Oracle® Fusion Middleware
Securing Oracle Coherence

15¢ (15.1.1.0.0)
G31424-01
October 2025

ORACLE"

Oracle Fusion Middleware Securing Oracle Coherence, 15c¢ (15.1.1.0.0)
G31424-01

Copyright © 2008, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion ii
Related Documents ii
Conventions ii

1 Introduction to Oracle Coherence Security

Conceptual Overview of Oracle Coherence Security
Coherence Security Quick Start
Overview of Security Configuration

2 Enabling General Security Measures

Using the Java Security Manager

Enable the Java Security Manager

Specify Permissions

Programmatically Specifying Local Permissions
Using Host-Based Authorization

Overview of Host-Based Authorization

Specify Cluster Member Authorized Hosts

Specify Extend Client Authorized Hosts

Use a Filter Class to Determine Authorization

o Ul g BN ®WNDNPR PR

Managing Rogue Clients

3 Using an Access Controller

Overview of Using an Access Controller

Using the Default Access Controller Implementation
Enable the Access Controller
Create a Keystore
Include the Login Module

[TS I O NG NG

Create a Permissions File

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page i of iv

Create an Authentication Callback Handler
Enable Security Audit Logs
Using a Custom Access Controller Implementation

4 Authorizing Access to Server-Side Operations

Overview of Access Control Authorization
Creating Access Control Authorization Implementations
Declaring Access Control Authorization Implementations

ga B~ N -

Enabling Access Control Authorization on a Partitioned Cache

5 Securing Extend Client Connections

Using ldentity Tokens to Restrict Client Connections
Overview of Using Identity Tokens
Creating a Custom Identity Transformer
Enabling a Custom Identity Transformer
Creating a Custom Identity Asserter
Enabling a Custom Identity Asserter
Using Custom Security Types
Understanding Custom Identity Token Interoperability
Associating Identities with Extend Services
Implementing Extend Client Authorization
Overview of Extend Client Authorization

© N ~N O OO NDN®W®WR PR

Create Authorization Interceptor Classes

=
=

Enable Authorization Interceptor Classes

6 Using SSL/TLS to Secure Communication

Overview of SSL/TLS

Coherence Socket Providers
Configuring an Identity Manager
Configuring a Trust Manager

Resolving the Socket Provider URL

Using a Socket Provider in Configuration
Configure a Socket Provider at Runtime

© 00 N o o o B~ DN

Using SSL to Secure Cluster Communication

=
o

Cluster Communication Using mTLS

=
=

Cluster Communication with One-Way SSL

[EnN
N

Using SSL to Secure Extend and gRPC Client Communication

[EEY
N

Configuring a Cluster-Side Extend Proxy SSL Socket Provider
Configuring the Cluster-Side gRPC Proxy SSL Socket Provider

=
6]

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page ii of iv

Configuring a Java Extend or gRPC Client SSL Socket Provider 16

Configure a Default Socket Provider for a Cache Configuration File 20
Configuring a .NET Client-Side Stream Provider 22
Securing the C++ Client with SSL/TLS 23
Using SSL to Secure Federation Communication 24
Federation with mTLS 25
Federation with One-Way SSL 26
Coherence Peerx509 Algorithm 27
Specifying a Global Socket Provider 27
Specifying Passwords in Socket Provider Configuration 29
Specify Plain Text Passwords 30
Passwords From Java System Properties 30
Reading Passwords From a URL 31
Custom Password Providers 31
Controlling Cipher Suite and Protocol Version Usage 36
Using Host Name Verification 36
Using the Default Coherence Host Name Verifier 36
Using a Custom Host Name Verifier 38
Configuring Client Authentication 38
Using Private Key and Certificate Files 39
Configuring an Identity Manager 40
Configuring a Trust Manager 40
Using Custom Keystore, Private Key, and Certificate Loaders 41
Using the Custom KeyStore Loader 41
Using the Custom PrivateKey Loader 44
Using a Custom Certificate Loader 45
Using Refreshable KeyStores, Private Keys, and Certificates 47
Configuring a Refresh Policy 48
7 Securing Oracle Coherence in Oracle WebLogic Server

Overview of Securing Oracle Coherence in Oracle WebLogic Server
Securing Coherence using SSL/TLS
Extended Usage Certificates
Configure Coherence Cluster Traffic Using mTLS
Configure Coherence Cluster Traffic Using One-Way SSL/TLS
Using a Custom Coherence Operational Configuration File
Configure the Coherence Global Socket Provider
WebLogic Server Secured Production Mode
Configure Coherence for One-Way SSL/TLS in Secured Production Mode
Disable Coherence SSL/TLS in Secured Production Mode
Securing Oracle Coherence Cluster Membership

0 00 NN O B WDNDN P B

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page iii of iv

Enabling the Oracle Coherence Security Framework

Specifying an Identity for Use by the Security Framework 9
Authorizing Oracle Coherence Caches and Services 10
Specifying Cache Authorization 10
Specifying Service Authorization 11
Securing Extend Client Access with Identity Tokens 11
Enabling Identity Transformers for Use in Oracle WebLogic Server 12
Enabling Identity Asserters for Use in Oracle WebLogic Server 13

8 Securing Oracle Coherence REST

Overview of Securing Oracle Coherence REST
Using HTTP Basic Authentication with Oracle Coherence REST
Specify Basic Authentication for an HTTP Acceptor
Specify a Login Module
Using SSL Authentication With Oracle Coherence REST
Specify Basic Authentication for an HTTP Acceptor
Configure an HTTP Acceptor SSL Socket Provider
Access Secured REST Services
Using SSL and HTTP Basic Authentication with Oracle Coherence REST
Implementing Authorization For Oracle Coherence REST

N N B W w NN R R

O Securing Oracle Coherence HTTP Management Over REST Server

About Securing Oracle Coherence HTTP Management Server

=

Basic Authentication for Coherence HTTP Management Server HTTP Acceptor

Specify the Basic Authentication for Coherence HTTP Management Server HTTP
Acceptor

Specify a Coherence HTTP Management Server Login Module
Using SSL Authentication With Oracle Coherence HTTP Management Server

N NN P

Configure a Coherence HTTP Management Acceptor SSL Socket Provider

10 Securing Oracle Coherence Metrics

About Securing Oracle Coherence Metrics
Basic Authentication for Coherence Metrics Http Acceptor
Specify Basic Authentication for Coherence Metrics HTTP Acceptor
Specify a Coherence Metrics Login Module
Specify Basic Authentication for a Coherence Metrics HTTP Client
Using SSL Authentication With Oracle Coherence Metrics

N NN R R R

Configure a Coherence Metrics HTTP Acceptor SSL Socket Provider

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page iv of iv

ORACLE’

Preface

Audience

Securing Oracle Coherence explains key security concepts and provides instructions for
implementing various levels of security for Oracle Coherence clusters, Oracle Coherence
REST, and Oracle Coherence*Extend clients.

This preface includes the following sections:

* Audience

« Documentation Accessibility

« Diversity and Inclusion

* Related Documents

 Conventions

This guide is intended for the following audiences:

* Primary Audience — Application developers and operators who want to secure an Oracle
Coherence cluster and secure Oracle Coherence*Extend client communication with the
cluster

e Secondary Audience — System architects who want to understand the options and
architecture for securing an Oracle Coherence cluster and Oracle Coherence*Extend
clients

The audience must be familiar with Oracle Coherence, Oracle Coherence REST, and Oracle
Coherence*Extend to use this guide effectively. In addition, users must be familiar with Java
and Secure Socket Layer (SSL). The examples in this guide require the installation and use of
the Oracle Coherence product, including Oracle Coherence*Extend. The use of an integrated
development environment (IDE) is not required, but it is recommended to facilitate working
through the examples.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

ORACLE
Preface

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

For more information, see the following documents in the Oracle Coherence documentation
set:

e Administering HTTP Session Management with Oracle Coherence*Web
e Administering Oracle Coherence

e Developing Applications with Oracle Coherence

» Developing Remote Clients for Oracle Coherence

e Installing Oracle Coherence

e Integrating Oracle Coherence

e Managing Oracle Coherence

« Java API Reference for Oracle Coherence

e C++ APl Reference for Oracle Coherence

* .NET API Reference for Oracle Coherence

* Release Notes for Oracle Coherence

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page ii of ii

Introduction to Oracle Coherence Security

Oracle Coherence includes many security features that provide varying levels of security.
Understanding the security features and the uses cases they cover are important first steps
when learning how to secure a Coherence solution.

This chapter includes the following sections:

* Conceptual Overview of Oracle Coherence Security

e Coherence Security Quick Start

« QOverview of Security Configuration

Conceptual Overview of Oracle Coherence Security

Oracle Coherence provide security features that support standards such as Java policies and
Secure Sockets Layer (SSL) and also includes features that are native to Oracle Coherence.

Evaluate the security feature descriptions and determine which features to use based on your
security requirements, concerns, and tolerances.

The security features are presented from basic security measures to more advanced security
measures.

Java Policy Security

A Java security policy file is provided that contains the minimum set of security permissions
necessary to run Oracle Coherence. Edit the file to change the permissions based on an
application's requirement. The security policy protects against malicious use and alterations of
the Oracle Coherence library and configuration files. See Using the Java Security Manager.

Host-Based Authorization

Host-based authorization explicitly specifies which hosts become members of a cluster and
which extend clients connect to a cluster. This type of access control is ideal in environments
where host names (or IP addresses) are known in advance. Host-based authorization protects
against unauthorized hosts joining or accessing a cluster. See Using Host-Based
Authorization.

Client Suspect Protocol

The client suspect protocol automatically determines if an extend client is acting malicious and
blocks the client from connecting to a cluster. The suspect protocol protects against denial of
service attacks. See Managing Rogue Clients.

Client Identity Tokens

Client identity tokens control which extend clients access the cluster. A proxy server allows a
connection only if the client presents a valid token. ldentity tokens are application-specific and
typically reuse existing client authentication implementations. ldentity tokens protect against
unwanted or malicious clients accessing the cluster. See Using Identity Tokens to Restrict
Client Connections.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE’

Chapter 1
Coherence Security Quick Start

Client Authorization

Client authorization controls which actions a particular client can perform based on its access
control rights. A proxy server performs the authorization check before an extend client
accesses a resource (cache, cache service, or invocation service). Client authorization is
application-specific and protects against unauthorized use of cluster resources. See
Implementing Extend Client Authorization.

Access Controller Security Framework

The access controller manages access to clustered resources, such as clustered services and
caches, and controls which operations a user can perform on those resources. Cluster
members use login modules to provide proof of identity; while, encrypting and decrypting
communication acts as proof of trustworthiness. The framework requires the use of a keystore
and defines permissions within a permissions file. The access controller prevents malicious
cluster members from accessing and creating clustered resources. See Using an Access
Controller .

SSL

SSL secures the Tangosol Cluster Management Protocol (TCMP) communication between
cluster nodes. SSL also secures the TCP communication between Oracle Coherence*Extend
clients and proxies. SSL uses digital signatures to establish identity and trust, and key-based
encryption to ensure that data is secure. SSL is an industry standard that protects against
unauthorized access and data tampering by malicious clients and cluster members. See Using
SSL/TLS to Secure Communication .

Coherence Security Quick Start

Coherence security features are disabled by default and are enabled as required to address
specific security requirements or concerns. Different levels of security can be achieved based
on the security features that are enabled. You can quickly get started securing Coherence by
configuring a solution to use file permissions, SSL, and role-based authorization.

e Configure file system permissions and Java policy permissions to protect against reads
and writes of Coherence files. See Using the Java Security Manager.

* Configure and enable SSL to secure communication between cluster members and protect
against unauthorized members joining the cluster. See Using SSL to Secure Cluster
Communication.

* When using Coherence*Extend or Coherence REST, configure and enable SSL to secure
communication between external clients and Coherence proxy servers. SSL protects
against unauthorized clients from using cluster services. See Using SSL to Secure Extend
and gRPC Client Communication and Using SSL Authentication With Oracle Coherence
REST, respectively.

* Implement authorization policies to restrict client access to specific Coherence operations
based on user roles. See Implementing Extend Client Authorization.

Overview of Security Configuration

Coherence security requires the use of multiple configuration files. The configuration files
enable, control, and customize security features as required. See Understanding Configuration
in Developing Applications with Oracle Coherence.

The following files are used to configure security:

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 1
Overview of Security Configuration

e Operational Override File — The t angosol - coher ence-overri de. xnl file overrides the
operational deployment descriptor, which specifies the operational and runtime settings
that maintain clustering, communication, and data management services. This file includes
security settings for cluster members.

* Cache Configuration File — The coher ence- cache- confi g. xnl file is the default cache
configuration file. It specifies the various types of caches within a cluster. This configuration
file includes security settings for cache services, proxy services, and Coherence*Extend
clients.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 3

Enabling General Security Measures

You can use general security measures to help protect against unauthorized use of Oracle
Coherence APIs, system resources, and cluster connections. General security measures are
often enabled as a first step when securing Coherence solutions.

This chapter includes the following sections:

* Using the Java Security Manager

» Using Host-Based Authorization

e Managing Rogue Clients

Using the Java Security Manager

You can control which system resources Coherence accesses and uses by enabling the Java
security manager. The security manager uses a policy file that explicitly grants permissions for
each resource. The COHERENCE _HOME/ | i b/ security/ security. policy policy configuration file
specifies a minimum set of permissions that are required for Coherence. Use the file as
provided, or modify the file to set additional permissions. A set of local (non-clustered)
permissions is also provided.

The section includes the following topics:

» Enable the Java Security Manager

e Specify Permissions

e Programmatically Specifying Local Permissions

Enable the Java Security Manager

To enable the Java security manager and use the COHERENCE_ HOME/ | i b/ securi ty/
security. policy file, set the following properties on a cluster member:

1. Setthejava.security.mnager property to enable the Java security manager. For
example:

-Dj ava. securi ty. manager
2. Setthejava.security. policy property to the location of the policy file. For example:

-Dj ava. securi ty. manager
-Dj ava. security. policy=/coherencel/lib/security/security.policy

3. Setthe coherence. hone system property to COHERENCE_HOME. For example:

-Dj ava. securi ty. manager
-Dj ava. security. policy=/coherencel/lib/security/security.policy
- Dcoher ence. hone=/ coher ence

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE

Chapter 2
Using the Java Security Manager

@® Note

The security policy file assumes that the default Java Runtime Environment (JRE)
security permissions have been granted. Therefore, you must be careful to use a
single equal sign (=) and not two equal signs (==) when setting the

java. security. policy system property.

Specify Permissions

Modify the COHERENCE _HOME/ | i b/ security/ security. poli cy file to include additional
permissions as required. See Permissions in the Java Development Kit (JDK) in Java SE
Security.

To specify additional permissions in the security. policy file:

1. Editthe security. policy file and add a permission for a resource. For example, the
following permission grants access to the coherence. j ar library:

grant codeBase "file: ${coherence. hone}/li b/ coherence.jar"

{
b

2. When you declare binaries, sign the binaries using the JDK j ar si gner tool. The following
example signs the coher ence. j ar resource declared in the previous step:

perm ssion java.security. Al Pernission;

jarsigner -keystore ./keystore.jks -storepass password coherence.jar adnin

Add the signer in the permission declaration. For example, modify the original permission
as follows to add the admi n signer.

grant SignedBy "adm n" codeBase "file: ${coherence. hone}/lib/coherence.jar"

pernission java.security. Al Pernission;
¥
3. Use operating system mechanisms to protect all relevant files from malicious
modifications.

Programmatically Specifying Local Permissions

The com t angosol . net. security. Local Perni ssi on class provides a way to set permissions
for local (non-clustered) Coherence API operations. Clients are either allowed or not allowed to
perform the declared operations (referred to as targets). For example:

Local Permission | p = new Local Permi ssion("C uster. shutdown");

To use local permissions, the Java security manager must be enabled. See Enable the Java
Security Manager.

Table 2-1 lists and describes the target names that can be declared.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 7

https://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html

ORACLE’

Table 2-1 Local Permission Targets

Chapter 2
Using Host-Based Authorization

Target Name

Description

CacheFact ory. set CacheFact or yBui | der

C ust er. shut down

Backi ngMapManager Cont ext . get Backi nghva
p

Backi ngMapManager Cont ext . set O assLoad
er

Servi ce. get I nternal Service

Servi ce. regi sterResource

Servi ce. regi sterEvent|nterceptor

Protects the programmatic installation of a custom
cache factory builder. Special consideration should be
given when granting this permission. Granting this
permission allows code to set a cache factory builder
and intercept any access or mutation requests to any
caches and also allows access to any data that flows
into and from those caches.

Protects all services from being shutdown. Granting
this permission allows code to programmatically
shutdown the cluster node.

Protects direct access to backing maps. Special
consideration should be given when granting this
permission. Granting this permission allows code to
get a reference to the backing map and access any
stored data without any additional security checks.

Protect changes to class loaders used for storage. The
class loader is used by the cache service to load
application classes that might not exist in the system
class loader. Granting this permission allows code to
change which class loader is used for a particular
service.

Protects access to an internal service, cluster or
cache reference. Granting this permission allows code
to obtain direct access to the underlying service,
cluster or cache storage implementation.

Protects service registries. Granting this permission
allows code to re-register or unregister various
resources associated with the service.

Protects the programmatic installation of interceptors.
Special consideration should be given when granting
this permission. Granting this permission allows code
to change or remove event interceptors associated
with the cache service thus either getting access to
underlying data or removing live events that are
designed to protect the data integrity.

Using Host-Based Authorization

Host-based authorization is a type of access control that allows you to specify which hosts
(based on host name or IP address) can connect to a cluster. The feature is available for both
cluster member connections and extend client connections.

This section includes the following topics:

* Overview of Host-Based Authorization

» Specify Cluster Member Authorized Hosts

» Specify Extend Client Authorized Hosts

» Use a Filter Class to Determine Authorization

Securing Oracle Coherence
G31424-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 3 of 7

ORACLE Chapter 2
Using Host-Based Authorization

Overview of Host-Based Authorization

Host-based authorization uses the host name and IP address of a cluster member or extend
client to determine whether a connection to the cluster is allowed. Specific host names,
addresses, and address ranges can be defined. For custom processing, a custom filter can be
created to validate hosts.

Host-based authorization is ideal for environments where known hosts with relatively static
network addresses are joining or accessing the cluster. In dynamic environments, or when
updating a DNS server, IP addresses can change and cause a cluster member or extend client
to fail authorization. Cache operations may not complete if cluster members or extend clients
are no longer authorized. Extend clients are more likely to have access problems because of
their transient nature.

When using host-based authorization, consider the dynamic nature of the network
environment. The need to reconfigure the list of authorized hosts may become impractical. If
possible, always use a range of IP addresses instead of using a specific host name. Or, create
a custom filter that is capable of resolving address that have changed. If host-based
authorization becomes impractical, consider using extend client identity tokens or SSL. See
Using Identity Tokens to Restrict Client Connections and Using SSL/TLS to Secure
Communication , respectively.

Specify Cluster Member Authorized Hosts

The default behavior of a cluster allows any host to connect to the cluster and become a
cluster member. Host-based authorization changes this behavior to allow only hosts with
specific host names or IP addresses to connect to the cluster.

Configure authorized hosts in an operational override file using the <aut hori zed- host s>
element within the <cl ust er - conf i g> element. Enter specific addresses using the <host -

addr ess> element or a range of addresses using the <host - range> element. The <host -

addr ess> and <host - r ange> elements support an i d attribute for uniquely identifying multiple
elements. Additionally, an application can set the system property

coherence. aut hori zed. host s with a comma-separated list of IP addresses and/or host names
authorized as cluster members.

The following example configures a cluster to accept only cluster members whose IP address
is either 192.168.0.5, 192.168.0.6, or within the range of 192.168.0.10 to 192.168.0.20 and
192.168.0.30 to 192.168.0.40.

<?xm version='1.0"?>

<coherence xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. con coher ence/ coher ence- operati onal - confi g"
xsi : schemalLocation="http://xm ns. oracl e. con coher ence/ coherence- operati onal - config
coherence- operational - confi g. xsd">
<cl uster-config>
<aut hori zed- host s>
<host - address id="1">192. 168. 0. 5</ host - addr ess>
<host - address id="2">192. 168. 0. 6</ host - addr ess>
<host-range id="1">
<from address>192. 168. 0. 10</from addr ess>
<t 0- addr ess>192. 168. 0. 20</ t 0- addr ess>
</ host - range>
<host-range id="2">
<from address>192. 168. 0. 30</ f rom addr ess>
<t 0- addr ess>192. 168. 0. 40</ t 0- addr ess>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 2
Using Host-Based Authorization

</ host -range>
</ aut hori zed- host s>
</cluster-config>
</ coher ence>

Specify Extend Client Authorized Hosts

The default behavior of an extend proxy server allows any extend client to connect to the
cluster. Host-based authorization changes this behavior to allow only hosts with specific host
names or IP addresses to connect to the cluster.

Configure authorized hosts in a cache configuration file using the <aut hori zed- host s>
element within the <t cp- accept or > element of a proxy scheme definition. Enter specific
addresses using the <host - addr ess> element or a range of addresses using the <host - r ange>
element. The <host - addr ess> and <host - r ange> elements support an i d attribute for uniquely
identifying multiple elements. Additionally, an application can set the system property
coherence. ext end. aut hori zed. host s with a comma-separated list of IP addresses and/or
host names authorized to join proxy as an extend client.

The following example configures an extend proxy to accept only client connections from
clients whose IP address is either 192.168.0.5, 192.168.0.6, or within the range of
192.168.0.10 to 192.168.0.20 and 192.168.0.30 to 192.168.0.40.

<proxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi ce</ servi ce- nane>
<t hr ead- count >5</ t hr ead- count >
<accept or - confi g>
<t cp-acceptor>

<aut hori zed- host s>
<host - address id="1">192. 168. 0. 5</ host - addr ess>
<host - address id="2">192. 168. 0. 6</ host - addr ess>
<host-range id="1">
<fromaddress>192. 168. 0. 10</ f rom addr ess>
<t 0- addr ess>192. 168. 0. 20</ t 0- addr ess>
</ host - range>
<host-range id="2">
<fromaddress>192. 168. 0. 30</ f rom addr ess>
<t 0- addr ess>192. 168. 0. 40</ t 0- addr ess>
</ host - range>
</ aut hori zed- host s>

</tcp-accept or >
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

Use a Filter Class to Determine Authorization

A filter class determines whether to accept a particular host connection. Both extend client
connections and cluster member connections support using filter classes. A filter class must
implement the com t angosol . util.Filter interface. The eval uat e() method of the interface
is passed the j ava. net. | net Addr ess of the host. Implementations should return t r ue to
accept the connection.

To enable a filter class, enter a fully qualified class name using the <cl ass- nane> element
within the <host -fi | t er > element. Set initialization parameters using the <i ni t - par ans>
element.

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE

Chapter 2
Managing Rogue Clients

The following example configures a filter named MyFi | t er, which determines if a host
connection is allowed.

<aut hori zed- host s>
<host-filter>
<cl ass- name>package. MyFi | t er </ cl ass- name>
<init-parans>
<init-paranp
<par am name>sPol i cy</ par am name>
<paramval ue>stri ct </ paramval ue>
</init-paranp
</init-parans>
</host-filter>
</ aut hori zed- host s>

® Note

If <host-filter>is provided, all <host - addr ess> and <host - r ange> elements are
superceded by that filter and have no effect. Setting the system properties

coherence. aut hori zed. host s and coher ence. ext end. aut hori zed. host s is ignored if
the corresponding <aut hori zed- host s><host - fi | t er > has been provided, it takes
complete precedence.

Managing Rogue Clients

You can use the suspect protocol to safeguard against rogue extend clients that operate
outside of acceptable limits. Rogue clients are slow-to-respond clients or abusive clients that
attempt to overuse a proxy— as is the case with denial of service attacks. In both cases, the
potential exists for a proxy to run out of memory and become unresponsive.

The suspect algorithm monitors client connections looking for abnormally slow or abusive
clients. When a rogue client connection is detected, the algorithm closes the connection to
protect the proxy server from running out of memory. The protocol works by monitoring both
the size (in bytes) and length (in messages) of the outgoing connection buffer backlog for a
client. Different levels determine when a client is suspect, when it returns to normal, or when it
is considered rogue.

Configure the suspect protocol within the <t cp- accept or > element of a proxy scheme
definition. See tcp-acceptor in Developing Applications with Oracle Coherence. The suspect
protocol is enabled by default.

The following example demonstrates configuring the suspect protocol and is similar to the
default settings. When the outgoing connection buffer backlog for a client reaches 10 MB or
10000 messages, the client is considered suspect and is monitored. If the connection buffer
backlog for a client returns to 2 MB or 2000 messages, then the client is considered safe and
the client is no longer monitored. If the connection buffer backlog for a client reaches 95 MB or
60000 messages, then the client is considered unsafe and the proxy closes the connection.

<proxy- schenme>
<servi ce- name>Ext endTcpPr oxySer vi ce</ servi ce- nane>
<t hr ead- count >5</ t hr ead- count >
<acceptor-confi g>
<t cp-accept or >

<suspect - prot ocol - enabl ed>t r ue</ suspect - pr ot ocol - enabl ed>
<suspect - buf f er - si ze>10MK/ suspect - buf f er - si ze>

<suspect - buf f er- 1 engt h>10000</ suspect - buf f er - | engt h>

<nom nal - buf f er - si ze>2\k/ nomi nal - buf f er - si ze>

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 2
Managing Rogue Clients

<nomi nal - buf f er -1 engt h>2000</ nomi nal - buf f er - | engt h>
<limt-buffer-size>95M/limt-buffer-size>
<limt-buffer-1ength>60000</1init-buffer-Iength>
</tcp-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- scheme>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 7 of 7

Using an Access Controller

You can enable an access controller to help protect against unauthorized use of cluster
resources. The default access controller implementation is based on the key management
infrastructure that is part of the HotSpot JDK and uses Java Authentication and Authorization
Service (JAAS) for authentication.

This chapter includes the following sections:

e Overview of Using an Access Controller

* Using the Default Access Controller Implementation

* Using a Custom Access Controller Implementation

Overview of Using an Access Controller

Coherence includes an access controller that is used to secure access to cluster resources
and operations. A local login module is used to authenticate a caller, and an access controller
on one or more cluster nodes verifies the access rights of the caller. See LoginModule in Java
Authentication and Authorization Service (JAAS) Reference Guide.

An access controller:

e Grants or denies access to a protected clustered resource based on the caller's
permissions

* Encrypts outgoing communications based on the caller's private credentials
» Decrypts incoming communications based on the caller's public credentials

A default access controller implementation is provided. The implementation is based on the
key management infrastructure that ships as a standard part of the HotSpot JDK. See Using
the Default Access Controller Implementation.

Figure 3-1 shows a conceptual view of securing two cluster members using access controllers.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 7

http://download.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

ORACLE Chapter 3
Overview of Using an Access Controller

Figure 3-1 Conceptual View of Access Controller Security

Junior Cluster Member Senior Cluster Member
% €~ Encrypt/ =
Decrypt

Clustered Clustered
Serfce Serfce
o oy
Access Access

Controller Controller

Login Module JKS Permissions JKS

Understanding the Security Context

Each clustered service maintains the concept of a senior service member that serves as a
controlling agent for a particular service. The senior member does not consult with other
members when accessing a clustered resource. However, juniors member that want to join a
service must request and receive a confirmation from the senior member. The senior member
notifies all other cluster members about the joining member.

The security subsystem is designed to operate in a partially hostile environment because data

is distributed among cluster members. Every member is considered to be a malicious member.
That is, members are assumed to lack sufficient credentials to join a clustered service or obtain
access to a clustered resource.

