

Svl_gStart

Oracle Health Insurance Back
Office

SOAP Service Layer (SVL)

User Manual

Version 1.29

Part number: G49637-01

January 15, 2026

Copyright © 2011, 2025, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are “commercial computer software” or “commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications
which may create a risk of personal injury. If you use this software in dangerous applications, then
you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to
ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred
due to your access to or use of third-party content, products, or services.

Where an Oracle offering includes third party content or software, we may be required to include
related notices. For information on third party notices and the software and related documentation
in connection with which they need to be included, please contact the attorney from the
Development and Strategic Initiatives Legal Group that supports the development team for the
Oracle offering. Contact information can be found on the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should
be considered in your capacity as a customer advisory board member or pursuant to your beta trial
agreement only. It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the
terms and conditions of your Oracle Software License and Service Agreement, which has been
executed and with which you agree to comply. This document and information contained herein
may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior
written consent of Oracle. This document is not part of your license agreement nor can it be
incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

 Introduction i

CHANGE HISTORY

Release Version Changes

10.12.2.0.0 1.3 • Added technical principles at the consumer webservices

10.13.3.3.0 1.4 • Extended with starting points that apply to the find services with mostly optional
arguments.

10.14.1.0.0 1.5 • Included paragraph on ‘write’ services from ‘Custom Development for Oracle
Health Insurance Back Office’

• Added write services to ‘common usage’ paragraph.

10.14.2.0.0 1.6 • Clarified the use of nil attributes and empty tags to remove values.

10.14.2.1.0 1.7 • Added paragraph 3.4.1.5

10.14.2.1.0 1.8 • Inserted 3.3.2.6 (termination of a time-valid list beyond a given date).

10.15.3.0.0 1.9 • Updated code pieces and example pl/sql code so it reflects the latest structure
and is a working example again (some type definitions were changed in the past
2 years and the example code was not adapted).

10.16.1.0.0 1.10 • No changes

10.16.2.0.0 1.11 • Added some more explanation regarding PX write services and processing of
time – valid data.

10.17.1.0.0 1.12 • No changes.

10.17.1.4.0 1.13 • Added note about usage in PL/SQL about package state impact.

10.17.2.0.0 1.14 • No changes.

10.18.1.0.0 1.15 • Revised document title

• Revised document references

• Revised introduction

• Textual changes to ‘Generic Principles of provider services’

10.18.2.0.0 1.16 • Republished with new part nr.

10.18.2.1.0 1.17 • Added instructions in the return context message info paragraph for how to
activate the returning of the error stack which by default no longer is returned,
both not separate and not in the message text of technical ORA- errors.

10.19.1.0.0 1.18 • No changes. Republished with different part nr.

10.19.2.0.0 1.19 • No changes, republished with new part nr.

10.20.1.0.0 1.20 • No changes, republished.

10.20.6.0.0 1.21 • Design principles slighty adapted.

10.21.1.0.0 1.22 • No changes, republished with new part number.

10.22.1.0.0 1.23 • No changes, republished with new part number.

10.22.6.0.0 1.24 • Reworded 3.2 ‘Find Services – Usage notes’ to clarify the usage of wildcards.

• Textual changes to 3.3 ‘Write Services’. Clarified the type of write services
available.

• Textual changes to 3.7 ‘Differences between provider PL/SQL and web…’
clarifying the availability of the call and return context.

• Removed 4.2 ‘Configuration’. Configuration through OHI Back Office
parameters has been rendered obsolete with the changes introduced through M-
5778 ‘Replacement service consumer technology’.

• Removed references to a Designer Repository in appendix A.

10.23.1.0.0 1.25 • No changes, republished with a new part number.

10.23.3.0.0 1.26 • 3.8 Example PL/SQL usage scenario: updated parameters of
alg_security_pck.svl_grants

10.24.1.0.0 1.27 • No changes, republished with new part number.

10.25.1.0.0 1.28 • No changes, republished with new part number.

10.26.1.0.0 1.29 • No changes, republished with new part number.

 Introduction i

RELATED DOCUMENTS

A reference in the text (doc[x]) is a reference to another document about a subject that is related to this document.

Below is a list of related documents:

• Doc[1]: Oracle Health Insurance Back Office SOAP Service Layer (SVL) Installation & Configuration manual

(docs.oracle.com)

• Doc[2]: Oracle Health Insurance Back Office HTTP Service Layer (HSL) Installation & Configuration Manual

(docs.oracle.com)

Contents

1 Introduction ...2

1.1 SVL provider services ..2
1.2 SVL consumer services ..2

2 Generic principles of SVL provider services ...3

2.1 Design principles ..3
2.2 Technical principles ...4

3 Generic usage aspects of SVL provider services ..6

3.1 Common usage behaviour ..6
3.2 Find Services – Usage notes ..6
3.3 Write Services..7

3.3.1 Idempotent behavior .. 7
3.3.2 Selective updates ... 8

3.3.2.1 ‘Zero’ update... 8
3.3.2.2 Removing values .. 8
3.3.2.3 Lists .. 8
3.3.2.4 Time-valid lists ... 9
3.3.2.5 Segmented time-valid lists .. 10
3.3.2.6 Terminating a time-valid list after a given date. .. 11
3.3.2.7 XSD types for Write services. ... 12

3.4 Call standards ... 12
3.4.1 Call Context ... 12

3.4.1.1 Usercontext ... 13
3.4.1.2 Enforceconsistentread .. 13
3.4.1.3 Enforceunchangedsincescn ... 13
3.4.1.4 Combining these settings .. 13
3.4.1.5 sourceIdentificationCode .. 14

3.4.2 Return Context .. 14
3.4.2.1 Message info ... 14

3.5 Error and exception handling ... 16
3.6 Transaction handling ... 17
3.7 Differences between provider PL/SQL and web service ‘service layer
implementation’ .. 17
3.8 Example PL/SQL usage scenario ... 17
3.9 Example provider web service usage scenario ... 19

4 Consumer web services ... 20

4.1 Technical principles ... 20
4.2 Gateway setup .. 20
4.3 Error and exception handling ... 20

5 Appendix A – Provider web services documentation per service 22

2 Introduction

1 Introduction

The SOAP Service Layer, also known as SVL services, is an optional component of
the OHI Back Office application.

