
Oracle® Fusion Cloud EPM
Working with EPM Automate for Oracle
Enterprise Performance Management Cloud

E96247-75

Oracle Fusion Cloud EPM Working with EPM Automate for Oracle Enterprise Performance Management
Cloud,

E96247-75

Copyright © 2016, 2024, Oracle and/or its affiliates.

Primary Author: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Documentation Accessibility

 Documentation Feedback

1 About EPM Automate

Installing EPM Automate 1-1

Capacity and Port Requirements 1-2

Supported Platforms 1-2

Java Runtime Environment and EPM Automate 1-4

Using OpenJDK 1-4

Windows Instructions 1-5

Linux/UNIX/macOS X Instructions 1-5

Server-side Execution of EPM Automate Commands 1-6

Understanding EPM Automate Encryption Level 1-6

Using OAuth 2.0 Authorization Protocol with OCI (Gen2) Environments 1-6

2 Command Reference

About Running EPM Automate Commands 2-1

Prerequisites 2-1

Default File Locations 2-2

Enable Transport Layer Security Protocol 1.2 2-4

Using EPM Automate Commands 2-4

Specifying Multiple Values for a Parameter 2-5

Behavior During Daily Maintenance 2-5

Running EPM Automate 2-5

Windows 2-6

Linux 2-7

Running Multiple Instances of EPM Automate 2-8

Commands at a Glance 2-10

EPM Automate Commands 2-15

iii

addUsers 2-16

addUsersToGroup 2-17

addUsersToTeam 2-18

addUserToGroups 2-19

applicationAdminMode 2-20

applyDataGrants 2-20

archiveTmTransactions 2-21

assignRole 2-23

autoPredict 2-24

calculateModel 2-25

clearCube 2-27

clearDataByPointOfView 2-28

clearDataByProfile 2-29

clearPOV 2-29

cloneEnvironment 2-31

copyDataByPointOfView 2-35

copyDataByProfile 2-37

copyFileFromInstance 2-37

copyFromObjectStorage 2-38

copyOwnershipDataToNextYear 2-40

copyPOV 2-40

copySnapshotFromInstance 2-41

copyToObjectStorage 2-42

createGroups 2-44

createNRSnapshot 2-45

createReconciliations 2-45

deleteFile 2-46

deleteGroups 2-47

deletePointOfView 2-48

deletePOV 2-48

deployCube 2-49

deployEJTemplates 2-50

deployFormTemplates 2-51

deployTaskManagerTemplate 2-51

dismissIPMInsights 2-52

downloadFile 2-53

enableApp 2-53

enableQueryTracking 2-54

encrypt 2-54

executeAggregationProcess 2-55

executeBurstDefinition 2-56

iv

executeReportBurstingDefinition 2-57

exportAccessControl 2-57

exportAppAudit 2-58

exportAppSecurity 2-59

exportARApplicationProperties 2-59

exportBackgroundImage 2-60

exportCellLevelSecurity 2-61

exportConsolidationJournals 2-61

exportData 2-62

exportDataManagement 2-62

exportDimension 2-63

exportDimensionMapping 2-64

exportEJJournals 2-65

exportEssbaseData 2-66

exportJobConsole 2-66

exportLibraryArtifact 2-69

exportLibraryDocument 2-70

exportLogoImage 2-71

exportMapping 2-71

exportMetadata 2-72

exportOwnershipData 2-73

exportQueryResults 2-73

exportSnapshot 2-75

exportTemplate 2-76

exportTaskManagerAccessControl 2-77

exportValidIntersections 2-78

extractDimension 2-78

feedback 2-79

getApplicationAdminMode 2-80

getDailyMaintenanceStartTime 2-81

getEssbaseQryGovExecTime 2-82

getIdleSessionTimeout 2-82

getIPAllowlist 2-83

getSubstVar 2-84

getVirusScanOnFileUploads 2-84

groupAssignmentAuditReport 2-85

help 2-86

importAppAudit 2-86

importAppSecurity 2-87

importARApplicationProperties 2-88

importBackgroundImage 2-88

v

importBalances 2-89

importCellLevelSecurity 2-89

importConsolidationJournals 2-90

importData 2-91

importDataManagement 2-92

importDimension 2-92

importJobConsole 2-93

importLibraryArtifact 2-94

importLogoImage 2-95

importMapping 2-96

importMetadata 2-97

importOwnershipData 2-98

importPreMappedBalances 2-99

importPreMappedTransactions 2-100

importProfiles 2-100

importRates 2-101

importRCAttributeValues 2-101

importReconciliationAttributes 2-102

importSnapshot 2-104

importSupplementalCollectionData 2-107

importSupplementalData 2-108

importTemplate 2-109

importTMAttributeValues 2-109

importTmPremappedTransactions 2-110

importValidIntersections 2-111

invalidLoginReport 2-113

listBackups 2-114

listFiles 2-115

loadData 2-116

loadDimData 2-116

loadViewpoint 2-117

login 2-118

logout 2-121

maskData 2-121

mergeDataSlices 2-122

mergeSlices 2-122

optimizeASOCube 2-123

programDocumentationReport 2-124

provisionReport 2-125

purgeArchivedTmTransactions 2-126

purgeTmTransactions 2-127

vi

recomputeOwnershipData 2-128

recreate 2-129

refreshCube 2-133

removeUserFromGroups 2-133

removeUsers 2-134

removeUsersFromGroup 2-135

removeUsersFromTeam 2-136

renameSnapshot 2-137

replay 2-138

resetService 2-139

restoreBackup 2-140

restructureCube 2-141

roleAssignmentAuditReport 2-141

roleAssignmentReport 2-143

runAutomatch 2-144

runBatch 2-145

runBusinessRule 2-145

runCalc 2-146

runComplianceReport 2-148

runDailyMaintenance 2-149

runDataRule 2-149

runDMReport 2-151

runIntegration 2-152

runMatchingReport 2-156

runPlanTypeMap 2-157

runRuleSet 2-157

runSupplementalDataReport 2-158

runTaskManagerReport 2-159

sendMail 2-160

setApplicationAdminMode 2-161

setDailyMaintenanceStartTime 2-162

setDemoDates 2-163

setEJJournalStatus 2-164

setEncryptionKey 2-165

setEssbaseQryGovExecTime 2-165

setIdleSessionTimeout 2-166

setIPAllowlist 2-166

setManualDataAccess 2-167

setPeriodStatus 2-168

setSubstVars 2-169

setVirusScanOnFileUploads 2-170

vii

simulateConcurrentUsage 2-170

skipUpdate 2-173

snapshotCompareReport 2-175

sortMember 2-176

unassignRole 2-177

updateUsers 2-179

upgrade 2-180

uploadFile 2-181

userAuditReport 2-182

userGroupReport 2-183

validateConsolidationMetadata 2-183

validateModel 2-184

Exit Codes 2-185

3 Command Execution Sample Scenarios

About Copying Sample Scripts 3-1

Sample Scenarios for All Services 3-1

Back up Application Snapshot to a Computer 3-3

Inform Users of Daily Maintenance Completion 3-5

Copying a Snapshot to or from Oracle Object Storage 3-12

Create Users and Assign Them to Predefined Roles 3-14

Count the Number of Licensed Users (Users Assigned to Roles) 3-18

Create Audit Reports of Users Assigned to Roles 3-20

Create Role Assignment and Revocation Audit Report 3-24

Mask Access Logs and Activity Report to Comply with Privacy Laws 3-28

Automate Activity Report Downloads to a Local Computer 3-33

Download Access Logs from an Environment 3-37

Automate the Cloning of Environments 3-40

Clone from Primary to Standby Environment Daily After Daily Maintenance is Complete
on the Primary Environment 3-44

Remove Unnecessary Files from an Environment 3-50

Find and Download Files from an Environment 3-52

Recreate an Old EPM Cloud Environment for Audits 3-53

Automate Database Access Audit and Compliance 3-64

Replicate Users and Predefined Role Assignments 3-75

Replicating the Users of One Identity Domain in Another 3-76

Replicating Predefined Role Assignments from One Environment to Another 3-82

Create a Quarterly EPM Cloud Upgrade Cadence 3-90

Windows Script and Instructions 3-91

UNIX/Linux Script and Instructons 3-94

Groovy Script 3-97

viii

Create a Quarterly EPM Cloud Upgrade Cadence with Six Week Test Cycles 3-101

Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability
and Cost Management 3-116

Automate the Export of a Large Number of Cells from an Aggregate Storage Cube 3-116

Import Metadata into an Application 3-126

Import Data, Run a Calculation Script, and Copy Data from a Block Storage Database
to an Aggregate Storage Database 3-128

Export and Download Metadata and Data 3-130

Export and Download Application Data 3-133

Automate the Archiving of Application Audit Records 3-135

Windows Script 3-136

Linux Script 3-137

Upload a Data File to an Environment and Run a Data Load Rule 3-138

Automate Daily Data Integration 3-141

Sample Scenarios for Account Reconciliation 3-143

Load Preformatted Balances into a Period 3-143

Upload and Import a Backup Snapshot 3-145

Archive Old Matched Transactions and Purge Archived Transactions 3-147

Sample Scenarios for Profitability and Cost Management 3-154

Import Metadata into Application 3-154

Import Data and Run Program Rules 3-156

Sample Scenarios for Oracle Enterprise Data Management Cloud 3-159

Synchronizing Oracle Enterprise Data Management Cloud Dimensions and Mappings
with EPM Cloud Applications 3-159

Synchronizing EPM Cloud Dimensions with Oracle Enterprise Data Management
Cloud Applications 3-161

Automating Script Execution 3-162

Monitoring EPM Automate Activities 3-163

4 Running Commands without Installing EPM Automate

Environments that Support Server-side Command Execution 4-1

Information Sources 4-2

Supported Commands 4-2

Methods to be Used for Running EPM Automate Using Server-Side Groovy 4-2

Cloning an Environment Using a Server-Side Groovy Script 4-3

Emailing the Activity Report Using a Server-side Groovy Script 4-5

5 Replicating an EPM Cloud Environment

Setting up Daily Replication 5-1

Setting up On-Demand Replications 5-2

ix

Configuring the Secondary Environment 5-3

A Preparing to Run the simulateConcurrentUsage Command

Creating the requirement.csv File A-1

Creating the Input Files A-3

Open Form Input File A-3

Save Form Input File A-4

Run Business Rule Input File A-4

Run Data Rule Input File A-5

Ad Hoc Grid Input File A-5

Execute Report Input File A-6

Execute Book Input File A-6

Creating the UserVarMemberMapping.csv File A-7

Creating and Uploading the Input ZIP File to the Environment A-7

Sample Simulate Concurrent Usage Report A-7

B Preparing to Run the Replay Command

About the Replay Command B-1

Prerequisites B-1

Creating HAR Files B-2

Creating Replay Files B-5

Generating Trace Files B-6

A Sample Replay Session B-6

C Handling Special Characters

D Commands Specific to Each EPM Cloud Service

Account Reconciliation Commands D-2

Financial Consolidation and Close Commands D-3

Narrative Reporting Commands D-4

Oracle Enterprise Data Management Cloud Commands D-5

Planning, Planning Modules, FreeForm, Strategic Workforce Planning, and Sales Planning
Commands D-6

Profitability and Cost Management Commands D-7

Enterprise Profitability and Cost Management Commands D-8

Tax Reporting Commands D-9

x

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Documentation Feedback

To provide feedback on this documentation, click the feedback button at the bottom of
the page in any Oracle Help Center topic. You can also send email to
epmdoc_ww@oracle.com.

Documentation Feedback

xii

1
About EPM Automate

EPM Automate enables users to remotely perform tasks within Oracle Enterprise
Performance Management Cloud environments.

EPM Cloud Service Administrators can automate many repeatable tasks including the
following:

• Import and export metadata, data, artifact and application snapshots, templates, and
Data Management mappings

• Upload files into environments, list files, and delete files from the service

• Download snapshots, reports, and metadata and data files from the service

• Run business rules on data, and refresh the application

• Copy data from one database to another; typically, from a block storage database to an
aggregate storage database or from a block storage database to another block storage
database

• Run a Data Management batch rule

• Generate Data Management reports, provisioning report, and user audit report

• Import pre-mapped balance data, currency rates, pre-mapped transactions, balances
data, and profiles into Account Reconciliation

• Copy profiles to a period to initiate the reconciliation process

• Deploy the calculation cube of Profitability and Cost Management applications

• Clear, copy, and delete Point of Views in Enterprise Profitability and Cost Management
and Profitability and Cost Management applications

• Replay Oracle Smart View for Office or REST API load on an environment to enable
performance testing under heavy load

• Import supplemental data from a file into Financial Consolidation and Close

You can create scripts that are capable of completing a wide array of tasks and automate
their execution using a scheduler. For example, you can create a script to download the daily
maintenance backup from environments to create local backups of your artifacts and data.

 Tutorial: How to execute Planning commands using EPM Automate

Installing EPM Automate
You install EPM Automate to run commands. Some commands can also be run directly in
Oracle Enterprise Performance Management Cloud using Groovy scripts without installing
EPM Automate.

EPM Automate installer for Windows and Linux/UNIX, and macOS X is available from your
EPM Cloud environment.

1-1

https://apex.oracle.com/pls/apex/f?p=44785:265:0:::265:P265_CONTENT_ID:10717

Because Windows versions 10 and newer permits only Windows administrators to
install EPM Automate, it can be installed and upgraded only by Windows
administrators. EPM Automate can be upgraded by the user who installed it or by
another Windows administrator.

In this section:

• Capacity and Port Requirements

• Supported Platforms

• Java Runtime Environment and EPM Automate

• Using OpenJDK

• Windows Instructions

• Linux/UNIX/macOS X Instructions

• Server-side Execution of EPM Automate Commands

Capacity and Port Requirements
Because EPM Automate is a light-weight client, it does not require a large client
footprint. All processing takes place in Oracle Enterprise Performance Management
Cloud.

You can install EPM Automate on standard client machines, virtual machines, and
Oracle Integration Cloud machines that can access external hosts over a secure HTTP
connection.

EPM Automate connects to EPM Cloud using the standard TLS port (port 443). You do
not need to open additional outgoing ports for EPM Automate.

Supported Platforms
EPM Automate can be installed on virtual machines and Oracle Integration Cloud
(OIC) machines that can access external hosts over a secure HTTP connection.

Chapter 1
Installing EPM Automate

1-2

Note:

• EPM Automate may be used only on 64-bit operating systems that are currently
supported by the operating system vendor.

• EPM Automate does not work with SOCKS proxy; it works only with HTTP/
HTTPS proxy.

• EPM Automate supports Basic, Digest, Kerberos, Negotiate, and NTLM
authentication mechanisms to connect to the proxy server.

• EPM Automate can connect to Oracle Enterprise Performance Management
Cloud through API Gateways, such as Google APIGEE, IBM Data Power, and
other reverse proxy servers.
For this to work, configure the gateway or reverse proxy by setting the target as
the URL of your EPM Cloud environment without any context such as /
epmcloud. Example: https://epm-
idDomain.epm.dataCenterRegion.oraclecloud.com. Then, use the reverse
proxy URL instead of the EPM Cloud URL in the login command. For
configuration information, see the documentation of your gateway or proxy
server.

While configuring the proxy settings, be sure to pass the response code from
EPM Cloud to EPM Automate without modifying it in any manner to allow EPM
Automate to correctly process response codes such as 200,206, 400, 404, 500,
501, and so on. For example, for IBM Datapower, set proxy HTTP Response to
ON. Additionally, the API gateway should allow HTTP methods (GET, POST,
PUT, PATCH, and DELETE).

On Linux and UNIX computers, EPM Automate looks for the following environment variables
to determine HTTP or HTTPS proxy settings:

• proxyHost

• proxyPort

Examples of http proxy settings:

export proxyHost=host.example.com
export proxyPort=8000
Examples of https proxy settings:

export proxyHost=host.example.com
export proxyPort=8080

Chapter 1
Installing EPM Automate

1-3

Note:

EPM Automate can use the OAuth 2.0 authentication protocol to access OCI
(Gen 2) EPM Cloud environments (if configured for OAuth) to execute
commands, especially for automating the running of commands.

In Classic environments and those OCI (Gen 2) environments that use basic
authentication, EPM Automate does not work with corporate SSO (identity
provider) credentials. Because users cannot sign in using corporate
credentials, the user accounts for accessing EPM Automate must be
maintained in the identity domain. If your subscription is configured for SSO,
you must also enable EPM Automate users to sign-in with their identity
domain credentials. See Enabling Sign In With Identity Domain Credentials
in Administering Oracle Cloud Identity Management.

Download Instructions: Downloading and Installing Clients in Getting Started with
Oracle Enterprise Performance Management Cloud for Administrators.

Java Runtime Environment and EPM Automate
Installing EPM Automate on Windows installs the required Java Runtime Environment
(JRE). However, a JRE is not included in the Linux, Unix, and macOS X installers. You
must have access to a JRE installation (version 8 through version 11) to use EPM
Automate.

You are entitled to use Oracle Java Standard Edition (SE) with EPM Automate without
the need to separately purchase a Java SE subscription. For details about Oracle JDK
licensing with EPM Automate, refer to Oracle Support Document 1557737.1: "Support
Entitlement for Java SE When Used As Part of Another Oracle Product" .

Using OpenJDK
You may use OpenJDK version 14 or higher instead of JRE on Linux, Unix, and
macOS X platforms.

OpenJDK, Oracle's free, GPL-licensed, production-ready JDK, can be downloaded
from https://openjdk.java.net. Instructions to install OpenJDK are also available on this
web site.

Before starting an EPM Automate session, set the JAVA_HOME environment variable to
point to your OpenJDK installation:

macOS X example (Bash shell assumed) to use OpenJDK version 14 installed in your
home directory.

cd ~/
export JAVA_HOME=$(/usr/jdk-14.jdk/Contents/Home)

Chapter 1
Installing EPM Automate

1-4

https://support.oracle.com/epmos/faces/DocumentDisplay?id=1557737.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1557737.1
https://openjdk.java.net/

Linux example (Bash shell assumed) to use OpenJDK version 14 installed in your home
directory

cd ~/
export JAVA_HOME=/openjdk/jdk-14.0.2

Windows Instructions
By default, EPM Automate is installed in C:/Oracle/EPM Automate.

To install EPM Automate:

1. From the Windows computer where you want to install EPM Automate, access an
environment.

2. On the Home page, access Setting and Actions by clicking your user name.

3. Click Downloads.

4. In the Downloads page, click Download for Windows in the EPM Automate section.

5. Save the installer to your computer.

6. Right-click the installer (EPM Automate.exe), and select Run as administrator.

7. In User Account Control, click Yes.

8. Follow on-screen prompts to complete the installation.

Linux/UNIX/macOS X Instructions
EPM Automate requires access to a deployment of a supported JRE (version 8 through 11).
The environment variable JAVA_HOME must be set to point to your JRE installation.

To install EPM Automate:

1. Access an environment.

2. On the Home page, access Setting and Actions by clicking your user name.

3. Click Downloads.

4. In the Downloads page, click Download for Linux/macOS X in the EPM Automate
section.

5. Save the installer (EPMAutomate.tar) in a directory in which you have read/write/execute
privileges.

6. Extract the contents of the installer, set the required environment variables and execute
epmautomate.sh:

macOS X example (Bash shell assumed) to install and run from your home directory.

cd ~/
tar xf path_to_downloaded_EPMAutomate.tar
export JAVA_HOME=$(/usr/libexec/java_home)
export PATH $HOME/epmautomate/bin:$PATH
epmautomate.sh

Chapter 1
Installing EPM Automate

1-5

Linux example (Bash shell assumed) to install and run from your home directory.
JDK version 1.8.0_191 is assumed.

cd ~/
tar xf path_to_downloaded_EPMAutomate.tar
export JAVA_HOME=/opt/jdk1.8.0_191
export PATH ~/Downloads/epmautomate/bin:$PATH
epmautomate.sh

Server-side Execution of EPM Automate Commands
Some EPM Automate commands can be run directly in Oracle Enterprise Performance
Management Cloud using Groovy. You do not need to install EPM Automate to run
commands using Groovy scripts.

Note that server-side execution of commands is not the same as running Groovy
scripts on a client computer to execute EPM Automate commands.

For detailed information, see Running Commands without Installing EPM Automate.

Understanding EPM Automate Encryption Level
Oracle Enterprise Performance Management Cloud uses Transport Layer Security
(TLS) with SHA-2/SHA-256 Cryptographic Hash Algorithm to secure communication
with EPM Automate.

Using OAuth 2.0 Authorization Protocol with OCI (Gen2)
Environments

EPM Automate can use the OAuth 2.0 authentication protocol to access OCI (GEN 2)
Oracle Enterprise Performance Management Cloud environments to execute
commands, especially for automating the running of commands.

To enable OAuth 2.0 access, an Identity Domain Administrator must register your
application as a public client in Oracle Cloud Identity Services. OAuth is enforced for
the application; not across your subscription.

For detailed instructions on setting up OAuth 2.0 for your OCI (Gen 2) environments,
see Authentication with OAuth 2 - Only for OCI (Gen 2) Environments in REST API for
Oracle Enterprise Performance Management Cloud.

Note:

Basic authentication works even when OAuth is enabled for an environment.
Be sure to not overwrite the existing encrypted password file if you plan to
use it in the future.

Chapter 1
Understanding EPM Automate Encryption Level

1-6

Creating an Encrypted Password File Containing Refresh Token and Client ID

Service Administrators who want to use OAuth 2.0 for EPM Automate access to
environments require these details to create their encrypted password file, which is then used
to sign into the environment:

• Refresh token
See steps under "EPM Cloud Service Administrator tasks to get a refresh token:" in
Authentication with OAuth 2 - Only for OCI (Gen 2) Environments in REST API for Oracle
Enterprise Performance Management Cloud for detailed instructions on how to get the
refresh token.

• Client ID
The Client ID is generated when the Identity Domain Administrator configures the
application for OAuth. It is visible on the Configuration tab of the application, under
General Information.

To create the encrypted password file for OAuth authentication:

1. Start an EPM Automate session.

2. Execute a command similar to the following:
epmautomate encrypt REFRESH_TOKEN ENCRYPTION_KEY PASSWORD_FILE
ClientID=CLIENT_ID, where, the REFRESH_TOKEN is the decrypted refresh token from the
secure store and ENCRYPTION_KEY is any private key to encrypt the password, and
PASSWORD_FILE is the name and location of the file that stores the encrypted refresh
token. IThe password file must use the .epw extension.

See encrypt for detailed instructions.

3. Use the newly generated password file to sign in using OAuth. For automated script
executions, be sure to update scripts to point to the newly generated password file.

Chapter 1
Using OAuth 2.0 Authorization Protocol with OCI (Gen2) Environments

1-7

2
Command Reference

• About Running EPM Automate Commands

• Running EPM Automate

• Commands at a Glance

• EPM Automate Commands

• Exit Codes

Some EPM Automate commands apply to all business processes while some apply to a
group of business processes. Unless otherwise specified, a command applicable to a specific
business process (for example Planning) does not work with a different business process (for
example, Financial Consolidation and Close). Attempts to execute a command against a
business process that does not support it will result in an error. For a list of commands
applicable to each business process, see Commands Specific to Each EPM Cloud Service.

About Running EPM Automate Commands
All Oracle Enterprise Performance Management Cloud services use EPM Automate
commands for remote administration of environments.

• Prerequisites

• Default File Locations

• Enable Transport Layer Security Protocol 1.2

• Using EPM Automate Commands

• Specifying Multiple Values for a Parameter

• Behavior During Daily Maintenance

Prerequisites
This section lists the prerequisites for using EPM Automate such as the use of Oracle
Enterprise Performance Management Cloud credentials and default file locations in
environments.

General

All EPM Cloud users can use their identity domain credentials to connect to an environment
using EPM Automate. The predefined roles and application roles assigned to the user decide
the commands that a user can execute.

• Additionally, the Identity Domain Administrator role is required to run commands that add
or delete users in the identity domain.

• Any file required to execute a command must exist within the environment. You use the
uploadFile command to upload files.

2-1

See Default File Locations for information on the default file location used by each
service.

• File extension usage in commands:

– Specify the full file name, including the file extension (for example, data.csv),
to run commands that perform file operations. Example of file operation
commands include deletefile listfiles, uploadfile.

– Do not use file extensions to run commands that perform Migration operations.
Migration operations require you to specify the name of a snapshot.

• Parameter values that contain a space character; for example, comments, location
names and folder paths, must be enclosed in quotation marks.

Planning

• Jobs
Many of the commands discussed in the following section require jobs. Jobs are
actions, such as importing or exporting data, that can be started immediately or
scheduled for a later time; for example, importing or exporting data, and refreshing
the database.

Using the Jobs Console, you must create appropriate jobs to perform the following
operations. For detailed instructions on creating jobs in Planning, see "Managing
Jobs" in Administering Planning.

– Import data into an application

– Export data from an application

– Import metadata into an application

– Export metadata from an application

– Copy data from one a block storage database to an aggregate storage
database or from a block storage database to another block storage database

• Business Rules
Business rules that you want to execute must exist in the application.

You use Calculation Manager to create business rules, which are then deployed
into the application. See Designing with Calculation Manager for Oracle Enterprise
Performance Management Cloud.

Data Management

• Data Rules
Data load rules define how Data Management loads data from a file. You must
have predefined data load rules to load data using EPM Automate.

• Batches
You can load data using batches defined in Data Management. Using a batch,
users can combine many load rules in a batch and execute them in serial or
parallel mode.

Default File Locations
Default Upload Location

By default, all uploaded files to Oracle Enterprise Performance Management Cloud is
stored in a default location that is accessible to Migration.

Chapter 2
About Running EPM Automate Commands

2-2

You must upload files that are to be processed by Migration, for example, snapshots that you
want to import into the service, to the default location.

Inbox and Outbox

The inbox and outbox locations may differ across EPM Cloud business processes. You use
the inbox to upload files that you want to import or otherwise process using a business
processes other than Profitability and Cost Management. Data Management can process
files in the inbox or a directory within it.

Typically, EPM Cloud stores files that you generate through the business processes, for
example, data or metadata export files, in the outbox.

• The inbox to which EPM Automate uploads files and the outbox that stores the files for
download is accessible to these applications. You must upload files to this location if you
plan to process them using a process that is native to these applications. You may also
uplod files to the outbox.

– Planning

– Planning Modules

– Account Reconciliation

– Financial Consolidation and Close

– Tax Reporting

– Narrative Reporting

– Enterprise Profitability and Cost Management

You can use the Inbox/Outbox Explorer to browse the files stored in the default location.
Application snapshots that you create using EPM Automate are not listed in the Inbox/
Outbox Explorer; you can view them from the Snapshots tab of Migration.

• Files that are to be processed using a Profitability and Cost Management processes must
be uploaded into profitinbox. You may also upload files to the profitoutbox. Files
exported by Profitability and Cost Management processes are stored in profitinbox.
You use the File Explorer to browse these files.

• Files that are to be processed using Data Management must be available in the inbox or
in a folder within it. By default, files exported using Data Management are stored in
Outbox while Data Management report outputs are stored in Data Management outbox/
report folder. You use the Data Management File Browser to browse these files.

• Oracle Enterprise Data Management Cloud uses the default location for import and
export files which are uploaded, copied, or downloaded. Files in the default location can
be viewed using the ListFiles command.

Log Files

Each EPM Automate command execution generates a debug file, which is automatically
deleted if the command is successful. If an error occurs during command execution, the
debug file for the failed command is maintained in the directory from which you run EPM
Automate. By default, this is the Oracle/epm automate/bin directory (Windows) or
home/user/epmautomate/bin (Linux/UNIX).

EPM Automate debug files use the following naming convention:

Chapter 2
About Running EPM Automate Commands

2-3

commandname_date_timestamp.log. For example, if you run a failed listfiles
command at 09:28:02 on November 23, 2020, the debug file name is
listfiles_23_11_2020_09_28_02.log.

You cannot suppress the creation of the debug file for a failed command. You can,
however, write debug information and command output to a file in a different directory
by appending -d along with a debug file name and error and output streams (-d >>
c:\logs\LOG_FILE_NAME.log 2>&1) to end of the command as shown in the following
Windows example:

epmautomate listfiles -d >> c:\logs\listfiles.log 2>&1

Enable Transport Layer Security Protocol 1.2
EPM Automate must be installed on an operating system that supports Transport
Layer Security (TLS) protocol 1.2 or higher.

To ensure the highest level of security for authentication and data encryption, EPM
Automate supports only TLS 1.2. If TLS 1.2 is not enabled on the computer from which
EPM Automate is run, EPMAT-7: Unable to connect. Unsupported
Protocol: HTTPS error is displayed. To resolve this error, work with your IT
administrator to enable TLS 1.2.

The procedures to enable TLS 1.2 is operating system dependent. Use these
information sources; similar web resources may be available for other supported
operating systems:

• Update to enable TLS 1.1 and TLS 1.2 as default secure protocols in WinHTTP in
Windows for information on enabling TLS 1.2 for Windows computers.

• Hardening TLS Configuration for information on enabling TLS 1.2 in OpenSSL for
Red Hat Enterprise Linux.

Using EPM Automate Commands
Sequence of Command Parameters

All mandatory parameters for a command must be passed in the sequence identified
in command usage. Mandatory parameters and their values precede optional
parameters, which can be passed in any sequence. Optional parameters are not
positional.

For example, consider the following usage of the login command:

epmautomate login USERNAME PASSWORD EPM-CLOUD_BASE_URL
[ProxyServerUserName=PROXY_USERNAME]
[ProxyServerPassword=PROXY_PASSWORD] [ProxyServerDomain=PROXY_DOMAIN]

This command has three mandatory parameters; USERNAME, PASSWORD, and EPM-
CLOUD_BASE_URL, which should appear in the sequence identified in the usage. The
command will return an error if this sequence is not maintained. Optional parameters
ProxyServerUserName, ProxyServerPassword, and ProxyServerDomain and
their values can be specified in any sequence.

Chapter 2
About Running EPM Automate Commands

2-4

https://support.microsoft.com/en-us/help/3140245/update-to-enable-tls-1-1-and-tls-1-2-as-default-secure-protocols-in-wi
https://support.microsoft.com/en-us/help/3140245/update-to-enable-tls-1-1-and-tls-1-2-as-default-secure-protocols-in-wi
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-Hardening_TLS_Configuration#sec-Configuring_Specific_Applications

Are EPM Automate Commands Case-Sensitive?

EPM Automate commands are not case-sensitive. How a command name is typed has no
impact on command execution. For example, you can type the addUsers command as
addusers, ADDUSERS, or AdDuSeRs.

Are EPM Automate Command Parameters Case-Sensitive?

EPM Automate command parameters are not case-sensitive. How a command parameter
name is typed has no impact on command execution. For example, you can type the
FileName parameter as filename, fileName, or fIlEnAmE without impacting command
execution.

Specifying Multiple Values for a Parameter
Some EPM Automate commands accept multiple comma separated parameter values; for
example, a run time prompt of type members in business rules, rulesets and templates in a
Planning application.

To set more than one member for a Members type of run time prompt named Entities in
an EPM Automate command, use a , (comma) as illustrated in the following example for
executing the runbusinessrule command.

epmautomate runbusinessrule clearDistData TargetYear=FY19
TargetMonth=Feb Entities=District1,District2
Member names containing special characters such as Space and Comma must be enclosed
in quotation marks and escaped using \ (backslash) as shown in the following example:

epmautomate runbusinessrule clearDistData TargetYear=FY19
TargetMonth=Feb Entities="\"District 1\",\"entity_name, with
comma\""

Behavior During Daily Maintenance
Do not run EPM Automate commands while the daily maintenance of an environment is in
progress.

User activity is not permitted during daily maintenance. Attempts to run EPM Automate
commands, either directly or using scripts, while daily maintenance is in process will display
the following error:

EPMAT-11:Internal server error. Due to the daily maintenance, your
Oracle EPM Cloud Service environment is currently unavailable.

Running EPM Automate
You use your Oracle Enterprise Performance Management Cloud credentials to sign in using
EPM Automate. You cannot sign in using your SSO credentials.

All EPM Cloud users can use their identity domain credentials to connect to an environment
using EPM Automate. The predefined and application roles assigned to the user determine
the commands that a user can execute.

Chapter 2
Running EPM Automate

2-5

Additionally, only Service Administrators can run some commands while Identity
Domain Administrator roles may also be required to run some commands.

Generating Debug Log File

Oracle Support will ask you for a debug log file of the session to troubleshoot problems
that you encountered while running EPM Automate. EPM Automate supports the -d
option to generate debug messages, which can then be redirected to a file using >
directive. You can create a debug file for one command or a batch execution file or
script containing several commands.

Usage: epmautomate command [command_parameters] -d > log_file 2>&1
Windows Example: epmautomate downloadfile "Artifact Snapshot" -d >
C:\logs\download_log.txt 2>&1
Linux Example: epmautomate.sh downloadfile "Artifact Snapshot" -d > ./
logs/download_log 2>&1

Windows
Before running EPM Automate, ensure that you can access your environment from the
computer from which you are running EPM Automate.

EPM Automate creates a .prefs file, which contains user information, and log files in
the current directory. On Windows computers, the contents of .prefs file is visible only
to the user who created it and to Windows administrators. In Linux, UNIX and
macOSX environments, .prefs file is generated with permission 600, which allows
only the owner to read and write to this file.

EPM Automate displays FileNotFoundException: .prefs (Access is
denied) error in Windows environments if you do not have write permission in the
Windows directory from which you execute EPM Automate. To resolve this error,
ensure that the Windows account of the current user has Read/Write access to the
directory from which EPM Automate is run. Additionally, this user must have
appropriate access to any other directory from which a file is accessed (for example,
while running the uploadFile command) or written (for example, while running the
downloadFile command).

Note:

You cannot run EPM Automate from a folder that contains & in its name; for
example, C:\Oracle\A&B.

To run EPM Automate on a Windows client:

1. Click Start, then All Programs, then EPM Automate, and then Launch EPM
Automate. The EPM Automate command prompt is displayed.

2. Optional: Navigate to the directory from which you want to perform operations
using EPM Automate.

Chapter 2
Running EPM Automate

2-6

3. Optional: Generate a password encryption file. You use the password encryption file to
pass encrypted password to initiate a session.

epmautomate encrypt P@ssword1 myKey C:/mySecuredir/password.epw

4. Start a session as a Service Administrator. Use a command such as the following:

• Using an unencrypted password:

epmautomate login serviceAdmin P@ssword1
https://test-cloudpln.pbcs_us1.oraclecloud.com

• Using an encrypted password:

epmautomate login serviceAdmin C:\mySecuredir\password.epw
https://test-cloudpln.pbcs_us1.oraclecloud.com

5. Enter commands to execute the tasks you want to complete.

See Exit Codes for information on command execution status.

6. Sign out of the environment. Use the following command:

epmautomate logout

Linux

Note:

Ensure that JAVA_HOME is set in the PATH variable of your .profile file or as a shell
environment variable. A supported JRE (version 8 through 11) is required.

To run EPM Automate on a Linux client:

1. Open a terminal window and navigate to the directory where you installed EPM
Automate.

2. Optional: Generate a password encryption file. You use the password encryption file to
pass an encrypted password instead of an unencrypted password to initiate a session.

epmautomate encrypt P@ssword1 myKey ../misc/encrypt/password.epw

3. Start a session as a Service Administrator. Use a command such as the following:

• Using an unencrypted password:

./bin/epmautomate.sh login serviceAdmin P@ssword1
https://test-cloudpln.pbcs_us1.oraclecloud.com

Chapter 2
Running EPM Automate

2-7

• Using an encrypted password:

./bin/epmautomate.sh login serviceAdmin ../misc/encrypt/
password.epw
https://test-cloudpln.pbcs_us1.oraclecloud.com

4. Enter commands to execute the tasks you want to complete.

See Exit Codes for information on command execution status.

5. Sign out of the environment. Use the following command:

./bin/epmautomate.sh logout

Running Multiple Instances of EPM Automate
You can run multiple instances of EPM Automate against one environment from the
same directory. Similarly, you can run multiple instances of EPM Automate against
different environments from the same or different directories.
For example, you may need to simultaneously refresh the Planning application cube in
https://cloudpln.pbcs.us1.oraclecloud.com and https://
testcloudpln.pbcs.us1.oraclecloud.com. In this scenario, you have two options:

• Run two instances of EPM Automate from the same directory to refresh
application cubes in different environments

• Execute EPM Automate from separate directories to connect to the environments
and then refresh application cubes

In both scenarios, each instance of EPM Automate works independently; logging out
of one instance does not log you out of other instances. Activities initiated using EPM
Automate continues to run to completion in the environment even if you sign out from
the other instance.

This section contains Windows and Unix/Linux sample scripts (caller and
multisession) that may be used to create two EPM Automate sessions to perform
tasks. To run multiple simultaneous sessions, you must add the following connection
information in the caller script, which calls the multisession script to run login,
uploadfile, listfiles, and logout commands. You can modify the multisession
script to perform tasks other than these. Make sure that both these scripts are stored
in the same directory.

• EPM Automate uses the environment variable EPM_SID to distinguish multiple
sessions. This variable must be set in the caller script to a unique value for each
session. In the sample scripts, it is set to unique values as follows:

– In caller.BAT, EPM_SID is set to !RANDOM!, which assigns it a unique system
generated number. This number is also used to generate the log files for each
session. If you want to track the log file for each session, you may specify a
unique number instead of !RANDOM!.

– In caller.sh, EPM_SID is set to the process ID, which is unique. If you want to
track the log file for each session, you may specify a unique EPM_SID by
modifying the export EPM_SID=$$ statement in the multisession script to use
the passed in value, and then pass a unique value for this parameter in the

Chapter 2
Running EPM Automate

2-8

caller script for each session, for example by specifying the value of EPM SID in
caller.sh as follows:

$SCRIPT_DIR/multisession.sh EPM_SID "USERNAME" "PASSWORD" "URL" "/
home/user/Snapshot1.zip" &
$SCRIPT_DIR/multisession.sh EPM_SID "USERNAME" "PASSWORD" "URL" "/
home/user/Snapshot2.zip" &

• USERNAME: Login ID of a Service Administrator

• PASSWORD: Password of the Service Administrator

• URL: Connection URL of the environment

Sample Windows Scripts

caller.BAT

@echo off
setlocal EnableExtensions EnableDelayedExpansion

REM syntax: start /B multisession.bat EPM_SID "USERNAME" "PASSWORD" "URL"
"SNAPSHOTPATH"
start /B multisession.bat !RANDOM! "USERNAME" "PASSWORD" "URL"
"C:\Snapshot1.zip"
start /B multisession.bat !RANDOM! "USERNAME" "PASSWORD" "URL"
"C:\Snapshot2.zip"

endlocal

multisession.BAT

@echo off

set EPM_SID=%1
set USERNAME=%2
set PASSWORD=%3
set URL=%4
set SNAPSHOTNAME=%5

echo User: %USERNAME% > %EPM_SID%.log
echo Cloud Instance: %URL% >> %EPM_SID%.log

call epmautomate login %USERNAME% %PASSWORD% %URL% >> %EPM_SID%.log
call epmautomate uploadfile %SNAPSHOTNAME% >> %EPM_SID%.log
call epmautomate listfiles >> %EPM_SID%.log
call epmautomate logout

Sample Bourne Shell Script

caller.sh

#!/bin/sh

set +x

Chapter 2
Running EPM Automate

2-9

SCRIPT_DIR=`dirname "${0}"`

syntax: /home/user/multisession.sh "USERNAME" "PASSWORD" "URL"
"SNAPSHOTPATH" &
$SCRIPT_DIR/multisession.sh "USERNAME" "PASSWORD" "URL" "/home/user/
Snapshot1.zip" &
$SCRIPT_DIR/multisession.sh "USERNAME" "PASSWORD" "URL" "/home/user/
Snapshot2.zip" &

multisession.sh

#!/bin/sh

set +x

EPM_AUTOMATE_HOME=/home/user/epmautomate

export JAVA_HOME=/home/user/jre
export EPM_SID=$$

USERNAME=$1
PASSWORD=$2
URL=$3
SNAPSHOTNAME=$4

echo User: $USERNAME > $EPM_SID.log
echo Cloud Instance: $URL >> $EPM_SID.log

$EPM_AUTOMATE_HOME/bin/epmautomate.sh login $USERNAME $PASSWORD $URL
>> $EPM_SID.log
$EPM_AUTOMATE_HOME/bin/epmautomate.sh uploadfile $SNAPSHOTNAME
>> $EPM_SID.log
$EPM_AUTOMATE_HOME/bin/epmautomate.sh listfiles >> $EPM_SID.log
$EPM_AUTOMATE_HOME/bin/epmautomate.sh logout

Commands at a Glance
This is an alphabetical listing of all EPM Automate commands.

Table 2-1 All EPM Automate Commands

Command Name PLN,
SWP,
SP, FF

FCC TR PCM EPCM AR EDM NR

addUsers

addUsersToGroup

addUsersToTeam

addUserToGroups

applicationAdminMode

applyDataGrants

archiveTmTransactions

Chapter 2
Commands at a Glance

2-10

Table 2-1 (Cont.) All EPM Automate Commands

Command Name PLN,
SWP,
SP, FF

FCC TR PCM EPCM AR EDM NR

assignRole

autoPredict* See Footnote

calculateModel

clearCube

clearDataByPointOfView

clearDataByProfile

clearPOV

cloneEnvironment

copyDataByPointOfView

copyDataByProfile

copyFileFromInstance

copyFromObjectStorage

copyOwnershipDataToNextYear

copyPOV

copySnapshotFromInstance

copyToObjectStorage

createGroups

createNRSnapshot

createReconciliations

deleteFile

deleteGroups

deletePointOfView

deletePOV

deployCube

deployEJTemplates

deployFormTemplates

deployTaskManagerTemplate

dismissIPMInsights**

downloadFile

enableApp

enableQueryTracking

encrypt

executeAggregationProcess

executeBurstDefinition

executeReportBurstingDefinition

exportAccessControl

exportAppAudit

exportAppSecurity

exportARApplicationProperties

Chapter 2
Commands at a Glance

2-11

Table 2-1 (Cont.) All EPM Automate Commands

Command Name PLN,
SWP,
SP, FF

FCC TR PCM EPCM AR EDM NR

exportBackgroundImage

exportCellLevelSecurity

exportData

exportConsolidationJournals

exportDataManagement

exportDimension

exportDimensionMapping

exportEJJournals

exportEssbaseData

exportJobConsole

exportLibraryArtifact

exportLibraryDocument

exportLogoImage

exportMapping

exportMetadata

exportOwnershipData

exportQueryResults

exportSnapshot

exportTemplate

exportTaskManagerAccessControl

exportValidIntersections

extractDimension

feedback

getApplicationAdminMode

getDailyMaintenanceStartTime

getEssbaseQryGovExecTime

getIdleSessionTimeout

getIPAllowlist

getSubstVar

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importAppAudit

importAppSecurity

importARApplicationProperties

importBackgroundImage

importBalances

importCellLevelSecurity

importConsolidationJournals

Chapter 2
Commands at a Glance

2-12

Table 2-1 (Cont.) All EPM Automate Commands

Command Name PLN,
SWP,
SP, FF

FCC TR PCM EPCM AR EDM NR

importData

importDataManagement

importDimension

importJobConsole

importLibraryArtifact

importLogoImage

importMapping

importMetadata

importOwnershipData

importPreMappedBalances

importPreMappedTransactions

importProfiles

importRates

importRCAttributeValues

importReconciliationAttributes

importSnapshot

importSupplementalCollectionData

importSupplementalData

importTemplate

importTMAttributeValues

importValidIntersections

invalidLoginReport

listBackups

listFiles

loadData

loadDimData

loadViewpoint

login

logout

maskData

mergeDataSlices

mergeSlices

optimizeASOCube

programDocumentationReport

provisionReport

purgeArchivedTmTransactions

purgeTmTransactions

recomputeOwnershipData

recreate

Chapter 2
Commands at a Glance

2-13

Table 2-1 (Cont.) All EPM Automate Commands

Command Name PLN,
SWP,
SP, FF

FCC TR PCM EPCM AR EDM NR

refreshCube

removeUserFromGroups

removeUsers

removeUsersFromGroup

removeUsersFromTeam

renameSnapshot

replay

resetService

restoreBackup

restructureCube

roleAssignmentAuditReport

roleAssignmentReport

runAutomatch

runBatch

runBusinessRule

runCalc

runComplianceReport

runDailyMaintenance

runDataRule

runDMReport

runIntegration

runMatchingReport

runPlanTypeMap

runRuleSet

runSupplementalDataReport

runTaskManagerReport

sendMail

setApplicationAdminMode

setDailyMaintenanceStartTime

setDemoDates

setEJJournalStatus

setEncryptionKey

setEssbaseQryGovExecTime

setIdleSessionTimeout

setIPAllowlist

setManualDataAccess

setPeriodStatus

setSubstVars

setVirusScanOnFileUploads

Chapter 2
Commands at a Glance

2-14

Table 2-1 (Cont.) All EPM Automate Commands

Command Name PLN,
SWP,
SP, FF

FCC TR PCM EPCM AR EDM NR

simulateConcurrentUsage

skipUpdate

snapshotCompareReport

sortMember

unassignRole

updateUsers

upgrade

uploadFile

userAuditReport

userGroupReport

validateConsolidationMetadata

validateModel

• * This command is supported only if Hybrid Oracle Essbase cubes are enabled in the
application. Strategic Workforce Planning and Sales Planning do not support Hybrid
Essbase. This command is not supported for FreeForm.

• ** This command is not supported for FreeForm.

Abbreviations

• PLN: Planning (including Planning Modules)

• FF: FreeForm

• SWP: Strategic Workforce Planning

• SP: Sales Planning

• FCC: Financial Consolidation and Close

• TR: Tax Reporting

• PCM: Profitability and Cost Management

• EPCM: Enterprise Profitability and Cost Management

• AR: Account Reconciliation

• EDM: Oracle Enterprise Data Management Cloud

• NR: Narrative Reporting

EPM Automate Commands
This section details each EPM Automate command. Information available for each command
includes the services that can use the command, command usage, and example.

Chapter 2
EPM Automate Commands

2-15

addUsers
Creates a batch of users in an identity domain using an ANSI or UTF-8 encoded
Comma Separated Value (CSV) file that was uploaded to the environment. Also
informs new users of their user name and temporary password.

You use the uploadFile command to upload files to an environment. All columns in the
CSV file are mandatory. This command validates the value in each column of a
definition and displays error messages that identify each missing or invalid value. The
CSV file format is as follows:

First Name,Last Name,Email,User Login
Jane,Doe,jane.doe@example.com,jdoe
John,Doe,john.doe@example.com,john.doe@example.com

See Importing a Batch of User Accounts in Getting Started with Oracle Cloud for a
detailed description of the CSV file format.

The value of User Login specified in the import file is not case-sensitive. For example,
the value John.doe@example.com is treated as being identical to
John.Doe@example.com or any variation in its case.

If a user definition in the CSV file matches a user account that exists in the identity
domain, no changes will be made to the existing user account. This command creates
accounts only for new users whose account information is included in the file. Because
user accounts are common to all environments that an identity domain supports, new
users are available to all the environments that share the identity domain.

When the command execution finishes, EPM Automate prints information about each
failed entry to the console. Review this information to understand why the command
execution failed for some entries in the CSV file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Strategic Workforce Planning, and Sales Planning.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power
User, User, or Viewer)

Usage

epmautomate addUsers FILE_NAME [userPassword=PASSWORD]
[resetPassword=true|false] where:

• FILE_NAME is the name of a CSV file containing user information. Input file
containing multi-byte characters must use UTF-8 character encoding. Using ANSI
encoding causes issues in how user information is displayed in My Services
screens.

• userPassword, optionally, indicates the default password for all the new users who
are created in the identity domain. If specified, this password must meet the

Chapter 2
EPM Automate Commands

2-16

minimum identity domain password requirements. If the parameter is not specified, a
unique temporary password is assigned to each user.
If specified, the value of the userPassword parameter is used as the password for all
users specified in the CSV file. Assigning the same password to all users may be
desirable if you are creating users purely for testing purposes. If you are creating real
Oracle Enterprise Performance Management Cloud users and want to assign a specific
password to each user, use this command without specifying a value for the
userPassword optional parameter.

• resetPassword, optionally, indicates whether new users must change password at the
first log in. Default is true. Unless this parameter is set to false, new users will be forced
to change the password at the first sign in.
This command sends each new user an email with details about their accounts (user
name and password) if resetPassword is set to true. If resetPassword is set to false,
the email is not sent. If you set resetPassword to false, you must specify userPassword.
Otherwise, a unique temporary password will be assigned to each user but because no
email is sent, the passwords will not be known to the users and they will not be able to
login.

Examples

• Add test users in the identity domain with the same password and not require them to
change password:
epmautomate addUsers user_file.CSV userPassword=Example@Pwd12
resetPassword=false

• Add users to identity domain using a temporary password and require them to change it:
epmautomate addUsers user_file.CSV

addUsersToGroup
Adds a batch of users to an existing group in Access Control using an ANSI or UTF-8
encoded CSV file that was uploaded to the environment.

You use the uploadFile command to upload files to an environment. User login value is not
case-sensitive. The file format is as follows:

User Login
jdoe
john.doe@example.com

Note:

User is added to group only if both these conditions are met:

• User Login value included in the file exists in the identity domain that services
the environment. User Login values are not case-sensitive.

• The user is assigned to a predefined role in the identity domain

When the command execution finishes, EPM Automate prints information about each failed
entry to the console. Review this information to understand why the command execution
failed for some entries in the CSV file.

Chapter 2
EPM Automate Commands

2-17

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Oracle
Enterprise Data Management Cloud, Enterprise Profitability and Cost Management,
Narrative Reporting, Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator or Access Control Manager

Usage

epmautomate addUsersToGroup FILE_NAME GROUP_NAME where:

• FILE_NAME is the name of a CSV file containing the login names of users you want
to assign to a group in Access Control.

• GROUP_NAME is the name of a group existing in Access Control. This value is not
case-sensitive.

Example

epmautomate addUsersToGroup user_file.CSV example_group

addUsersToTeam
Adds Oracle Enterprise Performance Management Cloud users listed in a CSV file to
an existing team.

If a user included in the CSV file is already a member of the team, this command
ignores that user. The values in this file are nto case-sensitive. The CSV file format is
as follows:

User Login, primary_user
jdoe, yes
jane.doe@example.com,no

Note:

A primary user is, by default, designated to perform the tasks that are
assigned to the team.

Applies to

Financial Consolidation and Close, Tax Reporting, and Account Reconciliation.

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional
application roles.

Chapter 2
EPM Automate Commands

2-18

Usage

epmautomate addUsersToTeam FILE TEAM_NAME where:

• FILE identifies a UTF-8 formatted CSV file listing the login IDs of users to add to the
team. Before running this command, use the uploadFile command to upload files to an
environment.

• TEAM_NAME identifies a team name as defined in Access Control. This value is not case-
sensitive.

Example

epmautomate addUsersToTeam example_users.csv example_team

addUserToGroups
Adds a user as a member of the Access Control groups identified in an ANSI or UTF-8
encoded CSV file.

You use the uploadFile command to upload files to an environment. The file format is as
follows:

Group Name
Group1
Group2

Group Name values are not case-sensitive.

When the command execution finishes, EPM Automate prints information about each failed
entry to the console. Review this information to understand why the command execution
failed for some entries in the CSV file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Strategic
Workforce Planning, and Sales Planning.

Required Roles

Service Administrator or Access Control Manager

Usage

epmautomate addUserToGroups FILE_NAME User_Login, where:

• FILE_NAME is the name of a CSV file containing the Access Control group names to which
you want to assign to assign the user

• User_Login is the log in ID of an Oracle Enterprise Performance Management Cloud user
who is to be assigned to Access Control groups. This user login ID, which is not case-
sensitive, must exist in the identity domain that services the environment and must be
assigned to a predefined role.

Chapter 2
EPM Automate Commands

2-19

Example

epmautomate addUserToGroups groups.CSV jdoe@examle.com

applicationAdminMode
Places the application in administration mode so that access to the application is
limited to Service Administrators only.

This command is useful to prevent users from working on the application when Service
Administrators are performing administrative operations. The application remains in
administration mode until you change it back so that all users can access it.

Note:

This command has been deprecated, but not removed from EPM Automate.
Oracle recommends that you use the setApplicationAdminMode command
instead.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Strategic Workforce
Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate applicationAdminMode VALUE where VALUE specifies whether to place
the application in administration mode. Acceptable values are:

• true to place the application in administration mode

• false to return the application to normal mode so that all users can access it

Examples

• Place the application in administration mode: epmautomate
applicationAdminMode true

• Return the application to normal operation: epmautomate applicationAdminMode
false

applyDataGrants
Refreshes the data grants, which control access to Oracle Essbase data slices, so that
they match the data grants defined in an Profitability and Cost Management
application.

User and group level data grants that you make in the Profitability and Cost
Management application are automatically synchronized in Essbase. Use this

Chapter 2
EPM Automate Commands

2-20

command to synchronize access to Essbase data if you suspect a discordance between the
data grant in the application and the filters in Essbase.

The time required to complete this operation depends on the size of the application. Make
sure that the data grant refresh operation finishes before the application is backed up during
the next maintenance window. Because the application should not be used while this
operation is in progress, Oracle recommends that you schedule this operation for a time
when users are not working with the application.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Usage

epmautomate applyDataGrants APPLICATION_NAME where APPLICATION_NAME is the name of
the Profitability and Cost Management application for which data grants are to be re-created.

Example

epmautomate applyDataGrants BksML12

archiveTmTransactions
Archives matched transactions, including support and adjustment details, that are equal to or
older than a specified age. The matched transactions are recorded in a ZIP file.

Use this command to keep the Account Reconciliation application size optimal by archiving
and then purging old matched transactions based on the transaction retention policies of your
organization.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate archiveTmTransactions matchType age [filterOperator=VALUE]
[filterValue=VALUE] [logFilename=FILE_NAME] [filename=FILE_NAME] where:

• matchType is the identifier (TextID) of the match type from which matched transactions
should be archived.

• age identifies the number of days since the transaction was matched. Matched
transaction older than or equal to this value will be archived.

• filterOperator, optionally, is one of the following filter conditions to identify the accounts
containing matched transactions for archival. This value is combined with the

Chapter 2
EPM Automate Commands

2-21

filterValue to identify the accounts from which matched transactions should be
archived:

– equals
– not_equals
– starts_with
– ends_with
– contains
– not_contains

• filterValue, optionally, is a filter value to identify the transactions to archive. If
the filterOperator is equals or not_equals, you can use a space-separated list
to specify multiple values; for example, filterValue=101-120
filterValue=102-202. If multiple values are specified, transactions from accounts
matching any filter operator and filter value combination are selected for archival.

Note:

If filterOperator and filterValue are not specified, all matched
transactions older than or equal to the age from all accounts for the
specified matchType are archived.

• logFilename, optionally, is the name of a log file to record information about the
command activity. If a file name is not specified, a log file named
Archive_Transactions_matchType_JOBID.log is automatically generated.

• filename, optionally, is the name of a .ZIP file that should contain the archived
transactions. If not specified, the command, by default, creates
Archived_Transactions_matchType_JOBID.zip. Use the downloadFile command to
download this file to a local computer.

Note:

This command runs the Archive TM Transaction job using the parameters
you specify. The job ID is returned in the command output to facilitate its use
with the purgeArchivedTmTransactions command. You can monitor the job from
the Job Console.

Examples

• Archive old matched transactions without using filters, but using custom log
and .ZIP file name:
epmautomate archiveTmTransactions cashrecon 180 logFile=tmlogs.log
filename=trans.zip

• Archive old matched transactions using filters:

– epmautomate archiveTmTransactions cashrecon 180
filterOperator=equals filterValue=101-120 FilterValue=102-202

Chapter 2
EPM Automate Commands

2-22

– epmautomate archiveTmTransactions cashrecon 180 filterOperator=contains
filterValue=11

assignRole
Assigns a role to users (including the user who runs this command) whose login IDs are
included in an ANSI or UTF-8 encoded CSV file. Use this command to assign users to a
predefined role or to an application role.

Before using this command, use the uploadFile command to upload files to an environment.
The file format is as follows:

User Login
jane.doe@example.com
jdoe

See Assigning One Role to Many Users in Getting Started with Oracle Cloud.

Note:

• User Login values included in the file are not case-sensitive.

• Use double quotation marks to enclose role names that contain space
character.

When the command execution finishes, EPM Automate prints information about each failed
entry to the console. Review this information to understand why the command execution
failed for some entries in the CSV file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Strategic
Workforce Planning, and Sales Planning.

Required Roles

To assign predefined roles:

• Classic environments: Identity Domain Administrator and any predefined role (Service
Administrator, Power User, User, or Viewer)

• OCI environments: Service Administrator, or Identity Domain Administrator and any
predefined role (Service Administrator, Power User, User, or Viewer)

To assign application roles: Service Administrator or Access Control Manager

Usage

epmautomate assignRole FILE_NAME ROLE where:

• FILE_NAME is the name of a CSV file containing user login IDs. Specify the CSV extension
in lower case.

Chapter 2
EPM Automate Commands

2-23

• ROLE is one of the following. This value is not case-sensitive:

– If you are assigning users to predefined identity domain roles, ROLE should
identify a predefined role applicable to the service. See Understanding
Predefined Roles in Getting Started with Oracle Enterprise Performance
Management Cloud for Administrators.
For a description of these roles, see Managing Role Assignments at the
Application Level in Administering Access Control for Oracle Enterprise
Performance Management Cloud

– If you are assigning users to application roles, ROLE should identify a role
belonging to the application in the current environment. Application roles are
listed in the Roles tab of Access Control. For a description of application roles
for each business process, see these topics in Administering Access Control
for Oracle Enterprise Performance Management Cloud:

* Account Reconciliation

* Enterprise Profitability and Cost Management

* Planning, FreeForm, Financial Consolidation and Close, and Tax
Reporting

* Profitability and Cost Management

* Oracle Enterprise Data Management

* Narrative Reporting

Examples

• Assign users to a predefined identity domain role:
epmautomate assignRole admin_role_file.csv "Service Administrator"

• Assign users to an application role:
epmautomate assignRole example_file.csv "Task List Access Manager"

autoPredict
Generates predictions of future performance based on an existing Auto Predict
definition in Planning or Planning Modules.

This command initiates a job that uses the historical data for each member identified in
the Auto Predict definition specified in the application. For detailed information on the
applications that use the Auto Predict feature, and setting up predictions, see Setting
Up Predictions to Run Automatically with Auto Predict in Administering Planning.

Applies to

Planning, Planning Modules, if Hybrid Oracle Essbase cubes are enabled in the
application.

Required Roles

Service Administrator

Usage

epmautomate autoPredict PREDICTION_DEFINITION [forceRun=true|false]
[paginatedDim=DIMENSION_NAME] where:

Chapter 2
EPM Automate Commands

2-24

• PREDICTION_DEFINITION is the name of an auto prediction definition available in the
application.

• forceRun, optionally, specifies whether to run the prediction if the underlying definition
has not changed after the initial run. Default is false
Set the value of this parameter to true to run the Auto Predict job even if there is no
change in the job definition. Use the default (false) to run the prediction once, at the very
first time the job is executed.

• paginatedDim, optionally, specifies a dimension that is to be used to speed up the Auto
Predict job by running predictions in parallel, in separate threads. For these parallel
threads to be efficient, specify a dimension that will result in evenly spread data for each
prediction thread.

Example

epmautomate autoPredict ASOtoBSO forceRun=true paginatedDim=Entity

calculateModel
Runs the calculation process in Enterprise Profitability and Cost Management applications.

Applies to

Enterprise Profitability and Cost Management

Required Roles

Service Administrator

Usage

epmautomate calculateModel POV_NAME MODEL_NAME EXECUTION_TYPE
[povDelimiter=DELIMITER] [optimizeForReporting=true|false]
[captureDebugScripts=true|false] [comment=COMMENT] [PARAMETER=VALUE], where:

• POV_NAME is the name of the data POV to be calculated. To calculate multiple POVs, list
POV names separated by a comma as the delimiter. Do not use any other delimiter to
separate POV names. Enclose the list of POV names in double quotes when there are
spaces in member names.

• MODEL_NAME is the name of the model to be calculated. Enclose the model name in double
quotes if the name contains spaces.

• EXECUTION_TYPE is one of the following, which identifies rule execution type.

– ALL_RULES to use all rules to calculate the POV.
If you specify this value, do not specify rule subset or single rule related runtime
parameters such as rulesetSeqNumStart, rulesetSeqNumEnd, and ruleName.

– RULESET_SUBSET to use a subset of a ruleset to calculate the POV.
If you use this value, you must specify rulesetSeqNumStart and rulesetSeqNumEnd
values as runtime parameters.

– SINGLE_RULE to run a specific rule to calculate the POV.
If you use this value, you must only specify a ruleName as the runtime parameter.

– RUN_FROM_RULE to run calculations on a POV starting from a specific rule.
If you use this value, you must only specify a ruleName as the runtime parameter.

Chapter 2
EPM Automate Commands

2-25

– STOP_AFTER_RULE to stop calculating the POV after a specific rule has finished
calculations.
If you use this value, you must only specify a ruleName as the runtime
parameter.

• povDelimiter, optionally, is the delimiter used in POV values. The default delimiter
is _ (under score). Delimiter must be enclosed in double quotation marks. Only
these delimiters are supported:

– _ (under score)

– # (hash)

– & (ampersand)

– ~ (tilde)

– % (percentage)

– ; (semicolon)

– : (colon)

– - (dash)

• optimizeForReporting=true|false, optionally, specifies whether calculations are
to be run with or without optimization for reporting. Default is false.
Set this value to false to save processing time by skipping the aggregation
creation step; for example, when running a single rule or a sequential series of
POVs. When running multiple concurrent calculation jobs, set
optimizeForReporting=true for all jobs, so only the last job to finish performs
aggregation, avoiding redundant processing and preventing running jobs from
slowing down.

• captureDebugScripts=true|false, optionally, identifies whether to generate
debug scripts in the inbox. Oracle may need these scripts to troubleshoot
calculation issues. Default is false.

• comment="COMMENT", optionally, specifies a comment about the process in double
quotation marks.

• PARAMETER=VALUE, optionally, indicates runtime parameters and their values to run
the calculation. Specify as many parameter and value pairings as the process
require. Valid parameters and their values:

– rulesetSeqNumStart the sequence number of the first rule in the ruleset to be
run. Valid only if EXECUTION_TYPE=RULESET_SUBSET is used.

– rulesetSeqNumEnd specifies the sequence number of the last rule in the
ruleset to be run. Valid only if EXECUTION_TYPE=RULESET_SUBSET is used.

– ruleName name of the rule to be run. Enclose the value in double quotation
marks if it contains the space character. Valid only if the value of
EXECUTION_TYPE is set to SINGLE_RULE, RUN_FROM_RULE, or STOP_AFTER_RULE.

– clearCalculatedData=true|false specifies whether to clear existing
calculations. Default is false.

– executeCalculations=true|false specifies whether to run calculations.
Default is false.

Chapter 2
EPM Automate Commands

2-26

Note:

Parameter values (true and false) must be in all lower case.

Examples

• Run all rules to calculate a single POV:
epmautomate calculateModel FY21_Jan_Actual_Working ForecastingModel
ALL_RULES clearCalculatedData=true executeCalculations=true
optimizeForReporting=true comment="Running all rules to calculate a POV"

• Run all rules to calculate multiple POVs :
epmautomate calculateModel
"FY21:Jan:Actual:Working,FY21:Feb:Actual:Working,FY21:Mar:Actual:Working"
"10 Actuals Allocation Process" ALL_RULES clearCalculatedData=true
executeCalculations=true optimizeForReporting=true captureDebugScripts=true
comment="Test calculation of many POVs" povDelimiter=":"

• Run a subset of a ruleset to calculate the POV:
epmautomate calculateModel FY21_Jan_Actual_Working ForecastingModel
RULESET_SUBSET rulesetSeqNumStart=10 rulesetSeqNumEnd=20
clearCalculatedData=true executeCalculations=true comment="Running a subset
of rules to calculate a POV"

• Run a specific rule to calculate the POV:
epmautomate calculateModel FY21_Jan_Actual_Working ForecastingModel
SINGLE_RULE ruleName="Occupancy Expense Allocations"
clearCalculatedData=true executeCalculations=true comment="Running a
specific rule to calculate a POV"

• Run all rules to calculate a single POV using a custom POV delimiter:

epmautomate calculateModel FY21:Jan:Actual_Working ForecastingModel
ALL_RULES clearCalculatedData=true executeCalculations=true
optimizeForReporting=true comment="Running all rules to calculate a POV"
povDelimiter=":"

• Run all rules to calculate POVs and model with space in names:

epmautomate calculateModel "FY21_Jan_New
Actual_Working,FY21:Feb:Actual:Working" "Forecasting Model" ALL_RULES
clearCalculatedData=true executeCalculations=true optimizeForReporting=true
comment="Running all rules to calculate a POV"

clearCube
Deletes specific data from input and reporting cubes using the settings specified in a job of
type clear cube.

This command does not delete the application definition in the application’s relational tables.
See Clearing Cubes in Administering Planning.

Applies to

Planning, Planning Modules, FreeForm, Enterprise Profitability and Cost Management,
Strategic Workforce Planning, and Sales Planning.

Chapter 2
EPM Automate Commands

2-27

Required Roles

Service Administrator

Usage

epmautomate clearCube JOB_NAME where: JOB_NAME is the name of a job defined in
the application.

Example

epmautomate clearCube ClearPlan1

clearDataByPointOfView
Clears data for a specific POV for an Enterprise Profitability and Cost Management
cube.

Applies to

Enterprise Profitability and Cost Management

Required Roles

Service Administrator

Usage

epmAutomate clearDataByPointOfView POV_NAME [cubeName=CUBE_NAME]
[PARAMETER=VALUE] where:

• POV_NAME is the name of a POV in the application.

• cubeName, optionally, is the name of the cube in which data is to be cleared.
Default is PCM_CLC.

• PARAMETER=VALUE indicates optional runtime parameters and their values. Specify
as many parameter and value pairings as the process requires. Valid parameters
and their values:

– povDelimiter is the delimiter used in POV values. Default is :: (double
Colon). This value must be enclosed in double quotation marks. Example:
povDelimiter="_".
Other than the default, only these delimiters are supported: _ (under score), #
(hash), & (ampersand), ~ (tilde), % (percentage), ; (semicolon), : (colon), -
(dash).

– clearInput=true|false specifies whether to clear input data. Default is
false.

– clearAllocatedValues=true|false specifies whether to clear allocated
values. Default is false.

– clearAdjustmentValues=true|false specifies whether to clear adjustment
values. Default is false.

Chapter 2
EPM Automate Commands

2-28

Note:

* Parameter values (true or false) must be in all lower case.

* At least one of clearInput, clearAllocatedValues or
clearAdjustmentValues parameters must be set to true.

Examples

• Clear data from a POV in the default PCM_CLC cube using the default POV delimiter:
epmAutomate clearDataByPointOfView FY21::Jan::Actual::Working
clearInput=true clearAllocatedValues=true clearAdjustmentValues=true

• Clear input data and allocated values from a POV in a specific cube using a custom POV
delimiter:
epmAutomate clearDataByPointOfView FY21_Jan_Actual_Working cubeName=PCM_REP
povDelimiter="_" clearInput=true clearAllocatedValues=true

• Clear input data from a POV in a specific cube using a custom POV delimiter:
epmAutomate clearDataByPointOfView FY21:Jan:Actual:Working cubeName=PCM_REP
povDelimiter=":" clearInput=true

clearDataByProfile
Clears data from the items (for example, regions) identified in a Clear Data Profile defined in
Financial Consolidation and Close and Tax Reporting.

Applies to

Financial Consolidation and Close, Tax Reporting

Required Roles

Service Administrator

Usage

epmautomate clearDataByProfile PROFILE_NAME where PROFILE_NAME is the name of a
Clear Data Profile.

Example

epmautomate clearDataByProfile clearDataProfile_01

clearPOV
Clears model artifacts and data from a Point of View (POV) combination or a data region
within the POV in an Profitability and Cost Management application.

Applies to

Profitability and Cost Management

Chapter 2
EPM Automate Commands

2-29

Required Roles

Service Administrator, Power User

Usage

epmautomate clearPOV APPLICATION_NAME POV_NAME [QUERY_NAME]
PARAMETER=VALUE stringDelimiter="DELIMITER" where:

• APPLICATION_NAME is the name of an Profitability and Cost Management
application

• POV_NAME is a POV in the application. This value is required.

• QUERY_NAME, optionally, is the name of a query exactly as defined in Profitability
and Cost Management. If specified, this query will be used to clear data region
within the POV.

Note:

If you specify a query name, you must set the value of all runtime
parameters (see below) to false.

• PARAMETER=VALUE indicates runtime parameters and their values to clear the POV.
Specify as many parameter and value pairings as the process requires. Valid
parameters, at least one of which is required, and their values:

– isManageRule=true|false specifies whether to clear rules

– isInputData=true|false specifies whether to clear input data

– isAllocatedValues=true|false specifies whether to clear allocation values

– isAdjustmentValues=true|false specifies whether to clear adjustment
values

Note:

Parameter values (true or false) must be in all lower case.

To clear data regions in a POV (if a QUERY_NAME is specified), you must
set the value of runtime parameters (isManageRule, isInputData,
isAllocatedValues, and isAdjustmentValues) to false.

• stringDelimiter="DELIMITER" specifies the delimiter used in POV values.
Delimiter must be enclosed in double quotation marks.

Examples

• Clear all model artifacts and data from a POV: epmautomate clearPOV BksML12
2012_Jan_Actual isManageRule=true isInputData=true
isAllocatedValues=true isAdjustmentValues=true stringDelimiter="_"

• Clear data region within a POV: epmautomate clearPOV BksML12
2012_Jan_Actual queryName=BksML12_2012_Jan_clear_query

Chapter 2
EPM Automate Commands

2-30

isManageRule=false isInputData=false isAllocatedValues=false
isAdjustmentValues=false stringDelimiter="_"

cloneEnvironment
Clones the current environment and, optionally, identity domain artifacts (users and
predefined role assignments), Data Management records, audit records, Job Console
records, contents of the inbox and outbox, and stored snapshots. This command is an
alternative to using the Clone Environment feature in Migration.

Initiate cloning after the scheduled daily maintenance of the source and target environments.
If the daily maintenance of the source environment starts while cloning is in progress, the
cloning process will be terminated. The cloning process on the target environment is not
affected even if the cloning is in progress at the start time of the daily maintenance. In this
scenario, the daily maintenance will run after the cloning is complete.

If the cloning of your environment takes a long time, reschedule the daily maintenance start
time on the source environment to avoid the cloning process from being terminated. See
these information sources for information on resetting the daily maintenance start time.

• setDailyMaintenanceStartTime

• Managing Daily Maintenance in Getting Started with Oracle Enterprise Performance
Management Cloud for Administrators

• Viewing and Setting the Daily Maintenance Window Time in REST API for Oracle
Enterprise Performance Management Cloud

Chapter 2
EPM Automate Commands

2-31

Note:

• Account Reconciliation: After cloning, the target Account
Reconciliation application settings will reset to their default values. If you
wish to retain the target application settings, export them from the source
environment using the exportARApplicationProperties command. Then,
after the cloning is complete, import the application properties into the
target environment using the importARApplicationProperties command.

• Data Management: Cloning of Data Management records may take a
long time if the staging tables contain a very large number of records.
Similarly, cloning the contents of the inbox and outbox, and stored
snapshots may take considerable time, especially if they contain a large
amount of data.

• Legacy Environments: Cloning maintains the current Oracle Essbase
version as discussed in these scenarios:

– Scenario 1: You are cloning a source legacy environment that uses
an Essbase version that does not support Hybrid cubes to a target
legacy environment that uses an Essbase version that supports
Hybrid cubes. In this scenario, the Essbase in the target environment
is downgraded to match the version in the source environment.

– Scenario 2: You are cloning a source legacy environment that uses
an Essbase version that supports Hybrid cubes to a target legacy
environment that uses an Essbase version that does not support
Hybrid cubes. In this scenario, the Essbase in the target environment
is upgraded to match the version in the source environment.

– Scenario 3: You are cloning a source legacy environment that uses
an Essbase version that does not support Hybrid cubes to a target
EPM Standard Cloud Service or EPM Enterprise Cloud Service
environment, which, by default, uses an Essbase version that
supports Hybrid cubes. In this scenario, the Essbase in the target
environment is not downgraded to match the version in the source
environment.

• Planning: Cloning may fail if the Planning business process contains a
renamed seeded period member that has been supplanted by a custom
period member. For example, you renamed the seeded YearTotal Period
member to unused_YearTotal and then added an alternate type period
member with the original seeded member name (YearTotal in this
example). In this scenario, cloning of the environment may fail.

For detailed information on these topics, see Cloning EPM Cloud Environments in
Administering Migration for Oracle Enterprise Performance Management Cloud.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Chapter 2
EPM Automate Commands

2-32

Required Roles

Service Administrator

Identity Domain Administrator role is required to clone users and predefined roles.

Usage

epmAutomate cloneEnvironment TARGET_USERNAME TARGET_PASSWORD TARGET_URL
[SnapshotName=NAME] [UsersAndPreDefinedRoles=true|false] [DataManagement=true|
false] [appAudit=true|false] [jobConsole=true|false]
[storedSnapshotsAndFiles=true|false] [DailyMaintenanceStartTime=true|false],
where:

Note:

• The dataManagement parameter does not apply to Oracle Enterprise Data
Management Cloud and Narrative Reporting environments.
Clone Data Management records only if both the source and target
environments are on the same monthly update or the target environment is one
update newer than the source environment. For example, you can clone 22.01
Data Management records to another 22.01 environment or to a 22.02
environment only.

• The jobConsole parameter applies to Planning, Planning Modules, FreeForm,
Financial Consolidation and Close, Tax Reporting, Enterprise Profitability and
Cost Management, Sales Planning, and Strategic Workforce Planning only.

• The appAudit parameter applies to Planning, Planning Modules, FreeForm,
Enterprise Profitability and Cost Management, Sales Planning, and Strategic
Workforce Planning only.
Audit information for Financial Consolidation and Close and Tax Reporting is,
by default, included in the snapshot.

• If dataManagement, jobConsole, or appAudit parameter is not applicable to an
environment, EPM Automate ignores the value you specify.

• TARGET_USERNAME is the ID of a Service Administrator in the target environment. You must
use the target identity domain user name (not the SSO user name). If you plan to clone
user and role assignments in the target environment, this user must have the Identity
Domain Administrator role also.

• TARGET_PASSWORD is the location of the encrypted password file of the user identified by
TARGET_USERNAME.

• TARGET_URL is the EPM-CLOUD_BASE_URL of the environment that will become the cloned
environment.

• SnapshotName, optionally, is the name of a snapshot that should be used for cloning. This
snapshot must be present in the source environment. Default is Artifact Snapshot,
which uses the last maintenance snapshot to clone the environment.

• UsersAndPreDefinedRoles, optionally, identifies whether to clone users and their
predefined role assignments (Access Control groups are always cloned). Default is
false.

Chapter 2
EPM Automate Commands

2-33

For this option to work, the user identified by TARGET_USER_NAME must have the
Identity Domain Administrator role in the target environment.

Import of users and their predefined roles will fail if a user who is not an Identity
Domain Administrator clones an environment after selecting this check box. The
following error is recorded in the Migration Status Report: Failed to import
External Directory Artifact <artifact_name>. User
<user_name> is not authorized to perform this operation. The
user needs to have Identity Domain Administrator role to
perform this operation.
– If you are not importing users and a user in the source snapshot is not

assigned to a predefined role on the target environment, an error
(EPMIE-00070: Failed to find user during assigned roles
import) is displayed.

– The Identity Domain Administrator role assignment is not cloned. Users with
only the Identity Domain Administrator role assignment are not cloned to the
target environment.
Users assigned to a combination of Identity Domain Administrator role and
predefined roles in the source environment are cloned, but assigned only to
the respective predefined roles in the target environment. These users will not
have the Identity Domain Administrator role in the target environment.

– Changes to the predefined roles of the user will be updated based on the roles
assigned in the source snapshot. However, role assignments in the target will
not be removed to match those in the source snapshot. For example, assume
that jdoe is assigned to the Power User predefined role in the target
environment, but has only the User role in the source snapshot. In this
situation, this command assigns jdoe to the User role and does not remove
the Power User role assignment in the target environment.

– This command does not delete existing users from the target environment if
they don't exist in the source snapshot. For example, jdoe has an account in
the target environment, but this account is not present in the source snapshot.
In this situation, the account of jdoe in the target environment is not deleted.

– This command adds users that do not exist in the target environment; it does
not update current user properties in the target environment even if those are
different in the source snapshot. For example, if the last name of jdoe in the
source snapshot is spelled differently in the target environment, the change
will not be made in the target environment. A random password is assigned to
new users in the target environment. New users will receive account activation
emails prompting them to change passwords.

– This command does not change existing users' passwords in the target
environment even if it is different in the source snapshot.

• dataManagement=true|false, optionally, clones Data Management records in the
source environment to the target environment. Default is true, which clones Data
Management records. Set this value to false if you do not want to clone Data
Management records.

• appAudit=true|false, optionally, clones the audit records in the source
environment to the target environment. Default is true, which clones application
audit data. Set this value to false if you do not want to clone application audit data
to the target environment.

Chapter 2
EPM Automate Commands

2-34

• jobConsole=true|false, optionally, clones the Job Console records in the source
environment to the target environment. Default is true. Set this value to false if you do
not want to clone Job Console records.

• storedSnapshotsAndFiles, optionally, identifies whether the command should clone the
contents of inbox and outbox, and stored snapshots. Default is false.

Note:

Only the top level folders in the inbox and outbox are cloned; subfolders are
not. If you need to retain the contents of the subfolders, back them up to a local
computer and then upload them to the target environment.

• DailyMaintenanceStartTime, optionally, resets the maintenance start time of the cloned
target environment to that of the source environment. Default is true. To keep the current
maintenance start time of the target environment, set this value to false.

Examples

• Clone the environment, users and predefined role assignments, audit data, job console
records, and Data Management records. Also change the maintenance start time of the
target environment to that of the source environment:
epmAutomate cloneEnvironment serviceAdmin Password.epw https://test-
cloudpln.pbcs.us1.oraclecloud.com UsersAndPreDefinedRoles=true

• Clone the environment including the contents of inbox and outbox, stored snapshots, but
not the users and predefined role assignments, Data Management records, audit data,
and Job Console records, without changing the maintenance start time of the target
environment:
epmAutomate cloneEnvironment serviceAdmin Password.epw https://test-
cloudpln.pbcs.us1.oraclecloud.com DataManagement=false appAudit=false
jobConsole=false storedSnapshotsAndFiles=true
DailyMaintenanceStartTime=false

• Clone the entire environment (users and predefined role assignments, audit data, Job
Console records, inbox and outbox contents, stored snapshots, and Data Management
records) using a custom snapshot. Also change the maintenance start time of the target
environment to that of the source environment:
epmAutomate cloneEnvironment serviceAdmin Password.epw https://test-
cloudpln.pbcs.us1.oraclecloud.com UsersAndPreDefinedRoles=true
storedSnapshotsAndFiles=true SnapshotName=SampleSnapshot

copyDataByPointOfView
Copies data from a source POV in a cube to a destination POV in the same or another
Enterprise Profitability and Cost Management cube.

Applies to

Enterprise Profitability and Cost Management

Required Roles

Service Administrator

Chapter 2
EPM Automate Commands

2-35

Usage

epmAutomate copyDataByPointOfView SOURCE_POV_NAME TARGET_POV_NAME
copyType=ALL_DATA|INPUT SOURCE_CUBE_NAME TARGET_CUBE_NAME
[PARAMETER=VALUE] where:

• SOURCE_POV_NAME is the name of the source POV from which data is to be copied.

• TARGET_POV_NAME is the name of a valid target POV to which the data from the
source is to be copied.

• copyType identifies the data to be copied from the source POV. Valid values are:

– ALL_DATA to copy all input and calculated data to the destination POV.

– INPUT to copy all input data, including driver data, to the destination POV.

• SOURCE_CUBE_NAME is the name of the cube that contains the source POV.

• TARGET_CUBE_NAME is the name of the cube that contains the target POV.

• PARAMETER=VALUE indicates optional runtime parameters and their values. Specify
as many parameter and value pairings as the process requires. Valid parameters
and their values:

– povDelimiter, optionally, is the delimiter used in POV values. Default is ::
(double Colon). This value must be enclosed in double quotation marks.
Example: povDelimiter="_".
Other than the default, only these delimiters are supported: _ (under score), #
(hash), & (ampersand), ~ (tilde), % (percentage), ; (semicolon), : (colon), -
(dash).

– createDestPOV=true|false specifies whether to create the target POV if it
does not exist. Default is false. You must set this parameter value to true if
the destination POV does not exist.

Examples

• Copy all data to a different POV in the same cube:
epmAutomate copyDataByPointOfView FY21_Jan_Actual_Working
FY22_Jan_Actual_Working ALL_DATA PCM_CLC PCM_CLC povDelimiter="_"
createDestPOV=true

• Copy all data to a different POV in a different cube:
epmAutomate copyDataByPointOfView FY21_Jan_Actual_Working
FY22_Jan_Actual_Working ALL_DATA PCM_CLC PCM_REP povDelimiter="_"
createDestPOV=true

• Copy input data to a different POV in the same cube:
epmAutomate copyDataByPointOfView FY21_Jan_Actual_Working
FY22_Jan_Actual_Working INPUT PCM_CLC PCM_CLC povDelimiter="_"
createDestPOV=true

• Copy input data to a different POV in a different cube:
epmAutomate copyDataByPointOfView FY21_Jan_Actual_Working
FY22_Jan_Actual_Working INPUT PCM_CLC PCM_REP povDelimiter="_"
createDestPOV=true

Chapter 2
EPM Automate Commands

2-36

copyDataByProfile
Copies data for the items (for example, regions) identified in a Copy Data Profile.

Applies to

Financial Consolidation and Close, Tax Reporting

Required Roles

Service Administrator

Usage

epmautomate copyDataByProfile PROFILE_NAME where PROFILE_NAME is the name of a Copy
Data Profile defined in Financial Consolidation and Close and Tax Reporting.

Example

epmautomate copyDataByProfile copyDataProfile_01

copyFileFromInstance
Copies a file from a source environment to the environment from which you are executing this
command.

Before running this command, using EPM Automate, sign into the environment into which you
want to copy the file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Strategic
Workforce Planning, and Sales Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application role

Usage

epmautomate copyFileFromInstance SOURCE_FILE_NAME USERNAME PASSWORD_FILE URL
TARGET_FILE_NAME where:

• SOURCE_FILE__NAME is the name of the file (including extension) that you want to copy
from the source environment.

