ORACLE"

Oracle® Fusion Middleware
Securing Oracle Coherence
12¢(12.2.1)

E55621-02

February 2016

Documentation for developers and system administrators that
describes how to secure Oracle Coherence clusters, Oracle
Coherence*Extend clients, and Oracle Coherence REST, using
technologies that offer varying levels of security

Oracle Fusion Middleware Securing Oracle Coherence, 12¢ (12.2.1)
E55621-02

Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.
Primary Author: Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ... vii
ATUAIEIICE ...ttt a e bbbt bt b e s b e st et e b et et e st e st eat e st e bt e ae e bt e bt be s bt et e benbe st entenee Vi
Documentation AcCeSSIDILILYcccvvvviimiiiiiiiiiiiii s Vi
Related DOCUIMENLES.coueiitiiiiiietirteierieieste ettt ettt ettt ettt et st et st et et st et ebe e ebe e ebensebenaenens Vii
COMVEINTIONS ... ettt ettt ettt ettt et st et e et e bt ea e e bt ea s e s bt et e saeenbesat e seeatesbeembesbeensebeenteeseanseeatenseeatenseensas viii

What's NeW iN THIS GUITE..........c.ireeece sttt ix
New and Changed Features for 12¢ (12.2.1) ..c.cccciuiiiiiiiicceeeceeeeeieeee e nesenenes iX
Other Significant Changes in This Document for 12¢ (12.2.1).....cccccceeiiiiiiiiiiiiiccccceeeeenenes iX

1 Introduction to Oracle Coherence Security

Conceptual Overview of Oracle Coherence SECUItYcccovvivviiiiiiiriririiiniiirrcrrereeeeees 11
Coherence Security QUick Start..........ccouoiiiiiiii s 1-2
Overview of Security Configuration...........cocceueiiiiiiiii e 1-3

2 Enabling General Security Measures

Using the Java Security Managerccoceueiiiiieieiiiciec e 2-1
Enable the Java Security Manager ... 2-1
SPECIfY PEIIISSIONS.cuvimimiiiiiiiiiiciiiiccicc e 2-2
Programmatically Specifying Local Permissions ... 2-2

Using Host-Based AUthOrization ... 2-3
Overview of Host-Based AUthOrization ... 2-4
Specify Cluster Member Authorized HOSESc.ccoiiiiiiiiiiiiicccccccccccccccceeene 2-4
Specify Extend Client Authorized HOSES ..o 2-5
Use a Filter Class to Determine Authorization ... 2-5

Managing ROGuUe CLENEScouiiiiuiieiiicicie e 2-6

3 Using an Access Controller

Overview of Using an Access CONtIrOLIETc.coiuiiiiiiiiiiici s 3-1
Using the Default Access Controller Implementationc.ccooveiiiiiniiininic e, 3-3
Enable the Access CONLIOLIETc.vueviieiiieiiiei e 3-4

4

5

Create @ Keystore......oooiiiiic 3-4

Include the Login ModULe..........cccoiiiiiiiiiiiicccecccce e 3-5
Create a Permissions File..........cccociiiiiiiiiiiic e 3-5
Create an Authentication Callback Handler ... 3-6
Enable Security AUdit LOZSccorueiiiiiieiiiccic 3-6
Using a Custom Access Controller Implementationc.ceiieiiiiicii, 3-7

Authorizing Access to Server-Side Operations

Overview of Access Control AUthOriZation..........cccoevvviiiiiiiiniiiis 4-1
Creating Access Control Authorization Implementationsccccceevvrvriirrvnnnnrrreeeeene 4-2
Declaring Access Control Authorization Implementationscccoeeveieiieiiniccecceee 4-4
Enabling Access Control Authorization on a Partitioned Cache...........c.ccoooeeiiiiiiii 4-5

Securing Extend Client Connections

Using Identity Tokens to Restrict Client CONNectionscoevirueieieiicicieiccccc e, 5-1
Overview of Using Identity TOKENScccouoieiiiiiiiiiiiiicccc s 5-1
Creating a Custom Identity TransfOrmer ... 5-2
Enabling a Custom Identity Transformer...........cccooiiiiiiiiiiiiiiiccccccccccceeeeee 5-3
Creating a Custom Identity ASSeIter..........cocooiiiiiiiiiiiiiice e, 5-4
Enabling a Custom Identity ASSertercccocoiiiiiiioiiiiiiic 5-4
Using Custom Security TYPeSccovirieiiiiicic 5-5
Understanding Custom Identity Token Interoperabilityccocoiiiiniiiiinnccciinne. 5-5

Associating Identities with Extend SEIvices ..o 5-6

Implementing Extend Client Authorization...........ccccccevviniiiniiniiiii 5-7
Overview of Extend Client Authorization.............ccoiiiiiiiiiiii 5-7
Create Authorization Interceptor Classes..........cooiiiiiiiiii 5-7
Enable Authorization Interceptor Classes ...ttt 5-10

Using SSL to Secure Communication

OVEIVIEW Of SSL.....oiiiiiiiiiiiiicc s 6-1
Using SSL to Secure TCMP CommuUNiCatioN........ccoviiiiiiiiiiee s 6-3
Overview of Using SSL to Secure TCMP Communicationcoeeueieiicieieiniccieeiecienen, 6-4
Define an SSL Socket PrOVIAET ... 6-4
Using the Predefined SSL Socket Provider ..., 6-6
Using SSL to Secure Extend Client Communicationcccccoiiiiiiiiiiiiiicicciccecceeeeene 6-8
Overview of Using SSL to Secure Extend Client Communicationccccoeeuevcniniiicnnnnnn. 6-8
Configuring a Cluster-Side SSL Socket Provider............ooooioiiiiiiiiecccc, 6-9
Configuring a Java Client-Side SSL Socket Providerccccooeuiieiniciniicinicccececeee, 6-11
Configuring a .NET Client-Side Stream Provider ..o, 6-15
Using SSL to Secure Federation CommMUNICationccccviiiiiiiiniiiiiicecc e 6-16
Controlling Cipher Suite and Protocol Version Usagecccccoeueiimieiniicininicccceecceee 6-17

7 Securing Oracle Coherence in Oracle WebLogic Server

Overview of Securing Oracle Coherence in Oracle WebLogic Server-...........cccooovreeiiicnieeincnne. 7-1
Securing Oracle Coherence Cluster Membershipcccccoevviiiiiiiiiiiccc 7-1
Enabling the Oracle Coherence Security Framework ..o 7-2
Specifying an Identity for Use by the Security Frameworkcccooooiiiiiiinnnnn. 7-2
Authorizing Oracle Coherence Caches and Servicesccoeueiiiiiiiiiiieinicccecc, 7-3
Specifying Cache AUthOrization ... 7-3
Specifying Service AUthOTiZationccooieiiiiiciicicc s 7-4
Securing Extend Client Access with Identity TOKenSs..........ccccccceviviviiiinnininnecccreeeeenes 7-4
Enabling Identity Transformers for Use in Oracle WebLogic Server..........cccoovviiiiiinnnnne. 7-5
Enabling Identity Asserters for Use in Oracle WebLogic Server ..o, 7-5

8 Securing Oracle Coherence REST

Overview of Securing Oracle Coherence REST..........cccooooiiiiiiiiiiic e 8-1
Using HTTP Basic Authentication with Oracle Coherence RESTcccooooiiiiiiiiicii, 8-1
Specify @ Lo MOAUIE........coiiiiiiiiiiiiicccccrcccec e 8-2
Using SSL Authentication With Oracle Coherence RESTcccooiiiiiiiniiiiccccccecee, 8-2
Configure an HTTP Acceptor SSL Socket Provider ..., 8-3
Access Secured REST SeIvViCes.........coirieiiiiiiiieiiccice it 8-4
Using SSL and HTTP Basic Authentication with Oracle Coherence RESTcccooeviiinnnnnn. 8-7
Implementing Authorization For Oracle Coherence RESTccccocouiirvniinnnncicrreeeeenes 8-7

Vi

Audience

Preface

Securing Oracle Coherence explains key security concepts and provides instructions for
implementing various levels of security for Oracle Coherence clusters, Oracle
Coherence REST, and Oracle Coherence*Extend clients.