SVL services, also known as ‘business services’ provide generic object-oriented
operations on core OHI Back Office data, with ‘find’ and ‘get’ operations to retrieve
data and ‘write’ operations to update/add data. These operations are invoked
through SOAP/HTTP

Be aware that OHI Back Office also provides ‘Use Case services’ (aka HSL services).
These REST services provide operations to support typical use cases for Dutch
healthcare payers. Examples: requesting a new policy, adding an insured member,
changing insured products, changing payment method etc. You will find more about
HSL services in Doc[2].

Within the SOAP service layer, there are two types of components:

• provider web services
SOAP/HTTP services built by OHI Back Office to be called (‘consumed’) by
client applications in the surrounding environment.

• web service consumers
Java classes built by OHI Back Office to ‘consume’ third party SOAP/HTTP
services from within the OHI Back Office database.

This document describes the generic technical details of the SOAP service layer.
Much of the focus is on invoking SVL provider web services.

Note that installation and configuration of the OHI Back Office SOAP service layer
components is described in Doc[1]. That document also contains an architectural
overview of SVL provider services and SVL consumer services.

1.1 SVL provider services

SVL provider services are intended to be used in a Service Oriented Architecture
(SOA) environment. Note that the provider service operations can also be invoked
from PL/SQL.

Since the Java layer providing the SOAP/HTTP interface for SVL provider services is
built on top of the PL/SQL implementation, this document does not distinguish
between the between the two interfaces unless specifically noted. See Appendix A in
this document to retrieve the documentation of each SVL provider service.

1.2 SVL consumer services

The SVL consumer services are used as an integral part of the OHI Back Office
application and not documented separately.
The current application code invokes and processes (part of) the functionality
provided by third party web services.

2 Generic principles of SVL provider services

This chapter describes a number of generic principles that apply to SVL provider
services. Understanding these principles and how the services were developed
should provide more insight into the use of the SVL services.

2.1 Design principles

The following design principles were used in the development of the SVL provider
services:

1. Terminology, terms and documentation will be in the English language.

Rationale: the service layer is typically used by developers which are
required to know English because most tooling documentation is also only
available in English.

2. Terminology, terms, structure and contents of the service definitions will be
aligned as much as possible over the different Oracle Health Insurance
product lines.

Rationale: to ease implementing functionality which crosses boundaries of
different product lines it helps when the same terms, etc. are used. However,
strict (technical) dependencies are prohibited to prevent complicating
maintenance dependencies, so differences can occur.

3. SVL provider services can be called using SOAP/HTTP and from PL/SQL

Rationale: the SOAP/HTTP interface (deployed through WebLogic Server)
provides an integration point for other applications in a SOA environment,
while the PL/SQL intefrface allows the service operation to be called from
custom code in PL/SQL and will execute wth much less overhead.

4. Older OHI Back Office web services such as the ‘original’ C2B services have
been phased out and are replaced with functional identical HSL services.

Rationale: this will help in offering a uniform and consistent way of
implementing services; it will ease management and reduce maintenance
efforts that finally will benefit customer investments.

5. SVL services will provide generic functionality instead of a specific solution
for a specific problem.

Rationale: by providing a broader functionality SVL services can be used in a
broader context. Note that the ‘Use Case Services’ or HSL services are
targeted towards specific use cases in order to provide a simpler interface.

6. SVL services are designed as application to application operations. The
calling application is completely responsible for authentication, authorization
and additional calling application specific functionality. As such it should
never offer a way to directly call an SVL service. This means the security
model of the calling application is completely the responsibility of that
calling application.

Rationale: by offering generic service calls for back-end integration of an
application with OHI Back Office a wide variety of applications can be
supported. It prevents conflicts or limitations imposed by specific identity or
authorization functionality within the calling application.

4 Generic principles of SVL provider services

2.2 Technical principles

The following technical principles are followed and may be of influence for how you
realise your code to access the SVL provider web services.

1. SOAP 1.1 is used.

Rationale: this is by far still the most widely used common standard and
supported by almost all web service toolkit implementations.

2. Document style web services are used.

Rationale: this makes the services widely usable because they are
implementation and platform independent.

3. WebLogic Server will be used as the standard application server deployment
platform.

Rationale: this is a highly scalable, reliable and robust application server for
deploying Java applications that offers a lot of out of the box functionality.

4. Security functionality will be externalized from the web service
implementation unless Oracle standards require differently.

Rationale: by externalizing authorization, authentication and encryption from
the service implementation it is prevented that existing customer
functionality conflicts with chosen implementation solutions. This means that
customers can leverage their investments for as far as these can interact with
a Java based WebLogic deployed application. Normally applying open
standards Middleware to support these functionalities will be the way to go.

5. The service calls will be stateless.

Rationale: to serve easy integration each call is stateless; there is no state to be
remembered over more than one service call.

6. A single change call will contain one or more atomic transactions.

Rationale: service calls that change data do this in one or more atomic
transactions, which completely fail or succeed, to prevent inconsistent
situations can arise.

7. Optionally a form of optimistic locking can be activated. Default no locking
will occur.

Rationale: because services are stateless and to prevent long outstanding
locks blocking other transactions a form of optimistic locking can be activated
to control concurrency impact. When at a certain moment data is read and
the functionality requires that changes be made under the requirement that
the earlier read data is not changed, this optimistic locking can be activated.
When the service, which changes the data, detects that the data has been
touched by a transaction that committed since the last read moment the
change will be rolled back and an error will be returned.
Of course always a record will be locked explicitly immediately before it is
changed, to prevent hanging service calls due to outstanding changes on a
record. When the actual lock fails an error message is returned and the
transaction is rolled back.

8. SOAP error handling will be used to return functional and technical errors.

Rationale: this eases integration with development tooling which can
leverage functionality based on SOAP faults and makes coding easier and
less error prone.