File system mechanisms and standard Java security policies guarantee the trustworthiness of
a single node. However, there are two scenarios to consider with member communication:

* A malicious node surpasses the local access check and attempts to join a clustered
service or gain access to a clustered resource that a trusted node controls.

A malicious node creates a clustered service or clustered resource and becomes its
controller.

The security subsystem uses a two-way encryption algorithm to prevent either of these two
scenarios from occurring. All client requests must establish proof of identity, and all service
responses must establish proof of trustworthiness.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE

Chapter 3
Overview of Using an Access Controller

Proof of Identity
The following client code sample authenticates a caller and performs necessary actions:

i mport comtangosol .net.security. Security;
import java.security.PrivilegedAction;
i mport javax.security.auth. Subject;

Subj ect subject = Security.|ogin(sName, acPassword);
PrivilegedAction action = new Privil egedAction()

public Cbject run()
{

/1 all processing here is taking place with access
/] rights assigned to the corresponding Subject

[l for exanple:

CacheFact ory. get Cache() . put (key, val ue);

b

Security.runAs(subject, action);

The caller is authenticated using JAAS on the caller's node during the | ogi n call. If the
authentication is successful, the local access controller:

« Determines whether the local caller has sufficient rights to access the protected clustered
resource (local access check)

« Encrypts the outgoing communications regarding the access to the resource with the
caller's private credentials retrieved during the authentication phase

« Decrypts the result of the remote check using the requester's public credentials
« Verifies whether the responder has sufficient rights to be granted access

The encryption step provides proof of identity for the responder and blocks a malicious node
that pretends to pass the local access check phase.

There are two additional ways to provide the client authentication information. First, pass a
reference to a Cal | backHandl er class instead of the user name and password. Second, use a
previously authenticated Subj ect . The latter approach is ideal when a Jakarta EE application
uses Oracle Coherence and retrieves an authenticated Subj ect from the application container.

If a caller's request does not include any authentication context, a Cal | backHandl er
implementation is instantiated and called. The implementation is declared in an operational
override file and retrieves the appropriate credentials. However, this lazy approach is much
less efficient, because without an externally defined call scope every access to a protected
clustered resource forces repetitive authentication calls.

Proof of Trustworthiness

Cluster members use explicit API calls to create clustered resources. The senior service
member retains the private credentials that are presented during a call as a proof of
trustworthiness. When the senior service member receives an access request to a protected
clustered resource, the local access controller:

e Decrypts the incoming communication using the remote caller's public credentials

* Encrypts the access check response using the private credentials of the service.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE’

Chapter 3
Using the Default Access Controller Implementation

« Determines whether the remote caller has sufficient rights to access the protected
clustered resource (remote access check).

Using the Default Access Controller Implementation

Coherence includes a default access controller implementation that uses a standard Java
keystore for authentication. The implementation class is the

comtangosol . net.security. Defaul t Controller class. Itis configured within the <security-
confi g> element in the operational deployment descriptor. See security-config in Developing
Applications with Oracle Coherence.

This section includes the following topics:

 Enable the Access Controller

e« Create a Keystore

* Include the Login Module

e Create a Permissions File

e Create an Authentication Callback Handler

 Enable Security Audit Logs

Enable the Access Controller

To enable the default access controller implementation within the <security- confi g> element,
add an <enabl ed> element that is set to t r ue. For example:

<security-config>
<enabl ed system property="coherence. security">true</enabl ed>
</ security-config>

The coher ence. security system property also enables the access controller. For example:

- Dcoherence. security=true

® Note

When access controller security is enabled, every call to the

CacheFact ory. get Cache() or Confi gurabl eCacheFact ory. ensureCache() API causes
a security check. This negatively affects an application's performance if these calls are
made frequently. The best practice is for the application to hold on to the cache
reference and reuse it so that the security check is performed only on the initial call.
With this approach, ensure that your application only uses the references in an
authorized way.

Create a Keystore

An access controller requires a keystore that is used by both the controller and login module.
Create a keystore with necessary principals using the Java keyt ool utility. Ensure that the
keystore is found on the classpath at runtime, or use the coher ence. security. keystore
system property to explicitly enter the name and location of the keystore. For example:

- Dcoherence. security. keyst ore=keystore. j ks

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE

Chapter 3
Using the Default Access Controller Implementation

The following example creates three principals: admi n (to be used by the Java Security
framework), manager, and wor ker (to be used by Oracle Coherence).

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admin
-keypass password -dname CN=Adni ni strator, O=MyConpany, L=M/Ci ty, ST=M/St at e

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias manager
-keypass password -dname CN=Manager, OU=MyUni t

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias worker
-keypass password -dname CN=Wor ker, OU=MyUni t

Include the Login Module

Oracle Coherence includes the COHERENCE HOME/ | i b/ securi ty/ coherence-| ogin.jar Java
keystore (JKS) login module, which depends only on standard Java run-time classes. Place
the library in the JRE | i b/ ext (standard extension) directory. The name in the <l ogi n- nodul e-
name> element, within the <securi ty- confi g> element, serves as the application name in the
COHERENCE_HOME/ |'i b/ security/ | ogi n. confi g login module file. The login module declaration
contains the path to the keystore. Change the keySt or ePat h variable to the location of the
keystore.

/'l Logi nMbdul e Configuration for Oracle Coherence
Coherence {
com tangosol . security. KeystoreLogin required
keySt orePat h="${user. dir}${/}security${/}keystore.jks";
¥

Create a Permissions File

An access controller requires a per ni ssi ons. xm file that declares access rights for principals.
See the COHERENCE_HOWE/ | i b/ securi ty/ perm ssi ons. xsd schema for the syntax of the
permissions file. Ensure that the file is found on the classpath at runtime, or use the
coherence. security. perm ssions system property to explicitly enter the name and location of
the permissions file. For example:

- Dcoherence. security. perm ssi ons=perni ssi ons. xmi

The following example assigns all rights to the Manager principal, only j oi n rights to the Wr ker
principal for caches that have names prefixed by common, and all rights to the Wr ker principal
for the invocation service named i nvocat i on.

<?xm version="1.0"?>
<per ni ssi ons>
<grant >
<princi pal >
<cl ass>j avax. security. aut h. x500. X500Pr i nci pal </ cl ass>
<name>CN=Manager , OU=MyUni t </ nane>
</ principal >
<per ni ssi on>
<target>*</target>
<action>al | </action>
</ perm ssi on>
</grant>
<grant >
<princi pal >
<cl ass>j avax. security. aut h. x500. X500Pr i nci pal </ cl ass>
<name>CN=Wor ker , OU=MyUni t </ name>
</ principal >

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE Chapter 3
Using the Default Access Controller Implementation

<per mi ssi on>
<t ar get >cache=conmon*</t ar get >
<action>j oi n</ acti on>

</ perm ssi on>

<per mi ssi on>
<t arget >servi ce=i nvocati on</target>
<action>al | </action>

</ perm ssi on>

</grant>
</ perm ssi ons>

Create an Authentication Callback Handler

An access controller uses an authentication callback handler to authenticate a client when all
other authentication methods have been unsuccessful. To create a callback handler, implement
the j avax. security. aut h. cal | back. Cal | backHandl er interface.

@® Note

the handler approach is much less efficient since without an externally defined call
scope every access to a protected clustered resource forces repetitive authentication
calls.

To configure a custom callback handler within the <security- confi g> element, add a
<cal | back- handl er > element that includes the fully qualified name of the implementation
class. The following example configures a callback handler named MyCal | backHandl er .

<security-config>
<cal | back- handl er >
<cl ass- nane>package. MyCal | backHandl er </ cl ass- nane>
</ cal | back- handl er >
</security-config>

Enable Security Audit Logs

Security audit logs are used to track the cluster operations that are being performed by each
user. Each operation results in a log message being emitted. For example:

"Destroy" action for cache "Accounts" has been pernitted for the user "CN=Bob,
QU=Accounting".

Security audit logs are not enabled by default. To enable audit logs within the <security-
confi g> element, override the security log initialization parameter within the <access-
control | er> element and set the parameter value to t r ue. For example,

<security-config>
<access-control | er>
<init-params>
<init-paramid="3">
<par am t ype>bool ean</ param t ype>
<paramval ue system property="coherence.security.log">
true</ paramval ue>
</init-paranr
</init-parans>
</ access-control | er>
</ security-config>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 3
Using a Custom Access Controller Implementation

The coher ence. security. | og system property also enables security audit logs. For example:

- Dcoherence. security. | og=true

Using a Custom Access Controller Implementation

You can create a custom access controller implementation if you have specific security
requirements that are not addressed by the default implementation. Custom access controllers
must implement the com t angosol . net . security. AccessControl | er interface.

To configure a custom access controller within the <security-confi g> element, add an
<access-control | er> element that includes the fully qualified name of the implementation
class. The following example configures a custom access controller called

MyAccessControl | er.

<security-config>
<enabl ed system property="coherence. security">true</enabl ed>
<access-control | er>
<cl ass- nane>package. M/AccessControl | er </ cl ass- name>
</ access-control | er>
</security-config>

Specify any required initialization parameters by using the <i ni t - par ans> element. The
following example includes parameters to pass the MyAccessControl | er class a keystore and
a permissions file.

<security-config>
<enabl ed system property="coherence. security">true</enabl ed>
<access-control | er>
<cl ass- nane>package. M/AccessControl | er </ cl ass- name>
<init-params>
<init-paranp
<paramtype>j ava.io. Fi |l e</ paramtype>
<param val ue>. / keyst ore. j ks</ param val ue>
</init-paranp
<init-paranp
<paramtype>j ava.io. Fi |l e</ paramtype>
<par am val ue>. / per mi ssi ons. xnl </ par am val ue>
</init-paranp
</init-parans>
</ access-control | er >
</security-config>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 7 of 7

Authorizing Access to Server-Side Operations

Coherence supports server-side authorization to ensure that only specific users can perform
certain operations. Authorization is often used together with authentication to provide
increased security assurances.

This chapter includes the following sections:

¢ Qverview of Access Control Authorization

¢ Creating Access Control Authorization Implementations

e Declaring Access Control Authorization Implementations

¢ Enabling Access Control Authorization on a Partitioned Cache

Overview of Access Control Authorization

Access control authorization allows applications to define their own authorization logic to limit
access to cluster operations. Authorization is based on identities that are represented as a
Princi pal within a Subj ect .Applications are responsible for ensuring that the Subj ect is
present for caller threads. If the Subj ect is missing or cannot be retrieved, then the operation
fails with a Securit yExcept i on error.

Applications implement the St or ageAccessAut hori zer interface to provide authorization logic.
The implementations are declared in the operational override configuration file and must also
be enabled on a partitioned cache by configuring the backing map of a distributed scheme in a
cache configuration file. Access control authorization is only available for partitioned caches.

The St or ageAccessAut hori zer interface provides methods that are used to perform read,
write, read any, and write any authorization checks. Coherence assumes that there is a logical
consistency between authorization decisions made by St or ageAccessAut hori zer
implementations. That is, for a given Subj ect , the write authorization implies the read
authorization for a given entry; the read any authorization implies read authorization for all
entries; and, the write any authorization implies write and read authorization for all entries.

Table 4-1 lists which authorization checks are caused by NanedCache APl and Bi naryEntry API
methods.

Table 4-1 Authorization Checks for Common Methods
]

Authorizatio NamedCache API Methods BinaryEntry API Methods
n Check
None e contai nsKey

¢ containsVal ue

e isEmty

e size

« lock

« unlock

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE Chapter 4
Creating Access Control Authorization Implementations

Table 4-1 (Cont.) Authorization Checks for Common Methods
]

Authorizatio NamedCache API Methods BinaryEntry APl Methods
n Check
Read o get « getValue
e getAll e getBinaryVal ue
° extract

e getQOriginal Val ue
e getOriginal Bi naryVal ue

Write e invoke e setValue
e put e update
° putAl e updt aeBi naryVal ue
e renove e renove
e renoveAl l e expire

Read Any « addMaplLi stener?

e aggregate

« entrySet

* keySet

e removeMaplLi stener?
Write Any - addl ndex

« clear

* invokeAll

« renovel ndex
- val ues

1 Ifalisteneris a MapTri gger Li st ener, then a Write Any authorization check is performed instead.

Creating Access Control Authorization Implementations

Access control authorization requires an authorizer implementation that contains user-defined
authorization logic.

To create access control authorization implementations, create a class that implements the
comtangosol . net.security. StorageAccessAut hori zer interface. The implementation should
define which callers (based on the Subj ect) are authorized to access entries and backing map
contexts (Bi nar yEnt ry and Backi ngMapManager Cont ext , respectively).

® Note

The Bi nar yEnt ry and Backi ngMapManager Cont ext API provide the ability to retrieve
the cache name, the service name, and full access to the service and cluster
registries.

Example 4-1 Provides a sample St or ageAccessAut hori zer implementation that emits a log
message for each authorization request. It is based on the Audi ti ngAut hori zer class that is
provided with Coherence and used by the default access controller implementation.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE Chapter 4
Creating Access Control Authorization Implementations

Example 4-1 Sample StorageAccessAuthorizer Implementation

package com exanpl es. security;

i mport com tangosol . net. Backi ngMapCont ext ;

i mport com tangosol . net.CacheFact ory;

i mport com tangosol . net.security. StorageAccessAut hori zer;
i mport comtangosol.util.BinaryEntry;

i mport javax.security.auth. Subject;

public class MyLogAuthorizer inplenments StorageAccessAut horizer

{
publ i c MyLogAut hori zer ()

this(fal se);
}

publ i c MyLogAut hori zer (bool ean fStrict)

{
f fStrict = fStrict;

}
@verride

public void checkRead(BinaryEntry entry, Subject subject, int nReason)

{

| ogEnt ryRequest (entry, subject, false, nReason);

if (subject == null && f _fStrict)

{
t hrow new SecurityException("subject is not provided");
}
}
@verride
public void checkWite(BinaryEntry entry, Subject subject, int nReason)
{

| ogEntryRequest (entry, subject, true, nReason);

if (subject == null && f _fStrict)

{
t hrow new SecurityException("subject is not provided");
}
}
@verride
public void checkReadAny(Backi ngMapCont ext context, Subject subject,
i nt nReason)
{

| ogMapRequest (cont ext, subject, false, nReason);

if (subject == null && f _fStrict)

{
t hrow new SecurityException("subject is not provided");
}
}
@verride
public void checkWiteAny(Backi ngMapCont ext context, Subject subject,
i nt nReason)
{

| ogMapRequest (cont ext, subject, true, nReason);

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 4
Declaring Access Control Authorization Implementations

if (subject == null && f _fStrict)
{
t hrow new SecurityException("subject is not provided");
}

}

protected void | ogEntryRequest (Bi naryEntry entry, Subject subject,
bool ean fWite, int nReason)
{
CacheFactory.log('"" + (fWite ? "Wite" : "Read")
+ "\" request for key=\""
+ entry. get Key()
+ (subject == null ?
"\" fromunidentified user" :
"\" on behal f of " + subject.getPrincipals())
+ " caused by \"" + nReason + "\""
, CacheFactory. LOG I NFO);

}

protected void | ogMapRequest (Backi ngMapCont ext context, Subject subject,
boolean fWite, int nReason)

{
CacheFactory.log('"" + (fWite ? "Wite-any" : "Read-any")
+ "\" request for cache \""
+ context.get CacheNanme() + '"'
+ (subject == null ?
" fromunidentified user" :
" on behal f of " + subject.getPrincipals())
+ " caused by \"" + nReason + "\""
, CacheFactory. LOG INFO);

}

private final boolean f_fStrict;

}

Declaring Access Control Authorization Implementations

Access control authorization implementations must be declared so that the class is loaded
when a cluster starts. Multiple authorization implementations can be created and are
referenced using a unique identification.

To declare access control authorizer implementations, edit the operational override file and
include a <st or age- aut hori zer s> element, within the <cl ust er - confi g> element, and declare
each authorization implementation using a <st or age- aut hori zer > element. See storage-
authorizer in Developing Applications with Oracle Coherence. Each declaration must include a
unique i d attribute that is used by a partitioned cache to select an implementation. For
example:

<cl uster-config>
<storage-authori zers>
<storage-authorizer id="LogAuthorizer">
<cl ass- nane>package. MyLogAut hori zer </ cl ass- nane>
</ storage-aut hori zer>
</ storage-aut hori zers>
</cluster-config>

As an alternative, the <st or age- aut hori zer > element supports the use of a <cl ass-fact ory-
name> element to use a factory class that is responsible for creating instances and a <met hod-
name> element to specify the static factory method on the factory class that performs object
instantiation. For example:

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 4
Enabling Access Control Authorization on a Partitioned Cache

<cl uster-config>
<st orage- aut hori zer s>
<st orage-aut hori zer id="LogAut horizer">
<cl ass-fact ory-name>package. MyAut hori zer Fact ory</ cl ass- f act or y- nane>
<net hod- nane>get Aut hori zer </ met hod- nane>
</ storage-aut hori zer>
</ storage-authorizers>
</cluster-config>

Any initialization parameters that are required for an implementation can be specified using the
<ini t-paranms> element. For example:

<cl uster-config>
<st orage-aut hori zer s>
<st orage-aut hori zer id="LogAut horizer">
<cl ass- name>package. MyLogAut hori zer </ ¢l ass- name>
<init-parans>
<init-paranp
<param name>f _fStrict</param nane>
<par am val ue>t r ue</ param val ue>
</init-paranp
</init-parans>
</ storage-aut hori zer>
</ storage-authorizers>
</ cl uster-config>

Enabling Access Control Authorization on a Partitioned Cache

A partition cache service must be configured to use an access control authorization
implementation. The implementation is enabled in the cache definition and is reference by
name.

To enable access control authorization on a partitioned cache, edit the cache configuration file
and add a <st or age- aut hori zer > element, within the <backi ng- map- scheme> element of a
distributed scheme, whose value is the i d attribute value of an authorization implementation
that is declared in the operational override file. For example:

<di stri but ed- schene>

<backi ng- map- schenme>
<st orage- aut hori zer >LogAut hori zer </ st or age- aut hori zer >
<l ocal - schene/ >
</ backi ng- map- scheme>
<autostart>true</autostart>
</ di stri but ed- scheme>

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 5

Securing Extend Client Connections

You can use identity tokens and interceptor classes to provide authentication and authorization
for Oracle Coherence*Extend clients. Identity tokens protect against unauthorized access to an
extend proxy. Interceptor classes control which operations are available to an authenticated
client.

This chapter includes the following sections:

» Using Identity Tokens to Restrict Client Connections

» Associating ldentities with Extend Services

 Implementing Extend Client Authorization

Using Identity Tokens to Restrict Client Connections

Identity tokens are used to control which clients can access a cluster. The token is sent
between extend clients and extend proxies whenever a connection is attempted. Only extend
clients that pass a valid identity token are allowed to access the cluster.

This section includes the following topics:

* Qverview of Using ldentity Tokens

e Creating a Custom Identity Transformer

 Enabling a Custom Identity Transformer

e Creating a Custom Identity Asserter

» Enabling a Custom ldentity Asserter

e Using Custom Security Types

 Understanding Custom ldentity Token Interoperability

Overview of Using Identity Tokens

Identity token security uses an identity transformer implementation to create identity tokens
and an identity asserter implementation to validate identity tokens. These implementations are
described as follows:

« ldentity transformer — a client-side component that converts a Subj ect, or Pri nci pal , into
an identity token that is passed to an extend proxy. An identity token can be any type of
object that is useful for identity validation; it is not required to be a well-known security
type. In addition, clients can connect to multiple proxy servers and authenticate to each
proxy server differently.

* ldentity asserter — A cluster-side component that resides on the cache server that is
hosting an extend proxy service. The asserter validates an identity token that is created by
an identity transformer on the extend client. The asserter validates identity tokens unique
for each proxy service to support multiple means of token validation. The token is passed
when an extend client initiates a connection. If the validation fails, the connection is
refused and a security exception is thrown. The transformer and asserter are also invoked
when a new channel within an existing connection is created.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 11

ORACLE’

Figure 5-1 shows a conceptual view of restricting client access using identity tokens.

Chapter 5

Using Identity Tokens to Restrict Client Connections

Figure 5-1 Conceptual View of Identity Tokens

Extend Client
(Java, C++,C#)

Q180

TCP
Initiator

@

Identity
Transformer

©

Authentication

— TCP —>

Cluster
Proxy

8188

TCP
Acceptor

Ch

|dentity
AasenEr

©

Validation

An identity transformer (Def aul t | denti t yTr ansf or mer) and identity asserter
(Def aul t1dentityAsserter) are provided and enabled by default. The implementations simply
use the Subj ect (Java) or Princi pal (.NET) as the identity token. The default behavior is

overridden by providing custom identity transformer and identity asserter implementations and
enabling them in the operational override file.

@® Note

Securing Oracle Coherence
G31424-01

At runtime, identity transformer implementation classes must be located on the
extend client's classpath and identity asserter implementation classes must be
located on the extend proxy server's classpath.

You can use security object types other than the types that are predefined in
Portable Object Format (POF). See Using Custom Security Types.

Copyright © 2008, 2025, Oracle and/or its affiliates.

October 6, 2025

Page 2 of 11

ORACLE Chapter 5
Using Identity Tokens to Restrict Client Connections

Creating a Custom Identity Transformer

A default identity transformer implementation (Def aul t | dent i t yTr ansf or ner) is provided that
simply returns a Subj ect or Pri nci pal thatis passed to it. If you do not want to use the default
implementation, you can create your own custom transformer implementation.

@® Note

At runtime, identity tokens are automatically serialized for known types and sent as
part of the extend connection request. For .NET and C++ clients, the type must be a
POF type. You can use security object types other than the predefined POF types.
See Using Custom Security Types.

For Java and C++, create a custom identity transformer by implementing the
I dentityTransformer interface. C# clients implement the | | denti t yTransf or mer interface.

Example 5-1 demonstrates a Java implementation that restricts client access by requiring a
client to supply a password to access the proxy. The implementation gets a password from a
system property on the client and returns it as an identity token.

Example 5-1 A Sample Identity Transformer Implementation

i mport com tangosol . net.security.ldentityTransforner;
i mport javax.security.auth. Subject;
i mport com tangosol . net. Service;

public class PasswordldentityTransforner
i npl enents |dentityTransforner

{

public Qbject transform dentity(Subject subject, Service service)
throws SecurityException

{
return System get Property("nySecretPassword");

}
}

One possible solution for preexisting client authentication implementations is to add a new
Princi pal to the Subj ect with the Princi pal name as the password. Add the password
Princi pal to the Subj ect during JAAS authentication by modifying an existing JAAS login
module or by adding an additional required login module that adds the password Pri nci pal .
The JAAS API allows multiple login modules, each of which modifies the Subj ect . Similarly,
in .NET, add a password identity to the Pri nci pal . The asserter on the cluster side then
validates both the Princi pal and the password Pri nci pal . See Creating a Custom Identity
Asserter.

Enabling a Custom Identity Transformer

To enable a custom identity transformer implementation, edit the client-side t angosol -
coherence-override. xm file and add an <i dentity-transfor ner> element within the
<security-config>node. The element must include the full name of the implementation class.
For example:

<?xm version='1.0"?>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 11

ORACLE Chapter 5
Using Identity Tokens to Restrict Client Connections

<coherence xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. con coher ence/ coher ence- operati onal - confi g"
xsi: schenalLocation="http://xnl ns. oracl e. cont coher ence/ coher ence-operati onal -config
coherence-operational -config. xsd">
<security-config>
<identity-transforner>
<cl ass- name>com ny. Passwor dl denti t yTr ansf or ner </ cl ass- name>
</identity-transforner>
</security-config>
</ coher ence>

Creating a Custom Identity Asserter

A default identity asserter implementation (Def aul t | denti t yAsserter) is provided that asserts
that an identity token is a Subj ect or Pri nci pal . If you do not want to use the default
implementation, you can create your own custom asserter implementation.

For Java and C++, create an identity asserter by implementing the | denti t yAsserter
interface. C# clients implement the | | denti t yAsserter interface.

Example 5-2 is a Java implementation that checks a security token to ensure that a valid
password is given. In this case, the password is checked against a system property on the
cache server. This asserter implementation is specific to the identity transformer sample in
Example 5-1.

Example 5-2 A Sample Identity Asserter Implementation

i mport comtangosol.net.security.ldentityAsserter;
inport javax.security.auth.Subject;
i nport com tangosol . net. Service;

public class Passwordl dentityAsserter
i npl ements IdentityAsserter
{

public Subject assertldentity(Object oToken, Service service)
throws SecurityException

{
if (oToken instanceof String)
{
if (((String) oToken).equal s(System getProperty("nySecretPassword")))
{
return null;
}
}
throw new SecurityException("Access denied");
}

}

There are many possible variations when you create an identity asserter. For example, you can
create an asserter that rejects connections based on a list of principals, that checks role
principals, or validates the signed principal name. The asserter blocks any connection attempts
that do not prove the correct identity.

Enabling a Custom Identity Asserter

To enable a custom identity asserter implementation, edit the cluster-side t angosol -
coherence-override. xm file and add an <i dentity-asserter> element within the <security-

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 11

ORACLE

Chapter 5
Using Identity Tokens to Restrict Client Connections

confi g> node. The element must include the full name of the implementation class. For
example:

<?xm version="1.0"?>

<coherence xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conl coher ence/ coher ence- operati onal - confi g"
xsi: schenalLocati on="http://xnl ns. oracl e. cont coher ence/ coher ence- oper ati onal -config
coherence-operational -config. xsd">
<security-config>
<identity-asserter>
<cl ass- name>com ny. Passwor dl dent i t yAssert er </ ¢l ass- name>
</identity-asserter>
</security-config>
</ coher ence>

Using Custom Security Types

Security objects are automatically serialized and deserialized using Portable Object Format
(POF) when they are passed between extend clients and extend proxies. Security objects that
are predefined in POF require no configuration or programming changes. However, security
objects that are not predefined in POF (for example, when an application uses Kerberos
authentication) cause an error. For custom security types, an application must convert the
custom type or define the type in POF. There are two approaches for using unsupported types.

Converting the Type

The custom identity transformer implementation converts a custom security object type to a
type that is predefined for POF, such as a character array or string, before returning it as an
object token. On the proxy server, the custom identity asserter implementation converts the
object back (after validation) to a Subj ect .

For example, a subject may contain credentials that are not serialized. The identity transformer
implementation extracts the credential and converts it to a character array, returning that array
as the token. On the proxy server, the identity asserter converts the character array to the
proper credential type, validates it, and then constructs a Subj ect to return.

Defining the Custom Type in POF

You can define the custom security types in both the client's and the proxy's POF configuration
file. For detailed information about using POF with Java, see Using Portable Object Format in
Developing Applications with Oracle Coherence. For more information about using POF with
C++ and C#, see Building Integration Objects (C++) and Building Integration Objects (.NET),
respectively in Developing Remote Clients for Oracle Coherence.

Understanding Custom Identity Token Interoperability

Solutions that use a custom identity token must always consider what tokens may be sent by
an extend client and what tokens may be received by an extend proxy. This is particularly
important during rolling upgrades and when a new custom identity token solution is
implemented.