• USERNAME is the user name of a Service Administrator in the of the source environment.

• PASSWORD_FILE is the name and location of the file containing the encrypted password of
the Service Administrator of the source environment.

• URL is the URL of the source environment.

• TARGET_FILE_NAME is a unique name for the file (including extension) in the environment
from which you run this command.

Chapter 2
EPM Automate Commands

2-37

Example

epmautomate copyFileFromInstance "my data file.zip" serviceAdmin
C:\mySecuredir\password.epw https://test-cloud-
pln.pbcs.us1.oraclecloud.com "my target data file.zip"

copyFromObjectStorage
Copies a file or backup snapshot from an Oracle Object Storage bucket to the current
environment.

If you are copying a backup snapshot, this command copies it from the Object Storage
bucket and extracts its contents in Oracle Enterprise Performance Management
Cloud.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate copyFromObjectStorage USERNAME PASSWORD URL TARGET_FILE_NAME
where:

• USERNAME is the ID of a user who has the required access rights in Oracle Object
Storage Cloud.
For users created in a federated identity provider, specify the fully-qualified name
of the user (for example, exampleIdP/jdoe or exampleIdP/john.doe@example.com,
where exampleIdP is the name of the federated identity provider). For other users,
provide the User ID.

• PASSWORD is the Swift password or auth token associated with the user. This
password is not the same as the password that you use to sign into the Object
Storage Console. Auth token is an Oracle-generated token that you use to
authenticate with third-party APIs, for example to authenticate with a Swift client.
For instructions to create this token, see To create an auth token in Oracle Cloud
Infrastructure Documentation .

• URL is the URL of the Oracle Object Storage Cloud bucket, including the bucket
name and the name of the object to be copied.
The URL format:

https://swiftobjectstorage.region_identifier.oraclecloud.com/v1/
namespace/bucket_name/object_name

Components of this URL:

– region_identifier is a Oracle Cloud Infrastructure hosting region.

– namespace is the top-level container for all buckets and objects. Each Oracle
Cloud Infrastructure tenant is assigned a unique system-generated and

Chapter 2
EPM Automate Commands

2-38

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password

immutable Object Storage namespace name at account creation time. Your tenancy's
namespace name, for example, axaxnpcrorw5, is effective across all regions.

– bucket_name is the name of a logical container where you store your data and files.
Buckets are organized and maintained under compartments. A system generated
bucket name, for example, bucket-20210301-1359 reflects the current year, month,
day, and time.

– object_name is name of the snapshot or file that you want to copy from Oracle Object
Storage Cloud. This value must exactly match the full name of the object in Object
Storage Cloud. Do not use an extension such as .zip unless the object name
contains it.

For more information, see these topics in Oracle Cloud Infrastructure Documentation

– Regions and Availability Domains

– Understanding Object Storage Namespaces

– Managing Buckets

• TARGET_FILE_NAME is a unique name for the file or snapshot in the EPM Cloud
environment. When copying snapshots, do not specify the ZIP extension so that this file
name can be used with the importSnapshot command.
Files larger than 100 MB are stored in Oracle Object Storage within a logical directory
along with the manifest file that identifies its segments. Specify the name of the logical
directory as the TARGET_FILE_NAME.

Examples

In these examples, replace URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET with a working URL
in this format: https://swiftobjectstorage.region_identifier.oraclecloud.com/v1/
namespace/bucket_name/.

• Copy a snapshot named backup_Snapshot_12_05_20.zip from Oracle Object Storage
bucket to EPM Cloud and rename it:
epmautomate copyFromObjectStorage oracleidentitycloudservice/jDoe
example_pwd URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET/
backup_Snapshot_12_05_20.zip snapshot_from_osc

• Copy a snapshot named backup_Snapshot_12_05_20 from Oracle Object Storage bucket
to EPM Cloud and rename it:
epmautomate copyFromObjectStorage oracleidentitycloudservice/jDoe
example_pwd URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET/backup_Snapshot_12_05_20
snapshot_from_osc

• Copy a snapshot named backup_Snapshot_12_05_20 from Oracle Object Storage bucket
to EPM Cloud without renaming it:
epmautomate copyFromObjectStorage oracleidentitycloudservice/jDoe
example_pwd URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET/backup_snapshot_12_05_20
backup_snapshot_12_05_20

• Copy a file to EPM Cloud from Oracle Object Storage bucket:
epmautomate copyFromObjectStorage oracleidentitycloudservice/jDoe
example_pwd URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET/example_file.txt
copied_from_osc.txt

Chapter 2
EPM Automate Commands

2-39

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/managingbuckets.htm

copyOwnershipDataToNextYear
Copies the ownership data from the last period of a year to the first period of the next
year.

Initial default and override ownership settings are automatically carried forward from
period to period within the same year but not to the periods in subsequent years. To
carry the most current ownership settings from the last period in a year to the first
period of the next year, you must copy the ownership settings from the last period of
the year in the POV, to the first period of the next year.

Applies to

Financial Consolidation and Close and Tax Reporting.

Required Roles

Service Administrator, Power User, User

Usage

epmautomate copyOwnershipDataToNextYear Scenario Year where:

• Scenario is the name of the scenario from which ownership data is to be copied.

• Year is the year from which ownership data is to be copied to the first period of
next year.

Example

epmautomate copyOwnershipDataToNextYear FCCS_total_Actual FY18

copyPOV
Copies the model artifacts and Oracle Essbase cube data from a source POV to a
destination POV.

Applies to

Profitability and Cost Management.

Required Roles

Service Administrator, Power User

Usage

epmautomate copyPOV APPLICATION_NAME SOURCE_POV_NAME TARGET_POV_NAME
PARAMETER=VALUE stringDelimiter="DELIMITER" [isInputData=true|false
isAllInputData=true|false] where:

• APPLICATION_NAME is the name of the Profitability and Cost Management
application that contains the source POV.

• SOURCE_POV_NAME is the name of the source POV in the specified application

• TARGET_POV_NAME is the name of a valid target POV in Draft status

Chapter 2
EPM Automate Commands

2-40

• PARAMETER=VALUE indicates runtime parameters and their values to copy the POV. Specify
as many parameter and value pairings as the process requires. Valid parameters and
their values:

– isManageRule=true|false specifies whether to copy rules.

– isInputData=true | isAllData=true | isAllInputData=true optionally specifies
how to copy data. For these parameters, default value is false. Specify only one of
these as true:

* specify isInputData=true to copy input data to the destination POV.

* specify isAllData=true to copy all input and calculated data to the destination
POV.

* AllInputData=true to copy all input data, including driver data, to the destination
POV.

– modelViewName=NAME specifies the name of the data slice that is to be copied from
the source POV to the target POV.

– createDestPOV=true|false specifies whether to create the target POV if it does not
exist.

– nonEmptyTupleEnabled=true|false specifies whether to enable Non-Empty Tuple
(NET) so that the command considers only the intersections that have data. Default
is true, which, in rare cases, may cause the command to not perform well for
copying Essbase data. In those cases, override the default by using
nonEmptyTupleEnabled=false to improve performance.

Note:

Parameter values (true or false) must be in all lower case.

• stringDelimiter="DELIMITER" specifies the delimiter used in POV values. Delimiter
must be enclosed in double quotation marks.

Examples

• epmautomate copyPOV BksML12 2012_Jan_Actual 2012_Feb_Actual
isManageRule=true isInputData=true modelViewName="Balancing - 5 Customer
Costs" createDestPOV=true stringDelimiter="_"

• epmautomate copyPOV BksML12 2012_Jan_Actual 2012_Feb_Actual
isManageRule=true isAllInputData=true createDestPOV=true stringDelimiter="_"

• epmautomate copyPOV BksML12 2012_Jan_Actual 2012_Feb_Actual
isManageRule=true isAllData=true createDestPOV=true stringDelimiter="_"

copySnapshotFromInstance
Copies the current snapshot from a source environment to the environment (target) from
which you run this command.

This command is primarily used as the first step in migrating an environment by copying the
current snapshot from another environment; for example from a test environment to a
production environment. You use the importSnapshot command to complete the migration
process.

Chapter 2
EPM Automate Commands

2-41

Before running this command, start an EPM Automate session and sign into the target
environment.

If this command is executed to copy the current snapshot while the snapshot of the
source environment is being generated; for example, during the daily maintenance,
you will receive the File not found error.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application
role

Usage

epmautomate copySnapshotFromInstance SNAPSHOT_NAME USERNAME PASSWORD_FILE
URL where:

• SNAPSHOT_NAME is the name of an existing snapshot in the source environment.

• USERNAME is the user name of a Service Administrator of the source environment.

• PASSWORD_FILE is the name and location of the file containing the encrypted
password of the Service Administrator of the source environment.

• URL is the URL of the source environment.

Example

epmautomate copySnapshotFromInstance "Artifact Snapshot" serviceAdmin
C:\mySecuredir\password.epw https://test-cloud-
pln.pbcs.us1.oraclecloud.com

copyToObjectStorage
Copies a file or snapshot from the current environment to an Oracle Object Storage
Cloud bucket.

If you are copying a snapshot, this command zips the content of the snapshot before
copying it to Oracle Object Storage.

To facilitate fast copying of files, this command chunks large files (larger than 100 MB)
into 10 MB segments (named FILE_NAME/FILE_NAME_object_store_bytes_seg_0
through FILE_NAME/FILE_NAME_object_store_bytes_seg_n) and creates a manifest
file (named FILE_NAME/FILE_NAME.manifest). File segments are stored in Oracle
Object Storage along with the manifest file. In the Object Storage Console, the file is
displayed as a logical directory containing the file segments and the manifest file.

Files smaller than 100 MB are not segmented and are stored with the original file
name.

Chapter 2
EPM Automate Commands

2-42

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Strategic
Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate copyToObjectStorage SOURCE_FILE_NAME USERNAME PASSWORD URL where:

• SOURCE_FILE_NAME is the name of the file or snapshot in Oracle Enterprise Performance
Management Cloud. If you are copying a snapshot, do not specify the ZIP extension.

• USERNAME is the ID of a user who has the required access rights to write to Oracle Object
Storage Cloud.
For users created in a federated identity provider, specify the fully-qualified name of the
user (for example, exampleIdP/jdoe or exampleIdP/john.doe@example.com, where
exampleIdP is the name of the federated identity provider). For other users, provide the
User ID.

• PASSWORD is the Swift password or auth token associated with the user. This password is
not the same as the password that you use to sign into the Object Storage Console. Auth
token is an Oracle-generated token that you use to authenticate with third-party APIs, for
example to authenticate with a Swift client. For instructions to create this token, see To
create an auth token in Oracle Cloud Infrastructure Documentation .

• URL is the URL of the Oracle Object Storage Cloud bucket with an optional object name
appended.
The URL format without object name:

https://swiftobjectstorage.region_identifier.oraclecloud.com/v1/namespace/
bucket_name

The URL format with object name:

https://swiftobjectstorage.region_identifier.oraclecloud.com/v1/namespace/
bucket_name/object_name

Components of this URL:

– region_identifier is a Oracle Cloud Infrastructure hosting region.

– namespace is the top-level container for all buckets and objects. Each Oracle Cloud
Infrastructure tenant is assigned a unique system-generated and immutable Object
Storage namespace name at account creation time. Your tenancy's namespace
name, for example, axaxnpcrorw5, is effective across all regions.

– bucket_name is the name of a logical container where you store your data and files.
Buckets are organized and maintained under compartments. A system generated
bucket name, for example, bucket-20210301-1359 reflects the current year, month,
day, and time.

– object_name, optionally, is name that you want to use for the file on Oracle Oracle
Object Storage Cloud. If an object name is not specified, the file will be copied with its
original name.

Chapter 2
EPM Automate Commands

2-43

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password

For more information, see these topics in Oracle Cloud Infrastructure
Documentation

– Regions and Availability Domains

– Understanding Object Storage Namespaces

– Managing Buckets

Examples

In these examples, replace URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET with a
working URL in this format: https://
swiftobjectstorage.region_identifier.oraclecloud.com/v1/namespace/
bucket_name/.

• Copy a snapshot to an Object Storage bucket and rename it:
epmautomate copyToObjectStorage "Artifact Snapshot"
oracleidentitycloudservice/jDoe example_pwd
URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET/Snapshot_04_30_21

• Copy a file to an Object Storage bucket:
epmautomate copyToObjectStorage example_file.txt
oracleidentitycloudservice/jDoe example_pwd
URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET

• Copy a file to an Object Storage bucket and rename it:
epmautomate copyToObjectStorage example_file.txt
eoracleidentitycloudservice/jDoe example_pwd
URL_OF_THE_ORACLE_OBJECT_STORAGE_BUCKET/epm_text_file.txt

createGroups
Adds groups to Access Control using an ANSI or UTF-8 encoded CSV file that was
uploaded to the environment.

You use the uploadFile command to upload files to an environment. The file format is as
follows:

Group Name,Description
Example_grp1,My test group
Example_grp2,My other test group

Group names are not case-sensitive. When the command execution finishes, EPM
Automate prints information about each failed entry to the console. Review this
information to understand why the command execution failed for some entries in the
CSV file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator or Access Control Manager

Chapter 2
EPM Automate Commands

2-44

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/managingbuckets.htm

Usage

epmautomate createGroups FILE_NAME where FILE_NAME is the name of a CSV file
containing group names and descriptions.

Example

epmautomate createGroups group_file.CSV

createNRSnapshot
Create an on-demand snapshot, named EPRCS_Backup.tar.gz, of a Narrative Reporting
environment.

You can download EPRCS_Backup.tar.gz and error file to a local computer using the
downloadFile command or copy it to another environment using the copyFileFromInstance
command.

The application data in EPRCS_Backup.tar.gz is as of the last daily maintenance. If you need
to backup more recent data, use the data export Narrative Reporting feature.

Applies to

Narrative Reporting

Required Roles

Service Administrator

Usage

epmautomate createNRSnapshot [errorFile=Error_File.txt] where errorFile, optionally,
identifies the name of a unique text file for recording errors, if any encountered by the
command.

Example

epmautomate createNRSnapshot errorFile=EPRCS_backup_Error.txt

createReconciliations
Copies the profiles to a specified period.

Applies to

Account Reconciliation.

Required Roles

Service Administrator, Power User, User, Viewer

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate createreconciliations PERIOD SAVED_FILTER where:

Chapter 2
EPM Automate Commands

2-45

• PERIOD is the name of a period

• SAVED_FILTER is the name of a saved public filter. If you do not specify a saved
filter, EPM Automate copies all applicable profiles

Examples

• Copy all profiles for the period: epmautomate createReconciliations "January
2015"

• Copy profiles of a specific filter: epmautomate createReconciliations "January
2015" "Corporate Recs"

deleteFile
Deletes a file or a snapshot from the default upload location, the inbox or outbox, a
Data Management folder, or from profitinbox/profitoutbox.

To delete a file from a location other than the default upload location, you must specify
the file location.

If this command is executed to delete a snapshot that is in the process of being
generated or archived, you will receive one of these errors:

• File not found if the snapshot is being generated

• Archieve process is in progress. Unable to Rename or Delete if the
snapshot is being archived

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application
role

Usage

epmautomate deleteFile FILE_NAME

Note:

You must specify the file name including extension; for example, data.csv,
data.zip, if applicable. You can delete a snapshot without specifying its file
extension (.ZIP). This usage, however, is deprecated. You should specify the
location of the file if it is not in the default location. For detailed information,
see Default File Locations. Supported locations include inbox, profitinbox,
outbox, profitoutbox, to_be_imported, and inbox/directory_name.

Chapter 2
EPM Automate Commands

2-46

Examples

• Delete a file from the default upload location:
epmautomate deleteFile data.csv

• Delete a file from the inbox:
epmautomate deleteFile inbox/data.csv

• Delete from the outbox:
epmautomate deleteFile outbox/data.csv

• Delete a snapshot that you created using Migration:

– epmautomate deleteFile "Backup 18-06-12.zip" or

– epmautomate deleteFile "Backup 18-06-12" (deprecated)

• Delete from profitinbox (Profitability and Cost Management):
epmautomate deleteFile profitinbox/data.csv

• Delete from profitoutbox (Profitability and Cost Management):
epmautomate deleteFile profitoutbox/data.csv

• Delete from a Data Management upload folder:
epmautomate deleteFile inbox/dm_data/data.csv

• Delete from a Data Management folder:
epmautomate deleteFile outbox/dm_data/data.csv

deleteGroups
Removes groups from Access Control based on the information available in an ANSI or
UTF-8 encoded CSV file that was uploaded to the environment.

You use the uploadFile command to upload files to an environment. The file format is as
follows:

Group Name
Example_grp1
Example_grp2

Group Name values in the file are not case-sensitive. When the command execution finishes,
EPM Automate prints information about each failed entry to the console. Review this
information to understand why the command execution failed for some entries in the CSV file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator or Access Control Manager

Chapter 2
EPM Automate Commands

2-47

Usage

epmautomate deleteGroups FILE_NAME where FILE_NAME is the name of a CSV file
containing the names of the groups to be removed from Access Control.

Example

epmautomate deleteGroups group_file.CSV

deletePointOfView
Deletes artifacts and Oracle Essbase cube data from a POV in an Enterprise
Profitability and Cost Management application.

Applies to

Enterprise Profitability and Cost Management

Required Roles

Service Administrator

Usage

epmautomate deletePointOfView POV_NAME [povDelimiter="DELIMITER"] where:

• POV_NAME identifies the name of the POV to be deleted.

• povDelimiter is the delimiter used in POV values. Default is :: (double Colon).
This value must be enclosed in double quotation marks. Example:
povDelimiter="_".
Other than the default, only these delimiters are supported: _ (under score), #
(hash), & (ampersand), ~ (tilde), % (percentage), ; (semicolon), : (colon), - (dash).

Example

• Deleting a POV that uses a custom POV delimiter
epmAutomate deletePointOfView FY21_Jan_Actual_Working povDelimiter="_"

• Deleting a POV that uses the default POV delimiter
epmAutomate deletePointOfView FY21::Jan::Actual::Working

deletePOV
Deletes model artifacts and Oracle Essbase cube data from a POV in Profitability and
Cost Management.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Chapter 2
EPM Automate Commands

2-48

Usage

epmautomate deletePOV APPLICATION_NAME POV_NAME stringDelimiter="DELIMITER",
where:

• APPLICATION_NAME is the name of the Profitability and Cost Management application that
contains the POV to be deleted.

• POV_NAME is the name of the POV to be deleted. This value is required.

• stringDelimiter="DELIMITER" specifies the delimiter used in POV values. Delimiter
must be enclosed in double quotation marks.

Example

epmautomate deletePOV BksML12 2012_Jan_Actual stringDelimiter="_"

deployCube
Deploys or redeploys the calculation cube of an Profitability and Cost Management
application.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Usage

epmautomate deployCube APPLICATION_NAME PARAMETER=VALUE comment="comment" where:

• APPLICATION_NAME is the name of an Profitability and Cost Management application

• PARAMETER=VALUE indicates runtime parameters and their values to deploy the cube.
Specify as many parameter and value pairings as the process requires. Valid parameters
and their values:

Note:

Parameter values (true or false) must be in all lower case.

– isKeepData=true|false
specifies whether to preserve existing data, if any

– isReplaceCube=true|false specifies whether to replace the existing cube

Note:

Values of isKeepData and isReplaceCube cannot both be set to true.

Chapter 2
EPM Automate Commands

2-49

– isRunNow=true|false specifies whether to run the process right away

• comment is an optional comment enclosed in double quotation marks

Example

epmautomate deployCube BksML12 isKeepData=true isReplaceCube=false
isRunNow=true comment="Test cube deployment"

deployEJTemplates
Deploys finalized Enterprise Journal templates to open periods in Financial
Consolidation and Close. Deploying Enterprise Journal templates creates recurring
journals associated with the template for the selected period. It also allows you to
create ad hoc journals using the deployed template(s).

This command is an alternative to using Financial Consolidation and Close screens to
deploy new Enterprise Journal templates at the beginning of the month.

Applies to

Financial Consolidation and Close

Required Roles

Service Administrator, Power User

Usage

epmautomate deployEJTemplates YEAR PERIOD [Template=TEPMPLATE_NAME]
[ResetJournals=true|false] where:

• Year is the journal year.

• Period is the journal period. This value can be specified only if the year is
specified.

• Template=TEMPLATE_NAME identifies the names of the journals to be deployed. To
deploy more than one journal, provide each unique template name in
Template=TEMPLATE_NAME format, for example, Template="Loan Details"
Template="Housing Details" Template="Repayment Details".
If this parameter value is not specified, the command deploys all the templates for
the specified year and period combination.

• ResetJournals optionally indicates whether all journals must be reset to the first
stage after redeploying the templates. Default is false.
Financial Consolidation and Close validates this value internally based on changes
to templates, and may override the value you specify, if required.

Example

epmautomate deployEJTemplates 2021 May Template="Loan Details"
Template="Housing Details" ResetJournals=true

Chapter 2
EPM Automate Commands

2-50

deployFormTemplates
Deploys finalized form templates to new data collection periods to create Supplemental Data
Forms, ensuring a consistent and repeatable data collection process.

Applies to

Financial Consolidation and Close, Tax Reporting.

Required Roles

Service Administrator, Power User

Usage

epmautomate deployFormTemplates COLLECTION_INTERVAL [DIMENSION] [Template]
[resetWorkFlows=true|false] where:

• COLLECTION_INTERVAL is the name of the collection interval to which the template is to be
deployed.

• DIMENSION, optionally, specifies the frequency dimensions of the data collection process
in DIMENSION=MEMBER_NAME format. Specify as many dimensions as defined in the
collection interval (a maximum of four including Year and Period; for example,
"Year=2020" "Period=July" "Product=Oracle EPM" "Consolidation=entity Input".
No default value is used if this parameter value is not specified.

• Template, optionally, identifies unique names for the form templates to deploy in
Template=TEMPLATE_NAME format. You can specify any number of unique names (as
many as needed) in this format. For example, Template="Loan Details Template"
Template="Housing Details Template" Template="Repayment Detals Template".
If this property value is not specified, the command deploys all the templates for the
specified interval.

• resetWorkFlows, optionally, indicates whether all forms are to be reset to the first stage
after redeploying them. Default is false.

Example

epmautomate deployFormTemplates "Journal Collection Interval" "Year=2020"
"Period=July" "Product=Oracle EPM" "Consolidation=entity Input" Template="Loan
Details Template" Template="Housing Details Template" resetWorkFlows=true

deployTaskManagerTemplate
Deploys tasks from a Task Manager template into a task schedule ensuring consistent
execution of repetitive business processes.

Applies to

Financial Consolidation and Close, Tax Reporting

Required Roles

Service Administrator

Chapter 2
EPM Automate Commands

2-51

Usage

epmAutomate deployTaskManagerTemplate TEMPLATE_NAME SCHEDULE_NAME YEAR
PERIOD DAY_ZERO_DATE [dateFormat=DATE_FORMAT] [orgUnit=ORGANIZATION UNIT]
where:

• TEMPLATE_NAME is the name of Task Manager template to deploy.

• SCHEDULE_NAME is the schedule name to create from the template.

• YEAR is the Year dimension member where the template is to be deployed.

• PERIOD is the Period dimension member where the template is to be deployed.

• DAY_ZERO_DATEis the day zero date, in valid format, to be used to create the
schedule.

• dateFormat, optionally, is the date format for day zero date. Default format is
YYYY-MM-DD.

• orgUnit, optionally, is the name of the organization unit. If a value is not specified,
the schedule will be created using the standard date mapping. Holiday rules will
not be used.

Example

• Deploy Task Manager Template for Ind organization unit using the default date
format (YYYY-MM-DD) for zero date:
epmautomate deployTaskManagerTemplate "Vision Monthly Close" "Qtr 2
Close" 2021 July 2021-07-10 orgUnit=Ind

• Deploy Task Manager Template for Ind organization unit using dd/mm/yyyy as the
date format for zero date:
epmautomate deployTaskManagerTemplate "Vision Monthly Close" "Qtr 2
Close" 2021 July 02/07/2021 dateFormat=dd/MM/yyyy orgUnit=Ind

dismissIPMInsights
Automates the dismissing of Intelligent Performance Management (IPM) Insight data
before running new IPM Insight jobs. Dismissing data closes all open insights on which
you do not plan to take action. This command is an alternative to manually dismissing
the data using the IPM Insight dashboard.

Applies to

Planning, Planning Modules, Strategic Workforce Planning, Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate dismissIPMInsights [comment="comment"] where comment, optionally,
is a justification for dismissing open insights.

Example

epmautomate dismissIPMInsights comment="dismissing unusable insights"

Chapter 2
EPM Automate Commands

2-52

downloadFile
Downloads a file from an environment to the local computer.

Use this command is to download data, metadata, and back up snapshots for local storage.
The file is downloaded into the folder from which you run EPM Automate.

If this command is executed to download the current snapshot while the snapshot of the
environment is being generated; for example, during the daily maintenance, you will receive
the File not found error.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application role

Usage

epmautomate downloadFile "[FILE_PATH]/FILE_NAME"

Examples

• Download maintenance snapshot: epmautomate downloadFile "Artifact Snapshot"
• Download a custom snapshot: epmautomate downloadFile "mySnapshot.zip"
• Download a Narrative Reporting maintenance snapshot: epmautomate downloadFile

"EPRCS_Backup.tar.gz"
• Download a file from default download location: epmautomate downloadFile data.csv
• Download from a Data Management folder: epmautomate downloadfile outbox/

dm_data/data.csv
• Download from profitoutbox: epmautomate downloadFile profitOutbox/data.csv

enableApp
Enables an application.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Usage

epmautomate enableapp APPLICATION_NAME where APPLICATION_NAME is the name of the
Profitability and Cost Management application that you want to enable.

Chapter 2
EPM Automate Commands

2-53

Example

epmautomate enableApp BksML12

enableQueryTracking
Enables query tracking on ASO cubes to start capturing user data retrieval patterns
(queries).

You use the captured data retrieval patterns to optimize ASO cube aggregation, which
is initiated using the executeAggregationProcess command.

Applies to

Planning, Planning Modules, FreeForm, Enterprise Profitability and Cost Management,
Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate enableQueryTracking ASO_CUBE_NAME, where ASO_CUBE_NAME is the
name of the ASO cube in which query tracking is to be activated.

Example

epmautomate enableQueryTracking VISION_ASO

encrypt
Uses Advanced Encryption Standard (AES/CBC/PKCS5Padding(128)) to encrypt Oracle
Enterprise Performance Management Cloud password (or the OAuth2.0 refresh token
and client ID for accessing OCI (Gen 2) environments), and optionally, the internet
proxy server password used for signing in to Oracle Fusion Cloud EPM environments,
and stores it in a password file.

Encrypting the secrets allows Service Administrators to share their encrypted
password file with developers who write EPM Automate scripts so that they can
execute the scripts. This precludes the need to share the Service Administrator
password or create a generic, shared EPM Cloud account specifically for running
scripts.

Encrypting password is a one-time process.

Note:

See Handling Special Characters for information on encrypting passwords
that contain special characters.

Chapter 2
EPM Automate Commands

2-54

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate encrypt PASSWORD|REFRESH_TOKEN KEY PASSWORD_FILE
[ClientID=CLIENT_ID] [ProxyServerPassword=PROXY_PASSWORD] where:

• PASSWORD|REFRESH_TOKEN PASSWORD is the password or the OAuth refresh token that you
want to encrypt. You cannot use corporate credentials with EPM Automate.

• KEY is the private key that is to be used to encrypt the password.

• PASSWORD_FILE is the name and location of the file that stores the encrypted password or
refresh token. The password file must use the .epw extension.

• ClientID, optionally, is the client identifier that is created during OAuth 2.0 setup. This
value must be specified while encrypting an OAuth 2.0 refresh token. Do not specify this
value while encrypting a password.

• ProxyServerPassword is the password to authenticate the user with the HTTP proxy
server. Required only if authentication at proxy server is enabled for your network.

Examples

• Encrypt only EPM Cloud password: epmautomate encrypt P@ssword1 myKey
C:\mySecuredir\password.epw

• Encrypt EPM Cloud and internet proxy server passwords: epmautomate encrypt
E@xample1 myKey C:\mySecuredir\password.epw ProxyServerPassword=Proxy_Pwd1

• Encrypt refresh token and Client Id: epmautomate encrypt
AAyyilYBAWD4....FVkxefd8kjoJr6HJPA= myEncyprtion42Key
C:\mySecuredir\oauthfile1.epw ClientID=6fdf2e72fd343430ABR22394C

executeAggregationProcess
Initiates the aggregation process, optionally using query tracking statistics, to improve the
performance of ASO cubes. This is an important step in optimizing ASO cubes.

Before running this command:

• Use the enableQueryTracking command to capture data retrieval statistics to optimize
ASO aggregation.

• Allow sufficient time for the business process to capture user data retrieval patterns
(queries) that can be used to create aggregate views.

Chapter 2
EPM Automate Commands

2-55

Applies to

Planning, Planning Modules, FreeForm, Enterprise Profitability and Cost Management,
Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate executeAggregationProcess ASO_CUBE_NAME [useQueryData=true|
false] [includeAlternateRollups=disable|enable] [growthSizeRatio=VALUE],
where:

• useQueryData to use recorded query data, collected using query tracking, to select
the most appropriate set of aggregate views. Default is false.

• includeAlternateRollups to include secondary hierarchies (with default level
usage) in the view selection process. Default is disable.

• growthSizeRatio, optionally, is the ratio for maximum cube growth to aggregate
the views the server selects. The cube growth will be stopped when the maximum
growth reaches the ratio that you specify. Default setting allows the cube to grow
without any growth ratio limit.

Note:

To create default aggregate views, run this command without specifying
optional parameters.

Examples

• Create aggregate view based on query data captured using the
enableQueryTracking command:
epmautomate executeAggregationProcess VISION_ASO useQueryData=true
includeAlternateRollups=enable

• Create default aggregate view:
epmautomate executeAggregationProcess Vis1ASO

executeBurstDefinition
Executes a bursting definition that specifies the artifacts, POVs, and other settings
required to run reports or books for more than one member of a single dimension for
one data source.

Applies to

Narrative Reporting

Required Roles

Service Administrator, Power User, User, Viewer

Chapter 2
EPM Automate Commands

2-56

Users with Power User, User, and Viewer must be assigned additional security through ACL

Usage

epmAutomate executeBurstDefinition ARTIFACT_NAME where ARTIFACT_NAME is the bursting
definition path and name.

Example

epmAutomate executeBurstDefinition "library/Reports/Example BurstDef1"

executeReportBurstingDefinition
Using a bursting definition, executes bursting for a single report or book for more than one
member of a single dimension, and publishes a PDF or static (not refreshable in Oracle
Smart View for Office) Excel output for each member.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Sales Planning, and Strategic Workforce
Planning.

Required Roles

Service Administrator

Usage

epmAutomate executeReportBurstingDefinition BURST_DEFINITION_NAME
[jobName=JOB_NAME] where:

• BURST_DEFINITION_NAME is the path and name of a bursting definition.

• JOB_NAME, optionally, is the name of the job that should be used for executing the bursting
definition. Default is Execute Bursting Definition.

Example

epmAutomate executeReportBurstingDefinition /Library/MonthlySalesBurstDef

exportAccessControl
Exports user details report, which contains information on the users who have predefined
roles in the environment and lists attributes of each user (such as name and email) as well as
information on their access (such as assignment to Groups, Teams, and Organizations), to a
CSV or XLS file.

A sample report:

Chapter 2
EPM Automate Commands

2-57

You can download this report using the downloadFile command.

Applies to

Account Reconciliation

Required Roles

Service Administrator

Usage

epmAutomate exportAccessControl REPORT_NAME [reportFormat=XLS|CSV] where:

• REPORT_NAME is the name of the export file that will contain the report.

• reportFormat, optionally, is the file format. Valid values are XLS and CSV
(default).

Example

epmAutomate exportAccessControl aclreport.xls reportFormat=XLS

exportAppAudit
Exports data audit records into a ZIP file, which you can download and archive on a
local computer. Audit information for up to 365 days is available in the environment.

The first character in the output CSV file is the Byte Order Mark (BOM) character
\ufeff followed by an encrypted application identifier enclosed in double quotes. CSV
file header follows the application identifier.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Strategic Workforce
Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate exportAppAudit EXPORT_FILE_NAME [userNames=USER_NAMES]
[nDays=Number_of_Days] [excludeApplicationId=true|false], where:

• EXPORT_FILE_NAME is the name of the ZIP file that will store the exported audit
data. You use the downloadFile command to download files from an environment.

• userNames, optionally, is a comma separated list of user login names. If specified,
only the audit data created by these users will be exported. Do not specify this
value if you want to export the audit data for all users.

• nDays, optionally, identifies the number of days for which audit records are to be
exported. Default is seven days. Possible values are: all to export available audit
data for the last 365 days, 1, 2, 7, 30, 60, and 180.

Chapter 2
EPM Automate Commands

2-58

• excludeApplicationId, optionally identifies whether the application identifier is to be
written to the export file. Default is false.

Note:

Data from exported files that do not contain the application identifier cannot be
imported into Oracle Enterprise Performance Management Cloud
environments.

Examples

• Export audit data with the application identifier:
epmautomate exportAppAudit auditData userNames=johnDoe,jane.doe@example.com
ndays=30

• Export audit data without the application identifier:
epmautomate exportAppAudit auditData userNames=johnDoe,jane.doe@example.com
ndays=30 excludeApplicationId=true

exportAppSecurity
Exports the artifact-level access assignments (ACLs) to a CSV file, which you can download
for local storage.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Strategic Workforce Planning, and Sales
Planning.

Required Roles

Service Administrator

Usage

epmautomate exportAppSecurity EXPORT_FILE_NAME.CSV where EXPORT_FILE_NAME is the
name of the file that will store the exported security data. This file will be created in the
outbox, from where you can download it to your computer.

Example

epmautomate exportAppSecurity app_security.CSV

exportARApplicationProperties
Exports Account Reconciliation application settings (related to Redwood Experience, theme,
email notification, and business process name), background image, and logo image to a
JSON file so that you can import them into the same or another environment.

This command is useful when you import an application from prod to test environments. If
your application settings are different in prod and test environments, you can export them
from the test environment before importing the application from the prod environment, and
then import the settings in to the test environment to maintain the original settings.

Chapter 2
EPM Automate Commands

2-59

Applies to

Account Reconciliation

Required Roles

Service Administrator

Usage

epmautomate exportARApplicationProperties FILE_NAME
[Properties=PROPERTIES_TO_EXPORT]
• FILE_NAME is the name for the JSON file that will store the exported property

values.
You can download the export file using the downloadFile command. Use the
uploadFile command to upload it to the target environment and then run the
importARApplicationProperties command to restore these settings in the target
environment.

• Properties, optionally, is a comma separated list of properties to export. You can
export some or all of the following properties. If this property is omitted, all these
properties are exported:

– Theme: exports the display theme used in the environment.

– EmailNotification: exports the email notification settings defined in the
environment.

– DisplayBusinessProcessName: exports whether to display the business
process name on the page in the environment.

– RedwoodExperience: exports the Redwood Experience setting of the
environment.

– BackgroundImage: exports the background image used in the environment

– LogoImage: exports the log image used in the environment.

Example

Export only email notification and Redwood Experience settings, and logo image from
an environment:
epmautomate exportARApplicationProperties myProp.JSON
Properties=EmailNotification,RedwoodExperience,LogoImage

exportBackgroundImage
Exports the background image used in an Account Reconciliation environment to a
JPG file so that you can import it into another environment.

Applies to

Account Reconciliation

Required Roles

Service Administrator

Chapter 2
EPM Automate Commands

2-60

Usage

epmautomate exportBackgroundImage IMAGE_NAME.jpg, where IMAGE_NAME is the name for
the background image file.
You can download the image file using the downloadFile command. Use the uploadFile
command to upload it to the target environment and then run the importBackgroundImage
command to import it.

Example

epmautomate exportBackgroundImage corpImage.jpg

exportCellLevelSecurity
Exports cell-level security settings from the business process into a ZIP file, which you can
download to a local computer using the downloadFile command.

Applies to

Planning, Planning Modules, FreeForm, Tax Reporting, Enterprise Profitability and Cost
Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate exportCellLevelSecurity FILE_NAME.ZIP [names=SECURITY_RECORD_NAMES]
where:

• FILE_NAME is the name for the ZIP file that will be created to hold the Excel file containing
cell-level security information.

• names, optionally, identifies a comma separated list of cell-level security definitions in the
application. If this option is not provided, all cell-level security definitions in the application
are exported.

Examples

• Export specific cell-level security definitions
epmautomate exportCellLevelSecurity ExportCLSDRecordsFile.zip
names=CLSDAccountPeriod,CLSDEntityPeriod,CLSDProductPeriod

• Export all cell-level security definitions
epmautomate exportCellLevelSecurity ExportCLSDRecordsFile.zip

exportConsolidationJournals
Exports Consolidation Journals using a job defined in Financial Consolidation and Close.

Applies to

Financial Consolidation and Close

Chapter 2
EPM Automate Commands

2-61

Required Roles

Service Administrator

Usage

epmautomate exportConsolidationJournals jobName [fileName=FILE_NAME] where

• jobName is the name of a Journal Export job created in Financial Consolidation and
Close.

• fileName, optionally, is the name of a .JLF file into which the journal entries are to
be exported. Use the downloadFile command to download this file to a local
computer.

Example

epmautomate exportConsolidationJournals "JEXPORT1"
fileName=Export_Test.jlf

exportData
Exports application data into a ZIP file using the export data settings, including file
name, specified in a job of type export data.

The exported data file is stored in the default download location from where you can
download it to your computer. Use the Inbox/Outbox Explorer to view details of the
exported file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Strategic Workforce
Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate exportData JOB_NAME [FILE_NAME] where JOB_NAME is the name of a
job defined in the application and FILE_NAME is the name of the ZIP file (optional) into
which data is to be exported.

Example

epmautomate exportData dailydataexport dailyData.zip

exportDataManagement
Exports Data Management records from an environment to a ZIP file.

This command exports a complete set of setup and staging table data including the ID
columns to a ZIP file so that the data can be imported without losing referential
integrity.

Chapter 2
EPM Automate Commands

2-62

The exported file, for example, dataFile.zip is stored in the outbox. You can download the
exported file using the downloadFile command, for example, epmAutomate downloadFile
outbox/dataFile.zip. You can use this ZIP file to import the data using the
importDataManagement command.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User

Usage

epmautomate exportDataManagement FILE_NAME.zip where FILE_NAME is the name of the
ZIP file into which data is to be exported.

Example

epmautomate exportDataManagement dataFile.zip

exportDimension
Exports a dimension from an Oracle Enterprise Data Management Cloud application to a file
in the staging area or, optionally, to a target environment defined in a connection.

Applies to

Oracle Enterprise Data Management Cloud

Required Roles

Service Administrator, User (with Data Manager permission)

Usage

epmautomate exportDimension APPLICATION DIMENSION FILE_NAME [connection=NAME]
where:

• APPLICATION is the name of an Oracle Enterprise Data Management Cloud application

• DIMENSION is the name of an application dimension

• FILE_NAME is the name of the file (CSV for export to a file or ZIP for export to Oracle
Financials Cloud) for storing the exported data. If the connection parameter value is not
set, this file is created in the staging area. You can download it to a local computer using
the downloadFile command or copy it to another Oracle Enterprise Performance
Management Cloud environment using the copyFileFromInstance command.

• connection=NAME, optionally, identifies a connection name (instance location) defined in
Oracle Enterprise Data Management Cloud. If specified, the export file is uploaded to the
target environment (inbox for EPM Cloud and default upload location for Oracle
Financials Cloud).

Chapter 2
EPM Automate Commands

2-63

Note:

The credentials specified in the connection definition must have the
access rights to write to the target environment.

Examples

• Export to Oracle Enterprise Data Management Cloud staging area: epmautomate
exportDimension USOperations Entity EntityData.CSV

• Export and upload to Oracle Financials Cloud: epmautomate exportDimension
USOperations Entity EntityData.zip Connection=ora_fusion_gl

• Export and upload to target EPM Cloud inbox: epmautomate exportDimension
USOperations Entity EntityData.CSV Connection=EPM_cloud_pln

exportDimensionMapping
Exports mapping rules of a specific Oracle Enterprise Data Management Cloud
dimension for a location to create a mapping rule file and, optionally, uploads the
exported file to the Data Management inbox of another Oracle Enterprise Performance
Management Cloud environment.

Applies to

Oracle Enterprise Data Management Cloud

Required Roles

Service Administrator, User (with Data Manager permission)

Usage

epmautomate exportDimensionMapping APPLICATION DIMENSION LOCATION
FILE_NAME [connection=NAME] where:

• APPLICATION is the name of an Oracle Enterprise Data Management Cloud
application

• DIMENSION is the name of an application dimension

• LOCATION is the specific location for which mapping rules should be exported.

• FILE_NAME is the name of the CSV file for storing the exported mappings. This file
is created in the staging area if connection parameter is not set; you can
download it to a local computer using the downloadFile command or use the
copyFileFromInstance command to copy the file to another EPM Cloud environment.

• connection=NAME, optionally, identifies a connection name (instance location)
defined in Oracle Enterprise Data Management Cloud. If specified, EPM Automate
uploads the exported file to the default upload location of the target environment.

Chapter 2
EPM Automate Commands

2-64

Note:

The credentials specified in the connection must have the access rights to write
to the target environment.

Examples

• Export to the staging area: epmautomate exportDimensionMapping USOperations
Entity Loc1 Loc1Mappings.CSV

• Export and upload to the inbox of the target EPM Cloud environment: epmautomate
exportDimensionMapping USOperations Entity Loc1 Loc1Mappings.CSV
Connection=EPM_cloud_pln

exportEJJournals
Exports Enterprise Journals that are ready to be posted from Financial Consolidation and
Close to a ZIP file. This file can then be used to import journal data into an ERP system.

After exporting journals to an export file, this command updates the post status of each
exported journal from Ready To Post to Post In Progress.

Applies to

Financial Consolidation and Close

Required Roles

Service Administrator

Usage

epmautomate exportEJJournals FILE_NAME.zip [year=YEAR [period=PERIOD]] where:

• FILE_NAME identifies a ZIP file into which journal export CSV files are to be archived. The
command generates one CSV file (name format is
YEAR_PERIOD_JOURNALID_YYYYDDMMHHMMSS.csv) for each journal and then zips them to
create this ZIP file.

• YEAR, optionally, is the data collection year for which the journal data is to be exported. If
not specified, data from all years is exported.

• PERIOD, optionally, is the data collection period from which journal data is to be exported.
May be set only if a data collection year is specified. If a value is not specified, data from
all periods is exported.

Note:

If YEAR and PERIOD are not specified, this command exports all journals that are
in Ready To Post posting status across all years and periods.

Examples

• Export Journal data for all years and periods:

Chapter 2
EPM Automate Commands

2-65

epmautomate exportEJJournals Journal_Export.zip
• Export Journal data for a specific year:

epmautomate exportEJJournals Journal_Export.zip year=2020
• Export Journal data for a specific year and period combination:

epmautomate exportEJJournals Journal_Export.zip year=2021 period=March

exportEssbaseData
Exports data from an application cube (Oracle Essbase cube) to an archive. You can
export just the level 0 data (ASO and BSO cubes) or all data in the cube (BSO cubes).

Use the exported archive to analyze Essbase data for patterns, for example to help
improve performance.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Strategic Workforce
Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate exportEssbaseData CUBE_NAME FILE_NAME [level=0|All] where:

• CUBE_NAME identifies the cube from which data is to be exported.

• FILE_NAME is the name of a ZIP file that will contain the exported data. You can
download this archive by running the downloadFile command.

• level, optionally, identifies the level of data to be exported. Default is 0.

– ASO cubes: Specify 0 to export level 0 data. You cannot use the All option.

– BSO cubes: Specify 0 to export level 0 data or All to export all data.

Examples

• Export all data from a BSO cube:
epmautomate exportEssbaseData Report1 Report1_all_data.zip level=All

• Export level 0 data from a cube:
epmautomate exportEssbaseData Plan1 Plan1_lvl0_data.zip

exportJobConsole
Exports the job console records to a CSV file and creates an export ZIP file.

The first character in the output CSV file is the Byte Order Mark (BOM) character
\ufeff followed by an encrypted application identifier enclosed in double quotes. CSV
file header follows the application identifier.

Chapter 2
EPM Automate Commands

2-66

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Strategic Workforce Planning, and Sales
Planning.

Required Roles

Service Administrator

Usage

epmautomate exportJobConsole FILE_NAME.zip [nDays=NUMBER_OF_DAYS]
[jobtypes=JOB_TYPE] [jobStatusCodes=STATUS_CODE] [exportErrorDetails=true|false]
[excludeApplicationId=true|false], where:

• FILE_NAME is the name of the ZIP file that will store the exported job console records. You
use the downloadFile command to download this file from an environment.

• nDays, optionally, identifies the number of days for which job console records are to be
exported. Possible values are: all (in all lower case)to export all available job console
records, 1, 2, 7, 30, and 60. Default is 7.

• jobTypes, optionally, is a comma separated list of job codes for which console records
should be exported. Default is Rules. Valid values are:

– all (in all lower case)

– RULES
– RULESET
– CLEAR_CELL_DETAILS
– COPY_DATA
– INVALID_INTERSECTION_RPT
– COPY_VERSIONS
– CONTENT_UPGRADE
– PLAN_TYPE_MAP
– IMPORT_DATA
– EXPORT_DATA
– EXPORT_METADATA
– IMPORT_METADATA
– CUBE_REFRESH
– CLEAR_CUBE
– ADMIN_MODE
– COMPACT_CUBE
– RESTRUCTURE_CUBE
– MERGE_DATA_SLICES
– OPTIMIZE_AGGREGATION

Chapter 2
EPM Automate Commands

2-67

– SECURITY_IMPORT
– SECURITY_EXPORT
– AUDIT_EXPORT
– JOBCONSOLE_EXPORT
– SORT_MEMBERS
– SMART_PUSH
– IMPORT_EXCHANGE_RATES

• jobStatusCodes, optionally, is a comma-separated list of job status codes for
which records are to be exported. Default is 2 (Completed Successfully). Possible
values are:

– all (in all lower case) for all jobs in any status

– 1 - Processing

– 2 - Completed successfully

– 3 - Failed with errors

– 4 - Completed with unknown status

– 5 - Completed with threshold violation status

– 6 - Pending cancellation

– 7 - Cancelled

– 8 - Completed with errors

– 9 - Completed with warnings

• exportErrorDetails, optionally, exports the details of jobs that failed or reported
error to log files if this value is set to true. This error log file is included in the
output ZIP file. Default is false. If this value is set to true, status details of jobs in
the following status are exported.

– Failed with errors

– Completed with unknown status

– Completed with threshold violation status

– Completed with errors

– Completed with warnings

• excludeApplicationId, optionally identifies whether the application identifier is to
be written to the export file. Default is false.

Note:

Data from exported files that do not contain the application identifier
cannot be imported into Oracle Enterprise Performance Management
Cloud environments.

Chapter 2
EPM Automate Commands

2-68

Examples

• Export all available job console records:
epmautomate exportJobConsole jobs.zip nDays=all jobTypes=all
jobStatusCodes=all

• Export all available Rules job console records:
epmautomate exportJobConsole jobs.zip nDays=all jobStatusCodes=all

• Export all available Rules job console records without application identifier:
epmautomate exportJobConsole jobs.zip nDays=all jobStatusCodes=all
excludeApplicationId=true

• Export only the records for Rules job that finished successfully in the last 14 days:
epmautomate exportJobConsole jobs.zip nDays=14

• Export console records and errors of import metadata and clear cube jobs that failed with
errors or completed with errors run in the last seven days:
epmautomate exportJobConsole jobs.zip jobtypes=IMPORT_METADATA,CLEAR_CUBE
jobStatusCodes=3,8 exportErrorDetails=true

exportLibraryArtifact
Exports Narrative Reporting library artifacts. Optionally, for report artifacts only, this command
can convert the export to an LCM file that you can import into Financial Consolidation and
Close, Planning, Planning Modules, or Tax Reporting.

On completing the export, use the downloadFile command to download the export and error
files to a local computer.

Applies to

Narrative Reporting

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer must be granted additional security through ACL

Usage

epmautomate exportLibraryArtifact ARTIFACT_PATH EXPORT_FILE
[exportFormat=Native|File|LCM] [applicationName=APP_NAME]
[errorFile=ERROR_FILE.txt] where:

• ARTIFACT_PATH is the location of the artifact in the Narrative Reporting library.

• EXPORT_FILE is a unique name for the file to which artifacts are to be exported.

• exportFormat, optionally, is one of the following:

– Native exports artifacts as a zip file that can be used with other Narrative Reporting
environments. This is the default value.

– File exports files in the original binary format (PDF, DOCX, Zip, JPEG, and so on) in
which they are available within Narrative Reporting. This parameter can be used to
export binary files only; it should not be used with Reports artifacts.

Chapter 2
EPM Automate Commands

2-69

– LCM converts reports to the format used by Migration and exports them in a ZIP
file that can be imported into Financial Consolidation and Close, Planning,
Planning Modules, or Tax Reporting environments.

• applicationName, optionally, is the name of the target application into which you
plan to import the reports. This value is required only if you are using LCM as the
value of the exportFormat parameter.

• errorFile, optionally, is a unique name for the text file that will store export-
related errors.

Examples

• Export a report in its native format so that it can be imported into another Narrative
Reporting environment:
epmautomate exportLibraryArtifact "Library/Samples/Sample Report 1"
exp_SampleReport1.doc errorFile=export_errors.txt

• Export a spreadsheet in its original binary format:
epmautomate exportLibraryArtifact "Library/Spreadsheets/Sheet1.xlsx"
exp_Sheet1.xlsx exportFormat=File errorFile=export_errors.txt

• Export reports and format them for import into Financial Consolidation and Close,
Planning, Planning Modules, or Tax Reporting:
epmautomate exportLibraryArtifact "Library/Samples/Sample Report 1"
exp_SampleReport1.zip exportFormat=LCM applicationName=Vision
errorFile=report_exp_errors.txt

exportLibraryDocument
Exports any document available in the Reports library to a file.

You can download the exported file to a local computer using the downloadFile
command.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Sales Planning, and
Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate exportLibraryDocument ARTIFACT_PATH [jobName=JOB_NAME]
[exportFile=FILE_NAME] [exportFormat=file|zip] [errorFile=FILE_NAME.log]
[overWrite=true|false] where:

• ARTIFACT_PATH is the location of the document in the Reports library.

• jobName, optionally, is the name of the library artifact export job that is to be used
to export the document. The default job name is Copy Artifact From Library.

• EXPORT_FILE is a unique name for the file to which document is to be exported. If
you do not specify this value, the export file will be created using the name of the
document in the library.

Chapter 2
EPM Automate Commands

2-70

• exportFormat, optionally, is one of the following:

– File exports the document in the original binary format (PDF, DOCX, Zip, JPEG, and
so on) in which it is available within the library. This is the default value.

Note:

In the 24.02 update, this option does not work.

– zip exports a ZIP file containing the document in its original binary format. This is the
only option that works in this update.

• errorFile, optionally, is a unique name for the file that will store export-related errors. No
error file is created if you do not specify this value.

• overwrite, optionally, controls whether an identically named file currently in the default
download location should be overwritten. The default is false, which means that the
command will fail if a file with an identical name exists in the outbox.

Example

epmautomate exportLibraryDocument Library/folder1/WeeklySales.html jobName="Copy
Weekly Sales" exportFile=WeeklySales.zip errorFile=WeeklySalesError.log
overWrite=true exportFormat=zip

exportLogoImage
Exports the corporate logo used in an Account Reconciliation business process to a JPG file
so that you can import it into another environment.

Applies to

Account Reconciliation

Required Roles

Service Administrator

Usage

epmautomate exportLogoImage IMAGE_NAME.jpg, where IMAGE_NAME is the name for the logo
image file.
You can download the exported logo file using the downloadFile command. Use the
uploadFile command to upload it to the target environment, and then run the
importLogoImage command.

Example

epmautomate exportLogoImage corpLogo.jpg

exportMapping
Exports mapping rules of a specific dimension or location to create a mapping rule file. You
must specify the file name and a location within the inbox (for example, inbox/
exportedAccountMap.txt or inbox/france sales/exportedAccountMap.txt) to export
mappings.

Chapter 2
EPM Automate Commands

2-71

Use the downloadFile command to download the exported mapping file to a local
computer.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User

Usage

epmautomate exportMapping DIMENSION_NAME|ALL FILE_NAME LOCATION where:

• DIMENSION_NAME|ALL is the source dimension from which mappings are to be
exported. Specify the name of the dimension from which mappings are to be
exported or ALL to export mappings from all dimensions of a location.

• FILE_NAME is a unique name for the mapping file and a location within the outbox.

• LOCATION is the Data Management location for which mapping rules should be
exported.

Examples

• epmautomate exportMapping Account inbox/exportedAccountMap.txt "France
Sales"

• epmautomate exportMapping ALL "inbox/france sales/
exportedAccountMap.txt" "France Sales"

exportMetadata
Exports metadata into a file using the settings specified in a job of type export
metadata. The file containing the exported data is stored in the default download
location from where you can download it to a local computer.

Optionally, you can specify a file name for the exported data, which overrides the
default file name (job name that is used to export metadata). Metadata is exported as
a ZIP file only.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Strategic Workforce
Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate exportMetadata JOB_NAME [FILE_NAME] where JOB_NAME is the name of
a job defined in the application and FILE_NAME is the name of the ZIP file into which
metadata is to be exported.

Chapter 2
EPM Automate Commands

2-72

Use the downloadFile command to download this file to a local server.

Example

epmautomate exportMetadata dailyAccountexport Accountexport.ZIP

exportOwnershipData
Exports ownership data from an entity to a comma-delimited CSV file.

Default ownership data that was populated by Financial Consolidation and Close is not
included in the export file. Only the data that users entered to override the default settings is
included in the export file.

Applies to

Financial Consolidation and Close and Tax Reporting.

Required Roles

Service Administrator, Power User, User

Usage

epmautomate exportOwnershipData Entity Scenario Year Period FILE_NAME where:

• Entity is the name of the entity from which data is to be exported.

• Scenario is the scenario from which data is to be exported.

• Year is the year from which data is to be exported.

• Period is the period of the year from which data is to be exported.

• FILE_NAME is the name of a CSV file to which the data is to be exported. Use the
downloadFile command to download this file to a local server.

Example

epmautomate exportOwnershipData FCCS_TotalActual FY18 Dec exportfile.csv

exportQueryResults
Runs a query defined in an application and exports results into a text file.

The query result file is stored in profitoutbox; you can download it using the downloadFile
command or by using Profitability and Cost Management File Explorer.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate exportQueryResults APPLICATION_NAME fileName=FILE_NAME
[fileOutputOptions=ZIP_ONLY|ZIP_AND_TEXT|TEXT_ONLY] [queryName=QUERY_NAME]

Chapter 2
EPM Automate Commands

2-73

[exportOnlyLevel0Flg=true|false] [roundingPrecision=2] [dataFormat=NATIVE|
COLUMNAR] [memberFilters=JSON_FILTER] [includeHeader=true|false]
[delimiter="DELIMITER"] [keepDuplicateMemberFormat=true|false] where:

• APPLICATION_NAME is the name of the Profitability and Cost Management
application for which you want to run the query.

• fileName is the name of the file that will store the query results. This parameter
value is required if queryName parameter value is not specified. It is optional if
queryName parameter value is specified, in which case, the query name is used as
the name of the query results file.
The data format you specify determines the format of the output file. If you use
dataFormat=NATIVE (default) the export process creates a text file. If you use
dataFormat=COLUMNAR, the export process creates multiple sequentially numbered
text files and compresses them into a Zip file.

• fileOutputOptions, optionally, identifies the output format of the query results file.
Default is ZIP_ONLY, which creates fileName.ZIP or queryName.ZIP depending on
whether a value for the fileName parameter is specified. Other options are
TEXT_ONLY to create the output file as a text file and ZIP_AND_TEXT to generate
both a text file and a zip file.

• queryName is an optional parameter that identifies a query that is defined in the
application. Query names that contain the space character must be enclosed in
double quotation marks.
Do not specify a query name if you want to export all Oracle Essbase data
belonging to the application.

The following conditions may cause this command to create an empty data file:

– A badly formed query that retrieves no data

– A query that generates too much data. In this scenario, consider narrowing the
scope of the query so that it retrieves less data or break the query into smaller
queries
See Managing Oracle Profitability and Cost Management Cloud Queries in
Administering Profitability and Cost Management.

• exportOnlyLevel0Flg, optionally, specifies whether the query should retrieve only
level0 data. Specify this parameter value in all lower case.
This parameter is ignored if you are exporting all application data by omitting the
query name.

• roundingPrecision, optionally, specifies the number of decimal places (rounding
precision) to use when exporting query results. Applicable only when queryName is
specified. Default is 2.

• dataFormat, optionally, identifies the output format. Valid values are:

– NATIVE, which maintains the query result as Essbase native format data. This
is the default value.

– COLUMNAR, which converts Essbase native format data and orders it in columns
for easy interpretation and import into other applications.
This option exports all Essbase data and ignores the queryName parameter
value. You can filter the data by setting the memberFilters parameter value.

Chapter 2
EPM Automate Commands

2-74

Note:

The command considers the following optional parameters only if dataFormat is
specified as COLUMNAR.

• memberFilters, optionally, accepts a JSON formatted string to filter by dimension and
level0 members. Example, "{\"Dim1\":[\"Mem1\"],\"Dim2\":
[\"Mem21\",\"Mem22\"]}"

• includeHeader, optionally, adds dimension names as column headers. Set this value to
false to exclude column header. Default is true.

• delimiter, optionally, identifies the delimiter that is to be used to separate dimension
members in the query result file. Delimiter must be enclosed in double quotation marks.
Default is space (" ").

• keepDuplicateMemberFormat, optionally, specifies whether to print the member format in
Essbase duplicate member format, for example, [Account]@[Accoun1]. Set this value to
false to print only member name. Default is true.

Examples

• Export all application data:
epmautomate exportQueryResults BksML12 fileName="BksML12_MyQuery1.txt"
fileOutputOptions=TEXT_ONLY

• Export results of a specific query:
epmautomate exportQueryResults BksML12 queryName="My Product Query"
roundingPrecision=3

• Export Level0 data in NATIVE data format:
epmautomate exportQueryResults BksML30 fileName="BksML30_ExportLevel0-Data"
fileOutputOptions=ZIP_AND_TEXT exportOnlyLevel0Flg=true

• Export Level0 data in COLUMNAR data format with a single dimension and single
member filter:
epmautomate exportQueryResults BksML30 fileName="BksML30_Level0-Data"
dataFormat="COLUMNAR" memberFilters="{\"Period\":[\"December\"]}"
includeHeader="true" delimiter="," roundingPrecision="3"

• Export Level0 data in COLUMNAR data format with a single dimension and multiple
member filters:
epmautomate exportQueryResults BksML30 fileName="BksML30_Level0-Data"
dataFormat="COLUMNAR" memberFilters="{\"Period\":
[\"November\",\"December\"]}" includeHeader="true" delimiter=","
roundingPrecision="3"

• Export Level0 data in COLUMNAR data format with a multiple dimensions and multiple
member filters:
epmautomate exportQueryResults BksML30 fileName="BksML30_Level0-Data"
dataFormat="COLUMNAR" memberFilters="{\"Year\":[\"2016\"],\"Period\":
[\"November\",\"December\"]}" includeHeader="true" delimiter=","
roundingPrecision="3"

exportSnapshot
Repeats a previously performed export operation to create a snapshot of Migration content.

Chapter 2
EPM Automate Commands

2-75

Using Migration, select and export desired artifacts to a snapshot; for example,
January16FullApp. Use the snapshot name with this command to subsequently repeat
the export operation, which will export only the artifacts that were selected during the
original export operation. See Exporting Artifacts and Application in Administering
Migration for Oracle Enterprise Performance Management Cloud.

• The following are not part of Planning, Planning Modules, and FreeForm
application snapshots:

– Audit data

– Job Console data

Use the cloneEnvironment command or the Clone Environment feature if you want
to copy audit and Job Console data to the target environment.

• Snapshots do not contain the Data Management staging table data. To import this
data, use the exportDataManagement and importDataManagement commands or
the Data Management System Maintenances Scripts interface. You may use the
cloneEnvironment command or the Clone Environment feature to create an
identical copy of the environment, including the Data Management staging table
data.

You can download the exported snapshot from the default location using the
downloadFile command.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application
role

Usage

epmautomate exportSnapshot SNAPSHOT_NAME where SNAPSHOT_NAME is the name of
an existing snapshot in Migration. This snapshot is replaced by the new snapshot.

Example

epmautomate exportSnapshot January16FullApp

exportTemplate
Exports an application as a template into a .ZIP file. The exported file is stored in
profitoutbox.

You can download the exported file to a local computer using the downloadFile
command.

Applies to

Profitability and Cost Management

Chapter 2
EPM Automate Commands

2-76

Required Roles

Service Administrator, Power User

Usage

epmautomate exportTemplate APPLICATION_NAME File_Name where:

• APPLICATION_NAME is the name of the Profitability and Cost Management application that
you want to export as template

• File_Name is the name for the template file

Example

epmautomate exportTemplate BksML12 template1

exportTaskManagerAccessControl
Exports the user details report for Task Manager, Supplemental Data, and Enterprise Journal
user assignments in Financial Consolidation and Close and Tax Reporting. The report
contains information on the users who have predefined roles in the environment and lists
attributes of each user (such as name and email) as well as their status, teams, predefined
roles, workflow roles, organizations, groups, and last login timestamps, to an Excel or CSV
file.

A sample Task Manager Access Control report:

Applies to

Financial Consolidation and Close and Tax Reporting

Required Roles

Service Administrator

Usage

epmAutomate exportTaskManagerAccessControl REPORT_NAME where REPORT_NAME is the
name of the export file (including a valid (CSV or XLS) extension) that will contain the report.

This report can be generated in CSV or XSL format. You can download it using the
downloadFile command.

Examples

• epmAutomate exportTaskManagerAccessControl aclreport.csv
• epmAutomate exportTaskManagerAccessControl aclreport.xls

Chapter 2
EPM Automate Commands

2-77

exportValidIntersections
Exports valid intersection groups from the business process into a ZIP file, which you
can download to a local computer using the downloadFile command. Valid intersections
are cell interactions that are filtered based on rules, called valid intersection rules, that
you define. These rules filter certain cell intersections to users when they enter data or
select runtime prompts.

Applies To

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Sales Planning, and
Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate exportValidIntersections FILE_NAME.zip
[names=INTERSECTION_NAMES] where:

• FILE_NAME is a name for the export ZIP file. All valid intersection identified in the
command are exported to a Microsoft Excel file and then zipped to create this file.

• names, optionally, identifies a comma separated list of valid intersections that you
want to export. If this parameter value is not specified, EPM Automate exports all
valid intersections in the application.

Examples

• Export specific valid intersections
epmautomate exportValidIntersections VI_export_File.zip
names=VIAccountPeriod,VIEntityPeriod,VIProductPeriod

• Export all valid intersections
epmautomate exportValidIntersections VI_export_File.zip

extractDimension
Extracts an Oracle Enterprise Data Management Cloud dimension to a file or to a
global connection.

Applies to

Oracle Enterprise Data Management Cloud

Required Roles

Service Administrator, User (with Data Manager permission)

Usage

epmautomate extractDimension APPLICATION DIMENSION EXTRACT_PROFILE
FILE_NAME [connection=NAME] where:

Chapter 2
EPM Automate Commands

2-78

• APPLICATION is the name of an Oracle Enterprise Data Management Cloud application.

• DIMENSION is the name of the dimension to be extracted.

• EXTRACT_PROFILE is the name of an extract profile defined in the application. This profile
is used to extract the dimension.

• FILE_NAME is the name of a file (CSV for export to a file or ZIP for export to Oracle
Financials Cloud) for storing the extracted data. If the connection parameter value is not
set, this file is created in the staging area. You can download it to a local computer using
the downloadFile command or copy it to another Oracle Enterprise Data Management
Cloud environment using the copyFileFromInstance command.

• connection=NAME optionally, identifies a global connection name (instance location)
defined in Oracle Enterprise Data Management Cloud as the location of the file. If
specified, the extract file is uploaded to the target environment (inbox for Oracle
Enterprise Performance Management Cloud and the specified document account for
Oracle ERP).

Note:

The credentials specified in the global connection must have access rights to
write to the target environment.

Examples

• Extract to Oracle Enterprise Data Management Cloud staging area: epmautomate
extractDimension USOperations Entity EntityExtProfile EntityData.CSV

• Extract and upload to Oracle ERP: epmautomate extractDimension USOperations
Entity EntityExtProfile EntityData.zip Connection=ora_fusion_gl

• Extract and upload to target EPM Cloud inbox: epmautomate extractDimension
USOperations Entity EntityExtProfile EntityData.CSV Connection=EPM_cloud_pln

feedback
Sends feedback to Oracle and to the Service Administrators of the environment and
automatically uploads all the EPM Automate log files created in the last 24 hours from the
current directory.

You may, optionally, upload additional files (for example Fiddler trace files) that you may want
Oracle Support to use to diagnose why the current issue occurs.

This command, which mimics the Provide Feedback feature of the service, is especially
useful for providing feedback to Oracle in cases where the user interface is unresponsive or
you encounter an issue while running EPM Automate.

For information on the Provide Feedback feature, see Helping Oracle Collect Diagnostic
Information Using the Provide Feedback Utility in Getting Started with Oracle Enterprise
Performance Management Cloud for Administrators.

This command returns a message, similar to the following, informing that feedback does not
create a service request. If you need help from Oracle to resolve an issue, you must file a
service request. The command displays a UDR reference number, which you should include
in the service request that you file.

Chapter 2
EPM Automate Commands

2-79

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate feedback "Comment" [Screenshot="FILE_PATH"] [File="FILE_PATH"]
where:

• Comment is text that describes the issue about which this feedback is being
submitted. Comments must be enclosed in quotation marks.

• Screenshot, optionally, identifies the name of a graphic file that illustrates the
issue for which this feedback is being submitted. You can submit multiple
screenshots by repeating this parameter and value as needed.

• File, optionally, identifies the name of a file that you want Oracle support to use to
resolve the current issue. Use this parameter to submit Fiddler traces or other files
to Oracle. You can submit multiple files by repeating this parameter and value as
needed.

Examples

• Windows: epmautomate Feedback "runplantypemap CampaignToReporting
ClearData=True did not clear data from aggregate storage"
Screenshot=C:/feedback/issue.jpg File=exampleScript.ps1 file=trace.har

• Linux: epmautomate Feedback "runplantypemap CampaignToReporting
ClearData=True did not clear data from aggregate storage" Screenshot=/
scratch/screens/issue.jpg File=/home/feedback/trace.har

getApplicationAdminMode
Checks whether the application is in administration mode with access limited only to
Service Administrators.

This command, which returns true if the application is in administration mode and
false otherwise, is useful for checking the status of the application before running
automation scripts. For example, the refreshCube command requires the application to

Chapter 2
EPM Automate Commands

2-80

be in administration mode. You can use this command in the automation script as follows to
check if the application is in administration mode.

adminMode = ‘epmautomate.sh getApplicationAdminMode’
 if ["$adminMode" == "true"]
 epmautomate.sh refreshCube

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Account Reconciliation, Strategic Workforce
Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate getApplicationAdminMode

Example

epmautomate getApplicationAdminMode

getDailyMaintenanceStartTime
Displays, in the console, the Coordinated Universal Time (UTC) or, optionally, the time zone,
at which the daily maintenance of the environment is scheduled to start.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate getDailyMaintenanceStartTime [timezone=true|false] where
timezone=true, optionally, identifies whether to display the daily maintenance start time in the
time zone specified while setting it, for example, America/Los_Angeles. Default is false.

Examples

• Display the maintenance time in the time zone specified while setting it:
epmautomate getDailyMaintenanceStartTime timezone=true

• Display the maintenance time in UTC:
epmautomate getDailyMaintenanceStartTime

Chapter 2
EPM Automate Commands

2-81

getEssbaseQryGovExecTime
Displays the current maximum amount of time, in seconds, that an Oracle Essbase
query can use to retrieve and deliver information before the query is terminated.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate getEssbaseQryGovExecTime
A sample command output:

Example

epmautomate getEssbaseQryGovExecTime

getIdleSessionTimeout
Displays the session timeout (in minutes) of the Oracle Enterprise Performance
Management Cloud environment. After a session is idle for this duration, users are
redirected to the Login page.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate getIdleSessionTimeout

Chapter 2
EPM Automate Commands

2-82

A sample command output:

getIPAllowlist
For OCI (Gen 2) environments, displays the IP addresses and Classless Inter-Domain
Routings (CIDRs) included in the current allowlist.

This command is useful in checking whether a specific IP address or CIDR is currently
permitted to access an OCI (Gen 2) environment.

Note:

This command cannot be used to list IP addresses and CIDRs in Classic
environments. For Classic environments, use the Service Details screen of My
Services (Classic) to work with the allowlist or denylist rules.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmAutomate getIPAllowlist

Note:

To write all existing IP addresses and CIDRs to a file, redirect the output to a text
file, which you can edit (remove a few or all IP addresses and CIDRs), upload to the
environment, and then use the setIPAllowlist command to remove the entries in the
file from the allowlist. Command execution example:

epmAutomate getIPAllowlist > myRemoveList.txt
epmAutomate uploadFile myRemoveList.txt
epmAutomate setIPAllowlist remove myRemoveList.txt

Chapter 2
EPM Automate Commands

2-83

Example

Display the IP addresses and CIDRs included in the current allowlist:

epmAutomate getIPAllowlist

getSubstVar
Retrieves the values of substitution variables and displays them on screen.

The display format is CUBE_NAME.SUBSTVAR=value, for example, Plan2.CurYear=2016.
Application level substitution variable values are displayed in ALL.SUBSTVAR=value
format, for example, ALL.CurYear=2016

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Sales Planning, and
Strategic Workforce Planning.

Required Roles

Service Administrator, Power User (with Rule Launch access)

Usage

epmautomate getSubstVar CUBE_NAME|ALL [name=VARIABLE_NAME] where:

• CUBE_NAME is the cube (for example, Plan1, Plan2) from which you want to retrieve
the substitution variable. Use ALL to retrieve substitution variables at the
application level.

• name=VARIABLE_NAME optionally identifies the substitution variable for which you
want to retrieve value. If you do not specify a variable name, the command
retrieves the value of all substitution variables.

Examples

• Get the value of all substitution variables at the application and cube level:
epmautomate getSubstVar ALL

• Get the value of one specific substitution variable at the application level:
epmautomate getSubstVar ALL name=CurYear

• Get the value of all substitution variables at the cube level: epmautomate
getSubstVar Plan2

• Get the value of a specific substitution variable at the cube level: epmautomate
getSubstVar Plan2 name=CurYear

getVirusScanOnFileUploads
Checks whether your OCI (Gen 2) environment is enabled to scan all files being
uploaded to ensure that they are virus free.

This command checks whether virus scanning is enforced before files are uploaded to
the environment.

Chapter 2
EPM Automate Commands

2-84

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate getVirusScanOnFileUploads
This command prints true if the environment is enabled to scan uploaded files for virus; else
it prints false.

groupAssignmentAuditReport
Creates a report listing users and groups that were added to or removed from Access Control
groups for a specified date range.

This report, which is generated as a CSV file, can be used to support security audit
operations. Each row of the generated CSV file provides the user or group that was added or
removed, the group to which the user or group was added or removed from, the Service
Administrator who performed the action, and the date and time when the action was
completed. This report does not contain audit information on when groups were added to or
deleted from Access Control.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Strategic
Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmAutomate groupAssignmentAuditReport FROM_DATE TO_DATE REPORT_NAME where

• FROM_DATE is the start date of the period, in YYYY-MM-DD format, for which the report is to
be generated.

Chapter 2
EPM Automate Commands

2-85

• TO_DATE is the end date of the period , in YYYY-MM-DD format, for which the report is
to be generated.

• REPORT_NAME is the name of a CSV file for the report. You can download the
generated report using the downloadFile command.

Example

epmAutomate groupAssignmentAuditReport 2022-03-01 2022-05-01
GroupAssignmentReport.CSV

help
Displays help for all EPM Automate commands.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate help

Example

epmautomate help

importAppAudit
Imports data audit records from a ZIP file that you created by exporting audit data from
an environment.

You create the import file using the exportAppAudit command (epmautomate
exportAppAudit auditData ndays=All). Use this command to clone audit records
from one environment to another during migration or cloning for disaster recovery.

Applies to

Planning, Planning Modules, FreeForm, Enterprise Profitability and Cost Management,
Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate importAppAudit FILE_NAME [logFilename=LOG_FILE_NAME] where:

Chapter 2
EPM Automate Commands

2-86

• FILE_NAME is the name of a ZIP file containing data audit records that you want to import
into the application. Before running this command, use the uploadFile command to upload
this file to the environment.

• logFileName, optionally, identifies the error log file in which errors encountered during the
import will be recorded. If this value is not specified, the command generates an error file
which is named using this convention: username_date_timestamp. You can download this
file using the downloadFile command.

Example

epmautomate importAppaudit Audit_data.zip logFileName=auditImportLog

importAppSecurity
Loads access permissions for users or groups of an application from a CSV file available in
the inbox.

Importing access permissions overwrites existing assignments only for imported members,
data forms, data form folders, task lists, Calculation Manager business rules, and business
rule folders. All other existing access permissions remain intact.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Sales Planning, and Strategic Workforce
Planning.

Required Roles

Service Administrator

Usage

epmautomate importAppSecurity ACL_FILE_NAME ERROR_FILE [clearall=true|false]
where:

• ACL_FILE_NAME is the name of a CSV file containing access permissions that you want to
import into the application. Before running this command, use the uploadFile command to
upload this file to the inbox. Contents of a sample input file may be as shown in the
following image:

For a description of the column headers and possible values, see Import Security in
REST API for Oracle Enterprise Performance Management Cloud.

• ERROR_FILE is the name of a CSV file, which EPM Automate will create in the outbox, to
record the errors that are detected during this operation. You can download this file to a
local computer to analyze and correct the reported errors. Contents of a sample error file
may be as shown in the following image. The columns of this file corresponds to the
header columns of the input file:

Chapter 2
EPM Automate Commands

2-87

• clearall, optionally, specifies whether to delete the existing access permissions
before loading new permissions from the file. Default is false.

Example

epmautomate importAppSecurity Acl_file.CSV Acl_import_error.CSV
clearall=true

importARApplicationProperties
Imports application settings (Redwood Experience, theme, email notification, and
business process name), logo, and background images available in an export JSON
file into an Account Reconciliation environment.

Applies to

Account Reconciliation

Required Roles

Service Administrator

Usage

epmautomate importARApplicationProperties FILE_NAME where FILE_NAME is the
name of the JSON file exported from an environment.

This file, exported from another environment using the exportARApplicationProperties
command, must be available in the environment where you are restoring application
settings.

Example

epmautomate importARApplicationProperties myProp.JSON

importBackgroundImage
Imports the background image from an export file into an Account Reconciliation
environment.

Applies to

Account Reconciliation

Required Roles

Service Administrator

Usage

epmautomate importBackgroundImage FILE_NAME.jpg, where FILE_NAME is the name
of the background image file exported from another environment.

Chapter 2
EPM Automate Commands

2-88

Example

epmautomate importBackgroundImage image_file.jpg

importBalances
Uses Data Management to import balances data from a data load definition.

Applies to

Account Reconciliation.

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer must be granted additional security through ACL

Usage

epmautomate importBalances DL_DEFINITION PERIOD where:

• DL_DEFINITION is an existing data load definition in Account Reconciliation.

• PERIOD is the name of a period.

Example

epmautomate importBalances DailyLoad "January 2020"

importCellLevelSecurity
Imports cell-level security settings from a ZIP file that contains one Excel file with cell-level
security records into the business process. Before running this command, use the uploadFile
command to upload the import file to the environment.

Your import ZIP file should contain one Excel file with two worksheets (Rules and Sub Rules)
for successfully importing cell-level security. The Rules sheet should contain cell-level
security definitions, dimensions included, properties such as Unspecified Valid and Additional
Dims Required. The Sub Rules sheet should contain member selections and exclusions. The
best method to get the import file format template is to export cell-level security from the
application. A sample format is presented in the following illustrations.

Chapter 2
EPM Automate Commands

2-89

Applies to

Planning, Planning Modules, FreeForm, Tax Reporting, Enterprise Profitability and
Cost Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate importCellLevelSecurity FILE_NAME.ZIP
[ErrorFile=FILE_NAME.txt] where:

• FILE_NAME is the name of the ZIP file that contains Excel file with cell-level security
information.

• ErrorFile, optionally, identifies the name of the text file to which error records will
be written. If this parameter value is not specified, EPM Automate automatically
generates an error file; you can view its name in the Job Console.
Use the downloadFile command to download the error file to a local computer.

Example

epmautomate importCellLevelSecurity ImportCLSDRecordsFile.zip
ErrorFile=ImportCLSDRecords_errors.txt

importConsolidationJournals
Imports consolidation journals from a .JLF file into Financial Consolidation and Close.

• Use the exportConsolidationJournals command to create the .JLF file that is used as
an input for this command.

• Before running this command, use the uploadFile command to load the input file
into the environment.

Applies to

Financial Consolidation and Close

Required Roles

Service Administrator

Chapter 2
EPM Automate Commands

2-90

Usage

epmautomate importConsolidationJournals jobName [fileName=FILE_NAME]
[errorFileName=ERROR_FILE_NAME] where

• jobName is the name of an Import Journal job created in Financial Consolidation and
Close.

• fileName, optionally, is the name of a .JLF file from which the journal entries are to be
imported.

• errorFileName, optionally, is the name of the log file in which messages generated
during the import process are to be recorded.

Example

epmautomate importConsolidationJournals "JIMPORT1" fileName="TestImport1.jlf"
errorFileName="TestImport1_error.log"

importData
Imports data from a file into the application using the import data settings specified in a job of
type import data.

Use the uploadFile command to upload the file containing application data to the default
upload location.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Sales Planning, and Strategic Workforce
Planning.

Required Roles

Service Administrator

Usage

epmautomate importData JOB_NAME [FILE_NAME] errorFile=ERROR_FILE.zip where:

• JOB_NAME is the name of a job defined in the application.

• FILE_NAME, optionally identifies the name of the ZIP, CSV or TXT (Essbase format data
file) file from which data is to be imported. If you specify a file name, the import file name
in the job is ignored.
If the job is defined to import data in Essbase format, the ZIP file must contain an
Essbase format TXT file. For other import jobs, the ZIP file may contain one or more CSV
files that identifies the import sequence in the file names; for example, data1-3.csv,
data2-3.csv, and data3-3.csv.

• errorFile, optionally, identifies the name of a ZIP file in which rejected records, if any,
during the import operations will be recorded. Identically named ZIP file in the outbox, if
any, will be overwritten. You can download this file using the downloadFile command.

Chapter 2
EPM Automate Commands

2-91

Example

epmautomate importData dailydataload dailydata.zip
errorFile=dataImport_error.zip

importDataManagement
Imports Data Management records from a ZIP file into an environment.

This command imports data into setup and staging tables from a ZIP file created using
the exportDataManagement command. Use the uploadFile command, for example,
epmAutomate uploadFile "C:/datafile/datafile.zip" inbox to upload the import
ZIP file to the Data Management inbox or to a folder within it.

Note:

This command can only import the Data Management records exported from
another environment running on the same monthly update. For example,
records exported from a 21.11 Oracle Enterprise Performance Management
Cloud environment can only be imported into another 21.11 environment.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Account
Reconciliation, Tax Reporting, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User

Usage

epmautomate importDataManagement FILE_NAME.zip where FILE_NAME is the name of
the ZIP file that contains the Data Management data to be imported.

Examples

• Import from the Data Management inbox:
epmautomate importDataManagement inbox/dataFile.zip

• Import from a folder within inbox:
epmautomate importDataManagement inbox/dm_data/dataFile.zip

importDimension
Imports a dimension from a file into an Oracle Enterprise Data Management Cloud
application.

This command can import an input file from a connection defined in Oracle Enterprise
Data Management Cloud or the staging area.

If the file is to be imported from the Oracle Enterprise Data Management Cloud staging
area, you must use the uploadFile command to upload it into the target Oracle

Chapter 2
EPM Automate Commands

2-92

Enterprise Data Management Cloud environment. You may also use the copyFileFromInstance
command to copy the file from another Oracle Enterprise Performance Management Cloud
environment.

Applies to

Oracle Enterprise Data Management Cloud.

Required Roles

Service Administrator, User (with Data Manager permission)

Usage

epmautomate importDimension APPLICATION DIMENSION IMPORT_TYPE FILE_NAME
[connection=NAME] where:

• APPLICATION is the name of an Oracle Enterprise Data Management Cloud application

• DIMENSION is the name of the application dimension being imported

• IMPORT_TYPE indicates how to perform the import. Valid import types are:

– ResetDimension to delete all existing dimension data and import the new data

– ReplaceNodes to add or update nodes and replace existing hierarchies during import

– Merge to process incremental changes to the nodes and hierarchies using an import
request

• FILE_NAME is the name of the file (CSV or ZIP) containing the dimension data to be
imported. The file name must end with the dimension name prefixed with _ (underscore
character); for example, import_Entity.csv. If you are importing from a ZIP file
containing multiple import files, this command depends on the file name within the ZIP file
to identify the right import file.
If a value for connection is specified, you must import dimension from a a ZIP file; for
example, importdata_Entity.zip.

• connection=NAME, optionally, identifies a connection name (instance location) defined in
Oracle Enterprise Data Management Cloud as the location of the import file. If not
specified, the import process will look in the local staging area for the import file.

Examples

• Import from a file uploaded to the staging area: epmautomate importDimension
USOperations Entity ReplaceNodes data_Entity.CSV

• Import from the outbox of another EPM Cloud environment: epmautomate
importDimension USOperations Entity ReplaceNodes data_Entity.ZIP
Connection=EPM_Cloud_pln

importJobConsole
Clones job console records using a ZIP file containing job console records exported from an
environment.

Importing job console records using this command is a one-time task that should be
performed after running the recreate command. If you already used this command to import
job console records, subsequent invocations of the command will fail until you recreate the
environment.