9. Functional faults will support language dependent error messages.

Rationale: although the services are in English the functional error messages
returned will use the multi-language support as present in the OHI Back
Office application; this to be able to return language specific messages based
on the calling context.

10. Standard Java logging functionality will be offered for error, informative and
debug level log messages.

Rationale: by adhering to a common standard logging mechanism this will be
easier to configure and use for system administrators who are experienced
with Java based application management.

11. The user manual focuses on a ‘standardized approach’ for synchronous
provider web services.

Rationale: The business services are currently implemented as such.

12. Additional standardized requirements will be implemented as much as
possible through applying standardized technology.

Rationale: goal is to focus on delivering functionality and be open for most
architectural and infrastructural environments; this means that limited
development time is not spent on developing proprietary solutions that can
be implemented also through standard technology stack software. A number
of requirements should be implemented through more or less standardized
use of Oracle products. But customers may opt out for other choices.
Versioning of services is an example of this.

13. Date and date time values are not expected to have a time zone component in
them.

Rationale: the current application does not support time zones and all date
and (date)time values are expected to be expressed in the time zone as used
within the database. It may be that time zone handling for (date)time values
in the web services are added in a future version where these are always
converted to a standard time zone.
When time zones are passed in values it is expected a service bus or different
proxy solution will remove this component in the date and (date)time values.

6 Generic usage aspects of SVL provider services

3 Generic usage aspects of SVL provider services

This chapter focuses on the generic aspects of the SVL provider services.

3.1 Common usage behaviour

For retrieving data several operations may be defined. These operations can be
distinguished in 3 types for which certain behaviour rules apply.

• Find services

The find routines can be used to find a set of occurrences given certain
arguments. The arguments in itself do not always need to be existing values and
may contain wildcards in a number of cases (see later for more generic principles
for find services). If no data matches the criteria no response data is returned and
no functional error message is given. Simply the fact that nothing is found should
make clear that no data is found.

• Get services
Routines, which implement ‘get’ functionality, expect identifiers as inputs that
identify exactly one occurrence. If the identifiers do not identify an existing
occurrence a functional fault will be returned that no data matches the criteria.

• Write services
Used for selectively updating a single occurrence, for example a relation or
provider contract.

3.2 Find Services – Usage notes

There are two main groups of find services. One set contains some required
arguments that are selective and make sure a quite limited set of data is searched for.
Some examples are find services for retrieving errors, coverages or flex fields for a
given claim line. Or finding claim lines for a specified member.

Another group of services are more generic find services with almost all arguments
optional. These are meant to search for data based on quite different arguments. For
these services it is important to take notice of the following starting points and usage
requirements:

• When you enter a value for an argument, it is used as search condition. It is not
possible to search for occurrences where that argument is explicitly empty (not
entered, ‘null’ in database terminology).

• For string conditions, the search is usually implemented as a case insensitive
search. Exceptions are selective conditions that can be implemented by an
indexed access path being present without special functionality to enable efficient
case insensitive searches. An example is postal code, this is case sensitive.
Searching on a relation name is not case sensitive because special facilities enable
efficient case insensitive searches.

• When an argument is used to identify a related selective condition, for example
the ‘external code type’ for an ‘external code’, both the identifying argument as
well as the selective argument needs to be entered. Otherwise the service will fail
with an error. Typically the uppercase value or the passed argument will be used
as most of these arguments are by definition stored in uppercase internally (so
you do not need to care about case sensitivity).

• When a condition is entered that identifies fact data, for example a country code
or an external code type, no wildcard is allowed and existing value needs to be

specified. The argument entered will itself be checked for existence before a
search is started. The service call will fail if the value does not exist.

• For string conditions on ‘fact data’, meaning arguments that do not reference a
setup identifying value (like a country code or a name of a flex field), wildcards
are allowed. Wildcards are specified using ‘Oracle database’ wildcards like ‘_’
and ‘%’. A SQL ‘like’ will be implemented in such situations. Wildcard usage
may result in expensive and/or inefficient queries, e.g. placing the wildcard at
the beginning of a string.

• There is no protection against misuse of the services by not specifying any
selective arguments. It is expected from the implementing party that at least a
selective argument is filled with a selective value. This means that for example
searching for all relations with an address on number 24 or with a name
containing somewhere ‘ee’(using argument ‘%ee%’) will result in expensive
inefficient queries that on environments with quite some data may result in a
time-out of the service call while the query keeps on executing on the database. It
is the responsibility of the calling party to prevent such misuse.

• Given the previous bullet it is expected that realistic performance and usage tests
are executed on a representative environment (with production like amounts of
data and similar resources and load). This is imperative to prevent response time
and load problems are only detected in production.

• As a bold measure to prevent very long running services queries it is possible to
activate resource limits on the database for the database account that implements
the service calls.

A very simple example to prevent a call uses more than 50.000 block gets is
shown below:

create profile svl_prof_max_gets limit

logical_reads_per_call 50000;

alter user <svl_user> profile svl_prof_max_gets;

alter system set resource_limit=true;

The limit will be applied to newly logged on database sessions. ORA-02395 will
be raised when the limit is exceeded. It is a bold way to prevent a connection pool
will become exhausted.

3.3 Write Services

The current, second-generation of write services supports idempotent behavior,
selective changes and processes time-valid data, e.g. the WriteRelation service.

These services have ‘PX’ as part of the complex types’ names. ‘PX’ is short for ‘PiXels’
as their behavior stands for passing a (small portion of a) photo of the situation as it
should be after processing the request. The service will compare the existing situation
in the database with the situation as it should be and determines what data to add,
update or delete to accomplish the data in the database reflects the requested
situation.

The paragraphs below describe this in more detail, especially how to pass only a
portion of the requested situation, to accomplish selective changes.

3.3.1 Idempotent behavior

‘Write’ services should have idempotent behavior to ensure that each subsequent call
to a business service with the same data will return the same response and have the
same effect as the first call.

8 Generic usage aspects of SVL provider services

Note that this requirement does not apply for ‘Find’ and ‘Read’ services, because the
contents of the database may have changed between subsequent service calls.

