceerld” does not have to be unique across operations, especially when
multiple operations are executed as a logical unit (as seen from the perspective of the
requesting application). Apart from these logical units, it is recommended to use a
unique identifier to distinguish between the different requests.

3.3.3 Archiving
Mutating operations specified in OpenAPI 3.1 specify an optional header parameter
‘archiveren’. This is a Boolean parameter that indicates whether or not the request
should be archived. The parameter ‘archiveren’ can only be used in combination with
a ‘traceerld’.
When ‘archiveren’ is set to true (along with a ‘traceerld’), a json representation of the
following values is saved in the database (in table alg#uor opr context):
e Call context
e Parameters (as ‘name: value’ pairs)
e Message body
Example of an archived message:
{
"call context": {
"base path": "https://localhost:1234/HSL POLIS/",
"check token": true,
"method": "POST",
"reserved": "..",
"resource": "polis/vl/polissen/{a polisUUID}/..",
"user context": "TESTUSER"
s
"parameters": [
{ "parameterl": "valuel" 1},
{ "parameter2": "value2" 1},
{ "parameter3": "value3" }
1,
" b O dy " . {
"propertyl": "valuel",
"property2": "value2"
}
}
3.4 More Secure Direct Object References and sensitive data protection

The second generation of HSL services provides more security by two major
improvements:

e The ‘insecure direct object references’, or in short IDOR’ vulnerability, is
handled by replacing relatively easy guessable (as such ‘insecure’) numerical
identifiers by using UUID based identifiers. This provides security as a
webservice operation that can fetch detailed data about a person, a policy or
a claim requires the caller to know the UUID upfront. If that value is not
known a service call with a randomly generated identifier will almost always
return no data. A bad actor trying to obtain sensitive data will run into many
unsuccessful calls which should attract attention from a monitoring system.

3.5

HTTP Verbs

Back Office HTTP Service Layer User Manual

e Sensitive data that was passed as path parameter (typically for a GET
operation), meaning such data is part of the URI, is now moved to the body
of a POST operation. This prevents that for example birthdates, postal codes
or address data is being logged in technical log files of intermediate systems.
Typically, each access request is logged in such log files, making them a
target for hackers to obtain sensitive data, especially as these files are only
protected by operating system privileges and may become accessible by each
vulnerability that provides access to the file system.

The first security improvement results in the obvious question: how to obtain the
relevant UUID values? If this is possible with other service operations that are
accessible with the same privileges as the operation that requires the UUID, the
security is hardly improved. This poses an issue when the ‘calling environment’ only
has an external, easily guessable, identifier, as the corresponding UUID needs to be
determined to proceed.

To offer an extra layer of defense, which is one of the base principles of security, OHI
provides additional helper or check service operations to obtain an additional data
element. Each chek service operation requires an additional authentication step. With
that additional data element it becomes possible to obtain the UUID.

As an example we take the situation where only the Dutch BSN identifier (a social
security number that uniquely identifies each person) is known. It is insecure to offer
an operation that directly fetches the UUID for a BSN identifier.

Instead the BSN can be used by a separately authenticated operation
(/bsncheck/v1/zoekgeboortedatum) to obtain the birthdate of a person.

This birthdate can then be used to call a regular service operation and get the UUID
for a person based, on the combination of both the BSN and a birthdate of that
person. This service operation does not have the IDOR weakness as this combination
is not easy guessable. Because getting the combined data requires knowledge of that
specific person, this is a more secure way of identifying a person.

Of course this extra protection solely relies on the fact that the check service requires
additional authentication.

The OHI second generation services are setup in such a wat that knowledge or an
additional authentication for a separate operation is always needed to obtain UUID’s
for subsequent service operation calls. This should offer a layer of protection against
malicious users that might try to export as much data as possible.

The following HTTP verbs may be used:

e GET
Retrieve the resource located at the URI.
This is the default verb.
Idempotent operation: a subsequent call will return the same contents for the
resource if the underlying data has not been changed since the previous
invocation.

e POST
Create new data.
A subsequent call with the same data will return an error.

3.6 HTTP Return Codes

Back Office HTTP Service Layer User Manual

Idempotent operation: a subsequent call with the same data will NOT result
in the creation of a new resource.

DELETE

Delete the resource located at the URI.

A subsequent call with the same data will return an error.

Idempotent operation: a subsequent call will not delete any data if the first
call already deleted the data corresponding with the resource.

PUT

Used to replace the contents of the resource located at the URL

Data which is absent from the inbound resource will be deleted from the OHI
Back Office database.

Idempotent operation: a subsequent call with the same data will have the
same effect as the first call.

PATCH

Process the contents of the resource located at the URI to update the
underlying OHI BO data.

Data which is absent from the resource is not processed.

Idempotent operation: a subsequent call with the same data will have the
same effect as the first call.

Typical HTTP return codes for HSL requests:

200 (OK)
Will be returned when the request was successfully processed and there is
content to be returned.

202 (ACCEPTED)
Will be returned for a POST request with an asynchronous processing of the
request. The processing will not return a result to the caller.

204 (NO_CONTENT)
Will be returned when the request was successfully processed, but there is
not content to be returned.

400 (BAD_REQUEST)
May be returned if parameter validation failed at the Java level, during
processing of the JSON representation.

404 (NOT_FOUND)
Will be returned in the following situations:

o Requested URI was not recognized.

o OHI Back Office data for a singular resource operation could not be
found.

o Parameter validation failed at the Java level
(the currently used version of the Jersey library returns HTTP 404
when parameter validation fails).