Oracle Coherence Upgrades

Interoperability issues may occur during the process of upgrading. In this scenario, different
client versions may interoperate with different proxy server versions. Ensure that a custom
identity asserter can handle identity tokens sent by an extend client. Conversely, ensure that a
custom identity transformer sends a token that the extend proxy can handle.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 11

ORACLE

Chapter 5
Associating Identities with Extend Services

Custom Identity Token Rollout

Interoperability issues may occur between extend clients and extend proxies during the roll out
a custom identity token solution. In this scenario, as extend proxies are migrated to use a
custom identity asserter, some proxies continue to use the default asserter until the rollout
operation is completed. Likewise, as extend clients are migrated to use a custom identity
transformer, clients continue to use the default transformer until the rollout operation is
completed. In both cases, the extend clients and extend proxies must be able to handle the
default token type until the rollout operation is complete.

One strategy for such a scenario is to have a custom identity asserter that accepts the default
token types temporarily as clients are updated. The identity asserter checks an external source
for a policy that indicates whether those tokens are accepted. After all clients have been
updated to use a custom token, change the policy to accept the custom tokens.

Associating Identities with Extend Services

Subject scoping allows remote cache and remote invocation service references that are
returned to a client to be associated with the identity from the current security context. By
default, subject scoping is disabled, which means that remote cache and remote invocation
service references are globally shared.

With subject scoping enabled, clients use their platform-specific authentication APIs to
establish a security context. A Subj ect or Pri nci pal is obtained from the current security
context whenever a client creates a NanmedCache and | nvocat i onServi ce instance. All requests
are then made for the established Subj ect or Pri nci pal .

@® Note

You can use security object types other than the types that are predefined in POF. See
Using Custom Security Types.

For example, if a user with a trader identity calls CacheFact ory. get Cache("t rade- cache") and
a user with the manager identity calls CacheFact ory. get Cache("trade- cache"), each user
gets a different remote cache reference object. Because an identity is associated with that
remote cache reference, authorization decisions can be made based on the identity of the
caller. See Implementing Extend Client Authorization.

For Java and C++ clients, enable subject scope in the client-side t angosol - coher ence-
override. xm file using the <subj ect - scope> element within the <securi ty- confi g> node. For
example:

<?xm version='1.0"?>

<coherence xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- operati onal - confi g"
xsi : schemalLocation="http://xm ns. oracl e. con coher ence/ coherence-operati onal -config
coherence- operational - config. xsd">
<security-config>
<subj ect - scope>t r ue</ subj ect - scope>
</security-config>
</ coher ence>

For .NET clients, enable subject scope in the client-side t angosol - coher ence- overri de. xm
file using the <pri nci pal - scope> element within the <securi ty- confi g> node. For example:

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE’

Chapter 5
Implementing Extend Client Authorization

<?xm version="1.0"?>

<coherence xm ns="http://schenmas. tangosol .com cache"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://schemas. t angosol . conf cache
assenbl y: // Coher ence/ Tangosol . Confi g/ coher ence. xsd" >
<security-config>

<princi pal - scope>t rue</ princi pal - scope>

</security-config>

</ coher ence>

Implementing Extend Client Authorization

Oracle Coherence*Extend authorization controls which operations can be performed on a
cluster based on an extend client's access rights. Authorization logic is implementation-specific
and is enabled on a cluster proxy. The code samples in this section are based on the Java
authorization example, which is included in the examples that are delivered as part of the
distribution. The example demonstrates a basic authorization implementation that uses the
Principal obtained from a client request and a role-based policy to determine whether to allow
operations on the requested service. Download the examples for the complete implementation.
This section includes the following topics:

e Overview of Extend Client Authorization

e Create Authorization Interceptor Classes

« Enable Authorization Interceptor Classes

Overview of Extend Client Authorization

Interceptor classes provide the ability to implement client authorization. An extend proxy calls
the interceptor classes before a client accesses a proxied resource (cache, cache service, or
invocation service). Interceptor classes are implementation-specific. They must provide the
necessary authorization logic before passing the request to the proxied resources.

Figure 5-2 shows a conceptual view of extend client authorization.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE’

Chapter 5
Implementing Extend Client Authorization

Figure 5-2 Conceptual View of Extend Client Authorization

Extend Client Cluster
(Java, C++,C#) Proxy
' 4
w W
w 4
TCP — TP —— TCP
Initiator Acceptor

</>

.class

Authentication Interceptor
Classes

Cluster
Resources

Create Authorization Interceptor Classes

To create interceptor classes for both a proxied cache service and a proxied invocation service,
implement the CacheServi ce and | nvocat i onSer vi ce interfaces, respectively. Or, as is more
common, extend a set of wrapper classes: com t angosol . net. W apper CacheSer vi ce (with
com t angosol . net. cache. W apper NamedCache) and

com t angosol . net. Wapper | nvocat i onServi ce. The wrapper classes delegate to their
respective interfaces and provide a convenient way to create interceptor classes that apply
access control to the wrapped interface methods.

Example 5-3 is taken from the Oracle Coherence examples. The example demonstrates
creating an authorization interceptor class for a proxied invocation service by extending

W apper I nvocat i onSer vi ce. It wraps all | nvocat i onSer vi ce methods on the proxy and applies
access controls based on the Subj ect passed from an extend client. The implementation

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE Chapter 5
Implementing Extend Client Authorization

allows only a Pri nci pal with a specified role name to access the | nvocat i onServi ce
methods.

Example 5-3 Extending the WrapperCacheService Class for Authorization

public class EntitledCacheService
ext ends W apper CacheServi ce

public EntitledCacheService(CacheService service)

{

super (service);

}

publ i ¢ NamedCache ensureCache(String sName, C assLoader | oader)

{
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_READER) ;

return new Entitl edNamedCache(super. ensureCache(sNane, |oader));

}

public void rel easeCache(NamedCache map)

{
if (map instanceof EntitledNamedCache)

{
Entitl edNamedCache cache = (EntitledNanedCache) nmap;

Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_READER) ;
map = cache. get NanedCache();

}

super . rel easeCache(map);

}

public void destroyCache(NamedCache map)

{
if (map instanceof EntitledNamedCache)

{
Entitl edNamedCache cache = (EntitledNanedCache) nmap;

Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_ADM N) ;
map = cache. get NanedCache();

}
super . dest royCache(map) ;

}
}

Notice that the Enti t | edCacheServi ce class requires a named cache implementation. The
W apper NamedCache class is extended and wraps each method of the NanedCache instance.
This allows access controls to be applied to different cache operations.

@® Note

Much of the functionality that is provided by the W apper NanmedCache class is also
covered by the St or ageAccessAut hori zer interface, which provides a better and
simplified way to authorize cluster operations. See Authorizing Access to Server-Side

Operations .

Example 5-4 is a code excerpt taken from the Oracle Coherence examples. The example
demonstrates overriding the NamedCache methods and applying access checks before allowing
the method to be executed. See the examples for the complete class.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 9 of 11

ORACLE Chapter 5
Implementing Extend Client Authorization

Example 5-4 Extending the WrapperNamedCache Class for Authorization

public class EntitledNamedCache
ext ends W apper NanedCache

{
public EntitledNamedCache(NamedCache cache)

{
super (cache, cache. get CacheName());

}

public Object put(Chject oKey, Object oValue, long cMIlis)

{
Securit yExanpl eHel per. checkAccess(SecurityExanpl eHel per. ROLE_WRI TER) ;

return super. put (oKey, oValue, cMIlis);

}

public Object get(Chject oKey)

{
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_READER) ;

return super. get (oKey);

}

public void destroy()

{
Securit yExanpl eHel per. checkAccess(SecurityExanpl eHel per. ROLE_ADM N) ;

super . destroy();

Example 5-5 is taken from the Oracle Coherence examples. The example demonstrates
creating an authorization interceptor class for a proxied cache service by extending the
W apper CacheSer vi ce class. It wraps all CacheSer vi ce methods on the proxy and applies
access controls based on the Subj ect passed from an extend client. The implementation
allows only a Pri nci pal with the specified role to access the CacheSer vi ce methods

Example 5-5 Extending the WrapperinvocationService Class for Authorization

public class EntitledlnvocationService
extends Wapper|nvocationService

{
public EntitledlnvocationService(lnvocationService service)
{
super (service);
}
public void execute(lnvocabl e task, Set setMenbers, InvocationCbserver
observer)
{

Securit yExanpl eHel per. checkAccess(SecurityExanpl eHel per. ROLE_VWRI TER)
super . execut e(task, setMenbers, observer);

}

public Map query(lnvocable task, Set setMenbers)

{
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_WRI TER)
return super.query(task, setMenbers);
}
}

When a client attempts to use a remote invocation service, the proxy calls the query() method
on the Enti tl edl nvocati onServi ce class, rather than on the proxied | nvocati onServi ce

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 10 of 11

ORACLE Chapter 5
Implementing Extend Client Authorization

instance. The Entitl edl nvocati onServi ce class decides to allow or deny the call. If the call is
allowed, the proxy then calls the query() method on the proxied I nvocat i onSer vi ce instance.

Enable Authorization Interceptor Classes

To enable interceptor classes for a proxied cache service and a proxied invocation service, edit
a proxy scheme definition and add a <cache- servi ce- pr oxy> element and <i nvocat i on-

servi ce- proxy> element, respectively. Use the <cl ass- nane> element to enter the fully
qualified name of the interceptor class. Specify initialization parameters using the <i ni t -

par ans> element. See cache-service-proxy and invocation-service-proxy in Developing
Applications with Oracle Coherence for detailed information about using these elements.

The following example demonstrates enabling interceptor classes for both a proxied cache
service and a proxied invocation service. The example uses the interceptor classes from
Example 5-3 and Example 5-5.

<proxy- schene>

<proxy-config>
<cache- servi ce- proxy>
<cl ass- nane>
com tangosol . exanpl es. security. Entitl edCacheService
</ cl ass- name>
<init-parans>
<init-paranp
<paramtype>com t angosol . net . CacheServi ce</ paramt ype>
<par am val ue>{ servi ce} </ param val ue>
</init-paranp
</init-parans>
</ cache- servi ce- proxy>
<i nvocati on- servi ce- pr oxy>
<cl ass- nane>
com tangosol . exanpl es. security. Entitledl nvocati onService
</ cl ass- name>
<init-parans>
<init-paranmp
<paramtype>com t angosol . net. I nvocati onServi ce</ paramt ype>
<par am val ue>{ servi ce} </ param val ue>
</init-paranp
</init-parans>
</invocation-service-proxy>
</ proxy-confi g>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 11 of 11

Using SSL/TLS to Secure Communication

Oracle Coherence supports using the Transport Layer Security (TLS) protocol to secure
communication between entities (typically clients and servers) over a network. TLS supersedes
the now deprecated Secure Sockets Layer (SSL) protocol.

In Coherence, TLS is configured using Socket Providers, which you can modify to meet your
specific security scenarios. Examples for these configuration options are provided throughout
this chapter.

@® Note

Although the terms TLS, SSL, and SSL/TLS are used interchangeably throughout
Coherence documentation, it is expected and encouraged that you use a currently
supported version of TLS, not SSL, to secure communication in Coherence.

This chapter includes the following sections:

Overview of SSL/TLS

SSL/TLS is a security protocol that secures communication between entities (typically,
clients and servers) over a network. SSL/TLS works by authenticating clients and servers
using digital certificates and by encrypting and decrypting communication using unique
keys that are associated with authenticated clients and servers.

Coherence Socket Providers

Coherence communication is configured using Socket Providers. The <socket - pr ovi der s>
section of the operational configuration file contains zero or more named <socket -

provi der > elements.

Resolving the Socket Provider URL
Some elements in a socket provider configuration are URLs. For example, the <ur| >
element within the <key- st or e> element.

Using a Socket Provider in Configuration

You can configure various places in Coherence configuration files using <socket -

provi der>. You can configure <socket - pr ovi der > in one of two ways: either a named
reference to a named socket provider in the operational configuration file, or as an in-line
socket-provider configuration.

Using SSL to Secure Cluster Communication

In a Coherence cluster, all the cluster members communicate with each other over TCP in
a peer-to-peer network. Each JVM is both a server that receives connections from other
cluster members and a client that connects to other cluster members.

Using SSL to Secure Extend and gRPC Client Communication
Oracle Coherence supports SSL to secure communication between Coherence Extend
and gRPC clients and a cluster side Extend or gRPC proxy.

Configure a Default Socket Provider for a Cache Configuration File
You can configure a socket provider in the <def aul t s> section of the cache configuration
file. This socket provider will then apply to all the schemes in that configuration file that do

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 50

ORACLE’

Chapter 6
Overview of SSL/TLS

not specifically configure their own socket provider, such as any remote cache services,
remote invocation services, proxy services, gRPC services, and so on.

Configuring a .NET Client-Side Stream Provider

Securing the C++ Client with SSL/TLS

The Coherence C++ Extend Client does not officially support SSL/TLS. However, you can
use one of the following options to work around this limitation to run C++ extend clients
securely against an SSL/TLS enabled Coherence proxy server.

Using SSL to Secure Federation Communication

Oracle Coherence supports using SSL to secure communication between cluster
participants in a federated cluster. Communication is secured between federated service
members and requires SSL to be configured on each cluster participant.

Coherence PeerX509 Algorithm

Oracle Coherence includes a proprietary peer trust algorithm, PeerX509, which works by
assuming trust (and only trust) of the certificates that are in the trust manager keystore. It
also leverages the peer-to-peer protocol features of TCMP. Specifically, for the SSL
negotiation to succeed, the certificate received must be the same as one of the certificates
held by the trust manager .

Specifying a Global Socket Provider

You can configure a global socket provider in the Coherence operational configuration file.
When set, every server or client socket that Coherence creates will use this configuration
unless it has been overridden with a specific socket provider of its own.

Specifying Passwords in Socket Provider Configuration

Java keystores and private keys can be secured with credentials, typically a password.
The socket provider configuration provides several ways to specify a password. It is up to
the application developer to choose the most suitable approach based on the required
level of security versus simplicity of configuration.

Controlling Cipher Suite and Protocol Version Usage

Using Host Name Verification

Configuring Client Authentication
You can use the <cl i ent - aut h> element to specify whether a SSL/TLS socket provider
should use one-way or two-way SSL/TLS authentication.

Using Private Key and Certificate Files

Using Custom Keystore, Private Key, and Certificate Loaders

Using Refreshable KeyStores, Private Keys, and Certificates

Overview of SSL/TLS

SSL/TLS is a security protocol that secures communication between entities (typically, clients
and servers) over a network. SSL/TLS works by authenticating clients and servers using digital
certificates and by encrypting and decrypting communication using unique keys that are
associated with authenticated clients and servers.

This section covers a brief description of SSL/TLS and some of the terms that will be used in
the rest of this chapter.

Establishing Identity

The identity of an entity is established by using a digital certificate and public and private
encryption keys. The digital certificate contains general information about the entity and
contains the public encryption key embedded within it.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 50

ORACLE

Chapter 6
Overview of SSL/TLS

In Coherence, identity is controlled by an identity manager, which corresponds to an identity
manager in a Java SSL context.

Establishing Trust

A digital certificate is verified by a Certificate Authority (CA) and signed using the CA's digital
certificate. The CA's digital certificate establishes trust that the entity is authentic. When a
connection is made, the received certificate is verified against the CA certificate's configured
trust store or the JVM's default trust store.

In Coherence, trust is controlled by a trust manager configuration, which corresponds to a trust
manager in a Java SSL context.

Encrypting and Decrypting Data

The digital certificate for an entity contains a public encryption key that is paired with a private
encryption key. Certificates are passed between entities during an initial connection. Data is
then encrypted using the public key. Data that is encrypted using the entity public key can only
be decrypted using the entity private key. This ensures that only the entity that owns the public
encryption key can decrypt the data.

One-Way Authentication and Two-Way Authentication

SSL communication between clients and servers is set up using either one-way or two-way
authentication.

In one-way authentication, a server is required to identify itself to a client by sending its digital
certificate for authentication. The client is not required to send the server a digital certificate
and remains anonymous to the server.

In two-way authentication, both the client and the server must send their respective digital
certificates to each other for mutual authentication. Two-way authentication provides stronger
security by assuring that the identity on each side of the communication is known. Two-way
TLS is also called mutual TLS (mTLS).

Oracle Coherence supports both one-way and two-way SSL. Configuration depends on
various factors, such as whether this is for cluster membership, Extend or gRPC proxies, or
Extend or gRPC clients.

Certificates With Extended Usage

You can add a extended usage field to restrict the uses of a certificate. The extended usage is
typically one or more values. When securing Coherence communication, the extended usage
must include the correct usage, typically either server Aut h or cl i ent Aut h.

The values of extended usage will differ depending on the type of Coherence communication
and the specific SSL scenario. If an application only has access to certificates that are single
use (that is, only server Aut h or only cl i ent Aut h), then this restricts which available SSL
configurations can be used and whether mTLS or one-way TLS can be used.

The following list shows the extended usage required for certificates used to secure different
parts of Coherence.

e Cluster Membership using mTLS requires both server Aut h and cl i ent Aut h
e Cluster Membership using one-way SSL requires server Aut h

* Extend or gRPC proxies require server Auth

e Extend or gRPC clients require cl i ent Aut h

* Federation using mTLS requires both server Auth and cl i ent Aut h

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 50

ORACLE

Chapter 6
Coherence Socket Providers

* Federation using one-way SSL requires server Aut h

¢ Management over REST HTTP endpoint requires server Aut h
e Metrics HTTP endpoint requires server Aut h

e Coherence REST HTTP proxies require server Aut h

Coherence has a custom trust protocol called PeerX509 which is similar to mTLS but does not
validate extended usage. Socket providers configured with this algorithm will work with any
extended usage certificate. See Coherence PeerX509 Algorithm.

Coherence Socket Providers

Coherence communication is configured using Socket Providers. The <socket - pr ovi der s>
section of the operational configuration file contains zero or more named <socket - pr ovi der >
elements.

To name the <socket - pr ovi der s> element, set its i d attribute. For example, if you specify
<socket - provi ders id="ssl -config">, the socket provider configuration is named ssl -
confi g and it can then be referenced from other parts of the Coherence operational or cache
configuration files.

There are different types of socket providers in Coherence, and to use SSL, an <ssl > socket
provider needs to be configured. Depending on the required security scenario, there are
several XML elements that can be added to the <ssl > element. The most common are

<i dentity-manager > and <t rust - manager >.

Example 6-1 shows a basic mTLS <ssl > socket provider that is configured with an <i dentity-

manager > keystore named ser ver . j ks that holds the private key and certificate to establish this
JVMs identity, and a <t r ust - manager > keystore named tr ust . j ks that holds the CA certificate
to validate the certificates of client connections.

Example 6-1 Basic mTLS socket provider configuration

<socket - provi der id="ssl-config">
<ss| >
<identity-nmanager >
<key- st or e>
<url>file:server.jks</url>
</ key- st ore>
</identity-mnager>
<t rust - manager >
<key- st or e>
<url>file:trust.jks</url>
</ key- st ore>
</trust-manager >
</ssl >
</ socket - provi der >

Although Example 6-1 uses Java keystores, it is also possible to configure a socket provider to
directly use private key and certificate files as well as plug in custom providers that can obtain
keystores, keys or certificates from any location. See Using Private Key and Certificate Files.

Additionally, Example 6-1 does not configure any passwords for keystores or keys. Configuring
passwords is covered in Specifying Passwords in Socket Provider Configuration.

» Configuring an Identity Manager

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 50

ORACLE

Chapter 6
Coherence Socket Providers

« Configuring a Trust Manager
When configuring a socket provider, a trust manager requires one or more CA certificates
to verify trust. These can be provided either in a Java keystore, or individually as separate
certificate files.

Configuring an Identity Manager

When configuring an <i denti t y- manager > element of a socket provider, instead of the

<keyst or e> element, the <key> and <cert > elements can be used to supply the private key a
certificate file locations. The value for both the <key> and <cert > element is a URL from which
to load the key or certificate data.

Example 6-2 shows an <i denti t y- manager > configuration that uses a private key loaded from
the / coher ence/ security/client. pemfile and a certificate loaded from the /
coherence/ security/client.cert file.

Example 6-2 Sample Identity Manager Using a Private Key and a Certificate File

<socket - provi der >
<ss| >
<identity-nmanager >
<key>file:/coherencel/security/client.penx/key>
<cert>file:/coherence/security/client.cert</cert>
</identity-manager>
</ssl >
</ socket - provi der >

When configuring an <i dent i t y- manager > element, the <keyst or e> element, and the <key>
and <cert > elements are mutually exclusive; either configure a keystore, or a key and
certificate. The Coherence operational configuration XSD validation does not allow both.

Configuring a Trust Manager

When configuring a socket provider, a trust manager requires one or more CA certificates to
verify trust. These can be provided either in a Java keystore, or individually as separate
certificate files.

@® Note

Some of the following examples use hard coded password values. In production
environments, avoid using hard coded passwords, which are insecure. Coherence has
several alternative ways to provide passwords. See Specifying Passwords in Socket
Provider Configuration.

Using a Java keystore

To use a Java keystore containing the CA certificates, configure the <key- st or e> element
inside the <t r ust - manager > element.

In Example 6-3, the <t r ust - nanager > element loads the CA certificates from a keystore file
namedtrust.jks.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 50

ORACLE

Chapter 6
Resolving the Socket Provider URL

Example 6-3 <trust-nmanager > configuration

<i dentity- manager >
<key- st ore>
<url>file:trust.jks</url>
</ key-store>
</identity-manager>

Password Protected keystores

If the keystore is password protected, then specify the password using one of the password
configuration options in the <key- st or e> element.

In Example 6-4, the configuration uses the <passwor d> element in the <key- st or e> to set the
password as f 00.

Example 6-4 <trust-manager > configuration whose keystore is password protected

<t rust - manager >
<key- st or e>
<url>file:server.jks</url>
<passwor d>f oo</ passwor d>
</ key-store>
</trust-manager >

Using Certificate Files

To use the certificate files directly, configure the <cert > elements inside the <t r ust - manager >
element. The <trust - manager > element can contain multiple <cert > elements.

In Example 6-5, the <t r ust - nanager > loads the certificates from the files named ca- one. cert
and ca-two. cert.

Example 6-5 <trust-nmanager > configuration using certificate files

<trust - nanager >
<cert>ca-one.cert</cert>
<cert>ca-two.cert</cert>

</trust-manager >

Resolving the Socket Provider URL

Some elements in a socket provider configuration are URLs. For example, the <ur| > element
within the <key- st or e> element.

The following is an explanation of how the values of these elements are processed to locate
the resources they refer to:

1. The value of the XML element is converted to a Java URI.

2. If the value is a valid URI and has a URI scheme, for example file: orhttp:, thenitis
assumed to be a valid URI and Coherence will try to open a stream to this URI to read the
data.

3. If the value has no scheme, then Coherence treats it as a file on the file system or on the
class path. Coherence will first assume that the value is a file name (either fully qualified or

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 6 of 50

ORACLE Chapter 6
Using a Socket Provider in Configuration

relative to the working directory) and try to locate that file. If this fails, Coherence will try to
find the same file as a resource on the class path.

Using a Socket Provider in Configuration

You can configure various places in Coherence configuration files using <socket - provi der >.
You can configure <socket - provi der > in one of two ways: either a named reference to a
named socket provider in the operational configuration file, or as an in-line socket-provider
configuration.

Example 6-6 demonstrates an Extend proxy service in a cache configuration file. The proxy
scheme is configured with a <socket - pr ovi der > element with a value of nt| s which
references the socket provider named nt | s in the operational configuration file.

Example 6-6 Extend proxy service that references nt | s socket provider

<pr oxy- schene>
<schene- nane>pr oxy</ schene- nane>
<servi ce- name>Pr oxy</ servi ce- nane>
<accept or - confi g>
<t cp- acceptor>
<socket - provi der>nt | s</ socket - provi der >
</tcp-acceptor>
</ acceptor-config>
</ pr oxy- schene>

Example 6-7 demonstrates an Extend proxy service in a cache configuration file. The proxy
scheme is configured with a <socket - pr ovi der > element containing the full socket provider
configuration.

Example 6-7 Extend proxy service with inline socket provider configuration

<pr oxy- schene>
<schene- name>pr oxy</ schene- name>
<servi ce- nane>Pr oxy</ servi ce- name>
<accept or - confi g>
<t cp- accept or >
<socket - provi der >
<i dentity-manager >
<key- st or e>
<url>file:server.jks</url>
</ key- st ore>
</identity-manager>
<t rust - manager >
<key- st or e>
<url>file:trust.jks</url>
</ key- st ore>
</trust-manager>
</ socket - provi der >
</tcp-acceptor>
</ acceptor-config>
</ pr oxy- schene>

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 7 of 50

ORACLE

Chapter 6
Using a Socket Provider in Configuration

* Configure a Socket Provider at Runtime
When using named socket providers configured in the operational configuration file, you
can change the socket provider used in a configuration at runtime based on Java system
properties.

Configure a Socket Provider at Runtime

When using named socket providers configured in the operational configuration file, you can
change the socket provider used in a configuration at runtime based on Java system
properties.

The optional syst em property attribute of the <socket - pr ovi der > element specifies the name
of the system property used to obtain the socket provider name at runtime. This allows
flexibility to choose at runtime what sort of sockets are used. For example, developers can use
plain TCP in development testing, without worrying about creating keys and certificates. Then,
later in system testing and production, they can specify an SSL socket provider name.

Example 6-8 shows an Extend proxy service in a cache configuration file. The proxy scheme is
configured with a <socket - pr ovi der > element without a value but with a syst em property
attribute set to proxy. socket . provi der . By default, as the <socket - pr ovi der > element has no
value, no provider will be set and the proxy will use plain TCP sockets.

Example 6-8 Configuration for an Extend proxy service configured to use plain TCP
sockets

<pr oxy- schene>
<schene- nane>pr oxy</ schene- nane>
<servi ce- name>Pr oxy</ servi ce- nane>
<acceptor-confi g>
<t cp-acceptor>
<socket - provi der system property="proxy.socket. provider"/>
</tcp-acceptor>
</ acceptor-config>
</ pr oxy- schene>

If the JVM is started with the system property set, then that property value will be used as the
socket provider name. For example, starting Coherence with - Dpr oxy. socket . provi der=nt| s
will use nt | s as the socket provider name (assuming there is a socket provider named ntl s
configured in the operational configuration file).

Example 6-9 shows an Extend proxy service in a cache configuration file. The proxy scheme is
configured with a <socket - pr ovi der > element with a value of nt | s and with a syst em
property attribute set to proxy. socket . provi der. By default, the socket provider named nt | s
from the operational configuration will be used. If the proxy. socket . provi der system property
is set, then the property value will be used as the socket provider name.

Example 6-9 Configuration for an Extend proxy service configured to use a
referenced socket provider

<pr oxy- schene>
<schene- nane>pr oxy</ schene- nane>
<servi ce- name>Pr oxy</ servi ce- nane>
<accept or - confi g>
<t cp-acceptor>
<socket - provi der system property="proxy.socket. provi der">
mis

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 8 of 50

ORACLE Chapter 6
Using SSL to Secure Cluster Communication

</ socket - provi der >
</tcp-acceptor>
</ acceptor-config>
</ pr oxy- schene>

Using SSL to Secure Cluster Communication

In a Coherence cluster, all the cluster members communicate with each other over TCP in a
peer-to-peer network. Each JVM is both a server that receives connections from other cluster
members and a client that connects to other cluster members.

In addition, it is important to realize that TCMP is a peer-to-peer protocol that generally runs in
trusted environments where many cluster nodes are expected to remain connected with each
other. SSL negotiation is performed once, when the connection is made, and then the
connection remains connected for the lifetime of the two cluster member JVMs involved. When
configuring SSL, carefully consider the implications on key and certificate administration and
on performance.

The socket provider used to control cluster traffic is configured by setting the <socket -
provi der > element inside the <uni cast - | i st ener > element of the cluster configuration in the
operational configuration file.