Chapter 2
EPM Automate Commands

2-93

Use the exportJobConsole command (epmAutomate exportJobConsole
FILE_NAME.zip nDays=All jobTypes=All jobStatusCode=All) to create the ZIP file
that is used as the input for this command.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Strategic Workforce
Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate importJobConsole FILE_NAME.zip [logFileName=jobConsoleLog]
where:

• FILE_NAME is the name of the ZIP file that contains the job console records that
you want to import. You use the uploadFile command to upload this file to the
environment.

• logFileName, optionally, identifies jobConsoleLog as the log file in which errors
encountered during the import will be recorded. If this value is not specified, the
command generates an error file which is named using this convention:
usernameimportLog_date_timestamp.zip. You can download this file using the
downloadFile command.

Example

epmautomate importJobConsole jobConsole.zip jobConsoleLog

importLibraryArtifact
Imports library artifacts from an archive or file into Narrative Reporting library.

Before running this command, upload the source archive or file to the environment
using the uploadFile command.

Applies to

Narrative Reporting

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer must be granted additional security through
ACL

Usage

epmautomate importLibraryArtifact SOURCE_FILE [errorFile=ERROR_FILE.txt]
[importFormat=Native|File] [importFolder=FOLDER_PATH]
[importPermission=true|false] [overwrite=true|false] where:

• SOURCE_FILE is the name of the archive that contains the artifacts that are to be
imported into the library. This file must be available in the inbox.

Chapter 2
EPM Automate Commands

2-94

• errorFile, optionally, is a unique name for the text file that will store import-related
errors.

• importFormat, optionally, is one of the following:

– Native imports artifacts from a zip file created using the
exportLibraryArtifactcommand with the exportFormat=Native option. This is the
default value.

– File imports a binary file.

Note:

You use the importSnapshot command to import library artifacts zip files
(created using the exportLibraryArtifactcommand with the exportFormat=LCM
option) into Financial Consolidation and Close, Planning, Planning Modules, or
Tax Reporting environments.

• importFolder, optionally, is the library location that will store the imported artifacts.
Specify this path if this location is different than the Library (the default import location).

• importPermission indicates whether to import access permissions set for the artifacts.
Default is False.

• overwrite identifies whether to overwrite identically named artifacts, if any, in the
specified library location. Default is False, which means that the process will not import
an artifact if an identically named artifact exists in the import location.

On completing the import, use the downloadFile command to download the error files to a local
computer.

Examples

• Import a file in its binary format:
epmautomate importLibraryArtifact newReports.doc
errorFile=report_imp_errors.txt importFormat=File importFolder="Library/My
Reports" importPermission=true overwrite=true

• Import artifacts from an exported zip file:
epmautomate importLibraryArtifact newReports.zip
errorFile=report_imp_errors.txt importFormat=Native importFolder="Library/My
Reports" importPermission=true overwrite=true

• Import reports into a Financial Consolidation and Close, Planning, Planning Modules, or
Tax Reporting environment from an exported zip file:
epmautomate importSnapshot newReports.zip

importLogoImage
Imports the corporate logo used in an Account Reconciliation environment from an export file
into another environment.

Applies to

Account Reconciliation

Chapter 2
EPM Automate Commands

2-95

Required Roles

Service Administrator

Usage

epmautomate importLogoImage IMAGE_NAME.jpg, where IMAGE_NAME is the name for
the logo image file.
You can download the exported imageusing the downloadFile command. Upload it to
the target environment using the uploadFilecommand, and then run the
importLogoImage command to import it.

Example

epmautomate importLogoImage corpLogo.jpg

importMapping
Imports mappings from a mapping import file, which was previously uploaded to the
environment.

Use the uploadFile command to upload files into Data Management inbox or a folder
within it.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User

Usage

epmautomate importMapping DIMENSION_NAME|ALL FILE_NAME IMPORT_MODE
VALIDATION_MODE LOCATION where:

• DIMENSION_NAME|ALL indicates the recipient of the mapping. Specify the name of
the dimension into which mappings are to be imported or ALL to import all
mappings included in the file to appropriate dimensions.

• FILE_NAME is the name and location of the mapping import file available in Data
Management inbox or a directory within it. Specify the file name (TXT files in
standard Data Management format) and its path (for example, inbox/
AccountMap.txt or inbox/pbcs_maps/AccountMap.txt).

• IMPORT_MODE is either REPLACE to clear existing mapping rules before importing
mappings or MERGE to add new mapping rules to exiting rules.

• VALIDATION_MODE is TRUE to validate target members against the application or
FALSE to load the mapping file without running validations.

• LOCATION is the Data Management location for which mapping rules should be
loaded.

Chapter 2
EPM Automate Commands

2-96

Examples

• epmautomate importMapping Account inbox/AccountMap.txt MERGE FALSE "France
Sales"

• epmautomate importMapping ALL "inbox/France Sales/AllMaps.txt" MERGE FALSE
"France Sales" (loads mappings from the mapping import file into all mapped
dimensions in France Sales location)

importMetadata
Imports metadata into the application using the import settings specified in a job of type
import metadata. Optionally, you can specify the name of the ZIP file from which metadata is
to be imported.

Use the uploadFile command to upload the file containing the metadata to the default upload
location.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Sales Planning, and Strategic Workforce
Planning.

Required Roles

Service Administrator

Usage

epmautomate importMetadata JOB_NAME [FILE_NAME] errorFile=ERROR_FILE.zip where:

• JOB_NAME is the name of a job defined in the application.

• FILE_NAME, optionally, identifies the name of the ZIP file from which metadata is to be
imported. If specified, the contents of this ZIP file take precedence over the file names
defined in the job. The ZIP file may contain one or more CSV files. The file names
containing metadata for dimensions should match the import file names defined in the job
or end with _DIMENSIONNAME.csv; for example, metadata_Entity.csv,
metadata_HSP_Smart Lists.csv, and metadata_Exchange Rates.csv.

• errorFile, optionally, identifies the name of a ZIP file in which rejected records, if any,
during the import operations will be recorded. Identically named ZIP file in the outbox, if
any, will be overwritten. You can download this file using the downloadFile command.

Chapter 2
EPM Automate Commands

2-97

Note:

• You cannot rename members by running an import metadata job with a
load file in which old_name or unique_name properties are modified.
Renaming of members will be ignored.

• You cannot delete attribute dimensions while importing metadata using
this command.

• Only the metadata for the dimensions for which metadata import is set
up in the job is imported. Metadata for other dimensions, if contained in
the ZIP file, are ignored.

An ambiguous import situation is created if both of the following
conditions are true for the ZIP file:

– Zip contains a metadata file with a name that matches the file name
defined in the job

– Zip contains a metadata file or files with names that end in
_DIMENSIONNAME.CSV or _DIMENSIONNAME.TXT, where DIMENSIONNAME
is the name of the dimension into which metadata is being imported.

Oracle recommends that the ZIP file contains a metadata file with a name
identical to that referenced in the job or a file with a name that ends in
_DIMENSIONNAME.CSV (or _DIMENSIONNAME.TXT), but not both. For example, if
you are loading a job that references the metadata file Employees_A-Z.CSV
into the Employees dimension, your ZIP file may include Employees_A-Z.CSV
or New_Employees.CSV, but not both. If your ZIP contains Employees_A-Z.CSV
and New_Employees.CSV, EPM Automate may select either file for import
depending on the order of the files in ZIP. Employees_A-Z.CSV file is a
possible match for import because its name matches the file name
referenced in the job; New_Employees.CSV is also a possible match because
its name matches the _DIMENSIONNAME.CSV pattern.

Example

epmautomate importMetadata importAccount importAccount.zip
errorFile=metadataImport_error.zip

importOwnershipData
Imports ownership data from a CSV file available in the environment into a period.

Before running this command, use the uploadFile command to load the import source
CSV file into the environment.

Header of this CSV file is as follows:

Scenario, Year, Period, Entity, Parent, POwn, Control, Method
POwn, Control, and Method values are optional.

The imported ownership data is merged with any existing data, which may create
invalid ownership entries. If an entity is present in more than one branch of a hierarchy,
the imported ownership data may cause the combined ownership % of the entity to

Chapter 2
EPM Automate Commands

2-98

exceed 100%. You must manually correct the ownership % to ensure that it does not exceed
100%.

Applies to

Financial Consolidation and Close and Tax Reporting.

Required Roles

Service Administrator, Power User, User
Users must have write access to the entity.

Usage

epmautomate importOwnershipData Scenario Year Period FILE_NAME where:

• Scenario is the scenario into which ownership data is to be imported.

• Year is the year into which data is to be imported.

• Period is the period of the year into which the ownership data is to be imported.

• FILE_NAME is the name of the CSV file from which data is to be imported.

Example

epmautomate importOwnershipData FCCS_TotalActual FY19 Jan importfile.csv

importPreMappedBalances
Imports pre-mapped balance data from a file in the Account Reconciliation repository.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate importPreMappedBalances PERIOD FILE_NAME BALANCE_TYPE
CURRENCY_BUCKET where:

• PERIOD is the name of a period

• FILE_NAME is the name of the CSV file containing the data to be imported

• BALANCE_TYPE is SRC or SUB
• CURRENCY_BUCKET is Entered, Functional or Reporting

Example

epmautomate importPreMappedBalances "January 2015" dailydata.csv SRC Reporting

Chapter 2
EPM Automate Commands

2-99

importPreMappedTransactions
Imports pre-mapped transactions from a CSV file in the Account Reconciliation
repository.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional
application roles.

Usage

epmautomate importPreMappedTransactions PERIOD TRANSACTION_TYPE FILE_NAME
DATE_FORMAT where:

• PERIOD is the name of a period

• TRANSACTION_TYPE is one of the following:

– BEX for loading Balance Explanations

– SRC for loading Source System Adjustments

– SUB for loading Subsystem Adjustments

– VEX for loading Variance Analysis Explanations

• FILE_NAME is the name of the CSV file from which data is to be imported

• DATE_FORMAT is date format text string; for example, MMM d, yyyy.

Example

epmautomate importPreMappedTransactions "January 2015" "BEX"
transactions.csv "MMM d, yyyy"

importProfiles
Imports new profile definitions from a CSV file in the Account Reconciliation repository.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional
application roles.

Usage

epmautomate importProfiles FILE_NAME PROFILE_TYPE METHOD DATE_FORMAT where:

Chapter 2
EPM Automate Commands

2-100

• FILE_NAME is the name of the CSV file from which data is to be imported

• PROFILE_TYPE is either profiles or children
• METHOD is either Replace or Update
• DATE_FORMAT is a date format text string; for example, MMM d, yyyy

Example

epmautomate importProfiles NewRecProfiles.csv Profiles Replace "MMM d, yyyy"

importRates
Imports currency rates from a CSV file in the Account Reconciliation repository.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate importRates PERIOD RATE_TYPE REPLACE_MODE FILE_NAME where:

• PERIOD is the name of a period

• RATE_TYPE is a predefined rate type

• REPLACEMENT_MODE is Replace or ReplaceAll
• FILE_NAME is the name of the CSV file from which rates are to be imported

Example

epmautomate importRates "January 2015" Actual ReplaceAll avgrates.csv

importRCAttributeValues
Imports attribute values into Account Reconciliation Reconciliation Compliance list or group
attributes.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User
Power Users may require additional security provided through ACLs.

Usage

epmautomate importRCAttributeValues ATTRIBUTE_NAME FILE_NAME [METHOD=REPLACE|
REPLACE ALL|UPDATE][DATEFORMAT=DD/MM/YYYY|DD-MMM-YYYY|MMM d,yyyy|All], where:

Chapter 2
EPM Automate Commands

2-101

• ATTRIBUTE_NAME is the name of a list or group attribute into which the values are to
be imported.

• FILE_NAME is a CSV import file from which the values are to be imported. Use the
uploadFile command to upload this file to the environment before running this
command.

• METHOD, optionally, is how the values are to be imported. Valid values:

– Replace to add all values from the import file as the attribute value in
Reconciliation Compliance. Existing attribute values will be replaced with
those in the import file; values not existing in the attribute, but are present in
the import file, will be added. Values existing in the attribute that are not in the
import file will not be changed. Note that all attribute data for a particular key
value will be replaced with the contents from the file or cleared. New values
will be added at the bottom in the order they appear in the file.
This type of import is most useful when you are only moving the latest
changes from a source system, for example, when adding new store data from
an acquisition to replace only specified attribute values, if present, with the
values in the import file. This is the default.

– Replace All to replace the existing attribute value with the values from the
import. Values existing in the attribute, but are not present in the import file,
will be deleted.
This import type is most useful for mirroring values from a source system with
a full update, for example, to complete weekly updates to synchronize with
store data from the source system.

– Update to replace or add all the values in the import file to the attribute. The
existing attribute values will be replaced with those in the import file. Values
that are in the import file, but are not present in the attribute, will be added.
Values that exist in the attribute, but are not present in the import file, will not
be changed. Only the attribute data for a particular key value will be replaced
with the contents from the file; data for attributes not available in the file will
not be touched. Any key present in the import file, but not in the attribute, will
cause an error.
This type if import is most useful for updating a few attributes across all
attribute values, for example, while updating the store managers after a
reorganization without affecting the rest of the store data.

• Dateformat, optionally, specifies the valid date formats (for example, DD/MM/YYYY,
DD-MMM-YYYY (default), MMM d,yyyy, and All) to parse. You may specify multiple
date format values separated using a semicolon.

Example

epmautomate importRCAttributeValues Stores StoreData.csv METHOD=Replace
DATEFORMAT="All"

importReconciliationAttributes
Imports reconciliations attributes into existing reconciliations from a file that you
uploaded to the Account Reconciliation environment using the uploadFile command.

Applies To

Account Reconciliation

Chapter 2
EPM Automate Commands

2-102

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate importReconciliationAttributes FILE.CSV Period [Rules=RULE_NAME]
[Reopen=true|false] [Dateformat=DATE_FORMAT] where:

• FILE is the name of the CSV file that contains the reconciliation attributes that you want
to import into reconciliations.

• Period identifies the period to which the reconciliations belong.

• Rules, optionally, identifies the rules that are to be run on affected reconciliations after
importing attributes. Use comma to separate multiple rule names. Valid values are:

– None: Runs no rules on affected reconciliations. This is the default value; it must not
be combined with other values.

– ALL: Runs all rules defined for the reconciliations for the specified period. This value
must be used by itself; it cannot be combined with other rule names.

– SET_ATTR_VAL: Runs the predefined rule to set attribute value.

– CRT_ALT: Runs the predefined rule to create alert.

– AUTO_APP: Runs the predefined rule to automatically approve the reconciliation.

– AUTO_SUB: Runs the predefined rule to automatically submit the reconciliation.

– EMAIL_ON_SAVE: Runs the predefined rule to automatically send email after updating
the reconciliation.

• Reopen, optionally, specifies whether to reopen changed reconciliations upon completion
of the import operation. Default is false.

• Dateformat, optionally, specifies the valid date formats (for example, MM-dd-yyyy, dd-
MMMM-yy, MMM d, and yyyy to parse. You may specify multiple date format values
separated using a semicolon.

Examples

• Importing attribute values for a period and running multiple rules with many date
formats:
epmAutomate importReconciliationAttributes Reconciliations.csv "July 2020"
Rules=SET_ATTR_VAL,CRT_ALT,AUTO_APP,AUTO_SUB" Reopen=true "Dateformat=MM-dd-
yyyy;dd-MMM-yy;MMM d, yyyy"

• Importing attribute values for a period without running rules:
epmAutomate importReconciliationAttributes Reconciliations.csv "July 2020"

• Importing attribute values for a period, running all applicable rules and reopening
affected reconciliations:
epmAutomate importReconciliationAttributes Reconciliations.csv "July 2020"
Rules=ALL Reopen=true

Chapter 2
EPM Automate Commands

2-103

importSnapshot
Imports the contents of a snapshot into the service environment. The snapshot you
import must be available in the default upload location.

Use the uploadFile command to upload a snapshot or the copySnapshotFromInstance
command to copy it from another instance.

• The following are not part of Planning, Planning Modules, and FreeForm
application snapshots:

– Audit data

– Job Console data

Use the cloneEnvironment command or the Clone Environment feature if you want
to copy audit and Job Console data to the target environment.
Snapshot import may fail if the Planning business process contains a renamed
seeded period member that has been supplanted by a custom period member. For
example, you renamed the seeded YearTotal Period member to unused_YearTotal
and then added an alternate type period member with the original seeded member
name (YearTotal in this example). In this scenario, import of snapshot may fail.

• Snapshots do not contain the Data Management staging table data. To import this
data, use the exportDataManagement and importDataManagement commands or
the Data Management System Maintenances Scripts interface. You may use the
cloneEnvironment command or the Clone Environment feature to create an
identical copy of the environment, including the Data Management staging table
data.

The activities that you can complete using this command depend on your role.

• Service Administrators can import only application artifacts into an environment.

• You need both Service Administrator and Identity Domain Administrator roles to
import application content into the service environment and identity domain
artifacts (users and their predefined role assignments) into the identity domain of
the environment.
If a user who is not in the identity domain is referenced in the snapshot being
imported, EPM Automate creates a user in the identity domain and assigns the
default password that you specify in the command or a temporary unique
password to each user if you do not specify a password in the command. By
default, the user will be required to reset password during first sign in.

Chapter 2
EPM Automate Commands

2-104

Note:

• For business processes other than Account Reconciliation, Profitability and
Cost Management, and Oracle Enterprise Data Management Cloud: While
loading metadata, Oracle Enterprise Performance Management Cloud may
make multiple loading passes if the previous attempt resulted in rejected
records because shared members come before base members in the outline.
Such attempts may increase the command processing time.

• Users who are members of groups in Access Control must be assigned to a
predefined role. Attempts to assign a user, who is not assigned to a predefined
role, to a group is not permitted.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Sales Planning, and Strategic
Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application role

Identity Domain Administrator role is required to import users and predefined role
assignments.

Usage

epmautomate importSnapshot SNAPSHOT_NAME [importUsers=true|false]
[userPassword=DEFAULT_PASSWORD] [resetPassword=true|false] where:

• SNAPSHOT_NAME is the name of a snapshot in the default upload location.

• importUsers, optionally, specifies whether to import users and their predefined role
assignments from the snapshot. Default is false. Use importUsers=true to import users
and predefined role assignments into the identity domain if the source snapshot contains
data on new users or if new roles have been assigned to current users.
User login values are not case-sensitive. For example, the user login value
jane.doe@example.com is treated as being identical to Jane.Doe@Example.com or any
variation in its case. If any variation matches a user login existing in the identity domain,
this command does not import the user from the snapshot.

Chapter 2
EPM Automate Commands

2-105

Note:

– Import of users and their predefined roles fails if a user who is not an
Identity Domain Administrator performs the import operation. The
following error is recorded in the Migration Status Report: Failed
to import External Directory Artifact
ARTIFACT_NAME. User USER_NAME is not authorized to
perform this operation. The user needs to have
Identity Domain Administrator role to perform this
operation.

– If you are not importing users and a user in the source snapshot is
not assigned to a predefined role on the target environment, an error
(EPMIE-00070: Failed to find user during assigned
roles import) is displayed.

– Changes to the predefined roles of the user will be updated based on the roles
assigned in the source snapshot. However, role assignments in the target will
not be removed to match those in the source snapshot. For example, assume
that jdoe is assigned to the Power User predefined role in the target
environment, but has only the User role in the source snapshot. In this
situation, this command assigns jdoe to the User role and does not remove
the Power User role assignment in the target environment.

– This command does not delete existing users from the target environment if
they don't exist in the source snapshot. For example, jdoe has an account in
the target environment, but this account is not present in the source snapshot.
In this situation, the account of jdoe in the target environment is not deleted.

– This command adds users that do not exist in the target environment; it does
not update current user properties in the target environment even if those are
different in the source snapshot. For example, if the last name of jdoe in the
source snapshot is spelled differently in the target environment, the change
will not be made in the target environment.

– This command does not change existing users' passwords in the target
environment even if it is different in the source snapshot.

• userPassword, optionally, indicates the default password to assign to new users
who are created in the identity domain. The password that you specify must meet
the minimum password requirements. If you do not specify a value for this
parameter, a unique temporary password is assigned to each user.

• resetPassword, optionally, indicates whether the new user must change the
password at the first log in. Default is true, requiring new users to change the
password at the first sign in. If this value is set to true, new users will receive
account activation emails prompting them to change passwords.

Examples

• Import application artifacts only: epmautomate importSnapshot April16FullApp
• Import application and identity domain artifacts (requires Service Administrator and

Identity Domain Administrator roles):

Chapter 2
EPM Automate Commands

2-106

– Assign a unique temporary password to each new user and force them to reset their
password after they sign in for the first time:
epmautomate importSnapshot April16FullApp importUsers=true

– Assign a specific password and allow users to not change it if they so choose. Not
recommended for imports into production environments:
epmautomate importSnapshot April16FullApp importUsers=true
userPassword=P@ssw0rd1 resetPassword=false

importSupplementalCollectionData
Imports supplemental collection data from a file into the application.

Use the uploadFile command to upload the file containing the data to the default upload
location. the import file format is as follows:

#Workflow
Workflow_Dimension_1_Name,Workflow_Dimension_2_Name,Workflow_Dimension_n_Name
Workflow_Dimension_1_Member,Workflow_Dimension_2_Member,Workflow_Dimension_n_
Member
#Collection
Collection_Attribute_1,Collection_Attribute_2,Collection_Attribute_n
Record1_Attr_Value_1,Record1_Attr_Value_2, Record1_Attr_Value_n

For example:

#Workflow
Entity
9100
#Collection
Custody Account Code,Trade Currency Code,Account Description,Base Currency
Code,CIC Code,IFRS 13 Tier,SII Portfolio Type,WPM Detailed NAV ID,WPM Asset
Description
1,,,,111,,,,6

Applies to

Financial Consolidation and Close, and Tax Reporting.

Required Roles

Service Administrator

Usage

Note:

All command parameters must be enclosed in double quotation marks.

epmautomate importSupplementalCollectionData "FILE_NAME""COLLECTION_NAME" "YEAR"
"PERIOD" "[FREQUENCY_DIMENSION=MEMBER]" where:

Chapter 2
EPM Automate Commands

2-107

• FILE_NAME is the name of a CSV file, available in the default upload location, that
contains properly formatted supplemental data.

• COLLECTION_NAME is the name of the collection into which the supplemental data in
the file should be imported.

• YEAR is the year dimension member to be used for collection.

• PERIOD is name of the period dimension to be used for collection.

• FREQUENCY_DIMENSION, optionally, is the name of the frequency dimension to be
used for collection. You may specify as many frequency dimensions as needed in
"FREQUENCY_DIMENSION1=MEMBER" "FREQUENCY_DIMENSION2=MEMBER" format.

Example

epmautomate importSupplementalCollectionData "datafile.csv" "Journal Data
Collection" "FY20" "Jan" "Account=PAYROLL" "JournalID=LNR 113"

importSupplementalData
Imports supplemental data from a file into the application.

Use the uploadFile command to upload the file containing the data to the default upload
location.

Applies to

Financial Consolidation and Close and Tax Reporting.

Required Roles

Service Administrator

Usage

Note:

All command parameters must be enclosed in double quotation marks.

epmautomate importSupplementalData "FILE_NAME" "DATA_SET_NAME" "YEAR"
"PERIOD_NAME" "SCENARIO_NAME" where:

• FILE_NAME is the name of a CSV file, available in the default upload location, that
contains properly formatted supplemental data.

• DATA_SET_NAME is the name of the data set into which the supplemental data in the
file should be imported.

• YEAR is the year for which the data set is deployed.

• PERIOD_NAME is name of the period to which the data set is deployed.

• SCENARIO_NAME is the name of the scenario to which the data set is deployed.

Chapter 2
EPM Automate Commands

2-108

Example

epmautomate importSupplementalData "DatasetImport.csv" "EmployeeDataSet" "FY17"
"Jan" "Actual"

importTemplate
Creates an application structure by importing from a template file that exists in profitinbox.

You can upload a template file into profitinbox using the uploadFile command.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Usage

epmautomate importTemplate APPLICATION_NAME File_Name
isApplicationOverwrite=true|false where:

• APPLICATION_NAME is the name of the Profitability and Cost Management application that
you want to create by importing the template

• File_Name is the name of the .ZIP file containing application template. This file must exist
in profitinbox.

• isApplicationOverwrite specifies whether to overwrite the existing application, if any.
Specify this parameter value in all lower case.

Example

epmautomate importTemplate BksML12 template1.zip isApplicationOverwrite=true

importTMAttributeValues
Imports values into Account Reconciliation Transaction Matching group attributes.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User
Power Users may require additional security provided through ACLs.

Usage

epmautomate importTMAttributeValues ATTRIBUTE_NAME FILE_NAME [METHOD=REPLACE|
REPLACE ALL|UPDATE][DATEFORMAT=DD/MM/YYYY|DD-MMM-YYYY|MMM d,yyyy|All], where:

• ATTRIBUTE_NAME is the name of a group attribute into which the values are to be imported.

Chapter 2
EPM Automate Commands

2-109

• FILE_NAME is a CSV import file from which the values are to be imported into
Transaction Matching. Use the uploadFile command to upload this file to the
environment before running this command.

• METHOD, optionally, is how the values are to be imported. Valid values:

– Replace to add all values from the import file into Transaction Matching group
attributes. Existing attribute values will be replaced with those in the import file;
values not existing in the attribute, but are present in the import file, will be
added. Values existing in the attribute that are not in the import file will not be
changed. Note that all attribute data for a particular key value will be replaced
with the contents from the file or cleared. New values will be added at the
bottom in the order they appear in the file.
This type of import is most useful when you are only moving the latest
changes from a source system, for example, when adding new store data from
an acquisition to replace only specified attribute values, if present, with the
values in the import file. This is the default.

– Replace All to replace the existing attribute value with the values from the
import. Values existing in the attribute, but are not present in the import file,
will be deleted.
This import type is most useful for mirroring values from a source system with
a full update, for example, to complete weekly updates to synchronize with
store data from the source system.

– Update to replace or add all the values in the import file to the attribute. The
existing attribute values will be replaced with those in the import file. Values
that are in the import file, but are not present in the attribute, will be added.
Values that exist in the attribute, but are not present in the import file, will not
be changed. Only the attribute data for a particular key value will be replaced
with the contents from the file; data for attributes not available in the file will
not be touched. Any key present in the import file, but not in the attribute, will
cause an error.
This type if import is most useful for updating a few attributes across all
attribute values, for example, while updating the store managers after a
reorganization without affecting the rest of the store data.

• Dateformat, optionally, specifies the valid date formats (for example, DD/MM/YYYY,
DD-MMM-YYYY (default), MMM d,yyyy, and All) to parse. You may specify multiple
date format values separated using a semicolon.

Example

epmautomate importTMAttributeValues TMGA TMGA.csv METHOD=Replace
DATEFORMAT="All"

importTmPremappedTransactions
For a specific data source, imports pre-mapped transactions data from a file in
Account Reconciliation repository into Transaction Matching.

Use the uploadFile command to upload the transactions file to the service.

This command displays import status and an import log file name in the console. Use
the downloadFile command to download the log file to a local computer.

See Importing Data in Reconciling Accounts with Account Reconciliation for import file
format requirements and information about importing data.

Chapter 2
EPM Automate Commands

2-110

Note:

• You can import transactions for only one match type at a time. However, parallel
imports can be run into different match types.

• Unlike from the Jobs screen, you can import pre-mapped transactions data only
from one file at a time.

• After importing pre-mapped transactions for all data sources, run the
runautomatch command.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate importTmPremappedTransactions MATCH_TYPE DATA_SOURCE FILE_NAME
[DATE_FORMAT] where:

• MATCH_TYPE is a match type defined in Account Reconciliation.

• DATA_SOURCE is the identifier of the data source associated with the reconciliation type
that you specified.

• FILE_NAME is the name of the CSV file containing the transactions to import. This file must
be available in the service.

• DATE_FORMAT is an optional parameter that indicates the format of the date fields included
in the transactions import file. Default is dd-MMM-YYYY. Other supported date formats are:
MM/dd/yyyy, dd/MM/yyyy, MM-dd-yyyy, d-M-yyyy, and MMM d.yyyy.

Example

epmautomate importTmPremappedTransactions "INTERCOMPANY" "AP" dailydata.csv d-M-
yyyy

importValidIntersections
Imports valid intersection groups from a ZIP file that contains one Excel file with valid
intersection definitions into the business process. Before running this command, use the
uploadFile command to upload the import file to the environment.

Your import ZIP file should contain an Excel file with two worksheets (Rules and Sub Rules)
for successfully importing valid intersections. The first sheet, Rules, should define the
intersection group, dimensions included, and properties such as Unspecified Valid, Additional
Dims Required. The second sheet, Sub Rules, should provide member selections and
exclusions. For more information, see these topics in Administering Planning.

• Anchor and Nonanchor Dimensions

Chapter 2
EPM Automate Commands

2-111

• Valid Intersection Examples

The best method to get the import file format template is to export valid intersections
from the application. A sample format is presented in the following illustrations.

Applies To

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Sales Planning, and
Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate importValidIntersections FILE_NAME.zip
[ErrorFile=ERROR_FILE_NAME.txt] where:

• FILE_NAME is the name of the ZIP file that contains the valid intersection definition
Excel file.

• ErrorFile, optionally, identifies the name of the text file to which error records will
be written. If this parameter value is not specified, EPM Automate automatically
generates an error file; you can view its name in the Job Console.

Example

epmautomate importValidIntersections VI_Import_File.zip
ErrorFile=VI_Import_Log.txt

Chapter 2
EPM Automate Commands

2-112

invalidLoginReport
In OCI (Gen 2) environments, creates the Invalid Login Report, which lists the failed attempts
to sign into the environment over a specified period of time corresponding to the audit
retention period specified for your environment. The default retention period is 30 days. You
can extend it to a maximum of 90 days by changing the Audit Retention Period (days)
setting in the Oracle Cloud Identity Console. To retain the audit data for duration longer than
90 days, periodically download and archive this report and the Role Assignment Audit Report.

The Invalid Login Report contains information such as the following:

• User name of the user who attempted to sign in

• Remote IP address from which the user attempted to sign in

• Timestamp of the sign in attempt

This report shows all the unsuccessful login attempts to the corresponding Identity Cloud
Service. These may not all be related to one Oracle Enterprise Performance Management
Cloud instance.

Use the downloadFile command to download the report to a local computer.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Strategic
Workforce Planning, and Sales Planning.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power User,
User, or Viewer)

Usage

epmAutomate invalidLoginReport FROM_DATE TO_DATE FILE_NAME.CSV where:

• FROM_DATE indicates the start date (in YYYY-MM-DD format) of the period for which the
report is to be generated. This date must fall within the audit data retention period
specified in the Oracle Cloud Identity Console.

• TO_DATE indicates the end date (in YYYY-MM-DD format) of the period for which the report
is to be generated.

• FILE_NAME is the name of a CSV file for the report.

Chapter 2
EPM Automate Commands

2-113

Note:

This report can be generated only for the last 90 days.

Example

epmAutomate invalidLoginReport 2021-06-01 2021-06-30
invalidLoginReport.CSV

listBackups
Lists available backup snapshots of OCI (Gen 2) environments to determine if a
specific backup is available so that you can archive it or use it to restore the current
environment by yourself. This command does not work in Classic Oracle Enterprise
Performance Management Cloud environments.

Before trying to restore a specific backup, use this command to check if the required
backup is available in Oracle Object Storage. If the backup is available, you can
restore it (copy it to your environment) by running the restoreBackup command. After
copying the backup, you can import it using importSnapshot command. Self-service
restoration of the environment saves you processing time.

For services other than Narrative Reporting, this command lists available backup
snapshots (created by the daily maintenance process) using the naming convention
YYYY-MM-DDTHH:MM:SS/Artifact_Snapshot.zip; for example, 2022-02-16T21:00:02/
Artifact_Snapshot.zip. For Narrative Reporting, available snapshots use the naming
convention YYYY-MM-DDTHH:MM:SS/EPRCS_Backup.tar.gz; for example,
2022-02-16T21:00:02/EPRCS_Backup.tar.gz. In both cases, the timestamp
reflects the UTC time when the snapshot was created. The following illustration
displays a sample command output.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application
role

Chapter 2
EPM Automate Commands

2-114

Usage

epmAutomate listBackups

Example

epmAutomate listBackups

listFiles
Lists the names of the files in the default location, Data Management folders, and profitinbox/
profitoutbox (Profitability and Cost Management).

This command also lists incremental and backup export files, Migration snapshots, access
logs, and Activity Reports. This illustration shows a truncated version of the command output.

This command will not list the current snapshot if this command is executed while the
snapshot of the environment is being generated; for example, during the daily maintenance.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application role

Usage

epmautomate listFiles

Chapter 2
EPM Automate Commands

2-115

Example

epmautomate listFiles

loadData
Loads data into a calculation cube using a file available in profitinbox.

Use the uploadFile command to load files into profitinbox.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Usage

epmautomate loadData APPLICATION_NAME dataFileName=File_Name
PARAMETER=VALUE where:

• APPLICATION_NAME is the name of the Profitability and Cost Management
application into which you want to load data

• dataFileName=File_Name specifies a data load file available in profitinbox.
Data file name must be enclosed in double quotation marks.

• PARAMETER=VALUE indicates runtime parameters and their values to load data.
Specify as many parameter and value pairings as the process requires. Valid
parameters and their values:

– clearAllDataFlag=true|false specifies whether to clear existing data in the
application cube

– dataLoadValue=OVERWRITE_EXISTING_VALUES|ADD_TO_EXISTING specifies how
to handle existing data

Example

epmautomate loadData BksML12 dataFileName="data1.txt"clearAllDataFlag=true
dataLoadValue="OVERWRITE_EXISTING_VALUES"

loadDimData
Loads dimension metadata from one or more files in profitinbox into an application.

Use the uploadFile command to load metadata files into profitinbox.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Chapter 2
EPM Automate Commands

2-116

Usage

epmautomate loadDimData APPLICATION_NAME dataFileName=File_Name
[stringDelimiter="DELIMITER"] where:

• APPLICATION_NAME is the name of the Profitability and Cost Management application into
which you want to load dimension metadata

• dataFileName specifies a dimension metadata load file available in profitinbox. To load
metadata from multiple files, list the file names separated by a delimiter

• stringDelimiter specifies the delimiter used to separate metadata file names. Delimiter
must be enclosed in double quotation marks.

Example

epmautomate loadDimData BksML12 dataFileName="dimdata1.txt#dimdata1.txt"
stringDelimiter="#"

loadViewpoint
Loads a viewpoint (a subset of nodes) from a load file into an Oracle Enterprise Data
Management Cloud application.

Viewpoint loads enable you to load data into viewpoints that are unbound, bound, or partially
bound. The viewpoint load file, a CSV, Excel (XLSX) file or a ZIP file containing one CSV or
XLSX file, must be available in the environment where you are loading the viewpoint. You can
upload the load file to the environment using the uploadFile or copyFileFromInstance
command.

Applies to

Oracle Enterprise Data Management Cloud

Required Roles

Service Administrator

Usage

epmautomate loadViewpoint VIEW VIEWPOINT PURPOSE FILE_NAME
[loadType=ReplaceNodes|Merge]
, where:

• VIEW is the name of an Oracle Enterprise Data Management Cloud view.

• VIEWPOINT is the name of the viewpoint that you want to load.

• PURPOSE is a text string, enclosed in double quotation marks, indicating why the viewpoint
is being loaded.

• FILE_NAME is the name of the file, with extension, from which the viewpoint is to be
loaded.

• loadType, optionally, identifies how to load viewpoint. Valid values are Merge and
ReplaceNodes.

– Use Merge to preserve existing relationships by processing incremental changes.

Chapter 2
EPM Automate Commands

2-117

– Use ReplaceNodes to clear all relationships (including orphan relationships and
relationships used by other viewpoints using the same hierarchy set) from the
hierarchy other than those from the load file. This is the default load type.

Examples

• Merge incremental changes: epmautomate loadViewpoint USOperations
Entity "Daily Upstream Load" data_Entity.CSV loadType=Merge

• Replace existing hierarchies: epmautomate loadViewpoint USOperations
Entity "Replace US Operations data" data_Entity.CSV

login
Establishes a secure connection to an environment. This command supports signing
into an environment using a plain text password, or an encrypted password file
containing the password or OAuth 2.0 refresh token. Login using OAuth 2.0 refresh
token is supported for OCI (Gen 2) environments only.

You sign in to initiate a session, which remains active until you sign out.

Note:

• EPM Automate does not support signing in with your organization's SSO
credentials.

• EPM Automate does not work with SOCKS proxy; it works only with
HTTP/HTTPS proxy.

• When using this command in batch files to automate activities, Oracle
recommends that you use encrypted password or OAuth 2.0 refresh
token to avoid recording clear text passwords in batch files.

• On Windows computers, this command automatically identifies missing
proxy server intermediate security certificate that may prevent you from
establishing a connection and adds it to the JRE installed under
C:\Oracle\EPM Automate. This prevents login errors related to security
certificates when using proxy servers to access the internet.
On Linux computers, the login command identifies the missing security
certificate from the proxy server, downloads it, and display an error. A
user with root access can then install the downloaded certificate in the
JRE available in the JAVA_HOME identified in the environment variables.
See these information sources:

– Java Runtime Environment and EPM Automate

– Keytool Java documentation

On signing in, a message to upgrade EPM Automate is displayed if you are using an
older version. You can use the upgrade command to silently upgrade your installation.

If you plan to run addUsers, removeUsers, assignRole, or unassignRole command, do
not login using the OAuth refresh token. These commands require you to use basic
authentication. All other commands work with OAuth 2.0 in OCI (Gen 2) environments.

Chapter 2
EPM Automate Commands

2-118

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

• Using unencrypted password: epmautomate login USERNAME PASSWORD URL
[IDENTITYDOMAIN] [ProxyServerUserName=PROXY_USERNAME
ProxyServerPassword=PROXY_PASSWORD ProxyServerDomain=PROXY_DOMAIN]]
[KeystorePassword=PASSWORD]

• Using encrypted file: epmautomate login USERNAME PASSWORD_FILE URL
[IDENTITYDOMAIN] [ProxyServerUserName=PROXY_USERNAME]
[ProxyServerPassword=PROXY_PASSWORD] [ProxyServerDomain=PROXY_DOMAIN]
[KeystorePassword=KEYSTORE_PASSWORD]

In these commands:

• USERNAME is the user name of the user.

• PASSWORD is the password of the user.

• PASSWORD_FILE is the name and location of the file that stores the encrypted password or
OAuth 2.0 refresh token of the user. See the encrypt command.

• URL is the base URL of the environment to which to connect. You may use a custom or
vanity URL in place of the Oracle Enterprise Performance Management Cloud URL. See
Using Vanity URLs in Getting Started with Oracle Enterprise Performance Management
Cloud for Administrators

Note:

If using an API gateway or reverse proxy, use its URL and the context defined
for your environment in place of the EPM Cloud URL.

• IDENTITYDOMAIN, optionally, is the identity domain of the environment.
This value is derived automatically from the EPM Cloud URL; any value you specify is
ignored. However, this value is required if you are using an API gateway or reverse proxy
URL to connect to a Classic EPM Cloud environment.

• ProxyServerUserName is the user name to authenticate a secure session with the HTTP
proxy server that controls access to the internet. Specify the user name without prefixing
a domain name prefix. Required only if authentication at proxy server is enabled for your
network.

• ProxyServerPassword is the password to authenticate the user with the proxy server.
Required only if authentication at proxy server is enabled for your network. This
password can be encrypted. See the encrypt command. If this password is encrypted, it is
read from the PASSWORD_FILE.

Chapter 2
EPM Automate Commands

2-119

• ProxyServerDomain is the name of the domain defined for the HTTP proxy server
(not the server name or the proxy server host name). Required only if
authentication at proxy server is enabled for your network and a proxy server
domain is configured.

• KeystorePassword, optionally, is the keystore password required for importing
proxy server security certificate. Use this parameter only on Windows, and only if
you are faced with the following errors in environments where a proxy server is
being used to channel internet access:

EPMAT-7: Unable to connect as few SSL certificates are missing in the
keystore

EPMAT-7: Unable to connect as above-mentioned SSL certificates are missing
in the keystore

Note:

EPM Automate detects and uses the HTTP/HTTPS proxy settings on your
computer.
EPM Automate supports the following authentication mechanisms to connect
to the proxy server:

• Basic authentication

• Digest authentication

• Kerberos authentication

• Negotiate proxy authentication

• NTLM authentication

The available authentication method and its configuration depends on the
proxy server you are using.

On Linux computers, if the proxy settings require you to authenticate with the
proxy server, you must enter the proxy server domain, user name, and
password as parameters to this command. Contact your network
administrator for help with proxy server domain name and credentials.

Examples

• Using an unencrypted EPM Cloud password, no proxy authentication:
epmautomate login serviceAdmin P@ssword1 https://test-cloud-
pln.pbcs.us1.oraclecloud.com

• Using an encrypted file, no proxy authentication:
epmautomate login serviceAdmin C:\mySecuredir\password.epw https://
test-cloud-pln.pbcs.us1.oraclecloud.com

• Using an encrypted file, if authentication at proxy server is enabled with server
domain:
epmautomate login serviceAdmin C:\mySecuredir\password.epw https://
test-cloud-pln.pbcs.us1.oraclecloud.com
ProxyServerUserName=john.doe@example.com ProxyServerPassword=example
ProxyServerDomain=example

Chapter 2
EPM Automate Commands

2-120

• Using an encrypted file, if authentication at proxy server is enabled without a server
domain:
epmautomate login serviceAdmin C:\mySecuredir\password.epw https://test-
cloud-pln.pbcs.us1.oraclecloud.com ProxyServerUserName=john.doe@example.com
ProxyServerPassword=example

• Using encrypted EPM Cloud and proxy server password, if authentication at proxy server
is enabled with a server domain:
epmautomate login serviceAdmin C:\mySecuredir\password.epw https://test-
cloud-pln.pbcs.us1.oraclecloud.com ProxyServerUserName=john.doe@example.com
ProxyServerDomain=example

• Using encrypted EPM Cloud and proxy server password, if authentication at proxy server
is enabled without a server domain:
epmautomate login serviceAdmin C:\mySecuredir\password.epw https://test-
cloud-pln.pbcs.us1.oraclecloud.com ProxyServerUserName=john.doe@example.com

• Using an encrypted file with APIGEE API gateway:
epmautomate login serviceAdmin C:\mySecuredir\password.epw https://
exampleapigee.apigee.com/epm example_ID_DOM

• Using a vanity URL:
epmautomate login serviceAdmin C:\mySecuredir\password.epw https://
rebrand.ly/Automate

logout
Terminates your current connection with an environment.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate logout

Example

epmautomate logout

maskData
Masks application data to ensure data privacy. Use this command only on test environments
to hide sensitive data from application developers.

WARNING: Do not use this command on production environments because it randomizes
current application data, rendering it meaningless. You cannot undo the effects of this
command. If you mistakenly masked the data in a service environment, you must restore the
data from a backup or from the maintenance snapshot.

Chapter 2
EPM Automate Commands

2-121

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Sales Planning, and
Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate maskData [–f] where -f is an option to force the start of the masking
process without user confirmation. If you do not use the -f option, EPM Automate
prompts you to confirm your action.

Example

epmautomate maskData [–f]

mergeDataSlices
Merges all incremental data slices of an aggregate storage cube into the main
database slice and, optionally, removes cells that have a value of zero.

Applies to

Planning, Planning Modules, FreeForm, Enterprise Profitability and Cost Management,
Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate mergeDataSlices CUBE_NAME [keepZeroCells=true|false] where:

• CUBE_NAME identifies the aggregate storage cube for which all data slices are to be
merged.

• keepZeroCells,optionally, specifies whether to remove cells that have a value of
zero (logically clearing data from a region results in cell with a value of zero).
Default is true

Example

epmautomate mergeDataSlices rep1 keepZeroCells=false

mergeSlices
Merges incremental data slices into the main database cube and, optionally, removes
the Oracle Essbase cells containing 0 (zero) as value to make the cube compact.

Removing cells containing 0 optimizes cube performance.

Chapter 2
EPM Automate Commands

2-122

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Usage

epmautomate mergeSlices applicationName [removeZeroCells=true|false] where:

• applicationName is the name of an Profitability and Cost Management application.

• removeZeroCells, optionally, specifies whether to remove cells containing 0. Default
value of this parameter is false.

Examples

• Merge slices without removing cells containing 0s:

– epmautomate mergeSlices BksML30
– epmautomate mergeSlices BksML30 removeZeroCells=false

• Merge slices and remove cells containing 0s: epmautomate mergeSlices BksML30
removeZeroCells=true

optimizeASOCube
Optimizes the performance of queries for selecting aggregate views for data extraction from
ASO cubes.

This command allows you to perform query optimization operations on ASO cubes in cases
where default aggregation is deemed insufficient to meet your data extraction or reporting
needs because of large data size. Typical optimization process is as follows:

• Drop default and query-based aggregations.

• Start query tracking.

• Run sample queries from Profitability and Cost Management Query Manager, Oracle
Smart View for Office, or Data Management, and any other MDX queries representative
of the type of queries for which optimization is desired to train Oracle Essbase.

• Create aggregation based on optimized or default queries.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Usage

epmautomate optimizeASOCube APPLICATION_NAME OPTIMIZATION_TYPE where:

• APPLICATION_NAME is the name of the Profitability and Cost Management application to
which the ASO cube belongs.

Chapter 2
EPM Automate Commands

2-123

• OPTIMIZATION_TYPE is a cube optimization operation. Acceptable values are:

– clearAggregations which removes default and query-based views.

– createAggregations which creates default Essbase aggregate views. Use
this option to perform default aggregation instead of query-based aggregation

– startQueryTracking which starts query tracking.

– stopQueryTracking which stops query tracking. Use this option to stop
Essbase from collecting optimization information. Essbase continues to collect
optimization information until you stop query tracking or stop Essbase.
Essbase can aggregate views based on data collected until query tracking is
stopped.

– createQBOAggregations which creates Essbase aggregate views based on
the optimized queries that you run after enabling query tracking.

Examples

• Drop default and query-based aggregate views:
epmautomate optimizeASOCube BksML12 clearAggregations

• Start query tracking
epmautomate optimizeASOCube BksML12 startQueryTracking

• Create Essbase aggregate views based on the optimized queries that you run
after starting query tracking:
epmautomate optimizeASOCube BksML12 createQBOAggregations

programDocumentationReport
Creates the Program Documentation Report containing Profitability and Cost
Management application logic.

You can download the report to a local computer using the downloadFile command.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate programDocumentationReport APPLICATION_NAME POV_NAME
[fileName=FILE_NAME] [fileType=PDF|WORD|EXCEL|HTML] [useAlias=true|false]
stringDelimiter="DELIMITER" where:

• APPLICATION_NAME is the name of the Profitability and Cost Management
application for which the Program Documentation Report is to be created.

• POV_NAME is the name of the model POV in the application for which the report is to
be generated.

• fileName, optionally, is a unique name (including extension) for the report file.
Default report file name is
HPCMMLProgramDocumentationReport_APPLICATION_NAME_POV_NAME.pdf.

Chapter 2
EPM Automate Commands

2-124

• fileType, optionally, is the output file format. Default is PDF.

• useAlias, optionally, specifies whether to print aliases in place of member names.
Default is false.

• stringDelimiter is the delimiter used in POV values. Delimiter must be enclosed in
double quotation marks.

Example

epmautomate programDocumentationReport BksML30 2019_Feb_Actual fileName=Feb-
Actual.xls fileType=Excel useAlias=true stringDelimiter="_"

provisionReport
Generates a Role Assignment Report (.CSV file) and stores it in the default download
location.

The report lists the predefined roles (for example, Service-name Power User) and application
roles (for example, Mass Allocation, which is a Planning application role) assigned to users.
Use the downloadFile command to download the report.

Two versions of the report can be generated: simplified or classic. The simplified report,
which is identical to the Role Assignment Report that is available from the Access Control
screen, does not list the application roles that are subsumed into predefined roles or the
component roles of application roles assigned to the user. The classic version of the report
lists the component roles that are subsumed into the predefined roles to which users are
assigned. It also lists the application roles assigned to the user (directly or through groups).

Generating this report refreshes the user and role information available in Access Control.

For OCI (Gen 2) only:Oracle Enterprise Performance Management Cloud considers
deactivated users as being identical to users not assigned to any predefined roles even
though such users may have had predefined roles when they were deactivated. Information
on deactivated users is not included in this report.

Note:

This command will be deprecated in an upcoming release. Instead of this
command, use the roleAssignmentReport command, which produces an equivalent
report.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management,Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Chapter 2
EPM Automate Commands

2-125

Usage

epmautomate provisionReport REPORT_NAME [format=classic|simplified]
[userType=serviceUsers|IDAdmins] where:

• REPORT_NAME is a name for the report.

• format, optionally, identifies how the report is to be formatted. Acceptable values:

– simplified, the default option, creates a report that is identical to the Role
Assignment Report generated from the Access Control screen.

– classic creates a report that lists the component roles that are subsumed into
the predefined roles to which users are assigned. It also lists the application
roles assigned to the user (directly or through groups)

• userType, optionally, identifies the users to be included in the report. If you do not
specify a value for this parameter, the default value serviceUsers is used.
Acceptable values:

– serviceUsers creates a report that contains information on all functional users
(does not include Identity Domain Administrators if they are not assigned to a
predefined role that grants access to the application)

– IDAdmins creates a report that lists only the users assigned to the Identity
Domain Administrator role. The report is identical in classic and in simplified
format

Examples

• Create a classic report: epmautomate provisionReport myProvReport.CSV
format=classic

• Create a simplified report:

– epmautomate provisionReport myProvReport.CSV format=simplified
– epmautomate provisionReport myProvReport.CSV userType=serviceUsers

• Create a report listing only Identity Domain Administrators:

– epmautomate provisionReport myProvReport.CSV userType=IDAdmins
– epmautomate provisionReport myProvReport.CSV userType=IDAdmins

format=classic

purgeArchivedTmTransactions
Purges archived matched transactions from the Account Reconciliation application.

You use the archiveTmTransactions command periodically to archive old matched
transactions and then run this command to remove them from the Account
Reconciliation to ensure optimal application size.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer

Chapter 2
EPM Automate Commands

2-126

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate purgeArchivedTMTransactions JobID=JOB_ID where JobID is the identifier of
the Archive TM Transaction job that was run to archive matched transactions. This job ID is
displayed in the EPM Automate console when you execute the archiveTmTransactions
command. You can also find it in the Job Console.

Example

epmautomate purgeArchivedTMTransactions JobID=100000002655003

purgeTmTransactions
Removes matched transactions from Account Reconciliation.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate purgeTmTransactions matchType age [filterOperator=VALUE]
[filterValue=VALUE] [logFilename=FILE_NAME] where:

• matchType is the identifier (TextID) of the match type from which matched transactions
should be deleted.

• age identifies the number of days since the transaction was matched. Matched
transaction older than or equal to this value will be deleted.

• filterOperator, optionally, is one of the following filter conditions to identify the accounts
containing matched transactions for deletion. This value is combined with the
filterValue to identify the accounts from which matched transactions should be purged:

– equals
– not_equals
– starts_with
– ends_with
– contains
– not_contains

• filterValue, optionally, is a filter value to identify the transactions to purge. If the
filterOperator is equals or not_equals, you can use a space-separated list to specify
multiple values; for example, filterValue=101-120 filterValue=102-202. If multiple
values are specified, transactions from accounts matching any filter operator and filter
value combination are selected for purging.

Chapter 2
EPM Automate Commands

2-127

• logFilename, optionally, is the name of a log file to record information about the
command activity. If a file name is not specified, a log file named
PurgeTransactions_JOB_ID is automatically generated.

Note:

If filterOperator and filterValue are not specified, all matched
transactions older than or equal to the age from all accounts for the specified
matchType are purged.

Examples

• Purge matched transactions 180 days or older for match type cashrecon:
epmautomate purgeTMTransactions cashrecon 180 logFile=tmlogs.log

• Purge matched transactions 180 days or older for match type cashrecon for
Account 101-120 or 102-202:
epmautomate purgeTMTransactions cashrecon 180 filterOperator=equals
filterValue=101-120 FilterValue=102-202

• Purge matched transactions 180 days or older for match type cashrecon for any
account containing the string 11:
epmautomate purgeTMTransactions cashrecon 180 filterOperator=contains
filterValue=11

recomputeOwnershipData
Recomputes ownership data

Recomputing of ownership data in Financial Consolidation and Close is required in
these situations:

• After adding or deleting override rules for Ownership Management accounts

• After you change Consolidation Methods range settings

• After a database refresh, regardless of whether the entity structure was changed

Recomputing of ownership data in Tax Reporting is required after each database
refresh even if the entity structure was not changed.

Applies to

Financial Consolidation and Close and Tax Reporting.

Required Roles

Service Administrator, Power User, User

Usage

epmautomate recomputeOwnershipData Scenario Year Period where:

• Scenario is the name of the scenario to recompute.

• Year is the year to recompute.

• Period is the first period of the year to recompute.

Chapter 2
EPM Automate Commands

2-128

The selected period and all subsequent periods are recomputed.

Note:

A POV that requires recomputation can be consolidated only after the ownership
data is recomputed.

Example

epmautomate recomputeOwnershipData FCCS_total_Actual FY19 Jan

recreate
Restores an environment to a clean state by re-creating the deployment.

You re-create the deployment to complete these tasks:

• Clean up an environment before importing a full snapshot.

• Change the business process that can be deployed in an environment.

• Change the Oracle Essbase version in use in Oracle Enterprise Performance
Management Cloud environments other than Narrative Reporting, Oracle Enterprise Data
Management Cloud, and Account Reconciliation, which do not use Essbase.
By default, EPM Standard Cloud Service and EPM Enterprise Cloud Service
environments are deployed with Hybrid-enabled Essbase, while legacy environments are
deployed with Non-Hybrid Essbase.

Upgrading the deployment of Non-Hybrid Essbase in legacy environments is required to:

– Support the extended dimensionality in existing legacy Financial Consolidation and
Close environments

– Enable hybrid block storage (BSO) applications in legacy Enterprise Planning and
Planning Modules environments

Downgrading the deployment of Hybrid-enabled Essbase in EPM Enterprise Cloud
Service environments is required if you are importing a snapshot from an environment
that has Non-Hybrid Essbase.

For detailed information about Hybrid Essbase and the considerations for upgrading to
Hybrid Essbase, see About Essbase in EPM Cloud in Getting Started with Oracle
Enterprise Performance Management Cloud for Administrators.

Chapter 2
EPM Automate Commands

2-129

Caution:

• This command deletes the existing application and, optionally, all user
defined artifacts from the environment. Additionally, it re-creates the
database and removes all existing data. After recreating the service, you
can create a new business process or import one using Migration or
EPM Automate.

• This command deletes migration history. As a result, the Migration Status
Report available in Migration will not contain historic information.

• Before using this command, perform a complete backup of the
environment. You can create a backup snapshot by executing the
runDailyMaintenance command.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management,Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate recreate [-f] [removeAll=true|false] [EssbaseChange=upgrade|
downgrade] [TempServiceType=Service_type] where:

• -f forces the re-create process to start without user confirmation. If you do not use
the -f option, EPM Automate prompts you to confirm your action.

• removeAll, optionally, removes all snapshots and the content of the inbox
(uploaded files) and outbox (files exported from the environment). Default is false,
which retains the snapshots and the content of inbox and outbox.

• EssbaseChange, optionally, upgrades or downgrades the current Essbase version.
EPM Automate retains the current Essbase version if you do not specify this
option. Permissible values are:

– upgrade to change from Non-Hybrid Essbase to Hybrid Essbase

– downgrade to change from Hybrid Essbase to Non-Hybrid Essbase.

Caution:

Before using this option, read and understand the information
available in About Essbase in EPM Cloud in Getting Started with
Oracle Enterprise Performance Management Cloud for
Administrators.

• TempServiceType, optionally, converts an environment to a different service
environment.

Chapter 2
EPM Automate Commands

2-130

The business processes that you can deploy in an environment is governed by the type
of subscription that you have. For example, if you have an EPM Standard Cloud Service
subscription, you cannot create a Free Form application after converting the environment
from Account Reconciliation to Planning. If you have an EPM Enterprise Cloud Service
subscription, you can create any business process in your environment after changing
the service type appropriately. See About the New EPM Cloud Services in Getting
Started with Oracle Enterprise Performance Management Cloud for Administrators

The behavior of this parameter is dependent on your subscription.

– Subscriptions other than EPM Standard Cloud Service and EPM Enterprise
Cloud Service:
You can use the TempServiceType option to temporarily convert a Planning,
Enterprise Planning, Tax Reporting, or Financial Consolidation and Close
environment to an Account Reconciliation, Oracle Enterprise Data Management
Cloud, or Profitability and Cost Management environment. For example, If you
purchased a Planning environment, you can convert it to an Account Reconciliation
environment by running the following command:

epmautomate recreate -f removeAll=true TempServiceType=ARCS

After converting the environment to Account Reconciliation, you can convert it to an
Oracle Enterprise Data Management Cloud or Profitability and Cost Management
environment by using the appropriate TempServiceType value. For example, to
convert it to a Profitability and Cost Management environment, execute the following
command:

epmautomate recreate -f removeAll=true TempServiceType=PCMCS

To convert the environment back to the original service type, run the following
command:

epmautomate recreate -f

Profitability and Cost Management: You can convert your Profitability and Cost
Management environment to Planning, Enterprise Planning, or an Enterprise
Profitability and Cost Management environment by running the following command:

epmautomate recreate -f removeAll=true TempServiceType=PBCS

To convert the environment back to the original Profitability and Cost Management
environment, use the following command:

epmautomate recreate -f TempServiceType=PCMCS

Note:

Profitability and Cost Management environments cannot be converted to
Account Reconciliation, Oracle Enterprise Data Management Cloud, or
Narrative Reporting environments.

Chapter 2
EPM Automate Commands

2-131

– EPM Standard Cloud Service and EPM Enterprise Cloud Service
subscriptions:
You can use the TempServiceType option to convert an EPM Cloud
environment to any other supported environment.

EPM Enterprise Cloud Service subscriptions use a common EPM Cloud
platform. Initially, you can deploy any supported EPM Cloud business process.

To switch from a deployed business process to another, you re-create the
environment by specifying the new service type for the environment. For
example, if you created an Account Reconciliation business process but now
want to create an Oracle Enterprise Data Management Cloud environment,
you run the re-create command as follows.

epmautomate recreate -f removeAll=true TempServiceType=EDMCS
To convert a business process (for example, Account Reconciliation) to
Planning, Tax Reporting, or Financial Consolidation and Close, do not specify
a TempServiceType value. For example, if you created an Account
Reconciliation business process but now want to create a Planning Modules
environment, you run the recreate command as follows.

epmautomate recreate -f removeAll=true
Acceptable TempServiceType values:

– ARCS to convert an environment to an Account Reconciliation environment

– EDMCS to convert an environment to an Oracle Enterprise Data Management
Cloud environment

– EPRCS to convert an environment to a Narrative Reporting environment

– PCMCS to convert an environment to a Profitability and Cost Management
environment

Examples

• Re-create the current environment, restore it to the original service type (if a
recreate had been issued before with a TempServiceType parameter), and
upgrade to Hybrid-enabled Essbase without removing user created snapshots and
contents of inbox and outbox:

epmautomate recreate -f EssbaseChange=upgrade
• Re-create the current environment and restore it to the original service type (if a

recreate had been issued before with a TempServiceType parameter),, remove
snapshots and the contents of inbox and outbox:
epmautomate recreate -f removeAll=true

• Re-create the current environment as an Oracle Enterprise Data Management
Cloud environment and remove the content of inbox and outbox, and existing
snapshots:
epmautomate recreate -f removeAll=true TempServiceType=EDMCS

• Re-create the current EPM Enterprise Cloud Service Account Reconciliation
environment to a Financial Consolidation and Close environment and remove the
content of inbox and outbox, and existing snapshots:
epmautomate recreate -f removeAll=true

Chapter 2
EPM Automate Commands

2-132

refreshCube
Refreshes the application cube. Typically, you refresh the cube after importing metadata into
the application.

The time required to complete a cube refresh operation depends on the changes that you
made to the application structure and the impact it has on the cube. For example, a refresh
after updating a sparse block storage cube member may not take much time while a cube
refresh after updating a dense block storage cube member or an aggregate storage cube
member could take a considerable amount of time. You must ensure that the cube refresh
operation is complete before the application is backed up during the next maintenance
window.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Sales Planning, and Strategic Workforce
Planning.

Required Roles

Service Administrator

Usage

epmautomate refreshCube [JOB_NAME] where JOB_NAME, optionally, is the name of a
Database Refresh job defined in the application.
Status of the operation is echoed in the console from which the command is run. You can
also view the status from the Recent Activity page of the Jobs screen in the application.

Example

epmautomate refreshCube DaliyCubeRefresh

removeUserFromGroups
Removes the membership of a user from the Access Control groups identified in an ANSI or
UTF-8 encoded CSV file.

The file format is as follows:

Group Name
Group1
Group2

Note:

These groups must exist in Access Control. Group Name values are not case-
sensitive.

Use the uploadFile command to upload the file to an environment.

Chapter 2
EPM Automate Commands

2-133

When the command execution finishes, EPM Automate prints information about each
failed entry to the console. Review this information to understand why the command
execution failed for some entries in the CSV file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management,Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator or Access Control Manager

Usage

epmautomate removeUserFromGroups FILE_NAME User_Login where:

• FILE_NAME is the name of a CSV file containing the names of the Access Control
groups from which the user's membership is to be removed

• User_Login is the login ID of an Oracle Enterprise Performance Management
Cloud user whose membership is to be removed from Access Control groups. This
user login ID must exist in the identity domain that services the environment and
must be assigned to a predefined role. This value is not case-sensitive.

Example

epmautomate removeUserFromGroups groups.CSV jdoe@examle.com

removeUsers
Deletes the accounts identified in an ANSI or UTF-8 encoded CSV file that was
uploaded to the environment from an identity domain.

The file format is as follows:

User Login
jane.doe@example.com
jdoe@example.com

Use the uploadFile command to upload file to the environment. User Login values are
not case-sensitive. For example, jane.doe@example.com is treated as being identical
to Jane.Doe@Example.com or any variation in its case.

Chapter 2
EPM Automate Commands

2-134

Note:

• The CSV file should not include the account of the user who executes this
command.

• Because user accounts are common to all service environments that an Identity
Domain Administrator supports, deleting an account for one environment
deletes it for all environments that share the Identity Domain Administrator.

When the command execution finishes, EPM Automate prints information about each failed
entry to the console. Review this information to understand why the command execution
failed for some entries in the CSV file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management,Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power User,
User, or Viewer)

Usage

epmautomate removeUsers FILE_NAME where FILE_NAME is the name of a CSV file containing
the login IDs of the users to be removed from the identity domain.

Example

epmautomate removeUsers remove_users.CSV

removeUsersFromGroup
Removes users listed in an ANSI or UTF-8 encoded CSV file from a group maintained in
Access Control.

The file format is as follows:

User Login
jdoe
john.doe@example.com

User Login values are not case-sensitive. For example, jane.doe@example.com is treated as
being identical to Jane.Doe@Example.com or any variation in its case. Use the uploadFile
command to upload the file containing user logins to the environment.

When the command execution finishes, EPM Automate prints information about each failed
entry to the console. Review this information to understand why the command execution
failed for some entries in the CSV file.

Chapter 2
EPM Automate Commands

2-135

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management,Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator or Access Control Manager

Usage

epmautomate removeUsersFromGroup FILE_NAME GROUP_NAME where:

• FILE_NAME is the name of a CSV file containing the login names of users you want
to remove from a group maintained in Access Control.

• GROUP_NAME is the name of the Access Control group from which you want to
remove users. This value is not case-sensitive.

Note:

User is removed from a group only if both these conditions are met:

• User logins included in the file exist in the identity domain that services
the environment

• The user is assigned to a predefined role in the identity domain

Example

epmautomate removeUsersFromGroup user_file.CSV example_group

removeUsersFromTeam
Removes Oracle Enterprise Performance Management Cloud users listed in a CSV
file from a team.

If a user included in the CSV file is not a member of the team, this command ignores
that user. The values in this file are not case-sensitive. CSV file format of is as follows:

User Login
jdoe
jane.doe@example.com

Use the uploadFile to upload the .CSV file to the environment.

Applies to

Financial Consolidation and Close, Tax Reporting, and Account Reconciliation.

Required Roles

Service Administrator, Power User, User, Viewer

Chapter 2
EPM Automate Commands

2-136

Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate removeUsersFromTeam FILE.CSV TEAM_NAME where:

• FILE identifies a UTF-8 formatted CSV file listing the login IDs of users to be removed
from the team.

• TEAM_NAME identifies a team name as defined in Access Control. This value is not case-
sensitive.

Example

epmautomate removeUsersFromTeam example_users.csv example_team

renameSnapshot
Renames a snapshot that you uploaded or a created in an environment.

If this command is executed to rename a snapshot that is in the process of being generated
or archived, you will receive one of these errors:

• File not found if the snapshot is being generated

• Archive process is in progress. Unable to Rename or Delete if the snapshot is
being archived

Do not rename the maintenance snapshot in an environment. To maintain a backup of the
maintenance snapshot, you should download Artifact Snapshot from the environment to a
local computer and then rename it as needed. See Overview of the Maintenance Snapshot in
Getting Started with Oracle Enterprise Performance Management Cloud for Administrators.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management,Oracle Enterprise Data Management Cloud, Sales Planning, and Strategic
Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application role

Usage

epmautomate renameSnapshot SNAPSHOT_NAME NEW_SNAPSHOT_NAME where:

• SNAPSHOT_NAME is the name of an existing snapshot. This value should not contain special
characters such as space, \ (backslash), / (slash), * (asterisk), ? (question mark),
" (quotation mark), < (less than), and > (greater than).

• NEW_SNAPSHOT_NAME is the unique name you want to assign to the snapshot.

Example

epmautomate renameSnapshot "Example Snapshot" Example_Snapshot_18_09_25

Chapter 2
EPM Automate Commands

2-137

replay
Replays Oracle Smart View for Office, REST API, or EPM Automate load on an
environment to enable performance testing under heavy load to verify that user
experience is acceptable when the service is under specified load.

You must create a replay file that identifies the activities that should be executed on
the service. See Preparing to Run the Replay Command for details information on how
to create the replay file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate replay REPLAY_FILE_NAME.csv [duration=N] [trace=true]
[lagTime=t] [encrypt=true|false] where:

• REPLAY_FILE_NAME is a CSV file that stores the activities to be executed on the
environment.

• Duration, optionally, indicates the number of minutes for which activities are
executed on the environment.
Activities in the HAR file are run one time if this value is not set. If the activities in
the HAR file are completed within the time specified by this parameter, EPM
Automate reruns the HAR file until the activities are complete. For example,
assume that you set duration=10 to replay a HAR file that takes three minutes to
run. In this scenario, the replay command runs the HAR file activities four times
(lasting 12 minutes) until the fourth iteration is complete.

• trace=true is an optional setting that instructs EPM Automate to create trace files
in XML format.
If this optional setting is specified, EPM Automate creates one folder for each HAR
file included in the replay CSV file and stores all related trace files in it. For each
activity in the HAR file, EPM Automate generates one trace file that contains
Smart View response. Trace files are named trace-N.xml; for example,
trace-1.xml where N is a counter that starts at 1.

The folders that store the trace files are created in the directory from which EPM
Automate is run. EPM Automate uses a combination of current system time of the
environment and HAR file name in YYYY_MM_DD_HH_MM_SS_HAR_FILE_NAME format
to name the folders. For example, if HAR file name is forecast1.har, the folder
name may be 2016_06_08_10_21_42_forecast1.

• [lagTime=t], optionally, specifies the number of seconds that the command
should wait between the execution of each HAR file included in the replay file.
Default is 5 seconds.

Chapter 2
EPM Automate Commands

2-138

The command displays an error if you specify a value less than 5 seconds. Negative
numbers (for example -1) and fractions (for example, 1/2) are not acceptable as the
parameter value. Decimal values are supported.

After initiating the execution of the first HAR file, the command waits for the number of
seconds specified by this parameter to initiate the processing of the next HAR file.
Because user activities are not usually initiated simultaneously, setting this parameter
helps to create a more realistic simulation of load on an environment.

For example, assume that you want to simulate the load of 1000 users signing on to an
environment during the peak hour to perform activities. You can create HAR files to
simulate these sessions and then run this command with a lag time of 6 seconds to
replicate the load exerted on the environment.

• encrypt=true|false, optionally, specifies whether to encrypt all passwords included in
the replay file. Default is true. A random encryption key is used to encrypt the password.

See A Sample Replay Session for detailed steps involved in executing this command.

Example

epmautomate replay forecast1.CSV duration=60 lagTime=5.6

resetService
Restarts the environment. You can, optionally, auto-tune the environment before restarting it
to ensure that the Oracle Essbase index caches for Block Storage Option (BSO) cubes are
optimized for your application.

By default, your environments are restarted right after the daily maintenance is completed.
Auto-tuning your environment is important, for example, after importing a snapshot into an
environment. Use this command only when you observe severe performance degradation or
if you receive error messages indicating that the environment is unusable. Restarting an
environment does not affect application customizations (for example, locale change, settings
related to theme and currency, etc.). Restart takes up to 15 minutes.

Before using this command, ensure that business rules are not running in the environment.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management,Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate resetService "comment" [AutoTune=true|false] [-f] where:

• Comment is a description of the issue that caused you to reset the environment.
Comments must be enclosed in quotation marks.

• AutoTune, optionally, indicates whether to auto-tune the environment to optimize Essbase
caches BSO cubes of your application. Default is false.

Chapter 2
EPM Automate Commands

2-139

Use this parameter only in environments that use Essbase BSO cubes: Planning
(including Planning Modules), Financial Consolidation and Close, and Tax
Reporting.

• -f, optionally, specifies that you want to force the restart of the environment
without additional user interaction. If you do not use this option, EPM Automate
prompts you to confirm your action. This option is useful if you schedule a script
that uses this command.

Examples

• epmautomate resetService "Users experience slow connections; force
restarting the environment" -f

• epmautomate resetService "Users experience unacceptably slow
connections"

• epmautomate resetService "Optimizing the Essbase cache" AutoTune=true

restoreBackup
Copies an available backup snapshot of an OCI (Gen 2) environment so that it is
available for import into the environment. This command does not work in Classic
Oracle Enterprise Performance Management Cloud environments.

Use the listBackups command to determine if the backup you want to restore is
available. Self-service restoration of a snapshot to the environment saves you
processing time. After restoring the snapshot, use the importSnapshot command to
import it into the environment.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management,Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application
role

Usage

epmAutomate restoreBackup SNAPSHOT_NAME [targetName=TARGET_SNAPSHOT_NAME],
where:

• SNAPSHOT_NAME is the name of a backup snapshot available in the environment as
listed by the listBackups command.

• targetName, optionally, is the name for the backup snapshot, without an extension,
in the target environment. If you do not specify this value, the backup snapshot is
restored to the target environment using the SNAPSHOT_NAME, but with a _
(underscore) replacing the / (slash). For example, if SNAPSHOT_NAME is
2022-05-14T00:08:56/Artifact_Snapshot.zip the targetName will be
2022-05-14T00:08:56_Artifact_Snapshot.zip.

Chapter 2
EPM Automate Commands

2-140

Examples

• Services other than Narrative Reporting:
epmAutomate restoreBackup 2022-05-14T00:08:56/Artifact_Snapshot.zip
targetName=example_Artifact_Snapshot

• Narrative Reporting only:
epmAutomate restoreBackup 2022-02-16T21:00:02/EPRCS_Backup
targetName=Example_EPRCS_Backup

restructureCube
Performs a full restructure of a block storage cube to eliminate or reduce fragmentation.
Restructuring also removes empty blocks, and will not push any changes from the application
to the cube.

Note:

Before running this command, ensure that no one is using the application.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate restructureCube CUBE_NAME where CUBE_NAME is the name of a cube exactly
as it is in an application

Example

epmautomate restructureCube Plan1

roleAssignmentAuditReport
In OCI (Gen 2) environments, creates an audit report that lists the changes made to
predefined and application role assignments over a period of time corresponding to the audit
data retention period specified for your environment. The default retention period is 30 days.
You can extend it to a maximum of 90 days by changing the Audit Retention Period (days)
setting in the Oracle Cloud Identity Console. To retain the audit data for duration longer than
90 days, periodically download and archive this report and the Invalid Login Report.

The Role Assignment Audit Report lists the User Login Name for which a role change (in
Action column) was made. It also includes the role that was assigned or unassigned, the user
who performed the role change (Administrator column), and the timestamp (UTC) in 24-hour
format when the action was completed.

Chapter 2
EPM Automate Commands

2-141

Information on deleted users who were previously assigned to predefined roles in the
environment is listed with the display name (first and last name) of the user in the User
Name column. In such cases, the Role column indicates the predefined role that the
user had before the user's account was deleted. This change does not apply to
application roles, if any, that was assigned to the deleted user; such assignments are
shown with the User Login Name of the user. For an example, see the information in
the red box in the following illustration.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management,Oracle Enterprise Data Management Cloud,
Narrative Reporting, Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator, or Identity Domain Administrator and any predefined role
(Service Administrator, Power User, User, or Viewer)

Usage

epmAutomate roleAssignmentAuditReport FROM_DATE TO_DATE FILE_NAME.CSV,
where:

• FROM_DATE indicates the start date (in YYYY-MM-DD format) of the period for which
the report is to be generated. This date must fall within the audit retention period
specified in the Oracle Cloud Identity Console.

• TO_DATE indicates the end date (in YYYY-MM-DD format) of the period for which the
report is to be generated.

• FILE_NAME is the name of a CSV file for the report. You can download the
generated report using the downloadFile command.

Example

epmAutomate roleAssignmentAuditReport 2021-06-01 2021-07-30
RoleAuditReport.CSV

Chapter 2
EPM Automate Commands

2-142

roleAssignmentReport
Generates a Role Assignment Report (.CSV).

This report, by default, lists the predefined roles (for example, Service Administrator) and
application roles (for example, Approvals Ownership Assigner, Approvals Supervisor,
Approvals Administrator, and Approvals Process Designer, which are Planning application
roles) assigned to users. This report, optionally, can also be generated to list the Identity
Domain Administrators of your environment. This report matches the CSV version of the Role
Assignment Report generated from Access Control.

Generating this report refreshes the user and role information available in Access Control.

For OCI (Gen 2) only:Oracle Enterprise Performance Management Cloud considers
deactivated users as being identical to users not assigned to any predefined roles even
though such users may have had predefined roles when they were deactivated. Information
on deactivated users is not included in this report.

Note:

This command produces a report equivalent to that created using the
provisionReport command.

You can download the report using the downloadFile command.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator or Access Control Manager

Usage

epmautomate roleAssignmentReport REPORT_NAME.CSV [userType=IDAdmins|
serviceUsers] where:

• REPORT_NAME is a name for the report.

Chapter 2
EPM Automate Commands

2-143

• userType, optionally, identifies the type of users whose information is to be
included in the report. Default is serviceUsers. Valid values are:

– serviceUsers creates a report that contains information on all functional users
(does not include Identity Domain Administrators if they are not assigned to a
predefined role that grants access to the application).

– IDAdmins creates a report that lists only the users assigned to the Identity
Domain Administrator role.

Examples

• Generate the report listing only functional users:

– epmautomate roleAssignmentReport myReport.CSV
– epmautomate roleAssignmentReport myReport.CSV userType=serviceUsers

• Generate report listing only Identity Domain Administrators:
epmautomate roleAssignmentReport myReport.CSV userType=IDAdmins

runAutomatch
Runs the Auto Match process to match transactions using the rules defined by a
Service Administrator.

Note:

Run this command after you import transactions data into Transaction
Matching using the importTmPremappedTransactions or the runDataRule
command.

You can monitor the status of the auto match process on the Job History tab in
Account Reconciliation.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional
application roles.

Usage

epmautomate runAutomatch RECONCILIATION_TYPE where RECONCILIATION_TYPE is a
reconciliation type defined in Account Reconciliation.

Example

epmautomate runAutomatch INTERCOMPANY

Chapter 2
EPM Automate Commands

2-144

runBatch
Executes a Data Management batch.

If batch execution mode in Data Management is set to Serial, control is returned when all the
jobs in the batch are completed; if it is set to Parallel, control is returned when all jobs in the
batch are submitted for execution.

Note:

This command cannot be used to execute direct data load integration from data
sources into Oracle Enterprise Performance Management Cloud. Use the EPM
Integration Agent to integrate direct data loads. For detailed information, see
Performing a Direct Data Load using the EPM Integration Agent in Administering
Data Integration for Oracle Enterprise Performance Management Cloud.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User

Usage

epmautomate runBatch BATCH_NAME where BATCH_NAME is the name of a batch defined in
Data Management.

Examples

epmautomate runBatch Accounting_batch

runBusinessRule
Launches a business rule.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User (if Rule Launch access is granted)

Usage

epmautomate runBusinessRule RULE_NAME [PARAMETER=VALUE] where:

• RULE_NAME is the name of a business rule exactly as it is defined in the environment.

Chapter 2
EPM Automate Commands

2-145

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/diepm/epm_agent_peforming_direct_data_100x91c00db7.html

• PARAMETER=VALUE indicates optional runtime parameters and their values required
to execute the business rule.

Note:

– This command can execute a single business rule only. To execute a
ruleset, use the runRuleSet command.

– The rule is executed against the plan type to which it was deployed.

– Default values are used if you do not provide values for runtime
parameters. The command ignores runtime prompts that are not
exact matches to those defined in the rule.

– Use PARAMETER=VALUE pairing to specify as many runtime prompts as
the business rule requires. The following example uses two runtime
prompts (Period and Entity) and their values (Q1 and USA).
See Specifying Multiple Values for a Parameter for information on
entering multiple values for a parameter.

Example

epmautomate runBusinessRule RollupUSSales Period=Q1 Entity=USA

runCalc
Runs calculations in an application.

Using this command, you can run calculations using rules in a Model POV against
data in a different Data POV without copying rules across POVs.

Applies to

Profitability and Cost Management

Required Roles

Service Administrator, Power User

Usage

epmautomate runCalc APPLICATION_NAME POV_NAME [DATA_POV_NAME]
PARAMETER=VALUE [comment="comment"] stringDelimiter="DELIMITER" where:

• APPLICATION_NAME is the name of the Profitability and Cost Management
application that contains the POV to be calculated.

• POV_NAME is the name of the model POV to be calculated.

• DATA_POV_NAME is, optionally, the name of the data POV that is to be calculated
using the rules of the model POV.

If DATA_POV_NAME is not specified, by default, POV_NAME will be used.

You can use only exeType=ALL_RULES if you specify DATA_POV_NAME.

Chapter 2
EPM Automate Commands

2-146

• PARAMETER=VALUE indicates runtime parameters and their values to run the calculation.
Specify as many parameter and value pairings as the process requires. Valid parameters
and their values:

– exeType=ALL_RULES|RULESET_SUBSET|SINGLE_RULE identifies the rule execution type.
This is a required parameter.
Depending on the value set for exeType, the following parameters may be specified:

* If you specify exeType=ALL_RULES, do not include rule subset or single rule
related parameters such as subsetStart, subsetEnd, ruleSetName, and
ruleName. Must use this exeType if you set DATA_POV_NAME parameter.

* If you specify exeType=SINGLE_RULE, specify the values for ruleSetName and
ruleName only.

* If you specify exeType=RULESET_SUBSET, specify the values for subsetStart and
subsetEnd.

– subsetStart specifies the sequence number of the first rule in the rule set to run

– subsetEnd specifies the sequence number of the last rule in the rule set to run

– ruleSetName identifies the rule set that contains the calculations you want to run

– ruleName name of the rule to run (to run a single rule)

– isClearCalculated=true|false specifies whether to clear existing calculations

– isExecuteCalculations=true|false specifies whether to run calculations

– isRunNow=true|false set this value to true to run the process now

– optimizeReporting=true|false set this optional value to false if the calculations
are to be run without optimization for reporting. Default is true
Best Practice:

* Set optimizeReporting=false only when necessary to save processing time; for
example, when running a single rule or a sequential series of several POVs

* When running multiple concurrent calculation jobs, set optimizeReporting=true
for all jobs; only the last job to complete will perform the aggregation, avoiding
redundant processing and preventing running jobs from slowing down.

Note:

Parameter values (true or false) must be in all lower case.

• comment is an optional comment enclosed in double quotation marks

• stringDelimiter is the delimiter used in POV values. Delimiter must be enclosed in
double quotation marks.

Example

epmautomate runCalc BksML12 2012_Jan_Actual Jan-2016 isClearCalculated=true
isExecuteCalculations=true isRunNow=true subsetStart=10 subsetEnd=20
ruleSetName="Utilities Expense Adjustment" ruleName="Occupancy Expense
Allocations" exeType="ALL_RULES" comment="Test calculation" stringDelimiter="_"

Chapter 2
EPM Automate Commands

2-147

runComplianceReport
Generates a report that is defined in Reconciliation Compliance.

See these information sources in Administering Account Reconciliation:

• Using Reports for instructions on defining reports.

• Generating Predefined Reports in Reconciliation Compliance for a list of
predefined Reconciliation Compliance reports and the parameters for generating
them.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional
application roles.

Usage

epmautomate runComplianceReport FILE_NAME GROUP_NAME REPORT_NAME
REPORT_FORMAT [Param=value] where:

• FILE_NAME is a unique file name for the report that will be generated. If a report
with this name exists on the server, it will be overwritten. Use thedownloadFile
command to download this report to a local computer.

• GROUP_NAME is the name of the group with which the report is associated.

• REPORT_NAME is a unique name for the report to be generated.

• REPORT_FORMAT is one of the following formats for the report:

– PDF

– HTML (not supported for graphs and charts)

– XLSX (not supported for graphs)

– CSV

– CSV2

Note:

REPORT_FORMAT CSV does not permit the formatting of data based on a
template while CSV2 does. Generating CSV2 formatted report takes more
time compared to CSV output.

• Param=value, optionally identifies the required parameters for generating the
report. For example, the Balance By Account Type report takes two parameters
Period with the value July 2017 and Currency Bucket with the value Entered.
You should specify these parameters as "Period=July 2017" "Currency
Bucket=Entered".

Chapter 2
EPM Automate Commands

2-148

Example

epmautomate runComplianceReport "Example_File Name""Reconciliation Manager"
"Balance By Account Type" PDF "Period=July 2017" "Currency Bucket=Entered"

runDailyMaintenance
Starts the daily service maintenance process right away instead of waiting for the scheduled
daily maintenance window.