Back Office HTTP Service Layer User Manual

e 405 (METHOD_NOT_ALLOWED)
The HTTP verb was not recognized.

e 406 (NOT ACCEPTABLE)
Should occur if a non-existing representation is required. For example, if
‘Accept’ is set to “application/xml’.

e 409 (CONFLICT)
There is an issue with the supplied ‘berichtld” (see chapter Idempotency for
more details regarding berichtld).

e 412 (PRECONDITION_FAILED)
Data already updated by another user.

e 422 (FUNCTIONAL ERROR)
OHI BO business rules were violated. For OpenAPI based servis this also
applies for failed parameter validations.
An error message is returned - see note below

e 423 (LOCKED)
Record is locked by another user.

e 500 (INTERNAL_SERVER_ERROR)
This is a catch all for failed requests that were passed to the HSL service.
Possible causes are:

o database connection not working
o missing or invalid PL/SQL components.
Note:
e Error messages are written to the service log file.

e For security reasons, technical error messages are suppressed from the
response by default. Technical error messages are only included in the
response if the application is run in developer mode. Functional error
messages (HTTP 400, HTTP 404, HTTP 412, HTTP 422 and HTTP 423) will
never be suppressed.

3.7 Optimistic Locking

As from release 10.18.1.3, OHI BO has started the implementation of optimistic
locking for HSL (and PSL) web services.

HSL web services (and the JET application, which uses PSL web services) do not
maintain a constant state between the client (that is, the web browser or program
sending an HTTP request) and the database, but perform stateless transactions. A
database session is only utilized when sending an HTTP request for an HSL
operation. Because HSL services are stateless between the start and the end of a
logical transaction (for example, when updating a record), it is imperative to use
optimistic locking rather than pessimistic locking, if you want to ensure that you are
the only one updating the record since the moment you retrieved it.

Oracle Forms uses pessimistic locking whereby the record is locked when a user
requests a record for update. This lock is maintained until the record is completed

Back Office HTTP Service Layer User Manual

(committed) or canceled (rolled back). One of the key reasons for not using
pessimistic locking within a stateless web service is that if a user closes their web
browser, the program sending the HTTP requests is ended, or their connection is lost
in the middle of a transaction, the record would remain locked.

HSL (and PSL) web service operations incorporate the MD5 checksum validation to
enforce the optimistic locking. When records are retrieved from the database, they
include an md5 property that contains the checksum for that version of the record.
When a PATCH or PUT operation is called that should update that record, and the
queried MD?5 is included in that request, the MD5 initially created is compared to the
MD5 value of the current database record to ensure they are the same. If they differ
then the database record has been updated by another user or process since it was
queried and an error is returned. The update is not performed. If the record was
already updated by another user, HTTP 412 (PRECONDITION_REQUIRED) is
returned. If the record is locked by another user, HTTP 423 (LOCKED) is returned.
Note that HTTP 412 was previously, in older OHI releases, used for functional errors
as well. Now HTTP 422 is used for functional errors.

Depending on the HTTP error returned, the caller of the HSL service can decide to
resend the request, and/or show an error to the user.

The screenshot below demonstrates how a failed update resulting in HTTP 412 might
be signalled to the user:

Oracle Health Insurance - Back Office | achteratcontrolegroepering - Mozila Firefox x
Fle Edit View Higiory Bookmarks Iools Help

§9 Oracie Health Insurance ~... X | +

PAGYT) 16cip.us oracle com T110/ah borFrogt=achie eperingh2F22 tesi service stawus 412 “Be + a9 ¥ e q =

VARNING X
— De data is aangepast door een andere gebruiker

Peter Spaanderman ~

Achterafcontrole CTRL108 bevat in totaal 38 declaratieregels

4

N CTRL108 optimistic locking

Controle Regels Bedrag

) = R < 261,20

Controle 108

Bedrag

d 2:01 PM Gegroepeerd op controle

Stat
W Nog niet onderzocht

W In onderzoek

Onderzoek afgerond
W Regel afgehandeld

Locatie

3.7.1 How to bypass optimistic locking

Optimistic locking is the default, but sometimes the update must be forced anyway.

If this is desired, strip or do not provide the md5 value in the resource that should be
updated before calling the PUT or PATCH operation. For the second generation
services this is in most cases not allowed to prevent overwriting a changed situation
without knowing about this. If necessary you should redetermine the latest md5
value and use that for a retry.

3.8 Input Validation

At the Java level, input parameters are validated as follows:

3.9

Back Office HTTP Service Layer User Manual

e Parameters and object members of the Date type are converted from a string
value (yyyy-mm-dd) to a date value.

e Parameters and object members of the Date-time type are converted from a
string value (yyyy-mm-dd T’hh24:mi:ss) to a date value.

e Parameters and object members of numerical types are converted from a
string value to an integer or BigDecimal value.

e Parameters and object members of the String type are matched with a regular
expression.

e Parameters and object members of an enumeration type are matched with the
allowed values for that enumeration type.

The validation fails in the following cases:
e A data conversion error
e astring value does not match with its predefined regular expression.
e anenumeration value does not match with its allowed values.

e avalue is not within its designated minimum-maximum range.

e amissing value for a NotNull parameter or object member

Error Handling

The implementation of Use Case Services uses PL/SQL to access and manipulate
data. While processing the request, the OHI Back Office business rules come into play
and raise exceptions if your data is incomplete or incorrect.

Check the functional specification or the online help in the OHI Back Office Forms
GUI application (‘Help = Inhoud en Index - Use Case Services’) for a list of possible
service operation specific errors for a given HSL service that are not self explainable.

Our adyvice for validating a client application based on Use Case Services is to always
include various tests with new data.

Developer mode and Production mode

While developing a client application, meaningful error messages help to understand
how correctly invoke the HSL service.
If you set the hsl.properties property

hsl.<application>.developermode=true

none of the error messages in the responses for that service will be suppressed.

If you set the hsl.properties property
hsl.<application>.developermode=false

only functional errors (Bad request, functional checks and business rule violations)

will be disclosed, because these are needed by the user of the application to revise
input mistakes. All other errors (e.g. internal server errors) will be suppressed.

Back Office HTTP Service Layer User Manual

Since meaningful technical error messages in production systems are a security risk,
‘developer mode’ is turned off by default.

The following example illustrates the differences in error handling between
developer mode and production mode.