This guide is intended for the following audiences:

* Primary Audience — Application developers and operators who want to secure an
Oracle Coherence cluster and secure Oracle Coherence*Extend client
communication with the cluster

* Secondary Audience — System architects who want to understand the options and
architecture for securing an Oracle Coherence cluster and Oracle
Coherence*Extend clients

The audience must be familiar with Oracle Coherence, Oracle Coherence REST, and
Oracle Coherence*Extend to use this guide effectively. In addition, users must be
familiar with Java and Secure Socket Layer (SSL). The examples in this guide require
the installation and use of the Oracle Coherence product, including Oracle
Coherence*Extend. The use of an integrated development environment (IDE) is not
required, but it is recommended to facilitate working through the examples.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?
ct x=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. com pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Coherence
documentation set:

o Administering HTTP Session Management with Oracle Coherence*Web

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

* Administering Oracle Coherence

* Developing Applications with Oracle Coherence
* Developing Remote Clients for Oracle Coherence
* Installing Oracle Coherence

o Integrating Oracle Coherence

* Managing Oracle Coherence

® Java API Reference for Oracle Coherence

® C++ API Reference for Oracle Coherence

.NET API Reference for Oracle Coherence

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nmonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

What's New Iin This Guide

The following topics introduce the new and changed features of Oracle Coherence and
other significant changes that are described in this guide, and provides pointers to
additional information.

New and Changed Features for 12c (12.2.1)

Oracle Coherence 12¢ (12.2.1) includes the following new and changed features for this
document.

Programmatic local permissions, which provides a way to set permissions for local
(non-clustered) Coherence API operations. See “Programmatically Specifying Local
Permissions.”

Security audit logs, which report cluster operations being performed by specific
users. See “Enable Security Audit Logs.”

Access control authorization, which allows applications to define their own
authorization logic to limit access to cluster operations. See Authorizing Access to
Server-Side Operations .

SSL protocol and cipher suites configuration, which controls which SSL protocols
and cipher suites can be used. See “Controlling Cipher Suite and Protocol Version
Usage.”

Other Significant Changes in This Document for 12¢ (12.2.1)

For 12¢ (12.2.1), no other significant changes have been made to this guide.

1

Introduction to Oracle Coherence Security

This chapter provides an introduction to Oracle Coherence security features. Oracle
Coherence security features provide varying levels of security and are generally
implemented as required. The security features include industry standards, such as
Secure Sockets Layer (SSL), and features specific to Oracle Coherence.

Note:

This guide does not provide detailed instructions for setting up a cluster or
creating Oracle Coherence*Extend clients. See Developing Applications with
Oracle Coherence and Developing Remote Clients for Oracle Coherence,
respectively, for details on setting up a cluster and creating Oracle
Coherence*Extend clients.

This chapter includes the following sections:
* Conceptual Overview of Oracle Coherence Security
® Coherence Security Quick Start

* Overview of Security Configuration

Conceptual Overview of Oracle Coherence Security

This section lists and describes the security features available for Oracle Coherence
and Oracle Coherence*Extend. Evaluate the security features and determine which
features to use based on your security requirements, concerns, and tolerances. The
organization in this section (and throughout the book) presents basic security
measures before more advanced security measures.

Java Policy Security

A Java security policy file is provided that contains the minimum set of security
permissions necessary to run Oracle Coherence. Edit the file to change the permissions
based on an application's requirement. The security policy protects against malicious
use and alterations of the Oracle Coherence library and configuration files. See “Using
the Java Security Manager” for details.

Host-Based Authorization

Host-based authorization explicitly specifies which hosts become members of a cluster
and which extend clients connect to a cluster. This type of access control is ideal in
environments where host names (or IP addresses) are known in advance. Host-based
authorization protects against unauthorized hosts joining or accessing a cluster. See
“Using Host-Based Authorization” for details.

Introduction to Oracle Coherence Security 1-1

Coherence Security Quick Start

Client Suspect Protocol

The client suspect protocol automatically determines if an extend client is acting
malicious and blocks the client from connecting to a cluster. The suspect protocol
protects against denial of service attacks. See “Managing Rogue Clients” for details.

Client Identity Tokens

Client identity tokens control which extend clients access the cluster. A proxy server
allows a connection only if the client presents a valid token. Identity tokens are
application-specific and typically reuse existing client authentication implementations.
Identity tokens protect against unwanted or malicious clients accessing the cluster. See
“Using Identity Tokens to Restrict Client Connections” for details.

Client Authorization

Client authorization controls which actions a particular client can perform based on its
access control rights. A proxy server performs the authorization check before an
extend client accesses a resource (cache, cache service, or invocation service). Client
authorization is application-specific and protects against unauthorized use of cluster
resources. See “Implementing Extend Client Authorization” for details.

Access Controller Security Framework

The access controller manages access to clustered resources, such as clustered services
and caches, and controls which operations a user can perform on those resources.
Cluster members use login modules to provide proof of identity; while, encrypting
and decrypting communication acts as proof of trustworthiness. The framework
requires the use of a keystore and defines permissions within a permissions file. The
access controller prevents malicious cluster members from accessing and creating
clustered resources. See Using an Access Controller , for details.

SSL

SSL secures the Tangosol Cluster Management Protocol (TCMP) communication
between cluster nodes. SSL also secures the TCP communication between Oracle
Coherence*Extend clients and proxies. SSL uses digital signatures to establish identity
and trust, and key-based encryption to ensure that data is secure. SSL is an industry
standard that protects against unauthorized access and data tampering by malicious
clients and cluster members. See Using SSL to Secure Communication , for details.

Coherence Security Quick Start

Coherence security features are disabled by default and are enabled as required to
address specific security requirements or concerns. Different levels of security can be
achieved based on the security features that are enabled. The following list provides a
quick start to security and results in a Coherence environment that includes file
permissions, SSL, and authorization.

¢ Configure file system permissions and Java policy permissions to protect against
reads and writes of Coherence files. See “Using the Java Security Manager” for
details.

¢ Configure and enable SSL to secure communication between cluster members and
protect against unauthorized members joining the cluster. See “Using SSL to Secure
TCMP Communication”.

¢ When using Coherence*Extend or Coherence REST, configure and enable SSL to
secure communication between external clients and Coherence proxy servers. SSL
protects against unauthorized clients from using cluster services. See “Using SSL to

1-2 Securing Oracle Coherence

Overview of Security Configuration

Secure Extend Client Communication” and “Using SSL Authentication With Oracle
Coherence REST”, respectively, for details.

¢ Implement authorization policies to restrict client access to specific Coherence
operations based on user roles. See “Implementing Extend Client Authorization”.

Overview of Security Configuration

Security configuration occurs in both an operational override file and the cache
configuration file. See Developing Applications with Oracle Coherence for detailed
information about configuration.

® Operational Override File — The t angosol - coher ence-overri de. xni file
overrides the operational deployment descriptor, which specifies the operational
and runtime settings that maintain clustering, communication, and data
management services. This file includes security settings for cluster members.

¢ Cache Configuration File - The coher ence- cache-confi g. xnl fileis the
default cache configuration file. It specifies the various types of caches within a
cluster. This configuration file includes security settings for Oracle
Coherence*Extend. Both the extend client side and the cluster side require a cache
configuration file. See Developing Remote Clients for Oracle Coherence for details on
setting up Oracle Coherence*Extend.

Introduction to Oracle Coherence Security 1-3

Overview of Security Configuration

1-4 Securing Oracle Coherence

2

Enabling General Security Measures

This chapter provides instructions for enabling general security measures. The
measures help to protect against unauthorized use of the Oracle Coherence API and
system resources. They also protect against unauthorized connections to a cluster.