This command enables you to force the creation of a backup snapshot and to update your
environment. Before running this command, ensure that no one is using the environment.
Daily maintenance schedule is not affected by this command. You use this command if you
do not want to wait for the next maintenance window for changes to the environment to take
effect, for example, after applying a one-off patch.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate runDailyMaintenance [skipNext=true|false] [-f] where:

• skipNext, optionally, indicates whether to skip the next occurrence of the daily
maintenance process. Default is false.

• -f, optionally, indicates whether to force start the maintenance process without user
confirmation. If you do not use the -f option, EPM Automate prompts you to confirm your
action.

Examples

• To force start an off cycle daily maintenance without skipping next scheduled
maintenance: epmautomate runDailyMaintenance -f

• To force start an off cycle daily maintenance and skip the next scheduled maintenance:
epmautomate runDailyMaintenance skipNext=true -f

• To start an off cycle daily maintenance and skip the next scheduled maintenance:
epmautomate runDailyMaintenance skipNext=true

runDataRule
Executes a Data Management data load rule based on the start period and end period, and
import or export options that you specify.

Chapter 2
EPM Automate Commands

2-149

Note:

This command cannot be used to execute direct data load integration from
data sources into Oracle Enterprise Performance Management Cloud. Use
the EPM Integration Agent to integrate direct data loads. For detailed
information, see Performing a Direct Data Load using the EPM Integration
Agent in Administering Data Integration for Oracle Enterprise Performance
Management Cloud.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User

Usage

epmautomate runDataRule RULE_NAME START_PERIOD END_PERIOD IMPORT_MODE
EXPORT_MODE [FILE_NAME] where:

• RULE_NAME is a name of a data load rule defined in Data Management. You should
enclose the rule name in quotation marks if it contains space.

• START_PERIOD is the first period for which data is to be loaded. This period name
must be defined in Data Management period mapping.

• END_PERIOD is, for multi-period data load, the last period for which data is to be
loaded. For single period load, enter the same period as start period. This period
name must be defined in Data Management period mapping.

• IMPORT_MODE determines how the data is imported into Data Management.

Import mode settings are case-sensitive. Acceptable values are:

– APPEND to add to the existing POV data in Data Management

– REPLACE to delete the POV data and replace it with the data from the file

– RECALCULATE to recalculate the data

– NONE to skip data import into Data Management staging table

• EXPORT_MODE determines how the data is exported to the application.

Export mode settings are case-sensitive. Acceptable values are:

– STORE_DATA to merge the data in the Data Management staging table with the
existing data. Always use this export option in the Data Management jobs
used to load metadata.

– ADD_DATA to add the data in the Data Management staging table to the
application.

– SUBTRACT_DATA to subtract the data in the Data Management staging table
from existing data.

Chapter 2
EPM Automate Commands

2-150

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/diepm/epm_agent_peforming_direct_data_100x91c00db7.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/diepm/epm_agent_peforming_direct_data_100x91c00db7.html

– REPLACE_DATA to clear the POV data and replace it with data in the Data
Management staging table. The data is cleared for Scenario, Version, Year, Period,
and Entity.

– NONE to skip data export from Data Management to the application.

Note:

For Financial Consolidation and Close, only these export modes are supported:

– MERGE to merge the data in the Data Management staging table with the
existing data

– REPLACE to remove entries from DM staging table and replace with those
from the data load

– NONE to skip data export from Data Management to the application

For Oracle Fusion Cloud as a target, only these export modes are supported:

– MERGE to merge the data in the Data Management staging table with the
existing data

– NONE to skip data export from Data Management to the application

• FILE_NAME is an optional file name. If you do not specify a file name, EPM Automate
imports the data contained in the file name specified in the load data rule. This file must
be available in the inbox folder or in a folder within it.

When loading Bank Administration Institute (BAI) format files for Account Reconciliation,
do not specify a value for this parameter. You must always specify the file name for
loading BAI files in the data rule definition.

Note:

If a path is specified in the data rule, do not specify the file path in the
command; specify only the file name. If a path is not specified in the data rule;
specify the full path to the data file.

Examples

• Multi-period Import:
epmautomate runDataRule VisionActual Mar-15 Jun-15 REPLACE STORE_DATA inbox/
Vision/GLActual.dat

• Single-period Import:

epmautomate runDataRule "Vision Actual" Mar-15 Mar-15 REPLACE STORE_DATA
inbox/Vision/GLActual.dat

runDMReport
Creates a Data Management report and stores it in the outbox/reports folder.

The generated report is named based on the ID of the Data Management job that generates
the report and the report format. For example, if the report job ID is 2112 and the report

Chapter 2
EPM Automate Commands

2-151

output format that you specify is PDF, the report name is 2112.pdf. The report name is
displayed in the console after the report is generated. You can also identify the report
name from the Process Details tab in Data Management or by using the listFiles
command.

Use the downloadFile command to download the report to a local computer.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User

Usage

epmautomate runDMReport REPORT_NAME PARAMETER=Value "Report Output
Format=[PDF|HTML|XLS|XLSX]" where:

• REPORT_NAME is the name of the Data Management report template to be used for
generating the report.

• PARAMETER=Value indicates report parameters and their values. You specify as
many parameters as required in PARAMETER=Value format. The list of required
parameters depends on the report that you want to generate.

Note:

Report run time parameters are defined when you design your reports.
To run this command, you must generate and copy these parameters
and values to EPM Automate from the Workflow tab. To generate
runtime parameters of a report, in the Workflow tab of Data
Management, click Report Execution and then select a group from
Report Group. Select the report for which you want to generate the
parameters, then click Create Report Script. Optionally, specify report
parameter values, then select an output format, and then click OK. Use
the parameters shown in Generate Report Script to specify runtime
parameters and values to generate the report

• Report Output Format indicates the report output format. Valid options are PDF,
HTML, XLS, and XLSX. The default report format is PDF.

Example

epmautomate runDMReport "TB Current Location By Target Acct (Cat,Per)"
"Period=Jul 14" "Category=Forecast" "Location=FCSTtoVISCONSOL1" "Rule
Name=FCSTtoVISCONSOL1" "Report Output Format=HTML"

runIntegration
Executes a Data Integration job to import data into an Oracle Enterprise Performance
Management Cloud business process or export data from a business process to an
external system.

Chapter 2
EPM Automate Commands

2-152

This command deprecates the runDataRule command. Oracle recommends that you start
using this command instead of therunDataRule command.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User

Usage

epmautomate runIntegration JOB_NAME importMode=Append|Replace|"Map and
Validate"|"No Import"|Direct exportMode=Merge|Replace|Accumulate|Subtract|"No
Export"|Check periodName={PERIOD_NAME} [inputFileName=FILE_NAME] [PARAMETERS]
• For Standard Mode integrations, you must specify the values for importMode,

exportMode, and periodName
• For Quick Mode integrations, you must specify the value for exportMode
• Parameter names and their values are case-sensitive

In this command:

• JOB_NAME is the name of an integration job defined in Data Integration.

• importMode determines how the data is imported into Data Integration. Acceptable import
modes are:

– Append to add to the existing POV data in Data Integration.

– Replace to delete the POV data and replace it with the data from the file.

– Map and Validate to skip data import, but reprocess the data with updated mappings
and logic accounts.

– No Import to skip data import into the Data Integration staging table.

• exportMode determines how the data is loaded to the target application. For Quick Mode
integrations, you cannot use Check and No Export as the value of exportMode parameter.
Acceptable export mode values are:

– Merge to update the existing data and add new data.

– Replace to clear the existing data in the POV and load it with new data. For Standard
mode, the data is cleared for Scenario, Version, Year, Period, and Entity dimensions.
For Quick Mode, data is cleared for Year, Period, and Entity dimensions. You can
define custom clear regions for both modes.

– Accumulate to add the data to the existing data. Applicable to Planning, Planning
Modules, Financial Consolidation and Close, Tax Reporting, Profitability and Cost
Management, and Enterprise Profitability and Cost Management.

– Subtract to subtract the data from existing balance. Applicable to Profitability and
Cost Management, and Enterprise Profitability and Cost Management.
For Quick Mode integrations:

* You cannot use Check and No Export as the value of this parameter.

Chapter 2
EPM Automate Commands

2-153

* For Planning, Planning Modules, and Financial Consolidation and Close,
only valid values are Replace, Merge, and Accumulate.

– No Export to skip data export. Use this mode to load data into the staging
table for review before loading to the target application.

– Check to only perform a data validation check.

For Oracle Fusion Cloud as a target, only these export modes are supported:

* MERGE to merge the data in the Data Integration staging table with the
existing data

* NONE to skip data export from Data Integration to the application

• periodName is the name of one ore more periods or period ranges, each enclosed
in curly brackets, for which to import or export the data. Acceptable period naming
conventions are as follows:

– For single period loads, specify the period name enclosed in curly brackets, for
example, {Jan-21}

– For multi-period loads, enclose start and end period names in curly brackets,
for example, {Jan-21}{Mar-21} (to load data for all periods starting Jan-21
and ending Mar-21)

– For Planning, Planning Modules, Financial Consolidation and
CloseFreeForm, and Tax Reporting: You can specify the Business Process
Period Name and year in the format {Jan#FY21}{Mar#FY21} to load data for all
periods starting Jan-21 and ending Mar-21.
Period name must be enclosed in curly brackets.

* Single Period—Refers to the Data Management period name for a single
period defined in Period mapping.

* Multi-Period—Refers to a multi-period load. The parameter is specified in
{Month-Year}{Month-Year} format. For example, {Jan-20}{Mar-20} for a
multi-period load from Jan-20 to Mar-20.

* Planning Period Name—Refers to a Planning period name in
{Month#Year} format, for example, {Jan#FY20}{Mar#FY20}. Using this
convention, you do not need to specify Data Integration period names.
Instead you specify the member names for the Year and Scenario
dimensions.
This parameter is supported in the Planning,Tax Reporting, and Financial
Consolidation and Close business processes. It is functional for both your
service applications and cloud deployments derived from on-premises
data sources.

Using this convention is useful if triggered from an EPM Cloud Groovy
script by capturing the Year and Period member names. The application
period mapping or global period mapping must exist with the Year and
Month in the target values of the period mapping.

* Substitution Variable—This is an extension of the preceding Planning
period name format whereby a substitution variable, instead of the actual
Year and Month member names, may be specified in {Month#&CurYr}
{&FcstMonth#&CurYr} format; for example, {Jan#&CurYr}
{&FcstMonth#&CurYr}.
A combination of both actual member names as well as substitution
variables is supported.

Chapter 2
EPM Automate Commands

2-154

This format is supported in the Planning,Tax Reporting, and Financial
Consolidation and Close business processes.

The application period mapping or global period mapping must exist in the Data
Integration of the environment where the command is run, with the Year and
Month values available in the target values of the period mapping. In this case,
Year and Month refer to the current value of the substitution variable during
execution.

* GLOBAL POV—Executes the data load for the Global POV period. Use the
format {GLOBAL_POV}.

Note:

If you use any period naming parameter other than the parameters
described in this discussion, you'll get an Invalid Input – HTTP 400
error message.

– {GLOBAL_POV} to execute the data load for the period defined in Global POV in the
system or on the Application Settings in Data Integration.

Note:

{Month#Year} period naming convention format is supported for Planning,
Planning Modules, Financial Consolidation and Close, and Tax Reporting.
Under this convention, you can specify member names for the Year and
Scenario dimensions instead of the Data Integration period names. This
approach is useful if the command is triggered from a Groovy script by
capturing the Year and Period member names.
The {Jan#&CurYr}{&FcstMonth#&CurYr} substitution variable naming
convention is an extension of the preceding period naming convention. You
can specify substitution variable instead of the Year and Month member
names if you are running this command against Planning, Planning
Modules, Financial Consolidation and Close, and Tax Reporting. A
combination of member names and substitution variables is also supported.

The preceding period naming and substitution variable naming conventions
work only if application period mappings or global period mappings with the
Year and Month in the target values already exist in Data Integration.

• inputFileName, for file-based data loads, specifies the name of the file, available in the
inbox, from which data is to be imported. If you specify the directory name in the
Integration definition, then pass only the file name. If you do not include a directory name
in the Integration definition, use inbox/DIR_NAME/FILE_NAME format, for example, inbox/
GLBALANCES.txt or inbox/EBSGL/GLBALANCES.txt. If the file has been uploaded to the
default location in the environment, use #epminbox/FILE_NAME convention, for example,
#epminbox/GLBALANCES.txt, to identify the input data file.
This parameter is applicable only to native file-based data loads. If you do not specify this
parameter value for file-based data loads, this command imports data from the file
specified in the integration definition. If you specify this parameter value for data loads
that are not file-based, the command ignores it.

• PARAMETERS, optionally, identifies runtime parameters in PARAMETER_NAME="PARAMETER"
format. Parameters include both source filters and target options.

Chapter 2
EPM Automate Commands

2-155

Note:

The only parameter that you can use at this time for a dimension
(metadata) type of target application is "Refresh Database"=Yes|No.

Examples

• Single period import:
epmAutomate runIntegration VisionDataLoad importMode=Replace
exportMode=Merge periodName="{Mar-15}"

• Multi-period Import:
epmAutomate runIntegration VisionDataLoad importMode=Replace
exportMode=Merge periodName="{Mar-15} {Jun-15}"

• Incremental file-based data integration:
epmAutomate runIntegration IncrementalFileLoad importMode=Replace
exportMode=Merge periodName="{Jan-20}{Mar-20}" inputFileName=File1.txt

runMatchingReport
Generates a report that is defined in Transaction Matching.

See Generating Predefined Reports in Transaction Matching in Administering Account
Reconciliation for a list of predefined Transaction Matching reports and the parameters
for generating them.

Applies to

Account Reconciliation

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional
application roles.

Usage

epmautomate runMatchingReport FILE_NAME GROUP_NAME REPORT_NAME
REPORT_FORMAT [Param=value] where:

• FILE_NAME is a unique file name for the report that will be generated. If a report
with this name exists on the server, it will be overwritten. Use the downloadFile
command to download this report to a local computer.

• GROUP_NAME is the name of the group with which the report is associated.

• REPORT_NAME is a unique name for the report to be generated.

• REPORT_FORMAT is one of the following formats for the report:

– PDF

– HTML (not supported for graphs and charts)

– XLSX (not supported for graphs)

– CSV

Chapter 2
EPM Automate Commands

2-156

– CSV2

Note:

REPORT_FORMAT CSV does not permit the formatting of data based on a template
while CSV2 does. Generating CSV2 formatted report takes more time compared
to CSV output.

• Param=Value, optionally identifies the required parameters for generating the report. For
example, for the Match Type Configuration report which takes the parameter status
with the value approved, specify the parameter and value as status=Approved.

Example

epmautomate runMatchingReport Example_FileName "Transaction Matching" "Match
Type Configuration" HTML "status=Approved"

runPlanTypeMap
Copies data from a block storage database to an aggregate storage database or from a block
storage to another block storage based on the settings specified in a job of type plan type
map.

Applies to

Planning, Planning Modules, FreeForm, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate runPlanTypeMap JOB_NAME [clearData=true|false] where:

• JOB_NAME is the name of a job of type plan type map defined in the application.

• clearData is an optional setting that indicates whether the data in the target database
should be removed before copying data. If this parameter value is not set, the default
value true is used.

Parameter values (true or false) must be in all lower case.

Example

epmautomate runPlanTypeMap CampaignToReporting clearData=false

runRuleSet
Launches a business ruleset.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Sales Planning, and Strategic Workforce Planning.

Chapter 2
EPM Automate Commands

2-157

Required Roles

Service Administrator, Power User (if Rule Launch access is granted)

Usage

epmautomate runRuleSet RULESET_NAME [PARAMETER=VALUE] where:

• RULESET_NAME is the name of a business ruleset exactly as defined in the
environment.

• PARAMETER=VALUE indicates optional runtime parameters and their values required
to execute the ruleset.

Note:

The ruleset is executed against the plan type to which it is deployed.

Use PARAMETER=VALUE pairing to specify as many runtime prompts as the
ruleset requires. The following example uses two runtime prompts
(Period and Entity) and their values (Q1 and USA).

Default values are used if you do not provide values for runtime
parameters. The command ignores runtime prompts that are not exact
matches to those defined for the ruleset.

See Specifying Multiple Values for a Parameter for information on
entering multiple values for a parameter.

Example

epmautomate runRuleSet RollupUSSales Period=Q1 Entity=USA

runSupplementalDataReport
Generates relational reports that display data from Supplemental Data Manager.

Supplemental Data Reports are grouped as Non-Consolidation Reports in Financial
Consolidation and Close and Tax Reporting. See "List of Predefined Reports and
Parameters" section in Generate Report for Financial Consolidation and Close and Tax
Reporting in REST API for Oracle Enterprise Performance Management Cloud for a
list of reports you can generate and the parameters for generating them.

Applies to

Financial Consolidation and Close, and Tax Reporting.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate runSupplementalDataReport FILE_NAME GROUP_NAME REPORT_NAME
REPORT_FORMAT [Param=value] where:

Chapter 2
EPM Automate Commands

2-158

• FILE_NAME is a unique file name for the report.

• GROUP_NAME is the name of the group with which the report is associated.

• REPORT_NAME is a unique name for the report to be generated.

• REPORT_FORMAT is one of the following formats for the report:

– PDF

– HTML (not supported for graphs and charts)

– XLSX (not supported for graphs)

– CSV

– CSV2

REPORT_FORMAT CSV does not permit the formatting of data based on a template while
CSV2 does. Generating CSV2 formatted report takes more time compared to CSV output.

• Param=value, optionally identifies the required parameters for generating the report. For
example, to generate the At Risk Tasks report, which takes a schedule name with the
value monthly and a period with the value Jan, specify "schedule name"=monthly
period=Jan.

Example

epmautomate runSupplementalDataReport Example_File_name Group1 "At Risk Tasks"
html "schedule name"=monthly period=Jan

runTaskManagerReport
Generates relational reports that display data from Task Manager.

Task Manager reports are grouped as Non-Consolidation Reports in Financial Consolidation
and Close and Tax Reporting.

See "List of Predefined Reports and Parameters" section in Generate Report for Financial
Consolidation and Close and Tax Reporting in REST API for Oracle Enterprise Performance
Management Cloud for a list of reports you can generate and the parameters for generating
them.

Applies to

Financial Consolidation and Close, and Tax Reporting.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate runTaskManagerReport FILE_NAME GROUP_NAME REPORT_NAME REPORT_FORMAT
[Param=value] where:

• FILE_NAME is a unique file name for the report.

• GROUP_NAME is the name of the group with which the report is associated.

• REPORT_NAME is a unique name for the report to be generated.

• REPORT_FORMAT is one of the following formats for the report:

Chapter 2
EPM Automate Commands

2-159

– PDF

– HTML (not supported for graphs and charts)

– XLSX (not supported for graphs)

– CSV

– CSV2

Note:

REPORT_FORMAT CSV does not permit the formatting of data based on a
template while CSV2 does. Generating CSV2 formatted report takes more
time compared to CSV output.

• Param=value, optionally identifies the required parameters for generating the
report. For example, to generate the Early Tasks report, which takes a schedule
name with the value monthly and a period with the value Jan, specify "schedule
name"=monthly period=Jan.

Example

epmautomate runTaskManagerReport Example_File_name Group1 "Early Tasks"
PDF "schedule name"=monthly period=Jan

sendMail
Sends an email, with the option to attach files from Oracle Enterprise Performance
Management Cloud.

You can incorporate this command into scrips to notify users of various conditions or to
send reports.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management,Enterprise
Profitability and Cost Management, Narrative Reporting, Oracle Enterprise Data
Management Cloud, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate sendMail ToAddress Subject [Body="MessageBody"]
[Attachments=FILE1,FILE2] where:

• ToAddress identifies semicolon separated email addresses of recipients enclosed
in double quotes. Example, "jdoe@example.com;jane.doe@example.com".

• Subject identifies the email subject.

• Body="MessageBody", optionally, is the email content. If not specified, there is no
body to the email.

Chapter 2
EPM Automate Commands

2-160

Note:

Use valid HTML tags to format the message body to create a desired email
format. The entire message body (including all HTML tags) must be specified
as one line and should not contain new line charracters. See Examples.

• Attachments, optionally, identifies a comma separated list of files available in EPM Cloud
to be attached to the email. For example, outbox/errorFile.txt,inbox/users.csv.

Note:

– Use * (asterisk) as the wildcard for one character in the file name. For
example, specify outbox/user*.csv to attach all files in the outbox with five
letter file names that fit the pattern.

– You can attach any file, other than snapshots, listed by the listFiles
command, as an email attachment. The size of the attachment must not
exceed 10 MB.

Examples

• Unformatted Email: epmautomate sendMail
"jdoe@example.com;jane.doe@example.com" "Data Load Process Failed"
Body="Data Load 1 Failed" Attachments=outbox/Errorfile.txt,outbox/
Errofile2.txt

• Formatted Email: epmautomate sendMail jdoe@example.com "Send Formatted Email"
"Body=<!DOCTYPE html><html><body><h1>EpmAutomate Email Formatting</
h1><p>Hi,</p><p>Test Allocation Rules, Volume, and SPT data were loaded into
FY22_Feb_Actual_Version POV.</p><p>Check the attachment for details.</p></
body></html>" Attachments=outbox/loadResults.txt

setApplicationAdminMode
Places the application in administration mode so that access to the application is limited to
Service Administrators only.

This command is useful to prevent users from working on the application when Service
Administrators are performing administrative operations. The application remains in
administration mode until you change it back so that all users can access it.

Note:

This command replaces the applicationAdminMode command, which has been
deprecated, but not yet removed from EPM Automate.

Use the getApplicationAdminMode command to check the current status of the environment.

Chapter 2
EPM Automate Commands

2-161

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Account Reconciliation,
Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate setApplicationAdminMode true|false
In this command, specify true to place the application in administration mode and
false to return it to normal mode so that all users can access it

Examples

• Place the application in administration mode:
epmautomate setApplicationAdminMode true

• Return the application to normal operation:
epmautomate setApplicationAdminMode false

setDailyMaintenanceStartTime
Sets the time (UTC or another time zone) at which the daily maintenance of the
environment starts. The maintenance of the environment need not start at the top of
the hour; you can set the hour and the minute at which the maintenance should start.

To ensure that the use of this command does not interfere with Oracle’s requirement
for creating backups, this command will not change the maintenance start time if the
daily maintenance process did not run in the last 36 hours.

Note:

Service Administrators who are currently logged in to the environment using
a browser will see the new daily maintenance start time only after they sign
out and then sign in.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Chapter 2
EPM Automate Commands

2-162

Usage

epmautomate setDailyMaintenanceStartTime StartTime where StartTime is the time (in
HH:MM format using a 24 hour clock) at which the maintenance process should start and an
optional time zone. Acceptable start time value range is 00:00 - 23:59. If the start time is not
to be set in UTC, specify a valid standard time zone; for example, "14:35 America/
Los_Angeles" for 2:35 pm Pacific Standard Time.

Examples

• Set daily maintenance start to 2:20 PM UTC:
epmautomate setDailyMaintenanceStartTime 14:20

• Set daily maintenance start to 2:35 PM Pacific Standard Time:
epmautomate setDailyMaintenanceStartTime "14:35 America/Los Angeles"

setDemoDates
Updates Oracle internal demo data as needed.

Use this command only on installations setup with Oracle internal demo data.

Account Reconciliation only: This command resets dates for all reconciliations that have
associated Demo Code attribute values of setdemodates or setdemodatesnostatuschange.
This command handles reconciliations for up to 12 periods: a current period and 11 prior
(historic) periods. If reconciliations from more than two periods are tagged with the Demo Code
attribute, the command treats those periods as being in the prior period. Reconciliations that
do not have this attribute value are not affected.

• If the value is setdemodates, the command resets the reconciliation dates based on the
specified date and a random status

• If the value is setdemodatesnostatuschange, the command resets the reconciliation
dates based on the specified date without changing the reconciliation status

Financial Consolidation and Close and Tax Reporting only: This command resets the
tasks start and end dates, and other related date information, to make the tasks look good for
a demo. It calculates the new task dates based on the value of the SETDEMODATES attribute set
in the task's schedule along with the value of the Demo Date value that you provide. If Demo
Date value is not specified, the command uses today's date to calculate the new task dates.

Note:

Tasks in schedules that do not have SETDEMODATES value are not affected.

Based on the Demo Date that you specify, this command moves forward all dates associated
with the task. This includes core run time dates (start date, end date, etc.) and ancillary dates
including those of history, individual workflow due dates, and start date (actual). Task status is
not affected.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
and Account Reconciliation, Sales Planning, and Strategic Workforce Planning

Chapter 2
EPM Automate Commands

2-163

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional
application roles.

Usage

epmautomate setDemoDates [DEMO_DATE] where DEMO_DATE is an optional date in
YYYY-MM-DD format. Reconciliations are reset to the current date if you do not specify
this value.

Example

epmautomate setDemoDates 2020-02-15

setEJJournalStatus
In Financial Consolidation and Close, sets the Enterprise Journal posting result from
the ERP System. Use this command to update the posting status of Journals that are
in Post in Progress status irrespective of their workflow status.

This command uses a CSV file identifying the status of import into the ERP system.
You use the uploadFile command to upload the import file to the environment. The
CSV file format is as follows:

Year,Period,Journal ID,Posting Status,Message
2020,Dec,1000001021,Posted,"SUCCESS"
2020,Dec,1000001022,Failed,"Row Header No: 2,10000415 - Linked value 6
does not exist Application-defined or object-defined error 65171"
2020,Dec,1000001022,Failed,"Row Header No: 7,10000415 - Z_ECS_MSG
(001)Enter a valid account number"
2020,Dec,1000001022,Failed,"Row Header No: 7,10000415 - Z_ECS_MSG
(002) Enter a valid cost center"

Message column is optional and may be omitted.

This command does not export Enterprise Journal data from Financial Consolidation
and Close or import it into the ERP system.

Applies to

Financial Consolidation and Close

Required Roles

Service Administrator

Usage

epmautomate setEJJournalStatus FILE_NAME.csv where FILE_NAME identifies the
CSV file containing the status of import into the ERP system.

Example

epmautomate setEJJournalStatus JournalStatus.csv

Chapter 2
EPM Automate Commands

2-164

setEncryptionKey
Sets a custom encryption key for database access.

Using this command provides a Bring Your Own Key (BYOK) solution for customers to
include Oracle Enterprise Performance Management Cloud in their standard key
management rotation.

The custom encryption key takes effect after the next daily maintenance of the environment.
You can activate it immediately by running the resetService command.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate setEncryptionKey key=key where key is a custom string of any length that you
want to use as the encryption key.

Examples

• Set encryption key: epmautomate setEncryptionKey key=se!m+a2J
• Remove encryption key: epmautomate setEncryptionKey key=

setEssbaseQryGovExecTime
Sets the maximum amount of time, in seconds, that an Oracle Essbase query can use to
retrieve and deliver information before the query is terminated.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Profitability and Cost Management, Enterprise Profitability and Cost Management, Strategic
Workforce Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmautomate setEssbaseQryGovExecTime TIME where TIME identifies the number of seconds
after which Essbase queries are to be terminated. This value must be a whole number not
exceeding 70000.

Oracle recommends that you do not set this value to 0 (zero) to prevent Essbase queries
from running indefinitely.

Chapter 2
EPM Automate Commands

2-165

Example

epmautomate setEssbaseQryGovExecTime 600

setIdleSessionTimeout
Changes the session timeout (in minutes) of the Oracle Enterprise Performance
Management Cloud environment. The new session timeout becomes active after the
next daily maintenance of the environment. Use this command to change the default
session timeout (75 minutes) to a different value. After a session is idle for the duration
specified using this command, the user is redirected to the Login page.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate setIdleSessionTimeout MINUTES, where MINUTES identifies the new
idle session timeout (minimum 15 and maximum 150) in minutes.

Example

epmautomate setIdleSessionTimeout 30

setIPAllowlist
For OCI (Gen 2) environments, configures an allowlist of IP addresses and Classless
Inter-Domain Routings (CIDRs) that are permitted to access Oracle Enterprise
Performance Management Cloud. This command adds or removes IPv4 addresses
and CIDRs.

This command provides a self-service method to configure an allowlist for EPM Cloud
environments hosted on OCI (Gen2).

Note:

This command cannot be used to configure allowlist in Classic environments.
For Classic environments, use the Service Details screen of My Services
(Classic) to create allowlist or denylist rules to regulate how users access
EPM Cloud environments.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise

Chapter 2
EPM Automate Commands

2-166

Profitability and Cost Management, Oracle Enterprise Data Management Cloud, Narrative
Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmAutomate setIPAllowlist add|remove FILE_NAME.txt where:

• add adds the IP addresses and CIDRs listed in a text file to the allowlist.

• remove deletes the IP addresses and CIDRs listed in a text file from the allowlist.

• FILE_NAME is the name of a text file listing the IP addresses and CIDRs to be added to or
removed from the allowlist. Each entry in the file must be separated by a newline
character. Use the uploadFile command to upload this file to the environment. Each line
in the file must be an IPv4 address or CIDR in the following format:

xxx.xxx.xxx.xxx
xxx.xxx.xxx.xxx/n

Note:

– Only IPv4 IP addresses are supported.

– Use CIDR format, rather than individual IP addresses, to specify a
continuous range of IP addresses.

– To disable an allowlist to permit access from any IP address, use the
getIPAllowlist command to write all existing IP addresses and CIDRs to a
file. Upload the file to the environment, and then run this command with the
remove option as shown in this example:

epmAutomate getIPAllowlist > myRemoveList.txt
epmAutomate uploadFile myRemoveList.txt
epmAutomate setIPAllowlist remove myRemoveList.txt

Examples

• Adding some IP addresses and CIDRs to an allowlist:

epmAutomate setIPAllowlist add myAddList.txt

• Removing some IP addresses from an allowlist:

epmAutomate setIPAllowlist remove myRemoveList1.txt

setManualDataAccess
Specifies whether Oracle is permitted to manually access the relational and Oracle Essbase
databases of an environment in emergency situations when an environment is unresponsive

Chapter 2
EPM Automate Commands

2-167

and customer has not yet provided a service request to investigate and make the
environment available.

In emergency situation, Oracle resorts to an internal process whereby a high-level
development executive, after an independent verification process, permits manual
access to the relational and Essbase databases. You use this command to stop Oracle
from accessing these databases without your explicit approval. Additionally, you have
the option to prohibit Oracle from manually accessing the relational and Essbase
databases in emergency situations even if a service request is open.

The setting you specify using this command takes immediate effect.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate setManualDataAccess Allow|Revoke [disableEmergencyAccess=true|
false], where disableEmergencyAccess, optionally, specifies whether you want to
prohibit all manual access to the relational and Essbase databases. Setting this
property value to true stops Oracle from manually accessing these databases even if
a service request is open. Default is false.
Oracle does not recommend setting disableEmergencyAccess=true because Oracle
cannot access the relational and Essbase databases if access is required to
troubleshoot and fix a down environment. If the environment is down, you will not be
able to issue this command to allow Oracle to manually access these databases.

Examples

• Revoke the permission that was granted to manually access the relational and
Essbase databases in emergency situations without explicit approval:
epmautomate setManualDataAccess revoke

• Allow manual access to relational and Essbase databases during emergencies:
epmautomate setManualDataAccess allow

• Prohibit manual access to the relational and Essbase databases even if a service
request is open:
epmautomate setManualDataAccess revoke disableEmergencyAccess=true

setPeriodStatus
Sets a specific status to a period.

Applies to

Account Reconciliation

Chapter 2
EPM Automate Commands

2-168

Required Roles

Service Administrator, Power User, User, Viewer
Users with Power User, User, and Viewer predefined roles may require additional application
roles.

Usage

epmautomate setPeriodStatus PERIOD STATUS where:

• PERIOD is the name of a period

• STATUS is OPEN, CLOSED or LOCKED

Example

epmautomate setPeriodStatus "January 2015" OPEN

setSubstVars
Creates or updates substitution variables at application or cube level.

You cannot use this command to set multiple values and/or functions for substitution
variables.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Enterprise Profitability and Cost Management, Sales Planning, and Strategic Workforce
Planning.

Required Roles

Service Administrator

Usage

epmautomate setSubstVars CUBE_NAME SUBSTVAR=VALUE [SUBSTVAR=VALUE] where:

• CUBE_NAME is the cube (for example, Plan1, Plan2) for which the substitution variable is
created or updated. Use All instead of a cube name to set or update substitution variable
at the application level.

• SUBSTVAR is the name of the substitution variable for which a value is to be set or
updated.

• VALUE is the new substitution variable value.

Examples

• Create or update one substitution variable at the application level: epmautomate
setSubstVars ALL CurYear=2015 CurPeriod=Jan

• Create or update substitution variables at cube level: epmautomate setSubstVars Plan2
CurYear=2013 CurPeriod=Jan

Chapter 2
EPM Automate Commands

2-169

setVirusScanOnFileUploads
Enables the OCI (Gen 2) environment to scan files for viruses before they are
uploaded to Oracle Enterprise Performance Management Cloud.

All OCI (Gen 2) environments are protected using an anti-virus program. This
command provides additional security by allowing you to enable virus scan on upload
files. Scanning files before they are uploaded prevents the possibility of uploading
viruses to the environment.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate setVirusScanOnFileUploads true|false
By default, virus scan is not enabled (set to false). When this value is set to true,
EPM Cloud scans all upload files. If a file is virus infected, it is not uploaded to the
environment.

Example

• Enable virus scan: epmautomate setVirusScanOnFileUploads true
• Disable virus scan: epmautomate setVirusScanOnFileUploads false

simulateConcurrentUsage
Executes different concurrent operations on an environment by simulating users.

This command can be used to validate the performance of the environment to verify
that the response time is acceptable when the service is under the load during specific
operations run by a specific number of users. For example, this command can be used
to measure performance if 50 users simultaneously open a form using different POVs.
It allows the self-service load testing of environments.

This command performs the simulation by executing the specified operations for a
given number of users and iterations. It runs multiple iterations to calculate the
minimum time, the maximum time and the average time for a particular operation. It
supports these operations to perform concurrent usage load testing:

• Open forms

• Save forms

• Run business rules

• Run data rules

• Open ad hoc grids

Chapter 2
EPM Automate Commands

2-170

• Execute Reports

• Execute Books

Note:

This command does not support Financial Reporting reports and books; it only
supports books and reports belonging to Reports (formerly Management Reports).

This command accepts a ZIP file, that must already have been uploaded to the inbox of the
environment, as input. The ZIP file contains one requirement.csv file and the input files that
support the use cases included in requirement.csv. The command then simulates the use
cases and creates a report that may be emailed to one or more recipients.

Usage Scenario 1: Acceptance testing of application performance for 50 users
simultaneously opening a form.

Solution:

1. Create requirement.csv with entries similar to the following, assuming that you want to
open a form named Exchange Rates stored in Library/Global Assumption/ folder:

Type of Operation,Artifact Name,Number of Users,Input File,Additional
Info
Open Form, Library/Global Assumption/Exchange
Rates,50,open_form_input.csv,

2. Create open_form_input.csv using the format specified in Open Form Input File. You will
have one entry in this file, which will be used 50 times. If you want to open the same form
with different POVs, you will have as many entries as the number of POVs you want to
use.

3. Create userVarMemberMapping.csv using the format specified in Creating the
UserVarMemberMapping.csv File.

4. Create a ZIP file containing the files from the preceding steps and upload it to the inbox.

5. Run the simulateConcurrentUsage command using the ZIP file from the preceding step
as the input file.

Usage Scenario 2: Simulating performance for seasonal usage increase, for example, at the
end of the financial year. Assumption: 100 users save a form with a lag time of six seconds
between each user.

Solution:

1. Create requirement.csv with entries similar to the following, assuming that you want to
save a form named Accessories Revenue stored in Library/Dashboards/ folder:

Type of Operation,Artifact Name,Number of Users,Input File,Additional
Info
Save Form, Library/Dashboards/Accessories Revenue,100,save_form_input.csv,

2. Create save_form_input.csv using the format specified in Save Form Input File.

3. Create userVarMemberMapping.csv using the format specified in Creating the
UserVarMemberMapping.csv File.

Chapter 2
EPM Automate Commands

2-171

4. Create a ZIP file containing the files from the preceding steps and upload it to the
inbox.

5. Run the simulateConcurrentUsage command using the ZIP file from the
preceding step as the input file, and these property values iteration=1 and
lagTime=6.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Strategic Workforce Planning, and Sales Planning.

Required Roles

Service Administrator. You require Identity Domain Administrator role also to use
testModes 0, 1, and 2.

Usage

epmautomate simulateConcurrentUsage INPUT_FILE.zip [iterations=COUNT]
[notificationEmails="EMAIL_ADDRESS"] [testMode=0|1|2|3] [lagTime=LAG_TIME]
where:

• INPUT_FILE.zip is the name of a ZIP file that identifies your use cases. Use the
uploadFile command (example command syntax epmautomate uploadFile "C:/
uploads/INPUT_FILE.zip" inbox) to upload this file to the inbox before running
this command. This ZIP file must contain these files:

– A use case CSV file named requirement.csv. Each line of this CSV file
identifies the type of operation to perform, artifact name, number of concurrent
users, input file specifying the details of the operation, and additional
information related to each use case. See Creating the requirement.csv File.

– The input files that contains details of each operation. See these topics:

* Open Form Input File

* Save Form Input File

* Run Business Rule Input File

* Run Data Rule Input File

* Ad Hoc Grid Input File

* Execute Book Input File

* Execute Report Input File

* Creating the UserVarMemberMapping.csv File

• iterations is a positive number indicating the number of times each use case
identified in requirement.csv is to be run to measure response time. If not
specified, the operation is run only once.

• notificationEmails, optionally, indicates the email addresses to which the results
of this commands are to be emailed. If specifying more than one email addresses,
use a semicolon to separate them. Also enclose the list of address in double
quotation marks. If not specified, the results are mailed to the user who initiated
the command. For detailed information on this report, see Sample Simulate
Concurrent Usage Report.

Chapter 2
EPM Automate Commands

2-172

• [testMode], optionally, specifies the concurrent usage simulation mode. Default is 0.
Then, run the command with mode 3 to run the simulation as many times as needed . At
the end, run the command with mode 2 to delete the simulated users.

Acceptable values are:

– 0: The default simulation mode, which adds simulated users to the environment and
assigns them Service Administrator role, runs the simulation, and then deletes the
simulated users. This mode is useful if you want to run the test only one time.
The simulated users have these properties:

First Name: testuser1, testuser2, and so on

Last Name: testuser1, testuser2, and so on.

Email Address: testuser1@discard.oracle.com, testuser2@discard.oracle.com, and
so on

Username: testuser1, testuser2, and so on

– 1: Adds simulated users to the environment and assigns them the Service
Administrator role. Does not run the simulation or delete the simulated users.

– 2: Deletes simulated users. Does not create users or run the simulation.

– 3: Runs the simulation using already existing simulated users without adding or
deleting users.

If you want to run the concurrent usage one time only, use testMode=0. To run a series of
tests:

– First, run the command using testMode=1 to add the simulated users and assign
them the Service Administrator role.

– Then, run the command using testMode=3 to run the simulation as many times as
needed.

– Finally, run the command using testMode=2 to delete the simulated users.

• [lagTime], optionally, specifies the number of seconds (5 seconds or more) that the
command should wait between the execution of each use case in requirement.csv.
Default is 5 seconds. Do not use negative numbers (for example -1), fractions (for
example, 1/2), and decimal values.
After initiating the execution of a use case in requirement.csv by one user, the
command waits for the number of seconds specified by this parameter to initiate the
execution of the use case by the next user. Because user activities are not usually
initiated simultaneously, setting this parameter helps to create a more realistic simulation
of load on an environment.

Example

epmAutomate simulateConcurrentUsage test_simulation.zip iterations=5
notificationEmails="jane.doe@example.com;john.doe@example.com;example@example
.com" lagTime=6

skipUpdate
Requests that Oracle skip the applying of monthly updates to an environment for a maximum
of three consecutive cycles or removes all skip update requests that were previously made
using this command so that the environment is updated to the main code line.

Chapter 2
EPM Automate Commands

2-173

You can use this command also to list the skip update requests currently specified for
an environment. Skip update status of the environment is included in the Activity
Report (in Operational metrics) generated after you use this command to skip updates
to an environment. See Operational Metrics in Getting Started with Oracle Enterprise
Performance Management Cloud for Administrators.

Weekly and emergency patches for the current month, if any, will continue to be
applied to the environment. No updates will be made for the months for which the
upgrade delay is requested.

You cannot skip updates for an environment that is on a one-off patch. Additionally,
you cannot skip monthly updates that are more than three months apart from the
update that the environment is currently on. For example, if the environment is
currently on 23.12, you can skip 24.01, 24.02, and 24.03, but not 24.04. For detailed
information on how update delays work, see Requesting Upgrade Delay for Production
Environments in Oracle Enterprise Performance Management Cloud Operations
Guide.

Note:

If you skip the update for only one of your environments (for example, you
skip update on the production environment but not on the test environment)
for three months, your environments will be three versions apart. You may
not be able to migrate snapshots across these environments in such a
scenario.
For example, assume that your test and production environments are
currently on 23.12, and that you skip the updates for versions 24.01, 24.02,
and 24.03 for the production environment only. When version 24.03 becomes
available, your test environment will be on version 24.03 while the production
environment will still be on version 23.12. In this case, migration between
your test and production environments is not supported.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate skipUpdate add|remove|list [version=UPDATE_NUMBER
comment="COMMENT"] where:

• add sets a skip update request for a specific monthly update. You must specify
these parameters:

– version: the monthly update that should be skipped. You can skip one, two or
three of the upcoming three monthly updates. For example, if the environment
is on the 23.12 monthly update, you can skip the 24.01, 24.02, 24.03 or any of
these updates. To skip three monthly updates, you run the command thrice,

Chapter 2
EPM Automate Commands

2-174

each time specifying one specific update to skip using, for example, version=24.01,
then version=24.02, and then version=24.03. In this scenario, the environment will
be updated to the main code line in the 24.04 monthly cycle.

If there is a gap in the monthly cycle for which skip update is requested and the
current monthly cycle, Oracle will update the environment as required and then skip
the updates in the specified monthly cycle. For example, the environment is on the
23.12 monthly update and you specify a skip update for versions 24.02 and 24.03. In
this case, the environment will be updated in 24.01; 24.02 and 24.03 updates will be
skipped. The environment will be updated to the main code line in 24.04.

– comment: text describing why an update skip is required. Comments must be
enclosed in double quotation marks.

• remove removes all skip update requests specified for the environment so that it can be
updated to the main code line during the next daily maintenance. If you have more than
one skip update requests on an environment, this command removes them all.

• list to display skip update requests (the login ID of the user who made the skip update
request, comment, version for which updates are to be skipped, and the date when the
request was made) currently set for the environment as shown in the following graphic:

Examples

• Request a skip update: epmautomate skipUpdate add version=24.01 comment="We are
in the process of closing the quarter"

• View skip update details: epmautomate skipUpdate list
• Remove all skip update requests: epmautomate skipUpdate remove

snapshotCompareReport
Compares two snapshots and creates the Snapshot Compare Report identifying the
differences in calculation rules and rulesets, and data forms included in the snapshots. You
can use this report for troubleshooting issues, such as:

• Recent performance deterioration in an environment. You can compare the previous
snapshot with the current snapshot to check on the differences that may have caused the
performance deterioration.

Chapter 2
EPM Automate Commands

2-175

• You see difference in behavior or performance between two environments that you
expect to have identical functional behavior or performance. In this case, you can
compare the snapshots of the two environments to understand the differences
between them.

• You suspect that some rules, or forms have disappeared from an environment.
Use this report to compare the artifacts that used to exist and the current artifacts.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Enterprise Profitability and Cost Management, Strategic Workforce
Planning, and Sales Planning.

Required Roles

Service Administrator

Usage

epmAutomate snapshotCompareReport SOURCE_SNAPSHOT TARGET_SNAPSHOT
[reportName=REPORT_NAME.html] where:

• SOURCE_SNAPSHOT is the name of the snapshot to which the comparison is to be
made. The report contains data on the differences in the rules, forms, dimensions,
and dimension members in this snapshot.

• TARGET_SNAPSHOT is the name of the snapshot you want to compare.

Note:

– Snapshot names may be specified with or without the .ZIP
extension.

– Both snapshots must be available in the environment. Use the
uploadFile, copyFromObjectStorage, or the
copySnapshotFromInstance command to upload them to the
environment.

• REPORT_NAME, optionally, is the name of the report file. Default report name is
SnapshotCompare.html.
Use the downloadFile command to download the report.

Examples

• epmAutomate snapshotCompareReport "Artifact Snapshot"
Backup_22-09-08.zip reportName=Snapshot_Diffs.html

• epmAutomate snapshotCompareReport backup_snapshot_22-Aug-08.zip
backup_Snapshot_22-Sep-08.zip
reportName=Sep_22_snapshot_compare_report.html

sortMember
Sorts members of Entity, Account, Scenario, and Versions dimensions and of custom
dimensions.

Chapter 2
EPM Automate Commands

2-176

This command is useful for sorting dimension members after loading members into the
application.

Note:

You cannot use this command to sort members of Period, Years, and Currency
dimensions.

Applies to

Planning, Planning Modules, FreeForm, Enterprise Profitability and Cost Management, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate sortMember Member [type=children|descendants] [order=ascending|
descending] where:

• Member is the name of the parent member whose descendants or children are to be
sorted.

• type, optionally, specifies the members to be sorted. Acceptable values are:

– descendants sorts all sub-members (children and descendants) of the parent
member that you specify as the value of Member

– children, the default value, sorts only members in the level immediately below the
parent member that you specify as the value of Member.

• order, optionally, identifies a sort order. Acceptable values are:

– ascending; this is the default sort order.

– descending

Examples

• Sort the children of Entity dimension in ascending order: epmautomate sortMember
Entity

• Sorts all sub-members of the Entity dimension in descending order: epmautomate
sortMember Entity type=descendants order=descending

unassignRole
Removes a role currently assigned to the users, including the user who runs this command,
whose login IDs are included in the ANSI or UTF-8 encoded CSV file that is used with this
command. You can use this command to remove the assignment of a predefined role or an
application role.

Chapter 2
EPM Automate Commands

2-177

The CSV file format is as follows:

User Login
jane.doe@example.com
jdoe

Use the uploadFile command to upload the file to the environment.

Note:

Use double quotation marks to enclose role names that contain the space
character.

When the command execution finishes, EPM Automate prints information about each
failed entry to the console. Review this information to understand why the command
execution failed for some entries in the CSV file.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

To remove predefined role assignments:

• Classic environments: Identity Domain Administrator and any predefined role
(Service Administrator, Power User, User or Viewer)

• OCI environments: Service Administrator, or Identity Domain Administrator and
any predefined role (Service Administrator, Power User, User, or Viewer)

To remove application role assignments: Service Administrator or Access Control
Manager

Usage

epmautomate unassignRole FILE_NAME ROLE where:

• FILE_NAME is the name of a CSV file containing the login IDs of the users whose
role assignment is to be revoked. Specify the CSV extension in lower case.
User Login values are not case-sensitive. For example, jane.doe@example.com is
treated as being identical to Jane.Doe@Example.com or any variation in its case.

• ROLE identifies one of the following. Role names are not case-sensitive.

– If you are removing the assignment of users to predefined roles, ROLE should
identify a predefined role applicable to the service. See Understanding
Predefined Roles in Getting Started with Oracle Enterprise Performance
Management Cloud for Administrators.

– If you are removing the assignment of users to application roles, ROLE should
identify a role belonging to the application in the current environment.
Application roles are listed in the Roles tab of Access Control. For a

Chapter 2
EPM Automate Commands

2-178

description of application roles for each business process, see these topics in
Administering Access Control for Oracle Enterprise Performance Management
Cloud:

* Account Reconciliation

* Enterprise Profitability and Cost Management

* Planning, FreeForm, Financial Consolidation and Close, and Tax Reporting

* Profitability and Cost Management

* Oracle Enterprise Data Management

* Narrative Reporting

Examples

• Unassign users from a predefined identity domain role:
epmautomate unassignRole remove_roles.csv "Service Administrator"

• Unassign users from an application role:
epmautomate unassignRole example_file.csv "Task List Access Manager"

updateUsers
Modifies attributes such as email, first name, and last name of Oracle Enterprise
Performance Management Cloud users in an identity domain using the new values identified
in an ANSI or UTF-8 encoded Comma Separated Value (CSV) file that was uploaded to the
environment.

You use the uploadFile command to upload files to an environment. All columns in the CSV file
are mandatory; you must provide a valid entry in each column. This command validates each
definition for these mandatory values and displays error message that identifies each missing
or invalid value. The input file format is as follows:

First Name,Last Name,Email,User Login
Jane,Doe,jane.doe@example.com,jdoe
John,Doe,john.doe@example.com,john.doe@example.com

If the User Login value in the CSV file matches an account that exists in the identity domain,
the command modifies the user account to match the values in the input file. Because user
accounts are common to all environments that an identity domain supports, updated user
information is available to all the environments that share the identity domain. Predefined and
application-specific roles assigned to the user are not affected by this command

Note:

• You cannot use this command to modify User Login values.

• You are not permitted to modify your own account attributes.

• Input file containing multi-byte characters must use UTF-8 character encoding.
Using ANSI encoding causes issues in how user information is displayed in My
Services screens.

Chapter 2
EPM Automate Commands

2-179

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Strategic Workforce Planning, and Sales Planning.

Required Roles

Identity Domain Administrator and any predefined role (Service Administrator, Power
User, User, or Viewer)

Usage

epmautomate updateUsers FILE_NAME where FILE_NAME is the name of a CSV file
containing the user information to modify.

Example

epmautomate updateUsers update_user_info.csv

upgrade
Automatically downloads and silently installs the newest version of EPM Automate.

After you run the login command to initiate a session, EPM Automate identifies the
current installed version. If the installed version is not the newest available, EPM
Automate informs you that a newer version is available.

Note:

EPM Automate deployed by a Windows administrator can be upgraded only
if the logged in user is a Windows administrator.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User, User, Viewer

Usage

epmautomate upgrade

Example

epmautomate upgrade

Chapter 2
EPM Automate Commands

2-180

uploadFile
Uploads a file from the local computer to the service. Use this command to upload files
containing data, metadata, rule definitions, dimension definitions, mapped transactions,
templates, and backup snapshots.

This command does not overwrite existing files in the environment. EPM Automate displays
an error if the name of the file being uploaded is identical to that of a file in the upload
location.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator, Power User assigned to the Migration Administrator application role

Usage

epmautomate uploadFile "FILE_NAME" [UPLOAD_LOCATION] where:

• FILE_NAME is the name of the file, including absolute path if the file is not in the directory
from which you are running EPM Automate.

• UPLOAD_LOCATION is, optionally, the Oracle Enterprise Performance Management Cloud
location to which you want to upload the file. Do not specify an upload location if you
want to upload files to the default upload location. For detailed information, see Default
File Locations. Supported values include:

– inbox to upload files into the inbox. Excepting Profitability and Cost Management,
EPM Cloud business processes look in this location for files to process.

– profitinbox to upload files to be processed by Profitability and Cost Management.

– to_be_imported to upload a Narrative Reporting snapshot that is to be imported
during the next daily maintenance of the environment.

– inbox/directory_name to upload files to a directory within the inbox for processing
by Data Management.

– outbox to upload files to the outbox used by business processes other than
Profitability and Cost Management.

– profitoutbox to upload files to the outbox used by Profitability and Cost
Management.

Examples

• Upload a snapshot into the default location:
epmautomate uploadFile "C:/snapshots/backup_snapshot.zip"

• Upload a file into the Data Management inbox:
epmautomate uploadFile "C:/pbcsdata/quarterlydata.csv" inbox

• Upload a file into a folder in the inbox (for Data Management):
epmautomate uploadFile "C:/fdmee_data/data.zip" inbox/dm_folder

Chapter 2
EPM Automate Commands

2-181

• Upload a file into the profitinbox (Profitability and Cost Management):
epmautomate uploadFile "C:/profitability_data/data.zip" profitinbox

• Upload Narrative Reporting snapshot from C:\temp directory into the
to_be_imported location:
epmautomate uploadFile "C:\temp\EPRCS_Backup.tar.gz" to_be_imported

userAuditReport
Generates a user audit report (.CSV file) and stores it in the default download location.

The User Audit Report contains information on the users who signed into an
environment over a specified period of time (maximum last 120 days). It lists the user
login ID, the IP address of the computer from which the user logged in, and the date
and time (for example, July 28, 2022 18:43:21 UTC) at which the user accessed the
environment.

Note:

The User Audit Report lists only one login entry for a user who logged into an
Oracle Enterprise Performance Management Cloud environment multiple
times within a span of five minutes.

Use the downloadFile to download the generated report to your computer.

Applies to

Planning, Planning Modules, FreeForm, Financial Consolidation and Close, Tax
Reporting, Account Reconciliation, Profitability and Cost Management, Enterprise
Profitability and Cost Management, Oracle Enterprise Data Management Cloud,
Narrative Reporting, Sales Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator

Usage

epmautomate userAuditReport FROM_DATE TO_DATE REPORT_NAME where:

• FROM_DATE indicates the start date (in YYYY-MM-DD format) of the period for which
the audit report is to be generated

• TO_DATE indicates the end date (in YYYY-MM-DD format) of the period for which the
audit report is to be generated

Chapter 2
EPM Automate Commands

2-182

• REPORT_NAME is the name of the report file

Note:

This report can be generated only for the last 120 days.

Example

epmautomate userAuditReport 2016-10-15 2016-12-15 myAuditReport.CSV

userGroupReport
Generates a report (CSV file) that lists the groups to which users are assigned in Access
Control and stores it in the default download location.

The report indicates whether the user assignment to group is direct (as member of a group)
or indirect (as member of a group that is a child of a nested group).

The report identifies the user's login name, first name, last name, email address, assigned
group, and type of assignment in the following format. It is identical to the CSV version of the
report created from the User Group Report tab in Access Control. For example, assume that
user jdoe is a member of group Test1, which is a child of nested group Test2. In this
scenario, the report will display the following information for jdoe:

User Login,First Name,Last Name,Email,Direct,Group
jdoe, John, Doe, jdoe@example.com, Yes, test1
jdoe, John, Doe, jdoe@example.com, No, test2

Use the downloadFile to download the generated report to your computer.

Applies to

Planning, Planning Modules,, FreeForm, Financial Consolidation and Close, Tax Reporting,
Account Reconciliation, Profitability and Cost Management, Enterprise Profitability and Cost
Management, Oracle Enterprise Data Management Cloud, Narrative Reporting, Sales
Planning, and Strategic Workforce Planning.

Required Roles

Service Administrator or Access Control Manager

Usage

epmautomate userGroupReport REPORT_NAME where REPORT_NAME is the name of the report
file.

Example

epmautomate userGroupReport UsrGrpReport.CSV

validateConsolidationMetadata
Validates the metadata of the environment to ensure an error free database refresh and
consolidation.

Chapter 2
EPM Automate Commands

2-183

After importing metadata using the importMetadata command, run this command to
validate the metadata to ensure an error free database refresh when you run the
refreshCube command. If your consolidation metadata is not correct, your
consolidation may also fail.

This command displays 0 (zero) or a count of the number of validation errors on the
console from which it is run. It writes validation errors to a CSV file, which you can use
to correct the metadata errors. Use the downloadFile command to download the
resulting CSV file to a local server.

Applies to

Financial Consolidation and Close

Required Roles

Service Administrator

Usage

epmautomate validateConsolidationMetadata LOG_FILE_NAME where LOG_FILE_NAME
identifies the name of the file that will contain information on the errors identified by
this command.

Examples

epmautomate validateConsolidationMetadata validation_error.csv

validateModel
Validates an Enterprise Profitability and Cost Management model and writes validation
output to a file.

Applies to

Enterprise Profitability and Cost Management

Required Roles

Service Administrator

Usage

epmautomate validateModel "modelName" FILE_NAME.txt [messageType=All|
Warning|Error] where:

• modelName is the name of the Enterprise Profitability and Cost Management model
to be validated. This value must be enclosed in double quotation marks.

• FILE_NAME is a unique name for a text file to which EPM Automate should write
model validation output. This file, created in the outbox, can be downloaded using
the downloadFile command.

• messageType, optionally, is the status of information to include in the model
validation output. Possible parameter values are:

– All, which writes both errors and warnings to the validation output file.

Chapter 2
EPM Automate Commands

2-184

– Error, which records only errors in the validation output file. This is the default value.

– Warning, which records only model validation warnings in the validation output file.

Example

epmautomate validateModel "10 Actuals Allocation Process" results.txt
messageType=All

Exit Codes
EPM Automate returns an exit code and message to indicate the status of the operation. Exit
codes are grouped under five code numbers; each code may indicate many error conditions.
Review the accompanying message to identify the specific condition that caused the error.

Additionally, EPM Automate creates a log file (COMMANDNAME_TIMESTAMP.log, for
example, uploadfile_16_11_2016_11_27_10.log) for each failed command execution.
Log files are created on the computer from which you run EPM Automate.

Exit Code 1 Errors

Command failed to execute EPM Automate uses this exit code to display messages
related to HTTP status code 200 and 400. These codes are returned by the REST APIs that
EPM Automate uses.

Insufficient privileges to perform the operation This error is displayed if the
user whose credentials are used to sign into the service does not have sufficient privileges to
perform the operation you attempted.

Sign in with an account that has sufficient privileges to perform the operation. Generally, only
Service Administrators are allowed to perform operations in the service.

Resource does not exist This error is displayed if the file or snapshot that you want to
delete or download does not exist in the service.

Use the listfiles command to verify the file name and its location.

Invalid snapshot SNAPSHOT This error is displayed when the service is unable to
validate the snapshot that you specified for the export or import operation.

Verify that you are using a valid snapshot.

Internal server error. Unable to delete file: FILE_NAME Please issue
"Provide Feedback" with details This error is displayed if the file or snapshot could
not be deleted from the service due to a server error.

Report this issue to Oracle using the Feedback command or the Provide Feedback feature.

Invalid file: FILE_NAME This error is displayed if the file or snapshot that you want to
delete or download does not exist in the service or if the file name is not in the required
format.

Use the listfiles command to verify the file name and its location.

Recreate is running for a long time. Please contact support This error is
displayed if the re-create operation that you initiated is not completed within one hour.

Report this issue to Oracle using the feedback command or the Provide Feedback feature.

Chapter 2
Exit Codes

2-185

Reset service is running for a long time. Please contact
support This error is displayed if the reset service operation that you initiated is not
completed within one hour.

Report this issue to Oracle using the feedback command or the Provide Feedback
feature.

Cannot perform operation. Another instance is in progress.
Please try after some time This error is displayed if you try to execute the
copysnapshotfrominstance command when another instance of the command is
active.

Wait for the copysnapshotfrominstance command to finish before attempting to
run the command again.

Cannot perform operation. Another maintenance script is in
progress. Please try after some time This error is displayed if you attempt
to execute the copysnapshotfrominstance, recreate or resetservice
command when daily maintenance or service reset process is running.

Rerun the operation after the maintenance or reset process finishes.

Login to source instance failed: SOURCE_URL This error is displayed if
EPM Automate is unable to sign in to the source environment to initiate the
copysnapshotfrominstance command

Verify that the credentials, identity domain and URL that is used to access the source
environment are valid.

Internal server error. Copy snapshot from source instance
failed. Please issue "Provide Feedback" with details This error is
displayed when EPM Automate encounters an unexpected problem while running the
copysnapshotfrominstance command.

Report this issue to Oracle using the feedback command or the Provide Feedback
feature.

Internal server error. Please issue "Provide Feedback" with
details This error is displayed to indicate many internal server conditions that
require corrective actions by Oracle.

Report this issue to Oracle using the feedback command or the Provide Feedback
feature.

Snapshot SNAPSHOT_NAME already exists. Please delete the
snapshot and rerun the command This error is displayed when you download or
upload a snapshot into a location where another snapshot with identical name is
present.

Delete or remove the existing snapshot and then retry the command.

Error in extracting the snapshot. Please retry with a proper
snapshot This error is displayed if EPM Automate is unable to extract snapshot
contents when running the importsnapshot command.

Verify that the snapshot is valid.

Internal server error. Unable to open file for write. Please
issue "Provide Feedback" with details This error is displayed if errors

Chapter 2
Exit Codes

2-186

cause the creating or updating of CSV files, for example while generating the Audit Report.

Report this issue to Oracle using the feedback command or the Provide Feedback feature.

No matching records found, please select a different date range This
error is displayed if you run the userauditreport command to generate the Audit Report
for a date range for which audit data is not available.

Specify a valid date range and then rerun the userauditreport command. Note that the
service maintains audit history for the last 365 days only.

File with same name exists: FILE_NAME, please choose a different
filename This error is displayed if a report with the Audit Report name you specified exists
in the service.

Delete the existing file from the service or specify a different file name and then rerun the
userauditreport command.

Operation failed with status $1. Please issue "Provide Feedback" This
message indicates an internal server error that cause the reset service or re-create service
process to fail.

Report this issue to Oracle using the feedback command or the Provide Feedback feature.

EPMCSS-20643: Failed to add users. File FILE_NAME.csv is not found. Please
provide a valid file name This error is displayed if the specified CSV file containing
information on users to add is not available in the Inbox.

Use the listfiles command to verify the file name and its location. If the file is not in the
inbox, use the uploadFile command to upload the file.

EPMCSS-20644: Failed to remove users. File FILE_NAME.csv is not
found. Please provide a valid file name This error is displayed if the specified
CSV file containing information on users to delete is not available in the Inbox.

Use the listfiles command to verify the file name and its location. If the file is not in the
Inbox, use the uploadFile command to upload the file.

20645: Failed to assign role for users. Invalid role name role.
Please provide a valid role name This error is displayed if the role specified in the
CSV file is not supported.

Verify that the role name specified in the file is Service Administrator, Power User, User, or
Viewer.

Use the listfiles command to verify the file name and its location. If the file is not in the
Inbox, use the uploadFile command to upload the file.

Exit Code 6 Errors

Service Unavailable Service is not available because of HTTP Error 404.

Verify service availability by accessing the service from a browser on the computer from
which you are running EPM Automate. If the service is down for any reason, wait a while and
try again or contact Oracle support.

Read/Write timeout This error is displayed if the client socket times out (socket time out
is 15 minutes) during any read/write operation due to slow network or firewall issues.

Chapter 2
Exit Codes

2-187

Rerun the failed command when network through put is high. If the failure is due to
firewall settings, contact your Network Administrator.

Exit Code 7 Errors

EPM Automate displays this error if it is unable to execute a command. The error
message; for example, Invalid command, specifies why the error occurred.
Unable to open password file FILE_NAME Invalid encrypted password file,
for example, PASSWORD_FILE.EPW. EPM Automate did not find the file in the location
that you specified or the file is not in the required format.

Verify the file name and path. If the file cannot be parsed because of invalid format,
use the encryptcommand to re-create the file.

Unable to parse password file FILE_NAME EPM Automate was unable to
parse the encrypted password file because of invalid format or because it has been
corrupted.

Use the encrypt command to re-create the file.

Unable to connect to URL. Root cause MESSAGE This error is displayed if a
connection cannot be established because of a bad URL. The message that is
displayed as the root cause details the underlying failure resulting from using an
incorrect URL.

• Verify that you are using a valid URL

• If your proxy setting requires you to authentication with the proxy server to connect
to the internet, specify a proxy server user name, domain, and password (or use
an encrypted password file containing the proxy server password) to sign in.
Contact your Network Administrator if you need assistance.

Unable to connect to URL Unsupported Protocol The login command
failed because the URL specified uses an unsupported protocol. Accompanying error
message identifies the unsupported protocol.

Ensure that the URL that you are using with the login command uses the secure
protocol (HTTPS).

Session is not authenticated. Please execute the "login"
command before executing any other command You attempted to run a
command before establishing a session using the login command.

Run the login command to establish a secure connection to the environment before
attempting to execute other commands.

Invalid parameter This message indicates a usage error in a command caused
by Incorrect sequence of command parameters or the absence of some required
command parameter values.

Review and correct command parameters and the sequence in which they are
specified.

COMMAND_NAME command is not supported by SERVICE_TYPE EPM
Automate was not able to run the command against the environment to which you are
connected because the business process does not support the command.

See Command Reference for lists of commands that are supported by each business
process.

Chapter 2
Exit Codes

2-188

File does not exist in location: PATH EPM Automate was unable to find the file that
you want to process, for example, using the upload or replay command.

Ensure that the file name and path are accurate.

Unable to open file for read: PATH EPM Automate was unable to read from the
specified file.

Ensure that the file is in the required format. Verify that the user running EPM Automate has
read access to the file.

Unable to open file for write: PATH EPM Automate was unable to write to the
specified file.

Ensure that the file is not locked by another process. Verify that the user running EPM
Automate has write access to the file.

Invalid command EPM Automate encountered an unsupported command.

Verify that EPM Automate supports the command; also ensure that the command name is
spelled correctly.

Invalid date format The tool encountered an invalid date format.

Specify the report generation dates in a supported date format.

FROMDATE DATE cannot be greater than TODATE DATE EPM Automate encountered
a to date that is earlier than the from date.

Ensure that the to date in a specified date range is a later date than the from date.

Exceeded maximum number of feedbacks (6) for a day This error is displayed
when you exceed the number of feedback that you can submit using the feedback command.

File with the same name already exists in the download path PATH.
Please delete the file and rerun the command This error is displayed when you attempt to
download a file into a location that already has a file that matches the name of the file being
downloaded.

Delete, rename or move the existing file and then rerun the command.

File is empty: PATH This error is displayed if the replay file does not have any content.

Make sure that the replay file (CSV file) lists the credentials (user name and password) and
the name of the HAR files that are to be used to run the replay command.

Unable to encrypt the password as localhost cannot be resolved.
Ensure that hostnames are mapped properly to IP addresses This error is
displayed if EPM Automate is unable to resolve the localhost definition to a MAC address
because the hosts file on your computer contains a server name instead of localhost for the
address 127.0.0.1.

Ensure that the hosts file specify localhost as the server name for 127.0.0.1
Snapshot Name is invalid This error is displayed if you do not specify the name of the
snapshot to be renamed.

Specify the name of a snapshot available in the environment.

New Snapshot Name is invalid This error is displayed if you do not specify a new
name for the snapshot.

Chapter 2
Exit Codes

2-189

specify the new name for the snapshot.

Invalid snapshot name: {0}. Characters \\/*?"<>| are not
allowed This error is displayed if the snapshot name contains special characters
such as space, \ (backslash), / (slash), * (asterisk), ? (question mark), " (quotation
mark), < (less than), and > (greater than).

Specify a new snapshot name that does not contain these special characters.

Unable to rename snapshot : {0}. There could be another process
accessing it. Please try after sometime This error is displayed if EPM
Automate cannot get an exclusive lock on the snapshot because it is in use by another
process.

Wait until the current operation that is using the snapshot finishes, and then retry.

Snapshot {0} already exist. Please delete the snapshot and re-
run the command This error is displayed if the new snapshot name is identical to
that of an existing snapshot in the environment.

Use a different snapshot name or delete the existing snapshot using the deletefile
command.

Exit Code 9 Errors

Invalid credentials This error is displayed when the user name or password
used with the login command is incorrect.

Specify valid credentials for the environment to which you are attempting to connect.

Authentication failed while executing command. Please retry This
error is displayed when basic authentication fails during execution of a command other
than login. This error may also occur for HTTP calls when a command execution is
retried (up to three times).

Exit Code 11 Errors

Internal server error. Due to manual reset service, your Oracle EPM Cloud
Service environment is currently unavailable. This error is displayed if EPM
Automate commands are run when a reset of the environment is in progress.

Internal server error MESSAGE This error is displayed if EPM Automate
encounters unknown exceptions that are not related to HTTP connections. Includes
server errors 503 and 500.

Unable to connect to URL: MESSAGE This error is displayed when the server is
unavailable. Error message indicates the exception that caused the command to fail.

If the server is unavailable, contact Oracle Support. If the message indicates issues
with the URL, verify that the URL that you are using is valid.

Chapter 2
Exit Codes

2-190

3
Command Execution Sample Scenarios

EPM Automate may be used to automate many common Oracle Enterprise Performance
Management Cloud administrative tasks.

• Sample Scenarios for All Services

• Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability
and Cost Management

• Sample Scenarios for Account Reconciliation

• Sample Scenarios for Profitability and Cost Management

• Sample Scenarios for Oracle Enterprise Data Management Cloud

About Copying Sample Scripts
Do not copy sample scripts from the PDF version of this document. To avoid line breaks and
footer information that will render scripts unusable, Oracle recommends that you copy the
sample scripts from the HTML version of Working with EPM Automate for Oracle Enterprise
Performance Management Cloud.

Sample Scenarios for All Services
These scenarios depict a typical sequence of commands that can be used to perform specific
operations in Oracle Enterprise Performance Management Cloud environments.

Related Topics

• Back up Application Snapshot to a Computer
This scenario explains how to automate the process of backing up the snapshot created
during daily service maintenance to a local computer.

• Inform Users of Daily Maintenance Completion
The daily maintenance of Oracle Enterprise Performance Management Cloud
environments usually takes a much shorter time than the one hour earmarked for it.

• Copying a Snapshot to or from Oracle Object Storage

• Create Users and Assign Them to Predefined Roles
Use the scripts in this section to create users and assign them to predefined roles in the
identity domain.

• Count the Number of Licensed Users (Users Assigned to Roles)
Use the script in this section to generate the Role Assignment Report to count the
number of users for an environment.

• Create Audit Reports of Users Assigned to Roles
Use the scripts in this section to automate the process of creating an audit report for
users assigned to predefine roles in an environment and, optionally, email it to a
recipient.

3-1

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/index.html
https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/index.html

• Create Role Assignment and Revocation Audit Report
Use the PowerShell script in this section to automate the process of creating an
audit report that details role assignment and role revocation in an environment.

• Mask Access Logs and Activity Report to Comply with Privacy Laws
Use the scripts in this section to automate the process of masking information in
the Activity Report or Access Logs to comply with privacy laws and to, optionally,
email the report to a recipient.

• Automate Activity Report Downloads to a Local Computer
Use the script in this section to automate the downloading of Activity Reports from
an environment to a local computer.

• Download Access Logs from an Environment
Use the script in this section to automate the process of downloading access logs
from an environment to a local computer.

• Automate the Cloning of Environments
Use the script in this section to automate the cloning of environments.

• Clone from Primary to Standby Environment Daily After Daily Maintenance is
Complete on the Primary Environment
To keep the standby environment up to date with the primary environment, use
these scripts to clone Oracle Enterprise Performance Management Cloud primary
environment to the standby environment soon after the daily maintenance is
complete on the primary environment.

• Remove Unnecessary Files from an Environment
Use these scripts to remove unnecessary files from an environment.

• Find and Download Files from an Environment
Use the sample script in this section to automate the process of downloading one
or more files from an Oracle Enterprise Performance Management Cloud
environment using a text string as a wildcard.

• Recreate an Old EPM Cloud Environment for Audits
Use the script in this section to create a self-service solution to maintain an up-to-
date library of snapshots for your Oracle Enterprise Performance Management
Cloud environment. You require an environment dedicated for the purpose of
upgrading and maintaining a library of up-to-date snapshots.

• Automate Database Access Audit and Compliance
Use the PowerShell and Bash Shell scripts in this section to leverage EPM
Automate commands to collect audit and compliance data around manual
database access.

• Replicate Users and Predefined Role Assignments
The scripts in this section helps you migrate users and predefined role
assignments of an environment to another.

• Create a Quarterly EPM Cloud Upgrade Cadence
Use these scripts to create a self-service solution to skip updates so that Oracle
Enterprise Performance Management Cloud environments are updated on a
quarterly basis with a two-week test cycle. In this case, the production
environments are updated two weeks after test environments.

• Create a Quarterly EPM Cloud Upgrade Cadence with Six Week Test Cycles
Use the script in this section to create a self-service solution to skip updates so
that Oracle Enterprise Performance Management Cloud environments are
updated on a quarterly basis with a six-week test cycle. In this case, the
production environments are updated six weeks after the test environments.

Chapter 3
Sample Scenarios for All Services

3-2

Back up Application Snapshot to a Computer
This scenario explains how to automate the process of backing up the snapshot created
during daily service maintenance to a local computer.

• Downloads the application snapshot (Artifact Snapshot) that was created during the
maintenance window

• Renames the downloaded snapshot by appending time stamp

• Maintains 10 backups by deleting the oldest backup, if needed

Note:

• This script cannot be used to backup Narrative Reporting

• If you repurpose this script for your use, modify the values of runtime
parameters (url, user, password, and NumberOfBackups as needed.

See Automating Script Execution for information on scheduling the script using Windows
Task Scheduler.

Windows Sample Script

Create a batch (.bat) or shell (.sh) file containing script similar to the following to automate
snapshot downloads.

@echo off
rem Sample script to download and maintain 10 maintenance backups
rem Update the following parameters

SET url=https://example.oraclecloud.com
SET user=ServiceAdmin
SET password=Example.epw
SET SnapshotName="Artifact Snapshot"
SET NumberOfBackups=10

rem EPM Automate commands
call epmautomate login %user% %password% %url%
 IF %ERRORLEVEL% NEQ 0 goto :ERROR
 call epmautomate downloadfile %SnapshotName%
 IF %ERRORLEVEL% NEQ 0 goto :ERROR
 call epmautomate logout
 IF %ERRORLEVEL% NEQ 0 goto :ERROR

rem Rename downloaded Artifact Snapshot, keep the last 10 backups
Set Timestamp=%date:~4,2%_%date:~7,2%_%date:~10,2%%
Set Second=%time:~0,2%%time:~3,2%
ren %SnapshotName%.zip %SnapshotName%_%Timestamp%_%Second%.zip

SET Count=0
FOR %%A IN (%SnapshotName%*.*) DO SET /A Count += 1

Chapter 3
Sample Scenarios for All Services

3-3

IF %Count% gtr %NumberOfBackups% FOR %%A IN (%SnapshotName%*.*) DO del
"%%A" && GOTO EOF
:EOF

echo Scheduled Task Completed successfully
exit /b %errorlevel%
:ERROR
echo Failed with error #%errorlevel%.
exit /b %errorlevel%

Linux/UNIX Sample Script

Create a shell (.sh) file containing script similar to the following to automate the
snapshot downloads. If your password contains special characters, see Handling
Special Characters.

#!/bin/sh
Sample script to download and maintain 10 maintenance backups
Update the following seven parameters

url=https://example.oraclecloud.com
user=serviceAdmin
password=/home/user1/epmautomate/bin/example.epw
snapshotname="Artifact Snapshot"
numberofbackups=10
epmautomatescript=/home/user1/epmautomate/bin/epmautomate.sh
javahome=/home/user1/jdk1.8.0_191/

export JAVA_HOME=${javahome}

printResult()
 {
 op="$1"
 opoutput="$2"
 returncode="$3"

 if ["${returncode}" -ne 0]
 then
 echo "Command failed. Error code: ${returncode}. ${opoutput}"
 else
 echo "${opoutput}"
 fi
}

processCommand()
{
 op="$1"
 date=`date`

 echo "Running ${epmautomatescript} ${op}"
 operationoutput=`eval "$epmautomatescript $op"`
 printResult "$op" "$operationoutput" "$?"
}

op="login ${user} ${password} ${url}"

Chapter 3
Sample Scenarios for All Services

3-4

processCommand "${op}"

op="downloadfile \"${snapshotname}\""
processCommand "${op}"

op="logout"
processCommand "${op}"

Renames the downloaded artifacts, keeps the last 10 backups
timestamp=`date +%m_%d_%Y_%I%M`
mv "${snapshotname}.zip" "${snapshotname}_${timestamp}.zip"

((numberofbackups+=1))
ls -tp ${snapshotname}*.zip | grep -v '/$' | tail -n +${numberofbackups} |
xargs -d '\n' -r rm --

Inform Users of Daily Maintenance Completion
The daily maintenance of Oracle Enterprise Performance Management Cloud environments
usually takes a much shorter time than the one hour earmarked for it.

The actual daily maintenance duration of the environment is recorded as the value of the
"Daily Maintenance Duration in Minutes" metric in the "Operations Metrics" section of the
Activity Report. If you do not want to wait for the whole hour before using the environment,
use a custom version of this script to inform users that the daily maintenance is complete so
that they can resume activities.

Windows Script

Create daily_maintenance_completed.ps1 by copying the following PowerShell script. See
Running the Script for information on updating the script for your use.

Daily Maintenance Completed Notification script
#
Update the following parameters

$emailaddresses=user1@oracle.com,user2@oracle.com

$username=$args[0]
$password=$args[1]
$url=$args[2]

if ($($args.count) -ne 3) {
 echo "Usage: ./daily_maintenance_completed.ps1 <USERNAME> <PASSWORD>
<URL>"
 exit 1
}

$amw_time=""

function getDailyMaintenanceStartTime {
 $amwstring=$(epmautomate.bat getDailyMaintenanceStartTime)
 $elements=$amwstring.split(' ')

Chapter 3
Sample Scenarios for All Services

3-5

 $amwtime=$elements[0]
 return $amwtime
}

function goToSleep ($amw_time){
 $current_mdy=Get-Date -AsUTC -UFormat "%m/%d/%Y"
 $current_date_time=Get-Date -AsUTC -UFormat "%m/%d/%Y %H:%M:%S"
 $current_epoch=Get-Date -Date $current_date_time -UFormat "%s"
 $target_date_time=[DateTime]"${current_mdy} ${amw_time}"
 $target_epoch=Get-Date -Date $target_date_time -UFormat "%s"
 $sleep_seconds=$target_epoch - $current_epoch

 # Today's AMW start time has already passed, so add 24 hours to
sleep_seconds
 if ($sleep_seconds -lt 0) {
 $sleep_seconds=$sleep_seconds + 86400
 }

 $sleep_ts=New-TimeSpan -Seconds ${sleep_seconds}
 $sleep_hms="${sleep_ts}" -replace '^\d+?\.'

 echo "Current time is ${current_date_time}. Sleeping for $
{sleep_hms}, until daily maintenance start time of ${amw_time}."
 Start-Sleep -Seconds $sleep_seconds
}

function attemptLogin {
 $serverdown=$False
 while ($true) {
 epmautomate.bat login ${username} ${password} ${url}
 if ($?) { # login succeeded
 if ($serverdown) { # server has been brought down
 echo "Daily maintenance processing has completed ..."
 break
 } else { # server has not yet been brought down
 echo "Daily maintenance processing has not yet
started. Sleeping for 2 minutes before the next check ..."
 Start-Sleep -Seconds 120
 }
 } else { # login failed
 if ($serverdown) { # server has been brought down
 echo "Waiting for daily maintenance processing to
complete. Sleeping for 2 minutes before the next check ..."
 Start-Sleep -Seconds 120
 } else { # server has not yet been brought down
 echo "Daily maintenance processing is now beginning.
Sleeping for 2 minutes before the next check ..."
 Start-Sleep -Seconds 120
 $serverdown=$True
 }
 }
 }
}

function sendNotification {

Chapter 3
Sample Scenarios for All Services

3-6

 $servername=$url.split("/")[2];
 $subject="Daily maintenance processing has completed"
 $formattedmessage="Daily maintenance processing has completed for
server ${servername}"
 $emailaddresses=${emailaddresses}.replace(',',';')

 echo "Mailing report"
 epmautomate.bat sendmail "${emailaddresses}" "${subject}" Body="$
{formattedmessage}"
}

echo "Beginning daily maintenance completion notification script."
echo "Logging into server ..."
epmautomate.bat login ${username} ${password} ${url}
$amwtime=getDailyMaintenanceStartTime
goToSleep ($amwtime)
attemptLogin
sendNotification
echo "Logging out of server ..."
epmautomate.bat logout
echo "Script processing has completed."

Linux/UNIX Script

Create daily_maintenance_completed.sh by copying the following script. See Running the
Script for information on updating the script for your use.

#!/bin/bash
Update the following parameters

epmautomatescript="LOCATION_EPM_AUTOMATE_EXECUTABLE"
javahome="LOCATION_JAVA_HOME"
emailaddresses=EMAIL_ADDRESS_1,EMAIL_ADDRESS_2,EMAIL_ADDRESS_N

username="$1"
password="$2"
url="$3"

export JAVA_HOME=${javahome}

if ["$#" -ne 3]; then
 echo "Usage: ./daily_maintenance_completed.sh <USERNAME> <PASSWORD>
<URL>"
 exit 1
fi

amw_time=""

getDailyMaintenanceStartTime() {
 amw_time=$(${epmautomatescript} getDailyMaintenanceStartTime | cut -d' '
-f1)
}

goToSleep() {

Chapter 3
Sample Scenarios for All Services

3-7

 current_mdy=$(date -u +%m/%d/%Y)
 current_date_time=$(date -u)
 current_epoch=$(date +%s)
 target_epoch=$(date -d "${current_mdy} ${amw_time}" +%s)
 sleep_seconds=$(($target_epoch - $current_epoch))

 # Today's AMW start time has already passed, so add 24 hours to
sleep_seconds
 if [[${sleep_seconds} -lt 0]]
 then
 sleep_seconds=$((sleep_seconds + 86400))
 fi

 sleep_hms=$(date -d@${sleep_seconds} -u +%H:%M:%S)

 echo "Current time is ${current_date_time}. Sleeping for $
{sleep_hms}, until daily maintenance start time of ${amw_time}."
 sleep $sleep_seconds
}

attemptLogin() {
 local serverdown=1
 while true
 do
 ${epmautomatescript} login ${username} ${password} ${url}
 if [[$? -eq 0]] # login succeeded
 then
 if [[${serverdown} -eq 0]] # server has been brought down
 then
 echo "Daily maintenance processing has completed"
 break
 else # server has not yet been brought down
 echo "Daily maintenance processing has not yet
started. Sleeping for 2 minutes before the next check ..."
 sleep 120
 fi
 else # login failed
 if [[${serverdown} -eq 0]] # server has been brought down
 then
 echo "Waiting for daily maintenance processing to
complete. Sleeping for 2 minutes before the next check ..."
 sleep 120
 else # server has not yet been brought down
 echo "Daily maintenance processing is now beginning.
Sleeping for 2 minutes before the next check ..."
 sleep 120
 serverdown=0
 fi
 fi
 done
}

sendNotification()
{
 local servername=$(echo "${url}" | cut -d '/' -f3- | rev | cut -

Chapter 3
Sample Scenarios for All Services

3-8

d':' -f2- | rev)
 local subject="Daily maintenance processing has completed"
 local formattedmessage="Daily maintenance processing has completed for
server ${servername}"
 local emailaddresses=$(echo ${emailaddresses} | sed "s/,/;/g")

 echo "Mailing report"
 ${epmautomatescript} sendmail "${emailaddresses}" "${subject}" Body="$
{formattedmessage}"
}

echo "Beginning daily maintenance completion notification script."
echo "Logging into server ..."
${epmautomatescript} login ${username} ${password} ${url}
getDailyMaintenanceStartTime
goToSleep
attemptLogin
sendNotification
echo "Logging out of server ..."
${epmautomatescript} logout
echo "Script processing has completed."