3.9.2 Developer mode

The following helpful response may be generated when running in developer mode,
indicating a programming issue:

{

"attribute":"getRelationByNumber.xpand",
"internalStatus":"Internal Server Error",
"invalidvValue":"23424987897skjdfjkhkijhjk238798798sdukykjy345987
egfuiyiuyui3456uiyuiy3uiobyuil3y4uibyuiy34uibyui34yS5uiy345uiy3453
4uyyuiyuiuiiu",

"message":"divisor is equal to zero"

}
By default, the message is suppressed:

{

"attribute":"Undisclosed",
"internalStatus":"Internal Server Error",
"invalidvValue":"Undisclosed",

"message" :"Undisclosed"

}
In order to see what caused the problem we should look at the log:

Dec 06, 2017 10:38:23 AM
com.oracle.insurance.ohibo.exception.ExceptionResponse
setMessage

SEVERE: message: divisor is equal to zero

Dec 06, 2017 10:38:23 AM
com.oracle.insurance.ohibo.exception.ExceptionResponse
setAttribute

SEVERE: attribute: getRelationByNumber.xpand

Dec 06, 2017 10:38:23 AM
com.oracle.insurance.ohibo.exception.ExceptionResponse
setInvalidValue

SEVERE: invalidValue:
23424987897skjdfjkhkjhijk238798798sdukykjy345987egfuiyiuyui3456u
iyuiy3uibyui3y4uibyuiy34uibyui34y5uiy345uiy34534uyyuiyuiuiiufas
df

Since the log cannot be read by outsiders, the risk of malicious use by hackers is
reduced.

Back Office HTTP Service Layer User Manual

|
4 Service Definition

The functionality of Use Case Services is documented in the online help of the OHI
Back Office GUI (Help - Use Case webservices). This information is derived from
the functional specification and maintained manually.

As mentioned in chapter 2 there are 2 types of HSL service definitions, either
Swagger 2.0 (new generic name: ‘OpenAPI’, used from this point forwards) or
OpenAPI 3.1, generated by the deployed HSL application. Which version it is, is
described in the OpenAPI definition itself (on the top level either "swagger": "2.0" or
"openapi': "3.1.0").

The OpenAPI definition documents both the operations and the objects used by a
service. OpenAPl is a definition standard (https:/ /spec.openapis.org/) supported by
many leading software vendors including Oracle.

The OpenAPI definition of each HSL application provides useful documentation to
client application developers. OpenAPI definitions can also be used as the basis for
code generation.

The OpenAPI definition is exposed as follows:
e https:/ /server:port/application/api/swagger.json

Returns the OpenAPI definition in JSON format,
for services that are Swagger v2.0.

e https://server:port/application/api/swagger
Returns the OpenAPI definition in JSON format,
for services that are Swagger v2.0.

e https://server:port/application/api/swagger.yaml
Returns the OpenAPI definition in YAML format,
for services that are Swagger v2.0.

e https:/ /server:port/application/api/openapi.json,
Returns the OpenAPI definition in JSON format,
for services that are OpenAPI v3.1.

e https://server:port/application/api/openapi,
Returns the OpenAPI definition in JSON format,
for services that are OpenAPI v3.1.

e https://server:port/application/api/openapi.yaml,
Returns the OpenAPI definition in YAML format,
for services that are OpenAPI v3.1.

The URI to expose the OpenAPI definition of the POL service would look like this:

https:/ /localhost:7001 /HSL POL/api/swagger.json

4.1 Viewing the OpenAPI Definition

The online Swagger editor (http:/ /editor.swagger.io) provides a user-friendly user
interface to browse the OpenAPI definition (be aware that only the “next” version on
the swagger editor, version 5.x and above, provides OpenAPI 3.1 support).

https://localhost:7001/HSL_POL/api/swagger.json

Back Office HTTP Service Layer User Manual

In the following example we use the online Swagger editor to view the OpenAPI
definition of the POL service:

e Browse https:/ /server:port/HSL POL/api/swagger.json

e Copy the contents of the browser window

e Start the Swagger editor

e Choose ‘File > Paste Json” and paste the contents of the browser window into
the edit buffer.

Oracle Health Insurance - Policy
resource®

Daze use case service bevat operaties op OHI Back Office polis niveau

/dbinfo Get database info

/templates Listlemplate info

patchPolicyCollections

Aanpassen polis iNCassowijzes via
e L e e i i e T b A e b

4.2 Understanding OpenAPI
In case you are not familiar with OpenAPI these links will get you started:
e https://spec.openapis.org/

Contains references to the OpenAPI 3.1 and OpenAPI 2.0 (formerly known as
Swagger) specifications.

e http:/ /petstore.swagger.io/
A simple example to learn how the OpenAPI specification hangs together.

4.3 Structure
The main sections of an OpenAPI definition are:

e Components (OpenAPI 3.1) / Definitions (OpenAPI 2.0)
This is the class model for the service. It contains all the classes that may be
used in the service operations.

e paths
This section describes the functionality of the service. It contains all the paths
for which a request can be created.

e x-ohibo-enumerations
This section contains the enumerations referenced by scalar object members

https://spec.openapis.org/
https://spec.openapis.org/
http://petstore.swagger.io/

Back Office HTTP Service Layer User Manual

or parameters. Each enumeration contains a mapping between OHI internal
values and external values.

The OHI internal values are used in the OHI Back Office database. The
external representations are used for interfacing with the client application.

4.3.1 Paths and operations

The unit of work in a HSL service is the operation. An operation is a combination of a
path and a HTTP verb (POST, GET, PUT, PATCH, DELETE)

Examples for the fictitious HSL_XYZ service:

e /xyz/vl/relation + POST
Create a new relation.

e /xyz/vl/relation/{rel_nr} + GET
Retrieve an existing relation.

e /xyz/vl/relation/{rel_nr} +PUT
Replace an existing relation.

e /xyz/vl/relation/{rel_nr} +PATCH
Selectively update an existing relation.

e /xyz/vl/relation/{rel_nr} +DELETE
Delete an existing relation.

