
 

[1] Oracle® Fusion Middleware
Administering Clusters for Oracle WebLogic Server 12.1.3 

12c (12.1.3) 

E41944-06

August 2015

This document describes clusters and provides information 
for planning, implementing, and supporting a production 
environment that includes clusters in WebLogic Server 12.1.3. 



Oracle Fusion Middleware Administering Clusters for Oracle WebLogic Server 12.1.3, 12c (12.1.3) 

E41944-06

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services, except as set forth in an applicable agreement between you and 
Oracle.



iii

Contents

Preface ...............................................................................................................................................................    xv

Documentation Accessibility ...................................................................................................................     xv
Conventions ...............................................................................................................................................     xv

1 Introduction and Roadmap

1.1 Document Scope and Audience................................................................................................   1-1
1.2 Guide to this Document .............................................................................................................   1-1
1.3 Related Documentation..............................................................................................................   1-2
1.4 New and Changed Clustering Features in This Release .......................................................   1-2

2 Understanding WebLogic Server Clustering

2.1 What Is a WebLogic Server Cluster?........................................................................................   2-1
2.2 What Are Dynamic Clusters?....................................................................................................   2-1
2.3 How Does a Cluster Relate to a Domain? ...............................................................................   2-2
2.4 What Are the Benefits of Clustering?.......................................................................................   2-2
2.5 What Are the Key Capabilities of a Cluster? ..........................................................................   2-3
2.6 What Types of Objects Can Be Clustered? ..............................................................................   2-4
2.6.1 Servlets and JSPs .................................................................................................................   2-5
2.6.2 EJBs and RMI Objects..........................................................................................................   2-5
2.6.3 JMS and Clustering..............................................................................................................   2-5
2.7 What Types of Objects Cannot Be Clustered? ........................................................................   2-6

3 Communications In a Cluster

3.1 Choosing WebLogic Server Cluster Messaging Protocols....................................................   3-1
3.1.1 Using IP Multicast ...............................................................................................................   3-1
3.1.1.1 Multicast and Cluster Configuration.........................................................................   3-3
3.1.1.1.1 If Your Cluster Spans Multiple Subnets In a WAN .........................................   3-3
3.1.1.1.2 Firewalls Can Break Multicast Communication ...............................................   3-3
3.1.1.1.3 Do Not Share the Cluster Multicast Address with Other Applications........   3-4
3.1.1.1.4 If Multicast Storms Occur ....................................................................................   3-4
3.1.2 One-to-Many Communication Using Unicast.................................................................   3-4
3.1.2.1 WebLogic Server Unicast Groups ..............................................................................   3-4
3.1.2.2 Assigning Server Instances to Groups.......................................................................   3-5
3.1.2.3 Unicast Configuration..................................................................................................   3-7
3.1.2.4 Considerations When Using Unicast.........................................................................   3-7



iv

3.1.3 Considerations for Choosing Unicast or Multicast.........................................................   3-8
3.2 Peer-to-Peer Communication Using IP Sockets .....................................................................   3-9
3.2.1 Pure-Java Versus Native Socket Reader Implementations............................................   3-9
3.2.2 Configuring Reader Threads for Java Socket Implementation..................................    3-10
3.2.2.1 Determining Potential Socket Usage ......................................................................    3-10
3.3 Client Communication via Sockets .......................................................................................    3-12
3.4 Cluster-Wide JNDI Naming Service .....................................................................................    3-12
3.4.1 How WebLogic Server Creates the Cluster-Wide JNDI Tree.....................................    3-12
3.4.2 How JNDI Naming Conflicts Occur ..............................................................................    3-14
3.4.2.1 Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts .....................    3-14
3.4.3 How WebLogic Server Updates the JNDI Tree............................................................    3-15
3.4.4 Client Interaction with the Cluster-Wide JNDI Tree...................................................    3-15

4 Understanding Cluster Configuration

4.1 Cluster Configuration and config.xml .....................................................................................   4-1
4.2 Role of the Administration Server............................................................................................   4-2
4.2.1 What Happens if the Administration Server Fails?........................................................   4-3
4.3 How Dynamic Configuration Works.......................................................................................   4-3
4.4 Application Deployment for Clustered Configurations .......................................................   4-4
4.4.1 Deployment Methods..........................................................................................................   4-4
4.4.2 Introduction to Two-Phase Deployment..........................................................................   4-5
4.4.2.1 First Phase of Deployment ..........................................................................................   4-5
4.4.2.2 Second Phase of Deployment .....................................................................................   4-5
4.4.3 Guidelines for Deploying to a Cluster .............................................................................   4-5
4.4.3.1 WebLogic Server Supports "Relaxed Deployment" Rules......................................   4-6
4.4.3.1.1 Deployment to a Partial Cluster is Allowed......................................................   4-6
4.4.3.1.2 Deploying to Complete Clusters in WebLogic Server ....................................   4-6
4.4.3.1.3 Pinned Services can be Deployed to Multiple Managed Servers...................   4-6
4.5 Methods of Configuring Clusters .............................................................................................   4-7

5 Load Balancing in a Cluster

5.1 Load Balancing for Servlets and JSPs.......................................................................................   5-1
5.1.1 Load Balancing with a Proxy Plug-in ...............................................................................   5-1
5.1.1.1 How Session Connection and Failover Work with a Proxy Plug-in.....................   5-2
5.1.2 Load Balancing HTTP Sessions with an External Load Balancer.................................   5-2
5.1.2.1 Load Balancer Configuration Requirements ............................................................   5-2
5.1.2.2 Load Balancers and the WebLogic Session Cookie .................................................   5-2
5.1.2.3 Related Programming Considerations .....................................................................   5-3
5.1.2.4 How Session Connection and Failover Works with a Load Balancer ..................   5-3
5.2 Load Balancing for EJBs and RMI Objects ..............................................................................   5-3
5.2.1 Round-Robin Load Balancing ...........................................................................................   5-4
5.2.2 Weight-Based Load Balancing ..........................................................................................   5-4
5.2.3 Random Load Balancing.....................................................................................................   5-5
5.2.4  Server Affinity Load Balancing Algorithms ...................................................................   5-5
5.2.4.1 Server Affinity and Initial Context.............................................................................   5-6
5.2.4.2 Server Affinity and IIOP Client Authentication Using CSIv2 ...............................   5-6
5.2.4.3 Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity ................   5-6



v

5.2.4.3.1 Server Affinity Examples .....................................................................................   5-7
5.2.5 Parameter-Based Routing for Clustered Objects.............................................................   5-9
5.2.6 Optimization for Collocated Objects.................................................................................   5-9
5.2.6.1 Transactional Collocation.........................................................................................    5-10
5.2.7 XA Transaction Cluster Affinity.....................................................................................    5-11
5.3 Load Balancing for JMS...........................................................................................................    5-12
5.3.1 Server Affinity for Distributed JMS Destinations .......................................................    5-12
5.3.2 Initial Context Affinity and Server Affinity for Client Connections ........................    5-12

6 Failover and Replication in a Cluster

6.1 How WebLogic Server Detects Failures ..................................................................................   6-1
6.1.1 Failure Detection Using IP Sockets ...................................................................................   6-1
6.1.2 The WebLogic Server "Heartbeat".....................................................................................   6-1
6.2 Replication and Failover for Servlets and JSPs ......................................................................   6-2
6.2.1 HTTP Session State Replication.........................................................................................   6-2
6.2.1.1 Requirements for HTTP Session State Replication..................................................   6-3
6.2.1.1.1 Supported Server and Proxy Software...............................................................   6-3
6.2.1.1.2 Load Balancer Requirements ...............................................................................   6-3
6.2.1.1.3 Programming Considerations for Clustered Servlets and JSPs......................   6-4
6.2.1.2 Using Replication Groups ...........................................................................................   6-5
6.2.2 Accessing Clustered Servlets and JSPs Using a Proxy ...................................................   6-6
6.2.2.1 Proxy Connection Procedure ......................................................................................   6-7
6.2.2.1.1 Using URL Rewriting to Track Session Replicas ..............................................   6-8
6.2.2.2 Proxy Failover Procedure............................................................................................   6-8
6.2.3 Accessing Clustered Servlets and JSPs with Load Balancing Hardware ....................   6-8
6.2.3.1 Connection with Load Balancing Hardware............................................................   6-8
6.2.3.2 Failover with Load Balancing Hardware...............................................................    6-10
6.2.4 Session State Replication Across Clusters in a MAN/WAN .....................................    6-11
6.2.4.1 Network Requirements for Cross-cluster Replication .........................................    6-11
6.2.4.1.1 Global Load Balancer.........................................................................................    6-12
6.2.4.1.2 Local Load Balancer ...........................................................................................    6-12
6.2.4.1.3 Replication...........................................................................................................    6-12
6.2.4.1.4 Failover ................................................................................................................    6-13
6.2.4.2 Configuration Requirements for Cross-Cluster Replication ...............................    6-13
6.2.4.3 Configuring Session State Replication Across Clusters.......................................    6-14
6.2.4.4 Configuring a Replication Channel ........................................................................    6-15
6.2.4.5 MAN HTTP Session State Replication ...................................................................    6-15
6.2.4.5.1 Replication Within a MAN ...............................................................................    6-15
6.2.4.5.2 Failover Scenarios in a MAN............................................................................    6-16
6.2.4.5.3 MAN Replication, Load Balancers, and Session Stickiness .........................    6-17
6.2.4.6 WAN HTTP Session State Replication ...................................................................    6-17
6.2.4.6.1 Replication Within a WAN ...............................................................................    6-17
6.2.4.6.2 Failover Scenarios Within a WAN...................................................................    6-18
6.2.4.6.3 Database Configuration for WAN Session State Replication ......................    6-18
6.3 Replication and Failover for EJBs and RMIs........................................................................    6-19
6.3.1 Clustering Objects with Replica-Aware Stubs ............................................................    6-20
6.3.2 Clustering Support for Different Types of EJBs ...........................................................    6-20



vi

6.3.2.1 Clustered EJBHomes ................................................................................................    6-21
6.3.2.2 Clustered EJBObjects.................................................................................................    6-21
6.3.2.2.1 Stateless Session Beans ......................................................................................    6-21
6.3.2.2.2 Stateful Session Beans........................................................................................    6-21
6.3.2.2.3 Failover for Stateful Session EJBs.....................................................................    6-22
6.3.2.3 Entity EJBs ..................................................................................................................    6-23
6.3.2.3.1 Failover for Entity Beans and EJB Handles ...................................................    6-23
6.3.3 Clustering Support for RMI Objects ..............................................................................    6-23
6.3.4 Object Deployment Requirements .................................................................................    6-24
6.3.4.1 Other Failover Exceptions ........................................................................................    6-24

7 Whole Server Migration

7.1 Understanding Server and Service Migration ........................................................................   7-1
7.2 Migration Terminology..............................................................................................................   7-2
7.3 Leasing..........................................................................................................................................   7-3
7.3.1 Features That Use Leasing..................................................................................................   7-3
7.3.2 Types of Leasing ..................................................................................................................   7-3
7.3.3 Determining Which Type of Leasing To Use ..................................................................   7-4
7.3.4 High-availability Database Leasing ..................................................................................   7-4
7.3.4.1 Server Migration with Database Leasing on RAC Clusters ...................................   7-5
7.3.5 Non-database Consensus Leasing.....................................................................................   7-5
7.4 Automatic Whole Server Migration .........................................................................................   7-6
7.4.1 Preparing for Automatic Whole Server Migration .........................................................   7-6
7.4.2 Configuring Automatic Whole Server Migration ...........................................................   7-8
7.4.3 Using High Availability Storage for State Data ...........................................................    7-10
7.4.4 Server Migration Processes and Communications ......................................................    7-10
7.4.4.1 Startup Process in a Cluster with Migratable Servers..........................................    7-10
7.4.4.2 Automatic Whole Server Migration Process .........................................................    7-12
7.4.4.3 Manual Whole Server Migration Process ..............................................................    7-13
7.4.4.4 Administration Server Role in Whole Server Migration .....................................    7-14
7.4.4.5 Migratable Server Behavior in a Cluster ................................................................    7-15
7.4.4.6 Node Manager Role in Whole Server Migration ..................................................    7-15
7.4.4.7 Cluster Master Role in Whole Server Migration...................................................    7-16
7.5 Whole Server Migration with Dynamic and Mixed Clusters............................................    7-17
7.5.1 Configuring Whole Server Migration with Dynamic Clusters ..................................    7-17
7.5.2 Configuring Whole Server Migration with Mixed Clusters.......................................    7-18

8 Service Migration

8.1 Understanding the Service Migration Framework ................................................................   8-1
8.1.1 Migratable Services..............................................................................................................   8-2
8.1.1.1 JMS-related Services.....................................................................................................   8-2
8.1.1.2 JTA Transaction Recovery Service .............................................................................   8-3
8.1.1.3 User-defined Singleton Services.................................................................................   8-3
8.1.2 Understanding Migratable Targets In a Cluster .............................................................   8-3
8.1.2.1 Policies for Manual and Automatic Service Migration...........................................   8-3
8.1.2.1.1 Manual Migration .................................................................................................   8-3
8.1.2.1.2 Exactly-Once ..........................................................................................................   8-3



vii

8.1.2.1.3 Failure-Recovery....................................................................................................   8-4
8.1.2.2 Options For Attempting to Restart Failed Services Before Migrating..................   8-5
8.1.2.3 User-Preferred Servers and Candidate Servers .......................................................   8-5
8.1.2.4 Example Migratable Targets In a Cluster .................................................................   8-5
8.1.2.5 Targeting Rules for JMS Servers.................................................................................   8-6
8.1.2.6 Targeting Rules for SAF Agents.................................................................................   8-7
8.1.2.6.1 Re-targeting SAF Agents to Migratable Targets...............................................   8-7
8.1.2.6.2 Targeting Migratable SAF Agents For Increased Message Throughput ......   8-7
8.1.2.6.3 Targeting SAF Agents For Consistent Quality-of-Service...............................   8-7
8.1.2.7 Targeting Rules for Path Service ................................................................................   8-7
8.1.2.7.1 Special Considerations For Targeting a Path Service.......................................   8-8
8.1.2.8 Targeting Rules for Custom Stores ............................................................................   8-8
8.1.2.9 Migratable Targets For the JTA Transaction Recovery Service .............................   8-8
8.1.3 Migration Processing Tools................................................................................................   8-8
8.1.3.1 Administration Console ..............................................................................................   8-8
8.1.3.2 WebLogic Scripting Tool .............................................................................................   8-9
8.1.4 Automatic Service Migration Infrastructure ...................................................................   8-9
8.1.4.1 Leasing for Migratable Services .................................................................................   8-9
8.1.4.1.1 Database Leasing...................................................................................................   8-9
8.1.4.1.2 Consensus Leasing ................................................................................................   8-9
8.1.4.2 Node Manager ..............................................................................................................   8-9
8.1.4.3 Administration Server Not Required When Migrating Services .......................    8-10
8.1.4.4 Service Health Monitoring .......................................................................................    8-10
8.1.4.4.1 How Health Monitoring of the JTA Transaction Recovery Service 

Triggers Automatic Migration .........................................................................    8-10
8.1.4.4.2 How Health Monitoring of JMS-related Services Triggers Automatic 

Migration .............................................................................................................    8-10
8.1.5 In-Place Restarting of Failed Migratable Services........................................................    8-11
8.1.6 Migrating a Service From an Unavailable Server ........................................................    8-11
8.1.7 JMS and JTA Automatic Service Migration Interaction..............................................    8-11
8.2 Pre-Migration Requirements..................................................................................................    8-12
8.2.1 Custom Store Availability for JMS Services..................................................................    8-12
8.2.2 Default File Store Availability for JTA...........................................................................    8-12
8.2.3 Server State and Manual Service Migration .................................................................    8-13
8.3 Roadmap for Configuring Automatic Migration of JMS-related Services ......................    8-13
8.3.1 Step 1: Configure Managed Servers and Node Manager ...........................................    8-14
8.3.2 Step 2: Configure the Migration Leasing Basis.............................................................    8-15
8.3.3 Step 3: Configure Migratable Targets ............................................................................    8-15
8.3.3.1 Configuring a Migratable Server as an Automatically Migratable Target .......    8-15
8.3.3.2 Create a New Migratable Target .............................................................................    8-15
8.3.3.2.1 Select a User Preferred Server ..........................................................................    8-15
8.3.3.2.2 Select a Service Migration Policy .....................................................................    8-15
8.3.3.2.3 Optionally Select Constrained Candidate Servers ........................................    8-16
8.3.3.2.4 Optionally Specify Pre/Post-Migration Scripts.............................................    8-16
8.3.3.2.5 Optionally Specify In-Place Restart Options..................................................    8-16
8.3.4 Step 4: Configure and Target Custom Stores................................................................    8-17
8.3.5 Step 5: Target the JMS Services.......................................................................................    8-17



viii

8.3.5.1 Special Considerations When Targeting SAF Agents or Path Service ..............    8-17
8.3.6 Step 6: Restart the Administration Server and Managed Servers With Modified 

Migration Policies .............................................................................................................    8-17
8.3.7 Step 7: Manually Migrate JMS Services Back to the Original Server ........................    8-17
8.4 Best Practices for Targeting JMS when Configuring Automatic Service Migration ......    8-18
8.5 Roadmap for Configuring Manual Migration of JMS-related Services ...........................    8-19
8.5.1 Step 1: Configure Managed Servers...............................................................................    8-19
8.5.2 Step 2: Configure Migratable Targets ............................................................................    8-19
8.5.2.1 Configuring a Migratable Server As a Migratable Target ...................................    8-19
8.5.2.2 Create a New Migratable Target .............................................................................    8-20
8.5.2.2.1 Select a Preferred Server....................................................................................    8-20
8.5.2.2.2 Accept the Default Manual Service Migration Policy...................................    8-20
8.5.2.2.3 Optionally Select Constrained Candidate Servers ........................................    8-20
8.5.2.2.4 Optionally Specify Pre/Post-Migration Scripts.............................................    8-20
8.5.2.2.5 Optionally Specify In-Place Restart Options..................................................    8-20
8.5.3 Step 3: Configure and Target Custom Stores................................................................    8-21
8.5.4 Step 4: Target the JMS Services.......................................................................................    8-21
8.5.4.1 Special Considerations When Targeting SAF Agents or Path Service ..............    8-21
8.5.5 Step 5: Restart the Administration Server and Managed Servers With Modified 

Migration Policies .............................................................................................................    8-21
8.5.6 Step 6: Manually Migrating JMS Services .....................................................................    8-21
8.6 Roadmap for Configuring Automatic Migration of the JTA Transaction 

Recovery Service ......................................................................................................................    8-22
8.6.1 Step 1: Configure Managed Servers and Node Manager ...........................................    8-22
8.6.2 Step 2: Configure the Migration Basis ...........................................................................    8-23
8.6.3 Step 3: Enable Automatic JTA Migration ......................................................................    8-23
8.6.3.1 Select the Automatic JTA Migration Check Box ...................................................    8-23
8.6.3.2 Optionally Select Candidate Servers ......................................................................    8-23
8.6.3.3 Optionally Specify Pre/Post-Migration Scripts ....................................................    8-23
8.6.4 Step 4: Configure the Default Persistent Store For Transaction Recovery 

Service Migration..............................................................................................................    8-24
8.6.5 Step 5: Restart the Administration Server and Managed Servers With Modified 

Migration Policies .............................................................................................................    8-24
8.6.6 Step 6: Automatic Failback of the Transaction Recovery Service Back to the 

Original Server ..................................................................................................................    8-24
8.7 Manual Migration of the JTA Transaction Recovery Service ............................................    8-25
8.8 Automatic Migration of User-Defined Singleton Services ................................................    8-25
8.8.1 Overview of Singleton Service Migration .....................................................................    8-26
8.8.1.1 Singleton Master ........................................................................................................    8-26
8.8.1.2 Migration Failure.......................................................................................................    8-26
8.8.2 Implementing the Singleton Service Interface..............................................................    8-27
8.8.3 Deploying a Singleton Service and Configuring the Migration Behavior ...............    8-27
8.8.3.1 Packaging and Deploying a Singleton Service Within an Application .............    8-27
8.8.3.2 Deploying a Singleton Service as a Standalone Service in WebLogic Server ...    8-28
8.8.3.3 Configuring Singleton Service Migration ..............................................................    8-28

9 Cluster Architectures

9.1 Architectural and Cluster Terminology ..................................................................................   9-1



ix

9.1.1 Architecture ..........................................................................................................................   9-1
9.1.2 Web Application Tiers ........................................................................................................   9-1
9.1.3 Combined Tier Architecture ..............................................................................................   9-2
9.1.4 De-Militarized Zone (DMZ)...............................................................................................   9-2
9.1.5 Load Balancer .......................................................................................................................   9-2
9.1.6 Proxy Plug-In........................................................................................................................   9-2
9.2 Recommended Basic Architecture............................................................................................   9-3
9.2.1 When Not to Use a Combined Tier Architecture............................................................   9-4
9.3 Recommended Multi-Tier Architecture ..................................................................................   9-4
9.3.1 Physical Hardware and Software Layers .........................................................................   9-5
9.3.1.1 Web/Presentation Layer .............................................................................................   9-5
9.3.1.2 Object Layer...................................................................................................................   9-5
9.3.2 Benefits of Multi-Tier Architecture ...................................................................................   9-6
9.3.3 Load Balancing Clustered Objects in a in Multi-Tier Architecture ..............................   9-6
9.3.4 Configuration Considerations for Multi-Tier Architecture...........................................   9-8
9.3.4.1 IP Socket Usage.............................................................................................................   9-8
9.3.4.2 Hardware Load Balancers...........................................................................................   9-8
9.3.5 Limitations of Multi-Tier Architectures ...........................................................................   9-8
9.3.5.1 No Collocation Optimization......................................................................................   9-8
9.3.5.2 Firewall Restrictions.....................................................................................................   9-9
9.4 Recommended Proxy Architectures ........................................................................................   9-9
9.4.1 Two-Tier Proxy Architecture .............................................................................................   9-9
9.4.1.1 Physical Hardware and Software Layers...............................................................    9-10
9.4.1.1.1 Web Layer............................................................................................................    9-10
9.4.1.1.2 Servlet/Object Layer..........................................................................................    9-10
9.4.2 Multi-Tier Proxy Architecture ........................................................................................    9-11
9.4.3 Proxy Architecture Benefits.............................................................................................    9-11
9.4.4 Proxy Architecture Limitations ......................................................................................    9-12
9.4.5 Proxy Plug-In Versus Load Balancer .............................................................................    9-12
9.5 Security Options for Cluster Architectures..........................................................................    9-12
9.5.1 Basic Firewall for Proxy Architectures ..........................................................................    9-12
9.5.1.1 Firewall Between Proxy Layer and Cluster ...........................................................    9-13
9.5.1.2 DMZ with Basic Firewall Configurations ..............................................................    9-14
9.5.1.3 Combining Firewall with Load Balancer ...............................................................    9-14
9.5.1.4 Expanding the Firewall for Internal Clients ..........................................................    9-15
9.5.2 Additional Security for Shared Databases ....................................................................    9-16
9.5.2.1 DMZ with Two Firewall Configuration.................................................................    9-16

10 Setting up WebLogic Clusters

10.1 Before You Start........................................................................................................................    10-1
10.1.1 Understand the Configuration Process .........................................................................    10-1
10.1.2 Determine Your Cluster Architecture............................................................................    10-1
10.1.3 Consider Your Network and Security Topologies.......................................................    10-2
10.1.4 Choose Machines for the Cluster Installation...............................................................    10-2
10.1.4.1 WebLogic Server Instances on Multi-CPU Machines ..........................................    10-2
10.1.4.2 Check Host Machines' Socket Reader Implementation .......................................    10-2
10.1.4.3 Setting Up a Cluster on a Disconnected Windows Machine .............................    10-2



x

10.1.5 Identify Names and Addresses ......................................................................................    10-3
10.1.5.1 Avoiding Listen Address Problems........................................................................    10-3
10.1.5.1.1 DNS Names or IP Addresses? ..........................................................................    10-3
10.1.5.1.2 When Internal and External DNS Names Vary .............................................    10-3
10.1.5.1.3 Localhost Considerations ..................................................................................    10-3
10.1.5.2 Assigning Names to WebLogic Server Resources ................................................    10-4
10.1.5.3 Administration Server Address and Port ..............................................................    10-4
10.1.5.4 Managed Server Addresses and Listen Ports........................................................    10-4
10.1.5.5 Cluster Multicast Address and Port .......................................................................    10-4
10.1.5.5.1 Multicast and Multiple Clusters ......................................................................    10-4
10.1.5.5.2 Multicast and Multi-Tier Clusters....................................................................    10-4
10.1.5.6 Cluster Address .........................................................................................................    10-5
10.1.5.6.1 Dynamic Cluster Address .................................................................................    10-5
10.1.5.6.2 Explicitly Defining Cluster Address for Production Environments...........    10-5
10.1.5.6.3 Explicitly Defining Cluster Address for Development and Test 

Environments......................................................................................................    10-6
10.1.5.6.4 Explicitly Defining Cluster Address for Single, Multihomed Machine .....    10-6
10.2 Cluster Implementation Procedures .....................................................................................    10-6
10.2.1 Configuration Roadmap ..................................................................................................    10-7
10.2.2 Install WebLogic Server ...................................................................................................    10-7
10.2.3 Create a Clustered Domain .............................................................................................    10-7
10.2.3.1 Starting a WebLogic Server Cluster........................................................................    10-8
10.2.4 Configure Node Manager................................................................................................    10-9
10.2.5 Configure Load Balancing Method for EJBs and RMIs ..............................................    10-9
10.2.6 Specifying a Timeout Value For RMIs.........................................................................    10-10
10.2.7 Configure Server Affinity for Distributed JMS Destinations ...................................    10-10
10.2.8 Configuring Load Balancers that Support Passive Cookie Persistence..................    10-10
10.2.9 Configure Proxy Plug-Ins .............................................................................................    10-10
10.2.9.1 Set Up the HttpClusterServlet ...............................................................................    10-11
10.2.9.1.1 Sample web.xml................................................................................................    10-12
10.2.9.1.2 Sample weblogic.xml .......................................................................................    10-13
10.2.9.1.3 Proxy Servlet Deployment Parameters .........................................................    10-14
10.2.9.1.4 Accessing Applications Via the Proxy Server ..............................................    10-16
10.2.10 Configure Replication Groups......................................................................................    10-17
10.2.11 Configure Migratable Targets for Pinned Services....................................................    10-17
10.2.12 Package Applications for Deployment........................................................................    10-18
10.2.13 Deploy Applications ......................................................................................................    10-18
10.2.13.1 Deploying to a Single Server Instance (Pinned Deployment)...........................    10-18
10.2.13.1.1 Pinned Deployment from the Command Line ............................................    10-18
10.2.13.2 Cancelling Cluster Deployments ..........................................................................    10-18
10.2.13.2.1 Cancel Deployment from the Command Line.............................................    10-19
10.2.13.2.2 Cancel Deployment Using the WebLogic Server Administration 

Console...............................................................................................................    10-19
10.2.13.3 Viewing Deployed Applications ...........................................................................    10-19
10.2.13.4 Undeploying Deployed Applications...................................................................    10-19
10.2.14 Deploying, Activating, and Migrating Migratable Services.....................................    10-19
10.2.14.1 Deploying JMS to a Migratable Target Server Instance.....................................    10-19
10.2.14.2 Activating JTA as a Migratable Service................................................................    10-20



xi

10.2.14.3 Migrating a Pinned Service to a Target Server Instance ....................................    10-20
10.2.14.3.1 Migrating When the Currently Active Host is Unavailable ......................    10-21
10.2.15 Configure In-Memory HTTP Replication ...................................................................    10-22
10.2.16 Additional Configuration Topics .................................................................................    10-22
10.2.16.1 Configure IP Sockets ...............................................................................................    10-22
10.2.16.1.1 Configure Native IP Sockets Readers on Machines that Host Server 

Instances ............................................................................................................    10-22
10.2.16.1.2 Set the Number of Reader Threads on Machines that Host Server 

Instances ............................................................................................................    10-23
10.2.16.1.3 Set the Number of Reader Threads on Client Machines ...........................    10-23
10.2.16.2 Configure Multicast Time-To-Live (TTL) ............................................................    10-23
10.2.16.3 Configure Multicast Buffer Size ............................................................................    10-24
10.2.16.4 Configure Multicast Data Encryption ..................................................................    10-24
10.2.16.5 Configure Machine Names ....................................................................................    10-24
10.2.16.6 Configuration Notes for Multi-Tier Architecture ...............................................    10-25
10.2.16.7 Enable URL Rewriting ...........................................................................................    10-25

11 Dynamic Clusters 

11.1 What Are Dynamic Clusters?.................................................................................................    11-1
11.2 Why Do You Use Dynamic Clusters? ...................................................................................    11-2
11.3 How Do Dynamic Clusters Work?........................................................................................    11-2
11.3.1 Creating and Configuring Dynamic Clusters...............................................................    11-3
11.3.2 Using Server Templates ...................................................................................................    11-3
11.3.3 Calculating Server-Specific Attributes...........................................................................    11-3
11.3.3.1 Calculating Server Names........................................................................................    11-4
11.3.3.2 Calculating Listen Ports............................................................................................    11-4
11.3.3.3 Calculating Machine Names....................................................................................    11-5
11.3.4 Starting and Stopping Servers in Dynamic Clusters ...................................................    11-5
11.3.5 Using Whole Server Migration with Dynamic Clusters .............................................    11-6
11.3.6 Expanding or Reducing Dynamic Clusters ..................................................................    11-6
11.3.7 Deploying Applications to Dynamic Clusters..............................................................    11-6
11.3.8 Using WebLogic Web Server Plug-Ins with Dynamic Clusters.................................    11-6
11.4 Limitations and Considerations When Using Dynamic Clusters.....................................    11-7
11.5 Dynamic Clusters Example ....................................................................................................    11-7

12 Configuring and Managing Coherence Clusters 

12.1 Overview of Coherence Clusters ...........................................................................................    12-1
12.2 Setting Up a Coherence Cluster .............................................................................................    12-2
12.2.1 Define a Coherence Cluster Resource............................................................................    12-2
12.2.2 Create Standalone Managed Coherence Servers .........................................................    12-3
12.3 Creating Coherence Deployment Tiers ................................................................................    12-4
12.3.1 Configuring and Managing a Coherence Data Tier ....................................................    12-4
12.3.1.1 Create a Coherence Data Tier ..................................................................................    12-5
12.3.1.2 Create Managed Coherence Servers for a Data Tier ............................................    12-5
12.3.2 Configuring and Managing a Coherence Application Tier........................................    12-5
12.3.2.1 Create a Coherence Application Tier......................................................................    12-6



xii

12.3.2.2 Create Managed Coherence Servers for an Application Tier .............................    12-6
12.3.3 Configuring and Managing a Coherence Proxy Tier ..................................................    12-6
12.3.3.1 Create a Coherence Proxy Tier ................................................................................    12-6
12.3.3.2 Create Managed Coherence Servers for a Proxy Tier ..........................................    12-7
12.3.3.3 Configure Coherence Proxy Services .....................................................................    12-7
12.3.3.3.1 Using a Name Service........................................................................................    12-7
12.3.3.3.2 Using an Address Provider...............................................................................    12-9
12.4 Configuring a Coherence Cluster ........................................................................................    12-10
12.4.1 Adding and Removing Coherence Cluster Members ...............................................    12-11
12.4.2 Setting Advanced Cluster Configuration Options ....................................................    12-11
12.4.3 Configure Cluster Communication..............................................................................    12-12
12.4.3.1 Changing the Coherence Cluster Mode ...............................................................    12-12
12.4.3.2 Changing the Coherence Cluster Transport Protocol ........................................    12-13
12.4.4 Overriding a Cache Configuration File .......................................................................    12-14
12.4.5 Configuring Coherence Logging..................................................................................    12-15
12.5 Configuring Managed Coherence Servers .........................................................................    12-16
12.5.1 Configure Coherence Cluster Member Storage Settings ..........................................    12-16
12.5.2 Configure Coherence Cluster Member Unicast Settings ..........................................    12-17
12.5.3 Configure a Coherence Cluster Member as a Management Node..........................    12-17
12.5.4 Configure Coherence Cluster Member Identity Settings..........................................    12-18
12.5.5 Configure Coherence Cluster Member Logging Levels ...........................................    12-18
12.6 Using a Single-Server Cluster ..............................................................................................    12-19
12.7 Using WLST (Offline) for Coherence Cluster Setup .........................................................    12-19

13 Clustering Best Practices

13.1 General Design Considerations .............................................................................................    13-1
13.1.1 Strive for Simplicity..........................................................................................................    13-1
13.1.2 Minimize Remote Calls....................................................................................................    13-1
13.1.2.1 Session Facades Reduce Remote Calls ...................................................................    13-1
13.1.2.2 Transfer Objects Reduce Remote Calls...................................................................    13-2
13.1.2.3 Distributed Transactions Increase Remote Calls ..................................................    13-2
13.2 Web Application Design Considerations .............................................................................    13-2
13.2.1 Configure In-Memory Replication ................................................................................    13-2
13.2.2 Design for Idempotence ..................................................................................................    13-2
13.2.3 Programming Considerations.........................................................................................    13-2
13.3 EJB Design Considerations .....................................................................................................    13-2
13.3.1 Design Idempotent Methods...........................................................................................    13-2
13.3.2 Follow Usage and Configuration Guidelines ...............................................................    13-3
13.3.2.1 Cluster-Related Configuration Options .................................................................    13-4
13.4 State Management in a Cluster ..............................................................................................    13-5
13.5 Application Deployment Considerations.............................................................................    13-9
13.6 Architecture Considerations ..................................................................................................    13-9
13.7 Avoiding Problems..................................................................................................................    13-9
13.7.1 Naming Considerations...................................................................................................    13-9
13.7.2 Administration Server Considerations..........................................................................    13-9
13.7.3 Firewall Considerations ................................................................................................    13-10
13.7.4 Evaluate Cluster Capacity Prior to Production Use ..................................................    13-11



xiii

14 Troubleshooting Common Problems

14.1 Before You Start the Cluster ...................................................................................................    14-1
14.1.1 Check the Server Version Numbers...............................................................................    14-1
14.1.2 Check the Multicast Address ..........................................................................................    14-1
14.1.3 Check the CLASSPATH Value .......................................................................................    14-2
14.2 After You Start the Cluster .....................................................................................................    14-2
14.2.1 Check Your Commands...................................................................................................    14-2
14.2.2 Generate a Log File ...........................................................................................................    14-2
14.2.2.1 Getting an Oracle HotSpot VM Thread Dump ....................................................    14-3
14.2.3 Check Garbage Collection ...............................................................................................    14-3
14.2.4 Run utils.MulticastTest ....................................................................................................    14-4

15 Troubleshooting Multicast Configuration

15.1 Verifying Multicast Address and Port Configuration........................................................    15-1
15.1.1 Possible Errors...................................................................................................................    15-2
15.1.2 Checking the Multicast Address and Port ....................................................................    15-2
15.2 Identifying Network Configuration Problems ....................................................................    15-2
15.2.1 Physical Connections .......................................................................................................    15-2
15.2.2 Address Conflicts..............................................................................................................    15-2
15.2.3 nsswitch.conf Settings on UNIX Systems......................................................................    15-2
15.3 Using the MulticastTest Utility ..............................................................................................    15-2
15.4 Tuning Multicast Features ......................................................................................................    15-3
15.4.1 Multicast Timeouts ...........................................................................................................    15-3
15.4.2 Cluster Heartbeats ............................................................................................................    15-3
15.4.2.1 Multicast Send Delay ................................................................................................    15-3
15.4.2.2 Operating System Parameters .................................................................................    15-3
15.4.3 Multicast Storms ...............................................................................................................    15-4
15.4.4 Multicast and Multihomed Machines............................................................................    15-4
15.4.5 Multicast in Different Subnets ........................................................................................    15-4
15.5 Debugging Multicast ...............................................................................................................    15-4
15.5.1 Debugging Utilities ..........................................................................................................    15-4
15.5.1.1 MulticastMonitor .......................................................................................................    15-4
15.5.1.2 MulticastTest ..............................................................................................................    15-5
15.5.2 Debugging Flags ...............................................................................................................    15-5
15.5.2.1 Setting Debug Flags on the Command Line..........................................................    15-5
15.5.2.2 Setting Debug Attributes Using WLST ..................................................................    15-5
15.6 Miscellaneous Issues................................................................................................................    15-5
15.6.1 Multicast on AIX ...............................................................................................................    15-5
15.6.2 File Descriptor Problems .................................................................................................    15-6
15.7 Other Resources for Troubleshooting Multicast Configuration .......................................    15-6

A The WebLogic Cluster API 

A.1 How to Use the API ...................................................................................................................    A-1
A.2 Custom Call Routing and Collocation Optimization ...........................................................    A-2



xiv

B Configuring BIG-IP Hardware with Clusters

C Configuring F5 Load Balancers for MAN/WAN Failover

C.1 Requirements..............................................................................................................................    C-1
C.2 Configure Local Load Balancers ..............................................................................................    C-1
C.2.1 Virtual Server IPs and Pools..............................................................................................    C-2
C.2.2 Create a Failover Trigger Virtual Server and Pool.........................................................    C-2
C.2.3 Create a Multi-layered Virtual Server and IP Pool ........................................................    C-3
C.3 Configure the 3-DNS Global Hardware Load Balancer.......................................................    C-3
C.3.1 Configure DNS Zones ........................................................................................................    C-4
C.3.2 Configure BIG-IP Addresses Managed by 3-DNS.........................................................    C-4
C.3.3 Configure Data Centers .....................................................................................................    C-4
C.3.4 Configure Wide IPs ............................................................................................................    C-4
C.4 Configuring WebLogic Server Components..........................................................................    C-5

D Configuring Radware Load Balancers for MAN/WAN Failover

D.1 Requirements..............................................................................................................................    D-1
D.2 Step 1: Configure an Authoritative Delegation Zone ...........................................................    D-2
D.3 Step 2: Configure Farm Virtual IPs and Servers....................................................................    D-2
D.3.1 Create a Farm IP..................................................................................................................    D-2
D.3.2 Configure the Dispatch Method for the Server Farm....................................................    D-2
D.3.3 Creating Farm Servers........................................................................................................    D-3
D.4 Step 3: Configure Port Multiplexing .......................................................................................    D-3
D.5 Step 4: Configure HTTP Redirects...........................................................................................    D-3
D.6 Step 5: Configure Session ID Persistency ...............................................................................    D-4
D.7 Step 6: Configure LRP ...............................................................................................................    D-4
D.8 Step 7: Configure WebLogic Server Components.................................................................    D-4



xv

Preface

This preface describes the document accessibility features and conventions used in this 
guide—Administering Clusters for Oracle WebLogic Server 12.1.3.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or 
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



xvi



1

Introduction and Roadmap 1-1

1Introduction and Roadmap

[2] This chapter describes the contents and organization of this guide—Administering 
Clusters for Oracle WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to this Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "New and Changed Clustering Features in This Release"

1.1 Document Scope and Audience
This document is written for application developers and administrators who are 
developing or deploying Web-based applications on one or more clusters. It also 
contains information that is useful for business analysts and system architects who are 
evaluating WebLogic Server or considering the use of WebLogic Server clusters for a 
particular application.

The topics in this document are primarily relevant to planning, implementing, and 
supporting a production environment that includes WebLogic Server clusters. Key 
guidelines for software engineers who design or develop applications that will run on 
a WebLogic Server cluster are also addressed. 

It is assumed that the reader is familiar with Java EE, HTTP, HTML coding, and Java 
programming (servlets, JSP, or EJB development).

1.2 Guide to this Document
■ This chapter, Chapter 1, "Introduction and Roadmap," describes the organization 

of this guide.

■ Chapter 2, "Understanding WebLogic Server Clustering," provides a brief 
introduction to WebLogic Server clusters.

■ Chapter 3, "Communications In a Cluster," describes how WebLogic Server 
instances communicate to one another in a cluster and how they utilize a 
cluster-wide JNDI tree.

■ Chapter 4, "Understanding Cluster Configuration," explains how the information 
that defines the configuration of a cluster is stored and maintained, and identifies 
the methods you can use to accomplish cluster configuration tasks.



Related Documentation

1-2 Administering Clusters for Oracle WebLogic Server 12.1.3

■ Chapter 5, "Load Balancing in a Cluster," describes the load balancing support that 
a WebLogic Server cluster provides for different types of objects, and provides 
planning and configuration considerations for architects and administrators.

■ Chapter 6, "Failover and Replication in a Cluster," describes how WebLogic Server 
detects failures in a cluster, and summarizes how failover is accomplished for 
different types of objects.

■ Chapter 7, "Whole Server Migration," describes the different migration 
mechanisms supported by WebLogic Server.

■ Chapter 8, "Service Migration," describes the service migration mechanisms 
supported by WebLogic Server:

■ Chapter 9, "Cluster Architectures," describes alternative architectures for a 
WebLogic Server cluster.

■ Chapter 10, "Setting up WebLogic Clusters," contains guidelines and instructions 
for configuring a WebLogic Server cluster.

■ Chapter 11, "Dynamic Clusters" introduces and describes dynamic clusters.

■ Chapter 12, "Configuring and Managing Coherence Clusters" describes how to 
configure and manage Coherence clusters.

■ Chapter 13, "Clustering Best Practices," provides recommendations for design and 
deployment practices that maximize the scalability, reliability, and performance of 
applications hosted by a WebLogic Server cluster.

■ Chapter 14, "Troubleshooting Common Problems," provides guidelines on how to 
prevent and troubleshoot common cluster problems.

■ Appendix A, "The WebLogic Cluster API," describes the WebLogic Cluster API.

■ Appendix B, "Configuring BIG-IP Hardware with Clusters," describes options for 
configuring an F5 BIG-IP controller to operate with a WebLogic Server cluster.

■ Appendix C, "Configuring F5 Load Balancers for MAN/WAN Failover," explains 
how to configure F5 hardware load balancers.

■ Appendix D, "Configuring Radware Load Balancers for MAN/WAN Failover," 
describes how to configure Radware hardware load balancers.

1.3 Related Documentation
■ "Understanding Enterprise JavaBeans" in Developing Enterprise JavaBeans, Version 

2.1, for Oracle WebLogic Server

■ "Creating and Configuring Web Applications" in Developing Web Applications, 
Servlets, and JSPs for Oracle WebLogic Server.

1.4 New and Changed Clustering Features in This Release
This release of WebLogic Server adds support for whole server migration with 
dynamic and mixed clusters. Whole server migration behavior is the same for all 
clusters, but configuration differs depending on the cluster type. For more 
information, see Section 7.5, "Whole Server Migration with Dynamic and Mixed 
Clusters."

The algorithm used to assign server instances to groups has been changed from the 
algorithm used in WebLogic Server 12.1.2 and prior versions. The new algorithm has 
been optimized to provide more flexible scaling of running clusters, and to better 



New and Changed Clustering Features in This Release

Introduction and Roadmap 1-3

support use cases where Managed Servers are added to WebLogic Server clusters 
while the clusters are running. For more information, see Section 3.1.2, "One-to-Many 
Communication Using Unicast".

For a comprehensive listing of the new WebLogic Server features introduced in this 
release, see What's New in Oracle WebLogic Server.



New and Changed Clustering Features in This Release

1-4 Administering Clusters for Oracle WebLogic Server 12.1.3



2

Understanding WebLogic Server Clustering 2-1

2Understanding WebLogic Server Clustering

[3] This chapter provides a brief introduction to clusters in WebLogic Server 12.1.3.

This chapter includes the following sections: 

■ Section 2.1, "What Is a WebLogic Server Cluster?" 

■ Section 2.2, "What Are Dynamic Clusters?"

■ Section 2.3, "How Does a Cluster Relate to a Domain?"

■ Section 2.4, "What Are the Benefits of Clustering?" 

■ Section 2.5, "What Are the Key Capabilities of a Cluster?"

■ Section 2.6, "What Types of Objects Can Be Clustered?" 

■ Section 2.7, "What Types of Objects Cannot Be Clustered?"

2.1 What Is a WebLogic Server Cluster?
A WebLogic Server cluster consists of multiple WebLogic Server server instances 
running simultaneously and working together to provide increased scalability and 
reliability. A cluster appears to clients to be a single WebLogic Server instance. The 
server instances that constitute a cluster can run on the same machine, or be located on 
different machines. You can increase a cluster's capacity by adding additional server 
instances to the cluster on an existing machine, or you can add machines to the cluster 
to host the incremental server instances. Each server instance in a cluster must run the 
same version of WebLogic Server.

2.2 What Are Dynamic Clusters?
Dynamic clusters consist of server instances that can be dynamically scaled up to meet 
the resource needs of your application. A dynamic cluster uses a single server 
template to define configuration for a specified number of generated (dynamic) server 
instances.

When you create a dynamic cluster, the dynamic servers are preconfigured and 
automatically generated for you, enabling you to easily scale up the number of server 
instances in your dynamic cluster when you need additional server capacity. You can 
simply start the dynamic servers without having to first manually configure and add 
them to the cluster.

For more information about dynamic clusters, see Chapter 11, "Dynamic Clusters" and 
"Create dynamic clusters" in the Oracle WebLogic Server Administration Console Online 
Help.



How Does a Cluster Relate to a Domain?

2-2 Administering Clusters for Oracle WebLogic Server 12.1.3

2.3 How Does a Cluster Relate to a Domain?
A cluster is part of a particular WebLogic Server domain. 

A domain is an interrelated set of WebLogic Server resources that are managed as a 
unit. A domain includes one or more WebLogic Server instances, which can be 
clustered, non-clustered, or a combination of clustered and non-clustered instances. A 
domain can include multiple clusters. A domain also contains the application 
components deployed in the domain, and the resources and services required by those 
application components and the server instances in the domain. Examples of the 
resources and services used by applications and server instances include machine 
definitions, optional network channels, connectors, and startup classes.

You can use a variety of criteria for organizing WebLogic Server instances into 
domains. For instance, you might choose to allocate resources to multiple domains 
based on logical divisions of the hosted application, geographical considerations, or 
the number or complexity of the resources under management. For additional 
information about domains see Understanding Domain Configuration for Oracle WebLogic 
Server.

In each domain, one WebLogic Server instance acts as the Administration Server—the 
server instance which configures, manages, and monitors all other server instances 
and resources in the domain. Each Administration Server manages one domain only. If 
a domain contains multiple clusters, each cluster in the domain has the same 
Administration Server.

All server instances in a cluster must reside in the same domain; you cannot "split" a 
cluster over multiple domains. Similarly, you cannot share a configured resource or 
subsystem between domains. 

Clustered WebLogic Server instances behave similarly to non-clustered instances, 
except that they provide failover and load balancing. The process and tools used to 
configure clustered WebLogic Server instances are the same as those used to configure 
non-clustered instances. However, to achieve the load balancing and failover benefits 
that clustering enables, you must adhere to certain guidelines for cluster configuration. 

To understand how the failover and load balancing mechanisms used in WebLogic 
Server relate to particular configuration options see Section 5, "Load Balancing in a 
Cluster," and Section 6, "Failover and Replication in a Cluster."

Detailed configuration recommendations are included throughout the instructions in 
Section 10, "Setting up WebLogic Clusters".

2.4 What Are the Benefits of Clustering?
A WebLogic Server cluster provides these benefits:

■ Scalability 

The capacity of an application deployed on a WebLogic Server cluster can be 
increased dynamically to meet demand. You can add server instances to a cluster 
without interruption of service—the application continues to run without impact 
to clients and end users. 

■ High-Availability

In a WebLogic Server cluster, application processing can continue when a server 
instance fails. You "cluster" application components by deploying them on 
multiple server instances in the cluster—so, if a server instance on which a 
component is running fails, another server instance on which that component is 
deployed can continue application processing. 



What Are the Key Capabilities of a Cluster?

Understanding WebLogic Server Clustering 2-3

The choice to cluster WebLogic Server instances is transparent to application 
developers and clients. However, understanding the technical infrastructure that 
enables clustering will help programmers and administrators maximize the scalability 
and availability of their applications. 

2.5 What Are the Key Capabilities of a Cluster?
This section defines, in non-technical terms, the key clustering capabilities that enable 
scalability and high availability.

■ Application Failover 

Simply put, failover means that when an application component (typically 
referred to as an "object" in the following sections) doing a particular "job"—some 
set of processing tasks—becomes unavailable for any reason, a copy of the failed 
object finishes the job.

For the new object to be able to take over for the failed object: 

– There must be a copy of the failed object available to take over the job.

– There must be information, available to other objects and the program that 
manages failover, defining the location and operational status of all 
objects—so that it can be determined that the first object failed before finishing 
its job.

– There must be information, available to other objects and the program that 
manages failover, about the progress of jobs in process—so that an object 
taking over an interrupted job knows how much of the job was completed 
before the first object failed, for example, what data has been changed, and 
what steps in the process were completed.

WebLogic Server uses standards-based communication techniques and facilities— 
including IP sockets and the Java Naming and Directory Interface (JNDI)—to 
share and maintain information about the availability of objects in a cluster. These 
techniques allow WebLogic Server to determine that an object stopped before 
finishing its job, and where there is a copy of the object to complete the job that 
was interrupted.

Information about what has been done on a job is called state. WebLogic Server 
maintains information about state using techniques called session replication and 
replica-aware stubs. When a particular object unexpectedly stops doing its job, 
replication techniques enable a copy of the object pick up where the failed object 
stopped, and finish the job. 

■ WebLogic Server supports automatic and manual migration of a clustered server 
instance from one machine to another. A Managed Server that can be migrated is 
referred to as a migratable server. This feature is designed for environments with 
requirements for high availability. The server migration capability is useful for: 

– Ensuring uninterrupted availability of singleton services—services that must 
run on only a single server instance at any given time, such as JMS and the 
JTA transaction recovery system, when the hosting server instance fails. A 

Note: For backward compatibility with previous versions, WebLogic 
Server allows you to use multicast for communications between 
clusters.



What Types of Objects Can Be Clustered?

2-4 Administering Clusters for Oracle WebLogic Server 12.1.3

Managed Server configured for automatic migration will be automatically 
migrated to another machine in the event of failure.

– Easing the process of relocating a Managed Server, and all the services it hosts, 
as part of a planned system administration process. To initiate the migration of 
a Managed Server, you can use any of the administration tools listed in 
"Summary of System Administration Tools and APIs" in Understanding Oracle 
WebLogic Server.

The server migration process relocates a Managed Server in its entirety—including 
IP addresses and hosted applications—to one of a predefined set of available host 
machines. 

■ Load Balancing

Load balancing is the even distribution of jobs and associated communications 
across the computing and networking resources in your environment. For load 
balancing to occur:

– There must be multiple copies of an object that can do a particular job.

– Information about the location and operational status of all objects must be 
available. 

WebLogic Server allows objects to be clustered—deployed on multiple server 
instances—so that there are alternative objects to do the same job. WebLogic 
Server shares and maintains the availability and location of deployed objects 
using unicast, IP sockets, and JNDI.

A detailed discussion of how communications and replication techniques are 
employed by WebLogic Server is provided in Section 3, "Communications In a 
Cluster."

2.6 What Types of Objects Can Be Clustered?
A clustered application or application component is one that is available on multiple 
WebLogic Server instances in a cluster. If an object is clustered, failover and load 
balancing for that object is available. Deploy objects homogeneously—to every server 
instance in your cluster—to simplify cluster administration, maintenance, and 
troubleshooting.

Web applications can consist of different types of objects, including Enterprise Java 
Beans (EJBs), servlets, and Java Server Pages (JSPs). Each object type has a unique set 
of behaviors related to control, invocation, and how it functions within an application. 
For this reason, the methods that WebLogic Server uses to support clustering—and 
hence to provide load balancing and failover—can vary for different types of objects. 
The following types of objects can be clustered in a WebLogic Server deployment:

■ Servlets

■ JSPs

■ EJBs

■ Remote Method Invocation (RMI) objects 

Note: For backward compatibility with previous versions, WebLogic 
Server also allows you to use multicast for communications between 
clusters.



What Types of Objects Can Be Clustered?

Understanding WebLogic Server Clustering 2-5

■ Java Messaging Service (JMS) destinations

Different object types can have certain behaviors in common. When this is the case, the 
clustering support and implementation considerations for those similar object types 
may be same. In the sections that follow, explanations and instructions for the 
following types of objects are generally combined:

■ Servlets and JSPs

■ EJBs and RMI objects 

The sections that follow briefly describe the clustering, failover, and load balancing 
support that WebLogic Server provides for different types of objects.

2.6.1 Servlets and JSPs 
WebLogic Server provides clustering support for servlets and JSPs by replicating the 
HTTP session state of clients that access clustered servlets and JSPs. WebLogic Server 
can maintain HTTP session states in memory, a file system, or a database.

To enable automatic failover of servlets and JSPs, session state must persist in memory. 
For information about how failover works for servlets and JSPs, and for related 
requirements and programming considerations, see Section 6.2.1, "HTTP Session State 
Replication."

You can balance the servlet and JSP load across a cluster using a WebLogic Server 
proxy plug-in or external load balancing hardware. WebLogic Server proxy plug-ins 
perform round-robin load balancing. External load balancers typically support a 
variety of session load balancing mechanisms. For more information, see Section 5.1, 
"Load Balancing for Servlets and JSPs."

2.6.2 EJBs and RMI Objects
Load balancing and failover for EJBs and RMI objects is handled using replica-aware 
stubs, which can locate instances of the object throughout the cluster. Replica-aware 
stubs are created for EJBs and RMI objects as a result of the object compilation process. 
EJBs and RMI objects are deployed homogeneously—to all the server instances in the 
cluster. 

Failover for EJBs and RMI objects is accomplished using the object's replica-aware 
stub. When a client makes a call through a replica-aware stub to a service that fails, the 
stub detects the failure and retries the call on another replica. To understand failover 
support for different types of objects, see Section 6.3, "Replication and Failover for EJBs 
and RMIs."

WebLogic Server clusters support multiple algorithms for load balancing clustered 
EJBs and RMI objects: round-robin, weight-based, random, round-robin-affinity, 
weight-based-affinity, and random-affinity. By default, a WebLogic Server cluster will 
use the round-robin method. You can configure a cluster to use one of the other 
methods using the WebLogic Server Administration Console. The method you select is 
maintained within the replica-aware stub obtained for clustered objects. For details, 
see Section 5.2, "Load Balancing for EJBs and RMI Objects."

2.6.3 JMS and Clustering
The WebLogic Java Messaging Service (JMS) architecture implements clustering of 
multiple JMS servers by supporting cluster-wide, transparent access to destinations 
from any WebLogic Server server instance in the cluster. Although WebLogic Server 
supports distributing JMS destinations and connection factories throughout a cluster, 



What Types of Objects Cannot Be Clustered?

2-6 Administering Clusters for Oracle WebLogic Server 12.1.3

the same JMS topic or queue is still managed separately by each WebLogic Server 
instance in the cluster.

Load balancing is supported for JMS. To enable load balancing, you must configure 
targets for JMS servers. For more information about load balancing and JMS 
components, see Section 5.3, "Load Balancing for JMS," For instructions on setting up 
clustered JMS, see Section 10.2.11, "Configure Migratable Targets for Pinned Services," 
and Section 10.2.14, "Deploying, Activating, and Migrating Migratable Services."

2.7 What Types of Objects Cannot Be Clustered?
The following APIs and internal services cannot be clustered in WebLogic Server:

■ File services including file shares

■ Time services

You can still use these services on individual WebLogic Server instances in a cluster. 
However, the services do not make use of load balancing or failover features.



3

Communications In a Cluster 3-1

3Communications In a Cluster

[4] This chapter describes how WebLogic Server clusters communicate using IP sockets 
and IP unicast or multicast in WebLogic Server 12.1.3.

WebLogic Server instances in a cluster communicate with one another using two basic 
network technologies:

■ IP unicast or multicast, which server instances use to broadcast availability of 
services and heartbeats that indicate continued availability. See Section 3.1.3, 
"Considerations for Choosing Unicast or Multicast" for information on selecting 
unicast or multicast. 

■ IP sockets, which are the conduits for peer-to-peer communication between 
clustered server instances.

This chapter includes the following sections: 

■ Section 3.1, "Choosing WebLogic Server Cluster Messaging Protocols"

■ Section 3.2, "Peer-to-Peer Communication Using IP Sockets" 

■ Section 3.3, "Client Communication via Sockets"

■ Section 3.4, "Cluster-Wide JNDI Naming Service"

3.1 Choosing WebLogic Server Cluster Messaging Protocols
WebLogic Server supports two cluster messaging protocols:

■ Multicast: This protocol relies on UDP multicast and has been supported in 
WebLogic Server clusters since WebLogic Server 4.0.

■ Unicast: This protocol relies on point-to-point TCP/IP sockets and was added in 
WebLogic Server 10.0.

This section includes the following topics:

■ Section 3.1.1, "Using IP Multicast"

■ Section 3.1.2, "One-to-Many Communication Using Unicast"

■ Section 3.1.3, "Considerations for Choosing Unicast or Multicast"

3.1.1 Using IP Multicast
Multicast is a simple broadcast technology that enables multiple applications to 
"subscribe" to a given IP address and port number and listen for messages.



Choosing WebLogic Server Cluster Messaging Protocols

3-2 Administering Clusters for Oracle WebLogic Server 12.1.3

Multicast broadcasts messages to applications, but it does not guarantee that messages 
are actually received. If an application's local multicast buffer is full, new multicast 
messages cannot be written to the buffer and the application is not notified when 
messages are "dropped." Because of this limitation, WebLogic Server instances allow 
for the possibility that they may occasionally miss messages that were broadcast over 
multicast.

The WebLogic Server multicast implementation uses standard UDP multicast to 
broadcast the cluster messages to a group that is explicitly listening on the multicast 
address and port over which the message is sent. Since UDP is not a reliable protocol, 
WebLogic Server builds its own reliable messaging protocol into the messages it sends 
to detect and retransmit lost messages. 

Most operating systems and switches support UDP multicast by default between 
machines in the same subnet. However, most routers do not support the propagation 
of UDP multicast messages between subnets by default. In environments that do 
support UDP multicast message propagation, UDP multicast has a time-to-live (TTL) 
mechanism built into the protocol. Each time the message reaches a router, the TTL is 
decremented by 1 before it routes the message. When the TTL reaches zero, the 
message will no longer be propagated between networks, making it an effective 
control for the range of a UDP multicast message. By default, WebLogic Server sets the 
TTL for its multicast cluster messages to 1, which restricts the message to the current 
subnet.

When using multicast, the cluster heartbeat mechanism will remove a server instance 
from the cluster if it misses three heartbeat messages in a row to account for the fact 
that UDP is not considered a reliable protocol. Since the default heartbeat frequency is 
one heartbeat every 10 seconds, this means it can take up to 30 seconds to detect that a 
server instance has left the cluster. Socket death detection or failed connection attempts 
can also accelerate this detection. 

In summary, WebLogic Server multicast cluster messaging protocol:

■ Uses a very efficient and scalable peer-to-peer model where a server instance 
sends each message directly to the network once and the network makes sure that 
each cluster member receives the message directly from the network.

■ Works out of the box in most environments where the cluster members are in a 
single subnet.

■ Requires additional configuration in the router and WebLogic Server (for example 
multicast TTL) if the cluster members span more than one subnet.

■ Uses three consecutive missed heartbeats to remove a server instance from another 
server's cluster membership list.

To test an environment for its ability to support the WebLogic Server multicast 
messaging protocol, WebLogic Server provides a Java command-line utility known as 
MulticastTest.

WebLogic Server uses multicast for all one-to-many communications among server 
instances in a cluster. This communication includes:

Note: A multicast address is an IP address in the range from 
224.0.0.0 to 239.255.255.255. The default multicast value used by 
WebLogic Server is 239.192.0.0. You should not use any multicast 
address within the range x.0.0.1. Multicast ports have the normal UDP 
port ranges (0 to 65535), however certain UDP ports are reserved for 
specific purposes and should generally be avoided.



Choosing WebLogic Server Cluster Messaging Protocols

Communications In a Cluster 3-3

■ Cluster-wide JNDI updates—Each WebLogic Server instance in a cluster uses 
multicast to announce the availability of clustered objects that are deployed or 
removed locally. Each server instance in the cluster monitors these announcements 
and updates its local JNDI tree to reflect current deployments of clustered objects. 
For more details, see Section 3.4, "Cluster-Wide JNDI Naming Service."

■ Cluster heartbeats—Each WebLogic Server instance in a cluster uses multicast to 
broadcast regular "heartbeat" messages that advertise its availability. By 
monitoring heartbeat messages, server instances in a cluster determine when a 
server instance has failed. (Clustered server instances also monitor IP sockets as a 
more immediate method of determining when a server instance has failed.)

■ Clusters with many nodes—Multicast communication is the option of choice for 
clusters with many nodes.

3.1.1.1 Multicast and Cluster Configuration
Because multicast communications control critical functions related to detecting 
failures and maintaining the cluster-wide JNDI tree (described in Section 3.4, 
"Cluster-Wide JNDI Naming Service") it is important that neither the cluster 
configuration nor the network topology interfere with multicast communications. The 
sections that follow provide guidelines for avoiding problems with multicast 
communication in a cluster. 

3.1.1.1.1 If Your Cluster Spans Multiple Subnets In a WAN   In many deployments, clustered 
server instances reside within a single subnet, ensuring multicast messages are reliably 
transmitted. However, you may want to distribute a WebLogic Server cluster across 
multiple subnets in a Wide Area Network (WAN) to increase redundancy, or to 
distribute clustered server instances over a larger geographical area. 

If you choose to distribute a cluster over a WAN (or across multiple subnets), plan and 
configure your network topology to ensure that multicast messages are reliably 
transmitted to all server instances in the cluster. Specifically, your network must meet 
the following requirements:

■ Full support of IP multicast packet propagation. In other words, all routers and 
other tunneling technologies must be configured to propagate multicast messages 
to clustered server instances.

■ Network latency low enough to ensure that most multicast messages reach their 
final destination in approximately 10 milliseconds.

■ Multicast Time-To-Live (TTL) value for the cluster high enough to ensure that 
routers do not discard multicast packets before they reach their final destination. 
For instructions on setting the Multicast TTL parameter, see Section 10.2.16.2, 
"Configure Multicast Time-To-Live (TTL)."

3.1.1.1.2 Firewalls Can Break Multicast Communication  Although it may be possible to 
tunnel multicast traffic through a firewall, this practice is not recommended for 
WebLogic Server clusters. Treat each WebLogic Server cluster as a logical unit that 

Note: Distributing a WebLogic Server cluster over a WAN may 
require network facilities in addition to the multicast requirements 
described above. For example, you may want to configure load 
balancing hardware to ensure that client requests are directed to 
server instances in the most efficient manner (to avoid unnecessary 
network hops).



Choosing WebLogic Server Cluster Messaging Protocols

3-4 Administering Clusters for Oracle WebLogic Server 12.1.3

provides one or more distinct services to clients of a Web application. Do not split this 
logical unit between different security zones. Furthermore, any technologies that 
potentially delay or interrupt IP traffic can disrupt a WebLogic Server cluster by 
generating false failures due to missed heartbeats.

