ORACLE
INSURANCE

Oracle Health Insurance Back
Office

Reading, Writing and Authorizing Oracle
Health Insurance Application Files and
Messages

Version 1.22

Part number: G49637-01
January 15, 2026

ORACLE’

1

Copyright © 2011, 2026, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf
of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are “commercial computer software” or “commercial technical data” pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of
this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of
their respective owners.

This software and documentation may provide access to or information on content, products, and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties
of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will
not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related
notices. For information on third party notices and the software and related documentation in connection with
which they need to be included, please contact the attorney from the Development and Strategic Initiatives
Legal Group that supports the development team for the Oracle offering. Contact information can be found on
the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality described
in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of
your Oracle Software License and Service Agreement, which has been executed and with which you agree to
comply. This document and information contained herein may not be disclosed, copied, reproduced, or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

CHANGE HISTORY

Release Version Changes
10.12.2.0.0 1.2 e Changed examples in Reading output
10.14.2.0.0 1.3 e Some minor adjustments
10.15.1.0.0 14 e Removed references to Oracle Reports
10.15.3.0.0 1.5 e No relevant updates, only republished
10.16.1.0.0 1.6 e No changes
10.16.2.0.0 1.7 e Some minor textual improvements
10.17.1.0.0 1.8 e No changes
10.17.2.0.0 1.9 e No changes
10.18.1.0.0 1.10 e Added information regarding the isolation of database directories of
pluggable databases in database 12.2 through PATH_PREFIX
10.18.2.0.0 1.11 e Republished with different part nr.
10.19.1.0.0 1.12 e No changes. Republished with different part nr.
10.19.2.0.0 1.13 e No changes, republished with different part nr.
10.20.1.0.0 1.14 . No changes, republished.
10.20.8.0.0 1.15 e Title adjusted as next to files also messages are involved
e Content extended for queued output messages
10.21.1.0.0 1.16 e Added information regarding queued JSON and XML output messages
e New part number.
10.22.1.0.0 1.17 e No changes, republished with new part number.
10.23.1.0.0 1.18 e Changed Introduction, Limited privileges on Database Directories in
paragraph “Technical management of database directories”
e New part number.
10.23.7.0.0 1.19 e Small corrections
10.24.1.0.0 1.20 . No changes, republished with new part number.
10.25.1.0.0 1.21 . No changes, republished with new part number.
10.26.1.0.0 1.22 . No changes, republished with new part number.

RELATED DOCUMENTS

A reference in the text (doc[x]) is a reference to another document about a subject that is
related to this document.
Below is a list of related documents:

Doc[1] Oracle Health Insurance Back Office - Installation, Configuration and
DBA Manual (docs.oracle.com)

Unless otherwise indicated, these documents can be downloaded from docs.oracle.com.

CONTENTS

INErOAUCHON ... 5
OHI DAt ...t 5
OHI Documentation ... 5

Requesting output from a batch...........cccoooiiiiiiii e 7
Location of application SOftWATeccccvveveinireinreeinirecnerceneeeceneereereesneneeene 7
NAIMINE ..o 7
AUhOTIZAtION ... 8
Determining the file 10Cation...........coveeiiiiiiiccce e 9
EXAIMPLES ..ottt 12

XML OULPUL FILES ..ottt ettt 14
General fuNCONAIITYcccovvveveveueieieiiiirreeeeccc e nenes 14
Technical management of database directories...........c.cococeuveiiiiininnnnniicennes 15

JSON and XML MESSAZESc.cuvueuiiririruririeieieiiiiiiriresieeeeeie e eseaees 18
General fuNCiONAlITYcccveveveieiiiiiiiiee e 18
Message FOTMALc.ccovuiuiiiciiiicc s 21

Online help INformation...........coociriiiiiiiiice e 24

Release docUmMeNtationocciiiiiiiniiiiiiicc e 25

Introduction
This document deals with the technical and functional aspects of several types of
Oracle Health Insurance application files.
Specifically, this document discusses:
e Output of OHI data
o File output
o Message output published on a JMS queue
¢ OHI Documentation
o OHI Online Help
o OHI Release information
e OHI batch output files
o Batch .out file
o Batch .log file
OHI Data

OHI application data can be exported in several ways:

¢ File output from the Oracle Health Insurance application is mostly generated
using the so-called batch or script functionality. Files often contain many
messages for different message topics (policies, claims, etc.) in one and the
same file.