44 OHIBO-Specific extensions

The OpenAPI schema generated by the HSL application contains a number of
OHIBO-specific extensions. It is important to note that you should not depend on the
existence of any of these extensions. They may appear/change/disappear without
advance notice and are entirely subject to the discretion of the OHIBO development
team. At this time, the following extensions might be included in the OpenAPI 3.1
and 2.0 schemas:

e x-ohibo-enumerations
List of enumerations containing;:

o domain: optional link to OHI BO domain

o values: list of enumeration items. Each enumeration item has an
external value and OHI internal value.

e x-ohibo-enum
Associates a scalar value to an x-ohibo-enumeration.
May apply to object members and parameters.

e x-ohibo-column
Assigned to each scalar object member. Possible values:

o ‘none’
The value of the object member is not (directly) related to an existing
table.column value.

Back Office HTTP Service Layer User Manual

o <table>.<column>
The OHI table.column associated with this object member.

o <empty>
An empty value indicates an incomplete OpenAPI source
specification.

e x-ohibo-uuid
Assigned to path parameters or resource properties, indicating the table the
UUID based ID field relates to.

e x-ohibo-read-only
Assigned to POST operations that do not actually mutate objects in the
database (the operation is in effect a GET operation, but due to security
reasons the parameters have to be passed in the message body).

e x-ohibo-async
Assigned to POST operations that do the actual mutations of the objects in
the database at a later time

Enumerations

Each enumeration item has an external value and an OHI internal value.

Example:
"RelationStatus" : {
"values" : {
"approved" : "A",
"rejected" : "R"

}
s

As you can see, the external value ‘approved’ is mapped to an OHI internal value ‘A’
The external value is used for interfacing. The OHI internal value may be useful to
understand OHI system messages triggered by a business rule violation or functional
errors.

Note that when you use the PL/SQL interface you should use the external
enumeration value when passing objects and parameters to the PL/SQL layer.
Likewise, enumeration values in objects returned by the PL/SQL layer are
automatically converted from OHI internal format to their external representation.

Back Office HTTP Service Layer User Manual

__|
5 Configuration information

The following URI gives you information about a running HSL application:
https:/ / <server>:<port>/<application>/dbinfo
For example

https:/ /localhost:7002 /HSL POL/dbinfo

The following information is given:

e DbasePath
Format: https:/ / <server>:<port>/<application>/<context>
This is the base URI for all operations in this service.

e database
The name of the database associated with the current database connection.

e instance
Instance name of the database associated with the current database connection.

e jndiName
The JNDI name of the database connection (specified in the hsl.properties
configuration file described in Doc[1])

e plsqlPackage
The PL/SQL package which implements the operations of the HSL service.
In this release, the revision number refers to the revision number of the code
template used to generate the PL/SQL package. In a future release this will point
to the revision number of the compiled PL/SQL package.

e user
The database account used to log on to the database.

e user context
The default OHI officer on whose behalf service operations are performed, as
specified in the hsl.properties file.

Note that hsl.properties refers to the configuration file which is used to start the HSL
service. The format of the hsl.properties file is described in Doc[1].

https://localhost:7002/HSL_POL/dbinfo

Back Office HTTP Service Layer User Manual

'
6 Singular resource operations

An operation that works on a ‘singular resource’ returns or contains a single object.

6.1.1 Default members

By default, each singular resource has the following members:

e links
a list of (HATEOAS) links to navigate to related operations on the same object
(such as PUT, POST, PATCH, DELETE) or to navigate to nested objects or to re-
request the object (‘self).

o id
An integer to uniquely identify the object. May not yet be uniformly
implemented. See the OpenAPI definition or the online help in the OHI Back
Office GUI application for more information.

6.2 GET
Return a singular resource.
6.2.1 Default filters:
When one or more nested ‘list” objects (sub-arrays or sub-collections) are present an
expand parameter is present which can be used to specify whether the contents of
these sub-arrays or sub-collections should be returned (they still may be empty of no
data is present).
o expand
Possible values:
o ‘all
Include all nested objects
BEWARE: The value “all’ is no longer supported for the OpenAPI 3.1
based services, you need to explicitly specify which nested objects should
be filled and returned as this means additional processing for the request
which should not be done unnecessary.
o empty
Do not include nested objects
o <object.member>[,<object.member>]..
Comma separated list to selectively include nested objects.
6.2.2 HTTP return codes

e 200: the resource is returned in the requested format.

e Other: see "HTTP return codes’

6.3

6.3.1

PUT

Back Office HTTP Service Layer User Manual

Replace existing singular resource.
The inbound object must be complete.
Use PATCH for selective updates!

Default filters

6.3.2

Not applicable

HTTP return codes

6.4

6.4.1

POST

200 (OK)
The operation was executed successfully, the response object contains the
updated resource (as defined in the OpenAPI schema).

204 (NO_CONTENT)
The operation was executed successfully, but there is no response object.

Other: see “"HTTP return codes’.

Create singular resource.
Normally a POST for a singular resource should be an operation on a collection
resource.

Default filters

6.4.2

Not applicable.

HTTP return codes

6.5

6.5.1

PATCH

200 (OK)
The operation was executed successfully, the response object contains the created
resource (as defined in the OpenAPI schema).

204 (NO_CONTENT)
The operation was executed successfully, but there is no response object.

Other: see “"HTTP return codes’

Selectively update a singular resource.

Default filters

6.5.2

Not applicable.

HTTP return codes

200 (OK)
The operation was executed successfully, the response object contains the
updated resource (as defined in the OpenAPI schema).

Back Office HTTP Service Layer User Manual

e 204 (NO_CONTENT)
The operation was executed successfully, but there is no response object.

e Other: See "HTTP return codes’

6.6 DELETE

Delete a singular resource.
6.6.1 Default Filters

Not applicable
6.6.2 HTTP return codes

e 204 (NO_CONTENT)
A response object is not returned (because it has been deleted)

Back Office HTTP Service Layer User Manual

__|
7 Collection resource operations

A collection resource consists of a list of singular resources. An operation that works
on a ‘collection resource’ returns or contains a list of objects.