This chapter includes the following sections:
e Using the Java Security Manager
* Using Host-Based Authorization

* Managing Rogue Clients

Using the Java Security Manager

Java provides a security manager that controls access to system resources using
explicit permissions. The COHERENCE_HOME/ | i b/ security/security. policy
policy configuration file specifies a minimum set of permissions for Oracle Coherence.
Use the file as provided, or modify the file to set additional permissions. Coherence
also includes a set of local (non-clustered) permissions.

The section includes the following topics:
* Enable the Java Security Manager
® Specify Permissions

® Programmatically Specifying Local Permissions

Enable the Java Security Manager

To enable the Java security manager and use the COHERENCE_HOVE/ | i b/ security/
security. poli cy file, set the following properties on a cluster member:

1. Setthej ava. security. manager property to enable the Java security manager.
For example:

- Dj ava. security. manager

2. Setthej ava. security. poli cy property to the location of the policy file. For
example:

-Dj ava. securi ty. manager
-Dj ava. security. policy=/coherence/lib/securityl/security.policy

3. Set the coher ence. home system property to COHERENCE_HOVE. For example:

-Dj ava. security. manager

-Dj ava. security. policy=/coherence/lib/security/security.policy
- Dcoher ence. hone=/ coher ence

Enabling General Security Measures 2-1

Using the Java Security Manager

Note:

The security policy file assumes that the default Java Runtime Environment
(JRE) security permissions have been granted. Therefore, you must be careful
to use a single equal sign (=) and not two equal signs (==) when setting the
java.security. policy system property.

Specify Permissions

Modify the COHERENCE_HOME/ | i b/ security/ security. poli cy file to include
additional permissions as required. See the Java SE Security Guide for details about the
file format and syntax:

http://downl oad. oracl e. contf j avase/ 7/ docs/ t echnot es/ gui des/
security/ perm ssions. htm

To specify additional permissions in the securi ty. pol i cy file:
1. Editthe security. policy file and add a permission for a resource. For example,

the following permission grants access to the coher ence. j ar library:

grant codeBase "file: ${coherence. hone}/lib/coherence.jar"

{
b

2. When you declare binaries, sign the binaries using the JDK j ar si gner tool. The
following example signs the coher ence. j ar resource declared in the previous
step:

permission java.security.All Pernission;

jarsigner -keystore ./keystore.jks -storepass password coherence.jar adnin

Add the signer in the permission declaration. For example, modify the original
permission as follows to add the admi n signer.

grant SignedBy "adm n" codeBase "file: ${coherence. home}/lib/coherence.jar"

permission java.security.All Pernission;

b

3. Use operating system mechanisms to protect all relevant files from malicious
modifications.

Programmatically Specifying Local Permissions

The com t angosol . net . security. Local Perm ssi on class provides a way to
set permissions for local (non-clustered) Coherence API operations. Clients are either
allowed or not allowed to perform the declared operations (referred to as targets). For
example:

Local Permission | p = new Local Perni ssion("d uster. shutdown");

To use local permissions, the Java security manager must be enabled. For details, see
“Enable the Java Security Manager.”

Table 2-1 lists and describes the target names that can be declared.

Table 2-1 Local Permission Targets
- - - - - |

2-2 Securing Oracle Coherence

http://download.oracle.com/javase/7/docs/technotes/guides/security/permissions.html
http://download.oracle.com/javase/7/docs/technotes/guides/security/permissions.html

Using Host-Based Authorization

Table 2-1 (Cont.) Local Permission Targets
__]

Target Name Description

CacheFact ory. set CacheFact oryBui Protects the programmatic installation of a

| der custom cache factory builder. Special
consideration should be given when granting
this permission. Granting this permission allows
code to set a cache factory builder and intercept
any access or mutation requests to any caches
and also allows access to any data that flows
into and from those caches.

C ust er. shut down Protects all services from being shutdown.
Granting this permission allows code to
programmatically shutdown the cluster node.

Backi ngMapManager Cont ext . get Bac Protects direct access to backing maps. Special

ki ngVap consideration should be given when granting
this permission. Granting this permission allows
code to get a reference to the backing map and
access any stored data without any additional
security checks.

Backi ngMapManager Cont ext . set Cl a Protect changes to class loaders used for storage.

ssLoader The class loader is used by the cache service to
load application classes that might not exist in
the system class loader. Granting this
permission allows code to change which class
loader is used for a particular service.

Servi ce. get | nternal Servi ce Protects access to an internal service, cluster or
cache reference. Granting this permission allows
code to obtain direct access to the underlying
service, cluster or cache storage implementation.

Servi ce. regi st er Resource Protects service registries. Granting this
permission allows code to re-register or
unregister various resources associated with the
service.

Service.regi sterEventIntercepto Protects the programmatic installation of

r interceptors. Special consideration should be
given when granting this permission. Granting
this permission allows code to change or remove
event interceptors associated with the cache
service thus either getting access to underlying
data or removing live events that are designed
to protect the data integrity.

Using Host-Based Authorization

Host-based authorization is a type of access control that allows only specified hosts
(based on host name or IP address) to connect to a cluster. The feature is available for
both cluster member connections and extend client connections.

This section includes the following topics:

e QOverview of Host-Based Authorization

Enabling General Security Measures 2-3

Using Host-Based Authorization

® Specify Cluster Member Authorized Hosts
e Specify Extend Client Authorized Hosts

e Use a Filter Class to Determine Authorization

Overview of Host-Based Authorization

Host-based authorization uses the host name and IP address of a cluster member or
extend client to determine whether a connection to the cluster is allowed. Specific host
names, addresses, and address ranges can be defined. For custom processing, a
custom filter can be created to validate hosts.

Host-based authorization is ideal for environments where known hosts with relatively
static network addresses are joining or accessing the cluster. In dynamic
environments, or when updating a DNS server, IP addresses can change and cause a
cluster member or extend client to fail authorization. Cache operations may not
complete if cluster members or extend clients are no longer authorized. Extend clients
are more likely to have access problems because of their transient nature.

When using host-based authorization, consider the dynamic nature of the network
environment. The need to reconfigure the list of authorized hosts may become
impractical. If possible, always use a range of IP addresses instead of using a specific
host name. Or, create a custom filter that is capable of resolving address that have
changed. If host-based authorization becomes impractical, consider using extend client
identity tokens (see “Using Identity Tokens to Restrict Client Connections”) or SSL
(Using SSL to Secure Communication).

Specify Cluster Member Authorized Hosts

The default behavior of a cluster allows any host to connect to the cluster and become
a cluster member. Host-based authorization changes this behavior to allow only hosts
with specific host names or IP addresses to connect to the cluster.

Configure authorized hosts in an operational override file using the <aut hori zed-
host s> element within the <cl ust er - conf i g> element. Enter specific addresses
using the <host - addr ess> element or a range of addresses using the <host -

r ange> element. The <host - addr ess> and <host - r ange> elements support ani d
attribute for uniquely identifying multiple elements.

The following example configures a cluster to accept only cluster members whose IP
address is either 192.168.0.5, 192.168.0.6, or within the range of 192.168.0.10 to
192.168.0.20 and 192.168.0.30 to 192.168.0.40.

<?xm version="1.0"?>

<coherence xm ns: xsi="http://wwmv. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi : schemalocation="http://xm ns. oracl e. conl coher ence/
coherence- operational - confi g coherence-operational -config. xsd">
<cl uster-config>
<aut hori zed- host s>
<host - address id="1">192. 168. 0. 5</ host - addr ess>
<host - addr ess id="2">192. 168. 0. 6</ host - addr ess>
<host-range id="1">
<from address>192. 168. 0. 10</ f r om addr ess>
<t 0- addr ess>192. 168. 0. 20</ t 0- addr ess>
</ host -range>
<host-range id="2">
<from address>192. 168. 0. 30</ f rom addr ess>

2-4 Securing Oracle Coherence

Using Host-Based Authorization

<t 0- addr ess>192. 168. 0. 40</ t 0- addr ess>
</ host -range>
<[aut hori zed- host s>
</cluster-config>
</ coherence>

Specify Extend Client Authorized Hosts

The default behavior of an extend proxy server allows any extend client to connect to
the cluster. Host-based authorization changes this behavior to allow only hosts with
specific host names or IP addresses to connect to the cluster.