3.3.2 Selective updates

‘Write’ services are used both for inserting and updating data into the OHI Back
Office database. When updating, ´write´ services support selective updates to allow
the caller to send a partial message. The advantage is that the calling application only
needs to know a subset of the data which can be processed by the business message.
For example a self-service application only needs to have very little data to allow an
end user to update his residential address.

In the example below, the name and phone number are set for relation 1864856800:

<v11:Person>

 <v11:relationNumber>1864856800</v11:relationNumber>

 <v11:name>Bakker</v11:name>

 <v11:phoneNumber>06-51227410</v11:phoneNumber>

</v11:Person>

If we want to change the name, we can simply pass the new name:

<v11:Person>

 <v11:relationNumber>1864856800</v11:relationNumber>

 <v11:name>Slager</v11:name>

</v11:Person>

We can also wipe the contents of a column, for example the phone number:

 <v11:Person>

 <v11:relationNumber>1864856800</v11:relationNumber>

 <v11:phoneNumber></v11:phoneNumber>

</v11:Person>

3.3.2.1 ‘Zero’ update

Leaving out a tag means that its related data is left untouched. This is the cornerstone
for selective updates.

3.3.2.2 Removing values

You can remove values as follows:

• With an empty tag if the element is a list, or string value.

• With the nil=”true” attribute if the element refers to a date, enumeration or
numerical value.

Example of empty tag for a string element:

<v11:phoneNumber></v11:phoneNumber>

Example of nil attribute for a date element:

<v11:startDate xsi:nil=”true”/>

Note that the xsi namespace should refer to http://www.w3.org/2001/XMLSchema-
instance.

3.3.2.3 Lists

Lists (which are not time-valid as opposed to time-valid lists discussed afterwards)
can have 0 or more elements which together are enclosed in a list-tag, like in the
example below:

<v11:Person>

 <v11:relationNumber>1864856800</v11:relationNumber>

 <v11:bankAccountList>

 <v11:bankAccount>

 <v11:accountNumber>

 NL42RABO0111750768

 </v11:accountNumber>

 <v11:bankRelationNumber>

 1525725800

 </v11:bankRelationNumber>

 <v11:bankAccountType>IBANAccount</v11:bankAccountType>

 <v11:countryCode>NL</v11:countryCode>

 <v11:currencyCode>EUR</v11:currencyCode>

 </v11:bankAccount>

 </v11:bankAccountList>

</v11:Person>

To support selective updates, lists are optional. If you do not want to update a list of
details, just omit the list and its surrounding list tag:

<v11:Person>

 <v11:relationNumber>1527308300</v11:relationNumber>

 <!--<v11:bankAccountList/> -->

</v11:Person>

Likewise , if you want to delete the list, use an empty list tag:

<v11:Person>

 <v11:relationNumber>1527308300</v11:relationNumber>

 <v11:bankAccountList/>

</v11:Person>

Note: if you add a list to the request you must include all elements. You
cannot add a list with a single element just to update the single element. In
that case all other elements will be deleted.

3.3.2.4 Time-valid lists

Time-valid lists are used to create and update data with a start and end date, such as
addresses, marital statuses etc. Typically this is data that changes over time and is
only valid for a specified period (although the period may be unknown).

They share some characteristics with ordinary lists:

• Time valid lists are optional: the list related data in the OHI Back Office
database are not updated if you omit the list tag altogether.

• All list-related data in the OHI Back Office are deleted if you specify an
empty list tag.

The difference is that you can use time-valid lists to update the situation from a
certain start date without removing and updating data before that start date.

When you specify time-valid data from a certain start date you are required to specify
the complete timeline for the data from that moment as the timeline of data that is
specified will completely overrule the existing data from the (oldest specified) start
date.

This means you can leave a situation before the oldest specified start date as provided
in the time-valid list untouched but data after that date is considered to be the
situation that should exist after processing the data.

10 Generic usage aspects of SVL provider services

Consider the following example to register that Peter is no longer married since 1
January 2013:

<v11:maritalStatusList>

 <v11:maritalStatus>

 <v11:startDate>2013-01-01</v11:startDate>

 <v11:endDate>2015-12-31</v11:endDate>

 <v11:maritalStatus>

 dissolved marriage / dissolved registered partnership

 </v11:maritalStatus>

 </v11:maritalStatus>

</v11:maritalStatusList>

This information is processed as follows:

• The start date of 1 January 2013 is used as a reference date.

• Peter’s previous marital status record (married since August 22nd, 2002, with
originally an empty end date) is ended by 31 December 2012.

• All Peter’s marital status records starting after the reference date are deleted

(if they exist).

• A new marital status record to indicate Peter’s current status is created with a
start date of January 1st, 2013 and an end date of December 31st, 2015. The
situation after that date is not present (is in fact unknown).

3.3.2.5 Segmented time-valid lists

The mechanism described above is too coarse for processing time-valid information
like addresses, since you may have different home and postal addresses at any point
in time. It would not offer the functionality to change only the change of a postal
address over time.

This is solved with segmented time-valid lists: this means that the list is processed
once for every segment, for example ‘address type’ (postal address, home address,
holiday address, etc.).

Consider the following example where John’s home address is updated:

<v11:addressList>

 <v11:address>

 <v11:startDate>2010-06-04</v11:startDate>

 <v11:addressType>Home</v11:addressType>

 <v11:street>Haverstraat</v11:street>

 <v11:houseNumber>41</v11:houseNumber>

 <v11:postalCode>3511NB</v11:postalCode>

 <v11:countryCode>NL</v11:countryCode>

 </v11:address>

</v11:addressList>

This information is processed as follows:

• The start date of June 4th, 2010 is used as reference date for John’s home
address (es) from that moment.

• John’s previous home address is ended at June 3rd, 2010.

• All John’s home addresses starting after the reference date are deleted.

• A new home address is registered starting June 4th, 2010.

• John’s postal and other type of addresses remain untouched.

