

[1] Oracle® Fusion Middleware
Deploying Applications with the WebLogic Deployment API for
Oracle WebLogic Server 12.1.3

12c (12.1.3)

E41939-02

August 2015

This document describes the WebLogic Deployment API and
performing deployment operations programmatically for
WebLogic Server 12.1.3 applications.

Oracle Fusion Middleware Deploying Applications with the WebLogic Deployment API for Oracle WebLogic
Server 12.1.3, 12c (12.1.3)

E41939-02

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-2
1.3 Related Documentation.. 1-2
1.4 New and Changed Features in This Release... 1-2

2 Understanding the WebLogic Deployment API

2.1 The WebLogic Deployment API... 2-1
2.1.1 WebLogic Deployment API Deployment Phases ... 2-1
2.1.1.1 Configure an Application for Deployment... 2-2
2.1.1.2 Deploy an Application... 2-2
2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment API 2-2
2.1.3 When to Use the WebLogic Deployment API ... 2-2
2.2 Java EE Deployment API Compliance... 2-3
2.3 WebLogic Server Value-Added Deployment Features ... 2-3
2.4 The Service Provider Interface Package .. 2-4
2.4.1 weblogic.deploy.api.spi .. 2-4
2.4.2 weblogic.deploy.api.spi.factories .. 2-5
2.4.3 Module Targeting .. 2-5
2.4.4 Support for Querying WebLogic Target Types... 2-5
2.4.5 Server Staging Modes.. 2-5
2.4.6 Deployment Plan Staging Modes.. 2-5
2.4.7 DConfigBean Validation... 2-6
2.5 The Model Package... 2-6
2.5.1 weblogic.deploy.api.model .. 2-6
2.5.2 Accessing Deployment Descriptors .. 2-7
2.6 The Shared Package.. 2-7
2.6.1 weblogic.deploy.api.shared ... 2-7
2.6.2 Command Types for Deploy and Update.. 2-8
2.6.3 Support for Module Types ... 2-8
2.6.4 Support for all WebLogic Server Target Types ... 2-8

iv

2.7 The Tools Package... 2-8
2.7.1 weblogic.deploy.api.tools... 2-8
2.7.2 SessionHelper... 2-9
2.7.3 Deployment Plan Creation ... 2-9
2.8 The JMX API for Deployment Operations ... 2-10
2.8.1 Supported Deployment Options .. 2-11
2.8.2 Using the JMX API for Deployment Operations.. 2-12
2.9 Using a Deployment Validation Plug-In with WebLogic Server...................................... 2-16
2.9.1 Configuring the Deployment Validation Plug-In .. 2-17
2.9.2 Using the Deployment Validation Plug-In ... 2-17

3 Configuring Applications for Deployment

3.1 Overview of the Configuration Process... 3-1
3.2 Types of Configuration Information.. 3-2
3.2.1 Java EE Configuration... 3-2
3.2.2 WebLogic Server Configuration .. 3-3
3.2.3 Representing Java EE and WebLogic Server Configuration Information 3-3
3.2.3.1 DDBeans .. 3-4
3.2.4 The Relationship Between Java EE and WebLogic Server Descriptors 3-4
3.2.4.1 DConfigBeans.. 3-5
3.3 Application Evaluation .. 3-5
3.3.1 Obtain a Deployment Manager ... 3-5
3.3.1.1 Types of Deployment Managers .. 3-6
3.3.1.2 Connected and Disconnected Deployment Manager URIs.................................... 3-6
3.3.1.3 Using SessionHelper to Obtain a Deployment Manager.. 3-7
3.3.2 Create a Deployable Object .. 3-8
3.3.2.1 Using the WebLogicDeployableObject class .. 3-8
3.3.2.2 Using SessionHelper to obtain a Deployable Object ... 3-8
3.4 Perform Front-end Configuration .. 3-8
3.4.1 What is Front-end Configuration .. 3-9
3.4.2 Deployment Configuration .. 3-9
3.4.2.1 Example Code ... 3-9
3.4.2.2 Reading In Information with SessionHelper... 3-11
3.4.3 Validating a Configuration.. 3-12
3.5 Customizing Deployment Configuration... 3-12
3.5.1 Modifying Configuration Values ... 3-12
3.5.2 Targets .. 3-15
3.5.3 Application Naming... 3-15
3.6 Deployment Preparation... 3-15
3.7 Session Cleanup ... 3-16

4 Performing Deployment Operations

4.1 Register Deployment Factory Objects.. 4-1
4.2 Allocate a DeploymentManager ... 4-2
4.2.1 Getting a DeploymentManager Object .. 4-2
4.2.2 Understanding DeploymentManager URI Implementations 4-2
4.2.3 Server Connectivity ... 4-3

v

4.3 Deployment Processing ... 4-3
4.3.1 DeploymentOptions .. 4-4
4.3.2 Distribution... 4-4
4.3.3 Application Start .. 4-4
4.3.4 Application Deploy ... 4-5
4.3.5 Application Stop .. 4-5
4.3.6 Undeployment ... 4-5
4.4 Production Redeployment... 4-6
4.4.1 In-Place Redeployment ... 4-6
4.4.2 Module Level Targeting ... 4-6
4.4.3 Retirement Policy... 4-6
4.4.4 Version Support ... 4-6
4.4.5 Administration (Test) Mode... 4-7
4.5 Progress Reporting ... 4-7
4.6 Target Objects .. 4-8
4.6.1 Module Types... 4-9
4.6.2 Extended Module Support ... 4-9
4.6.2.1 Web Services.. 4-9
4.6.2.2 CMP .. 4-9
4.6.2.3 JDBC ... 4-9
4.6.2.4 JMS.. 4-9
4.6.2.5 INTERCEPT... 4-9
4.6.3 Recognition of Target Types ... 4-10
4.6.4 TargetModuleID Objects ... 4-10
4.6.5 WebLogic Server TargetModuleID Extensions .. 4-10
4.6.6 Example Module Deployment.. 4-11

vi

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Deploying Applications with the WebLogic Deployment API for Oracle WebLogic
Server 12.1.3.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

[2] This chapter describes the contents and organization of this guide— Deploying
Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3.

This chapter includes the following sections:

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "New and Changed Features in This Release"

1.1 Document Scope and Audience
This document is a resource for:

■ Software developers who want to understand the WebLogic Deployment API.
This API adheres to the specifications described in the Java EE Deployment API
standard (JSR-88, see http://jcp.org/en/jsr/detail?id=88) and extends the
interfaces provided by that standard.

■ Developers and Independent Software Vendors (ISVs) who want to perform
deployment operations programmatically for WebLogic Server applications.

■ System architects who are evaluating WebLogic Server or considering the use of
the WebLogic Deployment API.

■ Design, development, test, and pre-production phases of a software project. It does
not directly address production phase administration, monitoring, or tuning
application performance with the WebLogic Deployment API. The deployment
API includes utilities to make software updates during production but it mirrors
the functionality of the deployment tools already available.

This guide emphasizes:

■ Value-added features of the WebLogic Deployment API.

■ How to manage application deployment using the WebLogic Deployment API.

It is assumed that the reader is familiar with Java EE concepts, the Java EE
Deployment API standard (JSR-88) at http://www.jcp.org/en/jsr/detail?id=088,
the Java programming language, Enterprise Java Beans (EJBs), and Web technologies.

Guide to This Document

1-2 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

1.2 Guide to This Document
■ This chapter, Chapter 1, "Introduction and Roadmap," describes the organization

and scope of this guide.

■ Chapter 2, "Understanding the WebLogic Deployment API," describes the
packages, interfaces, and classes of the API. This section also includes information
on extensions to the Java EE Deployment API standard (JSR-88, see
http://jcp.org/en/jsr/detail?id=88), utilities, helper classes, and new
concepts for WebLogic Server deployment.

■ Chapter 3, "Configuring Applications for Deployment," describes the process of
preparing an application or deployable resource for deployment to WebLogic
Server.

■ Chapter 4, "Performing Deployment Operations," provides information on the
deployment life cycle and controls for a deployed application.

1.3 Related Documentation
For additional information about deploying applications and modules to WebLogic
Server, see these documents:

■ Developing Applications for Oracle WebLogic Server describes how to deploy
applications during development using the wldeploy Ant task, and provides
information about the WebLogic Server deployment descriptor for enterprise
applications.

■ The WebLogic Server Java EE programming guides describe the Java EE and
WebLogic Server deployment descriptors used with each Java EE application and
module:

■ Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

■ Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server

■ Developing Resource Adapters for Oracle WebLogic Server

■ Developing JAX-WS Web Services for Oracle WebLogic Server

■ Deploying Applications to Oracle WebLogic Server

■ Developing JDBC Applications for Oracle WebLogic Server describes the XML
deployment descriptors for JDBC application modules.

■ Developing JMS Applications for Oracle WebLogic Server describes the XML
deployment descriptors for JMS application modules.

1.4 New and Changed Features in This Release
This release of WebLogic Server includes an API for implementing a deployment
validation plug-in that can intercept applications at the start of the deployment process
and validate them prior to their deployment. The deployment validation plug-in
support includes MBeans for enabling and configuring the plug-in. For more
information, see Section 2.9, "Using a Deployment Validation Plug-In with WebLogic
Server."

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

2

Understanding the WebLogic Deployment API 2-1

2Understanding the WebLogic Deployment API

[3] This chapter describes the structure and functionality of the WebLogic Deployment
API in WebLogic Server 12.1.3, which implements and extends the Java EE
Deployment API specification (JSR-88). It also describes the JMX API for deployment
operations, which can be used as an alternative to JSR-88.

This chapter includes the following sections:

■ Section 2.1, "The WebLogic Deployment API"

■ Section 2.2, "Java EE Deployment API Compliance"

■ Section 2.3, "WebLogic Server Value-Added Deployment Features"

■ Section 2.4, "The Service Provider Interface Package"

■ Section 2.5, "The Model Package"

■ Section 2.6, "The Shared Package"

■ Section 2.7, "The Tools Package"

■ Section 2.8, "The JMX API for Deployment Operations"

■ Section 2.9, "Using a Deployment Validation Plug-In with WebLogic Server"

For more on JSR-88, see http://jcp.org/en/jsr/detail?id=88.

2.1 The WebLogic Deployment API

The following sections provide an overview of the WebLogic Server Deployment API:

■ Section 2.1.1, "WebLogic Deployment API Deployment Phases"

■ Section 2.1.2, "weblogic.Deployer Implementation of the WebLogic Deployment
API"

■ Section 2.1.3, "When to Use the WebLogic Deployment API"

2.1.1 WebLogic Deployment API Deployment Phases
The Java EE Deployment API specification (JSR-88, see
http://jcp.org/en/jsr/detail?id=88) differentiates between a configuration session
and deployment. They are distinguished as follows:

Note: WebLogic Server 9.0 deprecates the use of the
weblogic.management.deploy API used in earlier releases.

The WebLogic Deployment API

2-2 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

■ Application configuration which involves the generation of descriptors for a
deployment plan

■ Deployment tasks such as distributing, starting, stopping, redeploying,
undeploying

In order to effectively manage the deployment process in your environment, you must
use the WebLogic Deployment API to:

■ Section 2.1.1.1, "Configure an Application for Deployment"

■ Section 2.1.1.2, "Deploy an Application"

2.1.1.1 Configure an Application for Deployment
In this document, the term configuration refers to the process of preparing an
application or deployable resource for deployment to a WebLogic Server instance.
Configuring an application consists of the following phases:

■ Application Evaluation—Inspection and evaluation of application files to
determine the structure of the application and content of the embedded
descriptors. See Section 3.3, "Application Evaluation".

■ Front-end Configuration—Creation of configuration information based on
content embedded within the application. This content may be in the form of
WebLogic Server descriptors, defaults, and user provided deployment plans. See
Section 3.4, "Perform Front-end Configuration".

■ Deployment Configuration—Modification of individual WebLogic Server
configuration values based on user inputs and the selected WebLogic Server
targets. See Section 3.5, "Customizing Deployment Configuration".

■ Deployment preparation—Generation of the final deployment plan and
preliminary client-side validation of the application. See Section 3.6, "Deployment
Preparation".

2.1.1.2 Deploy an Application
Application deployment is the process of distributing an application and plan to the
Administration Server for server-side processing and application startup. See
Chapter 4, "Performing Deployment Operations".

2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment API
WebLogic Server provides a packaged deployment tool, weblogic.Deployer, to
provide deployment services for WebLogic Server. Any deployment operation that can
be implemented using the WebLogic Deployment API is implemented, either in part
or in full, by weblogic.Deployer.

2.1.3 When to Use the WebLogic Deployment API

You may need to implement the WebLogic Deployment API in the following cases:

Note: weblogic.Deployer is the recommended deployment tool for the
WebLogic Server environment. See Deploying Applications to Oracle WebLogic
Server for information on how to use weblogic.Deployer and the WebLogic
Server Administration Console.

WebLogic Server Value-Added Deployment Features

Understanding the WebLogic Deployment API 2-3

■ You need to model your own implementation and interface with the WebLogic
Service Provider Interface (SPI). In this case, the WebLogic Deployment API
deployment factory is used to obtain a WebLogicDeploymentManager, which
extends javax.enterprise.deploy.spi.DeploymentManager (see
http://docs.oracle.com/javaee/6/api/javax/enterprise/deploy/spi/Deploym
entManager.html) for use with the weblogic.deploy.api.spi. See Section 3.3,
"Application Evaluation" and the Java EE Deployment API specification at
http://jcp.org/en/jsr/detail?id=88.

■ You need to create your own deployment interface instead using the WebLogic
Server Administration Console and/or weblogic.Deployer. In this case, you may
implement some or all Section 2.1.1, "WebLogic Deployment API Deployment
Phases" using the WebLogic Deployment API classes and interfaces.