¢ OHI increasingly outputs messages by publishing them on a JMS queue.
This type of output usually has one message per topic (claim, policy, relation,
etc.) and is mainly in XML or JSON format.

The files involved in the file output are either stored on the database server or the
application server, in a directory that is to be specified per request or is pre-
configured.

The bulk of file output is the XML file output, which is generated by certain batches
since the first OHI release in 2005 onwards. You can specify your own file name and
‘database directory’ (from a pre-defined list) for the XML output (and XSD output if
applicable) per script request. The technical log messages from the batch are,
however, saved to the regular pre-configured output location on the application
server. The system management department of an OHI customer determines the
actual locations of these directories and how you can access them.

OHI Documentation

Online help information stored in files in HTML format is used from within the
application. Users can start a menu option within the user interface. This starts a new
browser window and requests the files from the OHI web server.

In addition to the online help, users can view the documentation files for the installed
(patch) releases in the same way from within the application (the ‘releases” window).

__|
Requesting output from a batch

By default a batch script request creates a standard output file. The location and
naming of this file is described below.

The output of batches that produce XML output is written to separate files and not to
the standard output file for a batch. Please refer to the chapter that deals with this
subject in detail for more information.

Location of application software

Naming

The Oracle Health Insurance batch scheduler processes the batch requests submitted
by the application.

Various types of modules are started to this end, including shell scripts, SQL*Plus
modules, perl scripts, etc.

The “Directory environment" field in the "System/Management/General /System
parameters" screen (SYS1010F) specifies the top directory for the application on the
Application Server. The modules to be started exist in the specified subdirectory
structure. The best practice is to specify environment variable $OZG_BASE, but it is
possible to specify your own environment variale or hard coded directory.

See the following document for the mandatory directory structure:

|:| Oracle Health Insurance Back Office Installation, Configuration and DBA
Manual

The following conventions apply for naming files produced by Oracle Health
Insurance script requests:

Filename structure

The file name is constructed from a batch script request number and an extension:

<script request number in a maximum of 14 positions> + <extension>

Example

10000000041774.0out

Extensions

The extension can be one of the following;:
.out

The extension for output, used for statuses “Completed” (script request successfully
executed) and “Error” (functional errors have occurred).

log

The extension for the log file which is filled on the “Failed” status (technical error).

Authorization

File authorization ensures that the output can only be read. System authorization is
used to ensure that this is only done by individuals who are authorized to do so.

File authorization

General

The Oracle Health Insurance Batch Scheduler runs under a specific OS-account
(normally ‘batch’). All output files are created and saved under this account.

The default properties of the files created are determined by the OS file mode
creation mask umask. When this is set to umask 333 (preferably in
$02ZG_ADMIN/ozg init.env), all files created are assigned read-only properties.

When the setting is used the result is that end users who then open the file at
Operating System level can only read it. As the basic property of the files is read-only
the files cannot be changed.

Here it does not matter whether file browser functionality (e.g. browsers like MS
Internet Explorer or Edge, Chrome) or file editor functionality (e.g. vi under UNIX,
MS Word, Wordpad, PFE under Windows) is used to display the output.

Even if the files are accessed under Windows (using networking software such as
NEFS or Samba) through a read-only mounted share they can still only be read.

Application authorization

Application authorization means that end users can only access the output of batches
they submitted from within the application through a created URL, unless he/she
has authorizations as an OHI administrator (as registered in the Maintain functions
with roles screen); in that case they can view the output of other users also.

If an OHI user has administrator authorization he/she can also view script requests
from other users.

The algorithm used to determine the location of the output file is therefore as follows:

<set generic output directory> +
<directory-symbol> +
<file name>

Where the following also applies:

if not administrator user then the following must apply
<current user>=<user that started the script>

else
error message

end 1if

Beware, this only applies to the standard application functionality. By manipulating
a URL, anyone can easily access any batch log and output file in a browser. By
protecting the output URLs using e.g. Single Sign-On, it is possible to limit access to
those files, but differentiating between files of different users is not possible.

Do not rely on this mechanism to protect sensitive data.

Determining the file location

The directory that is used for the creation and retrieval of the batch .out and .log files
is determined at run time.