In Example 6-10, the XML operational configuration file sets the unicast socket provider name
to ssl - confi g which is a reference to the socket provider named ssl - confi g in the <socket -
provi der s> section.

The actual socket provider configuration will depend on the security requirements of the
application.

Example 6-10 Configuration where clusters use a socket provider to configure
SSLITLS

<?xm version='1.0"?>

<coherence xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. con coher ence/ coher ence- operati onal - config"
xsi : schemaLocation="http://xm ns. oracl e. conf coher ence/ coher ence-
operational -config
coher ence- operati onal -confi g. xsd">
<cl uster-config>
<uni cast -1 i st ener>
<socket - provi der >ssl - confi g</ socket - pr ovi der >
</ uni cast-|istener>

<socket - provi der s>
<socket - provi der id=ssl-config">

<ss| >
<I-- Actual config omtted for brevity -->
</ssl >

</ socket - provi der >
</ socket - provi der s>
</cluster-config>
</ coherence>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 9 of 50

ORACLE Chapter 6
Using SSL to Secure Cluster Communication

e Cluster Communication Using mTLS
The most common and recommended configuration for using SSL to secure cluster
communication is mTLS (or two-way TLS). To configure an <ssl > socket provider for
mTLS, both identity and trust must be configured.

e Cluster Communication with One-Way SSL
You can configure one-way SSL for cluster members so that a cluster member will verify
trust of a server certificate that it receives when making a connection to another cluster
member. A cluster member will not verify trust for a member that connects to it.

Cluster Communication Using mTLS

The most common and recommended configuration for using SSL to secure cluster
communication is mTLS (or two-way TLS). To configure an <ssl > socket provider for mTLS,
both identity and trust must be configured.

In Example 6-11, the socket provider nt | s- confi g is configured with an <i denti t y- manager >
element containing a keystore named server. j ks and a <t r ust - manager > element containing
a keystore named trust . j ks. The <uni cast -1 i st ener > <socket - pr ovi der > element is then
setto ntls-confi g to reference the SSL socket provider.

Example 6-11 Configuration for clusters communicating over mTLS
<?xm version="1.0"?>

<coherence xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. cont coher ence/ coher ence- oper ati onal -confi g"
xsi :schemaLocation="http://xm ns. oracl e. conl coher ence/ coher ence-
operational -config
coher ence- operati onal -confi g. xsd">
<cl uster-config>
<uni cast -1 i st ener>
<socket - provi der>nt | s- conf i g</ socket - provi der >
</uni cast-listener>

<socket - provi der s>
<socket - provi der id=ntls-config">
<ss| >
<identity-nmanager >
<key- st or e>
<url>file:server.jks</url>
</ key-store>
</identity-manager>
<trust - manager >
<key- st or e>
<url>file:trust.jks</url>
</ key-store>
</trust-manager >
</ssl >
</ socket - provi der >
</ socket - provi der s>
</cluster-config>
</ coher ence>

By default, when a <ssl > socket provider is configured with both identity and trust, Coherence
will create a Java SSL context that is configured for mTLS.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 10 of 50

ORACLE Chapter 6
Using SSL to Secure Cluster Communication

@® Note

When using a certificate with extended usage set in this configuration, the extended
usage must include both server Aut h and cl i ent Aut h. The socket provider
configuration is used to configure a single Java SSL Context used by both the cluster
member's server sockets (used to receive connections from other cluster members)
and its client sockets (used to connect to other cluster members).

Cluster Communication with One-Way SSL

You can configure one-way SSL for cluster members so that a cluster member will verify trust
of a server certificate that it receives when making a connection to another cluster member. A
cluster member will not verify trust for a member that connects to it.

Only a single socket provider can be configured for the unicast listener, therefore the <ssl >
socket provider must be configured with both identity and trust, the same as with mTLS. To
specify one-way SSL, add a <cl i ent - aut h> element and set its value ot none.

The <cl i ent - aut h> element configures the corresponding setting in the Java SSL context
which determines whether the client must send a certificate. It has three possible values:

* none - the client does not send a certificate (even if configured with an identity key and
certificate)

If you want clusters to communicate over one-way SSL, then set <cl i ent - aut h> to none.
* want ed - the client may send a certificate if it has one
e required - the client must send a certificate.

If you want clusters to communicate over mTLS, then set <cl i ent - aut h> to requi r ed.

Example 6-12 shows the unicast listener configuration for one-way SSL.

Example 6-12 Unicast Listener Configuration for One-way SSL
<?xm version="1.0"?>

<coherence xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi:schemaLocation="http://xm ns. oracl e. conl coher ence/ coher ence-
operational -config
coher ence- operational - confi g. xsd">
<cl uster-config>
<uni cast-1i st ener>
<socket - provi der >one- way- confi g</ socket - pr ovi der >
</uni cast-listener>

<socket - provi der s>
<socket - provi der i d=one-way- confi g>
<ss| >

<identity-manager >

<key- st ore>
<url>file:server.jks</url>

</ key-store>

</identity-manager>

<trust - manager >

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 11 of 50

ORACLE’

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

<key- st ore>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager >
<I-- This elenment changes the configuration to one-way SSL -->
<cl i ent - aut h>none<cl i ent - aut h>
</ssl >
</ socket - provi der >
</ socket - provi der s>
</cluster-config>
</ coherence>

® Note

When using a certificate with extended usage set in this configuration, the extended
usage must include server Aut h. In one-way SSL, only the server sends a certificate to
the client, so the certificate must be valid for use as a server certificate.

Using SSL to Secure Extend and gRPC Client Communication

Oracle Coherence supports SSL to secure communication between Coherence Extend and
gRPC clients and a cluster side Extend or gRPC proxy.

When SSL is used to secure communication between clients and proxies, it requires
configuration on both the client side and the cluster side. SSL is supported for both Java
and .NET Extend clients, but not for C++ Extend clients (without additional configuration as
described in Securing the C++ Client with SSL/TLS. SSL is supported for all types of gRPC
client.

Both mTLS and one-way SSL can be configured for clients and proxies.

e Configuring a Cluster-Side Extend Proxy SSL Socket Provider
You can configure SSL in the cluster-side cache configuration file by defining an SSL
socket provider for a proxy service.

* Configuring the Cluster-Side grRPC Proxy SSL Socket Provider
The Coherence gRPC Proxy is configured using an internal proxy cache configuration file.

* Configuring a Java Extend or gRPC Client SSL Socket Provider
You can configure SSL in the Extend or gRPC client cache configuration file by defining an
SSL socket provider for a remote scheme.

Configuring a Cluster-Side Extend Proxy SSL Socket Provider

You can configure SSL in the cluster-side cache configuration file by defining an SSL socket
provider for a proxy service.

There are two options for configuring an SSL socket provider depending on the level of
granularity that is required.

« Configure the socket provider by proxy service, where each proxy service defines an SSL
socket provider configuration or references a predefined configuration that is included in
the operational configuration file.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 12 of 50

ORACLE

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

e Configure all proxy services to use the same SSL socket provider configuration by
configuring a socket provider in the cache configuration <def aul t s> section.

A proxy service that provides its own configuration overrides the configuration in the

<def aul t s> section. The socket provider configuration in the <def aul t s> section can reference
a named socket provider configuration that is included in the operational configuration file or be
a full in-line socket provider configuration.

@® Note

When using a certificate with extended usage set in a cluster side proxy socket
provider configuration, the extended usage must include ser ver Aut h. A proxy opens
server sockets to receive client connections so the certificate must be valid for server
use.

Configure an SSL Socket Provider per Extend Proxy Service

To configure an SSL socket provider for an Extend proxy service, add a <socket - pr ovi der >
element within the <t cp- accept or > element of each <pr oxy- schene> definition.

Example 6-13 demonstrates a proxy scheme that configures an SSL socket provider directly in
the proxy configuration in the cache configuration file.

Example 6-13 Configuration for an SSLITLS socket provider per Extend proxy service

<pr oxy- schene>
<servi ce- name>Pr oxySer vi ce</ servi ce- name>
<acceptor-config>
<t cp-accept or >
<socket - provi der >
<ssl >
<i dentity-nmanager>
<key- st ore>
<url>file:server.jks</url>
</ key- st ore>
</identity-nmanager>
<trust - nmanager >
<key- st ore>
<url>file:trust.jks</url>
</ key- st ore>
</trust-manager>
</ssl>
</ socket - pr ovi der >
</tcp-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- schene>

Example 6-14 demonstrates configuring the proxy in the cache configuration to reference a
named socket provider in the operational configuration file. In this case, the proxy will use the
socket provider named ssl - confi g.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 13 of 50

ORACLE

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

Example 6-14 Configuration for a single SSLITLS socket provider for all Extend proxy
services

<proxy- schene>
<servi ce- nane>Pr oxySer vi ce</ servi ce- nane>
<acceptor-config>
<t cp-acceptor>
<socket - provi der >ssl - confi g</ socket - pr ovi der >
</tcp-acceptor>
</ acceptor-config>
<aut ostart>true</autostart>
</ pr oxy- schene>

Extend or gRPC Proxy with mTLS

A proxy can be configured for mTLS using a <ssl> socket provider configured with both identity
and trust.

Example 6-15 shows a socket provider configured for mTLS. By default, when a socket
provider has both identity and trust configured, it will configure the SSL context to use two-way
SSL.

® Note

If a proxy is configured for mTLS, then the client must also be configured for mTLS.

Example 6-15 Configuration for an Extend or gRPC Proxy using mTLS

<socket -provider id="ntls-config">
<ssl >
<identity-nmanager >
<key- st ore>
<url>file:server.jks</url>
</ key-store>
</identity-nanager>
<trust - manager >
<key- st or e>
<url>file:rtrust.jks</url>
</ key-store>
</trust-mnager >
</ssl>
</ socket - provi der >

Extend or gRPC Proxy with One-Way SSL

A proxy can be configured for one-way SSL using a <ssl > socket provider configured with only
identity. In one-way SSL, the server sends a certificate to the client, which the client verifies
against its trust store. When configuring one-way SSL it is important to set the socket provider
configuration correctly, that is, the server only has <i dentity- nmanager > configured and the
client has a <t r ust - manager > configured.

Example 6-16 shows a cluster side proxy socket provider configured for one-way SSL.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 14 of 50

ORACLE

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

Example 6-16 Configuration for an Extend or gRPC Proxy using one-way SSLITLS

<socket - provi der id="oneway- proxy-config">
<ss| >
<identity-nanager >
<key- st or e>
<url>file:server.jks</url>
</ key-store>
</identity-manager>
</ssl >
</ socket - provi der >

An alternative way to configure a cluster side proxy to use one-way SSL in a socket provider
configured with both <i denti t y- manager > and <t r ust - manager > is to set the <cl i ent - aut h>
element to none.

Example 6-17 shows a cluster side socket provider configured with both identity and trust
which would normally be mTLS, but with the <cl i ent - aut h> element set to none will be one-
way and not require the client to send a certificate.

If a proxy is configured for one-way SSL, then the client may be configured with either an
MTLS or a one-way configuration. If the client is configured as two-way (that is, it has identity
and trust) it will still connect and verify the server certificate, but it will not send its own
certificate.

Example 6-17 Configuration for an Extend or gRPC Proxy using one-way SSLITLS by
setting <cl i ent - aut h> to none

<socket - provi der i d="one-way-config">
<ss| >
<i dentity-manager >
<key- st ore>
<url>file:server.jks</url>
</ key-store>
</identity-nanager>
<trust - manager >
<key- st ore>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager >
<I'-- This elenment changes the configuration to one-way SSL -->
<client -aut h>none<cl i ent - aut h>
</ssl>
</ socket - provi der >

Configuring the Cluster-Side gRPC Proxy SSL Socket Provider

The Coherence gRPC Proxy is configured using an internal proxy cache configuration file.

To configure SSL for the gRPC proxy, configure a named socket provider in the operational
configuration file, then set the coherence. grpc. server. socket provi der system property (or
environment variable) to the name of that socket provider.

The Coherence operational configuration contains a special gRPC socket provider
configuration named gr pc- i nsecur e. This configures the default gRPC Java insecure
credentials for use by the proxy or client.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 15 of 50

ORACLE Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

Configuring a Java Extend or gRPC Client SSL Socket Provider

You can configure SSL in the Extend or gRPC client cache configuration file by defining an
SSL socket provider for a remote scheme.

There are two options for configuring an SSL socket provider, depending on the level of
granularity that is required.

« Configure the socket provider per remote scheme, where each remote scheme defines an
SSL socket provider configuration or references a predefined configuration that is included
in the operational configuration file.

* Configure all remote schemes to use the same SSL socket provider configuration by
configuring a socket provider in the cache configuration <def aul t s> section.

A remote service that provides its own configuration overrides the configuration in the

<def aul t s> section. The socket provider configuration in the <def aul t s> section can reference
a named socket provider configuration that is included in the operational configuration file or be
a full in-line socket provider configuration.

@ Note

* When using certificate with extended usage set in an Extend or gRPC client
socket provider configuration, the extended usage must include cl i ent Aut h.

* If the cluster side proxy is configured to use mTLS, then the client must also be
configured for mTLS. If the cluster side proxy is configured to use one-way SSL,
then the client may be configured as either one-way or mTLS. This is because it is
the server that determines whether a connection is two-way or one-way (that is,
whether the client should send its identity certificate).

Configure an SSL Socket Provider per Remote Service

To configure an SSL socket provider for an Extend remote service, add a <socket - provi der >
element within the <t cp-i ni ti at or > element of a <r enot e- cache- schene> definition or a
<renove- i nvocation- schene>.

To configure an SSL socket provider for a gRPC remote service, add a <socket - pr ovi der >
element within the <gr pc- channel > element of a <r enot e- gr pc- cache- schene> definition.

Example 6-18 demonstrates an Extend remote cache scheme that configures a socket
provider that uses SSL. This example configures both an identity keystore (server. j ks) and a
trust keystore (t rust . j ks). This is typical of two-way SSL authentication, in which both the
client and proxy must exchange digital certificates and confirm each other's identity.

Example 6-18 Configuration for an SSLITLS socket provider per remote scheme

<?xm version="1.0"7?>

<cache-config xm ns: xsi="http://ww:.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi:schemaLocation="http://xm ns. oracl e. conf coher ence/ coher ence- cache-
config
coher ence- cache-confi g. xsd" >
<cachi ng- schene- mappi ng>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 16 of 50

ORACLE Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

<cache- mappi ng>
<cache- name>*</ cache- nane>
<schene- nane>r enot e- cache</ schene- name>
</ cache- mappi ng>
</ cachi ng- schemne- mappi ng>

<cachi ng- schemes>
<renot e- cache- scheme>
<schene- name>r enot e- cache</ schene- nane>
<servi ce- name>Renot eSer vi ce</ servi ce- name>
<initiator-config>
<tcp-initiator>
<socket - provi der >
<ssl >
<identity-manager >
<key- st or e>
<url>file:server.jks</url>
</ key-store>
</identity-nanager>
<trust - manager >
<key- st or e>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager >
</ssl >
</ socket - provi der >
</tcp-initiator>
</initiator-config>
</ renot e- cache- schene>
</ cachi ng- schenes>
</ cache-confi g>

Example 6-19 demonstrates a gRPC remote cache scheme that configures a socket provider
that uses SSL. This example configures both an identity keystore (server. j ks) and a trust
keystore (trust . jks). This is typical of two-way SSL authentication, in which both the client
and proxy must exchange digital certificates and confirm each other's identity.

Example 6-19 Configuration for a gRPC remote cache scheme that configures a socket
provider to use SSLITLS

<?xm version="1.0"7?>

<cache-config xm ns:xsi="http://ww:.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. cont coher ence/ coher ence- cache- confi g"
xsi : schemaLocati on="http://xm ns. oracl e. conmf coher ence/ coher ence- cache-
config
coher ence- cache-confi g. xsd">
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>*</ cache- name>
<schene- name>r enot e- cache</ schene- nane>
</ cache- mappi ng>
</ cachi ng- schemne- mappi ng>

<cachi ng- schemes>
<renot e- gr pc- cache- scheme>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 17 of 50

ORACLE Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

<schene- name>r enot e- cache</ schene- nane>
<servi ce- name>Renot eSer vi ce</ servi ce- name>
<gr pc- channel >
<socket - provi der >
<ssl >
<identity-manager >
<key- st or e>
<url>file:server.jks</url>
</ key-store>
</identity-nanager>
<trust - manager >
<key- st or e>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager >
</ssl >
</ socket - provi der >
</ grpc- channel >
</renot e- gr pc- cache- schene>
</ cachi ng- schenes>
</ cache-confi g>

Example 6-20 configures remote schemes that references an SSL socket provider
configuration named ssl - ¢l i ent that is defined in the <socket - pr ovi der s> element of the
operational configuration file.

Example 6-20 Configuration for a remote cache scheme that references a socket
provider

<?xm version="1.0"7?>

<cache-config xm ns: xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi: schemaLocati on="http://xm ns. oracl e. conf coher ence/ coher ence- cache-
config
coher ence- cache-confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- nane>ext end- *</ cache- nane>
<schene- name>r enot e- cache</ schene- name>
</ cache- mappi ng>

<cache- mappi ng>
<cache- nane>gr pc- *</ cache- nane>
<schene- name>gr pc- cache</ schene- nane>
</ cache- mappi ng>
</ cachi ng- scheme- mappi ng>

<cachi ng- schemes>
<renot e- cache- schenme>
<scheme- nane>r enot e- cache</ schene- name>
<servi ce- nanme>Renpt eCache</ ser vi ce- nane>
<initiator-config>
<tcp-initiator>
<socket - provi der >ssl - cl i ent </ socket - provi der >
</tcp-initiator>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 18 of 50

ORACLE

Chapter 6
Using SSL to Secure Extend and gRPC Client Communication

</ renot e- cache- schene>

<renot e- gr pc- cache- schenme>
<schene- name>gr pc- cache</ schene- nane>
<servi ce- name>Renot eG pcCache</ servi ce- nane>
<gr pc- channel >
<socket - provi der >ssl - cl i ent </ socket - provi der >
</ grpc- channel >
</ renot e- gr pc- cache- schene>
</ cachi ng- schenes>
</ cache-confi g>

Extend or gRPC Client with mTLS

A client can be configured for mTLS using a <ssl > socket provider configured with both identity
and trust.

Example 6-21 shows a socket provider configured for mTLS. If the cluster side proxy is
configured to use mTLS the client certificate from the identity will be sent to the server. In both
two-way and one-way SSL, the CA certificates in the trust store will be used to verify the proxy
server identity.

Example 6-21 Configuration for an Extend or gRPC client with mTLS

<socket - provi der id=ntls-config">
<ss| >
<identity-manager >
<key- st or e>
<url>file:server.jks</url>
</ key-store>
</identity-nanager>
<trust - manager >
<key- st or e>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager >
</ssl>
</ socket - provi der >

Extend or gRPC Client with One-Way SSL

A client can be configured for one-way SSL using a <ssl > socket provider configured with only
a trust store. The proxy server must also be configured for one-way SSL.

Example 6-22 shows a socket provider configured for one-way SSL. The CA certificates in the
trust store will be used to verify the identity of the server certificate.

Example 6-22 Configuration for an Extend or gRPC client with one-way SSLI/TLS

<socket - provi der i d=one-way-confi g>
<ss| >
<trust - manager >
<key- st ore>
<url>file:trust.jks</url>
</ key-store>
</trust-manager >

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 19 of 50

ORACLE Chapter 6
Configure a Default Socket Provider for a Cache Configuration File

</ssl >
</ socket - provi der >

Configure a Default Socket Provider for a Cache Configuration
File

You can configure a socket provider in the <def aul t s> section of the cache configuration file.
This socket provider will then apply to all the schemes in that configuration file that do not
specifically configure their own socket provider, such as any remote cache services, remote
invocation services, proxy services, gRPC services, and so on.

In Example 6-23, the <def aul t s> section of the cache configuration file has a socket provider
that references a provider named nt | s from the operational configuration file. The cache
configuration file contains three remote schemes, none of which have a socket provider
configured so they will all use the nt| s socket provider.

Example 6-23 Configuration for referencing sockets providers in the <def aul t s>
section of cache configuration

<?xm version="1.0"?>
<cache-config xm ns: xsi="http://ww:.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xn ns. oracl e. conl coher ence/ coher ence- cache- confi g"
xsi:schemaLocati on="http://xm ns. oracl e. conf coher ence/ coher ence- cache-
config
coher ence- cache-confi g. xsd">

<def aul t s>
<socket - provi der>nt | s</ socket - pr ovi der >
</ defaul t s>

<cachi ng- schene- mappi ng>
<cache- nappi ng>
<cache- name>*</ cache- nanme>
<scheme- nane>r enot e</ schene- nane>
</ cache- mappi ng>

<cache- nappi ng>
<cache- name>gr pc- cache</ cache- nane>
<schene- nane>r enot e- gr pc</ scheme- name>
</ cache- mappi ng>
</ cachi ng- scheme- mappi ng>

<cachi ng- schemes>
<renot e- cache- schenme>
<scheme- nane>r enot e</ schene- nane>
<servi ce- nane>Renot eSer vi ce</ servi ce- name>
</ renot e- cache- schene>

<renot e-i nvocat i on- schene>

<scheme- nane>i nvocat i on</ scheme- nane>

<servi ce- name>Renot el nvocat i on</ servi ce- nane>
</renot e-i nvocati on-schene>

<renot e- gr pc- cache- scheme>
Securing Oracle Coherence

G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 20 of 50

ORACLE Chapter 6
Configure a Default Socket Provider for a Cache Configuration File

<schene- nane>r enot e- gr pc</ schemne- name>
<servi ce- name>Renot eG pcCache</ servi ce- nane>
</ renot e- gr pc- cache- schene>
</ cachi ng- schemes>
</ cache-confi g>

In Example 6-24, the <def aul t s> section of the cache configuration file has a socket provider
that references a provider named nt | s from the operational configuration file. The cache
configuration file contains three remote schemes: a remote cache scheme, a remote invocation
scheme, and a remote gRPC cache scheme. The remote cache scheme and the remote
invocation scheme do not specify a socket provider so they use the nt | s socket provider.
However, the remote gRPC scheme does have a socket provider configured and so it
references a socket provider named one- way in the operational configuration file.

Example 6-24

<?xm version="1.0"?>
<cache-config xm ns: xsi="http://ww:.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xn ns. oracl e. conf coher ence/ coher ence- cache-confi g"
xsi:schemaLocation="http://xm ns. oracl e. com coher ence/ coher ence- cache-
config
coher ence- cache- confi g. xsd"
xm - override="{coherence. cacheconfig. override}">

<def aul t s>
<socket - provi der>nt| s- confi g</ socket - provi der >
</ defaul t s>

<cachi ng- schene- mappi ng>
<cache- nappi ng>
<cache- name>*</ cache- nanme>
<scheme- nane>r enot e</ schene- nanme>
</ cache- mappi ng>

<cache- nappi ng>
<cache- name>gr pc- cache</ cache- nane>
<schene- nane>r enot e- gr pc</ schemne- name>
</ cache- mappi ng>
</ cachi ng- scheme- mappi ng>

<cachi ng- schemes>
<renot e- cache- schene>
<schene- nane>r enot e</ schene- nanme>
<servi ce- nane>Renot eSer vi ce</ servi ce- name>
</ renot e- cache- scheme>

<renot e-i nvocat i on- schene>

<scheme- nane>i nvocat i on</ schene- nane>

<servi ce- name>Renot el nvocat i on</ servi ce- nane>
</renot e-invocati on-schene>

<renot e- gr pc- cache- scheme>
<schene- nane>r enot e- gr pc</ schemne- name>
<servi ce- name>Renot eG pcCache</ servi ce- nane>
<gr pc- channel >
<socket - provi der >one- way</ socket - pr ovi der >

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 21 of 50

ORACLE Chapter 6
Configuring a .NET Client-Side Stream Provider

</ grpc- channel >
</ renot e- gr pc- cache- schene>
</ cachi ng- schemes>
</ cache-confi g>

Configuring a .NET Client-Side Stream Provider

Configure SSL in the .NET client-side cache configuration file by defining an SSL stream
provider for remote services. The SSL stream provider is defined using the <stream provi der >
element within the <t cp-i ni ti at or > element.

@® Note

Certificates are managed on Window servers at the operating system level using the
Certificate Manager. The sample configuration assumes that the Certificate Manager
includes the extend proxy's certificate and the trusted CA's certificate that signed the
proxy's certificate.

Example 6-25 demonstrates a remote cache scheme that configures an SSL stream provider.
Refer to the cache configuration XML schema (I NSTALL_DI R\ confi g\ cache- confi g. xsd) for
details on the elements that are used to configure an SSL stream provider.

@® Note

The <pr ot ocol > element support any allowed Ssl Pr ot ocol s enumeration values as
well as a comma separated list of protocol values. For example:

<protocol >Tl s11, Tl s12</ pr ot ocol >

Ensure the protocol is specified in both the client-side and server-side configuration.

Example 6-25 Sample .NET Client-Side SSL Configuration

<?xm version="1.0"7?>

<cache-config xm ns="http://schemas. t angosol . con cache"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi:schenmalLocation="http://schemas. tangosol . conf cache
assenbl y: // Coher ence/ Tangosol . Confi g/ cache-confi g. xsd">
<cachi ng- scheme- mappi ng>
<cache- mappi ng>
<cache- nane>di st - ext end</ cache- nane>
<scheme- name>ext end- di st </ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- nappi ng>

<cachi ng- schemes>
<r enot e- cache- schene>
<scheme- name>ext end- di st </ schene- name>
<servi ce- name>Ext endTcpSSLCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 22 of 50

ORACLE

Chapter 6
Securing the C++ Client with SSL/TLS

<stream provi der >
<ssl >
<protocol >Tl s12</ pr ot ocol >
<l ocal -certificates>
<certificate>
<url>C\<lurl>
<passwor d>passwor d</ passwor d>
<f | ags>Def aul t KeySet </ f| ags>
</certificate>
</local -certificates>
</ssl >
</ stream provider>
<renot e- addr esses>
<socket - addr ess>
<addr ess>198. 168. 1. 5</ addr ess>
<port >9099</ port >
</ socket - addr ess>
</ renot e- addr esses>
<connect - ti meout >10s</ connect - ti meout >
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request - ti meout >
</ out goi ng- message- handl er >
</initiator-config>
</ renot e- cache- scheme>
</ cachi ng- schenes>
</ cache-confi g>

Securing the C++ Client with SSL/TLS

The Coherence C++ Extend Client does not officially support SSL/TLS. However, you can use
one of the following options to work around this limitation to run C++ extend clients securely
against an SSL/TLS enabled Coherence proxy server.

Secure the C++ client using a Load Balancer

You can configure a load balancer such as F5 to perform encryption on behalf of your C++
client and communicate with the SSL/TLS proxy servers behind the load balancer. Refer to the
documentation for the load balancer service for information on how to configure it to provide
data protection.

Secure C++ Client using SSH Tunneling

When SSH tunneling is enabled, the C++ client connects to a port on the local host that the
SSH client listens on. The SSH client then forwards the requests over its encrypted tunnel to
the server. The server connects to the SSL/TLS enabled Coherence proxy server - usually on
the same machine or in the same data center as the SSH server. You can easily find examples
on how to configure an SSH tunnel. Coherence proxy servers are behind the SSH server.