For example, an AddressCollection object consists of a list of Address objects.
Normally the only verbs that apply on a collection resource are GET and POST.

A collection can also be embedded in another resource, as sub-collection.

7.1.1 Default members

By default, a collection resource that is returned by an operation that returns a
collection has the following members. An exception is a sub-collection, in that case
limit, offset and links are not present.

e items
A list of 0 or more singular resources.

o links
A list of HATEOAS links to navigate to other operations on the collection
resource or to its items.

e tofalResults
The total number of results matching the search criteria. This is NOT the size of
the items list.

o limit
The number of items that may be returned by the GET operation.
It is either:

o the limit parameter which was passed to the request; or

o the default limit value for this operation as described in the OpenAPI
schema; or

o the default limit value in the OHI Back Office tooling (10).

e count
The number of items which were returned by the GET operation.
This is a value between 0 and the value of limit

e offset

Specifies the index of the first result to be returned (0 means that the first result is
returned as the first item).

Note that the ordering of the result set is determined by the implementation
code.

Beware that the contents of the results set may change between two invocations
as the data may have changed meaning that a subsequent set of results fetched
may be different, there is no read consistency offered over subsequent service
calls!

The offset value is either:

Back Office HTTP Service Layer User Manual

o the offset parameter which was passed to the request; or

o the default offset value for this operation as described in the OpenAPI
schema; or

o the default offset value in the OHI Back Office tooling (0)
e hasMore

Boolean indicating whether more results may be found with a subsequent call.
True if totalResults > offset + limit

7.2 GET
Return a collection resource.
7.21 Default filters
Normally when a GET operation returns a collection there are no sub-arrays or sub-
collections present and an expand filter will not be present. But in exceptional cases
this filter may be present, when sub-arrays or sub-collections are present in the single
resource which is returned as member of the collection.
e Expand=value
Possible values:
o ‘all
Include all nested objects
BEWARE: The value “all’ is no longer supported for the OpenAPI 3.1
based services, you need to explicitly specify which nested objects should
be filled and returned as this means additional processing for the request
which should not be done unnecessary.
o empty
Do not include nested objects
o <object.member>[,<object.member>]..
Comma separated list to selectively include nested objects.
o limit=n
Limits the number of items to 7.
e offset=n
Indicates that the first item should be item #n of the search results.
‘offset=0" means that the list should start with the first search result.
7.2.2 HTTP return codes
e 200
Return resource. Beware, even when no data is found still 200 may be returned,
404 is not returned.
e Other: see ‘"HTTP return codes’.
7.3 PUT

Not implemented.

Back Office HTTP Service Layer User Manual

74 POST
Create a new singular resource and add it to the collection.
74.1 Default filters
Not applicable.
7.4.2 HTTP return codes
e 200 (OK)
The operation was executed successfully, the response object contains the created
resource (as defined in the OpenAPI schema).
e 204 (NO_CONTENT)
The operation was executed successfully, but there is no response object.
e Other: see 'HTTP return codes’.
7.5 PATCH
Not implemented.
7.6 DELETE

Not implemented.

Back Office HTTP Service Layer User Manual

8 HATEOAS Links

HATEOAS links are server-provided links to help the REST client navigate through
the server application.

See https:/ /en.wikipedia.org/wiki/HATEOAS for more information about the use
of HATEOAS links.

Both the PL/SQL interface and Java interface return HATEOAS links as part of a
resource response object.

The HATEOAS link object as used in the HSL layer has the following members:

o href=<absolute URI>
An absolute URI generated from an initial path after expanding templates,
adding query parameters and adding the base path.

o mediaType
Not currently used.

o method=<get | put | post | patch | delete>
The HTTP verb associated with the link

o profile

Not currently used.

o rel=<self|edit>
‘self’ is used to repeat the original request.

o templated=<true| false>
A link is templated if it is generated from a templated path. An example of a
templated path is */policy / {number}/ member’.

https://en.wikipedia.org/wiki/HATEOAS

Back Office HTTP Service Layer User Manual

9 Invocation from PL/SQL

declare

HSL services can be accessed through the RESTful HTTP interface and through
PL/SQL. This means it is possible to create custom applications which access HSL
services through PL/SQL. This chapter provides a few pointers for interfacing with
HSL services through PL/SQL.

In the diagram below, HSL_APP_SP_PCK indicates the PL/SQL package which is the
interface to the Java service layer and which can be invoked from PL/SQL:

HSL_APP_SP_PCK

Java service class
Interface + control

A
\J

JDBC

HSL_APP_XYZ_TP - Java class

HSL_APP_CP_PCK
Implementation

3
‘==é!;;2
N S
P
(
OHI Tabel

The following fragment illustrates how a HSL service operation can be invoked
through PL/SQL:

1 call context hsl cmn call context tp := hsl cmn call context tp();
1 return context hsl cmn return context tp;
1 output hsl pol cc polis coll tp;

begin

alg trace pck.enable;
1 call context.m user context := hsl cmn string4000 tp('MANAGER'); -- usercontext

hsl pol sp pck.getpolissenpercc

(pi_call context

=> 1 call context

;, Po_return context => 1 return context
;, po_output => 1 output
, pi expand => 'all'

, Pi_limit => 10

, Pi_collectiefcoderinglcode => 329
, Pi _begindatum => null

, pi offset => 0

1 return context.print ('l return context'); -- print HTTP return code
1 output.print ('l output'); -- print collection resource
end;

/

Back Office HTTP Service Layer User Manual

Notes:

e Thecalltoalg trace pck.enable only serves to enable dbms_output. It
should not be used in production mode, because:

o The use of alg_trace_pck.enable prevents the reset of the package state.
o The alg_trace_pck package is not normally granted to the HSL user

e The call context (see ‘SQL Types’ later in this chapter) contains generic meta data
to control the transaction.

e The user context must refer to a valid OHI BO officer who will be associated with
the action or transaction.

e Pagination is handled at the PL/SQL level and controlled through the pi_limit
and pi_offset parameters.

e The ‘expand’ parameter controls which sub-objects are included. A value of “all’

means that all sub-objects are included. Newer webservice operations no longer
support this value.