Writing output

For writing Oracle Health Insurance batch .out and .log files, the location is
detremined using the values specified in the “Directory output” and “Directory log
files” fields in the SYS1010F screen.

The screen print below shows these fields with an example configuration (and other
fields discussed later in this document).

¢ Algemeen systeemparameter
Batchscheduler Owerige instellingen

Directory omgeving |EDEG_EASE

Directory teken |r_

Directory output |5L':|EG_D UTHusername#
Directory logfies |SDEG_LDG.I‘#usern ame#
Virtuele directery output [lOHIvohilouts#usernames
Virtuele directory logfiles ['OHUvohiflogi#usernames
Virtuele directory on-line help |m Hlvohithelp

Virtuele directory releasedocumentatie |,r|:| Hlpatch

These locations must be accessible directories on the application server. OS
environment variables can also be used in the values for these locations.

The batch scheduler must be restarted before changes made in these locations take
effect.

Substitution variables (between # symbols) can be used in these values. See below.

Example
Out-files = /ul0l/app/oracle/product/OHI/prod/out/#username#/#ado#/#merk#
Log-files = /u0l/app/oracle/product/OHI/prod/log/#username#/#ado#/#merk#

or (using environment variables $OZG_OUT and $OZG_LOG):

Out-files = $0ZG_OUT/#username#/#ado#/#merki#
Log-files = $0ZG_LOG/#username#/#ado#/#merki#
Reading output

For reading Oracle Health Insurance batch .out and .log files, the location is using the
values in the “Virtual directory output” and “Virtual directory log files” fields in the
SYS1010F screen.

These locations must be accessible virtual directories (within the configuration of the
Oracle HTTP server) on the application server.
OS environment variables must not be used in the values for these locations.

Protocol, servername and portnumber are optional, so the value can start with the
name of the virtual directory. This last method is called a relative address. Releative
addresses are the best practice, because they do not have to be adapted when an OHI
environment is moved or cloned.

Example

Output

http://myhost:7777/0HI/prod/out/#username#/#ado#/#merk#
or
/OHI/prod/out/#username#/#ado#/#merk#

Logfiles

http://myhost:7777/0HI/prod/log/#username#/#ado#/#merk#
or
/OHI/prod/log/#username#

Conditions

1. Locations specified must not end in a directory symbol.

2. The #username# substitution variable can be used to mark where the actual
username appears in the path.
The use of substitution variables is optional.

3. Substitution variables are also available for administrative organization,
brand and finance company and the source of the claims. The variable names
must be in Dutch but for easy understanding the English name is mentioned
between brackets:

o #ado# {#administrative organization#}. The administrative organization for
which the output is being generated. The value for the administrative
organization is determined from the parameters in the script request or
external integration processing. If a script request or external integration
processing has no administrative organization parameter then the
substitution variable is replaced with an empty string.

o #merk# {#brand#]. The brand for which output is being generated. The
value for the brand is determined from the parameters in the script
request or external integration processing. If a script request or external
integration processing has no brand parameter then the substitution
variable is replaced with an empty string.

o #finbedrijf# {#finco#/. The finance company for which output is being
generated. The value for the finance company is determined from the
parameters in the script request or external integration processing. If a
script request or external integration processing has no finance company
parameter then the substitution variable is replaced with empty.

o #declaratieherkomst# {#claimsource#}. This variable is only replaced for
claims in return media for external integration. This variable is replaced
with the source of the claim for which return information is sent.

Oracle Health Insurance determines the values for ado, brand and finance
company per script request where possible and if applicable.

The system then replaces the substitution variables with the values that have
been determined. Finally, the file is written to the path that has been obtained
following substitution.

For each processing of an outgoing medium Oracle Health Insurance
determines the values for ado, brand and finance company where possible
and if applicable.

The system then replaces the substitution variables with the values that have
been determined.

10

10.

The batch run is created with a file name matching the path that has been
obtained following substitution.

A location for saving the files that differs from the default location in the file
system can be specified using a medium variable for outgoing or return EI
medium versions. The aforementioned substitution variables can be used
here too. The name of this medium variable is
<MEDIUM_CODE>_<MEDIUM_VERSIE>_BESTEMMING
{MEDIUM_CODE>_<MEDIUM_VERSION>_DESTINATION}. If the medium
version with this name is not filled for a specific outgoing EI medium then
the output path contained in the system parameters is used. If the medium
variable does have a value then this path is used.