Configure authorized hosts in a cache configuration file using the <aut hori zed-
host s> element within the <t cp- accept or > element of a proxy scheme definition.
Enter specific addresses using the <host - addr ess> element or a range of addresses
using the <host - r ange> element. The <host - addr ess> and <host - r ange>
elements support an i d attribute for uniquely identifying multiple elements.

The following example configures an extend proxy to accept only client connections
from clients whose IP address is either 192.168.0.5, 192.168.0.6, or within the range of
192.168.0.10 to 192.168.0.20 and 192.168.0.30 to 192.168.0.40.

<pr oxy- scheme>
<servi ce- name>Ext endTcpPr oxySer vi ce</ servi ce- nane>
<t hr ead- count >5</ t hr ead- count >
<acceptor-config>
<t cp-acceptor>

<aut hori zed- host s>
<host - address id="1">192. 168. 0. 5</ host - addr ess>
<host - address i d="2">192. 168. 0. 6</ host - addr ess>
<host-range id="1">
<from address>192. 168. 0. 10</ f rom addr ess>
<t 0- address>192. 168. 0. 20</ t 0- addr ess>
</ host - range>
<host-range id="2">
<from address>192. 168. 0. 30</ f rom addr ess>
<t 0- address>192. 168. 0. 40</ t 0- addr ess>
</ host - range>
</ aut hori zed- host s>

</tcp-acceptor>
</ acceptor-confi g>
<autostart>true</autostart>
</ proxy- scheme>

Use a Filter Class to Determine Authorization

A filter class determines whether to accept a particular host connection. Both extend
client connections and cluster member connections support using filter classes. A filter
class must implement the com t angosol . util. Filter interface. The

eval uat e() method of the interface is passed the j ava. net . | net Addr ess of the
host. Implementations should return t r ue to accept the connection.

To enable a filter class, enter a fully qualified class name using the <cl ass- nane>
element within the <host - fi | t er > element. Set initialization parameters using the
<i ni t - par ans> element. See the Java API Reference for Oracle Coherence for details on
the Fi | t er interface.

The following example configures a filter named MyFi | t er , which determines if a
host connection is allowed.

Enabling General Security Measures 2-5

Managing Rogue Clients

<aut hori zed- host s>
<host - address id="1">192. 168. 0. 5</ host - addr ess>
<host - address id="2">192. 168. 0. 6</ host - addr ess>
<host-range id="1">
<fromaddress>192. 168. 0. 10</ f r om addr ess>
<t 0- addr ess>192. 168. 0. 20</t 0- addr ess>
</ host -range>
<host-filter>
<cl ass- nane>package. M/Fi | t er </ cl ass- name>
<init-parans>
<init-paranp
<par am name>sPol i cy</ par am name>
<param val ue>strict </ param val ue>
</init-paranm
</init-params>
</host-filter>
</ aut hori zed- host s>

Managing Rogue Clients

Rogue clients are extend clients that operate outside of acceptable limits. Rogue clients
are slow-to-respond clients or abusive clients that attempt to overuse a proxy— as is
the case with denial of service attacks. In both cases, the potential exists for a proxy to
run out of memory and become unresponsive. The suspect protocol safeguards against
such abuses.

The suspect algorithm monitors client connections looking for abnormally slow or
abusive clients. When a rogue client connection is detected, the algorithm closes the
connection to protect the proxy server from running out of memory. The protocol
works by monitoring both the size (in bytes) and length (in messages) of the outgoing
connection buffer backlog for a client. Different levels determine when a client is
suspect, when it returns to normal, or when it is considered rogue.

Configure the suspect protocol within the <t cp- accept or > element of a proxy
scheme definition. See Developing Applications with Oracle Coherence for details on using
the <t cp- accept or > element. The suspect protocol is enabled by default.

The following example demonstrates configuring the suspect protocol and is similar to
the default settings. When the outgoing connection buffer backlog for a client reaches
10 MB or 10000 messages, the client is considered suspect and is monitored. If the
connection buffer backlog for a client returns to 2 MB or 2000 messages, then the client
is considered safe and the client is no longer monitored. If the connection buffer
backlog for a client reaches 95 MB or 60000 messages, then the client is considered
unsafe and the proxy closes the connection.

<pr oxy- schene>
<servi ce- nanme>Ext endTcpPr oxySer vi ce</ servi ce- name>
<t hr ead- count >5</ t hr ead- count >
<acceptor-config>
<t cp- accept or >

<suspect - prot ocol - enabl ed>t r ue</ suspect - prot ocol - enabl ed>
<suspect - buf f er - si ze>10Mk/ suspect - buf f er - si ze>
<suspect - buf f er -1 engt h>10000</ suspect - buf f er - | engt h>
<nomi nal - buf f er - si ze>2M</ nomi nal - buf f er - si ze>
<noni nal - buf f er - | engt h>2000</ nomi nal - buf f er - | engt h>
<limt-buffer-size>95M/linit-buffer-size>
<linmt-buffer-length>60000</1init-buffer-Iength>
</tcp-acceptor>
</ acceptor-config>

2-6 Securing Oracle Coherence

Managing Rogue Clients

<autostart>true</autostart>
</ proxy- scheme>

Enabling General Security Measures 2-7

Managing Rogue Clients

2-8 Securing Oracle Coherence

3

Using an Access Controller

This chapter provides instructions for enabling an access controller to help protect
against unauthorized use of cluster resources. The default access controller
implementation is based on the key management infrastructure that is part of the
HotSpot JDK. This implementation uses Java Authentication and Authorization
Service (JAAS) for authentication.

Note:

This chapter does not discuss SSL. See Using SSL to Secure Communication ,
for detailed SSL instructions.

This chapter includes the following sections:
* Overview of Using an Access Controller
¢ Using the Default Access Controller Implementation

¢ Using a Custom Access Controller Implementation

Overview of Using an Access Controller

An access controller secures access to cluster resources and operations. A local login
module is used to authenticate a caller, and an access controller on one or more cluster
nodes, verifies a caller's access rights. See the JAAS Reference Guide for details on login
modules.

An access controller:

¢ Grants or denies access to a protected clustered resource based on the caller's
permissions

* Encrypts outgoing communications based on the caller's private credentials

* Decrypts incoming communications based on the caller's public credentials

A default access controller implementation is provided. The implementation is based
on the key management infrastructure that ships as a standard part of the HotSpot
JDK. See “Using the Default Access Controller Implementation”.

Figure 3-1 shows a conceptual view of securing two cluster members using access
controllers.

Using an Access Controller 3-1

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#LoginModule

Overview of Using an Access Controller

Figure 3-1 Conceptual View of Access Controller Security

Junior Cluster Member Senior Cluster Member
Clustered Service -— = Clustered Service
I Encrypt/ I
Decrypt

Access Controller Access Controller
Login :

Module JKS JKS

Permissions

Understanding the Security Context

Each clustered service maintains the concept of a senior service member that serves as
a controlling agent for a particular service. The senior member does not consult with
other members when accessing a clustered resource. However, juniors member that
want to join a service must request and receive a confirmation from the senior
member. The senior member notifies all other cluster members about the joining
member.

The security subsystem is designed to operate in a partially hostile environment
because data is distributed among cluster members. Every member is considered to be
a malicious member. That is, members are assumed to lack sufficient credentials to
join a clustered service or obtain access to a clustered resource.

File system mechanisms and standard Java security policies guarantee the
trustworthiness of a single node. However, there are two scenarios to consider with
member communication:

* A malicious node surpasses the local access check and attempts to join a clustered
service or gain access to a clustered resource that a trusted node controls.

e A malicious node creates a clustered service or clustered resource and becomes its
controller.