Secure C++ Client in a Cloud

If you are in a cloud environment, such as Oracle Cloud Infrastructure Container Engine for
Kubernetes (OKE), you can configure an NGINX container on the same pod as the C++ client
to serve as an SSL/TLS proxy to communicate with the Coherence SSL/TLS proxy server. You
can also use an Istio sidecar proxy or egress gateway to perform encryption on behalf of the
C++ client. Refer to the corresponding documentation for your cloud environment for
instructions on how to secure data to the upstream servers.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 23 of 50

ORACLE Chapter 6
Using SSL to Secure Federation Communication

Using SSL to Secure Federation Communication

Oracle Coherence supports using SSL to secure communication between cluster participants
in a federated cluster. Communication is secured between federated service members and
requires SSL to be configured on each cluster participant.

To use SSL to secure federation communication, you can configure the <socket - provi der >
element in the <f eder at ed- schene>.

The socket provider for federation is similar to the one used for the clusters unicast sockets,
that is, the socket provider configures both server and client sockets. This restricts the types of
configuration that are supported.

Example 6-26 shows a <f eder at ed- schenme> with a <socket - pr ovi der > configured within the
scheme definition.

Example 6-26 Configuration for using an inline <socket - provi der > to configure
SSLITLS between cluster participants in a federated cluster

<f eder at ed- scheme>
<scheme- name>f eder at ed</ schene- nane>
<servi ce- name>f eder at ed</ servi ce- name>
<backi ng- map- schene>
<l ocal - scheme />
</ backi ng- map- scheme>
<autostart>true</autostart>
<socket - provi der >
<ssl >
<i dentity- manager >
<key- st ore>
<url>file:server.jks</url>
</ key- st ore>
</identity-nmanager>
<trust - manager >
<key- st ore>
<url>file:trust.jks</url>
</ key- st ore>
</trust-mnager>
</ssl >
</ socket - provi der >
<t opol ogi es>
<t opol ogy>
<name>MyTopol ogy</ name>
</t opol ogy>
</t opol ogi es>
</ f eder at ed- scheme>

Example 6-27 shows a <f eder at ed- schenme> with a <socket - pr ovi der > that references a
socket provider named ssl - f eder at i on (which has been configured in the <socket -
provi der s> section of the operational configuration file).

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 24 of 50

ORACLE Chapter 6
Using SSL to Secure Federation Communication

Example 6-27 Configuration for using a referenced <socket - pr ovi der > to configure
SSLITLS between cluster participants in a federated cluster

<f eder at ed- scheme>
<scheme- nane>f eder at ed</ schene- nane>
<servi ce- name>f eder at ed</ servi ce- name>
<backi ng- map- schene>
<l ocal - schene />
</ backi ng- map- schene>
<autostart>true</autostart>
<socket - provi der >ssl - f eder at i on</ socket - provi der >
<t opol ogi es>
<t opol ogy>
<name>MyTopol ogy</ name>
</t opol ogy>
</t opol ogi es>
</ f eder at ed- scheme>

e Federation with mTLS
The most common and recommended configuration for using SSL to secure federation is
MTLS. To configure an <ssl > socket provider for mTLS, both identity and trust must be
configured.

* Federation with One-Way SSL
You can configure one-way SSL for federation participants so that a participant will verify
trust of a server certificate that it receives when making a connection to another
participants. A federation participant will not verify trust for a member that connects to it.

Federation with mTLS

The most common and recommended configuration for using SSL to secure federation is
mTLS. To configure an <ssl > socket provider for mTLS, both identity and trust must be
configured.

In Example 6-28, the socket provider is configured with an <i denti t y- manager > element that
contains a keystore named server. j ks, and a <t r ust - manager > element that contains a
keystore named trust . j ks. By default, when a <ssl > socket provider is configured with both
identity and trust, Coherence will create a Java SSL context that is configured for mTLS.

@® Note

When using certificate with extended usage set in this configuration, the extended
usage must include both server Aut h and cl i ent Aut h. The socket provider
configuration is used to configure a single Java SSL Context used by both the
federated scheme server sockets (used to receive connections from other federations
participants) and its client sockets (used to connect to other federations participants).

Example 6-28 Configuration for securing federated cluster communication over mTLS

<socket - provi der >
<ss| >
<identity-nmanager >
<key- st or e>

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 25 of 50

ORACLE Chapter 6
Using SSL to Secure Federation Communication

<url>file:server.jks</url>
</ key-store>
</identity-nmanager>
<t rust - nanager >
<key- st ore>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager >
</ssl >
</ socket - provi der >

Federation with One-Way SSL

You can configure one-way SSL for federation participants so that a participant will verify trust
of a server certificate that it receives when making a connection to another participants. A
federation participant will not verify trust for a member that connects to it.

Only a single socket provider can be configured for the federated scheme, therefore, the <ssl >
socket provider must be configured with both identity and trust, the same as with the mTLS
example. To specify one-way SSL, add a <cl i ent - aut h>element and set its value to none.

The <cl i ent - aut h> element is used to configure the corresponding setting in the Java SSL
context which determines whether the client must send a certificate. When set to none the
client does not send a certificate (even if configured with an identity key and certificate).

Example 6-29 shows the federated scheme socket provider configuration for one-way SSL.

@® Note

When using certificate with extended usage set in this configuration, the extended
usage must include server Aut h. In one-way SSL, only the server sends a certificate to
the client, so the certificate must be valid for use as a server certificate.

Example 6-29 Configuration for securing federated cluster communication over one-
way SSLITLS

<socket - provi der >
<ss| >
<i dentity-nmanager >
<key- st or e>
<url>file:server.jks</url>
</ key-store>
</identity-manager>
<trust - manager >
<key- st or e>
<url>file:trust.jks</url>
</ key-store>
</trust-manager >
<I-- This elenment changes the configuration to one-way SSL -->
<cli ent - aut h>none<cl i ent - aut h>
</ssl >
</ socket - provi der >

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 26 of 50

ORACLE’

Chapter 6
Coherence Peerx509 Algorithm

Coherence Peerx509 Algorithm

Oracle Coherence includes a proprietary peer trust algorithm, PeerX509, which works by
assuming trust (and only trust) of the certificates that are in the trust manager keystore. It also
leverages the peer-to-peer protocol features of TCMP. Specifically, for the SSL negotiation to
succeed, the certificate received must be the same as one of the certificates held by the trust
manager .

You can configure PeerX509 by setting the <al gori t hm> element in the <t r ust - nanager >
element.

In Example 6-30, the trust manager uses the PeerX509 algorithm. Both the identity manager
and the trust manager are configured to use the same keystore. This is a common approach
for PeerxX509 when used for to secure cluster membership, because all cluster members use
the same configuration, and the certificate sent by the client or server socket is guaranteed to
be in the trust store.

@® Note

e PeerX509 is a Coherence proprietary algorithm and is not compliant with
standards such as Federal Information Processing Standards (FIPS). It may not
be usable in highly restricted environments.

e Trust is verified if the certificate received matches one of those in the trust store.
There is no checking of additional certificate data such as extended usages or if
the certificate is signed.

Example 6-30 Configuration where the trust manager uses the PeerX509 algorithm

<socket - provi der >
<ss| >
<i dentity-manager >
<key- st ore>
<url>file:server.jks</url>
</ key-store>
</identity-mnager>
<trust - manager >
<al gori t hnmePeer X509</ al gori t hne
<key- st ore>
<url>file:server.jks</url>
</ key-store>
</trust-mnager>
</ssl >
</ socket - provi der >

Specifying a Global Socket Provider

You can configure a global socket provider in the Coherence operational configuration file.
When set, every server or client socket that Coherence creates will use this configuration
unless it has been overridden with a specific socket provider of its own.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 27 of 50

ORACLE Chapter 6
Specifying a Global Socket Provider

In the Coherence operational configuration file, within the <cl ust er - conf i g> element, specify
a <gl obal - socket - pr ovi der > element.

In Example 6-31, the operational configuration file configures a socket provider named nt | s-
confi g that is configured for mTLS. The <gl obal - socket - pr ovi der > element is then set to
mt | s-confi g so that this socket provider will be used everywhere.

Example 6-31 Configuration for specifying a global socket provider
<?xm version="1.0"?>

<coherence xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. con coher ence/ coher ence- oper ati onal - confi g"
xsi : schemalocation="http://xnl ns. oracl e. conl coher ence/ coher ence-
operational -config
coher ence- oper ati onal - confi g. xsd">
<cl uster-config>

<gl obal - socket - provi der >nt | s- confi g</ gl obal - socket - pr ovi der >

<socket - provi der s>
<socket - provi der id=ntls-config">
<ss| >
<i dentity-manager >
<key- st ore>
<url>file:server.jks</url>
</ key-store>
</identity-nmanager>
<trust - manager >
<key- st ore>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager >
</ssl >
</ socket - provi der >
</ socket - provi der s>
</cluster-config>
</ coherence>

The default operational configuration file allows the global socket provider to be set using the
system property coher ence. gl obal . socket provi der (or the environment variable
COHERENCE_GLOBAL_SOCKET_PROVI DER).

In Example 6-32, the operational configuration configures a socket provider named nt | s-
confi g for two-way SSL, but it does not set the global socket provider element.

Example 6-32 Configuration for a socket provider without a global socket provider

<?xm version='1.0"?>

<coherence xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi:schemaLocati on="http://xm ns. oracl e. conl coher ence/ coher ence-
operational -config
coher ence- operational - confi g. xsd">
<cl uster-config>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 28 of 50

ORACLE’

Chapter 6
Specifying Passwords in Socket Provider Configuration

<socket - provi der s>
<socket - provi der id=ntls-config">
<ss| >
<i dentity-manager >
<key- st ore>
<url>file:server.jks</url>
</ key-store>
</identity-nmanager>
<trust - manager >
<key- st ore>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager >
</ssl >
</ socket - provi der >
</ socket - provi der s>
</cluster-config>

</ coher ence>

If Coherence is now started with the system property -
Dcoher ence. gl obal . socket provi der=nt | s- confi g, then the nt | s- confi g socket provider will
be used as the global socket provider.

@® Note

The global socket provider will be used for all server and client sockets. Therefore, the
configured socket provider must be capable of being used for both server and client
sockets. Typically, this means you should configure the global socket provider for
mTLS, or for one-way SSL as described in Cluster Communication with One-Way
SSL.

Specifying Passwords in Socket Provider Configuration

Java keystores and private keys can be secured with credentials, typically a password. The
socket provider configuration provides several ways to specify a password. It is up to the
application developer to choose the most suitable approach based on the required level of
security versus simplicity of configuration.

Specify Plain Text Passwords
You can specify a plain text password directly in the XML configuration using the
<passwor d> element.

Passwords From Java System Properties

You can use the Coherence configuration system property replacement feature to specify a
password using a system property. The <passwor d> element has an optional syst em
property attribute that specifies which Java system property to use to obtain the value for
the XML element.

Reading Passwords From a URL
You can load a password from a URL, such as a file on the file system using the
<password-url element.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 29 of 50

ORACLE

Chapter 6
Specifying Passwords in Socket Provider Configuration

e Custom Password Providers
A password provider allows you to get the SSL passwords from any source, including
those using encryption. Password providers implement the
com tangosol . net. Passwor dProvi derint erface. The class has a get method that returns
a password as a Java char array.

Specify Plain Text Passwords

You can specify a plain text password directly in the XML configuration using the <passwor d>
element.

Configuring a plain text password directly in the XML is the least secure way to specify
passwords, but it is simple to use and is often used in cases such as integration testing that
does not access production data. However, hardcoding a password is also inflexible; whenever
the password changes, you need to update the configuration file.

In Example 6-33, the <passwor d> element specifies a plain text password for a key store in an
<i dentity-manager > element.

Example 6-33 Configuration with a plain text password

<i dentity-manager >
<key- st or e>
<url>file:server.jks</url>
</ key-store>
<passwor d>secr et </ passwor d>
</identity-manager>

Passwords From Java System Properties

You can use the Coherence configuration system property replacement feature to specify a
password using a system property. The <passwor d> element has an optional syst em property
attribute that specifies which Java system property to use to obtain the value for the XML
element.

In Example 6-34, the <passwor d> element is configured to read an encrypted private key. Its
syst em property attribute is set to key. credenti al s, so at runtime, when the XML
configuration is parsed, the value of the <passwor d> system property will be used as the
password.

Using system properties is more flexible than plain text, hardcoded passwords, but it is not
particularly secure. The passwords will be injected into the XML after it is loaded and stored in
the Coherence configuration classes in memory in plain text.

Example 6-34 Configuration for specifying a password using Java system properties

<i dentity-manager >
<key>server. key</ key>
<cert>server.cert</cert>
<password system property=key. credential s/>
</identity-manager>

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 30 of 50

ORACLE Chapter 6
Specifying Passwords in Socket Provider Configuration

Reading Passwords From a URL

You can load a password from a URL, such as a file on the file system using the <passwor d-
url element.

Example 6-35 shows an SSL socket provider configuration that reads the keystore and private
key passwords from files on the file system.

* The identity manager's keystore password is read from / coher ence/ securi ty/ server-
pass.txtfile.

e The private key used by the identity manager is read from / coher ence/ security/ key-
pass.txtfile.

e The keystore password used by the trust manager is read from the / coher ence/ security/
trust-pass.txtfile.

Although Example 6-35 uses files, you can use any valid URL that is readable, for example, a
simple HTTP URL to get the password from a web server.

Example 6-35 Configuration for retrieving passwords from a URL

<socket - provi der >
<ssl >
<identity-nmanager >
<key- st ore>
<url>file:server.jks</url>
<password-url >
file:/coherence/security/server-pass.txt
</ passwor d-url >
</ key-store>
<password-url>
file:/coherence/ security/key-pass.txt
</ passwor d-url >
</identity-manager>
<trust - manager >
<key- st ore>
<url>file:rtrust.jks</url>
<password-url >
file:/coherence/security/trust-pass.txt
</ passwor d-url >
</ key-store>
</trust-manager >
</ssl >
</ socket - provi der >

Custom Password Providers

A password provider allows you to get the SSL passwords from any source, including those
using encryption. Password providers implement the

com t angosol . net. Passwor dProvi deri nterface. The class has a get method that returns a
password as a Java char array.

Example 6-36 shows a simple password provider implementation that supplies a password
char array. A real password provider would obtain the password from somewhere more secure
than a hardcoded char array.

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 31 of 50

ORACLE Chapter 6
Specifying Passwords in Socket Provider Configuration

Example 6-36 Custom password provider implementation using a password char array

package com exanpl e.security;
i nport com tangosol . net. Passwor dProvi der;
public class GetPassword inplenments PasswordProvider {

public GetPassword() {
}

@verride
public char[] get()

{

return new char[]{'s",

}

e’ C',Irl,'el,lt'};

You can specify custom password providers in a socket provider configuration using the
<passwor d- pr ovi der > element. Either provide the full configuration inside the <passwor d-
provi der > element, or set the value of the <passwor d- pr ovi der > element to the name of a
password provider that is configured in the <passwor d- pr ovi der s> section of the operational
configuration file.

Example 6-37 uses the password provider in Example 6-36 to obtain the password for a
private key in an identity manager configuration.

Example 6-37 Configuration for using a custom password provider to retrieve a
password

<socket - provi der >
<ssl >
<i dentity-nmanager >
<key>server. key</ key>
<cert>server.cert</cert>
<passwor d- provi der >
<cl ass- name>com exanpl e. securi ty. Get Passwor d</ cl ass- nane>
</ passwor d- provi der >
</identity-nmanager>
<trust - manager >
<key- st ore>
<url>file:trust.jks</url>
</ key- st ore>
</ trust-manager>
</ssl>
</ socket - provi der >

Named Password Provider References

If a common password provider configuration will be used multiple times, it is simpler to
provide the configuration once in the <passwor d- pr ovi der s> section of the operational
configuration file and then reference the named provider from the socket provider
configuration.

Example 6-38 shows a password provider specified in the <passwor d- pr ovi der s> section of
the operational configuration file. The password provider has a name of MyPasswor dPr ovi der .

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 32 of 50

ORACLE

Chapter 6
Specifying Passwords in Socket Provider Configuration

The named password provider can now be referenced from a socket provider.

Example 6-38 Configuration for naming a password provider for reference from a
socket provider

<?xnm version='1.0"?>
<coherence xm ns: xsi ="http://wmv. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. cont coher ence/ coher ence- oper ati onal -config"
xsi :schemalLocati on="http://xm ns. oracl e. con coher ence/ coherence-
operational -config
coher ence- oper ati onal - confi g. xsd">
<cl uster-config>
<passwor d- provi der s>
<passwor d- provi der i d="M/PasswordProvi der">
<cl ass- name>com exanpl e. securi ty. Get Passwor d</ cl ass- name>
</ passwor d- pr ovi der >
<passwor d- provi der s>
</cluster-config>
</ coherence>

In Example 6-39, the socket provider uses MyPasswor dPr ovi der to provide the credentials for
an encrypted private key file.

This can provide a flexible method of providing passwords. The socket provider configuration
refers to a named password provider, rather than a hardcoded value. At runtime, different
operational configuration files can be used to provide different configurations or
implementations of that named provider.

Example 6-39 Configuration for a socket provider that uses a custom password
provider to provide credentials

<socket - provi der >
<ssl >
<i dentity-manager >
<key>server. key</ key>
<cert>server.cert</cert>
<passwor d- provi der >
<name>MyPasswor dPr ovi der </ nane>
</ passwor d- provi der >
</identity-manager>
<t rust - manager >
<key- st or e>
<url>file:trust.jks</url>
</ key- st ore>
</trust-manager>
</ssl>
</ socket - provi der >

Parameterized Password Providers

A Passwor dProvi der implementation can be parameterized using constructor arguments or
using a static factory method with arguments.

In Example 6-40, the simple Passwor dProvi der has a constructor with a single i nt parameter.
The value of the parameter determines the password returned. A real password provider would
obtain the password from somewhere more secure than a hardcoded char array.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 33 of 50

ORACLE

Chapter 6
Specifying Passwords in Socket Provider Configuration

The password provider can be defined in the <passwor d- pr ovi der s> section of the operational
configuration file.

Example 6-40 Parameterized password provider implementation for retrieving a
password

package com oracl e. coherence. exanpl es;
i nport com tangosol . net. Passwor dProvi der;
public class GetPassword inplenments PasswordProvider {
private final int param
public GetPassword(int param {
t hi s. param = param
}
@verride
public char[] get()
{

if (param==0) {
return new char[]{'s',
}

return new char[]{'p',

e’ CI,'rl,lel,ltl};

a, 's', 's','w, 'o, 'r', "d};

In Example 6-41, the password provider in Example 6-40 is configured with a name of
MyPasswor dPr ovi der . The <i ni t - par ans> element is used to specify the constructor
parameters. In this case, a single i nt parameter named passwor d- i d with a value of O (zero).

The named password provider can now be referenced from a socket provider.

Example 6-41 Configuration for specifying constructor parameters

<?xml version='1.0"?>
<coherence xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. cont coher ence/ coher ence- oper ati onal -confi g"
xsi:schemaLocation="http://xm ns. oracl e. conl coher ence/ coher ence-
operational -config
coher ence- operational -confi g. xsd">
<cl uster-config>
<passwor d- provi der s>
<passwor d- provi der i d="M/Passwor dProvi der">
<cl ass- nanme>com exanpl e. securi ty. Get Passwor d</ cl ass- name>
<init-paranms>
<init-parane
<par am nane>passwor d- i d</ param t ype>
<par am val ue>0</ par am val ue>
</init-paranp
</init-parans>
</ passwor d- provi der >
<passwor d- provi der s>
</cluster-config>
</ coherence>

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 34 of 50

ORACLE

Chapter 6
Specifying Passwords in Socket Provider Configuration

In Example 6-42, the socket provider uses MyPasswor dPr ovi der to provide the credentials for
an encrypted private key file. In this case, the password provider is configured with a
parameter of O (zero), so an i nt value of 0 will be passed to the constructor.

Example 6-42 Configuration for using a parameterized password provider to retrieve a
password

<socket - provi der >
<ssl >
<identity-manager >
<key>server. key</ key>
<cert>server.cert</cert>
<passwor d- pr ovi der >
<name>MyPasswor dPr ovi der </ nane>
</ passwor d- provi der >
</identity-manager>
<trust - nanager >
<key- st ore>
<url>file:rtrust.jks</url>
</ key- st ore>
</trust-manager>
</ssl>
</ socket - provi der >

In Example 6-43, MyPasswor dPr ovi der is used again but this time the passwor d-i d parameter
is overridden to be a 1, so an i nt value of 1 will be passed to the password provider
constructor.

Example 6-43 Configuration for using a parameterized password provider to retrieve a
password with an inline parameter override

<socket - provi der >
<ss| >
<i dentity-manager >
<key>server. key</ key>
<cert>server.cert</cert>
<passwor d- provi der >
<name>MyPasswor dPr ovi der </ nane>
<init-parans>
<init-paranp
<par am nane>passwor d- i d</ par am nane>
<par am val ue>1</ par am val ue>
</init-paranp
</init-parans>
</ passwor d- provi der >
</identity-mnager>
<trust - manager >
<key- st ore>
<url>file:rtrust.jks</url>
</ key-store>
</trust-manager>
</ssl >
</ socket - provi der >

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 35 of 50

ORACLE Chapter 6
Controlling Cipher Suite and Protocol Version Usage

Controlling Cipher Suite and Protocol Version Usage

An SSL socket provider can be configured to control the use of potentially weak ciphers or
specific protocol versions. To control cipher suite and protocol version usage, edit the SSL
socket provider definition and include the <ci pher - sui t es> element and the <pr ot ocol -

ver si ons> elements, respectively, and enter a list of cipher suites and protocol versions using
the nane element. Include the usage attribute to specify whether the cipher suites and protocol
versions are allowed (value of whi t e- i st) or disallowed (value of bl ack-1i st). The default
value for the usage attribute if no value is specified is white-1i st.

For example:

<socket - provi der >
<ssl >

<ci pher-suites usage="bl ack-list">
<name>TLS_ECDHE_ECDSA W TH_AES_128_CBC_SHA256</ nane>
</ ci pher-suites>
<protocol -versi ons usage="bl ack-1ist">
<name>SSLv3</ name>
</ protocol -versi ons>

</ssl >
</ socket - provi der >

Using Host Name Verification

Learn how to configure host name verification in Oracle Coherence. A host name verifier
ensures that the host name in the URL to which the client connects matches the host name in
the digital certificate that the server sends back as part of the SSL connection.

A host name verifier is useful when an SSL client (for example, Coherence acting as an SSL
client) connects to a cache server on a remote host. It helps to prevent man-in-the-middle
attacks.

Coherence includes a default host name verifier, and provides the ability to create and use a
custom host name verifier.

This section includes the following topics:

e Using the Default Coherence Host Name Verifier
If you are using the default Coherence host name verifier, the host name verification
passes if the host name in the certificate matches the host name to which the client tries to
connect.

e Using a Custom Host Name Verifier
When using a custom host name verifier, the class that implements the custom host name
verifier must be specified in the CLASSPATH of Coherence (when acting as an SSL client)
or a standalone SSL client.

Using the Default Coherence Host Name Verifier

If you are using the default Coherence host name verifier, the host name verification passes if
the host name in the certificate matches the host name to which the client tries to connect.

The default host name verifier verifies host name in two phases:

e Verification with wildcarding.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 36 of 50

ORACLE

Chapter 6
Using Host Name Verification

* Verification without wildcarding, if verification with wildcarding fails.

By default, the host name verifier is not enabled for backward compatibility. However, it is
enabled in the secured production mode by default. To enable or disable the default host name
verifier, see the description for the <host nane- veri fi er > element in ssl.

Verification with Wildcarding

If the the host name in the server certificate of the SSL session supports wildcarding, the
ConmonNarne attribute must meet the following criteria:

e Have at least two dot (.") characters.
e Must start with "*."

e Have only one "*" character.

In addition, the non-wildcarded portion of the CommonName attribute must equal the domain
portion of the ur | host nane parameter in a case-sensitive string comparison. The domain
portion of ur | host nan®e string is the ur | host nane substring that remains after the

host nane substring is removed. The host nane portion of ur | host nane is the substring up
to and excluding the first *.' (dot) of the ur | host nane parameter string.

For example:
ur | host name: mymachi ne. oracl e. com
ConmmonNane: *. or acl e. com

. oracl e. comwill compare successfully with . or acl e. com

ur | host name: mymachi ne. uk. or acl e. com
CommonNane: *. oracl e. com

. uk. or acl e. comwill not compare successfully with . or acl e. com

DNSNanes obtained from the server certificate's SubjectAlternativeNames extension may be
wildcarded.

Verification without Wildcarding

If wildcarded host name verification fails, the default host name verifier performs non-
wildcarded verification. It verifies the CormonNane attribute of the server certificate's

Subj ect DN or the DNSNanes of the server certificate's Subj ect Al t er nat i veNanes extension
against the host name in the client URL (ur | host nane). The certi fi cat e attribute must
match the ur | host name (not case sensitive) parameter. The Subj ect DN CormonNane
attribute is verified first, and if successful, the Subj ect Al t er nat i veNames attributes are not
verified.

If the server certificate does not have a Subj ect DN, or the Subj ect DN does not have a
ConmmonNarnre attribute, then the Subj ect Al t er nat i veNane attributes of type DNSNanes are
compared to the ur | host nanme parameter. The verification passes upon the first successful
comparison to a DNSNane. For a successful verification, the ur | host nane must be equal to the
certificat e attribute being compared.

If url host name is | ocal host, you can set the coher ence. security. ssl.al | owLocal host
system property to t r ue to enable 127.0.0.1, or the default IP address of the local machine to
pass.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 37 of 50

ORACLE Chapter 6
Configuring Client Authentication

Using a Custom Host Name Verifier

When using a custom host name verifier, the class that implements the custom host name
verifier must be specified in the CLASSPATH of Coherence (when acting as an SSL client) or a
standalone SSL client.

For more information about using a custom host name verifier, see the description for the
<host name-verifier>elementin ssl.

Configuring Client Authentication

You can use the <cl i ent - aut h> element to specify whether a SSL/TLS socket provider should
use one-way or two-way SSL/TLS authentication.

To apply <cl i ent - aut h>, you must configure a socket provider with both an <i denti ty-
manager > and a <t r ust - manager > element in its XML configuration. If no <t r ust - manager > is
configured, then only one-way authentication can be used. When a <t r ust - manager > is
configured, Coherence will default to using two-way authentication.

<cl i ent - aut h> is an enumeration with three valid values.

Value Description

none The socket provider does not request an authentication certificate
from the client.

want ed The socket provider requests an authentication certificate from the
client, but the client is not required to send one.
Corresponds to the want ¢l i ent aut h setting in the Java
SSL/TLS engine created by Coherence to manage SSL/TLS
sockets.

required The socket provider requires that the client send an authentication
certificate.
Corresponds to the need cl i ent aut h setting in the Java
SSL/TLS engine created by Coherence to manage SSL/TLS
sockets.

Example 6-44 Sample One-Way SSLI/TLS Authentication

The <cl i ent - aut h> element is set to none so Coherence uses one-way SSL/TLS
authentication, even though a trust manager has been configured.

In this case, on the SSL/TLS Engine, both want client auth and need client auth would be
settofal se.

<cl uster-config>
<socket - provi der s>
<socket - provi der id="nmySSLConfig">
<ss| >
<prot ocol >TLS</ pr ot ocol >
<identity-manager >
<key- st ore>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
</ key-store>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 38 of 50

ORACLE Chapter 6
Using Private Key and Certificate Files

<passwor d>passwor d</ passwor d>
</identity-nanager>
<trust - manager >
<key- st or e>
<url>file:trust.jks</url>
<passwor d>passwor d</ passwor d>
</ key-store>
</trust-manager >
<client-aut h>none</client-auth>
</ssl >
</ socket - provi der >
</ socket - provi der s>
</cluster-config>

Example 6-45 Sample Optional Client Auth

The <cl i ent - aut h> element is set to want ed so the client may send a certificate but is not
required to.