Operating system commands that need to be executed by the batch scheduler
after a file has been saved can be specified in screen ‘Maintain print layouts’.
These can be printer commands or shell scripts that execute another process
on the output files. The command defined for processing the output report is
executed only for the .out file. The command defined for the processing of
data files is executed once for every file produced by the script. The directory
path is included in the filename.

The substitution variables can be used in these commands also.

If the substitution variable is empty it will be populated with the value ‘null’:

scriptnaam -A #ado# -M #merk# bestandsnaam {scriptname -A #ado# -M
#brand# filename}

becomes the following where ado and brand have empty values:

scriptnaam -A null -M null bestandsnaam
{scriptname -A null -M null filename}

The batch scheduler retrieves the parameter values for ado, brand and
finance company that have been specified by the user. The batch scheduler
checks if the value for ado, brand and finance company exist. If not, this
value is replaced by an empty string.

If there is only a parameter (and therefore a parameter value) for brand then
the ado is determined based on this brand.

By substituting an empty parameter value, if the brand is not applicable for
example, a non-valid pathname can be generated that includes a number of
consecutive slashes. Multiple consecutive slashes are always replaced with a
single slash.

The OHI customer organization itself is responsible for the existence of the
complete directory structure that must be present for the substitution
variables that are used.

The #username# string cannot however be used IN such an environment
variable! If there is a requirement to use the username in (the middle of) the
path then two environment variables can be used for this:

Example

Out-files = $0ZG_OUT PRE/#username#/$0ZG OUT POST
where $0ZG_OUT PRE = /home

and $0ZG_OUT_POST = out

11

Examples

Scenario 1

User JJANSEN submits script request 123 under the Health Insurance
subsystem. JJANSEN does not have administrator authorization.

User member KDIJK submits script request 456 under the Financial subsystem.
KDIJK does have administrator authorization.

The output directory to be used has been set to

$0ZG_OUT/#username#

When JJANSEN wants to view his own output the following file is opened as
per the algorithm above:

$0ZG_OUT/jjansen/123.out

When KDIJK wants to view his own output the following file is opened:

$0ZG_OUT/kdijk/456.0ut

If JJANSEN wants to view KDIJK’s output the following applies: JJANSEN is
not an administrator user and JJANSEN (=current user) <> KDIJK (user who
started the script); therefore, an error message is generated.

If KDIJK wants to view JJANSEN'’s output the following applies: KDIJK is an
administrator user and the following file is opened:

$0ZG_OUT/jjansen/123.out

Scenario 2

Out files: /home/#username#/#ado#/#merk#/#finbedriyf#
{/home/#username#/#ado#/#brand#/#finco#

Suppose that Pietersen uses the username PPIETERS to submit a script
request for medium ZRG8092E 'Genereren afrekenspec. natura/restitutie
naar bestand' {Generate payment spec. in kind/repayment to file} with parameter
value 'l' for ado and parameter value 'TOP' for the brand. Following the
substitution rules, the batch run will use the filename

/home/ppieters/1/top.

Scenario 3

Out files: /home/#ado#/#merk#/#finbedrijf#/#username#
{/home/#ado#/#brand#/#finco#/#username#}

Suppose that Pietersen uses the username PPIETERS to submit a script
request for medium ZRG8092E 'Genereren afrekenspec. natura/restitutie
naar bestand' {Generate payment spec. in kind/repayment to file} with parameter
value '2' for ado and no parameter value for the brand. Following the
substitution roles, the batch run will use the filename

/home/2/ppieters.

12

Scenario 4

Out files: /home/#ado#/#merk#/#finbedrijf#/#username#
{/home/#ado#/#brand#/#finco#/#username#}

Suppose that Pietersen uses the username PPIETERS to submit a script
request for medium ZRG6055E 'Genereren polisbladen naar bestand'
{Generate policy pages to file} with the parameter value TOP for the brand
(there is no parameter value for ado). The system now determines the
associated ado set “1". Following the substitution roles, the batch run will use
the filename

/home/1/top/ppieters.

Scenario 5

Out files: /home/#ado#/#merk#/#finbedrijf#/#username#
{/home/#ado#/#brand#/#finco#/#username#}

Suppose that Pietersen uses the username PPIETERS to submit a script
request for medium FIN2020E 'Aanmaken aanmaanbestand externe incasso'
{Create reminder file external collection} with the parameter value 6 for the
finance company. Following the substitution roles, the batch run will use the
filename /home/6/ppieters.