2.2 Java EE Deployment API Compliance
The WebLogic Deployment API classes and interfaces extend and implement the Java
EE Deployment API specification (JSR-88) interfaces, which are described in the
javax.enterprise.deploy sub-packages (see
http://docs.oracle.com/javaee/5/api/overview-summary.html). The WebLogic
Deployment API provides the following packages:

■ Section 2.4.1, "weblogic.deploy.api.spi"

■ Section 2.4.2, "weblogic.deploy.api.spi.factories"

■ Section 2.5.1, "weblogic.deploy.api.model"

■ Section 2.6.1, "weblogic.deploy.api.shared"

■ Section 2.7.1, "weblogic.deploy.api.tools"

2.3 WebLogic Server Value-Added Deployment Features
WebLogic supports the "Product Provider" role described in the Java EE Deployment
API specification (JSR-88) at http://jcp.org/en/jsr/detail?id=88 and provides
utilities specific to the WebLogic Server environment in addition to extensible
components for any Java EE network client. These extended features include:

■ Support for WebLogic features, such as starting in admin mode or redeploying
with versioning.

■ Fine grain control, such as:

– Module level targeting

– Partial Redeployment, the redeployment or removal of parts of an application

– Dynamic configuration changes

■ Support of WebLogic module extensions such as JMS, JDBC, Interception, and
Application Specific Configuration (Custom/Configuration) modules.

■ Additional operations, such as the Deploy verb which combines distribute and
start.

Note: The WebLogic Deployment API does not support an automated
fallback procedure for a failed application update. The policy and procedures
for this behavior must be defined and configured by the developers and
administrators for each deployment environment.

The Service Provider Interface Package

2-4 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

2.4 The Service Provider Interface Package
As a Java EE product provider, Oracle extends the javax Service Provider Interface
(SPI) package to provide specific configuration and deployment control for WebLogic
Server. The core interface for this package is the DeploymentManager, from which all
other deployment activities are initiated, monitored, and controlled.

The WebLogicDeploymentManager interface provides WebLogic Server extensions to
the javax.enterprise.deploy.spi.DeploymentManager interface. A
WebLogicDeploymentManager object is a stateless interface for the WebLogic Server
deployment framework. It provides basic deployment features as well as extended
WebLogic Server deployment features such as production redeployment and partial
deployment for modules in an enterprise application. You generally acquire a
WebLogicDeploymentManager object using SessionHelper.getDeploymentManager
method from the SessionHelper helper class from the Tools package. See Section 3.3,
"Application Evaluation".

The following sections provide basic information on the functionality of the WebLogic
Server SPI:

■ Section 2.4.1, "weblogic.deploy.api.spi"

■ Section 2.4.2, "weblogic.deploy.api.spi.factories"

■ Section 2.4.3, "Module Targeting"

■ Section 2.4.4, "Support for Querying WebLogic Target Types"

■ Section 2.4.5, "Server Staging Modes"

■ Section 2.4.6, "Deployment Plan Staging Modes"

■ Section 2.4.7, "DConfigBean Validation"

2.4.1 weblogic.deploy.api.spi
The weblogic.deploy.api.spi package provides the interfaces required to configure
and deploy applications to a target (see Section 2.4.4, "Support for Querying WebLogic
Target Types" for valid target types). This package enables you to create deployment
tools that can implement a WebLogic Server-specific deployment configuration for an
enterprise application or stand-alone module.

weblogic.deploy.api.spi includes the WebLogicDeploymentManager interface. Use
this deployment manager to perform all deployment-related operations such as
distributing, starting, and stopping applications in WebLogic Server. The
WebLogicDeploymentManager also provides important extensions to the Java EE
DeploymentManager interface for features such as module-level targeting for enterprise
application modules, production redeployment, application versioning, application
staging modes, and constraints on Administrative access to deployed applications.

The WebLogicDeploymentConfiguration and WebLogicDConfigBean classes in the
weblogic.deploy.api.spi package represent the deployment and configuration
descriptors (WebLogic Server deployment descriptors) for an application.

■ A WebLogicDeploymentConfiguration object is a wrapper for a deployment plan.

■ A WebLogicDConfigBean encapsulates the properties in WebLogic deployment
descriptors.

The Service Provider Interface Package

Understanding the WebLogic Deployment API 2-5

2.4.2 weblogic.deploy.api.spi.factories
This package contains only one interface, the WebLogicDeploymentFactory. This is a
WebLogic extension to
javax.enterprise.deploy.spi.factories.DeploymentFactory. Use this factory
interface to select and allocate DeploymentManager objects that have different
characteristics. The WebLogicDeploymentManager characteristics are defined by public
fields in the WebLogicDeploymentFactory.

2.4.3 Module Targeting
Module targeting is deploying specific modules in an application to different targets as
opposed to deploying all modules to the same set of targets as specified by JSR-88.
Module targeting is supported by the
WebLogicDeploymentManager.createTargetModuleID methods.

The WebLogicTargetModuleID class contains the WebLogic Server extensions to the
javax.enterprise.deploy.spi.TargetModuleID interface. This class is closely related
to the configured TargetInfoMBeans (AppDeploymentMBean and SubDeploymentMBean).
The WebLogicTargetModuleID class provides more detailed descriptions of the
application modules and their relationship to targets than those in TargetInfoMBeans.
See Section 4.6.1, "Module Types".

2.4.4 Support for Querying WebLogic Target Types
For WebLogic Server, the WebLogicTarget class provides a direct interface for
maintaining the target types available to WebLogic Server. Target accessor methods are
described in Table 2–1.

2.4.5 Server Staging Modes
The staging mode of an application affects its deployment behavior. The application's
staging behavior is set using DeploymentOptions.setStageMode(stage mode) where
the value of stage mode is one of the following:

■ STAGE—Force copying of files to target servers.

■ NO_STAGE—Files are not copied to target servers.

■ EXTERNAL_STAGE—Files are staged manually.

2.4.6 Deployment Plan Staging Modes
An application's deployment plan can be staged independently of the application
archive, allowing you to stage a deployment plan when the application is not staged.
You can configure the staging behavior of the deployment plan by using

Table 2–1 Target Accessor Methods

Method Description

boolean isCluster() Indicates whether this target represents a cluster target.

boolean isJMSServer() Indicates whether this target represents a JMS server target.

boolean isSAFAgent() Indicates whether this target represents a SAF agent target.

boolean isServer() Indicates whether this target represents a server target.

boolean isVirtualHost() Indicates whether this target represents a virtual host target.

The Model Package

2-6 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

DeploymentOptions.setPlanStageMode (plan stage mode), where the value of plan
stage mode is one of the following:

■ STAGE—Deployment plan is copied to target servers.

■ NO_STAGE—Deployment plan is not copied to target servers.

■ EXTERNAL_STAGE—Deployment plan is copied manually to target servers.

If you do not specify a staging mode, the deployment plan uses the value specified for
application staging as the default. For example, if deployment plan staging is not
specified and application staging is set to STAGE, the deployment plan staging mode is
set to STAGE.

2.4.7 DConfigBean Validation
The property setters in a DConfigBean reject attempts to set invalid values. This
includes property type validation such as attempting to set an integer property to a
non-numeric value. Some properties perform semantic validations, such as ensuring a
maximum value is not smaller than its associated minimum value.

2.5 The Model Package
These classes are the WebLogic Server extensions to and implementations of the
javax.enterprise.deploy.model interfaces (see
http://docs.oracle.com/javaee/6/api/javax/enterprise/deploy/model/package-
summary.html). The model interfaces describes the standard elements, such as
deployment descriptors, of a Java EE application.

■ Section 2.5.1, "weblogic.deploy.api.model"

■ Section 2.5.2, "Accessing Deployment Descriptors"

2.5.1 weblogic.deploy.api.model
This package contains the interfaces used to represent the Java EE configuration of a
deployable object. A deployable object is a deployment container for an enterprise
application or stand-alone module.

The WebLogic Server implementation of the javax.enterprise.deploy.model
interfaces enable you to work with applications that are stored in a WebLogic Server
application installation directory, a formal directory structure used for managing
application deployment files, deployments, and external WebLogic deployment
descriptors generated during the configuration process. See "Preparing Applications
and Modules for Deployment" for more information about the layout of an application
installation directory. It supports any Java EE application, with extensions to support
applications residing in an application installation directory.

The WebLogicDeployableObject class and WebLogicDDBean interface in the
weblogic.deploy.api.model package represent the standard deployment descriptors
in an application.

Note: weblogic.deploy.api.model does not support dynamic changes to
Java EE deployment descriptor elements during configuration and therefore
does not support registration and removal of XPath listeners.
DDBean.addXPathListener and removeXPathListener are not supported.

The Shared Package

Understanding the WebLogic Deployment API 2-7

2.5.2 Accessing Deployment Descriptors
Java EE Deployment API dictates that Java EE deployment descriptors be accessed
through a DeployableObject (see
http://docs.oracle.com/javaee/6/api/javax/enterprise/deploy/model/Deployab
leObject.html). A DeployableObject represents a module in an application. Elements
in the descriptors are represented by DDBeans, one for each element in a deployment
descriptor. The root element of a descriptor is represented by a DDBeanRoot object. All
of these interfaces are implemented in corresponding interfaces and classes in this
package.

The WebLogicDeployableObject class, which is the WebLogic Server implementation
of DeployableObject, provides the createDeployableObject methods, which create
the WebLogicDeployableObject and WebLogicDDBean for the application's deployment
descriptors. Basic configuration tasks are accomplished by associating the
WebLogicDDBean with a WebLogicDConfigBean, which represent the server
configuration properties required for deploying the application on a WebLogic Server.
See Section 3.3, "Application Evaluation".

Unlike a DConfigBean, which contain configuration information specifically for a
server environment (in this case WebLogic Server instance), a DDBean object takes in
the general deployment descriptor elements for the application. For example, if you
were deploying a Web application, the deployment descriptors in WebLogicDDBeans
come from WEB-INF/web.xml file in the .war archive. The information for the
WebLogicDConfigBeans would come from WEB-INF/weblogic.xml in the .war archive
based on the WebLogicDDBeans. Though they serve the same fundamental purpose of
holding configuration information, they are logically separate as a DDBean describes
the application while a DConfigBeans configures the application for a specific
environment.

Both of these objects are generated during the initiation of a configuration session. The
WebLogicDeployableObject, WebLogicDDBeans, and WebLogicDConfigBeans are all
instantiated and manipulated in a configuration session. See Section 3.1, "Overview of
the Configuration Process".

2.6 The Shared Package
The following sections provide information on classes that represent WebLogic
Server-specific deployment commands, module types, and target types as classes:

■ Section 2.6.1, "weblogic.deploy.api.shared"

■ Section 2.6.2, "Command Types for Deploy and Update"

■ Section 2.6.3, "Support for Module Types"

■ Section 2.6.4, "Support for all WebLogic Server Target Types"

2.6.1 weblogic.deploy.api.shared
The weblogic.deploy.api.shared package provides classes that represent the
WebLogic Server-specific deployment commands, module types, and target types as
classes. These objects can be shared by Section 2.5.1, "weblogic.deploy.api.model" and
Section 2.4.1, "weblogic.deploy.api.spi" packages.

The definitions of the standard javax.enterprise.deploy.shared classes ModuleType
and CommandType are extended to provide support for:

■ The module type, see Section 2.6.3, "Support for Module Types"

The Tools Package

2-8 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

■ Commands, see Section 2.6.2, "Command Types for Deploy and Update"

The WebLogicTargetType class, which is not required by the Java EE Deployment API
specification (JSR-88, see http://jcp.org/en/jsr/detail?id=88), enumerates the
different types of deployment targets supported by WebLogic Server. This class does
not extend a javax deployment class. See Section 2.6.4, "Support for all WebLogic
Server Target Types".

2.6.2 Command Types for Deploy and Update
The deploy and update command types are added to the required command types
defined in the javax.enterprise.spi.shared package and are available to a
WebLogicDeploymentManager.

2.6.3 Support for Module Types
Supported module types include JMS, JDBC, Interception, WSEE, Config, and WLDF.
These are defined in the weblogic.deploy.api.shared.WebLogicModuleType class as
fields.

2.6.4 Support for all WebLogic Server Target Types
Targets, which were not implemented in the Java EE Deployment API specification,
are implemented in the WebLogic Deployment API. The valid target values are:

■ Cluster

■ JMS Server

■ SAF (Store-and-Forward) Agent

■ Server

■ Virtual Host

These are enumerated field values in the
weblogic.deploy.api.shared.WebLogicTargetType class.

2.7 The Tools Package
The following sections provide information on API tools you can use to perform
common deployment tool tasks with a minimum number of controls and explicit
object manipulations:

■ Section 2.7.1, "weblogic.deploy.api.tools"

■ Section 2.7.2, "SessionHelper"

■ Section 2.7.3, "Deployment Plan Creation"

2.7.1 weblogic.deploy.api.tools
The weblogic.deploy.api.tools package provides convenience classes that can help
you:

■ Obtain a WebLogicDeploymentManager

■ Populate a configuration for an application

■ Create a new or updated deployment plan

The Tools Package

Understanding the WebLogic Deployment API 2-9

The classes in the tools package are not extensions of the Java EE Deployment API
specification (JSR-88, see http://jcp.org/en/jsr/detail?id=88) interfaces. They
provide easy access to deployment operations provided by the WebLogic Deployment
API.

2.7.2 SessionHelper
Although configuration sessions can be controlled from a
WebLogicDeploymentManager directly, SessionHelper provides simplified methods. If
your tools code directly to the WebLogic Server Java EE Deployment API
implementation, you should always use SessionHelper.