Server-Side Groovy Script

Create daily_maintenance_completed Groovy script by copying the following code. See
Running the Script for information on updating the script for your use.

// Daily Maintenance Completed Notification script

// Update the following parameters
// -------------------------------
String username="USERNAME"
String password="PASSWORD"
String url="URL OF THE ENVIRONMENT"
String emailaddresses="EMAIL_ADDRESS_1,EMAIL_ADDRESS_2,EMAIL_ADDRESS_N"
// -------------------------------

def LogMessage(String message) {
 def date = new Date()
 def sdf = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss")
 println('[' + sdf.format(date) + '] ' + message);
}

def LogOperationStatus(EpmAutomateStatus opstatus) {
 def returncode = opstatus.getStatus()
 if (returncode != 0){
 LogMessage(opstatus.getOutput())
 }
 LogMessage('return code: ' + returncode)
}

def getDailyMaintenanceStartTime(EpmAutomate automate) {
 LogMessage("Operation: getDailyMaintenanceStartTime")
 EpmAutomateStatus amwtimestatus =
automate.execute('getDailyMaintenanceStartTime')

Chapter 3
Sample Scenarios for All Services

3-9

 LogOperationStatus(amwtimestatus)
 def amwstring=(amwtimestatus.getOutput())
 def elements=amwstring.split(' ')
 def amwtime=elements[0]
 return amwtime
}

def goToSleep(String amw_time){
 def date = new Date()
 def current_mdy = new SimpleDateFormat("MM/dd/yyyy")
 def current_date_time = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss")
 float current_epoch = date.getTime() / 1000
 def pattern = "MM/dd/yyyy HH:mm:ss"
 def input = current_mdy.format(date) + " " + amw_time + ":00"
 def target_date_time = Date.parse(pattern, input)
 float target_epoch = target_date_time.getTime() / 1000
 int sleep_seconds = Math.round(target_epoch - current_epoch)

 //Today's AMW start time has already passed, so add 24 hours to
sleep_seconds
 if (sleep_seconds < 0) {
 sleep_seconds = sleep_seconds + 86400
 }

 def sleep_milliseconds = sleep_seconds * 1000
 LogMessage("Current time is " + current_date_time.format(date) +
". Sleeping until daily maintenance start time of " + amw_time +
":00.")
 sleep(sleep_milliseconds)
}

def attemptLogin(EpmAutomate automate, String username, String
password, String url) {
 def serverdown=1
 while (true) {
 LogMessage("Operation: login " + username + " " + password + "
" + url)
 EpmAutomateStatus status =
automate.execute('login',username,password,url)
 def returncode = status.getStatus()
 if (returncode == 0) {
 if (serverdown == 0){
 LogMessage("Daily maintenance processing has
completed ...")
 break
 } else {
 LogMessage("Daily maintenance processing has not yet
started. Sleeping for 2 minutes before the next check ...")
 sleep(120000)
 }
 } else {
 if (serverdown == 0){
 LogMessage("Waiting for daily maintenance processing
to complete. Sleeping for 2 minutes before the next check ...")
 sleep(120000)

Chapter 3
Sample Scenarios for All Services

3-10

 } else {
 LogMessage("Daily maintenance processing is now beginning.
Sleeping for 2 minutes before the next check ...")
 sleep(120000)
 serverdown=0
 }
 }
 }
}

def sendNotification(EpmAutomate automate, String url, String
emailaddresses) {
 def servername=url.tokenize("/")[-1];
 def subject="Daily maintenance processing has completed"
 def formattedmessage="Daily maintenance processing has completed for
server " + servername
 def emailaddressesformatted = emailaddresses.replaceAll(',',';')

 LogMessage("Operation: sendmail " + emailaddressesformatted + " " +
subject + " Body=" + formattedmessage)
 EpmAutomateStatus status =
automate.execute('sendmail',emailaddressesformatted,subject,'Body=' +
formattedmessage)
 LogOperationStatus(status)
}

LogMessage("Beginning daily maintenance completion notification script.")

EpmAutomate automate = getEpmAutomate()

LogMessage("Operation: login " + username + " " + password + " " + url)
EpmAutomateStatus status = automate.execute('login',username,password,url)
LogOperationStatus(status)

String amwtime = getDailyMaintenanceStartTime(automate)
goToSleep (amwtime)
attemptLogin(automate,username,password,url)
sendNotification(automate,url,emailaddresses)

LogMessage("Operation: logout ")
status = automate.execute('logout')
LogOperationStatus(status)

LogMessage ("Script processing has completed.")

Running the Script

Windows and Linux/UNIX

1. Create daily_maintenance_completed.ps1 or daily_maintenance_completed.sh by
copying the script from a preceding section.

2. Update script:

• Windows: Update the value of emailaddresses with a comma separated list of email
addresses that should be notified when the daily maintenance is complete.

Chapter 3
Sample Scenarios for All Services

3-11

• Linux/UNIX: Update these variables:

– epmautomatescript with the location of the EPM Automate executable.
Example: epmautomatescript="/home/utils/EPMAutomate/bin/
epmautomate.sh"

– javahome with the directory where the JDK used by EPM Automate is
installed. For example: "/home/user1/jdk1.8.0_191"

– emailaddresses with a comma separated list of email addresses that
should be notified when the daily maintenance is complete. For example:
jdoe@example.com,jane_doe@example.com

3. In a Command Window or Console, navigate to the folder where the
daily_maintenance_completed script is stored.

4. Run this command:

• Windows: ./daily_maintenance_completed.ps1 USERNAME PASSWORD URL
• Linux/UNIX: ./daily_maintenance_completed.sh USERNAME PASSWORD URL,

where:

– USERNAME is the user name of a Service Administrator

– PASSWORD is the password of the Service Administrator

– URL is the URL of the EPM Cloud environment

Server-Side Groovy:

1. Create daily_maintenance_completed.groovy Groovy script by copying it from a
preceding section.

2. Update these values.

• username with the username of a Service Administrator.

• password with the password of the Service Administrator

• url with the URL of the EPM Cloud environment for which the daily
maintenance completion notification needs to be made. For example: .
Example: https://testExample-idDomain.pbcs.us1.oraclecloud.com

• emailaddresses with a comma separated list of email addresses that should
be notified when the daily maintenance is complete.

3. Use the Groovy screen in an EPM Cloud business process or automate the script
execution using runBusinessRule. For more information see these information
sources:

• Running Commands without Installing EPM Automate

• Using Groovy Rules in Administering Planning

Copying a Snapshot to or from Oracle Object Storage
This topic contains sample scripts to complete these tasks:

• Copy Artifact Snapshot (the maintenance snapshot) from Oracle Enterprise
Performance Management Cloud to an Oracle Object Storage bucket and rename
it by appending the date on which the snapshot was copied.

• Copy a backup snapshot from an Oracle Object Storage bucket to EPM Cloud.

Chapter 3
Sample Scenarios for All Services

3-12

The scripts in this section assume that you have already created a bucket in Oracle Object
Storage to hold the snapshot. Before running these scripts, customize them for your use by
updating these place holders:

Table 3-1 Parameters and Their Values

Place Holder Expected Value

JAVA_HOME Directory where the JDK used by EPM Automate is installed.
Example: ./home/JDK/bin

epmautomateExe Directory where EPM Automate is installed.
Example: ./home/utils/EPMAutomate/bin

cloudServiceUser User ID of an EPM Cloud Service Administrator.
Example: John.doe@example.com

cloudServicePassword Password of the Service Administrator or the location of the
password file. If the password contains special characters, see
Handling Special Characters.
Example: ex_PWD_213

cloudServiceUrl URL of the EPM Cloud environment from which Artifact
Snapshot is to be copied.
Example: https//test-cloud-
id_Dom.pbcs.us1.oraclecloud.com

objectStorageUser User ID of a user in Oracle Object Storage.
To copy a snapshot to Object Storage, this user must have write
access for the bucket to which the snapshot is copied. To copy a
snapshot from Object Storage, this user must have read access for
the bucket from which the snapshot is copied.
Example: jDoe

objectStoragePassword Password of the objectStorageUser.
Example: example_PWD

objectStorageBucketUrl URL of the Oracle Object Storage bucket where the snapshot is to
be copied. See these information sources for the URL format:
• copyToObjectStorage
• copyFromObjectStorage
Example: https//swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/axaxnpcrorw5/
bucket-20210301-1359

snapshot Name of the snapshot that you want to copy from the Oracle
Object Storage bucket.
Example: Artifact Snapshot20210429.zip

Sample EPM Automate Script to Copy a Snapshot from EPM Cloud to Oracle Object
Storage

Customize and run this script to rename and then copy Artifact Snapshot from EPM Cloud
to an Oracle Object Storage bucket.

#!/bin/sh
export JAVA_HOME=<path_to_jdk>
epmautomateExe=<path_to_epmautomate_executable>
cloudServiceUser=<cloud_service _user>

Chapter 3
Sample Scenarios for All Services

3-13

cloudServicePassword=<cloud_service_password>
cloudServiceUrl=<cloud_service_url>
User with write access to Object Storage bucket
objectStorageUser=<object_storage_user>
objectStoragePassword=<object_storage_password>
objectStorageBucketUrl=<object_storage_bucket>
currentDate=`date +'%Y%m%d'`
sourceSnapshot="Artifact Snapshot"
targetSnapshot="${sourceSnapshot} ${currentDate}"
$epmautomateExe login ${cloudServiceUser} ${cloudServicePassword} $
{cloudServiceUrl}
$epmautomateExe renamesnapshot "${sourceSnapshot}" "${targetSnapshot}"
$epmautomateExe copyToObjectStorage "${targetSnapshot}" $
{objectStorageUser} ${objectStoragePassword} "$
{objectStorageBucketUrl}/${targetSnapshot}"
$epmautomateExe logout
exit 0

Sample EPM Automate Script to Copy a Snapshot from Oracle Object Storage to
EPM Cloud

Customize and run this script to copy Artifact Snapshot of a specific date from an
Oracle Object Storage bucket to EPM Cloud.

#!/bin/sh
export JAVA_HOME=<path_to_jdk>
epmautomateExe=<path_to_epmautomate_executable>
cloudServiceUser=<cloud_service _user>
cloudServicePassword=<cloud_service_password>
cloudServiceUrl=<cloud_service_url>
User with read access to Object Storage bucket
objectStorageUser=<object_storage_user>
objectStoragePassword=<object_storage_password>
objectStorageBucketUrl=<object_storage_bucket>
snapshot=<desired_snapshot>
$epmautomateExe login ${cloudServiceUser} ${cloudServicePassword} $
{cloudServiceUrl}
$epmautomateExe copyFromObjectStorage ${objectStorageUser} $
{objectStoragePassword} "${objectStorageBucketUrl}/${snapshot}"
$epmautomateExe logout
exit 0

Create Users and Assign Them to Predefined Roles
Use the scripts in this section to create users and assign them to predefined roles in
the identity domain.

These scripts use EPM Automate commands to complete these activities:

• Sign in to the environment as a Service Administrator with the Identity Domain
Administrator role.

• Export groups and membership information from the environment to regenerate a
snapshot that you specify; for example, example_snapshot.zip. It is assumed that

Chapter 3
Sample Scenarios for All Services

3-14

you previously exported Groups and Membership artifacts using Migration to create this
snapshot.

• Download the snapshot (example_snapshot.zip) to a local directory.

• Delete the snapshot (example_snapshot.zip) from the environment.

• Sign out of the environment.

• Perform operations for which you added custom code. Such operations may include:

– Extracting the contents of example_snapshot.zip
– Appending new user information to HSS-Shared Services\resource\External

Directory\Users.csv in First Name,Last Name,Email,User Login format. For
detailed information, see Importing a Batch of User Accounts in Getting Started with
Oracle Cloud.

– Appending information about role assignments of new users (in First Name,Last
Name,Email,User Login format) to appropriate roles file(s) in HSS-Shared
Services\resource\External Directory\Roles\. For example, assignment to
Service Administrator role should be appended to <service_name> Service
Administrator.csv while assignments to Viewer roe should be appended to HSS-
Shared Services\resource\External Directory\Roles\<service_name>
Viewer.csv. For detailed information, see Assigning One Role to Many Users in
Getting Started with Oracle Cloud.

– Recreating the snapshot with the updated files by zipping the HSS-Shared Services
directory and its contents.

• Sign into the environment as a Service Administrator who also has Identity Domain
Administrator role.

• Upload the modified example_snapshot.zip to the environment.

• Import example_snapshot.zip into the environment.

• Delete the uploaded example_snapshot.zip from the environment.

• Sign out.

Windows Sample Script

Create a file named createUsersAndAssignRoles.ps1 by copying the following script. Store it
in a local directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./input.properties -
raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$snapshotName="$($inputproperties.snapshotName)"
$userspassword="$($inputproperties.userspassword)"
$resetPassword="$($inputproperties.resetPassword)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate exportsnapshot ${snapshotName}
epmautomate downloadfile ${snapshotName}.zip
epmautomate deletefile ${snapshotName}.zip
epmautomate logout

Chapter 3
Sample Scenarios for All Services

3-15

Add custom code to extract the contents of example_snapshot.zip
Add custom code to append new user information to HSS-Shared
Services\resource\External Directory\Users.csv
Optional: Add custom code to append role information to the
appropriate role file(s) in HSS-Shared Services\resource\External
Directory\Roles\
Add custom code to zip HSS-Shared Services and its contents as
example_snapshot.zip

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate uploadfile ${snapshotName}.zip
epmautomate importsnapshot ${snapshotName} userPassword=$
{userspassword} resetPassword=${resetPassword}
epmautomate deletefile ${snapshotName}.zip
epmautomate logout

Linux/UNIX Sample Script

Create a file named createUsersAndAssignRoles.sh by copying the following script.
Store it in a local directory.

#!/bin/bash

. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "$
{serviceURL}"
${epmautomatescript} exportsnapshot "${snapshotName}"
${epmautomatescript} downloadfile "${snapshotName}.zip"
${epmautomatescript} deletefile "${snapshotName}.zip"
${epmautomatescript} logout

Add custom code to extract the contents of example_snapshot.zip
Add custom code to append new user information to HSS-Shared
Services\resource\External Directory\Users.csv
Optional: Add custom code to append role information to the
appropriate role file(s) in HSS-Shared Services\resource\External
Directory\Roles\
Add custom code to zip HSS-Shared Services and its contents as
example_snapshot.zip

${epmautomatescript} login "${username}" "${passwordfile}" "$
{serviceURL}"
${epmautomatescript} uploadfile "${snapshotName}.zip"
${epmautomatescript} importsnapshot "${snapshotName}" "userPassword=$
{userspassword}" "resetPassword=${resetPassword}"
${epmautomatescript} deletefile "${snapshotName}.zip"
${epmautomatescript} logout

Sample input.properties File

To run the createUsersAndAssignRoles scripts, create the input.properties file and
update it with information for your environment. Save the file in the directory where
createUsersAndAssignRoles.ps1 or createUsersAndAssignRoles.sh is stored.

Chapter 3
Sample Scenarios for All Services

3-16

Windows

uusername=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
snapshotName=SNAPSHOT_NAME
userspassword=TEMP_IDM_PASSWORD
resetPassword=true

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
snapshotName=SNAPSHOT_NAME
userspassword=TEMP_IDM_PASSWORD
resetPassword=true

Table 3-2 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable
(epmautomate.sh). For Linux/UNIX only.

username User name of a Service Administrator, who also has the
Identity Domain Administrator role.

password Password of the Service Administrator or the name and
location of the encrypted password file.

serviceURL URL of the environment from which you want to generate
the snapshot.

snapshotName A name for the snapshot you want to generate. It is assumed
that you previously exported Groups and Membership
artifacts using Migration to create this snapshot.

userspassword The initial password for new users.

resetPassword Whether the new users must reset password on first login.
Set this value to trueto force new users to change their
password when they login for the first time.

Running the Script

1. Create createUsersAndAssignRoles.ps1 or createUsersAndAssignRoles.sh by copying
the script from a preceding section.

2. Add custom code to perform these operations:

• Extract the contents of the snapshot

• Append new user information to HSS-Shared Services\resource\External
Directory\Users.csv.

Chapter 3
Sample Scenarios for All Services

3-17

• Optionally, append information about role assignments of new users (in First
Name,Last Name,Email,User Login format) to appropriate roles file(s) in HSS-
Shared Services\resource\External Directory\Roles\.

• Recreate the snapshot with the updated files.

3. Create the input.properties file and save it in the directory where the
createUsersAndAssignRoles script is located. Contents of this file differs
depending on your operating system. See Sample input.properties File.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
the script.

4. Launch the script.

• Windows PowerShell: run createUsersAndAssignRoles.ps1.

• Linux/UNIX: run ./createUsersAndAssignRoles.sh.

Count the Number of Licensed Users (Users Assigned to Roles)
Use the script in this section to generate the Role Assignment Report to count the
number of users for an environment.

Create provisionedUsersCount.bat by copying the following script.

Note:

• Input parameters to run provisionedUsersCount.bat are username,
password/password_file, service_url, and report_file_name. For
example, at the command prompt, enter a command similar to the
following:
provisionedUsersCount.bat jdoe password.epw https://
example.oraclecloud.com myRole_assign.CSV

• If the password contains special characters, see Handling Special
Characters.

@echo off

set paramRequiredMessage=Syntax: provisionedUsersCount.bat USERNAME
PASSWORD/PASSWORD_FILE URL REPORT_FILE_NAME

if "%~1" == "" (
 echo User Name is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

if "%~2" == "" (
 echo Password or Password_File is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

Chapter 3
Sample Scenarios for All Services

3-18

if "%~3" == "" (
 echo URL is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

if "%~4" == "" (
 echo Role Assignment Report File Name is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

call epmautomate.bat login %~1 "%~2" %~3
REM call epmautomate.bat login %~1 "%~2" %~3

if %errorlevel% NEQ 0 exit /b 1
 call epmautomate.bat roleAssignmentReport "%5"
if %errorlevel% NEQ 0 exit /b 1
 call epmautomate.bat downloadFile "%5"
if %errorlevel% NEQ 0 exit /b 1

set filePath="%cd%\%4"

if exist %filePath% (
 SETLOCAL EnableDelayedExpansion
 set /a lineCount=0
 set /a userCount=0
 set userHeaderFound=false
 for /f "tokens=*" %%A in ('type %filePath%') do (
 set /a lineCount+=1
 set line=%%A

 REM Fetch username from role assignment information row
 if !userHeaderFound!==true (
 for /f "delims=," %%i in ("!line!") do (
 set userName=%%i
)
 if NOT !userName! == "" (
 if !userCount! gtr 0 if NOT !userName! == !lastUserName! (
 set /a userCount+=1
 set users[!userCount!]=!userName!
)
 if !userCount! == 0 (
 set /a userCount+=1
 set users[!userCount!]=!userName!
)
 set lastUserName=!userName!
)
)

 REM Check for headers of Role Assignment Report
 if "!line!"=="User Login,First Name,Last Name,Email,Role,Granted
through Group" (
 set userHeaderFound=true

Chapter 3
Sample Scenarios for All Services

3-19

)
 if "!line!"=="User Login,First Name,Last Name,Email,Roles,Granted
Through" (
 set userHeaderFound=true
)
)

 echo Number of Users: !userCount!
 for /l %%n in (1,1,!userCount!) do (
 REM echo !users[%%n]!
)
 endlocal

) else (
 echo Invalid provisioning report file path - %filePath%.
)

Create Audit Reports of Users Assigned to Roles
Use the scripts in this section to automate the process of creating an audit report for
users assigned to predefine roles in an environment and, optionally, email it to a
recipient.

This audit report shows the users assigned to predefined roles or groups that changed
since the last time the report was generated. To create a daily audit report, run this
script on a daily basis.

Create provisioningAuditReport.bat by copying the following script. This wrapper
batch script calls the PowerShell script provisioningAuditReport.ps1, the source
code for which is provided later on in this scenario.

Note:

• Input parameters for running provisioningAuditReport.bat are:
username, password or password_file, service_url, and
report_email_to_address (optional, required only if you want to send
the report to an email address).

• If the password contains special characters, see Handling Special
Characters.

@echo off
set paramRequiredMessage=Syntax: provisioningAuditReport.bat USERNAME
PASSWORD/PASSWORD_FILE URL [REPORT_EMAIL_TO_ADDRESS]

if "%~1" == "" (
 echo User Name is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~2" == "" (

Chapter 3
Sample Scenarios for All Services

3-20

 echo Password or Password_File is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~3" == "" (
 echo URL is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

PowerShell.exe -File provisioningAuditReport.ps1 %*

provisioningAuditReport.bat calls provisioningAuditReport.ps1, which you create by
copying the following script.

provisioningAuditReport.ps1 creates the audit report. Place it in the same directory where
provisioningAuditReport.bat is located.

$username=$args[0]
$password=$args[1]
$url=$args[2]
$reportemailtoaddress=$args[3]

$date=$(get-date -f dd_MM_yy_HH_mm_ss)
$datedefaultformat=$(get-date)
$logdir="./logs/"
$logfile="$logdir/epmautomate-provisionauditreport-" + $date + ".log"
$reportdir="./reports/"
$provisionreport="provreport-audittest-" + $date + ".csv"
$provisionreporttemp="./provreport-audittest-temp.csv"
$provisionreportunique="./provreport-audittest-unique.csv"
$provisionreportbaselineunique="./provreport-audittest-baseline-unique.csv"

function EchoAndLogMessage
{
 $message=$args[0]
 echo "$message"
 echo "$message" >> $logfile
}

function Init
{
 $logdirexists=Test-Path $logdir
 if (!($logdirexists)) {
 mkdir $logdir 2>&1 | out-null
 }

 $logfileexists=Test-Path $logfile
 if ($logfileexists) {
 rm $logfile 2>&1 | out-null
 }

 $reportdirexists=Test-Path $reportdir
 if (!($reportdirexists)) {

Chapter 3
Sample Scenarios for All Services

3-21

 mkdir $reportdir 2>&1 | out-null
 }
}

function PostProcess
{
 rm $provisionreporttemp
 mv -Force $provisionreportunique $provisionreportbaselineunique
}

function ProcessCommand
{
 $op=$args
 echo "EPM Automate operation: epmautomate.bat $op" >> $logfile
 epmautomate.bat $op >> $logfile 2>&1
 if ($LASTEXITCODE -ne 0) {
 echo "EPM Automate operation failed: epmautomate.bat $op.
See $logfile for details."
 exit
 }
}

function RunEpmAutomateCommands
{
 EchoAndLogMessage "Running EPM Automate commands to generate the
provisioning report."
 ProcessCommand login $username $password $url
 ProcessCommand provisionreport $provisionreport
 ProcessCommand downloadfile $provisionreport
 ProcessCommand deletefile $provisionreport
 ProcessCommand logout
}

function CreateProvisionReportTempFile
{
 # Loop through iteration csv file and parse
 Get-Content $provisionreport | ForEach-Object {
 $elements=$_.split(',')
 echo "$($elements[0]),$($elements[2])" >> $provisionreporttemp
 }
}

function CreateUniqueElementsFile
{
 gc $provisionreporttemp | sort | get-unique > $provisionreportunique
}

function CheckBaselineAndCreateAuditReport
{
 $provisionreportbaselineuniqueexists=Test-
Path $provisionreportbaselineunique
 if (!($provisionreportbaselineuniqueexists)) {
 EchoAndLogMessage "No existing provisioning report, so comparison
with a baseline is not possible. Audit report will be created at the
next test run."

Chapter 3
Sample Scenarios for All Services

3-22

 } else {
 CreateAuditReport
 }
}

function EmailAuditReport
{
 $auditreport=$args[0]
 $elements=$auditreport.split('/')
 $auditreportname=$elements[2]

 if (${reportemailtoaddress} -match "@") {
 EchoAndLogMessage "Emailing audit report"
 ProcessCommand login $username $password $url
 ProcessCommand uploadFile $auditreport
 ProcessCommand sendMail $reportemailtoaddress "Provisionining Audit
Report" Body="Provisioning Audit Report is attached."
Attachments=$auditreportname
 ProcessCommand deleteFile $auditreportname
 ProcessCommand logout
 }
}

function CreateAuditReport
{
 $auditreport=$reportdir + "auditreport-"+ $date + ".txt"
 $additions = @()
 $deletions = @()

 EchoAndLogMessage "Comparing previous provisioning report with the current
report."
 $compare=compare-object (get-content $provisionreportunique) (get-
content $provisionreportbaselineunique)

 $compare | foreach {
 if ($_.sideindicator -eq '<=')
 {
 $additions += $_.inputobject
 } elseif ($_.sideindicator -eq '=>') {
 $deletions += $_.inputobject
 }
 }

 echo "Provisioning Audit Report for $datedefaultformat" > $auditreport
 echo "--" >> $auditreport

 if ($additions.count -ne 0)
 {
 echo " " >> $auditreport
 echo "Additions:" >> $auditreport
 foreach($element in $additions) { echo "$element" >> $auditreport }
 }

 if ($deletions.count -ne 0)
 {

Chapter 3
Sample Scenarios for All Services

3-23

 echo " " >> $auditreport
 echo "Deletions:" >> $auditreport
 foreach($element in $deletions) { echo "$element" >> $auditreport }
 }

 if (($additions.count -eq 0) -and ($deletions.count -eq 0))
 {
 echo " " >> $auditreport
 echo "No changes from last audit report." >> $auditreport
 }

 EchoAndLogMessage "Provisioning audit report has been
generated: $auditreport."
 EmailAuditReport $auditreport
}

Init
EchoAndLogMessage "Starting EPMAutomate provisioning audit reporting"
RunEpmAutomateCommands
CreateProvisionReportTempFile
CreateUniqueElementsFile
CheckBaselineAndCreateAuditReport
PostProcess
EchoAndLogMessage "EPMAutomate provisioning audit reporting completed"

Create Role Assignment and Revocation Audit Report
Use the PowerShell script in this section to automate the process of creating an audit
report that details role assignment and role revocation in an environment.

Create AuditReportRoleAssignment.bat by copying the following script. This wrapper
batch script calls the PowerShell script AuditReportRoleAssignment.ps1, the source
code for which is provided later on in this scenario.

Note:

• Input parameters for running AuditReportRoleAssignment.bat are
username, password or password_file, and service_url.

• If the password contains special characters, see Handling Special
Characters.

Script: AuditReportRoleAssignment.bat

@echo off
set paramRequiredMessage=Syntax: AuditReportRoleAssignment.bat
USERNAME PASSWORD/PASSWORD_FILE URL

if "%~1" == "" (
 echo User Name is missing.
 echo %paramRequiredMessage%

Chapter 3
Sample Scenarios for All Services

3-24

 exit /b 1
)
if "%~2" == "" (
 echo Password or Password_File is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~3" == "" (
 echo URL is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

PowerShell.exe -File AuditReportRoleAssignment.ps1 %*

Script: AuditReportRoleAssignment.ps1

EPM Automate Role Assignment Audit Report Script
$username=$args[0]
$password=$args[1]
$url=$args[2]

Generic variables
$date=$(get-date -f dd_MM_yy_HH_mm_ss)
$datedefaultformat=$(get-date)
$logdir="./logs/"
$logfile="$logdir/epmautomate-provisionauditreport-" + $date + ".log"
$reportdir="./reports/"
$provisionreport="provreport-audittest-" + $date + ".csv"
$provisionreporttemp="./provreport-audittest-temp.csv"
$provisionreportunique="./provreport-audittest-unique.csv"
$provisionreportbaselineunique="./provreport-audittest-baseline-unique.csv"

function EchoAndLogMessage
{
 $message=$args[0]
 echo "$message"
 echo "$message" >> $logfile
}
function Init
{
 $logdirexists=Test-Path $logdir
 if (!($logdirexists)) {
 mkdir $logdir 2>&1 | out-null
 }
 $logfileexists=Test-Path $logfile
 if ($logfileexists) {
 rm $logfile 2>&1 | out-null
 }
 $reportdirexists=Test-Path $reportdir
 if (!($reportdirexists)) {
 mkdir $reportdir 2>&1 | out-null
 }
}

Chapter 3
Sample Scenarios for All Services

3-25

function PostProcess
{
 rm $provisionreporttemp
 mv -Force $provisionreportunique $provisionreportbaselineunique
}

function ProcessCommand
{
 $op=$args
 echo "EPM Automate operation: epmautomate.bat $op" >> $logfile
 epmautomate.bat $op >> $logfile 2>&1
 if ($LASTEXITCODE -ne 0) {
 echo "EPM Automate operation failed: epmautomate.bat $op.
See $logfile for details."
 exit
 }
}

function RunEpmAutomateCommands
{
 EchoAndLogMessage "Running EPM Automate commands to generate the
audit report."
 ProcessCommand login $username $password $url
 ProcessCommand provisionreport $provisionreport
 ProcessCommand downloadfile $provisionreport
 ProcessCommand deletefile $provisionreport
 ProcessCommand logout
}
function CreateProvisionReportTempFile
{
 # Loop through iteration csv file and parse
 Get-Content $provisionreport | ForEach-Object {
 $elements=$_.split(',')
 echo "$($elements[0]),$($elements[2])" >> $provisionreporttemp
 }
}

function CreateUniqueElementsFile
{
 gc $provisionreporttemp | sort | get-unique
> $provisionreportunique
}

function CheckBaselineAndCreateAuditReport
{
 $provisionreportbaselineuniqueexists=Test-
Path $provisionreportbaselineunique
 if (!($provisionreportbaselineuniqueexists)) {
 EchoAndLogMessage "Could not find a baseline audit report to
compare with. Audit report will be created next time you run test."
 } else {
 CreateAuditReport
 }
}

Chapter 3
Sample Scenarios for All Services

3-26

function CreateAuditReport
{
 $auditreport=$reportdir + "auditreport-"+ $date + ".txt"
 $additions = @()
 $deletions = @()
 EchoAndLogMessage "Comparing previous audit report with the current one."
 $compare=compare-object (get-content $provisionreportunique) (get-
content $provisionreportbaselineunique)
 $compare | foreach {
 if ($_.sideindicator -eq '<=')
 {
 $additions += $_.inputobject
 } elseif ($_.sideindicator -eq '=>') {
 $deletions += $_.inputobject
 }
 }
 echo "Provisioning Audit Report for $datedefaultformat" > $auditreport
 echo "--" >> $auditreport
 if ($additions.count -ne 0)
 {
 echo " " >> $auditreport
 echo "Additions:" >> $auditreport
 foreach($element in $additions) { echo "$element" >> $auditreport }
 }
 if ($deletions.count -ne 0)
 {
 echo " " >> $auditreport
 echo "Deletions:" >> $auditreport
 foreach($element in $deletions) { echo "$element" >> $auditreport }
 }
 if (($additions.count -eq 0) -and ($deletions.count -eq 0))
 {
 echo " " >> $auditreport
 echo "No changes from last audit report." >> $auditreport
 }
 EchoAndLogMessage "Role audit report generated: $auditreport."
}

Init
EchoAndLogMessage "Starting EPMAutomate role audit report generation"
RunEpmAutomateCommands
CreateProvisionReportTempFile
CreateUniqueElementsFile
CheckBaselineAndCreateAuditReport
PostProcess
EchoAndLogMessage "EPMAutomate role audit report completed"

Chapter 3
Sample Scenarios for All Services

3-27

Mask Access Logs and Activity Report to Comply with Privacy Laws
Use the scripts in this section to automate the process of masking information in the
Activity Report or Access Logs to comply with privacy laws and to, optionally, email the
report to a recipient.

Because of the stringent privacy laws of some countries, the information available in
the Activity Reports and Access Logs may have to be hidden from Service
Administrators to protect privacy of users.

You use anonymizeData.bat to mask information in the Activity Report or Access Logs
to comply with privacy laws and to, optionally, email it. To mask information, schedule
this script or a variation there of using Windows scheduler so that it runs everyday
soon after the daily maintenance process for each environment is complete.

Use these information sources:

• Using Activity Reports and Access Logs to Monitor Usage in Getting Started with
Oracle Enterprise Performance Management Cloud for Administrators

• Automating Script Execution

You manually create anonymizeData.bat by copying the Windows script provided in
the following procedure and schedule it using Windows scheduler. You may create and
run similar platform-appropriate scripts if you are not using Windows for scheduling.

anonymizeData.bat is a wrapper script, which executes the anonymizeData.ps1 script,
which you create and update as explained in the following procedure.

If the password you use contains special characters, see Handling Special Characters

1. Create a batch (BAT) file named anonymizeData.bat containing the following script
and save it in a convenient location, for example, C:\automate_scripts.

@echo off
set paramRequiredMessage=Syntax: anonymizeData.bat USERNAME
PASSWORD/PASSWORD_FILE URL [EMAIL_TO_ADDRESS]

if "%~1" == "" (
 echo User Name is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~2" == "" (
 echo Password or Password_File is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~3" == "" (
 echo URL is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

PowerShell.exe -File anonymizeData.ps1 %*

Chapter 3
Sample Scenarios for All Services

3-28

2. Create a PowerShell script (PS1) file named anonymizeData.ps1 containing the following
script and save it in a convenient location, for example, C:\automate_scripts.

Anonymize data script

$username=$args[0]
$password=$args[1]
$url=$args[2]
$emailtoaddress=$args[3]

Generic variables
$date=$(get-date -f dd_MM_yy_HH_mm_ss)
$datedefaultformat=$(get-date)
$logdir="./logs/"
$logfile="$logdir/anonymize-data-" + $date + ".log"
$filelist="filelist.txt"

function LogMessage
{
 $message=$args[0]

 echo "$message" >> $logfile
}

function EchoAndLogMessage
{
 $message=$args[0]

 echo "$message"
 echo "$message" >> $logfile
}
function Init
{
 $logdirexists=Test-Path $logdir
 if (!($logdirexists)) {
 mkdir $logdir 2>&1 | out-null
 }

 $logfileexists=Test-Path $logfile
 if ($logfileexists) {
 rm $logfile 2>&1 | out-null
 }

 $filelistexists=Test-Path $filelist
 if ($filelistexists) {
 rm $filelist 2>&1 | out-null
 }
}

function ProcessCommand
{
 $op=$args
 echo "EPM Automate operation: epmautomate.bat $op" >> $logfile
 if ($op -eq 'listfiles') {
 epmautomate.bat $op | where {$_ -like ' apr/*/access_log.zip'} |

Chapter 3
Sample Scenarios for All Services

3-29

Tee-Object -FilePath $filelist | Out-File $logfile -Append 2>&1
 } else {
 epmautomate.bat $op >> $logfile 2>&1
 if ($LASTEXITCODE -ne 0) {
 echo "EPM Automate operation failed:
epmautomate.bat $op. See $logfile for details."
 #exit
 }
 }
}

function RunEpmAutomateCommands
{
 EchoAndLogMessage "Running EPM Automate commands to anonymize
data in the access logs and activity reports."
 ProcessCommand login $username $password $url
 ProcessCommand listfiles
 ProcessFiles
 ProcessCommand logout
}

function ProcessActivityReport
{
 $activityreport=$args[0]
 $user=$args[1]

 $activityreportexists=Test-Path "$activityreport"
 if ($activityreportexists) {
 LogMessage "Removing User ID: $user from activity
report $activityreport"
 (Get-Content "$activityreport").replace("$user", 'XXXXX') |
Set-Content "$activityreport"
 $txt = [io.file]::ReadAllText("$activityreport") -replace
"`r`n","`n"
 [io.file]::WriteAllText("$activityreport", $txt)
 #Get-ChildItem -File -Recurse | % { $x = get-content -raw -
path $activityreport; $x -replace "`r`n","`n" | set-content -
path $activityreport }
 }
}

function AnonymizeData
{
 $aprdir=$args[0]
 $datestampdir=$args[1]
 $path="$aprdir/$datestampdir"
 $accesslogzipped="access_log.zip"
 $accesslog="access_log.csv"
 $accesslogupdated=$accesslog + ".tmp"
 $activityreportfile="$datestampdir" + ".html"
 $userArray = @()

 expand-Archive -Path "$path/$accesslogzipped" -
DestinationPath $path
 rm $path/$accesslogzipped 2>&1 | out-null

Chapter 3
Sample Scenarios for All Services

3-30

 $accesslogexists=Test-Path "$path/$accesslog"
 if ($accesslogexists) {
 EchoAndLogMessage "Processing access log: $path/$accesslog"
 Get-Content $path/$accesslog | ForEach-Object {
 $elements=[regex]::Split($_ , ',(?=(?:[^"]|"[^"]*")*$)')
 $date=$elements[0]
 $time=$elements[1]
 $uri=$elements[2]
 $duration=$elements[3]
 $bytes=$elements[4]
 $ip=$elements[5]
 $user=$elements[6]
 $screen=$elements[7]
 $action=$elements[8]
 $object=$elements[9]
 if ($date -like 'Date') {
 echo "$_" >> $path/$accesslogupdated
 } else {
 if ($user -notlike '-') {
 LogMessage "Removing instance of User ID: $user
from $path/$accesslog."
 echo
"$date,$time,$uri,$duration,$bytes,$ip,XXXXX,$screen,$action,$object"
>> $path/$accesslogupdated
 $userArray += $user
 } else {
 echo
"$date,$time,$uri,$duration,$bytes,$ip,$user,$screen,$action,$object"
>> $path/$accesslogupdated
 }
 }
 }
 #Get-ChildItem -File -Recurse | % { $x = get-content -raw -
path $path/$accesslogupdated; $x -replace "`r`n","`n" | set-content -
path $path/$accesslogupdated }
 $txt = [io.file]::ReadAllText("$path/$accesslogupdated") -replace
"`r`n","`n"
 [io.file]::WriteAllText("$path/$accesslogupdated", $txt)
 mv -Force $path/$accesslogupdated $path/$accesslog
 Compress-Archive -Path $path/$accesslog $path/$accesslogzipped
 rm $path/$accesslog 2>&1 | out-null
 }

 EchoAndLogMessage "Processing activity
report: $path/$activityreportfile"
 $userArray = $userArray | Select-Object -Unique
 foreach ($element in $userArray) {
 ProcessActivityReport "$path/$activityreportfile"
"$element"
 }
}

function ProcessFiles
{
 # Loop through iteration csv file and parse

Chapter 3
Sample Scenarios for All Services

3-31

 Get-Content $filelist | ForEach-Object {
 $fullpath=$_.trim()
 $elements=$fullpath.split('/')
 $aprdir=$elements[0]
 $datestampdir=$elements[1]
 $accesslogfile="access_log.zip"
 $activityreportfile="$datestampdir" + ".html"
 $datestampdirexists=Test-Path "$aprdir/$datestampdir"
 $accesslog="$aprdir/$datestampdir/$accesslogfile"
 $activityreport="$aprdir/$datestampdir/$activityreportfile"

 echo "fullpath: $fullpath" >> $logfile
 echo "aprdir: $aprdir, datestampdir: $datestampdir"
>> $logfile
 if (!($datestampdirexists)) {
 mkdir "$aprdir/$datestampdir" -ea 0 2>&1 | out-null
 ProcessCommand downloadfile "$accesslog"
 ProcessCommand downloadfile "$activityreport"
 mv "$accesslogfile" "$aprdir/$datestampdir"
 mv "$activityreportfile" "$aprdir/$datestampdir"
 AnonymizeData "$aprdir" "$datestampdir"
 ProcessCommand deletefile "$accesslog"
 ProcessCommand deletefile "$activityreport"
 ProcessCommand uploadfile "$accesslog"
"$aprdir/$datestampdir"
 ProcessCommand uploadfile "$activityreport"
"$aprdir/$datestampdir"
 } else {
 EchoAndLogMessage "Files in
directory $aprdir/$datestampdir were processed earlier. Skipping
these files."
 }
 }
}

function callSendMail
{
 $elements=$logfile.split('/')
 $logfilename=$elements[3]

 if (${emailtoaddress} -match "@") {
 epmautomate.bat login ${username} ${password} ${url}
 epmautomate.bat uploadFile "$logfile"
 epmautomate.bat sendMail $emailtoaddress "Mask Access Logs
and Activity Reports results" Body="The results of running the Mask
Access Logs and Activity Reports script are attached."
Attachments=$logfilename
 epmautomate.bat deleteFile "$logfilename"
 epmautomate.bat logout
 }
}

Init
EchoAndLogMessage "Starting the anonymize data script"
RunEpmAutomateCommands

Chapter 3
Sample Scenarios for All Services

3-32

EchoAndLogMessage "Anonymize data script completed"
EchoAndLogMessage "Refer to logfile: $logfile for details."
callSendMail

3. Using Windows Scheduler, schedule anonymizeData.bat. See Automating Script
Execution for detailed steps.

You need to supply the following parameter values to execute anonymizeData.bat
• User name of a Service Administrator

• Password of the Service Administrator or the location where the encrypted password
file is available

• URL of the service environment in which the Access Logs and Activity Reports are to
be masked

• Optional: The email address to which the report is to be sent. The report is emailed
only if this value is specified.

Automate Activity Report Downloads to a Local Computer
Use the script in this section to automate the downloading of Activity Reports from an
environment to a local computer.

You use syncAprReports.bat to download Activity Reports. You can schedule the batch file
using Windows scheduler to automate the downloading of Activity Reports. See Using
Activity Reports and Access Logs to Monitor Usage in Getting Started with Oracle Enterprise
Performance Management Cloud for Administrators for detailed information about Activity
Report.

You manually create syncAprReports.bat by copying the script provided in the following
procedure and then updating the connection parameters. This script checks the environment
and downloads only the reports that are more recent than those available in the download
directory on the local computer.

Note:

• The script is to be run from a Windows computer only.

• This script does not download the Feedback Activity Report, which is generated
when users submit feedback.

• If the password you use contains special characters, see Handling Special
Characters

1. Create a batch (.BAT) file named syncAprReports.bat containing the following script and
save it in a convenient location, for example, C:\automate_scripts.

@echo off
title APR
setlocal DisableDelayedExpansion

REM To hardcode the values in the script replace %1, %2, %3, and %4, with
the actual values.

Chapter 3
Sample Scenarios for All Services

3-33

REM Example:
REM set apr_dir="C:\Oracle\apr"
REM set username="serviceAdmin"
REM set password="Ex@mple!"
REM set url="https://test-example.stg-pbcs.us1.oraclecloud.com"
set apr_dir=%1
set username=%2
set password=%3
set url=%4
setlocal EnableDelayedExpansion
set epmautomate_dir=%cd%
set lastfile=
set argC=0
for %%x in (%*) do Set /A argC+=1
if %argC% neq 0 (
 if %argC% neq 3 (
 if %argC% neq 4 (
 goto :usage
)
)
)
goto :login
:usage
echo.
echo Invalid syntax. Please check the parameters.
echo Syntax:
echo 1) syncAprReports.bat APR_FolderPath_on_client username
password url
echo or
echo 2) set the parameters in the file and use below syntax
echo syncAprReports.bat
goto :end

:login
setlocal DisableDelayedExpansion
for /f "delims=" %%i in ('epmautomate login %username% %password%
%url%') do set result=%%i
if "Login successful" neq "%result%" (
 echo Login Failed
 goto :end
)

if not exist %apr_dir% (
echo.
echo apr folder does not exist
GOTO :end
)
cd /D %apr_dir%
for /f "delims=" %%D in ('dir /a:d /b /o:-n') do (
REM AFTER: for /f "delims=" %%D in ('dir /a-d /b /s /o:-n') do (
 set "lastFile=%%~nD"
 goto :next
)

:next

Chapter 3
Sample Scenarios for All Services

3-34

setlocal EnableDelayedExpansion
echo.
echo Most Recent APR on client is %lastFile%

set "output_cnt=0"
cd /D %epmautomate_dir%
for /F "delims=" %%f in ('epmautomate listfiles') do (

 cd /D !apr_dir!
 set "line=%%f"
 for /f "tokens=* delims= " %%a in ("!line!") do set line=%%a
 if "!line:~0,3!" equ "apr" (

 if "!line:~4,8!" neq "Feedback" (

 set isValidFile=false
 if "!line:~-5!" equ ".html" set isValidFile=true
 if "!line:~-5!" equ ".json" set isValidFile=true

 if "!isValidFile!" equ "true" (

 if "%lastFile%" lss "!line:~4,19!" (

 if "!line:~4,19!" neq "!dirname!" (

 set apr_dir=!apr_dir:"=!
 set /a output_cnt+=1
 set "output[!output_cnt!]=!apr_dir!\!
line:~4,19!"
 set "dirname=!line:~4,19!"

 REM start downloading
 mkdir "!dirname!"
 cd /D !dirname!
 echo downloading !line!
 set "downloadDir=!apr_dir!\!dirname!"

 cd /D %epmautomate_dir%
 for /f "delims=" %%i in ('epmautomate
downloadfile "!line!"') do set result1=%%i
 move "!line:~24!" "!downloadDir!" > nul
 echo !result1!
 REM end downloading

) else (

 REM start downloading
 cd /D !dirname!
 echo downloading !line!
 set apr_dir=!apr_dir:"=!
 set "downloadDir=!apr_dir!\!dirname!"
 cd /D %epmautomate_dir%
 for /f "delims=" %%i in ('epmautomate
downloadfile "!line!"') do set result1=%%i
 move "!line:~24!" "!downloadDir!" > nul

Chapter 3
Sample Scenarios for All Services

3-35

 echo !result1!
 REM end downloading

)
) else (

 REM TO-DO

)
)
)
)
)

echo.
echo %output_cnt% APR's downloaded
for /L %%n in (1 1 !output_cnt!) DO echo !output[%%n]!
goto :end

:end
cd /D %epmautomate_dir%
endlocal

2. Modify syncAprReports.bat to set the values for the parameters in the following
table. These values are used to access the environment to download Activity
Reports.

Table 3-3 Parameter Values to Include in syncAprReports.bat

Parameter Expected Value

set apr_dir=%1 Specify an existing directory into which Activity Reports are to
be downloaded.
Example: set apr_dir="C:\Oracle\apr"

set username=%2 An Oracle Enterprise Performance Management Cloud user
name that is to be used to sign into the environment to
download Activity Reports.
Example: set username="ServiceAdmin"

set password=%3 The name and location of the file that stores the encrypted
password of the user specified by the username variable. You
may also specify the plain text password of the user (not
recommended). See the encrypt command for information on
creating an encrypted password file.
Examples:
set password="C:\mySecuredir\password.epw"
set password="Ex@mple1"

set url=%4 The URL of the environment.
Example: set url="https://test-example.stg-
pbcs.us1.oraclecloud.com"

3. Using Windows Scheduler, schedule syncAprReports.bat. See Automating Script
Execution for detailed steps.

Chapter 3
Sample Scenarios for All Services

3-36

Download Access Logs from an Environment
Use the script in this section to automate the process of downloading access logs from an
environment to a local computer.

You can schedule syncAccessLog.bat using Windows scheduler to automate the
downloading of the log files. See Viewing and Downloading Activity Reports and Access Logs
in Getting Started with Oracle Enterprise Performance Management Cloud for Administrators
for procedures to download access logs using Application Management.

The following script checks the environment and downloads only the log files that are more
recent than those available in the download directory on the local computer. The is a
Windows script; you can create a similar shell script for Linux/UNIX environments.

1. Create a batch (.BAT) file named syncAccessLog.bat containing the following script and
save it in a convenient location, for example, C:\automate_scripts.

Note:

If your password contains special characters, see Handling Special Characters.

@echo off
title APR
setlocal DisableDelayedExpansion

REM To hardcode the values in the script replace %1, %2, %3, and %4 with
the actual values.
REM Example:
REM set apr_dir="C:\Oracle\apr"
REM set username="serviceAdmin"
REM set password="C:\mySecuredir\password.epw"
REM set url="https://test-cloudpln.pbcs.us1.oraclecloud.com"
set apr_dir=%1
set username=%2
set password=%3
set url=%4

setlocal EnableDelayedExpansion
set epmautomate_dir=%cd%
set lastfile=
REM if [%1]==[] goto :usage
REM if [%2]==[] goto :usage
REM if [%3]==[] goto :usage

set argC=0
for %%x in (%*) do Set /A argC+=1
if %argC% neq 0 (
 if %argC% neq 3 (
 if %argC% neq 4 (
 goto :usage
)
)

Chapter 3
Sample Scenarios for All Services

3-37

)
goto :login

:usage
echo.
echo Invalid syntax. Please check the parameters.
echo Syntax:
echo 1) syncAccessLog.bat APR_FolderPath_on_client username
password url
echo or
echo 2) set the parameters in the file and use below syntax
echo syncAccessLog.bat
goto :end

:login
setlocal DisableDelayedExpansion
REM for /f "delims=" %%i in ('epmautomate login %2 %3 %4') do set
result=%%i
for /f "delims=" %%i in ('epmautomate login %username% %password%
%url%') do set result=%%i

if not exist %apr_dir% (
echo.
echo apr folder does not exist
GOTO :end
)
cd /D %apr_dir%
for /f "delims=" %%D in ('dir /a:d /b /o:-n') do (
REM AFTER: for /f "delims=" %%D in ('dir /a-d /b /s /o:-n') do (
 set "lastFile=%%~nD"
 goto :next
)

:next
setlocal EnableDelayedExpansion
echo.
echo Most Recent Access Log on client is %lastFile%

set "output_cnt=0"
cd /D %epmautomate_dir%
for /F "delims=" %%f in ('epmautomate listfiles') do (

 cd /D !apr_dir!
 set "line=%%f"
 for /f "tokens=* delims= " %%a in ("!line!") do set line=%%a
 if "!line:~0,3!" equ "apr" (
 if "!line:~-4!" equ ".zip" (
 if "%lastFile%" lss "!line:~4,19!" (
 if "!line:~4,19!" neq "!dirname!" (
 set apr_dir=!apr_dir:"=!
 set /a output_cnt+=1
 set "output[!output_cnt!]=!apr_dir!\!line:~4,19!"
 set "dirname=!line:~4,19!"

 REM start downloading

Chapter 3
Sample Scenarios for All Services

3-38

 mkdir "!dirname!"
 cd /D !dirname!
 echo downloading !line!
 set "downloadDir=!apr_dir!\!dirname!"
 cd /D %epmautomate_dir%
 for /f "delims=" %%i in ('epmautomate downloadfile "!line!"')
do set result1=%%i
 move "!line:~24!" "!downloadDir!" > nul
 echo !result1!
 REM end downloading

) else (
 REM start downloading
 cd /D !dirname!
 echo downloading !line!
 set apr_dir=!apr_dir:"=!
 set "downloadDir=!apr_dir!\!dirname!"
 cd /D %epmautomate_dir%
 for /f "delims=" %%i in ('epmautomate downloadfile "!line!"')
do set result1=%%i
 move "!line:~24!" "!downloadDir!" > nul
 echo !result1!
 REM end downloading
)
) else (
 REM TO-DO
)
)
)
)

echo.
echo %output_cnt% access logs downloaded
for /L %%n in (1 1 !output_cnt!) DO echo !output[%%n]!
goto :end

:end
cd /D %epmautomate_dir%
endlocal

2. Modify syncAccessLog.bat to set the values for the parameters in the following table.
These values are used to access the environment to download access logs.

Table 3-4 Variable Values to Include in syncAccessLog.bat

Variable Expected Value

set apr_dir=%1 Specify the directory into which access logs are to be downloaded.
Example: set apr_dir="C:\Oracle\apr"

set username=%2 An Oracle Enterprise Performance Management Cloud user name
that is to be used to sign into the environment to download access
logs.
Example: set username="ServiceAdmin"

Chapter 3
Sample Scenarios for All Services

3-39

Table 3-4 (Cont.) Variable Values to Include in syncAccessLog.bat

Variable Expected Value

set password=%3 The name and location of the file that stores the encrypted
password of the user specified by the username variable. You may
also specify the plain text password of the user (not
recommended). See the encrypt command for information on
creating an encrypted password file.
Examples:
set password="C:\mySecuredir\password.epw"
set password="P@ssword1"

set url=%4 The URL of the environment.
Example: set url="https://test-
cloudpln.pbcs.us1.oraclecloud.com"

3. Using Windows Scheduler, schedule syncAccessLog.bat. See Automating Script
Execution for detailed steps.

Automate the Cloning of Environments
Use the script in this section to automate the cloning of environments.

Create a batch (.bat) or shell (.sh) file containing script similar to the following to
clone an environment. The following sample scripts handle these activities:

• Sign in to the source environment.

• Use Artifact Snapshot (the snapshot created during the last daily maintenance
of the source environment) or another snapshot available in the source
environment to convert the target environment as a clone of the source.

• Optionally, create users and their predefined and application role assignments
matching those in the source environment.

• Optionally, change the daily maintenance start time to match that of the source
environment.

• Sign out.

For detailed information on cloning process, see "Cloning EPM Cloud Environments "
in Administering Migration for Oracle Enterprise Performance Management Cloud.

See Automating Script Execution for information on scheduling the script using
Windows Task Scheduler.

Windows

1. Create a batch (.BAT) file named cloneEnvironment.bat containing the following
script and save it in a convenient location, for example, C:\automate_scripts.

@echo off
set paramRequiredMessage=Syntax: cloneEnvironment.bat "SOURCE
USERNAME" "SOURCE PASSWORD FILE" "SOURCE URL" "TARGET USERNAME"
"TARGET PASSWORD FILE" "TARGET URL"

set usersandpredefinedroles="false"

Chapter 3
Sample Scenarios for All Services

3-40

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/epmss/migration_gen1_gen2_clone.html

set snapshotname="Artifact Snapshot"
set dailymaintenancestarttime="true"
set dirpath=%~dp0
cd %dirpath:~0,-1%

if "%~1" == "" (
 echo Source User Name is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~2" == "" (
 echo Source Password File is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~3" == "" (
 echo Source URL is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~4" == "" (
 echo Target User Name is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~5" == "" (
 echo Target Password File is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~6" == "" (
 echo Target URL is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

PowerShell.exe -File cloneEnvironment.ps1 %~1 %~2 %~3 %~4 %~5 %~6
%usersandpredefinedroles% %snapshotname% %dailymaintenancestarttime%

2. Modify cloneEnvironment.bat to set the values for these parameters:

Table 3-5 Parameters to set in cloneEnvironment.bat

Parameter Description

usersandpredefinedroles Set the value of this parameter to true to clone users
and their predefined and application role
assignments.
To clone users and role assignments, the user running
the script must have the Service Administrator role
and the Identity Domain Administrator in the target
environment.

snapshotname Name of the snapshot in the source environment that
should be used for cloning.

Chapter 3
Sample Scenarios for All Services

3-41

Table 3-5 (Cont.) Parameters to set in cloneEnvironment.bat

Parameter Description

dailymaintenancestarttime Set the value of this parameter to true to change the
daily maintenance start time of the cloned
environment to that of the source environment. Set
this value to false to retain the current daily
maintenance start time of the cloned environment.

3. Create a PowerShell script named cloneEnvironment.ps1 containing the following
script and save it in the directory where you saved cloneEnvironment.bat, for
example, C:\automate_scripts.

Clone Environment script

$source_username=$args[0]
$source_password=$args[1]
$source_url=$args[2]
$target_username=$args[3]
$target_password=$args[4]
$target_url=$args[5]
$usersandpredefinedroles=$args[6]
$snapshotname=$args[7]
$dailymaintenancestarttime=$args[8]

epmautomate.bat login "${source_username}" "${source_password}" "$
{source_url}"
epmautomate.bat cloneEnvironment "${target_username}" "$
{target_password}" "${target_url}" UsersAndPreDefinedRoles="$
{usersandpredefinedroles}" SnapshotName="${snapshotname}"
DailyMaintenanceStartTime="${dailymaintenancestarttime}"
epmautomate.bat logout

4. Run cloneEnvironment.bat using this command:

cloneEnvironment.bat "SOURCE USERNAME" "SOURCE PASSWORD FILE"
"SOURCE URL" "TARGET USERNAME" "TARGET PASSWORD FILE" "TARGET URL"

For example:

cloneEnvironment.bat jdoe@example.com
C:\mySecuredir\example_pwd.epw https://
source_example.oraclecloud.com jdoe@example.com
C:\mySecuredir\example_pwd2.epw https://
target_example.oraclecloud.com.

Linux

1. Create a shell script named cloneEnvironment.sh containing the following script
and save it in a convenient location.

#!/bin/bash

Chapter 3
Sample Scenarios for All Services

3-42

Update the following parameters

epmautomatescript=/home/user1/epmautomate/bin/epmautomate.sh
javahome=/home/user1/jdk1.8.0_191/
usersandpredefinedroles="false"
snapshotname="Artifact Snapshot"
dailymaintenancestarttime="true"

source_username="$1"
source_password="$2"
source_url="$3"
target_username="$4"
target_password="$5"
target_url="$6"

export JAVA_HOME=${javahome}

if ["$#" -ne 6]; then
 echo "Usage: ./cloneEnvironment.sh <SOURCE USERNAME> <SOURCE PASSWORD
FILE> <SOURCE URL> <TARGET USERNAME> <TARGET PASSWORD FILE> <TARGET URL>"
 exit 1
fi

${epmautomatescript} login "${source_username}" "${source_password}" "$
{source_url}"
${epmautomatescript} cloneEnvironment "${target_username}" "$
{target_password}" "${target_url}" UsersAndPreDefinedRoles="$
{usersandpredefinedroles}" SnapshotName="${snapshotname}"
DailyMaintenanceStartTime="${dailymaintenancestarttime}"
${epmautomatescript} logout

2. Modify cloneEnvironment.sh to set the values for these parameters:

Table 3-6 Parameters to set in cloneEnvironment.sh

Parameter Description

epmautomatescript The absolute path of EPM Automate executable
(epmautomate.sh).

javahome JAVA_HOME location.

usersandpredefinedroles Set the value of this parameter to true to clone users
and their predefined and application role
assignments.
To clone users and role assignments, the user running
the script must have the Service Administrator role
and the Identity Domain Administrator in the target
environment.

snapshotname Name of the snapshot in the source environment that
should be used for cloning.

Chapter 3
Sample Scenarios for All Services

3-43

Table 3-6 (Cont.) Parameters to set in cloneEnvironment.sh

Parameter Description

dailymaintenancestarttime Set the value of this parameter to true to change the
daily maintenance start time of the cloned
environment to that of the source environment. Set
this value to false to retain the current daily
maintenance start time of the cloned environment.

3. Run cloneEnvironment.sh.

./cloneEnvironment.sh "SOURCE USERNAME" "SOURCE PASSWORD FILE"
"SOURCE URL" "TARGET USERNAME" "TARGET PASSWORD FILE" "TARGET URL"

For example:

./cloneEnvironment.sh jdoe@example.com ./home/secure/
example_pwd.epw https://source_example.oraclecloud.com
jdoe@example.com ./home/secure/example_pwd.epw2 https://
target_example.oraclecloud.com.

Clone from Primary to Standby Environment Daily After Daily
Maintenance is Complete on the Primary Environment

To keep the standby environment up to date with the primary environment, use these
scripts to clone Oracle Enterprise Performance Management Cloud primary
environment to the standby environment soon after the daily maintenance is complete
on the primary environment.

These custom scripts identify whether the scheduled daily maintenance for the day is
complete and then clone the environment.

Windows Script

Create dailyclone.ps1 by copying the following PowerShell script.

Clone Environment script
#
Update the following parameters

$users_and_predefined_roles="false"
$daily_maintenance_start_time="true"
$data_management="true"
$app_audit="true"
$job_console="true"
$stored_snapshots_and_files="false"

$source_username=$args[0]
$source_password=$args[1]
$source_url=$args[2]
$target_username=$args[3]
$target_password=$args[4]

Chapter 3
Sample Scenarios for All Services

3-44

$target_url=$args[5]

if ($($args.count) -ne 6) {
 echo "Usage: ./dailyclone.ps1 <SOURCE USERNAME> <SOURCE PASSWORD>
<SOURCE URL> <TARGET USERNAME> <TARGET PASSWORD> <TARGET URL>"
 exit 1
}

$amw_time=""

function getDailyMaintenanceStartTime {
 $amwstring=$(epmautomate.bat getDailyMaintenanceStartTime)
 $elements=$amwstring.split(' ')
 $amwtime=$elements[0]
 return $amwtime
}

function goToSleep ($amw_time){
 $current_mdy=Get-Date -AsUTC -UFormat "%m/%d/%Y"
 $current_date_time=Get-Date -AsUTC -UFormat "%m/%d/%Y %H:%M:%S"
 $current_epoch=Get-Date -Date $current_date_time -UFormat "%s"
 $target_date_time=[DateTime]"${current_mdy} ${amw_time}"
 $target_epoch=Get-Date -Date $target_date_time -UFormat "%s"
 $sleep_seconds=$target_epoch - $current_epoch

 # Today's AMW start time has already passed, so add 24 hours to
sleep_seconds
 if ($sleep_seconds -lt 0) {
 $sleep_seconds=$sleep_seconds + 86400
 }

 $sleep_ts=New-TimeSpan -Seconds ${sleep_seconds}
 $sleep_hms="${sleep_ts}" -replace '^\d+?\.'

 echo "Current time is ${current_date_time}. Sleeping for ${sleep_hms},
until daily maintenance start time of ${amw_time}."
 Start-Sleep -Seconds $sleep_seconds
}

function deleteArtifactSnapshotIfExists {
 if (artifactSnapshotExists) {
 $command_del=$(epmautomate.bat deletefile "Artifact Snapshot")
 }
}

function artifactSnapshotExists {
 $filelist=$(epmautomate.bat listfiles)
 if ("$filelist".contains("Artifact Snapshot")) {
 return $true
 else
 return $false
 }
}

function cloneEnvironment {

Chapter 3
Sample Scenarios for All Services

3-45

 echo "Checking to see if daily maintenance processing has
completed ..."
 while ($true) {
 if (artifactSnapshotExists) {
 echo "Daily maintenance processing has completed ..."
 break
 } else {
 echo "Sleeping for 30 seconds before the next check to see
if daily maintenance processing has completed ..."
 Start-Sleep -Seconds 30
 }
 }

 echo "Encrypting target password ..."
 epmautomate.bat encrypt "${target_password}" "oracleKey"
"target_password.epw"

 echo "Cloning environment ..."
 epmautomate.bat cloneEnvironment "${target_username}"
"target_password.epw" "${target_url}" "SnapshotName=Artifact Snapshot"
"UsersAndPreDefinedRoles=${users_and_predefined_roles}"
"DataManagement=${data_management}" "appAudit=${app_audit}"
"jobConsole=${job_console}" "storedSnapshotsAndFiles=$
{stored_snapshots_and_files}" "dailyMaintenanceStartTime=$
{daily_maintenance_start_time}"
}

echo "Beginning clone environment script."
echo "Logging into server ..."
epmautomate.bat login ${source_username} ${source_password} $
{source_url}
$amwtime=getDailyMaintenanceStartTime
goToSleep ($amwtime)
deleteArtifactSnapshotIfExists
cloneEnvironment
echo "Logging out of server ..."
epmautomate.bat logout
echo "Clone environment script processing has completed."

Linux/UNIX Script

Create dailyclone.sh by copying the following script.

#!/bin/bash

Update the following parameters

epmautomatescript="LOCATION_EPM_AUTOMATE_EXECUTABLE"
javahome="LOCATION_JAVA_HOME"
users_and_predefined_roles="false"
data_management="true"
app_audit="true"
job_console="true"
stored_snapshots_and_files="false"
daily_maintenance_start_time="true"

Chapter 3
Sample Scenarios for All Services

3-46

source_username="$1"
source_password="$2"
source_url="$3"
target_username="$4"
target_password="$5"
target_url="$6"

export JAVA_HOME=${javahome}

if ["$#" -ne 6]; then
 echo "Usage: ./dailyclone.sh SOURCE_USERNAME SOURCE_PASSWORD SOURCE_URL
TARGET_USERNAME TARGET_PASSWORD TARGET_URL"
 exit 1
fi

amw_time=""

getDailyMaintenanceStartTime() {
 amw_time=$(${epmautomatescript} getDailyMaintenanceStartTime | cut -d' '
-f1)
}

goToSleep() {
 current_mdy=$(date -u +%m/%d/%Y)
 current_date_time=$(date -u)
 current_epoch=$(date +%s)
 target_epoch=$(date -d "${current_mdy} ${amw_time}" +%s)
 sleep_seconds=$(($target_epoch - $current_epoch))

 # Today's AMW start time has already passed, so add 24 hours to
sleep_seconds
 if [[${sleep_seconds} -lt 0]]
 then
 sleep_seconds=$((sleep_seconds + 86400))
 fi

 sleep_hms=$(date -d@${sleep_seconds} -u +%H:%M:%S)

 echo "Current time is ${current_date_time}. Sleeping for ${sleep_hms},
until daily maintenance start time of ${amw_time}."
 sleep $sleep_seconds
}

deleteArtifactSnapshotIfExists() {
 found=1
 filelist=$(${epmautomatescript} listfiles)
 if [[${filelist} == *"Artifact Snapshot"*]]
 then
 command_del=$(${epmautomatescript} deletefile "Artifact Snapshot")
 fi
}

artifactSnapshotExists() {

Chapter 3
Sample Scenarios for All Services

3-47

 found=1

 filelist=$(${epmautomatescript} listfiles)
 if [[${filelist} == *"Artifact Snapshot"*]]
 then
 found=0
 else
 found=1
 fi

 echo ${found}
}

cloneEnvironment() {
 local found=1

 while true
 do
 found=$(artifactSnapshotExists)
 if [[${found} -eq 0]]
 then
 echo "Daily maintenance processing has completed ..."
 break
 else
 echo "Sleeping for 30 seconds before the next check to see
if daily maintenance processing has completed ..."
 sleep 30
 fi
 done

 echo "Encrypting target password ..."
 ${epmautomatescript} encrypt "${target_password}" "oracleKey"
"target_password.epw"

 echo "Cloning environment ..."
 ${epmautomatescript} cloneEnvironment "${target_username}"
"target_password.epw" "${target_url}" "SnapshotName=Artifact Snapshot"
"UsersAndPreDefinedRoles=${users_and_predefined_roles}"
"DataManagement=${data_management}" "appAudit=${app_audit}"
"jobConsole=${job_console}" "storedSnapshotsAndFiles=$
{stored_snapshots_and_files}" "dailyMaintenanceStartTime=$
{daily_maintenance_start_time}"
}

echo "Beginning clone environment script."
echo "Logging into server ..."
${epmautomatescript} login ${source_username} ${source_password} $
{source_url}
getDailyMaintenanceStartTime
goToSleep
deleteArtifactSnapshotIfExists
cloneEnvironment
echo "Logging out of server ..."
${epmautomatescript} logout
echo "Clone environment script processing has completed."

Chapter 3
Sample Scenarios for All Services

3-48

Running the Script

• Create dailyclone.ps1 or dailyclone.shby copying a script from one of the preceding
sections.

• Update these values in dailyclone.sh:

– epmautomatescript with the location of the EPM Automate executable. Example:
epmautomatescript="/home/utils/EPMAutomate/bin/epmautomate.sh"

– javahome with the directory where the JDK used by EPM Automate is installed. For
example: "/home/user1/jdk1.8.0_191"

• Update these values in dailyclone.ps1 and dailyclone.sh, if required:

– users_and_predefined_roles: Set this value to true to clone users and their
predefined role assignments (Access Control groups are always cloned).

– data_management: Set this value to false to not clone Data Integration records. Note
that Data Integration records can be cloned only if both the source and target
environments are on the same monthly update or the target environment is one
update newer than the source environment. For example, you can clone 22.01 Data
Management records to another 22.01 environment or to a 22.02 environment only.
Ignored for Narrative Reporting and Oracle Enterprise Data Management Cloud
environments.

– app_audit: Set this value to false if you do not want to clone the application audit
data for Planning, FreeForm, and Enterprise Profitability and Cost Management
applications.
Financial Consolidation and Close and Tax Reporting audit information is always
cloned.

– job_console: Set this value to false if you do not want to clone job console data.

– stored_snapshots_and_files: Set this value to true if you want to clone the
contents of the top level folders in the inbox and outbox (subfolders are never cloned)
of the source environment.

– daily_maintenance_start_time: Set this value to false if you do not want to reset
the maintenance start time of the cloned target environment to that of the source
environment.

• Run dailyclone.ps1 or dailyclone.sh: In a Command Window, or shell, navigate to the
folder where dailyclone.ps1 or dailyclone.sh is stored and then execute a command:

– Windows: ./dailyclone.ps1 SOURCE_USERNAME SOURCE_PASSWORD SOURCE_URL
TARGET_USERNAME TARGET_PASSWORD TARGET_URL

– Linux/UNIX: ./dailyclone.sh SOURCE_USERNAME SOURCE_PASSWORD SOURCE_URL
TARGET_USERNAME TARGET_PASSWORD TARGET_URL where:

* SOURCE_USERNAME is the user name of a Service Administrator. Identity Domain
Administrator role is required to clone users and predefined roles.

* SOURCE_PASSWORD is the password of the user identified by SOURCE_USERNAME.

* SOURCE_URL is the URL of the environment that you want to clone.

* TARGET_USERNAME is the user name of a Service Administrator. Identity Domain
Administrator role is required to clone users and predefined roles.

* TARGET_PASSWORD is the password of the user identified by TARGET_USERNAME.

Chapter 3
Sample Scenarios for All Services

3-49

* TARGET_URL is the URL of the target environment.

Remove Unnecessary Files from an Environment
Use these scripts to remove unnecessary files from an environment.

These scripts perform the following steps:

• Signs in to the environment.

• Lists the files and snapshots in the environment.

• Deletes the files specified in input.properties.

• Signs out.

Windows Sample Script

Create a file named removeUnnecessaryFiles.ps1 by copying the following script.
Store it in a local directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./
input.properties -raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$file1="$($inputproperties.file1)"
$file2="$($inputproperties.file2)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate listfiles
epmautomate deletefile ${file1}
epmautomate deletefile ${file2}
epmautomate logout

Linux/UNIX Sample Script

Create a file named removeUnnecessaryFiles.sh by copying the following script.
Store it in a local directory.

#!/bin/bash
. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "$
{serviceURL}"
${epmautomatescript} listfiles
${epmautomatescript} deletefile "${file1}"
${epmautomatescript} deletefile "${file2}"
${epmautomatescript} logout

Creating the input.properties File

To run the removeUnnecessaryFiles scripts, create the input.properties file and
update it with information for your environment. Save the file in the directory where
removeUnnecessaryFiles.ps1 or removeUnnecessaryFiles.sh is stored.

Chapter 3
Sample Scenarios for All Services

3-50

Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
file1=FILE_NAME
file2=FILE_NAME

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
file1=FILE_NAME
file2=FILE_NAME

Table 3-7 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable (epmautomate.sh).
For Linux/UNIX only.

username User name of a Service Administrator, who also has the Identity
Domain Administrator role.

password Password of the Service Administrator or the name and location
of the encrypted password file.

serviceURL URL of the environment from which you want to generate the
snapshot.

file1 and file2 Name of a file or snapshot to delete from the environment. If the
file is not in the Outbox, specify the path and name of the file.

Running the Script

1. Create removeUnnecessaryFiles.ps1 or removeUnnecessaryFiles.sh by copying the
script from a preceding section.

2. Create the input.properties file and save it in the directory where the
removeUnnecessaryFiles script is located. Contents of this file differs depending on your
operating system. See Creating the input.properties File.
Make sure that you have write privileges in this directory. For Windows, you may need to
start PowerShell using the Run as Administrator option to be able to run the script.

3. Launch the script.

• Windows PowerShell: run removeUnnecessaryFiles.ps1.

• Linux/UNIX: run ./removeUnnecessaryFiles.sh.

Chapter 3
Sample Scenarios for All Services

3-51

Find and Download Files from an Environment
Use the sample script in this section to automate the process of downloading one or
more files from an Oracle Enterprise Performance Management Cloud environment
using a text string as a wildcard.

The following script allows you to match the string that you specify as the value of the
FILENAME parameter with file names displayed using the listfiles command and
then automatically download the files that match the string.

Be sure to assign the appropriate search string to the FILENAME parameter. For
example, FILENAME="Scheduler Output/epm" will match the string Scheduler
Output/epm against file names in the listfiles command output in your environment
to identify the files to download.

Input parameters for running this script are username, password or password_file, and
service_url.

Note:

If the password contains special characters, see Handling Special
Characters.

Windows

@echo off
 setlocal EnableExtensions EnableDelayedExpansion
 set USERNAME="username"
 set PASSWORD="password"
 set URL="url"

call epmautomate login %USERNAME% %PASSWORD% %URL%
 set FILENAME="Scheduler Output/epm"
 for /f "tokens=*" %%i in ('epmautomate listfiles ^| findstr /b /r /
c:"^ *%FILENAME%" ') do (
 call epmautomate downloadfile "%%i"
)
call epmautomate logout
endlocal

Linux/UNIX

#!/bin/sh
 USERNAME="username"
 PASSWORD="password"
 URL="url"

./epmautomate.sh login $USERNAME $PASSWORD $URL
 FILENAME='Scheduler Output/epm'

Chapter 3
Sample Scenarios for All Services

3-52

 #echo $FILENAME
./epmautomate.sh listfiles | grep "^ $FILENAME" | while read -r line ; do
 echo "Processing $line"
 ./epmautomate.sh downloadfile "$line"
 done
./epmautomate.sh logout

Recreate an Old EPM Cloud Environment for Audits
Use the script in this section to create a self-service solution to maintain an up-to-date library
of snapshots for your Oracle Enterprise Performance Management Cloud environment. You
require an environment dedicated for the purpose of upgrading and maintaining a library of
up-to-date snapshots.

EPM Cloud supports snapshot compatibility for one monthly cycle only; you can migrate
maintenance snapshots from the test environment to the production environment and vice
versa. However, the auditing requirements of some customers may necessitate restoring
snapshots from multiple years on the latest environment, and accessing application in a short
period of time.

You should schedule this script to run once every month to convert the available snapshots
and make them compatible with the latest EPM Cloud patch level. Oracle recommends that
you run the script after the third Friday of the month to ensure that all issues within the
production environment have been resolved.

Note:

You cannot use this script to update Narrative Reporting, Account Reconciliation,
and Oracle Enterprise Data Management Cloud snapshots.

How the Script Works

For every snapshot stored by the customer, the upgrade script completes these tasks using
EPM Automate :

1. Using the information in the input.properties file, logs into an environment

2. Uses the recreate command to refurbish the environment

3. Imports the snapshot into the environment

4. Runs daily maintenance on the environment, which results in the snapshot being
converted into the format compatible with the current EPM Cloud patch level.

5. Downloads Artifact Snapshot (the maintenance snapshot) into a folder. If you re-
created an 18.05 environment by uploading snapshots from snapshots/18.05, Artifact
Snapshot is downloaded into snapshots/18.06.

6. Emails the results of recreating old environments to an email address, if specified.

Running the Script

1. Create the input.properties file and update it with information for your environment.
Save the file in a local, directory. This directory, referred to as parentsnapshotdirectory
in this discussion. Contents of this file differs depending on your operating system.

Chapter 3
Sample Scenarios for All Services

3-53

Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
scripts.

2. Create upgradeSnapshots.ps1 (Windows PowerShell) or upgradeSnapshots.sh
(Linux/UNIX) script and save it in the parentsnapshotdirectory where
input.properties is located.

3. Create a sub-directory, for example, snapshots, within the
parentsnapshotdirectory.

4. Within the directory that you created in the preceding step (snapshots), create a
sub-directory for the monthly snapshot that you want to convert to make it
compatible with the current EPM Cloud patch level. Name the directory using the
YY.MM format; for example, 18.05 for the directory to store the May 2018
snapshots.

5. Copy snapshots into the appropriate sub-directory. For example, copy the
snapshots for May 2018 into snapshots/18.05.

6. Launch the script.

• Linux/UNIX: run ./upgradeSnapshots.sh.

• Windows PowerShell: run upgradeSnapshots.ps1.

Windows

Create input.properties and upgradeSnapshots.ps1 script by copying the scripts in
this section.

Creating input.properties

username=exampleAdmin
userpassword=examplePassword
serviceurl=exapleURL
proxyserverusername=proxyServerUserName
proxyserverpassword=proxyPassword
proxyserverdomain=proxyDoamin
parentsnapshotdirectory=C:/some_directory/snapshots
emailtoaddress=exampleAdmin@oracle.com

Updating input.properties

Note:

If authentication at proxy server is not enabled for your Windows
network environment, remove the properties proxyserverusername,
proxyserverpassword, and proxyserverdomain from the input.properties
file.

Chapter 3
Sample Scenarios for All Services

3-54

Table 3-8 input.properties Parameters

Parameter Description

username User name of a Service Administrator.

userpassword Password of the Service Administrator .

serviceurl URL of the environment that is used for this activity.

proxyserverusername The user name to authenticate a secure session with the proxy
server that controls access to the internet.

proxyserverpassword The password to authenticate the user with the proxy server.

proxyserverdomain The name of the domain defined for the proxy server.

parentsnapshotdirectory Absolute path of the directory that is to be used as the parent
directory of the directory that stores the snapshots to be
processed. Use forward slashes (/) as directory separators.

emailtoaddress Optionally, the email address to which the results of recreating
old environments are to be sent. The results are emailed only if
this value is specified.
Example: john.doe@example.com

Note:

If your password contains special characters, see Handling Special Characters.

Creating upgradeSnapshots.ps1
Use this sample script to create upgradeSnapshots.ps1

Script for recreating an old EPM Cloud environment

read in key/value pairs from input.properties file
$inputproperties=ConvertFrom-StringData(Get-Content ./input.properties -raw)

Global variables
$parentsnapshotdirectory="$($inputproperties.parentsnapshotdirectory)"
$username="$($inputproperties.username)"
$userpassword="$($inputproperties.userpassword)"
$serviceurl="$($inputproperties.serviceurl)"
$proxyserverusername="$($inputproperties.proxyserverusername)"
$proxyserverpassword="$($inputproperties.proxyserverpassword)"
$proxyserverdomain="$($inputproperties.proxyserverdomain)"
$emailtoaddress="$($inputproperties.emailtoaddress)"
$operationmessage="EPM Automate operation:"
$operationfailuremessage="EPM Automate operation failed:"
$operationsuccessmessage="EPM Automate operation completed successfully:"
$epmautomatescript="epmautomate.bat"

$workingdir="$pwd"
$logdir="$workingdir/logs/"
$logfile="$logdir/epmautomate-upgradesnapshots.log"

Chapter 3
Sample Scenarios for All Services

3-55

function LogMessage
{
 $message=$args[0]
 $_mydate=$(get-date -f dd_MM_yy_HH_mm_ss)

 echo "[$_mydate] $message" >> $logfile
}

function LogAndEchoMessage
{
 $message=$args[0]
 $_mydate=$(get-date -f dd_MM_yy_HH_mm_ss)

 echo "[$_mydate] $message" | Tee-Object -Append -FilePath $logfile
}

function LogOutput
{
 $_mydate=$(get-date -f dd_MM_yy_HH_mm_ss)
 $op=$args[0]
 $opoutput=$args[1]
 $returncode=$args[2]

 #If error
 if ($returncode -ne 0) {
 $failmessage="[$_mydate] $operationfailuremessage $op"
 LogMessage $failmessage
 LogMessage $opoutput
 LogMessage "return code: $returncode"
 } else {
 $successmessage="[$_mydate] $operationsuccessmessage $op"
 LogMessage $successmessage
 LogMessage $opoutput
 LogMessage "return code: $returncode"
 }
}

function ExecuteCommand
{
 $op=$args[0]
 $epmautomatecall="$epmautomatescript $op"
 $date=$(get-date -f dd_MM_yy_HH_mm_ss)

 LogMessage "$operationmessage $epmautomatecall"
 $operationoutput=iex "& $epmautomatecall" >> $logfile 2>&1
 LogOutput $op $operationoutput $LastExitCode
}

function ProcessCommand
{
 $command=$args[0]
 $date=$(get-date -f dd_MM_yy_HH_mm_ss)

 if (!([string]::IsNullOrWhitespace($command))) {
 if (!($command.StartsWith("#"))) {

Chapter 3
Sample Scenarios for All Services

3-56

 ExecuteCommand $command
 }
 }
}

function Init
{
 $logdirexists=Test-Path $logdir
 if (!($logdirexists)) {
 mkdir $logdir 2>&1 | out-null
 }

 # removing existing epmautomate debug logs
 rm ./*.log

 $logfileexists=Test-Path $logfile
 # remove existing log file
 if ($logfileexists) {
 rm $logfile
 }
}

function GetNextDate
{
 $latestyearmonth=$args[0]
 LogMessage "latest year.month: $latestyearmonth"
 $latestyear,$latestmonth=$latestyearmonth.split('\.')
 LogMessage "latest year: $latestyear"
 LogMessage "latest month: $latestmonth"
 $intlatestyear=[int]$latestyear
 $intlatestmonth=[int]$latestmonth

 if ($intlatestmonth -eq 12) {
 $intnextmonth=1
 $intnextyear=$intlatestyear+1
 } else {
 $intnextmonth=$intlatestmonth+1
 $intnextyear=$intlatestyear
 }

 $nextyear="{0:D2}" -f $intnextyear
 $nextmonth="{0:D2}" -f $intnextmonth

 echo "$nextyear.$nextmonth"
}

function ProcessSnapshot
{
 $snapshotfile=$args[0]
 LogMessage "snapshotfile: $snapshotfile"
 $nextdate=$args[1]
 LogMessage "nextdate: $nextdate"
 $snapshotfilename=$snapshotfile.split('/')[-1]
 LogMessage "snapshotfilename: $snapshotfilename"
 $snapshotname=$snapshotfilename.split('.')[0]

Chapter 3
Sample Scenarios for All Services

3-57

 LogMessage "snapshotname: $snapshotname"

 ProcessCommand
"login $username $userpassword $serviceurl $proxyserverusername $proxys
erverpassword $proxyserverdomain"
 ProcessCommand "recreate -f"
 ProcessCommand "uploadfile $snapshotfile"
 ProcessCommand "importsnapshot $snapshotname"
 ProcessCommand "runDailyMaintenance skipNext=true -f"
 ProcessCommand "downloadfile 'Artifact Snapshot'"
 ProcessCommand "deletefile $snapshotname"
 ProcessCommand "logout"

 $nextdatedirexists=Test-Path $parentsnapshotdirectory/$nextdate
 if (!($nextdatedirexists)) {
 mkdir $parentsnapshotdirectory/$nextdate 2>&1 | out-null
 }

 LogMessage "Renaming 'Artifact Snapshot.zip' to $snapshotname.zip
and moving to $parentsnapshotdirectory/$nextdate"
 mv $workingdir/'Artifact
Snapshot.zip' $workingdir/$snapshotname.zip >> $logfile 2>&1

mv $workingdir/$snapshotname.zip $parentsnapshotdirectory/$nextdate
>> $logfile 2>&1
}

function callSendMail
{
 $logfile=$logfile -replace "\\", "/"
 $elements=$logfile.split('/')
 $logfilename=$elements[-1]

 if (${emailtoaddress} -match "@") {
 epmautomate.bat login ${username} ${userpassword} ${serviceurl}
 epmautomate.bat uploadFile "$logfile"
 epmautomate.bat sendMail $emailtoaddress "Recreating An Old
EPM Cloud Environment results" Body="The results of recreating an old
EPM Cloud Environment are attached." Attachments=$logfilename
 epmautomate.bat deleteFile "$logfilename"
 epmautomate.bat logout
 }
}

#----- main body of processing
date
Init
LogAndEchoMessage "Starting upgrade snapshots processing"
$snapshotdirs=@(Get-ChildItem -Directory "$parentsnapshotdirectory" -
name)
LogMessage "snapshot directories: $snapshotdirs"
$latestreleasedate=$snapshotdirs[-1]
LogMessage "latest release date: $latestreleasedate"
$latestreleasesnapshotdir="$parentsnapshotdirectory/$latestreleasedate"
LogMessage "latest release snapshot dir: $latestreleasesnapshotdir"

Chapter 3
Sample Scenarios for All Services

3-58

$nextdate=$(GetNextDate "$latestreleasedate")
$snapshotfiles=@(Get-ChildItem -File "$latestreleasesnapshotdir")
if ($snapshotfiles.length -eq 0) {
 LogAndEchoMessage "No snapshot files found in
directory $latestreleasesnapshotdir. Exiting script."
 exit
}
foreach ($snapshotfile in $snapshotfiles) {
 LogAndEchoMessage "Processing snapshotfile: $snapshotfile"
 ProcessSnapshot $latestreleasesnapshotdir/$snapshotfile $nextdate
}
LogAndEchoMessage "Upgrade snapshots processing completed"
date
callSendMail

Linux/UNIX

Create upgradeSnapshots.sh and input.properties by copying the following scripts.