13

XML output files

OHI provides a set of batch scripts that produce XML output. If necessary, an
associated XSD file can also be created. This functionality is outlined below.

General functionality

A number of default parameters exist for an XML output product. These are
described below:

e XML and/or XSD file
This parameter is used to specify whether the script request should produce
the requested XML file only (this will be the default use) or if the associated
XSD file should be created in addition or on its own.
A batch that produces an XML output product can also produce an
associated XSD file if required. The file ‘describes’” the structure of the XML
file that is produced. It is, as it were, a ‘contract’ which must be met by the
XML output and can often be used to control and/or direct XML processing
programs.
In a script request you can specify whether you want this XSD file created.
The content of the XSD file will always be the same for the output product
concerned. It is only when a new version of the output product or the
underlying object structure is produced that the content may differ in relation
to the previous version. The same parameters are used for naming the XSD
file (see below) as for the XML file, but the extension .XSD is used instead
of XML.
The content of the XML file depends on the other functional parameters to be
specified.
In the unlikely event that you only want to create the XSD file, you still need
to specify valid values for the functional parameters. The script request is
primarily intended for generating XML output.

NOTE: When you only request XML output a more efficient (much faster)
algorithm is used for writing the output to file. Output is then buffered to
write larger pieces at once. Therefore, it is wise to only generate the XSD
output when required to prevent unnecessary write delays.

¢ Name of XML/XSD file
A file name that you set (without the associated extension) can be specified
for XML output products. Specify a meaningful name that can easily be
recognized later.
In addition to these files, the default/standard output (.out file) from the
script request is saved in the usual manner. This file is identified by the
number of the request and contains error messages and information
messages.
If an XML file already exists with the name that you specify, the number of
the script request is appended behind the name so that it is still unique. The
file that already exists is not, therefore, overwritten. Any existing XSD file
will be overwritten though (the reason behind this choice is that this will
normally be identical or it will be simple to recreate it).

o File location
A location or a ‘directory” can be selected from a list of pre-defined locations
(so called “database directories’) to be set up by the database administrator
which have been given a logical name. A list of possible values can be

14

requested when the script request is entered. Using specific database
directories, XML output intended for different purposes can be saved to
different locations which can be determined by the organization.

e Reference date
For certain, time-valid data which are retrieved when generating the XML
output, the situation must be determined as per a specific date. By default the
date of creation of the output file (the ‘system date’) will be used as that date
but if necessary a different date can be specified. The date is for example used
to determine the marital status for an individual, which is valid on that date.

By changing the default parameter values for a script definition you can influence the
standard values for the parameters, possibly making the submission of a script
request more efficient.

It is important to realize that creating an XML file is a relatively intensive action: the
data that is present in the database is translated into a functional model and this
model is ‘rich” as far as data is concerned.

The reason for this is that the XML file must contain all data that may be required so
that a “selection” can be made from this when using the XML file. At the same time,
the techniques used to generate the XML output are more intensive than those that
are used to generate the traditional ASCII output product. And the final reason is, of
course, that the size of the XML files is considerably larger than a ‘data only’ file as
every data component has an ‘open” and ‘close’ tag that comprises the name of the
data component. An example: <NAME>Smith</NAME>.

Still there is a way to influence the size of the XML output by including or excluding
specific data elements. There is a special screen which can be used to view and alter
this XML output dynamic content.

Technical management of database directories

Certain ‘database directories’ have to be created in the database in order to facilitate
the creation of XML and any associated XSD output files. These database directories
specify a ‘logical directory name” that reference a physical file system directory to
which the XML output can be written. The files concerned are created by the database
processes in file system directories that have been created for this purpose. This
means that the OS account that runs the database (usually “oracle”) needs write
access to the physical file system directory. The OS account “batch” should not need
this write access. (“batch” only needs access to directories on the application server).

When generating the XML output products the user can select from a number of
database directories that are available to the user account concerned. These database
directories can be created in the database using a DBA account and can be granted to
the user accounts that are permitted access to them. This does not mean that the OHI
application users need READ or WRITE privilege on these database directories. It is
sufficient if they have EXECUTE privilege, which cause the directory to be visible in
List-Of-Values and selectable as parameter for a batch script request.