In this case, on the SSL/TLS Engine, want client auth would be setto true and need
client auth would be settofal se.

<cl uster-config>
<socket - provi der s>
<socket - provi der id="nySSLConfig">
<ssl >
<prot ocol >TLS</ pr ot ocol >
<identity-manager >
<key- st or e>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
</ key-store>
<passwor d>passwor d</ passwor d>
</identity-manager>
<t rust - manager >
<key- st or e>
<url>file:trust.jks</url>
<passwor d>passwor d</ passwor d>
</ key-store>
</trust-manager >
<cl i ent - aut h>want ed</ cl i ent - aut h>
</ssl >
</ socket - provi der >
</ socket - pr ovi der s>
</cluster-config>

Using Private Key and Certificate Files

Coherence also supports using private key and certificate files directly, instead of loading them
into a keystore. The examples in Specifying Passwords in Socket Provider Configuration used
Java keystore files to store the private key and certificates used to establish trust and identity
in Coherence SSL.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 39 of 50

ORACLE

Chapter 6
Using Private Key and Certificate Files

® Note
Out of the box, Coherence only supports file formats supported by the JDK. These are
private key files in PEM format (that is, a file with a header of - - - - - BEG N RSA
PRI VATE KEY----- or----- BEG N ENCRYPTED PRI VATE KEY-----) and X509 certificate
files (that is, a file with a header of - - - - - BEG N CERTI FI CATE- - - - -).

e Configuring an Identity Manager

e Configuring a Trust Manager

Configuring an Identity Manager

When configuring an <i dent i t y- manager > element of a socket provider, instead of the

<keyst or e> element, the <key> and <cert > elements can be used to supply the private key a
certificate file locations. The value for both the <key> and <cert > element is a URL from which
to load the key or certificate data.

Example 6-2 shows an <i dent i t y- manager > configuration that uses a private key loaded from
the / coher ence/ security/client. pemfile and a certificate loaded from the /
coherence/ security/client.cert file.

Example 6-46 Sample Identity Manager Using a Private Key and a Certificate File

<socket - provi der >
<ssl >
<identity-manager >
<key>file:/coherencel/security/client.penx/key>
<cert>file:/coherence/security/client.cert</cert>
</identity-nanager>
</ssl >
</ socket - provi der >

When configuring an <i denti t y- manager > element, the <keyst or e> element, and the <key>
and <cert > elements are mutually exclusive; either configure a keystore, or a key and
certificate. The Coherence operational configuration XSD validation does not allow both.

Configuring a Trust Manager

When configuring a <t r ust - menager > element of a socket provider, instead of the <keyst or e>
element, one or more <cert > elements can be used to supply the certificate file locations. The
value for the <cert > element is a URL from which to load the certificate data.

Example 6-47 shows a <t r ust - manager > configuration that uses a certificate loaded from the /
coherence/ security/server-ca. cert file.

Example 6-47 Sample Trust Manager Using a Certificate File

<socket - provi der >
<ssl >
<trust - manager >
<cert>file:/coherence/security/server-ca.cert</cert>
</trust-manager >

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 40 of 50

ORACLE Chapter 6
Using Custom Keystore, Private Key, and Certificate Loaders

</ssl >
</ socket - provi der >

When configuring a <t r ust - manager > element, the <keyst or e> element and the <cert >
elements are mutually exclusive; either configure a keystore, or one or more certificates. The
Coherence operational configuration XSD validation does not allow both.

Using Custom Keystore, Private Key, and Certificate Loaders

To support loading keystores, private keys, and certificates from sources other than simple
URLS or files, and to read different data formats, Coherence provides a way to configure
custom loaders to read the required data from whatever external source is required. For
example, in the cloud, keys and certificates can be stored in a secrets service and loaded
directly from secrets, instead of loading from files. The Coherence OCI project on GitHub
includes custom keystore, key, and certificate loaders that can read data from secrets in the
Oracle Cloud (OCI) Secrets Service. See Coherence OCI.

This section includes the following topics:

¢ Using the Custom KeyStore Loader

e Using the Custom PrivateKey Loader

e Using a Custom Certificate Loader

Using the Custom KeyStore Loader

If using Java Keystores, you can implement an instance of

com t angosol . net. ssl . KeySt or eLoader in application code and configure it in the <key-

st or e- | oader > element, which is a child of the <key- st or e> element. This class can load the
contents of a Java KeyStore from any desired location.

Example 6-48 shows a custom implementation of the KeySt or eLoader interface.

Example 6-48 A Custom KeyStore Loader Class

package com acne. coherence;

i nport com tangosol . net.ssl.KeyStorelLoader;
inport java.io.lCException;

i nport java.security. General SecurityException;
i nport java.security.KeyStore;

public class CustonKeyStorelLoader
i npl ements KeySt or eLoader
{
@verride
public KeyStore load(String sType, PasswordProvider password)
throws General SecurityException, |COException

{
/] return a KeyStore of the required type

}

Example 6-49 shows how you can use the Cust onKey St or eLoader class in a <t r ust - manager >
configuration.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 41 of 50

https://github.com/oracle/coherence-oci

ORACLE Chapter 6
Using Custom Keystore, Private Key, and Certificate Loaders

Example 6-49 Configure an Identity Manager with a Custom KeyStore Loader Class

<socket - provi der >
<ss| >
<identity-nanager >
<key- st or e>
<key- st ore-| oader >
<cl ass- nane>com acne. coher ence. Cust onKey St or eLoader </ cl ass- name>
</ key-store-1| oader>
</ key- st ore>
</identity-manager>
</ssl >
</ socket - provi der >

Example 6-50 shows how you can use the Cust onKeySt or eLoader class in a <t r ust - nanager >
configuration.

Example 6-50 Configure a Trust Manager with a Custom KeyStore Loader Class

<socket - provi der >
<ssl >
<t rust - manager >
<key-store>
<key- st ore-| oader >
<cl ass- name>com acme. coher ence. Cust onrKey St or eLoader </ ¢l ass- nane>
</ key- st ore-| oader >
</ key- st ore>
</ trust-manager>
</ssl>
</ socket - provi der >

As with other extension points in Coherence, the <key- st or e- | cader > is an "instance"
configuration that takes a cl ass- nanme or a cl ass- f act or y- name and net hod- name parameter.
Optionally, the configuration can also use <i ni t - par ans> to pass parameters to the class
constructor or the factory method.

Example 6-51 shows how you can refactor the Cust onKey St or eLoader class to add constructor
arguments.

Example 6-51 A Custom KeyStore Loader with Parameters

package com acne. coherence;

inport com tangosol . net.ssl.KeyStorelLoader;

i nport java.io.lCException;

i nport java.security. General SecurityException;
inport java.security.KeyStore;

public class CustonKeyStorelLoader
i npl ements KeySt or eLoader

{
private final String parant;

private final String parang;

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 42 of 50

ORACLE Chapter 6
Using Custom Keystore, Private Key, and Certificate Loaders

public CustonKeyStoreLoader(String paraml, String paran?)

{
this.paranml = parant,
this. param2 = paran?;
}

@verride

public KeyStore load(String sType, PasswordProvider password)
throws General SecurityException, |OException
{

/1 return a KeyStore of the required type
}

Example 6-52 shows how you can configure the parameterized Cust onKey St or eLoader class.
With the example configuration, the Cust onKey St or eLoader constructor is called with the
parameters f 0o and bar .

Example 6-52 Configure a Custom KeyStore Loader with Parameters

<socket - provi der >
<ss| >
<identity-nanager >
<key- st or e>
<key- st or e-| oader >
<cl ass- nane>com acne. coher ence. Cust onKey St or eLoader </ cl ass- name>
<init-parans>
<init-paranp
<paramtype>string</paramtype>
<par am val ue>f oo</ par am val ue>
</init-paranp
<init-paranp
<par amtype>string</paramtype>
<par am val ue>bar </ par am val ue>
</init-paranp
</init-parans>
</ key-store-1| oader>
</ key- st ore>
</trust-manager >
</ssl >
</ socket - provi der >

At runtime, the Cust onkKeySt or eLoader class’s | oad method is called to load the keystore. In
the configurations above, the t ype parameter passed to the | oad method is the default
keystore type ("JKS"). The Passwor dProvi der passed to the | oad method is the default null
implementation that returns an empty password.

Example 6-53 shows how you can configure the keystore type and password, which are
passed as parameters to the custom KeySt or eLoader . | oad. The example shows using the
<passwor d> element, but you can also use the <passwor d- ur | > or the <passwor d- pr ovi der >
elements to supply the password to the loader.

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 43 of 50

ORACLE Chapter 6
Using Custom Keystore, Private Key, and Certificate Loaders

Example 6-53 Passing the Keystore Type and Password to a Custom KeyStore Loader

<socket - provi der >
<ss| >
<identity-nanager >
<key- st or e>
<key- st ore-| oader >
<cl ass- nane>com acne. coher ence. Cust onKey St or eLoader </ cl ass- name>
</ key-store-1| oader>
<passwor d>secr et </ passwor d>
<t ype>PKCS12</ t ype>
</ key- st ore>
</identity-manager>
</ssl >
</ socket - provi der >

Using the Custom PrivateKey Loader

If using private keys instead of keystores, you can implement an instance of

com tangosol . net. ssl. Privat eKeyLoader in application code and configure it in the <key-

| oader > element. The custom loader can then load a Pri vat eKey from any desired location in
any required format.

As with other extension points in Coherence, the <key- | oader > is an "instance" configuration
that takes a cl ass- nane or a cl ass-f act ory- nane and a net hod- nane parameter. Optionally,
the configuration can also use <i ni t - par ans> to pass parameters to the class constructor or
factory method.

Example 6-54 shows a custom PrivateKeylLoader class.
Example 6-54 A Custom Private Key Loader

package com acne. coherence;

i nport com tangosol . net. Passwor dProvi der;

i nport com tangosol . net.ssl.PrivateKeyLoader;
i nport java.io.lCException;

i nport java.security. General SecurityException;
i nport java.security.KeyStore;

public class CustonPrivateKeylLoader
i npl emrents Privat eKeyLoader
{
@verride
public PrivateKey | oad(PasswordProvider password)
throws General SecurityException, |OException
{

/] return a PrivateKey (optionally encrypted with a password)

}

Example 6-55 shows how you can configure the Cust onPri vat eKeyLoader class in the
<i dentity-manager > element.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 44 of 50

ORACLE

Chapter 6
Using Custom Keystore, Private Key, and Certificate Loaders

Example 6-55 Configure a Custom Private Key Loader

<socket - provi der >
<ss| >
<identity-nanager >
<key- | oader >
<cl ass- nane>com acne. coher ence. Cust onPri vat eKeyLoader </ cl ass- name>
</ key- | oader >
</identity-manager>
</ssl >
</ socket - provi der >

At runtime, the Cust onPri vat eKeyLoader class’s | oad method is called to create the

Pri vat eKey instance. In the example above, there is no password configured for the key, so
the Passwor dPr ovi der that is passed to the | oad method returns an empty password (new
char[0]). You can add a password by using one of the password elements allowed in the

<i dentity-manager > elements.

Example 6-56 shows a configuration with a password. In this example, the Passwor dPr ovi der
returns the contents fetched from the URL fil e: /coherence/ security/key-pass.txt asthe
key password.

Example 6-56 Configure a Password for a Custom Private Key Loader

<socket - provi der >
<ss| >
<identity-nanager >
<key- | oader >
<cl ass- nane>com acne. coher ence. Cust onPri vat eKeyLoader </ cl ass- nanme>
</ key-| oader >
<password-url >file:/coherence/security/key-pass.txt</password-url>
</identity-manager>
</ssl >
</ socket - provi der >

Using a Custom Certificate Loader

If using certificate files in the identity manager or trust manager, you can implement an
instance of com t angosol . net.ssl. CertificatelLoader in application code and configure it in
the <cert - | oader > element. This class can load an array of Certi fi cat e instances from any
desired location in the required format.

As with other extension points in Coherence, the <cert - | oader > is an "instance" configuration
that takes a cl ass- nane or a cl ass-f act ory- nane and a net hod- nane parameter. Optionally,
the configuration can also use <i ni t - par ans> to pass parameters to the cl ass constructor or
the fact ory method.

Example 6-57 shows an example of a custom Certifi cat eLoader class. The | oad method is
called to load the certificates.

Example 6-57 A Custom Certificate Loader

package com acne. coherence;

public class CustonCertificatelLoader

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 45 of 50

ORACLE Chapter 6
Using Custom Keystore, Private Key, and Certificate Loaders

inpl ements CertificatelLoader
{
@verride
public Certificate[] |oad()
throws General SecurityException, |OException
{

/] return a Certificate array

}

Example 6-58 shows how you can configure the Cust onCerti fi cat eLoader class in the
identity manager.

Example 6-58 Configure a Custom Certificate Loader in an Identity Manager

<socket - provi der >
<ssl| >
<identity-manager >
<key>server. penx/ key>
<cert-| oader>
<cl ass- name>com acre. coher ence. Cust onCerti fi cat eLoader </ cl ass- nane>
</cert-1|oader>
</identity-nmanager>
</ ssl >
</ socket - provi der >

Example 6-59 shows how you can configure the Cust onCerti fi cat eLoader class in the trust
manager.

Example 6-59 Configure a Custom Certificate Loader in an Trust Manager

<socket - provi der >
<ss| >
<t rust - manager >
<cert-| oader>
<cl ass- name>com acre. coher ence. Cust onCerti fi cat eLoader </ cl ass- nane>
</cert-1|oader>
</ trust-manager >
</ ssl >
</ socket - provi der >

The | oad() method of the Certi fi cat eLoader class returns an array of certificates; so it can
load multiple certificates. You can also configure multiple <cert - | oader > elements to use
multiple custom loaders. All the certificates provided by all the <cert > or <cert - | oader >
elements are combined into a single set of certificates for the SSL context to use.

Example 6-60 shows how you can configure multiple <cert > and custom loaders in a trust
manager.

Example 6-60 Configure Multiple Certificates and Loaders in a Trust Manager

<socket - provi der >
<ssl >
<trust - manager >
<cert>server-ca.cert</cert>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 46 of 50

ORACLE Chapter 6
Using Refreshable KeyStores, Private Keys, and Certificates

<cert-| oader >
<cl ass- name>com acne. coherence. Cust onCerti fi cat eLoader </ cl ass- name>
<init-paranms>
<init-paranmp
<paramtype>string</paramtype>
<par am val ue>f oo</ par am val ue>
</init-paran>
</init-parans>
</cert-1|oader>
<cert-| oader >
<cl ass- nanme>com acne. coherence. Cust onCerti fi cat eLoader </ cl ass- name>
<init-paranms>
<init-paranmp
<paramtype>string</paramtype>
<par am val ue>bar </ par am val ue>
</init-paran>
</init-parans>
</cert-1|oader>
</trust-manager >
</ssl >
</ socket - provi der >

Using Refreshable KeyStores, Private Keys, and Certificates

In some environments, keys, and certs used for TLS are created with relatively short lifetimes.
This means that a Coherence application should be able to renew the keys and certs, ideally
without having to restart the JVM. In Coherence releases prior to 14.1.1.2206, this feature was
not available because a keystore was loaded once when the socket provider was instantiated.
From Coherence release 14.1.1.2206 onward, it is possible to specify a refresh period, which
then schedules a refresh of the SSL context to reload any configured keystores, private keys,
and certificates.

The <refresh-peri od> element is used to configure the refresh time. This is a child element of
the ssl element, meaning that the setting applies to both the identity manager and trust
manager.

Example 6-61 configures a <r ef r esh- per i od> element with a value of 24h to refresh the keys
and certs every 24 hours.

Example 6-61 Configure a Refresh Period

<socket - provi der >
<ss| >
<identity-manager >
<key>server. penx/ key>
<cert>server.cert</cert>
</identity-nanager>
<refresh-period>24h</refresh-peri od>
</ssl>
</ socket - provi der >

Refreshable keystores, keys, and certs can easily be combined with custom keystore loaders,
private key loaders, and certificate loaders, so that the new versions of the required SSL
artifacts can be pulled from an external source.

e Configuring a Refresh Policy

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 47 of 50

ORACLE Chapter 6
Using Refreshable KeyStores, Private Keys, and Certificates

Configuring a Refresh Policy

When using refreshable keys and certs, it may sometimes be useful to have an additional
check to determine whether a refresh should occur. You can perform this check by configuring
a<refresh-policy>as well as a <refresh-peri od>.

The <refresh-pol i cy> element is a standard Coherence instance configuration and should
resolve to an instance of com t angosol . net. ssl . RefreshPol i cy. When a scheduled refresh
time is reached, the policy is checked first (by calling the Ref reshPol i cy. shoul dRef resh()
method) to determine whether the refresh should go ahead.

Example 6-62 shows a custom Ref r eshPol i cy implementation.
Example 6-62 A Custom Refresh Policy Class

package com acne. coherence;

public class CustonRefreshPolicy
i npl emrent's RefreshPol i cy
{
@verride
public bool ean shoul dRef resh(Dependenci es deps, Manager Dependenci es
depsl dMgr, Manager Dependenci es depsTrust Myr)

{
/1 performsone customlogic to determine whether it is tim to
refresh
return true;
}
}

Example 6-63 shows how you can configure the custom refresh policy as part of the <ssl >
element alongside the <r ef r esh- peri od>.

Example 6-63 Configure a Custom Refresh Policy

<socket - provi der >
<ss| >
<identity-manager >
<key>server. penx/ key>
<cert>server.cert</cert>
</identity-nanager>
<refresh-period>24h</refresh-peri od>
<refresh-policy>
<cl ass- name>com acne. coher ence. Cust onRef reshPol i cy</ cl ass- nane>
</refresh-policy>
</ssl >
</ socket - provi der >

For some policies, it is useful to know what keystores, keys, or certs are currently in use to
determine whether they need to be refreshed. There are a number of default methods on
Ref reshPol i cy that can be overridden for this purpose.

Example 6-64 shows how you can capture the certificates used by a trust store configuration,
and then use the certificates to verify whether they are close to expiry. In this example, the
trust St or eLoaded method is called when the trust store is created to notify the policy of the

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 48 of 50

ORACLE Chapter 6
Using Refreshable KeyStores, Private Keys, and Certificates

certificates used by the trust store. In the shoul dRef r esh method, the certificates can then be
checked to determine whether they will still be valid at the next refresh interval.

Example 6-64 A Detailed Custom Certificate Refresh Policy

i nport com oracl e. coherence. cormon. net . SSLSocket Provi der . Dependenci es;

i nport com oracl e. coherence. conmon. util. Duration;

i nport

com tangosol . coherence. confi g. bui | der. SSLSocket Provi der Dependenci esBui | der. Man
ager Dependenci es;

i nport com tangosol . coherence. config. unit. Seconds;

i nport comtangosol . net.ssl.RefreshPolicy;

inport java.security.cert.Certificate;

inport java.security.cert.CertificateExpiredException;
inport java.security.cert.CertificateNotVYetValidException;
inport java.security.cert.X509Certificate;

inport java.util.Date;

public class CustonRefreshPolicy
i npl enents RefreshPolicy

{

private Certificate[] certs;

@verride

public void trustStorelLoaded(Certificate[] certs)
{
this.certs = certs;
}

@verride

public bool ean shoul dRef resh(Dependenci es deps, Mnager Dependenci es
depsl dMgr, Manager Dependenci es depsTrust Myr)

{

if (certs == null)
{
return true;
}

/1 get the refresh period fromthe dependencies

Seconds secs = deps. get Ref reshPeriod();

/] calculate the next refresh time as a Date

Date next Refresh = new Date(SystemcurrentTineMIlis() +
secs. as(Duration. Magni tude. M LLI));

for (Certificate certificate : certs)

{
try
{
/1 The certs are all X509 certs, so check their validity on
the next refresh date
((X509Certificate) certificate).checkValidity(nextRefresh);
}
catch (CertificateExpiredException |
CertificateNot Yet Val i dException e)

{

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 49 of 50

ORACLE Chapter 6
Using Refreshable KeyStores, Private Keys, and Certificates

/1 a cert will have expired, so we need to update now
return true;
}

}

/1 no certs should have expired at the next refresh check
return fal se;

}

Example 6-65 shows how you can configure the Cust onRef r eshPol i cy class in the <ss| >
configuration.

Example 6-65 Configure the Custom Certificate Refresh Policy

<socket - provi der >
<ssl >
<trust - manager >
<ca-cert>server-ca.cert</ca-cert>
<ca-cert>client-ca.cert</ca-cert>
</trust-manager >
<refresh-peri od>24h</refresh-peri od>
<refresh-policy>
<cl ass- name>com acne. coher ence. Cust onRef reshPol i cy</ cl ass- nane>
</refresh-policy>
</ssl >
</ socket - provi der >

Securing Oracle Coherence
G31424-01 October 6, 2025
Copyright © 2008, 2025, Oracle and/or its affiliates. Page 50 of 50

Securing Oracle Coherence in Oracle
WebLogic Server

Authentication and authorization can be used to secure Coherence in an Oracle WebLogic
Server domain.

This chapter includes the following sections:

* Overview of Securing Oracle Coherence in Oracle WebLogic Server

» Securing Coherence using SSL/TLS
You can use SSL/TLS to secure Managed Coherence servers in a WebLogic Server
domain. WebLogic Server will create Java keystores for identity and trust and create a
Coherence socket provider configuration that Coherence will be configured to use.

* Securing Oracle Coherence Cluster Membership

« Authorizing Oracle Coherence Caches and Services

e Securing Extend Client Access with Identity Tokens

Overview of Securing Oracle Coherence in Oracle WebLogic

Server

Several security features are used to secure cluster members, caches and services, and
extend clients when deploying Coherence within an Oracle WebLogic Server domain. The
default security configuration allows any server to join a cluster and any extend client to access
a cluster's resources.

The following security features should be configured to protect against unauthorized use of a
cluster:

e SSL/TLS - enables SSL/TLS for Coherence cluster member connections
e Coherence access controllers - provides authorization between cluster members

* WebLogic Server authorization - provides authorization to Oracle Coherence caches and
services

« Coherence identity tokens - provides authentication for extend clients

Much of the security for Oracle Coherence in a Oracle WebLogic Server domain reuses
existing security capabilities. Knowledge of these existing security components is assumed.
References are provided in this documentation to existing content where applicable.

Securing Coherence using SSL/TLS

You can use SSL/TLS to secure Managed Coherence servers in a WebLogic Server domain.
WebLogic Server will create Java keystores for identity and trust and create a Coherence
socket provider configuration that Coherence will be configured to use.

By default, WebLogic Server will configure managed Coherence servers to use mTLS
authentication, but these settings can be overridden.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE Chapter 7
Securing Coherence using SSL/TLS

You can only use WebLogic Server to configure SSL/TLS for cluster membership, or globally
for all Coherence sockets. There is no way to configure individual Coherence services, such as
Extend proxies and client, gRPC proxies and client, federation, and so on. If you need to
configure these services differently, see Using SSL/TLS to Secure Communication .

o Extended Usage Cetrtificates
If certificates with extended usage are used, it is important to understand how this affects
the different SSL/TLS configuration choices available for Coherence.

e Configure Coherence Cluster Traffic Using mTLS
Coherence clusters form a peer-to-peer network where each JVM is both a server
receiving connections from other cluster members, and a client connecting to other cluster
members. You can configure Coherence cluster peer-to-peer communication to use
SSL/TLS in a WebLogic Server domain using either WebLogic Remote Console or a
WLST script.

e Configure Coherence Cluster Traffic Using One-Way SSL/TLS
In one-way SSL/TLS, a client authenticates a server certificate, but the server does not
receive a certificate from the client, so the client is anonymous. You can configure
Coherence cluster traffic to use one-way SSL/TLS in a WebLogic Server domain using
either WebLogic Remote Console or a WLST script.

e Using a Custom Coherence Operational Configuration File
As WebLogic Server only supports a limited subset of Coherence configuration options,
occasionally, you may require a custom Coherence operational configuration file (also
known as an override file).

e Configure the Coherence Global Socket Provider
WebLogic Server allows you to configure the Coherence global socket provider. The global
socket provider can be either the WebLogic Server generated socket provider or a socket
provider from the Coherence operational configuration. This may require importing a
custom operational configuration file.

* WebLogic Server Secured Production Mode
When a WebLogic Server domain is in secured production mode, then, by default,
Coherence will be configured to use the WebLogic Server socket provider as the global
socket provider. The default WebLogic socket provider is configured for mTLS. If you do
not require MTLS, then the Coherence configuration can be overridden using WebLogic
Remote Console or a WLST script.

Extended Usage Certificates

If certificates with extended usage are used, it is important to understand how this affects the
different SSL/TLS configuration choices available for Coherence.

By default, WebLogic will configure Coherence to use mTLS, so the extend usage for any
certificates must include both server Aut h and cl i ent Aut h. If only ser ver Aut h certificates are
available, Coherence must be configured to use one-way SSL/TLS as described in Configure
Coherence Cluster Traffic Using One-Way SSL/TLS .

Configure Coherence Cluster Traffic Using mTLS

Coherence clusters form a peer-to-peer network where each JVM is both a server receiving
connections from other cluster members, and a client connecting to other cluster members.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 13

ORACLE

Chapter 7
Securing Coherence using SSL/TLS

You can configure Coherence cluster peer-to-peer communication to use SSL/TLS in a
WebLogic Server domain using either WebLogic Remote Console or a WLST script.

Configure mTLS for Cluster Traffic Using WebLogic Remote Console
1. Inthe Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the General tab, from the Transport drop-down list, select SSL. Or, if you want to use
datagram as the transport instead of TCMP, then select SSLUDP instead.

4, Click Save.

Configure mTLS for Cluster Traffic Using WLST Script

To configure Coherence to use mTLS for cluster membership using WLST, use the following
script:

@ Note
In the script below, replace:
- DOMAI N_HOME with the path to your WebLogic Server domain home.

« defaul t CoherenceC ust er with the name of your Coherence cluster.

readDonai n(' DOVAI N_HOMVE')

cd("' CoherenceC ust er Syst enResour ce/ Coher enceC ust er/ Coher enceResour ce/
def aul t Coher enced ust er/ Coher enced ust er Par ams/ NO_NAME_0')

set (' Transport', 'ssl')

updat eDomai n()

cl oseDonai n()

Configure Coherence Cluster Traffic Using One-Way SSL/TLS

In one-way SSL/TLS, a client authenticates a server certificate, but the server does not receive
a certificate from the client, so the client is anonymous. You can configure Coherence cluster
traffic to use one-way SSL/TLS in a WebLogic Server domain using either WebLogic Remote
Console or a WLST script.

Configure One-Way SSL for Cluster Traffic Using WebLogic Remote Console

1. Inthe Edit Tree, go to Environment, then Coherence Clusters.
2. Click the Coherence cluster that you want to edit.

3. On the General tab, from the Transport drop-down list, select SSL. Or, if you want to use
datagram as the transport instead of TCMP, then select SSLUDP instead.

4. Click Save.
5. On the Security tab, from the Client Authentication Mode drop-down list, select none.

6. Click Save.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE Chapter 7
Securing Coherence using SSL/TLS

Configure One-Way for Cluster Traffic SSL Using WLST Script

To configure Coherence to use one-way SSL/TLS for cluster traffic using WLST, use the
following script:

® Note
In the script below, replace:

- DOMAI N_HOME with the path to your WebLogic Server domain home.