3.1.1.1.3 Do Not Share the Cluster Multicast Address with Other Applications  Although 
multiple WebLogic Server clusters can share a single IP multicast address and port, 
other applications should not broadcast or subscribe to the multicast address and port 
used by your cluster or clusters. That is, if the machine or machines that host your 
cluster also host other applications that use multicast communications, make sure that 
those applications use a different multicast address and port than the cluster does. 

Sharing the cluster multicast address with other applications forces clustered server 
instances to process unnecessary messages, introducing overhead. Sharing a multicast 
address may also overload the IP multicast buffer and delay transmission of WebLogic 
Server heartbeat messages. Such delays can result in a WebLogic Server instance being 
marked as failed, simply because its heartbeat messages were not received in a timely 
manner. 

For these reasons, assign a dedicated multicast address for use by WebLogic Server 
clusters, and ensure that the address can support the broadcast traffic of all clusters 
that use the address.

3.1.1.1.4 If Multicast Storms Occur  If server instances in a cluster do not process 
incoming messages on a timely basis, increased network traffic, including negative 
acknowledgement (NAK) messages and heartbeat re-transmissions, can result. The 
repeated transmission of multicast packets on a network is referred to as a multicast 
storm, and can stress the network and attached stations, potentially causing 
end-stations to hang or fail. Increasing the size of the multicast buffers can improve the 
rate at which announcements are transmitted and received, and prevent multicast 
storms. See Section 10.2.16.3, "Configure Multicast Buffer Size."

3.1.2 One-to-Many Communication Using Unicast
The WebLogic Server unicast protocol uses standard TCP/IP sockets to send messages 
between cluster members. Since all networks and network devices support TCP/IP 
sockets, unicast simplifies out-of-the-box-cluster configuration. It typically requires no 
additional configuration, regardless of the network topology between cluster 
members. Additionally, unicast reduces potential network errors that can occur from 
multicast address conflicts. WebLogic Server uses unicast as its default cluster 
protocol.

3.1.2.1 WebLogic Server Unicast Groups
Since TCP/IP sockets are a point-to-point mechanism, all cluster members receive 
messages directly. To limit the number of sockets required as a cluster grows, 
WebLogic Server's unicast implementation uses a group leader mechanism. With this 
mechanism:

■ WebLogic Server divides the server instances in a cluster into a fixed number of 
groups.

■ Each group includes one server instance that also functions as the group leader. If 
the group leader fails, the group elects another group leader.

■ To send and receive cluster messages, each server instance in a group makes a 
TCP/IP socket connection only to the group leader. The group leader connects to 
all its group members and all other group leaders in the cluster. 



Choosing WebLogic Server Cluster Messaging Protocols

Communications In a Cluster 3-5

■ When a group leader receives a cluster message from a server instance in its 
group, it retransmits the message to all other members in the group and also to 
every other group leader in the cluster. The other group leaders then retransmit 
the message to all their group members. This enables each server instance to 
receive every message in a cluster without requiring that server to establish a 
connection to every other server instance in the cluster.

When using unicast, server instances send heartbeats to advertise their availability, 
similar to multicast. By monitoring heartbeat messages, server instances determine 
when another server instance fails. However, with unicast, the cluster heartbeat 
mechanism removes a server instance from the cluster if it misses a single heartbeat 
message, since TCP/IP is a reliable protocol.

Unicast checks for missed heartbeats every 15 seconds, instead of every 10 seconds as 
in multicast. This extra five seconds allows sufficient time for the message to travel 
from the remote group's member to the remote group's leader, then to the local group's 
leader, and finally to the local group's member. Since the default heartbeat frequency is 
one heartbeat every 10 seconds, this means it should take no more than 15 seconds to 
detect if a server instance has left the cluster. Socket death detection or failed 
connection attempts can also accelerate this detection.

3.1.2.2 Assigning Server Instances to Groups

The WebLogic Server unicast implementation internally organizes a cluster's server 
instances into 10 groups. WebLogic Server assigns server instances to groups and sorts 
server instances within each group according to a server naming pattern. Since a 
group contains a dynamic number of server instances, asymmetric or empty groups 
might exist, depending on the number and names of your clustered server instances.

To assign server instances to groups, WebLogic Server separates each server name into 
two parts: a prefix and an integer. For example, a server instance named server1 
separates into the prefix <server> and the integer <1>.

You can use any name for server instances. For configured servers, if the server name 
does not end with an integer, WebLogic Server calculates and assigns an initial value 
to the server instance. It then uses this value to determine the appropriate group to 
which it automatically assigns the server instance. For example, server instances 
serverA and serverB do not have integers in their names. WebLogic Server uses the 
entire names for the prefixes and calculates values to use for the integers, such as 728 
for serverA and 729 for serverB. 

Dynamic servers always follow this pattern, as a dynamic cluster uses its server 
template settings to automatically name dynamic servers using a prefix and a 
sequential integer number. 

After associating an integer with each server name, WebLogic Server uses an 
algorithm to assign server instances to groups based on that integer. Within each 
group, server instances are first sorted alphabetically by prefix and then sorted by 
integer. 

Note: The algorithm used to assign server instances to groups has 
been changed from the algorithm used in WebLogic Server 12.1.2 and 
prior versions. The new algorithm is described in the following 
section. It has been optimized to provide more flexible scaling of 
running clusters, and to better support use cases where Managed 
Servers are added to WebLogic Server clusters while the clusters are 
running.



Choosing WebLogic Server Cluster Messaging Protocols

3-6 Administering Clusters for Oracle WebLogic Server 12.1.3

The first server instance in each group acts as the group leader. Under this allocation 
model, all server instances in the cluster, whether existing running servers or newly 
added servers, share a consistent view on group membership and group leader roles. 

The following tables demonstrate the unicast naming pattern and how WebLogic 
Server assigns and sorts server instances into groups. This example uses 10 groups; the 
cluster contains 15 server instances named server1through server15 and five 
additional server instances named serverA through serverE.

Table 3–1 Separating Server Names into Prefixes and Integers

Server Name Prefix Integer

server1 server 1

server2 server 2

server3 server 3

server4 server 4

server5 server 5

server6 server 6

server7 server 7

server8 server 8

server9 server 9

server10 server 10

server11 server 11

server12 server 12

server13 server 13

server14 server 14

server15 server 15

serverA serverA calculated result is 728

serverB serverB calculated result is 729

serverC serverC calculated result is 730

serverD serverD calculated result is 731

serverE serverE calculated result is 732

Table 3–2 Assigning Server Instances to Groups

Group Server Instances Within Group

group0 server10 (group leader), serverC

group1 server1 (group leader), server11, serverD

group2 server2 (group leader), server12, severE

group3 server3 (group leader), server13

group4 server4 (group leader), server14

group5 server5 (group leader), server15

group6 server6 (group leader)

group7 server7 (group leader)



Choosing WebLogic Server Cluster Messaging Protocols

Communications In a Cluster 3-7

If you add a new server instance named server16, WebLogic Server assigns it to 
group6, after server6:

group6: server6 (group leader), server 16

If you add a new server instance named server20, WebLogic Server assigns it to 
group0, after server10, but before serverC: 

group0: server10 (group leader), server20, serverC

If you add a new server named clonedServer16, WebLogic Server assigns it to group6, 
before server6, as prefixes are sorted before integers. The group leader then changes 
to clonedServer16, as clonedServer16 is now the first server instance in the group:

group6: clonedServer16 (new group leader), server6, server16

3.1.2.3 Unicast Configuration
You configure unicast using ClusterMBean.setClusterMessagingMode MBean 
attribute. The default value of this parameter is unicast. Changes made to this MBean 
are not dynamic. You must restart your cluster for changes to take effect.

To define a specific unicast channel, you first define a custom network channel for 
unicast communications with either the cluster-broadcast or the 
cluster-broadcast-secure protocol. After defining this custom network channel, you 
can associate this channel with the cluster by specifying the channel name in the 
ClusterMBean.ClusterBroadcastChannel MBean attribute When unicast is enabled, 
servers attempt to use the value defined in this MBean attribute for communications 
between clusters. If the unicast channel is not explicitly defined, the default network 
channel is used.

When configuring WebLogic Server clusters for unicast communications, if the servers 
are running on different machines, you must explicitly specify their listen addresses or 
DNS names.

3.1.2.4 Considerations When Using Unicast
The following considerations apply when using unicast to handle cluster 
communications in WebLogic Server 12.1.3:

■ All members of a cluster must use the same message type. Mixing between 
multicast and unicast messaging is not allowed.

■ Individual cluster members cannot override the cluster messaging type.

■ The entire cluster must be shutdown and restarted to change message modes.

■ JMS topics configured for multicasting can access WebLogic clusters configured 
for unicast because a JMS topic publishes messages on its own multicast address 

group8 server8 (group leader), serverA

group9 server9 (group leader), serverB

Note: The ClusterMBean.ClusterBroadcastChannel attribute is only 
supported for use with unicast.

Table 3–2 (Cont.) Assigning Server Instances to Groups

Group Server Instances Within Group



Choosing WebLogic Server Cluster Messaging Protocols

3-8 Administering Clusters for Oracle WebLogic Server 12.1.3

that is independent of the cluster address. However, the following considerations 
apply:

– The router hardware configurations that allow unicast clusters may not allow 
JMS multicast subscribers to work.

– JMS multicast subscribers need to be in a network hardware configuration that 
allows multicast accessibility.

For more details, see "Using Multicasting with WebLogic JMS" in Developing 
JMS Applications for Oracle WebLogic Server.

3.1.3 Considerations for Choosing Unicast or Multicast
Unicast is the default protocol because it simplifies out of the box cluster configuration 
and because it is likely to meet the majority of user requirements. However, Oracle 
fully supports both protocols equally. Both protocols require that the cluster members 
get sufficient processing time to send and receive cluster messages in a timely fashion. 
This prevents unnecessary cluster membership changes and the inherent 
resynchronization costs associated with leaving and rejoining the cluster. It is 
recommended that you eliminate unnecessary cluster membership changes due to 
over-utilization of available resources.

When using unicast in particular, make sure that the group leaders are not resource 
constrained since they act as the message relay to deliver a cluster message to the rest 
of the cluster. Any slowness on their part can impact multiple cluster members and 
even result in the group electing a new group leader.

Contrast this with multicast, where a slow member can only really impact its own 
membership to the cluster. Multicast clusters are generally more efficient in terms of 
cluster message propagation, and therefore tend to be more resilient to 
oversubscription of resources. For these reasons, multicast may be a better option for 
very large clusters with high throughput requirements, provided the network 
environment supports WebLogic Server cluster UDP requirements.

Each protocol has its own benefits.Table 3–3 highlights some of the differences 
between multicast and unicast.

Table 3–3 Summary of Differences Between Multicast and Unicast

Multicast Unicast

Uses UDP multicast Uses TCP/IP

Requires additional configuration to 
routers, TTL when clustering across 
multiple subnets

Requires no additional configuration to account 
for network topology

Requires configuring the multicast listen 
address and listen port. May need to 
specify the network interface to use on 
machines with multiple NICs

Only requires specifying the listen address. 
Supports using the default channel or a custom 
network channel for cluster communications

Each message delivered directly to and 
received directly from the network

Each message is delivered to a group leader, 
which retransmits the message to other group 
members (N - 1) and any other group leaders (M - 
1), if they exist. The other group leaders then 
retransmit the message to their group members 
resulting in up to NxM network messages for 
every cluster message. Message delivery to each 
cluster member takes between one and three 
network hops.



Peer-to-Peer Communication Using IP Sockets

Communications In a Cluster 3-9

3.2 Peer-to-Peer Communication Using IP Sockets
IP sockets provide a simple, high-performance mechanism for transferring messages 
and data between two applications. Clustered WebLogic Server instances use IP 
sockets for:

■ Accessing non-clustered objects deployed to another clustered server instance on a 
different machine.

■ Replicating HTTP session states and stateful session EJB states between a primary 
and secondary server instance.

■ Accessing clustered objects that reside on a remote server instance. (This generally 
occurs only in a multi-tier cluster architecture, such as the one described in 
Section 9.3, "Recommended Multi-Tier Architecture.")

Proper socket configuration is crucial to the performance of a WebLogic Server cluster. 
Two factors determine the efficiency of socket communications in WebLogic Server:

■ Whether the server instance host system uses a native or a pure-Java socket reader 
implementation.

■ For systems that use pure-Java socket readers, whether the server instance is 
configured to use enough socket reader threads.

3.2.1 Pure-Java Versus Native Socket Reader Implementations
Although the pure-Java implementation of socket reader threads is a reliable and 
portable method of peer-to-peer communication, it does not provide the optimal 
performance for heavy-duty socket usage in a WebLogic Server cluster. With pure-Java 
socket readers, threads must actively poll all opened sockets to determine if they 
contain data to read. In other words, socket reader threads are always "busy" polling 
sockets, even if the sockets have no data to read. This unnecessary overhead can 
reduce performance.

The performance issue is magnified when a server instance has more open sockets 
than it has socket reader threads—each reader thread must poll more than one open 
socket. When the socket reader encounters an inactive socket, it waits for a timeout 
before servicing another. During this timeout period, an active socket may go unread 
while the socket reader polls inactive sockets, as shown in Figure 3–1.

Every server sees every other server Group leaders act as a message relay point to 
retransmit messages to its group members and 
other group leaders

Cluster membership changes require three 
consecutive missed heartbeat messages to 
remove a member from the cluster list

Cluster membership changes require only a single 
missed heartbeat message to remove a member 
from the cluster

Note: The use of IP sockets in WebLogic Server extends beyond the 
cluster scenario—all RMI communication takes place using sockets, 
for example, when a remote Java client application accesses a remote 
object.

Table 3–3 (Cont.) Summary of Differences Between Multicast and Unicast

Multicast Unicast



Peer-to-Peer Communication Using IP Sockets

3-10 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 3–1 Pure-Java Socket Reader Threads Poll Inactive Sockets

For optimal socket performance, configure the WebLogic Server host machine to use 
the native socket reader implementation for your operating system, rather than the 
pure-Java implementation. Native socket readers use far more efficient techniques to 
determine if there is data to read on a socket. With a native socket reader 
implementation, reader threads do not need to poll inactive sockets—they service only 
active sockets, and they are immediately notified (via an interrupt) when a given 
socket becomes active.

For instructions on how to configure the WebLogic Server host machine to use the 
native socket reader implementation for your operating system, see Section 10.2.16.1.1, 
"Configure Native IP Sockets Readers on Machines that Host Server Instances." 

3.2.2 Configuring Reader Threads for Java Socket Implementation
If you do use the pure-Java socket reader implementation, you can still improve the 
performance of socket communication by configuring the proper number of socket 
reader threads for each server instance. For optimal performance, the number of socket 
reader threads in WebLogic Server should equal the potential maximum number of 
opened sockets. This configuration avoids the situation in which a reader thread must 
service multiple sockets, and ensures that socket data is read immediately.

To determine the proper number of reader threads for server instances in your cluster, 
see the following section, Section 3.2.2.1, "Determining Potential Socket Usage."

For instructions on how to configure socket reader threads, see Section 10.2.16.1.2, "Set 
the Number of Reader Threads on Machines that Host Server Instances."

3.2.2.1 Determining Potential Socket Usage
Each WebLogic Server instance can potentially open a socket for every other server 
instance in the cluster. However, the actual maximum number of sockets used at a 
given time depends on the configuration of your cluster. In practice, clustered systems 
generally do not open a socket for every other server instance, because objects are 
deployed homogeneously—to each server instance in the cluster.

If your cluster uses in-memory HTTP session state replication, and you deploy objects 
homogeneously, each server instance potentially opens a maximum of only two 
sockets, as shown in Figure 3–2.

Note: Applets cannot use native socket reader implementations, and 
therefore have limited efficiency in socket communication.



Peer-to-Peer Communication Using IP Sockets

Communications In a Cluster 3-11

Figure 3–2 Homogeneous Deployment Minimizes Socket Requirements

The two sockets in this example are used to replicate HTTP session states between 
primary and secondary server instances. Sockets are not required for accessing 
clustered objects, due to the collocation optimizations that WebLogic Server uses to 
access those objects. (These optimizations are described in Section 5.2.6, "Optimization 
for Collocated Objects.") In this configuration, the default socket reader thread 
configuration is sufficient.

Deployment of "pinned" services—services that are active on only one server instance 
at a time—can increase socket usage, because server instances may need to open 
additional sockets to access the pinned object. (This potential can only be released if a 
remote server instance actually accesses the pinned object.) Figure 3–3 shows the 
potential effect of deploying a non-clustered RMI object to Server A.

Figure 3–3 Non-Clustered Objects Increase Potential Socket Requirements



Client Communication via Sockets

3-12 Administering Clusters for Oracle WebLogic Server 12.1.3

In this example, each server instance can potentially open a maximum of three sockets 
at a given time, to accommodate HTTP session state replication and to access the 
pinned RMI object on Server A.

3.3 Client Communication via Sockets
Clients of a cluster use the Java implementation of socket reader threads. 

WebLogic Server allows you to configure server affinity load balancing algorithms that 
reduce the number of IP sockets opened by a Java client application. A client accessing 
multiple objects on a server instance will use a single socket. If an object fails, the client 
will failover to a server instance to which it already has an open socket, if possible. In 
older version of WebLogic Server, under some circumstances, a client might open a 
socket to each server instance in a cluster. 

For optimal performance, configure enough socket reader threads in the Java Virtual 
Machine (JVM) that runs the client. For instructions, see Section 10.2.16.1.3, "Set the 
Number of Reader Threads on Client Machines." 

3.4 Cluster-Wide JNDI Naming Service
Clients of a non-clustered WebLogic Server server instance access objects and services 
by using a JNDI-compliant naming service. The JNDI naming service contains a list of 
the public services that the server instance offers, organized in a tree structure. A 
WebLogic Server instance offers a new service by binding into the JNDI tree a name 
that represents the service. Clients obtain the service by connecting to the server 
instance and looking up the bound name of the service. 

Server instances in a cluster utilize a cluster-wide JNDI tree. A cluster-wide JNDI tree 
is similar to a single server instance JNDI tree, insofar as the tree contains a list of 
available services. In addition to storing the names of local services, however, the 
cluster-wide JNDI tree stores the services offered by clustered objects (EJBs and RMI 
classes) from other server instances in the cluster.

Each WebLogic Server instance in a cluster creates and maintains a local copy of the 
logical cluster-wide JNDI tree. The follow sections describe how the cluster-wide JNDI 
tree is maintained, and how to avoid naming conflicts that can occur in a clustered 
environment.

3.4.1 How WebLogic Server Creates the Cluster-Wide JNDI Tree
Each WebLogic Server in a cluster builds and maintains its own local copy of the 
cluster-wide JNDI tree, which lists the services offered by all members of the cluster. 

Note: Additional sockets may also be required for servlet clusters in 
a multi-tier cluster architecture, as described in Section 10.2.16.6, 
"Configuration Notes for Multi-Tier Architecture."

Caution: Do not use the cluster-wide JNDI tree as a persistence or 
caching mechanism for application data. Although WebLogic Server 
replicates a clustered server instance's JNDI entries to other server 
instances in the cluster, those entries are removed from the cluster if 
the original instance fails. Also, storing large objects within the JNDI 
tree can overload multicast or unicast traffic and interfere with the 
normal operation of a cluster.



Cluster-Wide JNDI Naming Service

Communications In a Cluster 3-13

Creation of a cluster-wide JNDI tree begins with the local JNDI tree bindings of each 
server instance. As a server instance boots (or as new services are dynamically 
deployed to a running server instance), the server instance first binds the 
implementations of those services to the local JNDI tree. The implementation is bound 
into the JNDI tree only if no other service of the same name exists.

Once the server instance successfully binds a service into the local JNDI tree, 
additional steps are performed for clustered objects that use replica-aware stubs. After 
binding the clustered object's implementation into the local JNDI tree, the server 
instance sends the object's stub to other members of the cluster. Other members of the 
cluster monitor the multicast or unicast address to detect when remote server 
instances offer new services. 

Figure 3–4 shows a snapshot of the JNDI binding process.

Figure 3–4 Server A Binds an Object in its JNDI Tree, then Unicasts Object Availability 

In the previous figure, Server A has successfully bound an implementation of 
clustered Object X into its local JNDI tree. Because Object X is clustered, it offers this 
service to all other members of the cluster. Server C is still in the process of binding an 
implementation of Object X.

Other server instances in the cluster listening to the multicast or unicast address note 
that Server A offers a new service for clustered object, X. These server instances update 
their local JNDI trees to include the new service. 

Updating the local JNDI bindings occurs in one of two ways:

■ If the clustered service is not yet bound in the local JNDI tree, the server instance 
binds a new replica-aware stub into the local tree that indicates the availability of 
Object X on Server A. Servers B and D would update their local JNDI trees in this 
manner, because the clustered object is not yet deployed on those server instances.

■ If the server instance already has a binding for the cluster-aware service, it updates 
its local JNDI tree to indicate that a replica of the service is also available on Server 

Note: When you start a Managed Server in a cluster, the server 
instance identifies other running server instances in the cluster by 
listening for heartbeats, after a warm-up period specified by the 
MemberWarmupTimeoutSeconds parameter in ClusterMBean. The 
default warm-up period is 30 seconds.



Cluster-Wide JNDI Naming Service

3-14 Administering Clusters for Oracle WebLogic Server 12.1.3

A. Server C would update its JNDI tree in this manner, because it will already 
have a binding for the clustered Object X.

In this manner, each server instance in the cluster creates its own copy of a 
cluster-wide JNDI tree. The same process would be used when Server C announces 
that Object X has been bound into its local JNDI tree. After all broadcast messages are 
received, each server instance in the cluster would have identical local JNDI trees that 
indicate the availability of the object on Servers A and C, as shown in Figure 3–5.

Figure 3–5 Each Server's JNDI Tree is the Same after Unicast Messages are Received

3.4.2 How JNDI Naming Conflicts Occur
Simple JNDI naming conflicts occur when a server instance attempts to bind a 
non-clustered service that uses the same name as a non-clustered service already 
bound in the JNDI tree. Cluster-level JNDI conflicts occur when a server instance 
attempts to bind a clustered object that uses the name of a non-clustered object already 
bound in the JNDI tree.

WebLogic Server detects simple naming conflicts (of non-clustered services) when 
those services are bound to the local JNDI tree. Cluster-level JNDI conflicts may occur 
when new services are advertised over multicast or unicast. For example, if you 
deploy a pinned RMI object on one server instance in the cluster, you cannot deploy a 
replica-aware version of the same object on another server instance.

If two server instances in a cluster attempt to bind different clustered objects using the 
same name, both will succeed in binding the object locally. However, each server 
instance will refuse to bind the other server instance's replica-aware stub in to the 
JNDI tree, due to the JNDI naming conflict. A conflict of this type would remain until 
one of the two server instances was shut down, or until one of the server instances 
undeployed the clustered object. This same conflict could also occur if both server 
instances attempt to deploy a pinned object with the same name.

3.4.2.1 Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts 
To avoid cluster-level JNDI conflicts, you must homogeneously deploy all 
replica-aware objects to all WebLogic Server instances in a cluster. Having unbalanced 

Note: In an actual cluster, Object X would be deployed 
homogeneously, and an implementation which can invoke the object 
would be available on all four server instances.



Cluster-Wide JNDI Naming Service

Communications In a Cluster 3-15

deployments across WebLogic Server instances increases the chance of JNDI naming 
conflicts during startup or redeployment. It can also lead to unbalanced processing 
loads in the cluster.

If you must pin specific RMI objects or EJBs to individual server instances, do not 
replicate the object's bindings across the cluster.

3.4.3 How WebLogic Server Updates the JNDI Tree
When a clustered object is removed (undeployed from a server instance), updates to 
the JNDI tree are handled similarly to the updates performed when new services are 
added. The server instance on which the service was undeployed broadcasts a 
message indicating that it no longer provides the service. Again, other server instances 
in the cluster that observe the multicast or unicast message update their local copies of 
the JNDI tree to indicate that the service is no longer available on the server instance 
that undeployed the object.

Once the client has obtained a replica-aware stub, the server instances in the cluster 
may continue adding and removing host servers for the clustered objects. As the 
information in the JNDI tree changes, the client's stub may also be updated. 
Subsequent RMI requests contain update information as necessary to ensure that the 
client stub remains up-to-date.

3.4.4 Client Interaction with the Cluster-Wide JNDI Tree
Clients that connect to a WebLogic Server cluster and look up a clustered object obtain 
a replica-aware stub for the object. This stub contains the list of available server 
instances that host implementations of the object. The stub also contains the load 
balancing logic for distributing the load among its host servers. 

For more information about replica-aware stubs for EJBs and RMI classes, see 
Section 6.3, "Replication and Failover for EJBs and RMIs." 

For a more detailed discussion of how WebLogic JNDI is implemented in a clustered 
environment and how to make your own objects available to JNDI clients, see "Using 
WebLogic JNDI in a Clustered Environment" in Developing JNDI Applications for Oracle 
WebLogic Server.



Cluster-Wide JNDI Naming Service

3-16 Administering Clusters for Oracle WebLogic Server 12.1.3



4

Understanding Cluster Configuration 4-1

4Understanding Cluster Configuration

[5] This chapter explains how the information that defines the configuration of a cluster is 
stored and maintained, and the methods you can use to accomplish configuration 
tasks in WebLogic Server 12.1.3. 

This chapter includes the following sections: 

■ Section 4.1, "Cluster Configuration and config.xml" 

■ Section 4.2, "Role of the Administration Server" 

■ Section 4.3, "How Dynamic Configuration Works"

■ Section 4.4, "Application Deployment for Clustered Configurations"

■ Section 4.5, "Methods of Configuring Clusters" 

4.1 Cluster Configuration and config.xml
The config.xml file is an XML document that describes the configuration of a 
WebLogic Server domain. config.xml consists of a series of XML elements. The 
Domain element is the top-level element, and all elements in the Domain descend 
from the Domain element. The Domain element includes child elements, such as the 
Server, Cluster, and Application elements. These child elements may have children of 
their own. For example, the Server element includes the child elements WebServer, SSL 
and Log. The Application element includes the child elements EJBComponent and 
WebAppComponent. 

Each element has one or more configurable attributes. An attribute defined in 
config.dtd has a corresponding attribute in the configuration API. For example, the 
Server element has a ListenPort attribute, and likewise, the 
weblogic.management.configuration.ServerMBean has a ListenPort attribute. 
Configurable attributes are readable and writable, that is, ServerMBean has a 
getListenPort and a setListenPort method.

To learn more about config.xml, see "Domain Configuration Files" in Understanding 
Domain Configuration for Oracle WebLogic Server.

Note: Much of the information in this section also pertains to the 
process of configuring a WebLogic domain in which the server 
instances are not clustered.



Role of the Administration Server

4-2 Administering Clusters for Oracle WebLogic Server 12.1.3

4.2 Role of the Administration Server
The Administration Server is the WebLogic Server instance that configures and 
manages the WebLogic Server instances in its domain. 

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic 
Server instances. Strictly speaking, a domain could consist of only one WebLogic 
Server instance—however, in that case that sole server instance would be an 
Administration Server, because each domain must have exactly one Administration 
Server. 

There are a variety of ways to invoke the services of the Administration Server to 
accomplish configuration tasks, as described in Section 4.5, "Methods of Configuring 
Clusters." Whichever method you use, the Administration Server for a cluster must be 
running when you modify the configuration. 

When the Administration Server starts, it loads the config.xml for the domain. It 
looks for config.xml in the directory: 

ORACLE_HOME/user_projects/domains/domain_name/config 

where domain_name is a domain-specific directory, with the same name as the domain. 

Each time the Administration Server starts successfully, a backup configuration file 
named config.xml.booted is created in the domain directory. In the unlikely event 
that the config.xml file should be corrupted during the lifetime of the server instance, 
it is possible to revert to this previous configuration.

Figure 4–1 shows a typical production environment that contains an Administration 
Server and multiple WebLogic Servers instances. When you start the server instances 
in such a domain, the Administration Server is started first. As each additional server 
instance is started, it contacts the Administration Server for its configuration 
information. In this way, the Administration Server operates as the central control 
entity for the configuration of the entire domain. 



How Dynamic Configuration Works

Understanding Cluster Configuration 4-3

Figure 4–1 WebLogic Server Configuration

4.2.1 What Happens if the Administration Server Fails?
The failure of an Administration Server for a domain does not affect the operation of 
Managed Servers in the domain. If an Administration Server for a domain becomes 
unavailable while the server instances it manages—clustered or otherwise—are up 
and running, those Managed Servers continue to run. If the domain contains clustered 
server instances, the load balancing and failover capabilities supported by the domain 
configuration remain available, even if the Administration Server fails.

For instructions on re-starting an Administration Server, see "Avoiding and 
Recovering from Server Failure" in Administering Server Startup and Shutdown for Oracle 
WebLogic Server 12.1.3. 

4.3 How Dynamic Configuration Works
WebLogic Server allows you to change the configuration attributes of domain 
resources dynamically—while server instances are running. In most cases you do not 
need to restart the server instance for your changes to take effect. When an attribute is 

Note: If an Administration Server fails because of a hardware or 
software failure on its host machine, other server instances on the 
same machine may be similarly affected. However, the failure of an 
Administration Server itself does not interrupt the operation of 
Managed Servers in the domain.



Application Deployment for Clustered Configurations

4-4 Administering Clusters for Oracle WebLogic Server 12.1.3

reconfigured, the new value is immediately reflected in both the current run-time 
value of the attribute and the persistent value stored in config.xml.

Not all configuration changes are applied dynamically. For example, if you change a 
Managed Server's ListenPort value, the new port will not be used until the next time 
you start the Managed Server. The updated value is stored in config.xml, but the 
runtime value is not affected.

The WebLogic Server Administration Console validates attribute changes, checking for 
out-of-range errors and data type mismatch errors, and displays an error message for 
erroneous entries. 

Once the WebLogic Server Administration Console has been started, if another process 
captures the listen port assigned to the Administration Server, you should stop the 
process that captured the port. If you are not able to remove the process that captured 
the listen port, edit the config.xml file to change the ListenPort value. 

4.4 Application Deployment for Clustered Configurations
This section is brief introduction to the application deployment process. For more 
information about deployment, see Deploying Applications to Oracle WebLogic Server. 

For instructions on how to perform common deployment tasks, see Section 10.2.13, 
"Deploy Applications."

4.4.1 Deployment Methods
You can deploy an application to a cluster using following methods: 

■ WebLogic Server Administration Console

The WebLogic Server Administration Console is a graphical user interface (GUI) to 
the Administration Service. 

■ weblogic.Deployer 

The weblogic.Deployer utility is a Java-based deployment tool that provides a 
command-line interface to the WebLogic Server deployment API. 

■ WebLogic Scripting Tool

The WebLogic Scripting Tool (WLST) is a command-line interface that you can use 
to automate domain configuration tasks, including application deployment 
configuration and deployment operations.

These deployment tools are discussed in "Deployment Tools" in Deploying Applications 
to Oracle WebLogic Server.

Regardless of the deployment tool you use, when you initiate the deployment process 
you specify the components to be deployed, and the targets to which they will be 
deployed—your cluster, or individual server instances within the cluster or domain.

The Administration Server for the domain manages the deployment process, 
communicating with the Managed Servers in the cluster throughout the process. Each 
Managed Server downloads components to be deployed, and initiates local 
deployment tasks. The deployment state is maintained in the relevant MBeans for the 
component being deployed. For more information, see Deployment Management API.



Application Deployment for Clustered Configurations

Understanding Cluster Configuration 4-5

4.4.2 Introduction to Two-Phase Deployment
In WebLogic Server, applications are deployed in two phases. Before starting, 
WebLogic Server determines the availability of the Managed Servers in the cluster. 

4.4.2.1 First Phase of Deployment
During the first phase of deployment, application components are distributed to the 
target server instances, and the planned deployment is validated to ensure that the 
application components can be successfully deployed. During this phase, user requests 
to the application being deployed are not allowed.

Failures encountered during the distribution and validation process will result in the 
deployment being aborted on all server instances—including those upon which the 
validation succeeded. Files that have been staged will not be removed; however, 
container-side changes performed during the preparation will be reverted.

4.4.2.2 Second Phase of Deployment
After the application components have been distributed to targets and validated, they 
are fully deployed on the target server instances, and the deployed application is made 
available to clients.

When a failure is encountered during the second phase of deployment, the server 
starts with one of the following behaviors:

■ If a failure occurs while deploying to the target server instances, the server 
instance will start in ADMIN state. See "ADMIN State" in Administering Server 
Startup and Shutdown for Oracle WebLogic Server 12.1.3.

■ If cluster member fails to deploy an application, the application that failed to 
deploy is made unavailable.

4.4.3 Guidelines for Deploying to a Cluster 
Ideally, all Managed Servers in a cluster should be running and available during the 
deployment process. Deploying applications while some members of the cluster are 
unavailable is not recommended. Before deploying applications to a cluster, ensure, if 
possible, that all Managed Servers in the cluster are running and reachable by the 
Administration Server. 

Note: You must package applications before you deploy them to 
WebLogic Server. For more information, see the packaging topic in 
"Deploying and Packaging from a Split Development Directory" in 
Developing Applications for Oracle WebLogic Server.



Application Deployment for Clustered Configurations

4-6 Administering Clusters for Oracle WebLogic Server 12.1.3

Cluster membership should not change during the deployment process. After 
initiating deployment, do not: 

■ add or remove Managed Servers to the target cluster 

■ shut down Managed Servers in the target cluster 

4.4.3.1 WebLogic Server Supports "Relaxed Deployment" Rules
Previous versions of WebLogic Server imposed these restrictions on deployment to 
clusters:

■ No partial deployment—If one or more of the Managed Servers in the cluster are 
unavailable, the deployment process is terminated, and an error message is 
generated, indicating that unreachable Managed Servers should be either restarted 
or removed from the cluster before attempting deployment. 

■ Pinned services cannot be deployed to multiple Managed Servers in a cluster—If 
an application is not deployed to the cluster, you can deploy it to one and only one 
Managed Server in the cluster. 

4.4.3.1.1 Deployment to a Partial Cluster is Allowed  By default, WebLogic Server allows 
deployment to a partial cluster. If one or more of the Managed Servers in the cluster 
are unavailable, the following message may be displayed: 

Unable to contact "servername". Deployment is deferred until "servername" becomes available.

When the unreachable Managed Server becomes available, deployment to that server 
instance will be initiated. Until the deployment process is completed, the Managed 
Server may experience failures related to missing or out-of-date classes. 

4.4.3.1.2 Deploying to Complete Clusters in WebLogic Server   You can ensure that 
deployment is only performed if all Managed Servers in the cluster are reachable by 
setting ClusterConstraintsEnabled. When ClusterConstraintsEnabled is set to 
"true", a deployment to a cluster succeeds only if all members of the cluster are 
reachable and all can deploy the specified files. See "Enforcing Consistent Deployment 
to All Configured Cluster Members" in Deploying Applications to Oracle WebLogic Server.

4.4.3.1.3 Pinned Services can be Deployed to Multiple Managed Servers.  It is possible to 
target a pinned service to multiple Managed Servers in a cluster. This practice is not 
recommended. The load-balancing capabilities and scalability of your cluster can be 
negatively affected by deploying a pinned service to multiple Managed Servers in a 
cluster. If you target a pinned service to multiple Managed Servers, the following 
message is printed to the server logs:

Note: If you deploy an application to a Managed Server that is 
partitioned at the time of deployment—running but not reachable by 
the Administration Server—problems accessing the Managed Server 
can occur when that Managed Server rejoins the cluster. During the 
synchronization period, while other clustered Managed Servers 
re-establish communications with the previously partitioned server 
instance, user requests to the deployed applications and attempts to 
create secondary sessions on that server instance will fail. The risk of 
this circumstance occurring can be reduced by setting 
ClusterConstraintsEnabled, as described in "Enforcing Consistent 
Deployment to All Configured Cluster Members" in Deploying 
Applications to Oracle WebLogic Server.



Methods of Configuring Clusters

Understanding Cluster Configuration 4-7

Adding server servername of cluster clustername as a target for
module modulename. This module also includes server servername that
belongs to this cluster as one of its other targets. Having multiple
individual servers in a cluster as targets instead of having the entire
cluster as the target can result in non-optimal load balancing and
scalability. Hence this is not usually recommended.

4.5 Methods of Configuring Clusters
There are several methods for configuring a clusters:

■ Configuration Wizard 

The Configuration Wizard is the recommended tool for creating a new domain or 
cluster. See "Introduction" in Creating WebLogic Domains Using the Configuration 
Wizard. See "Clusters" for information about creating and configuring a cluster.

■ WebLogic Server Administration Console

The WebLogic Server Administration Console is a graphical user interface (GUI) to 
the Administration Service. It allows you to perform a variety of domain 
configuration and monitoring functions.

■ WebLogic Server Application Programming Interface (API) 

You can write a program to modify the configuration attributes, based on the 
configuration application programming interface (API) provided with WebLogic 
Server. This method is not recommended for initial cluster implementation. 

■ WebLogic Scripting Tool (WLST)

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that 
system administrators and operators use to monitor and manage WebLogic Server 
instances and domains. For more information, see Understanding the WebLogic 
Scripting Tool.

■ Java Management Extensions (JMX)

JMX is the Java EE solution for monitoring and managing resources on a network. 
WebLogic Server provides a set of MBeans that you can use to configure, monitor, 
and manage WebLogic Server resources through JMX.



Methods of Configuring Clusters

4-8 Administering Clusters for Oracle WebLogic Server 12.1.3



5

Load Balancing in a Cluster 5-1

5Load Balancing in a Cluster

[6] This chapter describes the load balancing support that a WebLogic Server cluster 
provides for different types of objects, and related planning and configuration 
considerations for architects and administrators using WebLogic Server 12.1.3.

This chapter contains the following sections:

■ Section 5.1, "Load Balancing for Servlets and JSPs"

■ Section 5.2, "Load Balancing for EJBs and RMI Objects"

■ Section 5.3, "Load Balancing for JMS"

For information about replication and failover in a cluster, see Section 6, "Failover and 
Replication in a Cluster."

5.1 Load Balancing for Servlets and JSPs
You can accomplish load balancing of servlets and JSPs with the built-in load 
balancing capabilities of a WebLogic proxy plug-in or with separate load balancing 
hardware. 

5.1.1 Load Balancing with a Proxy Plug-in
The WebLogic proxy plug-in maintains a list of WebLogic Server instances that host a 
clustered servlet or JSP, and forwards HTTP requests to those instances on a 
round-robin basis. This load balancing method is described in Section 5.2.1, 
"Round-Robin Load Balancing."

The plug-in also provides the logic necessary to locate the replica of a client's HTTP 
session state if a WebLogic Server instance should fail.

WebLogic Server supports the following Web servers and associated proxy plug-ins: 

■ WebLogic Server with the HttpClusterServlet 

■ Netscape Enterprise Server with the Netscape (proxy) plug-in 

■ Apache with the Apache Server (proxy) plug-in

■ Microsoft Internet Information Server with the Microsoft-IIS (proxy) plug-in

Note: In addition to distributing HTTP traffic, external load 
balancers can distribute initial context requests that come from Java 
clients over t3 and the default channel. See Section 5.2, "Load 
Balancing for EJBs and RMI Objects" for a discussion of object-level 
load balancing in WebLogic Server.



Load Balancing for Servlets and JSPs

5-2 Administering Clusters for Oracle WebLogic Server 12.1.3

For instructions on setting up proxy plug-ins, see Section 10.2.9, "Configure Proxy 
Plug-Ins."

5.1.1.1 How Session Connection and Failover Work with a Proxy Plug-in
For a description of connection and failover for HTTP sessions in a cluster with proxy 
plug-ins, see Section 6.2.2, "Accessing Clustered Servlets and JSPs Using a Proxy."

5.1.2 Load Balancing HTTP Sessions with an External Load Balancer
Clusters that employ a hardware load balancing solution can use any load balancing 
algorithm supported by the hardware. These can include advanced load-based 
balancing strategies that monitor the utilization of individual machines.

5.1.2.1 Load Balancer Configuration Requirements
If you choose to use load balancing hardware instead of a proxy plug-in, it must 
support a compatible passive or active cookie persistence mechanism, and SSL 
persistence. 

■ Passive Cookie Persistence

Passive cookie persistence enables WebLogic Server to write a cookie containing 
session parameter information through the load balancer to the client. For 
information about the session cookie and how a load balancer uses session 
parameter data to maintain the relationship between the client and the primary 
WebLogic Server hosting a HTTP session state, see Section 5.1.2.2, "Load Balancers 
and the WebLogic Session Cookie."

■ Active Cookie Persistence 

You can use certain active cookie persistence mechanisms with WebLogic Server 
clusters, provided the load balancer does not modify the WebLogic Server cookie. 
WebLogic Server clusters do not support active cookie persistence mechanisms 
that overwrite or modify the WebLogic HTTP session cookie. If the load balancer's 
active cookie persistence mechanism works by adding its own cookie to the client 
session, no additional configuration is required to use the load balancer with a 
WebLogic Server cluster.

■ SSL Persistence

When SSL persistence is used, the load balancer performs all encryption and 
decryption of data between clients and the WebLogic Server cluster. The load 
balancer then uses the plain text cookie that WebLogic Server inserts on the client 
to maintain an association between the client and a particular server in the cluster.

5.1.2.2 Load Balancers and the WebLogic Session Cookie
A load balancer that uses passive cookie persistence can use a string in the WebLogic 
session cookie to associate a client with the server hosting its primary HTTP session 
state. The string uniquely identifies a server instance in the cluster. You must configure 
the load balancer with the offset and length of the string constant. The correct values 
for the offset and length depend on the format of the session cookie.

The format of a session cookie is:

sessionid!primary_server_id!secondary_server_id

where:



Load Balancing for EJBs and RMI Objects

Load Balancing in a Cluster 5-3

■ sessionid is a randomly generated identifier of the HTTP session. The length of 
the value is configured by the IDLength parameter in the <session-descriptor> 
element in the weblogic.xml file for an application. By default, the sessionid 
length is 52 bytes.

■ primary_server_id and secondary_server_id are 10 character identifiers of the 
primary and secondary hosts for the session. 

For general instructions on configuring load balancers, see Section 10.2.8, "Configuring 
Load Balancers that Support Passive Cookie Persistence." Instructions for configuring 
BIG-IP, see Section B, "Configuring BIG-IP Hardware with Clusters."

5.1.2.3 Related Programming Considerations 
For programming constraints and recommendations for clustered servlets and JSPs, 
see Section 6.2.1.1.3, "Programming Considerations for Clustered Servlets and JSPs."

5.1.2.4 How Session Connection and Failover Works with a Load Balancer
For a description of connection and failover for HTTP sessions in a cluster with load 
balancing hardware, see Section 6.2.3, "Accessing Clustered Servlets and JSPs with 
Load Balancing Hardware."

5.2 Load Balancing for EJBs and RMI Objects
This section describes WebLogic Server load balancing algorithms for EJBs and RMI 
objects.

The load balancing algorithm for an object is maintained in the replica-aware stub 
obtained for a clustered object. 

By default, WebLogic Server clusters use round-robin load balancing, described in 
Section 5.2.1, "Round-Robin Load Balancing." You can configure a different default 
load balancing method for a cluster by using the WebLogic Server Administration 
Console to set weblogic.cluster.defaultLoadAlgorithm. For instructions, see 
Section 10.2.5, "Configure Load Balancing Method for EJBs and RMIs." You can also 
specify the load balancing algorithm for a specific RMI object using the 
-loadAlgorithm option in rmic, or with the home-load-algorithm or 
stateless-bean-load-algorithm in an EJB's deployment descriptor. A load balancing 
algorithm that you configure for an object overrides the default load balancing 
algorithm for the cluster. 

In addition to the standard load balancing algorithms, WebLogic Server supports 
custom parameter-based routing. For more information, see Section 5.2.5, 
"Parameter-Based Routing for Clustered Objects."

Also, external load balancers can distribute initial context requests that come from Java 
clients over t3 and the default channel. However, because WebLogic Server load 
balancing for EJBs and RMI objects is controlled via replica-aware stubs, including 
situations where server affinity is employed, you should not route client requests, 
following the initial context request, through the load balancers. When using the t3 
protocol with external load balancers, you must ensure that only the initial context 

Note: For sessions using non-replicated memory, cookie, or 
file-based session persistence, the secondary_server_id is not 
present. For sessions that use in-memory replication, if the secondary 
session does not exist, the secondary_server_id is "NONE". 



Load Balancing for EJBs and RMI Objects

5-4 Administering Clusters for Oracle WebLogic Server 12.1.3

request is routed through the load balancers, and that subsequent requests are routed 
and controlled using WebLogic Server load balancing.

Oracle advises against using the t3s protocol with external load balancers. In cases 
where the use of t3 and SSL with external load balancers is required, Oracle 
recommends using t3 tunneling through HTTPS. In cases where server affinity is 
required, you must use HTTP session IDs for routing requests, and must terminate SSL 
at the load balancer performing session-based routing to enable appropriate routing of 
requests based on session IDs.

5.2.1 Round-Robin Load Balancing 
WebLogic Server uses the round-robin algorithm as the default load balancing strategy 
for clustered object stubs when no algorithm is specified. This algorithm is supported 
for RMI objects and EJBs. It is also the method used by WebLogic proxy plug-ins.

The round-robin algorithm cycles through a list of WebLogic Server instances in order. 
For clustered objects, the server list consists of WebLogic Server instances that host the 
clustered object. For proxy plug-ins, the list consists of all WebLogic Server instances 
that host the clustered servlet or JSP. 

The advantages of the round-robin algorithm are that it is simple, cheap and very 
predictable. The primary disadvantage is that there is some chance of convoying. 
Convoying occurs when one server is significantly slower than the others. Because 
replica-aware stubs or proxy plug-ins access the servers in the same order, a slow 
server can cause requests to "synchronize" on the server, then follow other servers in 
order for future requests.

5.2.2 Weight-Based Load Balancing 
This algorithm applies only to EJB and RMI object clustering. 

Weight-based load balancing improves on the round-robin algorithm by taking into 
account a pre-assigned weight for each server. You can use the Server > Configuration 
> Cluster page in the WebLogic Server Administration Console to assign each server 
in the cluster a numerical weight between 1 and 100, in the Cluster Weight field. This 
value determines what proportion of the load the server will bear relative to other 
servers. If all servers have the same weight, they will each bear an equal proportion of 
the load. If one server has weight 50 and all other servers have weight 100, the 
50-weight server will bear half as much as any other server. This algorithm makes it 
possible to apply the advantages of the round-robin algorithm to clusters that are not 
homogeneous. 

If you use the weight-based algorithm, carefully determine the relative weights to 
assign to each server instance. Factors to consider include:

■ The processing capacity of the server's hardware in relationship to other servers 
(for example, the number and performance of CPUs dedicated to WebLogic 
Server).

■ The number of non-clustered ("pinned") objects each server hosts.

If you change the specified weight of a server and reboot it, the new weighting 
information is propagated throughout the cluster via the replica-aware stubs. For 

Note: WebLogic Server does not always load balance an object's 
method calls. For more information, see Section 5.2.6, "Optimization 
for Collocated Objects."



Load Balancing for EJBs and RMI Objects

Load Balancing in a Cluster 5-5

related information see Section 3.4, "Cluster-Wide JNDI Naming Service."

5.2.3 Random Load Balancing
The random method of load balancing applies only to EJB and RMI object clustering.

In random load balancing, requests are routed to servers at random. Random load 
balancing is recommended only for homogeneous cluster deployments, where each 
server instance runs on a similarly configured machine. A random allocation of 
requests does not allow for differences in processing power among the machines upon 
which server instances run. If a machine hosting servers in a cluster has significantly 
less processing power than other machines in the cluster, random load balancing will 
give the less powerful machine as many requests as it gives more powerful machines. 

Random load balancing distributes requests evenly across server instances in the 
cluster, increasingly so as the cumulative number of requests increases. Over a small 
number of requests the load may not be balanced exactly evenly. 

Disadvantages of random load balancing include the slight processing overhead 
incurred by generating a random number for each request, and the possibility that the 
load may not be evenly balanced over a small number of requests.

5.2.4  Server Affinity Load Balancing Algorithms
WebLogic Server provides three load balancing algorithms for RMI objects that 
provide server affinity. Server affinity turns off load balancing for external client 
connections; instead, the client considers its existing connections to WebLogic Server 
instances when choosing the server instance on which to access an object. If an object is 
configured for server affinity, the client-side stub attempts to choose a server instance 
to which it is already connected, and continues to use the same server instance for 
method calls. All stubs on that client attempt to use that server instance. If the server 
instance becomes unavailable, the stubs fail over, if possible, to a server instance to 
which the client is already connected.

The purpose of server affinity is to minimize the number IP sockets opened between 
external Java clients and server instances in a cluster. WebLogic Server accomplishes 
this by causing method calls on objects to "stick" to an existing connection, instead of 
being load balanced among the available server instances. With server affinity 
algorithms, the less costly server-to-server connections are still load-balanced 
according to the configured load balancing algorithm—load balancing is disabled only 
for external client connections. 

Server affinity is used in combination with one of the standard load balancing 
methods: round-robin, weight-based, or random:

Note: WebLogic Server does not always load balance an object's 
method calls. For more information, see Section 5.2.6, "Optimization 
for Collocated Objects."

In this version of WebLogic Server, weight-based load balancing is not 
supported for objects that communicate using the RMI/IIOP protocol.

Note: WebLogic Server does not always load balance an object's 
method calls. For more information, see Section 5.2.6, "Optimization 
for Collocated Objects."



Load Balancing for EJBs and RMI Objects

5-6 Administering Clusters for Oracle WebLogic Server 12.1.3

■ round-robin-affinity—server affinity governs connections between external Java 
clients and server instances; round-robin load balancing is used for connections 
between server instances.

■ weight-based-affinity—server affinity governs connections between external Java 
clients and server instances; weight-based load balancing is used for connections 
between server instances.

■ random-affinity—server affinity governs connections between external Java clients 
and server instances; random load balancing is used for connections between 
server instances.

5.2.4.1 Server Affinity and Initial Context
A client can request an initial context from a particular server instance in the cluster, or 
from the cluster by specifying the cluster address in the URL. The connection process 
varies, depending on how the context is obtained: 

■ If the initial context is requested from a specific Managed Server, the context is 
obtained using a new connection to the specified server instance. 

■ If the initial context is requested from a cluster, by default, context requests are 
load balanced on a round-robin basis among the clustered server instances. To 
reuse an existing connection between a particular JVM and the cluster, set ENABLE_
SERVER_AFFINITY to true in the hash table of weblogic.jndi.WLContext properties 
you specify when obtaining context. (If a connection is not available, a new 
connection is created.) ENABLE_SERVER_AFFINITY is only supported when the 
context is requested from the cluster address. 

5.2.4.2 Server Affinity and IIOP Client Authentication Using CSIv2
If you use WebLogic Server Common Secure Interoperability (CSIv2) functionality to 
support stateful interactions with the WebLogic Server Java EE Application Client 
("thin client"), you must use an affinity-based load balancing algorithm to ensure that 
method calls stick to a server instance. Otherwise, all remote calls will be 
authenticated. To prevent redundant authentication of stateful CSIv2 clients, use one 
of the load balancing algorithms described in Section 5.2.4.3, "Round-Robin Affinity, 
Weight-Based Affinity, and Random-Affinity."

5.2.4.3 Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity
WebLogic Server has three load balancing algorithms that provide server affinity:

■ round-robin-affinity 

■ weight-based-affinity

■ random-affinity

Server affinity is supported for all types of RMI objects including JMS objects, all EJB 
home interfaces, and stateless EJB remote interfaces. 

The server affinity algorithms consider existing connections between an external Java 
client and server instances in balancing the client load among WebLogic Server 
instances. Server affinity: 

■ Turns off load balancing between external Java clients and server instances

■ Causes method calls from an external Java client to stick to a server instance to 
which the client has an open connection, assuming that the connection supports 
the necessary protocol and QOS



Load Balancing for EJBs and RMI Objects

Load Balancing in a Cluster 5-7

■ In the case of failure, causes the client to failover to a server instance to which it 
has an open connection, assuming that the connection supports the necessary 
protocol and QOS

■ Does not affect the load balancing performed for server-to-server connections

5.2.4.3.1 Server Affinity Examples  The following examples illustrate the effect of server 
affinity under a variety of circumstances. In each example, the objects deployed are 
configured for round-robin-affinity. 

Example 1—Context From Cluster
In the example shown in Figure 5–1, the client obtains context from the cluster. 
Lookups on the context and object calls stick to a single connection. Requests for new 
initial context are load balanced on a round-robin basis.

Figure 5–1 Client Obtains Context From the Cluster

1. Client requests a new initial context from the cluster (Provider_
URL=clusteraddress) and obtains the context from MS1.

2. Client does a lookup on the context for Object A. The lookup goes to MS1.

3. Client issues a call to Object A. The call goes to MS1, to which the client is already 
connected. Additional method calls to Object A stick to MS1.

4. Client requests a new initial context from the cluster (Provider_
URL=clusteraddress) and obtains the context from MS2. 

5. Client does a lookup on the context for Object B. The call goes to MS2, to which the 
client is already connected. Additional method calls to Object B stick to MS2. 



Load Balancing for EJBs and RMI Objects

5-8 Administering Clusters for Oracle WebLogic Server 12.1.3

Example 2—Server Affinity and Failover
The example shown in Figure 5–2 illustrates the effect that server affinity has on object 
failover. When a Managed Server goes down, the client fails over to another Managed 
Server to which it has a connection.

Figure 5–2 Server Affinity and Failover

1. Client requests new initial context from MS1.

2. Client does a lookup on the context for Object A. The lookup goes to MS1.

3. Client makes a call to Object A. The call goes to MS1, to which the client is already 
connected. Additional calls to Object A stick to MS1. 

4. The client obtains a stub for Object C, which is pinned to MS3. The client opens a 
connection to MS3. 

5. MS1 fails. 

6. Client makes a call to Object A.The client no longer has a connection to MS1. 
Because the client is connected to MS3, it fails over to a replica of Object A on MS3.

Example 3—Server affinity and server-to-server connections
The example shown in Figure 5–3 illustrates the fact that server affinity does not affect 
the connections between server instances.



Load Balancing for EJBs and RMI Objects

Load Balancing in a Cluster 5-9

Figure 5–3 Server Affinity and Server-to-Server Connections

1. A JSP on MS4 obtains a stub for Object B. 

2. The JSP selects a replica on MS1. For each method call, the JSP cycles through the 
Managed Servers upon which Object B is available, on a round-robin basis. 

5.2.5 Parameter-Based Routing for Clustered Objects
Parameter-based routing allows you to control load balancing behavior at a lower 
level. Any clustered object can be assigned a CallRouter. This is a class that is called 
before each invocation with the parameters of the call. The CallRouter is free to 
examine the parameters and return the name server to which the call should be routed. 
For information about creating custom CallRouter classes, see "Parameter-Based 
Routing for Clustered Objects" in Developing RMI Applications for Oracle WebLogic 
Server.

5.2.6 Optimization for Collocated Objects
WebLogic Server does not always load balance an object's method calls. In most cases, 
it is more efficient to use a replica that is collocated with the stub itself, rather than 
using a replica that resides on a remote server. Figure 5–4 illustrates this.



Load Balancing for EJBs and RMI Objects

5-10 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 5–4 Collocation Optimization Overrides Load Balancer Logic for Method Call

In this example, a client connects to a servlet hosted by the first WebLogic Server 
instance in the cluster. In response to client activity, the servlet obtains a replica-aware 
stub for Object A. Because a replica of Object A is also available on the same server 
instance, the object is said to be collocated with the client's stub. 

WebLogic Server always uses the local, collocated copy of Object A, rather than 
distributing the client's calls to other replicas of Object A in the cluster. It is more 
efficient to use the local copy, because doing so avoids the network overhead of 
establishing peer connections to other servers in the cluster.

This optimization is often overlooked when planning WebLogic Server clusters. The 
collocation optimization is also frequently confusing for administrators or developers 
who expect or require load balancing on each method call. If your Web application is 
deployed to a single cluster, the collocation optimization overrides any load balancing 
logic inherent in the replica-aware stub. 

If you require load balancing on each method call to a clustered object, see Section 9.3, 
"Recommended Multi-Tier Architecture" for information about how to plan your 
WebLogic Server cluster accordingly.

5.2.6.1 Transactional Collocation
As an extension to the basic collocation strategy, WebLogic Server attempts to use 
collocated clustered objects that are enlisted as part of the same transaction. When a 
client creates a UserTransaction object, WebLogic Server attempts to use object 
replicas that are collocated with the transaction. This optimization is depicted in the 
example shown in Figure 5–5.



Load Balancing for EJBs and RMI Objects

Load Balancing in a Cluster 5-11

Figure 5–5 Collocation Optimization Extends to Other Objects in Transaction

In this example, a client attaches to the first WebLogic Server instance in the cluster 
and obtains a UserTransaction object. After beginning a new transaction, the client 
looks up Objects A and B to do the work of the transaction. In this situation WebLogic 
Server always attempts to use replicas of A and B that reside on the same server as the 
UserTransaction object, regardless of the load balancing strategies in the stubs for A 
and B.

This transactional collocation strategy is even more important than the basic 
optimization described in Section 5.2.6, "Optimization for Collocated Objects." If 
remote replicas of A and B were used, added network overhead would be incurred for 
the duration of the transaction, because the peer connections for A and B would be 
locked until the transaction committed.WebLogic Server. By using collocating 
clustered objects during a transaction, WebLogic Server reduces the network load for 
accessing the individual objects.

5.2.7 XA Transaction Cluster Affinity
XA transaction cluster affinity allows server instances that are participating in a global 
transactions to service related requests rather than load-balancing these requests to 
other member servers. When Enable Transaction Affinity=true, cluster throughput 
is increased by:

■ Reducing inter-server transaction coordination traffic

■ Improving resource utilization, such as reducing JDBC connections

■ Simplifying asynchronous processing of transactions

If the cluster does not have a member participating in the transaction, the request is 
load balanced to an available cluster member. If the selected cluster member fails, the 
JTA Transaction Recovery Service can be migrated using the Section 8.6, "Roadmap for 
Configuring Automatic Migration of the JTA Transaction Recovery Service."

See "Configure clusters" in Oracle WebLogic Server Administration Console Online Help. 
You can also enable XA transaction affinity on the command line using 
-Dweblogic.cluster.TxnAffinityEnabled=true.



Load Balancing for JMS

5-12 Administering Clusters for Oracle WebLogic Server 12.1.3

5.3 Load Balancing for JMS
WebLogic Server JMS supports server affinity for distributed JMS destinations and 
client connections.

By default, a WebLogic Server cluster uses the round-robin method to load balance 
objects. To use a load balancing algorithm that provides server affinity for JMS objects, 
you must configure the desired method for the cluster as a whole. You can configure 
the load balancing algorithm by using the WebLogic Server Administration Console to 
set weblogic.cluster.defaultLoadAlgorithm. For instructions, see Section 10.2.5, 
"Configure Load Balancing Method for EJBs and RMIs."

5.3.1 Server Affinity for Distributed JMS Destinations 
Server affinity is supported for JMS applications that use the distributed destination 
feature; this feature is not supported for standalone destinations. If you configure 
server affinity for JMS connection factories, a server instance that is load balancing 
consumers or producers across multiple members of a distributed destination will first 
attempt to load balance across any destination members that are also running on the 
same server instance. 

For detailed information on how the JMS connection factory's Server Affinity Enabled 
option affects the load balancing preferences for distributed destination members, see 
"How Distributed Destination Load Balancing Is Affected When Using the Server 
Affinity Enabled Attribute" in Administering JMS Resources for Oracle WebLogic Server.

5.3.2 Initial Context Affinity and Server Affinity for Client Connections 
A system administrator can establish load balancing of JMS destinations across 
multiple servers in a cluster by configuring multiple JMS servers and using targets to 
assign them to the defined WebLogic Servers. Each JMS server is deployed on exactly 
one WebLogic Server and handles requests for a set of destinations. During the 
configuration phase, the system administrator enables load balancing by specifying 
targets for JMS servers. For instructions on setting up targets, see Section 10.2.11, 
"Configure Migratable Targets for Pinned Services." For instructions on deploying a 
JMS server to a migratable target, see Section 10.2.14, "Deploying, Activating, and 
Migrating Migratable Services."

A system administrator can establish cluster-wide, transparent access to destinations 
from any server in the cluster by configuring multiple connection factories and using 
targets to assign them to WebLogic Servers. Each connection factory can be deployed 
on multiple WebLogic Servers. Connection factories are described in more detail in 
"ConnectionFactory" in Developing JMS Applications for Oracle WebLogic Server.

The application uses the Java Naming and Directory Interface (JNDI) to look up a 
connection factory and create a connection to establish communication with a JMS 
server. Each JMS server handles requests for a set of destinations. Requests for 
destinations not handled by a JMS server are forwarded to the appropriate server.

WebLogic Server provides server affinity for client connections. If an application has a 
connection to a given server instance, JMS will attempt to establish new JMS 
connections to the same server instance. 

When creating a connection, JMS will try first to achieve initial context affinity. It will 
attempt to connect to the same server or servers to which a client connected for its 
initial context, assuming that the server instance is configured for that connection 
factory. For example, if the connection factory is configured for servers A and B, but 
the client has an InitialContext on server C, then the connection factory will not 
establish the new connection with A, but will choose between servers B and C.



Load Balancing for JMS

Load Balancing in a Cluster 5-13

If a connection factory cannot achieve initial context affinity, it will try to provide 
affinity to a server to which the client is already connected. For instance, assume the 
client has an InitialContext on server A and some other type of connection to server B. 
If the client then uses a connection factory configured for servers B and C it will not 
achieve initial context affinity. The connection factory will instead attempt to achieve 
server affinity by trying to create a connection to server B, to which it already has a 
connection, rather than server C.

If a connection factory cannot provide either initial context affinity or server affinity, 
then the connection factory is free to make a connection wherever possible. For 
instance, assume a client has an initial context on server A, no other connections and a 
connection factory configured for servers B and C. The connection factory is unable to 
provide any affinity and is free to attempt new connections to either server B or C.

Note: In the last case, if the client attempts to make a second 
connection using the same connection factory, it will go to the same 
server as it did on the first attempt. That is, if it chose server B for the 
first connection, when the second connection is made, the client will 
have a connection to server B and the server affinity rule will be 
enforced.



Load Balancing for JMS

5-14 Administering Clusters for Oracle WebLogic Server 12.1.3



6

Failover and Replication in a Cluster 6-1

6Failover and Replication in a Cluster

[7] This chapter describes how WebLogic Server 12.1.3 detects failures in a cluster and 
provides an overview of how failover is accomplished for different types of objects.