The security subsystem uses a two-way encryption algorithm to prevent either of
these two scenarios from occurring. All client requests must establish proof of identity,
and all service responses must establish proof of trustworthiness.

Proof of Identity

The following client code sample authenticates a caller and performs necessary
actions:

i mport com tangosol . net.security. Security;
i mport java.security.PrivilegedAction;
i mport javax.security.auth. Subject;

Subj ect subject = Security.login(sNane, acPassword);
PrivilegedAction action = new PrivilegedAction()

public Cbject run()
{

/1 all processing here is taking place with access
Il rights assigned to the corresponding Subject

3-2 Securing Oracle Coherence

Using the Default Access Controller Implementation

Il for exanple:
CacheFact ory. get Cache() . put (key, val ue);

j'
b

Security. runAs(subject, action);

The caller is authenticated using JAAS on the caller's node during the | ogi n call. If
the authentication is successful, the local access controller:

¢ Determines whether the local caller has sufficient rights to access the protected
clustered resource (local access check)

¢ Encrypts the outgoing communications regarding the access to the resource with
the caller's private credentials retrieved during the authentication phase

¢ Decrypts the result of the remote check using the requester's public credentials

* Verifies whether the responder has sufficient rights to be granted access

The encryption step provides proof of identity for the responder and blocks a
malicious node that pretends to pass the local access check phase.

There are two additional ways to provide the client authentication information. First,
pass a reference to a Cal | backHandl er class instead of the user name and password.
Second, use a previously authenticated Subj ect . The latter approach is ideal when a
Java EE application uses Oracle Coherence and retrieves an authenticated Subj ect
from the application container.

If a caller's request does not include any authentication context, a Cal | backHandl| er
implementation is instantiated and called. The implementation is declared in an
operational override file and retrieves the appropriate credentials. However, this lazy
approach is much less efficient, because without an externally defined call scope every
access to a protected clustered resource forces repetitive authentication calls.

Proof of Trustworthiness

Cluster members use explicit API calls to create clustered resources. The senior service
member retains the private credentials that are presented during a call as a proof of
trustworthiness. When the senior service member receives an access request to a
protected clustered resource, the local access controller:

¢ Decrypts the incoming communication using the remote caller's public credentials
* Encrypts the access check response using the private credentials of the service.

® Determines whether the remote caller has sufficient rights to access the protected
clustered resource (remote access check).

Using the Default Access Controller Implementation

A default access controller implementation is provided that uses a standard Java
keystore. The implementation class is the

com t angosol . net. security. Def aul t Control | er class. It is configured
within the <securi t y- conf i g> element in the operational deployment descriptor.
See Developing Applications with Oracle Coherence for details on the <securi ty-

conf i g> element and its subelements. To use the default access controller, complete
the topics in this section.

This section includes the following topics:

Using an Access Controller 3-3

Using the Default Access Controller Implementation

e Enable the Access Controller

* Create a Keystore

® Include the Login Module

¢ C(reate a Permissions File

¢ Create an Authentication Callback Handler

* Enable Security Audit Logs

Enable the Access Controller

To enable the default access controller implementation within the <securi ty-
confi g> element, add an <enabl ed> element that is set to t r ue. For example:

<security-config>
<enabl ed system property="coherence. security">true</enabl ed>
</ security-config>

The coher ence. securi ty system property also enables the access controller. For
example:

- Dcoherence. security=true

Note:

When access controller security is enabled, every call to the

CacheFact ory. get Cache() or

Confi gur abl eCacheFact ory. ensur eCache() API causes a security
check. This negatively affects an application's performance if these calls are
made frequently. The best practice is for the application to hold on to the
cache reference and reuse it so that the security check is performed only on the
initial call. With this approach, ensure that your application only uses the
references in an authorized way.

Create a Keystore

An access controller requires a keystore that is used by both the controller and login
module. Create a keystore with necessary principals using the Java keyt ool utility.
Ensure that the keystore is found on the classpath at runtime, or use the

coherence. security. keyst or e system property to explicitly enter the name and
location of the keystore. For example:

-Dcoherence. security. keyst ore=keystore.j ks

The following example creates three principals: admi n (to be used by the Java Security
framework), manager , and wor ker (to be used by Oracle Coherence).

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admn
-keypass password -dname CN=Adnmi ni strator, O=MyConpany, L=M/Ci ty, ST=M/St at e

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias nanager
-keypass password -dnane CN=Manager, OQU=MyUni t

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias worker
-keypass password -dnanme CN=Wor ker, QU=MyUni t

3-4 Securing Oracle Coherence

Using the Default Access Controller Implementation

Include the Login Module

Oracle Coherence includes the COHERENCE_HOVE/ | i b/ securi ty/ coher ence-

[ogi n. j ar Java keystore (JKS) login module, which depends only on standard Java
run-time classes. Place the library in the JRE | i b/ ext (standard extension) directory.
The name in the <I| ogi n- nodul e- nane> element, within the <securi ty-confi g>
element, serves as the application name in the COHERENCE_HOME/ | i b/ securi ty/

| ogi n. confi g login module file. The login module declaration contains the path to
the keystore. Change the key St or ePat h variable to the location of the keystore.

/1 Logi nModul e Configuration for Oracle Coherence
Coherence {
com tangosol . security. KeystoreLogin required
keySt orePat h="${user.dir}${/}security${/}keystore.jks";
b

Create a Permissions File

An access controller requires a per mi ssi ons. xni file that declares access rights for
principals. See the COHERENCE_HOVE/ | i b/ securi ty/ per mi ssi ons. xsd schema
for the syntax of the permissions file. Ensure that the file is found on the classpath at
runtime, or use the coher ence. security. per m ssi ons system property to
explicitly enter the name and location of the permissions file. For example:

- Dcoherence. securi ty. permni ssi ons=perni ssi ons. xm

The following example assigns all rights to the Manager principal, only j 0i n rights to
the Wor ker principal for caches that have names prefixed by conmon, and all rights to
the Wor ker principal for the invocation service named i nvocat i on.

<?xm version='1.0""?>
<per m ssi ons>
<grant >
<pri nci pal >
<cl ass>j avax. security. aut h. x500. X500Pr i nci pal </ cl ass>
<nanme>CN=Manager , OU=MyUni t </ nane>
</ princi pal >
<per m ssi on>
<target>*</target>
<action>al | </action>
</ perni ssi on>
</grant>
<grant >
<pri nci pal >
<cl ass>j avax. security. aut h. x500. X500Pr i nci pal </ cl ass>
<nane>CN=Wr ker , OU=MyUni t </ nane>
</ princi pal >
<per m ssi on>
<t ar get >cache=conmmn*</t ar get >
<action>joi n</action>
</ perni ssi on>
<perm ssi on>
<t ar get >servi ce=i nvocati on</tar get >
<action>al | </action>
</ perni ssi on>
</grant>
</ perni ssi ons>

Using an Access Controller 3-5

Using the Default Access Controller Implementation

Create an Authentication Callback Handler

An access controller uses an authentication callback handler to authenticate a client
when all other authentication methods have been unsuccessful. To create a callback
handler, implement the j avax. securi ty. aut h. cal | back. Cal | backHandl er
interface.

Note:

the handler approach is much less efficient since without an externally defined
call scope every access to a protected clustered resource forces repetitive
authentication calls.

To configure a custom callback handler within the <securi t y- conf i g> element,
add a <cal | back- handl er > element that includes the fully qualified name of the
implementation class. The following example configures a callback handler named
MyCal | backHandl er.

<security-config>
<cal | back- handl er >
<cl ass- name>package. MyCal | backHandl er </ cl ass- nane>
</ cal | back- handl er >
</security-config>

Enable Security Audit Logs

Security audit logs are used to track the cluster operations that are being performed by
each user. Each operation results in a log message being emitted. For example:

"Destroy" action for cache "Accounts" has been permitted for the user "CN=Bob,
QOU=Accounting".