Creating input.properties for Linux/UNIX

Note:

If your network is not configured to use a proxy server to access the internet,
remove the properties proxyserverusername, proxyserverpassword, and
proxyserverdomain from the input.properties file.

username=exampleAdmin
userpassword=examplePassword
serviceurl=exapleURL
proxyserverusername=
proxyserverpassword=
proxyserverdomain=
jdkdir=/home/user1/jdk160_35
epmautomatescript=/home/exampleAdmin/epmautomate/bin/epmautomate.sh
parentsnapshotdirectory=/home/exampleAdmin/some_directory/snapshots
emailtoaddress=exampleAdmin@oracle.com

Updating input.properties

Table 3-9 input.properties Parameters

Parameter Description

username User name of a Service Administrator.

userpassword Password of the Service Administrator .

serviceurl URL of the environment that is being used for this activity.

proxyserverusername The user name to authenticate a secure session with the proxy
server that controls access to the internet.

proxyserverpassword The password to authenticate the user with the proxy server.

Chapter 3
Sample Scenarios for All Services

3-59

Table 3-9 (Cont.) input.properties Parameters

Parameter Description

proxyserverdomain The name of the domain defined for the proxy server.

jdkdir JAVA_HOME location.

epmautomatescript Absolute path of EPM Automate executable (epmautomate.sh).

parentsnapshotdirectory Absolute path of the directory that is to be used as the parent
directory of the directory that stores the snapshot to be
processed.

emailtoaddress Optionally, the email address to which the results of recreating
old environments are to be sent.

Note:

If your password contains special characters, see Handling Special
Characters.

Creating upgradeSnapshots.sh
Use this sample script to create upgradeSnapshots.sh

#!/bin/sh

. ./input.properties
workingdir=$(pwd)
logdir="${workingdir}/logs"
logfile=epmautomate-upgradesnapshots.log
operationmessage="EPM Automate operation:"
operationfailuremessage="EPM Automate operation failed:"
operationsuccessmessage="EPM Automate operation completed
successfully:"
logdebugmessages=true

if [! -d ${jdkdir}]
then
 echo "Could not locate JDK/JRE. Please set value for "jdkdir"
property in input.properties file to a valid JDK/JRE location."
 exit
fi

if [! -f ${epmautomatescript}]
then
 echo "Could not locate EPM Automate script. Please set value for
"epmautomatescript" property in the input.properties file."
 exit
fi

export JAVA_HOME=${jdkdir}

debugmessage() {

Chapter 3
Sample Scenarios for All Services

3-60

 # logdebugmessages is defined (or not) in testbase input.properties
 if ["${logdebugmessages}" = "true"]
 then
 logmessage "$1"
 fi
}

logmessage()
{
 local message=$1
 local _mydate=$(date)

 echo "[$_mydate] ${message}" >> "$logdir/$logfile"
}

echoandlogmessage()
{
 local message=$1
 local _mydate=$(date)

 echo "[$_mydate] ${message}" | tee -a ${logdir}/${logfile}
}

logoutput()
{
 date=`date`
 op="$1"
 opoutput="$2"
 returncode="$3"

 #If error
 #if grep -q "EPMAT-" <<< "$2"
 if [$returncode -ne 0]
 then
 failmessage="[${date}] ${operationfailuremessage} ${op}"
 logmessage "${failmessage}"
 logmessage "${opoutput}"
 logmessage "return code: ${returncode}"
 else
 successmessage="${operationsuccessmessage} ${op}"
 logmessage "${successmessage}"
 logmessage "${opoutput}"
 logmessage "return code: ${returncode}"
 fi
}

getLatestReleaseSnapshotDir()
{
 local snapshotdirs=$(find ${parentsnapshotdirectory} -type d | sort)
 debugmessage "snapshot directories: ${snapshotdirs}"
 local latestreleasesnapshotdir=$(echo ${snapshotdirs##*$\n} | rev | cut -
d' ' -f1 | rev)
 debugmessage "latest release snapshot dir: ${latestreleasesnapshotdir}"
 echo "${latestreleasesnapshotdir}"
}

Chapter 3
Sample Scenarios for All Services

3-61

getNextDate()
{
 local thisyearmonth=$1
 local thisyear=$(echo ${thisyearmonth} | cut -d'.' -f1)
 local thismonth=$(echo ${thisyearmonth} | cut -d'.' -f2)

 intthismonth=$(bc <<< ${thismonth})
 intthisyear=$(bc <<< ${thisyear})

 if [${intthismonth} -eq 12]
 then
 local intnextmonth=1
 local intnextyear=$((intthisyear+1))
 else
 local intnextmonth=$((intthismonth+1))
 local intnextyear=${intthisyear}
 fi

 nextmonth=$(printf "%02d\n" ${intnextmonth})
 nextyear=$(printf "%02d\n" ${intnextyear})

 debugmessage "next date: ${nextyear}.${nextmonth}"

 echo "${nextyear}.${nextmonth}"
}

init()
{
 if [! -d "$logdir"]
 then
 mkdir $logdir
 fi

 # removing existing epmautomate debug logs
 if ls ./*.log >/dev/null 2>&1
 then
 rm ./*.log
 fi

 # remove existing log files
 if [-f "${logdir}/${logfile}"]
 then
 rm ${logdir}/${logfile}
 fi
}

processCommand()
{
 op="$1"
 date=`date`

 logmessage "$operationmessage $op"
 operationoutput=`eval "$epmautomatescript $op"`
 logoutput "$op" "$operationoutput" "$?"

Chapter 3
Sample Scenarios for All Services

3-62

}

processSnapshot()
{
 local snapshotfile="$1"
 local nextdate="$2"
 local snapshotname=$(echo "${snapshotfile}" | rev | cut -d'/' -f1 | rev
| cut -d'.' -f1)

 processCommand "login ${username} ${userpassword} ${serviceurl} $
{proxyserverusername} ${proxyserverpassword}"
 processCommand "recreate -f"
 processCommand "uploadfile ${snapshotfile}"
 processCommand "importsnapshot \"${snapshotname}\""
 processCommand "runDailyMaintenance skipNext=true -f"
 processCommand "downloadfile \"Artifact Snapshot\""
 processCommand "deletefile \"${snapshotname}\""
 processCommand "logout"

 if [! -d ${parentsnapshotdirectory}/${nextdate}]
 then
 mkdir ${parentsnapshotdirectory}/${nextdate}
 fi
runDailyMaintenance -f
 logmessage "Renaming \"Artifact Snapshot.zip\" to ${snapshotname}.zip
and moving to ${parentsnapshotdirectory}/${nextdate}"
 mv "${workingdir}/Artifact Snapshot.zip" "${workingdir}/$
{snapshotname}.zip" >> "$logdir/$logfile" 2>&1
 mv "${workingdir}/${snapshotname}.zip" ${parentsnapshotdirectory}/$
{nextdate} >> "$logdir/$logfile" 2>&1
}

callSendMail() {

 if [["${emailtoaddress}" == *"@"*]]
 then
 ${epmautomatescript} login ${username} ${userpassword} ${serviceurl}
 ${epmautomatescript} uploadFile "$logdir/$logfile"
 ${epmautomatescript} sendMail $emailtoaddress "Recreating An Old EPM
Cloud Environment results" Body="The results of recreating an old EPM Cloud
Environment are attached" Attachments=$logfile
 ${epmautomatescript} deleteFile "$logfile"
 ${epmautomatescript} logout
 fi
}

#----- main body of processing
date
echoandlogmessage "Starting upgrade snapshots processing"
init
latestreleasesnapshotdir=$(getLatestReleaseSnapshotDir)
latestreleasedate=$(echo "${latestreleasesnapshotdir}" | rev | cut -d'/' -f1
| rev)
debugmessage "latest release date: ${latestreleasedate}"
nextdate=$(getNextDate ${latestreleasedate})

Chapter 3
Sample Scenarios for All Services

3-63

snapshotfiles=$(find ${latestreleasesnapshotdir} -type f -name *.zip
| tr "\n" "|")
if [${#snapshotfiles} -eq 0]
then
 echoandlogmessage "No snapshot files found in directory $
{latestreleasesnapshotdir}"
fi

IFS="|"
for snapshotfile in $snapshotfiles
do
 echoandlogmessage "Processing snapshotfile: ${snapshotfile}"
 processSnapshot ${snapshotfile} ${nextdate}
done
unset IFS
echoandlogmessage "Upgrade snapshots processing completed."
callSendMail

Automate Database Access Audit and Compliance
Use the PowerShell and Bash Shell scripts in this section to leverage EPM Automate
commands to collect audit and compliance data around manual database access.

You can use these scripts to complete these tasks:

• Download the Activity Report for the current day

• Parse the report to determine if manual database access is reported for the
environment

• Create ./reports/dataAccessAuditReport.txt relative to the directory from
where you execute the script. The report lists the time of database access and the
SQL command that was executed. This is a cumulative file, which shows the latest
information at the top. Information available include:

– Date and time at which the report was generated

– Database access details, if available. Database access without a service
request and database access with service request are listed in separate
sections.
If manual database access is not reported in the Activity Report, the report
states No SQL statements executed.

– Optionally, send the report to a specified email address.

To automate data access audit and compliance:

1. Copy one of the script from the following sections to a file and save it to your file
system. Name the file parseActivityReport.ps1 (Windows see PowerShell Script
(parseActivityReport.ps1)) or parseActivityReport.sh (Linux/UNIX see Bash
Shell Script (parseActivityReport.sh)).

Chapter 3
Sample Scenarios for All Services

3-64

2. Windows only: Create a batch file named parseActivityReport.bat by copying the
following script into a file. Save the file in the directory where parseActivityReport.ps1
is stored.

@echo off
set paramRequiredMessage=Syntax: parseActivityReport.bat USERNAME
PASSWORD/PASSWORD_FILE URL [REPORT_EMAIL_TO_ADDRESS]

if "%~1" == "" (
 echo User Name is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~2" == "" (
 echo Password or Password_File is missing.
 echo %paramRequiredMessage%
 exit /b 1
)
if "%~3" == "" (
 echo URL is missing.
 echo %paramRequiredMessage%
 exit /b 1
)

PowerShell.exe -File parseActivityReport.ps1 %*

3. Modify parseActivityReport.bat (Windows) or parseActivityReport.sh (Linux/UNIX
see) to set the values for the parameters in the following table.

Table 3-10 Variable Values to Include in Scripts

Variable Description

epmuser User name of a Service Administrator
Examples:
Windows: set epmuser="jDoe"
Linux/UNIX: epmuser="jDoe"

epmpassword Password of the Service Administrator or the location of the
encrypted password file. See the encrypt command for
information on creating an encrypted password file.
If your password contains special characters, see Handling
Special Characters.

Examples:
Windows: set epmpassword = "Example"
Linux/UNIX: epmpassword="Example"

epmurl The URL of the Oracle Enterprise Performance Management
Cloud environment.
Examples:
Windows: set epmurl="https://
example.oraclecloud.com"
Linux/UNIX: epmurl="https://example.oraclecloud.com"

Chapter 3
Sample Scenarios for All Services

3-65

Table 3-10 (Cont.) Variable Values to Include in Scripts

Variable Description

report_email_to_addres
s

Optionally, the email address to which the report is to be sent.
The report is emailed only if this value is specified.
Example: john.doe@example.com

4. For parseActivityReport.sh only: Ensure that the following values are set
correctly for your system:

• JAVA_HOME

• Location of epmautomatescript.sh by updating the value of
epmautomatescript directive

5. Using a scheduler available on the operating system, schedule
parseActivityReport.bat (which executes parseActivityReport.ps1) or
parseActivityReport.sh to run once every day. See Automating Script
Execution.

PowerShell Script (parseActivityReport.ps1)

Parse Activity Report script

$epmuser=$args[0]
$epmpassword=$args[1]
$epmurl=$args[2]
$reportemailtoaddress=$args[3]

$logdir="./logs"
$logfile="${logdir}/data_access.log"
$reportdir="./reports"
$reportfile="${reportdir}/dataAccessAuditReport.txt"
$matchfile="${reportdir}/matchfile.txt"
$nosrfile="${reportdir}/data_access_nosr.csv"
$srfile="${reportdir}/data_access_sr.csv"
$aprfilelist="${reportdir}/aprfilelist.txt"
$activityreportfilelist="${reportdir}/activityreportfiles.txt"
$activityreportregex='apr/[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}_[0-9]
{2}_[0-9]{2}/[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}_[0-9]{2}_[0-9]
{2}.html'

$global:activityreportfile=""

$NO_SQL_EXECUTED_STATEMENT="No SQL statements executed"
$SQL_WITH_SR_EXECUTED_STATEMENT="SQL statements executed with an SR"
$SQL_WITH_NO_SR_EXECUTED_STATEMENT="SQL statements executed without an
SR"

function DownloadLatestActivityReport() {
 epmautomate.bat login ${epmuser} ${epmpassword} ${epmurl} >> $
{logfile}
 epmautomate.bat listfiles > ${aprfilelist}
 foreach ($line in Get-Content $aprfilelist) {
 if ($line -match $activityreportregex){

Chapter 3
Sample Scenarios for All Services

3-66

 echo "$line" >> $activityreportfilelist
 }
 }
 $global:activityreportfile=Get-Content ${activityreportfilelist} -Tail 1
 $global:activityreportfile=$global:activityreportfile.trim()
 echo " "
 echo "Processing activity report file: $global:activityreportfile" | tee
-a ${logfile}
 epmautomate.bat downloadfile "$global:activityreportfile" >> ${logfile}
 epmautomate.bat logout >> ${logfile}
}

function deleteLine($file, $start, $end) {
 $i = 0
 $start--
 $end--
 (Get-Content $file) | where{
 ($i -lt $start -or $i -gt $end)
 $i++
 } > $file
 #(Get-Content $file)
}

function GenerateCsvs()
{
 $sqlregex='<DIV id="Database">.*?</DIV>'
 $activityreportfilename=Split-Path $global:activityreportfile -leaf

 echo "Creating CSV file: ${matchfile} from data in activityreportfile: $
{activityreportfilename}" >> ${logfile}
 # remove tab and newline characters
 $activityreportexists=Test-Path "$activityreportfilename"
 if ($activityreportexists) {
 (Get-Content "$activityreportfilename") -join ' ' | Set-Content
"$activityreportfilename"
 (Get-Content "$activityreportfilename") -replace "`t", "" | Set-
Content "$activityreportfilename"
 }

 # capture text matching regex
 $string=Get-Content $activityreportfilename
 $ans=$string -match $sqlregex

 if ($ans -eq "True") {
 $Matches.0 > $matchfile
 # remove HTML tags, etc.
 (Get-Content "$matchfile") -replace "<tr", "`n<tr" | Set-Content
"$matchfile"
 (Get-Content "$matchfile") -replace "<tr[^>]*>", "" | Set-Content
"$matchfile"
 (Get-Content "$matchfile") -replace "<th[^>]*>", "" | Set-Content
"$matchfile"
 (Get-Content "$matchfile") -replace "<td[^>]*>", "|" | Set-Content
"$matchfile"
 (Get-Content "$matchfile") -replace "
", "" | Set-Content

Chapter 3
Sample Scenarios for All Services

3-67

"$matchfile"
 (Get-Content "$matchfile") -replace "</td>", "" | Set-Content
"$matchfile"
 (Get-Content "$matchfile") -replace "</tr>", "" | Set-Content
"$matchfile"
 (Get-Content "$matchfile") -replace "\s*</table>\s*</DIV>", ""
| Set-Content "$matchfile"
 deleteLine $matchfile 1 2

 # create SR, NOSR CSV files
 Get-Content $matchfile | ForEach-Object {
 $elements=$_.split('|')
 $timeval=$elements[1].Trim()
 $srval=$elements[3].Trim()
 $sqlval=$elements[4].Trim()

 if (${srval} -eq "") {
 echo "${timeval}|${sqlval}" >> ${nosrfile}
 } else {
 if (${sqlval} -ne "") {
 echo "${srval}|${timeval}|${sqlval}" >> ${srfile}
 }
 }
 }

 } else { # no SQL statements in activity report
 echo "" >> ${reportfile}
 echo $(date) >> ${reportfile}
 echo "Processing activity report
file: $global:activityreportfile" >> ${reportfile}
 echo "${NO_SQL_EXECUTED_STATEMENT}" | tee -a ${reportfile}
 CleanUp
 EmailReportResults
 exit
 }
}

function ReportResults() {
 echo $(date) >> ${reportfile}
 echo "Processing activity report file: $global:activityreportfile"
>> ${reportfile}
 $srfileexists=Test-Path $srfile
 if ($srfileexists) {
 echo "" | tee -a ${reportfile}
 echo "${SQL_WITH_SR_EXECUTED_STATEMENT}" | tee -a ${reportfile}
 echo "SR# Time SQL Statement" | tee -a $
{reportfile}
 echo "--- ---- -------------" | tee -a $
{reportfile}

 # Loop through csv file and parse
 Get-Content $srfile | ForEach-Object {
 $elements=$_.split('|')
 $srval=$elements[0]
 $timeval=$elements[1]

Chapter 3
Sample Scenarios for All Services

3-68

 $sqlval=$elements[2]
 echo "${srval} ${timeval} ${sqlval}" | tee -a ${reportfile}
 }
 }

 $nosrfileexists=Test-Path $nosrfile
 if ($nosrfileexists) {
 echo "" | tee -a ${reportfile}
 echo "${SQL_WITH_NO_SR_EXECUTED_STATEMENT}" | tee -a ${reportfile}
 echo "Time SQL Statement" | tee -a ${reportfile}
 echo "---- -------------" | tee -a ${reportfile}

 # Loop through csv file and parse
 Get-Content $nosrfile | ForEach-Object {
 $elements=$_.split('|')
 $timeval=$elements[0]
 $sqlval=$elements[1]
 echo "${timeval} ${sqlval}" | tee -a ${reportfile}
 }
 }
 EmailReportResults
}

function EmailReportResults
{
 $elements=$reportfile.split('/')
 $reportfilename=$elements[2]

 if (${reportemailtoaddress} -match "@") {
 echo "Emailing Activity Report Results" | tee -a ${logfile}
 epmautomate.bat login ${epmuser} ${epmpassword} ${epmurl} >> ${logfile}
 epmautomate.bat uploadFile $reportfile >> ${logfile}
 epmautomate.bat sendMail $reportemailtoaddress "Database Access Audit
Report Results" Body="Database Access Audit Report Results are attached."
Attachments=$reportfilename >> ${logfile}
 epmautomate.bat deleteFile $reportfilename >> ${logfile}
 epmautomate.bat logout >> ${logfile}
 }
}

function Init
{
 $logdirexists=Test-Path $logdir
 if (!($logdirexists)) {
 mkdir $logdir 2>&1 | out-null
 }

 $reportdirexists=Test-Path $reportdir
 if (!($reportdirexists)) {
 mkdir $reportdir 2>&1 | out-null
 }

 $logfileexists=Test-Path $logfile
 if ($logfileexists) {
 rm $logfile 2>&1 | out-null

Chapter 3
Sample Scenarios for All Services

3-69

 }

 $matchfileexists=Test-Path $matchfile
 if ($matchfileexists) {
 rm $matchfile 2>&1 | out-null
 }

 $nosrfileexists=Test-Path $nosrfile
 if ($nosrfileexists) {
 rm $nosrfile 2>&1 | out-null
 }

 $srfileexists=Test-Path $srfile
 if ($srfileexists) {
 rm $srfile 2>&1 | out-null
 }

 $aprfilelistexists=Test-Path $aprfilelist
 if ($aprfilelistexists) {
 rm $aprfilelist 2>&1 | out-null
 }

 $activityreportfilelistexists=Test-Path $activityreportfilelist
 if ($activityreportfilelistexists) {
 rm $activityreportfilelist 2>&1 | out-null
 }
}

function CleanUp
{
 $matchfileexists=Test-Path $matchfile
 if ($matchfileexists) {
 rm $matchfile 2>&1 | out-null
 }

 $aprfilelistexists=Test-Path $aprfilelist
 if ($aprfilelistexists) {
 rm $aprfilelist 2>&1 | out-null
 }

 $activityreportfilelistexists=Test-Path $activityreportfilelist
 if ($activityreportfilelistexists) {
 rm $activityreportfilelist 2>&1 | out-null
 }
}

Init
DownloadLatestActivityReport
GenerateCsvs
ReportResults
CleanUp

Chapter 3
Sample Scenarios for All Services

3-70

Bash Shell Script (parseActivityReport.sh)

#!/bin/sh

export JAVA_HOME=/scratch/dteHome/autoWork/jdk1.8.0_191
epmautomatescript=/scratch/dteHome/autoWork/epmautomate/19.11.55/bin/
epmautomate.sh

epmuser="<EPM USER>"
epmpwd="<EPM PASSWORD>"
epmurl="<EPM URL>"
reportemailtoaddress="<EMAIL ADDRESS>"

logdir=./logs
logfile="${logdir}/data_access.log"
reportdir=./reports
reportfile="${reportdir}/dataAccessAuditReport.txt"
nosrfile="${reportdir}/data_access_nosr.csv"
srfile="${reportdir}/data_access_sr.csv"
matchfile="${reportdir}/match.out"
aprfilelist="${reportdir}/aprfilelist.txt"
activityreportfile=""
activityreportregex='apr/[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}_[0-9]{2}_[0-9]
{2}/[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}_[0-9]{2}_[0-9]{2}.html'

NO_SQL_EXECUTED_STATEMENT="No SQL statements executed".
SQL_WITH_SR_EXECUTED_STATEMENT="SQL statements executed with an SR"
SQL_WITH_NO_SR_EXECUTED_STATEMENT="SQL statements executed without an SR"

cd "$(dirname "$0")"

generateCsvs()
{
 local sqlregex='<DIV id="Database">.*?</DIV>'
 local activityreportfilename=$(echo "${activityreportfile}" | rev | cut -
d'/' -f1 | rev)

 echo "Creating CSV file: ${matchfile} from data in activityreportfile: $
{activityreportfilename}" >> ${logfile}
 # remove tab and newline characters
 cat "${activityreportfilename}" | tr -d "\t\n\r" > ${matchfile}
 # capture text matching regex
 grep -Po "${sqlregex}" ${matchfile} > ${matchfile}.tmp

 # remove HTML tags, etc.
 sed -e 's/<tr/\n<tr/g' -e 's/<tr[^>]*>//g' -e 's/<th[^>]*>//g' -e 's/
<td[^>]*>/|/g' -e 's/
//g' -e 's|</td>||g' -e 's|</tr>||g' -e 's|[]*</
table></DIV>||g' -e 's/|[]*/|/g' -e 's/[]*|/|/g' -e 's/<DIV
id="Database">.*<!-- Print Tables -->\n//g' ${matchfile}.tmp > ${matchfile}

 # create SR, NOSR CSV files
 while read line
 do
 timeval=$(echo "${line}" | cut -d'|' -f2)

Chapter 3
Sample Scenarios for All Services

3-71

 srval=$(echo "${line}" | cut -d'|' -f4)
 sqlval=$(echo "${line}" | cut -d'|' -f5)

 if [["${srval}" == ""]]
 then
 echo "${timeval}|${sqlval}" >> ${nosrfile}
 else
 if [["${sqlval}" != ""]]
 then
 echo "${srval}|${timeval}|${sqlval}" >> ${srfile}
 fi
 fi
 done < ${matchfile}
}

reportResults() {
 echo $(date) >> ${reportfile}
 echo "Processing activity report file: $activityreportfile" >> $
{reportfile}
 if [[-f ${srfile}]]
 then
 echo "" | tee -a ${reportfile}
 echo "${SQL_WITH_SR_EXECUTED_STATEMENT}" | tee -a ${reportfile}
 echo "SR# Time SQL Statement" | tee -a $
{reportfile}
 echo "--- ---- -------------" | tee -a $
{reportfile}
 while read line
 do
 srval=$(echo "${line}" | cut -d'|' -f1)
 timeval=$(echo "${line}" | cut -d'|' -f2)
 sqlval=$(echo "${line}" | cut -d'|' -f3)
 echo "${srval} ${timeval} ${sqlval}" | tee -a $
{reportfile}
 done < ${srfile}
 fi

 if [[-f ${nosrfile}]]
 then
 echo "" | tee -a ${reportfile}
 echo "${SQL_WITH_NO_SR_EXECUTED_STATEMENT}" | tee -a $
{reportfile}
 echo "Time SQL Statement" | tee -a ${reportfile}
 echo "---- --- ---------" | tee -a ${reportfile}
 while read line
 do
 timeval=$(echo "${line}" | cut -d'|' -f1)
 sqlval=$(echo "${line}" | cut -d'|' -f2)
 echo "${timeval} ${sqlval}" | tee -a ${reportfile}
 done < ${nosrfile}
 fi

 if [[! -f ${srfile}]] && [[! -f ${nosrfile}]]
 then
 echo "" | tee -a ${reportfile}

Chapter 3
Sample Scenarios for All Services

3-72

 echo "${NO_SQL_EXECUTED_STATEMENT}" | tee -a ${reportfile}
 fi

 emailReportResults
}

downloadLatestActivityReport() {
 ${epmautomatescript} login ${epmuser} ${epmpwd} ${epmurl} >> ${logfile}
 ${epmautomatescript} listfiles > ${aprfilelist}
 activityreportfile=$(cat ${aprfilelist} | grep -P "$
{activityreportregex}" | tail -n 1 | sed -e 's/^ //')
 echo " "
 echo "Processing activity report file: ${activityreportfile}" | tee -a $
{logfile}
 ${epmautomatescript} downloadfile "${activityreportfile}" >> ${logfile}
 ${epmautomatescript} logout >> ${logfile}
}

emailReportResults() {
 reportfilename=$(echo "${reportfile}" | cut -d'/' -f3)

 if [["${reportemailtoaddress}" == *"@"*]]
 then
 echo "Emailing Activity Report Results" | tee -a ${logfile}
 ${epmautomatescript} login ${epmuser} ${epmpwd} ${epmurl} >> $
{logfile}
 ${epmautomatescript} uploadFile "$reportfile" >> ${logfile}
 ${epmautomatescript} sendMail $reportemailtoaddress "Database Access
Audit Report Results" Body="Database Access Audit Report Results are
attached." Attachments=$reportfilename >> ${logfile}
 ${epmautomatescript} deleteFile "$reportfilename" >> ${logfile}
 ${epmautomatescript} logout >> ${logfile}
 fi
}

checkParams()
{
 if [-z "$epmuser"]
 then
 echo "Username is missing."
 echo "Syntax: parseActivityReport.sh USERNAME PASSWORD URL"
 exit 2
 fi

 if [-z "$epmpwd"]
 then
 echo "Password is missing."
 echo "Syntax: parseActivityReport.sh USERNAME PASSWORD URL"
 exit 2
 fi

 if [-z "$epmurl"]
 then
 echo "URL is missing."
 echo "Syntax: parseActivityReport.sh USERNAME PASSWORD URL"

Chapter 3
Sample Scenarios for All Services

3-73

 exit 2
 fi
}

init()
{
 checkParams

 if [! -d "${logdir}"]
 then
 mkdir ${logdir}
 fi

 if [! -d "${reportdir}"]
 then
 mkdir ${reportdir}
 fi

 if [! -f "${epmautomatescript}"]
 then
 echo "Cannot locate EPMAutomate script: ${epmautomatescript}.
Please check setting and run script again. Exiting." | tee -a $
{logfile}
 exit
 fi

 if [-f "${srfile}"]
 then
 rm ${srfile}
 fi

 if [-f "${nosrfile}"]
 then
 rm ${nosrfile}
 fi

 if [-f "${matchfile}"]
 then
 rm ${matchfile}
 fi

 if [-f "${aprfilelist}"]
 then
 rm ${aprfilelist}
 fi
}

cleanup()
{
 if [-f "${matchfile}"]
 then
 rm ${matchfile}
 fi

 if [-f "${matchfile}.tmp"]

Chapter 3
Sample Scenarios for All Services

3-74

 then
 rm ${matchfile}.tmp
 fi

 if [-f "${aprfilelist}"]
 then
 rm ${aprfilelist}
 fi
}

init
downloadLatestActivityReport
generateCsvs
reportResults
cleanup

Replicate Users and Predefined Role Assignments
The scripts in this section helps you migrate users and predefined role assignments of an
environment to another.

About the Scripts

You use two distinct scripts: one to replicate users across identity domains and another to
replicate predefined role assignments of the users. The order for running these scripts is as
follows:

• Run the script for replicating users (replicateusers) and verify that all users are created
in the target identity domain. The user running this script must have the Identity Domain
Administrator and Service Administrator roles in both environments.

• Run the script for replicating role assignments (replicatepredefinedroles).

Note:

• If the passwords contain special characters, see Handling Special Characters

• The scripts in this section work only for predefined roles: Service Administrator,
Power User, User, and Viewer.

Running the Scripts

For information on creating the required scrips and batch files, see these topics:

• Replicating the Users of One Identity Domain in Another

• Replicating Predefined Role Assignments from One Environment to Another

Windows Steps

1. Create replicateusers.bat, replicateusers.ps1, replicatepredefinedroles.bat,
and replicatepredefinedroles.ps1 and save them in a local directory in which you
have write and execute privileges.

Chapter 3
Sample Scenarios for All Services

3-75

2. Update the batch files with information for the source and target environments,
and internet proxy server, if needed.

3. Run replicateusers.bat, which executes replicateusers.ps1. You must specify
the default password to be assigned to replicated users as a command line
parameter as follows:
replicateusers.bat Pwd_for_users
If the password contains special characters, be sure to use the appropriate escape
character. See Handling Special Characters.

4. Run replicatepredefinedroles.bat to create role assignments identical to those
that exist in the source environment.

Linux/UNIX Steps

1. Create the replicateusers.sh and replicatepredefinedroles.sh scripts and
save them in a local directory in which you have write and execute privileges.

2. Update replicateusers.sh and replicatepredefinedroles.sh with information
for the source and target environments, and internet proxy server, if needed.

3. Run replicateusers.sh. You must specify the default password to be assigned to
replicated users as a command line parameter as follows:
./replicateusers.sh Pwd_for_users
If the password contains special characters, be sure to use the appropriate escape
character. See Handling Special Characters.

4. Run replicatepredefinedroles.sh script to create role assignments identical to
those that exist in the source environment.

Replicating the Users of One Identity Domain in Another
Use the scripts in this section to clone users of one identity domain to another identity
domain. The user running these scripts must have the Identity Domain Administrator
and Service Administrator roles in the source and target environments.

Windows

Create replicateusers.bat and replicateusers.ps1 by copying the scripts in this
section.

1. Create replicateusers.ps1 by copying this script:

Replicate users script

param(
 [string]$epmusersource,
 [string]$epmpwdsource,
 [string]$epmurlsource,
 [string]$epmidentitydomainsource,
 [string]$epmusertarget,
 [string]$epmpwdtarget,
 [string]$epmurltarget,
 [string]$epmidentitydomaintarget,
 [string]$proxyserverusername,
 [string]$proxyserverpassword,
 [string]$proxyserverdomain,

Chapter 3
Sample Scenarios for All Services

3-76

 [string]$userpassword,
 [string]$resetpassword,
 [string]$emailtoaddress
)

$roleassignmentreport="roleassignmentreport.csv"
$usersreport="users.csv"

echo "Replicate users script started"

delete existing reports
$roleassignmentreportexists=Test-Path $roleassignmentreport
if ($roleassignmentreportexists) {
 rm $roleassignmentreport 2>&1 | out-null
}

$usersreportexists=Test-Path $usersreport
if ($usersreportexists) {
 rm $usersreport 2>&1 | out-null
}

epmautomate login Source App as an IDM Admin
echo "Logging into source application at ${epmurlsource}"
epmautomate login ${epmusersource} ${epmpwdsource} ${epmurlsource} $
{epmidentitydomainsource} ${proxyserverusername} ${proxyserverpassword} $
{proxyserverdomain}
echo "Creating role assignment report: ${roleassignmentreport}"
epmautomate roleAssignmentReport ${roleassignmentreport}
if (${emailtoaddress} -match "@") {
 epmautomate.bat sendMail $emailtoaddress "Role assignment report"
Body="Role assignment report is attached."
Attachments=$roleassignmentreport}
echo "Downloading role assignment report"
epmautomate downloadfile ${roleassignmentreport}
epmautomate deletefile ${roleassignmentreport}
epmautomate logout

Create users report
Get-Content ${roleassignmentreport} | ForEach-Object {
 $user=$_.split(',')[0]
 $firstname=$_.split(',')[1]
 $lastname=$_.split(',')[2]
 $email=$_.split(',')[3]

 if ($firstname -eq "First Name") {
 return
 } else {
 echo "${firstname},${lastname},${email},${user}" >> ${usersreport}
 }

}

Get-Content -Path "${usersreport}" | Sort-Object -Unique > "$
{usersreport}.tmp"

Chapter 3
Sample Scenarios for All Services

3-77

mv -Force "${usersreport}.tmp" "${usersreport}"
$userheader="First Name,Last Name,Email,User Login"
"${userheader}`r`n" + (Get-Content $usersreport -Raw) | Set-
Content $usersreport

epmautomate login Target App as an IDM Admin
echo "Logging into target application at ${epmurltarget}"
epmautomate login ${epmusertarget} ${epmpwdtarget} ${epmurltarget} $
{epmidentitydomaintarget} ${proxyserverusername} $
{proxyserverpassword} ${proxyserverdomain}
epmautomate deletefile ${usersreport} | Out-Null
echo "Uploading file ${usersreport}"
epmautomate uploadfile ${usersreport}
echo "Adding users"
epmautomate addUsers ${usersreport} userPassword=${userpassword}
resetPassword=${resetpassword}
epmautomate deletefile ${usersreport}
epmautomate logout
rm deletefile*.log | Out-Null
echo "Replicate users script completed"

2. Create replicateusers.bat by copying this script:

@ECHO OFF
SET thisdir=%~dp0
SET scriptpath=%thisdir%replicateusers.ps1
SET paramRequiredMessage=Syntax: replicateusers.bat "USER_PASSWORD"

REM USER DEFINED VARIABLES
REM -----------------------
set epmusersource="<EPM USER FOR SOURCE ENVIRONMENT>"
set epmpwdsource="<EPM PASSWORD FOR SOURCE ENVIRONMENT>"
set epmurlsource="<EPM URL FOR SOURCE ENVIRONMENT>"
set epmidentitydomainsource="<EPM IDENTITY DOMAIN FOR SOURCE
ENVIRONMENT>"
set epmusertarget="<EPM USER FOR TARGET ENVIRONMENT>"
set epmpwdtarget="<EPM PASSWORD FOR TARGET ENVIRONMENT>"
set epmurltarget="<EPM URL FOR TARGET ENVIRONMENT>"
set epmidentitydomaintarget="<EPM IDENTITY DOMAIN FOR TARGET
ENVIRONMENT>"
set proxyserverusername="<PROXY SERVER USER NAME>"
set proxyserverpassword="<PROXY SERVER PASSWORD>"
set proxyserverdomain="<PROXY SERVER DOMAIN>"
set resetpassword=false
set emailtoaddress="<EMAIL_TO_ADDRESS>"
REM -----------------------

if "%~1" == "" (
 echo USER_PASSWORD is missing. This is used to set the
default password for the replicated users.
 echo %paramRequiredMessage%
 exit /b 1
)

PowerShell -NoProfile -ExecutionPolicy Bypass -Command "&

Chapter 3
Sample Scenarios for All Services

3-78

'%scriptpath%' -epmusersource '%epmusersource%' -epmpwdsource
'%epmpwdsource%' -epmurlsource '%epmurlsource%' -epmidentitydomainsource
'%epmidentitydomainsource%' -epmusertarget '%epmusertarget%' -
epmpwdtarget '%epmpwdtarget%' -epmurltarget '%epmurltarget%' -
epmidentitydomaintarget '%epmidentitydomaintarget%' -proxyserverusername
'%proxyserverusername%' -proxyserverpassword '%proxyserverpassword%' -
proxyserverdomain '%proxyserverdomain%' -userpassword '%~1' -
resetpassword '%resetpassword%' -emailtoaddress '%emailtoaddress%'"

3. Update replicateusers.bat. See the following table for the values you must specify.

Parameter Description

epmusersource User name of a user with Identity Domain Administrator and
Service Administrator roles in the source environment.
Examples:
Windows: set epmusersource="jDoe"
Linux/UNIX: epmusersource="jDoe"

epmpwdsource Password of the user or the absolute path of the encrypted
password file.
Examples:
Windows: set epmpwdsource="Example"
Linux/UNIX: epmpwdsource="Example"

epmurlsource URL of the environment from which users are to be copied.
Examples:
Windows: set epmurlsource="https://
example.oraclecloud.com"
Linux/UNIX: epmurlsource="https://
example.oraclecloud.com"

epmidentitydomainsou
rce

Name of the identity domain used by the source environment.
Examples:
Windows: set
epmidentitydomainsource="example_source_dom"
Linux/UNIX:
epmidentitydomainsource="example_source_dom"

epmusertarget User name of a user with Identity Domain Administrator and
Service Administrator roles in the target environment.
Examples:
Windows: set epmusertarget="John.Doe"
Linux/UNIX: set epmusertarget="John.Doe"

epmpwdtarget Password of the user or the absolute path of the encrypted
password file.
Examples:
Windows: set epmpwdtarget="Example1"
Linux/UNIX: epmpwdtarget="Example1"

Chapter 3
Sample Scenarios for All Services

3-79

Parameter Description

epmurltarget URL of the environment in which users are to be created.
Examples:
Windows: set epmurltarget="https://
example.oraclecloud.com"
Linux/UNIX: epmurltarget="https://
example.oraclecloud.com"

epmidentitydomaintar
get

Name of the identity domain used by the target environment.
Examples:
Windows: set
epmidentitydomaintarget="example_source_dom"
Linux/UNIX:
epmidentitydomaintarget="example_target_dom"

proxyserverusername The user name to authenticate a secure session with the proxy
server that controls access to the internet. Delete all occurrence
of this property if not used.
Examples:
Windows: set proxyserverusername="Example"
Linux/UNIX: proxyserverusername="Example"

proxyserverpassword The password to authenticate the user with the proxy server.
Delete all occurrence of this property if not used.
Examples:
Windows: set proxyserverpassword="examplePwd"
Linux/UNIX: proxyserverpassword="examplePwd"

proxyserverdomain The name of the domain defined for the proxy server. Delete all
occurrence of this property if not used.
Examples:
Windows: set proxyserverdomain="exampleDom"
Linux/UNIX: proxyserverdomain="exampleDom"

emailtoaddress Optionally, the email address to which the Role Assignment
report is to be sent. The report is emailed only if this value is
specified.
Example: emailtoaddress=john.doe@example.com

Linux/UNIX

1. Create replicateusers.sh by copying the following script.

#!/bin/sh

userpassword="$1"

USER DEFINED VARIABLES
#-----------------------
javahome="<JAVA HOME>"
epmautomatescript="<EPM AUTOMATE SCRIPT LOCATION>"
epmusersource="<EPM USER FOR SOURCE ENVIRONMENT>"
epmpwdsource="<EPM PASSWORD FOR SOURCE ENVIRONMENT>"
epmurlsource="<EPM URL FOR SOURCE ENVIRONMENT>"
epmidentitydomainsource="<EPM IDENTITY DOMAIN FOR SOURCE
ENVIRONMENT>"

Chapter 3
Sample Scenarios for All Services

3-80

epmusertarget="<EPM USER FOR TARGET ENVIRONMENT>"
epmpwdtarget="<EPM PASSWORD FOR TARGET ENVIRONMENT>"
epmurltarget="<EPM URL FOR TARGET ENVIRONMENT>"
epmidentitydomaintarget="<EPM IDENTITY DOMAIN FOR TARGET ENVIRONMENT>"
proxyserverusername="<PROXY SERVER USER NAME>"
proxyserverpassword="<PROXY SERVER PASSWORD>"
proxyserverdomain="<PROXY SERVER DOMAIN>"
resetpassword="false"
emailtoaddress="<EMAIL TO ADDRESS>"
#-----------------------

roleassignmentreport="roleassignmentreport.csv"
usersreport="users.csv"
paramrequiredmessage='Syntax: replicateusers.sh "USER_PASSWORD"'

export JAVA_HOME=${javahome}

if ["${userpassword}" == ""]
then
 echo "USER_PASSWORD is missing. This is used to set the default
password for the replicated users."
 echo "${paramrequiredmessage}"
 exit
fi

echo "Replicate users script started"

epmautomate login Source App as an IDM Admin
echo "Logging into source application at ${epmurlsource}"
${epmautomatescript} login ${epmusersource} ${epmpwdsource} $
{epmurlsource} ${epmidentitydomainsource} ${proxyserverusername} $
{proxyserverpassword} ${proxyserverdomain}
echo "Creating role assignment report: ${roleassignmentreport}"
${epmautomatescript} roleAssignmentReport ${roleassignmentreport}
if [["${emailtoaddress}" == *"@"*]]
then
 ${epmautomatescript} sendMail $emailtoaddress "Role assignment
report" Body="Role assignment report is attached."
Attachments=$roleassignmentreport
fi
echo "Downloading role assignment report"
${epmautomatescript} downloadfile ${roleassignmentreport}
${epmautomatescript} deletefile ${roleassignmentreport}
${epmautomatescript} logout

awk -F, '{print $2","$3","$4","$1}' ${roleassignmentreport} | (read -r;
printf "%s\n" "$REPLY"; sort -u) > ${usersreport}

epmautomate login Target App as an IDM Admin
echo "Logging into target application at ${epmurltarget}"
${epmautomatescript} login ${epmusertarget} ${epmpwdtarget} $
{epmurltarget} ${epmidentitydomaintarget} ${proxyserverusername} $
{proxyserverpassword} ${proxyserverdomain}
${epmautomatescript} deletefile ${usersreport} > /dev/null 2>&1
echo "Uploading file ${usersreport}"

Chapter 3
Sample Scenarios for All Services

3-81

${epmautomatescript} uploadfile ${usersreport}
echo "Adding users"
${epmautomatescript} addUsers ${usersreport} userPassword=$
{userpassword} resetPassword=${resetpassword}
${epmautomatescript} deletefile ${usersreport}
${epmautomatescript} logout
rm deletefile*.log > /dev/null 2>&1

echo "Replicate users script completed"

2. Update replicateusers.sh. See the preceding table for information on the values
you must specify. Additionally, you must specify the values for these properties:

• javahome: the absolute path to the directory where Java is installed.

• epmautomatescript: Location of epmautomatescript.sh; for example,
epmautomatescript="/home/user1/epmautomate/bin/epmautomate.sh"

Replicating Predefined Role Assignments from One Environment to Another
Use the scripts in this section to clone predefined role assignments from one
environment to another. The user running these scripts must have Service
Administrator role in both environments.

Note:

If you are using the PDF version of this document: To avoid line breaks
and footer information that will render these scripts unusable, copy them
from the HTML version of this topic.

Windows

1. Create replicatepredefineroles.ps1 by copying the following script.

Replicate predefined roles script

param(
 [string]$epmusersource,
 [string]$epmpwdsource,
 [string]$epmurlsource,
 [string]$epmidentitydomainsource,
 [string]$epmusertarget,
 [string]$epmpwdtarget,
 [string]$epmurltarget,
 [string]$epmidentitydomaintarget,
 [string]$proxyserverusername,
 [string]$proxyserverpassword,
 [string]$proxyserverdomain,
 [string]$emailtoaddress
)

$roleassignmentreport="roleassignmentreport.csv"

function replicateroles

Chapter 3
Sample Scenarios for All Services

3-82

https://docs.oracle.com/en/cloud/saas/enterprise-performance-management-common/cepma/sample_script_14_replicate_users_xdomain_role_cloning.html

{
 # epmautomate login Source App as an IDM Admin
 echo "Logging into source application at ${epmurlsource}"
 epmautomate login ${epmusersource} ${epmpwdsource} ${epmurlsource} $
{epmidentitydomainsource} ${proxyserverusername} ${proxyserverpassword} $
{proxyserverdomain}
 echo "Creating role assignment report: ${roleassignmentreport}"
 epmautomate roleAssignmentReport ${roleassignmentreport}
 if (${emailtoaddress} -match "@") {
 epmautomate.bat sendMail $emailtoaddress "Role assignment report"
Body="Role assignment report is attached."
Attachments=$roleassignmentreport
 }
 echo "Downloading role assignment report"
 epmautomate downloadfile ${roleassignmentreport}
 epmautomate deletefile ${roleassignmentreport}
 epmautomate logout

 echo "Creating files to use with epmautomate assignRoles"

 Get-Content ${roleassignmentreport} | ForEach-Object {
 $user=$_.split(',')[0]
 $rolename=$_.split(',')[4]

 if ($rolename -like '*User' -And $rolename -notlike '*Power
User') {
 $rolenamearray=$rolename.split(" ")
 $arraysize=$rolenamearray.count
 $rolename="User"
 if ($arraysize.count -le 2) {
 echo "${user}" | Out-File -Append -Encoding "UTF8" "role-$
{rolename}.csv"
 }
 }
 elseif ($rolename -like '*Viewer') {
 $rolenamearray=$rolename.split(" ")
 $arraysize=$rolenamearray.count
 $rolename="Viewer"
 if ($arraysize -le 2) {
 echo "${user}" | Out-File -Append -Encoding "UTF8" "role-$
{rolename}.csv"
 }
 }
 elseif ($rolename -like '*Power User') {
 $rolenamearray=$rolename.split(" ")
 $arraysize=$rolenamearray.count
 $rolename="Power User"
 if ($arraysize -le 3) {
 echo "${user}" | Out-File -Append -Encoding "UTF8" "role-$
{rolename}.csv"
 }
 }
 elseif ($rolename -like '*Service Administrator') {
 $rolenamearray=$rolename.split(" ")
 $arraysize=$rolenamearray.count

Chapter 3
Sample Scenarios for All Services

3-83

 $rolename="Service Administrator"
 if ($arraysize -le 3) {
 echo "${user}" | Out-File -Append -Encoding "UTF8"
"role-${rolename}.csv"
 }
 }
 elseif ($rolename -like 'Planner') {
 echo "${user}" | Out-File -Append -Encoding "UTF8"
"role-User.csv"
 }
 }

 # Add header and format
 $rolefiles = Get-ChildItem "role-*.csv"
 foreach ($rolefile in $rolefiles) {
 $rolefilecontent = Get-Content "$rolefile"
 $headerline='User Login'
 Set-Content $rolefile -value $headerline,$rolefilecontent
 $txt = [io.file]::ReadAllText("$rolefile") -replace
"`r`n","`n"
 [io.file]::WriteAllText("$rolefile", $txt)
 }

 # epmautomate login Target App as an IDM Admin
 echo "Logging into target application at ${epmurltarget}"
 epmautomate login ${epmusertarget} ${epmpwdtarget} $
{epmurltarget} ${epmidentitydomaintarget} ${proxyserverusername} $
{proxyserverpassword} ${proxyserverdomain}

 $rolefiles = Get-ChildItem "role-*.csv"
 foreach ($rolefile in $rolefiles) {
 $rolenamecsv=$rolefile.BaseName.split('-')[1]
 $rolename=$rolenamecsv.split('.')[0]
 epmautomate deletefile "${rolefile}" | Out-Null
 echo "Uploading file ${rolefile}"
 epmautomate uploadfile "${rolefile}"
 echo "Assigning ${rolename} roles"
 epmautomate assignRole "role-${rolename}.csv" "${rolename}"
 epmautomate deletefile "role-${rolename}.csv"
 }
 epmautomate logout
 rm deletefile*.log | Out-Null
}

function init
{
 # delete ${role}.csv files
 $rolefiles = Get-ChildItem "role-*.csv"
 foreach ($rolefile in $rolefiles) {
 $rolefileexists=Test-Path $rolefile
 if ($rolefileexists) {
 rm "${rolefile}"
 }
 }
}

Chapter 3
Sample Scenarios for All Services

3-84

echo "Replicate predefined roles script started"
init
replicateroles
echo "Replicate predefined roles script completed"

2. Create replicatepredefineroles.bat by copying the following script.

@ECHO OFF
SET thisdir=%~dp0
SET scriptpath=%thisdir%replicatepredefinedroles.ps1

REM USER DEFINED VARIABLES
REM -----------------------
set epmusersource="<EPM USER FOR SOURCE ENVIRONMENT>"
set epmpwdsource="<EPM PASSWORD FOR SOURCE ENVIRONMENT>"
set epmurlsource="<EPM URL FOR SOURCE ENVIRONMENT>"
set epmidentitydomainsource="<EPM IDENTITY DOMAIN FOR SOURCE ENVIRONMENT>"
set epmusertarget="<EPM USER FOR TARGET ENVIRONMENT>"
set epmpwdtarget="<EPM PASSWORD FOR TARGET ENVIRONMENT>"
set epmurltarget="<EPM URL FOR TARGET ENVIRONMENT>"
set epmidentitydomaintarget="<EPM IDENTITY DOMAIN FOR TARGET ENVIRONMENT>"
set proxyserverusername="<PROXY SERVER USER NAME>"
set proxyserverpassword="<PROXY SERVER PASSWORD>"
set proxyserverdomain="<PROXY SERVER DOMAIN>"
set emailtoaddress="<EMAIL_TO_ADDRESS>"
REM -----------------------

PowerShell -NoProfile -ExecutionPolicy Bypass -Command "& '%scriptpath%' -
epmusersource '%epmusersource%' -epmpwdsource '%epmpwdsource%' -
epmurlsource '%epmurlsource%' -epmidentitydomainsource
'%epmidentitydomainsource%' -epmusertarget '%epmusertarget%' -
epmpwdtarget '%epmpwdtarget%' -epmurltarget '%epmurltarget%' -
epmidentitydomaintarget '%epmidentitydomaintarget%' -proxyserverusername
'%proxyserverusername%' -proxyserverpassword '%proxyserverpassword%' -
proxyserverdomain '%proxyserverdomain%' -emailtoaddress
'%emailtoaddress%'"

3. Update replicatepredefineroles.bat as needed. See the following table for
information on the values you must set for the properties in this file.
Updating replicatepredefineroles.bat

Parameter Description

epmusersource User name of a user with Identity Domain Administrator and
Service Administrator roles in the source environment.
Examples:
Windows: set epmusersource="jDoe"
Linux/UNIX: epmusersource="jDoe"

Chapter 3
Sample Scenarios for All Services

3-85

Parameter Description

epmpwdsource Password of the user or the absolute path of the encrypted
password file.
Examples:
Windows: set epmpwdsource="Example"
Linux/UNIX: epmpwdsource="Example"

epmurlsource URL of the environment from which users are to be copied.
Examples:
Windows: set epmurlsource="https://
example.oraclecloud.com"
Linux/UNIX: epmurlsource="https://
example.oraclecloud.com"

epmidentitydomainsourc
e

Name of the identity domain used by the source environment.
Examples:
Windows: set
epmidentitydomainsource="example_source_dom"
Linux/UNIX:
epmidentitydomainsource="example_source_dom"

epmusertarget User name of a user with Identity Domain Administrator and
Service Administrator roles in the target environment.
Examples:
Windows: set epmusertarget="John.Doe"
Linux/UNIX: set epmusertarget="John.Doe"

epmpwdtarget Password of the user or the absolute path of the encrypted
password file.
Examples:
Windows: set epmpwdtarget="Example1"
Linux/UNIX: epmpwdtarget="Example1"

epmurltarget URL of the environment in which users are to be created.
Examples:
Windows: set epmurltarget="https://
example.oraclecloud.com"
Linux/UNIX: epmurltarget="https://
example.oraclecloud.com"

epmidentitydomaintarge
t

Name of the identity domain used by the target environment.
Examples:
Windows: set
epmidentitydomaintarget="example_target_dom"
Linux/UNIX:
epmidentitydomaintarget="example_target_dom"

proxyserverusername The user name to authenticate a secure session with the proxy
server that controls access to the internet. Delete all occurrence
of this property if not used.
Examples:
Windows: set proxyserverusername="Example"
Linux/UNIX: proxyserverusername="Example"

Chapter 3
Sample Scenarios for All Services

3-86

Parameter Description

proxyserverpassword The password to authenticate the user with the proxy server.
Delete all occurrence of this property if not used.
Examples:
Windows: set proxyserverpassword="examplePwd"
Linux/UNIX: proxyserverpassword="examplePwd"

proxyserverdomain The name of the domain defined for the proxy server. Delete
all occurrence of this property if not used.
Examples:
Windows: set proxyserverdomain="exampleDom"
Linux/UNIX: proxyserverdomain="exampleDom"

emailtoaddress Optionally, the email address to which the Role Assignment
report is to be sent. The report is emailed only if this value is
specified.
Example: emailtoaddress=john.doe@example.com

Linux/UNIX

1. Create replicatepredefineroles.sh by copying the following script.

#!/bin/sh

USER DEFINED VARIABLES
#-----------------------
javahome="<JAVA HOME>"
epmautomatescript="<EPM AUTOMATE SCRIPT LOCATION>"
epmusersource="<EPM USER FOR SOURCE ENVIRONMENT>"
epmpwdsource="<EPM PASSWORD FOR SOURCE ENVIRONMENT>"
epmurlsource="<EPM URL FOR SOURCE ENVIRONMENT>"
epmidentitydomainsource="<EPM IDENTITY DOMAIN FOR SOURCE ENVIRONMENT>"
epmusertarget="<EPM USER FOR TARGET ENVIRONMENT>"
epmpwdtarget="<EPM PASSWORD FOR TARGET ENVIRONMENT>"
epmurltarget="<EPM URL FOR TARGET ENVIRONMENT>"
epmidentitydomaintarget="<EPM IDENTITY DOMAIN FOR TARGET ENVIRONMENT>"
proxyserverusername="<PROXY SERVER USER NAME>"
proxyserverpassword="<PROXY SERVER PASSWORD>"
proxyserverdomain="<PROXY SERVER DOMAIN>"
emailtoaddress="<EMAIL TO ADDRESS>"
#-----------------------

roleassignmentreport="roleassignmentreport.csv"

export JAVA_HOME=${javahome}

replicateroles()
{
 # epmautomate login Source App as an DM Admin
 echo "Logging into source application at ${epmurlsource}"
 ${epmautomatescript} login ${epmusersource} ${epmpwdsource} $
{epmurlsource} ${epmidentitydomainsource} ${proxyserverusername} $
{proxyserverpassword} ${proxyserverdomain}
 echo "Creating role assignment report: ${roleassignmentreport}"

Chapter 3
Sample Scenarios for All Services

3-87

 ${epmautomatescript} roleAssignmentReport $
{roleassignmentreport}
 if [["${emailtoaddress}" == *"@"*]]
 then
 ${epmautomatescript} sendMail $emailtoaddress "Role
assignment report" Body="Role assignment report is attached."
Attachments=$roleassignmentreport
 fi
 echo "Downloading role assignment report"
 ${epmautomatescript} downloadfile ${roleassignmentreport}
 ${epmautomatescript} deletefile ${roleassignmentreport}
 ${epmautomatescript} logout

 echo "Creating files to use with epmautomate assignRoles"
 while read line
 do
 user=$(echo "${line}" | cut -d',' -f1)
 rolename=$(echo "${line}" | cut -d',' -f5)

 if [["$rolename" == *"User"]] && [["$rolename" !=
"*Power User"]]
 then
 count=$(echo "${rolename}" | wc -w);
 rolename="User"
 if [[$count -le 2]]
 then
 echo "${user}" >> "role-${rolename}.csv"
 fi
 elif [["$rolename" == *"Viewer"]]
 then
 count=$(echo "${rolename}" | wc -w);
 rolename="Viewer"
 if [[$count -le 2]]
 then
 echo "${user}" >> "role-${rolename}.csv"
 fi
 elif [["$rolename" == *"Power User"]]
 then
 count=$(echo "${rolename}" | wc -w);
 rolename="Power User"
 if [[$count -le 3]]
 then
 echo "${user}" >> "role-${rolename}.csv"
 fi
 elif [["$rolename" == *"Service Administrator"]]
 then
 count=$(echo "${rolename}" | wc -w);
 rolename="Service Administrator"
 if [[$count -le 3]]
 then
 echo "${user}" >> "role-${rolename}.csv"
 fi
 elif [["$rolename" == "Planner"]]
 then
 echo "${user}" >> "role-User.csv"

Chapter 3
Sample Scenarios for All Services

3-88

 fi
 done < ${roleassignmentreport}

 # write header line
 for f in role-*.csv
 do
 sed -i '1iUser Login' "$f"
 done

 # epmautomate login Target App as an IDM Admin
 echo "Logging into target application at ${epmurltarget}"
 ${epmautomatescript} login ${epmusertarget} ${epmpwdtarget} $
{epmurltarget} ${epmidentitydomaintarget} ${proxyserverusername} $
{proxyserverpassword} ${proxyserverdomain}

 for rolefile in role-*.csv
 do
 rolenamecsv=$(echo "$rolefile" | cut -d'-' -f2)
 rolename=$(echo "$rolenamecsv" | cut -d'.' -f1)
 ${epmautomatescript} deletefile "${rolefile}" > /dev/null 2>&1
 echo "Uploading file ${rolefile}"
 ${epmautomatescript} uploadfile "${rolefile}"
 echo "Assigning roles"
 ${epmautomatescript} assignrole "${rolefile}" "${rolename}"
 ${epmautomatescript} deletefile "${rolefile}"
 done

 ${epmautomatescript} logout
 rm deletefile*.log > /dev/null 2>&1
}

init()
{
 # delete role-${role}.csv files
 for f in role-*.csv
 do
 rm "$f" > /dev/null 2>&1
 done
}

echo "Replicate predefined roles script started"
init
replicateroles
echo "Replicate predefined roles script completed"

2. Update replicatepredefineroles.sh. See the preceding table for information on the
values you must specify. Additionally, you must specify the values for these properties:

• javahome: the absolute path to the directory where Java is installed.

• epmautomatescript: Location of epmautomatescript.sh; for example,
epmautomatescript="/home/user1/epmautomate/bin/epmautomate.sh"

Chapter 3
Sample Scenarios for All Services

3-89

Create a Quarterly EPM Cloud Upgrade Cadence
Use these scripts to create a self-service solution to skip updates so that Oracle
Enterprise Performance Management Cloud environments are updated on a quarterly
basis with a two-week test cycle. In this case, the production environments are
updated two weeks after test environments.

This script may also be used to skip every other monthly update, if needed. By default,
EPM Cloud applies a monthly update to your environments. You use the skipUpdate
command to skip the applying of monthly updates to an environment or to view current
skip update requests. You can automate the manual running of the skipUpdate
commands by using the scripts included in this section. These scripts automate the
skip update process so that the updates are applied quarterly or every other month.

Note:

1. You cannot skip updates for more than two consecutive months. For
example, the script throws an error if you try to have an EPM Cloud
environment updated only in February, June, and November.

2. All updates that have happened during the intervening period are applied
to your environment during the next update. For example, assume that
you use this script to schedule quarterly updates to occur only in
February, May, August, and November. In this case, the May update, for
example, will apply all applicable EPM Cloud monthly updates and
patches that were released after the February update to your
environment. The maintenance process may take more time than usual
when the update is applied.

3. This script sets up the update cadence for one quarter only. Run this
script on a monthly basis to ensure that the update cadence is
configured for the whole year.

• Windows Script and Instructions

• UNIX/Linux Script and Instructons

• Groovy Script

Running the Script

1. To run the Windows and Linux/UNIX scripts:

a. Create the input.properties file and update it with information for your
environment. Save the file in a local directory. Contents of this file differs
depending on your operating system.
Make sure that you have write privileges in this directory. For Windows, you
may need to start PowerShell using the Run as Administrator option to be
able to run the script.

b. Create skip_update.ps1 (Windows PowerShell) or skip_update.sh (Linux/
UNIX) bash script and save it in the directory where input.properties is
located.

c. Launch the script.

Chapter 3
Sample Scenarios for All Services

3-90

• Linux/UNIX: run ./skip_update.sh.

• Windows PowerShell: run skip_update.ps1.

2. To run the Groovy script, use the Groovy screen in an EPM Cloud business process or
automate the script execution using runBusinessRule. For information on running Groovy
Script using EPM Automate, see Running Commands without Installing EPM Automate.

Windows Script and Instructions
Create input.properties and skip_update.ps1 by copying the scripts in this section.

1. Create input.properties by copying the following script:

username=exampleAdmin
password=examplePassword.epw
url=exampleURL
updatemonths=02,05,08,11

2. Update input.properties by specifying parameter values.

Table 3-11 input.properties Parameters

Parameter Description

username User name of a Service Administrator.

password Password of the Service Administrator or the name and
location of the encrypted password file.

url URL of the environment on which you want to set the non-
monthly update cadence.

updatemonths A comma separated list of months when Oracle Enterprise
Performance Management Cloud updates should be
applied to the environment identified by the url
parameter. For example, updatemonths=02,05,08,11.
Months must be specified as two digits: 01 for January
through 12 for December. Be sure to include a preceding
zero for January through September. The script attempts
to run the skipUpdatecommand for the months not
included in the updatemonths parameter value. For
example, if you specify updatemonths=02,05,08,11, the
script tries to set skip update flags for January, March,
April, June, July, September, October, and December so
that updates are made only in February, May, August, and
November.

3. Create skip_updates.ps1 by copying the following script:

Skip Update PowerShell script

$inputproperties = ConvertFrom-StringData(Get-Content ./input.properties -
raw)
$username="$($inputproperties.username)"
$password="$($inputproperties.password)"
$url="$($inputproperties.url)"
$updatemonths="$($inputproperties.updatemonths)"

Chapter 3
Sample Scenarios for All Services

3-91

$monthsarr =
("01","02","03","04","05","06","07","08","09","10","11","12")
$global:monthsarrfromcurrent = @()
$global:yearsarrfromcurrent = @()
$updatemonthsarr = $updatemonths.Split(",")
$currentyear=Get-Date -Format yy
$currentmonth=Get-Date -Format MM
$nextyear=[int]$currentyear+1

function populateFromCurrentArrays() {
 $startposition = 0

 for ($i = 0; $i -le ($monthsarr.length - 1); $i++) {
 if (${currentmonth} -eq $monthsarr[$i]) {
 $startposition=$i
 break
 }
 }

 for ($i = 0; $i -le ($monthsarr.length - 1); $i++) {
 if (${i} -ge ${startposition}) {
 $global:monthsarrfromcurrent += $monthsarr[$i]
 $global:yearsarrfromcurrent += $currentyear
 }
 }

 for ($i = 0; $i -le ($monthsarr.length - 1); $i++) {
 if (${i} -lt ${startposition}) {
 $global:monthsarrfromcurrent += $monthsarr[$i]
 $global:yearsarrfromcurrent += $nextyear
 }
 }
}

function skipUpdateAdd($yearnumber, $monthnumber) {
 echo "Running: epmautomate.bat skipUpdate add version=$
{yearnumber}.${monthnumber} comment=`"adding skipUpdate`""
 epmautomate skipUpdate add version=${yearnumber}.${monthnumber}
comment="adding skipUpdate"
}

function processSkipUpdates() {
 $addcount = 0

 echo "Running: epmautomate.bat login ${username} ${password} $
{url}"
 epmautomate login ${username} ${password} ${url}
 echo "Running: epmautomate.bat skipUpdate remove"
 epmautomate skipUpdate remove

 for ($i = 0; $i -le ($global:monthsarrfromcurrent.length -
1); $i++) {
 $match = 1

 if (${addcount} -eq 2) {

Chapter 3
Sample Scenarios for All Services

3-92

 echo "Two skip update add calls have been made. No more will
be attempted."
 break
 }

 for ($j = 0; $j -le ($updatemonthsarr.length - 1); $j++) {
 if ($global:monthsarrfromcurrent[$i] -eq $updatemonthsarr[$j]) {
 $match = 0
 break
 }
 }

 if (${match} -eq 1) {

skipUpdateAdd $global:yearsarrfromcurrent[$i] $global:monthsarrfromcurren
t[$i]
 $addcount += 1
 }
 }

 echo "Running: epmautomate.bat skipUpdate list"
 epmautomate skipUpdate list
 echo "Running: epmautomate.bat logout"
 epmautomate logout
}

function compareUpdateMonths($thismonth, $nextmonth) {
 $nextmonthorig=${nextmonth}

 if (${nextmonth} -lt ${thismonth}) {
 $nextmonth+=12
 }

 $monthdiff = $nextmonth - $thismonth

 if (${monthdiff} -gt 3) {
 echo "There are more than 2 months skipped from month $
{thismonth} to month ${nextmonthorig}. Please correct updatemonths in
input.properties so that there are not more than two months skipped
between each update month. Exiting."
 exit 1
 }
}

function validateUpdateMonths() {
 for ($i = 0; $i -le ($updatemonthsarr.length - 1); $i++) {
 $nextint = $i + 1
 $thisupdatemonth = $updatemonthsarr[$i]
 $thisupdatemonthint=[int]$thisupdatemonth
 $nextupdatemonth=$updatemonthsarr[$nextint]
 $nextupdatemonthint=[int]$nextupdatemonth

 if (${nextupdatemonth} -eq "") {
 $nextupdatemonth=$updatemonthsarr[0]
 $nextupdatemonthint=[int]$nextupdatemonth

Chapter 3
Sample Scenarios for All Services

3-93

 }

 compareUpdateMonths $thisupdatemonthint $nextupdatemonthint
 }
}

validateUpdateMonths
populateFromCurrentArrays
processSkipUpdates

UNIX/Linux Script and Instructons
Create input.properties and skip_update.sh by copying the scripts in this section.

1. Create input.properties by copying the following script:

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
password=examplePassword.epw
url=exampleURL
updatemonths=02,05,08,11

2. Update input.properties by specifying parameter values.

Table 3-12 input.properties Parameters

Parameter Description

javahome JAVA_HOME location.

epmautomatescript Absolute path of EPM Automate executable
(epmautomate.sh).

username User name of a Service Administrator.

password Password of the Service Administrator or the name
and location of the encrypted password file.

url URL of the environment on which you want to set the
non-monthly update cadence.

updatemonths A comma separated list of months when Oracle
Enterprise Performance Management Cloud updates
should be applied to the environment identified by
the url parameter. For example,
updatemonths=02,05,08,11.
Months must be specified as two digits; include a
preceding zero for January through September. The
script attempts to run the skipUpdatecommand for the
months not included in the updatemonths parameter
value. For example, if you specify
updatemonths=02,05,08,11, the script tries to set
skip update flags for January, March, April, June, July,
September, October, and December so that updates
are made only in February, May, August, and
November.

Chapter 3
Sample Scenarios for All Services

3-94

3. Create skip_updates.sh by copying the following script:

#!/bin/sh

. ./input.properties
export JAVA_HOME=${javahome}

declare -a monthsarr=(01 02 03 04 05 06 07 08 09 10 11 12)
declare -a monthsarrfromcurrent
declare -a yearsarrfromcurrent
updatemonthsarr=($(echo "${updatemonths}" | sed 's/,/ /g'))
currentyear=$(date +%y)
nextyear=$((currentyear+1))
currentmonth=$(date +%m)

populateFromCurrentArrays() {
 for i in ${!monthsarr[@]}
 do
 if [["${currentmonth}" == "${monthsarr[$i]}"]]
 then
 startposition=$i
 break
 fi
 done

 for i in ${!monthsarr[@]}
 do
 if [[${i} -ge ${startposition}]]
 then
 monthsarrfromcurrent=("${monthsarrfromcurrent[@]}" "$
{monthsarr[$i]}")
 yearsarrfromcurrent=("${yearsarrfromcurrent[@]}" "$
{currentyear}")
 fi
 done

 for i in ${!monthsarr[@]}
 do
 if [[${i} -lt ${startposition}]]
 then
 monthsarrfromcurrent=("${monthsarrfromcurrent[@]}" "$
{monthsarr[$i]}")
 yearsarrfromcurrent=("${yearsarrfromcurrent[@]}" "$
{nextyear}")
 fi
 done
}

skipUpdateAdd() {
 local yearnumber="$1"
 local monthnumber="$2"

 echo "Running: ${epmautomatescript} skipUpdate add version=$
{yearnumber}.${monthnumber} comment=\"adding skipUpdate\""
 ${epmautomatescript} skipUpdate add version=${yearnumber}.$

Chapter 3
Sample Scenarios for All Services

3-95

{monthnumber} comment="adding skipUpdate"
}

processSkipUpdates() {
 local addcount=0

 echo "Running: ${epmautomatescript} login ${username} $
{password} ${url}"
 ${epmautomatescript} login ${username} ${password} ${url}
 echo "Running: ${epmautomatescript} skipUpdate remove"
 ${epmautomatescript} skipUpdate remove

 for i in ${!monthsarrfromcurrent[@]}
 do
 local match=1

 if [[${addcount} -eq 2]]
 then
 echo "Two skip update add calls have been made. No more
will be attempted."
 break
 fi

 for j in ${!updatemonthsarr[@]}
 do
 if [["${monthsarrfromcurrent[$i]}" == "$
{updatemonthsarr[$j]}"]]
 then
 match=0
 break
 fi
 done

 if [[${match} -eq 1]]
 then
 skipUpdateAdd ${yearsarrfromcurrent[$i]} "$
{monthsarrfromcurrent[$i]}"
 addcount=$((addcount+1))
 fi
 done

 echo "Running: ${epmautomatescript} skipUpdate list"
 ${epmautomatescript} skipUpdate list
 echo "Running: ${epmautomatescript} logout"
 ${epmautomatescript} logout
}

compareUpdateMonths() {
 local thismonth=$1
 local nextmonth=$2
 local nextmonthorig=${nextmonth}

 if [[${nextmonth} -lt ${thismonth}]]
 then
 nextmonth=$((nextmonth+12))

Chapter 3
Sample Scenarios for All Services

3-96

 fi

 monthdiff=$((nextmonth-thismonth))

 if [[${monthdiff} -gt 3]]
 then
 echo "There are more than 2 months skipped from month $
{thismonth} to month ${nextmonthorig}. Please correct updatemonths in
input.properties so that there are not more than two months skipped
between each update month. Exiting."
 exit 1
 fi
}

validateUpdateMonths() {
 for i in ${!updatemonthsarr[@]}
 do
 nextint=$((i+1))
 thisupdatemonth="${updatemonthsarr[$i]}"
 thisupdatemonthint=${thisupdatemonth#0}
 nextupdatemonth="${updatemonthsarr[$nextint]}"
 nextupdatemonthint=${nextupdatemonth#0}

 if [[${nextupdatemonth} == ""]]
 then
 nextupdatemonth="${updatemonthsarr[0]}"
 nextupdatemonthint=${nextupdatemonth#0}
 fi

 compareUpdateMonths ${thisupdatemonthint} ${nextupdatemonthint}
 done
}

validateUpdateMonths
populateFromCurrentArrays
processSkipUpdates

Groovy Script
If passwords contain special characters, see Handling Special Characters. Also, be sure to
replace these parameter values to suit your environments:

Table 3-13 Parameters to Change

Parameter Description

user User name of a Service Administrator.
password Password of the Service Administrator or the name and

location of the encrypted password file.
url URL of the environment on which you want to set the non-

monthly update cadence.

Chapter 3
Sample Scenarios for All Services

3-97

Table 3-13 (Cont.) Parameters to Change

Parameter Description

updatemonths A comma separated list of months when Oracle Enterprise
Performance Management Cloud updates should be applied
to the environment identified by the url parameter. For
example, updatemonths=02,05,08,11.
Months must be specified as two digits: 01 for January
through 12 for December. Be sure to include a preceding
zero for January through September. The script attempts to
run the skipUpdatecommand for the months not included in
the updatemonths parameter value. For example, if you
specify updatemonths=02,05,08,11, the script tries to set
skip update flags for January, March, April, June, July,
September, October, and December so that updates are made
only in February, May, August, and November.

import java.text.SimpleDateFormat

String user = 'service_administrator'
String password = 'examplePWD'
String url = 'example_EPM_URL'
String updatemonths = '02,05,08,11'

def currentdate = new Date()
def yf = new SimpleDateFormat("yy")
def mf = new SimpleDateFormat("MM")
String[] monthsarr = ["01", "02", "03", "04", "05", "06", "07", "08",
"09", "10", "11", "12"]
List<String> monthsarrfromcurrent = new ArrayList<>()
List<String> yearsarrfromcurrent = new ArrayList<>()
String currentyear = yf.format(currentdate)
String nextyear = (currentyear.toInteger() + 1).toString()
String currentmonth = mf.format(currentdate)

String[] updateMonthsStringArr = updatemonths.split(',');
def updatemonthsarr = new int[updateMonthsStringArr.length];
for(int i = 0; i < updateMonthsStringArr.length; i++)
{
 updatemonthsarr[i] = Integer.parseInt(updateMonthsStringArr[i]);
}

def LogMessage(String message) {
 def date = new Date()
 def sdf = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss")
 println('[' + sdf.format(date) + '][GROOVY] ' + message);
}

def LogOperationStatus(EpmAutomateStatus opstatus) {
 def returncode = opstatus.getStatus()
 if (returncode != 0){
 LogMessage(opstatus.getOutput())
 }

Chapter 3
Sample Scenarios for All Services

3-98

 LogMessage('return code: ' + returncode)
}

int CompareUpdateMonths(int thismonth, int nextmonth) {
 int nextmonthorig = nextmonth

 if (nextmonth < thismonth) {
 nextmonth = nextmonth + 12
 }

 int monthdiff = nextmonth - thismonth

 if (monthdiff > 3) {
 LogMessage('There are more than 2 months skipped from month ' +
thismonth + ' to month ' + nextmonthorig + '. Please correct updatemonths so
that there are not more than two months skipped between each update month.
Exiting.')
 return 1
 }

 return 0
}

int ValidateUpdateMonths(int[] updatemonthsarr) {
 for(int i = 0; i < updatemonthsarr.length; i++)
 {
 int nextint = i + 1
 String nextupdatemonth = ""
 int nextupdatemonthint = 0
 String thisupdatemonth = updatemonthsarr[i]
 int thisupdatemonthint = thisupdatemonth.toInteger()

 if (nextint < updatemonthsarr.length) {
 nextupdatemonth = updatemonthsarr[nextint]
 } else {
 nextupdatemonth = updatemonthsarr[0]
 }

 nextupdatemonthint = nextupdatemonth.toInteger()

 int returncode = CompareUpdateMonths(thisupdatemonthint,
nextupdatemonthint)
 if (returncode > 0) {
 return 1
 }
 }
 return 0
}

def SkipUpdateAdd(EpmAutomate automate, String yearnumber, String
monthnumber) {
 String yeardotmonth = yearnumber + '.' + monthnumber
 LogMessage('Running: epmautomate skipUpdate add version=' + yeardotmonth
+ ' comment=\"adding skipUpdate\"')
 EpmAutomateStatus status =

Chapter 3
Sample Scenarios for All Services

3-99

automate.execute('skipupdate','add','version=' +
yeardotmonth,'comment=\"adding skipUpdate\"')
 LogOperationStatus(status)
}

LogMessage('Starting skip update processing')
EpmAutomate automate = getEpmAutomate()

// validate update months
int returncode = ValidateUpdateMonths(updatemonthsarr)
if (returncode != 0) {
 return 1
}

// populate arrays
int startposition = 0
for(int i = 0; i < monthsarr.length; i++)
{
 if (currentmonth == monthsarr[i]) {
 startposition = i
 break
 }
}

for(int i = 0; i < monthsarr.length; i++)
{
 if (i >= startposition) {
 monthsarrfromcurrent.add(monthsarr[i])
 yearsarrfromcurrent.add(currentyear)
 }
}

for(int i = 0; i < monthsarr.length; i++)
{
 if (i <= startposition) {
 monthsarrfromcurrent.add(monthsarr[i])
 yearsarrfromcurrent.add(nextyear)
 }
}

// process skip updates
LogMessage("Operation: encrypt " + password + " oracleKey
password.epw")
EpmAutomateStatus status =
automate.execute('encrypt',password,"oracleKey","password.epw")
LogOperationStatus(status)

LogMessage("Operation: login " + user + " password.epw " + url)
status = automate.execute('login',user,"password.epw",url)
LogOperationStatus(status)

LogMessage('Running: epmautomate skipUpdate remove')
status = automate.execute('skipupdate','remove')
LogOperationStatus(status)

Chapter 3
Sample Scenarios for All Services

3-100

int addcount = 0

for (int i = 0; i < monthsarrfromcurrent.size(); i++) {
 int match = 1

 if (addcount == 2){
 LogMessage('Two skip update add calls have been made. No more will
be attempted.')
 break
 }

 for(int j = 0; j < updatemonthsarr.length; j++) {

 if (Integer.parseInt(monthsarrfromcurrent.get(i)) ==
updatemonthsarr[j]) {
 match = 0
 break
 }
 }

 if (match == 1) {
 SkipUpdateAdd(automate, yearsarrfromcurrent.get(i),
monthsarrfromcurrent.get(i))
 addcount+=1
 }
}

LogMessage('Running: epmautomate skipUpdate list')
status = automate.execute('skipupdate','list')
LogOperationStatus(status)

LogMessage('Running: epmautomate logout')
status = automate.execute('logout')
LogOperationStatus(status)

LogMessage('Skip update processing completed')

Create a Quarterly EPM Cloud Upgrade Cadence with Six Week Test
Cycles

Use the script in this section to create a self-service solution to skip updates so that Oracle
Enterprise Performance Management Cloud environments are updated on a quarterly basis
with a six-week test cycle. In this case, the production environments are updated six weeks
after the test environments.

By default, EPM Cloud applies a monthly update to your environments. You use the
skipUpdate command to skip the applying of monthly updates to an environment or to view
current skip update requests. You can automate the manual running of the skipUpdate
commands by using the scripts included in this section. These scripts automate the skip
update process so that the updates are applied on a quarterly basis with six weeks test cycle.

Chapter 3
Sample Scenarios for All Services

3-101

Note:

1. You cannot skip updates for more than three consecutive months. This
script throws an error if you try to have an EPM Cloud environment
updated only in February and October.

2. All updates that have happened during the intervening period are applied
to your environment during the next update. For example, assume that
you use this script to schedule quarterly updates to occur only for
February, May, August, and November updates. In this case, the May
update, for example, will apply all applicable EPM Cloud monthly
updates and patches that were released after the February update to
your environment. The maintenance process may take more time than
usual when the update is applied.

3. This script sets up the update cadence for one quarter only.
Sample Scenario: The test environment update cycle is established as
the first Fridays of February (24.02 update), May (24.05 update), August
(24.08 update), and November (24.11 update). The Production
Environment will be updated on the third Fridays of March (24.02
update) with the version that was used to update the test environment on
the first Friday of February (24.02 update). Similar update to the
production environment will occur on the third week of June (24.05
update), September (24.08 update), and December (24.11 update). In
this scenario, the production environment is not updated to the current
update, but with the update that is currently on the test environment.

Windows Sample Script

Create skip_update.ps1 by copying the following script. Store it in a local directory.
See Running the Script for information on running this script:

Skip Update PowerShell script

$inputproperties = ConvertFrom-StringData(Get-Content ./
input.properties -raw)
$username="$($inputproperties.username)"
$password="$($inputproperties.password)"
$url="$($inputproperties.url)"
$updateversions="$($inputproperties.updateversions)"
$podtype="$($inputproperties.podtype)"
$proxyserverusername="$($inputproperties.proxyserverusername)"
$proxyserverpassword="$($inputproperties.proxyserverpassword)"
$proxyserverdomain="$($inputproperties.proxyserverdomain)"

echo "Starting skip_update.ps1 script."