We can update John’s home addresses and postal addresses in one go:

 <v11:addressList>

 <v11:address>

 <v11:startDate>2010-06-04</v11:startDate>

 <v11:addressType>Home</v11:addressType>

 <v11:street>Haverstraat</v11:street>

 <v11:houseNumber>41</v11:houseNumber>

 <v11:postalCode>3511NB</v11:postalCode>

 <v11:countryCode>NL</v11:countryCode>

 </v11:address>

 <v11:address>

 <v11:startDate>2010-07-01</v11:startDate>

 <v11:addressType>Postal</v11:addressType>

 <v11:street>Postbus</v11:street>

 <v11:houseNumber>306</v11:houseNumber>

 <v11:postalCode>3300AH</v11:postalCode>

 <v11:countryCode>NL</v11:countryCode>

 </v11:address>

</v11:addressList>

Note that an empty address list will delete all John’s addresses:

<v11:addressList>

</v11:addressList>

Note: segmentation is not necessarily restricted to a single element (like
address type in this case)

Note: consult the functional specification to find out whether a time-valid list
is segmented and which elements are used for segmentation.

3.3.2.6 Terminating a time-valid list after a given date.

You may want to terminate a time-valid list after a given date. In that case you
should enter a time-valid list with a single element, for which you specify an end date
BEFORE the start date (the actual value of the end date is not relevant, but it should
be before the start date).

Example with non-segmented list:

<v11:maritalStatusList>

 <v11:maritalStatus>

 <v11:startDate>2013-01-01</v11:startDate>

 <v11:endDate>2012-01-01</v11:endDate>

 </v11:maritalStatus>

</v11:maritalStatusList>

Existing marital statuses overlapping with 2013-01-01 will be terminated at 2012-31-
12. Marital statuses starting after 2013-01-01 will be deleted.

If you want to terminate a segmented list you should add the required segment
values. The example below demonstrates how to terminate home addresses after a
given date. Other address types are not affected.

Example with segmented list:

<v11:addressList>

 <v11:address>

 <v11:startDate>2010-06-04</v11:startDate>

 <v11:endDate>2010-06-03</v11:endDate>

 <v11:addressType>Home</v11:addressType>

 </v11:address>

</v11:addressList>

12 Generic usage aspects of SVL provider services

Existing home addresses overlapping with 2010-06-04 will be terminated at 2010-06-
03. Home addresses starting on or after 2010-06-04 will be deleted.

3.3.2.7 XSD types for Write services.

When examining an XSD for a web service with ‘Write’ operations you will find that
the complex types used by Write Services are prefixed with ‘PX’.

You will also find that these complex types largely consist of optional elements. This
is needed to support selective updates.

There is a downside to this optionality: if you leave out many elements when
entering new data, your inbound XML will still validate correctly against the XSD.

However when sending the request, the OHI Back Office business rules come into
play and raise exceptions if your data is incomplete or incorrect.

It would be too complex to document which business rules you may encounter.

Our advice for validating a client application using a ‘Write’ service would be to
always include various tests with new data.

3.4 Call standards

For each service a calling context and a returning context must be provided to call a
service routine. The calling context specifies behaviour and the returning context
provides feedback about the call.

These two ‘contexts’ are described by referencing the PL/SQL definitions for these
contexts (these are ‘published’ identically in the Java layer).

For all service calls there are 2 standardized SVL object types which need to be
passed as 2 separate parameters to each service call.

✓ SVL_CALL_CONTEXT_TP - input parameter set to pass call data

✓ SVL_RETURN_CONTEXT_TP - output parameter set to pass return data

These are each described separately but they are related to each other when
optimistic locking functionality should be implemented. In this latter situation part of
the return context of a preceding call is input for the next call context.

3.4.1 Call Context

The (PL/SQL) definition of the call context is as follows:

create or replace force type svl_call_context_tp

as object

(usercontext svl_string30_tp

, enforceconsistentread svl_string03_tp

, enforceunchangedsincescn svl_int_tp

, sourceidentificationcode svl_string10_tp

, constructor function svl_call_context_tp

 return self as result

)

The call context is used to define the behaviour of the called service. A number of
settings can be provided to the call.

3.4.1.1 Usercontext

The usercontext setting is used to pass the OHI Back Office known and active
username which should identify the user that executes the action.

3.4.1.2 Enforceconsistentread

The setting enforceconsistentread is used to ensure that in a service call all eligible
data retrieved in and returned by that call is consistent, in the sense that it is all not
changed (even if actually committed or it may not be committed) since the call started
(so a committed change on the retrieved data by another session may not be visible or
have no effect, since the retrieve operation started, to prevent sequential selects in the
retrieve call retrieve an inconsistent situation; with other words, the data returned by
the call is as it was at the moment of that call, it is a ‘stable photo’). When data is
retrieved that is changed since the operation started and no technical alternative for
retrieving consistent data an error will be raised by the service routine.

For each service it is defined whether the consistent read option is supported or not.
If not the service fails when it is asked to implement a consistent read.

IMPORTANT: When a service enforces a consistent read it only offers it correct when
in the database the ROWDEPENDENCIES setting is activated for the OHI tables
involved. This is a one time only database table reorganization action but will imply a
large downtime to implement this for all tables.

3.4.1.3 Enforceunchangedsincescn

The setting is used typically in a change scenario to implement an optimistic locking
algorithm. It should contain a numeric value which identifies an SCN value (System
Change Number, a sequential change number assigned to changes and also to each
committed transaction; please see the standard Oracle database documentation for
more information).

If specified a non null value (and the called service supports it) the service should
check for all records that will be changed (and perhaps in special cases also for other
records which are retrieved in the operation, but this is service specific), whether they
are not changed since the ‘SCN moment’ which is passed (a parameter value is
passed for this). The SCN for the retrieved records may not be younger (larger) than
the provided SCN (the third parameter specifies this).

Of course for updates/deletes an explicit lock with nowait is always implemented for
the records that are affected (immediately before they are changed), disregarding this
functionality. This to prevent the service ‘hangs’ on an outstanding lock. Internally
the service determines the SCN for a record as part of the 'select for update' or after
that select has succeeded (because the record is locked from that moment on, until the
transaction ends or fails and rollbacks).

When a value zero is passed the ‘SCN moment’ at the start of the service call will be
used (this is a special situation).