Use SessionHelper to obtain a WebLogicDeploymentManager with one method call. To
do this effectively, it must be able to locate the application. The SessionHelper views
an application and deployment plan artifacts using an "install root" abstraction, which
ideally is the actual organization of the application. The install root appears as follows:

install-root (eg myapp)
-- app
----- archive (eg myapp.ear)
-- plan
----- deployment plan (eg plan.xml)
----- external descriptors (eg META-INF/weblogic-application.xml...)

There is no requirement to mandate that this structure be used for applications. It is a
preferred approach because it serves to keep the application and its configuration
artifacts under a common root and provides SessionHelper with a format it can
interpret.

SessionHelper.getModuleInfo() returns an object that is useful for understanding
the structure of an application without having to work directly with DDBeans and
DeployableObjects. It provides such information as:

■ Names and types of modules and submodules in the application

■ Names of Web services provided by the application

■ Context roots for Web applications

■ Names of enterprise beans in an EJB

Internally, the deployment descriptors are represented as descriptor bean trees and
trees of typed Java Bean objects that represent the individual descriptor elements.
These bean trees are easier to work with than the more generic DDBean and
DConfigBean objects. The descriptor bean trees for each module are directly accessible
from the associated WebLogicDDBeanRoot and WebLogicDConfigBeanRoot objects for
each module using their getDescriptorBean methods. Modifying the bean trees
obtained from a WebLogicDConfigBean has the same effect as modifying the associated
DConfigBean, and therefore the application's deployment plan.

2.7.3 Deployment Plan Creation
weblogic.PlanGenerator creates a deployment plan template based on the Java EE
and WebLogic Server descriptors included in an application. The resulting plan
describes the application structure, identifies all deployment descriptors, and exports a
subset of the application's configurable properties. Export properties to expose them to
tools like the WebLogic Server console which then uses the plan to assist the
administrator in providing appropriate values for those properties. By default, the
weblogic.PlanGenerator tool only exports application dependencies; those properties

The JMX API for Deployment Operations

2-10 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

required for a successful deployment. This behavior can be overridden using of the
following options:

■ Dependencies: Export resources referenced by the application (default)

■ Declarations: Export resources defined by the application

■ Configurables: Export non-resource oriented configurable properties

■ Dynamics: Export properties that may be changed in a running application

■ All: Export all changeable properties

■ None: Export no properties

2.8 The JMX API for Deployment Operations
The Java Management Extensions (JMX) API for deployment operations supports all
of the common functionality available in the Java EE Deployment API specification
(JSR-88). You can use the JMX API as an alternative to JSR-88 to perform deployment
tasks on specified target servers, such as:

■ Starting

■ Stopping

■ Distributing

■ Deploying

■ Redeploying

■ Undeploying

■ Updating deployment plans without redeploying applications

The JMX API for deployment operations uses open MBean data types so that no
WebLogic Server classes are required on the client side. These new MBeans for
deployment are similar conceptually to JSR-88 and are located in the Domain Runtime
MBean Server. In this model, you must initiate deployment operations on the
Administration Server.

The following four runtime MBeans support the JMX API for deployment operations:

■ DeploymentManagerMBean

The DeploymentManagerMBean provides deployment operations, including deploy
and distribute, and provides access to the AppDeploymentRuntime MBeans for each
application deployed to the domain. It also manages the deployment progress
objects and emits notifications when an application is created or removed and
when the application state changes.

■ AppDeploymentRuntimeMBean

The AppDeploymentRuntimeMBean provides the deployment operations for an
application, including start, stop, undeploy, redeploy, and updating a deployment
plan without redeploying the application.

■ DeploymentProgressObjectMBean

The DeploymentProgressObjectMBean monitors deployment operations initiated
by the AppDeploymentRuntime MBeans.

■ LibDeploymentRuntimeMBean

The JMX API for Deployment Operations

Understanding the WebLogic Deployment API 2-11

The LibDeploymentRuntimeMBean provides deployment operations for a library,
including undeploy and redeploy.

For more information, see the MBean Reference for Oracle WebLogic Server.

2.8.1 Supported Deployment Options
The JMX API for deployment operations supports all of the deployment options
available in JSR-88, which are specified as Property name-value pairs. By specifying
deployment options, you can override the default values. Table 2–2 summarizes the
supported deployment option names and values.

Table 2–2 Deployment Options Supported by the JMX API

Deployment Option Description

adminMode Option that indicates that a running application should
switch to ADMIN mode and accept only administration
requests over a configured administration channel.

altDD Location of the alternate application deployment
descriptor on the Administration Server.

altWlsDD Location of the alternate WebLogic application
deployment descriptor on the Administration Server.

appVersion Version identifier of the application.

clusterDeploymentTimeout Time, in milliseconds, granted for a cluster deployment
task on this application.

createPlan Boolean value indicating that the user wants to create a
default plan. The default value for this option is false.

defaultSubmoduleTargets Boolean value indicating that targeting for qualifying JMS
submodules should be derived by the system. The default
value for this option is true.

deploymentOrder Option that controls the load order of deployments
relative to one another.

deploymentPrincipalName String value specifying the principal for deploying the file
or archive during server starts (static deployment; it does
not affect the current deployment task).

forceUndeployTimeout Force undeployment timeout value.

gracefulIgnoreSessions Boolean value specifying whether graceful production to
ADMIN mode operation should ignore pending HTTP
sessions. The default value of this option is false and only
applies if gracefulProductionToAdmin is set to true.

gracefulProductionToAdmin Boolean value specifying whether the production to ADMIN
mode operation should be graceful. The default value for
this option is false.

library The deployment as a shared Java EE library or optional
package.

libImplVer Implementation version of the library, if it is not present in
the manifest.

libSpecVer Specification version of the library, if it is not present in the
manifest.

noVersion Versioning information is ignored.

planVersion Version identifier of the deployment plan.

The JMX API for Deployment Operations

2-12 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

2.8.2 Using the JMX API for Deployment Operations
Example 2–1 demonstrates the use of the WebLogic Server JMX API for deployment
operations. The example includes inline comments and demonstrates how to:

■ deploy an application both synchronously and asynchronously

■ monitor the progress of a deployment operation

■ stop an application

■ undeploy an application

■ handle notifications

retireGracefully Retirement policy to gracefully retire an application only
after it completes all in-flight work. This policy is only
meaningful for stop and redeploy operations and is
mutually exclusive to the retire timeout policy.

retireTimeout Time (in seconds) WebLogic Server waits before retiring an
application that is replaced with a newer version. The
default value for this option is -1, which specifies graceful
timeout.

rmiGracePeriod The amount of time, in seconds, that the Work Manager
accepts and schedules RMI calls until there are no more
RMI requests arriving within the RMI grace period during
a graceful shutdown or a retirement.

securityModel Security model. Valid values include: DDOnly,
CustomRoles, CustomRolesAndPolicies, and Advanced.

securityValidationEnabled Boolean value specifying whether security validation is
enabled.

stageMode The staging mode for the application you are deploying.
Valid values are stage, nostage, and external_stage. If
not specified, WebLogic Server uses the default stage
mode. The default stage mode is nostage for the
Administration Server and stage for Managed Servers.

subModuleTargets Submodule level targets for JMS modules. For example:
submod@mod-jmx.xml@target | submoduleName@!target.

timeout Time (in milliseconds) WebLogic Server waits for the
deployment process to complete before canceling the
operation. A value of 0 indicates no timeout for the
operation. The default value for this argument is 300,000
ms (or five minutes).

useNonExclusiveLock Deployment operation uses an existing lock, already
acquired by the same user, on the domain. This option is
helpful in environments where multiple deployment tools
are used simultaneously and one of the tools has already
acquired a lock on the domain configuration.

versionIdentifier Version identifier.

Note: This example uses JMX proxies for readability. The WebLogic
Server JMX API uses open types so it can be run in a JMX client
without WebLogic Server classes. In addition, error handling has been
omitted to keep the example as small as possible.

Table 2–2 (Cont.) Deployment Options Supported by the JMX API

Deployment Option Description

The JMX API for Deployment Operations

Understanding the WebLogic Deployment API 2-13

For more information about understanding and using JMX, see Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server and Developing Manageable
Applications Using JMX for Oracle WebLogic Server.

Example 2–1 Using the JMX API for Deployment Operations

import weblogic.management.mbeanservers.domainruntime.DomainRuntimeServiceMBean;
import weblogic.management.runtime.AppDeploymentRuntimeMBean;
import weblogic.management.runtime.DeploymentManagerMBean;
import weblogic.management.runtime.DeploymentProgressObjectMBean;

import java.util.Hashtable;
import java.util.Properties;

import javax.management.MBeanServerConnection;
import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class JMXDeploymentExample {

 // Deployment Manager JMX proxy
 DeploymentManagerMBean deploymentManager;

 // Domain Runtime MBean Server connection
 MBeanServerConnection connection;

 private void setUp() throws Exception {
 System.out.println("*** Setting up...");

 // Get connection to the Domain Runtime MBean Server.
 // For more information, see "Make Remote Connections to an MBean Server"
 // in Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.
 connection = getDomainRuntimeJMXConnection();

 // Get DeploymentManager JMX proxy.
 // For more information, see Oracle WebLogic Server MBean Reference.
 DomainRuntimeServiceMBean svcBean = (DomainRuntimeServiceMBean)
 weblogic.management.jmx.MBeanServerInvocationHandler.newProxyInstance(
 connection, new ObjectName(DomainRuntimeServiceMBean.OBJECT_NAME));
 deploymentManager = svcBean.getDomainRuntime().getDeploymentManager();

 // Add a JMX notification listener that outputs the JMX notifications generated during
deployment operations.
 connection.addNotificationListener(new
ObjectName("com.bea:Name=DeploymentManager,Type=DeploymentManager"),
 new DeployListener(), null, null);
 }

 /*
 * Demonstrates synchronously deploying an application.
 */

 private void deploySynchronously() throws Exception {
 System.out.println("*** Deploying SimpleApp...");

The JMX API for Deployment Operations

2-14 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

 // This form of the deploy operation is synchronous.
 // Errors are still returned through a progress object.
 // By default, the SimpleApp is deployed to all servers.

 DeploymentProgressObjectMBean progressObj = deploymentManager.deploy(
 "SimpleApp", "/apps/simpleapp.war", /* no plan */ null);
 printCompletionStatus(progressObj);
 }

 /*
 * Demonstrates asynchronously deploying an application to a server instance.
 */

 private void deployASynchronously() throws Exception {
 System.out.println("*** Deploying VersionedApp...");

 // This form of the deploy operation is asynchronous.
 // The caller should utilize the returned progress object to monitor the progress of the
deployment.

 Properties deploymentOptions = new Properties();
 deploymentOptions.put("appVersion", "V1");
 deploymentOptions.put("planVersion", "P1");

 DeploymentProgressObjectMBean progressObj = deploymentManager.deploy("VersionedApp",
"/apps/app-v1.war",
 new String[] { "myserver" },
 "/apps/app-v1-plan.xml", deploymentOptions);

 waitForCompletion(progressObj, 200);
 }

 /*
 * Demonstrates using a deployment progress object to display the status of the deployment
operation.
 */

 private void printCompletionStatus(DeploymentProgressObjectMBean progressObj) throws Exception {

 System.out.println(" State: " + progressObj.getState());
 if ("STATE_FAILED".equals(progressObj.getState())) {
 Exception[] exceptions = progressObj.getRootExceptions();
 for (int i = 0; exceptions != null && i < exceptions.length; i++)
 System.out.println(" Exception: " + exceptions[i]);
 }
 }

 /*
 * Demonstrates using a deployment progress object to wait for the completion of the deployment
operation.
 */

 private void waitForCompletion(DeploymentProgressObjectMBean progressObj, int timeoutSecs) throws
Exception {

 for (int i = 0; i < timeoutSecs; i++) {
 String state = progressObj.getState();
 if ("STATE_COMPLETED".equals(state) || "STATE_FAILED".equals(state))
 break;
 try {

The JMX API for Deployment Operations

Understanding the WebLogic Deployment API 2-15

 Thread.currentThread().sleep(1000);
 } catch (InterruptedException ex) {
 //ignore
 }
 }

 printCompletionStatus(progressObj);
 }

 /*
 * Demonstrates stopping an application asynchronously.
 */

 private void stopAsynchonously() throws Exception {
 System.out.println("*** Stopping SimpleApp...");

 // The DeploymentManagerMBean is used for the initial deployment of an application.
 // After the initial deployment, the AppDeploymentRuntimeMBean is used for stop, start,
 // redeploy, and undeploy of an application.

 AppDeploymentRuntimeMBean appRuntime =
deploymentManager.lookupAppDeploymentRuntime("SimpleApp");

 Properties deploymentOptions = new Properties();
 deploymentOptions.put("gracefulIgnoreSessions", "true");

 DeploymentProgressObjectMBean progressObj = appRuntime.stop(new String[]{"myserver"},
deploymentOptions);
 waitForCompletion(progressObj, 200);

 }

 /*
 * Demonstrates using an AppDeploymentRuntimeMBean to undeploy an application.
 */

 private void undeploySynchronously() throws Exception {
 System.out.println("*** Undeploying SimpleApp...");

 // The DeploymentManagerMBean is used for the initial deployment of an application.
 // After the initial deployment, the AppDeploymentRuntimeMBean is used for stop, start,
 // redeploy, and undeploy of an application.