$monthsarr =
("01","02","03","04","05","06","07","08","09","10","11","12")
$global:monthsarrfromcurrent = @()
$global:yearsarrfromcurrent = @()
$updateversionsarr = $updateversions.Split(",")
$currentyear=Get-Date -Format yy

Chapter 3
Sample Scenarios for All Services

3-102

$currentmonth=Get-Date -Format MM
$nextyear=[int]$currentyear+1

function populateFromCurrentArrays() {
 $startposition = 0

 for ($i = 0; $i -le ($monthsarr.length - 1); $i++) {
 if (${currentmonth} -eq $monthsarr[$i]) {
 if (${podtype} -eq "prod") {
 if (${updateversionsarr} -contains ${currentmonth}) {
 $startposition=$i-2
 } else {
 $startposition=$i-1
 }
 } else {
 if (${updateversionsarr} -contains ${currentmonth}) {
 $startposition=$i
 } else {
 $startposition=$i-1
 }
 }
 break
 }
 }

 if (${startposition} -lt 0) {
 $startposition=$startposition+12
 }

 for ($i = 0; $i -le ($monthsarr.length - 1); $i++) {
 if (${i} -ge ${startposition}) {
 $global:monthsarrfromcurrent += $monthsarr[$i]
 $global:yearsarrfromcurrent += $currentyear
 }
 }

 for ($i = 0; $i -le ($monthsarr.length - 1); $i++) {
 if (${i} -lt ${startposition}) {
 $global:monthsarrfromcurrent += $monthsarr[$i]
 $global:yearsarrfromcurrent += $nextyear
 }
 }
}

function skipUpdateAdd($yearnumber, $monthnumber) {
 echo "Running: epmautomate.bat skipUpdate add version=${yearnumber}.$
{monthnumber} comment=`"adding skipUpdate`""
 epmautomate skipUpdate add version=${yearnumber}.${monthnumber}
comment="adding skipUpdate"
}

function processSkipUpdates() {
 $addcount = 0
 $countlimit = 0

Chapter 3
Sample Scenarios for All Services

3-103

 if (${podtype} -eq "prod") {
 $countlimit = 3
 } else {
 $countlimit = 2
 }

 if ((${proxyserverusername} -eq "") -And (${proxyserverpassword} -
eq "") -And (${proxyserverdomain} -eq "")) {
 echo "Running: epmautomate.bat login ${username} ${password} $
{url}"
 epmautomate login ${username} ${password} ${url}
 } else {
 echo "Running: epmautomate.bat login ${username} ${password} $
{url} ProxyServerUserName=${proxyserverusername} ProxyServerPassword=$
{proxyserverpassword} ProxyServerDomain=${proxyserverdomain}"
 epmautomate login ${username} ${password} ${url}
ProxyServerUserName=${proxyserverusername} ProxyServerPassword=$
{proxyserverpassword} ProxyServerDomain=${proxyserverdomain}
 }

 echo "Running: epmautomate.bat skipUpdate remove"
 epmautomate skipUpdate remove

 for ($i = 0; $i -le ($global:monthsarrfromcurrent.length - 1); $i+
+) {
 $match = 1

 if (${addcount} -eq ${countlimit}) {
 echo "Update calls are completed. No more will be
attempted."
 break
 }

 for ($j = 0; $j -le ($updateversionsarr.length - 1); $j++) {
 if ((${currentmonth} -eq $updateversionsarr[$j]) -And ($
{addcount} -gt 0)) {
 $match = 1
 break
 }

 if (($global:monthsarrfromcurrent[$i] -
eq $updateversionsarr[$j]) -And (${addcount} -eq 0)){
 $match = 0
 break
 }
 }

 if (${match} -eq 1) {

skipUpdateAdd $global:yearsarrfromcurrent[$i] $global:monthsarrfromcurr
ent[$i]
 $addcount += 1
 }
 }

Chapter 3
Sample Scenarios for All Services

3-104

 echo "Running: epmautomate.bat skipUpdate list"
 epmautomate skipUpdate list
 echo "Running: epmautomate.bat logout"
 epmautomate logout
}

function compareUpdateMonths($thismonth, $nextmonth) {
 $nextmonthorig=${nextmonth}

 if (${nextmonth} -lt ${thismonth}) {
 $nextmonth+=12
 }

 $monthdiff = $nextmonth - $thismonth

 if (${monthdiff} -gt 4) {
 echo "There are more than 3 versions skipped from version $
{thismonth} to version ${nextmonthorig}. Please correct updateversions in
input.properties so that there are not more than three versions skipped
between each update version. Exiting."
 exit 1
 }
}

function validateUpdateVersions() {
 for ($i = 0; $i -le ($updateversionsarr.length - 1); $i++) {
 $nextint = $i + 1
 $thisupdatemonth = $updateversionsarr[$i]
 $thisupdatemonthint=[int]$thisupdatemonth
 $nextupdatemonth=$updateversionsarr[$nextint]
 $nextupdatemonthint=[int]$nextupdatemonth

 if (${nextupdatemonth} -eq "") {
 $nextupdatemonth=$updateversionsarr[0]
 $nextupdatemonthint=[int]$nextupdatemonth
 }

 compareUpdateMonths $thisupdatemonthint $nextupdatemonthint
 }
}

validateUpdateVersions
populateFromCurrentArrays
processSkipUpdates

Linux/UNIX Sample Script

Create skip_update.sh by copying the following script. Store it in a local directory. See
Running the Script for information on running this script:

#!/bin/sh

. ./input.properties

echo "Starting skip_update.sh script."

Chapter 3
Sample Scenarios for All Services

3-105

export JAVA_HOME=${javahome}

declare -a monthsarr=(01 02 03 04 05 06 07 08 09 10 11 12)
declare -a monthsarrfromcurrent
declare -a yearsarrfromcurrent
updateversionsarr=($(echo "${updateversions}" | sed 's/,/ /g'))
currentyear=$(date +%y)
nextyear=$((currentyear+1))
currentmonth=$(date +%m)

populateFromCurrentArrays() {
 local startposition=0

 for i in ${!monthsarr[@]}
 do
 if [["${currentmonth}" == "${monthsarr[$i]}"]]
 then
 if [["${podtype}" == "prod"]]
 then
 if [[${updateversionsarr[@]} =~ ${currentmonth}]]
 then
 startposition=$((i-2))
 else
 startposition=$((i-1))
 fi
 break
 else
 if [[${updateversionsarr[@]} =~ ${currentmonth}]]
 then
 startposition=$i
 else
 startposition=$((i-1))
 fi
 break
 fi
 fi
 done

 if [[${startposition} -lt 0]]
 then
 startposition=$((startposition+12))
 fi

 for i in ${!monthsarr[@]}
 do
 if [[${i} -ge ${startposition}]]
 then
 monthsarrfromcurrent=("${monthsarrfromcurrent[@]}" "$
{monthsarr[$i]}")
 yearsarrfromcurrent=("${yearsarrfromcurrent[@]}" "$
{currentyear}")
 fi
 done

Chapter 3
Sample Scenarios for All Services

3-106

 for i in ${!monthsarr[@]}
 do
 if [[${i} -lt ${startposition}]]
 then
 monthsarrfromcurrent=("${monthsarrfromcurrent[@]}" "$
{monthsarr[$i]}")
 yearsarrfromcurrent=("${yearsarrfromcurrent[@]}" "${nextyear}")
 fi
 done
}

skipUpdateAdd() {
 local yearnumber="$1"
 local monthnumber="$2"

 echo "Running: ${epmautomatescript} skipUpdate add version=$
{yearnumber}.${monthnumber} comment=\"adding skipUpdate\""
 ${epmautomatescript} skipUpdate add version=${yearnumber}.${monthnumber}
comment="adding skipUpdate"
}

processSkipUpdates() {
 local addcount=0
 local countlimit=0

 if [["${podtype}" == "prod"]]
 then
 countlimit=3
 else
 countlimit=2
 fi

 if [["${proxyserverusername}" == ""]] && [["${proxyserverpassword}"
== ""]] && [["${proxyserverdomain}" == ""]]
 then
 echo "Running: ${epmautomatescript} login ${username} ${password} $
{url}"
 ${epmautomatescript} login ${username} ${password} ${url}
 else
 echo "Running: ${epmautomatescript} login ${username} ${password} $
{url} ProxyServerUserName=${proxyserverusername} ProxyServerPassword=$
{proxyserverpassword} ProxyServerDomain=${proxyserverdomain}"
 ${epmautomatescript} login ${username} ${password} ${url}
ProxyServerUserName=${proxyserverusername} ProxyServerPassword=$
{proxyserverpassword} ProxyServerDomain=${proxyserverdomain}
 fi
 echo "Running: ${epmautomatescript} skipUpdate remove"
 ${epmautomatescript} skipUpdate remove

 for i in ${!monthsarrfromcurrent[@]}
 do
 local match=1

 if [[${addcount} -eq ${countlimit}]]
 then

Chapter 3
Sample Scenarios for All Services

3-107

 echo "Update add calls are completed. No more will be
attempted."
 break
 fi

 for j in ${!updateversionsarr[@]}
 do
 if [["${currentmonth}" == "${updateversionsarr[$j]}"]]
&& [[${addcount} -gt 0]]
 then
 match=1
 break
 fi

 if [["${monthsarrfromcurrent[$i]}" == "$
{updateversionsarr[$j]}"]] && [[${addcount} -eq 0]]
 then
 match=0
 break
 fi
 done

 if [[${match} -eq 1]]
 then
 skipUpdateAdd ${yearsarrfromcurrent[$i]} "$
{monthsarrfromcurrent[$i]}"
 addcount=$((addcount+1))
 fi
 done

 echo "Running: ${epmautomatescript} skipUpdate list"
 ${epmautomatescript} skipUpdate list
 echo "Running: ${epmautomatescript} logout"
 ${epmautomatescript} logout
}

compareUpdateMonths() {
 local thismonth=$1
 local nextmonth=$2
 local nextmonthorig=${nextmonth}

 if [[${nextmonth} -lt ${thismonth}]]
 then
 nextmonth=$((nextmonth+12))
 fi

 monthdiff=$((nextmonth-thismonth))

 if [[${monthdiff} -gt 4]]
 then
 echo "There are more than 3 versions skipped from version $
{thismonth} to version ${nextmonthorig}. Please correct updateversions
in input.properties so that there are not more than three versions
skipped between each update version. Exiting."
 exit 1

Chapter 3
Sample Scenarios for All Services

3-108

 fi
}

validateUpdateVersions() {
 for i in ${!updateversionsarr[@]}
 do
 nextint=$((i+1))
 thisupdatemonth="${updateversionsarr[$i]}"
 thisupdatemonthint=${thisupdatemonth#0}
 nextupdatemonth="${updateversionsarr[$nextint]}"
 nextupdatemonthint=${nextupdatemonth#0}

 if [[${nextupdatemonth} == ""]]
 then
 nextupdatemonth="${updateversionsarr[0]}"
 nextupdatemonthint=${nextupdatemonth#0}
 fi

 compareUpdateMonths ${thisupdatemonthint} ${nextupdatemonthint}
 done
}

validateUpdateVersions
populateFromCurrentArrays
processSkipUpdates

Server-Side Groovy Script

Create skip_update.groovy Groovy script by copying the following script and then updating
it. See Running the Script for information on running this script:
Update the following variables in this groovy script:

• username User name of a Service Administrator on the environment on which you want to
set the non-monthly update cadence.

• password Password of the Service Administrator or the name and location of the
encrypted password file.

• url URL of the environment on which you want to set the non-monthly update cadence.

• updateversions A comma separated list of EPM Cloud updates that should be applied to
the environment identified by the url parameter. For example,
updateversions=02,05,08,11.
Versions must be specified as two digits; include a preceding zero for updates 01 through
09. The script attempts to run the skipUpdate command for the updates not included in
the updateversions parameter value. For example, if you specify
updateversions=02,05,08,11, the script tries to set skip update flags for the 01
(January), 03 (March), 04 (April), 06 (June), 07 (July), 09 (September), 10 (October), and
12 (December) updates. In this case, EPM Cloud updates 02 (February), 05 (May), 08
(August), and 11 (November) are applied to the environment.

• podtype EPM Cloud environment type. Valid values are test and prod.

• proxyserverusername The user name to authenticate a secure session with the proxy
server that controls access to the internet.

• proxyserverpassword The password to authenticate the user with the proxy server.

Chapter 3
Sample Scenarios for All Services

3-109

• proxyserverdomain The name of the domain defined for the proxy server.

Note:

If you do not use a proxy server, do not specify any values for the
proxyserverusername, proxyserverpassword, and proxyserverdomain
parameters.

import java.text.SimpleDateFormat

String username = 'service_administrator'
String password = 'examplePWD'
String url = 'example_EPM_URL'
String updateversions = '01,04,07,10'
String podtype = 'test'
String proxyserverusername = ''
String proxyserverpassword = ''
String proxyserverdomain = ''

def currentdate = new Date()
def yf = new SimpleDateFormat("yy")
def mf = new SimpleDateFormat("MM")
String[] monthsarr = ["01", "02", "03", "04", "05", "06", "07", "08",
"09", "10", "11", "12"]
List<String> monthsarrfromcurrent = new ArrayList<>()
List<String> yearsarrfromcurrent = new ArrayList<>()
String currentyear = yf.format(currentdate)
String nextyear = (currentyear.toInteger() + 1).toString()
String currentmonth = mf.format(currentdate)

String[] updateVersionsStringArr = updateversions.split(',');
def updateversionsarr = new int[updateVersionsStringArr.length];
for(int i = 0; i < updateVersionsStringArr.length; i++)
{
 updateversionsarr[i] =
Integer.parseInt(updateVersionsStringArr[i]);
}

def LogMessage(String message) {
 def date = new Date()
 def sdf = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss")
 println('[' + sdf.format(date) + '][GROOVY] ' + message);
}

def LogOperationStatus(EpmAutomateStatus opstatus) {
 def returncode = opstatus.getStatus()
 LogMessage(opstatus.getOutput())
 LogMessage('return code: ' + returncode)
}

int CompareUpdateMonths(int thismonth, int nextmonth) {
 int nextmonthorig = nextmonth

Chapter 3
Sample Scenarios for All Services

3-110

 if (nextmonth < thismonth) {
 nextmonth = nextmonth + 12
 }

 int monthdiff = nextmonth - thismonth

 if (monthdiff > 4) {
 LogMessage('There are more than 3 versions skipped from version ' +
thismonth + ' to version ' + nextmonthorig + '. Please correct
updateversions so that there are not more than three versions skipped
between each update version. Exiting.')
 return 1
 }

 return 0
}

int ValidateUpdateMonths(int[] updateversionsarr) {
 for(int i = 0; i < updateversionsarr.length; i++)
 {
 int nextint = i + 1
 String nextupdatemonth = ""
 int nextupdatemonthint = 0
 String thisupdatemonth = updateversionsarr[i]
 int thisupdatemonthint = thisupdatemonth.toInteger()

 if (nextint < updateversionsarr.length) {
 nextupdatemonth = updateversionsarr[nextint]
 } else {
 nextupdatemonth = updateversionsarr[0]
 }

 nextupdatemonthint = nextupdatemonth.toInteger()

 int returncode = CompareUpdateMonths(thisupdatemonthint,
nextupdatemonthint)
 if (returncode > 0) {
 return 1
 }
 }
 return 0
}

def SkipUpdateAdd(EpmAutomate automate, String yearnumber, String
monthnumber) {
 String yeardotmonth = yearnumber + '.' + monthnumber
 LogMessage('Running: epmautomate skipUpdate add version=' + yeardotmonth
+ ' comment=\"adding skipUpdate\"')
 EpmAutomateStatus status =
automate.execute('skipupdate','add','version=' +
yeardotmonth,'comment=\"adding skipUpdate\"')
 LogOperationStatus(status)
}

Chapter 3
Sample Scenarios for All Services

3-111

LogMessage('Starting skip update processing')
EpmAutomate automate = getEpmAutomate()

// validate update months
int returncode = ValidateUpdateMonths(updateversionsarr)
if (returncode != 0) {
 return 1
}

// populate arrays
int startposition = 0
for(int i = 0; i < monthsarr.length; i++)
{
 if (currentmonth == monthsarr[i]) {
 if (podtype.equals("prod")) {
 if (updateVersionsStringArr.contains(currentmonth)) {
 startposition = (i-2)
 } else {
 startposition = (i-1)
 }
 } else {
 if (updateVersionsStringArr.contains(currentmonth)) {
 startposition = i
 } else {
 startposition = (i-1)
 }
 }

 break
 }
}

if (startposition < 0) {
 startposition = startposition + 12
}

for(int i = 0; i < monthsarr.length; i++)
{
 if (i >= startposition) {
 monthsarrfromcurrent.add(monthsarr[i])
 yearsarrfromcurrent.add(currentyear)
 }
}

for(int i = 0; i < monthsarr.length; i++)
{
 if (i <= startposition) {
 monthsarrfromcurrent.add(monthsarr[i])
 yearsarrfromcurrent.add(nextyear)
 }
}

// process skip updates
LogMessage("Operation: encrypt " + password + " oracleKey
password.epw")

Chapter 3
Sample Scenarios for All Services

3-112

EpmAutomateStatus status =
automate.execute('encrypt',password,"oracleKey","password.epw")
LogOperationStatus(status)

if ((proxyserverusername != null && proxyserverusername != '') &&
(proxyserverpassword != null && proxyserverpassword != '') &&
(proxyserverdomain != null && proxyserverdomain != '')) {
 LogMessage("Operation: login " + username + " password.epw " + url + "
ProxyServerUserName=" + proxyserverusername + " ProxyServerPassword=" +
proxyserverpassword + " ProxyServerDomain=" + proxyserverdomain)
 status =
automate.execute('login',username,"password.epw",url,"ProxyServerUserName="
+ proxyserverusername,"ProxyServerPassword=" +
proxyserverpassword,"ProxyServerDomain=" + proxyserverdomain)
 LogOperationStatus(status)
} else {
 LogMessage("Operation: login " + username + " password.epw " + url)
 status = automate.execute('login',username,"password.epw",url)
 LogOperationStatus(status)
}
LogMessage('Running: epmautomate skipUpdate remove')
status = automate.execute('skipupdate','remove')
LogOperationStatus(status)

int addcount = 0
int countlimit = 0

if (podtype.equals("prod")) {
 countlimit = 3
} else {
 countlimit = 2
}

for (int i = 0; i < monthsarrfromcurrent.size(); i++) {
 int match = 1

 if (addcount == countlimit){
 LogMessage('Update add calls are completed. No more will be
attempted.')
 break
 }

 for(int j = 0; j < updateversionsarr.length; j++) {

 if ((Integer.parseInt(currentmonth) == updateversionsarr[j]) &&
(addcount > 0)) {
 match = 1
 break
 }

 if ((Integer.parseInt(monthsarrfromcurrent.get(i)) ==
updateversionsarr[j]) && (addcount == 0)) {
 match = 0
 break
 }

Chapter 3
Sample Scenarios for All Services

3-113

 }

 if (match == 1) {
 SkipUpdateAdd(automate, yearsarrfromcurrent.get(i),
monthsarrfromcurrent.get(i))
 addcount+=1
 }
}

LogMessage('Running: epmautomate skipUpdate list')
status = automate.execute('skipupdate','list')
LogOperationStatus(status)
println(status.getItemsList())

LogMessage('Running: epmautomate logout')
status = automate.execute('logout')
LogOperationStatus(status)

LogMessage('Skip update processing completed')

Creating the input.properties File to Run skip_update Windows and Linux/UNIX
Scripts

To run skip_update.ps1 or skip_update.sh, create the input.properties file and
update it with information for your environment. Save the file in a local directory.
Contents of this file differ depending on your operating system.
Windows

username=exampleAdmin
password=examplePassword.epw
url=exampleURL
updateversions=01,04,07,10
podtype=test

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
password=examplePassword.epw
url=exampleURL
updatemonths=02,05,08,11

Table 3-14 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable
(epmautomate.sh). For Linux/UNIX only.

username User name of a Service Administrator.

Chapter 3
Sample Scenarios for All Services

3-114

Table 3-14 (Cont.) input.properties Parameters

Parameter Description

password Password of the Service Administrator or the name and
location of the encrypted password file.

url URL of the environment on which you want to set the
non-monthly update cadence.

updateversions updateversions A comma separated list of EPM Cloud
updates that should be applied to the environment
identified by the url parameter. For example,
updateversions=02,05,08,11.
Versions must be specified as two digits; include a
preceding zero for updates 01 through 09. The script
attempts to run the skipUpdate command for the updates
not included in the updateversions parameter value.
For example, if you specify
updateversions=02,05,08,11, the script tries to set
skip update flags for the 01 (January), 03 (March), 04
(April), 06 (June), 07 (July), 09 (September), 10 (October),
and 12 (December) updates. In this case, EPM Cloud
updates 02 (February), 05 (May), 08 (August), and 11
(November) are applied to the environment.

podtype EPM Cloud environment type. Valid values are test and
prod.

Running the Script

1. For Windows and Linux/UNIX: only

• Create skip_update.ps1 or skip_update.sh by copying the script from a preceding
section.

• Create the input.properties file and save it in the directory where skip_update
script is located. Contents of this file differs depending on your operating system. See
Creating the input.properties File to Run skip_update Windows and Linux/UNIX
Scripts.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
the script.

• Launch the script.

– Windows PowerShell: run skip_update.ps1.

– Linux/UNIX: run ./skip_update.sh.

2. Server-Side Groovy:

• Create the skip_update.groovy Groovy script and update it as required.

• Use the Groovy screen in an EPM Cloud business process or automate the script
execution using runBusinessRule. For information on running Groovy Script using
EPM Automate, see Running Commands without Installing EPM Automate.

Chapter 3
Sample Scenarios for All Services

3-115

Sample Scenarios for Planning, Consolidation, Tax
Reporting, and Enterprise Profitability and Cost
Management

The scripts available in this section helps you automate tasks in Planning (including
Planning Modules), Financial Consolidation and Close, Tax Reporting, and Enterprise
Profitability and Cost Management environments.

Related Topics

• Automate the Export of a Large Number of Cells from an Aggregate Storage Cube
Use the PowerShell or Bash script in this section to export a large number of cells
from an Aggregate Storage (ASO) cube.

• Import Metadata into an Application
Use these scripts to manually import application metadata from a file.

• Import Data, Run a Calculation Script, and Copy Data from a Block Storage
Database to an Aggregate Storage Database
Use these scripts to import data from a file, refresh the cube, run a business rule
to calculate the cube, and then push data to an ASO cube.

• Export and Download Metadata and Data
Use these scrips tp to export application metadata and data, and then to download
the export files to a local directory.

• Export and Download Application Data
Use these scripts to export application data and then to download it to a local
directory.

• Automate the Archiving of Application Audit Records
Use the Windows and Linux scripts in this section to automate the process of
exporting and archiving application audit data to a local computer.

• Upload a Data File to an Environment and Run a Data Load Rule
Use these scripts to upload a file to an environment and then run a data rule to
import data from the file into an application.

• Automate Daily Data Integration
This scenario explores the use of a sample script to automate data integration on
a regular basis.

Automate the Export of a Large Number of Cells from an Aggregate
Storage Cube

Use the PowerShell or Bash script in this section to export a large number of cells from
an Aggregate Storage (ASO) cube.

Because the limits imposed by Oracle Essbase QUERYRESULTLIMIT, it is impossible to
export a large quantity of data from the user interface. The PowerShell script available
in this section splits the export operation into a specified number of jobs, run each job,
downloads the exported data, and concatenates the export files into one export file
ensuring that only one header is present.

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-116

Note:

These scripts execute an existing job of type export data. For detailed instructions
on creating jobs, see "Managing Jobs" in Administering Planning.

PowerShell Script

$user = '<USERNAME>'
$pass = '<PASSWORD>'
$serverURL = '<URL>'
$applicationName = '<APPLICATIONNAME>'
$cubeName = '<CUBENAME>'
$splitDimension = '<DIMENSION_TO_SPLIT_THE_EXPORT>'
$topLevelMemberForExport = '<TOP_MEMBER_FOR_EXPORT>'
$exportJobName = '<EXPORT_JOB_NAME>'
$exportFilePrefix = '<PREFIX_FOR_EXPORT_FILE>'
$columnMembers = '<MEMBERS_ON_COLUMNS>'
$povMembers = '<POV_MEMBERS>'
$numberOfExportFiles = <NUMBER_OF_FILES_TO_SPLIT_THE_EXPORT>

$memberArray = @()
$exportFileArray = @()

function getLevel0 ($parent) {
 $parent.children.ForEach({
 if ($_.children.count -eq 0) {
 $script:memberArray += $_.name
 }
 getLevel0($_)
 })
}

function findMember ($tree, $memberName) {
 $subtree = ""
 if ($tree.name -eq $memberName){
 return $tree
 } else {
 $tree.children.ForEach({
 #Write-Host $_.name
 if ($subtree -eq ""){ $subtree = findMember $_ $memberName}
 })
 return $subtree
 }
}

#putting together base64 encoded authentication header based un user and
password
$encodedCredentials =
[Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes($($user) +
":" + $($pass)))
$headers = @{ Authorization = "Basic $encodedCredentials" }

#test login

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-117

$testRequest = $serverURL + '/HyperionPlanning/rest/v3/applications'

try {
 $response = Invoke-RestMethod -Uri $testRequest -Method Get -
Headers $headers -UseBasicParsing
}
catch {
 Write-Host $_
 return
}

#retrieve dimension hierarchy from application
Write-Host "Retrieving member list for split dimension
" $splitDimension
$request = $serverURL + '/HyperionPlanning/rest/v3/internal/
applications/' + $applicationName + '/plantypes/' + $cubeName + '/
dimensions/' + $splitDimension
try {
 $response = Invoke-RestMethod -Uri $request -Method Get -
Headers $headers -UseBasicParsing
}
catch {
 Write-Host $_
 return
}
Write-Host $splitDimension " member list retrieved"

#search for the top of the export hierarchy
Write-Host "Searching for member " $topLevelMemberForExport " in
hierarchy"
$member = findMember $response $topLevelMemberForExport
if ($member.name -ne $topLevelMemberForExport) {
 Write-Host $topLevelMemberForExport " not found in hierarchy,
exiting ..."
 return 128
}
Write-Host "Found member " $topLevelMemberForExport " in hierarchy"

#retrieve level 0 memebers in export hierarchy
Write-Host "Retrieving Level 0 members for hierarchy"
getLevel0($member)
if ($memberArray.Length -eq 0) {
 Write-Host "no level 0 members found in hierarchy, exiting ..."
 return 128
}
Write-Host $memberArray.Length " Level 0 members for export hierarchy
retrieved"

$request = $serverURL + '/HyperionPlanning/rest/v3/applications/'
+ $applicationName + '/jobs'

#splitting member list into the number of export files
$numberOfEntitiesPerFile =
[math]::truncate($memberArray.Length / $numberOfExportFiles)

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-118

for ($i = 1; $i -le $numberOfExportFiles; $i++) {
 $memberList = ""
 $firstMember = ($i - 1) * $numberOfEntitiesPerFile
 if ($i -lt $numberOfExportFiles) {
 $lastMember = $i * $numberOfEntitiesPerFile
 } else {
 $lastMember = $i * $numberOfEntitiesPerFile + $memberArray.Length
% $numberOfExportFiles
 }
 for ($j = $firstMember; $j -lt $lastMember; $j++) {
 $memberList += $memberArray[$j]
 if ($j -lt $lastMember - 1) {$memberList += ","} #avoid adding a
comma (,) after the last member of each set
 }

 $jobDetails='
 {
 "jobType":"EXPORT_DATA","jobName":"' + $exportJobName + '",
 "parameters":{
 "exportFileName":"Export-' + $i + '.zip",
 "rowMembers":"' + $memberList + '",
 "columnMembers":"' + $columnMembers + '",
 "povMembers":"' + $povMembers + '"
 }
 }'

 #start export job
 try{
 $response = Invoke-RestMethod -Uri $request -Method Post -
Headers $headers -Body $jobDetails -ContentType "application/json"}
 catch {
 Write-Host $_
 return
 }

 Write-Host "Started export job " $i " out of " $numberOfExportFiles

 #checking job status, continue once jos is completed
 $statusRequest = $serverURL + '/HyperionPlanning/rest/v3/applications/'
+ $applicationName + '/jobs/' + $response.jobId
 $statusResponse = Invoke-RestMethod -Uri $statusRequest -Method Get -
Headers $headers -UseBasicParsing

 while ($statusResponse.descriptiveStatus -eq "Processing") {
 Write-Host $statusResponse.descriptiveStatus
 Start-Sleep -s 10
 $statusResponse = Invoke-RestMethod -Uri $statusRequest -Method Get -
Headers $headers -UseBasicParsing
 }
 Write-Host $statusResponse.descriptiveStatus

 Write-Host "Downloading export file ..."
 $downloadRequest = $serverURL + '/interop/rest/11.1.2.3.600/
applicationsnapshots/Export-' + $i + '.zip/contents'
 $statusResponse = Invoke-RestMethod -Uri $downloadRequest -Method Get -

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-119

Headers $headers -OutFile "$exportFilePrefix-$i.zip"

 Write-Host "Expanding archive ..."
 Expand-Archive -Force -LiteralPath "$exportFilePrefix-$i.zip" -
DestinationPath "$exportFilePrefix-$i"
 Remove-Item "$exportFilePrefix-$i.zip"

 Get-ChildItem -Path "$exportFilePrefix-$i" -File -Name | ForEach-
Object { $exportFileArray += "$exportFilePrefix-$i\" + $_ }
}

Write-Host "creating outputfile ..."
#write header to outputfile
Get-Content $exportFileArray[0] | Select-Object -First 1 | Out-File
"$exportFilePrefix.csv"

#write content to outputfile skipping header
ForEach ($exportFile in $exportFileArray) {
 Get-Content $exportFile | Select-Object -Skip 1 | Out-File -Append
"$exportFilePrefix.csv"
}

Compress-Archive -LiteralPath "$exportFilePrefix.csv" -
DestinationPath "$exportFilePrefix.zip"

Write-Host "cleaning up ..."
Remove-Item "$exportFilePrefix-*" -Recurse
Remove-Item "$exportFilePrefix.csv"

Bash Script

#!/bin/bash

user='<USERNAME>'
pass='<PASSWORD>'
serverURL='<URL>'
applicationName='<APPLICATIONNAME>'
cubeName='<CUBENAME>'
splitDimension='<DIMENSION_TO_SPLIT_THE_EXPORT>'
topLevelMemberForExport='<TOP_MEMBER_FOR_EXPORT>'
exportJobName='<EXPORT_JOB_NAME>'
exportFilePrefix='<PREFIX_FOR_EXPORT_FILE>'
columnMembers='<MEMBERS_ON_COLUMNS>'
povMembers='<POV_MEMBERS>'
numberOfExportFiles=<NUMBER_OF_FILES_TO_SPLIT_THE_EXPORT>

getRowMembers() {
 local memberList="$1"
 local firstMember=$2
 local lastMember=$3
 local nameCount=0
 local rowMember=""
 local rowMembers=""

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-120

 while IFS= read -r line
 do
 if [["${line}" == *"name"*]]
 then
 if [[${nameCount} -ge ${firstMember}]] && [[${nameCount} -lt $
{lastMember}]]
 then
 rowMember=$(echo "${line}" | cut -d':' -f2- | sed s'/[",]//g')
 rowMembers="${rowMembers}${rowMember},"
 fi
 ((nameCount+=1))
 fi
 done <<< "${memberList}"
 rowMembers=$(echo "${rowMembers}" | rev | cut -d',' -f2- | rev)
 echo "${rowMembers}"
}

getLevel0()
{
 local memberList="$1"
 local names=$(echo "${memberList}" | jq 'recurse (try .children[])
| .name' | sed -e 's/"//g')
 local elements=""

 formerIFS=$IFS
 IFS=$'\n'
 namesarr=($names)
 IFS=$formerIFS

 for i in ${!namesarr[@]}
 do
 testelement=$(echo "${memberList}" | jq --arg currentName "$
{namesarr[i]}" 'recurse (try .children[]) | select(.name==$currentName)')
 if [["${testelement}" != *"children"*]]
 then
 elements="${elements}${testelement}"
 fi
 done

 echo "${elements}"
}

#test login
header="Content-Type: application/x-www-form-urlencoded"
applicationsRequest="${serverURL}/HyperionPlanning/rest/v3/applications"
response=$(curl -X "GET" -s -w "%{http_code}" -u "${user}:${pass}" -H "$
{header}" "${applicationsRequest}")
http_response_code=$(echo "${response}" | rev | cut -d'}' -f1 | rev)

if [${http_response_code} -ne 200]
then
 echo "${response}"
 exit
fi

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-121

#retrieve dimension hierarchy from application
echo "Retrieving member list for split dimension ${splitDimension}"
splitDimensionRequest="${serverURL}/HyperionPlanning/rest/v3/internal/
applications/${applicationName}/plantypes/${cubeName}/dimensions/$
{splitDimension}"
response=$(curl -X GET -s -w "%{http_code}" -u "${user}:${pass}" -o
"response-memberlist.txt" -D "respHeader-memberlist.txt" -H "$
{header}" "${splitDimensionRequest}")
http_response_code=$(echo "${response}" | rev | cut -d'}' -f1 | rev)

if [${http_response_code} -ne 200]
then
 echo "${response}"
 exit
fi

echo "${splitDimension} member list retrieved"

#search for the top of the export hierarchy
echo "Searching for member ${topLevelMemberForExport} in hierarchy"
memberList=$(cat response-memberlist.txt | jq --arg topLevelMember "$
{topLevelMemberForExport}" 'recurse(try .children[]) | select (.name
== $topLevelMember)')
if [["${memberList}" == ""]]
then
 echo "${topLevelMemberForExport} not found in hierarchy,
exiting ..."
 exit 128
fi

echo "Found member ${topLevelMemberForExport} in hierarchy"

#retrieve level 0 members in export hierarchy
echo "Retrieving Level 0 members for hierarchy"
totalCount=$(echo "${memberList}" | grep "name" | wc -l)
grepChildrenCount=$(echo "${memberList}" | grep "children" | wc -l)
levelZeroCount=$((totalCount-grepChildrenCount))

if [["${levelZeroCount}" -eq 0]]
then
 echo "no level 0 members found in hierarchy, exiting ..."
 exit 128
fi

echo "${levelZeroCount} Level 0 members for export hierarchy retrieved"

#splitting member list into the number of export files
numberOfEntitiesPerFile=$((levelZeroCount/numberOfExportFiles))
jobsRequest="${serverURL}/HyperionPlanning/rest/v3/applications/$
{applicationName}/jobs"
header="Content-Type: application/json"

for ((i = 1 ; i <= ${numberOfExportFiles}; i++))
do
 firstMember=$((($i-1)*numberOfEntitiesPerFile))

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-122

 if [[${i} -lt ${numberOfExportFiles}]]
 then
 lastMember=$((i*numberOfEntitiesPerFile))
 else
 lastMember=$
((i*numberOfEntitiesPerFile+levelZeroCount%numberOfExportFiles))
 fi

 elements=$(getLevel0 "${memberList}")
 rowMembers=$(getRowMembers "${elements}" ${firstMember} ${lastMember})

 response=$(curl -X POST -s -w "%{http_code}" -u "${user}:${pass}" -o
"response-job.txt" -D "respHeader-job.txt" -H "${header}" "${jobsRequest}" -
d '{"jobType":"EXPORT_DATA","jobName":"'"${exportJobName}"'","parameters":
{"exportFileName":"Export-'"${i}"'.zip","rowMembers":"'"$
{rowMembers}"'","columnMembers":"'"${columnMembers}"'","povMembers":"'"$
{povMembers}"'"}}')

 echo "Started export job " $i " out of " $numberOfExportFiles
 jobId=$(cat response-job.txt | grep -o '"jobId":[^, }]*' | cut -d':' -f2)
 descriptiveStatus=$(cat response-job.txt | grep -o '"descriptiveStatus":
[^, }]*' | cut -d':' -f2 | sed -e 's/"//g')
 jobIdRequest="${serverURL}/HyperionPlanning/rest/v3/applications/$
{applicationName}/jobs/${jobId}"
 response=$(curl -X GET -s -w "%{http_code}" -u "${user}:${pass}" -o
"response-jobstatus.txt" -D "respHeader-jobstatus.txt" -H "${header}" "$
{jobIdRequest}")

 jobId=$(cat response-jobstatus.txt | grep -o '"jobId":[^, }]*' | cut -
d':' -f2)
 descriptiveStatus=$(cat response-jobstatus.txt | grep -o
'"descriptiveStatus":[^, }]*' | cut -d':' -f2 | sed -e 's/"//g')

 while [["${descriptiveStatus}" == "Processing"]]
 do
 echo "${descriptiveStatus}"
 sleep 10
 response=$(curl -X GET -s -w "%{http_code}" -u "${user}:${pass}" -o
"response-jobstatus.txt" -D "respHeader-jobstatus.txt" -H "${header}" "$
{jobIdRequest}")
 descriptiveStatus=$(cat response-jobstatus.txt | grep -o
'"descriptiveStatus":[^, }]*' | cut -d':' -f2 | sed -e 's/"//g')
 done

 echo "${descriptiveStatus}"

 echo "Downloading export file ..."
 contentsRequest="${serverURL}/interop/rest/11.1.2.3.600/
applicationsnapshots/Export-${i}.zip/contents"
 curl -X GET -s -w "%{http_code}" -u "${user}:${pass}" -D "respHeader-
download.txt" "${contentsRequest}" > "${exportFilePrefix}-${i}.zip"

 echo "Expanding archive ..."
 unzip "${exportFilePrefix}-${i}.zip" -d "${exportFilePrefix}-${i}"
 rm "${exportFilePrefix}-${i}.zip"

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-123

 echo "Writing to outputfile ..."
 if [[-d "${exportFilePrefix}-${i}"]]
 then
 find "${exportFilePrefix}-${i}" -name *.csv | xargs cat |
tail -n +2 >> "${exportFilePrefix}.csv"
 fi
done
zip "${exportFilePrefix}.zip" "${exportFilePrefix}.csv"

echo "cleaning up ..."
find . -name "${exportFilePrefix}-*" | xargs rm -r
rm "${exportFilePrefix}.csv"

To export a large number of cells from an Aggregate Storage (ASO) cube:

1. Copy the PowerShell or Bash script and save it to your file system, for example, as
ASOCellExport.ps1 or ASOCellExport.sh.

2. Modify the script file and set parameter values. See the following table for details.

Table 3-15 Variable Values to Include in the PowerShell and Bash Scripts

Variable Description

user Domain and user name of a Service Administrator in
DOMAIN.USER format.
Examples:
Windows: $user = 'exampleDomain.jDoe'
Linux/UNIX: user = 'exampleDomain.jDoe'

pass Password of the Service Administrator or the location
of the encrypted password file. See the encrypt
command for information on creating an encrypted
password file.
Examples:
Windows: $pass = 'Example'
Linux/UNIX: pass = 'Example'

serverURL The URL of the Oracle Enterprise Performance
Management Cloud environment.
Examples:
Windows: $serverURL = 'https://
example .oraclecloud.com'
Linux/UNIX: serverURL = 'https://
example .oraclecloud.com'

applicationName Name of a Planning, Financial Consolidation and
Close, Tax Reporting or Enterprise Profitability and
Cost Management application.
Examples:
Windows: $applicationName = 'Vision'
Linux/UNIX: applicationName = 'Vision'

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-124

Table 3-15 (Cont.) Variable Values to Include in the PowerShell and Bash
Scripts

Variable Description

cubeName Name of a Cube in the application.
Examples:
Windows: $cubeName = 'VisASO'
Linux/UNIX: cubeName = 'VisASO'

splitDimension Name of a dimension the members of which are used
to split the export into groups.
Examples:
Windows: $splitDimension = 'Account'
Linux/UNIX: splitDimension = 'Account'

topLevelMemberForExport Name of a member of the dimension sub-hierarchy
under which a list of Level 0 members is created.
Examples:
Windows: $topLevelMemberForExport = 'Total
Cash Flow'
Linux/UNIX: topLevelMemberForExport = 'Total
Cash Flow'

exportJobName Name of an existing job of type Export Data. The
settings specified in this job will be overwritten by the
parameters that you set in the script.
Examples:
Windows: $exportJobName = 'ASO Cell Export'
Linux/UNIX: exportJobName = 'ASO Cell Export'

exportFilePrefix A file name prefix to uniquely identify the files
generated by the export job.
Examples:
Windows: $exportFilePrefix = 'cashflow'
Linux/UNIX: exportFilePrefix = 'cashflow'

columnMembers The member columns to include in the export.
Examples:
Windows: $columnMembers = 'Period'
Linux/UNIX: columnMembers = 'Period'

povMembers Point of Views to include in the export. POV Members
must include all other dimensions and can include
functions as shown below:
ILvl0Descendants(YearTotal),
ILvl0Descendants(Year),
ILvl0Descendants(Scenario),
ILvl0Descendants(Version),
ILvl0Descendants(P_TP),
ILvl0Descendants(AltYear)
Examples:
Windows: $povMembers = 'YTD'
Linux/UNIX: povMembers = 'YTD'

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-125

Table 3-15 (Cont.) Variable Values to Include in the PowerShell and Bash
Scripts

Variable Description

numberOfExportFiles Number of jobs to execute for this export operation. If
export still fails due to query limit limitations,
increase this number.
Examples:
Windows: $numberOfExportFiles = 3
Linux/UNIX: numberOfExportFiles = 3

3. Using Windows Scheduler or a cron job, schedule the script to execute at a
convenient time. See Automating Script Execution for detailed steps.

Import Metadata into an Application
Use these scripts to manually import application metadata from a file.

These scripts perform the following activities:

• Signs in to an environment.

• Uploads a metadata file.

• Imports metadata from the uploaded file into the application using a job.

• Refreshes the cube.

• Signs out.

Windows Sample Script

Create importMetadata.ps1 by copying the following Script. Store it in a local
directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./
input.properties -raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$file1="$($inputproperties.file1)"
$jobName="$($inputproperties.jobName)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate uploadfile ${file1}
epmautomate importmetadata ${jobName} ${file1}
epmautomate refreshcube
epmautomate logout

Linux/UNIX Sample Script

Create importMetadata.sh by copying the following Script. Store it in a local directory.

#!/bin/bash
. ./input.properties
export JAVA_HOME=${javahome}

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-126

${epmautomatescript} login "${username}" "${passwordfile}" "${serviceURL}"
${epmautomatescript} uploadfile "${file1}"
${epmautomatescript} importmetadata "${jobName}" "${file1}"
${epmautomatescript} refreshcube
${epmautomatescript} logout

Creating the input.properties File

Create the input.properties file by copying one of the following and updating it with
information for your environment. Save the file in the directory where importMetadata.ps1 or
importMetadata.sh is stored.

Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
File1=FILE_NAME.zip
jobName=JOB_NAME

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
File1=FILE_NAME.zip
jobName=JOB_NAME

Table 3-16 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable (epmautomate.sh).
For Linux/UNIX only.

username User name of a Service Administrator, who also has the Identity
Domain Administrator role.

password Password of the Service Administrator or the name and location
of the encrypted password file.

serviceURL URL of the environment from which you want to generate the
snapshot.

File1 Name of the ZIP file containing the metadata to import.

JobName Job to use for importing the metadata.

Running the Scripts

1. Create importMetadata.ps1 or importMetadata.sh by copying the script from a
preceding section.

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-127

2. Create the input.properties file and save it in the directory where the
importMetadata script is located. Contents of this file differs depending on your
operating system. See Creating the input.properties File.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
the script.

3. Launch the script.

• Windows PowerShell: run importMetadata.ps1.

• Linux/UNIX: run ./importMetadata.sh.

Import Data, Run a Calculation Script, and Copy Data from a Block
Storage Database to an Aggregate Storage Database

Use these scripts to import data from a file, refresh the cube, run a business rule to
calculate the cube, and then push data to an ASO cube.

These scripts perform the following actions:

• Signs in to an environment.

• Uploads a file data.csv.

• Imports data from data.csv into the application using job loadingq1data.

• Refreshes the cube.

• Runs business rules to transform data.

• Pushes data to an aggregate storage database using a job.

• Signs out.

Windows Sample Script

Create importDataPlus.ps1 by copying this script. Save it to a local directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./
input.properties -raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$importDataJobName="$($inputproperties.importDataJobName)"
$businessRuleName="$($inputproperties.businessRuleName)"
$planTypeMapName="$($inputproperties.planTypeMapName)"
$param1Key="$($inputproperties.param1Key)"
$param1Value="$($inputproperties.param1Value)"
$param2Key="$($inputproperties.param2Key)"
$param2Value="$($inputproperties.param2Value)"
$clearData="$($inputproperties.clearData)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate uploadfile ${file1}
epmautomate importdata ${importDataJobName} ${file1}
epmautomate refreshcube
epmautomate runbusinessrule ${businessRuleName} ${param1Key}=$
{param1Value} ${param2Key}=${param2Value}

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-128

epmautomate runplantypemap ${planTypeMapName} clearData=${clearData}
epmautomate logout

Linux/UNIX Sample Script

Create importDataPlus.ps1 by copying this script. Save it to a local directory.

#!/bin/bash
. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "${serviceURL}"
${epmautomatescript} uploadfile "${file1}"
${epmautomatescript} importdata "${importDataJobName}" "${file1}"
${epmautomatescript} refreshcube
${epmautomatescript} runbusinessrule "${businessRuleName}" "${param1Key}=$
{param1Value}" "${param2Key}=${param2Value}"
${epmautomatescript} runplantypemap "${planTypeMapName}" clearData=$
{clearData}
${epmautomatescript} logout

Creating the input.properties File

Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
File1=FILE_NAME.csv
importDataJobName=FILE_NAME
businessRuleName=RULE_NAME
planTypeMapName=PLAN_TYPE_MAP_NAME
param1Key=RUN-TIME PARAMETER_1
param1Value=RUN-TIME PARAMETER_1_VALUE
param2Key=RUN-TIME PARAMETER_2
param2Value=RUN-TIME PARAMETER_2_VALUE
clearData=true

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
File1=FILE_NAME.csv
importDataJobName=FILE_NAME
businessRuleName=RULE_NAME
planTypeMapName=PLAN_TYPE_MAP_NAME
param1Key=RUN-TIME PARAMETER_1
param1Value=RUN-TIME PARAMETER_1_VALUE
param2Key=RUN-TIME PARAMETER_2
param2Value=RUN-TIME PARAMETER_2_VALUE
clearData=true

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-129

Table 3-17 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable
(epmautomate.sh). For Linux/UNIX only.

username User name of a Service Administrator, who also has the
Identity Domain Administrator role.

password Password of the Service Administrator or the name and
location of the encrypted password file.

serviceURL URL of the environment from which you want to generate the
snapshot.

File1 Import file from which the data is to be loaded into the
application.

iimportDataJobName Name of the job to use for importing data.

businessRuleName The business rule to run on the imported data

planTypeMapName The plan type map to use for copying data from a BSO
database to an ASO database or from a BSO database to
another BSO database.

param1Key Run-time prompt 1 to run the business rule.

param1Value Value of run-time prompt 1.

param2Key Run-time prompt 2 to run the business rule.

param2Value Value of run-time prompt 2.

clearData Indicates whether the data in the receiving database is to be
deleted. Specify false to retain the data.

Running the Scripts

1. Create importDataPlus.ps1 or importDataPlus.sh by copying the script from a
preceding section.

2. Create the input.properties file and save it in the directory where the
importDataPlus script is located. Contents of this file differs depending on your
operating system. See Creating the input.properties File.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
the script.

3. Launch the script.

• Windows PowerShell: run importDataPlus.ps1.

• Linux/UNIX: run ./importDataPlus.sh.

Export and Download Metadata and Data
Use these scrips tp to export application metadata and data, and then to download the
export files to a local directory.

These scripts complete the following activities:

• Signs in to an environment.

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-130

• Exports the metadata into a zip file using a specified job.

• Exports the application data into a zip file using a specified job.

• Lists the contents of the Inbox/Outbox.

• Downloads the exported data files to the local computer.

• Sign out.

Windows Sample Script

Create exportDownloadMetadataAndData.ps1 by copying the following Script. Store it in a
local directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./input.properties -
raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$exportFile1="$($inputproperties.exportFile1)"
$exportFile2="$($inputproperties.exportFile2)"
$exportMetaDataJobName="$($inputproperties.exportMetaDataJobName)"
$exportDataJobName="$($inputproperties.exportDataJobName)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate exportmetadata ${exportMetaDataJobName} ${exportFile1}
epmautomate exportdata ${exportDataJobName} ${exportFile2}
epmautomate listfiles
epmautomate downloadfile ${exportFile1}
epmautomate downloadfile f${exportFile2}
epmautomate logout

Linux/UNIX Sample Script

Create exportDownloadMetadataAndData.sh by copying the following Script. Store it in a
local directory.

#!/bin/bash
. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "${serviceURL}"
${epmautomatescript} exportmetadata "${exportMetaDataJobName}" "$
{exportFile1}"
${epmautomatescript} exportdata "${exportDataJobName}" "${exportFile2}"
${epmautomatescript} listfiles
${epmautomatescript} downloadfile "${exportFile1}"
${epmautomatescript} downloadfile "${exportFile2}"
${epmautomatescript} logout

Creating the Properties File

Create the input.properties file by copying one of the following and updating it with
information for your environment. Save the file in the directory where
exportDownloadMetadataAndData.ps1 or exportDownloadMetadataAndData.sh is stored.

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-131

Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
exportFile1=FILE_NAME1.zip
exportFile2=FILE_NAME2.zip
exportMetaDataJobName=METADATA_EXPORT_JOB_NAME
exportDataJobName=DATA_EXPORT_JOB_NAME

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
exportFile1=FILE_NAME1.zip
exportFile2=FILE_NAME2.zip
exportMetaDataJobName=METADATA_EXPORT_JOB_NAME
exportDataJobName=DATA_EXPORT_JOB_NAME

Table 3-18 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable
(epmautomate.sh). For Linux/UNIX only.

username User name of a Service Administrator, who also has the
Identity Domain Administrator role.

password Password of the Service Administrator or the name and
location of the encrypted password file.

serviceURL URL of the environment from which you want to generate the
snapshot.

exportFile1 Name of the file to which metadata is to be exported.

exportFile2 Name of the file to which adata is to be exported.

exportDataJobName1 Job to use for exporting the metadata.

exportDataJobName2 Job to use for exporting the data.

Running the Scripts

1. Create exportDownloadMetadataAndData.ps1 or
exportDownloadMetadataAndData.sh by copying the script from a preceding
section.

2. Create the input.properties file and save it in the directory where the
exportDownloadMetadataAndData script is located. Contents of this file differs
depending on your operating system. See Creating the Properties File.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
the script.

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-132

3. Launch the script.

• Windows PowerShell: run exportDownloadMetadataAndData.ps1.

• Linux/UNIX: run ./exportDownloadMetadataAndData.sh.

Export and Download Application Data
Use these scripts to export application data and then to download it to a local directory.

These scripts perform the following operations:

• Signs in to an environment.

• Backs up two sets of data using the jobs that you specify.

• Downloads the exported data files.

• Signs out.

Windows Sample Script

Create exportDownloadData.ps1 by copying this script. Save it to a local directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./input.properties -
raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$exportFile1="$($inputproperties.exportFile1)"
$exportFile2="$($inputproperties.exportFile2)"
$exportDataJobName1="$($inputproperties.exportDataJobName1)"
$exportDataJobName2="$($inputproperties.exportDataJobName2)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate exportdata ${exportDataJobName1} ${exportFile1}
epmautomate exportdata ${exportDataJobName2} ${exportFile2}
epmautomate listfiles
epmautomate downloadfile ${exportFile1}
epmautomate downloadfile ${exportFile2}
epmautomate logout

Linux/UNIX Sample Script

Create exportDownloadData.sh by copying this script. Save it to a local directory.

#!/bin/bash
. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "${serviceURL}"
${epmautomatescript} exportdata "${exportDataJobName1}" "${exportFile1}"
${epmautomatescript} exportdata "${exportDataJobName2}" "${exportFile2}"
${epmautomatescript} listfiles
${epmautomatescript} downloadfile "${exportFile1}"
${epmautomatescript} downloadfile "${exportFile2}"
${epmautomatescript} logout

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-133

Creating the input.properties File

Create the input.properties file by copying one of the following and updating it with
information for your environment. Save the file in the directory where
exportDownloadData.ps1 or exportDownloadData.sh is stored.

Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
exportFile1=FILE_NAME.zip
exportFile2=FILE_NAME.zip
exportDataJobName1=JOB_NAME
exportDataJobName2=FILE_NAME

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
exportFile1=FILE_NAME.zip
exportFile2=FILE_NAME.zip
exportDataJobName1=FILE_NAME
exportDataJobName2=FILE_NAME

Table 3-19 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable
(epmautomate.sh). For Linux/UNIX only.

username User name of a Service Administrator, who also has the
Identity Domain Administrator role.

password Password of the Service Administrator or the name and
location of the encrypted password file.

serviceURL URL of the environment from which you want to generate the
snapshot.

exportFile1 and
exportFile2

Name of the file to which data is to be exported.

exportDataJobName1 and
exportDataJobName2

Job to use for exporting the data.

Running the Scripts

1. Create exportDownloadData.ps1 or exportDownloadData.sh by copying the script
from a preceding section.

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-134

2. Create the input.properties file and save it in the directory where the
exportDownloadData script is located. Contents of this file differs depending on your
operating system. See Table 1.
Make sure that you have write privileges in this directory. For Windows, you may need to
start PowerShell using the Run as Administrator option to be able to run the script.

3. Launch the script.

• Windows PowerShell: run exportDownloadData.ps1.

• Linux/UNIX: run ./exportDownloadData.sh.

Automate the Archiving of Application Audit Records
Use the Windows and Linux scripts in this section to automate the process of exporting and
archiving application audit data to a local computer.

Application audit data is retained for 365 days only. Customize these scripts and execute
them once every 180 days, or as required by your data retention policies, to prevent the loss
of historical audit data older than 365 days.

Note:

These scripts are tailored to archive data in local storage. You can modify them to
archive the exported audit data files on network storage or in storage cloud (for
example, Oracle Object Storage).

Table 3-20 Parameters and Their Values

Parameter Value

url The URL of the environment.
Examples:
• Windows: set url=https://example-

epmidm.epm.usphoenix-1.ocs.oraclecloud.com/epmcloud
• Linux: url=https://example-

epmidm.epm.usphoenix-1.ocs.oraclecloud.com/epmcloud
user The user name of a Service Administrator to sign into the

environment to download audit data.
Examples:
• Windows: set user=ExampleAdmin
• Linux: user=ExampleAdmin

password Password of the Service Administrator (not recommended) or the
name and location of the encrypted password file. See the encrypt
command for information on creating an encrypted password
file.
Examples:
• Windows: set password="C:\mySecuredir\password.epw"
• Linux: password="/home/user1/mySecuredir/

password.epw"

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-135

Table 3-20 (Cont.) Parameters and Their Values

Parameter Value

AuditFileName Name of the audit data file. To make this file unique, the script
appends the audit data export timestamp to this file name.
Example:
• Windows: set AuditFileName=AuditData
• Linux: AuditFileName=AuditData

NumberOfBackups Number of backup files to be retained in the storage. Default is 10,
after which the oldest backup is replaced as needed.
Example:
• Windows: set NumberOfBackups=20
• Linux: NumberOfBackups=20

For Linux script only
epmautomatescript The location where EPM Automate is installed.

Example: /home/user1/epmautomate/bin/epmautomate.sh
javahome The JAVA_HOME location.

Example: /home/user1/jdk1.8.0_191/

Windows Script
Create a batch file; for example, AuditExport.bat, containing script similar to the
following to automate the exporting and downloading of audit data to a local computer.

@echo off
rem Sample script to download and maintain 10 audit data backups
rem Update the following parameters

SET url=https://example.oraclecloud.com
SET user=ServiceAdmin
SET password=Example.epw
SET AuditFileName="AuditBackup"
SET NumberOfBackups=10

rem EPM Automate commands
call epmautomate login %user% %password% %url%
 IF %ERRORLEVEL% NEQ 0 goto :ERROR
 call epmautomate exportAppAudit %AuditFileName% nDays=180
 IF %ERRORLEVEL% NEQ 0 goto :ERROR
 call epmautomate downloadfile %AuditFileName%.zip
 IF %ERRORLEVEL% NEQ 0 goto :ERROR
 call epmautomate logout
 IF %ERRORLEVEL% NEQ 0 goto :ERROR

rem Rename downloaded audit data backup, keep the last 10 backups
Set Timestamp=%date:~4,2%_%date:~7,2%_%date:~10,2%%
Set Second=%time:~0,2%%time:~3,2%
ren %AuditFileName%.zip %AuditFileName%_%Timestamp%_%Second%.zip
SET Count=0
FOR %%A IN (%AuditFileName%*.*) DO SET /A Count += 1

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-136

IF %Count% gtr %NumberOfBackups% FOR %%A IN (%AuditFileName%*.*) DO del "%
%A" && GOTO EOF
:EOF

echo Scheduled Task Completed successfully
exit /b %errorlevel%
:ERROR
echo Failed with error #%errorlevel%.
exit /b %errorlevel%

Linux Script
Create a shell script; for example, AuditExport.sh, containing script similar to the following
to automate the exporting and downloading of audit data to a local computer.

#!/bin/sh
Sample script to export, download and maintain 10 audit data backups
Update the following seven parameters
url=https://example.oraclecloud.com
user=serviceAdmin
password=/home/user1/epmautomate/bin/example.epw
auditfilename="AuditBackup"
numberofbackups=10
epmautomatescript=/home/user1/epmautomate/bin/epmautomate.sh
javahome=/home/user1/jdk1.8.0_191/

export JAVA_HOME=${javahome}

printResult()
 {
 op="$1"
 opoutput="$2"
 returncode="$3"

 if ["${returncode}" -ne 0]
 then
 echo "Command failed. Error code: ${returncode}. ${opoutput}"
 else
 echo "${opoutput}"
 fi
}

processCommand()
{
 op="$1"
 date=`date`

 echo "Running ${epmautomatescript} ${op}"
 operationoutput=`eval "$epmautomatescript $op"`
 printResult "$op" "$operationoutput" "$?"
}
op="login ${user} ${password} ${url}"
processCommand "${op}"
op="exportAppAudit \"${auditfilename}\" -nDays=180"

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-137

processCommand "${op}"
op="downloadfile \"${auditfilename}.zip\""
processCommand "${op}"
op="logout"
processCommand "${op}"
Rename the downloaded audit data backup, keep the last 10 backups
timestamp=`date +%m_%d_%Y_%I%M`
mv "${auditfilename}.zip" "${auditfilename}_${timestamp}.zip"

((numberofbackups+=1))
ls -tp ${auditfilename}*.zip | grep -v '/$' | tail -n +$
{numberofbackups} | xargs -d '\n' -r rm --

Upload a Data File to an Environment and Run a Data Load Rule
Use these scripts to upload a file to an environment and then run a data rule to import
data from the file into an application.

Prerequisites

• The following definitions in Data Management:

– A data load rule definition named VisionActual. It is assumed that the data
rule does not specify a file path for the input file.

– Period definitions Mar-15 through Jun-15
• A properly formatted data file (GLActual.dat) that contains data.

To import data and run data load rule, you run commands that complete these steps:

• Sign in to the environment.

• Upload a file GLActual.dat that contains data for periods Mar-15 through Jun-15
into Data Management folder inbox/Vision.

• Import data from GLActual.dat into Data Management using data load rule
VisionActual, start period Mar-15, end period Jun-15, and import mode REPLACE.

• Export data with the STORE_DATA option to merge the data in the Data
Management staging table with existing application data.

• Sign out.

Windows Sample Script

Create runDataLoadRule.ps1 by copying the following Script. Store it in a local
directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./
input.properties -raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$dataFile="$($inputproperties.dataFile)"
$dataRuleName="$($inputproperties.dataRuleName)"
$startPeriod="$($inputproperties.startPeriod)"
$endPeriod="$($inputproperties.endPeriod)"

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-138

$importMode="$($inputproperties.importMode)"
$exportMode="$($inputproperties.exportMode)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate uploadfile ${datafile} ${dataFileUploadLocation}
epmautomate rundatarule ${dataRuleName} ${startPeriod} ${endPeriod} $
{importMode} ${exportMode} ${dataFileUploadLocation}/${dataFile}
epmautomate logout

Linux/UNIX Sample Script

Create runDataLoadRule.sh by copying the following Script. Store it in a local directory.

#!/bin/bash
. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "${serviceURL}"
${epmautomatescript} uploadfile "${datafile}" "${dataFileUploadLocation}"
${epmautomatescript} rundatarule "${dataRuleName}" "${startPeriod}" "$
{endPeriod}" "${importMode}" "${exportMode}" "${dataFileUploadLocation}/$
{dataFile}"
${epmautomatescript} logout

Creating the input.properties File

Create the input.properties file by copying one of the following and updating it with
information for your environment. Save the file in the directory where runDataLoadRule.ps1
or runDataLoadRule.sh is stored.

Windows

username=serviceAdmin
passwordfile=./password.epw
serviceURL=https://example.oraclecloud.com
dataFile=GLActual.dat
dataFileUploadLocation=UPLOAD_LOCATION
dataRuleName=RULE_NAME
startPeriod=START_PERIOD
endPeriod=END_PERIOD
importMode=IMPORT_MODE
exportMode=EXPORT_MODE

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURLdataFile=GLActual.dat
dataFileUploadLocation=UPLOAD_LOCATION
dataRuleName=RULE_NAME
startPeriod=START_PERIOD
endPeriod=END_PERIOD

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-139

importMode=IMPORT_MODE
exportMode=EXPORT_MODE

Table 3-21 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable (epmautomate.sh).
For Linux/UNIX only.

username User name of a Service Administrator, who also has the Identity
Domain Administrator role.

password Password of the Service Administrator or the name and location
of the encrypted password file.

serviceURL URL of the environment from which you want to generate the
snapshot.

dataFile The file that contains the data to be imported using the data rule.

dataFileUploadLocatio
n

Location to which the data file is to be uploaded.

dataRuleName Name of a data load rule defined in Data Integration.

startPeriod The first period for which data is to be loaded. This period name
must be defined inData Integration period mapping.

endPeriod For multi-period data load, the last period for which data is to be
loaded. For single period load, use the same period as start
period. This period name must be defined in Data Integration
period mapping.

importMode Mode for importing data into Data Integration. Use APPEND,
REPLACE or RECALCULATE. Use NONE to skip data import into
staging tables.

exportMode Mode for exporting data to the application. Use Data Integration.
Use STORE_DATA, ADD_DATA, SUBTRACT_DATA or
REPLACE_DATA. Use NONE to skip data export from Data
Integration to the application.

Note:

Financial Consolidation and Close
supports only MERGE and NONE
modes.

Running the Script

1. Create runDataLoadRule.ps1 or runDataLoadRule.sh by copying the script from a
preceding section.

2. Create the input.properties file and save it in the directory where the
runDataLoadRule script is located. Contents of this file differs depending on your
operating system. See Creating the input.properties File.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
the script.

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-140

3. Launch the script.

• Windows PowerShell: run runDataLoadRule.ps1.

• Linux/UNIX: run ./runDataLoadRule.sh.

Automate Daily Data Integration
This scenario explores the use of a sample script to automate data integration on a regular
basis.

Create a batch (.bat) or shell (.sh) file that contains script similar to the following to
automate data integration-related activities. The following sample script for Windows
automates daily application data integration by completing these activities:

• Sign into an environment.

• Delete DailyPlanData if it is present.

• Upload DailyPlanData into the service.

• Run business rule Clear Plan Targets on plan type Plan1.

• Import data using job name LoadDailyPlan.

• Run business rule Balance Sheet - Plan.

• Run business rule Allocate Plan Targets.

• Delete DailyTarget.zip if it is present.

• Export data into DailyTarget.zip using job name ExportDailyTarget.

• Download DailyTarget.zip to your server and appends the timestamp.

• Sign out of the environment.

Note:

If you repurpose this script for your use, ensure that you modify the values of SET
url and SET user parameters. Additionally, you may modify the values of
dataimportfilename, dataexportfilename, importdatajobname,
exportdatajobname, br_clear, br_calculatebalancesheet, and
br_allocatetarget parameters to suit your requirements

See Automating Script Execution for information on scheduling the script using Windows
Task Scheduler.

@echo off

rem Sample Script to demonstrate daily data integration with
rem EPM Cloud application.
rem This script uploads Plan data, clears target numbers,
rem runs a business rule to calculate balance sheet data, and
rem recalculates target numbers on the Vision demo application

rem Please update these parameters

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-141

SET url=https://example.oraclecloud.com
SET user=serviceAdmin
SET dataimportfilename=DailyPlanData.csv
SET dataexportfilename=DailyTarget
SET importdatajobname=LoadDailyPlan
SET exportdatajobname=ExportDailyTarget
SET br_clear=Clear Plan Targets
SET br_calculatebalancesheet=Balance Sheet - Plan
SET br_allocatetarget=Allocate Plan Targets

SET password=%1

rem Executing EPM Automate commands

CD /D %~dp0
call epmautomate login %user% %password% %url%
IF %ERRORLEVEL% NEQ 0 goto :ERROR

for /f %%i in ('call epmautomate listfiles') do if %
%i==%dataimportfilename% (call epmautomate deletefile %%i)
IF %ERRORLEVEL% NEQ 0 goto :ERROR

call epmautomate uploadfile %dataimportfilename%
IF %ERRORLEVEL% NEQ 0 goto :ERROR

call epmautomate runbusinessrule "%br_clear%"
IF %ERRORLEVEL% NEQ 0 goto :ERROR

call epmautomate importdata "%importdatajobname%"
IF %ERRORLEVEL% NEQ 0 goto :ERROR

call epmautomate runbusinessrule "%br_calculatebalancesheet%"
IF %ERRORLEVEL% NEQ 0 goto :ERROR

call epmautomate runbusinessrule "%br_allocatetarget%"
"TargetVersion=Baseline"
IF %ERRORLEVEL% NEQ 0 goto :ERROR

for /f %%i in ('call epmautomate listfiles') do if %
%i=="%dataexportfilename%.zip" (call epmautomate deletefile %%i)
IF %ERRORLEVEL% NEQ 0 goto :ERROR

call epmautomate exportdata %exportdatajobname%
"%dataexportfilename%.zip"
IF %ERRORLEVEL% NEQ 0 goto :ERROR

call epmautomate downloadfile "%dataexportfilename%.zip"
IF %ERRORLEVEL% NEQ 0 goto :ERROR

rem Section to rename the file

Set Timestamp=%date:~4,2%_%date:~7,2%_%date:~10,4%_%time:~1,1%
%time:~3,2%%
ren "%dataexportfilename%.zip" "%dataexportfilename%_%Timestamp%.zip"

Chapter 3
Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management

3-142

call epmautomate logout
IF %ERRORLEVEL% NEQ 0 goto :ERROR

:EOF
echo Scheduled Task Completed successfully
exit /b %errorlevel%

:ERROR
echo Failed with error #%errorlevel%.
exit /b %errorlevel%

Sample Scenarios for Account Reconciliation
Related Topics

• Load Preformatted Balances into a Period
Use these scripts to import mapped data from an uploaded file into an Account
Reconciliation environment.

• Upload and Import a Backup Snapshot
Use these scripts to upload and import a backup snapshot into an Account Reconciliation
environment.

• Archive Old Matched Transactions and Purge Archived Transactions
Use the scripts in this section to archive matched transactions, including support and
adjustment details, that are equal to or older than a specified age and then purge the
archived transactions from Account Reconciliation. The archived matched transactions
are recorded in a ZIP file.

Load Preformatted Balances into a Period
Use these scripts to import mapped data from an uploaded file into an Account Reconciliation
environment.

Windows Sample Script

Create a file named runPreformattedBalances.ps1 by copying the following script. Store it in
a local directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./input.properties -
raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$dataFile="$($inputproperties.dataFile)"
$period="$($inputproperties.period)"
$balanceType="$($inputproperties.balanceType)"
$currencyBucket="$($inputproperties.currencyBucket)"

$elements=$dataFile.split('/')
$dataFileName=$elements[-1]

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate uploadfile ${dataFile}
epmautomate importpremappedbalances ${period} ${dataFileName} $

Chapter 3
Sample Scenarios for Account Reconciliation

3-143

{balanceType} ${currencyBucket}
epmautomate deletefile ${dataFileName}
epmautomate logout

Linux/UNIX Sample Script

Create a file named runPreformattedBalances.sh by copying the following script.
Store it in a local directory.

#!/bin/bash

. ./input.properties

export JAVA_HOME=${javahome}

dataFileName=$(echo "${dataFile}" | rev | cut -d'/' -f1 | rev)

${epmautomatescript} login "${username}" "${passwordfile}" "$
{serviceURL}"
${epmautomatescript} uploadfile "${dataFile}"
${epmautomatescript} importpremappedbalances "${period}" "$
{dataFileName}" "${balanceType}" "${currencyBucket}"
${epmautomatescript} deletefile "${dataFileName}"
${epmautomatescript} logout

Sample input.properties File

To run the runPreformattedBalances scripts, create the input.properties file and
update it with information for your environment. Save the file in the directory where
runPreformattedBalances.sh or runPreformattedBalances.ps1 is stored.
Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
dataFile=DATA_FILE_NAME.csv
period=PERIOD_NAME
balanceType=BALANCE_TYPE
currencyBucket=CURRENCY_BUCKET

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
dataFile=DATA_FILE_NAME.csv
period=PERIOD_NAME
balanceType=BALANCE_TYPE
currencyBucket=CURRENCY_BUCKET

Chapter 3
Sample Scenarios for Account Reconciliation

3-144

Table 3-22 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable (epmautomate.sh).
For Linux/UNIX only.

username User name of a Service Administrator.

password Password of the Service Administrator or the name and location
of the encrypted password file.

serviceURL URL of the environment that hosts the application into which you
want to load preformatted balances.

dataFile A CSV file that contains the preformatted balances (typically
created from a General Ledger) that you want to load into the
application. This file must already have been uploaded to the
environment using the uploadFile command.

period The reconciliation period to which the preformatted balances are
to be uploaded.

balanceType The type of preformatted balances contained in the dataFile.

currencyBucket The currency bucket for the preformatted balances.

Running the Script

1. Create runPreformattedBalances.ps1 or runPreformattedBalances.sh by copying the
script from a preceding section.

2. For Windows and Linux/UNIX: only

• Create the input.properties file and save it in the directory where the
runPreformattedBalances script is located. Contents of this file differs depending on
your operating system. See Table 1.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
the script.

• Launch the script.

– Windows PowerShell: run runPreformattedBalances.ps1.

– Linux/UNIX: run ./runPreformattedBalances.sh.

Upload and Import a Backup Snapshot
Use these scripts to upload and import a backup snapshot into an Account Reconciliation
environment.

Windows Sample Script

Create a file named importBackupSnapshot.ps1 by copying the following script. Store it in a
local directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./input.properties -
raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"

Chapter 3
Sample Scenarios for Account Reconciliation

3-145

$serviceURL="$($inputproperties.serviceURL)"
$snapshotName="$($inputproperties.snapshotName)"
$userPassword="$($inputproperties.userPassword)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate uploadfile ${snapshotName}.zip
epmautomate importsnapshot ${snapshotName} "userPassword=$
{userPassword}"
epmautomate deletefile ${snapshotName}.zip
epmautomate logout

Linux/UNIX Sample Script

Create a file named importBackupSnapshot.sh by copying the following script. Store it
in a local directory

#!/bin/bash

. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "$
{serviceURL}"
${epmautomatescript} uploadfile "${snapshotName}.zip"
${epmautomatescript} importsnapshot "${snapshotName}" "userPassword=$
{userPassword}"
${epmautomatescript} deletefile "${snapshotName}.zip"
${epmautomatescript} logout

Sample input.properties File

To run the importBackupSnapshot scripts, create the input.properties file and
update it with information for your environment. Save the file in the directory where
importBackupSnapshot.sh or importBackupSnapshot.ps1 is stored.
Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
snapshotName=SNAPSHOT_NAME
userPassword=IDM_NEW_USER_PWD

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
snapshotName=SNAPSHOT_NAME
userPassword=IDM_NEW_USER_PWD

Chapter 3
Sample Scenarios for Account Reconciliation

3-146

Table 3-23 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable (epmautomate.sh).
For Linux/UNIX only.

username User name of a Service Administrator.

password Password of the Service Administrator or the name and location
of the encrypted password file.

serviceURL URL of the environment where you want to import the snapshot.

snapshotName The name of the snapshot from which artifacts and data are to be
imported. This snapshot must already have been uploaded to the
environment using the uploadFile command.

userPassword The default password that must be assigned to all new users
created in the identity domain as a result of this snapshot import.

Running the Script

1. Create importBackupSnapshot.ps1 or importBackupSnapshot.sh by copying the script
from a preceding section.

2. Create the input.properties file and save it in the directory where the
runPreformattedBalances script is located. Contents of this file differs depending on
your operating system. See Sample input.properties File.
Make sure that you have write privileges in this directory. For Windows, you may need to
start PowerShell using the Run as Administrator option to be able to run the script.

3. Launch the script.

• Windows PowerShell: run importBackupSnapshot.ps1.

• Linux/UNIX: run ./importBackupSnapshot.sh.

Archive Old Matched Transactions and Purge Archived Transactions
Use the scripts in this section to archive matched transactions, including support and
adjustment details, that are equal to or older than a specified age and then purge the
archived transactions from Account Reconciliation. The archived matched transactions are
recorded in a ZIP file.

How the Script Works

1. Using the information in the input.properties file, logs into the environment

2. Runs the following archiveTmTransactions command to create an archive. Resulting ZIp
file and log file use the defaulting names Archive_Transactions_INTERCO_JOB_ID.zip
and Archive_Transactions_INTERCO_JOB_ID.log
epmautomate archiveTmTransactions INTERCO 365 filterOperator=contains
filterValue=14001
You can change the command parameters by modifying the input.properties file.

3. Downloads the log file and the .ZIP file containing archived transactions to the local
computer. The script displays an error message if no matching transactions are found.

4. Copies the .ZIP file containing archived transactions to Oracle Object Store.

Chapter 3
Sample Scenarios for Account Reconciliation

3-147

5. Runs the purgeArchivedTmTransactions command (with the job ID of the
archiveTmTransactions job) to delete the archived matched transactions from the
application.

Running the Script

1. Create the input.properties file and update it with information for your
environment. Save the file in a local, directory. This directory is referred to as
parentsnapshotdirectory in this discussion. Contents of this file differs
depending on your operating system.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
scripts.

2. Create transaction_match.ps1 (Windows PowerShell) or transaction_match.sh
(Linux/UNIX) script and save it in the parentsnapshotdirectory where
input.properties is located.

3. Launch the script.

• Linux/UNIX: run ./transaction_match.sh.

• Windows PowerShell: run transaction_match.ps1.

Creating the input.properties Script

Create input.properties by copying and updating the following script.

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
epmusername=exampleAdmin1
epmpassword=examplePassword1.epw
epmurl=exampleURL1
objectstorageusername=exampleAdmin2
objectstoragepassword=examplePassword2
objectstorageurl=exampleURL2
matchtype=INTERCO
age=365
filteroperator=contains
filtervalues=FilterValue=14001
proxyserverusername=myProxyserver
proxyserverpassword=myProxyserver_pwd
proxyserverdomain=myProxyDomain

Chapter 3
Sample Scenarios for Account Reconciliation

3-148

Note:

Windows only: Remove these properties from the input.properties file:

• javahome=JAVA_HOME
• epmautomatescript=EPM_AUTOMATE_LOCATION
If authentication at proxy server is not enabled for your Windows network
environment, remove these properties from the input.properties file.

• proxyserverusername
• proxyserverpassword
• proxyserverdomain

Table 3-24 input.properties Parameters

Parameter Description

javahome The directory where the JDK used by EPM Automate is installed.
Delete this entry from the Windows version of
input.properties.
Example: javahome=./home/JDK/bin

epmautomatescript The directory where EPM Automate is installed. Delete this entry
from the Windows version of input.properties.
Example:epmautomatescript=./home/utils/EPMAutomate/bin

epmusername User name of a Service Administrator or a Power User, User, or
Viewer who is authorized to archive matched transactions.
Example: epmusername=ServiceAdmin

epmuserpassword The encrypted password file for the user identified as
epmusername.
Example: epmpassword=myPwd.epw

epmurl The URL of the environment wherein matched transactions are to
be archived.
Example: epmurl=https://test-
cloudpln.pbcs.us1.oraclecloud.com

objectstorageusername The ID of a user who has the required access rights to write to
Oracle Object Storage Cloud.
For users created in a federated identity provider, specify the
fully-qualified name of the user (for example, exampleIdP/jdoe
or exampleIdP/john.doe@example.com, where exampleIdP is the
name of the federated identity provider). For other users, specify
the User ID.
Example: epmusername=myIdP/jdoe

Chapter 3
Sample Scenarios for Account Reconciliation

3-149

Table 3-24 (Cont.) input.properties Parameters

Parameter Description

objectstoragepassword The Swift password or auth token associated with the user
identified in objectstorageusername. This password is not the
same as the password that the user uses to sign into the Object
Storage Console. Auth token is an Oracle-generated token that you
use to authenticate with third-party APIs, for example to
authenticate with a Swift client. For instructions to create this
token, see To create an auth token in Oracle Cloud Infrastructure
Documentation.
Example: objectstoragepassword=jDoe_PWD

objectstorageurl The URL of the Oracle Object Storage Cloud bucket with an
optional object name appended.
Example: objectstorageurl=https://
swiftobjectstorage.region_identifier.oraclecloud.com/v1
/namespace/MT_Archives/2023_archives

matchtype The identifier (TextID) of the match type from which matched
transactions should be archived.
Example: matchtype=cashrecon

age The number of days since the transaction was matched. Matched
transaction older than or equal to this value will be archived.
Example: age=180

filteroperator The filter conditions to identify the accounts containing matched
transactions for archival. Must be one of these: equals,
not_equals, starts_with, ends_with, contains or
not_contains.
This value is combined with the filterValue to identify the
accounts from which matched transactions are to be archived.
Example: filteroperator=not_equals

filtervalues One or more filter value to identify the transactions to archive. If
equals or not_equals is specified as the filterOperator, you
can use a space-separated list to specify multiple values. If
multiple values are specified, transactions from accounts
matching any filter operator and filter value combination are
selected for archival.
Example: filterValue=101-120 filterValue=140-202

proxyserverusername The user name to authenticate a secure session with the proxy
server that controls access to the internet.
Example: proxyserverusername=myProxyserver

proxyserverpassword The password to authenticate the user with the proxy server.
Example: proxyserverpassword=myProxyserver_pwd

proxyserverdomain The name of the domain defined for the proxy server.
Example: proxyserverdomain=myProxyDomain

Chapter 3
Sample Scenarios for Account Reconciliation

3-150

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password

Windows Script

Create transaction_match.ps1 by copying the following script. Store it in the folder where
input.properties is stored.

Archive and Purge Transaction Matching PowerShell script

$inputproperties = ConvertFrom-StringData(Get-Content ./input.properties -
raw)
$epmusername="$($inputproperties.epmusername)"
$epmpassword="$($inputproperties.epmpassword)"
$epmurl="$($inputproperties.epmurl)"
$objectstorageusername="$($inputproperties.objectstorageusername)"
$objectstoragepassword="$($inputproperties.objectstoragepassword)"
$objectstorageurl="$($inputproperties.objectstorageurl)"
$matchtype="$($inputproperties.matchtype)"
$age="$($inputproperties.age)"
$filteroperator="$($inputproperties.filteroperator)"
$filtervalues="$($inputproperties.filtervalues)"
$proxyserverusername="$($inputproperties.proxyserverusername)"
$proxyserverpassword="$($inputproperties.proxyserverpassword)"
$proxyserverdomain="$($inputproperties.proxyserverdomain)"

echo "Running processes to archive and purge transaction matching
transactions ..."
if (${proxyserverusername}) {
 echo "Running epmautomate login ${epmusername} ${epmpassword} ${epmurl} $
{proxyserverusername} ${proxyserverpassword} ${proxyserverdomain}"
 epmautomate login ${epmusername} ${epmpassword} ${epmurl} $
{proxyserverusername} ${proxyserverpassword} ${proxyserverdomain}
} else {
 echo "Running epmautomate login ${epmusername} ${epmpassword} ${epmurl}"
 epmautomate login ${epmusername} ${epmpassword} ${epmurl}
}
echo "Running epmautomate archiveTmTransactions \"${matchtype}\" ${age}
filterOperator=${filteroperator} ${filtervalues}"
epmautomate archiveTmTransactions "${matchtype}" "${age}" "filterOperator=$
{filteroperator}" "${filtervalues}" > ./outfile.txt.tmp

$jobIdLine=Select-String -Path "outfile.txt.tmp" -Pattern "Job
ID"; $jobIdLine=($jobIdLine -split ":")[-2]; $jobid=($jobIdLine -split " ")
[1];
$logfile="Archive_Transactions_${matchtype}_${jobid}.log"
$transactionsfile="Archive_Transactions_${matchtype}_${jobid}.zip"
epmautomate listfiles > ./files.txt.tmp
$transactionslogfound=Select-String -Path "./files.txt.tmp" -Pattern "$
{logfile}"
$transactionsfilefound=Select-String -Path "./files.txt.tmp" -Pattern "$
{transactionsfile}"
rm ./outfile.txt.tmp
rm ./files.txt.tmp

if (${transactionslogfound}) {
 echo "Running epmautomate downloadfile \"${logfile}\""

Chapter 3
Sample Scenarios for Account Reconciliation

3-151

 epmautomate downloadfile "${logfile}"
 if (${transactionsfilefound}) {
 echo "Running epmautomate downloadfile ${transactionsfile}"
 epmautomate downloadfile "${transactionsfile}"
 if ($?) {
 echo "Running epmautomate copyToObjectStorage $
{transactionsfile} ${objectstorageusername} ${objectstoragepassword} $
{objectstorageurl}"
 epmautomate copyToObjectStorage "${transactionsfile}" "$
{objectstorageusername}" "${objectstoragepassword}" "$
{objectstorageurl}"
 if ($?) {
 echo "Running epmautomate purgeArchivedTMTransactions
JOBID=${jobid}"
 epmautomate purgeArchivedTMTransactions "JobID=$
{jobid}"
 }
 else {
 echo "EPMAutomate copyToObjectStorage failed. Purging
of archived matched transactions will not be attempted."
 }
 }
 else {
 echo "Download of transactions file ${transactionsfile}
failed. Copy to object storage, and purging of archived matched
transactions will not be attempted."
 }
 }
 else {
 echo "No matched transactions found. Archive file download,
copy to object storage, and purging of archived matched transactions
will not be attempted."
 }
}
else {
 echo "Matchtype ID \"${matchtype}\" not found. Archive file
download, copy to object storage, and purging of archived matched
transactions will not be attempted."
}

echo "Running epmautomate logout"
epmautomate logout
echo "Script processing completed."

Linux/UNIX Script

Create transaction_match.sh by copying the following script. Store it in the folder
where input.properties is stored.