This chapter includes the following sections:

■ Section 6.1, "How WebLogic Server Detects Failures"

■ Section 6.2, "Replication and Failover for Servlets and JSPs"

■ Section 6.3, "Replication and Failover for EJBs and RMIs"

This chapter focuses on failover and replication at the application level. WebLogic 
Server also supports automatic migration of server instances and services after failure. 
For more information, see Chapter 7, "Whole Server Migration."

6.1 How WebLogic Server Detects Failures
WebLogic Server instances in a cluster detect failures of their peer server instances by 
monitoring:

■ Socket connections to a peer server

■ Regular server heartbeat messages

6.1.1 Failure Detection Using IP Sockets
WebLogic Server instances monitor the use of IP sockets between peer server instances 
as an immediate method of detecting failures. If a server connects to one of its peers in 
a cluster and begins transmitting data over a socket, an unexpected closure of that 
socket causes the peer server to be marked as "failed," and its associated services are 
removed from the JNDI naming tree.

6.1.2 The WebLogic Server "Heartbeat"
If clustered server instances do not have opened sockets for peer-to-peer 
communication, failed servers may also be detected via the WebLogic Server 
heartbeat. All server instances in a cluster use multicast or unicast to broadcast regular 
server heartbeat messages to other members of the cluster. 

Each heartbeat message contains data that uniquely identifies the server that sends the 
message. Servers broadcast their heartbeat messages at regular intervals of 10 seconds. 
In turn, each server in a cluster monitors the multicast or unicast address to ensure 
that all peer servers' heartbeat messages are being sent.

If a server monitoring the multicast or unicast address misses three heartbeats from a 
peer server (for example, if it does not receive a heartbeat from the server for 30 



Replication and Failover for Servlets and JSPs

6-2 Administering Clusters for Oracle WebLogic Server 12.1.3

seconds or longer), the monitoring server marks the peer server as "failed." It then 
updates its local JNDI tree, if necessary, to retract the services that were hosted on the 
failed server.

In this way, servers can detect failures even if they have no sockets open for 
peer-to-peer communication.

6.2 Replication and Failover for Servlets and JSPs 
To support automatic replication and failover for servlets and JSPs within a cluster, 
Weblogic Server supports two mechanisms for preserving HTTP session state:

■ Hardware load balancers

For clusters that use a supported hardware load balancing solution, the load 
balancing hardware simply redirects client requests to any available server in the 
WebLogic Server cluster. The cluster itself obtains the replica of the client's HTTP 
session state from a secondary server in the cluster.

■ Proxy plug-ins

For clusters that use a supported Web server and WebLogic plug-in, the plug-in 
redirects client requests to any available server instance in the WebLogic Server 
cluster. The cluster obtains the replica of the client's HTTP session state from either 
the primary or secondary server instance in the cluster.

This section covers the following topics:

■ Section 6.2.1, "HTTP Session State Replication"

■ Section 6.2.2, "Accessing Clustered Servlets and JSPs Using a Proxy"

■ Section 6.2.3, "Accessing Clustered Servlets and JSPs with Load Balancing 
Hardware"

■ Section 6.2.4, "Session State Replication Across Clusters in a MAN/WAN"

6.2.1 HTTP Session State Replication
WebLogic Server provides three methods for replicating HTTP session state across 
clusters:

■ In-memory replication

Using in-memory replication, WebLogic Server copies a session state from one 
server instance to another. The primary server creates a primary session state on 
the server to which the client first connects, and a secondary replica on another 
WebLogic Server instance in the cluster. The replica is kept up-to-date so that it 
may be used if the server that hosts the servlet fails.

■ JDBC-based persistence

In JDBC-based persistence, WebLogic Server maintains the HTTP session state of a 
servlet or JSP using file-based or JDBC-based persistence. For more information on 
these persistence mechanisms, see "Configuring Session Persistence" in Developing 
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Note: The default cluster messaging mode is unicast.

For more information about how WebLogic Server uses IP sockets and 
either multicast or unicast communications see Chapter 3, 
"Communications In a Cluster."



Replication and Failover for Servlets and JSPs

Failover and Replication in a Cluster 6-3

JDBC-based persistence is also used for HTTP session state replication within a 
Wide Area Network (WAN). For more information, see Section 6.2.4.6, "WAN 
HTTP Session State Replication."

■ Coherence*Web

You can use Coherence*Web for session replication. Coherence*Web is not a 
replacement for WebLogic Server's in-memory HTTP state replication services. 
However, you should consider using Coherence*Web when an application has 
large HTTP session state objects, when running into memory constraints due to 
storing HTTP session object data, or if you want to reuse an existing Coherence 
cluster.

For more information, see Administering HTTP Session Management with Oracle 
Coherence*Web.

The following section describe session state replication using in-memory replication.

6.2.1.1 Requirements for HTTP Session State Replication
To use in-memory replication for HTTP session states, you must access the WebLogic 
Server cluster using either a collection of Web servers with identically configured 
WebLogic proxy plug-ins, or load balancing hardware.

6.2.1.1.1 Supported Server and Proxy Software  The WebLogic proxy plug-in maintains a 
list of WebLogic Server instances that host a clustered servlet or JSP, and forwards 
HTTP requests to those instances using a round-robin strategy. The plug-in also 
provides the logic necessary to locate the replica of a client's HTTP session state if a 
WebLogic Server instance should fail.

In-memory replication for HTTP session states is supported by the following Web 
servers and proxy software: 

■ WebLogic Server with the HttpClusterServlet

■ Apache with the Apache Server (proxy) plug-in

■ Microsoft Internet Information Server with the Microsoft-IIS (proxy) plug-in

For instructions on setting up proxy plug-ins, see Section 10.2.9, "Configure Proxy 
Plug-Ins."

6.2.1.1.2 Load Balancer Requirements  If you choose to use load balancing hardware 
instead of a proxy plug-in, it must support a compatible passive or active cookie 
persistence mechanism, and SSL persistence. For details on these requirements, see 
Section 5.1.2.1, "Load Balancer Configuration Requirements." For instructions on 
setting up a load balancer, see Section 10.2.8, "Configuring Load Balancers that 
Support Passive Cookie Persistence."

Note: Web applications which have persistent store type set to 
replicated or replicated_if_clustered will have to be targeted to 
the cluster or all the nodes of that cluster. If it is targeted to only some 
nodes in the cluster, the Web application will not be deployed. 
In-memory replication requires that Web applications be deployed 
homogeneously on all the nodes in a cluster.



Replication and Failover for Servlets and JSPs

6-4 Administering Clusters for Oracle WebLogic Server 12.1.3

6.2.1.1.3 Programming Considerations for Clustered Servlets and JSPs  This section 
highlights key programming constraints and recommendations for servlets and JSPs 
that you will deploy in a clustered environment.

■ Session Data Must Be Serializable

To support in-memory replication of HTTP session states, all servlet and JSP 
session data must be serializable. 

Every field in an object must be serializable or transient in order for the object to 
be considered serializable. If the servlet or JSP uses a combination of serializable 
and non-serializable objects, WebLogic Server does not replicate the session state 
of the non-serializable objects. 

■ Use setAttribute to Change Session State

In an HTTP servlet that implements javax.servlet.http.HttpSession, use 
HttpSession.setAttribute (which replaces the deprecated putValue) to change 
attributes in a session object. If you set attributes in a session object with 
setAttribute, the object and its attributes are replicated in a cluster using 
in-memory replication. If you use other set methods to change objects within a 
session, WebLogic Server does not replicate those changes. Every time a change is 
made to an object that is in the session, setAttribute() should be called to 
update that object across the cluster.

Likewise, use removeAttribute (which, in turn, replaces the deprecated 
removeValue) to remove an attribute from a session object.

■ Consider Serialization Overhead 

Serializing session data introduces some overhead for replicating the session state. 
The overhead increases as the size of serialized objects grows. If you plan to create 
very large objects in the session, test the performance of your servlets to ensure 
that performance is acceptable.

■ Control Frame Access to Session Data 

If you are designing a Web application that utilizes multiple frames, keep in mind 
that there is no synchronization of requests made by frames in a given frameset. 
For example, it is possible for multiple frames in a frameset to create multiple 
sessions on behalf of the client application, even though the client should logically 
create only a single session. 

In a clustered environment, poor coordination of frame requests can cause 
unexpected application behavior. For example, multiple frame requests can "reset" 
the application's association with a clustered instance, because the proxy plug-in 
treats each request independently. It is also possible for an application to corrupt 

Note: Serialization is the process of converting a complex data 
structure, such as a parallel arrangement of data (in which a number 
of bits are transmitted at a time along parallel channels) into a serial 
form (in which one bit at a time is transmitted); a serial interface 
provides this conversion to enable data transmission. 

Note: Use of the deprecated putValue and removeValue methods 
will also cause session attributes to be replicated.



Replication and Failover for Servlets and JSPs

Failover and Replication in a Cluster 6-5

session data by modifying the same session attribute via multiple frames in a 
frameset.

To avoid unexpected application behavior, carefully plan how you access session 
data with frames. You can apply one of the following general rules to avoid 
common problems:

– In a given frameset, ensure that only one frame creates and modifies session 
data.

– Always create the session in a frame of the first frameset your application uses 
(for example, create the session in the first HTML page that is visited). After 
the session has been created, access the session data only in framesets other 
than the first frameset.

6.2.1.2 Using Replication Groups
By default, WebLogic Server attempts to create session state replicas on a different 
machine than the one that hosts the primary session state. You can further control 
where secondary states are placed using replication groups. A replication group is a 
preferred list of clustered servers to be used for storing session state replicas. 

Using the WebLogic Server Administration Console, you can define unique machine 
names that will host individual server instances. These machine names can be 
associated with new WebLogic Server instances to identify where the servers reside in 
your system. 

Machine names are generally used to indicate servers that run on the same machine. 
For example, you would assign the same machine name to all server instances that run 
on the same machine, or the same server hardware.

If you do not run multiple WebLogic Server instances on a single machine, you do not 
need to specify WebLogic Server machine names. Servers without a machine name are 
treated as though they reside on separate machines. For detailed instructions on 
setting machine names, see Section 10.2.16.5, "Configure Machine Names."

When you configure a clustered server instance, you can assign the server to a 
replication group, and a preferred secondary replication group for hosting replicas of 
the primary HTTP session states created on the server.

When a client attaches to a server in the cluster and creates a primary session state, the 
server hosting the primary state ranks other servers in the cluster to determine which 
server should host the secondary. Server ranks are assigned using a combination of the 
server's location (whether or not it resides on the same machine as the primary server) 
and its participation in the primary server's preferred replication group. Table 6–1 
shows the relative ranking of servers in a cluster.

Using these rules, the primary WebLogic Server ranks other members of the cluster 
and chooses the highest-ranked server to host the secondary session state. For 

Table 6–1 Ranking Server Instances for Session Replication

Server Rank
Server Resides on 
a Different Machine

Server is a Member of 
Preferred Replication Group

1 Yes Yes

2 No Yes

3 Yes No

4 No No



Replication and Failover for Servlets and JSPs

6-6 Administering Clusters for Oracle WebLogic Server 12.1.3

example, Figure 6–1 shows replication groups configured for different geographic 
locations.

Figure 6–1 Replication Groups for Different Geographic Locations

In this example, Servers A, B, and C are members of the replication group 
"Headquarters" and use the preferred secondary replication group "Crosstown." 
Conversely, Servers X, Y, and Z are members of the "Crosstown" group and use the 
preferred secondary replication group "Headquarters." Servers A, B, and X reside on 
the same machine, "sardina."

If a client connects to Server A and creates an HTTP session state, 

■ Servers Y and Z are most likely to host the replica of this state, since they reside on 
separate machines and are members of Server A's preferred secondary group. 

■ Server X holds the next-highest ranking because it is also a member of the 
preferred replication group (even though it resides on the same machine as the 
primary.) 

■ Server C holds the third-highest ranking since it resides on a separate machine but 
is not a member of the preferred secondary group. 

■ Server B holds the lowest ranking, because it resides on the same machine as 
Server A (and could potentially fail along with A if there is a hardware failure) and 
it is not a member of the preferred secondary group.

To configure a server's membership in a replication group, or to assign a server's 
preferred secondary replication group, follow the instructions in Section 10.2.10, 
"Configure Replication Groups."

6.2.2 Accessing Clustered Servlets and JSPs Using a Proxy
This section describes the connection and failover processes for requests that are 
proxied to clustered servlets and JSPs. For instructions on setting up proxy plug-ins, 
see Section 10.2.9, "Configure Proxy Plug-Ins."

Figure 6–2 depicts a client accessing a servlet hosted in a cluster. This example uses a 
single WebLogic Server instance to serve static HTTP requests only; all servlet requests 
are forwarded to the WebLogic Server cluster via the HttpClusterServlet.



Replication and Failover for Servlets and JSPs

Failover and Replication in a Cluster 6-7

Figure 6–2 Accessing Servlets and JSPs using a Proxy

6.2.2.1 Proxy Connection Procedure
When the HTTP client requests the servlet, HttpClusterServlet proxies the request to 
the WebLogic Server cluster. HttpClusterServlet maintains the list of all servers in 
the cluster, and the load balancing logic to use when accessing the cluster. In the above 
example, HttpClusterServlet routes the client request to the servlet hosted on 
WebLogic Server A. WebLogic Server A becomes the primary server hosting the 
client's servlet session.

To provide failover services for the servlet, the primary server replicates the client's 
servlet session state to a secondary WebLogic Server in the cluster. This ensures that a 
replica of the session state exists even if the primary server fails (for example, due to a 
network failure). In the example above, Server B is selected as the secondary.

The servlet page is returned to the client through the HttpClusterServlet, and the 
client browser is instructed to write a cookie that lists the primary and secondary 
locations of the servlet session state. If the client browser does not support cookies, 
WebLogic Server can use URL rewriting instead. 

Note: The discussion that follows also applies if you use a 
third-party Web server and WebLogic proxy plug-in, rather than 
WebLogic Server and the HttpClusterServlet.



Replication and Failover for Servlets and JSPs

6-8 Administering Clusters for Oracle WebLogic Server 12.1.3

6.2.2.1.1 Using URL Rewriting to Track Session Replicas  In its default configuration, 
WebLogic Server uses client-side cookies to keep track of the primary and secondary 
server that host the client's servlet session state. If client browsers have disabled cookie 
usage, WebLogic Server can also keep track of primary and secondary servers using 
URL rewriting. With URL rewriting, both locations of the client session state are 
embedded into the URLs passed between the client and proxy server. To support this 
feature, you must ensure that URL rewriting is enabled on the WebLogic Server 
cluster. For instructions on how to enable URL rewriting, see "Using URL Rewriting 
Instead of Cookies" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic 
Server.

6.2.2.2 Proxy Failover Procedure
Should the primary server fail, HttpClusterServlet uses the client's cookie 
information to determine the location of the secondary WebLogic Server that hosts the 
replica of the session state. HttpClusterServlet automatically redirects the client's 
next HTTP request to the secondary server, and failover is transparent to the client.

After the failure, WebLogic Server B becomes the primary server hosting the servlet 
session state, and a new secondary is created (Server C in the previous example). In 
the HTTP response, the proxy updates the client's cookie to reflect the new primary 
and secondary servers, to account for the possibility of subsequent failovers.

In a two-server cluster, the client would transparently fail over to the server hosting 
the secondary session state. However, replication of the client's session state would not 
continue unless another WebLogic Server became available and joined the cluster. For 
example, if the original primary server was restarted or reconnected to the network, it 
would be used to host the secondary session state.

6.2.3 Accessing Clustered Servlets and JSPs with Load Balancing Hardware
To support direct client access via load balancing hardware, the WebLogic Server 
replication system allows clients to use secondary session states regardless of the 
server to which the client fails over. WebLogic Server uses client-side cookies or URL 
rewriting to record primary and secondary server locations. However, this information 
is used only as a history of the servlet session state location; when accessing a cluster 
via load balancing hardware, clients do not use the cookie information to actively 
locate a server after a failure. 

The following sections describe the connection and failover procedure when using 
HTTP session state replication with load balancing hardware.

6.2.3.1 Connection with Load Balancing Hardware
Figure 6–3 illustrates the connection procedure for a client accessing a cluster through 
a load balancer.

Note: Now WebLogic proxy plug-ins randomly pick up a secondary 
server after the failover.



Replication and Failover for Servlets and JSPs

Failover and Replication in a Cluster 6-9

Figure 6–3 Connection with Load Balancing Hardware

When the client of a Web application requests a servlet using a public IP address: 

1. The load balancer routes the client's connection request to a WebLogic Server 
cluster in accordance with its configured policies. It directs the request to 
WebLogic Server A.

2. WebLogic Server A acts as the primary host of the client's servlet session state. It 
uses the ranking system described in Section 6.2.1.2, "Using Replication Groups" to 
select a server to host the replica of the session state. In the example above, 
WebLogic Server B is selected to host the replica.

3. The client is instructed to record the location of WebLogic Server instances A and 
B in a local cookie. If the client does not allow cookies, the record of the primary 
and secondary servers can be recorded in the URL returned to the client via URL 
rewriting.

4. As the client makes additional requests to the cluster, the load balancer uses an 
identifier in the client-side cookie to ensure that those requests continue to go to 

Note: You must enable WebLogic Server URL rewriting capabilities 
to support clients that disallow cookies, as described in 
Section 6.2.2.1.1, "Using URL Rewriting to Track Session Replicas."



Replication and Failover for Servlets and JSPs

6-10 Administering Clusters for Oracle WebLogic Server 12.1.3

WebLogic Server A (rather than being load-balanced to another server in the 
cluster). This ensures that the client remains associated with the server hosting the 
primary session object for the life of the session.

6.2.3.2 Failover with Load Balancing Hardware
Should Server A fail during the course of the client's session, the client's next 
connection request to Server A also fails, as illustrated in Figure 6–4.

Figure 6–4 Failover with Load Balancing Hardware

In response to the connection failure:

1. The load balancing hardware uses its configured policies to direct the request to an 
available WebLogic Server in the cluster. In the above example, assume that the 
load balancer routes the client's request to WebLogic Server C after WebLogic 
Server A fails.

2. When the client connects to WebLogic Server C, the server uses the information in 
the client's cookie (or the information in the HTTP request if URL rewriting is 
used) to acquire the session state replica on WebLogic Server B. The failover 
process remains completely transparent to the client.

WebLogic Server C becomes the new host for the client's primary session state, and 
WebLogic Server B continues to host the session state replica. This new information 
about the primary and secondary host is again updated in the client's cookie, or via 
URL rewriting.



Replication and Failover for Servlets and JSPs

Failover and Replication in a Cluster 6-11

6.2.4 Session State Replication Across Clusters in a MAN/WAN
In addition to providing HTTP session state replication across servers within a cluster, 
WebLogic Server provides the ability to replicate HTTP session state across multiple 
clusters. This improves high-availability and fault tolerance by allowing clusters to be 
spread across multiple geographic regions, power grids, and Internet service 
providers. This section discusses mechanisms for cross-cluster replication supported 
by WebLogic Server:

■ Section 6.2.4.1, "Network Requirements for Cross-cluster Replication"

■ Section 6.2.4.2, "Configuration Requirements for Cross-Cluster Replication"

■ Section 6.2.4.5, "MAN HTTP Session State Replication"

■ Section 6.2.4.6, "WAN HTTP Session State Replication"

For general information on HTTP session state replication, see Section 6.2.1, "HTTP 
Session State Replication." For more information on using hardware load balancers, 
see Section 6.2.3, "Accessing Clustered Servlets and JSPs with Load Balancing 
Hardware."

6.2.4.1 Network Requirements for Cross-cluster Replication
To perform cross-cluster replication with WebLogic Server, your network must include 
global and local hardware load balancers. Figure 6–5 shows how both types of load 
balancers interact within a multi-cluster environment to support cross-cluster 
replication. For general information on using load balancer within a WebLogic Server 
environment, see Section 6.2.3.1, "Connection with Load Balancing Hardware."



Replication and Failover for Servlets and JSPs

6-12 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 6–5 Load Balancer Requirements for Cross-cluster Replications

The following sections describe each of the components in this network configuration.

6.2.4.1.1 Global Load Balancer  In a network configuration that supports cross-cluster 
replication, the global load balancer is responsible for balancing HTTP requests across 
clusters. When a request comes in, the global load balancer determines which cluster 
to send it to based on the current number of requests being handled by each cluster. 
Then the request is passed to the local load balancer for the chosen cluster.

6.2.4.1.2 Local Load Balancer  The local load balancer receives HTTP requests from the 
global load balancer. The local load balancer is responsible for balancing HTTP 
requests across servers within the cluster.

6.2.4.1.3 Replication  In order to replicate session data from one cluster to another, a 
replication channel must be configured to communicate session state information from 
the primary to the secondary cluster. The specific method used to replicate session 
information depends on which type of cross-cluster replication you are implementing. 
For more information, see Section 6.2.4.5, "MAN HTTP Session State Replication" or 
Section 6.2.4.6, "WAN HTTP Session State Replication."



Replication and Failover for Servlets and JSPs

Failover and Replication in a Cluster 6-13

6.2.4.1.4 Failover  When a server within a cluster fails, the local load balancer is 
responsible for transferring the request to other servers within a cluster. When the 
entire cluster fails, the local load balancer returns HTTP requests back to the global 
load balancer. The global load balancer then redirects this request to the other local 
load balancer.

6.2.4.2 Configuration Requirements for Cross-Cluster Replication
The following procedures outline the basic steps required to configure cross-cluster 
replication.

1. Install WebLogic Server according to your network configuration and 
requirements. This includes installing a WebLogic Server instance on every 
physical machine that hosts a WebLogic Server instance.

2. Install and configure the hardware load balancers. For more information on load 
balancer requirements see Section 6.2.4.1, "Network Requirements for 
Cross-cluster Replication." For more information on installing and configuring 
load balancers, see the documentation for your load balancer.

Following are some general considerations when configuring hardware load 
balancers to support cross-cluster replications:

■ You must configure your load balancer to maintain session IDs. If the load 
balancers do not maintain session ID, subsequent requests will always be sent 
to a new server. For more information, see Section 6.2.3.1, "Connection with 
Load Balancing Hardware."

■ You should ensure that the cluster failover timeout value is not set to high. 
This value should be around 3-5 seconds. Some hardware load balancers have 
default values that are much longer.

■ You must configure your load balancer to know which backup cluster to use 
when a primary cluster or server fails.

3. Create and configure your domains according to your cluster requirements.

In addition to creating and configuring your domains, you should also create and 
configure your clusters and Managed Servers. For information about creating and 
configuring domains, clusters, and Managed Servers, see the following topics:

■ "Understanding Oracle WebLogic Server Domains" in Understanding Domain 
Configuration for Oracle WebLogic Server

■ "Clusters" in Creating WebLogic Domains Using the Configuration Wizard

Following are some considerations when configuring domains to support 
cross-cluster replication:

■ Each domain should be set up and configured identically. In addition to 
identical domain, cluster and server configuration, the number of servers 
clusters, etc. should be identical.

■ Application deployment should be identical in each domain.

■ When setting up your domains, you must enable trust between both domains. 
For more information on enabling trust between domains, see "Enabling Trust 

Note: Cross-cluster replication requires that each cluster be assigned 
to a different domain.



Replication and Failover for Servlets and JSPs

6-14 Administering Clusters for Oracle WebLogic Server 12.1.3

Between WebLogic Server Domains" in Administering Security for Oracle 
WebLogic Server

4. If you are using cross-cluster replication in a WAN environment, you must create a 
data source that is used to maintain session state. For more information, see 
Section 6.2.4.6.3, "Database Configuration for WAN Session State Replication."

5. After you have created and configured your domains, servers, and clusters you 
should verify the configuration elements specific to cross-cluster replication have 
been configured correctly. These parameters must be configured identically for 
both domains.

Table 6–2 lists the subelements of the cluster element in config.xml that are used 
to configure cross-cluster replication:

6.2.4.3 Configuring Session State Replication Across Clusters
You can use a third-party replication product to replicate state across clusters, or you 
can allow WebLogic Server to replicate session state across clusters. The following 
configuration considerations should be kept in mind depending on which method you 
use:

■ If you are using a third-party product, ensure that you have specified a value for 
jdbc-pool, and that remote-cluster-address is blank.

■ If you are using WebLogic Server to handle session state replication, you must 
configure both the jdbc-pool and the remote-cluster-address.

Table 6–2 Cluster Elements in config.xml

Element Description

cluster-type This setting must match the replication type you are using and 
must be consistent across both clusters.

The valid values are man or wan

remote-cluster-address This is the address used to communicate replication information 
to the other cluster. This should be configured so that 
communications between clusters do not go through a load 
balancer.

replication-channel This is the network channel used to communicate replication 
information to the other cluster. 

Note: The named channel must exist on all members of the cluster 
and must be configured to use the same protocol. The selected 
channel may be configured to use a secure protocol.

data-source-for-session-persistence This is the data source that is used to store session information 
when using JDBC-based session persistence. 

This method of session state replication is used to perform 
cross-cluster replication within a WAN. For more information, see 
Section 6.2.4.6.3, "Database Configuration for WAN Session State 
Replication."

session-flush-interval This is the interval, in seconds, the cluster waits to flush HTTP 
sessions to the backup cluster.

session-flush-threshold If the number of HTTP sessions reaches the value of 
session-flush-threshold, the sessions are flushed to the backup 
cluster. This allows servers to flush sessions faster under heavy 
loads.

inter-cluster-comm-link-health-check-interval This is the amount of time, in milliseconds, between consecutive 
checks to determine if the link between two clusters is restored.



Replication and Failover for Servlets and JSPs

Failover and Replication in a Cluster 6-15

If remote-cluster-address is NULL, WebLogic Server assumes that you are using a 
third-party product to handle replication. In this case, session data is not persisted to 
the remote database, but is persisted locally.

6.2.4.4 Configuring a Replication Channel
A replication channel is a normal network channel that is dedicated specifically to 
replication traffic between clusters. For general information on configuring a network 
channel, see "Configuring Network Resources" in Administering Server Environments for 
Oracle WebLogic Server.

When creating a network channel to be used as the replication channel in cross-cluster 
replication, the following considerations apply:

■ You must ensure that the replication channel is created on all cluster members and 
has the same name.

■ The channel should be used only for replication. Other types of network traffic 
should be directed to other network channels.

6.2.4.5 MAN HTTP Session State Replication
Resources within a metropolitan area network (MAN) are often in physically separate 
locations, but are geographically close enough that network latency is not an issue. 
Network communication in a MAN generally has low latency and fast interconnect. 
Clusters within a MAN can be installed in physically separate locations which 
improves availability.

To provide failover within a MAN, WebLogic Server provides an in-memory 
mechanism that works between two separate clusters. This allows session state to be 
replicated synchronously from one cluster to another, provided that the network 
latency is a few milliseconds. The advantage of using a synchronous method is that 
reliability of in-memory replication is guaranteed.

6.2.4.5.1 Replication Within a MAN  This section discusses possible failover scenarios 
across multiple clusters within a MAN. Figure 6–6 shows a typical multi-cluster 
environment within a MAN. 

Note: The performance of synchronous state replication is 
dependant on the network latency between clusters. You should use 
this method only if the network latency between the clusters is 
tolerable.



Replication and Failover for Servlets and JSPs

6-16 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 6–6 MAN Replication

This figure shows the following HTTP session state scenario:

1. A client makes a request which passes through the global load balancer.

2. The global load balancer passes the request to a local load balancer based on 
current system load. In this case, the session request is passed to Local Load 
Balancer 1.

3. The local load balancer in turn passes the request to a server within a cluster based 
on system load, in this case S1. Once the request reaches S1, this Managed Server 
becomes the primary server for this HTTP session. This server will handle 
subsequent requests assuming there are no failures.

4. Session state information is stored in the database of the primary cluster.

5. After the server establishes the HTTP session, the current session state is replicated 
to the designated secondary server.

6.2.4.5.2 Failover Scenarios in a MAN  The following sections describe various failover 
scenarios based on the MAN configuration in Figure 6–6.

Failover Scenario 1 



Replication and Failover for Servlets and JSPs

Failover and Replication in a Cluster 6-17

If all of the servers in Cluster 1 fail, the global load balancer will automatically fail all 
subsequent session requests to Cluster 2. All sessions that have been replicated to 
Cluster 2 will be recovered and the client will experience no data loss.

Failover Scenario 2 

Assume that the primary server S1 is being hosted on Cluster 1, and the secondary 
server S6 is being hosted on Cluster 2. If S1 crashes, then any other server in Cluster 1 
(S2 or S3) can pick up the request and retrieve the session data from server S6. S6 will 
continue to be the backup server.

Failover Scenario 3 

Assume that the primary server S1 is being hosted on Cluster 1, and the secondary 
server S6 is being hosted on Cluster 2. If the secondary server S6 fails, then the 
primary server S1 will automatically select a new secondary server on Cluster 2. Upon 
receiving a client request, the session information will be backed up on the new 
secondary server.

Failover Scenario 4 

If the communication between the two clusters fails, the primary server will 
automatically replicate session state to a new secondary server within the local cluster. 
Once the communication between the two clusters, any subsequent client requests will 
be replicated on the remote cluster.

6.2.4.5.3 MAN Replication, Load Balancers, and Session Stickiness  MAN replication relies 
on global load balancers to maintain cluster affinity and local load balancers to 
maintain server affinity. If a server within a cluster fails, the local load balancer is 
responsible for ensuring that session state is replicated to another server in the cluster. 
If all of the servers within a cluster have failed or are unavailable, the global load 
balancer is responsible for replicating session state to another cluster. This ensures that 
failover to another cluster does not occur unless the entire cluster fails.

Once a client establishes a connection through a load balancer to a cluster, the client 
must maintain stickiness to that cluster as long as it is healthy.

6.2.4.6 WAN HTTP Session State Replication
Resources in a wide area network (WAN) are frequently spread across separate 
geographical regions. In addition to requiring network traffic to cross long distances, 
these resources are often separated by multiple routers and other network bottle necks. 
Network communication in a WAN generally has higher latency and slower 
interconnect.

Slower network performance within a WAN makes it difficult to use a synchronous 
replication mechanism like the one used within a MAN. WebLogic Server provides 
failover across clusters in WAN by using an asynchronous data replication scheme.

6.2.4.6.1 Replication Within a WAN  This section discusses possible failover scenarios 
across multiple clusters within a WAN. Figure 6–7 shows a typical multi-cluster 
environment within a WAN. 



Replication and Failover for Servlets and JSPs

6-18 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 6–7 WAN Replication

This figure demonstrates the following HTTP session state scenario:

1. A client makes a request which passes through the global load balancer.

2. The global load balancer passes the request to a local load balancer based on 
current system load. In this case, the session request is passed to Local Load 
Balancer 1.

3. The local load balancer in turn passes the request to a server within a cluster based 
on system load, in this case S1. Once the request reaches S1, this Managed Server 
becomes the primary server for this HTTP session. This server will handle 
subsequent requests assuming there are no failures.

4. Session state information is stored in the database of the primary cluster.

5. After the server establishes the HTTP session, the current session state is replicated 
to the designated secondary server.

6.2.4.6.2 Failover Scenarios Within a WAN  This section describes the failover scenario 
within a WAN environment.

Failover Scenario 

If all of the servers in Cluster 1 fail, the global load balancer will automatically fail all 
subsequent session requests to Cluster 2. All sessions will be backed up according to 
the last know flush to the database.

6.2.4.6.3 Database Configuration for WAN Session State Replication  This section describes 
the data source configuration requirements for cross-cluster session state replication in 
a WAN. For more general information about setting up cross-cluster replication, see 
Section 6.2.4.2, "Configuration Requirements for Cross-Cluster Replication."



Replication and Failover for EJBs and RMIs

Failover and Replication in a Cluster 6-19

To enable cross-cluster replication within a WAN environment, you must create a 
JDBC data source that points to the database where session state information is stored. 
Perform the following procedures to setup and configure your database:

1. Install and configure your database server software according to your vendor's 
documentation.

2. Create a JDBC data source that references this database. For more information on 
creating a JDBC data source, see "Configuring JDBC Data Sources" in Administering 
JDBC Data Sources for Oracle WebLogic Server

This data source can also be configured as a JDBC Multi Data Source. For more 
information on configuring a Multi Data Source, see "Configuring JDBC Multi 
Data Sources" in Administering JDBC Data Sources for Oracle WebLogic Server

3. Set the DataSourceForSessionPersistence for both the primary and secondary 
cluster to point to this data source.

4. Create a table called WLS_WAN_PERSISTENCE in your database according to the 
following schema:

CREATE TABLE WLS_WAN_PERSISTENCE_TABLE (
  WL_ID VARCHAR2(100) NOT NULL,
  WL_CONTEXT_PATH VARCHAR2(50) NOT NULL,
  WL_CREATE_TIME NUMBER(20),
  WL_ACCESS_TIME NUMBER(20),
  WL_MAX_INACTIVE_INTERVAL NUMBER(38),
  WL_VERSION NUMBER(20) NOT NULL,
  WL_INTERNAL_ATTRIBUTE NUMBER(38),
  WL_SESSION_ATTRIBUTE_KEY VARCHAR2(100),
  WL_SESSION_ATTRIBUTE_VALUE LONG RAW,
  PRIMARY KEY(WL_ID, WL_CONTEXT_PATH,
  WL_VERSION, WL_SESSION_ATTRIBUTE_KEY));

Table 6–3 describes what each row of this table contains:

6.3 Replication and Failover for EJBs and RMIs
For clustered EJBs and RMIs, failover is accomplished using the object's replica-aware 
stub. When a client makes a call through a replica-aware stub to a service that fails, the 
stub detects the failure and retries the call on another replica. 

With clustered objects, automatic failover generally occurs only in cases where the 
object is idempotent. An object is idempotent if any method can be called multiple times 

Table 6–3 Contents of Replication Table

Database Row Description

wl_id Stores the HTTP session ID.

wl_context_path Stores the context path to the Web application that created 
the session.

wl_create_time Stores the time the session state was created.

wl_session_values Stores the session attributes.

wl_access_time Stores the time of the last update to the session state.

wl_max_inactive_
interval

Stores the MaxInactiveInterval of the session state.

wl_version Stores the version of the session. Each update to a session 
has an associated version.



Replication and Failover for EJBs and RMIs

6-20 Administering Clusters for Oracle WebLogic Server 12.1.3

with no different effect than calling the method once. This is always true for methods 
that have no permanent side effects. Methods that do have side effects have to be 
written with idempotence in mind.

Consider a shopping cart service call addItem() that adds an item to a shopping cart. 
Suppose client C invokes this call on a replica on Server S1. After S1 receives the call, 
but before it successfully returns to C, S1 crashes. At this point the item has been 
added to the shopping cart, but the replica-aware stub has received an exception. If the 
stub were to retry the method on Server S2, the item would be added a second time to 
the shopping cart. Because of this, replica-aware stubs will not, by default, attempt to 
retry a method that fails after the request is sent but before it returns. This behavior 
can be overridden by marking a service idempotent. 

6.3.1 Clustering Objects with Replica-Aware Stubs 
If an EJB or RMI object is clustered, instances of the object are deployed on all 
WebLogic Server instances in the cluster. The client has a choice about which instance 
of the object to call. Each instance of the object is referred to as a replica. 

The key technology that supports object clustering in WebLogic Server is the 
replica-aware stub. When you compile an EJB that supports clustering (as defined in its 
deployment descriptor), appc passes the EJB's interfaces through the rmic compiler to 
generate replica-aware stubs for the bean. For RMI objects, you generate replica-aware 
stubs explicitly using command-line options to rmic, as described in "Using the 
WebLogic RMI Compiler" in Developing RMI Applications for Oracle WebLogic Server.

A replica-aware stub appears to the caller as a normal RMI stub. Instead of 
representing a single object, however, the stub represents a collection of replicas. The 
replica-aware stub contains the logic required to locate an EJB or RMI class on any 
WebLogic Server instance on which the object is deployed. When you deploy a 
cluster-aware EJB or RMI object, its implementation is bound into the JNDI tree. As 
described in Section 3.4, "Cluster-Wide JNDI Naming Service," clustered WebLogic 
Server instances have the capability to update the JNDI tree to list all server instances 
on which the object is available. When a client accesses a clustered object, the 
implementation is replaced by a replica-aware stub, which is sent to the client.

The stub contains the load balancing algorithm (or the call routing class) used to load 
balance method calls to the object. On each call, the stub can employ its load algorithm 
to choose which replica to call. This provides load balancing across the cluster in a way 
that is transparent to the caller. To understand the load balancing algorithms available 
for RMI objects and EJBs, see Section 5.2, "Load Balancing for EJBs and RMI Objects." If 
a failure occurs during the call, the stub intercepts the exception and retries the call on 
another replica. This provides a failover that is also transparent to the caller. 

6.3.2 Clustering Support for Different Types of EJBs
EJBs differ from plain RMI objects in that each EJB can potentially generate two 
different replica-aware stubs: one for the EJBHome interface and one for the EJBObject 
interface. This means that EJBs can potentially realize the benefits of load balancing 
and failover on two levels:

■ When a client looks up an EJB object using the EJBHome stub

■ When a client makes method calls against the EJB using the EJBObject stub

The following sections describe clustering support for different types of EJBs. 



Replication and Failover for EJBs and RMIs

Failover and Replication in a Cluster 6-21

6.3.2.1 Clustered EJBHomes 
All bean homes interfaces—used to find or create bean instances—can be clustered, by 
specifying the home-is-clusterable element in weblogic-ejb-jar.xml. 

When a bean is deployed to a cluster, each server binds the bean's home interface to its 
cluster JNDI tree under the same name. When a client requests the bean's home from 
the cluster, the server instance that does the look-up returns a EJBHome stub that has a 
reference to the home on each server. 

When the client issues a create() or find() call, the stub selects a server from the 
replica list in accordance with the load balancing algorithm, and routes the call to the 
home interface on that server. The selected home interface receives the call, and creates 
a bean instance on that server instance and executes the call, creating an instance of the 
bean.

6.3.2.2 Clustered EJBObjects
An EJBObject stub tracks available replicas of an EJB in a cluster.

6.3.2.2.1 Stateless Session Beans  When a home creates a stateless bean, it returns a 
EJBObject stub that lists all of the servers in the cluster, to which the bean should be 
deployed. Because a stateless bean holds no state on behalf of the client, the stub is free 
to route any call to any server that hosts the bean. The stub can automatically fail over 
in the event of a failure. The stub does not automatically treat the bean as idempotent, 
so it will not recover automatically from all failures. If the bean has been written with 
idempotent methods, this can be noted in the deployment descriptor and automatic 
failover will be enabled in all cases.

6.3.2.2.2 Stateful Session Beans  Method-level failover for a stateful service requires 
state replication. WebLogic Server satisfies this requirement by replicating the state of 
the primary bean instance to a secondary server instance, using a replication scheme 
similar to that used for HTTP session state.

When a home interface creates a stateless session bean instance, it selects a secondary 
instance to host the replicated state, using the same rules defined in Section 6.2.1.2, 
"Using Replication Groups." The home interface returns a EJBObject stub to the client 
that lists the location of the primary bean instance, and the location for the replicated 
bean state. 

Note: Stateless session beans, stateful session beans, and entity beans 
have home interfaces. Message-driven beans do not.

Note: WebLogic Server supports load balancing algorithms that 
provide server affinity for EJB home interfaces. To understand server 
affinity and how it affects load balancing and failover, see 
Section 5.2.4.3, "Round-Robin Affinity, Weight-Based Affinity, and 
Random-Affinity."

Note: WebLogic Server supports load balancing options that provide 
server affinity for stateless EJB remote interfaces. To understand server 
affinity and how it affects load balancing and failover, see 
Section 5.2.4.3, "Round-Robin Affinity, Weight-Based Affinity, and 
Random-Affinity."



Replication and Failover for EJBs and RMIs

6-22 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 6–8 shows a client accessing a clustered stateful session EJB.

Figure 6–8 Client Accessing Stateful Session EJB

As the client makes changes to the state of the EJB, state differences are replicated to 
the secondary server instance. For EJBs that are involved in a transaction, replication 
occurs immediately after the transaction commits. For EJBs that are not involved in a 
transaction, replication occurs after each method invocation.

In both cases, only the actual changes to the EJB's state are replicated to the secondary 
server. This ensures that there is minimal overhead associated with the replication 
process.

6.3.2.2.3 Failover for Stateful Session EJBs  Should the primary server fail, the client's EJB 
stub automatically redirects further requests to the secondary WebLogic Server 
instance. At this point, the secondary server creates a new EJB instance using the 
replicated state data, and processing continues on the secondary server.

After a failover, WebLogic Server chooses a new secondary server to replicate EJB 
session states (if another server is available in the cluster). The location of the new 
primary and secondary server instances is automatically updated in the client's 
replica-aware stub on the next method invocation, as in Figure 6–9.

Note: The actual state of a stateful EJB is non-transactional, as 
described in the EJB specification. Although it is unlikely, there is a 
possibility that the current state of the EJB can be lost. For example, if 
a client commits a transaction involving the EJB and there is a failure 
of the primary server before the state change is replicated, the client 
will fail over to the previously-stored state of the EJB. If it is critical to 
preserve the state of your EJB in all possible failover scenarios, use an 
entity EJB rather than a stateful session EJB.



Replication and Failover for EJBs and RMIs

Failover and Replication in a Cluster 6-23

Figure 6–9 Replica Aware Stubs are Updated after Failover

6.3.2.3 Entity EJBs
There are two types of entity beans to consider: read-write entity beans and read-only 
entity beans. 

■ Read-Write Entities 

When a home finds or creates a read-write entity bean, it obtains an instance on 
the local server and returns a stub pinned to that server. Load balancing and 
failover occur only at the home level. Because it is possible for multiple instances 
of the entity bean to exist in the cluster, each instance must read from the database 
before each transaction and write on each commit.

■ Read-Only Entities

When a home finds or creates a read-only entity bean, it returns a replica-aware 
stub. This stub load balances on every call but does not automatically fail over in 
the event of a recoverable call failure. Read-only beans are also cached on every 
server to avoid database reads.

6.3.2.3.1 Failover for Entity Beans and EJB Handles   Failover for entity beans and EJB 
handles depends upon the existence of the cluster address. You can explicitly define 
the cluster address, or allow WebLogic Server to generate it automatically, as described 
in Section 10.1.5.6, "Cluster Address." If you explicitly define cluster address, you must 
specify it as a DNS name that maps to all server instances in the cluster and only server 
instances in the cluster. The cluster DNS name should not map to a server instance that 
is not a member of the cluster. 

6.3.3 Clustering Support for RMI Objects
WebLogic RMI provides special extensions for building clustered remote objects. These 
are the extensions used to build the replica-aware stubs described in the EJB section. 
For more information about using RMI in clusters, see "WebLogic RMI Features" in 
Developing RMI Applications for Oracle WebLogic Server.



Replication and Failover for EJBs and RMIs

6-24 Administering Clusters for Oracle WebLogic Server 12.1.3

6.3.4 Object Deployment Requirements
If you are programming EJBs to be used in a WebLogic Server cluster, read the 
instructions in this section to understand the capabilities of different EJB types in a 
cluster. Then ensure that you enable clustering in the EJB's deployment descriptor. See 
"weblogic-ejb-jar.xml Deployment Descriptor Reference" in Developing Enterprise 
JavaBeans, Version 2.1, for Oracle WebLogic Server for information about the XML 
deployment elements relevant for clustering.

If you are developing either EJBs or custom RMI objects, also refer to "Using WebLogic 
JNDI in a Clustered Environment" in Developing JNDI Applications for Oracle WebLogic 
Server to understand the implications of binding clustered objects in the JNDI tree.

6.3.4.1 Other Failover Exceptions
Even if a clustered object is not idempotent, WebLogic Server performs automatic 
failover in the case of a ConnectException or MarshalException. Either of these 
exceptions indicates that the object could not have been modified, and therefore there 
is no danger of causing data inconsistency by failing over to another instance.



7

Whole Server Migration 7-1

7Whole Server Migration

[8] This chapter describes the different migration mechanisms supported by WebLogic 
Server 12.1.3.

This chapter includes the following sections:

■ Section 7.1, "Understanding Server and Service Migration"

■ Section 7.2, "Migration Terminology"

■ Section 7.3, "Leasing"

■ Section 7.4, "Automatic Whole Server Migration"

■ Section 7.5, "Whole Server Migration with Dynamic and Mixed Clusters"

These sections focus on whole server-level migration, where a migratable server 
instance, and all of its services, is migrated to a different physical machine upon 
failure. WebLogic Server also supports service-level migration, as well as replication 
and failover at the application level. For more information, see Chapter 8, "Service 
Migration" and Chapter 6, "Failover and Replication in a Cluster."

7.1 Understanding Server and Service Migration
In a WebLogic Server cluster, most services are deployed homogeneously on all server 
instances in the cluster, enabling transparent failover from one server instance to 
another. In contrast, "pinned services" such as JMS and the JTA transaction recovery 
system are targeted at individual server instances within a cluster—for these services, 
WebLogic Server supports failure recovery with migration, as opposed to failover. 

Migration in WebLogic Server is the process of moving a clustered WebLogic Server 
instance or a component running on a clustered server instance elsewhere in the event 
of failure. In the case of whole server migration, the server instance is migrated to a 
different physical machine upon failure. In the case of service-level migration, the 
services are moved to a different server instance within the cluster. See Chapter 8, 
"Service Migration."

To make JMS and the JTA transaction system highly available, WebLogic Server 
provides migratable servers. Migratable servers provide for both automatic and manual 
migration at the server-level, rather than the service-level. 

When a migratable server becomes unavailable for any reason—for example, if it 
hangs, loses network connectivity, or its host machine fails—migration is automatic. 
Upon failure, a migratable server is automatically restarted on the same machine, if 
possible. If the migratable server cannot be restarted on the machine where it failed, it 
is migrated to another machine. In addition, an administrator can manually initiate 
migration of a server instance. 



Migration Terminology

7-2 Administering Clusters for Oracle WebLogic Server 12.1.3

7.2 Migration Terminology
The following terms apply to server and service migration:

■ Migratable server—a clustered server instance that migrates in its entirety, along 
with all the services it hosts. Migratable servers are intended to host pinned 
services, such as JMS servers and JTA transaction recovery servers, but migratable 
servers can also host clusterable services. All services that run on a migratable 
server are highly available.

■ Whole server migration— a WebLogic Server instance to be migrated to a different 
physical machine upon failure, either manually or automatically.

■ Service migration:

– Manual Service Migration—the manual migration of pinned JTA and 
JMS-related services (for example, JMS server, SAF agent, path service, and 
custom store) after the host server instance fails. See Chapter 8, "Service 
Migration."

– Automatic Service Migration—JMS-related services, singleton services, and 
the JTA Transaction Recovery Service can be configured to automatically 
migrate to another member server instance when a member server instance 
fails or is restarted. See Chapter 8, "Service Migration."

■ Cluster leader—one server instance in a cluster, elected by a majority of the server 
instances, that is responsible for maintaining the leasing information. See 
Section 7.3.5, "Non-database Consensus Leasing."

■ Cluster master—one server instance in a cluster that contains migratable servers 
acts as the cluster master and orchestrates the process of automatic server migration 
in the event of failure. Any Managed Server in a cluster can serve as the cluster 
master, whether it hosts pinned services or not. See Section 7.4.4.7, "Cluster Master 
Role in Whole Server Migration."

■ Singleton master—a lightweight singleton service that monitors other services that 
can be migrated automatically. The server instance that currently hosts the 
singleton master is responsible for starting and stopping the migration tasks 
associated with each migratable service. See Section 8.8.1.1, "Singleton Master."

■ Candidate machines—a user-defined list of machines within a cluster that can be a 
potential target for migration.

■ Target machines—a set of machines that are designated as allowable or preferred 
hosts for migratable servers.

■ Node Manager—a WebLogic Server utility used by the Administration Server or a 
standalone Node Manager client, to start and stop migratable servers. Node 
Manager is invoked by the cluster master to shut down and restart migratable 
servers, as necessary. For background information about Node Manager and how 
it fits into a WebLogic Server environment, see "Node Manager Overview" in 
Administering Node Manager for Oracle WebLogic Server.

■ Lease table—a database table in which migratable servers persist their state, and 
which the cluster master monitors to verify the health and liveness of migratable 
servers. For more information on leasing, see Section 7.3, "Leasing."

■ Administration Server—used to configure migratable servers and target machines, 
to obtain the run-time state of migratable servers, and to orchestrate the manual 
migration process. 



Leasing

Whole Server Migration 7-3

■ Floating IP address—an IP address that follows a server instance from one 
physical machine to another after migration. 

7.3 Leasing
Leasing is the process WebLogic Server uses to manage services that are required to 
run on only one member of a cluster at a time. Leasing ensures exclusive ownership of 
a cluster-wide entity. Within a cluster, there is a single owner of a lease. Additionally, 
leases can failover in case of server or cluster failure. This helps to avoid having a 
single point of failure.

7.3.1 Features That Use Leasing
The following WebLogic Server features use leasing:

■ Automatic Whole Server Migration—Uses leasing to elect a cluster master. The 
cluster master is responsible for monitoring other cluster members and for 
restarting failed members hosted on other physical machines.

Leasing ensures that the cluster master is always running, but is only running on 
one server instance at a time within a cluster. For information on the cluster 
master, see Section 7.4.4.7, "Cluster Master Role in Whole Server Migration."

■ Automatic Service Migration—JMS-related services, singleton services, and the 
JTA Transaction Recovery Service can be configured to automatically migrate from 
an unhealthy hosting server instance to a healthy active server instance with the 
help of the health monitoring subsystem. When the migratable target is migrated, 
the pinned service hosted by that target is also migrated. Migratable targets use 
leasing to accomplish automatic service migration. See Chapter 8, "Service 
Migration."

■ Singleton Services—A singleton service is a service running within a cluster that is 
available on only one member of the cluster at a time. Singleton services use 
leasing to accomplish this. See Section 8.8.1.1, "Singleton Master."

■ Job Scheduler—The Job Scheduler is a persistent timer that is used within a 
cluster. The Job Scheduler uses the timer master to load balance the timer across a 
cluster.

This feature requires an external database to maintain failover and replication 
information. However, you can use the non-database version, consensus leasing, 
with the Job Scheduler,

7.3.2 Types of Leasing
WebLogic Server provides two types of leasing functionality, depending on your 
requirements and your environment.

■ High-availability database leasing—This version of leasing requires a 
high-availability database to store leasing information. For information on general 
requirements and configuration, see Section 7.3.4, "High-availability Database 
Leasing."

■ Non-database consensus leasing—This version of leasing stores the leasing 
information in-memory within a cluster member. This version of leasing requires 

Note: Beyond basic configuration, most leasing functionality is 
handled internally by WebLogic Server.



Leasing

7-4 Administering Clusters for Oracle WebLogic Server 12.1.3

that all server instances in the cluster are started by Node Manager. For more 
information, see Section 7.3.5, "Non-database Consensus Leasing."

Within a WebLogic Server installation, you can use only one type of leasing. Although 
it is possible to implement multiple features that use leasing within your environment, 
each must use the same kind of leasing.

When switching from one leasing type to another, you must restart the entire cluster, 
not just the Administration Server. Changing the leasing type cannot be done 
dynamically.

7.3.3 Determining Which Type of Leasing To Use
The following considerations will help you determine which type of leasing is 
appropriate for your WebLogic Server environment:

■ High-availability database leasing

Database leasing basis is useful in environments that are already invested in a 
high-availability database, like Oracle RAC, for features like JMS store recovery. 
The high-availability database instance can also be configured to support leasing 
with minimal additional configuration. This is particularly useful if Node 
Manager is not running in the system.

■ Non-database consensus leasing

This type of leasing provides a leasing basis option (consensus) that does not 
require the use of a high-availability database. This has a direct benefit in 
automatic whole server migration. Without the high-availability database 
requirement, consensus leasing requires less configuration to enable automatic 
server migration. 

Consensus leasing requires Node Manager to be configured and running. 
Automatic whole server migration also requires Node Manager for IP migration 
and server restart on another machine. Hence, consensus leasing works well since 
it does not impose additional requirements, but instead takes away an expensive 
one.

7.3.4 High-availability Database Leasing
In this version of leasing, lease information is maintained within a table in a 
high-availability database. A high-availability database is required to ensure that the 
leasing information is always available to the server instances. Each member of the 
cluster must be able to connect to the database in order to access leasing information, 
update, and renew their leases. server instances will fail if the database becomes 
unavailable and they are not able to renew their leases.

This method of leasing is useful for customers who already have a high-availability 
database within their clustered environment. This method allows you to use leasing 
functionality without requiring Node Manager to manage server instances within your 
environment.

The following procedures outline the steps required to configure your database for 
leasing.

1. Configure the database for server migration. The database stores leasing 
information that is used to determine whether or not a server instance is running 
or needs to be migrated. 

Your database must be reliable. The server instances will only be as reliable as the 
database. For experimental purposes, a regular database will suffice. For a 



Leasing

Whole Server Migration 7-5

production environment, only high-availability databases are recommended. If the 
database goes down, all the migratable servers will shut themselves down.

Create the leasing table in the database. This is used to store the machine-server 
associations used to enable server migration. The schema for this table is located in 
WL_HOME/server/db/dbname/leasing.ddl, where dbname is the name of the 
database vendor.

2. Set up and configure a data source. This data source should point to the database 
configured in the previous step.

For more information on creating a JDBC data source, see "Configuring JDBC Data 
Sources" in Administering JDBC Data Sources for Oracle WebLogic Server.

7.3.4.1 Server Migration with Database Leasing on RAC Clusters
When using server migration with database leasing on RAC Clusters, Oracle 
recommends synchronizing all RAC nodes in the environment. If the nodes are not 
synchronized, it is possible that a Managed Server that is renewing a lease will 
evaluate that the value of the clock on the RAC node is greater than the timeout value 
of leasing table. If it is more than 30 seconds, the server instance will fail and restart 
with the following log message:

<Mar 29, 2013 2:39:09 PM EDT> <Error> <Cluster> <BEA-000150> <Server failed
to get a connection to the database in the past 60 seconds for lease renewal.
Server will shut itself down.> 

See "Configuring Time Synchronization for the Cluster" in the Oracle Grid Infrastructure 
Installation Guide.

7.3.5 Non-database Consensus Leasing

In Consensus leasing, there is no highly available database required. The cluster leader 
maintains the leases in-memory. All of the server instances renew their leases by 
contacting the cluster leader, however, the leasing table is replicated to other nodes of 
the cluster to provide failover.

The cluster leader is elected by all of the running server instances in the cluster. A 
server instance becomes a cluster leader only when it has received acceptance from the 
majority of the server instances. If Node Manager reports a server instance as shut 

Note: The leasing table should be stored in a highly available 
database. Migratable servers are only as reliable as the database used 
to store the leasing table.

Note: XA data sources are not supported for server migration.

Note: Consensus leasing requires that you use Node Manager to control 
server instances within the cluster. Node Manager must be running on every 
machine hosting Managed Servers within the cluster, including any candidate 
machines for failed migratable servers. For more information, see "Using 
Node Manager to Control Servers" in Administering Node Manager for Oracle 
WebLogic Server.



Automatic Whole Server Migration

7-6 Administering Clusters for Oracle WebLogic Server 12.1.3

down, the cluster leader assumes that server instance has accepted it as leader when 
counting the majority number of server instances. 

Consensus leasing requires a majority of server instances to continue functioning. Any 
time there is a network partition, the server instances in the majority partition will 
continue to run while those in the minority partition will voluntarily shut down since 
they cannot contact the cluster leader or elect a new cluster leader since they will not 
have the majority of server instances. If the partition results in an equal division of 
server instances, then the partition that contains the cluster leader will survive while 
the other one will fail. Consensus leasing depends on the ability to contact Node 
Manager to receive the status of the server instances it is managing in order to count 
them as part of the majority of reachable server instances. If Node Manager cannot be 
contacted, due to loss of network connectivity or a hardware failure, the server 
instances it manages are not counted as part of the majority, even if they are running.

If automatic server migration is enabled, server instances are required to contact the 
cluster leader and renew their leases periodically. Server instances will shut 
themselves down if they are unable to renew their leases. The failed server instances 
will then be automatically migrated to the machines in the majority partition.

7.4 Automatic Whole Server Migration
This section outlines the procedures for configuring automatic whole server migration 
and provides a general discussion of how whole server migration functions within a 
WebLogic Server environment.

The following topics are covered:

■ Section 7.4.1, "Preparing for Automatic Whole Server Migration"

■ Section 7.4.2, "Configuring Automatic Whole Server Migration"

■ Section 7.4.3, "Using High Availability Storage for State Data"

■ Section 7.4.4, "Server Migration Processes and Communications"

7.4.1 Preparing for Automatic Whole Server Migration
Before configuring automatic whole server migration, be aware of the following 
requirements:

■ Verify that whole server migration is supported on your platform. See "Support for 
Server Migration" in Oracle WebLogic Server, WebLogic Portal and WebLogic 
Integration 10gR3 (10.3).

Note: If your cluster only contains two server instances, the cluster 
leader will be the majority partition if a network partition occurs. If 
the cluster leader fails, the surviving server instance will attempt to 
verify its status through Node Manager. If the surviving server 
instance is able to determine the status of the failed cluster leader, it 
assumes the role of cluster leader. If the surviving server instance 
cannot check the status of the cluster leader, due to machine failure or 
a network partition, it will voluntarily shut down as it cannot reliably 
determine if it is in the majority.

To avoid this scenario, Oracle recommends using a minimum of three 
server instances running on different machines.



Automatic Whole Server Migration

Whole Server Migration 7-7

■ Each Managed Server uses the same subnet mask. Unicast and multicast 
communication among server instances requires each server instance to use the 
same subnet. Server migration will not work without configuring multicast or 
unicast communication.

For information on using multicast, see Section 3.1.1, "Using IP Multicast." For 
information on using unicast, see Section 3.1.2, "One-to-Many Communication 
Using Unicast."

■ All server instances hosting migratable servers are time-synchronized. Although 
migration works when server instances are not time-synchronized, 
time-synchronized server instances are recommended in a clustered environment.

■ If you are using different operating system versions among migratable servers, 
ensure that all versions support identical functionality for ifconfig.

■ Automatic whole server migration requires Node Manager to be configured and 
running for IP migration and server restart on another machine. 

■ The primary interface names used by migratable servers are the same. If your 
environment requires different interface names, then configure a local version of 
wlscontrol.sh for each migratable server.

For more information on wlscontrol.sh, see "Using Node Manager to Control 
Servers" in Administering Node Manager for Oracle WebLogic Server.

■ See "Databases Supporting WebLogic Server Features" in Oracle WebLogic Server, 
WebLogic Portal and WebLogic Integration 10gR3 (10.3) for a list of databases for 
which WebLogic Server supports automatic server migration.

■ There is no built-in mechanism for transferring files that a server instance depends 
on between machines. Using a disk that is accessible from all machines is the 
preferred way to ensure file availability. If you cannot share disks between server 
instances, you must ensure that the contents of domain_dir/bin are copied to each 
machine. 

■ Ensure that the Node Manager security files are copied to each machine using the 
nmEnroll() WLST command. For more information, see "Using Node Manager to 
Control Servers" in Administering Node Manager for Oracle WebLogic Server.

■ Use high availability storage for state data. For highest reliability, use a shared 
storage solution that is itself highly available—for example, a storage area network 
(SAN). See Section 7.4.3, "Using High Availability Storage for State Data."

■ For capacity planning in a production environment, keep in mind that server 
startup during migration taxes CPU utilization. You cannot assume that because a 
machine can handle a certain number of server instances running concurrently 
that it also can handle that same number of server instances starting up on the 
same machine at the same time.

Caution: Support for automatic whole server migration on Solaris 10 systems 
using the Solaris Zones feature can be found in Note 3: Support For Sun Solaris 
10 In Multi-Zone Operation at 
http://www.oracle.com/technetwork/middleware/ias/oracleas-supported
-virtualization-089265.html.



Automatic Whole Server Migration

7-8 Administering Clusters for Oracle WebLogic Server 12.1.3

7.4.2 Configuring Automatic Whole Server Migration
Before configuring server migration, ensure that your environment meets the 
requirements outlined in Section 7.4.1, "Preparing for Automatic Whole Server 
Migration."

To configure server migration for a Managed Server within a cluster, perform the 
following tasks:

1. Obtain floating IP addresses for each Managed Server that will have migration 
enabled. 

Each migratable server must be assigned a floating IP address which follows the 
server instance from one physical machine to another after migration. Any server 
instance that is assigned a floating IP address must also have 
AutoMigrationEnabled set to true.

2. Configure Node Manager. Node Manager must be running and configured to 
allow server migration. 

The Java version of Node Manager can be used for server migration on Windows 
or UNIX. The script-based version of Node Manager can be used for server 
migration on UNIX only. 

When using Java-based Node Manager, you must edit nodemanager.properties to 
add your environment Interface and NetMask values.

To determine the most appropriate Interface value for your environment, use the 
operating system utility to find the list of network interfaces available on the 
machine. On Unix platforms, this is typically the ifconfig command. On 
Windows platforms, this is typically the ipconfig command.

To determine NetMask, you can use the same NetMask value that may already be 
configured for addresses on that same interface to ensure that all traffic occurs on 
the same subnet. You can also specify a common NetMask value, and therefore 
specify a subnet for all WebLogic Server traffic.

The nodemanager.properties file is located in the directory specified in 
NodeManagerHome, typically ORACLE_HOME\user_projects\domains\domain_
name\nodemanager or ORACLE_HOME\oracle_common\common\nodemanager. For 
information about nodemanager.properties, see "Reviewing 
nodemanager.properties" in Administering Node Manager for Oracle WebLogic Server.

If you are using the script-based version of Node Manager, edit wlscontrol.sh 
and set the Interface variable to the name of your network interface.

For general information on using Node Manager in server migration, see 
Section 7.4.4.6, "Node Manager Role in Whole Server Migration." For general 
information about Node Manager, see "Node Manager Overview" in Administering 
Node Manager for Oracle WebLogic Server.

3. If you are using a database to manage leasing information, configure the database 
for server migration according to the procedures outlined in Section 7.3.4, 
"High-availability Database Leasing." For general information on leasing, see 
Section 7.3, "Leasing."

Note: The migratable IP address should not be present on the 
interface of any of the candidate machines before the migratable 
server is started.



Automatic Whole Server Migration

Whole Server Migration 7-9

4. If you are using database leasing within a test environment and you need to reset 
the leasing table, you should re-run the leasing.ddl script. This causes the correct 
tables to be dropped and re-created.

5. If you are using a database to store leasing information, set up and configure a 
data source according to the procedures outlined in Section 7.3.4, 
"High-availability Database Leasing."

You should set DataSourceForAutomaticMigration to this data source in each 
cluster configuration.

For more information on creating a JDBC data source, see "Configuring JDBC Data 
Sources" in Administering JDBC Data Sources for Oracle WebLogic Server.

6. Grant superuser privileges to the wlsifconfig.sh script (on UNIX) or the 
wlsifconfig.cmd script (on Windows). 

This script is used to transfer IP addresses from one machine to another during 
migration. It must be able to run ifconfig, which is generally only available to 
superusers. You can edit the script so that it is invoked using sudo.