 AppDeploymentRuntimeMBean appRuntime =
deploymentManager.lookupAppDeploymentRuntime("SimpleApp");

 DeploymentProgressObjectMBean progressObj = appRuntime.undeploy();
 printCompletionStatus(progressObj);

 }

 /*
 * Demonstrates the notifications that are generated by WebLogic Server deployment operations.
 */

 private class DeployListener implements NotificationListener {

 public void handleNotification(Notification notification, Object handback) {
 System.out.println(" Notification from DeploymentManagerMBean");
 System.out.println(" notification type: " + notification.getType());

Using a Deployment Validation Plug-In with WebLogic Server

2-16 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

 String userData = (String)notification.getUserData();
 System.out.println(" userData: " + userData);
 }

 }

 private MBeanServerConnection getDomainRuntimeJMXConnection() throws Exception {

 JMXServiceURL serviceURL = new JMXServiceURL("t3", "localhost", 7001,
 "/jndi/weblogic.management.mbeanservers.domainruntime");

 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, "weblogic");
 h.put(Context.SECURITY_CREDENTIALS, "password");
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote");

 JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);
 MBeanServerConnection connection = connector.getMBeanServerConnection();
 return connection;
 }

 public static void main(String args[]) throws Exception {
 JMXDeploymentExample example = new JMXDeploymentExample();

 example.setUp();
 example.deploySynchronously();
 example.deployASynchronously();
 example.stopAsynchonously();
 example.undeploySynchronously();
 }

}

2.9 Using a Deployment Validation Plug-In with WebLogic Server
You can validate applications before allowing them to be deployed to your WebLogic
Server domain by creating a deployment validation plug-in. At the start of the
deployment process, the Administration Server executes the plug-in, which
determines whether the application is valid for the domain. If validation passes, the
application is deployed. If validation fails, the application is not deployed, and there is
no configuration change or evidence of deployment.

When using a deployment validation plug-in, you determine what it should consider
invalid based on the specific needs of your domain. For example, you can configure
the plug-in to reject bad formats or EJBs. You can only register one deployment
validation plug-in per domain, and the plug-in must be unique to the domain. You can
configure a new deployment validation plug-in to replace the original, but you cannot
add a second plug-in to the same domain.

Using a deployment validation plug-in with WebLogic Server provides the following
capabilities:

■ rejects invalid application code to protect your domain from malicious
applications

■ modifies the deployment plan of an application

■ tailors the plug-in to suit your specific needs through configuration parameters

■ logs messages

Using a Deployment Validation Plug-In with WebLogic Server

Understanding the WebLogic Deployment API 2-17

The deployment process is the same with or without a deployment validation plug-in,
as validation is an optional step. The validation process occurs when deploying an
application for the first time, not at server startup for applications that are already
deployed or during auto-deployment.

The following sections describe how to validate applications using a deployment
validation plug-in with WebLogic Server:

■ Configuring the Deployment Validation Plug-In

■ Using the Deployment Validation Plug-In

2.9.1 Configuring the Deployment Validation Plug-In
To enable the deployment validation plug-in to run with WebLogic Server, you must
add the <deployment-validation-plugin> element to the config.xml file so that the
Administration Server can access and use the plug-in classes. The
<deployment-validation-plugin> element should contain the fully qualified class
name of the plug-in and declare any parameters. You can add the
<deployment-validation-plugin> element manually or by using the
DeploymentConfigurationMBean available from the DomainMBean.

The following three configuration MBeans support the deployment validation plug-in:

■ DeploymentConfigurationMBean

The DeploymentConfigurationMBean contains the DeploymentValidationPlugIn
attribute. This attribute is a DeploymentValidationPluginMBean and corresponds
to the <deployment-validation-plugin> element, which enables or disables the
deployment validation plug-in.

■ DeploymentValidationPluginMBean

The DeploymentValidationPluginMBean specifies the deployment validation
plug-in configuration information. This MBean includes the FactoryClassname
attribute, which is the fully qualified plug-in class name. This class must be
available from the Administration Server CLASSPATH. The
DeploymentValidationPluginMBean also includes parameters that can be passed
to the plug-in. You declare these parameters with the ParameterMBean.

■ ParameterMBean

The ParameterMBean specifies the configuration and user parameters for the
deployment validation plug-in, including Name, Value, and Description.

2.9.2 Using the Deployment Validation Plug-In
WebLogic Server does not provide the code for the deployment validation plug-in
itself, but provides a way to run a plug-in as part of the deployment process to
validate and protect your domain from malicious applications. As the domain
administrator, you program and compile the code for your domain-specific plug-in
according to the needs and specifications of your environment. The plug-in class and
other classes it uses need to be available from the Administration Server CLASSPATH.

The deployment validation plug-in must implement the plug-in factory interface,
weblogic.deployment.configuration.DeploymentValidationPlugin. The
implementation must contain an empty constructor in order to create an instance of
the deployment validation plug-in.

The weblogic.deployment.configuration interface includes an initialize method and
a validation method. The initialize method provides the parameters that are declared

Using a Deployment Validation Plug-In with WebLogic Server

2-18 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

in the <deployment-validation-plugin> element of the config.xml file to the
instance of the deployment validation plug-in. The validation method provides the
context of the application information and returns the validation result for the
application.

The validation result is a class that implements the ValidationResult interface.
Implement the isDeploymentValid method to indicate whether the deployment is
valid and should proceed. Implement the getException method to provide an
exception that should be set as the cause if the deployment is not valid. The argument
passed to the validate method is DeploymentValidationContext, which provides
access to the proposed application through an instance of SessionHelper. The
deployment validation plug-in can then use the getSessionHelper attribute on the
DeploymentValidationContext argument to examine the application information that
SessionHelper allows.

The DeploymentValidationContext argument also provides access to the
DeploymentValidationLogger. The DeploymentValidationLogger logs messages
about the actions the plug-in takes to validate the application or the reasons the
application is invalid.

If the validation result indicates that the application is valid, the deployment passes
and continues the deployment process. If the validation result indicates that the
application is invalid, the plug-in sends an exception message describing the reason
the application failed to validate, and the application is not deployed. There is no
configuration change or evidence of deployment. Since the validation process occurs
on the Administration Server, if the deployment fails, the Managed Servers are not
aware of the deployment, and you would not have to undeploy or undo any
configuration.

3

Configuring Applications for Deployment 3-1

3Configuring Applications for Deployment

[4] This chapter describes how to configure an application or deployable resource for
deployment to a WebLogic Server 12.1.3 instance using deployment descriptors.
Certain elements in these descriptors refer to external objects and may require special
handling depending on the server vendor. WebLogic Server uses descriptor
extensions—WebLogic Server specific deployment descriptors. The mapping between
standard descriptors and WebLogic Server descriptors is managed using DDBeans and
DConfigBeans.

This chapter includes the following sections:

■ Section 3.1, "Overview of the Configuration Process"

■ Section 3.2, "Types of Configuration Information"

■ Section 3.3, "Application Evaluation"

■ Section 3.4, "Perform Front-end Configuration"

■ Section 3.5, "Customizing Deployment Configuration"

■ Section 3.6, "Deployment Preparation"

■ Section 3.7, "Session Cleanup"

3.1 Overview of the Configuration Process
This section provides information on the basic steps a deployment tool must
implement to configure an application for deployment:

1. Application Evaluation—Inspection and evaluation of application files to
determine the structure of the application and content of the embedded
descriptors.

■ Initialize a deployment session by obtaining a WebLogicDeploymentManager.
See Section 3.3, "Application Evaluation".

■ Create a WebLogicJ2eeApplicationObject or WebLogicDeployableObject to
represent the Java EE Configuration of an enterprise application (EAR) or
stand-alone module (WAR, EAR, RAR, or CAR). If the object is an EAR, child
objects are generated. See Java EE Deployment API standard (JSR-88) at
http://jcp.org/en/jsr/detail?id=88 and Section 3.3.2, "Create a
Deployable Object".

2. Front-end Configuration—Creation of configuration information based on
content embedded within the application. This content may be in the form of
WebLogic Server descriptors, defaults, and user provided deployment plans.

Types of Configuration Information

3-2 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

■ Create a WebLogicDeploymentConfiguration object to represent the
WebLogic Server configuration of an application. This is the first step in
creating a deployment plan for this object. See Section 3.4.2, "Deployment
Configuration".

■ Restore existing WebLogic Server configuration values from an existing
deployment plan, if available. See Section 3.4, "Perform Front-end
Configuration".

3. Deployment Configuration—Modification of individual WebLogic Server
configuration values based on user inputs and the selected WebLogic Server
targets.

A deployment tool must provide the ability to modify individual WebLogic Server
configuration values based on user inputs and selected WebLogic Server targets.
See Section 3.5, "Customizing Deployment Configuration".

4. Deployment Preparation—Generation of the final deployment plan and
preliminary client-side validation of the application.

A deployment tool must have the ability to save the modified WebLogic Server
configuration information to a new deployment plan or to variable definitions in
an existing Deployment Plan.

3.2 Types of Configuration Information
The following sections provide background information on the types of configuration
information, how it is represented, and the relationship between Java EE and
WebLogic Server descriptors:

■ Section 3.2.1, "Java EE Configuration"

■ Section 3.2.2, "WebLogic Server Configuration"

■ Section 3.2.3, "Representing Java EE and WebLogic Server Configuration
Information"

■ Section 3.2.4, "The Relationship Between Java EE and WebLogic Server
Descriptors"

3.2.1 Java EE Configuration
The Java EE configuration for an application defines the basic semantics and run-time
behavior of the application, as well as the external resources that are required for the
application to function. This configuration information is stored in the standard Java
EE deployment descriptor files associated with the application, as listed in Table 3–1.

Complete and valid Java EE deployment descriptors are a required input to any
application configuration session.

Table 3–1 Standard Java EE Deployment Descriptors

Application or Standalone Module Java EE Descriptor

Enterprise Application META-INF/application.xml

Web Application WEB-INF/web.xml

Enterprise JavaBean META-INF/ejb.xml

Resource Adapter META-INF/ra.xml

Client Application Archive META-INF/application-client.xml

Types of Configuration Information

Configuring Applications for Deployment 3-3

Because the Java EE configuration controls the fundamental behavior of an
application, the Java EE descriptors are typically defined only during the application
development phase, and are not modified when the application is later deployed to a
different environment. For example, when you deploy an application to a testing or
production domain, the application's behavior (and therefore its Java EE
configuration) should remain the same as when application was deployed in the
development domain. See Section 3.4, "Perform Front-end Configuration" for more
information.

3.2.2 WebLogic Server Configuration
The WebLogic Server descriptors provide for enhanced features, resolution of external
resources, and tuning associated with application semantics. Applications may or may
not have these descriptors embedded in the application. The WebLogic Server
configuration for an application:

■ Binds external resource names to resource definitions in the Java EE deployment
descriptor so that the application can function in a given WebLogic Server domain

■ Defines tuning parameters for the application containers

■ Provides enhanced features for Java EE applications and stand-alone modules

The attributes and values of a WebLogic Server configuration are stored in the
WebLogic Server deployment descriptor files, as shown in Table 3–2.

Because different WebLogic Server domains provide different types of external
resources and different levels of service for the application, the WebLogic Server
configuration for an application typically changes when the application is deployed to
a new environment. For example, a production staging domain might use a different
database vendor and provide more usable memory than a development domain.
Therefore, when moving the application from development to the staging domain, the
application's WebLogic Server descriptor values need to be updated in order to make
use of the new database connection and available memory.

The primary job of a deployment configuration tool is to ensure that an application's
WebLogic Server configuration is valid for the selected WebLogic targets.

3.2.3 Representing Java EE and WebLogic Server Configuration Information
Both the Java EE deployment descriptors and any available WebLogic Server
descriptors are used as inputs to the application configuration process. You use the
deployment API to represent both the Java EE configuration and WebLogic Server
configuration as Java objects.

The Java EE configuration for an application is obtained by creating either a
WebLogicJ2eeApplicationObject for an EAR, or a WeblogicDeployableObject for a

Table 3–2 WebLogic Server Deployment Descriptors

Application or Standalone Module WebLogic Server Descriptor

Enterprise Application META-INF/weblogic-application.xml

Web Application WEB-INF/weblogic.xml

Enterprise JavaBean META-INF/weblogic-ejb-jar.xml

Resource Adapter META-INF/weblogic-ra.xml

Client Archive META-INF/weblogic-appclient.xml

Types of Configuration Information

3-4 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

stand-alone module. (A WebLogicJ2eeApplicationObject contains multiple
DeployableObject instances to represent individual modules included in the EAR.)

Each WebLogicJ2eeApplicationObject or WeblogicDeployableObject contains a
DDBeanRoot to represent a corresponding Java EE deployment descriptor file. Java EE
descriptor properties for EARs and modules are represented by one or more DDBean
objects that reside beneath the DDBeanRoot. DDBean components provide standard
getter methods to access individual deployment descriptor properties, values, and
nested descriptor elements.

3.2.3.1 DDBeans
DDBeans are described by the javax.enterprise.deploy.model package. These objects
provide a generic interface to elements in standard deployment descriptors, but can
also be used as an XPath based mechanism to access arbitrary XML files that follow
the basic form of the standard descriptors. Examples of such files would be WebLogic
Server descriptors and Web services descriptors.

The DDBean representation of a descriptor is a tree of DDBeans, with a specialized
DDBean, a DDBeanRoot, at the root of the tree. DDBeans provide accessors for the element
name, ID attribute, root, and text of the descriptor element they represent.

The DDBeans for an application are populated by the model plug-in, the tool provider
implementation of javax.enterprise.deploy.model. An application is represented by
the DeployableObject interface. The WebLogic Server implementation of this interface
is a public class, weblogic.deploy.api.model.WebLogicDeployableObject. A WebLogic
Server based deployment tool acquires an instance of WebLogicDeployableObject
object for an application using the createDeployableObject factory methods. This
results in the DDBean tree for the application being created and populated by the
elements in the Java EE descriptors embedded in the application. If the application is
an EAR, multiple WebLogicDeployableObject objects are created. The root
WebLogicDeployableObject, extended as WebLogicJ2eeApplicationObject, would
represent the EAR module, with its child WebLogicDeployableObject instances being
the modules contained within the application, such as WARs, EJBs, RARs and CARs.