9.1 Oracle Account
You need a database account to call the plsql implementation. This must NOT be the
OHI object owner or you will run into HTTP 412 (object owner is not allowed to
execute HSL operations).

Doc[1] describes how to set up an account for using HSL services.

Note that the OHI object owner will need to grant access to the HSL user account.
See the example below how it is done for the fictitious account hsl_test:

begin
alg security pck.hsl grants
(pi_owner => '<OHI object owner>' -- .e.g. 0ZG OWNER
, Pi_grantee => 'HSL TEST'
)7
end;

/

If your custom development needs privileges on other OHI BO objects too, see the
guide “Custom Development for Oracle Health Insurance Back Office”, specifically
the use of script OZG_DIRECT.grt.

9.2 Which Package?

Each HSL service is associated with a single interface package with procedures and
functions that can be invoked by custom applications.

The name of the interface package can be derived from the WAR file associated with
the service.

Given a service XYZ, its WAR file would be HSL_XYZ.war. The corresponding
PL/SQL interface package would then be HSL_XYZ_SP_PCK.

So, for the POLIS service, the interface package is HSL_POLIS_SP_PCK.

Back Office HTTP Service Layer User Manual

9.3 Mapping Operations to Packaged Procedures

When using the HTTP interface, each operation is a combination of a path and a
HTTP verb.

In the OpenAPI definition, each operation is given a unique name, called ‘operation
ID’.

In the example below the operation ID for /hba/v1/relation + POST is defined as
‘addRelation’:

/hba/vl/relation:
post:
tags:

- rel

summary: Add a new relation

descrintion:
operationld: addRelation
consumeas.:

- application/json

From the application name ‘HBA” we can deduce that the interface package is called
‘HSL_HBA_SP_PCK'.

The procedure name is mapped to the operationld.

So, if the application name is ‘'HBA” and the operation ID is ‘addRelation’, the
corresponding PL/SQL packaged procedure is HSL_HBA_SP_PCK.addrelation.

9.4 Invoking an Operation

The interface package provides a packaged procedure for every service operation.

The interface of every operation procedure is similar.

procedure dosomething

(pi_call_context in hsl cmn call context tp

, Po_return_context out hsl cmn return context tp
, Pi_some inbound param

, Po_output

) ;

Each procedure has the following parameters:

e pi_call context
Inbound object containing runtime metadata such as the base path, and OHI
officer.

e po_return_context

Outbound object containing HTTP code, and technical and functional message if
an error occurred.

Our first example is a procedure to add a relation:

procedure addrelation

(pi_call context in hsl cmn _call context tp

;, Po_return context out hsl cmn return context tp
, pPi1 relation in hsl hba relation tp

, pi forceupdate in varchar2 default 'true'

Back Office HTTP Service Layer User Manual

, Pi_expand in varchar2

)7

This procedure has several inbound parameters including an inbound object
pi_relation. It has no outbound object, meaning that the calling application will get a
HTTP code but no content.

Our second example is a procedure to patch a relation:

procedure patchrelation

(pi_call context in hsl cmn call context tp
po_return context out hsl cmn return context tp
po_output out hsl hba relation tp

pi relation in hsl hba relation tp

pi expand in varchar2

~ N N N~

’

This operation was designed to return the updated copy of the object.

Note that all operations may process at most one inbound object and return at most
one outbound object.

9.5 SQL types

Whereas Java classes are the containers to hold objects in Java, SQL types are the
containers to hold objects in PL/SQL.

9.5.1 Service-specific types and common types

HSL services have their own SQL types which are not shared with for example SVL
services.

Most HSL types are not shared between HSL services. They are prefixed with
HSL_<APP>.

Example: all complex SQL types for the REL service are prefixed HSL_REL
Common types may be used by multiple HSL services. They are prefixed HSL_CMN
designating their common use.

Common types are used for scalar values or generic metadata. They are shared
because the definitions of these types are unlikely to change over time.

Examples of service-specific types:

e hsl _rel_preferred_acco_tp
type definition to hold preferred account details for the REL service.

e hsl rel link_tp
type definition to hold link details for the REL service

e hsl_pol_policy_tp
type definition to hold policy data for the POL service.

e hsl_pol link_tp
type definition to hold link details for the POL service.

Examples of common types:

9.5.2 Call Context

Back Office HTTP Service Layer User Manual

hsl_cmn_call_context_tp
generic definition to hold call context of an operation.

hsl_cmn_return_context_tp
generic definition of a return context holding HTTP result code and error
messages

hsl_cmn_string30_tp
holds a single varchar2(30) value

hsl_cmn_date_tp
holds a single date value.

The call context object is passed to every operation to pass metadata:

It contains the following information:

9.5.3 Return context

m_base_path
The basepath is the URI which is prepended to create the absolute links
needed by the calling application.

m_caller_id

The caller ID may be set to identify the end user on whose behalf the HTTP
request was generated. For example, the relation number of an insurance
member, care provider or broker.

See the documentation of the HSL service operation if the m_caller_id must
be set.

m_caller_role

The caller role may be set to indicate the role of the end user on whose behalf
the HTTP request was created.

Theoretically it is possible that a care provider is also an insurance member.
A request to retrieve claims would then be ambiguous: is the caller an
insurance member wishing to retrieve his own claims or a care provider
wishing to retrieve claims associated with his services?

Together, the caller ID and caller role should provide an unambiguous
context to the operation.

See the documentation of the HSL service operation if the m_caller_role must
be set.

m_user_context (mandatory)

Indicates the OHI officer on whose behalf the request is processed. Must be
an existing Oracle database account name and refer to an existing and time
valid row in ALG_FUNCTIONARISSEN.