Java-based Node Manager uses the wlsifconfig.cmd script, which uses the netsh 
utility.

The wlsifconfig scripts are available in the WL_HOME/common/bin or DOMAIN_
HOME/bin/server_migration directory.

7. Ensure that the following commands are included in your machine PATH:

■ wlsifconfig.sh (UNIX) or wlsifconfig.cmd (Windows) 

■ wlscontrol.sh (UNIX)

■ nodemanager.domains 

The wlsifconfig.sh, wlsifconfig.cmd, and wlscontrol.sh files are located in WL_
HOME/common/bin or DOMAIN_HOME/bin/server_migration. The 
nodemanager.domains file is located in the directory specified in NodeManagerHome. 
For Java-based Node Manager, NodeManagerHome is typically located in ORACLE_
HOME\user_projects\domains\domain_name\nodemanager or ORACLE_
HOME\oracle_common\common\nodemanager. For script-based Node Manager, this 
file's default NodeManagerHome location is WL_HOME/common/nodemanager, where 
WL_HOME is the location in which you installed WebLogic Server, for example, 
ORACLE_HOME/wlserver.

Depending on your default shell on UNIX, you may need to edit the first line of 
the .sh scripts.

8. This step applies only to the script-based version of Node Manager and UNIX. If 
you are using Windows, skip to step 9.

The machines that host migratable servers must trust each other. For server 
migration to occur, it must be possible to get to a shell prompt using 'ssh/rsh 
machine_A' from machine_B and vice versa without having to explicitly enter a 
username and password. Also, each machine must be able to connect to itself 
using SSH in the same way.

Note: XA data sources are not supported for server migration.



Automatic Whole Server Migration

7-10 Administering Clusters for Oracle WebLogic Server 12.1.3

9. Set the candidate machines for server migration. Each server instance can have a 
different set of candidate machines, or they can all have the same set.

10. Restart the Administration Server.

7.4.3 Using High Availability Storage for State Data
The server migration process migrates services, but not the state information 
associated with work in process at the time of failure. 

To ensure high availability, it is critical that such state information remains available to 
the server instance and the services it hosts after migration. Otherwise, data about the 
work in process at the time of failure may be lost. State information maintained by a 
migratable server, such as the data contained in transaction logs, should be stored in a 
shared storage system that is accessible to any potential machine to which a failed 
migratable server might be migrated. For highest reliability, use a shared storage 
solution that is itself highly available—for example, a storage area network (SAN).

In addition, if you are using a database to store leasing information, the lease table, 
described in the following sections, should also be stored in a high availability 
database. The lease table tracks the health and liveness of migratable servers. For more 
information, see Section 7.3, "Leasing."

7.4.4 Server Migration Processes and Communications
The following sections describe key processes in a cluster that contains migratable 
servers:

■ Section 7.4.4.1, "Startup Process in a Cluster with Migratable Servers"

■ Section 7.4.4.2, "Automatic Whole Server Migration Process"

■ Section 7.4.4.3, "Manual Whole Server Migration Process"

7.4.4.1 Startup Process in a Cluster with Migratable Servers
Figure 7–1 illustrates the process and communication that occurs during startup of a 
cluster that contains migratable servers. 

The example cluster contains two Managed Servers, both of which are migratable. The 
Administration Server and the two Managed Servers each run on different machines. 
A fourth machine is available as a backup, in the event that one of the migratable 
servers fails. Node Manager is running on the backup machine and on each machine 
with a running migratable server.

Note: You should ensure that your login scripts (.cshrc, .profile, .login, 
and such) only echo messages from your shell profile if the shell is interactive. 
WebLogic Server uses an ssh command to login and echo the contents of the 
server.state file. Only the first line of this output is used to determine the 
server state.



Automatic Whole Server Migration

Whole Server Migration 7-11

Figure 7–1 Startup of Cluster with Migratable Servers

The following key steps occur during startup of the cluster, as illustrated in Figure 7–1:

1. The administrator starts the cluster. 

2. The Administration Server invokes Node Manager on Machines B and C to start 
Managed Servers 1 and 2, respectively. See Section 7.4.4.4, "Administration Server 
Role in Whole Server Migration."

3. The Node Manager instance on each machine starts the Managed Server that runs 
on that machine. See Section 7.4.4.6, "Node Manager Role in Whole Server 
Migration."

4. Managed Servers 1 and 2 contact the Administration Server for their 
configuration. See Section 7.4.4.5, "Migratable Server Behavior in a Cluster."

5. Managed Servers 1 and 2 cache the configuration with which they started.



Automatic Whole Server Migration

7-12 Administering Clusters for Oracle WebLogic Server 12.1.3

6. Managed Servers 1 and 2 each obtain a migratable server lease in the lease table. 
Because Managed Server 1 starts first, it also obtains a cluster master lease. See 
Section 7.4.4.7, "Cluster Master Role in Whole Server Migration."

7. Managed Server 1 and 2 periodically renew their leases in the lease table, proving 
their health and liveness. 

7.4.4.2 Automatic Whole Server Migration Process
Figure 7–2 illustrates the automatic migration process after the failure of the machine 
hosting Managed Server 2. 

Figure 7–2 Automatic Migration of a Failed Server

1. Machine C, which hosts Managed Server 2, fails.

2. Upon its next periodic review of the lease table, the cluster master detects that 
Managed Server 2's lease has expired. See Section 7.4.4.7, "Cluster Master Role in 
Whole Server Migration."



Automatic Whole Server Migration

Whole Server Migration 7-13

3. The cluster master tries to contact Node Manager on Machine C to restart 
Managed Server 2, but fails because Machine C is unreachable. 

4. The cluster master contacts Node Manager on Machine D, which is configured as 
an available host for migratable servers in the cluster.

5. Node Manager on Machine D starts Managed Server 2. See Section 7.4.4.6, "Node 
Manager Role in Whole Server Migration."

6. Managed Server 2 starts and contacts the Administration Server to obtain its 
configuration.

7. Managed Server 2 caches the configuration with which it started.

8. Managed Server 2 obtains a migratable server lease.

During migration, the clients of the Managed Server that is migrating may experience 
a brief interruption in service; it may be necessary to reconnect. On Solaris and Linux 
operating systems, this can be done using the ifconfig command. The clients of a 
migrated server do not need to know the particular machine to which they have 
migrated.

When a machine that previously hosted a server instance that was migrated becomes 
available again, the reversal of the migration process—migrating the server instance 
back to its original host machine—is known as failback. WebLogic Server does not 
automate the failback process. An administrator can accomplish failback by manually 
restoring the server instance to its original host.

The general procedures for restoring a server instance to its original host are as 
follows:

■ Gracefully shut down the new instance of the server.

■ After you have restarted the failed machine, restart Node Manager and the 
Managed Server.

The exact procedures you will follow depend on your server instance and network 
environment.

7.4.4.3 Manual Whole Server Migration Process
Figure 7–3 illustrates what happens when an administrator manually migrates a 
migratable server. 

Note: If the Managed Server 2 lease had expired because it was 
hung, and Machine C was reachable, the cluster master would use 
Node Manager to restart Managed Server 2 on Machine C. 



Automatic Whole Server Migration

7-14 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 7–3 Manual Whole Server Migration

1. An administrator uses the WebLogic Server Administration Console to initiate the 
migration of Managed Server 2 from Machine C to Machine B.

2. The Administration Server contacts Node Manager on Machine C. See 
Section 7.4.4.4, "Administration Server Role in Whole Server Migration."

3. Node Manager on Machine C stops Managed Server 2. 

4. Managed Server 2 removes its row from the lease table.

5. The Administration Server invokes Node Manager on Machine B.

6. Node Manager on Machine B starts Managed Server 2. 

7. Managed Server 2 obtains its configuration from the Administration Server.

8. Managed Server 2 caches the configuration with which it started.

9. Managed Server 2 adds a row to the lease table.

7.4.4.4 Administration Server Role in Whole Server Migration
In a cluster that contains migratable servers, the Administration Server:

■ Invokes Node Manager on each machine that hosts cluster members to start the 
migratable servers. This is a prerequisite for server migratability—if a server 
instance was not initially started by Node Manager, it cannot be migrated.

■ Invokes Node Manager on each machine involved in a manual migration process 
to stop and start the migratable server.



Automatic Whole Server Migration

Whole Server Migration 7-15

■ Invokes Node Manager on each machine that hosts cluster members to stop server 
instances during a normal shutdown. This is a prerequisite for server 
migratability—if a server instance is shut down directly, without using Node 
Manager, when the cluster master detects that the server instance is not running, it 
will call Node Manager to restart it.

In addition, the Administration Server provides its regular domain management 
functionality, persisting configuration updates issued by an administrator, and 
providing a run-time view of the domain, including the migratable servers it contains.

7.4.4.5 Migratable Server Behavior in a Cluster
A migratable server is a clustered Managed Server that has been configured as 
migratable. A migratable server has the following key behaviors:

■ If you are using a database to manage leasing information, during startup and 
restart by Node Manager, a migratable server adds a row to the lease table. The 
row for a migratable server contains a timestamp and the machine where it is 
running. 

For more information about leasing, see Section 7.3, "Leasing."

■ When using a database to manage leasing information, a migratable server adds a 
row to the database as a result of startup. It tries to take on the role of cluster 
master and succeeds if it is the first server instance to join the cluster.

■ Periodically, the server renews its lease by updating the timestamp in the lease 
table.

By default, a migratable server renews its lease every 30,000 milliseconds—the 
product of two configurable ServerMBean properties: 

– HealthCheckIntervalMillis, which by default is 10,000. 

– HealthCheckPeriodsUntilFencing, which by default is 3. 

■ If a migratable server fails to reach the lease table and renew its lease before the 
lease expires, it terminates as quickly as possible using a Java System.exit—in 
this case, the lease table still contains a row for that server instance. For 
information about how this relates to automatic migration, see Section 7.4.4.7, 
"Cluster Master Role in Whole Server Migration."

■ During operation, a migratable server listens for heartbeats from the cluster 
master. When it detects that the cluster master is not sending heartbeats, it 
attempts to take over the role of cluster master and succeeds if no other server 
instance has claimed that role. 

7.4.4.6 Node Manager Role in Whole Server Migration
The use of Node Manager is required for server migration—it must run on each 
machine that hosts or is intended to host. 

Node Manager supports server migration in the following ways:

■ Node Manager must be used for initial startup of migratable servers. 

Note: During server migration, keep in mind that server startup 
taxes CPU utilization. You cannot assume that because a machine can 
support a certain number of server instances running concurrently 
that they also can support that same number of server instances 
starting up on the same machine at the same time.



Automatic Whole Server Migration

7-16 Administering Clusters for Oracle WebLogic Server 12.1.3

When you initiate the startup of a Managed Server from the WebLogic Server 
Administration Console, the Administration Server uses Node Manager to start 
the server instance. You can also invoke Node Manager to start the server instance 
using the standalone Node Manager client; however, the Administration Server 
must be available so that the Managed Server can obtain its configuration.

■ Node Manager must be used to suspend, shut down, or force shut down 
migratable servers. 

■ Node Manager tries to restart a migratable server whose lease has expired on the 
machine where it was running at the time of failure.

Node Manager performs the steps in the server migration process by running 
customizable shell scripts that are provided with WebLogic Server. These scripts 
can start, restart and stop server instances, migrate IP addresses, and mount and 
unmount disks. The scripts are available for Solaris and Linux. 

– In an automatic migration, the cluster master invokes Node Manager to 
perform the migration.

– In a manual migration, the Administration Server invokes Node Manager to 
perform the migration.

7.4.4.7 Cluster Master Role in Whole Server Migration
In a cluster that contains migratable servers, one server instance acts as the cluster 
master. Its role is to orchestrate the server migration process. Any server instance in 
the cluster can serve as the cluster master. When you start a cluster that contains 
migratable servers, the first server instance to join the cluster becomes the cluster 
master and starts the cluster manager service. If a cluster does not include at least one 
migratable server, it does not require a cluster master, and the cluster manager service 
does not start. In the absence of a cluster master, migratable servers can continue to 
operate, but server migration is not possible. The cluster master serves the following 
key functions:

■ Issues periodic heartbeats to the other server instances in the cluster. 

■ Periodically reads the lease table to verify that each migratable server has a current 
lease. An expired lease indicates to the cluster master that the migratable server 
should be restarted.

■ Upon determining that a migratable server's lease is expired, the cluster master 
waits for a period specified by the FencingGracePeriodMillis on the 
ClusterMBean and then tries to invoke the Node Manager process on the machine 
that hosts the migratable server whose lease is expired, in order to restart the 
migratable server.

■ If unable to restart a migratable server whose lease has expired on its current 
machine, the cluster master selects a target machine in the following fashion:

– If you have configured a list of preferred destination machines for the 
migratable server, the cluster master chooses a machine on that list, in the 
order the machines are listed.

– Otherwise, the cluster master chooses a machine on the list of those configured 
as available for hosting migratable servers in the cluster.

Note: Migration of a server instance that is not initially started with 
Node Manager will fail.



Whole Server Migration with Dynamic and Mixed Clusters

Whole Server Migration 7-17

A list of machines that can host migratable servers can be configured at two 
levels: for the cluster as a whole and for an individual migratable server. You 
can define a machine list at both levels. You must define a machine list on at 
least one level. 

■ To accomplish the migration of a server instance to a new machine, the cluster 
master invokes the Node Manager process on the target machine to create a 
process for the server instance. 

The time required to perform the migration depends on the server configuration 
and startup time. 

– The maximum time taken for the cluster master to restart the migratable 
server is (HealthCheckPeriodsUntilFencing * HealthCheckIntervalMillis) + 
FencingGracePeriodMillis.

– The total time before the server instance becomes available for client requests 
depends on the server startup time and the application deployment time.

7.5 Whole Server Migration with Dynamic and Mixed Clusters
WebLogic Server supports whole server migration with dynamic and mixed clusters. 
When a dynamic server in a dynamic cluster fails, the server instance is migrated to a 
different physical machine upon failure the same way as a configured server in a 
configured or mixed cluster. While configuration differs depending on the cluster type, 
whole server migration behavior is the same for all clusters. For more information 
about dynamic and mixed clusters, see Chapter 11, "Dynamic Clusters."

Automatic whole server migration uses leasing to elect a cluster master, which is 
responsible for monitoring other cluster members and for restarting failed members 
hosted on other physical machines. You configure leasing in the cluster configuration. 
For more information, see Section 7.3, "Leasing."

7.5.1 Configuring Whole Server Migration with Dynamic Clusters
When configuring automatic whole server migration for configured clusters, you 
select the individual server instances you want to be able to migrate. You also choose a 
subset of available machines to which you want to migrate server instances upon 
failure.

For a dynamic cluster, you enable or disable automatic whole server migration in the 
server template. A dynamic cluster uses a single server template to define its 
configuration, and all dynamic server instances within the dynamic cluster inherit the 
template configuration. If you enable automatic whole server migration in the server 
template for a dynamic cluster, all dynamic server instances based on that server 
template are then enabled for automatic whole server migration. You cannot select 
individual dynamic server instances to migrate.

Additionally, you cannot choose the machines to which you want to migrate. After 
enabling automatic whole server migration in the server template for a dynamic 
cluster, all machines that are available to use for migration are automatically selected.

You cannot limit the list of candidate machines for migration that the dynamic cluster 
specifies, as the server template does not list candidate machines. The list of candidate 
machines for each dynamic server is calculated as follows:

ClusterMBean.CandidateMachinesForMigratableServers = { M1, M2, M3 }
 
dyn-server-1.CandidateMachines = { M1, M2, M3}
dyn-server-2.CandidateMachines = { M2, M3, M1 }



Whole Server Migration with Dynamic and Mixed Clusters

7-18 Administering Clusters for Oracle WebLogic Server 12.1.3

dyn-server-3.CandidateMachines = { M3, M1, M2 }
dyn-server-4.CandidateMachines = { M1, M2, M3 }

To enable automatic whole server migration for a dynamic cluster using the WebLogic 
Server Administration Console:

1. In the left pane of the WebLogic Server Administration Console, select 
Environment > Clusters > Server Templates.

2. In the Server Templates table, select the server template for your dynamic cluster.

3. Select Configuration > Migration.

4. Select the Automatic Server Migration Enabled attribute.

7.5.2 Configuring Whole Server Migration with Mixed Clusters
A mixed cluster contains both dynamic and configured servers. To enable automatic 
whole server migration for a mixed cluster:

1. Enable automatic whole server migration in the server template used by the 
dynamic server instances in the mixed cluster.

All of the dynamic server instances based on that server template are then enabled 
for automatic whole server migration. 

2. Manually enable automatic whole server migration for any of the configured 
server instances in the cluster and choose the machines to which you want to 
migrate if a server instance fails.



8

Service Migration 8-1

8Service Migration

[9] This chapter describes the service migration mechanisms supported by WebLogic 
Server 12.1.3.

This chapter includes the following sections:

■ Section 8.1, "Understanding the Service Migration Framework"

■ Section 8.2, "Pre-Migration Requirements"

■ Section 8.3, "Roadmap for Configuring Automatic Migration of JMS-related 
Services"

■ Section 8.4, "Best Practices for Targeting JMS when Configuring Automatic Service 
Migration"

■ Section 8.5, "Roadmap for Configuring Manual Migration of JMS-related Services"

■ Section 8.6, "Roadmap for Configuring Automatic Migration of the JTA 
Transaction Recovery Service"

■ Section 8.7, "Manual Migration of the JTA Transaction Recovery Service"

■ Section 8.8, "Automatic Migration of User-Defined Singleton Services"

This chapter focuses on migrating failed services. WebLogic Server also supports 
whole server-level migration, where a migratable server instance, and all of its 
services, is migrated to a different physical machine upon failure. For information on 
failed server migration, see Chapter 7, "Whole Server Migration."

WebLogic Server also supports replication and failover at the application level. For 
more information, see Chapter 6, "Failover and Replication in a Cluster."

8.1 Understanding the Service Migration Framework
In a WebLogic Server cluster, most subsystem services are hosted homogeneously on 
all server instances in the cluster, enabling transparent failover from one server to 
another. In contrast, pinned services, such as JMS-related services, the JTA Transaction 
Recovery Service, and user-defined singleton services are hosted on individual server 
instances within a cluster—for these services, the WebLogic Server migration 
framework supports failure recovery with service migration, as opposed to failover. See 

Caution: Support for automatic whole server migration on Solaris 10 systems 
using the Solaris Zones feature can be found in Note 3: Support For Sun Solaris 
10 In Multi-Zone Operation at 
http://www.oracle.com/technetwork/middleware/ias/oracleas-supported
-virtualization-089265.html.



Understanding the Service Migration Framework

8-2 Administering Clusters for Oracle WebLogic Server 12.1.3

Section 8.1.1, "Migratable Services."

Service-level migration in WebLogic Server is the process of moving the pinned 
services from one server instance to a different available server instance within the 
cluster. Service migration is controlled by a logical migratable target, which serves as a 
grouping of services that is hosted on only one physical server instance in a cluster. 
You can select a migratable target in place of a server instance or cluster when 
targeting certain pinned services. High availability is achieved by migrating a 
migratable target from one clustered server instance to another when a problem occurs 
on the original server instance. You can also manually migrate a migratable target for 
scheduled maintenance, or you can configure the migratable target for automatic 
migration. See Section 8.1.2, "Understanding Migratable Targets In a Cluster."

The migration framework provides tools and infrastructure for configuring and 
migrating targets, and, in the case of automatic service migration, it leverages the 
WebLogic Server health monitoring subsystem to monitor the health of services hosted 
by a migratable target. See Section 8.1.3, "Migration Processing Tools" and 
Section 8.1.4, "Automatic Service Migration Infrastructure." For definitions of the terms 
that apply to server and service migration, see Section 7.2, "Migration Terminology."

8.1.1 Migratable Services
WebLogic Server supports service-level migration for JMS-related services, the JTA 
Transaction Recovery Service, and user-defined singleton services. These are referred 
to as migratable services because you can move them from one server instance to 
another within a cluster. The following migratable services can be configured for 
automatic or manual migration.

8.1.1.1 JMS-related Services
JMS services are singleton services, and, therefore, are not active on all server instances 
in a cluster. Instead, they are pinned to a single server instance in the cluster to 
preserve data consistency. To ensure that singleton JMS services do not introduce a 
single point of failure for dependent applications in the cluster, WebLogic Server can 
be configured to automatically or manually migrate them to any server instance in the 
migratable target list.

■ JMS Server—management containers for the queues and topics in JMS modules 
that are targeted to them. See "JMS Server Configuration" in Administering JMS 
Resources for Oracle WebLogic Server.

■ Store-and-Forward (SAF) Service—store-and-forward messages between local 
sending and remote receiving endpoints, even when the remote endpoint is not 
available at the moment the messages are sent. Only sending SAF agents 
configured for JMS SAF (sending capability only) are migratable. See Administering 
the Store-and-Forward Service for Oracle WebLogic Server.

■ Path Service—a persistent map that can be used to store the mapping of a group of 
messages in a JMS Message Unit-of-Order to a messaging resource in a cluster. It 
provides a way to enforce ordering by pinning messages to a member of a cluster 
hosting servlets, distributed queue members, or Store-and-Forward agents. One 
path service is configured per cluster. See "Using the WebLogic Path Service" in 
Administering JMS Resources for Oracle WebLogic Server.

■ Custom Persistent Store—a user-defined, disk-based file store or JDBC-accessible 
database for storing subsystem data, such as persistent JMS messages or 
store-and-forward messages. See "Using the WebLogic Persistent Store" in 
Administering Server Environments for Oracle WebLogic Server.



Understanding the Service Migration Framework

Service Migration 8-3

8.1.1.2 JTA Transaction Recovery Service
The Transaction Recovery Service automatically attempts to recover transactions on 
system startup by parsing all transaction log records for incomplete transactions and 
completing them. For detailed information, see "Transaction Recovery After a Server 
Fails" in Developing JTA Applications for Oracle WebLogic Server.

8.1.1.3 User-defined Singleton Services
Within an application, you can define a singleton service that can be used to perform 
tasks that you want to be executed on only one member of a cluster at any give time. 
See Section 8.8, "Automatic Migration of User-Defined Singleton Services."

8.1.2 Understanding Migratable Targets In a Cluster
You can configure JMS and JTA services for high availability by using migratable 
targets. A migratable target is a special target that can migrate from one server 
instance in a cluster to another. As such, a migratable target provides a way to group 
migratable services that should move together. When the migratable target is 
migrated, all services hosted by that target are migrated.

In order to configure a migratable JMS service for migration, it must be deployed to a 
migratable target. A migratable target specifies a set of server instances that can host a 
target, and can optionally specify a user-preferred host for the services and an ordered 
list of candidate backup servers should the preferred server instance fail. Only one of 
these server instances can host the migratable target at any one time.

Once a service is configured to use a migratable target, then the service is independent 
from the server member that is currently hosting it. For example, if a JMS server with a 
deployed JMS queue is configured to use a migratable target, then the queue is 
independent of when a specific server member is available. In other words, the queue 
is always available when the migratable target is hosted by any server instance in the 
cluster.

An administrator can manually migrate pinned migratable services from one server 
instance to another in the cluster, either in response to a server failure or as part of 
regularly scheduled maintenance. If you do not configure a migratable target in the 
cluster, migratable services can be migrated to any WebLogic Server instance in the 
cluster. See Section 8.5, "Roadmap for Configuring Manual Migration of JMS-related 
Services."

8.1.2.1 Policies for Manual and Automatic Service Migration
A migratable target provides migration policies that define whether the hosted 
services will be manually migrated (the system default) or automatically migrated 
from an unhealthy hosting server instance to a healthy active server instance with the 
help of the health monitoring subsystem. There are two types of automatic service 
migration policies, as described in the following sections.

8.1.2.1.1 Manual Migration  When a migratable target uses the manual policy (the system 
default), an administrator can manually migrate pinned migratable services from one 
server instance to another in the cluster, either in response to a server failure or as part 
of regularly scheduled maintenance. 

See Section 8.5, "Roadmap for Configuring Manual Migration of JMS-related Services."

8.1.2.1.2 Exactly-Once  This policy indicates that if at least one Managed Server in the 
candidate list is running, then the service will be active somewhere in the cluster if 
server instances fail or are shut down (either gracefully or forcibly). It is important to 



Understanding the Service Migration Framework

8-4 Administering Clusters for Oracle WebLogic Server 12.1.3

note that this value can lead to target grouping. For example, if you have five 
exactly-once migratable targets and only start one Managed Server in the cluster, 
then all five targets will be activated on that server instance.

Example use-case for JMS servers: 

A domain has a cluster of three Managed Servers, with one JMS server deployed on a 
member server in the cluster. Applications deployed to the cluster send messages to 
the queues targeted to the JMS server. MDBs in another domain drain the queues 
associated with the JMS server. The MDBs only want to drain from one set of queues, 
not from many instances of the same queue. In other words, this environment uses 
clustering for scalability, load balancing, and failover for its applications, but not for its 
JMS server. Therefore, this environment would benefit from the automatic migration of 
the JMS server as an exactly-once service to an available cluster member.

See Section 8.3, "Roadmap for Configuring Automatic Migration of JMS-related 
Services."

8.1.2.1.3 Failure-Recovery  This policy indicates that the service will only start if its 
user-preferred server (UPS) is started. If an administrator manually shuts down the 
UPS, either gracefully or forcibly, then a failure-recovery service will not migrate. 
However, if the UPS fails due to an internal error, then a failure-recovery service 
will be migrated to another candidate server instance. If such a candidate server 
instance is unavailable (due to a manual shutdown or an internal failure), then the 
migration framework will first attempt to reactivate the service on its UPS server. If the 
UPS server is not available at that time, then the service will be migrated to another 
candidate server instance.

Example use-case for JMS servers: 

A domain has a cluster of three Managed Servers, with a JMS server on each member 
server and a distributed queue member on each JMS server. There is also an MDB 
targeted to the cluster that drains from the distributed queue member on the local 
server member. In other words, this environment uses clustering for overall scalability, 
load balancing, and failover. Therefore, this environment would benefit from the 
automatic migration of a JMS server as an failure-recovery service to a UPS member.

See the Section 8.3, "Roadmap for Configuring Automatic Migration of JMS-related 
Services."

Tip: As a best practice, a migratable target hosting a path service 
should always be set to exactly-once, so if its hosting server member 
fails or is shut down, the path service will automatically migrate to 
another server instance and will always be active in the cluster.

Caution: If a server instance is also configured to use the automatic 
whole server migration framework, which will shut down the server 
when its expired lease cannot be renewed, then any 
failure-recovery services configured on that server instance will not 
automatically migrate, no matter how the server instance is manually 
shut down by an administrator (for example, force shutdown versus 
graceful shutdown). For more information, see Section 7.4, "Automatic 
Whole Server Migration."



Understanding the Service Migration Framework

Service Migration 8-5

8.1.2.2 Options For Attempting to Restart Failed Services Before Migrating
A migratable target provides options to attempt to deactivate and reactivate a failed 
service, instead of migrating the service. See Section 8.1.5, "In-Place Restarting of 
Failed Migratable Services."

For more information about the default values for all migratable target options, see 
MigratableTargetMBean in the MBean Reference for Oracle WebLogic Server.

8.1.2.3 User-Preferred Servers and Candidate Servers
When deploying a JMS service to the migratable target, you can select the 
user-preferred server (UPS) target to host the service. When configuring a migratable 
target, you can also specify constrained candidate servers (CCS) that can potentially 
host the service should the user-preferred server fail. If the migratable target does not 
specify a constrained candidate server, the JMS server can be migrated to any available 
server instance in the cluster.

WebLogic Server enables you to create separate migratable targets for JMS services. 
This allows you to always keep each service running on a different server instance in 
the cluster, if necessary. Conversely, you can configure the same selection of server 
instances as the constrained candidate servers for both JTA and JMS, to ensure that the 
services remain co-located on the same server instance in the cluster.

8.1.2.4 Example Migratable Targets In a Cluster
Figure 8–1 shows a cluster of three Managed Servers, all hosting migratable targets. 
Server A is hosting a migratable target (MT1) for JMS server A (with two queues) and 
a custom store; Server B is hosting MT2 for a path service and a custom store and is 
also hosting MT3 for JMS server B (with two queues) and a custom store; Server C is 
hosting MT4 for JMS server C (with two queues) and a custom store.

All the migratable targets are configured to be automatically migrated, with the MT1, 
MT3, and MT4 targets using the failure-recovery policy, and the MT2 target using 
the exactly-once policy.



Understanding the Service Migration Framework

8-6 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 8–1 Migratable Targets In a Cluster

In the above example, the MT2 exactly-once target will automatically start the path 
service and store on any running Managed Server in the candidate list. This way, if the 
hosting server should fail, it guarantees that the services will always be active 
somewhere in the cluster, even if the target's user preferred server (UPS) is shut down 
gracefully. However, as described in Section 8.1.2.1, "Policies for Manual and 
Automatic Service Migration," this policy can also lead to target grouping with 
multiple JMS services being hosted on a single server instance.

Whereas, if the UPS is shut down gracefully or forcibly, then the MT1, MT3, and MT4 
failure-recovery targets will automatically start the JMS server and store services on 
its UPS, but the pinned services will not be migrated anywhere. However, if the UPS 
shuts down due to an internal error, then the services will be migrated to another 
candidate server.

8.1.2.5 Targeting Rules for JMS Servers
When not using migratable targets, a JMS server can be targeted to a specific cluster 
member and can use either the default file or a custom store. However, when targeted 
to a migratable target, a JMS server must use a custom persistent store, and must be 
targeted to the same migratable target used by the custom store. A JMS server, SAF 
agent, and custom store can share a migratable target. See Section 8.2.1, "Custom Store 
Availability for JMS Services."

WebLogic Server will create the migratable targets for each server instance in a cluster 
and then create separate JMS servers that are targeted individually to each migratable 
target, if a JMS system resource target is the cluster.



Understanding the Service Migration Framework

Service Migration 8-7

8.1.2.6 Targeting Rules for SAF Agents
When not using migratable targets, a SAF agent can be targeted to an entire cluster or 
a list of multiple server instances in a cluster, with the requirement that the SAF agent 
and each server instance in the cluster must use the default persistent store. However, 
when targeted to a migratable target, a SAF agent must use a custom persistent store, 
and must be targeted to the same migratable target used by the custom store, similar 
to a JMS server. A SAF agent, JMS server, and custom store can share a migratable 
target. See Section 8.3.5.1, "Special Considerations When Targeting SAF Agents or Path 
Service."

WebLogic Server will create the migratable targets for each server in a cluster and then 
create separate SAF agents that are targeted individually to each migratable target. 
This handling increases throughput and high availability.

In addition, consider the following topics when targeting SAF agents to migratable 
targets.

8.1.2.6.1 Re-targeting SAF Agents to Migratable Targets  To preserve SAF message 
consistency, WebLogic Server prevents you from retargeting an existing SAF agent to a 
migratable target. Instead, you must delete the existing SAF agent and configure a new 
SAF agent with the same values and target it to a migratable target.

8.1.2.6.2 Targeting Migratable SAF Agents For Increased Message Throughput  When not 
using migratable targets, a SAF agent can be targeted to an entire cluster or multiple 
server instances in a cluster for increased message throughput. However, When a SAF 
agent is targeted to a migratable target, it cannot be targeted to any other server 
instances in the cluster, including an entire cluster. Therefore, if you want to increase 
throughput by importing a JMS destination to multiple SAF agents on separate server 
instances in a cluster, then you should create migratable targets for each server 
instance in the cluster and then create separate SAF agents that are targeted 
individually to each migratable target.

8.1.2.6.3 Targeting SAF Agents For Consistent Quality-of-Service  A WebLogic Server 
administrator has the freedom to configure and deploy multiple SAF agents in the 
same cluster or on the same server instance. As such, there could be situations where 
the same server instance has both migratable SAF agents and non-migratable SAF 
agents. For such cases, the behavior of a JMS client application may vary depending 
on which SAF agent handles the messages. 

For example, an imported destination can be deployed to multiple SAF agents, and 
messages sent to the imported destination will be load-balanced among all SAF 
agents. If the list of the SAF agents contains non-migratable agents, the JMS client 
application may have a limited sense of high availability. Therefore, a recommended 
best practice is to deploy an imported destination to one or more SAF agents that 
provide the same level of high availability functionality. In other words, to ensure 
consistent forwarding quality and behavior, you should target the imported 
destination to a set of SAF agents that are all targeted to migratable targets or are all 
targeted to non-migratable targets.

8.1.2.7 Targeting Rules for Path Service
When not using migratable targets, a path service is targeted to a single member of a 
cluster and can use either the default file store or a custom store. However, when 
targeted to a migratable target, a path service cannot use the default store, so a custom 
store must be configured and targeted to the same migratable target. As an additional 
best practice, the path service and its custom store should be the only users of that 



Understanding the Service Migration Framework

8-8 Administering Clusters for Oracle WebLogic Server 12.1.3

migratable target. Whereas, a JMS server, SAF agent, and custom store can share a 
migratable target.

8.1.2.7.1 Special Considerations For Targeting a Path Service  As a best practice, when the 
path service for a cluster is targeted to a migratable target, the path service and its 
custom store should be the only users of that migratable target. 

When a path service is targeted to a migratable target, its provides enhanced storage of 
message unit-of-order (UOO) information for JMS distributed destinations, since the 
UOO information will be based on the entire migratable target instead of being based 
only on the server instance hosting the distributed destinations member.

8.1.2.8 Targeting Rules for Custom Stores
All JMS-related services require a custom persistent store that is targeted to the same 
migratable targets as the JMS services. When a custom store is targeted to a migratable 
target, the store <directory> parameter must be configured so that the store directory 
is accessible from all candidate server members in the migratable target.

WebLogic Server will create the migratable targets for each server instance in a cluster 
and then create separate JMS servers and file stores that are targeted individually to 
each migratable target, if a JMS system resource target is the cluster.

See Section 8.2.1, "Custom Store Availability for JMS Services."

8.1.2.9 Migratable Targets For the JTA Transaction Recovery Service
For JTA, a migratable target configuration should not be configured because a 
migratable target is automatically defined for JTA at the server level. To enable JTA 
automatic migration select the Automatic JTA Migration Enabled checkbox. The 
default migration policy for JTA is manual, but when configured for automatic 
migration, the JTA policy is internally set to failure-recovery. This means that 
Transaction Recovery Service will only start if its user-preferred server (UPS) is 
started. If an administrator shuts down the UPS, either gracefully or forcibly, this 
service will not be migrated. 

However, if the UPS shuts down due to an internal error, then this service will be 
migrated to another candidate server instance. If such a candidate server instance is 
unavailable (due to a manual shutdown or an internal failure), then the migration 
framework will first attempt to reactivate the service on its UPS server instance. If the 
UPS server is not available at that time, then the service will be migrated to another 
candidate server instance.

8.1.3 Migration Processing Tools
WebLogic Server migration framework provides infrastructure and facilities to 
perform the manual or automatic migration of JMS-related services and the JTA 
Transaction Recovery Service. By default, an administrator must manually execute the 
process in order to successfully migrate the services from one server instance to 
another server instance. However, these services can also be easily configured to 
automatically migrate in response to a server failure.

8.1.3.1 Administration Console
An administrator can use the WebLogic Server Administration Console to configure 
and perform the migration process.

For more information, see the following topics in the Oracle WebLogic Server 
Administration Console Online Help:



Understanding the Service Migration Framework

Service Migration 8-9

■ "Configure JMS-related services migration" 

■ "Configure the JTA Transaction Recovery Service for migration"

8.1.3.2 WebLogic Scripting Tool
An administrator can use the WebLogic Scripting Tool (WLST) command-line interface 
utility to manage the life cycle of a server instance, including configuring and 
performing the migration process.

For more information, see "Life Cycle Commands" in WLST Command Reference for 
WebLogic Server.

8.1.4 Automatic Service Migration Infrastructure
The service migration framework depends on the following components to monitor 
server health issues and automatically migrate the pinned services to a healthy server 
instance.

8.1.4.1 Leasing for Migratable Services
Leasing is the process WebLogic Server uses to manage services that are required to 
run on only one member of a cluster at a time. Leasing ensures exclusive ownership of 
a cluster-wide entity. Within a cluster, there is a single owner of a lease. Additionally, 
leases can failover in case of server or cluster failure. This helps to avoid having a 
single point of failure. See Section 7.3, "Leasing."

Using the Automatic Migration option requires setting the cluster Migration Basis 
policy to either Database or Consensus leasing, as follows:

8.1.4.1.1 Database Leasing  If you are using a high availability database, such as Oracle 
RAC, to manage leasing information, configure the database for server migration 
according to the procedures outlined in Section 7.3.4, "High-availability Database 
Leasing."

Setting Migration Basis to Database leasing requires that the Data Source For 
Automatic Migration option is set with a valid JDBC system resource. This implies 
that there is a table created on that resource that the Managed Servers will use for 
leasing. For more information on creating a JDBC data source, see "Configuring JDBC 
Data Sources" in Administering JDBC Data Sources for Oracle WebLogic Server.

8.1.4.1.2 Consensus Leasing  Setting Migration Basis to Consensus leasing means that 
the member servers maintain leasing information in-memory, which removes the 
requirement of having a high-availability database to use leasing. This version of 
leasing requires that you use Node Manager to control server instances within the 
cluster. It also requires that all server instances that are migratable, or which could host 
a migratable target, have a Node Manager instance associated with them. Node 
Manager is required for health monitoring information about the member server 
instances involved. See Section 7.3.5, "Non-database Consensus Leasing."

8.1.4.2 Node Manager
When using automatic service migration, Node Manager is required for health 
monitoring information about the member servers, as follows:

■ Consensus leasing—Node Manager must be running on every machine hosting 
Managed Servers within the cluster.



Understanding the Service Migration Framework

8-10 Administering Clusters for Oracle WebLogic Server 12.1.3

■ Database leasing—Node Manager must be running on every machine hosting 
Managed Servers within the cluster only if pre/post-migration scripts are defined. 
If pre/post-migration scripts are not defined, then Node Manager is not required.

For general information about configuring Node Manager, see "Using Node Manager 
to Control Servers" in Administering Node Manager for Oracle WebLogic Server.

8.1.4.3 Administration Server Not Required When Migrating Services
To eliminate a single point of failure during migration, automatic service migration of 
migratable services is not dependent on the availability of the Administration Server at 
the time of migration.

8.1.4.4 Service Health Monitoring
To accommodate service migration requests, the migratable target performs basic 
health monitoring on migratable services that are deployed on it that implement a 
health monitoring interface. The advantage of having a migratable target perform this 
job is that it is guaranteed to be local. Plus, the migratable target has a direct 
communication channel to the leasing system and can request that the lease be 
released (thus triggering a migration) when bad health is detected. 

8.1.4.4.1 How Health Monitoring of the JTA Transaction Recovery Service Triggers Automatic 
Migration  When JTA has automatic migration enabled, the server defaults to shutting 
down if the JTA subsystem reports itself as unhealthy (FAILED). For example, if any 
I/O error occurs when accessing the transaction log, then JTA health state will change 
to FAILED. 

When the primary server fails, the migratable service framework automatically 
migrates the Transaction Recovery Service to a backup server. The automatic service 
migration framework selects a backup server from the configured candidate servers. If 
a backup server fails before completing the transaction recovery actions, and then is 
restarted, the Transaction Recovery Service will eventually be migrated to another 
server instance in the cluster (either the primary server will reclaim it or the migration 
framework will notice that the backup server instance's lease has expired). 

After successful migration, if the backup server is shut down normally, then when the 
backup server is rebooted, the Transaction Recovery Service will again be activated on 
the backup server. This is consistent with manual service migration. As with manual 
service migration, the Transaction Recovery Service service cannot be migrated from a 
running primary server.

8.1.4.4.2 How Health Monitoring of JMS-related Services Triggers Automatic Migration  When 
the JMS-related services have automatic migration enabled: 

■ JMS Server—Maintains its run-time health state and registers and updates its 
health to the health monitoring subsystem. When a service the JMS server 
depends upon, such as its targeted persistent store, reports the FAILED health state, 
it is detected by the migration framework. The migration process takes place 
based on the migratable target's configured automatic migration policy. Typically, 
the migration framework deactivates the JMS server and other users of the 
migratable target on the current user-preferred server and migrates them onto a 
healthy available server instance from the constrained candidate server list.

■ SAF Service—The health state of the SAF service comes from its configured SAF 
agents. If the SAF service detects an unhealthy state, the whole SAF agent instance 
will be reported as unhealthy. The SAF agent has the same health monitoring 
capabilities as a JMS server. Typically, the migration framework deactivates the 



Understanding the Service Migration Framework

Service Migration 8-11

SAF agent on the current user-preferred server instance and migrates it onto a 
healthy available server instance from the constrained candidate server list.

■ Path Service—The path service itself will not change its health state, but instead 
depends on the server instance and its custom store to trigger migration.

■ Persistent Store—Registers its health to the health monitoring subsystem. If there 
are any errors reported by the I/O layer—such that if the persistent store cannot 
continue with read/write and needs to be restarted before it can guarantee data 
consistency—then the store's health is marked as FAILED and reported as FAILED to 
the health monitoring subsystem. This is detected by the automatic migration 
framework and triggers the auto-migration of the store and the subsystem services 
that are depending on that store from the current user-preferred server instance 
onto a healthy available server instance from the constrained candidate server list.

8.1.5 In-Place Restarting of Failed Migratable Services
Some migratable services, such as JMS, have the unique requirement in that sometimes 
it is beneficial for the service to be restarted in place, instead of migrated. Therefore, 
migratable targets provide restart-in-place options to attempt to deactivate and 
reactivate a failed service, instead of migrating the service.

The migration framework only attempts to restart a service if the server instance's 
health is satisfactory (for example, in a RUNNING state). If the server instance is not 
healthy for whatever reason, the framework immediately proceeds to the migration 
stage, skipping all in-place restarts.

The cluster Singleton Monitor checks for the RestartOnFailure value in the service's 
MigratableTargetMBean. If it the value is false, then the service is migrated. If the 
value is true, then the migration framework attempts to deactivate and activate in 
place. If the reactivation fails, the migration framework pauses for the user-specified 
SecondsBetweenRestarts seconds. This is repeated for the specified 
NumberOfRestartAttempts attempts. If all restart attempts fail, then the service is 
migrated to a healthy server member.

8.1.6 Migrating a Service From an Unavailable Server
There are special considerations when you migrate a service from a server instance 
that has crashed or is unavailable to the Administration Server. If the Administration 
Server cannot reach the previously active host of the service at the time you perform 
the migration, that Managed Server's local configuration information (for example, 
migratable target) will not be updated to reflect that it is no longer the active host for 
the service. In this situation, you must purge the unreachable Managed Server's local 
configuration cache before starting it again. This prevents the previous active host 
from hosting a service that has been migrated to another Managed Server.

8.1.7 JMS and JTA Automatic Service Migration Interaction
In some automatic service migration cases, the migratable targets for JMS services and 
the JTA Transaction Recovery Service can be migrated to different candidate servers 
with uncommitted transactions in progress. However, JMS and JTA service states are 
independent in time and location; therefore, JMS service availability does not depend 
on JTA transaction recovery being complete. 

However, in-doubt transactions will not resolve until both services are running and can 
re-establish communication. An in-doubt transaction is an incomplete transaction that 
involves multiple participating resources (such as a JMS server and a database), where 
one or more of the resources are waiting for the transaction manager to tell them 



Pre-Migration Requirements

8-12 Administering Clusters for Oracle WebLogic Server 12.1.3

whether to rollback, commit, or forget their part of the transaction. Transactions can 
become in-doubt if they are in-progress when a transaction manager or participating 
resource crashes.

JTA continues to attempt to recover transactions when a resource is not available until 
the recovery abandon time period expires, which defaults to 24 hours.

8.2 Pre-Migration Requirements
WebLogic Server imposes certain constraints and prerequisites for service 
configuration in order to support service migration. These constraints are service 
specific and also depend on your enterprise application architecture.

8.2.1 Custom Store Availability for JMS Services
Migratable JMS-related services cannot use the default persistent store, so you must 
configure a custom store and target it to the same migratable target as the JMS server 
or SAF agent. As a best practice, a path service should use its own custom store and 
migratable target. 

The custom file store or JDBC store must either be:

■ Accessible from all candidate server members in the migratable target.

– If the application uses file-based persistence (file store), the store's 
<directory> parameter must be configured so that it is accessible from all 
candidate server members in the migratable target. For highest reliability, use 
a shared storage solution that is itself highly available—for example, a storage 
area network (SAN) or a dual-ported SCSI disk.

– If the application uses JDBC-based persistence (JDBC store), then the JDBC 
connection information for that database instance, such as data source and 
connection pool, has to be available from all candidate servers members.

■ Migrated to a backup server target by pre-migration and post-migration scripts in 
the ORACLE_HOME/user_projects/domains/mydomain/bin/service_migration 
directory, where mydomain is a domain-specific directory, with the same name as 
the domain. 

In some cases, scripts may be needed to dismount the disk from the previous 
server and mount it on the backup server. These scripts are configured on Node 
Manager, using the PreScript() and PostScript() methods in the 
MigratableTargetMBean in the MBean Reference for Oracle WebLogic Server, or by 
using the WebLogic Server Administration Console. In other cases, a script may be 
needed to move (not copy) a custom file store directory to the backup server 
instance. The old configured file store directory should not be left for the next time 
the migratable target is hosted by the old server instance. Therefore, the WebLogic 
Server administrator should delete or move the files to another directory.

8.2.2 Default File Store Availability for JTA
To migrate the JTA Transaction Recovery Service from a failed server instance in a 
cluster to another server instance (the backup server instance) in the same cluster, the 
backup server instance must have access to the transaction log (TLOG) records from 

Note: Basic directions for creating pre-migration and post-migration 
scripts are provided in the readme.txt file in this directory.



Roadmap for Configuring Automatic Migration of JMS-related Services

Service Migration 8-13

the failed server. Transaction log records are stored in the default persistent store for 
the server. 

If you plan to use service migration in the event of a failure, you must configure the 
default persistent store so that it stores records in a shared storage system that is 
accessible to any potential machine to which a failed migratable server might be 
migrated. For highest reliability, use a shared storage solution that is itself highly 
available—for example, a storage area network (SAN) or a dual-ported disk. In 
addition, only JTA and other non-migratable services can share the same default store. 

Optionally, you may also want to use pre-migration and post-migration scripts to 
perform any unmounting and mounting of shared storage, as needed. Basic directions 
for creating pre-migration and post-migration scripts are provided in a readme.txt file 
in the ORACLE_HOME/user_projects/domains/mydomain/bin/service_migration 
directory, where mydomain is a domain-specific directory, with the same name as the 
domain.

8.2.3 Server State and Manual Service Migration
For automatic migration, when the current (source) server fails, the migration 
framework will automatically migrate the Transaction Recovery Service to a target 
backup server.

For manual migration, you cannot migrate the Transaction Recovery Service to a 
backup server instance from a running server instance. You must stop the server 
instance before migrating the Transactions Recovery Service. 

Table 8–1 shows the support for migration based on the running state.

8.3 Roadmap for Configuring Automatic Migration of JMS-related 
Services

WebLogic JMS leverages the migration framework by allowing an administrator to 
specify a migratable target for JMS-related services, such as JMS servers and SAF 
agents. The WebLogic administrator can also configure migratable services that will be 
automatically migrated from a failed server based on WebLogic Server health 
monitoring capabilities.

Table 8–1 Server Running State and Manual Migration Support

Server State 
Information for 
Current Server

Server State 
Information for 
Backup Server

Messaging 
Migration Allowed?

JTA Migration 
Allowed?

Running Running Yes No

Running Standby Yes No

Running Not running Yes No

Standby Running Yes No

Standby Standby Yes No

Standby Not Running Yes No

Not Running Running Yes Yes

Not Running Standby Yes No

Not Running Not Running Yes Yes



Roadmap for Configuring Automatic Migration of JMS-related Services

8-14 Administering Clusters for Oracle WebLogic Server 12.1.3

To configure automatic JMS service migration on a migratable target within a cluster, 
perform the following tasks:

■ Step 1: Configure Managed Servers and Node Manager

■ Step 2: Configure the Migration Leasing Basis

■ Step 3: Configure Migratable Targets

■ Step 4: Configure and Target Custom Stores

■ Step 5: Target the JMS Services

■ Step 6: Restart the Administration Server and Managed Servers With Modified 
Migration Policies

■ Step 7: Manually Migrate JMS Services Back to the Original Server

8.3.1 Step 1: Configure Managed Servers and Node Manager
Configure the Managed Servers in the cluster for migration, including assigning 
Managed Servers to a machine. In certain cases, Node Manager must also be running 
and configured to allow automatic server migration. 

For step-by-step instructions for using the WebLogic Server Administration Console to 
complete these tasks, refer to the following topics in the Oracle WebLogic Server 
Administration Console Online Help:

■ "Create Managed Servers" 

■ "Create and configure machines" 

■ "Configure Node Manager" 

For general information on configuring Node Manager, see "Using Node Manager 
to Control Servers" in Administering Node Manager for Oracle WebLogic Server.

Note: JMS services can be migrated independently of the JTA 
Transaction Recovery Service. However, since the JTA Transaction 
Recovery Service provides the transaction control of the other 
subsystem services, it is usually migrated along with the other 
subsystem services. This ensures that the transaction integrity is 
maintained before and after the migration of the subsystem services.

Note: You must set a unique Listen Address value for the Managed 
Server instance that will host a migrated the JMS server. Otherwise, 
the migration will fail.

Note: For automatic service migration, Consensus leasing requires 
that you use Node Manager to control server instances within the 
cluster and that all migratable servers must have a Node Manager 
instance associated with them. For Database leasing, Node Manager is 
required only if pre-migration and post-migration scripts are defined. 
If pre-migration and post-migration scripts are not defined, then Node 
Manager is not required.



Roadmap for Configuring Automatic Migration of JMS-related Services

Service Migration 8-15

8.3.2 Step 2: Configure the Migration Leasing Basis
On the Cluster > Configuration > Migration page in the WebLogic Server 
Administration Console, configure the cluster Migration Basis according to how 
your data persistence environment is configured, selecting either Database Leasing or 
Consensus Leasing. See Section 8.1.4.1, "Leasing for Migratable Services."

8.3.3 Step 3: Configure Migratable Targets
You should perform this step before targeting any JMS-related services or enabling the 
JTA Transaction Recovery Service migration.

8.3.3.1 Configuring a Migratable Server as an Automatically Migratable Target
The Migratable Target Summary table in the WebLogic Server Administration Console 
displays the system-generated migratable targets of servername (migratable), which are 
automatically generated for each running server instance in a cluster. However, these 
are only generic templates and still need to be targeted and configured for automatic 
migration.

8.3.3.2 Create a New Migratable Target
When creating a new migratable target, the WebLogic Server Administration Console 
provides a mechanism for creating, targeting, and selecting a migration policy.

8.3.3.2.1 Select a User Preferred Server  When you create a new migratable target using 
the WebLogic Server Administration Console, you can initially choose a preferred 
server instance in the cluster on which to associate the target. The User Preferred 
Server is the most appropriate server instance for hosting the migratable target.

8.3.3.2.2 Select a Service Migration Policy  The default migration policy for migratable 
targets is Manual Service Migration Only, so you must select one of the following 
auto-migration policies:

■ Auto-Migrate Exactly-Once Services—Indicates that if at least one Managed 
Server in the candidate list is running, then the service will be active somewhere in 
the cluster if server instances should fail or are shut down (either gracefully or 
forcibly). 

■ Auto-Migrate Failure-Recovery Services—This policy indicates that the service 
will only start if its User Preferred Server (UPS) is started. If an administrator 

Note: An automatically migrated service may not end up being 
hosted on the specified User Preferred Server. In order to verify which 
server is hosting a migrated service, use the WebLogic Server 
Administration Console to check the Current Hosting Server 
information on the Migratable Target > Control page in the WebLogic 
Server Administration Console. For more information, see "Migratable 
Target: Control" in Oracle WebLogic Server Administration Console Online 
Help.

Note: This value can lead to target grouping. For example, if you 
have five exactly-once migratable targets and only start one 
Managed Server in the cluster, then all five targets will be activated on 
that server instance.



Roadmap for Configuring Automatic Migration of JMS-related Services

8-16 Administering Clusters for Oracle WebLogic Server 12.1.3

shuts down the UPS either gracefully or forcibly, this service will not be migrated. 
However, if the UPS fails due to an internal error, the service will be migrated to 
another candidate server instance. If such a candidate server instance is 
unavailable (due to a manual shutdown or an internal failure), then the migration 
framework will first attempt to reactivate the service on its UPS server. If the UPS 
server is not available at that time, then the service will be migrated to another 
candidate server instance.

See Section 8.1.2.1, "Policies for Manual and Automatic Service Migration."

8.3.3.2.3 Optionally Select Constrained Candidate Servers  When creating migratable 
targets that use the exactly-once services migration policy, you may also want to 
restrict the potential member servers to which JMS servers can be migrated. A 
recommended best practice is to limit each migratable target's candidate server set to a 
primary, secondary, and perhaps a tertiary server instance. Then as each server starts, 
the migratable targets will be restricted to their candidate server instances, rather than 
being satisfied by the first server instance to come online. Administrators can then 
manually migrate services to idle server instances.

For the cluster's path service, however, the candidate server instances for the 
migratable target should be the entire cluster, which is the default setting.

On the migratable target Configuration > Migration page in the WebLogic Server 
Administration Console, the Constrained Candidate Servers Available box lists all of 
the Managed Servers that could possibly support the migratable target. The Managed 
Servers become valid Candidate Servers when you move them into the Chosen box.

8.3.3.2.4 Optionally Specify Pre/Post-Migration Scripts  After creating a migratable target, 
you may also want to specify whether you are providing any pre-migration and 
post-migration scripts to perform any unmounting and mounting of the shared 
custom file store, as needed.

■ Pre-Migration Script Path—the path to the pre-migration script to run before a 
migratable target is actually activated.

■ Post-Migration Script Path—the path to the post-migration script to run after a 
migratable target is fully deactivated.

■ Post-Migration Script Failure Cancels Automatic Migration—specifies whether 
or not a failure during execution of the post-deactivation script is fatal to the 
migration.

■ Allow Post-Migration Script To Run On a Different Machine—specifies whether 
or not the post-deactivation script is allowed to run on a different machine.

The pre-migration and post-migration scripts must be located in the ORACLE_
HOME/user_projects/domains/mydomain/bin/service_migration directory, where 
mydomain is a domain-specific directory, with the same name as the domain. For your 
convenience, sample pre-migration and post-migration scripts are provided in this 
directory. 

8.3.3.2.5 Optionally Specify In-Place Restart Options  Migratable targets provide 
restart-in-place options to attempt to deactivate and reactivate a failed service, 
instead of migrating the service. See Section 8.1.5, "In-Place Restarting of Failed 
Migratable Services."



Roadmap for Configuring Automatic Migration of JMS-related Services

Service Migration 8-17

8.3.4 Step 4: Configure and Target Custom Stores
As discussed in Section 8.2.1, "Custom Store Availability for JMS Services," JMS-related 
services require you to configure a custom persistent store that is also targeted to the 
same migratable targets as the JMS services. Ensure that the store is either:

■ Configured such that all the candidate server instances in a migratable target have 
access to the custom store.

■ Migrated by pre-migration and post-migration scripts. See Section 8.3.3.2.4, 
"Optionally Specify Pre/Post-Migration Scripts."

8.3.5 Step 5: Target the JMS Services
When using migratable targets, you must target your JMS service to the same 
migratable target used by the custom persistent store. In the event that no custom store 
is specified for a JMS service that uses a migratable target, then a validation message 
will be generated, followed by failed JMS server deployment and a WebLogic Server 
boot failure. For example, attempting to target a JMS server that is using the default 
file store to a migratable target, will generate the following message:

Since the JMS server is targeted to a migratable target, it cannot use the default 
store.

Similar messages are generated for a SAF agent or path service that is targeted to a 
migratable target and attempts to use the default store. In addition, if the custom store 
is not targeted to the same migratable target as the migratable service, then the 
following validation log message will be generated, followed by failed JMS server 
deployment and a WebLogic Server start failure.

The JMS server is not targeted to the same target as its persistent store.

8.3.5.1 Special Considerations When Targeting SAF Agents or Path Service
There are some special targeting choices to consider when targeting SAF agents and a 
path service to migratable targets. For more information, see Section 8.1.2.6, "Targeting 
Rules for SAF Agents" and Section 8.1.2.7, "Targeting Rules for Path Service."

8.3.6 Step 6: Restart the Administration Server and Managed Servers With Modified 
Migration Policies

You must restart the Administration Server after configuring your JMS services for 
automatic service migration. You must also restart any Managed Servers whose 
migration policies were modified.

8.3.7 Step 7: Manually Migrate JMS Services Back to the Original Server
You may want to migrate a JMS service back to the original primary server instance 
once it is back online. Unlike the JTA Transaction Recovery Service, JMS services do 
not automatically migrate back to the primary server instance when it becomes 
available, so you need to manually migrate these services.

For instructions on manually migrating the JMS-related services using the WebLogic 
Server Administration Console, see "Manually migrate JMS-related services" in the 
Oracle WebLogic Server Administration Console Online Help.

For instructions on manually migrating the JMS-related services using WLST, see 
"WLST Command and Variable Reference" in WLST Command Reference for WebLogic 
Server.



Best Practices for Targeting JMS when Configuring Automatic Service Migration

8-18 Administering Clusters for Oracle WebLogic Server 12.1.3

8.4 Best Practices for Targeting JMS when Configuring Automatic 
Service Migration

■ In most cases, it is sufficient to use the default migratable target for a server 
instance. There is one default migratable target per server instance. An alternative 
is to configure one migratable target per server instance. See Section 8.3.3, "Step 3: 
Configure Migratable Targets."

■ Configure one custom store per migratable target and target the store to the 
migratable target. See Section 8.3.4, "Step 4: Configure and Target Custom Stores."

■ When configuring JMS services (JMS servers and SAF agents) for each migratable 
target, ensure that the services refer to the corresponding custom store. Then target 
the services to each migratable target. See Section 8.3.5, "Step 5: Target the JMS 
Services."

■ Use JMS system modules rather than deployment modules. The WebLogic Server 
Administration Console only provides the ability to configure system modules. 
See "JMS System Module Configuration" in Administering JMS Resources for Oracle 
WebLogic Server.

■ Create one system module per anticipated target set, and target the module to a 
single cluster. For example, if you plan to have one destination that spans a single 
JMS server and another destination that spans six JMS servers, create two modules 
and target both of them to the same cluster.

■ Configure one subdeployment per module and populate the subdeployment with 
a homogeneous set of either JMS server of JMS SAF agent targets. Do not include 
WebLogic Server or cluster names in the subdeployment.

■ Target connection factories to clusters for applications running on the same cluster. 
You can use default targeting to inherit the module target. Target connection 
factories to a subdeployment by using the Advanced Targeting choice on the 
WebLogic Server Administration Console for use by applications running remote 
to cluster.

■ For other JMS module resources, such as destinations, target using a 
subdeployment. Do not use default targeting. Subdeployment targeting is 
available through the Advanced Targeting choice on the WebLogic Server 
Administration Console. 

■ As you add or remove JMS servers or SAF agents, remember to also add or 
remove JMS servers or SAF agents to your module subdeployment(s).

■ Do not target a SAF agent to a cluster as it will not be able to migrate. Configure 
multiple independent SAF agents and target each SAF agent to a migratable 
target. There is a default migratable target per every server instance. Similarly, 
configure a custom store per SAF agent and target each custom store to the 
migratable target that the SAF agent is using. 

■ Custom connection factories are used to control client behavior, such as load 
balancing. They are targeted just like any other resource, but in the case of a 
connection factory, the target set has a special meaning. You can target a 
connection factory to a cluster, WebLogic Server, or to a JMS server or SAF agent 
(using a subdeployment). There is a performance advantage to targeting 
connection factories to the exact JMS servers or SAF agents that the client will use, 
as the target set for a connection factory determines the candidate set of host 
server instances for a client connection. Targeting to the exact JMS servers or SAF 
agents reduces the likelihood that client connections will connect to server 
instances that do not have a JMS server or SAF agent in cases where there is not a 



Roadmap for Configuring Manual Migration of JMS-related Services

Service Migration 8-19

SAF agent on every clustered server instance. If no JMS server or SAF agent exists 
on a connection host, the client request must always double-hop the route from the 
client to the connection host server, then ultimately on to the JMS server or SAF 
agent.

See "Best Practices for JMS Beginners and Advanced Users" in Administering JMS 
Resources for Oracle WebLogic Server.

8.5 Roadmap for Configuring Manual Migration of JMS-related Services
WebLogic JMS leverages the migration framework by allowing an administrator to 
specify a migratable target for JMS-related services. Once properly configured, a JMS 
service can be manually migrated to another WebLogic Server within a cluster. This 
includes both scheduled migrations as well as manual migrations in response to a 
WebLogic Server failure within the cluster.

To configure JMS-related services for manual migration on a migratable target within a 
cluster, perform the following tasks:

■ Step 1: Configure Managed Servers

■ Step 2: Configure Migratable Targets

■ Step 3: Configure and Target Custom Stores

■ Step 4: Target the JMS Services

■ Step 5: Restart the Administration Server and Managed Servers With Modified 
Migration Policies

■ Step 6: Manually Migrating JMS Services

8.5.1 Step 1: Configure Managed Servers
Configure the Managed Servers in the cluster for migration, including assigning 
Managed Servers to a machine.

For step-by-step instructions for using the WebLogic Server Administration Console to 
complete these tasks, refer to the following topics in Oracle WebLogic Server 
Administration Console Online Help:

■ "Create Managed Servers" 

■ "Create and configure machines" 

8.5.2 Step 2: Configure Migratable Targets
You should perform this step before targeting any JMS-related services or enabling the 
JTA Transaction Recovery Service migration.

8.5.2.1 Configuring a Migratable Server As a Migratable Target
The Migratable Target Summary table in the WebLogic Server Administration Console 
displays the system-generated migratable targets of servername (migratable), which are 

Note: You must set a unique Listen Address value for the Managed 
Server instance that will host a migrated the JMS server. Otherwise, 
the migration will fail.



Roadmap for Configuring Manual Migration of JMS-related Services

8-20 Administering Clusters for Oracle WebLogic Server 12.1.3

automatically generated for each running server instance in a cluster. However, these 
are only generic templates and still need to be targeted and configured for migration.

8.5.2.2 Create a New Migratable Target
When creating a new migratable target, the WebLogic Server Administration Console 
provides a mechanism for creating, targeting, and selecting a migration policy.

8.5.2.2.1 Select a Preferred Server  When you create a new migratable target using the 
WebLogic Server Administration Console, you can initially choose a preferred server 
in the cluster on which to associate the target. The preferred server instance is the most 
appropriate server instance for hosting the migratable target.

8.5.2.2.2 Accept the Default Manual Service Migration Policy  The default migration policy 
for all migratable targets is Manual Service Migration Only, so no change is 
necessary.