Security audit logs are not enabled by default. To enable audit logs within the
<securi ty-confi g>element, override the security log initialization parameter
within the <access- control | er > element and set the parameter value to t r ue. For
example,

<security-config>
<access-control | er>
<init-parans>
<init-paramid="3">
<par am t ype>bool ean</ par am t ype>
<param val ue system property="coherence. security.log">
true</ param val ue>
<linit-paranm
</init-parans>
</ access-control | er>
</security-config>

The coher ence. security. | og system property also enables security audit logs.
For example:

- Dcoherence. security. | og=true

3-6 Securing Oracle Coherence

Using a Custom Access Controller Implementation

Using a Custom Access Controller Implementation

Custom access controllers must implement the

com t angosol . net. security. AccessControl | er interface. See the Java API
Reference for Oracle Coherence for details on using this API. To configure a custom
access controller within the <securi t y- conf i g> element, add an <access-
control | er > element that includes the fully qualified name of the implementation
class. The following example configures a custom access controller called
MyAccessControl | er.

<security-config>
<enabl ed system property="coherence. security">true</enabl ed>
<access-control | er>
<cl ass- name>package. MyAccessControl | er</ cl ass- nane>
</ access-control | er>
</security-config>

Specify any required initialization parameters by using the <i ni t - par ans> element.
The following example includes parameters to pass the MyAccessCont rol | er class
a keystore and a permissions file.

<security-config>
<enabl ed system property="coherence. security">true</enabl ed>
<access-control | er>
<cl ass- name>package. MyAccessControl | er</ cl ass- nane>
<init-paranms>
<init-paranp
<paramtype>j ava.io. Fil e</ paramtype>
<par am val ue>. [keyst ore. j ks</ param val ue>
</init-paran>
<init-paranp
<paramtype>j ava.io. Fil e</ paramtype>
<par am val ue>. / per ni ssi ons. xn </ param val ue>
</init-paran>
</init-params>
</ access-control | er>
</security-config>

Using an Access Controller 3-7

Using a Custom Access Controller Implementation

3-8 Securing Oracle Coherence

A

Authorizing Access to Server-Side
Operations

This chapter provides instructions for securing access to Coherence operations using
authorization.

This chapter includes the following sections:

* Overview of Access Control Authorization

* Creating Access Control Authorization Implementations
¢ Declaring Access Control Authorization Implementations

* Enabling Access Control Authorization on a Partitioned Cache

Overview of Access Control Authorization

Access control authorization allows applications to define their own authorization
logic to limit access to cluster operations. Authorization is based on identities that are
represented as a Pri nci pal within a Subj ect . Applications are responsible for
ensuring that the Subj ect is present for caller threads. If the Subj ect is missing or
cannot be retrieved, then the operation fails with a Securi t yExcept i on error.

Applications implement the St or ageAccessAut hor i zer interface to provide
authorization logic. The implementations are declared in the operational override
configuration file and must also be enabled on a partitioned cache by configuring the
backing map of a distributed scheme in a cache configuration file. Access control
authorization is only available for partitioned caches.

The St or ageAccessAut hori zer interface provides methods that are used to
perform read, write, read any, and write any authorization checks. Coherence assumes
that there is a logical consistency between authorization decisions made by

St or ageAccessAut hori zer implementations. That is, for a given Subj ect , the
write authorization implies the read authorization for a given entry; the read any
authorization implies read authorization for all entries; and, the write any
authorization implies write and read authorization for all entries.

Table 4-1 lists which authorization checks are caused by NanmedCache API and
Bi nar yEnt ry API methods.

Table 4-1 Authorization Checks for Common Methods

Authorizing Access to Server-Side Operations 4-1

Creating Access Control Authorization Implementations

Table 4-1 (Cont.) Authorization Checks for Common Methods

. ___|
Authorizati NamedCache APl Methods BinaryEntry API Methods

on Check

None e contai nsKey
e contai nsVal ue
e isEnpty
e sjze
e |ock
e unl ock

Read e get e getVal ue
e getAll e getBinaryVal ue
e extract
e getOriginal Val ue
e getOriginal Bi naryVal ue

Write e invoke e setVal ue
e put e update
e putAll e updtaeBi naryVal ue
e renove e renove
e renoveAll e expire

Read Any e« addMaplListener!
* aggregate
e entrySet
e KkeySet
e renoveMaplLi stener?!

Write Any e addl ndex
e clear
e invokeAll
e renovel ndex
e val ues

1 Ifalistenerisa MapTri gger Li st ener, then a Write Any authorization check is performed instead.

Creating Access Control Authorization Implementations

To create access control authorization implementations, create a class that implements
the com t angosol . net. security. St orageAccessAut hori zer interface. The
implementation should define which callers (based on the Subj ect) are authorized to
access entries and backing map contexts (Bi nar yEnt ry and

Backi ngMapManager Cont ext , respectively).

Note:

The Bi nar yEnt ry and Backi ngMapManager Cont ext API provide the
ability to retrieve the cache name, the service name, and full access to the
service and cluster registries.

Example 4-1 Provides a sample St or ageAccessAut hori zer implementation that
emits a log message for each authorization request. It is based on the

4-2 Securing Oracle Coherence

Creating Access Control Authorization Implementations

Audi ti ngAut hori zer class that is provided with Coherence and used by the default
access controller implementation.

Example 4-1 Sample StorageAccessAuthorizer Implementation

package com exanpl es. security;

i mport com tangosol . net. Backi ngMapCont ext ;

i nport com tangosol . net. CacheFact ory;

i nport com tangosol . net.security. StorageAccessAut hori zer;
i mport com tangosol . util.BinaryEntry;

i mport javax.security.auth. Subject;

public class MyLogAut horizer inplements StorageAccessAut horizer

{
public MyLogAut hori zer ()

this(false);
}

public MyLogAut hori zer (bool ean fStrict)

{
f_fStrict = fStrict;

}

@verride
public void checkRead(BinaryEntry entry, Subject subject, int nReason)

{

| ogEnt ryRequest (entry, subject, fal se, nReason);

if (subject == null && f_fStrict)

{
throw new SecurityException("subject is not provided");
}
}
@verride
public void checkWite(BinaryEntry entry, Subject subject, int nReason)
{

| ogEnt ryRequest (entry, subject, true, nReason);

if (subject == null && f_fStrict)

{
t hrow new SecurityException("subject is not provided");
}
}
@verride
public void checkReadAny(Backi ngMapCont ext context, Subject subject,
i nt nReason)
{

| ogMapRequest (cont ext, subject, fal se, nReason);

if (subject == null && f_fStrict)

{
throw new SecurityException("subject is not provided");
}
}
@verride

public void checkWiteAny(Backi ngMapCont ext context, Subject subject,

Authorizing Access to Server-Side Operations 4-3

Declaring Access Control Authorization Implementations

i nt nReason)

{

| ogMapRequest (cont ext, subject, true, nReason);

if (subject == null && f_fStrict)
{
t hrow new SecurityException("subject is not provided");
}

}

protected void | ogEntryRequest (BinaryEntry entry, Subject subject,
bool ean fWite, int nReason)
{
CacheFactory.log('"" + (fWite ? "Wite" : "Read")
+ "\" request for key=\""
+ entry. get Key()
+ (subject == null ?
"\" fromunidentified user" :
"\" on behalf of " + subject.getPrincipals())
+ " caused by \"" + nReason + "\""
, CacheFactory. LOG | NFO);

}

protected void | ogMapRequest (Backi ngMapCont ext context, Subject subject,
bool ean fWite, int nReason)

{
CacheFactory.log('"" + (fWite ? "Wite-any" : "Read-any")

+ "\" request for cache \""
+ context.get CacheNamg() + '"'
+ (subject == null ?
" fromunidentified user" :
" on behal f of " + subject.getPrincipals())
+ " caused by \"" + nReason + "\""
, CacheFactory. LOG | NFO) ;