3.2.4 The Relationship Between Java EE and WebLogic Server Descriptors
Java EE descriptors and WebLogic Server descriptors are directly related in the
configuration of external resources. A Java EE descriptor defines the types of resources
that the application requires to function, but it does not identify the actual resource
names to use. The WebLogic Server descriptor binds the resource definition in the Java
EE descriptor name to the name of an actual resource in the target domain.

The process of binding external resources is a required part of the configuration
process. Binding resources to the target domain ensures that the application can locate
resources and successfully deploy.

Java EE descriptors and WebLogic Server descriptors are also indirectly related in the
configuration of tuning parameters for WebLogic Server. Although no elements in the
standard Java EE descriptors require tuning parameters to be set in WebLogic Server,
the presence of individual descriptor files indicates which tuning parameters are of
interest during the configuration of an application. For example, although the ejb.xml
descriptor does not contain elements related to tuning the WebLogic Server EJB
container, the presence of an ejb.xml file in the Java EE configuration indicates that
tuning properties can be configured before deployment.

Application Evaluation

Configuring Applications for Deployment 3-5

3.2.4.1 DConfigBeans
DConfigBeans (config beans) are the objects used to convey server configuration
requirements to a deployment tool, and are also the primary source of information
used to create deployment plans. Config beans are Java Beans and can be introspected
for their properties. They also provide basic property editing capabilities.

DConfigBeans are created from information in embedded WebLogic Server descriptors,
deployment plans, and input from an IDE deployment tool.

A DConfigBean is potentially created for every weblogic Descriptor element that is
associated with a dependency of the application. Descriptors are entities that describe
resources that are available to the application, represented by a JNDI name provided
by the server.

Descriptors are parsed into memory as a typed bean tree while setting up a
configuration session. The DConfigBean implementation classes delegate to the
WebLogic Server descriptor beans. Only beans with dependency properties, such as
resource references, have a DConfigBean. The root of descriptor always has a
DConfigBeanRoot.

Bean Property accessors return a child DConfigBean for elements that require
configuration or a descriptor bean for those that do not. Property accessors return data
from the descriptor beans.

Modifications to bean properties result in plan overrides. Plan overrides for existing
descriptors are handled using variable assignments. If the application does not come
with the relevant WebLogic Server descriptors, they are automatically created and
placed in an external plan directory. For external deployment descriptors, the change
is made directly to the descriptor. Embedded descriptors are never modified on disk.

3.3 Application Evaluation
Application evaluation consists of obtaining a deployment manager and a deployable
object container for your application. Use the following steps:

1. Obtain a deployment factory class by specifying its name,
weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl.

2. Register the factory class with a
javax.enterprise.deploy.spi.DeploymentFactoryManager instance.

For instance:

Class WlsFactoryClass =
Class.forname("weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl")
;
DeploymentFactory myDeploymentFactory =
 (DeploymentFactory) WlsFactoryClass.newInstance();
DeploymentFactoryManager.getInstance().registerDeploymentFactory(myDeploymentFa
ctory);

3. Section 3.3.1, "Obtain a Deployment Manager"

4. Section 3.3.2, "Create a Deployable Object"

3.3.1 Obtain a Deployment Manager
The following sections provide information on how to obtain a deployment manager:

■ Section 3.3.1.1, "Types of Deployment Managers"

Application Evaluation

3-6 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

■ Section 3.3.1.2, "Connected and Disconnected Deployment Manager URIs"

■ Section 3.3.1.3, "Using SessionHelper to Obtain a Deployment Manager"

3.3.1.1 Types of Deployment Managers
WebLogic Server provides a single implementation for
javax.enterprise.deploy.spi.DeploymentManager that behaves differently
depending on the URI specified when instantiating the class from a factory. WebLogic
Server provides two basic types of deployment manager:

■ A disconnected deployment manager has no connection to a WebLogic Server
instance. Use a disconnected deployment manager to configure an application on
a remote client machine. It cannot be used it to perform deployment operations.
(For example, a deployment tool cannot use a disconnected deployment manager
to distribute an application.)

■ A connected deployment manager has a connection to the Administration Server for
the WebLogic Server domain, and by a deployment tool to both to configure and
deploy applications.

A connected deployment manager is further classified as being either local to the
Administration Server, or running on a remote machine that is connected to the
Administration Server. The local or remote classification determines whether file
references are treated as being local or remote to the Administration Server.

Table 3–3 summarizes deployment manager types.

3.3.1.2 Connected and Disconnected Deployment Manager URIs
Each DeploymentManager obtained from the WebLogicDeploymentFactory supports
WebLogic Server extensions. When creating deployment tools, obtain a specific type of
deployment manager by calling the correct method on the deployment factory
instance and supplying a string constant defined in
weblogic.deployer.spi.factories.WebLogicDeploymentFactory that describes the
type of deployment manager required. Connected deployment managers require a
valid server URI and credentials to the method in order to obtain a connection to the
Administration Server.

Table 3–4 summarizes the method signatures and constants used to obtain the different
types of deployment managers.

Table 3–3 WebLogic Server Deployment Manager Usage

Deployment
Manager
Connectivity Type Usage Notes

Disconnected n/a Configuration tools only Cannot perform deployment operations

Connected Local Configuration and deployment tools
local to the Administration Server

All files are local to the Administration
Server machine

Remote Configuration and Deployment for
Tools on a remote machine (not on the
Administration Server)

Distribution and Deployment
operations cause local files to be
uploaded to the Administration Server

Application Evaluation

Configuring Applications for Deployment 3-7

The sample code in Example 3–1 shows how to obtain a disconnected deployment
manager.

Example 3–1 Obtaining a Disconnected Deployment Manager

Class WlsFactoryClass =
Class.forname("weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl");
DeploymentFactory myDeploymentFactory = (DeploymentFactory) WlsFactoryClass.newInstance();
DeploymentFactoryManager.getInstance().registerDeploymentFactory(myDeploymentFactory);
WebLogicDeploymentManager myDisconnectedManager =
(WebLogicDeploymentManager)myDeploymentFactory.getDisconnectedDeploymentManager(WebLogicDeploymentF
actory.LOCAL_DM_URI);

The deployment factory contains a helper method, createUri() to help you form the
URI argument for creating connected deployment managers. For example, to create a
disconnected remote deployment manager, replace the final line of code with:

(WebLogicDeploymentManager)myDeploymentFactory.getDeploymentManager(myDeploymentFactory.createUri(W
ebLogicDeploymentFactory.REMOTE_DM_URI, "localhost", "7001", "weblogic", "weblogic"));

3.3.1.3 Using SessionHelper to Obtain a Deployment Manager
The SessionHelper helper class provides several convenience methods to help you
easily obtain a deployment manager without manually creating and registering the
deployment factories as shown in Example 3–1. The SessionHelper code required to
obtain a disconnected deployment manager consists of a single line:

 DeploymentManager myDisconnectedManager =
SessionHelper.getDisconnectedDeploymentManager();

You can use the SessionHelper to obtain a connected deployment manager, as shown
below:

 DeploymentManager myConnectedManager =
SessionHelper.getDeploymentManager("adminhost", "7001", "weblogic", "weblogic"));

Table 3–4 URIs for Obtaining a WebLogic Server Deployment Manager

Type of
Deployment
Manager Method Argument

disconnected getDisconnectedDeploymentManag
er()

String value of WebLogicDeploymentFactory.LOCAL_
DM_URI

connected, local getDeploymentManager() URI consisting of:

■ WebLogicDeploymentFactory.LOCAL_DM_URI

■ Administration Server host name

■ Administration Server port

■ Administrator username

■ Administrator password

connected, remote getDeploymentManager() URI consisting of:

■ WebLogicDeploymentFactory.REMOTE_DM_URI

■ Administration Server host name

■ Administration Server port

■ Administrator username

■ Administrator password

Perform Front-end Configuration

3-8 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

This method assumes a remote connection to an Administration Server (adminhost).
See the Javadocs for more information about SessionHelper.

3.3.2 Create a Deployable Object
The following sections provide information on how to create a deployable object,
which is the container your deployment tool uses to deploy applications. Once you
have initialized a configuration session by Section 3.3.1, "Obtain a Deployment
Manager", create a deployable object for your deployment tool in one of the following
ways:

■ Section 3.3.2.1, "Using the WebLogicDeployableObject class"

■ Section 3.3.2.2, "Using SessionHelper to obtain a Deployable Object"

3.3.2.1 Using the WebLogicDeployableObject class
The direct approach uses the WebLogicDeployableObject class of the model package
as shown below:

 WebLogicDeployableObject myDeployableObject =
WebLogicDeployableObject.createWebLogicDeployableObject("myAppFileName");

Once the deployable object is created, a configuration can be created for the
applications deployment.

3.3.2.2 Using SessionHelper to obtain a Deployable Object
The SessionHelper helper class provides a convenient method to obtain a deployable
object. The SessionHelper code required to obtain a deployable object is shown below:

 SessionHelper.setApplicationRoot(root);
 WebLogicDeployableObject myDeployableObject =
SessionHelper.getDeployableObject();

There is no application specified in the getDeployableObject() call. SessionHelper
uses the application in the root directory set by setApplicationRoot(). Once the
application root directory is set, SessionHelper can be used to perform other
operations, such as explicitly naming the dispatch file location or the deployment plan
location.

You can also set the application file name using the setApplication method as shown
below:

SessionHelper.setApplication(AppFileName);

This method allows you to continue using SessionHelper independent of the
directory structure. The getDeployableObject method returns the application
specified.

3.4 Perform Front-end Configuration
Front-end configuration involves creating a WebLogicDeploymentPlan and populating
it and its associated bean trees with configuration information:

■ Section 3.4.1, "What is Front-end Configuration"

■ Section 3.4.2, "Deployment Configuration"

■ Section 3.4.3, "Validating a Configuration"

Perform Front-end Configuration

Configuring Applications for Deployment 3-9

3.4.1 What is Front-end Configuration
Front-end configuration phase consists of two logical operations:

■ Loading information from a deployment plan to a deployment configuration. If a
deployment configuration does not yet exist, this includes creating a
WebLogicDeploymentConfiguration object to represent the WebLogic Server
configuration of an application. This is the first step in the process of process of
creating a deployment plan for this object.

■ Restoring any existing WebLogic Server configuration values from an existing
deployment plan.

A deployment tool must be able to:

■ Extract information from a deployment configuration. The deployment
configuration is the active Java object that is used by the Deployment Manager to
obtain configuration information. The deployment plan exists outside of the
application so that it can be changed without manipulating the application.

A deployment plan is an XML document that contains the environmental
configuration for an application and is sometimes referred to as an application's
front-end configuration. A deployment plan:

■ Separates the environment specific details of an application from the logic of the
application.

■ Is not required for every application. However, a deployment plan typically exists
for each environment an application is deployed to.

■ Describes the application structure, such as what modules are in the application.

■ Allows developers and administrators to update the configuration of an
application without modifying the application archive.

■ Contains environment-specific descriptor override information (tunables). By
modifying a deployment plan, you can provide environment specific values for
tunable variables in an application.

3.4.2 Deployment Configuration
The server configuration for an application is encapsulated in the
javax.enterprise.deploy.spi.DeploymentConfiguration interface. A
DeploymentConfiguration provides an object representation of a deployment plan. A
DeploymentConfiguration is associated with a DeployableObject using the
DeploymentManager.createConfiguration method. Once a DeploymentConfiguration
object is created, a DConfigBean tree representing the configurable and tunable
elements contained in any and all WebLogic Server descriptors is available. If there are
no WebLogic Server descriptors for an application, then a DConfigBean tree is created
using available default values. Binding properties that have no defaults are left unset.

When creating a deployment tool, you must ensure that the DConfigBean tree is fully
populated before the tool distributes an application.

3.4.2.1 Example Code
The following code provides an example on how to populate DConfigBeans:

Example 3–2 Example Code to Populate DConfigBeans

public class DeploymentSession {
 DeploymentManager dm;

Perform Front-end Configuration

3-10 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

 DeployableObject dObject = null;
 DeploymentConfiguration dConfig = null;
 Map beanMap = new HashMap();
.
.
.
 // Assumes app is a Web app.
 public void initializeConfig(File app) throws Throwable {
 /**
 * Init the wrapper for the DDBeans for this module. This example assumes
 * it is using the WLS implementation of the model api.
 */
 dObject= WebLogicDeployableObject.createDeployableObject(app);
 //Get basic configuration for the module
 dConfig = dm.createConfiguration(dObject);
 /**
 * At this point the DeployableObject is populated. Populate the
 * DeploymentConfigurationbased on its content.
 * We first ask the DeployableObject for its root.
 */
 DDBeanRoot root = dObject.getDDBeanRoot();
 /**
 * The root DDBean is used to start the process of identifying the
 * necessary DConfigBeans for configuring this module.
 */
 System.out.println("Looking up DCB for "+root.getXpath());
 DConfigBeanRoot rootConfig = dConfig.getDConfigBeanRoot(root);
 collectConfigBeans(root, rootConfig);
 /**
 * The DeploymentConfiguration is now initialized, although not necessarily
 * completely setup.
 */
 FileOutputStream fos = new FileOutputStream("test.xml");
 dConfig.save(fos);

 }

 // bean and dcb are a related DDBean and DConfigBean.
 private void collectConfigBeans(DDBean bean, DConfigBean dcb) throws Throwable{
 DConfigBean configBean;
 DDBean[] beans;
 if (dcb == null) return;
 /**
 * Maintain some sort of mapping between DDBeans and DConfigBeans
 * for later processing.
 */
 beanMap.put(bean,dcb);
 /**
 * The config bean advertises xpaths into the web.xml descriptor it
 * needs to know about.
 */
 String[] xpaths = dcb.getXpaths();
 if (xpaths == null) return;
 /**
 * For each xpath get the associated DDBean and collect its associated
 * DConfigBeans. Continue this recursively until we have all DDBeans and
 * DConfigBeans collected.
 */
 for (int i=0; i<xpaths.length; i++) {
 beans = bean.getChildBean(xpaths[i]);

Perform Front-end Configuration

Configuring Applications for Deployment 3-11

 for (int j=0; j<beans.length; j++) {
 /**
 * Init the DConfigBean associated with each DDBean
 */
 System.out.println("Looking up DCB for "+beans[j].getXpath());
 configBean = dcb.getDConfigBean(beans[j]);
 collectConfigBeans(beans[j], configBean);
 }
 }

This example merely iterates through the DDBean tree, requesting the DConfigBean for
each DDBean to be instantiated.