The OHI officer may be an employee of the OHI customer, functional
administrator, call center employee, or an account registered for self-service
actions.

The PL/SQL implementation of each operation passes a return context to the caller.
The caller is either the service class in the Java layer providing the HTTP RESTful
interface or PL/SQL custom code.

Back Office HTTP Service Layer User Manual

The return context is a SQL type with the following members:

e m_code
a HTTP return code, e.g. 200 (OK)

e m_functional_message
May be set if an exception occurred while processing the operation.

e m_technical message
May be set if an exception occurred while processing the operation.

9.5.4 Built-in functionality of HSL types

Each service-specific SQL type in a HSL service (example: HSL_POL_POLICY_TP)
has the following generic functionality:

e constructor
The constructor creates a new object and sets appropriate default values for
scalar values if required by the original OHI OpenAPI definition.

e example
This function populates an object with example data, derived from the
original OHI OpenAPI definition.

e 02x
Creates an external representation of an object to be handed to the calling
application.

e x20

Creates an internal representation of an object (which is used by the OHI
implementation code).

e print
prints the content of an object and its nested objects using
dbms_output.put_line

e scalars_to_str
returns a varchar? string formatted as
‘namel="valuel”,name2="value2” etc. Used by OHI implementation
code.

e class_name
Returns the name of the Java class corresponding with this SQL type.

9.6 GET Example

The following example calls a GET-operation to retrieve a single resource:

declare
1 call context hsl cmn call context tp := hsl cmn call context tp();
1 return context hsl cmn return context tp;
1 output hsl pol polis tp;
begin
alg trace pck.enable;
1 call context.m base path := hsl cmn string4000 tp('http://0l60ohi:4321/HSL pol');
1 call context.m user context := hsl cmn string4000_ tp ('MANAGER');

Back Office HTTP Service Layer User Manual

hsl pol sp pck.getpolis

(pi_call context => 1 call context
po_return context => 1 return context
;, po_output => 1 output

, Pi_expand => 'all'

, Pi_id => 1764

, pi peildatum => null

1 return context.print('l return context');
1 output.print('l output');
end;

/

Back Office HTTP Service Layer User Manual

10 Language Aspects

The session language in the PL/SQL session (which implements the HSL service
operation) determines the representation of:

e Messages
e Language dependent data (example: multilingual product description)

Selecting the correct session language has an impact on the functioning of the HSL
application!

The default language in the PL/SQL session is the preferred language of the account
for the HSL officer used to execute the PL/SQL service implementation.

10.1 Current Behaviour

Setting the language for the HSL database account will set the language for all
sessions.

10.1.1 Messages
Messages will be given in the session language. This behaviour is in line with the GUI
application.

10.1.2 Language-dependent data
Language-dependent data will be displayed and processed in the session language.
This behaviour is in line with the GUI application.

10.1.3 Known Issue: HSL_POL service
If set, the Back Office parameter value for ‘Polis use case service > functionaris” will
override the OHI officer.
In that case, the session language will be overruled by the preferred language of the
OHI officer associated with the Back Office parameter value for ‘Polis use case
service > functionaris’.

10.14 Known Issue: HSL_REL service

If set, the Back Office parameter value for ‘Relatie use case service > functionaris” will
override the OHI officer.

In that case, the session language will be overruled by the preferred language of the
OHI officer associated with the Back Office parameter value for ‘Relatie use case
service > functionaris’.

Back Office HTTP Service Layer User Manual

__|
11 Terminology

Term Meaning Example
Application Unit of deployment for a

HSL service
Attribute A scalar member of a

resource

Basic Authentication | a method for an HTTP user
agent to provide a user
name and password when
making a request.

Body Parameter A resource passed as the
payload of a request
Collection Resource | A resource consisting of
metadata attributes and a
list of singular resources

Deserialization Conversion of a character
string (JSON format) to an
object.

Enumeration a set of allowed (string)
values

HATEOAS A follow-up link returned

as part of the response to
a REST operation to help
the client operation
navigate to an appropriate
next request.

Header a name/value pairina Accept-Language:nl-NL
HTTP request or response.
HSL HTTP Service Layer - the

technical implementation
for OHI Back Office Use
Case services.

HTTP Code Standardized return code 200 (OK), 204 (NO_CONTENT), 400 (BAD_REQUEST), 404
for a HTTP request. NOT_FOUND), 405 (METHOD_NOT_ALLOWED), 500
(INTERNAL_SERVER_ERROR)

HTTP Verb A value from the following
set: GET, PUT, PATCH,
POST or DELETE. The verb
and URI together define
the required service
operation.

JSON A standard format for
serializing objects to ASCII
strings (and vice versa)
Object An object in the object
model of a REST service.
Same as 'type'.

Back Office HTTP Service Layer User Manual

Operation

A single actionon a
resource in a RESTful
service

Pagination

Creation of a subset of a
total collection when
returning a collection
resource.

Parameter

A parameter to a HTTP
request. See also 'Body
Parameter', 'Query
Parameter', and 'Path
Parameter'

Path Parameter

A parameter which is part
of the path.

/pol/v1/simplePolicies/123

Query Parameter

A parameter which is
added to the path.

/pol/v1/simplePolicies/123?referenceDate=2011-12-31

Resource

An object which is passed
to, or returned by a service
operation.

RESTful Service

A HTTP-based web service
following the REST
application architecture.

Return code

HTTP Code returned by a
service operation.

Serialization

Conversion of an object to
a machine-independent
format.

Service

A group of operations and
its object model. The
service interface is defined
by the ‘OpenAPI Schema'.
The service is deployed as
a (WAR) application.

Singular Resource

A single object which is
passed to, or returned by a
service operation. See also
'Collective Resource'.

OpenAPI Schema

The specification
document that describes
the interface of a RESTful
service.

Tag

A logical category for
grouping operationsin a
OpenAPI schema. An
operation may have
multiple tags.