IMPORTANT: The same remark as in the previous paragraph regarding the
activation of ROWDEPENDENCIES applies for a correct working of this
functionality.

3.4.1.4 Combining these settings

By combining the previous 2 settings it can be specified for a service call to check
whether data is read consistent during a retrieve of this data and to check whether
the data to be changed during a (slightly) later service call is not changed in the
meantime. This is done by remembering the SCN call moment of the retrieve call

14 Generic usage aspects of SVL provider services

(which is returned in the returning context which is described later) and passing it on
to the change call.

For retrieve only functionality the last setting is normally not relevant. Typically only
the consistent read option will be supported but their may be exceptions.

For service calls that change data it can be useful to specify both the
enforce_consistent_read and the enforce_unchanged_since_scn settings. When both
options are supported this means the routine will support a consistent read for
‘supporting data’ that is retrieved, but for the data which will be changed the
enforce_unchanged_since_scn value that is passed, is used to check whether it has
not changed since that moment.

3.4.1.5 sourceIdentificationCode

The sourceIdentificationCode setting is used to pass the code which identifies the
system from which the action was executed. It should contain a code that is
maintained in OHI Back Office window 'System Source' (SYS1145F).

3.4.2 Return Context

The return context looks like shown below.

create or replace force type svl_return_context_tp

as object

(

 messageinfo svl_message_info_tp

, scncallmoment svl_int_tp

, constructor function svl_return_context_tp

 return self as result

)

It typically can contain a list of regular error messages that occurred during the call.
These are passed using the messageinfo structure, the first attribute.

Next to the message info also the database SCN number (in fact a ‘moment in time
identifier’ of the last change in the system at a specific moment) of the moment the
service call started is returned, if consistent_read is enforced (!) and supported. This
can be used in subsequent calls when the calling environment wants to make sure
that data which is accessed/changed in the later call is not changed since the call
which returned the SCN (see previous paragraphs).

With using the combination of the return context and the call context in subsequent
calls an optimistic locking approach can be implemented in interface applications that
require this. This is especially useful because of the stateless behaviour of the service
calls, it is not possible to use a locking strategy with actual (row) locks.

3.4.2.1 Message info

The definition of the message info is shown below.

create or replace force type svl_message_info_tp

as object

(messages svl_message_lst_tp

, topseverity svl_string01_tp

, errorstack svl_string3200_tp

, constructor function svl_message_info_tp

 return self as result

)

The first attribute in this message info object contains the actual list of messages.
When there is a list of messages present (one or more messages in the list) this means
a (functional) error has occurred which is handled in the exception handler of the
called service routine. The message info variable contains in such a situation also the
most severe level of the messages in the message list (top_severity). When for

example 2 informational messages and one error message are in the list the
top_severity is ‘Error’ (‘E’).

In the situation that an exception has occurred which is handled and put in the
message list also the PL/SQL error stack can be passed through the ‘errorstack’
attribute. This can help in detecting the cause of programming or application
problems.

Beware: normally the errorstack is never passed as this may return unwanted
detailed info regarding the internal code setup of the application which may be used
by a malicious user who is looking for opportunities to attack and misuse the
application. For that reason the errorstack is only returned when debugging is
activated (which requires pl/sql access in the same database session) or by specifying
the value TRUE for property BOOLEAN_SHOW_ERRORSTACK in the special
database wide (global accessible) application context named SVL_GLOBAL_CTX. By
executing the command below this memory setting can implemented (meaning it is
never persisted and will not unintendedly be copied into a clone of the environment):

begin

 alg_context_pck.set_context

 (pi_naam => 'BOOLEAN_SHOW_ERRORSTACK'

 , pi_waarde =>'TRUE'

 , pi_namespace => 'SVL_GLOBAL_CTX

);

end;

Setting it to any other value disables the returning of the error stack contents.

A message on the message list is structured as shown below:

create or replace type svl_message_tp

as object

 (messagecode svl_string32_tp

 , severity svl_string01_tp

 , severitydescription svl_string100_tp

 , messagetext svl_string2000_tp

 , helptext svl_string2000_tp

 , languagecode svl_string05_tp

 , constructor function svl_message_tp

 return self as result

)

This shows a code is passed that uniquely identifies the specific message type (of
course more of the same messages can be in the list) next to the severity, the
description of the severity, the actual text of the message (in the language as defined
by the preference of the user with which identity the service is called, which language
is passed back in the lang_code variable) and optionally a help text which applies to
that message.

When technical errors occur (typically ORA- errors) the messagetext contains the
description of the ORA- error. During regular use this will only be the ORA- error.
However, it is possible to receive additional errorstack information, when present, by
running in debug mode or by explicitly enabling this for the used database through
an application context message, likewise this is done for the errorstack attribute
mentioned before, exactly the same instructions apply.

Typically this may be required when such an error occurs due to for example an OHI
coding bug. Asking a DBA to activate the setting and re-executing the code may
reveal additional information in the messagetext,

16 Generic usage aspects of SVL provider services

3.5 Error and exception handling

When a call fails it can fail gracefully or by throwing an exception. When it fails
gracefully a list of messages is returned in the returning context.

In case of an ungraceful failure, which is not handled by an exception handler in the
service, an exception is thrown. Within the database this is typically an Oracle
exception.

At the web services side SOAP fault messages reflect both situations. The XSD below
specifies for this purpose a functional and a technical fault.

 <xsd:element name="functionalFaultType">

 <xsd:annotation>

 <xsd:documentation>SOAP Fault which is returned when a functional regularly

handled error has occurred.</xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="messages"

 type="faultMessageType"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="technicalFaultType">

 <xsd:annotation>

 <xsd:documentation> SOAP Fault which is returned when a technical unhandled error

has occurred. </xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="code" type="xsd:string" minOccurs="0"/>

 <xsd:element name="message" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="faultMessageType">

 <xsd:sequence>

 <xsd:element name="severityText" type="xsd:string"/>

 <xsd:element name="severityCode" type="xsd:string"/>

 <xsd:element name="messageText" type="xsd:string"/>

 <xsd:element name="messageCode" type="xsd:string"/>

 <xsd:element name="helpText" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

All application raised messages or handled exceptions are returned as functional
faults and can be handled as such. As long as functional faults are returned it is clear
the service call itself is still being executed along all the layers in the technology stack
but somewhere during processing in the application functional errors or a handled
exception occurs.