8.5.2.2.3 Optionally Select Constrained Candidate Servers  When creating migratable 
targets you may also want to restrict the potential server instances to which you can 
migrate JMS-related services to only those that have access to a custom persistent store 
that is targeted to the same migratable target as the JMS-related services.

For the cluster's path service, however, the candidate server instances for the 
migratable target should be the entire cluster, which is the default setting.

On the migratable target Configuration > Migration page in the WebLogic Server 
Administration Console, the Constrained Candidate Servers Available box lists all of 
the Managed Servers that could possibly support the migratable target. The Managed 
Servers become valid Candidate Servers when you move them into the Chosen box.

8.5.2.2.4 Optionally Specify Pre/Post-Migration Scripts  After creating a migratable target, 
you may also want to specify whether you are providing any pre-migration and 
post-migration scripts to perform any unmounting and mounting of the shared 
custom store, as needed.

■ Pre-Migration Script Path—the path to the pre-migration script to run before a 
migratable target is actually activated.

■ Post-Migration Script Path—the path to the post-migration script to run after a 
migratable target is fully deactivated.

■ Post-Migration Script Failure Cancels Automatic Migration—specifies whether 
or not a failure during execution of the post-deactivation script is fatal to the 
migration.

■ Allow Post-Migration Script To Run On a Different Machine—specifies whether 
or not the post-deactivation script is allowed to run on a different machine.

The pre-migration and post-migration scripts must be located in the ORACLE_
HOME/user_projects/domains/mydomain/bin/service_migration directory, where 
mydomain is a domain-specific directory, with the same name as the domain. Basic 
directions for creating pre-migration and post-migration scripts are provided in a 
readme.txt file in this directory. 

8.5.2.2.5 Optionally Specify In-Place Restart Options  Migratable targets provide 
restart-in-place options to attempt to deactivate and reactivate a failed service, 
instead of migrating the service. See Section 8.1.5, "In-Place Restarting of Failed 
Migratable Services."



Roadmap for Configuring Manual Migration of JMS-related Services

Service Migration 8-21

8.5.3 Step 3: Configure and Target Custom Stores
As discussed in Section 8.2.1, "Custom Store Availability for JMS Services," JMS-related 
services require you to configure a custom persistent store that is also targeted to the 
same migratable targets as the JMS services. Ensure that the store is either:

■ Configured such that all the candidate server instances in a migratable target have 
access to the custom store.

■ Migrated by pre-migration and post-migration scripts. See Section 8.5.2.2.4, 
"Optionally Specify Pre/Post-Migration Scripts."

8.5.4 Step 4: Target the JMS Services
When using migratable targets, you must target your JMS service to the same 
migratable target used by the custom persistent store. In the event that no custom store 
is specified for a JMS service that uses a migratable target, a validation message will be 
generated, followed by failed JMS server deployment and a WebLogic Server start 
failure. For example, attempting to target a JMS server that is using the default file 
store to a migratable target, will generate the following message:

Since the JMS server is targeted to a migratable target, it cannot use the default 
store.

Similar messages are generated for a SAF agent or path service that is targeted to a 
migratable target and attempts to use the default store.

In addition, if the custom store is not targeted to the same migratable target as the 
migratable service, then the following validation log message will be generated, 
followed by failed JMS server deployment and a WebLogic Server start failure.

The JMS server is not targeted to the same target as its persistent store.

8.5.4.1 Special Considerations When Targeting SAF Agents or Path Service
There are some special targeting choices to consider when targeting SAF agents and a 
path service to migratable targets. For more information, see Section 8.1.2.6, "Targeting 
Rules for SAF Agents" and Section 8.1.2.7, "Targeting Rules for Path Service."

8.5.5 Step 5: Restart the Administration Server and Managed Servers With Modified 
Migration Policies

You must restart the Administration Server after configuring your JMS services for 
manual service migration.

You must also restart any Managed Servers whose migration policies were modified.

8.5.6 Step 6: Manually Migrating JMS Services
For instructions on manually migrating the JMS-related services using the WebLogic 
Server Administration Console, see "Manually migrate JMS-related services" in the 
Oracle WebLogic Server Administration Console Online Help.

For instructions on manually migrating the JMS-related services using WLST, see the 
WLST Command Reference for WebLogic Server.



Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service

8-22 Administering Clusters for Oracle WebLogic Server 12.1.3

8.6 Roadmap for Configuring Automatic Migration of the JTA Transaction 
Recovery Service

The JTA Transaction Recovery Service is designed to gracefully handle transaction 
recovery after a crash. You can specify to have the Transaction Recovery Service 
automatically migrated from an unhealthy server instance to a healthy server instance, 
with the help of the server health monitoring services. This way, the backup server 
instance can complete transaction work for the failed server instance.

To configure automatic migration of the Transaction Recovery Service for a migratable 
target within a cluster, perform the following tasks:

■ Step 1: Configure Managed Servers and Node Manager

■ Step 2: Configure the Migration Basis

■ Step 3: Enable Automatic JTA Migration

■ Step 4: Configure the Default Persistent Store For Transaction Recovery Service 
Migration

■ Step 5: Restart the Administration Server and Managed Servers With Modified 
Migration Policies

■ Step 6: Automatic Failback of the Transaction Recovery Service Back to the 
Original Server

8.6.1 Step 1: Configure Managed Servers and Node Manager
Configure the Managed Servers in the cluster for migration, including assigning 
Managed Servers to a machine. Node Manager must also be running and configured 
to allow automatic server migration. Node Manager is required for health status 
information about the server instances involved. 

For step-by-step instructions for using the WebLogic Server Administration Console to 
complete these tasks, refer to the following topics in Administration Console Online 
Help:

■ "Create Managed Servers" 

■ "Create and configure machines" 

■ "Configure Node Manager" 

Note: You may want to migrate a JMS service back to the original 
primary server instance once it is back online. Unlike the JTA 
Transaction Recovery Service, JMS services do not automatically 
migrate back to the primary server instance when it becomes 
available, so you need to manually migrate these services.

Note: For information on configuring a primary server instance to 
not start in Managed Server Independence (MSI) mode, which will 
prevent concurrent access to the transaction log with another backup 
server instance in recovery mode, see "Managed Server 
Independence" in Developing JTA Applications for Oracle WebLogic 
Server.



Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service

Service Migration 8-23

For general information on configuring Node Manager, see "Node Manager 
Overview" in Administering Node Manager for Oracle WebLogic Server. 

8.6.2 Step 2: Configure the Migration Basis
On the Cluster > Configuration > Migration page in the WebLogic Server 
Administration Console, configure the cluster Migration Basis according to how 
your data persistence environment is configured, selecting either Database Leasing or 
Consensus Leasing. See Section 8.1.4.1, "Leasing for Migratable Services."

8.6.3 Step 3: Enable Automatic JTA Migration
In the JTA Migration Configuration section on the Server > Configuration > 
Migration page in the WebLogic Server Administration Console, configure the 
following options:

8.6.3.1 Select the Automatic JTA Migration Check Box
Configure the automatic migration of the JTA Transaction Recovery Service by 
selecting the Automatic JTA Migration Enabled checkbox. 

8.6.3.2 Optionally Select Candidate Servers
You may also want to restrict the potential server instances to which you can migrate 
the Transaction Recovery Service to those that have access to the current server 
instance's transaction log files (stored in the default WebLogic store). If no candidate 
server instances are chosen, then any server instance within the cluster can be chosen 
as a candidate server instance.

From the Candidate Servers Available box, select the Managed Servers that can access 
the JTA log files. The Managed Servers become valid Candidate Servers when you 
move them into the Chosen box. 

8.6.3.3 Optionally Specify Pre/Post-Migration Scripts
You can specify whether you are providing any pre-migration and post-migration 
scripts to perform any unmounting and mounting of the shared storage, as needed.

■ Pre-Migration Script Path—the path to the pre-migration script to run before a 
migratable target is actually activated.

Note: For automatic service migration, Consensus leasing requires 
that you use Node Manager to control server instances within the 
cluster and that all migratable servers must have a Node Manager 
instance associated with them. For Database leasing, Node Manager is 
required only if pre-migration and post-migration scripts are defined. 
If pre-migration and post-migration scripts are not defined, then Node 
Manager is not required.

Note: You must include the original server instance in the list of 
chosen server instances so that you can manually migrate the 
Transaction Recovery Service back to the original server instance, if 
need be. The WebLogic Server Administration Console enforces this 
rule.



Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service

8-24 Administering Clusters for Oracle WebLogic Server 12.1.3

■ Post-Migration Script Path—the path to the post-migration script to run after a 
migratable target is fully deactivated.

■ Post-Migration Script Failure Cancels Automatic Migration—specifies whether 
or not a failure during execution of the post-deactivation script is fatal to the 
migration.

■ Allow Post-Migration Script To Run On a Different Machine—specifies whether 
or not the post-deactivation script is allowed to run on a different machine.

The pre-migration and post-migration scripts must be located in the ORACLE_
HOME/user_projects/domains/mydomain/bin/service_migration directory, where 
mydomain is a domain-specific directory, with the same name as the domain. Basic 
directions for creating pre-migration and post-migration scripts are provided in a 
readme.txt file in this directory. 

8.6.4 Step 4: Configure the Default Persistent Store For Transaction Recovery Service 
Migration

As discussed in Section 8.2.2, "Default File Store Availability for JTA," the Transaction 
Manager uses the default persistent store to store transaction log files. To enable 
migration of the Transaction Recovery Service, you must configure the default 
persistent store so that it stores its data files on a persistent storage solution that is 
available to other server instances in the cluster if the original server instance fails.

8.6.5 Step 5: Restart the Administration Server and Managed Servers With Modified 
Migration Policies

You must restart the Administration Server after configuring the JTA Transaction 
Recovery service for automatic service migration.

You must also restart any Managed Servers whose migration policies were modified.

8.6.6 Step 6: Automatic Failback of the Transaction Recovery Service Back to the 
Original Server

After completing transaction recovery for a failed server instance, a backup server 
instance releases ownership of the Transaction Recovery Service so that the original 
server instance can reclaim it when the server instance is restarted. If the backup 
server stops (crashes) for any reason before it completes transaction recovery, its lease 
will expire. This way when the primary server instance starts, it can reclaim 
successfully ownership.

There are two scenarios for automatic failback of the Transaction Recovery Service to 
the primary server instance:

■ Automatic failback after recovery is complete:

– If the backup server instance finishes recovering the transaction log 
transactions before the primary server instance is restarted, it will initiate an 
implicit migration of the Transaction Recovery Service back to the primary 
server instance.

– For both manual and automatic migration, the post-deactivation script will be 
executed automatically. 

■ Automatic failback before recovery is complete: 



Automatic Migration of User-Defined Singleton Services

Service Migration 8-25

– If the backup server instance is still recovering the transaction log transactions 
when the primary server instance is started, during the Transaction Recovery 
Service initialization of the primary server startup, it will initiate an implicit 
migration of the Transaction Recovery Service from the backup server 
instance.

8.7 Manual Migration of the JTA Transaction Recovery Service
The JTA Transaction Recovery Service is designed to gracefully handle transaction 
recovery after a crash. You can manually migrate the Transaction Recovery Service 
from an unhealthy server instance to a healthy server instance, with the help of the 
server health monitoring services. In this manner, the backup server instance can 
complete transaction work for the failed server instance. 

You can manually migrate the Transaction Recovery Service back to the original server 
instance by selecting the original server instance as the destination server instance. The 
backup server instance must not be running when you manually migrate the service 
back to the original server instance. 

Note the following:

■ If a backup server instance fails before completing the transaction recovery 
actions, the primary server instance cannot reclaim ownership of the Transaction 
Recovery Service and recovery will not be re-attempted on the restarting server 
instance. Therefore, you must attempt to manually re-migrate the Transaction 
Recovery Service to another backup server instance.

■ If you restart the original server instance while the backup server instance is 
recovering transactions, the backup server instance will gracefully release 
ownership of the Transaction Recovery Service. You do not need to stop the 
backup server instance. For detailed information, see "Recovering Transactions For 
a Failed Clustered Server" in Developing JTA Applications for Oracle WebLogic Server.

■ For information on configuring a primary backup server instance to not start in 
Managed Server Independence (MSI) mode, which will prevent concurrent access 
to the transaction log with another backup server in recovery mode, see "Managed 
Server Independence" in Developing JTA Applications for Oracle WebLogic Server.

For instructions on manually migrating the Transaction Recovery Service using the 
WebLogic Server Administration Console, see "Manually migrate the Transaction 
Recovery Service" in Oracle WebLogic Server Administration Console Online Help.

8.8 Automatic Migration of User-Defined Singleton Services
Automatic singleton service migration allows the automatic health monitoring and 
migration of singleton services. A singleton service is a service operating within a 
cluster that is available on only one server instance at any given time. When a 
migratable service fails or become unavailable for any reason (for example, because of 
a bug in the service code, server failure, or network failure), it is deactivated at its 
current location and activated on a new server instance. The process of migrating these 
services to another server instance is handled using the singleton master. See 
Section 8.8.1.1, "Singleton Master."

WebLogic Server supports the automatic migration of user-defined singleton services.



Automatic Migration of User-Defined Singleton Services

8-26 Administering Clusters for Oracle WebLogic Server 12.1.3

8.8.1 Overview of Singleton Service Migration
This section provides an overview of how automatic singleton service is implemented 
in WebLogic Server.

8.8.1.1 Singleton Master
The singleton master is a lightweight singleton service that monitors other services 
that can be migrated automatically. The server instance that currently hosts the 
singleton master is responsible for starting and stopping the migration tasks 
associated with each migratable service. 

The singleton master functions similar to the cluster master in that it is maintained by 
lease competition and runs on only one server instance at a time. Each server instance 
in a cluster continuously attempts to register the singleton master lease. If the server 
instance currently hosting the singleton master fails, the next server instance in the 
queue will take over the lease and begin hosting the singleton master.

For more information on the cluster master, see Section 7.4.4.7, "Cluster Master Role in 
Whole Server Migration."

The server instance hosting the singleton master maintains a record of all migrations 
performed, including the target name, source server, destination server, and the 
timestamp.

8.8.1.2 Migration Failure
If the migration of a singleton service fails on every candidate server instance within 
the cluster, the service is left deactivated. You can configure the number of times the 
number of times the singleton master will iterate through the server instances in the 
cluster.

Note: Although the JTA Transaction Recovery Service is also a 
singleton service that is available on only one node of a cluster at any 
time, it is configured differently for automatic migration than 
user-defined singleton services. JMS and JTA services can also be 
manually migrated. See Section 8.1, "Understanding the Service 
Migration Framework."

Note: Migratable services do not have to be hosted on the same 
server instance as the singleton master, but they must be hosted 
within the same cluster.

Note: The singleton master and cluster master function 
independently and are not required to be hosted on the same server 
instance.

Note: If you do not explicitly specify a list of candidate server 
instances, the singleton master will consider all of the cluster members 
as possible candidates for migration.



Automatic Migration of User-Defined Singleton Services

Service Migration 8-27

8.8.2 Implementing the Singleton Service Interface
A singleton service can be defined either as part of an application or as a standalone 
service. It is active only on one server instance at any time and so it can be used to 
perform tasks that you want to be executed on only one member of a cluster. 

To create a singleton service, you must create a class that, in addition to any tasks you 
want the singleton service to perform, implements the 
weblogic.cluster.singleton.SingletonService interface. 

The SingletonService interface contains the following methods, which are used in 
the process of migration.

■ public void activate() 

This method should obtain any system resources and start any services required 
for the singleton service to begin processing requests. This method is called in the 
following cases:

– When a newly deployed application is started

– During server start

– During the activation stage of service migration

■ public void deactivate() 

This method is called during server shutdown and during the deactivation stage 
of singleton service migration. This method should release any resources obtained 
through the activate() method. Additionally, it should stop any services that 
should only be available from one member of a cluster.

8.8.3 Deploying a Singleton Service and Configuring the Migration Behavior
Depending on how you used the SingletonService interface to define a singleton 
service, you must perform the following steps to deploy it:

■ Package and deploy the singleton service within an application 
(application-scoped).

~ or ~

■ Deploy the singleton service as a standalone service within WebLogic Server 
(domain-wide).

■ Optionally, configure the migration behavior of the singleton service.

The following sections outline these procedures in detail.

8.8.3.1 Packaging and Deploying a Singleton Service Within an Application
Singleton services that are packaged within an application should have their classes 
implement the SingletonService interface and placed within a JAR file, in 
APP-INF/lib or APP-INF/classes, or within an EAR-level lib directory. JNDI binding 

Note: When you package and deploy an application-scoped 
singleton service, you cannot use the WebLogic Server Administration 
Console to control on which Managed Server the service will be 
hosted. However, when you deploy a domain-wide singleton service, 
you can specify the server name, class name, and preferred Managed 
Server in the WebLogic Server Administration Console. 



Automatic Migration of User-Defined Singleton Services

8-28 Administering Clusters for Oracle WebLogic Server 12.1.3

for application-scoped singleton services is done programmatically in the 
SingletonService interface. The life cycle of an application-scoped singleton service is 
tied with the life cycle of the application.

For standalone singleton services, their classes should be made available in the 
WebLogic Server system classpath. 

Also, add the following entry to the weblogic-application.xml descriptor file:

<weblogic-application>
...
   <singleton-service>
      <class-name>mypackage.MySingletonServiceImpl</class-name>
      <name>Appscoped_Singleton_Service</name>
   </singleton-service>
...
</weblogic-application>

Deployment of an application-scoped singleton service occurs automatically as part of 
the application deployment. The candidate server instances for the singleton service 
will be the cluster members where the application is deployed.

8.8.3.2 Deploying a Singleton Service as a Standalone Service in WebLogic Server
After you have created a singleton service class using the SingletonService interface, 
you must define it as a singleton service within WebLogic Server. This singleton 
service object contains the following information:

■ The path to the class to load as the singleton service.

■ The preferred server instance and other candidate server instances for the 
singleton service.

The following excerpt from the <cluster> element of config.xml file shows how a 
singleton service is defined:

<singleton-service>
   <name>SingletonTestServiceName</name>
   <user-preferred-server>myManaged1</user-preferred-server>
   
<class-name>mycompany.myprogram.subpackage.SingletonTestServiceImpl</class-name>
   <cluster>myCluster</cluster>
</singleton-service>

8.8.3.3 Configuring Singleton Service Migration
A singleton service is automatically configured to be an exactly-once service, which 
indicates that if at least one Managed Server in the candidate list is running, then the 
service will be active somewhere in the cluster. You can modify certain singleton 
service migration parameters using the following methods:

■ WebLogic Server Administration Console—allows you to create and configure 
singleton services. See "Configure a singleton service" in Oracle WebLogic Server 
Administration Console Online Help.

■ WebLogic Scripting Tool (WLST)—allows you to configure automatic service 
migration using the MigratableTargetManagementMBean. See "WLST Command 

Note: The <class-name> and <name> elements are required.



Automatic Migration of User-Defined Singleton Services

Service Migration 8-29

and Variable Reference" in WLST Command Reference for WebLogic Server.



Automatic Migration of User-Defined Singleton Services

8-30 Administering Clusters for Oracle WebLogic Server 12.1.3



9

Cluster Architectures 9-1

9Cluster Architectures

[10] This chapter describes alternative architectures for a cluster in WebLogic Server 12.1.3. 

This chapter includes the following sections:

■ Section 9.1, "Architectural and Cluster Terminology" 

■ Section 9.2, "Recommended Basic Architecture" 

■ Section 9.3, "Recommended Multi-Tier Architecture" 

■ Section 9.4, "Recommended Proxy Architectures" 

■ Section 9.5, "Security Options for Cluster Architectures" 

9.1 Architectural and Cluster Terminology
This section defines terms used in this document. 

9.1.1 Architecture
In this context the architecture refers to how the tiers of an application are deployed to 
one or more clusters. 

9.1.2 Web Application Tiers
A Web application is divided into several "tiers" that correspond to the logical services 
the application provides. Because not all Web applications are alike, your application 
may not utilize all of the tiers described below. Also keep in mind that the tiers 
represent logical divisions of an application's services, and not necessarily physical 
divisions between hardware or software components. In some cases, a single machine 
running a single WebLogic Server instance can provide all of the tiers described below.

■ Web Tier

The Web tier provides static content (for example, simple HTML pages) to clients 
of a Web application. The Web tier is generally the first point of contact between 
external clients and the Web application. A simple Web application may have a 
Web tier that consists of one or more machines running Apache, Netscape 
Enterprise Server, or Microsoft Internet Information Server.

■ Presentation Tier

The presentation tier provides dynamic content (for example, servlets or Java Server 
Pages) to clients of a Web application. A cluster of WebLogic Server instances that 
hosts servlets and/or JSPs comprises the presentation tier of a Web application. If 



Recommended Basic Architecture

9-2 Administering Clusters for Oracle WebLogic Server 12.1.3

the cluster also serves static HTML pages for your application, it encompasses 
both the Web tier and the presentation tier.

■ Object Tier

The object tier provides Java objects (for example, Enterprise JavaBeans or RMI 
classes) and their associated business logic to a Web application. A WebLogic 
Server cluster that hosts EJBs provides an object tier.

9.1.3 Combined Tier Architecture
A cluster architecture in which all tiers of the Web application are deployed to a single 
WebLogic Server cluster is called a combined tier architecture.

9.1.4 De-Militarized Zone (DMZ)
The De-Militarized Zone (DMZ) is a logical collection of hardware and services that is 
made available to outside, untrusted sources. In most Web applications, a bank of Web 
servers resides in the DMZ to allow browser-based clients access to static HTML 
content.

The DMZ may provide security against outside attacks to hardware and software. 
However, because the DMZ is available to untrusted sources, it is less secure than an 
internal system. For example, internal systems may be protected by a firewall that 
denies all outside access. The DMZ may be protected by a firewall that hides access to 
individual machines, applications, or port numbers, but it still permits access to those 
services from untrusted clients.

9.1.5 Load Balancer
In this document, the term load balancer describes any technology that distributes client 
connection requests to one or more distinct IP addresses. For example, a simple Web 
application may use the DNS round-robin algorithm as a load balancer. Larger 
applications generally use hardware-based load balancing solutions such as those 
from Alteon WebSystems, which may also provide firewall-like security capabilities.

Load balancers provide the capability to associate a client connection with a particular 
server in the cluster, which is required when using in-memory replication for client 
session information. With certain load balancing products, you must configure the 
cookie persistence mechanism to avoid overwriting the WebLogic Server cookie which 
tracks primary and secondary servers used for in-memory replication. See 
Section 5.1.2, "Load Balancing HTTP Sessions with an External Load Balancer," for 
more information.

9.1.6 Proxy Plug-In
A proxy plug-in is a WebLogic Server extension to an HTTP server—such as Apache, 
Netscape Enterprise Server, or Microsoft Internet Information Server—that accesses 
clustered servlets provided by a WebLogic Server cluster. The proxy plug-in contains 
the load balancing logic for accessing servlets and JSPs in a WebLogic Server cluster. 
Proxy plug-ins also contain the logic for accessing the replica of a client's session state 
if the primary WebLogic Server hosting the session state fails.

9.2 Recommended Basic Architecture
The recommended basic architecture is a combined tier architecture—all tiers of the 
Web application are deployed to the same WebLogic Server cluster. This architecture is 



Recommended Basic Architecture

Cluster Architectures 9-3

illustrated in Figure 9–1, below.

Figure 9–1 Recommended Basic Architecture

The benefits of the Recommended Basic Architecture are: 

■ Ease of administration

Because a single cluster hosts static HTTP pages, servlets, and EJBs, you can 
configure the entire Web application and deploy/undeploy objects using the 
WebLogic Server Administration Console. You do not need to maintain a separate 
bank of Web servers (and configure WebLogic Server proxy plug-ins) to benefit 
from clustered servlets.

■ Flexible load balancing 

Using load balancing hardware directly in front of the WebLogic Server cluster 
enables you to use advanced load balancing policies for accessing both HTML and 
servlet content. For example, you can configure your load balancer to detect 
current server loads and direct client requests appropriately.

■ Robust security

Placing a firewall in front of your load balancing hardware enables you to set up a 
De-Militarized Zone (DMZ) for your Web application using minimal firewall 
policies.

■ Optimal performance

The combined tier architecture offers the best performance for applications in 
which most or all of the servlets or JSPs in the presentation tier typically access 
objects in the object tier, such as EJBs. 



Recommended Multi-Tier Architecture

9-4 Administering Clusters for Oracle WebLogic Server 12.1.3

9.2.1 When Not to Use a Combined Tier Architecture
While a combined tier architecture, such as the Recommended Basic Architecture, 
meets the needs of many Web applications, it limits your ability to fully employ the 
load balancing and failover capabilities of a cluster. Load balancing and failover can be 
introduced only at the interfaces between Web application tiers, so, when tiers are 
deployed to a single cluster, you can only load balance between clients and the cluster. 

Because most load balancing and failover occurs between clients and the cluster itself, 
a combined tier architecture meets the needs of most Web applications. 

However, combined-tier clusters provide no opportunity for load balancing method 
calls to clustered EJBs. Because clustered objects are deployed on all WebLogic Server 
instances in the cluster, each object instance is available locally to each server. 
WebLogic Server optimizes method calls to clustered EJBs by always selecting the local 
object instance, rather than distributing requests to remote objects and incurring 
additional network overhead.

This collocation strategy is, in most cases, more efficient than load balancing each 
method request to a different server. However, if the processing load to individual 
servers becomes unbalanced, it may eventually become more efficient to submit 
method calls to remote objects rather than process methods locally.

To utilize load balancing for method calls to clustered EJBs, you must split the 
presentation and object tiers of the Web application onto separate physical clusters, as 
described in the following section. 

Consider the frequency of invocations of the object tier by the presentation tier when 
deciding between a combined tier and multi-tier architecture. If presentation objects 
usually invoke the object tier, a combined tier architecture may offer better 
performance than a multi-tier architecture.

9.3 Recommended Multi-Tier Architecture
This section describes the Recommended Multi-Tier Architecture, in which different 
tiers of your application are deployed to different clusters.

The recommended multi-tier architecture uses two separate WebLogic Server clusters: 
one to serve static HTTP content and clustered servlets, and one to serve clustered 
EJBs. The multi-tier cluster is recommended for Web applications that:

■ Require load balancing for method calls to clustered EJBs.

■ Require more flexibility for balancing the load between servers that provide HTTP 
content and servers that provide clustered objects.

■ Require higher availability (fewer single points of failure).

Note: When using a third-party load balancer with in-memory 
session replication, you must ensure that the load balancer maintains 
a client's connection to the WebLogic Server instance that hosts its 
primary session state (the point-of-contact server). For more 
information about load balancers, see Section 5.1.2, "Load Balancing 
HTTP Sessions with an External Load Balancer." 



Recommended Multi-Tier Architecture

Cluster Architectures 9-5

Figure 9–2 depicts the recommended multi-tier architecture.

Figure 9–2 Recommended Multi-Tier Architecture

9.3.1 Physical Hardware and Software Layers
In the Recommended Multi-Tier Architecture the application tiers are hosted on two 
separate physical layers of hardware and software.

9.3.1.1 Web/Presentation Layer
The Web/presentation layer consists of a cluster of WebLogic Server instances 
dedicated to hosting static HTTP pages, servlets, and JSPs. This servlet cluster does not 
host clustered objects. Instead, servlets in the presentation tier cluster act as clients for 
clustered objects, which reside on an separate WebLogic Server cluster in the object 
layer.

9.3.1.2 Object Layer
The object layer consists of a cluster of WebLogic Server instances that hosts only 
clustered objects—EJBs and RMI objects as necessary for the Web application. By 
hosting the object tier on a dedicated cluster, you lose the default collocation 
optimization for accessing clustered objects described in Section 5.2.6, "Optimization 
for Collocated Objects." However, you gain the ability to load balance on each method 
call to certain clustered objects, as described in the following section.

Note: Consider the frequency of invocations from the presentation 
tier to the object tier when considering a multi-tier architecture. If 
presentation objects usually invoke the object tier, a combined tier 
architecture may offer better performance than a multi-tier 
architecture.



Recommended Multi-Tier Architecture

9-6 Administering Clusters for Oracle WebLogic Server 12.1.3

9.3.2 Benefits of Multi-Tier Architecture
The multi-tier architecture provides these advantages:

■ Load Balancing EJB Methods

By hosting servlets and EJBs on separate clusters, servlet method calls to EJBs can 
be load balanced across multiple servers. This process is described in detail in 
Section 9.3.3, "Load Balancing Clustered Objects in a in Multi-Tier Architecture." 

■ Improved Server Load Balancing

Separating the presentation and object tiers onto separate clusters provides more 
options for distributing the load of the Web application. For example, if the 
application accesses HTTP and servlet content more often than EJB content, you 
can use a large number of WebLogic Server instances in the presentation tier 
cluster to concentrate access to a smaller number of servers hosting EJBs.

■ Higher Availability

By utilizing additional WebLogic Server instances, the multi-tier architecture has 
fewer points of failure than the basic cluster architecture. For example, if a 
WebLogic Server that hosts EJBs fails, the HTTP- and servlet-hosting capacity of 
the Web application is not affected.

■ Improved Security Options

By separating the presentation and object tiers onto separate clusters, you can use 
a firewall policy that places only the servlet/JSP cluster in the DMZ. Servers 
hosting clustered objects can be further protected by denying direct access from 
untrusted clients. For more information, see Section 9.5, "Security Options for 
Cluster Architectures." 

9.3.3 Load Balancing Clustered Objects in a in Multi-Tier Architecture
WebLogic Server's collocation optimization for clustered objects, described in 
Section 5.2.6, "Optimization for Collocated Objects," relies on having a clustered object 
(the EJB or RMI class) hosted on the same server instance as the replica-aware stub 
that calls the object.

The net effect of isolating the object tier is that no client (HTTP client, Java client, or 
servlet) ever acquires a replica-aware stub on the same server that hosts the clustered 
object. Because of this, WebLogic Server cannot use its collocation optimization 
(described in Section 5.2.6, "Optimization for Collocated Objects."), and servlet calls to 
clustered objects are automatically load balanced according to the logic contained in 
the replica-aware stub. Figure 9–3 depicts a client accessing a clustered EJB instance in 
the multi-tier architecture.



Recommended Multi-Tier Architecture

Cluster Architectures 9-7

Figure 9–3 Load Balancing Objects in a Multi-Tier Architecture

Tracing the path of the client connection, you can see the implication of isolating the 
object tier onto separate hardware and software:

1. An HTTP client connects to one of several WebLogic Server instances in the 
Web/servlet cluster, going through a load balancer to reach the initial server.

2. The client accesses a servlet hosted on the WebLogic Server cluster.

3. The servlet acts as a client to clustered objects required by the Web application. In 
the example above, the servlet accesses a stateless session EJB.

The servlet looks up the EJB on the WebLogic Server cluster that hosts clustered 
objects. The servlet obtains a replica-aware stub for the bean, which lists the 
addresses of all servers that host the bean, as well as the load balancing logic for 
accessing bean replicas.

4. When the servlet next accesses the EJB (for example, in response to another client), 
it uses the load-balancing logic present in the bean's stub to locate a replica. In the 
example above, multiple method calls are directed using the round-robin 
algorithm for load balancing.

In this example, if the same WebLogic Server cluster hosted both servlets and EJBs (as 
in Section 9.2, "Recommended Basic Architecture"), WebLogic Server would not load 
balance requests for the EJB. Instead, the servlet would always invoke methods on the 
EJB replica hosted on the local server. Using the local EJB instance is more efficient 
than making remote method calls to an EJB on another server. However, the multi-tier 

Note: EJB replica-aware stubs and EJB home load algorithms are 
specified using elements of the EJB deployment descriptor. See 
weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing 
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server for more 
information.



Recommended Multi-Tier Architecture

9-8 Administering Clusters for Oracle WebLogic Server 12.1.3

architecture enables remote EJB access for applications that require load balancing for 
EJB method calls.

9.3.4 Configuration Considerations for Multi-Tier Architecture
A multi-tier architecture may require adjustments to the configuration, as described in 
the following sections.

9.3.4.1 IP Socket Usage
Because the multi-tier architecture provides load balancing for clustered object calls, 
the system generally utilizes more IP sockets than a combined-tier architecture. In 
particular, during peak socket usage, each WebLogic Server instance in the cluster that 
hosts servlets and JSPs may potentially use a maximum of:

■ One socket for replicating HTTP session states between primary and secondary 
servers, plus

■ One socket for each WebLogic Server in the EJB cluster, for accessing remote 
objects

For example, in Figure 9–2, each server in the servlet/JSP cluster could potentially 
open a maximum of five sockets. This maximum represents a worst-case scenario 
where primary and secondary session states are equally dispersed throughout the 
servlet cluster, and each server in the servlet cluster simultaneously accesses a remote 
object on each server in the object cluster. In most cases, the number of actual sockets 
in use would be less than this maximum.

If you use a pure-Java sockets implementation with the multi-tier architecture, ensure 
that you configure enough socket reader threads to accommodate the maximum 
potential socket usage. For details, see Section 3.2.2, "Configuring Reader Threads for 
Java Socket Implementation."

9.3.4.2 Hardware Load Balancers
Because the multi-tier architecture uses a hardware load balancer, you must configure 
the load balancer to maintain a "sticky" connection to the client's point-of-contact 
server if you use in-memory session state replication. For details, see Section 10.2.5, 
"Configure Load Balancing Method for EJBs and RMIs."

9.3.5 Limitations of Multi-Tier Architectures
This section summarizes the limitations of multi-tier cluster architectures.

9.3.5.1 No Collocation Optimization
Because the Recommended Multi-Tier Architecture cannot optimize object calls using 
the collocation strategy, the Web application incurs network overhead for all method 
calls to clustered objects. This overhead may be acceptable, however, if your Web 
application requires any of the benefits described in Section 9.3.2, "Benefits of 
Multi-Tier Architecture."

For example, if your Web clients make heavy use of servlets and JSPs but access a 
relatively small set of clustered objects, the multi-tier architecture enables you to 
concentrate the load of servlets and object appropriately. You may configure a servlet 
cluster of ten WebLogic Server instances and an object cluster of three WebLogic 
Server instances, while still fully utilizing each server's processing power.



Recommended Proxy Architectures

Cluster Architectures 9-9

9.3.5.2 Firewall Restrictions
If you place a firewall between the servlet cluster and object cluster in a multi-tier 
architecture, you must bind all servers in the object cluster to public DNS names, 
rather than IP addresses. Binding those servers with IP addresses can cause address 
translation problems and prevent the servlet cluster from accessing individual server 
instances. 

If the internal and external DNS names of a WebLogic Server instance are not identical, 
use the ExternalDNSName attribute for the server instance to define the server's 
external DNS name. Outside the firewall the ExternalDNSName should translate to 
external IP address of the server.

Use of ExternalDNSName is required for configurations in which a firewall is 
performing Network Address Translation, unless clients are accessing WebLogic 
Server using t3 and the default channel. For instance, ExternalDNSName is required for 
configurations in which a firewall is performing Network Address Translation, and 
clients are accessing WebLogic Server using HTTP via a proxy plug-in.

9.4 Recommended Proxy Architectures
You can configure WebLogic Server clusters to operate alongside existing Web servers. 
In such an architecture, a bank of Web servers provides static HTTP content for the 
Web application, using a WebLogic proxy plug-in or HttpClusterServlet to direct 
servlet and JSP requests to a cluster.

The following sections describe two alternative proxy architectures.

9.4.1 Two-Tier Proxy Architecture
The two-tier proxy architecture illustrated in Figure 9–4 is similar to the Section 9.2, 
"Recommended Basic Architecture," except that static HTTP servers are hosted on a 
bank of Web servers.



Recommended Proxy Architectures

9-10 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 9–4 Two-Tier Proxy Architecture

9.4.1.1 Physical Hardware and Software Layers
The two-tier proxy architecture contains two physical layers of hardware and software.

9.4.1.1.1 Web Layer  The proxy architecture utilizes a layer of hardware and software 
dedicated to the task of providing the application's Web tier. This physical Web layer 
can consist of one or more identically-configured machines that host one of the 
following application combinations:

■ WebLogic Server with the HttpClusterServlet 

■ Apache with the WebLogic Server Apache Server (proxy) plug-in

■ Netscape Enterprise Server with the WebLogic Server NSAPI proxy plug-in

■ Microsoft Internet Information Server with the WebLogic Server Microsoft-IIS 
proxy plug-in

Regardless of which Web server software you select, keep in mind that the physical 
tier of Web servers should provide only static Web pages. Dynamic content—servlets 
and JSPs—are proxied via the proxy plug-in or HttpClusterServlet to a WebLogic 
Server cluster that hosts servlets and JSPs for the presentation tier.

9.4.1.1.2 Servlet/Object Layer  The recommended two-tier proxy architecture hosts the 
presentation and object tiers on a cluster of WebLogic Server instances. This cluster can 
be deployed either on a single machine or on multiple separate machines.

The Servlet/Object layer differs from the combined-tier cluster described in 
Section 9.2, "Recommended Basic Architecture," in that it does not provide static HTTP 
content to application clients.



Recommended Proxy Architectures

Cluster Architectures 9-11

9.4.2 Multi-Tier Proxy Architecture
You can also use a bank of Web servers as the front-end to a pair of WebLogic Server 
clusters that host the presentation and object tiers. This architecture is shown in 
Figure 9–5, below.

Figure 9–5 Multi-Tier Proxy Architecture

This architecture provides the same benefits (and the same limitations) as the 
Section 9.3, "Recommended Multi-Tier Architecture." It differs only insofar as the Web 
tier is placed on a separate bank of Web servers that utilize WebLogic proxy plug-ins.

9.4.3 Proxy Architecture Benefits
Using standalone Web servers and proxy plug-ins provides the following advantages:

■ Utilize Existing Hardware

If you already have a Web application architecture that provides static HTTP 
content to clients, you can easily integrate existing Web servers with one or more 
WebLogic Server clusters to provide dynamic HTTP and clustered objects.

■ Familiar Firewall Policies

Using a Web server proxy at the front-end of your Web application enables you to 
use familiar firewall policies to define your DMZ. In general, you can continue 
placing the Web servers in your DMZ while disallowing direct connections to the 
remaining WebLogic Server clusters in the architecture. The figures above depict 
this DMZ policy.



Security Options for Cluster Architectures

9-12 Administering Clusters for Oracle WebLogic Server 12.1.3

9.4.4 Proxy Architecture Limitations
Using standalone Web servers and proxy plug-ins limits your Web application in the 
following ways:

■ Additional administration

The Web servers in the proxy architecture must be configured using third-party 
utilities, and do not appear within the WebLogic Server administrative domain. 
You must also install and configure WebLogic proxy plug-ins to the Web servers in 
order to benefit from clustered servlet access and failover.

■ Limited Load Balancing Options

When you use proxy plug-ins or the HttpClusterServlet to access clustered 
servlets, the load balancing algorithm is limited to a simple round-robin strategy.

9.4.5 Proxy Plug-In Versus Load Balancer
Using a load balancer directly with a WebLogic Server cluster provides several benefits 
over proxying servlet requests. First, using WebLogic Server with a load balancer 
requires no additional administration for client setup—you do not need to set up and 
maintain a separate layer of HTTP servers, and you do not need to install and 
configure one or more proxy plug-ins. Removing the Web proxy layer also reduces the 
number of network connections required to access the cluster.

Using load balancing hardware provides more flexibility for defining load balancing 
algorithms that suit the capabilities of your system. You can use any load balancing 
strategy (for example, load-based policies) that your load balancing hardware 
supports. With proxy plug-ins or the HttpClusterServlet, you are limited to a simple 
round-robin algorithm for clustered servlet requests.

Note, however, that using a third-party load balancer may require additional 
configuration if you use in-memory session state replication. In this case, you must 
ensure that the load balancer maintains a "sticky" connection between the client and its 
point-of-contact server, so that the client accesses the primary session state 
information. When using proxy plug-ins, no special configuration is necessary because 
the proxy automatically maintains a sticky connection.

9.5 Security Options for Cluster Architectures
The boundaries between physical hardware/software layers in the recommended 
configurations provide potential points for defining your Web application's 
De-Militarized Zone (DMZ). However, not all boundaries can support a physical 
firewall, and certain boundaries can support only a subset of typical firewall policies.

The sections that follow describe several common ways of defining your DMZ to 
create varying levels of application security.

9.5.1 Basic Firewall for Proxy Architectures
The basic firewall configuration uses a single firewall between untrusted clients and 
the Web server layer, and it can be used with either the Recommended Basic 
Architecture or Recommended Multi-Tier Architecture cluster architectures.



Security Options for Cluster Architectures

Cluster Architectures 9-13

Figure 9–6 Basic Proxy with Firewall Architecture

In the configuration shown in Figure 9–6, above, the single firewall can use any 
combination of policies (application-level restrictions, NAT, IP masquerading) to filter 
access to three HTTP servers. The most important role for the firewall is to deny direct 
access to any other servers in the system. In other words, the servlet layer, the object 
layer, and the database itself must not be accessible from untrusted clients.

Note that you can place the physical firewall either in front of or behind the Web 
servers in the DMZ. Placing the firewall in front of the Web servers simplifies your 
firewall policies, because you need only permit access to the Web servers and deny 
access to all other systems. 

9.5.1.1 Firewall Between Proxy Layer and Cluster
If you place a firewall between the proxy layer and the cluster, follow these 
configuration guidelines:

■ Bind to clustered server instances using publicly-listed DNS names, rather than IP 
addresses, to ensure that the proxy plug-ins can connect to each server in the 
cluster without address translation error that might otherwise occur, as described 
in Section 13.7.3, "Firewall Considerations." 

■ If the internal and external DNS names of a clustered server instance are not 
identical, use the ExternalDNSName attribute for the server instance to define the its 
external DNS name. Outside the firewall the ExternalDNSName should translate to 
external IP address of the server instance. 

Note: If the clustered servers segregate HTTPS and HTTP traffic on a 
pair of custom channels, see "Channels, Proxy Servers, and Firewalls" 
in Administering Server Environments for Oracle WebLogic Server



Security Options for Cluster Architectures

9-14 Administering Clusters for Oracle WebLogic Server 12.1.3

9.5.1.2 DMZ with Basic Firewall Configurations
By denying access to all but the Web server layer, the basic firewall configuration 
creates a small-footprint DMZ that includes only three Web servers. However, a more 
conservative DMZ definition might take into account the possibility that a malicious 
client may gain access to servers hosting the presentation and object tiers. 

For example, assume that a hacker gains access to one of the machines hosting a Web 
server. Depending on the level of access, the hacker may then be able to gain 
information about the proxied servers that the Web server accesses for dynamic 
content.

If you choose to define your DMZ more conservatively, you can place additional 
firewalls using the information in Section 9.5.2, "Additional Security for Shared 
Databases."

9.5.1.3 Combining Firewall with Load Balancer
If you use load balancing hardware with a recommended cluster architecture, you 
must decide how to deploy the hardware in relationship to the basic firewall. 
Although many hardware solutions provide security features in addition to load 
balancing services, most sites rely on a firewall as the first line of defense for their Web 
applications. In general, firewalls provide the most well-tested and familiar security 
solution for restricting Web traffic, and should be used in front of load balancing 
hardware, as shown in Figure 9–7, below.

Figure 9–7 Basic Proxy with Firewall and Load Balancer Architecture

The above setup places the load balancer within the DMZ along with the Web tier. 
Using a firewall in this configuration can simplify security policy administration, 
because the firewall need only limit access to the load balancer. This setup can also 
simplify administration for sites that support internal clients to the Web application, as 
described below.



Security Options for Cluster Architectures

Cluster Architectures 9-15

9.5.1.4 Expanding the Firewall for Internal Clients
If you support internal clients that require direct access to your Web application (for 
example, remote machines that run proprietary Java applications), you can expand the 
basic firewall configuration to allow restricted access to the presentation tier. The way 
in which you expand access to the application depends on whether you treat the 
remote clients as trusted or untrusted connections.

If you use a Virtual Private Network (VPN) to support remote clients, the clients may 
be treated as trusted connections and can connect directly to the presentation tier 
going through a firewall. This configuration is shown in Figure 9–8, below.

Figure 9–8 VPN Users have Restricted Access Through Firewall 

If you do not use a VPN, all connections to the Web application (even those from 
remote sites using proprietary client applications) should be treated as untrusted 
connections. In this case, you can modify the firewall policy to permit application-level 
connections to WebLogic Server instances hosting the presentation tier, as shown in 
Figure 9–9.



Security Options for Cluster Architectures

9-16 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 9–9 Application Components Have Restricted Access Through Firewall

9.5.2 Additional Security for Shared Databases
If you use a single database that supports both internal data and data for 
externally-available Web applications, you should consider placing a hard boundary 
between the object layer that accesses your database. Doing so simply reinforces the 
DMZ boundaries described in Section 9.5.1, "Basic Firewall for Proxy Architectures," 
by adding an additional firewall.

9.5.2.1 DMZ with Two Firewall Configuration
The configuration shown in Figure 9–10 places an additional firewall in front of a 
database server that is shared by the Web application and internal (trusted) clients. 
This configuration provides additional security in the unlikely event that the first 
firewall is breached, and a hacker ultimately gains access to servers hosting the object 
tier. Note that this circumstance should be extremely unlikely in a production 
environment—your site should have the capability to detect and stop a malicious 
break-in long before a hacker gains access to machines in the object layer.



Security Options for Cluster Architectures

Cluster Architectures 9-17

Figure 9–10 DMZ with Two Firewalls Architecture

In the above configuration, the boundary between the object tier and the database is 
hardened using an additional firewall. The firewall maintains a strict application-level 
policy that denies access to all connections except JDBC connections from WebLogic 
Servers hosting the object tier.



Security Options for Cluster Architectures

9-18 Administering Clusters for Oracle WebLogic Server 12.1.3



10

Setting up WebLogic Clusters 10-1

10Setting up WebLogic Clusters

[11] This chapter contains guidelines and instructions for configuring a cluster in WebLogic 
Server 12.1.3.

This chapter includes the following sections:

■ Section 10.1, "Before You Start" 

■ Section 10.2, "Cluster Implementation Procedures" 

10.1 Before You Start
This section summarizes prerequisite tasks and information for setting up a WebLogic 
Server cluster.

10.1.1 Understand the Configuration Process
The information in this section will be most useful to you if you have a basic 
understanding of the cluster configuration process and how configuration tasks are 
accomplished. 

For information about the configuration facilities available in WebLogic Server and the 
tasks they support, see Section 4, "Understanding Cluster Configuration."

10.1.2 Determine Your Cluster Architecture
Determine what cluster architecture best suits your needs. Key architectural decisions 
include:

■ Should you combine all application tiers in a single cluster or segment your 
application tiers in separate clusters?

■ How will you balance the load among server instances in your cluster? Will you:

– Use basic WebLogic Server load balancing,

– Implement a third-party load balancer, or 

– Deploy the Web tier of your application on one or more secondary HTTP 
servers, and proxy requests to it? 

■ Should you define your Web applications De-Militarized Zone (DMZ) with one or 
more firewalls?

To guide these decisions, see Section 9, "Cluster Architectures," and Section 5, "Load 
Balancing in a Cluster."



Before You Start

10-2 Administering Clusters for Oracle WebLogic Server 12.1.3

The architecture you choose affects how you set up your cluster. The cluster 
architecture may also require that you install or configure other resources, such as load 
balancers, HTTP servers, and proxy plug-ins. 

10.1.3 Consider Your Network and Security Topologies
Your security requirements form the basis for designing the appropriate security 
topology. For a discussion of several alternative architectures that provide varying 
levels of application security, see Section 9.5, "Security Options for Cluster 
Architectures."

10.1.4 Choose Machines for the Cluster Installation
Identify the machine or machines where you plan to install WebLogic 
Server—throughout this section we refer to such machines as "hosts"—and ensure that 
they have the resources required. WebLogic Server allows you to set up a cluster on a 
single, non-multihomed machine. This new capability is useful for demonstration or 
development environments.

10.1.4.1 WebLogic Server Instances on Multi-CPU Machines
WebLogic Server has no built-in limit for the number of server instances that can 
reside in a cluster. Large, multi-processor servers such as Sun Microsystems, Inc. Sun 
Enterprise 10000 can host very large clusters or multiple clusters.

Oracle recommends that you start with one server per CPU and then scale up based on 
the expected behavior. However, as with all capacity planning, you should test the 
actual deployment with your target Web applications to determine the optimal 
number and distribution of server instances. See "Running Multiple Server Instances 
on Multi-Core Machines" in Tuning Performance of Oracle WebLogic Server for additional 
information.

10.1.4.2 Check Host Machines' Socket Reader Implementation
For best socket performance, configure the WebLogic Server host machine to use the 
native socket reader implementation for your operating system, rather than the 
pure-Java implementation. To understand why, and for instructions for configuring 
native sockets or optimizing pure-Java socket communications, see Section 3.2, 
"Peer-to-Peer Communication Using IP Sockets."

10.1.4.3 Setting Up a Cluster on a Disconnected Windows Machine 
If you want to demonstrate a WebLogic Server cluster on a single, disconnected 
Windows machine, you must force Windows to load the TCP/IP stack. By default, 

Note: Some network topologies can interfere with multicast 
communication. If you are deploying a cluster across a WAN, see 
Section 3.1.1.1.1, "If Your Cluster Spans Multiple Subnets In a WAN."

Avoid deploying server instances in a cluster across a firewall. For a 
discussion of the impact of tunneling multicast traffic through a 
firewall, see Section 3.1.1.1.2, "Firewalls Can Break Multicast 
Communication."

Note: Do not install WebLogic Server on machines that have 
dynamically assigned IP addresses.



Before You Start

Setting up WebLogic Clusters 10-3

Windows does not load the TCP/IP stack if it does not detect a physical network 
connection. 

To force Windows to load the TCP/IP stack, disable the Windows media sensing 
feature using the instructions in How to Disable Media Sense for TCP/IP in Windows 
at http://support.microsoft.com/default.aspx?scid=kb;en-us;239924. 

10.1.5 Identify Names and Addresses
During the cluster configuration process, you supply addressing information—IP 
addresses or DNS names, and port numbers—for the server instances in the cluster. 

For information on intra-cluster communication, and how it enables load balancing 
and failover, see Section 3.1, "Choosing WebLogic Server Cluster Messaging Protocols."

When you set up your cluster, you must provide location information for: 

■ Administration Server

■ Managed Servers 

■ Multicast location 

Read the sections that follow for an explanation of the information you must provide, 
and factors that influence the method you use to identify resources. 

10.1.5.1 Avoiding Listen Address Problems
As you configure a cluster, you can specify address information using either IP 
addresses or DNS names. 

10.1.5.1.1 DNS Names or IP Addresses?  Consider the purpose of the cluster when 
deciding whether to use DNS names or IP addresses. For production environments, 
the use of DNS names is generally recommended. The use of IP addresses can result in 
translation errors if: 

■ Clients will connect to the cluster through a firewall, or

■ You have a firewall between the presentation and object tiers, for example, you 
have a servlet cluster and EJB cluster with a firewall in between, as described in 
the recommended multi-tier cluster. 

You can avoid translation errors by binding the address of an individual server 
instance to a DNS name. Make sure that a server instance's DNS name is identical on 
each side of firewalls in your environment, and do not use a DNS name that is also the 
name of an NT system on your network. 

For more information about using DNS names instead of IP addresses, see 
Section 13.7.3, "Firewall Considerations."

10.1.5.1.2 When Internal and External DNS Names Vary  If the internal and external DNS 
names of a WebLogic Server instance are not identical, use the ExternalDNSName 
attribute for the server instance to define the server's external DNS name. Outside the 
firewall the ExternalDNSName should translate to external IP address of the server. If 
clients are accessing WebLogic Server over the default channel and T3, do not set the 
ExternalDNSName attribute, even if the internal and external DNS names of a WebLogic 
Server instance are not identical.

10.1.5.1.3 Localhost Considerations  If you identify a server instance's listen address as 
localhost, non-local processes will not be able to connect to the server instance. Only 
processes on the machine that hosts the server instance will be able to connect to the 



Before You Start

10-4 Administering Clusters for Oracle WebLogic Server 12.1.3

server instance. If the server instance must be accessible as localhost (for instance, if 
you have administrative scripts that connect to localhost), and must also be accessible 
by remote processes, leave the listen address blank. The server instance will determine 
the address of the machine and listen on it. 

10.1.5.2 Assigning Names to WebLogic Server Resources
Make sure that each configurable resource in your WebLogic Server environment has a 
unique name. Each, domain, server, machine, cluster, data source, virtual host, or other 
resource must have a unique name. 

10.1.5.3 Administration Server Address and Port
Identify the DNS name or IP address and listen port of the Administration Server you 
will use for the cluster. 

The Administration Server is the WebLogic Server instance used to configure and 
manage all the Managed Servers in its domain. When you start a Managed Server, you 
identify the host and port of its Administration Server. 

10.1.5.4 Managed Server Addresses and Listen Ports
Identify the DNS name or IP address of each Managed Server planned for your cluster. 

Each Managed Server in a cluster must have a unique combination of address and 
listen port number. Clustered server instances on a single non-multihomed machine 
can have the same address, but must use a different listen port.

10.1.5.5 Cluster Multicast Address and Port
Identify the address and port you will dedicate to multicast communications for your 
cluster. A multicast address is an IP address between 224.0.0.0 and 239.255.255.255.

Server instances in a cluster communicate with each other using multicast—they use 
multicast to announce their services, and to issue periodic heartbeats that indicate 
continued availability. 

The multicast address for a cluster should not be used for any purpose other than 
cluster communications. If the machine where the cluster multicast address exists 
hosts or is accessed by cluster-external programs that use multicast communication, 
make sure that those multicast communications use a different port than the cluster 
multicast port. 

10.1.5.5.1 Multicast and Multiple Clusters   Multiple clusters on a network may share a 
multicast address and multicast port combination if necessary. 

10.1.5.5.2 Multicast and Multi-Tier Clusters  If you are setting up the Recommended 
Multi-Tier Architecture, described in Chapter 9, "Cluster Architectures," with a firewall 
between the clusters, you will need two dedicated multicast addresses: one for the 
presentation (servlet) cluster and one for the object cluster. Using two multicast 
addresses ensures that the firewall does not interfere with cluster communication.

Note: The default multicast value used by WebLogic Server is 
239.192.0.0. You should not use any multicast address with the value 
x.0.0.1.



Before You Start

Setting up WebLogic Clusters 10-5

10.1.5.6 Cluster Address
In WebLogic Server cluster, the cluster address is used in entity and stateless beans to 
construct the host name portion of request URLs. 

You can explicitly define the cluster address when you configure the a cluster; 
otherwise, WebLogic Server dynamically generates the cluster address for each new 
request. Allowing WebLogic Server to dynamically generate the cluster address is 
simplest, in terms of system administration, and is suitable for both development and 
production environments.

10.1.5.6.1 Dynamic Cluster Address  If you do not explicitly define a cluster address 
when you configure a cluster, when a clustered server instance receives a remote 
request, WebLogic Server generates the cluster address, in the form: 

listenaddress1:listenport1,listenaddress2:listenport2;listenaddress3:
listenport3 

Each listen address:listen port combination in the cluster address corresponds to 
Managed Server and network channel that received the request. 

■ If the request was received on the Managed Server's default channel, the listen 
address:listen port combinations in the cluster address reflect the 
ListenAddress and ListenPort values from the associated ServerMBean and 
SSLMBean instances. For more information, see "The Default Network Channel" in 
Administering Server Environments for Oracle WebLogic Server.

■ If the request was received on a custom network channel, the listen 
address:listen port in the cluster address reflect the ListenAddress and 
ListenPort values from NetworkAccessPointMBean that defines the channel. For 
more information about network channels in a cluster, see "Configuring Network 
Channels For a Cluster" in Administering Server Environments for Oracle WebLogic 
Server.

The number of ListenAddress:ListenPort combinations included in the cluster 
address is governed by the value of the NumberOfServersInClusterAddress attribute 
on the ClusterMBean, which is 3 by default. 

You can modify the value of NumberOfServersInClusterAddress on the Environments 
> Clusters > ClusterName > Configuration > General page of the WebLogic Server 
Administration Console. 

■ If there are fewer Managed Servers available in the cluster than the value of 
NumberOfServersInClusterAddress, the dynamically generated cluster address 
contains a ListenAddress:ListenPort combination for each of the running 
Managed Servers. 

■ If there are more Managed Servers available in the cluster than the value of 
NumberOfServersInClusterAddress, WebLogic Server randomly selects a subset 
of the available instances—equal to the value of 
NumberOfServersInClusterAddress—and uses the ListenAddress:ListenPort 
combination for those instances to form the cluster address.

The order in which the ListenAddress:ListenPort combinations appear in the cluster 
address is random—from request to request, the order will vary. 

10.1.5.6.2 Explicitly Defining Cluster Address for Production Environments  If you explicitly 
define a cluster address for a cluster in a production environment, specify the cluster 
address as a DNS name that maps to the IP addresses or DNS names of each WebLogic 
Server instance in the cluster. 



Cluster Implementation Procedures

10-6 Administering Clusters for Oracle WebLogic Server 12.1.3

If you define the cluster address as a DNS name, the listen ports for the cluster 
members are not specified in the cluster address—it is assumed that each Managed 
Server in the cluster has the same listen port number. Because each server instance in a 
cluster must have a unique combination of address and listen port, if a cluster address 
is a DNS name, each server instance in the cluster must have:

■ a unique address and 

■ the same listen port number 

When clients obtain an initial JNDI context by supplying the cluster DNS name, 
weblogic.jndi.WLInitialContextFactory obtains the list of all addresses that are 
mapped to the DNS name. This list is cached by WebLogic Server instances, and new 
initial context requests are fulfilled using addresses in the cached list with a 
round-robin algorithm. If a server instance in the cached list is unavailable, it is 
removed from the list. The address list is refreshed from the DNS service only if the 
server instance is unable to reach any address in its cache.

Using a cached list of addresses avoids certain problems with relying on DNS 
round-robin alone. For example, DNS round-robin continues using all addresses that 
have been mapped to the domain name, regardless of whether or not the addresses are 
reachable. By caching the address list, WebLogic Server can remove addresses that are 
unreachable, so that connection failures aren't repeated with new initial context 
requests.

10.1.5.6.3 Explicitly Defining Cluster Address for Development and Test Environments  If you 
explicitly define a cluster address for use in development environments, you can use a 
cluster DNS name for the cluster address, as described in the previous section.

Alternatively, you can define the cluster address as a list that contains the DNS name 
(or IP address) and listen port of each Managed Server in the cluster, as shown in the 
examples below:

DNSName1:port1,DNSName1:port2,DNSName1:port3
IPaddress1:port1,IPaddress2:port2;IPaddress3:port3 
Note that each cluster member has a unique address and port combination.

10.1.5.6.4 Explicitly Defining Cluster Address for Single, Multihomed Machine  If your cluster 
runs on a single, multihomed machine, and each server instance in the cluster uses a 
different IP address, define the cluster address using a DNS name that maps to the IP 
addresses of the server instances in the cluster. If you define the cluster address as a 
DNS name, specify the same listen port number for each of the Managed Servers in the 
cluster.

10.2 Cluster Implementation Procedures
This section describes how to get a clustered application up and running, from 
installation of WebLogic Server through initial deployment of application components.

Note: The Administration Server should not participate in a cluster. 
Ensure that the Administration Server's IP address is not included in 
the cluster-wide DNS name. For more information, see Section 13.7.2, 
"Administration Server Considerations."



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-7

10.2.1 Configuration Roadmap
This section lists typical cluster implementation tasks, and highlights key 
configuration considerations. The exact process you follow is driven by the unique 
characteristics of your environment and the nature of your application. These tasks are 
described:

1. Section 10.2.2, "Install WebLogic Server"

2. Section 10.2.3, "Create a Clustered Domain"

3. Section 10.2.4, "Configure Node Manager"

4. Section 10.2.5, "Configure Load Balancing Method for EJBs and RMIs"

5. Section 10.2.7, "Configure Server Affinity for Distributed JMS Destinations"

6. Section 10.2.8, "Configuring Load Balancers that Support Passive Cookie 
Persistence"

7. Section 10.2.9, "Configure Proxy Plug-Ins"

8. Section 10.2.10, "Configure Replication Groups"

9. Section 10.2.11, "Configure Migratable Targets for Pinned Services"

10. Section 10.2.12, "Package Applications for Deployment"

11. Section 10.2.13, "Deploy Applications"

12. Section 10.2.14, "Deploying, Activating, and Migrating Migratable Services"

13. Section 10.2.15, "Configure In-Memory HTTP Replication"

14. Section 10.2.16, "Additional Configuration Topics"

Not every step is required for every cluster implementation. Additional steps may be 
necessary in some cases.

10.2.2 Install WebLogic Server
If you have not already done so, install WebLogic Server. For instructions, see 
Installing and Configuring Oracle WebLogic Server and Coherence.

■ If the cluster will run on a single machine, do a single installation of WebLogic 
Server under the /Oracle directory to use for all clustered instances. 

■ For remote, networked machines, install the same version of WebLogic Server on 
each machine. Each machine:

– Must have permanently assigned, static IP addresses. You cannot use 
dynamically-assigned IP addresses in a clustering environment. 

– Must be accessible to clients. If the server instances are behind a firewall and 
the clients are in front of the firewall, each server instance must have a public 
IP address that can be reached by the clients. 

– Must be located on the same local area network (LAN) and must be reachable 
via IP multicast. 

10.2.3 Create a Clustered Domain
The are multiple methods of creating a clustered domain. For a list, see Section 4.5, 
"Methods of Configuring Clusters."

For instructions to create a cluster using the: 



Cluster Implementation Procedures

10-8 Administering Clusters for Oracle WebLogic Server 12.1.3

■ Configuration Wizard, first see "Creating a WebLogic Domain" in Creating 
WebLogic Domains Using the Configuration Wizard for instructions on creating the 
domain, and then "Clusters" for instructions on configuring a cluster.

■ WebLogic Server Administration Console, see "Create and configure clusters" in 
Oracle WebLogic Server Administration Console Online Help. 

10.2.3.1 Starting a WebLogic Server Cluster
There are multiple methods of starting a cluster—available options include the 
command-line interface, scripts that contain the necessary commands, and Node 
Manager. 

Regardless of the method you use to start a cluster, start the Administration Server 
first, then start the Managed Servers in the cluster.

Follow the instructions below to start the cluster from a command shell. Note that each 
server instance is started in a separate command shell.

1. Open a command shell.

2. Change directory to the domain directory that you created with the Configuration 
Wizard.

3. Type this command to start the Administration Server:

StartWebLogic

4. Enter the user name for the domain at the "Enter username to boot WebLogic 
Server" prompt.

5. Enter the password for the domain at the "Enter password to boot WebLogic 
Server" prompt.

The command shell displays messages that report the status of the startup process.

6. Open another command shell so that you can start a Managed Server.

7. Change directory to the domain directory that you created with the Configuration 
Wizard.

8. Type this command

StartManagedWebLogic server_name address:port

where:

server_name is the name of the Managed Server you wish to start

address is the IP address or DNS name for the Administration Server for the 
domain

port is the listen port for the Administration Server for the domain

9. Enter the user name for the domain at the "Enter username to boot WebLogic 
Server" prompt.

Note: Node Manager eases the process of starting servers, and 
restarting them after failure.