DeploymentConfiguration objects may be persisted as deployment plans using
DeploymentConfiguration.save(). A deployment tool may allow the user to import a
saved deployment plan into the DeploymentConfiguration object instead of
populating it from scratch. DeploymentConfiguration.restore() provides this
capability. This supports the idea of having a repository of deployment plans for an
application, with different plans being applicable to different environments.

Similarly the DeploymentConfiguration may be pieced together using partial plans,
which were presumably saved in a repository from a previous configuration session. A
partial plan maps to a module-root of a DConfigBean tree.
DeploymentConfiguration.saveDConfigBean() and
DeploymentConfiguration.restoreDConfigBean() provide this capability.

Parsing of the WebLogic Server descriptors in an application occurs automatically
when a DeploymentConfiguration is created. The descriptors ideally conform to the
most current schema. For older applications that include descriptors based on
WebLogic Server 8.1 and earlier DTDs, a transformation is performed. Old descriptors
are supported but they cannot be modified using a deployment plan. Therefore, any
DOCTYPE declarations must be converted to name space references and element
specific transformations must be performed.

3.4.2.2 Reading In Information with SessionHelper
SessionHelper.initializeConfiguration processes all standard and WebLogic
Server descriptors in the application.

Prior to invoking initializeConfiguration, you can specify an existing deployment
plan to associate with the application using the SessionHelper.setPlan() method.
With a plan set, you can read in a deployment plan using the
DeploymentConfiguration.restore() method. In addition, the
DeploymentConfiguration.initializeConfiguration() method automatically
restores configuration information once a plan is set.

When initiating a configuration session with the SessionHelper class, you can easily
initiate and fill a deploymentConfiguration object with deployment plan information
as illustrated below:

 DeploymentManager dm = SessionHelper.getDisconnectedDeploymentManager();
 SessionHelper helper = SessionHelper.getInstance(dm);
 // specify location of archive
 helper.setApplication(app);
 // specify location of existing deployment plan
 helper.setPlan(plan);
 // initialize the configuration session
 helper.initializeConfiguration();
 DeploymentConfiguration dc = helper.getConfiguration();

Customizing Deployment Configuration

3-12 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

The above code produces the deployment configuration and its associated
WebLogicDDBeanTree.

3.4.3 Validating a Configuration
Validation of the configuration occurs mostly during the parsing of the descriptors
which occurs when an application's descriptors are processed. Validation consists of
ensuring the descriptors are valid XML documents and that the descriptors conform to
their respective schemas.

3.5 Customizing Deployment Configuration
The Customizing Deployment Configuration phase involves modifying individual
WebLogic Server configuration values based on user inputs and the selected WebLogic
Server targets.

■ Section 3.5.1, "Modifying Configuration Values"

■ Section 3.5.2, "Targets"

■ Section 3.5.3, "Application Naming"

3.5.1 Modifying Configuration Values
In this phase, a configuration is only as good as the descriptors or pre-existing plan
associated with the application. The DConfigBeans are designed as Java Beans and can
be introspected, allowing a tool to present their content in some meaningful way. The
properties of a DConfigBean are, for the most part, those that are configurable. Key
properties (those that provide uniqueness) are also exposed. Setters are only exposed
on those properties that can be safely modified. In general, properties that describe
application behavior are not modifiable. All properties are typed as defined by the
descriptor schemas.

The property getters return subordinate DConfigBeans, arrays of DConfigBeans,
descriptor beans, arrays of descriptor beans, simple values (primitives and java.lang
objects), or arrays of simple values. Descriptor beans represent descriptor elements
that, while modifiable, do not require DConfigBean features, meaning there are no
standard descriptor elements they are directly related to. Editing a configuration is
accomplished by invoking the property setters.

The Java JSR-88 DConfigBean class allows a tool to access beans using the
getDConfigBean(DDBean) method or introspection. The former approach is convenient
for a tool that presents the standard descriptor based on the DDBeans in the
application's DeployableObject and provides direct access to each DDBean's
configuration (its DConfigBean). This provides configuration of the essential resource
requirements an application may have. Introspection allows a tool to present the
application's entire configuration, while highlighting the required resource
requirements.

Introspection is required in both approaches in order to present or modify descriptor
properties. The difference is in how a tool presents the information:

■ Driven by standard descriptor content or

■ WebLogic Server descriptor content.

A system of modifying configuration information must include a user interface to ask
for configuration changes. See Example 3–3.

Customizing Deployment Configuration

Configuring Applications for Deployment 3-13

Example 3–3 Code Example to Modify Configuration Information

.

.

.
// Introspect the DConfigBean tree and ask for input on properties with setters
 private void processBean(DConfigBean dcb) throws Exception {
 if (dcb instanceof DConfigBeanRoot) {
 System.out.println("Processing configuration for descriptor:
"+dcb.getDDBean().getRoot().getFilename());
 }
 // get property descriptor for the bean
 BeanInfo info =
 Introspector.getBeanInfo(dcb.getClass(),Introspector.USE_ALL_BEANINFO);
 PropertyDescriptor[] props = info.getPropertyDescriptors();
 String bean = info.getBeanDescriptor().getDisplayName();
 PropertyDescriptor prop;
 for (int i=0;i<props.length;i++) {
 prop = props[i];
 // only allow primitives to be updated
 Method getter = prop.getReadMethod();
 if (isPrimitive(getter.getReturnType())) // see isPrimitive method below
 {
 writeProperty(dcb,prop,bean); //see writeProperty method below
 }
 // recurse on child properties
 Object child = getter.invoke(dcb,new Object[]{});
 if (child == null) continue;
 // traversable if child is a DConfigBean.
 Class cc = child.getClass();
 if (!isPrimitive(cc)) {
 if (cc.isArray()) {
 Object[] cl = (Object[])child;
 for (int j=0;j<cl.length;j++) {
 if (cl[j] instanceof DConfigBean) processBean((DConfigBean) cl[j]);
 }
 } else {
 if (child instanceof DConfigBean) processBean((DConfigBean) child);
 }
 }
 }
 }

 // if the property has a setter then invoke it with user input
 private void writeProperty(DConfigBean dcb, PropertyDescriptor prop, String bean)
 throws Exception {
 Method getter = prop.getReadMethod();
 Method setter = prop.getWriteMethod();
 if (setter != null) {
 PropertyEditor pe =
 PropertyEditorManager.findEditor(prop.getPropertyType());
 if (pe == null &&
String[].class.isAssignableFrom(getter.getReturnType())) pe =
new StringArrayEditor(); // see StringArrayEditor class below
 if (pe != null) {
 Object oldValue = getter.invoke(dcb,new Object[0]);
 pe.setValue(oldValue);
 String val =
 getUserInput(bean,prop.getDisplayName(),pe.getAsText());
 // see getUserInput method below
 if (val == null || val.length() == 0) return;

Customizing Deployment Configuration

3-14 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

 pe.setAsText(val);
 Object newValue = pe.getValue();
 prop.getWriteMethod().invoke(dcb,new Object[]{newValue});
 }
 }
 }

 private String getUserInput(String element, String property, String curr) {
 try {
 System.out.println("Enter value for "+element+"."+property+". Current value is: "+curr);
 return br.readLine();
 } catch (IOException ioe) {
 return null;
 }
 }
 // Primitive means a java primitive or String object here
 private boolean isPrimitive(Class cc) {
 boolean prim = false;
 if (cc.isPrimitive() || String.class.isAssignableFrom(cc)) prim = true;
 if (!prim) {
 // array of primitives?
 if (cc.isArray()) {
 Class ccc = cc.getComponentType();
 if (ccc.isPrimitive() || String.class.isAssignableFrom(ccc)) prim = true;
 }
 }
 return prim;
 }

 /**
 * Custom editor for string arrays. Input text is converted into tokens using
 * commas as delimiters
 */
 private class StringArrayEditor extends PropertyEditorSupport {
 String[] curr = null;

 public StringArrayEditor() {super();}

 // comma separated string
 public String getAsText() {
 if (curr == null) return null;
 StringBuffer sb = new StringBuffer();
 for (int i=0;i<curr.length;i++) {
 sb.append(curr[i]);
 sb.append(',');
 }
 if (curr.length > 0) sb.deleteCharAt(sb.length()-1);
 return sb.toString();
 }

 public Object getValue() { return curr; }

 public boolean isPaintable() { return false; }

 public void setAsText(String text) {
 if (text == null) curr = null;
 StringTokenizer st = new StringTokenizer(text,",");
 curr = new String[st.countTokens()];
 for (int i=0;i<curr.length;i++) curr[i] = new String(st.nextToken());
 }

Deployment Preparation

Configuring Applications for Deployment 3-15

 public void setValue(Object value) {
 if (value == null) {
 curr = null;
 } else {
 String[] v = (String[])value; // let caller handle class cast issues
 curr = new String[v.length];
 for (int i=0;i<v.length;i++) curr[i] = new String(v[i]);
 }
 }
 }
.
.
.

Beyond the mechanics of the rudimentary user interface, any interface that enables
changes to the configuration by an administrator or user can use the property setters
shown in Example 3–3.

3.5.2 Targets
Targets are associated with WebLogic Servers, clusters, Web servers, virtual hosts and
JMS servers. See weblogic.deploy.api.spi.WebLogicTarget and Section 2.4.4,
"Support for Querying WebLogic Target Types".

3.5.3 Application Naming
In WebLogic Server, application names are provided by a deployment tool. Names of
modules contained within an application are based on the associated archive or root
directory name of the modules. These names are persisted in the configuration MBeans
constructed for the application.

In Java EE deployment there is no mention of the configured name of an application or
its constituent modules, other than in the TargetModuleID object. Yet TargetModuleIDs
exist only for applications that have been distributed to a WebLogic Server domain.
Hence there is a need to represent application and module names in a deployment tool
prior to distribution. This representation should be consistent with the names assigned
by the server when the application is finally distributed.

Your deployment tool plug-in must construct a view of an application using the
DeployableObject and J2eeApplicationObject classes. These classes represent
stand-alone modules and EARs, respectively. Each of these classes is directly related to
a DDBeanRoot object. When presented with a distribution where the name is not
configured, the deployment tool must create a name for the distribution. If the
distribution is a File object, use the filename of the distribution. If an archive is
offered as an input stream, a random name is used for the root module.

3.6 Deployment Preparation
The deployment preparation phase involves saving the resulting plan from a
configuration session. Use the DeploymentConfiguration.save() method (a standard
Java EE Deployment API method). You can also use the SessionHelper.savePlan()
method to save a new copy of deployment plan along with any external documents in
the plan directory.

The DeploymentConfiguration.save methods creates an XML file based on the
deployment plan schema that consists of a serialization of the current collection of
DConfigBeans, along with any variable assignments and definitions. DConfigBean trees

Session Cleanup

3-16 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

are always saved as external descriptors. These descriptors are only be saved if they do
not already exist in the application archive or the external configuration area, meaning
a save operation does not overwrite existing descriptors. The
DeploymentConfiguration.saveDConfigBean method does overwrite files. This is does
not mean that any changes made to a configuration are lost, it means that they are
handled using variable assignments.

As noted before, the DeploymentConfiguration.restore methods are used to create
configuration beans based on a previously saved deployment plan (see Section 3.4,
"Perform Front-end Configuration"). You can restore an entire collection of
configuration beans or you can restore a subset of the configuration beans. It is also
possible to save or restore the configuration beans for a specific module in an
application.

3.7 Session Cleanup
Temporary files are created during a configuration session. Archives are exploded into
the temp area and can only be removed after session configuration is complete. There
is no standard API defined to close out a session. Use the close() methods to
WebLogicDeployableObject and WebLogicDeploymentConfiguration.
SessionHelper.close() to clean up after a session. If you do not clean up after closing
sessions, the disk containing your temp directories may fill up over time.

4

Performing Deployment Operations 4-1

4Performing Deployment Operations

[5] This chapter describes application deployment in WebLogic Server 12.1.3. Application
deployment distributes the information created in Chapter 3, "Configuring
Applications for Deployment" to the Administration Server for server-side processing
and application startup. Your deployment tool must be able to successfully complete
the deployment operations outlined in this chapter.

This chapter includes the following sections:

■ Section 4.1, "Register Deployment Factory Objects"

■ Section 4.2, "Allocate a DeploymentManager"

■ Section 4.3, "Deployment Processing"

■ Section 4.4, "Production Redeployment"

■ Section 4.5, "Progress Reporting"

■ Section 4.6, "Target Objects"

4.1 Register Deployment Factory Objects
Your deployment tool must instantiate and register the DeploymentFactory objects it
uses. You can implement your own mechanism for managing DeploymentFactory
objects. WebLogic Server DeploymentFactory objects are advertised in a manifest file
stored in the wldeploy.jar file. The manifest contains entries of the fully qualified
class names of the factories, separated by whitespace. For example, if you assume that
the DeploymentFactory- objects reside in a fixed location and are included in the
deployment tool classpath, the deployment tool registers any DeploymentFactory
objects it recognizes at startup. See Example 4–1.