» defaul t CoherenceC ust er with the name of your Coherence cluster.

readDonai n(' DOVAI N_HOMVE')

cd("' CoherenceC ust er Syst enResour ce/ def aul t Coher enced ust er/ Coher enceResour ce/
def aul t Coher enced ust er/ Coher enced ust er Par anms/ NO_NAME_0')

creat e("cohKS", " Coher enceKeyst or ePar ans")

cd("' Coher enceKeyst or ePar ams/ NO_NAMVE_0')

set (' Transport', 'ssl')

set (' CoherenceC ientAuth',' none')

updat eDomai n()

cl oseDonai n()

Using a Custom Coherence Operational Configuration File

As WebLogic Server only supports a limited subset of Coherence configuration options,
occasionally, you may require a custom Coherence operational configuration file (also known
as an override file).

A custom operational configuration file can be imported using either WebLogic Remote
Console or a WLST script.

Before you can import the custom Coherence operational configuration file, you must make
sure that the file exists on the Administration Server and is readable. When you import the
operational configuration file, a copy of the file is placed in the DOVAI N_HOVE/ confi g/

coher ence/ Coher enced ust er Nane directory, where Coher enceC ust er Nane is a placeholder
that represents the actual name of the Coherence cluster.

Import a Custom Operational Configuration File Using WebLogic Remote Console

1. Inthe Edit Tree, go to Environment, then Coherence Clusters.
2. Click the Coherence cluster that you want to edit.

3. On the General tab, click the Import Configuration button.

4

Enter the full path to a custom Coherence operational configuration file that is on the
Administration Server.

5. Click Save.

Set a Custom Operational Configuration File Using a WLST Script

The file name is the relative path to the domain home. In the example below, if the full path of
the operational configuration file is / ORACLE_HOVE/ user _pr oj ect s/ domai ns/ base_donai n/

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE Chapter 7
Securing Coherence using SSL/TLS

confi g/ coherence/ def aul t Coher enceC ust er/ nySSLOverri de. xm , the file name would be
confi g/ coher ence/ def aul t Coher enceC ust er/ nySSLOverri de. xm .

Use the following WLST script to configure a custom Coherence operational configuration file.

® Note
In the script below, replace:
- DOMAI N_HOME with the path to your WebLogic Server domain home.
e defaul t CoherenceC ust er with the name of your Coherence cluster.

* ssl Socket Provi der Name with the name of the socket provider.

readDonai n(' DOVAI N_HOMVE')

cd("' CoherenceC ust er Syst enResour ce/ def aul t Coher enced ust er/ Coher enceResour ce/
def aul t CoherenceC uster')

set (' CustonCl ust er Confi gurationFi | eNane', ' confi g/ coherence/

def aul t Coher enceC uster/nySSLOverri de. xm ")

cd("' Coherenced ust er Parans/ NO_NAME_0')

set (' G obal Socket Provi der', " ssl Socket Provi der Nare')

updat eDomai n()

cl oseDonai n()

Configure the Coherence Global Socket Provider

WebLogic Server allows you to configure the Coherence global socket provider. The global
socket provider can be either the WebLogic Server generated socket provider or a socket
provider from the Coherence operational configuration. This may require importing a custom
operational configuration file.

See Specifying a Global Socket Provider and Using a Custom Coherence Operational
Configuration File.

Set the WebLogic Server Socket Provider as the Global Socket Provider in WebLogic
Remote Console

1. Inthe Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the Security tab, enable the Secured Production option.

4. Click Save.

The name of the WebLogic Server socket provider will automatically be inserted into the
Global Socket Provider field.

Set WebLogic Socket Provider as the Global Socket Provider Using a WLST Script

Use the following WLST script to configure the WebLogic Server socket provider as the
Coherence global socket provider.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE Chapter 7
Securing Coherence using SSL/TLS

® Note
In the script below, replace:

- DOMAI N_HOME with the path to your WebLogic Server domain home.

» defaul t CoherenceC ust er with the name of your Coherence cluster.

readDonai n(' DOVAI N_HOME')

cd(' CoherenceC ust er Syst enResour ce/ def aul t Coher enced ust er/ Coher enceResour ce/
def aul t Coher enced ust er/ Coher enced ust er Par anms/ NO_NAME Q')

set (' SecuredProduction', 'true')

updat eDomai n()

cl oseDonai n()

Set a Custom Socket Provider as the Global Socket Provider in WebLogic Remote
Console

You can configure Coherence to use a custom socket provider as the global socket provider
using WebLogic Remote Console. The named socket provider must be configured in the
Coherence operational configuration.

1. Inthe Edit Tree, go to Environment, then Coherence Clusters.
2. Click the Coherence cluster that you want to edit.

3. On the Security tab, enter the name of the custom socket provider in the Global Socket
Provider field.

4, Click Save.

Set a Custom Socket Provider as the Global Socket Provider Using WLST Script

You can configure Coherence to use a custom socket provider as the global socket provider
using WLST. The named socket provider must be configured in the Coherence operational
configuration.

Use the following WLST script to set the name of the Coherence global socket provider.

® Note
In the script below, replace:
- DOMAI N_HOME with the path to your WebLogic Server domain home.
e defaul t CoherenceC ust er with the name of your Coherence cluster.

» ssl Socket Provi der Nane with the name of the socket provider.

readDonai n(' DOVAI N_HOME')

cd(' Coherenced ust er Syst enResour ce/ def aul t Coher enced ust er/ Coher enceResour ce/
def aul t Coher enced ust er/ Coher enced ust er Par ans/ NO_NAME Q')

set (' Transport', 'ssl')

set (' d obal Socket Provider', 'ssl SocketProvi der Nane')

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 7
Securing Coherence using SSL/TLS

updat eDomai n()
cl oseDonai n()

WebLogic Server Secured Production Mode

When a WebLogic Server domain is in secured production mode, then, by default, Coherence
will be configured to use the WebLogic Server socket provider as the global socket provider.
The default WebLogic socket provider is configured for mTLS. If you do not require mTLS, then
the Coherence configuration can be overridden using WebLogic Remote Console or a WLST
script.

For general information on secured production mode in WebLogic Server, see Understand
How Domain Mode Affects the Default Security Configuration in Securing a Production
Environment for Oracle WebLogic Server.

* Configure Coherence for One-Way SSL/TLS in Secured Production Mode
If the WebLogic Server domain is in secured production mode, where the WebLogic Server
socket provider defaults to mTLS, you can configure Coherence to use one-way SSL/TLS
instead using WebLogic Remote Console or a WLST script.

» Disable Coherence SSL/TLS in Secured Production Mode
If the WebLogic Server domain is in secured production mode but you need Coherence to
run with plain TCP, then you can configure this behavior using WebLogic Remote Console
or a WLST script.

Configure Coherence for One-Way SSL/TLS in Secured Production Mode

If the WebLogic Server domain is in secured production mode, where the WebLogic Server
socket provider defaults to mTLS, you can configure Coherence to use one-way SSL/TLS
instead using WebLogic Remote Console or a WLST script.

Configure Coherence for One-Way SSLITLS Using WebLogic Remote Console

1. Inthe Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit.

3. On the Security tab, from the Client Authentication Mode drop-down list, select none.
4. Click Save.

Configure Coherence for One-Way SSLITLS Using WLST Script

Use the following script to configure Coherence to use one-way SSL/TLS.

@ Note
In the script below, replace:
- DOMAI N_HOME with the path to your WebLogic Server domain home.

» defaul t CoherenceC ust er with the name of your Coherence cluster.

readDonai n(' DOVAI N_HOMVE')
cd("' CoherenceC ust er Syst enResour ce/ def aul t Coher enced ust er/ Coher enceResour ce/
def aul t Coher enced ust er/ Coher enced ust er Par ams/ NO_NAME_0')

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE’

Chapter 7
Securing Oracle Coherence Cluster Membership

creat e("cohKS", " Coher enceKeyst or ePar ans")
cd(' CoherenceKeyst or ePar ams/ NO_NAMVE Q')
set (' CoherenceC ientAuth',' none")

updat eDomai n()

cl oseDonai n()

Disable Coherence SSL/TLS in Secured Production Mode

If the WebLogic Server domain is in secured production mode but you need Coherence to run
with plain TCP, then you can configure this behavior using WebLogic Remote Console or a
WLST script.

@® Note

If you disable secured production mode in Coherence, it only affects Coherence and
does not affect the broader aspects of secured production mode in WebLogic Server.

Disable Coherence SSLITLS in Secured Production Mode Using WebLogic Remote
Console

1. Inthe Edit Tree, go to Environment, then Coherence Clusters.
2. Click the Coherence cluster that you want to edit.

3. On the Security tab, turn off the Secured Production option.

4. Click Save.

Disable Coherence SSLITLS in Secured Production Mode Using a WLST Script

Use the following script to configure Coherence to use plain TCP.

® Note
In the script below, replace:
- DOMAI N_HOME with the path to your WebLogic Server domain home.

» defaul t CoherenceC ust er with the name of your Coherence cluster.

readDonai n(' DOVAI N_HOME')

cd(' CoherenceC ust er Syst enResour ce/ def aul t Coher enced ust er/ Coher enceResour ce/
def aul t Coher enced ust er/ Coher enced ust er Par ans/ NO_NAME Q')

set (' SecuredProduction', 'false')

updat eDomai n()

cl oseDonai n()

Securing Oracle Coherence Cluster Membership

The Oracle Coherence security framework (access controller) can be enabled within a Oracle
WebLogic Server domain to secure access to cluster resources and operations. The access
controller provides authorization and uses encryption/decryption between cluster members to
validate trust. See Overview of Using an Access Controller.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE

Chapter 7
Securing Oracle Coherence Cluster Membership

In Oracle WebLogic Server, access controllers use a managed Coherence server's keystore to
establish a caller's identity between Oracle Coherence cluster members. The Demo Identity
keystore is used by default and contains a default SSL identity (Demoldentity). The default
keystore and identity require no setup and are ideal during development and testing. Specific
keystores and identities should be created for production environments. See Configuring
Keystores in Administering Security for Oracle WebLogic Server.

This section includes the following topics:

* Enabling the Oracle Coherence Security Framework

e Specifying an ldentity for Use by the Security Framework

Enabling the Oracle Coherence Security Framework

To enable the security framework in an Oracle WebLogic Server domain using WebLogic
Remote Console:

1. Inthe Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit, then select the Security tab.
3. Turn on the Security Framework Enabled option.

4. Click Save.

Specifying an Identity for Use by the Security Framework

The Oracle Coherence security framework requires a principal (identity) when performing
authentication. The SSL Demo Identity keystore is used by default and contains a default SSL
identity (Demoldentity). The SSL Demo keystore and identity are typically used during
development. For production environments, you should create an SSL keystore and identity.
For example, use the Java keyt ool utility to create a keystore that contains an admi n identity:

keyt ool -genkey -v -keystore ./keystore.jks -storepass password -alias adnin
-keypass password -dname CN=Admi ni strator, O=MyConpany, L=WCi ty, ST=M/St at e

® Note

If you create an SSL keystore and identity, you must configure Oracle WebLogic
Server to use that SSL keystore and identity. In addition, the same SSL identity must
be located in the keystore of every managed Coherence server in the cluster. Use the
Keystores and SSL tabs on the Environment: Servers: myServer: Security tab for a
managed Coherence server to configure a keystore and identity.

To override the default SSL identity and specify an identity for use by the security framework:

1. Inthe Edit Tree, go to Environment, then Coherence Clusters.

2. Click the Coherence cluster that you want to edit, then select the Security tab.
3. Make sure the Security Framework Enabled option is enabled.
4

Optional: Turn on the Global Socket Provider option. If you enable this option, Coherence
uses the Oracle WebLogic Server's SSL as its global socket provider. For more information
about configuring global SSL socket provider for Coherence, see Configuring a Cluster-
Side Extend Proxy SSL Socket Provider.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE

Chapter 7
Authorizing Oracle Coherence Caches and Services

5. In the Client Authentication Mode field, specify the client authentication mode for SSL.
The valid values are:

° none
* required
* wanted
The default value is none.

6. Inthe Private Key Pass Phrase field, enter the password for the identity.

7. Click Save.

Authorizing Oracle Coherence Caches and Services

Oracle WebLogic Server authorization can be used to secure Oracle Coherence resources that
run within a domain. In particular, different roles and policies can be created to control access
to caches and services. Authorization is enabled by default and the default authorization policy
gives all users access to all Oracle Coherence resources. See Overview of Securing WebLogic
Resources in Securing Resources Using Roles and Policies for Oracle WebLogic Server.
Authorization roles and policies are explicitly configured for caches and services. You must
know the cache names and service names that are to be secured. In some cases, inspecting
the cache configuration file may provide the cache names and service names. However,
because of wildcard support for cache mappings in Oracle Coherence, you may need to
consult an application developer or architect that knows the cache names being used by an
application. For example, a cache mapping in the cache configuration file could use a wildcard
(such as * or di st - *) and does not indicate the name of the cache that is actually used in the
application.

® Note

Deleting a service or cache resource does not delete roles and policies that are
defined for the resource. Roles and policies must be explicitly deleted before deleting
a service or cache resource.

This section includes the following topics:

* Specifying Cache Authorization

* Specifying Service Authorization

Specifying Cache Authorization

Oracle WebLogic Server authorization can be used to restrict access to specific Oracle
Coherence caches. To specify cache authorization:

1. Inthe Edit Tree, go to Environment, then Coherence Clusters, then
myCoherenceCluster, then Coherence Caches.

2. Click New.

3. Inthe Name field, enter a name for the Coherence cache. The name of the cache must
exactly match the name of the cache used in an application.

4. Click Create and commit your changes.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE Chapter 7
Securing Extend Client Access with Identity Tokens

5. Define security roles and policies that are scoped to the Coherence cache. See Create a
Scoped Role in Oracle WebLogic Remote Console Online Help.

For example, you can create a policy that allows specific users to access the cache. The
users can be selected based on their membership in a global role, or a Coherence-specific
scoped role can be created and used to define which users can access the cache. See
Overview of Securing WebLogic Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Specifying Service Authorization

Oracle WebLogic Server authorization can be used to restrict access to Oracle Coherence
services. Specifying authorization on a cache service (for example a distributed cache service)
affects access to all the caches that are created by that service.

To specify service authorization:

1. Inthe Edit Tree, go to Environment, then Coherence Clusters, then
myCoherenceCluster, then Coherence Services.

2. Click New.

3. In the Name field, enter a name for the Coherence service. The name of the service must
exactly match the name of the service used in an application.

@® Note

The exact name must include the scope name as a prefix to the service name.
The scope name can be explicitly defined in the cache configuration file or, more
commonly, taken from the deployment module nhame. For example, if you deploy a
GAR named cont act s. gar that defines a service named Cont act sServi ce, then
the exact service name is cont act s: Cont act sSer vi ce.

4. Click Create and commit your changes.

5. Define security roles and policies that are scoped to the Coherence service. See Create a
Scoped Role in Oracle WebLogic Remote Console Online Help.

For example, you can create a policy that allows specific users to access the service. The
users can be selected based on their membership in a global role, or a Coherence-specific
scoped role can be created and used to define which users can access the service. See
Overview of Securing WebLogic Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Securing Extend Client Access with Identity Tokens

Identity tokens are used to protect against unauthorized access to an Oracle Coherence
cluster through an Oracle Coherence proxy server. Identity tokens are used by local (within
WebLogic Server) extend clients and remote (outside of WebLogic Server) Java, C++,

and .NET extend clients.

Only clients that pass a valid identity token are permitted to access cluster services. If a nul |
identity token is passed (a client connecting without being within the scope of a Subj ect), then
the client is treated as an Oracle WebLogic Server anonymous user. The extend client is able
to access caches and services that the anonymous user can access.

Securing Oracle Coherence
G31424-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 11 of 13

ORACLE’

Chapter 7
Securing Extend Client Access with Identity Tokens

@® Note

Upon establishing and identity, an authorization policy should be used to restrict that
identity to specific caches and services. See Authorizing Oracle Coherence Caches
and Services.

Identity token security requires an identity transformer implementation that creates an identity
token and an identity asserter implementation that validates the identity token. A default
identity transformer implementation (Def aul t | dent i t yTr ansf or ner) and identity asserter
implementation (DefaultldentityAsserter) are provided. The default implementations use a
Subj ect or Princi pal as the identity token. However, custom implementations can be created
as required to support any security token type (for example, to support Kerberos tokens). See
Using Identity Tokens to Restrict Client Connections.

This section includes the following topics:

* Enabling Identity Transformers for Use in Oracle WebLogic Server

* Enabling Identity Asserters for Use in Oracle WebLogic Server

Enabling Identity Transformers for Use in Oracle WebLogic Server

An identity transformer associates an identity token with an identity. For local (within Oracle
WebLogic Server) extend clients, the default identity transformer cannot be replaced. The
default identity transformer passes a token of type

webl ogi c. security. acl.internal.Aut henti catedSubj ect representing the current Oracle
WebLogic Server user.

For remote (outside of Oracle WebLogic Server) extend clients, the identity transformer
implementation class must be included as part of the application's classpath and the fully
qualified name of the implementation class must be defined in the client operational override
file. See Enabling a Custom Identity Transformer. The following example enables the default
identity transformer:

<security-config>
<identity-transforner>
<cl ass- nane>
com tangosol . net.security. Defaul tldentityTransforner</class-name>
</identity-transforner>
</security-config>

Remote extend clients must execute cache operations within the Subj ect . doAS method. For
example,

Principal principal = new W.SUserlnpl ("user");
Subj ect subject = new Subject();
subj ect. get Princi pal s().add(principal);

Subj ect . doAs(subj ect, new Privil egedExcepti onAction()

{
NarmedCache cache = CacheFactory. get Cache("nmycache");

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE Chapter 7
Securing Extend Client Access with Identity Tokens

Enabling Identity Asserters for Use in Oracle WebLogic Server

Identity asserters must be enabled for an Oracle Coherence cluster and are used to assert
(validate) a client's identity token. For local (within Oracle WebLogic Server) extend clients, an
identity asserter is already enabled for asserting a token of type

webl ogi c. security. acl.internal.Aut henticatedSubject.

For remote (outside of Oracle WebLogic Server) extend clients, a custom identity asserter
implementation class must be packaged in a GAR. However, an identity asserter is not
required if the remote extend client passes nul | as the token. If the proxy service receives a
non-null token and there is no identity asserter implementation class configured, a
SecurityExcepti on is thrown and the connection attempt is rejected.

You can use WebLogic Remote Console or WLST to enable an identity asserter for a cluster.

* If using WebLogic Remote Console, perform the following steps:

1. Inthe Edit Tree, go to Environment, then Coherence Clusters, then
myCoherenceCluster, then Coherence Identity Asserter.

2. Inthe Class Name field, enter the fully qualified name of the asserter class. For
example, to use the default identity asserter, enter
comtangosol . net.security. Defaul t1dentityAsserter.

3. Click Save.

4. |If there are any arguments, open the Identity Asserter Constructor Arguments node
and click New to add class constructor arguments.

5. Click Save and then commit your changes.
e If using WLST, perform the following steps:

Invoke WLST and connect to the domain. Then, configure an identity asserter. Use the
script below as an example:

In the script below, replace:
— DOWVAI N_HOME with the path to your WebLogic Server domain home.

— defaul t Coherenced ust er with the name of your Coherence cluster.

readDonai n(' DOVAI N_HOME')

cd("' CoherenceC ust er Syst enResour ce/ def aul t Coher enceC uster/

Coher enceResour ce/ def aul t Coher enceC ust er/ Coher enceC ust er Par ans/
NO_NAME 0')

set (' SecurityFramewor kEnabl ed', 'true')

cd(' Coherencel dentityAsserter/NO NAME Q')

set (' G assNane', "com tangosol . net.security.Defaul tldentityAsserter")
updat eDomai n()

cl oseDonai n()

Restart the cluster servers or redeploy the GAR for the changes to take effect.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 13 of 13

Securing Oracle Coherence REST

Authentication and authorization can be used to secure Oracle Coherence REST. If you are
new to Coherence REST, See Using Coherence REST in Developing Remote Clients for
Oracle Coherence.

This chapter includes the following sections:

e Overview of Securing Oracle Coherence REST

» Using HTTP Basic Authentication with Oracle Coherence REST
» Using SSL Authentication With Oracle Coherence REST
* Using SSL and HTTP Basic Authentication with Oracle Coherence REST

* |Implementing Authorization For Oracle Coherence REST

Overview of Securing Oracle Coherence REST

Oracle Coherence REST security uses both authentication and authorization to restrict access
to cluster resources. Authentication and authorization are disabled by default and are enabled
as required. Authentication support includes: HTTP basic, client-side SSL certificate, and
client-side SSL certificate together with HTTP basic. Authorization is implemented using Oracle
Coherence*Extend-styled authorization, which relies on interceptor classes that provide fine-
grained access for cache service and invocation service operations. Oracle Coherence REST
authentication and authorization reuses much of the existing security capabilities of Oracle
Coherence: references are provided to existing content where applicable.

Using HTTP Basic Authentication with Oracle Coherence REST

You can configure an HTTP acceptor and login module to provide authentication for Coherence
REST. HTTP basic authentication provides authentication using credentials (username and
password) that are encoded and sent in the HTTP authorization request header. HTTP basic
authentication requires a Java Authentication and Authorization Service (JAAS) login module.

This section includes the following topics:

» Specify Basic Authentication for an HTTP Acceptor

e Specify a Login Module

Specify Basic Authentication for an HTTP Acceptor

To specify basic authentication for an HTTP Acceptor:

Add an <aut h- met hod> element, within the htt p- accept or element, that is set to basi c.

<pr oxy- schene>
<servi ce- nanme>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<htt p-acceptor>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE’

Chapter 8
Using SSL Authentication With Oracle Coherence REST

<aut h- met hod>basi c</ aut h- met hod>
</ http-acceptor>
</ accept or - confi g>
<aut ostart>true</autostart>
</ pr oxy- schene>

Specify a Login Module

HTTP basic authentication requires a JAAS j avax. security. aut h. spi. Logi nModul e
implementation that authenticates client credentials which are passed from the HTTP basic
authentication header. The resulting Subj ect can then be used for both Oracle
Coherence*Extend-style and Oracle Coherence Security Framework authorization as required.
See LoginModule in Java Authentication and Authorization Service (JAAS) Reference Guide.

To specify a login module, modify the COHERENCE HOVE/ | i b/ security/ | ogi n. confi g login
configuration file and include a Coher enceREST entry that includes the login module
implementation to use. For example:

Coher enceREST {
package. MyLogi nMbdul e required debug=true;

b

At runtime, specify the | ogi n. confi g file to use either from the command line (using the
java.security.auth.login.config system property) or in the Java security properties file.

As a convenience, a Java keystore (JKS) Logi nMbdul e implementation which depends only on
standard Java run-time classes is provided. The class is located in the COHERENCE HOVE/ | i b/
security/ coherence-1ogin.j ar file. To use the implementation, either place this library in the
proxy server classpath or in the JRE's | i b/ ext (standard extension) directory.

Specify the JKS login module implementation in the | ogi n. confi g configuration file as follows:

Coher enceREST {
com tangosol . security. KeystorelLogin required
keySt or ePat h="${user. di r}${/}security${/}keystore.|ks";
b

The entry contains a path to a keystore. Change the keySt or ePat h variable to the location of a
keystore.

Using SSL Authentication With Oracle Coherence REST

You can use SSL to provide authentication for Coherence REST. SSL provides an
authentication mechanism that relies on digital certificates and encryption keys to establish
both identity and trust. See Overview of SSL/TLS.

Client-side SSL certificates are passed to the HTTP acceptor to authenticate the client. SSL
requires an SSL-based socket provider to be configured for the HTTP acceptor. The below
instructions only describe how to configure SSL and define an SSL socket provider on the
proxy for an HTTP acceptor. Refer to your REST client library documentation for instructions
on setting up SSL on the client side.

This section includes the following topics:

» Specify Basic Authentication for an HTTP Acceptor

e Configure an HTTP Acceptor SSL Socket Provider

» Access Secured REST Services

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 7

http://download.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

ORACLE Chapter 8
Using SSL Authentication With Oracle Coherence REST

Specify Basic Authentication for an HTTP Acceptor

To specify basic authentication for an HTTP Acceptor:

Add an <aut h- met hod> element, within the htt p- accept or element, that is set to basi c.

<pr oxy- schene>
<servi ce- name>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<htt p-accept or >

<aut h- met hod>basi c</ aut h- met hod>
</ http-acceptor>
</ acceptor-config>
<aut ostart>true</autostart>
</ pr oxy- schene>

Configure an HTTP Acceptor SSL Socket Provider

Configure an SSL socket provider for an HTTP acceptor when using SSL for authentication. To
configure SSL for an HTTP acceptor, explicitly add an SSL socket provider definition or
reference an SSL socket provider definition that is in the operational override file.

Explicitly Defining an SSL Socket Provider

To explicitly configure an SSL socket provider for an HTTP acceptor, add a <socket - provi der >
element within the <ht t p- accept or > element of each <pr oxy- schene> definition. See socket-
provider in Developing Applications with Oracle Coherence.

Example 8-1 demonstrates configuring an SSL socket provider that uses the default values for
the <pr ot ocol > and <al gori t hn> element (TLS and SunX509, respectively). These are shown
for completeness but may be left out when using the default values.

Example 8-1 configures both an identity keystore (server.j ks) and a trust keystore
(trust.jks). This is typical of two-way SSL authentication, in which both the client and proxy
must exchange digital certificates and confirm each other's identity. For one-way SSL
authentication, the proxy server configuration must include an identity keystore but need not
include a trust keystore.

Example 8-1 Sample HTTP Acceptor SSL Configuration

<proxy- scheme>
<servi ce- name>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<acceptor-confi g>
<ht t p- accept or >

<socket - provi der >
<ssl >
<pr ot ocol >TLS</ pr ot ocol >
<identity-nmanager>
<al gori t hmpSunX509</ al gori t hne
<key- st ore>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key- st ore>
<passwor d>passwor d</ passwor d>

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE Chapter 8
Using SSL Authentication With Oracle Coherence REST

</identity-mnager>
<trust - manager >
<al gori t hmPSunX509</ al gori t hne
<key- st ore>
<url>file:trust.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key- st ore>
</trust-nmanager >
</ssl >
</ socket - provi der >

<aut h- net hod>cert </ aut h- net hod>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- scheme>

Referencing an SSL Socket Provider Definition

The following example references an SSL socket provider configuration that is defined in the
<socket - provi der s> element of the operational deployment descriptor by specifying the i d
attribute (ssl) of the configuration. See socket-providers in Developing Applications with
Oracle Coherence.

@® Note

A predefined SSL socket provider is included in the operational deployment descriptor
and is named ssl . The predefined SSL socket provider is configured for two-way SSL
connections and is based on peer trust, in which every trusted peer resides within a
single JKS keystore. See Coherence PeerX509 Algorithm for details. To configure a
different SSL socket provider, use an operational override file to modify the predefined
SSL socket provider or to create a socket provider configuration as required.

<proxy- schemne>
<servi ce- name>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<accept or-confi g>
<ht t p- accept or >

<socket - provi der >ssl </ socket - provi der >
<aut h- net hod>cert </ aut h- met hod>
</ http-acceptor>
</ acceptor-config>

<autostart>true</autostart>
</ proxy- scheme>

Access Secured REST Services

The following example demonstrates a Jersey-based client that accesses REST services that
require certificate and HTTP basic authentication.