When an unhandled exception occurs this is typically returned as a technical fault
and can be handled differently. This is more severe and can have all kind of causes.
For example the database can be unreachable or down. But it cannot be said by
definition that processing should be aborted, that is dependent on the cause of the
technical fault. It might well be that the next call succeeds again because there only
was a switch over from for example a failing network component to a replacement.

Beware that the structure of the XML messages, both the request as well as the
response message, will be validated against the WSDL/XSD definitions. Errors will
be returned when the message does not comply with the definition.

3.6 Transaction handling

For web services that can change data (so which implement more than only ‘retrieve’
operations) the change operation will commit automatically or fail in a consistent
way (rolling back partially executed transactions). This behaviour is implemented
automatically in the web service implementation.

When using the PL/SQL implementation the calling code is responsible for
committing or rolling back partially executed operations. When exceptions are
handled in an exception handler be sure a rollback is executed in the exception
handler to prevent partially executed transactions are committed (although this will
never result in inconsistent data, that is guarded by the business rule implementation
layer in the database), resulting in potentially unwanted changes.

3.7 Differences between provider PL/SQL and web service ‘service layer
implementation’

The PL/SQL and web service ‘services’ are very similar. In fact the PL/SQL services
are ‘wrapped’ into a web service. Typically there is one database PL/SQL package
supporting the operations of the corresponding web service.

In the service layer implementation the supporting web service PL/SQL packages are
named SVL_WS_<service> and contain the operations as packaged procedures. A
standard function is_alive is offered that is wrapped as web service to check the
complete web service technology stack is working fine. The is_alive function returns
the version number of the associated package.

The operations, implemented as packaged procedures, accept as input and output
parameters of user defined object types that are similarly formatted as the input and
response messages in the corresponding WSDL/XSD definitions.

It is not possible to access the call context and the return context in the web service
implementation, as they are not present in the WSDL definition.

There is one exception: the calling username can and must be specified in the Back
Office properties file for each web service. Please read the installation and
configuration manual for how to specify this calling user name. It will be passed as
the user context part for the call context as described earlier.

So to state it more clearly, in the PL/SQL implementation it is possible to specify and
access the call and return context directly where this is not possible in the web service
implementation.

3.8 Example PL/SQL usage scenario

When the PL/SQL implementation is used there are lots of possibilities in how to use
the services. They can be combined with SQL and PL/SQL to retrieve and change
data directly or they can be used solely.

You need to use a database account to call the PL/SQL implementation and this can
NOT be the OHI object owner.

You can create a specific custom code owner account for this and connect to it. In the
example below we assume the account SVL_TEST has been created. We grant the
SVL objects to the account:

18 Generic usage aspects of SVL provider services

begin

 alg_security_pck.svl_grants

 (pi_owner => '<OHI object owner>' -- .e.g. OZG_OWNER

 , pi_grantee => 'SVL_TEST'

);

end;

/

If your custom development needs privileges on other OHI BO objects too, see the
guide “Custom Development for Oracle Health Insurance Back Office”, specifically
the use of script OZG_DIRECT.grt.

Below a very simple example is given how to retrieve some policy data using a
PL/SQL program:

declare

 l_call_context svl_call_context_tp :=

 svl_call_context_tp(svl_string30_tp('MANAGER'),null,null,svl_string10_tp(null));

 l_return_context svl_return_context_tp;

 l_pol_details_tp svl_policyanddetails_tp := svl_policyanddetails_tp();

 l_response svl_getpoldetbypolnumintres_tp;

begin

 -- activate tracing in a minimal way to make sure serveroutput produces output

 alg_trace_pck.enable;

 alg_trace_pck.set_loglevel(dom_loglevel.profile);

 -- get policy details for a specific policy nr

 svl_ws_ohipolicy_pck.getpolicydetailsbypolicynumberinternal

 (pi_request => svl_getpoldetbypolnumintreq_tp

 (svl_int08_tp(10000042),svl_ohi_date_tp(date '2015-01-01'))

 , pi_call_context => l_call_context

 , po_response => l_response

 , po_return_context => l_return_context

);

 -- get some output from the response

 if l_return_context.messageinfo.messages.count > 0

 then

 dbms_output.put_line(l_return_context.messageinfo.errorstack.string3200);

 for i in 1..l_return_context.messageinfo.messages.count loop

 dbms_output.put_line

 ('Msg('||i||') '||l_return_context.messageinfo.messages(i).messagecode.string32||

 ': '||l_return_context.messageinfo.messages(i).messagetext.string2000);

 end loop;

 else

 dbms_output.put_line('No errors occurred.');

 for i in 1..l_response.policyanddetails.svl_member.count

 loop

 for j in 1..l_response.policyanddetails.svl_member(i).membership.count

 loop

 dbms_output.put_line

 ('Mmb('||i||'-'||j||'): since=<'||

 l_response.policyanddetails.svl_member(i).membership(j).startdate.ohi_date||

 '> name=<'||l_response.policyanddetails.svl_member(i).internalformattedname.string255||

 '> product=<'||

 l_response.policyanddetails.svl_member(i).membership(j).policyproduct.product.productname.string255||

 '> sofi=<'||l_response.policyanddetails.svl_member(i).socialsecuritynumber.string20||'>'

);

 end loop;

 end loop;

 end if;

end;

As you can see the service operation
SVL_WS_OHIPOLICY_PCK.GETPOLICYDETAILSBYPOLICYNUMBERINTERNAL
is used. As calling user the known application username MANAGER is used. This
code is executed using a database account created for this purpose (as using the
application object owner directly is not supported).