}

private final boolean f_fStrict;

}

Declaring Access Control Authorization Implementations

To declare access control authorizer implementations, edit the operational override file
and include a <st or age- aut hori zer s> element, within the <cl ust er - confi g>
element, and declare each authorization implementation using a <st or age-

aut hori zer > element. For details on the <st or age- auhori zer > element, see
Developing Applications with Oracle Coherence. Each declaration must include a unique

i d attribute that is used by a partitioned cache to select an implementation. For
example:

<cl uster-config>
<st orage- aut hori zers>
<st orage-aut horizer id="LogAuthorizer">
<cl ass- name>package. MyLogAut hori zer </ cl ass- name>
</ st orage-aut hori zer>
</ st orage-aut hori zers>
</cl uster-config>

As an alternative, the <st or age- aut hor i zer > element supports the use of a
<cl ass-f act or y- nane> element to use a factory class that is responsible for

4-4 Securing Oracle Coherence

Enabling Access Control Authorization on a Partitioned Cache

creating instances and a <rmet hod- name> element to specify the static factory method
on the factory class that performs object instantiation. For example:

<cl uster-config>
<st orage- aut hori zers>
<st orage-aut horizer id="LogAuthorizer">
<cl ass- fact ory- name>package. MyAut hori zer Fact or y</ cl ass-f act ory- nane>
<net hod- nane>get Aut hori zer </ net hod- nanme>
</ st orage-aut hori zer>
</ st orage-aut hori zers>
</cl uster-config>

Any initialization parameters that are required for an implementation can be specified
using the <i ni t - par ans> element. For example:

<cl uster-config>
<st orage- aut hori zers>
<st orage-aut horizer id="LogAuthorizer">
<cl ass- name>package. MyLogAut hori zer </ cl ass- name>
<init-parans>
<init-paranp
<param name>f _f Stri ct</param name>
<par am val ue>t r ue</ par am val ue>
</init-paranm
</init-params>
</ st orage-aut hori zer>
</ st orage-aut hori zers>
</cluster-config>

Enabling Access Control Authorization on a Partitioned Cache

To enable access control authorization on a partitioned cache, edit the cache
configuration file and add a <st or age- aut hor i zer > element, within the

<backi ng- map- schene> element of a distributed scheme, whose value is the i d
attribute value of an authorization implementation that is declared in the operational
override file. For example:

<di stri but ed- scheme>

<backi ng- map- schenme>
<st orage-aut hori zer >LogAut hori zer </ st or age- aut hori zer >
<l ocal - schene/ >
</ backi ng- map- scheme>
<autostart>true</autostart>
</ distributed-schene>

Authorizing Access to Server-Side Operations 4-5

Enabling Access Control Authorization on a Partitioned Cache

4-6 Securing Oracle Coherence

5

Securing Extend Client Connections

This chapter provides instructions for using identity tokens and interceptor classes to
provide authentication and authorization for Oracle Coherence*Extend clients.
Identity tokens protect against unauthorized access to an extend proxy. Interceptor
classes control which operations are available to an authenticated client.

This chapter includes the following sections:
e Using Identity Tokens to Restrict Client Connections
¢ Associating Identities with Extend Services

¢ Implementing Extend Client Authorization

Using Identity Tokens to Restrict Client Connections

Identity tokens restrict extend clients from accessing a cluster. The token is sent
between extend clients and extend proxies whenever a connection is attempted. Only
extend clients that pass a valid identity token are allowed to access the cluster.

This section includes the following topics:

* Overview of Using Identity Tokens

¢ Creating a Custom Identity Transformer
¢ Enabling a Custom Identity Transformer
¢ Creating a Custom Identity Asserter

¢ Enabling a Custom Identity Asserter

¢ Using Custom Security Types

* Understanding Custom Identity Token Interoperability

Overview of Using Identity Tokens

Identity token security uses an identity transformer implementation to create identity
tokens and an identity asserter implementation to validate identity tokens. These
implementations are described as follows:

¢ Identity transformer — a client-side component that converts a Subj ect, or
Pri nci pal , into an identity token that is passed to an extend proxy. An identity
token can be any type of object that is useful for identity validation; it is not
required to be a well-known security type. In addition, clients can connect to
multiple proxy servers and authenticate to each proxy server differently.

Securing Extend Client Connections 5-1

Using Identity Tokens to Restrict Client Connections

® Identity asserter — A cluster-side component that resides on the cache server that is
hosting an extend proxy service. The asserter validates an identity token that is
created by an identity transformer on the extend client. The asserter validates
identity tokens unique for each proxy service to support multiple means of token
validation. The token is passed when an extend client initiates a connection. If the
validation fails, the connection is refused and a security exception is thrown. The
transformer and asserter are also invoked when a new channel within an existing

connection is created.

Figure 5-1 shows a conceptual view of restricting client access using identity tokens.

Figure 5-1 Conceptual View of Identity Tokens

Extend Client (Java,
C++, CH)

TCP Initiator

Identity Transformer

Authentication

TCP

Cluster Proxy
TGP Acceptor

|dentity Asserter

Validation

An identity transformer (Def aul t | dent i t yTr ansf or mer) and identity asserter
(Def aul t1 dentityAsserter)are provided and enabled by default. The
implementations simply use the Subj ect (Java) or Pri nci pal (NET) as the identity
token. The default behavior is overridden by providing custom identity transformer
and identity asserter implementations and enabling them in the operational override

file.

Note:

¢ At runtime, identity transformer implementation classes must be located
on the extend client's classpath and identity asserter implementation
classes must be located on the extend proxy server's classpath.

* See “Using Custom Security Types” for more information about using
security object types other than the types that are predefined in Portable
Object Format (POF).

Creating a Custom Identity Transformer

A default identity transformer implementation (Def aul t | denti t yTr ansf or mer) is
provided that simply returns a Subj ect or Pri nci pal that is passed to it. If you do
not want to use the default implementation, you can create your own custom
transformer implementation.

5-2 Securing Oracle Coherence

Using Identity Tokens to Restrict Client Connections

Note:

At runtime, identity tokens are automatically serialized for known types and
sent as part of the extend connection request. For .NET and C++ clients, the
type must be a POF type. See “Using Custom Security Types” for more
information about using security object types other than predefined POF

types.

For Java and C++, create a custom identity transformer by implementing the
I denti tyTransf ormer interface. C# clients implement the
I 1 dentityTransforner interface.

Example 5-1 demonstrates a Java implementation that restricts client access by
requiring a client to supply a password to access the proxy. The implementation gets a
password from a system property on the client and returns it as an identity token.

Example 5-1 A Sample Identity Transformer Implementation

inport comtangosol.net.security.ldentityTransforner;
inport javax.security.auth. Subject;
i nport com tangosol . net. Servi ce;

public class Passwordl dentityTransforner
i mpl ements | dentityTransforner
{

public Object transform dentity(Subject subject, Service service)
throws SecurityException
{

return System get Property("nySecretPassword");

}
}

One possible solution for preexisting client authentication implementations is to add a
new Pri nci pal to the Subj ect with the Pri nci pal name as the password. Add
the password Pri nci pal to the Subj ect during JAAS authentication by modifying
an existing JAAS login module or by adding an additional required login module that
adds the password Pri nci pal . The JAAS API allows multiple login modules, each of
which modifies the Subj ect . Similarly, in .NET, add a password identity to the

Pri nci pal . The asserter on the cluster side then validates both the Pri nci pal and
the password Pri nci pal . See “Creating a Custom Identity Asserter”.