#!/bin/sh

. ./input.properties
export JAVA_HOME=${javahome}

echo "Running processes to archive and purge transaction matching

Chapter 3
Sample Scenarios for Account Reconciliation

3-152

transactions..."
if [["${proxyserverusername}" != ""]]
then
 echo "Running epmautomate login ${epmusername} ${epmpassword} ${epmurl}
ProxyServerUserName=${proxyserverusername} ProxyServerPassword=$
{proxyserverpassword} ProxyServerDomain=${proxyserverdomain}"
 ${epmautomatescript} login "${epmusername}" "${epmpassword}" "${epmurl}"
"ProxyServerUserName=${proxyserverusername}" "ProxyServerPassword=$
{proxyserverpassword}" "ProxyServerDomain=${proxyserverdomain}"
else
 echo "Running epmautomate login ${epmusername} ${epmpassword} ${epmurl}"
 ${epmautomatescript} login "${epmusername}" "${epmpassword}" "${epmurl}"
fi
echo "Running epmautomate archiveTmTransactions \"${matchtype}\" ${age}
filterOperator=${filteroperator} ${filtervalues}"
${epmautomatescript} archiveTmTransactions "${matchtype}" "${age}"
"filterOperator=${filteroperator}" "${filtervalues}" > ./output.txt.tmp

jobid=$(grep "Job ID" ./output.txt.tmp | cut -d':' -f3 | cut -d' ' -f2)
logfile="Archive_Transactions_${matchtype}_${jobid}.log"
transactionsfile="Archive_Transactions_${matchtype}_${jobid}.zip"
${epmautomatescript} listfiles > ./files.txt.tmp
transactionslogfound=$(grep "${logfile}" ./files.txt.tmp | wc -l)
transactionsfilefound=$(grep "${transactionsfile}" ./files.txt.tmp | wc -l)
rm ./files.txt.tmp
rm ./output.txt.tmp

if [${transactionslogfound} -eq 0]
then
 echo "Matchtype ID \"${matchtype}\" not found. Archive file download,
copy to object storage, and purging of archived matched transactions will
not be attempted."
else
 echo "Running epmautomate downloadfile \"${logfile}\""
 ${epmautomatescript} downloadfile "${logfile}"
 if [${transactionsfilefound} -eq 0]
 then
 echo "No matched transactions found. Archive file download, copy to
object storage, and purging of archived matched transactions will not be
attempted."
 else
 echo "Running epmautomate downloadfile ${transactionsfile}"
 ${epmautomatescript} downloadfile "${transactionsfile}"
 if [$? -eq 0]
 then
 echo "Running epmautomate copyToObjectStorage $
{transactionsfile} ${objectstorageusername} ${objectstoragepassword} $
{objectstorageurl}"
 ${epmautomatescript} copyToObjectStorage "${transactionsfile}" "$
{objectstorageusername}" "${objectstoragepassword}" "${objectstorageurl}"
 if [$? -eq 0]
 then
 echo "Running epmautomate purgeArchivedTMTransactions JOBID=$
{jobid}"
 ${epmautomatescript} purgeArchivedTMTransactions "JobID=$

Chapter 3
Sample Scenarios for Account Reconciliation

3-153

{jobid}"
 else
 echo "EPMAutomate copyToObjectStorage failed. Purging
of archived matched transactions will not be attempted."
 fi
 else
 echo "Download of transactions file ${transactionsfile}
failed. Copy to object storage, and purging of archived matched
transactions will not be attempted."
 fi
 fi
fi

echo "Running epmautomate logout"
${epmautomatescript} logout
echo "Script processing completed."

Sample Scenarios for Profitability and Cost Management
These scenarios explore the use of EPM Automate commands to perform some
common Profitability and Cost Management tasks.

Related Topics

• Import Metadata into Application
Use these scripts to upload a metadata file and to import dimension metadata from
it into an Profitability and Cost Management application.

• Import Data and Run Program Rules
Use these scripts to upload data files and to import data from the uploaded files
into a Profitability and Cost Management business process.

Import Metadata into Application
Use these scripts to upload a metadata file and to import dimension metadata from it
into an Profitability and Cost Management application.

These scripts perform the following operations:

• Signs in to the environment.

• Uploads a metadata file.

• Imports metadata from the uploaded file into an application.

• Enables the application.

• Signs out.

Windows Script

Create importMetadata.ps1 by copying this script.

$inputproperties = ConvertFrom-StringData(Get-Content ./
input.properties -raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"

Chapter 3
Sample Scenarios for Profitability and Cost Management

3-154

$serviceURL="$($inputproperties.serviceURL)"
$applicationName="$($inputproperties.applicationName)"
$dataFileName="$($inputproperties.dataFileName)"
$dataFileNameDestination="$($inputproperties.dataFileNameDestination)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate uploadfile "${dataFileName}" ${dataFileNameDestination}
epmautomate loaddimdata ${applicationName} dataFileName=${dataFileName}
epmautomate enableapp ${applicationName}
epmautomate logout

Linux/UNIX Script

Create importMetadata.sh by copying this script.

#!/bin/bash
. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "${serviceURL}"
${epmautomatescript} uploadfile "${dataFileName}" "$
{dataFileNameDestination}"
${epmautomatescript} loaddimdata "${applicationName}" "dataFileName=$
{dataFileName}"
${epmautomatescript} enableapp "${applicationName}"
${epmautomatescript} logout

Creating the input.properties File

To run the importMetadata scripts, create the input.properties file and update it with
information for your environment. Save the file in the directory where importMetadata.ps1 or
importMetadata.sh is stored.
Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
applicationName=APPLICATION_NAME
dataFileName=DATA_FILE.txt
dataFileNameDestination=profitinbox

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
applicationName=APPLICATION_NAME
dataFileName=DATA_FILE.txt
dataFileNameDestination=profitinbox

Chapter 3
Sample Scenarios for Profitability and Cost Management

3-155

Table 3-25 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable
(epmautomate.sh). For Linux/UNIX only.

username User name of a Service Administrator, who also has the
Identity Domain Administrator role.

password Password of the Service Administrator or the name and
location of the encrypted password file.

serviceURL URL of the environment from which you want to generate the
snapshot.

applicationName Name of the Profitability and Cost Management into which
data is to be loaded.

dataFileName Name of the file containing the metadata to be imported.

dataFileNameDestination Upload location for the metadata file.

Running the Scripts

1. Create importMetadata.ps1 or importMetadata.sh by copying the script from a
preceding section.

2. Create the input.properties file and save it in the directory where the
importMetadata script is located. Contents of this file differs depending on your
operating system. See Creating the input.properties File.
Make sure that you have write privileges in this directory. For Windows, you may
need to start PowerShell using the Run as Administrator option to be able to run
the script.

3. Launch the script.

• Windows PowerShell: run importMetadata.ps1.

• Linux/UNIX: run ./importMetadata.sh.

Import Data and Run Program Rules
Use these scripts to upload data files and to import data from the uploaded files into a
Profitability and Cost Management business process.

These scripts complete the following steps:

• Sign in to the environment.

• Uploads a data file containing the data to load.

• Uploads rule file containing data rules.

• Loads data from the data file into application to overwrite existing values.

• Runs all rules in the rule file.

• Signs out.

Chapter 3
Sample Scenarios for Profitability and Cost Management

3-156

Windows Script

Create a file named importData.ps1 by copying the following script. Store it in a local
directory.

$inputproperties = ConvertFrom-StringData(Get-Content ./input.properties -
raw)
$username="$($inputproperties.username)"
$passwordfile="$($inputproperties.passwordfile)"
$serviceURL="$($inputproperties.serviceURL)"
$applicationName="$($inputproperties.applicationName)"
$dataFileName="$($inputproperties.dataFileName)"
$rulesFileName="$($inputproperties.rulesFileName)"
$fileDestination="$($inputproperties.fileDestination)"
$clearAllDataFlag="$($inputproperties.clearAllDataFlag)"
$dataLoadValue="$($inputproperties.dataLoadValue)"

epmautomate login ${username} ${passwordfile} ${serviceURL}
epmautomate uploadfile "${dataFileName}" ${fileDestination}
epmautomate uploadfile "${rulesFileName}" ${fileDestination}
epmautomate loaddata ${applicationName} clearAllDataFlag=${clearAllDataFlag}
dataLoadValue=${dataLoadValue} rulesFileName="${rulesFileName}"
dataFileName="${dataFileName}"
epmautomate logout

Linux/UNIX Script

Create a file named importData.sh by copying the following script. Store it in a local
directory.

#!/bin/bash
. ./input.properties
export JAVA_HOME=${javahome}
${epmautomatescript} login "${username}" "${passwordfile}" "${serviceURL}"
${epmautomatescript} uploadfile "${dataFileName}" "${fileDestination}"
${epmautomatescript} uploadfile "${rulesFileName}" "${fileDestination}"
${epmautomatescript} loaddata "${applicationName}" "clearAllDataFlag=$
{clearAllDataFlag}" "dataLoadValue=${dataLoadValue}" rulesFileName="$
{rulesFileName}" dataFileName="${dataFileName}"
${epmautomatescript} logout

Creating the input.properties File

To run the importData scripts, create the input.properties file and update it with
information for your environment. Save the file in the directory where importData.ps1 or
importData.sh is stored.
Windows

username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
applicationName=APPLICATION_NAME

Chapter 3
Sample Scenarios for Profitability and Cost Management

3-157

dataFileName=DATA_FILE.txt
rulesFileName=RULE_FILE.txt
fileDestination=profitinbox
clearAllDataFlag=true
dataLoadValue=OVERWRITE_EXISTING_VALUES

Linux/UNIX

javahome=JAVA_HOME
epmautomatescript=EPM_AUTOMATE_LOCATION
username=exampleAdmin
passwordfile=examplePassword.epw
serviceURL=exampleURL
applicationName=APPLICATION_NAME
dataFileName=DATA_FILE.txt
rulesFileName=RULE_FILE.txt
fileDestination=profitinbox
clearAllDataFlag=true
dataLoadValue=OVERWRITE_EXISTING_VALUES

Table 3-26 input.properties Parameters

Parameter Description

javahome JAVA_HOME location. For Linux/UNIX only.

epmautomatescript Absolute path of EPM Automate executable
(epmautomate.sh). For Linux/UNIX only.

username User name of a Service Administrator, who also has the
Identity Domain Administrator role.

password Password of the Service Administrator or the name and
location of the encrypted password file.

serviceURL URL of the environment from which you want to generate the
snapshot.

applicationName Name of the Profitability and Cost Management into which
data is to be loaded.

dataFileName Name of the file containing the data to be imported.

rulesFileName Name of the file containing the rules to be run on the
imported data.

fileDestination Location to which the data and rules files are to be uploaded.

clearAllDataFlag Specifies whether to clear existing data in the application
cube. Set to false if you do not want to clear existing data.

dataLoadValue specifies how to handle existing data. Specify
ADD_TO_EXISTING if you want to retaining existing data in
the cube.

Running the Scripts

1. Create importData.ps1 or importData.sh by copying the script from a preceding
section.

2. Create the input.properties file and save it in the directory where the
importData script is located. Contents of this file differs depending on your
operating system. See Creating the input.properties File.

Chapter 3
Sample Scenarios for Profitability and Cost Management

3-158

Make sure that you have write privileges in this directory. For Windows, you may need to
start PowerShell using the Run as Administrator option to be able to run the script.

3. Launch the script.

• Windows PowerShell: run importData.ps1.

• Linux/UNIX: run ./importData.sh.

Sample Scenarios for Oracle Enterprise Data Management
Cloud

These sample scenarios explore using EPM Automate commands to synchronize application
dimensions between Oracle Enterprise Data Management Cloud and Oracle Enterprise
Performance Management Cloud.

Related Topics

• Synchronizing Oracle Enterprise Data Management Cloud Dimensions and Mappings
with EPM Cloud Applications
This sample scenario explores synchronizing a dimension between an Oracle Enterprise
Data Management Cloud application and an Oracle Enterprise Performance
Management Cloud application.

• Synchronizing EPM Cloud Dimensions with Oracle Enterprise Data Management Cloud
Applications
This sample scenario explores synchronizing a dimension between an Oracle Enterprise
Performance Management Cloud application and an Oracle Enterprise Data
Management Cloud application.

Synchronizing Oracle Enterprise Data Management Cloud Dimensions and
Mappings with EPM Cloud Applications

This sample scenario explores synchronizing a dimension between an Oracle Enterprise
Data Management Cloud application and an Oracle Enterprise Performance Management
Cloud application.

You use the scripts in this section to complete these tasks:

• Export a dimension from an Oracle Enterprise Data Management Cloud application

• Export mappings from an Oracle Enterprise Data Management Cloud application
dimension

• Copy the export files to an EPM Cloud environment

• Import dimension metadata and mappings into the EPM Cloud application

To synchronize a dimension and mappings between an Oracle Enterprise Data Management
Cloud application and an EPM Cloud application:

1. Create a script file by copying the following script:

rem Integration example to sync application dimensions between EDM and
EPM Cloud
rem Windows script for demonstration purposes only; do not use in
production environments

Chapter 3
Sample Scenarios for Oracle Enterprise Data Management Cloud

3-159

set EDMUSER=userid
set EDMSVR=https://hostname
set EDMPWDFILE=example_EDM
set EDMAPP=appname
set EDMDIM=dimname
set EDMLOC=location

set EPMUSER=userid
set EPMSVR=https://hostname
set EPMIMPJOB=importjobname
set PWDFILE=C:\Oracle\EPM.epw
set DIMFILE=dimension.csv
set MAPFILE=mapping.csv

rem Synchronizing EDM ---> EPM
rem Export Dimension and Mappings from EDM

call epmautomate login %EDMUSER% %EDMPWDFILE% %EDMSVR%
call epmautomate exportdimension %EDMAPP% %EDMDIM% %DIMFILE%
call epmautomate exportdimensionmapping %EDMAPP% %EDMDIM% %EDMLOC%
%MAPFILE%
call epmautomate logout

rem Log into the EPM Cloud environment
call epmautomate login %EPMUSER% %PWDFILE% %EPMSVR%

rem Copy exported files from EDM environment to EPM and import
metadata and mappings
call epmautomate copyfilefrominstance %DIMFILE% %EDMUSER%
%EDMPWDFILE% %EDMSVR% inbox/%DIMFILE%
call epmautomate importmetadata %EPMIMPJOB%

call epmautomate copyfilefrominstance %MAPFILE% %EDMUSER%
%EDMPWDFILE% %EDMSVR% inbox/%MAPFILE%
call epmautomate importmapping %EDMDIM% %MAPFILE% REPLACE FALSE
%EDMLOC%

call epmautomate logout

2. Modify the script file and set the required parameter values. See Parameters for
Script Execution for explanation and example of the parameters.

3. Run the script manually or schedule it to run as needed. See Automating Script
Execution.

Parameters for Script Execution

The script files in this section requires you to specify some of the parameter values
explained in the following table. Not all these parameters are used in all the scripts.

Chapter 3
Sample Scenarios for Oracle Enterprise Data Management Cloud

3-160

Table 3-27 Parameter Values for Script Files

Parameter Description

EDMUSER User login ID of a Oracle Enterprise Data Management Cloud Service
Administrator.
Example: EDMUSER=jdoe@example.com

EDMSVR URL of the Oracle Enterprise Data Management Cloud environment.
Example: EDMSVR=https:// example.oraclecloud.com

EDMPWDFILE Name and location of the encrypted password file (EPW) of the
Oracle Enterprise Data Management Cloud Service Administrator.
Example: EDMPWDFILE=edm_jdoe.epw

EDMAPP Name of an Oracle Enterprise Data Management Cloud application
dimension.
Example: EDMAPP=USOperations

EDMDIM Name of the dimension to export or import.
Example: EDMDIM=entity

EDMLOC Name of the location to export.
Example: EDMLOC=Loc1

EPMUSER Login name of an EPM Cloud Service Administrator.
Example: EPMUSER=john.doe@example.com

EPMSVR URL of the EPM Cloud environment.
Example: EPMSVR=https://example.oraclecloud.com

EPMIMPJOB Name of an existing import job of type import metadata in the EPM
Cloud environment.
Example: EPMIMPJOB=imp_DIMMetadata

EPMEXPJOB Name of an existing job of type export metadata in theEPM Cloud
environment.
Example:EPMEXPJOB=Exp_DIMMetadata

PWDFILE Name and location of the encrypted password file (EPW) for EPM
Cloud Service Administrator. See the encrypt command.

Example: PWDFILE=pwd_jdoe.epw
DIMFILE Name of the file to hold exported dimension data.

Example: DIMFILE=entity_file.CSV
MAPFILE Name of the file to hold exported mapping data.

Example: MAPFILE=map_file.CSV

Synchronizing EPM Cloud Dimensions with Oracle Enterprise Data
Management Cloud Applications

This sample scenario explores synchronizing a dimension between an Oracle Enterprise
Performance Management Cloud application and an Oracle Enterprise Data Management
Cloud application.

You use the scripts in this section to complete these tasks:

• Export metadata (dimensions) from an EPM Cloud application

Chapter 3
Sample Scenarios for Oracle Enterprise Data Management Cloud

3-161

• Copy the export files containing dimension data to an Oracle Enterprise Data
Management Cloud environment

• Import dimension metadata into the Oracle Enterprise Data Management Cloud
application

To synchronize a dimension between an EPM Cloud application and an Oracle
Enterprise Data Management Cloud application:

1. Create a Windows script file by copying the following script:

rem Integration example to sync an application dimension between
EPM Cloud and EDM
rem Windows script for demonstration purposes only; do not use in
production environments

set EDMUSER=userid
set EDMSVR=https://hostname
set EDMPWDFILE=example_EDM.epw
set EDMAPP=appname
set EDMDIM=dimname

set EPMUSER=userid
set EPMSVR=https://hostname
set PWDFILE=example_epm.epw
set EPMEXPJOB=exportjobname

rem Synchronizing EPM ---> EDM

rem Export Metadata from EPM
call epmautomate login %EPMUSER% %PWDFILE% %EPMSVR%
call epmautomate exportmetadata %EPMEXPJOB%
call epmautomate logout

rem Import Dimension to EDM
rem Log into the EDM environment
call epmautomate login %EDMUSER% %EDMPWDFILE% %EDMSVR%
rem Copy exported metadata file into the EDM environment
call epmautomate copyfilefrominstance %EPMEXPJOB%.zip %EPMUSER%
%PWDFILE% %EPMSVR% %EPMEXPJOB%.zip
call epmautomate importdimension %EDMAPP% %EDMDIM% ReplaceNodes
%EPMEXPJOB%.zip
call epmautomate logout

Modify the script file and set the required parameter values. See Parameters for
Script Execution for explanation and example of the parameters.

2. Run the script manually or schedule it to run as needed. See Automating Script
Execution.

Automating Script Execution
A Service Administrator schedules scripts in Windows Task Scheduler or uses a cron
job to automate activities using EPM Automate.

To schedule EPM Automate script execution using Windows Task Scheduler:

Chapter 3
Automating Script Execution

3-162

1. Click Start, then Control Panel, and then Administrative Tools.

2. Open Task Scheduler.

3. Select Action, and then Create Basic Task.

4. Enter a task name and an optional description, and then click Next.

5. In Task Trigger, select a schedule for running the script, and then click Next.

6. In the next screen, specify other schedule parameters, and then click Next.

7. In Action, ensure that Start a program is selected.

8. In Start a Program, complete these steps:

a. In Program/script, browse and select the script that you want to schedule.

b. In Add arguments (optional), enter the password of the Service Administrator
identified by the SET user script parameter.

c. In Start in (optional), enter the location where EPM Automate is installed; generally,
C:/Oracle/EPMAutomate/bin.

d. Click Next.

9. In Summary, select Open the Properties dialog for this task when I click Finish, and
then click Finish.

10. In General, select these security options, and then click OK.

• Run whether user is logged in or not

• Run with highest privileges

Monitoring EPM Automate Activities
To help you identify the status of the operation that you initialized, EPM Automate displays
status codes in the console from which you run it.

See Exit Codes.

Use the Job Console to monitor the jobs that you execute using EPM Automate. See
Managing Jobs in Administering Planning for details.

Chapter 3
Monitoring EPM Automate Activities

3-163

4
Running Commands without Installing EPM
Automate

Using Groovy, you can run select commands directly in Oracle Enterprise Performance
Management Cloud. You do not require an EPM Automate installation to run server-side
commands.

Note:

In this scenario, Groovy script is written to be executed directly in EPM Cloud, not
on any client machine.

In this Chapter:

• Environments that Support Server-side Command Execution

• Information Sources

• Supported Commands

• Methods to be Used for Running EPM Automate Using Server-Side Groovy

• Cloning an Environment Using a Server-Side Groovy Script

• Emailing the Activity Report Using a Server-side Groovy Script

Environments that Support Server-side Command Execution
Groovy scripting support for server-side execution of EPM Automate commands is available
in the following environments only:

• Planning and Planning Modules business processes deployed in EPM Enterprise Cloud
Service environments.

• Enterprise Planning and Budgeting Cloud

• Planning and Budgeting Cloud with Plus One option

• FreeForm

• Enterprise Profitability and Cost Management

• Financial Consolidation and Close in EPM Enterprise Cloud Service environments.

• Tax Reporting in EPM Enterprise Cloud Service environments.

• Strategic Workforce Planning

• Sales Planning

Groovy scripts incorporating EPM Automate commands can be written and executed in the
preceding Oracle Enterprise Performance Management Cloud environments only. Scripts
written in such environments can, however, issue EPM Automate commands on any EPM

4-1

Cloud environment. For example, you can create the script in a Planning EPM
Enterprise Cloud Service environment and have it issue commands on a Narrative
Reporting environment that does not support groovy scripting.

Information Sources
See these sources in Designing with Calculation Manager for Oracle Enterprise
Performance Management Cloud for detailed information:

• About Groovy Business Rules

• Creating a Groovy Business Rule

Supported Commands
Except for the following, all EPM Automate commands can be run through Groovy:

• downloadFile

• upgrade

• uploadFile

The following commands cannot be executed on the environment running the Groovy
script:

• recreate

• replay

• resetService

• restructureCube

Note:

• On running the encrypt command, the encrypted password file is created
on the server; it is purged after seven days if not used.

• For the feedback command to work, all files and screenshots used as
attachment should be available in the default upload location. See
Default Upload Location. This is the location where files are stored if you
do not specify a location in the uploadFile command.

Methods to be Used for Running EPM Automate Using
Server-Side Groovy

• getEPMAutomate () This static method provides an instance of EpmAutomate class,
which can then be used to invoke EPM Automate commands.

• execute () This method of EpmAutomate class is used to execute an EPM
Automate command. Pass the EPM Automate command name as the first
parameter and command options as subsequent parameters. This method returns
an instance of EpmAutomateStatus class.

Chapter 4
Information Sources

4-2

• getStatus () This method of EPMAutomateStatus class returns the execution status
returned by the command. Return value 0 indicates success while a non-zero value
means command failure.

• getOutput () This method of EPMAutomateStatus class returns the string output of the
command. For example, you can use this method to return the output of the
getApplicationAdminMode and getDailyMaintenanceStartTime command. If the return
status of the command is non-zero, this method returns the error message.

• getItemsList () This method of EPMAutomateStatus class returns the list output of the
command. For example, you can use this method to return the output of the
getSubstVar, listBackups, and listFiles commands.

Cloning an Environment Using a Server-Side Groovy Script
You can include EPM Automate commands in server-side Groovy scripts to clone
environments for disaster recovery purposes. This allows setting up disaster recovery without
any on-premises footprint.

If passwords contain special characters, see Handling Special Characters. Also, be sure to
replace these parameter values to suit your environments:

Table 4-1 Parameters to Change

Parameter Description

password The password of the Service Administrator who is
performing the clone operation in the source environment.

targetpassword The password of the Service Administrator who is
performing the clone operation in the target environment.

username The user ID of the Service Administrator in the source
environment.

targetusername The user ID of the Service Administrator in the target
environment. This user must also be assigned to the Identity
Domain Administrator role in the target environment.

email_id The email address to which you plan to send information
about the cloning process.

Script for Encrypting Password

EpmAutomate automate = getEpmAutomate()

//Encrypt the password of a Service Administrator in the source environment
EpmAutomateStatus encryptstatus1 = automate.execute('encrypt',
'password','encryptionKey','sourcePassword.epw')
if(encryptstatus1.getStatus() != 0)
throwVetoException(encryptstatus1.getOutput())
println(encryptstatus1.getOutput())

//Encrypt the password of a Service Administrator in the target environment
//This user must also have the Identity Domain Administrator
//role in the target environment

EpmAutomateStatus encryptstatus2= automate.execute('encrypt',
'targetpassword',

Chapter 4
Cloning an Environment Using a Server-Side Groovy Script

4-3

'encryptionKey', 'targetPassword.epw')
if(encryptstatus2.getStatus() != 0)
throwVetoException(encryptstatus2.getOutput())
println(encryptstatus2.getOutput())

Script for Cloning the Environment

This script uses the encrypted password files created using the preceding script.

EpmAutomate automate = getEpmAutomate()

//Log into the target environment
EpmAutomateStatus loginstatus = automate.execute('login',
'username','targetPassword.epw' , 'targeturl')
if(loginstatus.getStatus() != 0)
throwVetoException(loginstatus.getOutput())
println(loginstatus.getOutput())

//Recreate the target environment
EpmAutomateStatus recreatestatus = automate.execute('recreate' , '-f')
if(recreatestatus.getStatus() != 0)
throwVetoException(recreatestatus.getOutput())
println(recreatestatus.getOutput())

//Copy Artifact Snapshot from the source environment
//to the target environment
EpmAutomateStatus copystatus =
automate.execute('copysnapshotfrominstance',
'Artifact Snapshot', 'sourceusername', 'sourcePassword.epw','source
url')
if(copystatus.getStatus() != 0)
throwVetoException(copystatus.getOutput())
println(copystatus.getOutput())

//import Artifact Snapshot into the target environment
EpmAutomateStatus importstatus = automate.execute('importsnapshot',
'Artifact Snapshot')
println(importstatus.getOutput())

//Send an email to a designated user with the status of the
//snapshot import process
EpmAutomateStatus emailstatus = automate.execute('sendmail',
'email_id' ,'Status of DR' , 'BODY='+ importstatus.getOutput())
println(emailstatus.getOutput())

//Sign out of the target environment
EpmAutomateStatus logoutstatus = automate.execute('logout')
println(logoutstatus.getOutput())

Chapter 4
Cloning an Environment Using a Server-Side Groovy Script

4-4

Emailing the Activity Report Using a Server-side Groovy Script
This script can be used to email the Activity Report to a list of recipients. This script can then
be scheduled to run daily to get the daily Activity Report. This script performs the following
functions:

• Encrypts the password of the Service Administrator who executes the Groovy script.

• Signs into the Oracle Enterprise Performance Management Cloud environment using the
encrypted password.

• Emails the Activity Report available in the environment to a list of recipients, generally,
Service Administrators

• Signs out of the environment.

If passwords contain special characters, see Handling Special Characters. Also, be sure to
replace these parameter values to suit your environments:

Table 4-2 Parameters to Change

Parameter Description

user The user ID of a Service Administrator to sign into the
environment.

password The password of the Service Administrator.
url URL of the EPM Cloud environment from which the Activity

Report is to be emailed.
emailaddresses A semicolon separated list of email addresses to which the

Activity Report is to be sent.

For detailed information on using Groovy rules, see Using Groovy Rules in Administering
Planning.

/*RTPS: {user} {password} {url} {emailaddresses}*/
import java.text.SimpleDateFormat

String user = 'service_administrator'
String password = 'examplePWD'
String url = 'example_EPM_URL'
String emailaddresses = 'service_administrator@oracle.com'

EpmAutomate automate = getEpmAutomate()

def LogMessage(String message) {
 def date = new Date()
 def sdf = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss")
 println('[' + sdf.format(date) + '][GROOVY] ' + message);
}

def LogOperationStatus(EpmAutomateStatus opstatus) {
 def returncode = opstatus.getStatus()
 LogMessage(opstatus.getOutput())
 LogMessage('return code: ' + returncode)
}

Chapter 4
Emailing the Activity Report Using a Server-side Groovy Script

4-5

LogMessage('Starting mail activity report processing')

// encrypt
LogMessage("Operation: encrypt " + password + " oracleKey
password.epw")
EpmAutomateStatus status =
automate.execute('encrypt',password,"oracleKey","password.epw")
LogOperationStatus(status)

// login
LogMessage("Operation: login " + user + " password.epw " + url)
status = automate.execute('login',user,"password.epw",url)
LogOperationStatus(status)

// listfiles
LogMessage('Operation: listfiles')
status = automate.execute('listfiles')
LogOperationStatus(status)

String filelist = status.getItemsList()
String[] str = filelist.split(',');
String reportfile = ''

for(String svalues : str) {
 String[] ftr = svalues.split('/')
 for(String fvalues : ftr) {
 if (fvalues.startsWith('2') && fvalues.endsWith('html')) {
 reportfile = fvalues
 }
 }
}

def reportdir = reportfile.tokenize(".")[0]
String reportpath = 'apr/' + reportdir + '/' + reportfile

// sendMail
LogMessage('Operation: sendMail ' + emailaddresses + ' Daily Activity
Report Body=Daily Activity Report Attachments=' + reportpath)
status = automate.execute('sendmail',emailaddresses,'Daily Activity
Report','Body=Daily Activity Report',"Attachments=${reportpath}")
LogOperationStatus(status)

// logout
LogMessage('Operation: logout')
status = automate.execute('logout')
LogOperationStatus(status)

Chapter 4
Emailing the Activity Report Using a Server-side Groovy Script

4-6

5
Replicating an EPM Cloud Environment

These steps are involved in configuring a secondary Oracle Enterprise Performance
Management Cloud environment to ensure availability of service if the primary Oracle data
center becomes unavailable due to unforeseen circumstances.

Note:

The procedures discussed in this appendix are not applicable to Narrative
Reporting.

• Setting up daily artifact replication

• Setting up On-Demand Replications

• Configuring the Secondary Environment

Setting up Daily Replication
To replicate an environment, you use EPM Automate to copy the artifact snapshot created
during the daily maintenance from the primary environment to the secondary environment.

Oracle performs routine maintenance on each environment on a daily basis. During this
service maintenance, Oracle creates a maintenance snapshot by backing up the contents of
the environment (existing data and artifacts, including user and role assignments from the
identity domain).

To setup daily service replication:

1. Create a script file that contains the following EPM Automate commands. This script
replicates the application snapshot from the primary environment to the secondary
environment.

Note:

Be sure to change the user name, password file, identity domain names, and
service URLs. For information on creating an encrypted password file, see the
encrypt command.

REM Sign in to the secondary instance
epmautomate login serviceAdmin secondaryPassword.epw secondary_URL
secondaryDomain
REM Delete the existing artifact snapshot
epmautomate deletefile "Artifact Snapshot"
REM Copy the snapshot from the primary instance

5-1

epmautomate copysnapshotfrominstance "Artifact Snapshot"
primaryPassword.epw primary_URL primaryDomain
REM Sign out of the secondary instance
epmautomate logout

2. Using a scheduler; for example, Windows Task Scheduler, schedule the execution
of the script file so that it runs two hours from the beginning of the maintenance
window.

3. Set identical Maintenance Window start time on both the primary and secondary
environments. See Setting Service Maintenance Time in Getting Started with
Oracle Enterprise Performance Management Cloud for Administrators for more
information.

Setting up On-Demand Replications
To reduce the RPO, you can create on-demand snapshots of the primary environment
and then copy them to the secondary environment.

For example, you can create and schedule an EPM Automate script that runs every six
hours between the daily replications to reduce the RPO from 24 to six hours.

Note:

During on-demand snapshot creation, the primary environment is placed in
read only mode for a few minutes.

To setup on-demand replication:

1. Create a script file that contains the following EPM Automate commands. This
script replicates the application snapshot from the primary environment to the
secondary environment.

Note:

Be sure to change the user name, password file, identity domain names,
and service URLs. For information on creating an encrypted password
file, see the encrypt command.

REM Sign in to the primary instance
epmautomate login serviceAdmin primaryPassword.epw primary_URL
primaryDomain
REM Create a snapshot and then sign out
epmautomate exportsnapshot "Artifact Snapshot"
epmautomate logout
REM Sign in to the secondary instance
epmautomate login serviceAdmin secondaryPassword.epw secondary_URL
secondaryDomain
REM Copy the snapshot from the primary instance
epmautomate copysnapshotfrominstance "Artifact Snapshot"

Chapter 5
Setting up On-Demand Replications

5-2

primaryPassword.epw primary_URL primaryDomain
REM Sign out of the secondary instance
epmautomate logout

2. Using a scheduler; for example, Windows Task Scheduler, schedule the execution of the
script file to run as needed to meet the desired RPO.

Configuring the Secondary Environment
You configure the secondary environment to activate it.

Complete this procedure only if you need to activate the secondary environment when the
primary environment is unavailable for an extended period. Before configuring the secondary
environment, refer to these topics in Getting Started with Oracle Enterprise Performance
Management Cloud for Administrators:

• Migration Paths for Legacy EPM Cloud Snapshots

• Migration Paths for EPM Standard Cloud Service and EPM Enterprise Cloud Service
Snapshots

To configure the secondary environment:

1. Start an EPM Automate session and complete these activities.

• Sign in to the secondary environment using an account that has both the Service
Administrator and the Identity Domain Administrator roles. Be sure to specify the
appropriate user name, password, domain name, and service URL.

• Re-create the secondary environment.

– If the primary environment is a Planning, Tax Reporting, Financial Consolidation
and Close or Enterprise Profitability and Cost Management environment, use:
epmautomate recreate -f

– If the primary environment is not a Planning, Tax Reporting, Financial
Consolidation and Close or Enterprise Profitability and Cost Management
environment, use:
epmautomate recreate -f TempServiceType=PRIMARY_APPLICATION_TYPE,
where PRIMARY_APPLICATION_TYPE is ARCS, EDMCS, PCMCS, or EPRCS.

• Import application and identity domain artifacts from the snapshot.

• Sign out.

You can complete the preceding activities by running the following commands. See these
topics:

• login command

• recreate command

• importSnapshot command

epmautomate login serviceAdmin secondaryPassword.epw secondary_URL
epmautomate recreate –f
epmautomate importsnapshot "Artifact Snapshot" importUsers=true
epmautomate logout

2. Sign into the secondary environment and verify that all data is available.

Chapter 5
Configuring the Secondary Environment

5-3

3. Send the URL of the secondary environment to all users.

Chapter 5
Configuring the Secondary Environment

5-4

A
Preparing to Run the
simulateConcurrentUsage Command

The simulateConcurrentUsage command supports these operations to simulate load on an
environment:

• Open forms

• Save forms

• Run business rules

• Run data rules

• Open ad hoc grids

• Execute Management Report Books

• Execute Management Report Reports

Steps Involved

1. Create the requirement.csv file. See Creating the requirement.csv File

2. Create input files specifying the details of the operations included in requirement.csv.
See:

• Open Form Input File

• Save Form Input File

• Run Business Rule Input File

• Run Data Rule Input File

• Ad Hoc Grid Input File

• Execute Book Input File

• Execute Report Input File

3. Create UserVarMemberMapping.csv containing the user variable details. See Creating the
UserVarMemberMapping.csv File

4. Create a ZIP file containing the files that you created in the preceding steps and upload it
to the environment. See Creating and Uploading the Input ZIP File to the Environment

5. Run the simulateConcurrentUsage command using the uploaded ZIP file.

Creating the requirement.csv File
Begin by creating the requirement.csv file that lists the details of the use cases that you
want to test. Each line of this CSV file identifies the type of operation to perform, artifact
name, number of concurrent users, input file specifying the details of the operation, and
additional, if any, information related to the operation. For example, to open 2 forms, save 2

A-1

forms, and run 2 business rules, you specify 6 lines in input CSV file. The first line of
requirement.csv must contain this information:

#Type of Operation,Artifact Name,Number of Users,Input File,Additional
Info

Each of the subsequent lines of the file contains a single operation and its parameters.
Some operations may not require all these parameter values. The expected file entries
are explained in the following table.

Note:

All values are required unless otherwise indicated in the table.

Table A-1 requirement.csv Format

Field Description

Type of operation Must be one of the following:
• Open Form
• Save Form
• Run Business Rule
• Run Data Rule
• Ad Hoc Grid
• Execute Report
• Execute Book

Artifact Name This value depends on the type of operation:
• Open Form: The name and location of the form to open.
• Save Form: The name and location of the form to save.
• Run Business Rule: The name of the business rule.
• Data Rule: The name of the data rule.
• Ad Hoc Grid: Not applicable (leave blank).
• Execute Report: The name and location of the of the report.
• Execute Book: The name and location of the book.

Number of Users Number of users to simulate concurrent use.
Input File Name to the CSV file that contains the POV values, run-time

prompts, or other use case-specific values to use
Additional Info Additional parameters required for the operation. Applicable to

Ad Hoc Grid only. Leave it blank for other use cases.
Notes: Artifact names must match those in the application and must be in the same
case.

Example of a requirement.csv file:

Type of Operation,Artifact Name,Number of Users,Input
File,Additional Info
Open Form, Library/Global Assumption/Revenue Forecast
Assumptions,10,openform_input.csv,
Save Form, Library/Global Assumption/
ExchangeRates,5,saveform_input.csv,
Run Business Rule, Run_FinStatement - Copy Budget to Prior Year

Appendix A
Creating the requirement.csv File

A-2

Budget,4,runbusinessrule_input.csv,
Run Data Rule, Delimited_file_DL,5,rundatarule_input.csv,
Ad Hoc Grid,,3,runadhocgrid_input.csv,cube=FinStmt
Execute Book,Review Books/Revenue Reports,10,book_input.csv
Execute Report,Review Reports/Executive Report,10,report_input.csv,

Creating the Input Files
Each use case identified in requirement.csv must have a matching input file that provides all
the parameters required to execute it.

The input file, ideally, must contain one entry per the number of users specified for this use
case in requirement.csv.

If the number of entries in the input file is less than the number of concurrent users for that
use case in requirement.csv, EPM Automate repeats some entries from the input file to run
the use cases until the operation is executed for the number of users identified in
requirement.csv.

For example, if the use case entry in requirement.csv for the Run Business Rule operation
is as follows:

Run Business Rule, Copy Budget,10,br_input_file.csv,
br_input_file.csv should also contain 10 entries. If br_input_file.csv contains only six
entries, EPM Automate uses them for the first 6 users. For the next 4 users, EPM Automate
reuses the first 4 entries in br_input_file.csv.

If the number of entries in the input file is more than the number of users specified for the use
case, EPM Automate ignores the last extra entries in the input file.

• Open Form Input File

• Save Form Input File

• Run Business Rule Input File

• Run Data Rule Input File

• Ad Hoc Grid Input File

• Execute Report Input File

• Execute Book Input File

Open Form Input File
This file, referenced in requirement.csv to support the opening of forms, includes POV
entries in the format: pov=[DIM 1:MEMBER 1],[DIM 2:MEMBER 2],[DIM 3:MEMBER 3],, and so
on.

In this discussion, DIM 1, DIM 2, and so on are the dimension names, and MEMBER 1,
MEMBER 2, and so on are their dimension member values for the POV.

A sample input file:

pov=[Account:APL_RATE_AED],[Scenario:Budget],[Years:FY20]
pov=[Account:APL_RATE_AED],[Scenario:Budget],[Years:FY19]
pov=[Account:APL_RATE_AED],[Scenario:Budget],[Years:FY18]

Appendix A
Creating the Input Files

A-3

pov=[Account:APL_RATE_AED],[Scenario:Budget],[Years:FY17]
pov=[Account:APL_RATE_AED],[Scenario:Budget],[Years:FY16]

Note:

You must also create UserVarMemberMapping.csv if the forms you specified
in requirement.csv require user variables to be set. See Creating the
UserVarMemberMapping.csv File.

Save Form Input File
This file, referenced in requirement.csv to support the saving of forms, includes POV,
and cell input values in the following format:

A sample input file:

pov=[DIM 1:MEMBER1],[DIM 2:MEMBER2],[DIM 3:MEMBER3],…;cells=[CELL
COLUMN HEADER 1 -> CELL COLUMN HEADER 2 -> CELL COLUMN HEADER 3 ->.. |
CELL ROW HEADER 1-> CELL ROW HEADER 2-> CELL ROW HEADER 3->..| CELL 1
DATA], [CELL COLUMN HEADER 11 -> CELL COLUMN HEADER 22 -> CELL COLUMN
HEADER 33 ->.. | CELL ROW HEADER 11-> CELL ROW HEADER 22-> CELL ROW
HEADER 33->..| CELL 2 DATA]

In this example:

• DIM indicates the name of a dimension and MEMBER indicates a dimension
member value

• CELL COLUMN HEADER identifies the name of the column header and CELL
ROW HEADER identifies the name of a row header

For example:

pov=[Version View:Working],[Sales Entity:International Sales];
cells=[FY16->x---------x->Pct|P293:Maintenance->4120:Support|1]

Note:

You must also create UserVarMemberMapping.csv if the forms you specify in
requirement.csv require user variables to be set. See Creating the
UserVarMemberMapping.csv File.

Run Business Rule Input File
This file, referenced in requirement.csv to support the running of business rules,
includes runtime parameter values in the format: rtp=[RTP1:Value1],[RTP2:Value2],
and so on.

If no runtime parameter value is required for the business rule, then include rtp=[]. In
this example, RTP1, RTP2, and so on identify the runtime prompt names and

Appendix A
Creating the Input Files

A-4

VALUE1, VALUE2 identify their values. Be sure to add as many runtime prompts as required.

A sample input file:

rtp=[Period:Q1],[Entity:USA]
rtp=[Period:Q2],[Entity:USA]
rtp=[Period:Q3],[Entity:USA]
rtp=[Period:Q4],[Entity:USA]

Run Data Rule Input File
This file, referenced in requirement.csv to support the running of data rules, should specify
the start period, end period, import mode, export mode, and an optional import file name
available in the environment. If a file name is not specified, the file name specified in the data
rule is used. Format of each line:startperiod=START PERIOD;endperiod=END
PERIOD;importmode=IMPORT_MODE;exportmode=EXPORT_MODE;filename=FILE NAME
A sample input file:

startperiod=Dec-15;endperiod=Dec-15;importmode=REPLACE;exportmode=STORE_DATA;
filename=comma_delim_file1.csv
startperiod=Dec-16;endperiod=Dec-16;importmode=REPLACE;exportmode=STORE_DATA;
filename=comma_delim_file2.csv
startperiod=Dec-17;endperiod=Dec-17;importmode=REPLACE;exportmode=STORE_DATA;
filename=comma_delim_file3.csv
startperiod=Dec-18;endperiod=Dec-18;importmode=REPLACE;exportmode=STORE_DATA;
filename=comma_delim_file4.csv
startperiod=Dec-19;endperiod=Dec-19;importmode=REPLACE;exportmode=STORE_DATA;
filename=comma_delim_file5.csv

Ad Hoc Grid Input File
The simulateConcurrentUsage command supports both native mode and standard mode ad
hoc grids. In a native mode grids, the POVs are displayed as a part of the Oracle Smart View
for Office plug-in tool bar. In standard mode, the POVs are a part of the spreadsheet itself
and occupy the first row of the spreadsheet.

The ad hoc grid input file, referenced in requirement.csv to support the opening of Ad Hoc
grids, should specify the grid to open. Each line of the file should be in the following format.

filename=xlsx filename#sheet name; pov=[DIM 1:MEMBER 1],[DIM 2:MEMBER 2]..;
rows=[ROW HEADER 1, ROW HEADER 2,..]; cols=[COL HEADER 1, COL HEADER 2,..]

A sample input file:

fileName=dropdown.xlsx#sheet4;pov=[HSP_View:BaseData],[Scenario:Forecast],
[Product:No Product],[Entity:Sales Mid-Atlantic];rows = [Account]; cols=
[Year, Period, Version]

Appendix A
Creating the Input Files

A-5

Note:

The file identified by fileName in the input CSV file must contain the ad hoc
grid definition in the specified sheet. For example, the preceding sample
input file specifies sheet4 of dropdown.xlsx as the source for the ad hoc grid
definition. This Excel file must, along with requirement.csv and the input
CSV file, be available in the INPUT_FILE.zip that is used to run the
simulateConcurrentUsage command.

Execute Report Input File
This file, referenced in requirement.csv to support the opening of management
reports, should specify the report to open. Each line of the file should be in the
following format.

format=[REPORT_FORMAT];globalPov=[POV];prompts=[PROMPT_1],[PROMPT_2]

globalPov and prompts are optional.

Note:

• Supported report formats are pdf and embedded.

• If the name of the globalPov dimension or its members contain a colon
(:) or semicolon (;), use the escape character \\ preceding it. For
example, the dimension name Version:View should be specified as
Version\\:View

A sample input file to generate a pdf from a report with the global POV [Version
View:Working],[Sales Entity:International Sales] and prompts
[Actual;Budget],[Year:2018]:

format=pdf;globalPov=[Version View:Working],[Sales
Entity:International Sales];prompts=[Actual;Budget],[Year:2018]

Execute Book Input File
This file, referenced in requirement.csv to support the opening of books in Reports,
should specify the book to open. Each line of the file should be in the following format.

format=BOOK_FORMAT

or

format=BOOK_FORMAT;globalPov=POV

Appendix A
Creating the Input Files

A-6

A sample input file to generate a pdf from a book with the global POV [Version
View:Working],[Sales Entity:International Sales]:

format=pdf;globalPov=[Version View:Working],[Sales Entity:International
Sales]

Note:

• Supported book formats are PDF and XLSX.

• If the name of the globalPov dimension or its members contain a colon (:) or
semicolon (;), use the escape character \\ preceding it. For example, the
dimension name Version:View should be specified as Version\\:View

Creating the UserVarMemberMapping.csv File
This file is required if the forms you specified in the input file of the Open Form or Save Form
use cases require user variables to be set. This file is not needed for other use cases.

The first line of this file is the header #Dimension,User Variable,Member
Subsequent entries contain the mapping of dimension, user variable and dimension member.

A sample UserVarMemberMapping.csv file:

#Dimension,User Variable,Member
Account,Account View,Revenue Driver Assumptions
Entity,Entity,No Entity
Entity,Entity View,Total Entity
HSP_View,HSP_View,BaseData
Market Size,Market View,Large Market
Period,Period,Jan

Creating and Uploading the Input ZIP File to the Environment
Using a tool such as 7 Zip, create one ZIP file containing requirement.csv, corresponding
use case input files, and UserVarMemberMapping.csv, if required.

Use the uploadFile command to upload the resulting ZIP file into the inbox of the environment
(example command syntax epmautomate uploadFile "C:/uploads/INPUT_FILE.zip"
inbox) where you want to run the simulation.

Sample Simulate Concurrent Usage Report
The Simulate Concurrent Usage is, by default, sent to the user who executes the
simulateConcurrentUsage command. If you specify email recipients, the report is emailed
only to those email recipients.

Appendix A
Creating the UserVarMemberMapping.csv File

A-7

This report identifies the following:

Column Description

Operation # The sequence number of the use case in requirement.csv
Operation The type of the operation as specified in requirement.csv
Artifact Name The artifact name as specified in requirement.csv
Users The number of users as specified in requirement.csv
iterations The number of times the use case was executed as specified by

the iterations parameter

Min. Duration The minimum time taken to execute this use case by one user
Max. Duration The maximum time taken to execute this use case by one user
Avg. Duration The average time taken to execute this use case by one user
Return Status Status of the use case. Failed is shown if the use case execution

was not successful

Appendix A
Sample Simulate Concurrent Usage Report

A-8

B
Preparing to Run the Replay Command

The replay command is used to performance test an environment under load to verify that
user experience is acceptable when the service is under specified load. You need to
complete a few steps before load testing environments.

This appendix describes the steps Service Administrators must complete before running the
replay EPM Automate command.

• About the Replay Command

• Prerequisites

• Creating HAR Files

• Creating Replay Files

• Generating Trace Files

• A Sample Replay Session

About the Replay Command
The replay command replays the Oracle Smart View for Office, Oracle Enterprise
Performance Management Cloud REST API, or EPM Automate load on an environment to
enable performance testing under heavy load to verify that user experience is acceptable
when the environment is under a specified load.

For example, you can test the user experience on a test environment under heavy load to
ensure that it will perform well after you migrate the application from the test environment to
the production environment.

Prerequisites
When you execute the command using a replay file, EPM Automate runs each row in the
replay file in parallel to exert load on the service so that you can perform tests to verify that
user experience is acceptable when the service is under load.

• Identify forms that require major processing on the environment. Forms that deal with
large amounts of data, or forms that include complex calculations are good candidates.
For example, forms that are used to submit forecast, processes involved in creating ad-
hoc and static reports may exert heavy loads on the service. Similarly, activities such as
running business rules, running reports, executing resource intensive REST APIs, and
EPM Automate commands (for example, runBusiness rule, runDataRule, exportData,
exportMetadata, restructureCube) my cause the environment to come under heavy load
and can be candidates for load testing.

• Install Fiddler if necessary. EPM Automate requires an HTTP Archive format (HAR) 1.1
file containing records of Oracle Smart View for Office, Oracle Enterprise Performance
Management Cloud REST API, or EPM Automate interaction with the EPM Cloud
environment. Generally, you use Fiddler to generate the HAR file that captures the log of
your interaction with EPM Cloud.

B-1

• Run the major activities that you identified previously. You use Smart View to run
activities such as opening and saving forms, running business rules, and creating
reports, and Fiddler to capture activity details and to export them to HAR files.
Similarly, run REST APIs and EPM Automate commands and have Fiddler capture
the details. See Creating HAR Files for details.

• Create a replay CSV file that lists the credentials (user names and passwords) and
the name of the HAR files to run. Each row in the file may contain the user name
and password of a unique user to simulate multiple simultaneous user sessions.
See Creating Replay Files for details
The user whose credentials are specified in a row to run a HAR file need not be
the user who ran the session that was used to create the HAR file. However, this
user should have the rights to run these activities on the environment.

See A Sample Replay Session for detailed steps to run the replay command.

Creating HAR Files
The HAR file captures traces of Oracle Smart View for Office, REST API, or EPM
Automate interaction with Oracle Enterprise Performance Management Cloud.

Because Fiddler captures information on all HTTP(S) traffic, while creating the HAR
files, refrain from activities that may add unnecessary trace to Fiddler.

To create a HAR file:

1. Start Fiddler.

2. Ensure that Fiddler is configured to Decrypt HTTPS traffic from all processes.

a. Select Tools, then Options, and then HTTPS.

b. Select Decrypt HTTPS traffic, if it is not selected.

Fiddler displays information about the root certificate it uses to intercept
HTTPS traffic. It is generally safe to trust this certificate.

c. Click Yes if you want to add the root certificate to the trusted CA list; else
choose No.

d. Optional: If you selected No in the preceding step, you may select Ignore
server certificate errors to suppress Fiddler security warnings related to
decrypting HTTPS traffic.

e. Click OK.

Appendix B
Creating HAR Files

B-2

3. Start Smart View and access the environment for which you want to capture trace.

4. Using Smart View, REST API, or EPM Automate, execute the activities that exert heavy
processing load on the environment. For example, open forms in Smart View so that
Fiddler can record your activity.

Fiddler records the processes that you initiated.

Appendix B
Creating HAR Files

B-3

5. In Fiddler, complete these steps:

a. Select File, then Export Sessions, and then either All Sessions or
Selected Sessions. If you were connected to other web sites while
running Fiddler, select Selected Sessions to choose the sessions relevant
to the environment.

b. In Select Export Format, select HTTPArchive v1.1 as the export
format.

c. Click Next.

d. In Export As HTTPArcive v1.1, select the directory where you want to
store the file and specify a file name.

e. Click Save.

Appendix B
Creating HAR Files

B-4

Creating Replay Files
A replay file is a CSV file that lists the credentials (user name and password) and the name of
the HAR files that are to be run to load the system using the replay EPM Automate
command.

Ensure that the user name and password that you specify has the rights to run the activities
included in the HAR file.

On executing the replay command, EPM Automate runs each row in the replay file in parallel
to exert load on the service. For example, if your replay file contains 10 rows, EPM Automate
replays 10 sessions so that you can perform tests to verify that user experience is acceptable
when the service is under specified load. Each activity included in the HAR file is run serially.

See replay for information on running the replay command.

To create a replay file:

1. Open Microsoft Office Excel and start a new worksheet.

2. Enter a user name, password, and the location of a HAR file in Columns A, B, and C
respectively of row 1.

Repeat this step to create additional rows.

Note:

You must specify the absolute path to the location of the HAR file. Use slash (/)
as directory separator in file paths; do not use back slashes (\).

3. Save the file

4. In Save As, complete these steps:

a. Select the directory where you want to store the replay file.

b. In File Name, specify a name, and in Save as type, select CSV (Comma
delimited) (*.csv).

c. Click Save.

A sample replay file may be as follows:

Appendix B
Creating Replay Files

B-5

Generating Trace Files
While running the replay command, you can generate trace files to share with Oracle
Support to troubleshoot issues. Oracle Support uses trace files to understand how the
environment handled an Oracle Smart View for Office activity.

You use the optional trace=true parameter with the replay command to generate
trace files in XML format. If you use this parameter, for each activity in the HAR file,
EPM Automate creates a trace file that contains Smart View response to the activity.

Trace files are named trace-N.xml; for example, trace-1.xml where N is a counter
that starts at 1. If multiple identically named HAR files are specified in the replay file,
EPM Automate consolidates the trace files in one folder.

Trace files related to a HAR file are stored in a folder within the directory from which
you run EPM Automate. EPM Automate creates one folder for each HAR file listed in
the replay file. EPM Automate uses a combination of current server system time and
HAR file name in YYYY_MM_DD_HH_MM_SS_HAR_FILE_NAME format to name the folders.
For example, if HAR file name is forecast1.har, the folder name may be
2016_06_08_10_21_42_forecast1.

A Sample Replay Session
Describes how to run the replay command using multiple HAR files.

This section assumes the following:

• You created the following HAR files. Each HAR file may contain the same set of
activities. See Creating HAR Files for detailed information.

– C:\Oracle\EPM Automate\forecast_vision_plan1.har
– C:\Oracle\EPM Automate\forecast_vision_plan2.har
– C:\Oracle\EPM Automate\forecast_plan2.har

• You created a replay file C:/Oracle/EPM Automate/vision_forecast_replay.csv
with the following content (see Creating Replay Files for details):

Note:

Use slash (/) as directory separator in file paths in the replay file; do not
use back slashes (\).

john.doe@example.com,examplePwd,C:/Oracle/EPM Automate/
forecast_vision_plan1.har
john.doe@example.com,examplePwd,C:/Oracle/EPM Automate/
forecast_vision_plan2.har
john.doe@example.com,examplePwd,C:/Oracle/EPM Automate/
forecast_plan2.har

To run the replay command:

Appendix B
Generating Trace Files

B-6

1. In a Command Prompt window, navigate to the directory; for example, C:\Oracle\EPM
Automate\bin, where EPM Automate is installed.

2. Sign in to an environment as a Service Administrator and then execute the replay
command:

epmautomate login john.doe@example.com examplePassword https://test-cloud-
pln.pbcs.us1.oraclecloud.com myIdentityDomain
epmautomate replay "c:/Oracle/EPM Automate/vision_forecast_replay.csv"
duration=12 lagTime=5.5 trace=true
EPM Automate displays replay information in the console and ends processing after the
specified duration (12 minutes in the preceding example). It also creates trace folders
and files because the preceding command includes the trace=true parameter.
Because the command was executed from C:\Oracle\EPM Automate\bin, EPM
Automate stored the trace files in the following folders. Note that these folders are named
based on the HAR file names.

• C:\Oracle\EPM Automate\bin\2017_01_08-12_52_37-forecast_plan2-
jdoe@example.com

• C:\Oracle\EPM Automate\bin\2017_01_08-12_52_37-forecast_vision_plan1-
jdoe@example.com

• C:\Oracle\EPM Automate\bin\2017_01_08-12_52_37-forecast_vision_plan2-
jdoe@example.com

3. Sign out of the environment:

epmautomate logout

Appendix B
A Sample Replay Session

B-7

C
Handling Special Characters

Oracle Enterprise Performance Management Cloud passwords, proxy passwords, and
command parameter values may contain special characters. Special handling is required for
EPM Automate to handle such characters.

The examples in this section use a sample password to illustrate the use of special
characters.

Oracle recommends that you enclose parameter and value pairs in double quotation marks.

Windows

These special characters must be escaped using double quotation marks (") around the
special character or around the parameter value containing the special character.

Note:

EPM Automate cannot be run from a folder that contains & in its name; for example,
C:\Oracle\A&B.

Table C-1 Special Character Handling: Windows

Character Description Escaped Example

) Close parenthesis • Example")"pwd1 or
• "Example)pwd1"

< Less than • Example"<"pwd1 or
• "Example<pwd1"

> Greater than • Example">"pwd1 or
• "Example>pwd1"

& Ampersand • Example"&"pwd1 or
• "Example&pwd1"

| Pipe • Example"|"pwd1 or
• "Example|pwd1"

" Quotation mark • Example"""pwd1 or
• "Example"pwd1"

Using Exclamation Mark in Plain Text Passwords in Windows Batch Files

Use of exclamation mark (!) in plain text passwords in Windows batch files used with EPM
Automate should be handled as follows:

1. Use two caret symbols (^^) before the exclamation mark as the escape character. For
example, if the password is Welc0me!, encode it as Welc0me^^!

C-1

2. Update the bach file to set DisableDelayedExpansion at the beginning of the file
by including the following declaration:
setlocal DisableDelayedExpansion

3. Remove setlocal EnableExtensions EnableDelayedExpansion declaration, if
present, in the script.

UNIX/Linux

On UNIX and Linux operating systems, special characters must be escaped using a
backslash (\).

Note:

• To escape ! (exclamation mark), use a single quotation mark around the
password or use the back slash (\) as the escape character.

• To escape \, $, ', and ", use a double quotation mark around the
password or use the back slash (\) as the escape character.

Table C-2 Special Character Handling: UNIX/Linux

Character Description Escaped Example

(Open parenthesis Example\(pwd1
) Close parenthesis Example\)pwd1
< Less than Example\<pwd1
> Greater than Example\>pwd1
` Apostrophe Example\'pwd1
! exclamation mark • 'Example!pwd1' or

• Example\!pwd1
Hash Example\#pwd1
& Ampersand Example\&pwd1
| Pipe Example\|pwd1
; Semicolon Example\;pwd1
. Period Example\.pwd1
" Quotation mark • Example\"pwd1 or

• "Example\"pwd1"
' Single quotation mark • Example\'pwd1 or

• "Example\'pwd1"
$ Dollar sign • Example\$pwd1 or

• "Example\$pwd1"
\ Back slash • Example\\pwd1 or

• "Example\\pwd1"

Appendix C

C-2

Using Exclamation Mark in Plain Text Passwords in UNIX or Linux Scripts

In UNIX/Linux scripts, if an EPM Automate password stored in a shell variable contains
special characters, use three back slashes as the escape sequence and then enclose the
string in double quotation marks. For example, the password lzi[ACO(e*7Qd)jE included in
the shell variable password should be scripted as follows:
password="lzi[ACO\\\(e*7Qd\\\)jE"

Appendix C

C-3

D
Commands Specific to Each EPM Cloud
Service

• Account Reconciliation Commands

• Financial Consolidation and Close Commands

• Narrative Reporting Commands

• Oracle Enterprise Data Management Cloud Commands

• Planning, Planning Modules, FreeForm, Strategic Workforce Planning, and Sales
Planning Commands

• Profitability and Cost Management Commands

• Enterprise Profitability and Cost Management Commands

• Tax Reporting Commands

D-1

Account Reconciliation Commands

EPM Automate Commands for Account Reconciliation

addUsers

addUsersToGroup

addUsersToTeam

addUserToGroups

archiveTmTransactions

assignRole

cloneEnvironment

copyFileFromInstance

copyFromObjectStorage

copySnapshotFromInstance

copyToObjectStorage

createGroups

createReconciliations

deleteFile

deleteGroups

downloadFile

encrypt

exportAccessControl

exportARApplicationProperties

exportBackgroundImage

exportDataManagement

exportLogoImage

exportMapping

exportSnapshot

feedback

getApplicationAdminMode

getDailyMaintenanceStartTime

getIdleSessionTimeout

getIPAllowlist

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importARApplicationProperties

importBackgroundImage

importLogoImage

importBalances

importDataManagement

importMapping

importPreMappedBalances

importPreMappedTransactions

importProfiles

importRates

importRCAttributeValues

importReconciliationAttributes

importSnapshot

importTMAttributeValues

importTmPremappedTransactions

invalidLoginReport

listBackups

listFiles

login

logout

provisionReport

purgeArchivedTmTransactions

purgeTmTransactions

recreate

refreshCube

removeUserFromGroups

removeUsers

removeUsersFromGroup

removeUsersFromTeam

renameSnapshot

replay

resetService

restoreBackup

roleAssignmentAuditReport

roleAssignmentReport

runAutomatch

runBatch

runComplianceReport

runDailyMaintenance

runDataRule

runDMReport

runIntegration

runMatchingReport

sendMail

setApplicationAdminMode

setDailyMaintenanceStartTime

setDemoDates

setEncryptionKey

setIdleSessionTimeout

setIPAllowlist

setManualDataAccess

setPeriodStatus

setVirusScanOnFileUploads

skipUpdate

unassignRole

updateUsers

upgrade

uploadFile

userAuditReport

userGroupReport

Appendix D
Account Reconciliation Commands

D-2

Financial Consolidation and Close Commands

EPM Automate Commands for Financial Consolidation and Close

addUsers

addUsersToGroup

addUsersToTeam

addUserToGroups

applicationAdminMode

assignRole

clearDataByProfile

cloneEnvironment
copyDataByProfile

copyFileFromInstance

copyFromObjectStorage

copyOwnershipDataToNextYear

copySnapshotFromInstance

copyToObjectStorage

createGroups

deleteFile

deleteGroups

deployEJTemplates

deployFormTemplates

deployTaskManagerTemplate

downloadFile

executeReportBurstingDefinition

exportDataManagement

exportEssbaseData

encrypt

exportAppAudit

exportAppSecurity

exportConsolidationJournals

exportData

exportEJJournals

exportJobConsole

exportLibraryDocument

exportMapping

exportMetadata
exportOwnershipData

exportSnapshot

exportTaskManagerAccessControl

exportValidIntersections

exportSnapshot

exportTaskManagerAccessControl

exportValidIntersections

feedback

getApplicationAdminMode

getDailyMaintenanceStartTime

getEssbaseQryGovExecTime

getIdleSessionTimeout

getIPAllowlist
getSubstVar

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importAppSecurity

importConsolidationJournals

importData

importDataManagement

importJobConsole

importMapping

importMetadata

importOwnershipData

importSnapshot

importSupplementalCollectionData

importSupplementalData

importValidIntersections

invalidLoginReport

listBackups

listFiles

login

logout

maskData

provisionReport

recomputeOwnershipData

recreate

refreshCube

removeUserFromGroups

removeUsers

removeUsersFromGroup

removeUsersFromTeam

renameSnapshot

replay

resetService

restoreBackup

restructureCube

roleAssignmentAuditReport

roleAssignmentReport

runBatch

runBusinessRule

runDailyMaintenance

runDataRule

runDMReport

runIntegration

runRuleSet

runSupplementalDataReport

runTaskManagerReport

sendMail

setApplicationAdminMode

setDailyMaintenanceStartTi
me

setDemoDates

setEJJournalStatus

setEncryptionKey

setEssbaseQryGovExecTim
e

setIdleSessionTimeout

setIPAllowlist

setVirusScanOnFileUploads

setManualDataAccess

setSubstVars

simulateConcurrentUsage

skipUpdate

snapshotCompareReport

unassignRole

updateUsers

upgrade

uploadFile

userAuditReport

userGroupReport

validateConsolidationMetad
ata

Appendix D
Financial Consolidation and Close Commands

D-3

Narrative Reporting Commands

EPM Automate Commands for Narrative Reporting

addUsers

addUsersToGroup

addUserToGroups

assignRole

cloneEnvironment
copyFileFromInstance

copyFromObjectStorage

copyToObjectStorage

createGroups

createNRSnapshot

deleteFile

deleteGroups

downloadFile

encrypt

executeBurstDefinition

exportLibraryArtifact

feedback

getDailyMaintenanceStartTime

getIdleSessionTimeout

getIPAllowlist

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importLibraryArtifact

invalidLoginReport

listBackups

listFiles

login

logout

provisionReport

recreate

removeUserFromGroups

removeUsers

removeUsersFromGroup

replay

resetService

restoreBackup

roleAssignmentAuditReport

roleAssignmentReport

runDailyMaintenance

sendMail

setDailyMaintenanceStartTime

setEncryptionKey

setIdleSessionTimeout

setIPAllowlist

setManualDataAccess

setVirusScanOnFileUploads

skipUpdate

unassignRole

updateUsers

upgrade

uploadFile

userAuditReport

userGroupReport

Appendix D
Narrative Reporting Commands

D-4

Oracle Enterprise Data Management Cloud Commands

EPM Automate Commands for Oracle Enterprise Data Management Cloud

addUsers

addUsersToGroup

addUserToGroups

assignRole

cloneEnvironment
copyFileFromInstance

copyFromObjectStorage

copySnapshotFromInstance

copyToObjectStorage

createGroups

deleteFile

deleteGroups

downloadFile

encrypt

exportDimension

exportDimensionMapping

exportSnapshot

extractDimension

feedback

getDailyMaintenanceStartTime

getIdleSessionTimeout

getIPAllowlist

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importDimension

importSnapshot

invalidLoginReport

listBackups

listFiles

loadViewpoint

login

logout

provisionReport

recreate

removeUserFromGroups

removeUsers

removeUsersFromGroup

renameSnapshot

replay

resetService

restoreBackup

roleAssignmentAuditReport

roleAssignmentReport

runDailyMaintenance

sendMail

setDailyMaintenanceStartTime

setEncryptionKey

setIdleSessionTimeout

setIPAllowlist

setManualDataAccess

setVirusScanOnFileUploads

skipUpdate

unassignRole

updateUsers

upgrade

uploadFile

userAuditReport

userGroupReport

Appendix D
Oracle Enterprise Data Management Cloud Commands

D-5

Planning, Planning Modules, FreeForm, Strategic Workforce
Planning, and Sales Planning Commands

EPM Automate Commands for Planning, Planning Modules, FreeForm, Strategic Workforce Planning, and
Sales Planning

addUsers

addUsersToGroup

addUserToGroups

applicationAdminMode

assignRole

autoPredict * See footnote

clearCube

cloneEnvironment
copyFileFromInstance

copyFromObjectStorage

copySnapshotFromInstance

copyToObjectStorage

createGroups

deleteFile

deleteGroups

dismissIPMInsights**

downloadFile

enableQueryTracking

encrypt

executeAggregationProcess

executeReportBurstingDefinition

exportAppAudit

exportAppSecurity

exportCellLevelSecurity

exportData

exportDataManagement

exportEssbaseData

exportJobConsole

exportLibraryDocument

exportMapping

exportMetadata

exportSnapshot

exportValidIntersections

feedback

getApplicationAdminMode

getDailyMaintenanceStartTime

getEssbaseQryGovExecTime

getIdleSessionTimeout

getIPAllowlist

getSubstVar

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importAppAudit

importAppSecurity

importCellLevelSecurity

importData

importDataManagement

importJobConsole

importMapping

importMetadata

importSnapshot

importValidIntersections

invalidLoginReport

listBackups

listFiles

login

logout

maskData

mergeDataSlices

provisionReport

recreate

refreshCube

removeUserFromGroups

removeUsers

removeUsersFromGroup

renameSnapshot

replay

resetService

restoreBackup

restructureCube

roleAssignmentAuditReport

roleAssignmentReport

runBatch

runBusinessRule

runDailyMaintenance

runDataRule

runDMReport

runIntegration

runPlanTypeMap

runRuleSet

sendMail

setApplicationAdminMode

setDailyMaintenanceStartTime

setEncryptionKey

setEssbaseQryGovExecTime

setIdleSessionTimeout

setIPAllowlist

setManualDataAccess

setSubstVars

setVirusScanOnFileUploads

simulateConcurrentUsage

skipUpdate

snapshotCompareReport

sortMember

unassignRole

updateUsers

upgrade

uploadFile

userAuditReport

userGroupReport

* This command is not supported for FreeForm, Strategic Workforce Planning and Sales Planning.
** This command is not supported for FreeForm.

Appendix D
Planning, Planning Modules, FreeForm, Strategic Workforce Planning, and Sales Planning Commands

D-6

Profitability and Cost Management Commands

EPM Automate Commands for Profitability and Cost Management

addUsers

addUsersToGroup

addUserToGroups

applyDataGrants

assignRole

clearPOV

cloneEnvironment
copyFileFromInstance

copyFromObjectStorage

copyPOV

copySnapshotFromInstance

copyToObjectStorage

createGroups

deleteFile

deleteGroups

deletePOV

deployCube

downloadFile

enableApp

encrypt

exportDataManagement

exportMapping

exportQueryResults

exportSnapshot

exportTemplate

feedback

getDailyMaintenanceStartTime

getEssbaseQryGovExecTime

getIdleSessionTimeout

getIPAllowlist

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importDataManagement

importMapping

importSnapshot

importTemplate

invalidLoginReport

listBackups

listFiles

loadData

loadDimData

login

logout

mergeSlices

optimizeASOCube

programDocumentationReport

provisionReport

recreate

removeUserFromGroups

removeUsers

removeUsersFromGroup

renameSnapshot

replay

resetService

restoreBackup

roleAssignmentAuditReport

roleAssignmentReport

runBatch

runCalc

runDailyMaintenance

runDataRule

runDMReport

runIntegration

sendMail

setDailyMaintenanceStartTime

setEncryptionKey

setEssbaseQryGovExecTime

setIdleSessionTimeout

setIPAllowlist

setManualDataAccess

skipUpdate

setVirusScanOnFileUploads

unassignRole

updateUsers

upgrade

uploadFile

userAuditReport

userGroupReport

Appendix D
Profitability and Cost Management Commands

D-7

Enterprise Profitability and Cost Management Commands

EPM Automate Commands for Enterprise Profitability and Cost Management

addUsers

addUsersToGroup

addUserToGroups

applicationAdminMode

assignRole

calculateModel

clearCube

copyDataByPointOfView

cloneEnvironment

copyFileFromInstance

copyFromObjectStorage

clearDataByPointOfView

copySnapshotFromInstance

copyToObjectStorage

createGroups

deleteFile

deleteGroups

downloadFile

deletePointOfView

enableQueryTracking

encrypt

executeAggregationProcess

executeReportBurstingDefinition

exportAppAudit

exportAppSecurity

exportCellLevelSecurity

exportData

exportDataManagement

exportEssbaseData

exportJobConsole

exportLibraryDocument

exportMapping

exportMetadata

exportMetadata

exportSnapshot

exportValidIntersections

feedback

getApplicationAdminMode

getDailyMaintenanceStartTime

getEssbaseQryGovExecTime

getIdleSessionTimeout

getIPAllowlist

getSubstVar

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importAppAudit

importAppSecurity

importCellLevelSecurity

importData

importDataManagement

importJobConsole

importMapping

importMetadata

importSnapshot

importValidIntersections

invalidLoginReport

listBackups

listFiles

login

logout

maskData

mergeDataSlices

provisionReport

recreate

refreshCube

removeUserFromGroups

removeUsers

removeUsersFromGroup

renameSnapshot

replay

resetService

restoreBackup

roleAssignmentAuditReport

roleAssignmentReport

runBatch

runDailyMaintenance

runDataRule

runDMReport

runIntegration

sendMail

setApplicationAdminMode

setDailyMaintenanceStartTime

setEncryptionKey

setEssbaseQryGovExecTime

setIdleSessionTimeout

setIPAllowlist

setManualDataAccess

setSubstVars

setVirusScanOnFileUploads

skipUpdate

snapshotCompareReport

sortMember

unassignRole

updateUsers

upgrade

uploadFile

userAuditReport

userGroupReport

validateModel

Appendix D
Enterprise Profitability and Cost Management Commands

D-8

Tax Reporting Commands

EPM Automate Commands for Tax Reporting

addUsers

addUsersToGroup

addUsersToTeam

addUserToGroups

applicationAdminMode

assignRole

clearDataByProfile

copyDataByProfile

copyFileFromInstance

copyFromObjectStorage

copyOwnershipDataToNextYear

copySnapshotFromInstance

copyToObjectStorage

createGroups

deleteFile

deleteGroups

deployFormTemplates

downloadFile

encrypt

executeReportBurstingDefinition

exportAppAudit

exportCellLevelSecurity

exportData

exportDataManagement

exportEssbaseData

exportJobConsole

exportLibraryDocument

exportMapping

exportMetadata
exportOwnershipData

exportSnapshot

exportTaskManagerAccessControl

exportValidIntersections

feedback

getApplicationAdminMode

getDailyMaintenanceStartTime

getEssbaseQryGovExecTime

getIdleSessionTimeout

getIPAllowlist

getSubstVar

getVirusScanOnFileUploads

groupAssignmentAuditReport

help

importAppSecurity

importCellLevelSecurity

importData

importDataManagement

importJobConsole

importMapping

importMetadata

importOwnershipData

importSnapshot

importSupplementalCollectionData

importSupplementalData

importValidIntersections

invalidLoginReport

listBackups

listFiles

login

logout

maskData

provisionReport

recomputeOwnershipData

recreate

refreshCube

removeUserFromGroups

removeUsers

removeUsersFromGroup

removeUsersFromTeam

renameSnapshot

replay

resetService

restoreBackup

restructureCube

roleAssignmentAuditReport

roleAssignmentReport

runBatch

runBusinessRule

runDailyMaintenance

runDataRule

runDMReport

runIntegration

runRuleSet

runSupplementalDataReport

runTaskManagerReport

sendMail

setApplicationAdminMode

setDailyMaintenanceStartTime

setDemoDates

setEncryptionKey

setEssbaseQryGovExecTime

setIdleSessionTimeout

setIPAllowlist

setManualDataAccess

setSubstVars

setVirusScanOnFileUploads

simulateConcurrentUsage

skipUpdate

snapshotCompareReport

unassignRole

upgrade

updateUsers

uploadFile

userAuditReport

userGroupReport

Appendix D
Tax Reporting Commands

D-9

	Contents
	Documentation Accessibility
	Documentation Feedback
	1 About EPM Automate
	Installing EPM Automate
	Capacity and Port Requirements
	Supported Platforms
	Java Runtime Environment and EPM Automate
	Using OpenJDK
	Windows Instructions
	Linux/UNIX/macOS X Instructions
	Server-side Execution of EPM Automate Commands

	Understanding EPM Automate Encryption Level
	Using OAuth 2.0 Authorization Protocol with OCI (Gen2) Environments

	2 Command Reference
	About Running EPM Automate Commands
	Prerequisites
	Default File Locations
	Enable Transport Layer Security Protocol 1.2
	Using EPM Automate Commands
	Specifying Multiple Values for a Parameter
	Behavior During Daily Maintenance

	Running EPM Automate
	Windows
	Linux
	Running Multiple Instances of EPM Automate

	Commands at a Glance
	EPM Automate Commands
	addUsers
	addUsersToGroup
	addUsersToTeam
	addUserToGroups
	applicationAdminMode
	applyDataGrants
	archiveTmTransactions
	assignRole
	autoPredict
	calculateModel
	clearCube
	clearDataByPointOfView
	clearDataByProfile
	clearPOV
	cloneEnvironment
	copyDataByPointOfView
	copyDataByProfile
	copyFileFromInstance
	copyFromObjectStorage
	copyOwnershipDataToNextYear
	copyPOV
	copySnapshotFromInstance
	copyToObjectStorage
	createGroups
	createNRSnapshot
	createReconciliations
	deleteFile
	deleteGroups
	deletePointOfView
	deletePOV
	deployCube
	deployEJTemplates
	deployFormTemplates
	deployTaskManagerTemplate
	dismissIPMInsights
	downloadFile
	enableApp
	enableQueryTracking
	encrypt
	executeAggregationProcess
	executeBurstDefinition
	executeReportBurstingDefinition
	exportAccessControl
	exportAppAudit
	exportAppSecurity
	exportARApplicationProperties
	exportBackgroundImage
	exportCellLevelSecurity
	exportConsolidationJournals
	exportData
	exportDataManagement
	exportDimension
	exportDimensionMapping
	exportEJJournals
	exportEssbaseData
	exportJobConsole
	exportLibraryArtifact
	exportLibraryDocument
	exportLogoImage
	exportMapping
	exportMetadata
	exportOwnershipData
	exportQueryResults
	exportSnapshot
	exportTemplate
	exportTaskManagerAccessControl
	exportValidIntersections
	extractDimension
	feedback
	getApplicationAdminMode
	getDailyMaintenanceStartTime
	getEssbaseQryGovExecTime
	getIdleSessionTimeout
	getIPAllowlist
	getSubstVar
	getVirusScanOnFileUploads
	groupAssignmentAuditReport
	help
	importAppAudit
	importAppSecurity
	importARApplicationProperties
	importBackgroundImage
	importBalances
	importCellLevelSecurity
	importConsolidationJournals
	importData
	importDataManagement
	importDimension
	importJobConsole
	importLibraryArtifact
	importLogoImage
	importMapping
	importMetadata
	importOwnershipData
	importPreMappedBalances
	importPreMappedTransactions
	importProfiles
	importRates
	importRCAttributeValues
	importReconciliationAttributes
	importSnapshot
	importSupplementalCollectionData
	importSupplementalData
	importTemplate
	importTMAttributeValues
	importTmPremappedTransactions
	importValidIntersections
	invalidLoginReport
	listBackups
	listFiles
	loadData
	loadDimData
	loadViewpoint
	login
	logout
	maskData
	mergeDataSlices
	mergeSlices
	optimizeASOCube
	programDocumentationReport
	provisionReport
	purgeArchivedTmTransactions
	purgeTmTransactions
	recomputeOwnershipData
	recreate
	refreshCube
	removeUserFromGroups
	removeUsers
	removeUsersFromGroup
	removeUsersFromTeam
	renameSnapshot
	replay
	resetService
	restoreBackup
	restructureCube
	roleAssignmentAuditReport
	roleAssignmentReport
	runAutomatch
	runBatch
	runBusinessRule
	runCalc
	runComplianceReport
	runDailyMaintenance
	runDataRule
	runDMReport
	runIntegration
	runMatchingReport
	runPlanTypeMap
	runRuleSet
	runSupplementalDataReport
	runTaskManagerReport
	sendMail
	setApplicationAdminMode
	setDailyMaintenanceStartTime
	setDemoDates
	setEJJournalStatus
	setEncryptionKey
	setEssbaseQryGovExecTime
	setIdleSessionTimeout
	setIPAllowlist
	setManualDataAccess
	setPeriodStatus
	setSubstVars
	setVirusScanOnFileUploads
	simulateConcurrentUsage
	skipUpdate
	snapshotCompareReport
	sortMember
	unassignRole
	updateUsers
	upgrade
	uploadFile
	userAuditReport
	userGroupReport
	validateConsolidationMetadata
	validateModel

	Exit Codes

	3 Command Execution Sample Scenarios
	About Copying Sample Scripts
	Sample Scenarios for All Services
	Back up Application Snapshot to a Computer
	Inform Users of Daily Maintenance Completion
	Copying a Snapshot to or from Oracle Object Storage
	Create Users and Assign Them to Predefined Roles
	Count the Number of Licensed Users (Users Assigned to Roles)
	Create Audit Reports of Users Assigned to Roles
	Create Role Assignment and Revocation Audit Report
	Mask Access Logs and Activity Report to Comply with Privacy Laws
	Automate Activity Report Downloads to a Local Computer
	Download Access Logs from an Environment
	Automate the Cloning of Environments
	Clone from Primary to Standby Environment Daily After Daily Maintenance is Complete on the Primary Environment
	Remove Unnecessary Files from an Environment
	Find and Download Files from an Environment
	Recreate an Old EPM Cloud Environment for Audits
	Automate Database Access Audit and Compliance
	Replicate Users and Predefined Role Assignments
	Replicating the Users of One Identity Domain in Another
	Replicating Predefined Role Assignments from One Environment to Another

	Create a Quarterly EPM Cloud Upgrade Cadence
	Windows Script and Instructions
	UNIX/Linux Script and Instructons
	Groovy Script

	Create a Quarterly EPM Cloud Upgrade Cadence with Six Week Test Cycles

	Sample Scenarios for Planning, Consolidation, Tax Reporting, and Enterprise Profitability and Cost Management
	Automate the Export of a Large Number of Cells from an Aggregate Storage Cube
	Import Metadata into an Application
	Import Data, Run a Calculation Script, and Copy Data from a Block Storage Database to an Aggregate Storage Database
	Export and Download Metadata and Data
	Export and Download Application Data
	Automate the Archiving of Application Audit Records
	Windows Script
	Linux Script

	Upload a Data File to an Environment and Run a Data Load Rule
	Automate Daily Data Integration

	Sample Scenarios for Account Reconciliation
	Load Preformatted Balances into a Period
	Upload and Import a Backup Snapshot
	Archive Old Matched Transactions and Purge Archived Transactions

	Sample Scenarios for Profitability and Cost Management
	Import Metadata into Application
	Import Data and Run Program Rules

	Sample Scenarios for Oracle Enterprise Data Management Cloud
	Synchronizing Oracle Enterprise Data Management Cloud Dimensions and Mappings with EPM Cloud Applications
	Synchronizing EPM Cloud Dimensions with Oracle Enterprise Data Management Cloud Applications

	Automating Script Execution
	Monitoring EPM Automate Activities

	4 Running Commands without Installing EPM Automate
	Environments that Support Server-side Command Execution
	Information Sources
	Supported Commands
	Methods to be Used for Running EPM Automate Using Server-Side Groovy
	Cloning an Environment Using a Server-Side Groovy Script
	Emailing the Activity Report Using a Server-side Groovy Script

	5 Replicating an EPM Cloud Environment
	Setting up Daily Replication
	Setting up On-Demand Replications
	Configuring the Secondary Environment

	A Preparing to Run the simulateConcurrentUsage Command
	Creating the requirement.csv File
	Creating the Input Files
	Open Form Input File
	Save Form Input File
	Run Business Rule Input File
	Run Data Rule Input File
	Ad Hoc Grid Input File
	Execute Report Input File
	Execute Book Input File

	Creating the UserVarMemberMapping.csv File
	Creating and Uploading the Input ZIP File to the Environment
	Sample Simulate Concurrent Usage Report

	B Preparing to Run the Replay Command
	About the Replay Command
	Prerequisites
	Creating HAR Files
	Creating Replay Files
	Generating Trace Files
	A Sample Replay Session

	C Handling Special Characters
	D Commands Specific to Each EPM Cloud Service
	Account Reconciliation Commands
	Financial Consolidation and Close Commands
	Narrative Reporting Commands
	Oracle Enterprise Data Management Cloud Commands
	Planning, Planning Modules, FreeForm, Strategic Workforce Planning, and Sales Planning Commands
	Profitability and Cost Management Commands
	Enterprise Profitability and Cost Management Commands
	Tax Reporting Commands