You could grant EXECUTE privilege to the OHI BO role “OHI_ROLE_ALL” so all
Application users automatically inherit this privilege, but this is not compatible with

Database Vault.

The following OHI BO application accounts need EXECUTE privilege on database
directories:

e OHI_VIEW_OWNER

15

e OHI_DPS_USER

A practical way to avoid having to grant EXECUTE privilege to every new
application user is to grant EXECUTE to PUBLIC. This is safe, because the only effect
this privilege has is related to the creation of external tables. That requires extra
privileges, which should not be granted to application users. Executable files should
not be placed in the Database Directories used by OHI for input and output anyway.

The only database accounts that need READ and WRITE access on the database
directories are

e the application schema owner (usually “OZG_OWNER” for Back Office;
OBD_OWN for Data Marts)

e the schema owner(s) of custom development schemas, if the custom code
needs to manipulate files in the database directory concerned.

If necessary a directory can be granted to a non-OHI role or directly to a non-OHI
database account. You as an OHI customer can therefore determine the privileges on
directories that reference a file system directory structure completely under your own
control.

By default the OZG_TMP database directory has already been granted and
represented in a file system directory that you determined during the initial database
side installation of the application. This database directory must remain granted.

A couple of example commands:

CREATE DIRECTORY PGBiUITVOER AS '/u01 /xml/ozgiuitvoer/pgb '
{translation: CREATE DIRECTORY PGB_OUTPUT AS /u01/xml/ozg_OUTPUT/pgb'}

GRANT WRITE ON DIRECTORY PGB UITVOER TO ksmith;
{ translation: GRANT WRITE ON DIRECTORY PGB_OUTPUT TO ksmith}

CREATE DIRECTORY NOCLAIM_UITVOER AS ' /uOl/Xml/OZg_noclaim' ;
{ translation: CREATE DIRECTORY NOCLAIM_OUTPUT AS '/u01/xml/ozg_noclaim'}

GRANT WRITE ON DIRECTORY noclaim uitvoer TO noclaim gebruikers;
{ translation: GRANT WRITE ON DIRECTORY noclaim_output TO noclaim_users}

The operating system account that owns the Oracle database software must have
write permission on the physical directories concerned.

Logical names for the directories must not begin with OZG_BASE.

You can only grant READ, WRITE and EXECUTE privilege. WRITE privileges are
needed to be able to write XML.

Please consult the SQL Reference Manual for further information in relation to
granting object privileges or on creating database directories.

16

Beware that since database release 12.2 database directories in a pluggable
database can be restricted to a specific pre-defined path like for example
*/u01/envs/testl’. Database directories need to be relative to such a prefixed
path.

In such a way the output from a PDB can be better isolated from other output
and it is in no way possible to create a database directory that might reference
an Oracle Home folder or a folder where database files are stored.

The PATH_PREFIX variable can be used to specify this during for example the
plugin operation of a pluggable database.

Beware that since database release 18 database directories cannot contain
symbolic links anywhere in there physical directory. Trying to use such a
database directory results in ORA-29283: invalid file operation: path traverses a
symlink

Attention: If your database server is not also your application server, you may
find it useful (for easy access by application managers and users) to centralize
the input/output database directories and the output directories on the
application server by putting both types of directories on the same shared file
system. There is no technical requirement from OHI to do so, however.

17

JSON and XML messages

The OHI Back Office application offers functionality to “publish” individual, OHI
defined, standard messages for separate intended receivers of such a message (for
example an insured member or a health care provider).

This message based output is different than the common file based output, where
multiple messages for multiple receivers are typically stored in one or more larger
files, containing many individual messages.

Goal is to support a transition over the years from file based output to message based
output.

In the current situation standard messages published by OHI Back Office are all
published as JMS (Java Message Service) messages on a single OHI queue in the
database, named ALG_OHI_JMS_QUEUE.

This might change over time, additional queues may be introduced. Currently it is
not supported to publish such a message directly as a file.

These standard messages should be clearly distinguished from ‘custom’ JMS
messages that your organization, using the OHI application, may publish on a
separate queue for this purpose, named ALG_JMS_QUEUE. The messages on this
‘custom’ publish queue are not created and published by the OHI application. This
queue is only offered (on request of multiple OHI customers) as a standard general
purpose queue for publishing custom messages.