Example 4–1 Registered Deployment Factory in the Manifest File

 MANIFEST.MF:
 Manifest-version: 1.0
 Implementation-Vendor: BEA Systems
 Implementation-Title: WebLogic Server 9.0 Mon May 29 08:16:47 PST 2006 221755
 Implementation-Version: 9.0.0.0
 J2EE-DeploymentFactory-Implementation-Class:
 weblogic.deploy.spi.factories.DeploymentFactoryImpl
 .
 .
 .

Allocate a DeploymentManager

4-2 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

The standard DeploymentFactory interface is extended by
weblogic.deploy.api.WebLogicDeploymentFactory. The additional methods
provided in the extension are:

■ String[] getUris(): Returns an array of URI's that are recognized by
getDeploymentManager. The first URI in the array is guaranteed to be the default
DeploymentManager URI, deployer:WebLogic. Only published URI's are returned
in this array.

■ String createUri(String protocol, String host, String port): Returns a
usable URI based on the arguments.

4.2 Allocate a DeploymentManager
Your deployment tool must allocate a DeploymentManager from a DeploymentFactory,
which is registered with the DeploymentFactoryManager class, in order to perform
deployment operations. In addition to configuring an application for deployment, the
DeploymentManager is responsible for establishing a connection to a Java EE server.
The DeploymentManager implementation is accessed using a DeploymentFactory.

The following sections provide information on how a DeploymentManager connects to
a server instance:

■ Section 4.2.1, "Getting a DeploymentManager Object"

■ Section 4.2.2, "Understanding DeploymentManager URI Implementations"

■ Section 4.2.3, "Server Connectivity"

4.2.1 Getting a DeploymentManager Object
Use the DeploymentFactory.getDeploymentManager method to get a
DeploymentManager object. This method takes a URI, user ID and password as
arguments. The URI has the following patterns:

■ deployer:WebLogic<:host:port>

■ deployer:WebLogic.remote<:host:port>

■ deployer:WebLogic.authenticated<:host:port>

When connecting to an Administration Server, the URI must also include the host and
port, such as deployer:WebLogic:localhost:7001. See Section 4.2.2, "Understanding
DeploymentManager URI Implementations".

The following provides additional information on DeploymentManager arguments:

■ When obtaining a disconnected DeploymentManager, you do not need to include
the host:port because there is no connection to an Administration Server. For
example, the URI can be deployer:WebLogic.

■ The user ID and password arguments are ignored if the deployment tool uses a
pre-authenticated DeploymentManager.

■ You can access the URI of any DeploymentManager implementation using the
DeploymentFactory.getUris() method. getUris is an extension of
DeploymenFactory.

4.2.2 Understanding DeploymentManager URI Implementations
Depending on the URI specified during allocation, the DeploymentManager object will
have one of the following characteristics:

Deployment Processing

Performing Deployment Operations 4-3

■ deployer:WebLogic: The DeploymentManager is running locally on an
Administration Server and any files referenced during the deployment session are
treated as if they are local to the Administration Server.

■ deployer:WebLogic.remote: The DeploymentManager is running remotely to the
WebLogic Server Administration Server and any files referenced during the
deployment session are treated as being remote to the Administration Server and
may require uploading. For example, a distribute operation includes uploading
the application files to the Administration Server.

■ deployer:WebLogic.authenticated: This is an internal, unpublished URI, usable
by applications such as a console servlet that is already authenticated and has
access to the domain management information. The DeploymentManager is
running locally on a WebLogic Administration Server and any files referenced
during the deployment session are treated as if they are local to the
Administration Server.

You can explicitly force the uploading of application files by using the
WebLogicDeploymentManager method enableFileUploads() method.

4.2.3 Server Connectivity
DeploymentManagers are either connected or disconnected. Connected
DeploymentManagers imply a connection to a WebLogic Server Administration Server.
This connection is maintained until it is explicitly disconnected or the connection is
lost. If the connection is lost, the DeploymentManager reverts to a disconnected state.

Explicitly disconnecting a DeploymentManager is accomplished using the
DeploymentManager.release method. There is no corresponding method for
reconnecting the DeploymentManager. Instead the deployment tool must allocate a new
DeploymentManager.

4.3 Deployment Processing
Most of the functional components of a DeploymentManager are defined in the Java EE
Deployment API specification. However, Oracle has extended the DeploymentManager
interface with the capabilities required by existing WebLogic Server-based deployment
tools. Oracle WebLogic Server deployment extensions are documented at
weblogic.deploy.api.spi.WebLogicDeploymentManager.

The JSR-88 programming model revolves around employing TargetModuleID objects
(TargetModuleIDs) and ProgressObject objects. In general, target modules are
specified by a list of TargetModuleIDs which are roughly equivalent to deployable root
modules and sub-module level MBeans. The DeploymentManager applies the
TargetModuleIDs to deployment operations and tracks their progress. A deployment
tool needs to query progress using a ProgressObject returned for each operation.
When the ProgressObject indicates the operation is completed or failed, the operation
is done.

The following sections provide an overview of WebLogic DeploymentManager features:

■ Section 4.3.1, "DeploymentOptions"

■ Section 4.3.2, "Distribution"

Note: Allocating a new DeploymentManager does not affect any configuration
information being maintained within the tool through a
DeploymentConfiguration object.

Deployment Processing

4-4 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

■ Section 4.3.3, "Application Start"

■ Section 4.3.4, "Application Deploy"

■ Section 4.3.5, "Application Stop"

■ Section 4.3.6, "Undeployment"

4.3.1 DeploymentOptions
WebLogic Server allows for a DeploymentOptions argument
(weblogic.deploy.api.spi.DeploymentOptions) which supports the overriding of
certain deployment behaviors. The argument may be null, which provides standard
behavior. Some of the options supported in this release are:

■ admin (test) mode

■ Retirement Policy

■ Staging

See DeploymentOptions Javadoc.

4.3.2 Distribution
Distribution of new applications results in:

■ the application archive and plan is staged on all targets.

■ the application being configured into the domain.

The standard distribute operations does not support version naming. WebLogic Server
provides WebLogicDeploymentManager to extend the standard with a distribute
operation that allows you to associate a version name with an application.

The ProgressObject returned from a distribute provides a list of TargetModuleIDs
representing the application as it exists on the target servers. The targets used in the
distribute are any of the supported targets. The TargetModuleID represents the
application's module availability on each target.

For new applications, TargetModuleIDs represent the top level AppDeploymentMBean
objects. TargetModuleIDs do not have child TargetModuleIDs based on the modules
and sub-modules in the application since the underlying MBeans would only represent
the root module. For pre-existing applications, the TargetModuleIDs are based on
DeployableMBeans and any AppDeploymentMBean and SubAppDeploymentMBean in the
configuration.

If you use the distribute(Target[],InputStream,InputStream) method to distribute
an application, the archive and plan represented by the input streams are copied from
the streams into a temporary area prior to deployment which impacts performance.

4.3.3 Application Start
The standard start operation only supports root modules; implying only entire
applications can be started. Consider the following configuration.

<AppDeployment Name="myapp">
 <SubDeployment Name="webapp1", Targets="serverx"/>

Note: Redistribution honors the staging mode already configured for an
application.

Deployment Processing

Performing Deployment Operations 4-5

 <SubDeployment Name="webapp2", Targets="serverx"/>
</AppDeployment>

The TargetModuleID returned from getAvailableModules(ModuleType.EAR) looks
like:

myapp on serverx (implied)
 webapp1 on serverx
 webapp2 on serverx

and start(tmid) would start webapp1 and webapp2 on serverx.

To start webapp1, module level control is required. Configure module level control by
manually creating a TargetModuleID hierarchy.

 WebLogicTargetModuleID root =
dm.createTargetModuleID("myapp",ModuleType.EAR,getTarget(serverx));
 WebLogicTargetModuleID web =
dm.createTargetModuleID(root,"webapp1",ModuleType.WAR);
 dm.start(new TargetModuleID[]{web});

This approach uses the TargetModuleID creation extension to manually create an
explicit TargetModuleID hierarchy. In this case the created TargetModuleID would look
like

myapp on serverx (implied)
 webapp1 on serverx

The start operation does not modify the application configuration. Version support is
built into the TargetModuleIDs, allowing the user to start a specific version of an
application. Applications may be started in normal or administration (test) mode.

4.3.4 Application Deploy
The deploy operation combines a distribute and start operation. Web applications
may be deployed in normal or administration (test) mode. You can specify application
staging using the DeploymentOptions argument. deploy operations use
TargetModuleIDs instead of Targets for targeting, allowing for module level
configuration.

The deploy operation may change the application configuration based on the
TargetModuleIDs provided.

4.3.5 Application Stop
The standard stop operation only supports root modules; implying only entire
applications can be stopped. See the Section 4.3.3, "Application Start".

Oracle provides versioning support, allowing you to stop a specific version of an
application. The stop operation does not modify the application configuration. See
Section 4.4.4, "Version Support".

4.3.6 Undeployment
The standard undeploy operation removes an application from the configuration, as
specified by the TargetModuleIDs. Individual modules can be undeployed. The result
is that the application remains on the target, but certain modules are not actually
configured to run on it. See the Section 4.3.3, "Application Start" section for more detail
on module level control.

Production Redeployment

4-6 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

The WebLogicDeploymentManager extends undeploy in support of removing files from
a distribution. This is a form of in-place redeployment that is only supported in Web
applications, and is intended to allow you to remove static pages. See Section 4.4.4,
"Version Support".

4.4 Production Redeployment
Standard redeployment support only applies to entire applications and employs
side-by-side versioning to ensure uninterrupted session management. The
WebLogicDeploymentManager extends the redeploy() method and provides the
following additional support:

■ Section 4.4.1, "In-Place Redeployment":

■ Section 4.4.2, "Module Level Targeting"

■ Section 4.4.3, "Retirement Policy"

■ Section 4.4.4, "Version Support"

■ Section 4.4.5, "Administration (Test) Mode"

4.4.1 In-Place Redeployment
The in-place redeployment strategy works by immediately replacing a running
application's deployment files with updated deployment files, such as:

■ Partial redeployment which involves adding or replacing specific files in an
existing deployment.

■ Updating a configuration using a redeployment of a deployment plan

4.4.2 Module Level Targeting
A DeploymentManager implements the JSR-88 specification and restricts operations to
root modules. Module level control is provided by manually constructing a module
specific TargetModuleID hierarchy using
WebLogicDeploymentManager.createTargetModuleID

4.4.3 Retirement Policy
When a new version of an application is redeployed, the old version should eventually
be retired and undeployed. There are 2 policies for retiring old versions of
applications:

1. (Default) The old version is retired when new version is active and old version
finishes its in-flight operations.

2. The old version is retired when new version is active, retiring the old after some
specified time limit of the new version being active.

4.4.4 Version Support
Side-by-side versioning is used to provide retirement extensions, as suggested in the
JSR-88 redeployment specification. This ensures that an application can be redeployed
without interruption in service to its current clients. Details on deploying side-by-side

Note: The old version is not retired if the new version is in administration
(test) mode.

Progress Reporting

Performing Deployment Operations 4-7

versions can be found in "Redeploying Applications in a Production Environment" in
Deploying Applications to Oracle WebLogic Server.

4.4.5 Administration (Test) Mode
A Web application may be started in normal or administration (test) mode. Normal
mode indicates the Web application is fully accessible to clients. Administration (test)
mode indicates the application only listens for requests using the admin channel.
Administration (test) mode is specified by the DeploymentOptions argument on the
WebLogic Server extensions for start, deploy and redeploy. See DeploymentOptions
Javadoc.

4.5 Progress Reporting
Use ProgressObjects to determine deployment state of your applications. These
objects are associated with DeploymentTaskRuntimeMBeans.ProgressObjects support
the cancel operation but not the stop operation.

ProgessObjects are associated with one or more TargetModuleIDs, each of which
represents an application and its association with a particular target. For any
ProgressObject, its associated TargetModuleIDs represent the application that is
being monitored.

The ProgressObject maintains a connection with the deployment framework,
allowing it to provide a deployment tool with up-to-date deployment status. The
deployment state transitions from running to completed or failed only after all
TargetModuleIDs involved have completed their individual deployments. The
resulting state is completed only if all TargetModuleIDs are successfully deployed.

The released state means that the DeploymentManager was disconnected during the
deployment. This may be due to a manual release, a network outage, or similar
communication failures.