To use Node Manager, you must first configure a Node Manager 
process on each machine that hosts Managed Servers in the cluster. 
See Section 10.2.4, "Configure Node Manager."



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-9

10. Enter the password for the domain at the "Enter password to boot WebLogic 
Server" prompt.

The command shell displays messages that report the status of the startup process.

11. To start another server instance in the cluster, return to step 6. Continue through 
step 10.

12. When you have started all Managed Servers in the cluster, the cluster startup 
process is complete.

10.2.4 Configure Node Manager
Node Manager is a standalone program provided with WebLogic Server that is useful 
for starting a Managed Server that resides on a different machine than its 
Administration Server. Node Manager also provides features that help increase the 
availability of Managed Servers in your cluster. For more information, and for 
instructions to configure and use Node Manager, see Administering Node Manager for 
Oracle WebLogic Server.

10.2.5 Configure Load Balancing Method for EJBs and RMIs 
Follow the instructions in this section to select the load balancing algorithm for EJBs 
and RMI objects.

Unless you explicitly specify otherwise, WebLogic Server uses the round-robin 
algorithm as the default load balancing strategy for clustered object stubs. To 
understand alternative load balancing algorithms, see Section 5.2, "Load Balancing for 
EJBs and RMI Objects." To change the default load balancing algorithm:

1. Open the WebLogic Server Administration Console.

2. Select Environments > Clusters.

3. Select the name of your cluster in the table.

4. If you have not already done so, click Lock & Edit in the top left corner of the 
Console.

5. Enter the desired load balancing algorithm in the Default Load Algorithm field.

6. Select Advanced.

7. Enter the desired value in the Service Age Threshold field

8. Click Save to save your changes.

9. Click Activate Changes in the top left corner once you are ready to activate your 
changes.

Note: After you start a Managed Server, it listens for heartbeats from 
other running server instances in the cluster. The Managed Server 
builds its local copy of the cluster-wide JNDI tree, as described in 
Section 3.4.3, "How WebLogic Server Updates the JNDI Tree," and 
displays status messages when it has synchronized with each running 
Managed Server in the cluster. The synchronization process can take a 
minute or so.



Cluster Implementation Procedures

10-10 Administering Clusters for Oracle WebLogic Server 12.1.3

10.2.6 Specifying a Timeout Value For RMIs
You can enable a timeout option when making calls to the ReplicationManager by 
setting the ReplicationTimeoutEnabled in the ClusterMBean to true.

The timeout value is equal to the multicast heartbeat timeout. Although you can 
customize the multicast timeout value, the ReplicationManager timeout cannot be 
changed. This restriction exists because the ReplicationManager timeout does not 
affect cluster membership. A missing multicast heartbeat causes the member to be 
removed from the cluster and the timed out ReplicationManager call will choose a 
new secondary server to connect to.

10.2.7 Configure Server Affinity for Distributed JMS Destinations
To understand the server affinity support provided by WebLogic Server for JMS, see 
Section 5.3, "Load Balancing for JMS."

10.2.8 Configuring Load Balancers that Support Passive Cookie Persistence
Load balancers that support passive cookie persistence can use information from the 
WebLogic Server session cookie to associate a client with the WebLogic Server instance 
that hosts the session. The session cookie contains a string that the load balancer uses 
to identify the primary server instance for the session. 

For a discussion of external load balancers, session cookie persistence, and the 
WebLogic Server session cookie, see Section 5.1.2, "Load Balancing HTTP Sessions 
with an External Load Balancer."

To configure the load balancer to work with your cluster, use the facilities of the load 
balancer to define the offset and length of the string constant. 

Assuming that the Session ID portion of the session cookie is the default length of 52 
bytes, on the load balancer, set:

■ string offset to 53 bytes, the default Random Session ID length plus 1 byte for the 
delimiter character. 

■ string length to 10 bytes 

If your application or environmental requirements dictate that you change the length 
of the Random Session ID from its default value of 52 bytes, set the string offset on the 
load balancer accordingly. The string offset must equal the length of the Session ID 
plus 1 byte for the delimiter character. 

10.2.9 Configure Proxy Plug-Ins 
Refer to the instructions in this section if you wish to load balance servlets and JSPs 
using a proxy plug-in. A proxy plug-in proxies requests from a Web server to 

Note: It is possible that a cluster member will continue to send 
multicast heartbeats, but will be unable to process replication requests. 
This could potentially cause an uneven distribution of secondary 
servers. When this situation occurs, a warning message is recorded in 
the server logs.

Note: For vendor-specific instructions for configuring Big-IP load 
balancers, see Appendix B, "Configuring BIG-IP Hardware with 
Clusters."



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-11

WebLogic Server instances in a cluster, and provides load balancing and failover for 
the proxied HTTP requests. 

For information about load balancing using proxy plug-ins, see Section 5.1.1, "Load 
Balancing with a Proxy Plug-in." For information about connection and failover using 
proxy plug-ins, see Section 6.2, "Replication and Failover for Servlets and JSPs," and 
Section 6.2.2, "Accessing Clustered Servlets and JSPs Using a Proxy."

■ If you use WebLogic Server as a Web server, set up HttpClusterServlet using the 
instructions in Section 10.2.9.1, "Set Up the HttpClusterServlet."

■ If you use a supported third-party Web server, set up a product-specific plug-in 
(for a list of supported Web servers, see Section 5.1.1, "Load Balancing with a 
Proxy Plug-in") follow the instructions in Using Oracle WebLogic Server Proxy 
Plug-Ins 12.1.3.

10.2.9.1 Set Up the HttpClusterServlet
To use the HTTP cluster servlet, configure it as the default Web application on your 
proxy server machine, as described in the steps below. For an introduction to Web 
applications, see "Understanding Web Applications, Servlets, and JSPs" in Developing 
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

1. If you have not already done so, configure a separate, non-clustered Managed 
Server to host the HTTP Cluster Servlet.

2. Create the web.xml deployment descriptor file for the servlet. This file must reside 
in the \WEB-INF subdirectory of the Web application directory. A sample 
deployment descriptor for the proxy servlet is provided in Section 10.2.9.1.1, 
"Sample web.xml." For more information on web.xml, see "Understanding Web 
Applications, Servlets, and JSPs" in Developing Web Applications, Servlets, and JSPs 
for Oracle WebLogic Server.

a. Define the name and class for the servlet in the <servlet> element in web.xml. 
The servlet name is HttpClusterServlet. The servlet class is 
weblogic.servlet.proxy.HttpClusterServlet.

b. Identify the clustered server instances to which the proxy servlet will direct 
requests in the <servlet> element in web.xml, by defining the 
WebLogicCluster parameter. 

c. Optionally, define the following <KeyStore> initialization parameters to use 
two-way SSL with your own identity certificate and key. If no <KeyStore> is 
specified in the deployment descriptor, the proxy will assume one-way SSL.

– <KeyStore>—The key store location in your Web application.

– <KeyStoreType>—The key store type. If it is not defined, the default type 
will be used instead.

– <PrivateKeyAlias>—The private key alias.

– <KeyStorePasswordProperties>—A property file in your Web application 
that defines encrypted passwords to access the key store and private key 
alias. The file contents looks like this: 

KeyStorePassword={AES}yWv/i0qhfM4/IvzoghzjHj/xpJUkQPF8OWuSfh0f0Ss=
PrivateKeyPassword={AES}wr86u9Z5DHr+5p7WIbzTDSy4M/sl7EYnX/K5xzcarDQ=

Note: Each Web server that proxies requests to a cluster must have 
an identically configured plug-in.



Cluster Implementation Procedures

10-12 Administering Clusters for Oracle WebLogic Server 12.1.3

You must use the weblogic.security.Encrypt command-line utility to 
encrypt the password. For more information on the Encrypt utility, as well 
as the CertGen, and der2pem utilities, see "Using the Oracle WebLogic 
Server Java Utilities" in the Command Reference for Oracle WebLogic Server.

d. Create <servlet-mapping> stanzas to specify the requests that the servlet will 
proxy to the cluster, using the <url-pattern> element to identify specific file 
extensions, for example *.jsp, or *.html. Define each pattern in a separate 
<servlet-mapping> stanza.

You can set the <url-pattern> to "/" to proxy any request that cannot be 
resolved by WebLogic Server to the remote server instance. If you do so, you 
must also specifically map the following extensions: *.jsp, *.html, and 
*.html, to proxy files ending with those extensions. For an example, see 
Section 10.2.9.1.1, "Sample web.xml."

e. You can enable the WLProxyPassThrough attribute to allow the header to be 
passed through a chain of proxies and the WLProxySSLPassThrough attribute so 
that the use of SSL is passed on to WebLogic Server. For a complete 
description of these attributes, see "General Parameters for Web Server 
Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3.

f. Define, as appropriate, any additional parameters. See Table 10–1 for a list of 
key parameters. See "Parameters for Web Server Plug-ins" in Using Oracle 
WebLogic Server Proxy Plug-Ins 12.1.3 for a complete list. Follow the syntax 
instructions in Section 10.2.9.1.3, "Proxy Servlet Deployment Parameters."

3. Create the weblogic.xml deployment descriptor file for the servlet. This file must 
reside in the \WEB-INF subdirectory of the Web application directory. 

Assign the proxy servlet as the default Web application for the Managed Server on 
the proxy machine by setting the <context-root> element to a forward slash 
character (/) in the <weblogic-web-app> stanza. For an example, see 
Section 10.2.9.1.2, "Sample weblogic.xml."

4. In the WebLogic Server Administration Console, deploy the servlet to the 
Managed Server on your proxy server machine. For instructions, see "Deploy 
applications and modules" in Oracle WebLogic Server Administration Console Online 
Help.

10.2.9.1.1 Sample web.xml  This section contains a sample deployment descriptor file 
(web.xml) for HttpClusterServlet.

web.xml defines parameters that specify the location and behavior of the proxy servlet: 
both versions of the servlet: 

■ The DOCTYPE stanza specifies the DTD used by WebLogic Server to validate 
web.xml. 

■ The servlet stanza: 

– Specifies the location of the proxy plug-in servlet class. The file is located in 
the weblogic.jar in your WL_HOME/server/lib directory. You do not have to 
specify the servlet's full directory path in web.xml because weblogic.jar is put 
in your CLASSPATH when you start WebLogic Server. 

– Identifies the host name (either DNS name or IP address) and listen port of 
each Managed Servers in the cluster, using the WebLogicCluster parameter.

– Identifies the key store initialization parameters to use two-way SSL with your 
own identity certificate and key.



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-13

■ The three servlet-mapping stanzas specify that the servlet will proxy URLs that 
end in '/', 'htm', 'html', or 'jsp' to the cluster.

For parameter definitions see Section 10.2.9.1.3, "Proxy Servlet Deployment 
Parameters."

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" 
"http://java.sun.com/dtd/web-app_2_3.dtd";> 

<web-app>
<servlet>
  <servlet-name>HttpClusterServlet</servlet-name> 
    <servlet-class>
      weblogic.servlet.proxy.HttpClusterServlet
    </servlet-class>
  <init-param>
    <param-name>WebLogicCluster</param-name>
    <param-value>hostname1:7736|hostname2:7736|hostname:7736</param-value> 
  </init-param>
  <init-param>
    <param-name>KeyStore</param-name>
    <param-value>/mykeystore</param-value>
  </init-param>
  <init-param>
    <param-name>KeyStoreType</param-name>
    <param-value>jks</param-value>
  </init-param>
  <init-param>
    <param-name>PrivateKeyAlias</param-name>
    <param-value>passalias</param-value>
  </init-param>
  <init-param>
    <param-name>KeyStorePasswordProperties</param-name>
    <param-value>mykeystore.properties</param-value>
  </init-param>
</servlet>
<servlet-mapping>
  <servlet-name>HttpClusterServlet</servlet-name>
  <url-pattern>/</url-pattern>
</servlet-mapping>
<servlet-mapping>
  <servlet-name>HttpClusterServlet</servlet-name> 
  <url-pattern>*.jsp</url-pattern> 
</servlet-mapping>
<servlet-mapping>
  <servlet-name>HttpClusterServlet</servlet-name> 
  <url-pattern>*.htm</url-pattern> 
</servlet-mapping>
<servlet-mapping>
  <servlet-name>HttpClusterServlet</servlet-name> 
  <url-pattern>*.html</url-pattern> 
</servlet-mapping>
</web-app>

10.2.9.1.2 Sample weblogic.xml  This section contains a sample weblogic.xml file. The 
<context-root> deployment parameter is set to "/". This makes the proxy servlet the 
default Web application for the proxy server. 

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application 
9.1//EN" "http://www.bea.com/servers/wls810/dtd/weblogic



Cluster Implementation Procedures

10-14 Administering Clusters for Oracle WebLogic Server 12.1.3

810-web-jar.dtd">
  <weblogic-web-app>
    <context-root>/</context-root>
  </weblogic-web-app>

10.2.9.1.3 Proxy Servlet Deployment Parameters  Key parameters for configuring the 
behavior of the proxy servlet in web.xml are listed in Table 10.1. 

The parameters for the proxy servlet are the same as those used to configure WebLogic 
Server plug-ins for Apache, Microsoft, and Netscape Web servers. For a complete list 
of parameters for configuring the proxy servlet and the plug-ins for third-part Web 
servers see "Parameters for Web Server Plug-ins" in Using Oracle WebLogic Server Proxy 
Plug-Ins 12.1.3.

The syntax for specifying the parameters, and the file where they are specified, is 
different for the proxy servlet and for each of the plug-ins. 

For the proxy servlet, specify the parameters in web.xml, each in its own <init-param> 
stanza within the <servlet> stanza of web.xml. For example:

<init-param> 
    <param-name>ParameterName</param-name> 
    <param-value>ParameterValue</param-value> 
</init-param>

Table 10–1 Proxy Servlet Deployment Parameter

Parameter Usage

WebLogicCluster <init-param>
   <param-name>WebLogicCluster</param-name>
   <param-value>WLS1.com:port|WLS2.com:port
</param-value>

Where WLS1.com and WLS2.com are the host names of servers in the cluster, and port is a 
port where the host is listening for HTTP requests.

If you are using SSL between the plug-in and WebLogic Server, set the port number to the 
SSL listen port (see "Configuring the Listen Port") and set the SecureProxy parameter to 
ON.

SecureProxy <init-param> 
    <param-name>SecureProxy</param-name> 
   <param-value>ParameterValue</param-value> 
</init-param>

Valid values are ON and OFF.

If you are using SSL between the plug-in and WebLogic Server, set the port number to the 
SSL listen port (see "Configuring the Listen Port") and set the SecureProxy parameter to 
ON.

DebugConfigInfo <init-param> 
    <param-name>DebugConfigInfo</param-name> 
   <param-value>ParameterValue</param-value> 
</init-param>

Valid values are ON and OFF. 

If set to ON, you can query the HttpClusterServlet for debugging information by adding 
a request parameter of ?__WebLogicBridgeConfig to any request. (Note: There are two 
underscore ( _ ) characters after the ?.) For security reasons, it is recommended that you set 
the DebugConfigInfo parameter to OFF in a production environment.



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-15

ConnectRetrySecs Interval in seconds that the servlet will sleep between attempts to connect to a server 
instance. Assign a value less than ConnectTimeoutSecs. 

The number of connection attempts the servlet makes before returning an HTTP 
503/Service Unavailable response to the client is ConnectTimeoutSecs divided by 
ConnectRetrySecs. 

Syntax:

<init-param>
   <param-name>ConnectRetrySecs</param-name> 
   <param-value>ParameterValue</param-value> 
</init-param>

ConnectTimeoutSecs Maximum time in seconds that the servlet will attempt to connect to a server instance. 
Assign a value greater than ConnectRetrySecs. 

If ConnectTimeoutSecs expires before a successful connection, an HTTP 503/Service 
Unavailable response is sent to the client.

Syntax:

<init-param>
<param-name>ConnectTimeoutSecs</param-name> 
   <param-value>ParameterValue</param-value> 
</init-param>

PathTrim String trimmed by the plug-in from the beginning of the original URL, before the request is 
forwarded to the cluster. 

Syntax:

<init-param>
<param-name>PathTrim</param-name> 
   <param-value>ParameterValue</param-value> 
</init-param>

Example:

If the URL

http://myWeb.server.com/weblogic/foo

is passed to the plug-in for parsing and if PathTrim has been set to

/weblogic 

the URL forwarded to WebLogic Server is: 

http://myWeb.server.com:7001/foo

TrimExt The file extension to be trimmed from the end of the URL.

Syntax:

<init-param>
<param-name>TrimExt</param-name> 
   <param-value>ParameterValue</param-value> 
</init-param>

Table 10–1 (Cont.) Proxy Servlet Deployment Parameter

Parameter Usage



Cluster Implementation Procedures

10-16 Administering Clusters for Oracle WebLogic Server 12.1.3

10.2.9.1.4 Accessing Applications Via the Proxy Server  Ensure that applications clients will 
access via the proxy server are deployed to your cluster. Address client requests to the 
listen address and listen port of the proxy server.

If you have problems:

■ Make sure all servers instances have unique address/port combinations

Each of the server instances in the configuration must have a unique combination 
of listen address and listen port.

■ Make sure that the proxy servlet is the default application for the proxy server

If you get a page not found error when you try to your application, make sure that 
weblogic.xml is in \WEB-INF for the application and that it sets the context-root 
deployment parameter to "/". 

■ When all else fails, restart

If you are having problems try rebooting all your servers, some of the changes you 
made while configuring your setup may not have been persisted to the 
configuration file. 

■ Verify Your Configuration

To verify the configuration of the HttpClusterServlet:

clientCertProxy Specifies to trust client certificates in the WL-Proxy-Client-Cert header. 

Valid values are true and false. The default value is false.

This setting is useful if user authentication is performed on the proxy server—setting 
clientCertProxy to true causes the proxy server to pass on the certs to the cluster in a 
special header, WL-Proxy-Client-Cert. 

The WL-Proxy-Client-Cert header can be used by any client with direct access to 
WebLogic Server. WebLogic Server takes the certificate information from that header, 
trusting that is came from a secure source (the plug-in) and uses that information to 
authenticate the user.

For this reason, if you set clientCertProxy to true, use a connection filter to ensure that 
WebLogic Server accepts connections only from the machine on which the plug-in is 
running. See "Using Network Connection Filters" in Developing Applications with the 
WebLogic Security Service.

PathPrepend String that the servlet prepends to the original URL, after PathTrim is trimmed, before 
forwarding the URL to the cluster.

<init-param>
<param-name>PathPrepend</param-name> 
   <param-value>ParameterValue</param-value> 
</init-param>

RoutingHandlerClas
sName

Extends the proxy servlet to support Web service cluster routing. For more information, see 
"Managing Web Services in a Cluster" in Developing JAX-WS Web Services for Oracle 
WebLogic Server.

<init-param>
<param-name>RoutingHandlerClassName</param-name> 
   <param-value>
      weblogic.wsee.jaxws.cluster.proxy.SOAPRoutingHandler
   </param-value> 
</init-param>

Table 10–1 (Cont.) Proxy Servlet Deployment Parameter

Parameter Usage



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-17

1. Set the DebugConfigInfo parameter in web.xml to ON. 

2. Use a Web browser to access the following URL:

http://myServer:port/placeholder.jsp?__WebLogicBridgeConfig

Where:

myServer is the Managed Server on the proxy machine where 
HttpClusterServlet runs, port is the port number on that server that is listening 
for HTTP requests, and placeholder.jsp is a file that does not exist on the server.

The plug-in gathers configuration information and run-time statistics and returns 
the information to the browser. For more information, see "Parameters for Web 
Server Plug-ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3. 

10.2.10 Configure Replication Groups
To support automatic failover for servlets and JSPs, WebLogic Server replicates HTTP 
session states in memory. You can further control where secondary states are placed 
using replication groups. A replication group is a preferred list of clustered instances to 
be used for storing session state replicas. 

If your cluster will host servlets or stateful session EJBs, you may want to create 
replication groups of WebLogic Server instances to host the session state replicas.

For instructions on how to determine which server instances should participate in each 
replication group, and to determine each server instance's preferred replication group, 
follow the instructions in Section 6.2.1.2, "Using Replication Groups."

Then follow these steps to configure replication groups for each WebLogic Server 
instance: 

To configure replication groups for a WebLogic Server instance:

1. Open the WebLogic Server Administration Console.

2. Select Environments > Servers.

3. In the table, select the name of the server you want to configure.

4. Select the Cluster page.

5. If you have not already done so, click Lock & Edit in the top left corner of the 
Console.

6. Enter values for the following attribute fields:

■ Replication Group: Enter the name of the replication group to which this 
server instance belongs.

■ Preferred Secondary Group: Enter the name of the replication group you 
would like to use to host replicated HTTP session states for this server 
instance.

7. Click Save to save your changes.

8. Click Activate Changes in the top left corner to activate your changes.

10.2.11 Configure Migratable Targets for Pinned Services
WebLogic Server enables you to configure an optional migratable target, which is a 
special target that can migrate from one server in a cluster to another. As such, a 
migratable target provides a way to group pinned services that should move together. 



Cluster Implementation Procedures

10-18 Administering Clusters for Oracle WebLogic Server 12.1.3

When the migratable target is migrated, all services hosted by that target are migrated. 
Pinned services include JMS-related services (for example, JMS servers, SAF agents, 
path services, and persistent stores) or the JTA Transaction Recovery Service. 

If you want to use a migratable target, configure the target server list before deploying 
or activating the service in the cluster. If you do not configure a migratable target in 
the cluster, migratable services can be migrated to any available WebLogic Server 
instance in the cluster. For more details on migratable targets, see Section 8.1.2, 
"Understanding Migratable Targets In a Cluster."

10.2.12 Package Applications for Deployment
You must package applications before you deploy them to WebLogic Server. For more 
information, see the packaging topic in "Deploying and Packaging from a Split 
Development Directory" in Developing Applications for Oracle WebLogic Server.

10.2.13 Deploy Applications 
Clustered objects in WebLogic Server should be deployed homogeneously. To ensure 
homogeneous deployment, when you select a target use the cluster name, rather than 
individual WebLogic Server instances in the cluster. 

The Console automates deploying replica-aware objects to clusters. When you deploy 
an application or object to a cluster, the Console automatically deploys it to all 
members of the cluster (whether they are local to the Administration Server machine 
or they reside on remote machines.) For a discussion of application deployment in 
clustered environments see Section 4.5, "Methods of Configuring Clusters." For a 
broad discussion of deployment topics, see Deploying Applications to Oracle WebLogic 
Server.

10.2.13.1 Deploying to a Single Server Instance (Pinned Deployment)
Deploying a application to a server instance, rather than the all cluster members is 
called a pinned deployment. Although a pinned deployment targets a specific server 
instance, all server instances in the cluster must be running during the deployment 
process. 

You can perform a pinned deployment using the WebLogic Server Administration 
Console or from the command line, using weblogic.Deployer.

10.2.13.1.1 Pinned Deployment from the Command Line  From a command shell, use the 
following syntax to target a server instance:

java weblogic.Deployer -activate -name ArchivedEarJar -source C:/MyApps/JarEar.ear 
-target server1

10.2.13.2 Cancelling Cluster Deployments
You can cancel a deployment using the WebLogic Server Administration Console or 
from the command line, using weblogic.Deployer.

Note: All server instances in your cluster should be running when 
you deploy applications to the cluster using the WebLogic Server 
Administration Console.



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-19

10.2.13.2.1 Cancel Deployment from the Command Line  From a command shell, use the 
following syntax to cancel the deployment task ID:

java weblogic.Deployer -adminurl http://admin:7001 -cancel -id tag

10.2.13.2.2 Cancel Deployment Using the WebLogic Server Administration Console  In the 
WebLogic Server Administration Console, open the Tasks node to view and to cancel 
any current deployment tasks. 

10.2.13.3 Viewing Deployed Applications
To view a deployed application in the WebLogic Server Administration Console:

1. In the WebLogic Server Administration Console, select Deployments.

2. View a list of deployed applications in the table.

10.2.13.4 Undeploying Deployed Applications
To undeploy a deployed application from the WebLogic Server Administration 
Console:

1. In the WebLogic Server Administration Console, select Deployments.

2. In the table, select the check box to the left of the application you want to 
undeploy.

3. If you have not already done so, click Lock & Edit in the top left corner of the 
Console.

4. Click Stop.

5. Select when you want the application to stop (undeploy).

6. Click Yes.

7. Click Activate Changes in the top left corner of the Console to activate your 
changes.

10.2.14 Deploying, Activating, and Migrating Migratable Services
The sections that follow provide guidelines and instructions for deploying, activating, 
and migrating migratable services.

10.2.14.1 Deploying JMS to a Migratable Target Server Instance
The migratable target that you create defines the scope of server instances in the 
cluster that can potentially host a migratable service. You must deploy or activate a 
pinned service on one of the server instances listed in the migratable target in order to 
migrate the service within the target server list at a later time. Use the instructions that 
follow to deploy a JMS service on a migratable target, or activate the JTA transaction 
recovery system so that you can migrate it later.

Before you begin, use the instructions in Section 10.2.11, "Configure Migratable Targets 
for Pinned Services," to create a migratable target for the cluster. Next, deploy 

Note: If you did not configure a migratable target, simply deploy the 
JMS server to any WebLogic Server instance in the cluster; you can 
then migrate the JMS server to any other server instance in the cluster 
(no migratable target is used).



Cluster Implementation Procedures

10-20 Administering Clusters for Oracle WebLogic Server 12.1.3

JMS-related services to a migratable target, as described in the following topics in the 
Oracle WebLogic Server Administration Console Online Help:

■ Change JMS server targets

■ Change SAF agent targets

■ Change path service targets

■ Create file stores and Create JDBC stores 

10.2.14.2 Activating JTA as a Migratable Service
The JTA recovery service is automatically started on one of the server instances listed 
in the migratable target for the cluster; you do not have to deploy the service to a 
selected server instance. 

If you did not configure a JTA migratable target, WebLogic Server activates the service 
on any available WebLogic Server instance in the cluster. To change the current server 
instance that hosts the JTA service, use the instructions in Section 10.2.14.3, "Migrating 
a Pinned Service to a Target Server Instance."

10.2.14.3 Migrating a Pinned Service to a Target Server Instance
After you have deployed a migratable service, you can use the WebLogic Server 
Administration Console to manually migrate the service to another server instance in 
the cluster. If you configured a migratable target for the service, you can migrate to 
any other server instance listed in the migratable target, even if that server instance is 
not currently running. If you did not configure a migratable target, you can migrate 
the service to any other server instance in the cluster.

If you migrate a service to a stopped server instance, the server instance will activate 
the service upon the next startup. If you migrate a service to a running WebLogic 
Server instance, the migration takes place immediately.

Before you begin, use the instructions in Section 10.2.14.1, "Deploying JMS to a 
Migratable Target Server Instance," to deploy a pinned service to the cluster. Next, 
migrate the pinned service using the WebLogic Server Administration Console by 
following the appropriate instructions in the Oracle WebLogic Server Administration 
Console Online Help: 

■ Manually migrate JMS-related services

■ Manually migrate the Transaction Recovery Service

Here are some additional steps that are not covered in the Console Help instructions:

1. If the current server is not reachable by the Administration Server, the WebLogic 
Server Administration Console displays this message:

Unable to contact server MyServer-1, the source server from which services are 
being migrated.
Please ensure that server MyServer-1 is NOT running! If the administration
server cannot reach server MyServer-1 due to a network partition, inspect the
server directly to verify that it is not running. Continue the migration only
if MyServer-1 is not running. Cancel the migration if MyServer-1 is running,
or if you do not know whether it is running.

If this message is displayed, perform the procedure described in 
Section 10.2.14.3.1, "Migrating When the Currently Active Host is Unavailable."

2. If the Destination Server is stopped, the WebLogic Server Administration Console 
notifies you of the stopped server instance and asks if you would like to continue 



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-21

the migration. Click the Continue button to migrate to the stopped server instance, 
or click Cancel to stop the migration and select a different server instance.

3. The migration process may take several minutes to complete, depending on the 
server instance configuration. However, you can continue using other WebLogic 
Server Administration Console features while the migration takes place. To view 
the migration status at a later time, click the Tasks node in the left pane to display 
the currently-running tasks for the domain; then select the task description for the 
migration task to view the current status.

10.2.14.3.1 Migrating When the Currently Active Host is Unavailable  Use this migration 
procedure if a clustered Managed Server that was the active server for the migratable 
service crashes or becomes unreachable. 

This procedure purges the failed Managed Server's configuration cache. The purpose 
of purging the cache is to ensure that, when the failed server instance is once again 
available, it does not re-deploy a service that you have since migrated to another 
Managed Server. Purging the cache eliminates the risk that Managed Server which 
was previously the active host for the service uses local, out-of-date configuration data 
when it starts up again. 

1. Disconnect the machine from the network entirely. It should not be accessible to 
the Administration Server or client traffic. If the machine has a dual ported disk, 
disconnect it.

2. Migrate the migratable service(s) to a Managed Server instance on a different 
machine. The Administration Server must be running, so that it can coordinate the 
migration and update the activation table.

■ If you use the command line for migration, use the -sourcedown flag. 

■ If you use the Console, it will ask you to make sure the source server is not 
going to restart.

The migratable service is now available on a different Managed Server on a 
different machine. The following steps can be performed at leisure.

3. Perform the necessary repair or maintenance on the failed machine. 

4. Reboot the machine, but do not connect it to the network.

Node Manager will start as a service or daemon, and will attempt to start the 
Managed Servers on the machine.

■ If Managed Server Independence is enabled, the Managed Server will start, 
even though it cannot connect to the Administration Server. 

■ If Managed Server Independence is disabled, the Managed Server will not 
start, because it cannot connect to the Administration Server.

5. Reconnect the machine to the network and shared storage, including dual ported 
disk, if applicable.

6. Restart the Node Manager daemon/service or reboot the machine, to start all 
remaining Managed Servers.

7. Start the Managed Server that was disabled. This is a normal start up, rather than 
a restart performed by Node Manager. The Administration Server must be 
reachable and running, so that the Managed Servers can synchronize with the 
migratable service activation table on the Administration Server—and hence know 
that it is no longer the active host of the migratable service. 



Cluster Implementation Procedures

10-22 Administering Clusters for Oracle WebLogic Server 12.1.3

10.2.15 Configure In-Memory HTTP Replication
To support automatic failover for servlets and JSPs, WebLogic Server replicates HTTP 
session states in memory. 

In-memory HTTP session state replication is controlled separately for each application 
you deploy. The parameter that controls it—PersistentStoreType—appears within 
the session-descriptor element, in the WebLogic deployment descriptor file, 
weblogic.xml, for the application. 

domain_directory/applications/application_directory/WEB-INF/weblogic.xml

To use in-memory HTTP session state replication across server instances in a cluster, 
set the PersistentStoreType to replicated. The fragment below shows the 
appropriate XML from weblogic.xml.

<session-descriptor>
<persistent-store-type>replicated</persistent-store-type> 
</session-descriptor>

10.2.16 Additional Configuration Topics
The sections below contain useful tips for particular cluster configurations.

10.2.16.1 Configure IP Sockets
For best socket performance, Oracle recommends that you use the native socket reader 
implementation, rather than the pure-Java implementation, on machines that host 
WebLogic Server instances. 

If you must use the pure-Java socket reader implementation for host machines, you 
can still improve the performance of socket communication by configuring the proper 
number of socket reader threads for each server instance and client machine. 

■ To learn more about how IP sockets are used in a cluster, and why native socket 
reader threads provide best performance, see Section 3.2, "Peer-to-Peer 
Communication Using IP Sockets," and Section 3.3, "Client Communication via 
Sockets."

■ For instructions on how to determine how many socket reader threads are 
necessary in your cluster, see Section 3.2.2.1, "Determining Potential Socket 
Usage." If you are deploying a servlet cluster in a multi-tier cluster architecture, 
this has an effect on how many sockets you require, as described in Section 9.3.4, 
"Configuration Considerations for Multi-Tier Architecture."

The sections that follow have instructions on how to configure native socket reader 
threads for host machines, and how to set the number of reader threads for host and 
client machines. 

10.2.16.1.1 Configure Native IP Sockets Readers on Machines that Host Server Instances  To 
configure a WebLogic Server instance to use the native socket reader threads 
implementation:

Note: WebLogic Server can also maintain the HTTP session state of a 
servlet or JSP using file-based or JDBC-based persistence. For more 
information on these persistence mechanisms, see Using Sessions and 
Session Persistence in Developing Web Applications, Servlets, and JSPs for 
Oracle WebLogic Server.



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-23

1. Open the WebLogic Server Administration Console.

2. Select Environments > Servers.

3. Select the name of the server instance you want to configure.

4. If you have not already done so, click Lock & Edit in the top left corner of the 
Console.

5. Select Configuration > Tuning.

6. Select the Enable Native IO check box.

7. Click Save.

8. Click Activate Changes in the top left corner of the Console to activate your 
changes.

10.2.16.1.2 Set the Number of Reader Threads on Machines that Host Server Instances  By 
default, a WebLogic Server instance creates three socket reader threads upon booting. 
If you determine that your cluster system may utilize more than three sockets during 
peak periods, increase the number of socket reader threads:

1. Open the WebLogic Server Administration Console.

2. Select Environments > Servers.

3. Select the name of the server instance you want to configure.

4. If you have not already done so, click Lock & Edit in the top left corner of the 
Console.

5. Select Configuration > Tuning.

6. Edit the percentage of Java reader threads in the Socket Readers field. The 
number of Java socket readers is computed as a percentage of the number of total 
execute threads (as shown in the Execute Threads field).

7. Click Save to save your changes.

8. Click Activate Changes in the top left corner of the Console to activate your 
changes.

10.2.16.1.3 Set the Number of Reader Threads on Client Machines   On client machines, you 
can configure the number socket reader threads in the Java Virtual Machine (JVM) that 
runs the client. Specify the socket readers by defining the 
-Dweblogic.ThreadPoolSize=value and 
-Dweblogic.ThreadPoolPercentSocketReaders=value options in the Java command 
line for the client.

10.2.16.2 Configure Multicast Time-To-Live (TTL)
If your cluster spans multiple subnets in a WAN, the value of the Multicast 
Time-To-Live (TTL) parameter for the cluster must be high enough to ensure that 
routers do not discard multicast packets before they reach their final destination. The 
Multicast TTL parameter sets the number of network hops a multicast message makes 
before the packet can be discarded. Configuring the Multicast TTL parameter 
appropriately reduces the risk of losing the multicast messages that are transmitted 
among server instances in the cluster. 

For more information about planning your network topology to ensure that multicast 
messages are reliably transmitted see Section 3.1.1.1.1, "If Your Cluster Spans Multiple 
Subnets In a WAN."



Cluster Implementation Procedures

10-24 Administering Clusters for Oracle WebLogic Server 12.1.3

To configure the Multicast TTL for a cluster, change the Multicast TTL value on the 
Multicast page for the cluster in the WebLogic Server Administration Console. The 
config.xml excerpt below shows a cluster with a Multicast TTL value of three. This 
value ensures that the cluster's multicast messages can pass through three routers 
before being discarded:

<Cluster
Name="testcluster"
ClusterAddress="wanclust"
MulticastAddress="wanclust-multi"
MulticastTTL="3"
/>

10.2.16.3 Configure Multicast Buffer Size
If multicast storms occur because server instances in a cluster are not processing 
incoming messages on a timely basis, you can increase the size of multicast buffers. 
For information on multicast storms, see Section 3.1.1.1.4, "If Multicast Storms Occur."

TCP/IP kernel parameters can be configured with the UNIX ndd utility. The udp_max_
buf parameter controls the size of send and receive buffers (in bytes) for a UDP socket. 
The appropriate value for udp_max_buf varies from deployment to deployment. If you 
are experiencing multicast storms, increase the value of udp_max_buf by 32K, and 
evaluate the effect of this change. 

Do not change udp_max_buf unless necessary. Before changing udp_max_buf, read the 
Sun warning in the "UDP Parameters with Additional Cautions" section in the 
"Internet Protocol Suite Tunable Parameters" chapter in Solaris Tunable Parameters 
Reference Manual at 
http://docs.oracle.com/docs/cd/E19253-01/817-0404/chapter4-70/index.html.

10.2.16.4 Configure Multicast Data Encryption
WebLogic Server allows you to encrypt multicast messages that are sent between 
clusters. You can enable this option by checking Enable Multicast Data Encryption 
from the WebLogic Server Administration Console by navigating to the Environment 
> Clusters > cluster_name > Multicast node and selecting the Advanced options.

Only the data portion of the multicast message is encrypted. Information contained in 
the multicast header is not encrypted.

10.2.16.5 Configure Machine Names
Configure a machine name if:

■ Your cluster will span multiple machines, and multiple server instances will run 
on individual machines in the cluster, or

■ You plan to run Node Manager on a machine that does not host an Administration 
Server

Note: When relying upon the Multicast TTL value, it is important to 
remember that within a clustered environment it is possible that 
timestamps across servers may not always be synchronized. This can 
occur in replicated HTTP sessions and EJBs for example.

When the ClusterDebug flag is enabled, an error is printed to the 
server log when cluster members clocks are not synchronized.



Cluster Implementation Procedures

Setting up WebLogic Clusters 10-25

WebLogic Server uses configured machine names to determine whether or not two 
server instances reside on the same physical hardware. Machine names are generally 
used with machines that host multiple server instances. If you do not define machine 
names for such installations, each instance is treated as if it resides on separate 
physical hardware. This can negatively affect the selection of server instances to host 
secondary HTTP session state replicas, as described in Section 6.2.1.2, "Using 
Replication Groups."

10.2.16.6 Configuration Notes for Multi-Tier Architecture
If your cluster has a multi-tier architecture, see the configuration guidelines in 
Section 9.3.4, "Configuration Considerations for Multi-Tier Architecture."

10.2.16.7 Enable URL Rewriting 
In its default configuration, WebLogic Server uses client-side cookies to keep track of 
the primary and secondary server instance that host the client's servlet session state. If 
client browsers have disabled cookie usage, WebLogic Server can also keep track of 
primary and secondary server instances using URL rewriting. With URL rewriting, 
both locations of the client session state are embedded into the URLs passed between 
the client and proxy server. To support this feature, you must ensure that URL 
rewriting is enabled on the WebLogic Server cluster. For instructions on how to enable 
URL rewriting, see "Using URL Rewriting Instead of Cookies" in Developing Web 
Applications, Servlets, and JSPs for Oracle WebLogic Server.



Cluster Implementation Procedures

10-26 Administering Clusters for Oracle WebLogic Server 12.1.3



11

Dynamic Clusters 11-1

11Dynamic Clusters

[12] This chapter introduces dynamic clusters and how to create, configure, and use 
dynamic clusters in WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 11.1, "What Are Dynamic Clusters?"

■ Section 11.2, "Why Do You Use Dynamic Clusters?"

■ Section 11.3, "How Do Dynamic Clusters Work?"

■ Section 11.4, "Limitations and Considerations When Using Dynamic Clusters"

■ Section 11.5, "Dynamic Clusters Example"

11.1 What Are Dynamic Clusters?
Dynamic clusters consist of server instances that can be dynamically scaled up to meet 
the resource needs of your application. A dynamic cluster uses a single server 
template to define configuration for a specified number of generated (dynamic) server 
instances. When you create a dynamic cluster, the dynamic servers are preconfigured 
and automatically generated for you, enabling you to easily scale up the number of 
server instances in your dynamic cluster when you need additional server capacity. 
You can simply start the dynamic servers without having to first manually configure 
and add them to the cluster. 

If you need additional server instances on top of the number you originally specified, 
you can increase the maximum number of servers instances (dynamic) in the dynamic 
cluster configuration or manually add configured server instances to the dynamic 
cluster. A dynamic cluster that contains both dynamic and configured server instances 
is called a mixed cluster. 

The following table defines terminology associated with dynamic clusters:

Term Definition

dynamic cluster A cluster that contains one or more generated (dynamic) server 
instances that are based on a single shared server template.

configured cluster A cluster in which you manually configure and add each server 
instance. 

dynamic server A server instance that is generated by WebLogic Server when creating a 
dynamic cluster. Configuration is based on a shared server template.

configured server A server instance for which you manually configure attributes.

mixed cluster A cluster that contains both dynamic and configured server instances.



Why Do You Use Dynamic Clusters?

11-2 Administering Clusters for Oracle WebLogic Server 12.1.3

You cannot configure dynamic servers individually; there are no server instance 
definitions in the config.xml file when using a dynamic cluster. Therefore, you cannot 
override the server template with server-specific attributes or target applications to an 
individual dynamic server instance. Example 11–1 shows an example config.xml file 
that includes a dynamic cluster. 

Example 11–1 Example config.xml File Using a Dynamic Cluster

<server-template> 
    <name>dynamic-cluster-server-template</name>
    <accept-backlog>2000</accept-backlog>
    <auto-restart>true</auto-restart>
    <restart-max>10</restart-max>
    <startup-timeout>600</startup-timeout>
</server-template>
 
<cluster>
    <name>dynamic-cluster</name>
    <dynamic-servers>
      <server-template>dynamic-cluster-server-template</server-template>
      <maximum-dynamic-server-count>10</maximum-dynamic-server-count>
      <calculated-machine-names>true</calculated-machine-names>
      <machine-name-match-expression>dyn-machine*</machine-name-match-expression>
      <server-name-prefix>dynamic-server-</server-name-prefix>
    </dynamic-servers>
</cluster>

11.2 Why Do You Use Dynamic Clusters?
With dynamic clusters, you can easily scale up your cluster when you need additional 
server capacity by simply starting one or more of the preconfigured dynamic server 
instances. You do not need to manually configure a new server instance and add it to 
the cluster or perform a system restart.

11.3 How Do Dynamic Clusters Work?
The following sections describe using dynamic clusters:

■ Creating and Configuring Dynamic Clusters

■ Using Server Templates

■ Calculating Server-Specific Attributes

■ Starting and Stopping Servers in Dynamic Clusters

■ Using Whole Server Migration with Dynamic Clusters

■ Expanding or Reducing Dynamic Clusters

■ Deploying Applications to Dynamic Clusters

server template A prototype server definition that contains common, non-default 
settings and attributes that can be assigned to a set of server instances, 
which then inherit the template configuration. For dynamic clusters, 
the server template is used to generate the dynamic servers. See "Server 
Templates" in Understanding Domain Configuration for Oracle WebLogic 
Server.

Term Definition



How Do Dynamic Clusters Work?

Dynamic Clusters 11-3

■ Using WebLogic Web Server Plug-Ins with Dynamic Clusters

11.3.1 Creating and Configuring Dynamic Clusters
When you create a dynamic cluster, you perform the following actions: 

■ specify the number of server instances you anticipate needing at peak load

■ create or select the server template upon which you want to base server 
configuration

■ define how WebLogic Server should calculate server-specific attributes

WebLogic Server then generates the specified number of dynamic server instances and 
applies the calculated attribute values to each dynamic server instance.

You create dynamic clusters using WebLogic Scripting Tool (WLST) or the WebLogic 
Server Administration Console. Example 11–2 demonstrates using WLST. For 
information about using the WebLogic Server Administration Console, see "Create 
dynamic clusters" in the Oracle WebLogic Server Administration Console Online Help. 
When creating a dynamic cluster in the WebLogic Server Administration Console, 
WebLogic Server creates the server template, dynamic cluster, and specified number of 
server instances for you. You do not have to specify them individually. You can 
configure dynamic clusters using any of the administration tools listed in "Summary of 
System Administration Tools and APIs" in Understanding Oracle WebLogic Server.

11.3.2 Using Server Templates
Server templates define common configuration attributes that a set of server instances 
share. Dynamic clusters use server templates for dynamic server configuration. For 
more information about server templates, see "Server Templates" in Understanding 
Domain Configuration for Oracle WebLogic Server.

11.3.3 Calculating Server-Specific Attributes
You cannot configure individual dynamic server instances or override values in the 
server template at the dynamic server level when using a dynamic cluster. 
Server-specific attributes, such as server name, machines, and listen ports, must be 
calculated using the information provided when creating the dynamic cluster.

WebLogic Server calculates and applies the following server-specific attributes using 
the instance ID of the dynamic server:

■ Server name

■ (Optional) Listen ports (clear text and SSL)

■ (Optional) Network access point listen ports

■ (Optional) Machines or virtual machines

Note: Ensure you have the performance capacity to handle the 
maximum number of server instances you specify in the dynamic 
cluster configuration. For information on design and deployment best 
practices when creating a cluster, see "Clustering Best Practices."



How Do Dynamic Clusters Work?

11-4 Administering Clusters for Oracle WebLogic Server 12.1.3

11.3.3.1 Calculating Server Names
The calculated server name is controlled by the ServerNamePrefix attribute. Server 
names are the specified prefix followed by the index number. For example, if the prefix 
is set to dyn-server-, then the dynamic servers will have the names dyn-server-1, 
dyn-server-2, and so on for the number of server instances you specified.

11.3.3.2 Calculating Listen Ports
The settings in the dynamic cluster configuration or server template determine the 
listen ports for the server instances in your dynamic cluster. If you do not calculate 
listen ports when creating your dynamic cluster, WebLogic Server uses the value in the 
server template. If you do not define listen ports in the dynamic cluster configuration 
or server template, WebLogic Server uses the default value. Listen port settings are 
controlled by the CalculatedListenPorts attribute. For more information about these 
settings, see "Create dynamic clusters" in the Oracle WebLogic Server Administration 
Console Online Help.

If you explicitly define a listen port for your dynamic cluster in the server template or 
the dynamic cluster configuration, that value will be used for the first generated server 
instance and incremented by one for each additional server instance. If the default 
listen port is indicated, WebLogic Server increments the "hundreds" digit by one and 
continues from there. Table 11–1 shows examples of calculated listen port values.

Table 11–1 Calculating Listen Ports

Listen Port Type
Configuration Setting in Server 
Template

Dynamic Server Listen Port 
Values

Server listen port Listen port not set dyn-server-1: 7101

dyn-server-2: 7102

...

Server listen port Listen port set to 7300 dyn-server-1: 7301

dyn-server-2: 7302

...

Server SSL listen port SSL listen port not set dyn-server-1: 8101

dyn-server-2: 8102

...

Server SSL listen port SSL listen port set to 8200 dyn-server-1: 8201

dyn-server-2: 8202

...

Server network access point listen 
port

Network access point listen port 
not set

dyn-server-1: 9101

dyn-server-2: 9102

...

Server network access point listen 
port

Network access point listen port 
set to 9200

dyn-server-1: 9201

dyn-server-2: 9202

...

Server replication ports Replication ports set to 8100 dyn-server-1: 8100

dyn-server-2: 8101

...

Server replication ports Replication ports set to 8100-8104 dyn-server-1: 8100-8104

dyn-server-2: 8105-8109

dyn-server-3: 8110-8114

...



How Do Dynamic Clusters Work?

Dynamic Clusters 11-5

You can override listen ports at server startup by using system properties. For 
example: 

To override the listen port:

          -Dweblogic.ListenPort=7305

To override the SSL listen port:

          -Dweblogic.ssl.ListenPort=7403

To override the listen port of the network access point named mynap:

          -Dweblogic.networkaccesspoint.mynap.ListenPort=8201

11.3.3.3 Calculating Machine Names
The dynamic cluster attributes CalculatedMachineNames and 
MachineNameMatchExpression control how server instances in a dynamic cluster are 
assigned to a machine. If the CalculatedMachineNames attribute is set to false, then 
the dynamic servers will not be assigned to a machine. If the CalculatedMachineNames 
attribute is set to true, then the MachineNameMatchExpression attribute is used to 
select the set of machines used for the dynamic servers. If the 
MachineNameMatchExpression attribute is not set, then all of the machines in the 
domain are selected. Assignments are made using a round robin algorithm. Table 11–2 
shows examples of machine assignments in a dynamic cluster.

11.3.4 Starting and Stopping Servers in Dynamic Clusters
You can start and stop server instances in dynamic clusters using the same methods 
you use to start and stop server instances in configured clusters: the WebLogic Server 
Administration Console, WLST, Node Manager, or start scripts. You may have to 
follow several other procedures before you can start server instances, based on the 
startup method you choose and the tasks you have already performed. For more 
information, see "Starting and Stopping Servers" in Administering Server Startup and 
Shutdown for Oracle WebLogic Server 12.1.3.

Table 11–2 Calculating Machine Names

Machines in Domain
MachineNameMatchExpression 
Configuration

Dynamic Server Machine 
Assignments

M1, M2 Not set dyn-server-1: M1

dyn-server-2: M2

dyn-server-3: M1

...

Ma1, Ma2, Mb1, Mb2 Ma1, Mb* dyn-server-1: Ma1

dyn-server-2: Mb1

dyn-server-3: Mb2

dyn-server-4: Ma1

...

Note: Before you begin, ensure that WebLogic Server is installed on 
all hosts where you want to run your server instances. If you want to 
use Node Manager to start and stop your server instances, then you 
must also run Node Manager on these hosts.



How Do Dynamic Clusters Work?

11-6 Administering Clusters for Oracle WebLogic Server 12.1.3

11.3.5 Using Whole Server Migration with Dynamic Clusters
WebLogic Server supports whole server migration with dynamic and mixed clusters. 
While configuration differs depending on the cluster type, whole server migration 
behavior is the same for all clusters. For information on how to enable whole server 
migration for dynamic clusters, see "Whole Server Migration with Dynamic and Mixed 
Clusters."

11.3.6 Expanding or Reducing Dynamic Clusters
When you create a dynamic cluster, WebLogic Server generates the number of 
dynamic servers you specify. Before you decide upon the number of server instances, 
ensure you have the performance capacity to handle the desired number. 

The dynamic server instances are based on the configuration you specified in the 
server template and calculated attributes. When you need to expand your cluster, start 
any number of the preconfigured dynamic servers. To shrink your dynamic cluster, 
shut down the excess number of dynamic servers.

If you need additional server capacity on top of the number of server instances you 
originally specified, you can increase the maximum number of dynamic servers in the 
dynamic cluster configuration. To reduce the number of server instances in the 
dynamic cluster, decrease the value of the maximum number of dynamic servers 
attribute. Before lowering this value, shut down the server instances you plan to 
remove.

11.3.7 Deploying Applications to Dynamic Clusters
When deploying applications to a dynamic cluster, you must target the application to 
the entire cluster. You cannot target an application to an individual server instance 
because dynamic clusters do not have individual dynamic server configuration. When 
you deploy an application to the dynamic cluster, all servers in the cluster, both 
dynamic and static, will deploy the application.

To deploy an application to a dynamic cluster, follow the same process as deploying to 
configured clusters. For more information, see "Deploy Applications" and "Application 
Deployment for Clustered Configurations."

For a broad discussion of deployment topics, see Deploying Applications to Oracle 
WebLogic Server. 

11.3.8 Using WebLogic Web Server Plug-Ins with Dynamic Clusters
Dynamic clusters provide the same WebLogic Web server plug-in support as 
configured clusters. By default, a Web server plug-in uses the DynamicServerList 
parameter to receive information about cluster changes, such as new server instances 
in a configured or dynamic cluster. Upon recognizing a cluster membership change, 
the plug-in automatically updates its server list. 

For general information about using Web server plug-ins with WebLogic Server, see 
Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3. For more information about the 
DynamicServerList parameter or the WebLogicCluster parameter (required when 
proxying to a WebLogic Server cluster), see "General Parameters for Web Server 
Plug-Ins" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3.



Dynamic Clusters Example

Dynamic Clusters 11-7

11.4 Limitations and Considerations When Using Dynamic Clusters
When using dynamic clusters with WebLogic Server, note the following limitations 
and considerations:

■ You cannot override values in the server template at the individual dynamic 
server level because there are no individual server definitions in the config.xml 
file when using dynamic clusters.

■ You must ensure you have the performance capacity to handle the maximum 
number of server instances you specify in the dynamic cluster configuration.

■ Dynamic clusters do not support targeting to any individual dynamic server 
instance. Therefore, the following cannot be used with dynamic clusters:

– Deployments that cannot target to a cluster, including migratable targets. 
Therefore, you cannot create a migratable target for a dynamic cluster.

– Configuration attributes that refer to individual servers. This includes JTA 
migratable targets, constrained candidate servers, user preferred server, all 
candidate servers, and hosting server. Therefore, you cannot specify a 
dynamic server as the user preferred server for a migratable target.

– Configuration attributes that are server specific. This includes replication 
groups, preferred secondary groups, and candidate machines (server level).

– Constrained candidates for singleton services. You cannot limit a singleton 
service to dynamic servers.

■ For whole server migration with a dynamic cluster, you cannot limit the list of 
candidate machines that the dynamic cluster specifies, as the server template does 
not list candidate machines.

■ Dynamic clusters also have JMS limitations. For more information, see "Simplified 
JMS Cluster Configuration" in Administering JMS Resources for Oracle WebLogic 
Server.

11.5 Dynamic Clusters Example
Example 11–2 demonstrates using WLST to create a dynamic cluster. The example 
includes inline comments and describes how to: 

1. Create a server template and specify the desired server attributes in the server 
template.

2. Create a dynamic cluster and specify the desired cluster attributes.

3. Set the server template for the dynamic cluster.

4. Set the maximum number of server instances you want in the dynamic cluster.

5. Start and stop the server instances in the dynamic cluster.

Example 11–2 Creating Dynamic Clusters with WLST

#
# This example demonstrates the WLST commands needed to create a dynamic cluster
# (dynamic-cluster). The dynamic cluster uses a server template     
# dynamic-cluster-server-template. To keep this example simple, error handling
# was omitted.
#
connect()
edit()



Dynamic Clusters Example

11-8 Administering Clusters for Oracle WebLogic Server 12.1.3

startEdit()
#
# Create the server template for the dynamic servers and set the attributes for
# the dynamic servers. Setting the cluster is not required.
#
dynamicServerTemplate=cmo.createServerTemplate("dynamic-cluster-server-template")
dynamicServerTemplate.setAcceptBacklog(2000)
dynamicServerTemplate.setAutoRestart(true)
dynamicServerTemplate.setRestartMax(10)
dynamicServerTemplate.setStartupTimeout(600)
#
# Create the dynamic cluster, set the number of dynamic servers, and designate the 
server template.
#
dynCluster=cmo.createCluster("dynamic-cluster")
dynServers=dynCluster.getDynamicServers()
dynServers.setMaximumDynamicServerCount(10)
dynServers.setServerTemplate(dynamicServerTemplate)
#
# Dynamic server names will be dynamic-server-1, dynamic-server-2, ...,
# dynamic-server-10.
#
dynServers.setServerNamePrefix("dynamic-server-")
#
# Listen ports and machines assignments will be calculated. Using a round-robin
# algorithm, servers will be assigned to machines with names that start with
# dyn-machine.
#
dynServers.setCalculatedMachineNames(true)
dynServers.setMachineNameMatchExpression("dyn-machine*")
#
# activate the changes
#
activate()

The resulting config.xml file is: 

<server-template> 
    <name>dynamic-cluster-server-template</name>
    <accept-backlog>2000</accept-backlog>
    <auto-restart>true</auto-restart>
    <restart-max>10</restart-max>
    <startup-timeout>600</startup-timeout>
</server-template>

<cluster>
    <name>dynamic-cluster</name>
    <dynamic-servers>
      <server-template>dynamic-cluster-server-template</server-template>
      <maximum-dynamic-server-count>10</maximum-dynamic-server-count>
      <calculated-machine-names>true</calculated-machine-names>
      <machine-name-match-expression>dyn-machine*</machine-name-match-expression>
      <server-name-prefix>dynamic-server-</server-name-prefix>
    </dynamic-servers>
</cluster>



12

Configuring and Managing Coherence Clusters 12-1

12Configuring and Managing Coherence Clusters

[13] This chapter provides instructions for defining Coherence clusters in a WebLogic 
Server domain and how to associate a Coherence Cluster with multiple WebLogic 
Server clusters in WebLogic Server 12.1.3. The instructions in this chapter assume that 
a WebLogic Server domain has already been created.

This chapter includes the following sections:

■ Section 12.1, "Overview of Coherence Clusters"

■ Section 12.2, "Setting Up a Coherence Cluster"

■ Section 12.3, "Creating Coherence Deployment Tiers"

■ Section 12.4, "Configuring a Coherence Cluster"

■ Section 12.5, "Configuring Managed Coherence Servers"

■ Section 12.6, "Using a Single-Server Cluster"

■ Section 12.7, "Using WLST (Offline) for Coherence Cluster Setup"

12.1 Overview of Coherence Clusters
Coherence clusters consist of multiple managed Coherence server instances that 
distribute data in-memory to increase application scalability, availability, and 
performance. An application interacts with the data in a local cache and the 
distribution and backup of the data is automatically performed across cluster 
members.

Coherence clusters are different than WebLogic Server clusters. They use different 
clustering protocols and are configured separately. Multiple WebLogic Server clusters 
can be associated with a Coherence cluster and a WebLogic Server domain typically 
contains a single Coherence cluster. Managed servers that are configured as Coherence 
cluster members are referred to as managed Coherence servers.

Managed Coherence servers can be explicitly associated with a Coherence cluster or 
they can be associated with a WebLogic Server cluster that is associated with a 
Coherence cluster. Managed Coherence servers are typically setup in tiers that are 
based on their type: a data tier for storing data, an application tier for hosting 
applications, and a proxy tier that allows external clients to access caches.

Figure 12–1 shows a conceptual view of a Coherence cluster in a WebLogic Server 
domain:



Setting Up a Coherence Cluster

12-2 Administering Clusters for Oracle WebLogic Server 12.1.3

Figure 12–1 Conceptual View of a Coherence Domain Topology

12.2 Setting Up a Coherence Cluster
A WebLogic Server domain typically contains a single Coherence cluster. The cluster is 
represented as a single system-level resource (CoherenceClusterSystemResource). A 
CoherenceClusterSystemResource instance is created using the WebLogic Server 
Administration Console or WLST.

A Coherence cluster can contain any number of managed Coherence servers. The 
servers can be standalone managed servers or can be part of a WebLogic Server cluster 
that is associated with a Coherence cluster. Typically, multiple WebLogic Server 
clusters are associated with a Coherence cluster. For details on creating WebLogic 
Server clusters for use by Coherence, see Section 12.3, "Creating Coherence 
Deployment Tiers."

12.2.1 Define a Coherence Cluster Resource
To define a Coherence cluster resource:

Note: Cloning a managed Coherence server does not clone its 
association with a Coherence cluster. The managed server will not be a 
member of the Coherence cluster. You must manually associate the 
cloned managed server with the Coherence cluster.



Setting Up a Coherence Cluster

Configuring and Managing Coherence Clusters 12-3

1. From the WebLogic Server Administration Console Domain Structure pane, 
expand Environment and click Coherence Clusters.

2. From the Summary of Coherence Clusters page, click New.

3. From the Create a Coherence Cluster Configuration page, enter a name for the 
cluster using the Name field. Click Next.

4. From the Coherence Cluster Addressing section, select the clustering mode or 
keep the default settings. The default settings are only recommended for 
development and testing environments. When using Unicast, select a default port 
to be used by all cluster members (typically 8088). When using multicast, select a 
default address and port to be used by all cluster. For details on configuring the 
clustering mode, see Section 12.4.3, "Configure Cluster Communication."

5. From the Coherence Cluster Members section, click to select the managed 
Coherence servers or WebLogic Server clusters that are to be part of the Coherence 
cluster or skip this section if managed Coherence servers and WebLogic Clusters 
are yet to be defined.

6. Click Finish. The Summary of Coherence Clusters screen displays and the 
Coherence Clusters table lists the cluster resource.

12.2.2 Create Standalone Managed Coherence Servers
Managed Coherence servers are managed server instances that are associated with a 
Coherence cluster. Managed Coherence servers join together to form a Coherence 
cluster and are often referred to as cluster members. Cluster members have seniority 
and the senior member performs cluster tasks (for example, issuing the cluster heart 
beat).

Managed Coherence servers are distinguished by their role in the cluster. A best 
practice is to use different managed server instances (and preferably different 
WebLogic Server clusters) for each cluster role.

■ storage-enabled – a managed Coherence server that is responsible for storing data 
in the cluster. Coherence applications are packaged as Grid ARchives (GAR) and 
deployed on storage-enabled managed Coherence servers.

■ storage-disabled – a managed Coherence server that is not responsible for storing 
data and is used to host Coherence applications (cache clients). A Coherence 

Note:

■ Managed Coherence servers and standalone Coherence cluster 
members (those that are not managed within a WebLogic Server 
domain) can join the same cluster. However, standalone cluster 
members cannot be managed from within a WebLogic Server 
domain; operational configuration and application lifecycles must 
be manually administered and monitored.

■ Managed Coherence servers are not the same as ActiveCache 
Coherence servers, which were available in previous versions of 
WebLogic Server. ActiveCache Coherence servers are deprecated 
and only supported for backwards compatibility.

■ The Administration Server is typically not used as a managed 
Coherence server in a production environment.



Creating Coherence Deployment Tiers

12-4 Administering Clusters for Oracle WebLogic Server 12.1.3

application GAR is packaged within an EAR and deployed on storage-disabled 
managed Coherence servers.

■ proxy – a managed Coherence server that is storage-disabled and allows external 
clients (non-cluster members) to use a cache. A Coherence application GAR is 
deployed on managed Coherence proxy servers.

To create managed Coherence servers:

1. From the WebLogic Server Administration Console Domain Structure pane, 
expand Environment and click Servers.

2. Click New to create a new managed server.

3. From the Create a New Server page, enter the server's properties as required.

4. Select whether to make the server part of a WebLogic Server cluster. For details on 
creating WebLogic Server clusters for use as a Coherence deployment tier, see 
Section 12.3, "Creating Coherence Deployment Tiers."

5. Click Finish. The Summary of Servers page displays and the new server is listed.

6. Select the new server to configure its settings.

7. From the Coherence tab, use the Coherence Cluster drop-down list and select a 
Coherence cluster to associate it with this managed server. By default, the 
managed server is a storage-enabled Coherence member as indicated by the Local 
Storage Enabled field. For details on changing managed Coherence settings, see 
Section 12.5, "Configuring Managed Coherence Servers."

8. Click Save. The Summary of Servers page displays.

9. From the Summary of Servers page, click the Control tab and start the server.

12.3 Creating Coherence Deployment Tiers
Coherence supports different topologies within a WebLogic Server domain to provide 
varying levels of performance, scalability, and ease of use. For example, during 
development, a single standalone managed server instance may be used as both a 
cache server and a cache client. The single-server topology is easy to setup and use, 
but does not provide optimal performance or scalability. For production, Coherence is 
typically setup using WebLogic Server Clusters. A WebLogic Server cluster is used as a 
Coherence data tier and hosts one or more cache servers; a different WebLogic Server 
cluster is used as a Coherence application tier and hosts one or more cache clients; and 
(if required) different WebLogic Server clusters are used for the Coherence proxy tier 
that hosts one or more managed Coherence proxy servers and the Coherence extend 
client tier that hosts extend clients. The tiered topology approach provides optimal 
scalability and performance.