For more information how to access the database Advanced Queuing
ALG_OHI_JMS_QUEUE as JMS queue please see the relevant Appendix in Doc[1].

General functionality

Different types of messages will be published on the ALG_OHI_JMS_QUEUE. The
set of messages that can be published on the queue can be found in the technical OHI
Back Office table ALG#TYPE_QUEUE_BERICHTEN.

In a future version of the online help information the different messages will be
documented including a more detailed description.

The table contains a record per message type, with the following columns:

o HEADERTYPE: The value that identifies the message in the J]MS Header as it
appears in the JMSType property in the actual messages.

e SOORT_BERICHT: The OHI type of message. Two types are supported:

o The value N for notification, meaning a JMS message without
payload, only meant to ‘signal” to the dequeuer that a certain event
has occurred. Such a message will only provide a very limited set of
properties.

o The value B for message (‘bericht’ in Dutch). This type has some
properties that are required for (efficient) processing by the
consumer, and a payload with the actual message, typically in XML
or JSON format.

18

e OMS: The description of the message, a short functional description of when
the message will be ‘published’.

Some additional technical columns are also present.

For a better understanding the figure below shows the standard structure of a JMS
message. A JMS message can consist of three parts, the standard JMS header, the
additional properties and the payload.

The properties can be separated into three groups as is also shown. For OHI the
application related properties differ per message type, so per record as present in the
above mentioned table.

N

Header

JMEDestination
JMEDeliverylfode
JMEMeszagall
JMETimeastamp
JMEExpiration
JMERedelivared
JMEPriarity
JMERepiyTo
JMECorralationiD)
JMETyvpe

Application related
proparties

Properties

JMS provider related
properties

Payload Standard properties

o AN /

JMS messages are published on an Advanced Queuing database queue which
supports JMS structured data.

Typically the table behind such a queue looks like:

19

Mame |Type

0_MNAME WARCHAREZ(128)
MSGID RAW(1E)
CORRID WARCHAREZ(128)
FRIORITY NUMBER
STATE NUMBER
DELAY TIMESTAMP(E]
EXPIRATION NUMBER

TIME_MAMNAGER_INFO | TIMEZTAMPIE)
LOCAL ORDER_MO NUMBER

CHAIN_MO MNUMBER
CSCM NUMBER

DZCM MNUMBER
ENO_TIME TIMESTAMP(E)
ENC_UID VARCHARZ(28)
EMNC_TID VARCHARZ(EO)
DEQ_TIME TIMESTAME(E)
DEQ_UID VARCHAREZ(28)
DEQ_TID YVARCHARZ(E0)
RETEY_COUNT NUMBER
EXCEFTION_QZCHEMA WARCHARZ(128)

EXCEFTION_OQUEUE VARCHAREZ(28)
STEF_MNO MNUMBER
RECIFIEMNT_KEY NUMBER
DEQUEVE_MSGID FAuw(16)
SEMDER_MNAME VARCHAREZ(28)

SEMDER_ADDRESS YVARCHARZ(1024)
SEMDER_FPROTOCOL MNUMBER

USER_DATA SvEAQE_JME_MESSAGE
USER_FPROF SYS.ANYDATA

Please be aware of the following aspects:

The technical table for the ALG_OHI_JMS_QUEUE is queue table
ALG#OHI_JMS_QUEUE_TAB.

This table is the store for the queue itself but also for the associated
error/exception queue.

Messages that were processed still remain on the queue to aid in
investigating issues. By default, the retention time for the queue is
configured as 7 days.

Message processing can be monitored by querying the queue table: columns
ENQ_TIME and DEQ_TIME contain the timestamp for when the message
was enqueued and dequeued, always in UTC. You can use “enq_time at
local” in queries to get a notation with your local timezone.

The USER_DATA column, a SQL type column, contains the standard JMS
header properties as separate columns within this SQL type column. The
actual application properties are stored in
USER_DATA.HEADER.PROPERTIES as a property list.

The textual payload itself is stored in USER_DATA.TEXT_LOB unless it does
fit within 4000 characters, in which situation it is stored in

USER_DATA.TEXT_VC.

The STATE column shows the actual queue processing state of the message.