Beware: The example code contains a call to alg_trace_pck.enable which activates
producing trace records in table ALG#TRACE_LOG. The call is needed in this
example for serveroutput (calls to dbms_output.put_line) to produce results.
In ‘production’ code tracing should not be enabled. This means that each SVL call
resets the package state of the session and as such prevents the use of dbms_output
as the upfront activation is overruled.
It is important to be aware of this when writing code that uses package state, that will

not work in combination with multiple svl calls. So do not rely on the contents of
package variables but use local variables in your code.

3.9 Example provider web service usage scenario

In the situation of a web service of course the WSDL URL should be used to access
the WSDL. The system administrators who deploy the web services should provide
this URL.

A typical WSDL URL could be:

http://<servername>:<port>/OHIBOWebservices/OhiPolicyService?wsdl

To test whether a service is technically working a tool like soapUI can be used which
creates requests for the different operations.

The isAlive operation can be used for the technical test.

However, a simple example, which is similar to the PL/SQL example in the previous
paragraph, can also be used:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:v1="http://www.oracle.com/insurance/ohibo/policy/policymessages/v1">

 <soapenv:Header/>

 <soapenv:Body>

 <v1:getCurrentPolicyDetailsByPolicyNumberInternalRequestType

policyNumberInternal="17553"/>

 </soapenv:Body>

</soapenv:Envelope>

This will return a SOAP message containing the contents of the returned policy
message structure or a SOAP fault message structure in case of problems.

20 Consumer web services

4 Consumer web services

Starting with release 2012.01 a first implementation is offered of consumer services.
These services support existing batch functionality that consumes services in the
outside world. Where outside world is defined as ‘outside of the OHI application’.

It is expected that these services are not directly exposed to the outside world. An
intermediate ‘gateway’ (typically a proxy or a service bus) should implement the call
to the real outside world. Through the use of such an intermediate standardized
security solutions can be used to protect the communication to the outside world,
independent of the OHI Back Office application.

This chapter focuses on implementation aspects for the consumer services.

4.1 Technical principles

The following technical principles are followed and may influence how you realise
your code to access the Service Layer consumer web services.

1. SOAP 1.1 is used.

Rationale: this is by far still the most widely used common standard and
supported by almost all web service toolkit implementations.

2. The OHI provided WSDL’s are currently look-a-likes for the outside world
WSDL’s that are offered by VECOZO.

4.2 Gateway setup

Internally a proxy or a Service Bus should be setup to provide the provider web
services functionality that can be consumed by the consumer web services.

To know the functionality that should be implemented a WSDL is delivered per
consumer web service that describes the interface to be offered.

These OHI provided WSDL’s are currently look-a-likes for the outside world WSDL’s
that are offered by Vecozo. It should be quite easy to identify how to map the data of
the external and the ‘OHI’ WSDL.

For more information, consult the Functional Specification of theme M-2647.

4.3 Error and exception handling

When a consumer web service call fails it fails by throwing an exception. Because the
calls are implemented inside the database this is typically an Oracle exception with
the error code ORA-29532. These errors are stored as messages that occurred during
the batch that executed the consumer services.

The ORA-29532 error code indicates a java exception; the actual error is shown in the
error message that follows after the error code.

Below is a non-exhaustive list of possible errors that can occur when a consumer
service is called by the OHI Back Office application:

Error Cause

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
java.rmi.RemoteException:; nested exception is:
 HTTP transport error:
javax.xml.soap.SOAPException:
java.security.PrivilegedActionException:
javax.xml.soap.SOAPException: Message send
failed: Connection refused

No web server available at the given location

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
java.rmi.RemoteException:; nested exception is:
 HTTP transport error:
javax.xml.soap.SOAPException:
java.security.PrivilegedActionException:
oracle.j2ee.ws.saaj.ContentTypeException: Not a
valid SOAP Content-Type: text/html;
charset=iso-8859-1

A web server is available at the given location,
but does not accept SOAP messages or cannot
respond to the requested message (unknown
request)

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
oracle.j2ee.ws.common.encoding.Deserializatio
nException:deserialization error:
java.lang.IllegalArgumentException

Unknown or invalid (response) message:
invalid value

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
java.lang.NullPointerException:null

Unknown or invalid (response) message:
invalid namespace

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
java.rmi.RemoteException:Error parsing
envelope: (1, 1) Start of root element expected.;
nested exception is:
 javax.xml.soap.SOAPException:
Error parsing envelope: (1, 1) Start of root
element expected.

Unknown or invalid (response) message:
empty message

ORA-29532: Java call terminated by uncaught
Java exception: java.rmi.RemoteException:
oracle.j2ee.ws.common.encoding.Deserializatio
nException:unexpected element name:
expected={urn:http://www.oracle.com/insurance/
ohibo/SVL1001C:messages:isevr:v1}EvrStatus,
actual={urn:http://www.oracle.com/insurance/oh
ibo/SVL1001C:messages:isevr:v1}EvrStatuss

Unknown or invalid (response) message:
Wrong name of element

22 Appendix A – Provider web services documentation per service

5 Appendix A – Provider web services documentation per service

Please use the WSDL that can be retrieved when a web service is deployed.

When services are changed the functional specification contains the latest changes.

Currently the provider web services offer no consistent read or locking functionality
and can only retrieve data through a number of operations, except for services that
implement changes.

The SVL_WS% packages can be used to get an overview of the existing services and
their operations (the packaged procedures).

Each operation is documented through either HTML in the Description field (be sure
you use an HTML editor to open this field) or is documented in a stored File (also
present as ‘File’ in the application system SVL) that is named in the Description field.

Attention: Starting with release 2011.03.2 the PreAuthorization provider web
service WSDL has been extended with an additional ‘Herkomst’ field. For the
corresponding consumer web service the official Vecozo WSDL has been
extended with an optional field that is not supported by Vecozo.

When the provider web service call specifies a value for the ‘Herkomst’ field
the consumer call will fill the non supported Vecozo field. This means the call
will not be accepted by Vecozo.

This functionality is introduced for the situation where an internal
‘intervening component’ (typical a middleware solution like a service bus) is
used as intermediate and there is a requirement to distinguish between
sources for pre authorization requests. This can be helpful in using the pre
authorization web service for more source than the Vecozo pre authorization
web service.