Templated Path

A path with one or more
path parameters.

Type

An object in the object
model of a REST service.
Same as 'object’

Back Office HTTP Service Layer User Manual

Back Office HTTP Service Layer User Manual

12 Appendix A - HSL C2B services - Usage points of attention

Starting with OHI Back Office release 10.17.2.2.0, a set of web service operations has
been made available in the HTTP Service Layer in order to replace the ‘old” Connect
to Back Office (C2B) services that modified policies and relations. These SOAP
envelope-based services were first delivered in 2006 and have been used for a long
time by many OHI customers to send all kinds of policy and relation modification
requests to OHI Back Office.

The new C2B web service operations in HSL offer - as far as is possible - identical
functionality as was offered by the “old” C2B. An explanation for this is given in a
separate Appendix of the HTTP Service Layer installation manual.

Because of the different technology used, the new service operations may react
differently from the old ones. The most important usage aspects are discussed now.

12.1 Transaction handling

Each C2B web service call fails or commits atomically. No partial change will ever be
committed. However, transaction handling is done at the database level. When the
network fails between application and database server the response message may not
be received but the transaction may have succeeded. This is analogous to the ‘old’
C2B implementation. In the asynchronous version of the ‘old” C2B, the response
queue might not be filled while the transaction was successfully processed. No “two-
phase commit” functionality was offered for the dequeue and service call, because
such distributed transaction handling is complicated and heavyweight, and risky. It
would require complex administrative corrections when such transactions fail. For
that reason, supporting idempotence would be a better option. This idempotence was
not present in the old implementation and is not present in the new implementation
either.

Because the transaction is processed within the OHI Back Office database, consistent
and isolated processing is already guaranteed, due to the way the Oracle database
offers transaction isolation and due to the way, all business rules within OHI Back
Office are implemented, using an appropriate level of locking where necessary.

12.2 Idempotence

The service operations of C2B do not offer idempotence behaviour by default, in
order to act identically as they did when originally created. The result of 2
subsequent identical calls may differ per operation. This historical functionality may
lead to unwanted results in combination with the implemented transaction handling
but has not caused serious business problems over the past years.

Back Office HTTP Service Layer User Manual

13 Appendix B - Resource identification IDOR compatibility mode

A service operation that retrieves data from an object expects the identification of that
object (a resource in json) as input, further referred to in this appendix as ID. For the
OHI web services, to better protect against possible misuse, the transition has been
made from guessable numbers (also known as “insecure direct object references’, in
short ‘IDOR’), such as a policy number as ID, to non-guessable UUIDs as ID. These
UUIDs are typically required for the OpenAPI 3.1 webservices to identify a resource.

The transition to using UUIDs instead of numerical IDs for resource definitions can
have an impact on the ICT landscape. Because the first generation version of the OHI
web services did not use UUIDs as ID, it can be a challenge to immediately start
using the services with UUID in combination with other systems that only know (and
have stored locally) the guessable numbers, like a policy number.

To ease such a transition and offer some time to implement a more secure
configuration, a compatibility setting has been introduced which facilitates the
continued use of the numeric ID values for specific identifiers that are used in the
second generation set of services.

13.1 Specifying resource identification compatibility for UUID-based IDs

For the specific set of data object types that already were supported by the
webservices when this additional security measure was introduced, the guessable
numbers can still be used as ID instead of the UUID values, by explicitly setting up
the OHI Back Office parameters ‘Request objecten zonder UUID” and ‘Response
objecten zonder UUID'. These two parameters offer a compatibility mode to continue
using the original identifying values instead of the UUID values to identify resources.

The object types (resources in the OpenAPI 3.1 specifications) that can be selected to
use the guessable number instead of a UUID are listed in below table. The table
names used in the Parameter Value column below correspond with the value used
for the x-ohibo-uuid property in the OpenAPI 3.1 specification.

Betalingsregeling | FSA BETALINGS REGELINGEN
Incassoafspraak FSA_INCASSOAFSPRAKEN
Aanvullende GEB_AANVULLENDE_INFORMATIES
informatie

Declaratie GEB_DECLARATIES

Declaratie regel GEB_DECLARATIE_REGELS
Machtiging GEB_ZORG_VOORNEMEN_PERIODES
Relatie RBH_RELATIES

Factuurkenmerk RestFactuurlD

Contract VER_COLLECTIEVE_CONTRACTEN
Eigenrisicoregeling | VER_EIGENRISICOREGELINGEN
Polis VER_POLISSEN

The request objects/resources in a an operation request always accept a UUID as ID
If the request parameter is set for the specific object type the guessable number is
accepted too.

Back Office HTTP Service Layer User Manual

For the response object(s) the UUID is returned for a specific object unless the
parameter for that object type/resource is set. In that case the guessable number is
returned for the identifiers in the response message.

Both Back Office parameters offer the possibility to specify a set of these parameter
values.

Please realize that the response setting is not needed as all subsequent calls do accept
UUID based identifiers. You should only use this if you actually do need the original
numeric value for interaction with other applications that still require these numeric
values.

The following table shows the non-UUID identifiers per object type that can be
passed as identifier instead of a UUID.

Betalingsregeling | ID

Incassoafspraak ID

Aanvullende ID

informatie

Declaratie NR

Declaratie regel DCR_NR]|'# | |[VOLGNR
Machtiging ID

Relatie NR

Factuurkenmerk KENMERK

Contract MER_CODE| |’#| |C_NUMMER_EXTERN
Eigenrisicoregeling | ID

Polis NR

For the object types “Declaratie regel” and “Contract” the identifier is based on a
concatenation of the two formerly used values separated with a “#”. Invalid
concatenated values in a request will simply not identify an object and result in
behaviour as if a non-existing numeric value has been passed.

Once again, we strongly advise to use this compatibility functionality for a limited
time and make plans for always using UUID values. As long as this is not done,
numeric identifiers impose the risks as described in paragraph 3.4.