For an overview of the relevant state values see the table below:

20

Value | Name Meaning

The message is ready to be processed, i.e., either the delay
0 READY time of the message has passed or the message did not have
a delay time specified

The delay specified by message_properties_t.delay while

1 WAITING or WAIT
executing dbms_aq.enqueue has not been reached.

The message has been successfully processed (dequeued) but
will remain in the queue until the retention_time specified
for the queue while executing dbms_agadm.create_gqueue has
been reached.

2 RETAINED OR PROCESSED

The message was not successfully processed (dequeued) in

either 1) the time specified by message_properties_t.expiration

3 EXPIRED while executing dbms_aq.enqueue or 2) the maximum number of
dequeue attempts (max_retries) specified for the queue while
executing dbms_aqadm.create_gueue,

You can query the queue table to monitor whether expected messages are present
and are being dequeued or not.

An example query for a specific message type named ‘RESTITUTIEDECLARATIE’
where as application and message specific property ‘DECLARATIENUMMER’ is
fetched, next to the actual payload:

select t.eng time enqueue_ tijd
, t.deg time dequeue tijd
’ t.eng uid enqueue_user
' t.retry count
’ t.priority
’ (select prp.num value
from table (t.user data.header.properties) prp
where prp.name = 'DECLARATIENUMMER'
) declaratie nr
' nvl (t.user data.text lob
,to clob(t.user data.text vc)) bericht
’ t.state
from alg#ohi jms queue tab t
where t.user data.header.type = 'RESTITUTIEDECLARATIE'
order by

t.eng time desc

Message format

Messages that contain a payload (SOORT_BERICHT = ‘B’) are typically formatted as
a JSON or XML message.

The messages are created in the same manner and by the same functional code base
as which is used for the JSON responses that are created by RESTful web services.
This to make sure the structure of a message is identical when returned by a web
service call or when published through an OHI JMS queue.

21

Please note:

OHI standard messages as published on an OHI JMS queue are created
typically by ‘get” operations.

Not each RESTful web service ‘get” operation may be used to publish
messages on a JMS queue.

Some messages will only be available by publishing them on the queue. The
related web service operation should not be used as it will run too long and
the message result will be too large. This typically applies for potentially very
large messages.

For a specific message type OHI will, when publication is activated, publish
the message in XML or in JSON format. The customer can configure whether
the format should be JSON or XML, as both formats can be produced.

For the standard XML messages an XSD file is delivered within the
$OZG_BASE folder that contains the response message definition. The name

of such a file is always HSL_<three character abbreviation>.xsd. This three
character abbreviation is the same as used in the modules that are shown
when the HSLBOWS deployment is chosen.

e For JSON structured messages the Swagger information as delivered for the
REST webservices can be used to determine the format. The Swagger
definition is published in the OHI Online Help for each web service.

¢ One web service definition can contain multiple operations which each can

have its own response message.

For JSON structured messages the API and SDK documentation per web service can
be used to retrieve a Swagger file containing all the response messages.

For the XML structured messages the link between the list of three character
abbreviations and web service names as used in the Online Help may not be clear.
For that reason an association table is shown below:

File name used for XSD Resource name in Online Help
HSL_BSN BSN

HSL_C2B C2B

HSL_CLA Claim

HSL_FIN Financial
HSL_NAT Natura Declaratie
HSL_POL Policy

HSL_REL Relation
HSL_ZKR Zorgkantoor

HSL 7PN Zorgplan
HSL_Z7ZV Machtiging

22

Beware, as with the Swagger files one .xsd file name may contain the message
definitions for the responses of many operations present in that web service.

At this moment it is still a little hard to determine which response message definition
is associated with a certain message published on the OHI JMS message queue. This
will be improved in a future release of OHI and as such be documented.

23

Online help information

In order to access and view the online help information from within the application
the “Online help virtual directory” should be set in the SYS1010F screen to the virtual
directory in Oracle HTTP server (OHS) containing the online help files.

The virtual directory must point to the physical directory $02G_BASE/help. A
double forward slash may be needed in front of the “help” directory.

Example

http://myhost:7777/0HI/prod/help (or http://myhost:7777/0HI/prod//help)

24

http://myhost:7777/OHI/prod/help
http://myhost:7777/OHI/prod/help

Release documentation

In order to access and view the release documentation from within the application,
the “Release documentation virtual directory” should be set in the SYS1010F window
to the virtual directory containing the release document files.

The virtual directory must point to the physical directory $02G_PATCH.

Example

http://myhost:7777/0HI/patch

25