Client SSL Configuration File

The client SSL configuration file (ssl . xm) configures the client's keystore and trust keystore.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE’

<ssl >
<i dentity-nanager>
<key- st or e>
<url>file:keystore.jks</url>
<passwor d>passwor d</ passwor d>
</ key-store>
<passwor d>passwor d</ passwor d>
</identity-mnager>
<trust - manager >
<key- st or e>
<url>file:trust.jks</url>
<passwor d>passwor d</ passwor d>
</ key-store>
</trust-nanager>
</ssl >

Sample Jersey SSL Client

package exanpl e;

Chapter 8
Using SSL Authentication With Oracle Coherence REST

i nport com oracl e. coher ence. conmon. net . SSLSocket Provi der;

inport comsun.jersey.api.client.dient;

inport comsun.jersey.api.client.dientResponse;

inport comsun.jersey.api.client.WbResour ce;

inport comsun.jersey.api.client.config.DefaultdientConfig;

inport comsun.jersey.client.urlconnection. HTTPSProperti es;

inport comsun.jersey.api.client.filter.HITPBasi cAuthFilter;

inport comtangosol.internal.net.ssl.LegacyXm SSLSocket Provi der Dependenci es;

i nport comtangosol.run.xn . Xm Docunent ;
inport comtangosol.run.xn . Xm Hel per;
inport javax.net.ssl.HostnameVerifier;

inport javax.net.ssl.SSLSession;

inport jakarta.ws.rs.core. MediaType;

public class Ssl Exanpl e
{

public static Cient createH tpsCient(SSLSocket Provider provider)

{

DefaultdientConfig dcc = new Defaul tdientConfig();
HTTPSPr operties prop = new HTTPSProperti es(new HostnaneVerifier()

public bool ean verify(String s, SSLSession ssl Session)

{
}

return true;

}, provider. get Dependenci es(). get SSLCont ext ());
dcc. get Properties(). put (HTTPSProperties. PROPERTY_HTTPS_PROPERTI ES, prop);

return Client.create(dcc);

}

public static void PUT(String url, MediaType nediaType, String data)

{

process(url, "put", nediaType, data);

}

public static void GET(String url, MediaType nedi aType)

{

process(url, "get", nediaType, null);

}

public static void POST(String url, MediaType nedi aType, String data)

{

process(url, "post", nediaType, data);

Securing Oracle Coherence
G31424-01
Copyright © 2008, 2025, Oracle and/or its affiliates.

October 6, 2025
Page 5 of 7

ORACLE Chapter 8
Using SSL Authentication With Oracle Coherence REST

}

public static void DELETE(String url, MediaType medi aType)
{

process(url, "delete", mediaType, null);

}

static void process(String url, String action, MdiaType nedi aType, String
dat a)
{
try

{
Xm Docunment xm = Xm Hel per. | oadFi | eOrResource("/ssl.xm™", null);

SSLSocket Provi der provider = new SSLSocket Provi der (new
LegacyXnl SSLSocket Provi der Dependenci es(xm));

Gient client = createHtpsdient(provider);

d i ent Response response = null;

\WebResour ce webResource = client.resource(url);

/1 1f you've specified the "cert+basic" auth-nethod in your Proxy

/1 http-acceptor configuration, initialize and add an HTTP basic

/1 authentication filter by

/1 uncommenting the following line and changi ng the usernane and password
/1 appropriately.

/lclient.addFilter(new HTTPBasi cAut hFilter("username", "password"));

i f (action.equalslgnoreCase("get"))

{
response = webResource. type(nedi aType). get (d i ent Response. cl ass);
}
el se if (action.equal slgnoreCase("post"))
{

response = webResource. type(nmedi aType). post
(dientResponse. class, data);
}

el se if (action.equal slgnoreCase("put"))

{

response = webResource. type(medi aType). put
(dientResponse. class, data);
}

el se if (action.equal slgnoreCase("del ete"))

{

response = webResource. type(nmedi aType). del ete
(dientResponse. class, data);
}

Systemout. println("response status:" + response.getStatus());
if (action.equals("get"))

{
Systemout.printin("Result: " + response.getEntity(String.class));
}
}
catch (Exception e)
{
e.printStackTrace();
}
}
public static void main(String args[])
{

PUT("https:/ /1 ocal host: 8080/ di st-http-exanple/1",
Medi aType. APPLI CATI ON_JSON_TYPE, "{\"nanme\":\"chris\",\"age\":32}");
PUT("https:/ /1 ocal host: 8080/ di st-http-exanpl e/ 2",

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 8
Using SSL and HTTP Basic Authentication with Oracle Coherence REST

Medi aType. APPLI CATI ON_XM__TYPE,

" <per son><nane>adm n</ name><age>30</ age></ per son>");
DELETE("https://local host: 8080/ di st-http-exanpl e/ 1"

Medi aType. APPLI CATI ON_XM__TYPE) ;
CET("https://local host: 8080/ di st-http-exanpl e/ 2"

Medi aType. APPLI CATI ON_XM__TYPE) ;
}

}

Using SSL and HTTP Basic Authentication with Oracle
Coherence REST

You can use SSL together with HTTP basic authentication for added protection when securing
Coherence REST. See Using HTTP Basic Authentication with Oracle Coherence REST and
Using SSL Authentication With Oracle Coherence REST, respectively.

To specify the use of both HTTP basic authentication and SSL, add an <aut h- et hod>
element, within the ht t p- accept or element, that is set to cert +basi c.

<proxy- schenme>
<servi ce- name>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<acceptor-confi g>
<ht t p- accept or >

<socket - provi der >
<ssl >
</ssl>
</ socket - provi der >
<aut h- net hod>cert +basi c</ aut h- net hod>
</ http-acceptor>
</ acceptor-config>

<autostart>true</autostart>
</ proxy- scheme>

Implementing Authorization For Oracle Coherence REST

Oracle Coherence REST relies on the Oracle Coherence*Extend authorization framework to
restrict which operations a REST client performs on a cluster. For detailed instructions on
implementing Oracle Coherence*Extend-style authorization, see Implementing Extend Client
Authorization.

Oracle Coherence*Extend-style authorization with REST requires basic HTTP authentication
or HTTP basic authentication together with SSL authentication. That is, when implementing
authorization, both HTTP basic authentication and SSL can be used together for added
protection. For details on using HTTP basic authentication, see Using HTTP Basic
Authentication with Oracle Coherence REST. For details on using SSL with HTTP Basic
Authentication, see Using SSL and HTTP Basic Authentication with Oracle Coherence REST.

@® Note

When using SSL and HTTP basic authentication together, make sure that SSL is
setup as shown in Using SSL Authentication With Oracle Coherence REST in addition
to setting up HTTP basic authentication.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 7 of 7

Securing Oracle Coherence HTTP
Management Over REST Server

Oracle Coherence HTTP Management Server security is used to restrict HTTP access to
Coherence MBeans exposed as REST resources.
This chapter includes the following sections:

» About Securing Oracle Coherence HTTP Management Server

« Basic Authentication for Coherence HTTP Management Server HTTP Acceptor

» Using SSL Authentication With Oracle Coherence HTTP Management Server

About Securing Oracle Coherence HTTP Management Server

Coherence HTTP Management Server authentication and authorization are disabled by default
and are enabled as required.

Coherence HTTP Management Server authentication support includes: HTTP basic, client-side
SSL certificate, and client-side SSL certificate together with HTTP basic.

See Accessing Management Information Using REST in Managing Oracle Coherence.

Basic Authentication for Coherence HTTP Management Server
HTTP Acceptor

You can configure an HTTP acceptor to provide authentication for Coherence HTTP
Management Server.

HTTP basic authentication provides authentication using credentials (user name and
password) that are encoded and sent in the HTTP authorization request header.

This section includes the following topics:

» Specify the Basic Authentication for Coherence HTTP Management Server HTTP Acceptor

» Specify a Coherence HTTP Management Server Login Module

Specify the Basic Authentication for Coherence HTTP Management Server
HTTP Acceptor

The default managenent - ht t p- confi g. xnl is in coher ence- managenent . j ar .

To specify basic authentication for an HTTP Management Acceptor, set the

coherence. managenent . ht t p. aut h system property to the value basi ¢ or override the default
managenent - htt p- confi g. xm and specify <aut h- met hod> child xml element to the value

basi c.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 4

ORACLE’

Chapter 9
Using SSL Authentication With Oracle Coherence HTTP Management Server

Specify a Coherence HTTP Management Server Login Module

HTTP basic authentication requires a JAAS j avax. security. aut h. spi. Logi nMbdul e
implementation that authenticates client credentials which are passed from the HTTP basic
authentication header. The resulting Subj ect can then be used for Oracle Coherence Security
Framework authorization as required. See LoginModule in Java Authentication and
Authorization Service (JAAS) Reference Guide.

To specify a login module, modify the COHERENCE_HOME/ | i b/ security/l ogin.config
login configuration file and include a Coherence entry that includes the login module
implementation to use. For example:

Coher enceManagenent {
package. MyLogi nMbdul e required;
b

At runtime, specify the | ogi n. confi g file to use either from the command line (using the
java. security.auth.login.config system property) or in the Java security properties file.

As a convenience, a Java keystore (JKS) Logi nMbdul e implementation which depends only on
standard Java run-time classes is provided. The class is located in the
COHERENCE_HOMEI/ i bl security/ coherence-1ogin.jar file. To use the implementation,
place this library either in the proxy server classpath or in the JRE's | i b/ ext (standard
extension) directory.

Specify the JKS login module implementation in the | ogi n. confi g configuration file as follows:

Coher enceManagenent {
com tangosol . security. KeystoreLogin required
keySt orePat h="${user. dir}${/}security${/}keystore.jks";
¥

The entry contains a path to a keystore. Change the keySt or ePat h variable to the location of a
keystore.

Using SSL Authentication With Oracle Coherence HTTP
Management Server

You can use SSL to provide authentication for Coherence HTTP Management Server. SSL
provides an authentication mechanism that relies on digital certificates and encryption keys to
establish both identity and trust. See Overview of SSL/TLS.

Client-side SSL certificates are passed to the HTTP acceptor to authenticate the client. SSL
requires an SSL-based socket provider to be configured for the HTTP acceptor.

This section includes the following topics:

* Configure a Coherence HTTP Management Acceptor SSL Socket Provider

Configure a Coherence HTTP Management Acceptor SSL Socket Provider

Configure an SSL socket provider for an HTTP acceptor when using SSL for authentication. To
configure SSL for an HTTP acceptor, explicitly add an SSL socket provider definition or
reference an SSL socket provider definition that is in the operational override file.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 4

http://download.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

ORACLE

Chapter 9
Using SSL Authentication With Oracle Coherence HTTP Management Server

Explicitly Defining an SSL Socket Provider

To explicitly configure an SSL socket provider for an HTTP acceptor, add a <socket - provi der >
element within the <ht t p- accept or > element of each <pr oxy- schene> definition. See socket-
provider in Developing Applications with Oracle Coherence. You can override the default
values by extracting nanagenent - ht t p- confi g. xm from coherence. j ar, modifying the file and
then placing it before coher ence. j ar on the class path. You can also specify the socket
provider by using the override - Dcoher ence. managenent . htt p. provi der =your - socket -

provi der.

Example 10-1 demonstrates configuring an SSL socket provider that uses the default values
for the <prot ocol > and <al gori t hn> element (TLS and SunX509, respectively). These are
shown for completeness but may be left out when using the default values.

Example 10-1 configures both an identity keystore (server . j ks) and a trust keystore
(trust.jks). This is typical of two-way SSL authentication, in which both the client and proxy
must exchange digital certificates and confirm each other's identity. For one-way SSL
authentication, the proxy server configuration must include an identity keystore but need not
include a trust keystore.

Example 9-1 Sample HTTP Acceptor SSL Configuration

<proxy- scheme>
<servi ce- name>Managenent Ht t pPr oxy</ ser vi ce- nane>
<accept or-confi g>
<ht t p- accept or >

<socket - provi der >
<ssl| >
<pr ot ocol >TLS</ pr ot ocol >
<i dentity-manager>
<al gori t hm>SunX509</ al gori t hne
<provi der system
property="coherence. managenent . http. security. keystore. provi der"/>
<key- st ore>
<url system
property="coherence. managenent . http. security. keystore">file:server.jks</url>
<password system
property="coherence. managenent . http. security. keystore. password"/>
<type>JKS</type>
</ key-store>
<password system
property="coherence. nanagenent . http. security.identitymnager.password”/>
</identity-manager>
<trust - manager >
<al gori t hm >SunX509</ al gori t hn
<provi der system
property="coherence. nanagenent . http. security.truststore. provider"/>
<key- st ore>
<url system
property="coherence. management . http. security.truststore">file:truststore.jks</url>
<password system
property="coherence. nanagenent . http. security.truststore. password"/>
<t ype>JKS</type>
</ key-store>
</trust-manager>
</ssl >
</ socket - provi der>

<aut h- met hod>cert </ aut h- met hod>

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 9
Using SSL Authentication With Oracle Coherence HTTP Management Server

</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- scheme>

Referencing an SSL Socket Provider Definition Using Coherence HTTP Management
Over REST

The following example references an SSL socket provider configuration that is defined in the
<socket - provi der s> element of the operational deployment descriptor by specifying the i d
attribute (ssl) of the configuration. See socket-providers in Developing Applications with
Oracle Coherence.

@® Note

A predefined SSL socket provider is included in the operational deployment descriptor
and is named ssl . The predefined SSL socket provider is configured for two-way SSL
connections and is based on peer trust, in which every trusted peer resides within a
single JKS keystore. See Coherence PeerX509 Algorithm. To configure a different
SSL socket provider, use an operational override file to modify the predefined SSL
socket provider or to create a socket provider configuration as required.

<proxy- schene>
<servi ce- name>Managenent Ht t pPr oxy</ ser vi ce- name>
<acceptor-confi g>
<ht t p- accept or >

<socket - provi der >ssl </ socket - provi der >

<aut h- net hod>cert </ aut h- met hod>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

For configuring HTTP client access, see Access Secured REST Services.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 4

Securing Oracle Coherence Metrics

Oracle Coherence Metrics security is used to restrict access to metrics data through
authentication and authorization configuration.
This chapter includes the following sections:

« About Securing Oracle Coherence Metrics

» Basic Authentication for Coherence Metrics Http Acceptor

» Using SSL Authentication With Oracle Coherence Metrics

About Securing Oracle Coherence Metrics

Coherence Metrics authentication and authorization are disabled by default and are enabled as
required.

Coherence Metrics authentication support includes: HTTP basic, client-side SSL certificate,
and client-side SSL certificate together with HTTP basic.

See Using Coherence Metrics in Managing Oracle Coherence.

Basic Authentication for Coherence Metrics Http Acceptor

You can configure an HTTP acceptor to provide authentication for Coherence Metrics. HTTP
basic authentication provides authentication using credentials (user name and password) that
are encoded and sent in the HTTP authorization request header.

This section includes the following topics:

» Specify Basic Authentication for Coherence Metrics HTTP Acceptor

e Specify a Coherence Metrics Login Module

» Specify Basic Authentication for a Coherence Metrics HTTP Client

Specify Basic Authentication for Coherence Metrics HTTP Acceptor

The default metrics-http-config.xm isincoherence-netrics.jar.

To specify basic authentication for an HTTP Acceptor, set the system property
cohererence. metrics. http. aut h to the value basi c or override the default metri cs- htt p-
confi g. xm and specify <aut h- met hod> child xml element to the value basi c.

Specify a Coherence Metrics Login Module

HTTP basic authentication requires a JAAS j avax. security. aut h. spi. Logi nModul e
implementation that authenticates client credentials which are passed from the HTTP basic
authentication header. The resulting Subj ect can then be used for Oracle Coherence Security
Framework authorization as required. See LoginModule in Java Authentication and
Authorization Service (JAAS) Reference Guide.

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 1 of 4

http://download.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

ORACLE’

Chapter 10
Using SSL Authentication With Oracle Coherence Metrics

To specify a login module, modify the COHERENCE HOVE/ | i b/ security/ | ogi n. confi g login
configuration file and include a Coherence entry that includes the login module implementation
to use. For example:

CoherenceMetrics {
package. MyLogi nMbdul e required;
¥

At runtime, specify the | ogi n. confi g file to use either from the command line (using the
java. security.auth.login.config system property) or in the Java security properties file.

As a convenience, a Java keystore (JKS) Logi nMbdul e implementation which depends only on
standard Java run-time classes is provided. The class is located in the COHERENCE_HOVE/ | i b/
security/ coherence-1ogin.jar file. To use the implementation, either place this library in the
proxy server classpath or in the JRE's | i b/ ext (standard extension) directory.

Specify the JKS login module implementation in the | ogi n. confi g configuration file as follows:

CoherenceMetrics {
com tangosol . security. KeystoreLogin required
keySt orePat h="${user. dir}${/}security${/}keystore.jks";
¥

The entry contains a path to a keystore. Change the keySt or ePat h variable to the location of a
keystore.

Specify Basic Authentication for a Coherence Metrics HTTP Client

Prometheus is an HTTP client metrics gathering system that can be configured to scrape
metrics data from a Coherence metrics endpoint.

See Prometheus <scrape_config> configuration for parameters on configuring scheme to
htt ps, basi ¢_aut h with user nane and passwor d.

Using SSL Authentication With Oracle Coherence Metrics

You can use SSL to provide authentication for Coherence Metrics. SSL provides an
authentication mechanism that relies on digital certificates and encryption keys to establish
both identity and trust. See Overview of SSL/TLS.

Client-side SSL certificates are passed to the HTTP acceptor to authenticate the client. SSL
requires an SSL-based socket provider to be configured for the HTTP acceptor.

This section includes the following topics:

e Configure a Coherence Metrics HTTP Acceptor SSL Socket Provider

Configure a Coherence Metrics HTTP Acceptor SSL Socket Provider

Configure an SSL socket provider for an HTTP acceptor when using SSL for authentication. To
configure SSL for an HTTP acceptor, explicitly add an SSL socket provider definition or
reference an SSL socket provider definition that is in the operational override file.

Explicitly Defining an SSL Socket Provider

To explicitly configure an SSL socket provider for an HTTP acceptor, add a <socket - provi der >
element within the <ht t p- accept or > element of each <pr oxy- schene> definition. See socket-
provider in Developing Applications with Oracle Coherence. You can override the default

Securing Oracle Coherence

G31424-01

October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 2 of 4

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config

ORACLE Chapter 10
Using SSL Authentication With Oracle Coherence Metrics

metrics-http-config.xm by making a copy of it and placing the revised netri cs- htt p-
config.xm in classpath before coherence-netrics.jar occurs.

Example 10-1 demonstrates configuring an SSL socket provider that uses the default values
for the <prot ocol > and <al gori t hn> element (TLS and SunX509, respectively). These are
shown for completeness but may be left out when using the default values.

Example 10-1 configures both an identity keystore (server. j ks) and a trust keystore
(trust.jks). This is typical of two-way SSL authentication, in which both the client and proxy
must exchange digital certificates and confirm each other's identity. For one-way SSL
authentication, the proxy server configuration must include an identity keystore but need not
include a trust keystore.

Example 10-1 Sample HTTP Acceptor SSL Configuration

<proxy- schene>
<servi ce-name>Metri csHt t pProxyServi ce</ servi ce- nane>
<accept or-confi g>
<ht t p- accept or >

<socket - provi der >
<ssl| >
<pr ot ocol >TLS</ pr ot ocol >
<i dentity-nmanager>
<al gori t hmpSunX509</ al gori t hne
<provider system property="coherence.metrics.security.keystore.provider"/>
<key-store>
<url system
property="coherence. metrics.security. keystore">file:server.jks</url>
<password system
property="coherence. netrics. security. keystore. password"/>
<t ype>JKS</type>
</ key- st or e>
<password system
property="coherence. metrics.security.identitynanager. password’/>
</identity-mnager>
<t rust - manager >
<al gori t hm >SunX509</ al gori t hne
<provider system
property="coherence. metrics.security.truststore.provider"/>
<key- st ore>
<url system
property="coherence.netrics.security.truststore">file:truststore.jks</url>
<password system
property="coherence. metrics.security.truststore. password"/>
<t ype>JKS</type>
</ key- st or e>
</trust-nmanager >
</ssl >
</ socket - provi der >

<aut h- net hod>cert </ aut h- met hod>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

Referencing an SSL Socket Provider Definition Using Coherence Metrics

The following example references an SSL socket provider configuration that is defined in the
<socket - provi der s> element of the operational deployment descriptor by specifying the i d

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE Chapter 10
Using SSL Authentication With Oracle Coherence Metrics

attribute (ssl) of the configuration. See socket-providers in Developing Applications with
Oracle Coherence.

@® Note

A predefined SSL socket provider is included in the operational deployment descriptor
and is named ssl . The predefined SSL socket provider is configured for two-way SSL
connections and is based on peer trust, in which every trusted peer resides within a
single JKS keystore. See Coherence PeerX509 Algorithm. To configure a different
SSL socket provider, use an operational override file to modify the predefined SSL
socket provider or to create a socket provider configuration as required.

<proxy- schenme>
<servi ce-name>Metri csHtt pProxy</ servi ce- name>
<acceptor-confi g>
<htt p- accept or>

<socket - provi der >ssl </ socket - provi der >

<aut h- net hod>cert </ aut h- met hod>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

Configuring HTTP Client-Side in Prometheus Configuration

Prometheus is an HTTP client metrics gathering system that is used to scrape the Coherence
Metrics endpoints. See Prometheus <scrape config> configuration for parameters to configure
schene to htt ps and basi c_aut h with user narme and passwor d. See Prometheus <tls_config>
configuration to configure TLS connections.

Securing Oracle Coherence
G31424-01 October 6, 2025

Copyright © 2008, 2025, Oracle and/or its affiliates. Page 4 of 4

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#tls_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#tls_config

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Introduction to Oracle Coherence Security
	Conceptual Overview of Oracle Coherence Security
	Coherence Security Quick Start
	Overview of Security Configuration

	2 Enabling General Security Measures
	Using the Java Security Manager
	Enable the Java Security Manager
	Specify Permissions
	Programmatically Specifying Local Permissions

	Using Host-Based Authorization
	Overview of Host-Based Authorization
	Specify Cluster Member Authorized Hosts
	Specify Extend Client Authorized Hosts
	Use a Filter Class to Determine Authorization

	Managing Rogue Clients

	3 Using an Access Controller
	Overview of Using an Access Controller
	Using the Default Access Controller Implementation
	Enable the Access Controller
	Create a Keystore
	Include the Login Module
	Create a Permissions File
	Create an Authentication Callback Handler
	Enable Security Audit Logs

	Using a Custom Access Controller Implementation

	4 Authorizing Access to Server-Side Operations
	Overview of Access Control Authorization
	Creating Access Control Authorization Implementations
	Declaring Access Control Authorization Implementations
	Enabling Access Control Authorization on a Partitioned Cache

	5 Securing Extend Client Connections
	Using Identity Tokens to Restrict Client Connections
	Overview of Using Identity Tokens
	Creating a Custom Identity Transformer
	Enabling a Custom Identity Transformer
	Creating a Custom Identity Asserter
	Enabling a Custom Identity Asserter
	Using Custom Security Types
	Understanding Custom Identity Token Interoperability

	Associating Identities with Extend Services
	Implementing Extend Client Authorization
	Overview of Extend Client Authorization
	Create Authorization Interceptor Classes
	Enable Authorization Interceptor Classes

	6 Using SSL/TLS to Secure Communication
	Overview of SSL/TLS
	Coherence Socket Providers
	Configuring an Identity Manager
	Configuring a Trust Manager

	Resolving the Socket Provider URL
	Using a Socket Provider in Configuration
	Configure a Socket Provider at Runtime

	Using SSL to Secure Cluster Communication
	Cluster Communication Using mTLS
	Cluster Communication with One-Way SSL

	Using SSL to Secure Extend and gRPC Client Communication
	Configuring a Cluster-Side Extend Proxy SSL Socket Provider
	Configuring the Cluster-Side gRPC Proxy SSL Socket Provider
	Configuring a Java Extend or gRPC Client SSL Socket Provider

	Configure a Default Socket Provider for a Cache Configuration File
	Configuring a .NET Client-Side Stream Provider
	Securing the C++ Client with SSL/TLS
	Using SSL to Secure Federation Communication
	Federation with mTLS
	Federation with One-Way SSL

	Coherence PeerX509 Algorithm
	Specifying a Global Socket Provider
	Specifying Passwords in Socket Provider Configuration
	Specify Plain Text Passwords
	Passwords From Java System Properties
	Reading Passwords From a URL
	Custom Password Providers

	Controlling Cipher Suite and Protocol Version Usage
	Using Host Name Verification
	Using the Default Coherence Host Name Verifier
	Using a Custom Host Name Verifier

	Configuring Client Authentication
	Using Private Key and Certificate Files
	Configuring an Identity Manager
	Configuring a Trust Manager

	Using Custom Keystore, Private Key, and Certificate Loaders
	Using the Custom KeyStore Loader
	Using the Custom PrivateKey Loader
	Using a Custom Certificate Loader

	Using Refreshable KeyStores, Private Keys, and Certificates
	Configuring a Refresh Policy

	7 Securing Oracle Coherence in Oracle WebLogic Server
	Overview of Securing Oracle Coherence in Oracle WebLogic Server
	Securing Coherence using SSL/TLS
	Extended Usage Certificates
	Configure Coherence Cluster Traffic Using mTLS
	Configure Coherence Cluster Traffic Using One-Way SSL/TLS
	Using a Custom Coherence Operational Configuration File
	Configure the Coherence Global Socket Provider
	WebLogic Server Secured Production Mode
	Configure Coherence for One-Way SSL/TLS in Secured Production Mode
	Disable Coherence SSL/TLS in Secured Production Mode

	Securing Oracle Coherence Cluster Membership
	Enabling the Oracle Coherence Security Framework
	Specifying an Identity for Use by the Security Framework

	Authorizing Oracle Coherence Caches and Services
	Specifying Cache Authorization
	Specifying Service Authorization

	Securing Extend Client Access with Identity Tokens
	Enabling Identity Transformers for Use in Oracle WebLogic Server
	Enabling Identity Asserters for Use in Oracle WebLogic Server

	8 Securing Oracle Coherence REST
	Overview of Securing Oracle Coherence REST
	Using HTTP Basic Authentication with Oracle Coherence REST
	Specify Basic Authentication for an HTTP Acceptor
	Specify a Login Module

	Using SSL Authentication With Oracle Coherence REST
	Specify Basic Authentication for an HTTP Acceptor
	Configure an HTTP Acceptor SSL Socket Provider
	Access Secured REST Services

	Using SSL and HTTP Basic Authentication with Oracle Coherence REST
	Implementing Authorization For Oracle Coherence REST

	9 Securing Oracle Coherence HTTP Management Over REST Server
	About Securing Oracle Coherence HTTP Management Server
	Basic Authentication for Coherence HTTP Management Server HTTP Acceptor
	Specify the Basic Authentication for Coherence HTTP Management Server HTTP Acceptor
	Specify a Coherence HTTP Management Server Login Module

	Using SSL Authentication With Oracle Coherence HTTP Management Server
	Configure a Coherence HTTP Management Acceptor SSL Socket Provider

	10 Securing Oracle Coherence Metrics
	About Securing Oracle Coherence Metrics
	Basic Authentication for Coherence Metrics Http Acceptor
	Specify Basic Authentication for Coherence Metrics HTTP Acceptor
	Specify a Coherence Metrics Login Module
	Specify Basic Authentication for a Coherence Metrics HTTP Client

	Using SSL Authentication With Oracle Coherence Metrics
	Configure a Coherence Metrics HTTP Acceptor SSL Socket Provider