The instructions in this section use both the Clusters Settings page and Servers Settings 
page in the WebLogic Server Administration Console to create Coherence deployment 
tiers. WebLogic Server clusters and managed servers instances can be associated with 
a Coherence cluster resource using the ClusterMBean and ServerMBean MBeans, 
respectively. Managed servers that are associated with a WebLogic Server cluster 
inherit the cluster's Coherence settings. However, the settings may not be reflected in 
the Servers Settings page.

12.3.1 Configuring and Managing a Coherence Data Tier
A Coherence Data tier is a WebLogic Server cluster that is associated with a Coherence 
cluster and hosts any number of storage-enabled managed Coherence servers. 



Creating Coherence Deployment Tiers

Configuring and Managing Coherence Clusters 12-5

Managed Coherence servers in the data tier store and distribute data (both primary 
and backup) on the cluster. The number of managed Coherence servers that are 
required in a data tier depends on the expected amount of data that is stored in the 
Coherence cluster and the amount of memory available on each server. In addition, a 
cluster must contain a minimum of four physical computers to avoid the possibility of 
data loss during a computer failure.

Coherence artifacts (such as Coherence configuration files, POF serialization classes, 
filters, entry processors, and aggregators) are packaged as a GAR and deployed on the 
data tier. For details on packaging and deploying Coherence applications, see 
Developing Oracle Coherence Applications for Oracle WebLogic Server. For details on 
calculating cache size and hardware requirements, see the production checklist in 
Administering Oracle Coherence.

12.3.1.1 Create a Coherence Data Tier
To create a Coherence data tier:

1. Create a WebLogic Server cluster. For details, see Chapter 10, "Setting up 
WebLogic Clusters."

2. From the Summary of Clusters page, select the cluster from the Clusters table to 
configure it.

3. From the Coherence tab, use the Coherence Cluster drop-down list and select a 
Coherence cluster to associate it with this WebLogic Server cluster. By default, the 
managed servers assigned to this WebLogic Server cluster will be storage-enabled 
Coherence members as indicated by the Local Storage Enabled field.

12.3.1.2 Create Managed Coherence Servers for a Data Tier
To create managed servers for a Coherence data tier:

1. From the WebLogic Server Administration Console Domain Structure pane, 
expand Environment and, click Servers.

2. Click New to create a new managed server.

3. From the Create a New Server page, enter the server's properties as required.

4. Click the Yes option to add the server to an existing cluster and use the drop-down 
list to select the data tier WebLogic Server cluster. The managed server inherits the 
Coherence settings from the data tier WebLogic Server cluster.

5. Click Finish. The Summary of Servers page displays and the new server is listed.

6. Repeat these steps to create additional managed servers as required.

7. From the Control tab, select the servers to start and click Start.

12.3.2 Configuring and Managing a Coherence Application Tier
A Coherence Application tier is a WebLogic Server cluster that is associated with a 
Coherence cluster and hosts any number of storage-disabled managed Coherence 
servers. Managed Coherence servers in the application tier host applications (cache 
factory clients) and are Coherence cluster members. Multiple application tiers can be 
created for different applications.

Clients in the application tier are deployed as EARs and implemented using Java EE 
standards such as servlet, JSP, and EJB. Coherence artifacts (such as Coherence 
configuration files, POF serialization classes, filters, entry processors, and aggregators) 
must be packaged as a GAR and also deployed within an EAR. For details on 



Creating Coherence Deployment Tiers

12-6 Administering Clusters for Oracle WebLogic Server 12.1.3

packaging and deploying Coherence applications, see Developing Oracle Coherence 
Applications for Oracle WebLogic Server.

12.3.2.1 Create a Coherence Application Tier
To create a Coherence application tier:

1. Create a WebLogic Server cluster. For details, see Chapter 10, "Setting up 
WebLogic Clusters."

2. From the Summary of Clusters page, select the cluster from the Clusters table to 
configure it.

3. From the Coherence tab, use the Coherence Cluster drop-down list and select a 
Coherence cluster to associate it with this WebLogic Server cluster.

4. Click the Local Storage Enabled check box to remove the check mark and disable 
storage on the application tier. The managed Coherence servers assigned to this 
WebLogic Server cluster will be storage-disabled Coherence members (cache 
factory clients). Servers in the application tier should never be used to store cache 
data. Storage-enabled servers require resources to store and distribute data and 
can adversely affect client performance.

5. Click Save.

12.3.2.2 Create Managed Coherence Servers for an Application Tier
To create managed servers for a Coherence application tier:

1. From the WebLogic Server Administration Console Domain Structure pane, 
expand Environment and, click Servers.

2. Click New to create a new managed server.

3. From the Create a New Server page, enter the server's properties as required.

4. Click the Yes option to add the server to an existing cluster and use the drop-down 
list to select the application tier WebLogic Server cluster. The managed server 
inherits the Coherence settings from the data tier WebLogic Server cluster.

5. Click Finish. The Summary of Servers page displays and the new server is listed.

6. Repeat these steps to create additional managed servers as required.

7. From the Control tab, select the servers to start and click Start.

12.3.3 Configuring and Managing a Coherence Proxy Tier
A Coherence proxy tier is a WebLogic Server cluster that is associated with a 
Coherence cluster and hosts any number of managed Coherence proxy servers. 
Managed Coherence proxy servers allow Coherence*Extend clients to use Coherence 
caches without being cluster members. The number of managed Coherence proxy 
servers that are required in a proxy tier depends on the number of expected clients. At 
least two proxy servers must be created to allow for load balancing; however, 
additional servers may be required when supporting a large number of client 
connections and requests. 

For details on Coherence*Extend and creating extend clients, see Developing Remote 
Clients for Oracle Coherence.

12.3.3.1 Create a Coherence Proxy Tier
To create a Coherence proxy tier:



Creating Coherence Deployment Tiers

Configuring and Managing Coherence Clusters 12-7

1. Create a WebLogic Server cluster. For details, see Chapter 10, "Setting up 
WebLogic Clusters."

2. From the Summary of Clusters page, select the cluster from the Clusters table to 
configure it.

3. From the Coherence tab, use the Coherence Cluster drop-down list and select a 
Coherence cluster to associate it with this WebLogic Server cluster.

4. Click the Local Storage Enabled check box to remove the check mark and disable 
storage on the proxy tier. Proxy servers should never be used to store cache data. 
Storage-enabled cluster members can be adversely affected by a proxy service, 
which requires additional resources to handle client loads.

5. Click Save.

12.3.3.2 Create Managed Coherence Servers for a Proxy Tier
To create managed servers for a Coherence proxy tier:

1. From the WebLogic Server Administration Console Domain Structure pane, 
expand Environment and, click Servers.

2. Click New to create a new managed server.

3. From the Create a New Server page, enter the server's properties as required.

4. Click the Yes option to add the server to an existing cluster and use the drop-down 
list to select the proxy tier WebLogic Server cluster. The managed server inherits 
the Coherence settings from the data tier WebLogic Server cluster.

5. Click Finish. The Summary of Servers page displays and the new server is listed.

6. Repeat these steps to create additional managed servers as required.

7. From the Control tab, select the servers to start and click Start.

12.3.3.3 Configure Coherence Proxy Services
Coherence proxy services are clustered services that manage remote connections from 
extend clients. Proxy services are defined and configured in a 
coherence-cache-config.xml file within the <proxy-scheme> element. The definition 
includes, among other settings, the TCP listener address (IP, or DNS name, and port) 
that is used to accept client connections. For details on the <proxy-scheme> element, 
see Developing Applications with Oracle Coherence.

There are two ways to setup proxy services: using a name service and using an 
address provider. The naming service provides an efficient setup and is typically 
preferred in a Coherence proxy tier.

12.3.3.3.1 Using a Name Service  A name service is a specialized listener that allows 
extend clients to connect to a proxy service by name. Clients connect to the name 
service, which returns the addresses of all proxy services on the cluster.

A name service automatically starts on port 8088 (the same default port that the TCMP 
socket uses) when a proxy service is configured on a managed Coherence proxy server. 
In addition, multiple proxy services can also use the same listening port that is used by 

Note: If a domain includes multiple tiers (for example, a data tier, an 
application tier, and a proxy tier), then the proxy tier should be started 
first, before a client can connect to the proxy.



Creating Coherence Deployment Tiers

12-8 Administering Clusters for Oracle WebLogic Server 12.1.3

the TCMP socket. The reuse of the same port minimizes the number of ports that are 
used by Coherence and simplifies firewall configuration.

To configure a proxy service and enable the name service on the default TCMP port:

1. Edit the coherence-cache-config.xml file and create a <proxy-scheme> definition 
and do not explicitly define a socket address. The following example defines a 
proxy service that is named TcpExtend which is bound to the same host and port 
that is used by TCMP and also enables a name service on the same host and port.

...
<caching-schemes>
   ...
   <proxy-scheme>
      <service-name>TcpExtend/service-name>
      <acceptor-config/>
      <autostart>true</autostart>
   </proxy-scheme>
</caching-schemes>
...

2. Deploy the coherence-cache-config.xml file to each managed Coherence proxy 
server in the Coherence proxy tier. Typically, the coherence-cache-config.xml file 
is included in a GAR file. However, for the proxy tier, use a cluster cache 
configuration file. This allows a single GAR to be deployed to the cluster and the 
proxy tier to override the coherence-cache-config.xml file that is located in the 
GAR. For details on using a cluster cache configuration file, see Section 12.4.4, 
"Overriding a Cache Configuration File."

To connect to a name service, a client's coherence-cache-config.xml file must include 
a <name-service-addresses> element, within the <tcp-initiator> element, of a 
remote cache or remote invocation definition. The <name-service-addresses> element 
provides the socket address of a name service that is on a managed Coherence proxy 
server. The following example defines a remote cache definition and specifies a name 
service listening at host 192.168.1.5 on port 8088. The client automatically connects 
to the name service and gets a list of all managed Coherence proxy servers that contain 
a TcpExtend proxy service. The cache on the cluster must also be called TcpExtend. In 
this example, a single address is provided. A second name service address could be 
provided in case of a failure at the primary address. For details on client configuration 
and proxy service load balancing, see Developing Remote Clients for Oracle Coherence.

<remote-cache-scheme>
   <scheme-name>extend-dist</scheme-name>
   <service-name>TcpExtend</service-name>
   <initiator-config>
      <tcp-initiator>
         <name-service-addresses>
            <socket-address>
               <address>192.168.1.5</address>
               <port>8088</port>
            </socket-address>
         </name-service-addresses>
      </tcp-initiator>
   </initiator-config>
</remote-cache-scheme>



Creating Coherence Deployment Tiers

Configuring and Managing Coherence Clusters 12-9

12.3.3.3.2 Using an Address Provider  An address provider specifies the TCP listener 
address (IP, or DNS name, and port) for a proxy service. The listener address can be 
explicitly defined within a <proxy-scheme> element in a coherence-cache-config.xml 
file; however, the preferred approach is to define address providers in a cluster 
configuration file and then reference the addresses from within a <proxy-scheme> 
element. The latter approach decouples deployment configuration from application 
configuration and allows network addresses to change without having to update a 
coherence-cache-config.xml file.

To use an address provider:

1. Use the Address Providers tab on a Coherence cluster's Settings page to create 
address provider definitions. The CoherenceAddressProvidersBean MBean also 
exposes the address provider definition. An address provider contains a unique 
name in addition to the listener address for a proxy service. For example, an 
address provider called proxy1 might specify host 192.168.1.5 and port 9099 as 
the listener address.

2. Repeat step 1 and create an address provider definition for each proxy service (at 
least one for each managed Coherence proxy server).

3. For each managed Coherence proxy server, edit the coherence-cache-config.xml 
file and create a <proxy-scheme> definition and reference an address provider 
definition, by name, in an <address-provider> element. The following example 
defines a proxy service that references an address provider that is named proxy1:

...
<caching-schemes>
   <proxy-scheme>
      <service-name>TcpExtend</service-name>
      <acceptor-config>
         <tcp-acceptor>
            <address-provider>proxy1</address-provider>
         </tcp-acceptor>
      </acceptor-config>
      <autostart>true</autostart>
   </proxy-scheme>
</caching-schemes>
...

4. Deploy each coherence-cache-config.xml file to its respective managed 
Coherence proxy server. Typically, the coherence-cache-config.xml file is 
included in a GAR file. However, for the proxy tier, use a cluster cache 
configuration file. The cluster cache configuration file overrides the 
coherence-cache-config.xml file that is located in the GAR. This allows the same 
GAR to be deployed to all cluster members, but then use unique settings that are 
specific to a proxy tier. For details on using a cluster cache configuration file, see 

Note:

■ The <service-name> value must match the proxy scheme's 
<service-name> value; otherwise, a <proxy-service-name> 
element must also be provided in a remote cache and remote 
invocation scheme that contains the value of the <service-name> 
element that is configured in the proxy scheme.

■ An address provider can also be used to specify name service 
addresses.



Configuring a Coherence Cluster

12-10 Administering Clusters for Oracle WebLogic Server 12.1.3

Section 12.4.4, "Overriding a Cache Configuration File."

To connect to a proxy service, a client's coherence-cache-config.xml file must include 
a <remote-addresses> element, within the <tcp-initiator> element of a remote 
cache or remote invocation definition, that includes the address provider name. For 
example:

<remote-cache-scheme>
   <scheme-name>extend-dist</scheme-name>
   <service-name>TcpExtend</service-name>
   <initiator-config>
      <tcp-initiator>
         <remote-addresses>
            <address-provider>proxy1</address-provider>
         </remote-addresses>
      </tcp-initiator>
   </initiator-config>
</remote-cache-scheme>

Clients can also explicitly specify remote addresses. The following example defines a 
remote cache definition and specifies a proxy service on host 192.168.1.5 and port 
9099. The client automatically connects to the proxy service and uses a cache on the 
cluster named TcpExtend. In this example, a single address is provided. A second 
address could be provided in case of a failure at the primary address. For details on 
client configuration and proxy service load balancing, see Developing Remote Clients for 
Oracle Coherence.

<remote-cache-scheme>
   <scheme-name>extend-dist</scheme-name>
   <service-name>TcpExtend</service-name>
   <initiator-config>
      <tcp-initiator>
         <remote-addresses>
            <socket-address>
               <address>192.168.1.5</address>
               <port>9099</port>
            </socket-address>
         </remote-addresses>
      </tcp-initiator>
   </initiator-config>
</remote-cache-scheme>

12.4 Configuring a Coherence Cluster
A Coherence cluster resource exposes several cluster settings that can be configured 
for a specific domain. Use the following tasks to configure cluster settings: 

■ Section 12.4.1, "Adding and Removing Coherence Cluster Members"

■ Section 12.4.2, "Setting Advanced Cluster Configuration Options"

■ Section 12.4.3, "Configure Cluster Communication"

■ Section 12.4.4, "Overriding a Cache Configuration File"

■ Section 12.4.5, "Configuring Coherence Logging"

Many of the settings use default values that can be changed as required. The following 
instructions assume that a cluster resource has already been created. For details on 
creating a cluster resource, see Section 12.2, "Setting Up a Coherence Cluster." This 



Configuring a Coherence Cluster

Configuring and Managing Coherence Clusters 12-11

section does not include instructions for securing Coherence. For security details, see 
Securing Oracle Coherence.

Use the Coherence tab on the Coherence Cluster Settings page to configure cluster 
communication. The CoherenceClusterSystemResource MBean and its associated 
CoherenceClusterResource MBean expose cluster settings. The 
CoherenceClusterResource MBean provides access to multiple MBeans for 
configuring a Coherence cluster.

12.4.1 Adding and Removing Coherence Cluster Members
Any existing managed server instance can be added to a Coherence cluster. In 
addition, managed Coherence servers can be removed from a cluster. Adding and 
removing cluster members is available when configuring a Coherence Cluster and is a 
shortcut that is used instead of explicitly configuring each instance. However, when 
adding existing managed server instances, default Coherence settings may need to be 
changed. For details on configuring managed Coherence servers, see Section 12.5, 
"Configuring Managed Coherence Servers." 

Use the Member tab on the Coherence Cluster Settings page to select which managed 
servers or WebLogic Server clusters are associated with a Coherence cluster. When 
selecting a WebLogic Server cluster, it is recommended that all the managed servers in 
the WebLogic Server cluster be associated with a Coherence cluster. A 
CoherenceClusterSystemResource exposes all managed Coherence servers as targets. 
A CoherenceMemberConfig MBean is created for each managed server and exposes the 
Coherence cluster member parameters.

12.4.2 Setting Advanced Cluster Configuration Options
WebLogic Server MBeans expose a subset of Coherence operational settings that are 
sufficient for most use cases and are detailed throughout this chapter. These settings 
are available natively through the WLST utility and the WebLogic Server 
Administration Console. For more advanced use cases, use an external Coherence 
cluster configuration file (tangosol-coherence-override.xml), which provides full 
control over Coherence operational settings.

Use the General tab on the Coherence Cluster Settings page to enter the path and name 
of a cluster configuration file that is located on the administration server or use the 
CoherenceClusterSystemResource MBean. For details on using a Coherence cluster 
configuration file, see Developing Applications with Oracle Coherence, which also 
provides usage instructions for each element and a detailed schema reference.

Checking Which Operational Configuration is Used
Coherence generates an operational configuration from WebLogic Server MBeans, a 
Coherence cluster configuration file (if imported), and Coherence system properties (if 
set). The result are written to the managed Coherence server log if the system property 
weblogic.debug.DebugCoherence=true is set. If you use the WebLogic start-up scripts, 
you can use the JAVA_PROPERTIES environment variable. For example, 

Note: The use of an external cluster configuration file is only 
recommended for operational settings that are not available through 
the provided MBeans. That is, avoid configuring the same operational 
settings in both an external cluster configuration file and through the 
MBeans.



Configuring a Coherence Cluster

12-12 Administering Clusters for Oracle WebLogic Server 12.1.3

export JAVA_PROPERTIES=-Dweblogic.debug.DebugCoherence=true

12.4.3 Configure Cluster Communication
Cluster members communicate using the Tangosol Cluster Management Protocol 
(TCMP). The protocol operates independently of the WLS cluster protocol. TCMP is an 
IP-based protocol for discovering cluster members, managing the cluster, provisioning 
services, and transmitting data. TCMP can be transmitted over different transport 
protocols and can use both multicast and unicast. By default, TCMP is transmitted 
over UDP and uses unicast. The use of different transport protocols and multicast 
requires support from the underlying network.

Use the General tab on the Coherence Cluster Settings page to configure cluster 
communication. The CoherenceClusterParamsBean and 
CoherenceClusterWellKnownAddressesBean MBeans expose the cluster 
communication parameters.

12.4.3.1 Changing the Coherence Cluster Mode
Coherence clusters support both unicast and multicast communication. Multicast must 
be explicitly configured and is not the default option. The use of multicast should be 
avoided in environments that do not properly support or allow multicast. The use of 
unicast disables all multicast transmission and automatically uses the Coherence Well 
Known Addresses (WKA) feature to discover and communicate between cluster 
members. See "Specifying Well Known Address Members" on page 12-13.

For details on using multicast, unicast, and WKA in Coherence, see Developing 
Applications with Oracle Coherence.

Selecting Unicast For the Coherence Cluster Mode
To use unicast for cluster communication, select Unicast from the Clustering Mode 
drop-down list and enter a unicast port or keep the default port, which is zero. The 
configured port is the default port that is used by all cluster members unless a cluster 
member explicitly specifies a different port. For details on overriding the default 
unicast port on a cluster member, see Section 12.5.2, "Configure Coherence Cluster 
Member Unicast Settings." 

If the port is zero, then an offset algorithm is used to determine the unicast listen port 
as follows:

1. The managed servers in the domain are scanned to find the maximum unicast 
listen port. If the maximum port is greater than 65535, then the unicast listen port 
is set to the default port of 9321. No further processing or configuration is 
completed.

2. Round the maximum port to the next 100th. If the last two digits of the maximum 
port are greater than 75, then add another 100 to the port. After rounding up, if the 
port is 7100, the dynamic server starting port, then add 100 more to the port. 
Proceed to Step 3.

For example:

If the maximum port is 7412, then the port would be rounded up to 7500.

If the maximum port is 7482, then the port would be rounded up to 7600.

If the maximum port is 7020, then the port would be rounded up to 7200.

3. Set the Coherence unicast listen port to the first of the 100th from Step 2. For 
example, for a port value of 7500, the Coherence unicast listen port is set to 7501. 



Configuring a Coherence Cluster

Configuring and Managing Coherence Clusters 12-13

Subsequent servers on the same host are set to the next free port using the 
Coherence port auto adjustment feature.

Specifying Well Known Address Members
When unicast is enabled, use the Well Known Addresses tab to explicitly configure 
which cluster members are used as WKA members. If no WKA members are defined 
for a cluster, the system automatically assigns WKA members. It is a best practice to 
always explicitly specify WKA members when using unicast. The system assigned 
WKA member feature is only designed for testing and development on a single server 
and can result in port conflicts, because ports are chosen using an offset algorithm. 
Moreover, cluster members on different servers can fail to join a cluster if the system 
assigned WKA member settings are used.

Selecting Multicast For the Coherence Cluster Mode
To use multicast for cluster communication, select Multicast from the Clustering Mode 
drop-down list and enter a unique multicast address and port.

Use the Time To Live field to designate how far multicast packets can travel on a 
network. The time-to-live value (TTL) is expressed in terms of how many hops a 
packet survives; each network interface, router, and managed switch is considered one 
hop. The TTL value should be set to the lowest integer value that works.

12.4.3.2 Changing the Coherence Cluster Transport Protocol
The following transport protocols are supported for TCMP and are selected using the 
Transport drop-down list. The CoherenceClusterParamsBean MBean exposes the 
transport protocol setting.

■ User Datagram Protocol (UDP) – UDP is the default TCMP transport protocol and 
is used for both multicast and unicast communication. If multicast is disabled, all 
communication is done using UDP unicast.

■ Transmission Control Protocol (TCP) – The TCP transport protocol is used in 
network environments that favor TCP communication. All TCMP communication 
uses TCP if unicast is enabled. If multicast is enabled, TCP is only used for unicast 
communication and UDP is used for multicast communication.

■ Secure Sockets Layer (SSL) – The SSL/TCP transport protocol is used in network 
environments that require highly secure communication between cluster 
members. SSL is only supported with unicast communication; ensure multicast is 
disabled when using SSL. The use of SSL requires additional configuration. For 
details on securing Coherence within WebLogic Server, see Securing Oracle 
Coherence.

■ TCP Message Bus (TMB) – The TMB protocol provides support for TCP/IP.

Notes:

■ WKA members must use the same port as the unicast port.

■ WKA members must be explicitly defined in production 
environments. In production mode, a managed Coherence server 
will fail to start if WKA members have not been explicitly defined. 
The automatically assigned WKA member is a design time 
convenience and can only be used during development on a 
single server.



Configuring a Coherence Cluster

12-14 Administering Clusters for Oracle WebLogic Server 12.1.3

■ TMB with SSL (TMBS) – TMBS requires the use of an SSL socket provider. See 
Developing Applications with Oracle Coherence.

■ Sockets Direct Protocol Message Bus (SDMB) – The Sockets Direct Protocol (SDP) 
provides support for stream connections. SDMB is only valid on Exalogic.

■ SDMB with SSL (SDMBS) – SDMBS is only available for Oracle Exalogic systems 
and requires the use of an SSL socket provider. See Developing Applications with 
Oracle Coherence.

■ Infiniband Message Bus (IMB) – IMB uses an optimized protocol based on native 
InfiniBand verbs. IMB is only valid on Exalogic.

■ Lightweight Message Bus (LWMB) – LWMB uses MSGQLT/LWIPC libraries with 
IMB for Infinibus communications. LWMB is only available for Oracle Exalogic 
systems and is the default transport for both service and unicast communication. 
LWMB is automatically used as long as TCMP has not been configured with SSL.

12.4.4 Overriding a Cache Configuration File
A Coherence cache configuration file defines the caches that are used by an 
application. Typically, a cache configuration file is included in a GAR module. A GAR 
is deployed to all managed Coherence servers in the data tier and can also be deployed 
as part of an EAR to the application tier. The GAR ensures that the cache configuration 
is available on every Oracle Coherence cluster member. However, there are use cases 
that require a different cache configuration file to be used on specific managed 
Coherence servers. For example, a proxy tier requires access to all artifacts in the GAR 
but needs a different cache configuration file that defines the proxy services to start.

A cache configuration file can be associated with WebLogic clusters or managed 
Coherence servers at runtime. In this case, the cache configuration overrides the cache 
configuration file that is included in a GAR. You can also omit the cache configuration 
file from a GAR file and assign it at runtime. To override a cache configuration file at 
runtime, the cache configuration file must be bound to a JNDI name. The JNDI name is 
defined using the override-property attribute of the <cache-configuration-ref> 
element. The element is located in the coherence-application.xml file that is 
packaged in a GAR file. For details on the coherence-application.xml file, see 
Developing Oracle Coherence Applications for Oracle WebLogic Server. 

The following example defines an override property named 
cache-config/ExamplesGar that can be used to override the 
META-INF/example-cache-config.xml cache configuration file in the GAR:

...
<cache-configuration-ref override-property="cache-config/ExamplesGar">
   META-INF/example-cache-config.xml</cache-configuration-ref>
...

At runtime, use the Cache Configurations tab on the Coherence Cluster Settings page 
to override a cache configuration file. You must supply the same JNDI name that is 
defined in the override-property attribute. The cache configuration can be located on 
the administration server or at a URL. In addition, you can choose to import the file to 
the domain or use it from the specified location. Use the Targets tab to specify which 
Oracle Coherence cluster members use the cache configuration file.

The following WLST (online) example demonstrates how a cluster cache configuration 
can be overridden using a CoherenceClusterSystemResource object. 

edit()
startEdit()



Configuring a Coherence Cluster

Configuring and Managing Coherence Clusters 12-15

cd('CoherenceClusterSystemResources/myCoherenceCluster/CoherenceCacheConfigs')
create('ExamplesGar', 'CoherenceCacheConfig')
cd('ExamplesGar')
set('JNDIName', 'ExamplesGar')
cmo.importCacheConfigurationFile('/tmp/cache-config.xml')
cmo.addTarget(getMBean('/Servers/coh_server'))
save()
activate()

The WLST example creates a CoherenceCacheConfig resource as a child. The script 
then imports the cache configuration file to the domain and specifies the JNDI name to 
which the resource binds. The file must be found at the path provided. Lastly, the 
cache configuration is targeted to a specific server. The ability to target a cache 
configuration resource to certain servers or WebLogic Server clusters allows the 
application to load different configuration based on the context of the server (cache 
servers, cache clients, proxy servers, and so on).

The cache configuration resource can also be configured as a URL:

edit()
startEdit()
cd('CoherenceClusterSystemResources/myCoherenceCluster/CoherenceCacheConfigs')
create('ExamplesGar', 'CoherenceCacheConfig')
cd('ExamplesGar')
set('JNDIName', 'ExamplesGar')
set('CacheConfigurationFile', 'http://cache.locator/app1/cache-config.xml')
cmo.addTarget(getMBean('/Servers/coh_server'))
save()
activate()

12.4.5 Configuring Coherence Logging
Configure cluster logging using the WebLogic Server Administration Console's 
Logging tab that is located on the Coherence Cluster Settings page or use the 
CoherenceLoggingParamsBean MBean. For details on WebLogic Server logging, see 
Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server. Coherence 
logging configuration includes:

■ Disabling and enabling logging

■ Changing the default logger name

WebLogic Server provides two loggers that can be used for Coherence logging: the 
default com.oracle.coherence logger and the com.oracle.wls logger. The 
com.oracle.wls logger is generic and uses the same handler that is configured for 
WebLogic Server log output. The logger does not allow for Coherence-specific 
configuration. The com.oracle.coherence logger allows Coherence-specific 
configuration, which includes the use of different handlers for Coherence logs.

■ Changing the log message format

Add or remove information from a log message. A log message can include static 
text as well as parameters that are replaced at run time (for example, {date}). For 
details on supported log message parameters, see Developing Applications with 

Note: If logging is configured through a standard 
logging.properties file, then make sure the file uses the same logger 
name that is currently configured for Coherence logging.



Configuring Managed Coherence Servers

12-16 Administering Clusters for Oracle WebLogic Server 12.1.3

Oracle Coherence.

12.5 Configuring Managed Coherence Servers
Managed Coherence servers expose several cluster member settings that can be 
configured for a specific domain. Use the following tasks to configure a managed 
Coherence server:

■ Section 12.5.1, "Configure Coherence Cluster Member Storage Settings"

■ Section 12.5.2, "Configure Coherence Cluster Member Unicast Settings"

■ Section 12.5.3, "Configure a Coherence Cluster Member as a Management Node"

■ Section 12.5.4, "Configure Coherence Cluster Member Identity Settings"

■ Section 12.5.5, "Configure Coherence Cluster Member Logging Levels"

Many of the settings use default values that can be changed as required. The 
instructions in this section assume that a managed server has already been created and 
associated with a Coherence cluster. For details on creating managed Coherence 
servers, see Section 12.2.2, "Create Standalone Managed Coherence Servers."

Use the Coherence tab on a managed server's Setting page to configure Coherence 
cluster member settings. A CoherenceMemberConfig MBean is created for each 
managed server and exposes the Coherence cluster member parameters.

12.5.1 Configure Coherence Cluster Member Storage Settings
The storage settings for managed Coherence servers can be configured as required. 
Enabling storage on a server means the server is responsible for storing a portion of 
both primary and backup data for the Coherence cluster. Servers that are intended to 
store data must be configured as storage-enabled servers. Servers that host cache 
applications and cluster proxy servers should be configured as storage-disabled 
servers and are typically not responsible for storing data because sharing resource can 
become problematic and affect application and cluster performance.

Use the following fields on the Coherence tab to configure storage settings:

■ Local Storage Enabled – This field specifies whether a managed Coherence server 
to stores data. If this option is not selected, then the managed Coherence server 
does not store data and is considered a cluster client.

■ Coherence Web Local Storage Enabled – This field specifies whether a managed 
Coherence server stores HTTP session data. For details on using Coherence to 

Note: If a managed Coherence server is part of a WebLogic Server 
cluster, then the Coherence storage settings that are specified on the 
WebLogic Server cluster override the storage settings on the server. 
The storage setting is an exception to the general rule that server 
settings override WebLogic Server cluster settings. Moreover, the final 
runtime configuration is not reflected in the console. Therefore, a 
managed Coherence server may show that storage is disabled even 
though storage has been enabled through the Coherence tab for a 
WebLogic Server cluster. Always check the WebLogic Server cluster 
settings to determine whether storage has been enabled for a managed 
Coherence server.



Configuring Managed Coherence Servers

Configuring and Managing Coherence Clusters 12-17

store session data, see Administering HTTP Session Management with Oracle 
Coherence*Web.

12.5.2 Configure Coherence Cluster Member Unicast Settings
Managed Coherence servers communicate with each other using unicast 
(point-to-point) communication. Unicast is used even if the cluster is configured to use 
multicast communication. For details on unicast in Coherence, see Developing 
Applications with Oracle Coherence.

Use the following fields on the Coherence tab to configure unicast settings:

■ Unicast Listen Address – This field specifies the address on which the server 
listens for unicast communication. A cluster member attempts to obtain the IP to 
bind to using the java.net.InetAddress.getLocalHost() call. The use of 
localhost may not work on systems that define localhost as the loopback address; 
in that case, the computer name or a specific IP address must be specified. An 
address must also be explicitly specified when a computer has multiple IPs or 
NICs. The address field also supports Classless Inter-Domain Routing (CIDR) 
notation, which uses a subnet and mask pattern for a local IP address to bind to 
instead of specifying an exact IP address.

■ Unicast Listen Port – This field specifies the ports on which the server listens for 
unicast communication. A cluster member uses two unicast UDP ports: the default 
port that is configured for all cluster members (as indicated by a 0 value) and the 
next available port. For details about changing the default port that is configured 
for all cluster members, see "Selecting Unicast For the Coherence Cluster Mode" on 
page 12-12. Enter a different port if the default port is not available or select the 
Unicast Port Auto Adjust options to have a port automatically selected.

■ Unicast Port Auto Adjust – This field specifies whether the port automatically 
increments if the default port is already in use.

12.5.3 Configure a Coherence Cluster Member as a Management Node
A Coherence cluster can be managed from any JMX-compatible client such as JConsole 
or Java VisualVM. The management information includes runtime statistics and 
operational settings. The management information is specific to the Coherence 
management domain and is different than the management information that is 
provided for Coherence as part of the com.bea management domain. For a detailed 
reference of Coherence MBeans, see Managing Oracle Coherence.

One cluster member must be configured as the management node if you want to view 
Coherence management information. The management node aggregates the 
management information from all other cluster members. The Administration server 
for the WebLogic domain then integrates this information and it is made available 
through the domain runtime MBean server.

To configure a management node, select the Is Coherence Management Node field on 
the Coherence tab of a managed Coherence server. Only one managed Coherence 
server can be configured as the management node and once changed, all managed 
servers must then be restarted for the change to take effect.

At runtime, use a JMX client to connect to the domain runtime MBean server where 
the Coherence management information is located within the Coherence management 
namespace. For details about connecting to the domain runtime MBean server, see 
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.



Configuring Managed Coherence Servers

12-18 Administering Clusters for Oracle WebLogic Server 12.1.3

12.5.4 Configure Coherence Cluster Member Identity Settings
A set of identifiers are used to give a managed Coherence server an identity within the 
cluster. The identity information is used to differentiate servers and conveys the 
servers' role within the cluster. Some identifiers are also used by the cluster service 
when performing cluster tasks. Lastly, the identity information is valuable when 
displaying management information (for example, JMX) and facilitates interpreting 
log entries.

Use the following fields on the Coherence tab to configure member identity settings:

■ Site Name – This field specifies the name of the geographic site that hosts the 
managed Coherence server. The server's domain name is used if no name is 
specified. For WAN clustering, this value identifies the datacenter where the 
member is located. The site name can be used as the basis for intelligent routing, 
load balancing, and disaster recovery planning (that is, the explicit backing up of 
data on separate geographic sites). The site name also helps determine where to 
back up data when using distributed caching and the default partition assignment 
strategy. Lastly, the name is useful for displaying management information (for 
example, JMX) and interpreting log entries.

■ Rack Name – This field specifies the name of the location within a geographic site 
that the managed Coherence server is hosted at and is often a cage, rack, or 
bladeframe identifier. The rack name can be used as the basis for intelligent 
routing, load balancing, and disaster recovery planning (that is, the explicit 
backing up of data on separate bladeframes). The rack name also helps determine 
where to back up data when using distributed caching and the default partition 
assignment strategy. Lastly, the name is useful for displaying management 
information (for example, JMX) and interpreting log entries.

■ Role Name – This field specifies the managed Coherence server's role in the 
cluster. The role name allows an application to organize cluster members into 
specialized roles, such as storage-enabled or storage-disabled.

If a managed Coherence server is part of a WebLogic Server cluster, the cluster 
name is automatically used as the role name and this field cannot be set. If no 
name is provided, the default role name that is used is WebLogicServer.

12.5.5 Configure Coherence Cluster Member Logging Levels
Logging levels can be configured for each managed Coherence server. The default log 
level is D5 and can be changed using the server's Logging tab. For details on WebLogic 
Server logging, see Configuring Log Files and Filtering Log Messages for Oracle WebLogic 
Server.

To configure a managed Coherence server's logging level:

1. From the Summary of Servers screen, select a managed Coherence server.

2. On the server's settings page, select the Logging tab.

3. From the General tab, click Advanced.

4. From the Platform Logger Levels field, enter a logging level.

Value Resultant Message Displays

com.oracle.coherence=FINEST D9

com.oracle.coherence=INFO D3

D5 (Default)



Using WLST (Offline) for Coherence Cluster Setup

Configuring and Managing Coherence Clusters 12-19

5. Click Save.

12.6 Using a Single-Server Cluster
A single-server cluster is a cluster that is constrained to run on a single managed 
server instance and does not access the network. The server instance acts as a 
storage-enabled cluster member, a client, and a proxy. A single-server cluster is easy to 
setup and offers a quick way to start and stop a cluster. A single-server cluster is used 
during development and should not be used for production or testing environments.

To create a single-server cluster:

■ Define a Coherence Cluster Resource – Create a Coherence cluster and select a 
managed server instance to be a member of the cluster. The administration server 
instance can be used to facilitate setup.

■ Configure Cluster Communication – Configure the cluster and set the Time To 
Live value to 0 if using multicast communication.

■ Configure Coherence Cluster Member Unicast Settings – Configure the managed 
server instance and set the unicast address to an address that is routed to loop 
back. On most computers, setting the address to 127.0.0.1 works.

12.7 Using WLST (Offline) for Coherence Cluster Setup
The WebLogic Scripting Tool (WLST) is a command-line interface that you can use to 
automate domain configuration tasks, including configuring and managing Coherence 
clusters. For more information on WLST, see Understanding the WebLogic Scripting Tool.

The following examples demonstrate using WLST in offline mode to create and 
configure a Coherence cluster. It is assumed that a domain has already been created 
and that the examples are completed in the order in which they are presented. In 
addition, the examples only create a data tier. Additional tiers can be created as 
required. Lastly, the examples are not intended to demonstrate every Coherence 
MBean. For a complete list of Coherence MBeans, see MBean Reference for Oracle 
WebLogic Server.

readDomain('/ORACLE_HOME/user_projects/domains/base_domain')

Create a Coherence Cluster
create('myCoherenceCluster', 'CoherenceClusterSystemResource')

Create a Tier of Managed Coherence Servers 
create('coh_server1', 'Server')
cd('Server/coh_server1')
set('ListenPort', 7005)
set('ListenAddress', '192.168.0.100')
set('CoherenceClusterSystemResource', 'myCoherenceCluster')

cd('/')
create('coh_server2','Server')
cd('Server/coh_server2')
set('ListenPort', 7010)
set('ListenAddress', '192.168.0.101')
set('CoherenceClusterSystemResource', 'myCoherenceCluster')

cd('/')
create('DataTier', 'Cluster')



Using WLST (Offline) for Coherence Cluster Setup

12-20 Administering Clusters for Oracle WebLogic Server 12.1.3

assign('Server', 'coh_server1,coh_server2','Cluster','DataTier')
cd('Cluster/DataTier')
set('MulticastAddress', '237.0.0.101')
set('MulticastPort', 8050)

cd('/')
assign('Cluster','DataTier','CoherenceClusterSystemResource','myCoherenceCluster')

cd('/CoherenceClusterSystemResource/myCoherenceCluster')
set('Target', 'DataTier')

Configure Coherence Cluster Parameters
cd('CoherenceClusterSystemResource/myCoherenceCluster/CoherenceResource/
myCoherenceCluster/CoherenceClusterParams/NO_NAME_0')
set('ClusteringMode', 'unicast')
set('SecurityFrameworkEnabled','false')
set('UnicastListenAddress', '192.168.0.100')
set('UnicastListenPort', 8088)
set('UnicastPortAutoAdjust', 'true')

Configure Well Known Addresses
create('wka_config','CoherenceClusterWellKnownAddresses')
cd('CoherenceClusterWellKnownAddresses/NO_NAME_0')
 
create('WKA1','CoherenceClusterWellKnownAddress')
cd('CoherenceClusterWellKnownAddress/WKA1')
set('ListenAddress', '192.168.0.100')
set('ListenPort', 8088) 
cd('../..')

create('WKA2','CoherenceClusterWellKnownAddress')
cd('CoherenceClusterWellKnownAddress/WKA2')
set('ListenAddress', '192.168.0.101')
set('ListenPort', 8088)

Set Logging Properties
cd('/')
cd('CoherenceClusterSystemResource/myCoherenceCluster/CoherenceResource/
myCoherenceCluster')
create('log_config)','CoherenceLoggingParams')
cd('CoherenceLoggingParams/NO_NAME_0')
set('Enabled', 'true')
set('LoggerName', 'com.oracle.coherence')

Configure Managed Coherence Servers
cd('/')
cd('Server/coh_server1')
create('member_config', 'CoherenceMemberConfig')
cd('CoherenceMemberConfig/member_config')
set('LocalStorageEnabled', 'true')
set('RackName', '100A')
set('RoleName', 'Server')
set('SiteName', 'pa-1')
set('UnicastListenAddress', '192.168.0.100')
set('UnicastListenPort', 8088)



Using WLST (Offline) for Coherence Cluster Setup

Configuring and Managing Coherence Clusters 12-21

set('UnicastPortAutoAdjust', 'true')
set('ManagementProxy', 'true')

cd('/')
cd('Server/coh_server2')
create('member_config', 'CoherenceMemberConfig')
cd('CoherenceMemberConfig/member_config')
set('LocalStorageEnabled', 'true')
set('RackName', '100A')
set('RoleName', 'Server')
set('SiteName', 'pa-1')
set('UnicastListenAddress', '192.168.0.101')
set('UnicastListenPort', 8088)
set('UnicastPortAutoAdjust', 'true')

updateDomain()
closeDomain()



Using WLST (Offline) for Coherence Cluster Setup

12-22 Administering Clusters for Oracle WebLogic Server 12.1.3



13

Clustering Best Practices 13-1

13Clustering Best Practices

[14] This chapter recommends design and deployment practices that maximize the 
scalability, reliability, and performance of applications hosted by a cluster in WebLogic 
Server 12.1.3.

This chapter includes the following sections:

■ Section 13.1, "General Design Considerations"

■ Section 13.2, "Web Application Design Considerations"

■ Section 13.3, "EJB Design Considerations"

■ Section 13.4, "State Management in a Cluster"

■ Section 13.5, "Application Deployment Considerations"

■ Section 13.6, "Architecture Considerations"

■ Section 13.7, "Avoiding Problems"

13.1 General Design Considerations
The following sections describe general design guidelines for clustered applications.

13.1.1 Strive for Simplicity
Distributed systems are complicated by nature. For a variety of reasons, make 
simplicity a primary design goal. Minimize "moving parts" and do not distribute 
algorithms across multiple objects. 

13.1.2 Minimize Remote Calls
You improve performance and reduce the effects of failures by minimizing remote 
calls. 

13.1.2.1 Session Facades Reduce Remote Calls
Avoid accessing EJB entity beans from client or servlet code. Instead, use a session 
bean, referred to as a facade, to contain complex interactions and reduce calls from Web 
applications to RMI objects. When a client application accesses an entity bean directly, 
each getter method is a remote call. A session facade bean can access the entity bean 
locally, collect the data in a structure, and return it by value. 



Web Application Design Considerations

13-2 Administering Clusters for Oracle WebLogic Server 12.1.3

13.1.2.2 Transfer Objects Reduce Remote Calls
EJBs consume significant system resources and network bandwidth to execute—they 
are unlikely to be the appropriate implementation for every object in an application. 

Use EJBs to model logical groupings of an information and associated business logic. 
For example, use an EJB to model a logical subset of the line items on an invoice—for 
instance, items to which discounts, rebates, taxes, or other adjustments apply.

In contrast, an individual line item in an invoice is fine-grained—implementing it as 
an EJB wastes network resources. Implement objects that simply represents a set of 
data fields, which require only get and set functionality, as transfer objects.

Transfer objects (sometimes referred to as value objects or helper classes) are good for 
modeling entities that contain a group of attributes that are always accessed together. 
A transfer object is a serializable class within an EJB that groups related attributes, 
forming a composite value. This class is used as the return type of a remote business 
method. 

Clients receive instances of this class by calling coarse-grained business methods, and 
then locally access the fine-grained values within the transfer object. Fetching multiple 
values in one server round-trip decreases network traffic and minimizes latency and 
server resource usage. 

13.1.2.3 Distributed Transactions Increase Remote Calls
Avoid transactions that span multiple server instances. Distributed transactions issue 
remote calls and consume network bandwidth and overhead for resource 
coordination.

13.2 Web Application Design Considerations
The following sections describe design considerations for clustered servlets and JSPs.

13.2.1 Configure In-Memory Replication 
To enable automatic failover of servlets and JSPs, session state must persist in memory. 
For instructions to configure in-memory replication for HTTP session states, see 
Section 6.2.1.1, "Requirements for HTTP Session State Replication," and Section 10.2.15, 
"Configure In-Memory HTTP Replication."

13.2.2 Design for Idempotence 
Failures or impatient users can result in duplicate servlet requests. Design servlets to 
tolerate duplicate requests.

13.2.3 Programming Considerations
See Section 6.2.1.1.3, "Programming Considerations for Clustered Servlets and JSPs."

13.3 EJB Design Considerations
The following sections describe design considerations for clustered RMI objects.

13.3.1 Design Idempotent Methods
It is not always possible to determine when a server instance failed with respect to the 
work it was doing at the time of failure. For instance, if a server instance fails after 



EJB Design Considerations

Clustering Best Practices 13-3

handling a client request but before returning the response, there is no way to tell that 
the request was handled. A user that does not get a response retries, resulting in an 
additional request. 

Failover for RMI objects requires that methods be idempotent. An idempotent method 
is one that can be repeated with no negative side-effects. 

13.3.2 Follow Usage and Configuration Guidelines
Table 13–1 summarizes usage and configuration guidelines for EJBs. For a list of 
configurable cluster behaviors and resources and information on how to configure 
them, see Table 13–2.

Table 13–1 EJB Types and Guidelines

Object Type Usage Configuration

EJBs of all 
types

Use EJBs to model logical groupings of an information and associated 
business logic. See Section 13.1.2.2, "Transfer Objects Reduce Remote 
Calls."

Configure clusterable 
homes. See Table 13–2.

Stateful 
session 
beans

Recommended for high volume, heavy-write transactions. 

Remove stateful session beans when finished to minimize EJB container 
overhead. A stateful session bean instance is associated with a particular 
client, and remains in the container until explicitly removed by the client, 
or removed by the container when it times out. Meanwhile, the container 
may passivate inactive instances to disk. This consumes overhead and 
can affect performance. 

Note: Although unlikely, the current state of a stateful session bean can 
be lost. For example, if a client commits a transaction involving the bean 
and there is a failure of the primary server before the state change is 
replicated, the client will fail over to the previously-stored state of the 
bean. If it is critical to preserve bean state in all possible failover 
scenarios, use an entity EJB rather than a stateful session EJB.

Configure clusterable 
homes. See Table 13–2.

Configure in-memory 
replication for EJBs. See 
Table 13–2.



EJB Design Considerations

13-4 Administering Clusters for Oracle WebLogic Server 12.1.3

13.3.2.1 Cluster-Related Configuration Options
Table 13–2 lists key behaviors that you can configure for a cluster, and the associated 
method of configuration.

Stateless 
Session 
Beans

Scale better than stateful session beans which are instantiated on a per 
client basis, and can multiply and consume resources rapidly. 

When a home creates a stateless bean, it returns a replica-aware stub that 
can route to any server where the bean is deployed. Because a stateless 
bean holds no state on behalf of the client, the stub is free to route any 
call to any server that hosts the bean. 

Configure clusterable 
homes. See Table 13–2.

Configure Cluster 
Address. See Table 13–2.

Configure methods to be 
idempotence (see 
Table 13–2) to support 
failover during method 
calls. (Failover is default 
behavior if failure occurs 
between method calls.or 
if the method fails to 
connect to a server).

The methods on stateless 
session bean homes are 
automatically set to be 
idempotent. It is not 
necessary to explicitly 
specify them as 
idempotent.

Read-only 
Entity Beans

Recommended whenever stale data is tolerable—suitable for product 
catalogs and the majority of content within many applications. Reads are 
performed against a local cache that is invalided on a timer basis. 
Read-only entities perform three to four times faster than transactional 
entities.

Note: A client can successfully call setter methods on a read-only entity 
bean, however the data will never be moved into the persistent store.

Configure clusterable 
homes. See Table 13–2.

Configure Cluster 
Address. See Table 13–2.

Methods are configured 
to be idempotent by 
default.

Read-Write 
Entity Beans

Best suited for shared persistent data that is not subject to heavy request 
and update.If the access/update load is high, consider session beans and 
JDBC. 

Recommended for applications that require high data consistency, for 
instance, customer account maintenance. All reads and writes are 
performed against the database.

Use the isModified method to reduce writes. 

For read-mostly applications, characterized by frequent reads, and 
occasional updates (for instance, a catalog)—a combination of read-only 
and read-write beans that extend the read-only beans is suitable. The 
read-only bean provides fast, weakly consistent reads, while the 
read-write bean provides strongly consistent writes. 

Configure clusterable 
homes. See Table 13–2.

Configure methods to be 
idempotence (see 
Table 13–2) to support 
failover during method 
calls. (Failover is default 
behavior if failure occurs 
between method calls.or 
if the method fails to 
connect to a server).

The methods on 
read-only entity beans are 
automatically set to be 
idempotent.

Table 13–1 (Cont.) EJB Types and Guidelines

Object Type Usage Configuration



State Management in a Cluster

Clustering Best Practices 13-5

13.4 State Management in a Cluster
Different services in a WebLogic Server cluster provide varying types and degrees of 
state management. This list defines four categories of service that are distinguished by 
how they maintain state in memory or persistent storage: 

■ Stateless services—A stateless service does not maintain state in memory between 
invocations. 

■ Conversational services—A conversational service is dedicated to a particular 
client for the duration of a session. During the session, it serves all requests from 

Table 13–2 Cluster-Related Configuration Options

Configurable Behavior or 
Resource How to Configure

clusterable homes Set home-is-clusterable in weblogic-ejb-jar.xml to "true.

idempotence At bean level, set stateless-bean-methods-are-idempotent in 
weblogic-ejb-jar.xml to "true".

At method level, set idempotent-methods in weblogic-ejb-jar.xml

in-memory replication for 
EJBs

Set replication-type in weblogic-ejb-jar.xml to "InMemory".

Cluster Address The cluster address identifies the Managed Servers in the cluster. The cluster 
address is used in entity and stateless beans to construct the host name portion of 
URLs. The cluster address can be assigned explicitly, or generated automatically by 
WebLogic Server for each request. For more information, see Section 10.1.5.6, 
"Cluster Address."

clients-on-same-server Set clients-on-same-server in weblogic-ejb-jar.xml to "True" if all clients that 
will access the EJB will do so from the same server on which the bean is deployed. 

If clients-on-same-server is "True" the server instance will not multicast JNDI 
announcements for the EJB when it is deployed, hence reducing the startup time for 
a large clusters.

Load balancing algorithm 
for entity bean and entity 
EJBs homes

home-load-algorithm in weblogic-ejb-jar.xml specifies the algorithm to use for 
load balancing between replicas of the EJB home. If this element is not defined, 
WebLogic Server uses the algorithm specified by the 
weblogic.cluster.defaultLoadAlgorithm attribute in config.xml. 

Custom load balancing for 
entity EJBs, stateful session 
EJBs, and stateless session 

Use home-call-router-class-name in weblogic-ejb-jar.xml to specify the name 
of a custom class to use for routing bean method calls for these types of beans. This 
class must implement weblogic.rmi.cluster.CallRouter(). For more 
information, see Appendix A, "The WebLogic Cluster API."

Custom load balancing for 
stateless session bean

Use stateless-bean-call-router-class-name in weblogic-ejb-jar.xml to 
specify the name of a custom class to use for routing stateless session bean method 
calls. This class must implement weblogic.rmi.cluster.CallRouter(). For more 
information, see Appendix A, "The WebLogic Cluster API."

Configure stateless session 
bean as clusterable

Set stateless-bean-is-clusterable in weblogic-ejb-jar.xml to "true" to allow 
the EJB to be deployed to a cluster.

Load balancing algorithm 
for stateless session beans.

Use stateless-bean-load-algorithm in weblogic-ejb-jar.xml to specify the 
algorithm to use for load balancing between replicas of the EJB home. If this 
property is not defined, WebLogic Server uses the algorithm specified by the 
weblogic.cluster.defaultLoadAlgorithm attribute in config.xml. 

Machine The WebLogic Server Machine resource associates server instances with the 
computer on which it runs. For more information, see Section 10.2.16.5, "Configure 
Machine Names."

Replication groups Replication groups allow you to control where HTTP session states are replicated. 
For more information, see Section 10.2.10, "Configure Replication Groups."



State Management in a Cluster

13-6 Administering Clusters for Oracle WebLogic Server 12.1.3

the client, and only requests from that client. Throughout a session there is 
generally state information that the application server must maintain between 
requests. Conversational services typically maintain transient state in memory, 
which can be lost in the event of failure. If session state is written to a shared 
persistent store between invocations, the service is stateless. If persistent storage of 
state is not required, alternatives for improving performance and scalability 
include:

– Session state can be sent back and forth between the client and server under 
the covers, again resulting in a stateless service. This approach is not always 
feasible or desirable, particularly with large amounts of data.

– More commonly, session state may be retained in memory on the application 
server between requests. Session state can be paged out from memory as 
necessary to free up memory. Performance and scalability are still improved in 
this case because updates are not individually written to disk and the data is 
not expected to survive server failures.

■ Cached services—A cached service maintains state in memory and uses it to 
process requests from multiple clients. Implementations of cached services vary in 
the extent to which they keep the copies of cached data consistent with each other 
and with associated data in the backing store.

■ Singleton services—A singleton service is active on exactly one server in the 
cluster at a time and processes requests from multiple clients. A singleton service 
is generally backed by private, persistent data, which it caches in memory. It may 
also maintain transient state in memory, which is either regenerated or lost in the 
event of failure. Upon failure, a singleton service must be restarted on the same 
server or migrated to a new server.

Table 13–3 summarizes how Java EE and WebLogic support each of these categories of 
service. Support for stateless and conversational services is described for two types of 
clients:

■ Loosely-coupled clients include browsers or Web Service clients that communicate 
with the application server using standard protocols. 

■ Tightly-coupled clients are objects that run in the application tier or in the client-side 
environment, and communicate with the application server using proprietary 
protocol.



State Management in a Cluster

Clustering Best Practices 13-7

Table 13–3 Java EE and WebLogic Support for Service Types

Service Java EE Support
WebLogic Server Scalability and Reliability 
Features for...

Stateless Service 
with 
loosely-coupled 
clients

All Java EE APIs are either stateless or may be 
implemented in a stateless manner by writing 
state information to a shared persistent store 
between invocations.

Java EE does not specify a standard for load 
balancing and failover. For loosely coupled 
clients, load balancing must be must be 
performed by external IP-based mechanisms

WebLogic Server increases the availability of 
stateless services by deploying multiple 
instances of the service to a cluster.

For loosely-coupled clients of a stateless service, 
WebLogic Server supports external load 
balancing solutions, and provides proxy plug-ins 
for session failover and load balancing.

For more information, see: 

■ Section 6.3.2.2.1, "Stateless Session Beans"

■ Section 5.1.2, "Load Balancing HTTP 
Sessions with an External Load Balancer"

■ Section 5.1.1, "Load Balancing with a Proxy 
Plug-in"

Stateless Service 
with 
tightly-coupled 
clients

These Java EE APIs support tightly coupled 
access to stateless services:

■ JNDI (after initial access)

■ Factories, such as EJB homes, JDBC 
connection pools, and JMS connection 
factories 

■ Stateless session beans

■ Entity beans, if written to a shared 
persistent store between invocations

WebLogic Server increases the availability of 
stateless services by deploying multiple 
instances of the service to a cluster.

For tightly-coupled clients of a stateless service, 
WebLogic Server supports load balancing and 
failover in its RMI implementation. 

The WebLogic Server replica-aware stub for a 
clustered RMI object lists the server instances in 
the cluster that currently offer the service, and 
the configured load balancing algorithm for the 
object. WebLogic Server uses the stub to make 
load balancing and failover decisions. 

For more information, see: 

■ Section 6.3.2.2.1, "Stateless Session Beans"

■ Section 5.2, "Load Balancing for EJBs and 
RMI Objects"

Conversational 
services with 
loosely-coupled 
clients

These Java EE APIs support loosely-coupled 
access to conversational services:

■ Servlets

■ Web Services

Java EE does not specify a standard for load 
balancing and failover.

Load balancing can be accomplished with 
external IP-based mechanisms or application 
server code in the presentation tier. Because 
protocols for conversations services are 
stateless, load balancing should occur only 
when the session is created. Subsequent 
requests should stick to the selected server. 

WebLogic Server increases the reliability of 
sessions with:

■ Failover, based on in-memory replication of 
session state, and distribution of primaries 
and secondaries across the cluster. 

■ Configurable replication groups, and the 
ability to specify preferred replication 
groups for hosting secondaries. 

■ Load balancing using external load 
balancers or proxy-plug-ins.

For more information, see 

■ Section 6.2.1, "HTTP Session State 
Replication"

■ Section 5.1, "Load Balancing for Servlets and 
JSPs"



State Management in a Cluster

13-8 Administering Clusters for Oracle WebLogic Server 12.1.3

Conversational 
services with 
tightly-coupled 
clients

The Java EE standard provides EJB stateful 
session beans to support conversational 
services with tightly-coupled clients. 

WebLogic Server increases the availability and 
reliability of stateful session beans with these 
features:

■ Caching

■ Persistent storage of passivated bean state.

■ Initial load balancing occurs when an EJB 
home is chosen to create the bean. The 
replica-aware stub is hard-wired to the 
chosen server, providing session affinity.

■ When primary/secondary replication is 
enabled, the stub keeps track of the 
secondary and performs failover. 

■ Updates are sent from the primary to the 
secondary only on transaction boundaries.

For more information, see Section 6.3.2.2.2, 
"Stateful Session Beans."

Cached Services Java EE does not specify a standard for cached 
services.

Entity beans with Bean-Managed-Persistence 
can implement custom caches.

Weblogic Server supports caching of:

Stateful session beans

For a list of WebLogic features that increase 
scalability and reliability of stateful session 
beans, see description in the previous row.

Entity beans

Weblogic Server supports these caching features 
for entity beans.

■ Short term or cross-transaction caching 

■ Relationship caching

■ Combined caching allows multiple entity 
beans that are part of the same Java EE 
application to share a single runtime cache

Consistency between the cache and the external 
data store can be increased by: 

■ flushing the cache

■ refreshing cache after updates to the 
external data store 

■ invalidating the cache

■ concurrency control 

"read-mostly pattern"

WebLogic Server supports the "read-mostly 
pattern" by combining read-only and read-write 
EJBs.

JSPs

WebLogic Server provides custom JSP tags to 
support caching at fragment or page level.

Table 13–3 (Cont.) Java EE and WebLogic Support for Service Types

Service Java EE Support
WebLogic Server Scalability and Reliability 
Features for...



Avoiding Problems

Clustering Best Practices 13-9

13.5 Application Deployment Considerations
Deploy clusterable objects to the cluster, rather than to individual Managed Servers in 
the cluster. For information and recommendations, see Deploying Applications to Oracle 
WebLogic Server.

13.6 Architecture Considerations
For information about alternative cluster architectures, load balancing options, and 
security options, see Chapter 9, "Cluster Architectures."

13.7 Avoiding Problems
The following sections present considerations to keep in mind when planning and 
configuring a cluster.

13.7.1 Naming Considerations
For guidelines for how to name and address server instances in cluster, see 
Section 10.1.5, "Identify Names and Addresses."

13.7.2 Administration Server Considerations
To start up WebLogic Server instances that participate in a cluster, each Managed 
Server must be able to connect to the Administration Server that manages 
configuration information for the domain that contains the cluster. For security 
purposes, the Administration Server should reside within the same DMZ as the 
WebLogic Server cluster.

The Administration Server maintains the configuration information for all server 
instances that participate in the cluster. The config.xml file that resides on the 
Administration Server contains configuration data for all clustered and non-clustered 
servers in the Administration Server's domain. You do not create a separate 
configuration file for each server in the cluster.

The Administration Server must be available in order for clustered WebLogic Server 
instances to start up. Note, however, that once a cluster is running, a failure of the 
Administration Server does not affect ongoing cluster operation.

Singleton 
Services

Java EE APIs used to implement singleton 
services include:

■ JMS Destinations,

■ JTA transaction managers

■ Cached entity beans with pessimistic 
concurrency control

Scalability can be increased by "partitioning" 
the service into multiple instances, each of 
which handles a different slice of the backing 
data and its associated requests

WebLogic Server features for increasing the 
availability of singleton services include: 

■ Support for multiple thread pools for 
servers, to harden individual servers against 
failures

■ Health monitoring and lifecycle APIs to 
support detection restart of failed and ailing 
servers

■ Ability to upgrade software without 
interrupting services

■ Ability to migrate JMS servers and JTA 
transaction recovery services.

Table 13–3 (Cont.) Java EE and WebLogic Support for Service Types

Service Java EE Support
WebLogic Server Scalability and Reliability 
Features for...



Avoiding Problems

13-10 Administering Clusters for Oracle WebLogic Server 12.1.3

The Administration Server should not participate in a cluster. The Administration 
Server should be dedicated to the process of administering servers: maintaining 
configuration data, starting and shutting down servers, and deploying and 
undeploying applications. If the Administration Server also handles client requests, 
there is a risk of delays in accomplishing administration tasks. 

There is no benefit in clustering an Administration Server; the administrative objects 
are not clusterable, and will not failover to another cluster member if the 
administrative server fails. Deploying applications on an Administration Server can 
reduce the stability of the server and the administrative functions it provides. If an 
application you deploy on the Administration Server behaves unexpectedly, it could 
interrupt operation of the Administration Server.

For these reasons, make sure that the Administration Server's IP address is not 
included in the cluster-wide DNS name.

13.7.3 Firewall Considerations 
If your configuration includes a firewall, locate your proxy server or load-balancer in 
your DMZ, and the cluster, both Web and EJB containers, behind the firewall. Web 
containers in DMZ are not recommended. See Section 9.5.1, "Basic Firewall for Proxy 
Architectures."

If you place a firewall between the servlet cluster and object cluster in a multi-tier 
architecture, bind all servers in the object cluster to public DNS names, rather than IP 
addresses. Binding those servers with IP addresses can cause address translation 
problems and prevent the servlet cluster from accessing individual server instances. 

If the internal and external DNS names of a WebLogic Server instance are not identical, 
use the ExternalDNSName attribute for the server instance to define the server's 
external DNS name. Outside the firewall the ExternalDNSName should translate to 
external IP address of the server. Set this attribute in the WebLogic Server 
Administration Console using the Servers > Configuration > General page. See 
Servers > Configuration > General in Oracle WebLogic Server Administration Console 
Online Help.

In any cluster architecture that utilizes one or more firewalls, it is critical to identify all 
WebLogic Server instances using publicly-available DNS names, rather than IP 
addresses. Using DNS names avoids problems associated with address translation 
policies used to mask internal IP addresses from untrusted clients. 

Figure 13–1 describes the potential problem with using IP addresses to identify 
WebLogic Server instances. In this figure, the firewall translates external IP requests 
for the subnet "xxx" to internal IP addresses having the subnet "yyy."

Note: Use of ExternalDNSName is required for configurations in 
which a firewall is performing Network Address Translation, unless 
clients are accessing WebLogic Server using t3 and the default 
channel. For instance, ExternalDNSName is required for configurations 
in which a firewall is performing Network Address Translation, and 
clients are accessing WebLogic Server using HTTP via a proxy plug-in.