Example 4–2 shows how a ProgressObject can be used to wait for a deployment to
complete:

Example 4–2 Example Code to Wait for Completion of a Deployment

package weblogic.deployer.tools;

import javax.enterprise.deploy.shared.*;
import javax.enterprise.deploy.spi.*;
import javax.enterprise.deploy.spi.status.*;

/**
 * Example of class that waits for the completion of a deployment
 * using ProgressEvent's.
 */
public class ProgressExample implements ProgressListener {

 private boolean failed = false;
 private DeploymentManager dm;
 private TargetModuleID[] tmids;

 public void main(String[] args) {
 // set up DeploymentManager, TargetModuleIDs, etc
 try {
 wait(dm.start(tmids));
} catch (IllegalStateException ise) {

Target Objects

4-8 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

 //... dm not connected
}
 if (failed) System.out.println("oh no!");
}

 void wait(ProgressObject po) {
 ProgressHandler ph = new ProgressHandler();
 if (!po.getDeploymentStatus().isRunning()) {
 failed = po.getDeploymentStatus().isFailed();
 return;
}
 po.addProgressListener(ph);
 ph.start();
 while (ph.getCompletionState() == null) {
 try {
 ph.join();
} catch (InterruptedException ie) {
 if (!ph.isAlive()) break;
}
}
 StateType s = ph.getCompletionState();
 failed = (s == null ||
 s.getValue() == StateType.FAILED.getValue());
 po.removeProgressListener(ph);
}

 class ProgressHandler extends Thread implements ProgressListener {
 boolean progressDone = false;
 StateType finalState = null;
 public void run(){
 while(!progressDone){
 Thread.currentThread().yield();
}
}
 public void handleProgressEvent(ProgressEvent event){
 DeploymentStatus ds = event.getDeploymentStatus();
 if (ds.getState().getValue() != StateType.RUNNING.getValue()) {
 progressDone = true;
 finalState = ds.getState();
}
}
 public StateType getCompletionState(){
 return finalState;
}
}
}

4.6 Target Objects
The following sections provide information on how to target objects:

■ Section 4.6.1, "Module Types"

■ Section 4.6.2, "Extended Module Support"

■ Section 4.6.3, "Recognition of Target Types"

■ Section 4.6.4, "TargetModuleID Objects"

■ Section 4.6.5, "WebLogic Server TargetModuleID Extensions"

■ Section 4.6.6, "Example Module Deployment"

Target Objects

Performing Deployment Operations 4-9

4.6.1 Module Types
The standard modules types are defined by
javax.enterprise.deploy.shared.ModuleType. This is extended to support WebLogic
Server-specific module types: JMS, JDBC, INTERCEPT and CONFIG.

4.6.2 Extended Module Support
JSR-88 defines a secondary descriptor as additional descriptors that a module can refer
to or make use of. These descriptors are linked to the root DConfigBean of a module
such that they are visible to a Java Beans based tool as they are child properties of a
DConfigBeanRoot object. Secondary descriptors are automatically included in the
configuration process for a module.

4.6.2.1 Web Services
An EJB or Web application may include a webservers.xml descriptor. If present, the
module is automatically configured with the WebLogic Server equivalent descriptor
for configuring Web services as secondary descriptors. The deployment plan includes
these descriptors as part of the module, not as a separate module.

4.6.2.2 CMP
CMP support in EJBs is configured using RDBMS descriptors that are identified for
CMP beans in the weblogic-ejb-jar.xml descriptor. The RDBMS descriptors support
CMP11 and CMP20. Any number of RDBMS descriptors may be included with an EJB
module. Provide these descriptors in the application archive or configuration area
(approot/plan). Although they are not created by the configuration process, they may
be modified like any other descriptor. RDBMS descriptors are treated as secondary
descriptors in the deployment plan.

4.6.2.3 JDBC
JDBC modules are described by a single deployment descriptor with no archive. If the
module is part of an EAR, the JDBC descriptors are specified in
weblogic-application.xml as configurable properties. You can deploy JDBC modules
to WebLogic servers and clusters. Configuration changes to JDBC descriptors are
handled as overrides to the descriptor.

If a JDBC module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

4.6.2.4 JMS
JMS modules are described by a single deployment descriptor with no archive. If the
module is part of an EAR, the JMS descriptors are specified in
weblogic-application.xml as configurable properties. JMS modules are deployed to
JMS servers. Configuration changes to JMS descriptors are handled as overrides to the
descriptor. JMS descriptors may identify "targetable groups". These groups are treated
as sub-modules during deployment.

If the JMS module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

4.6.2.5 INTERCEPT
Intercept modules are described by a single deployment descriptor with no archive. If
the module is part of an EAR, the Intercept descriptors are specified in
weblogic-application.xml as configurable properties. Intercept modules are

Target Objects

4-10 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

deployed to WebLogic Server servers and clusters. Configuration changes to Intercept
descriptors are handled as overrides to the descriptor.

If the Intercept module is part of an EAR, its configuration overrides are incorporated
in the deployment plan as part of the EAR, not as separate modules.

4.6.3 Recognition of Target Types
The Java EE Deployment API specification's definition of a target does not include any
notion of its type. WebLogic Server supports standard modules and Oracle-specific
module types as valid deployment targets. Target support is provided by the
weblogic.deploy.api.spi.WebLogicTarget and
weblogic.deploy.api.spi.WebLogicTargetType classes. See Section 4.6.1, "Module
Types".

4.6.4 TargetModuleID Objects
The TargetModuleID objects uniquely identify a module and a target it is associated
with. TargetModuleIDs are the objects that specify where modules are to be started
and stopped. The object name used to identify the TargetModuleID is of the form:

Application=parent-name,Name=configured-name,Target=target-name,TWebLogicTargetTyp
e=target-type

where

■ parent-name is the name of the ear this module is part of.

■ configured-name is the name used in the WebLogic Server configuration for this
application or module

■ target-name is the server, cluster or virtual host where there module is targeted

■ target-type is the description of the target derived from Target.getDescription.

TargetModuleID.toString() will return this object name.

4.6.5 WebLogic Server TargetModuleID Extensions
TargetModuleID is extended by weblogic.deploy.api.spi.WebLogicTargetModuleID.
This class provides the following additional functionality:

■ getServers—servers associated with the TargetModuleID's target

■ isOnCluster—whether target is a cluster

■ isOnServer—whether target is a server

■ isOnHost—whether target is a virtual host

■ isOnJMSServer—whether target is a JMS server

■ getVersion—the version name

■ createTargetModuleID—factory for creating module specific targeting

WebLogicTargetModuleID is defined in more detail in the Javadocs.

The WebLogicDeploymentManager is also extended with convenience methods that
simplify working with TargetModuleIDs. They are:

■ filter—returns a list of TargetModuleIDs that match on application, module, and
version

■ getModules—creates TargetModuleIDs based on an AppDeploymentMBean

Target Objects

Performing Deployment Operations 4-11

TargetModuleIDs have a hierarchical relationship based on the application upon
which they are based. The root TargetModuleID of an application represents an EAR
module or a stand-alone module. Child TargetModuleIDs are modules that are defined
by the root module's descriptor. For EARs, these are the modules identified in the
application.xml descriptor for the EAR. JMS modules may have child
TargetModuleIDs (sub-modules) as dictated by the JMS deployment descriptor. These
may be children of an embedded module or the root module. Therefore, JMS modules
can have three levels of TargetModuleIDs for an application.

Typically, you get TargetModuleIDs in a deployment operation or one of the
DeploymentManager.get*Modules() methods. These operations provide
TargetModuleIDs based on the existing configuration. In certain scenarios where more
specific targeting is desired than is currently defined in the configuration, you may use
the createTargetModuleID method. This method creates a root TargetModuleID that is
specific to a module or sub-module within the application. This TargetModuleID can
then be used in any deployment operation. For operations that include the application
archive, such as deploy(), using one of these TargetModuleIDs may result in the
application being reconfigured. For example:

<AppDeployment Name="myapp", Targets="s1,s2"/>

The application is currently configured for all modules to run on s1 and s2. To provide
more specific targeting, a deployment tool can do the following:

Target s1 = find("s1",dm.getTargets());
// find() is not part of this api
WebLogicTargetModuleID root =
 dm.createTargetModuleID("myapp",ModuleType.EAR,s1);
WebLogicTargetModuleID web =
 dm.createTargetModuleID(root,"webapp1",ModuleType.WAR);
dm.deploy(new TargetModuleID[]{web},myapp,myplan,null);

myapp is reconfigured and webapp is specifically targeted to only run on s1. The new
configuration is:

<AppDeployment Name="myapp", Targets="s1,s2">
 <SubDeployment Name="webapp", Targets="s1"/>
</AppDeployment>

4.6.6 Example Module Deployment
Consider the deployment of a stand-alone JMS module, one that employs
sub-modules. The module is defined by the file, simple-jms.xml, which defines
sub-modules, sub1 and sub2. The descriptor is fully configured for the environment
hence no deployment plan is required, although the scenario described here would be
the same if there was a deployment plan.

The tool to deploy this module performs the following steps:

// init the jsr88 session. This uses a WLS specific helper class,
// which does not employ any WLS extensions
DeploymentManager dm = SessionHelper.getDeploymentManager(host,port,user,pword);

// get list of all configured targets
// The filter method is a location where you could ask the user
// to select from the list of all configured targets

Target[] targets = filter(dm.getTargets());

// the module is distributed to the selected targets

Target Objects

4-12 Deploying Applications with the WebLogic Deployment API for Oracle WebLogic Server 12.1.3

ProgressObject po = dm.distribute(targets,new File("jms.xml"),plan);

// when the wait comes back the task is done
waitForCompletion(po);

// It is assumed here that it worked (there is no exception handling)
// the TargetModuleIDs (tmids) returned from the PO correspond to all the
// configured app/module mbeans for each target the app was distributed to.
// This should include 3 tmids per target: the root module tmid and the
// submodules' tmids.
TargetModuleID[] tmids = po.getResultTargetModuleIDs();

// then to deploy the whole thing everywhere you would do this
po = dm.start(tmids);
// the result is that all sub-modules would be deployed on all the selected
// targets, since they are implicitly targeted wherever the their parent is
// targeted

// To get sub-module level deployment you need to use WebLogic Server
// extensions to create TargetModuleIDs that support module level targeting.
// The following deploys the topic "xyz" on a JMS server
WebLogicTargetModuleID root =
 dm.createTargetModuleID(tmids[i].getModuleID(),tmids[i],jmsServer);
WebLogicTargetModuleID topic =
 dm.createTargetModuleID(root,"xyz",WebLogicModuleType.JMS);

// now we can take the original list of tmids and let the user select
// specific tmids to deploy
po = dm.start(topic);

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Understanding the WebLogic Deployment API
	2.1 The WebLogic Deployment API
	2.1.1 WebLogic Deployment API Deployment Phases
	2.1.1.1 Configure an Application for Deployment
	2.1.1.2 Deploy an Application

	2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment API
	2.1.3 When to Use the WebLogic Deployment API

	2.2 Java EE Deployment API Compliance
	2.3 WebLogic Server Value-Added Deployment Features
	2.4 The Service Provider Interface Package
	2.4.1 weblogic.deploy.api.spi
	2.4.2 weblogic.deploy.api.spi.factories
	2.4.3 Module Targeting
	2.4.4 Support for Querying WebLogic Target Types
	2.4.5 Server Staging Modes
	2.4.6 Deployment Plan Staging Modes
	2.4.7 DConfigBean Validation

	2.5 The Model Package
	2.5.1 weblogic.deploy.api.model
	2.5.2 Accessing Deployment Descriptors

	2.6 The Shared Package
	2.6.1 weblogic.deploy.api.shared
	2.6.2 Command Types for Deploy and Update
	2.6.3 Support for Module Types
	2.6.4 Support for all WebLogic Server Target Types

	2.7 The Tools Package
	2.7.1 weblogic.deploy.api.tools
	2.7.2 SessionHelper
	2.7.3 Deployment Plan Creation

	2.8 The JMX API for Deployment Operations
	2.8.1 Supported Deployment Options
	2.8.2 Using the JMX API for Deployment Operations

	2.9 Using a Deployment Validation Plug-In with WebLogic Server
	2.9.1 Configuring the Deployment Validation Plug-In
	2.9.2 Using the Deployment Validation Plug-In

	3 Configuring Applications for Deployment
	3.1 Overview of the Configuration Process
	3.2 Types of Configuration Information
	3.2.1 Java EE Configuration
	3.2.2 WebLogic Server Configuration
	3.2.3 Representing Java EE and WebLogic Server Configuration Information
	3.2.3.1 DDBeans

	3.2.4 The Relationship Between Java EE and WebLogic Server Descriptors
	3.2.4.1 DConfigBeans

	3.3 Application Evaluation
	3.3.1 Obtain a Deployment Manager
	3.3.1.1 Types of Deployment Managers
	3.3.1.2 Connected and Disconnected Deployment Manager URIs
	3.3.1.3 Using SessionHelper to Obtain a Deployment Manager

	3.3.2 Create a Deployable Object
	3.3.2.1 Using the WebLogicDeployableObject class
	3.3.2.2 Using SessionHelper to obtain a Deployable Object

	3.4 Perform Front-end Configuration
	3.4.1 What is Front-end Configuration
	3.4.2 Deployment Configuration
	3.4.2.1 Example Code
	3.4.2.2 Reading In Information with SessionHelper

	3.4.3 Validating a Configuration

	3.5 Customizing Deployment Configuration
	3.5.1 Modifying Configuration Values
	3.5.2 Targets
	3.5.3 Application Naming

	3.6 Deployment Preparation
	3.7 Session Cleanup

	4 Performing Deployment Operations
	4.1 Register Deployment Factory Objects
	4.2 Allocate a DeploymentManager
	4.2.1 Getting a DeploymentManager Object
	4.2.2 Understanding DeploymentManager URI Implementations
	4.2.3 Server Connectivity

	4.3 Deployment Processing
	4.3.1 DeploymentOptions
	4.3.2 Distribution
	4.3.3 Application Start
	4.3.4 Application Deploy
	4.3.5 Application Stop
	4.3.6 Undeployment

	4.4 Production Redeployment
	4.4.1 In-Place Redeployment
	4.4.2 Module Level Targeting
	4.4.3 Retirement Policy
	4.4.4 Version Support
	4.4.5 Administration (Test) Mode

	4.5 Progress Reporting
	4.6 Target Objects
	4.6.1 Module Types
	4.6.2 Extended Module Support
	4.6.2.1 Web Services
	4.6.2.2 CMP
	4.6.2.3 JDBC
	4.6.2.4 JMS
	4.6.2.5 INTERCEPT

	4.6.3 Recognition of Target Types
	4.6.4 TargetModuleID Objects
	4.6.5 WebLogic Server TargetModuleID Extensions
	4.6.6 Example Module Deployment