Avoiding Problems

Clustering Best Practices 13-11

Figure 13–1 Translation Errors Can Occur When Servers are Identified by IP Addresses

The following steps describe the connection process and potential point of failure:

1. The client initiates contact with the WebLogic Server cluster by requesting a 
connection to the first server at 205.20.xxx.100:7001. The firewall translates this 
address and connects the client to the internal IP address of 205.20.yyy.100:7001.

2. The client performs a JNDI lookup of a pinned Object C that resides on the third 
WebLogic Server instance in the cluster. The stub for Object C contains the internal 
IP address of the server hosting the object, 205.20.yyy.300:7001.

3. When the client attempts to instantiate Object C, it requests a connection to the 
server hosting the object using IP address 205.20.yyy.300:7001. The firewall denies 
this connection, because the client has requested a restricted, internal IP address, 
rather than the publicly-available address of the server. 

If there was no translation between external and internal IP addresses, the firewall 
would pose no problems to the client in the above scenario. However, most security 
policies involve hiding (and denying access to) internal IP addresses. 

13.7.4 Evaluate Cluster Capacity Prior to Production Use
The architecture of your cluster will influence the capacity of your system. Before 
deploying applications for production use, evaluate performance to determine if and 
where you may need to add servers or server hardware to support real-world client 
loads. Testing software such as LoadRunner from Mercury Interactive allows you to 
simulate heavy client usage.



Avoiding Problems

13-12 Administering Clusters for Oracle WebLogic Server 12.1.3



14

Troubleshooting Common Problems 14-1

14Troubleshooting Common Problems

[15] This chapter provides guidelines on how to prevent cluster problems or troubleshoot 
them if they do occur in WebLogic Server 12.1.3.

For information about troubleshooting IP multicast configuration problems, see 
Chapter 15, "Troubleshooting Multicast Configuration.".

This chapter includes the following sections:

■ Section 14.1, "Before You Start the Cluster"

■ Section 14.2, "After You Start the Cluster"

14.1 Before You Start the Cluster
You can do a number of things to help prevent problems before you boot the cluster.

14.1.1 Check the Server Version Numbers
All servers in the cluster should be at the same maintenance level (the same major and 
minor version number, the same Patch Set number, the same Patch Set Update 
number, and the same Interim/One-off Patches) during steady-state operation. Rolling 
upgrade (applying maintenance to servers sequentially within a cluster) is supported 
in WebLogic Server:

■ for applying Interim/One-off Patches

■ for applying Patch Set Updates (PSUs)

■ for applying WebLogic Server 10.3.x Patch Sets, for example, performing a rolling 
upgrade from WebLogic Server 10.3.5 to 10.3.6

The cluster's Administration Server is typically not configured as a cluster member, 
but it should generally run at the same maintenance level as the Managed Servers. 
There may be situations where the Administration Server is managing multiple 
clusters within a single domain, which may be at different maintenance levels. In this 
case, the Administration Server should be at the highest maintenance level of the 
Managed Servers within the domain.

14.1.2 Check the Multicast Address
A problem with the multicast address is one of the most common reasons a cluster 
does not start or a server fails to join a cluster. 

A multicast address is required for each cluster. The multicast address can be an IP 
number between 224.0.0.0 and 239.255.255.255, or a host name with an IP address 
within that range.



After You Start the Cluster

14-2 Administering Clusters for Oracle WebLogic Server 12.1.3

You can check a cluster's multicast address and port on its Configuration > Multicast 
page in the WebLogic Server Administration Console.

For each cluster on a network, the combination of multicast address and port must be 
unique. If two clusters on a network use the same multicast address, they should use 
different ports. If the clusters use different multicast addresses, they can use the same 
port or accept the default port, 7001.

Before booting the cluster, make sure the cluster's multicast address and port are 
correct and do not conflict with the multicast address and port of any other clusters on 
the network. 

The errors you are most likely to see if the multicast address is bad are:

Unable to create a multicast socket for clustering
Multicast socket send error
Multicast socket receive error

14.1.3 Check the CLASSPATH Value
Make sure the value of CLASSPATH is the same on all Managed Servers in the cluster. 
CLASSPATH is set by the setEnv script, which you run before you run 
startManagedWebLogic to start the Managed Servers. 

By default, setEnv sets this value for CLASSPATH (as represented on Windows systems):

set WL_HOME=C:\bea\wlserver_10.00
set JAVA_HOME=C:\bea\jdk131
.
.
set CLASSPATH=%JAVA_HOME%\lib\tools.jar;
%WL_HOME%\server\lib\weblogic_sp.jar;
%WL_HOME%\server\lib\weblogic.jar;
%CLASSPATH%

If you change the value of CLASSPATH on one Managed Server, or change how setEnv 
sets CLASSPATH, you must change it on all Managed Servers in the cluster.

14.2 After You Start the Cluster
After you start a cluster, do the following to troubleshoot problems.

14.2.1 Check Your Commands
If the cluster fails to start, or a server fails to join the cluster, the first step is to check 
any commands you have entered, such as startManagedWebLogic or a java interpreter 
command, for errors and misspellings.

14.2.2 Generate a Log File
Before contacting Oracle for help with cluster-related problems, collect diagnostic 
information. The most important information is a log file with multiple thread dumps 
from a Managed Server. The log file is especially important for diagnosing cluster 
freezes and deadlocks. 

Remember: a log file that contains multiple thread dumps is a prerequisite for diagnosing your 
problem.

1. Stop the server.



After You Start the Cluster

Troubleshooting Common Problems 14-3

2. Remove or back up any log files you currently have. You should create a new log 
file each time you boot a server, rather than appending to an existing log file.

3. Start the server with this command, which turns on verbose garbage collection 
and redirects both the standard error and standard output to a log file:

% java -ms64m -mx64m -verbose:gc -classpath $CLASSPATH
-Dweblogic.domain=mydomain -Dweblogic.Name=clusterServer1
-Djava.security.policy==$WL_HOME/lib/weblogic.policy
-Dweblogic.admin.host=192.168.0.101:7001
 weblogic.Server >> logfile.txt

Redirecting both standard error and standard output places thread dump 
information in the proper context with server informational and error messages 
and provides a more useful log.

4. Continue running the cluster until you have reproduced the problem.

5. If a server hangs, use kill -3 or <Ctrl>-<Break> to create the necessary thread 
dumps to diagnose your problem. Make sure to do this several times on each 
server, spaced about 5-10 seconds apart, to help diagnose deadlocks.

6. Compress the log file using a UNIX utility:

% tar czf logfile.tar logfile.txt

- or zip it using a Windows utility.

7. Attach the compressed log file to an e-mail to your Oracle Support representative. 
Do not cut and paste the log file into the body of an e-mail.

14.2.2.1 Getting an Oracle HotSpot VM Thread Dump 
If you use the Oracle HotSpot VM, use one of the following methods to generate a 
thread dump:

■ Use the WLST threadDUMP command.

■ Use the jstack utility.

■ If you are using the Oracle HotSpot VM under Linux, use Kill -3 PID, where 
PID is the root of the process tree. 

To obtain the root PID, perform a: 

ps -efHl | grep 'java' **. ** 

using a grep argument that is a string that will be found in the process stack that 
matches the server startup command. The first PID reported will be the root 
process, assuming that the ps command has not been piped to another routine. 

Under Linux, each execute thread appears as a separate process under the Linux 
process stack. To use Kill -3 on Linux you supply must match PID of the main 
WebLogic execute thread, otherwise no thread dump will be produced. 

■ If you are using the Oracle HotSpot VM under Windows, you can use the 
Ctrl-Break command on the application console to generate a thread dump.

14.2.3 Check Garbage Collection
If you are experiencing cluster problems, you should also check the garbage collection 
on the Managed Servers. If garbage collection is taking too long, the servers will not be 
able to make the frequent heartbeat signals that tell the other cluster members they are 
running and available.



After You Start the Cluster

14-4 Administering Clusters for Oracle WebLogic Server 12.1.3

If garbage collection (either first or second generation) is taking 10 or more seconds, 
you need to tune heap allocation (the msmx parameter) on your system.

14.2.4 Run utils.MulticastTest
You can verify that multicast is working by running utils.MulticastTest from one of 
the Managed Servers. See "Using the Oracle WebLogic Server Java Utilities" in 
Command Reference for Oracle WebLogic Server. 



15

Troubleshooting Multicast Configuration 15-1

15Troubleshooting Multicast Configuration

[16] This chapter provides suggestions for troubleshooting IP multicast configuration 
problems. Using IP multicasting, WebLogic Server 12.1.3 instances in a cluster can 
share a single IP address and port number. This capability enables all members of a 
cluster to be treated as a single entity and enables members of the cluster to 
communicate among themselves. 

This chapter includes the following sections:

■ Section 15.1, "Verifying Multicast Address and Port Configuration"

■ Section 15.2, "Identifying Network Configuration Problems"

■ Section 15.3, "Using the MulticastTest Utility"

■ Section 15.4, "Tuning Multicast Features"

■ Section 15.5, "Debugging Multicast"

■ Section 15.6, "Miscellaneous Issues"

■ Section 15.7, "Other Resources for Troubleshooting Multicast Configuration"

For general information on using and configuring multicast within a cluster, see 
Section 4.1, "Cluster Configuration and config.xml."

For information on configuring a multicast address from the Console, see "Clusters: 
Configuration: Multicast" in the Oracle WebLogic Server Administration Console Online 
Help.

For general cluster troubleshooting suggestions, see Chapter 14, "Troubleshooting 
Common Problems."

15.1 Verifying Multicast Address and Port Configuration
The first step in troubleshooting multicast problems is to verify that you have 
configured the multicast address and port correctly. A multicast address must be 
correctly configured for each cluster.

Multicast address and port configuration problems are among the most common 
reasons why a cluster does not start or a server fails to join a cluster. The following 
considerations apply to multicast addresses:

■ The multicast address must be an IP address between 224.0.0.0 and 239.255.255.255 
or a host name with an IP address in this range.

■ The default multicast address used by WebLogic Server is 239.192.0.0.

■ Do not use any x.0.0.1 multicast address where x is between 0 and 9, inclusive.



Identifying Network Configuration Problems

15-2 Administering Clusters for Oracle WebLogic Server 12.1.3

15.1.1 Possible Errors
The following types of errors commonly occur due to multicast configuration 
problems:

■ Unable to create a multicast socket for clustering

■ Multicast socket send error

■ Multicast socket receive error

15.1.2 Checking the Multicast Address and Port
To check the multicast address and port, do one of the following:

■ Check the cluster multicast address and port through the WebLogic Server 
Administration Console.

■ Check the multicast information of the <cluster> element in config.xml.

15.2 Identifying Network Configuration Problems
After you verify that the multicast address and port are configured correctly, 
determine whether network problems are interfering with multicast communication. 

15.2.1 Physical Connections
Ensure that no physical problems exist in your network.

■ Verify the network connection for each machine that hosts servers within the 
cluster.

■ Verify that all components of the network, including routers and DNS servers, are 
connected and functioning correctly.

15.2.2 Address Conflicts
Address conflicts within a network can disrupt multicast communications.

■ Use the netstat utility to verify that no other network resources are using the 
cluster multicast address.

■ Verify that each machine has a unique IP address.

15.2.3 nsswitch.conf Settings on UNIX Systems
On UNIX systems, you may encounter the UnkownHostExceptions error. This error can 
occur at random times even when the server is not under a heavy load. Check 
/etc/nsswitch.conf and change the order to 'files,DNS,NIS' to avoid this error.

For more information, see the nsswitch.conf man page for your system.

15.3 Using the MulticastTest Utility
After you verify that the multicast address and port are configured correctly and there 
are no physical or configuration problems with your network, you can use 
utils.MulticastTest to verify that multicast is working and to determine if 
unwanted traffic is occurring between different clusters.

For instructions on using the MulticastTest utility, see MulticastTest in "Using the 
Oracle WebLogic Server Java Utilities" in Command Reference for Oracle WebLogic Server. 



Tuning Multicast Features

Troubleshooting Multicast Configuration 15-3

If MulticastTest fails and the machine is multihomed, ensure that the primary address 
is being used. See Section 15.4.4, "Multicast and Multihomed Machines."

15.4 Tuning Multicast Features
The following sections describe how to tune various features of WebLogic Server to 
work with multicasting.

15.4.1 Multicast Timeouts
Multicast timeouts can occur during a Network Interface Card (NIC) failover. 
Timeouts can result in an error message like the following:

<Error><Cluster><Multicast socket receive error:
java.io.InterruptedIOException: Receive timed out>

When this error occurs, you can:

■ Disable the NIC failover. 

■ Disable the igmp snooping switch. This switch is part of the Internet Group 
Management Protocol (IGMP) and is used to prevent multicast flood problems on 
the managed switch.

■ On Windows 2000, check the IGMP level to ensure that multicast packets are 
supported.

■ Set the Multicast Time-To-Live to the following:

MulticastTTL=32

For more information, see Section 10.2.16.2, "Configure Multicast Time-To-Live 
(TTL)."

15.4.2 Cluster Heartbeats
Each WebLogic Server instance in a cluster uses multicast to broadcast regular 
heartbeat messages that advertise its availability. By monitoring heartbeat messages, 
server instances in a cluster determine when a server instance has failed.

The following sections describe possible solutions when cluster heartbeat problems 
occur.

15.4.2.1 Multicast Send Delay
Multicast Send Delay specifies the amount of time the server waits to send message 
fragments through multicast. This delay helps to avoid OS-level buffer overflow. This 
can be set via the MulticastSendDelay attribute of the Cluster MBean. For more 
information, see the MBean Reference for Oracle WebLogic Server.

15.4.2.2 Operating System Parameters
If problems still occur after setting the Multicast Send Delay, you may need to set the 
following operating system parameters related to UDP settings:

■ xdp_xmit_hiwat 

Note: You should set -Djava.net.preferIPv4Stack=true when 
specifying an IPv4 format address for the multicast address on Linux 
machines running dual IPv4/IPv6 stacks.



Debugging Multicast

15-4 Administering Clusters for Oracle WebLogic Server 12.1.3

■ udp_recv_hiwat 

If these parameters are set to a lower value (8K for example) there may be a problem if 
the multicast packet size is set to the maximum allowed (32K). Try setting these 
parameters to 64K.

15.4.3 Multicast Storms
A multicast storm is the repeated transmission of multicast packets on a network. 
Multicast storms can stress the network and attached stations, potentially causing 
end-stations to hang or fail. 

Increasing the size of the multicast buffers can improve the rate at which 
announcements are transmitted and received, and prevent multicast storms. See 
Section 10.2.16.3, "Configure Multicast Buffer Size."

15.4.4 Multicast and Multihomed Machines
The following considerations apply when using multicast in a multihomed 
environment:

■ Ensure that you have configured a UnixMachine instance from the WebLogic 
Server Administration Console and have specified an InterfaceAddress for each 
server instance to handle multicast traffic.

■ Run /usr/sbin/ifconfig -a to check the MAC address of each machine in the 
multihomed environment. Ensure that each machine has a unique MAC address. 
If machines use the same MAC address, this can cause multicast problems.

15.4.5 Multicast in Different Subnets
If multicast problems occur when cluster members are in different subnets you should 
configure Multicast-Time-To-Live. The value of the Multicast Time-To-Live (TTL) 
parameter for the cluster must be high enough to ensure that routers do not discard 
multicast packets before they reach their final destination. 

The Multicast TTL parameter sets the number of network hops a multicast message 
makes before the packet can be discarded. Configuring the Multicast TTL parameter 
appropriately reduces the risk of losing the multicast messages that are transmitted 
among server instances in the cluster.

For more information, see Section 10.2.16.2, "Configure Multicast Time-To-Live (TTL)."

15.5 Debugging Multicast
If you are still having problems with the multicast address after performing the 
troubleshooting tips above, gather debugging information for multicast.

15.5.1 Debugging Utilities
The following utilities can help you debug multicast configuration problems.

15.5.1.1 MulticastMonitor
MulticastMontior is a standalone Java command line utility that monitors multicast 
traffic on a specific multicast address and port. The syntax for this command is:

java weblogic.cluster.MulticastMonitor <multicast_address> <multicast_port> 
<domain_name> <cluster_name>



Miscellaneous Issues

Troubleshooting Multicast Configuration 15-5

15.5.1.2 MulticastTest
The MulticastTest utility helps you debug multicast problems when you configure a 
WebLogic cluster. The utility sends out multicast packets and returns information 
about how effectively multicast is working on your network.

15.5.2 Debugging Flags
The following debug flags are specific to multicast:

■ DebugCluster 

■ DebugClusterHeartBeats 

■ DebugClusterFragments 

15.5.2.1 Setting Debug Flags on the Command Line
Set these flags from the command line during server startup by adding the following 
options:

■ -Dweblogic.debug.DebugCluster=true 

■ -Dweblogic.debug.DebugClusterHeartBeats=true 

■ -Dweblogic.debug.DebugClusterFragments=true 

15.5.2.2 Setting Debug Attributes Using WLST
Set debug attributes using these WLST commands:

connect()
edit()
startEdit()
servers=cmo.getServers()
for s in servers:
  d=s.getServerDebug()
  d.setDebugCluster(true)
activate()

15.6 Miscellaneous Issues
The following sections describe miscellaneous multicast issues you may encounter.

15.6.1 Multicast on AIX
AIX version 5.1 does not support IPv4 mapped multicast addresses. If you are using 
an IPv4 multicast address, you cannot join a multicast group even if you are switching 
to IPv6. When running MulticastTest on AIX, use the order on the command line 
specified in the following example:

java -Djava.net.preferIPv4Stack=true utils.Multicast <options>

Additionally, verify the following settings on AIX to properly configure cluster 
operations:

■ Set the MTU size to 1500 by executing the following command and rebooting the 
machine:

chdev -1 lo0 -a mtu=1500 -P

■ Ensure that the following has been added to /etc/netsvc.conf:



Other Resources for Troubleshooting Multicast Configuration

15-6 Administering Clusters for Oracle WebLogic Server 12.1.3

hosts=local,bind4

This line is required to ensure that only IPv4 addresses are sent to name services 
for IP resolution.

15.6.2 File Descriptor Problems
Depending on the operating system, there may be problems with the number of file 
descriptors open. On UNIX, you can use loses to determine how many files on disk a 
process has open. If a problem occurs, you may need to increase the number of file 
descriptors on the machine.

15.7 Other Resources for Troubleshooting Multicast Configuration
The following resources may be helpful in resolving multicast problems:

■ Oracle Fusion Middleware Release Notes for Microsoft Windows

■ Oracle Support: https://support.oracle.com/ 

■ Oracle Forums: http://forums.oracle.com/ 



A

The WebLogic Cluster API A-1

AThe WebLogic Cluster API

[17] This appendix describes how to use the WebLogic Cluster API in WebLogic Server 
12.1.3.

The appendix includes the following sections:

■ Section A.1, "How to Use the API" 

■ Section A.2, "Custom Call Routing and Collocation Optimization" 

A.1 How to Use the API
The WebLogic Cluster public API is contained in a single interface, 
weblogic.rmi.cluster.CallRouter. 

Class java.lang.Object
   Interface weblogic.rmi.cluster.CallRouter
      (extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to 
enable parameter-based routing. Run rmic on the service implementation using these 
options (to be entered on one line): 

$ java weblogic.rmic -clusterable -callRouter 
    <callRouterClass> <remoteObjectClass>

The call router is called by the clusterable stub each time a remote method is invoked. 
The router is responsible for returning the name of the server to which the call should 
be routed. 

Each server in the cluster is uniquely identified by its name as defined with the 
WebLogic Server Console. These are the names that the method router must use for 
identifying servers. 

Example: Consider the ExampleImpl class which implements a remote interface 
Example, with one method foo: 

public class ExampleImpl implements Example {
  public void foo(String arg) { return arg; }
}

This CallRouter implementation ExampleRouter ensures that all foo calls with 'arg' < 
"n" go to server1 (or server3 if server1 is unreachable) and that all calls with 'arg' >= 
"n" go to server2 (or server3 if server2 is unreachable). 

public class ExampleRouter implements CallRouter {
  private static final String[] aToM = { "server1", "server3" };
  private static final String[] nToZ = { "server2", "server3" };



Custom Call Routing and Collocation Optimization

A-2 Administering Clusters for Oracle WebLogic Server 12.1.3

  public String[] getServerList(Method m, Object[] params) {
    if (m.GetName().equals("foo")) {
      if (((String)params[0]).charAt(0) < 'n') {
        return aToM;
      } else {
        return nToZ;
      }
    } else {
      return null;
    }
  }
}

This rmic call associates the ExampleRouter with ExampleImpl to enable 
parameter-based routing: 

$ rmic -clusterable -callRouter ExampleRouter ExampleImpl

A.2 Custom Call Routing and Collocation Optimization
If a replica is available on the same server instance as the object calling it, the call will 
not be load balanced, because it is more efficient to use the local replica. For more 
information, see Section 5.2.6, "Optimization for Collocated Objects.".



B

Configuring BIG-IP Hardware with Clusters B-1

BConfiguring BIG-IP Hardware with Clusters

[18] For detailed setup and administration instructions for configuring an F5 BIG-IP 
controller to operate with a cluster in WebLogic Server 12.1.3, refer to the F5 product 
documentation described at http://www.f5.com/. 

For information about how WebLogic Server works with external load balancers, see 
Section 5.1.2, "Load Balancing HTTP Sessions with an External Load Balancer".



B-2 Administering Clusters for Oracle WebLogic Server 12.1.3



C

Configuring F5 Load Balancers for MAN/WAN Failover C-1

CConfiguring F5 Load Balancers for MAN/WAN
Failover

[19] This appendix describes how to configure F5 hardware load balancers to work with 
WebLogic Server 12.1.3. 

WebLogic Server provides failover within MAN and WAN networks. This feature 
provides more reliability by allowing failover to occur across a larger geographic area. 
It also provides failover across multiple WebLogic Server domains.

To provide failover within a MAN/WAN environment, you must use hardware load 
balancers. This document outlines the procedures for configuring F5 hardware load 
balancers to work with WebLogic Server.

For information on configuring WebLogic Server to use MAN/WAN, see Section 6.2.4, 
"Session State Replication Across Clusters in a MAN/WAN." For information on 
configuring F5 hardware load balancers, see http://www.f5.com.

This appendix includes the following sections:

■ Section C.1, "Requirements"

■ Section C.2, "Configure Local Load Balancers"

■ Section C.3, "Configure the 3-DNS Global Hardware Load Balancer"

■ Section C.4, "Configuring WebLogic Server Components"

C.1 Requirements
Before performing the procedures described in this appendix, you must have 
performed the following:

■ Installed and configured your WebLogic Server environment. This includes 
creating and configuring clusters and Managed Servers.

■ Installed and configured at least one F5 3-DNS global load balancer and at least 
two F5 BIG-IP local load balancers. This is the minimum hardware requirement for 
failover in a MAN/WAN environment

■ Ensured that your network and DNS are configured correctly

Once these requirements are met, perform the following procedures to configure your 
load balancers to work within a MAN/WAN environment.



Configure Local Load Balancers

C-2 Administering Clusters for Oracle WebLogic Server 12.1.3

C.2 Configure Local Load Balancers
This section describes the procedures for configuring F5 local load balancers to work 
with WebLogic Server in a MAN/WAN environment.

C.2.1 Virtual Server IPs and Pools
On each local load balancer you must configure two virtual server IPs as well as a 
multi-layer pool and a failover trigger pool. The diagram in Figure C–1 shows how 
these pools and virtual server IPs work within a MAN/WAN environment.

Figure C–1 Hardware Load Balancers in a MAN/WAN Environment

In this diagram, multiple Managed Servers are distributed across separate physical 
locations. This diagram shows individual Managed Servers, but this could also 
represent a clustered configuration as well.

Each local load balancer contains a virtual server IP that references a multi-layer pool. 
The multi-layer pool references each of the local WebLogic Server IP addresses and 
host names and the virtual server of the failover trigger pool. The failover trigger is 
used to indicate that a site is down. This triggers failover to the other local load 
balancer.

The following sections describe how to configure multi-layer and failover trigger 
pools.



Configure the 3-DNS Global Hardware Load Balancer

Configuring F5 Load Balancers for MAN/WAN Failover C-3

C.2.2 Create a Failover Trigger Virtual Server and Pool
Create a new BIG-IP pool on the local load balancer that references each of the local 
WebLogic Server host names and ports to be load-balanced. Then, create a new virtual 
server that specifies this pool. This virtual server will be utilized by the 3-DNS global 
load balancer for health monitoring and will later be embedded inside another local 
load balancer pool/virtual server.

1. In the BIG-IP navigation panel, click Pools.

2. Add a pool name

3. Add all the WebLogic Server host:port combinations to be load balanced

The default priority may used. Session persistence does not need to be configured.

4. In the BIG-IP navigation panel, click Virtual Servers. 

5. Add a virtual server that references your new pool.

a. You should specify a port that by convention would be a failover-trigger port, 
for example 17001.

b. Specify an IP address for the Virtual Server, for example 10.254.34.151.

C.2.3 Create a Multi-layered Virtual Server and IP Pool
Using the F5 administration utility, create a new BIG-IP pool on the local load balancer 
that references the host and port of each local WebLogic Server instance and also the 
failover-trigger virtual server. The failover-trigger virtual server must be a lower 
priority than the WebLogic Servers. By assigning a lower priority, the failover-trigger 
virtual server will never receive client requests unless all the WebLogic Server 
instances have failed. Session persistence should be configured also.

1. In the BIG-IP navigation panel, click on Pools. 

2. Add a pool name, for example multilayeredPool 

a. Add all the WebLogic Server host:port combinations to be load balanced. All 
host:port combinations should be configured with priority=10

b. Add the failover-trigger virtual server with priority=1 

c. Specify persistence attributes on the pool (active with insert mode)

d. In the BIG-IP navigation panel, click on Virtual Servers

3. Create a Virtual Server that references your new pool, for example: 
10.254.34.151:7001 

C.3 Configure the 3-DNS Global Hardware Load Balancer
A global load balancer type of network hardware that acts as an authoritative DNS 
server and can distribute Web requests across multiple BIG-IP virtual servers based on 
chosen criteria. Clients send http requests to the global load balancer, which uses built 
in health monitors to direct the Web requests to the optimal server based on the chosen 
method of load balancing.

The global load balancer must be an authoritative source of DNS because a regular 
DNS server is incapable of the monitoring that the global load balancer can perform. A 
regular DNS server would still send http requests to a server that was down if it were 
next in the default round-robin load balancing method. In order to compensate for the 
multiple shortcomings of a regular DNS server, many vendors (including F5) have 



Configure the 3-DNS Global Hardware Load Balancer

C-4 Administering Clusters for Oracle WebLogic Server 12.1.3

created specialized hardware and software that is capable of performing not only DNS 
resolution but also intelligent routing of network traffic.

The primary steps of configuring an F5 3-DNS global load balancer are: defining its 
DNS name, configuring the BIG-IP hosts, configuring data centers, and configuring 
the 3-DNS distribution of work to the virtual servers (VIPs). These are covered in the 
following sections.

C.3.1 Configure DNS Zones
The global server load balancer must be configured to manage its own DNS zone. This 
is done by creating a new delegation on the local DNS management machine. The 
following procedures describe how to configure DNS zones.

1. On your DNS management machine, create a new delegation, for example: gslb

2. Specify the fully qualified name of your 3-DNS machine as a name server

3. Specify the IP address of your 3-DNS machine as a name server

C.3.2 Configure BIG-IP Addresses Managed by 3-DNS
The 3-DNS global balancer needs to be configured with the addresses of the BIG-IP 
local load balancers. The following procedures outline how to configure BIG-IP 
addresses:

1. In the 3-DNS navigation panel, click Servers, then BIG-IP.

2. Add BIG-IP

3. Specify a name for the BIG-IP box, and its IP address.

4. When you revisit the list of BIG-IP boxes, the 3-DNS device should display a 
column with a count of virtual servers available on each BIG-IP box. Click on this 
count of virtual servers.

5. Find your multi-layered virtual server, and click dependencies.

6. Specify the associated failover-trigger virtual server as a dependency.

C.3.3 Configure Data Centers
In most cases, global load balancers spread service requests to virtual servers in 
multiple physical sites. These sites are called data centers and you must create two of 
them. Data centers resolve to the two different subnets of BIG-IP local load balancers.

C.3.4 Configure Wide IPs
It is recommended that you configure the 3-DNS device so it will distribute requests 
evenly to servers in a VIP in one data center. If these servers fail, they should fail 
requests over to a VIP in the other data center. In order to do this, a wideip address 
must be created. This wideip address will be the target of client requests, and can be 
given a fully qualified domain name. The Wide IP defines how connections are 
distributed to local load balancer virtual servers.

The following procedures describe how to configure wide IPs:

1. In the 3-DNS navigation panel, click Wide IPs, and then Add Wide IP

2. Specify an available network address for the Wide IP, a port (e.g. 7001) for the 
Wide IP, and an associated fully qualified domain name (e.g. cs.gslb.bea.com).



Configuring WebLogic Server Components

Configuring F5 Load Balancers for MAN/WAN Failover C-5

3. Add a 3-DNS pool that should specify the virtual servers on the local load 
balancers. The 3-DNS global load balancer automatically identifies the virtual 
servers available on each local load balancer after the BIG-IP hosts are configured. 
Specify the multi-layered Virtual Servers.

4. Create two entries in the DNS database on your DNS nameserver that resolve to 
the wideip.

C.4 Configuring WebLogic Server Components
After you have configured your F5 devices, you must configure WebLogic Server to 
use MAN/WAN failover. For information on configuring WebLogic Server to use 
MAN/WAN, see Section 6.2.4, "Session State Replication Across Clusters in a 
MAN/WAN."



Configuring WebLogic Server Components

C-6 Administering Clusters for Oracle WebLogic Server 12.1.3



D

Configuring Radware Load Balancers for MAN/WAN Failover D-1

DConfiguring Radware Load Balancers for
MAN/WAN Failover

[20] This appendix describes how to configure Radware hardware load balancers to work 
with WebLogic Server 12.1.3.

WebLogic Server provides failover within MAN and WAN networks. This feature 
provides more reliability by allowing failover to occur across a larger geographic area. 
It also provides failover across multiple WebLogic Server domains.

To provide failover within a MAN/WAN environment, you must use hardware load 
balancers. This document outlines the procedures for configuring Radware hardware 
load balancers to work with WebLogic Server.

For information on configuring WebLogic Server to use MAN/WAN, see Section 6.2.4, 
"Session State Replication Across Clusters in a MAN/WAN." For information on 
configuring Radware hardware load balancers, see http://www.radware.com.

This appendix includes the following sections:

■ Section D.1, "Requirements"

■ Section D.2, "Step 1: Configure an Authoritative Delegation Zone"

■ Section D.3, "Step 2: Configure Farm Virtual IPs and Servers"

■ Section D.4, "Step 3: Configure Port Multiplexing"

■ Section D.5, "Step 4: Configure HTTP Redirects"

■ Section D.6, "Step 5: Configure Session ID Persistency"

■ Section D.7, "Step 6: Configure LRP"

■ Section D.8, "Step 7: Configure WebLogic Server Components"

D.1 Requirements
Before performing the procedures described in this appendix, ensure that you have 
performed the following:

■ Installed and configured your WebLogic Server environment. This includes 
creating and configuring clusters and Managed Servers.

■ Installed and configured at least two Radware Web Server Director load balancers. 
This is the minimum hardware requirement for using Radware devices within a 
MAN/WAN environment. At least one of these must be configured as a global 
load balancer

■ Ensured that your network and DNS are configured correctly



Step 1: Configure an Authoritative Delegation Zone

D-2 Administering Clusters for Oracle WebLogic Server 12.1.3

Once these requirements are met, use the following procedures to configure your load 
balancers to work within a MAN/WAN environment.

D.2 Step 1: Configure an Authoritative Delegation Zone
The first step in configuring Web Server Director is to create an Authoritative 
Delegation Zone within the local DNS. To do this, perform the following using the 
Radware administration utility:

1. Click on the name of your local DNS.

2. Click New Delegation. 

3. Enter a name for the new delegation zone

4. Add the IP address for each Radware device

D.3 Step 2: Configure Farm Virtual IPs and Servers
Web Server Director balances load among servers within a server farm. Clients access 
a server using a virtual IP address. Web Server Director directs traffic from this virtual 
IP address to the appropriate server. The following sections describe how to create and 
configure server farm virtual IPs.

D.3.1 Create a Farm IP
To create a farm IP, perform the following using the Radware administration utility:

1. Select WSD. 

2. Select Farms. 

3. Select Farm Table. 

4. Click Create a Farm. 

5. Enter an IP address and DNS alias for the farm. 

6. Ensure that Admin Status is enabled. 

7. Click Set. 

D.3.2 Configure the Dispatch Method for the Server Farm
To configure the dispatch method for the server farm, perform the following 
procedures using the Radware configuration utility:

1. Select WSD. 

2. Select Farms. 

3. Select Farm Table. 

4. Select the farm you want to configure

5. In the Farm Properties window, select the menu next to Dispatch Method.

6. Select the desired algorithm

7. Click Set. 



Step 4: Configure HTTP Redirects

Configuring Radware Load Balancers for MAN/WAN Failover D-3

D.3.3 Creating Farm Servers
To configure a farm server, perform the following procedures using the Radware 
administration utility:

1. Select WSD. 

2. Select Servers. 

3. Select Application Servers. 

4. Select the Farm IP created above. 

5. Add the server IP address. 

6. Add the server name. 

7. Ensure that Admin Status is enabled. 

D.4 Step 3: Configure Port Multiplexing
Use the following procedures to configure port multiplexing:

1. Select WSD. 

2. Select Farms. 

3. Select Farm Table. 

4. Select the farm you want to configure. 

5. In the Properties window, enter a value in the Multiplexed Port field. 

6. Select WSD. 

7. Select Servers. 

8. Select Application Servers. 

9. For each local server, select the server from the table and enter the application port 
in the Multiplexed Server Port field. 

10. Click Set. 

D.5 Step 4: Configure HTTP Redirects
You must configure HTTP redirects in order to configure global load balancers to work 
within a MAN/WAN environment. HTTP redirects ensure proper distribution of 
traffic across Web Server Director devices.

To configure HTTP redirect, perform the following procedures using the Radware 
administration utility:

1. Select WSD. 

2. Select Farms. 

3. Select Farm Table. 

4. Select the farm that you want to configure. 

5. Select HTTP Redirection in the Redirection Mode section. 

6. Select HTTP Redirection in the DNS Redirection Fallback section. 

7. Click Set. 

8. Select WSD. 



Step 5: Configure Session ID Persistency

D-4 Administering Clusters for Oracle WebLogic Server 12.1.3

9. Select Servers. 

10. Select Application Servers. 

11. Select the server in the farm that represents the distributed farm on the remote 
WSD

D.6 Step 5: Configure Session ID Persistency
Server persistence is based on HTTP session IDs. Web Server Director inspects 
incoming traffic to a farm, then selects the appropriate server based on session 
information in the HTTP header. To configure session ID persistency, perform the 
following procedures using the Radware administration utility:

1. Select WSD. 

2. Select L7 Load Balancing. 

3. Select Session Persistency. 

4. Click Create. 

5. Select the farm you want to configure. 

6. Set the application port of your farm. 

7. Set Persistency Identification to JESESSIONID. 

8. Set Value Offset to 53. 

9. Set Stop Chars to :!. 

10. Set Inactivity Timeout to the value of your session time-out.

D.7 Step 6: Configure LRP
Configuring the LRP component ensures that traffic is correctly distributed to remote 
locations. To configure LRP, perform the following:

1. Select WSD. 

2. Select Distributed Systems. 

3. Select Report Configuration. 

4. Click Create Distributed Farm Address. 

5. Set Distributed Farm Address to the remote farm IP address. 

6. Set Remote WSD Address to the IP address of the second Radware device. 

7. Click Set. 

D.8 Step 7: Configure WebLogic Server Components
After you have configured your Radware devices, you must configure WebLogic 
Server to use MAN/WAN failover. For information on configuring WebLogic Server to 
use MAN/WAN, see Section 6.2.4, "Session State Replication Across Clusters in a 
MAN/WAN."


	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 New and Changed Clustering Features in This Release

	2 Understanding WebLogic Server Clustering
	2.1 What Is a WebLogic Server Cluster?
	2.2 What Are Dynamic Clusters?
	2.3 How Does a Cluster Relate to a Domain?
	2.4 What Are the Benefits of Clustering?
	2.5 What Are the Key Capabilities of a Cluster?
	2.6 What Types of Objects Can Be Clustered?
	2.6.1 Servlets and JSPs
	2.6.2 EJBs and RMI Objects
	2.6.3 JMS and Clustering

	2.7 What Types of Objects Cannot Be Clustered?

	3 Communications In a Cluster
	3.1 Choosing WebLogic Server Cluster Messaging Protocols
	3.1.1 Using IP Multicast
	3.1.1.1 Multicast and Cluster Configuration
	3.1.1.1.1 If Your Cluster Spans Multiple Subnets In a WAN
	3.1.1.1.2 Firewalls Can Break Multicast Communication
	3.1.1.1.3 Do Not Share the Cluster Multicast Address with Other Applications
	3.1.1.1.4 If Multicast Storms Occur


	3.1.2 One-to-Many Communication Using Unicast
	3.1.2.1 WebLogic Server Unicast Groups
	3.1.2.2 Assigning Server Instances to Groups
	3.1.2.3 Unicast Configuration
	3.1.2.4 Considerations When Using Unicast

	3.1.3 Considerations for Choosing Unicast or Multicast

	3.2 Peer-to-Peer Communication Using IP Sockets
	3.2.1 Pure-Java Versus Native Socket Reader Implementations
	3.2.2 Configuring Reader Threads for Java Socket Implementation
	3.2.2.1 Determining Potential Socket Usage


	3.3 Client Communication via Sockets
	3.4 Cluster-Wide JNDI Naming Service
	3.4.1 How WebLogic Server Creates the Cluster-Wide JNDI Tree
	3.4.2 How JNDI Naming Conflicts Occur
	3.4.2.1 Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts

	3.4.3 How WebLogic Server Updates the JNDI Tree
	3.4.4 Client Interaction with the Cluster-Wide JNDI Tree


	4 Understanding Cluster Configuration
	4.1 Cluster Configuration and config.xml
	4.2 Role of the Administration Server
	4.2.1 What Happens if the Administration Server Fails?

	4.3 How Dynamic Configuration Works
	4.4 Application Deployment for Clustered Configurations
	4.4.1 Deployment Methods
	4.4.2 Introduction to Two-Phase Deployment
	4.4.2.1 First Phase of Deployment
	4.4.2.2 Second Phase of Deployment

	4.4.3 Guidelines for Deploying to a Cluster
	4.4.3.1 WebLogic Server Supports "Relaxed Deployment" Rules
	4.4.3.1.1 Deployment to a Partial Cluster is Allowed
	4.4.3.1.2 Deploying to Complete Clusters in WebLogic Server
	4.4.3.1.3 Pinned Services can be Deployed to Multiple Managed Servers.



	4.5 Methods of Configuring Clusters

	5 Load Balancing in a Cluster
	5.1 Load Balancing for Servlets and JSPs
	5.1.1 Load Balancing with a Proxy Plug-in
	5.1.1.1 How Session Connection and Failover Work with a Proxy Plug-in

	5.1.2 Load Balancing HTTP Sessions with an External Load Balancer
	5.1.2.1 Load Balancer Configuration Requirements
	5.1.2.2 Load Balancers and the WebLogic Session Cookie
	5.1.2.3 Related Programming Considerations
	5.1.2.4 How Session Connection and Failover Works with a Load Balancer


	5.2 Load Balancing for EJBs and RMI Objects
	5.2.1 Round-Robin Load Balancing
	5.2.2 Weight-Based Load Balancing
	5.2.3 Random Load Balancing
	5.2.4 Server Affinity Load Balancing Algorithms
	5.2.4.1 Server Affinity and Initial Context
	5.2.4.2 Server Affinity and IIOP Client Authentication Using CSIv2
	5.2.4.3 Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity
	5.2.4.3.1 Server Affinity Examples


	5.2.5 Parameter-Based Routing for Clustered Objects
	5.2.6 Optimization for Collocated Objects
	5.2.6.1 Transactional Collocation

	5.2.7 XA Transaction Cluster Affinity

	5.3 Load Balancing for JMS
	5.3.1 Server Affinity for Distributed JMS Destinations
	5.3.2 Initial Context Affinity and Server Affinity for Client Connections


	6 Failover and Replication in a Cluster
	6.1 How WebLogic Server Detects Failures
	6.1.1 Failure Detection Using IP Sockets
	6.1.2 The WebLogic Server "Heartbeat"

	6.2 Replication and Failover for Servlets and JSPs
	6.2.1 HTTP Session State Replication
	6.2.1.1 Requirements for HTTP Session State Replication
	6.2.1.1.1 Supported Server and Proxy Software
	6.2.1.1.2 Load Balancer Requirements
	6.2.1.1.3 Programming Considerations for Clustered Servlets and JSPs

	6.2.1.2 Using Replication Groups

	6.2.2 Accessing Clustered Servlets and JSPs Using a Proxy
	6.2.2.1 Proxy Connection Procedure
	6.2.2.1.1 Using URL Rewriting to Track Session Replicas

	6.2.2.2 Proxy Failover Procedure

	6.2.3 Accessing Clustered Servlets and JSPs with Load Balancing Hardware
	6.2.3.1 Connection with Load Balancing Hardware
	6.2.3.2 Failover with Load Balancing Hardware

	6.2.4 Session State Replication Across Clusters in a MAN/WAN
	6.2.4.1 Network Requirements for Cross-cluster Replication
	6.2.4.1.1 Global Load Balancer
	6.2.4.1.2 Local Load Balancer
	6.2.4.1.3 Replication
	6.2.4.1.4 Failover

	6.2.4.2 Configuration Requirements for Cross-Cluster Replication
	6.2.4.3 Configuring Session State Replication Across Clusters
	6.2.4.4 Configuring a Replication Channel
	6.2.4.5 MAN HTTP Session State Replication
	6.2.4.5.1 Replication Within a MAN
	6.2.4.5.2 Failover Scenarios in a MAN
	6.2.4.5.3 MAN Replication, Load Balancers, and Session Stickiness

	6.2.4.6 WAN HTTP Session State Replication
	6.2.4.6.1 Replication Within a WAN
	6.2.4.6.2 Failover Scenarios Within a WAN
	6.2.4.6.3 Database Configuration for WAN Session State Replication



	6.3 Replication and Failover for EJBs and RMIs
	6.3.1 Clustering Objects with Replica-Aware Stubs
	6.3.2 Clustering Support for Different Types of EJBs
	6.3.2.1 Clustered EJBHomes
	6.3.2.2 Clustered EJBObjects
	6.3.2.2.1 Stateless Session Beans
	6.3.2.2.2 Stateful Session Beans
	6.3.2.2.3 Failover for Stateful Session EJBs

	6.3.2.3 Entity EJBs
	6.3.2.3.1 Failover for Entity Beans and EJB Handles


	6.3.3 Clustering Support for RMI Objects
	6.3.4 Object Deployment Requirements
	6.3.4.1 Other Failover Exceptions



	7 Whole Server Migration
	7.1 Understanding Server and Service Migration
	7.2 Migration Terminology
	7.3 Leasing
	7.3.1 Features That Use Leasing
	7.3.2 Types of Leasing
	7.3.3 Determining Which Type of Leasing To Use
	7.3.4 High-availability Database Leasing
	7.3.4.1 Server Migration with Database Leasing on RAC Clusters

	7.3.5 Non-database Consensus Leasing

	7.4 Automatic Whole Server Migration
	7.4.1 Preparing for Automatic Whole Server Migration
	7.4.2 Configuring Automatic Whole Server Migration
	7.4.3 Using High Availability Storage for State Data
	7.4.4 Server Migration Processes and Communications
	7.4.4.1 Startup Process in a Cluster with Migratable Servers
	7.4.4.2 Automatic Whole Server Migration Process
	7.4.4.3 Manual Whole Server Migration Process
	7.4.4.4 Administration Server Role in Whole Server Migration
	7.4.4.5 Migratable Server Behavior in a Cluster
	7.4.4.6 Node Manager Role in Whole Server Migration
	7.4.4.7 Cluster Master Role in Whole Server Migration


	7.5 Whole Server Migration with Dynamic and Mixed Clusters
	7.5.1 Configuring Whole Server Migration with Dynamic Clusters
	7.5.2 Configuring Whole Server Migration with Mixed Clusters


	8 Service Migration
	8.1 Understanding the Service Migration Framework
	8.1.1 Migratable Services
	8.1.1.1 JMS-related Services
	8.1.1.2 JTA Transaction Recovery Service
	8.1.1.3 User-defined Singleton Services

	8.1.2 Understanding Migratable Targets In a Cluster
	8.1.2.1 Policies for Manual and Automatic Service Migration
	8.1.2.1.1 Manual Migration
	8.1.2.1.2 Exactly-Once
	8.1.2.1.3 Failure-Recovery

	8.1.2.2 Options For Attempting to Restart Failed Services Before Migrating
	8.1.2.3 User-Preferred Servers and Candidate Servers
	8.1.2.4 Example Migratable Targets In a Cluster
	8.1.2.5 Targeting Rules for JMS Servers
	8.1.2.6 Targeting Rules for SAF Agents
	8.1.2.6.1 Re-targeting SAF Agents to Migratable Targets
	8.1.2.6.2 Targeting Migratable SAF Agents For Increased Message Throughput
	8.1.2.6.3 Targeting SAF Agents For Consistent Quality-of-Service

	8.1.2.7 Targeting Rules for Path Service
	8.1.2.7.1 Special Considerations For Targeting a Path Service

	8.1.2.8 Targeting Rules for Custom Stores
	8.1.2.9 Migratable Targets For the JTA Transaction Recovery Service

	8.1.3 Migration Processing Tools
	8.1.3.1 Administration Console
	8.1.3.2 WebLogic Scripting Tool

	8.1.4 Automatic Service Migration Infrastructure
	8.1.4.1 Leasing for Migratable Services
	8.1.4.1.1 Database Leasing
	8.1.4.1.2 Consensus Leasing

	8.1.4.2 Node Manager
	8.1.4.3 Administration Server Not Required When Migrating Services
	8.1.4.4 Service Health Monitoring
	8.1.4.4.1 How Health Monitoring of the JTA Transaction Recovery Service Triggers Automatic Migration
	8.1.4.4.2 How Health Monitoring of JMS-related Services Triggers Automatic Migration


	8.1.5 In-Place Restarting of Failed Migratable Services
	8.1.6 Migrating a Service From an Unavailable Server
	8.1.7 JMS and JTA Automatic Service Migration Interaction

	8.2 Pre-Migration Requirements
	8.2.1 Custom Store Availability for JMS Services
	8.2.2 Default File Store Availability for JTA
	8.2.3 Server State and Manual Service Migration

	8.3 Roadmap for Configuring Automatic Migration of JMS-related Services
	8.3.1 Step 1: Configure Managed Servers and Node Manager
	8.3.2 Step 2: Configure the Migration Leasing Basis
	8.3.3 Step 3: Configure Migratable Targets
	8.3.3.1 Configuring a Migratable Server as an Automatically Migratable Target
	8.3.3.2 Create a New Migratable Target
	8.3.3.2.1 Select a User Preferred Server
	8.3.3.2.2 Select a Service Migration Policy
	8.3.3.2.3 Optionally Select Constrained Candidate Servers
	8.3.3.2.4 Optionally Specify Pre/Post-Migration Scripts
	8.3.3.2.5 Optionally Specify In-Place Restart Options


	8.3.4 Step 4: Configure and Target Custom Stores
	8.3.5 Step 5: Target the JMS Services
	8.3.5.1 Special Considerations When Targeting SAF Agents or Path Service

	8.3.6 Step 6: Restart the Administration Server and Managed Servers With Modified Migration Policies
	8.3.7 Step 7: Manually Migrate JMS Services Back to the Original Server

	8.4 Best Practices for Targeting JMS when Configuring Automatic Service Migration
	8.5 Roadmap for Configuring Manual Migration of JMS-related Services
	8.5.1 Step 1: Configure Managed Servers
	8.5.2 Step 2: Configure Migratable Targets
	8.5.2.1 Configuring a Migratable Server As a Migratable Target
	8.5.2.2 Create a New Migratable Target
	8.5.2.2.1 Select a Preferred Server
	8.5.2.2.2 Accept the Default Manual Service Migration Policy
	8.5.2.2.3 Optionally Select Constrained Candidate Servers
	8.5.2.2.4 Optionally Specify Pre/Post-Migration Scripts
	8.5.2.2.5 Optionally Specify In-Place Restart Options


	8.5.3 Step 3: Configure and Target Custom Stores
	8.5.4 Step 4: Target the JMS Services
	8.5.4.1 Special Considerations When Targeting SAF Agents or Path Service

	8.5.5 Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies
	8.5.6 Step 6: Manually Migrating JMS Services

	8.6 Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service
	8.6.1 Step 1: Configure Managed Servers and Node Manager
	8.6.2 Step 2: Configure the Migration Basis
	8.6.3 Step 3: Enable Automatic JTA Migration
	8.6.3.1 Select the Automatic JTA Migration Check Box
	8.6.3.2 Optionally Select Candidate Servers
	8.6.3.3 Optionally Specify Pre/Post-Migration Scripts

	8.6.4 Step 4: Configure the Default Persistent Store For Transaction Recovery Service Migration
	8.6.5 Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies
	8.6.6 Step 6: Automatic Failback of the Transaction Recovery Service Back to the Original Server

	8.7 Manual Migration of the JTA Transaction Recovery Service
	8.8 Automatic Migration of User-Defined Singleton Services
	8.8.1 Overview of Singleton Service Migration
	8.8.1.1 Singleton Master
	8.8.1.2 Migration Failure

	8.8.2 Implementing the Singleton Service Interface
	8.8.3 Deploying a Singleton Service and Configuring the Migration Behavior
	8.8.3.1 Packaging and Deploying a Singleton Service Within an Application
	8.8.3.2 Deploying a Singleton Service as a Standalone Service in WebLogic Server
	8.8.3.3 Configuring Singleton Service Migration



	9 Cluster Architectures
	9.1 Architectural and Cluster Terminology
	9.1.1 Architecture
	9.1.2 Web Application Tiers
	9.1.3 Combined Tier Architecture
	9.1.4 De-Militarized Zone (DMZ)
	9.1.5 Load Balancer
	9.1.6 Proxy Plug-In

	9.2 Recommended Basic Architecture
	9.2.1 When Not to Use a Combined Tier Architecture

	9.3 Recommended Multi-Tier Architecture
	9.3.1 Physical Hardware and Software Layers
	9.3.1.1 Web/Presentation Layer
	9.3.1.2 Object Layer

	9.3.2 Benefits of Multi-Tier Architecture
	9.3.3 Load Balancing Clustered Objects in a in Multi-Tier Architecture
	9.3.4 Configuration Considerations for Multi-Tier Architecture
	9.3.4.1 IP Socket Usage
	9.3.4.2 Hardware Load Balancers

	9.3.5 Limitations of Multi-Tier Architectures
	9.3.5.1 No Collocation Optimization
	9.3.5.2 Firewall Restrictions


	9.4 Recommended Proxy Architectures
	9.4.1 Two-Tier Proxy Architecture
	9.4.1.1 Physical Hardware and Software Layers
	9.4.1.1.1 Web Layer
	9.4.1.1.2 Servlet/Object Layer


	9.4.2 Multi-Tier Proxy Architecture
	9.4.3 Proxy Architecture Benefits
	9.4.4 Proxy Architecture Limitations
	9.4.5 Proxy Plug-In Versus Load Balancer

	9.5 Security Options for Cluster Architectures
	9.5.1 Basic Firewall for Proxy Architectures
	9.5.1.1 Firewall Between Proxy Layer and Cluster
	9.5.1.2 DMZ with Basic Firewall Configurations
	9.5.1.3 Combining Firewall with Load Balancer
	9.5.1.4 Expanding the Firewall for Internal Clients

	9.5.2 Additional Security for Shared Databases
	9.5.2.1 DMZ with Two Firewall Configuration



	10 Setting up WebLogic Clusters
	10.1 Before You Start
	10.1.1 Understand the Configuration Process
	10.1.2 Determine Your Cluster Architecture
	10.1.3 Consider Your Network and Security Topologies
	10.1.4 Choose Machines for the Cluster Installation
	10.1.4.1 WebLogic Server Instances on Multi-CPU Machines
	10.1.4.2 Check Host Machines' Socket Reader Implementation
	10.1.4.3 Setting Up a Cluster on a Disconnected Windows Machine

	10.1.5 Identify Names and Addresses
	10.1.5.1 Avoiding Listen Address Problems
	10.1.5.1.1 DNS Names or IP Addresses?
	10.1.5.1.2 When Internal and External DNS Names Vary
	10.1.5.1.3 Localhost Considerations

	10.1.5.2 Assigning Names to WebLogic Server Resources
	10.1.5.3 Administration Server Address and Port
	10.1.5.4 Managed Server Addresses and Listen Ports
	10.1.5.5 Cluster Multicast Address and Port
	10.1.5.5.1 Multicast and Multiple Clusters
	10.1.5.5.2 Multicast and Multi-Tier Clusters

	10.1.5.6 Cluster Address
	10.1.5.6.1 Dynamic Cluster Address
	10.1.5.6.2 Explicitly Defining Cluster Address for Production Environments
	10.1.5.6.3 Explicitly Defining Cluster Address for Development and Test Environments
	10.1.5.6.4 Explicitly Defining Cluster Address for Single, Multihomed Machine



	10.2 Cluster Implementation Procedures
	10.2.1 Configuration Roadmap
	10.2.2 Install WebLogic Server
	10.2.3 Create a Clustered Domain
	10.2.3.1 Starting a WebLogic Server Cluster

	10.2.4 Configure Node Manager
	10.2.5 Configure Load Balancing Method for EJBs and RMIs
	10.2.6 Specifying a Timeout Value For RMIs
	10.2.7 Configure Server Affinity for Distributed JMS Destinations
	10.2.8 Configuring Load Balancers that Support Passive Cookie Persistence
	10.2.9 Configure Proxy Plug-Ins
	10.2.9.1 Set Up the HttpClusterServlet
	10.2.9.1.1 Sample web.xml
	10.2.9.1.2 Sample weblogic.xml
	10.2.9.1.3 Proxy Servlet Deployment Parameters
	10.2.9.1.4 Accessing Applications Via the Proxy Server


	10.2.10 Configure Replication Groups
	10.2.11 Configure Migratable Targets for Pinned Services
	10.2.12 Package Applications for Deployment
	10.2.13 Deploy Applications
	10.2.13.1 Deploying to a Single Server Instance (Pinned Deployment)
	10.2.13.1.1 Pinned Deployment from the Command Line

	10.2.13.2 Cancelling Cluster Deployments
	10.2.13.2.1 Cancel Deployment from the Command Line
	10.2.13.2.2 Cancel Deployment Using the WebLogic Server Administration Console

	10.2.13.3 Viewing Deployed Applications
	10.2.13.4 Undeploying Deployed Applications

	10.2.14 Deploying, Activating, and Migrating Migratable Services
	10.2.14.1 Deploying JMS to a Migratable Target Server Instance
	10.2.14.2 Activating JTA as a Migratable Service
	10.2.14.3 Migrating a Pinned Service to a Target Server Instance
	10.2.14.3.1 Migrating When the Currently Active Host is Unavailable


	10.2.15 Configure In-Memory HTTP Replication
	10.2.16 Additional Configuration Topics
	10.2.16.1 Configure IP Sockets
	10.2.16.1.1 Configure Native IP Sockets Readers on Machines that Host Server Instances
	10.2.16.1.2 Set the Number of Reader Threads on Machines that Host Server Instances
	10.2.16.1.3 Set the Number of Reader Threads on Client Machines

	10.2.16.2 Configure Multicast Time-To-Live (TTL)
	10.2.16.3 Configure Multicast Buffer Size
	10.2.16.4 Configure Multicast Data Encryption
	10.2.16.5 Configure Machine Names
	10.2.16.6 Configuration Notes for Multi-Tier Architecture
	10.2.16.7 Enable URL Rewriting



	11 Dynamic Clusters
	11.1 What Are Dynamic Clusters?
	11.2 Why Do You Use Dynamic Clusters?
	11.3 How Do Dynamic Clusters Work?
	11.3.1 Creating and Configuring Dynamic Clusters
	11.3.2 Using Server Templates
	11.3.3 Calculating Server-Specific Attributes
	11.3.3.1 Calculating Server Names
	11.3.3.2 Calculating Listen Ports
	11.3.3.3 Calculating Machine Names

	11.3.4 Starting and Stopping Servers in Dynamic Clusters
	11.3.5 Using Whole Server Migration with Dynamic Clusters
	11.3.6 Expanding or Reducing Dynamic Clusters
	11.3.7 Deploying Applications to Dynamic Clusters
	11.3.8 Using WebLogic Web Server Plug-Ins with Dynamic Clusters

	11.4 Limitations and Considerations When Using Dynamic Clusters
	11.5 Dynamic Clusters Example

	12 Configuring and Managing Coherence Clusters
	12.1 Overview of Coherence Clusters
	12.2 Setting Up a Coherence Cluster
	12.2.1 Define a Coherence Cluster Resource
	12.2.2 Create Standalone Managed Coherence Servers

	12.3 Creating Coherence Deployment Tiers
	12.3.1 Configuring and Managing a Coherence Data Tier
	12.3.1.1 Create a Coherence Data Tier
	12.3.1.2 Create Managed Coherence Servers for a Data Tier

	12.3.2 Configuring and Managing a Coherence Application Tier
	12.3.2.1 Create a Coherence Application Tier
	12.3.2.2 Create Managed Coherence Servers for an Application Tier

	12.3.3 Configuring and Managing a Coherence Proxy Tier
	12.3.3.1 Create a Coherence Proxy Tier
	12.3.3.2 Create Managed Coherence Servers for a Proxy Tier
	12.3.3.3 Configure Coherence Proxy Services
	12.3.3.3.1 Using a Name Service
	12.3.3.3.2 Using an Address Provider



	12.4 Configuring a Coherence Cluster
	12.4.1 Adding and Removing Coherence Cluster Members
	12.4.2 Setting Advanced Cluster Configuration Options
	12.4.3 Configure Cluster Communication
	12.4.3.1 Changing the Coherence Cluster Mode
	12.4.3.2 Changing the Coherence Cluster Transport Protocol

	12.4.4 Overriding a Cache Configuration File
	12.4.5 Configuring Coherence Logging

	12.5 Configuring Managed Coherence Servers
	12.5.1 Configure Coherence Cluster Member Storage Settings
	12.5.2 Configure Coherence Cluster Member Unicast Settings
	12.5.3 Configure a Coherence Cluster Member as a Management Node
	12.5.4 Configure Coherence Cluster Member Identity Settings
	12.5.5 Configure Coherence Cluster Member Logging Levels

	12.6 Using a Single-Server Cluster
	12.7 Using WLST (Offline) for Coherence Cluster Setup

	13 Clustering Best Practices
	13.1 General Design Considerations
	13.1.1 Strive for Simplicity
	13.1.2 Minimize Remote Calls
	13.1.2.1 Session Facades Reduce Remote Calls
	13.1.2.2 Transfer Objects Reduce Remote Calls
	13.1.2.3 Distributed Transactions Increase Remote Calls


	13.2 Web Application Design Considerations
	13.2.1 Configure In-Memory Replication
	13.2.2 Design for Idempotence
	13.2.3 Programming Considerations

	13.3 EJB Design Considerations
	13.3.1 Design Idempotent Methods
	13.3.2 Follow Usage and Configuration Guidelines
	13.3.2.1 Cluster-Related Configuration Options


	13.4 State Management in a Cluster
	13.5 Application Deployment Considerations
	13.6 Architecture Considerations
	13.7 Avoiding Problems
	13.7.1 Naming Considerations
	13.7.2 Administration Server Considerations
	13.7.3 Firewall Considerations
	13.7.4 Evaluate Cluster Capacity Prior to Production Use


	14 Troubleshooting Common Problems
	14.1 Before You Start the Cluster
	14.1.1 Check the Server Version Numbers
	14.1.2 Check the Multicast Address
	14.1.3 Check the CLASSPATH Value

	14.2 After You Start the Cluster
	14.2.1 Check Your Commands
	14.2.2 Generate a Log File
	14.2.2.1 Getting an Oracle HotSpot VM Thread Dump

	14.2.3 Check Garbage Collection
	14.2.4 Run utils.MulticastTest


	15 Troubleshooting Multicast Configuration
	15.1 Verifying Multicast Address and Port Configuration
	15.1.1 Possible Errors
	15.1.2 Checking the Multicast Address and Port

	15.2 Identifying Network Configuration Problems
	15.2.1 Physical Connections
	15.2.2 Address Conflicts
	15.2.3 nsswitch.conf Settings on UNIX Systems

	15.3 Using the MulticastTest Utility
	15.4 Tuning Multicast Features
	15.4.1 Multicast Timeouts
	15.4.2 Cluster Heartbeats
	15.4.2.1 Multicast Send Delay
	15.4.2.2 Operating System Parameters

	15.4.3 Multicast Storms
	15.4.4 Multicast and Multihomed Machines
	15.4.5 Multicast in Different Subnets

	15.5 Debugging Multicast
	15.5.1 Debugging Utilities
	15.5.1.1 MulticastMonitor
	15.5.1.2 MulticastTest

	15.5.2 Debugging Flags
	15.5.2.1 Setting Debug Flags on the Command Line
	15.5.2.2 Setting Debug Attributes Using WLST


	15.6 Miscellaneous Issues
	15.6.1 Multicast on AIX
	15.6.2 File Descriptor Problems

	15.7 Other Resources for Troubleshooting Multicast Configuration
	A.1 How to Use the API
	A.2 Custom Call Routing and Collocation Optimization
	C.1 Requirements
	C.2 Configure Local Load Balancers
	C.2.1 Virtual Server IPs and Pools
	C.2.2 Create a Failover Trigger Virtual Server and Pool
	C.2.3 Create a Multi-layered Virtual Server and IP Pool

	C.3 Configure the 3-DNS Global Hardware Load Balancer
	C.3.1 Configure DNS Zones
	C.3.2 Configure BIG-IP Addresses Managed by 3-DNS
	C.3.3 Configure Data Centers
	C.3.4 Configure Wide IPs

	C.4 Configuring WebLogic Server Components
	D.1 Requirements
	D.2 Step 1: Configure an Authoritative Delegation Zone
	D.3 Step 2: Configure Farm Virtual IPs and Servers
	D.3.1 Create a Farm IP
	D.3.2 Configure the Dispatch Method for the Server Farm
	D.3.3 Creating Farm Servers

	D.4 Step 3: Configure Port Multiplexing
	D.5 Step 4: Configure HTTP Redirects
	D.6 Step 5: Configure Session ID Persistency
	D.7 Step 6: Configure LRP
	D.8 Step 7: Configure WebLogic Server Components