Enabling a Custom Identity Transformer

To enable a custom identity transformer implementation, edit the client-side

t angosol - coherence-override. xnl file and add an <i denti ty-

t ransf or mer > element within the <securi t y- conf i g> node. The element must
include the full name of the implementation class. For example:

<?xm version="1.0"?>

<coherence xm ns: xsi="http://wwmv. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi : schemalLocation="http://xm ns. oracl e. conl coher ence/
coherence- operational -confi g coherence-operational -config. xsd">
<security-config>
<identity-transforner>
<cl ass- name>com ny. Passwor dl dent it yTransf or ner </ cl ass- name>
</identity-transformer>

Securing Extend Client Connections 5-3

Using Identity Tokens to Restrict Client Connections

</ security-config>
</ coherence>

Creating a Custom Identity Asserter

A default identity asserter implementation (Def aul t | denti t yAsserter)is
provided that asserts that an identity token is a Subj ect or Pri nci pal . If you do not
want to use the default implementation, you can create your own custom asserter
implementation.

For Java and C++, create an identity asserter by implementing the
| dentityAssert er interface. C# clients implement the | | denti t yAsserter
interface.

Example 5-2 is a Java implementation that checks a security token to ensure that a
valid password is given. In this case, the password is checked against a system
property on the cache server. This asserter implementation is specific to the identity
transformer sample in Example 5-1.

Example 5-2 A Sample Identity Asserter Implementation

i mport com tangosol . net.security.ldentityAsserter;
i mport javax.security.auth. Subject;
i mport com tangosol . net. Servi ce;

public class PasswordldentityAsserter
i npl ements |dentityAsserter
{
public Subject assertldentity(Cbject oToken, Service service)
throws SecurityException

{
if (oToken instanceof String)
{
if (((String) oToken).equal s(System getProperty("nySecretPassword")))
{
return null;
}
}
t hrow new SecurityException("Access denied");
}

}

There are many possible variations when you create an identity asserter. For example,
you can create an asserter that rejects connections based on a list of principals, that
checks role principals, or validates the signed principal name. The asserter blocks any
connection attempts that do not prove the correct identity.

Enabling a Custom Identity Asserter

To enable a custom identity asserter implementation, edit the cluster-side t angosol -
coherence-override. xm fileand add an <i dentity-assert er > element
within the <securi t y- conf i g> node. The element must include the full name of the
implementation class. For example:

<?xn version='1.0"?>

<coherence xn ns:xsi="http://ww. w3. org/ 2001/ XM.Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi: schemalLocation="http://xm ns. oracl e. conl coher ence/
coherence- operational - confi g coherence-operational -config. xsd">

5-4 Securing Oracle Coherence

Using Identity Tokens to Restrict Client Connections

<security-config>
<identity-asserter>
<cl ass-nane>com ny. Passwor dl dentit yAsserter</ cl ass- nane>
</identity-asserter>
</ security-config>
</ coher ence>

Using Custom Security Types

Security objects are automatically serialized and deserialized using Portable Object
Format (POF) when they are passed between extend clients and extend proxies.
Security objects that are predefined in POF require no configuration or programming
changes. However, security objects that are not predefined in POF (for example, when
an application uses Kerberos authentication) cause an error. For custom security types,
an application must convert the custom type or define the type in POF. There are two
approaches for using unsupported types.

Converting the Type

The custom identity transformer implementation converts a custom security object
type to a type that is predefined for POF, such as a character array or string, before
returning it as an object token. On the proxy server, the custom identity asserter
implementation converts the object back (after validation) to a Subj ect .

For example, a subject may contain credentials that are not serialized. The identity
transformer implementation extracts the credential and converts it to a character array,
returning that array as the token. On the proxy server, the identity asserter converts
the character array to the proper credential type, validates it, and then constructs a
Subj ect to return.

Defining the Custom Type in POF

You can define the custom security types in both the client's and the proxy's POF
configuration file. For detailed information about using POF with Java, see Developing
Applications with Oracle Coherence. For more information about using POF with C++
and C#, see "Building Integration Objects (C++)" and "Building Integration Objects
(.NET)", respectively in Developing Remote Clients for Oracle Coherence.

Understanding Custom Identity Token Interoperability

Solutions that use a custom identity token must always consider what tokens may be
sent by an extend client and what tokens may be received by an extend proxy. This is
particularly important during rolling upgrades and when a new custom identity token
solution is implemented.

Oracle Coherence Upgrades

Interoperability issues may occur during the process of upgrading. In this scenario,
different client versions may interoperate with different proxy server versions. Ensure
that a custom identity asserter can handle identity tokens sent by an extend client.
Conversely, ensure that a custom identity transformer sends a token that the extend
proxy can handle.

Custom Identity Token Rollout

Interoperability issues may occur between extend clients and extend proxies during
the roll out a custom identity token solution. In this scenario, as extend proxies are
migrated to use a custom identity asserter, some proxies continue to use the default
asserter until the rollout operation is completed. Likewise, as extend clients are
migrated to use a custom identity transformer, clients continue to use the default

Securing Extend Client Connections 5-5

Associating Identities with Extend Services

transformer until the rollout operation is completed. In both cases, the extend clients
and extend proxies must be able to handle the default token type until the rollout
operation is complete.

One strategy for such a scenario is to have a custom identity asserter that accepts the
default token types temporarily as clients are updated. The identity asserter checks an
external source for a policy that indicates whether those tokens are accepted. After all
clients have been updated to use a custom token, change the policy to accept the
custom tokens.

Associating Identities with Extend Services

Subject scoping allows remote cache and remote invocation service references that are
returned to a client to be associated with the identity from the current security context.
By default, subject scoping is disabled, which means that remote cache and remote
invocation service references are globally shared.

With subject scoping enabled, clients use their platform-specific authentication APIs to
establish a security context. A Subj ect or Pri nci pal is obtained from the current
security context whenever a client creates a NamedCache and | nvocat i onSer vi ce
instance. All requests are then made for the established Subj ect or Pri nci pal .

Note:

See “Using Custom Security Types” for more information about using security
object types other than the types that are predefined in POF.

For example, if a user with a trader identity calls

CacheFactory. get Cache("trade- cache") and a user with the manager identity
calls CacheFact ory. get Cache("trade- cache"), each user gets a different
remote cache reference object. Because an identity is associated with that remote cache
reference, authorization decisions can be made based on the identity of the caller. See
“Implementing Extend Client Authorization” below for details on implementing
authorization.

For Java and C++ clients, enable subject scope in the client-side t angosol -
coher ence-override. xm file using the <subj ect - scope> element within the
<security-confi g>node. For example:

<?xm version='1.0"?>

<coherence xm ns: xsi="http://wwmv. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi : schemalLocation="http://xm ns. oracl e. conf coher ence/
coherence- operational -confi g coherence-operational -config. xsd">
<security-config>
<subj ect - scope>t r ue</ subj ect - scope>
</ security-config>
</ coher ence>

For .NET clients, enable subject scope in the client-side t angosol - coher ence-
override. xni file using the <pri nci pal - scope> element within the
<security-confi g>node. For example:

<?xm version="1.0"?>

<coherence xm ns="http://schemas.tangosol . com cache"

5-6 Securing Oracle Coherence

Implementing Extend Client Authorization

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance"
xsi : schemalLocation="http://schemas. t angosol . conl cache
assenbl y: // Coher ence/ Tangosol . Confi g/ coher ence. xsd">
<security-config>
<princi pal - scope>t rue</ princi pal - scope>
</ security-config>
</ coher ence>

Implementing Extend Client Authorization

Oracle Coherence*Extend authorization controls which operations can be performed
on a cluster based on an extend client's access rights. Authorization logic is
implementation-specific and is enabled on a cluster proxy.

This section includes the following topics:
* “Overview of Extend Client Authorization”
* “Create Authorization Interceptor Classes”

* “Enable Authorization Interceptor Classes”

The code samples in this section are based on the Java authorization example, which is
included in the examples that are delivered as part of the distribution. The example
demonstrates a basic authorization implementation that uses the Principal obtained
from a client request and a role-based policy to determine whether to allow operations
on the requested service. Download the examples for the complete implementation.

Overview of Extend Client Authorization

Interceptor classes provide the ability to implement client authorization. An extend
proxy calls the interceptor classes before a client accesses a proxied resource (cache,
cache service, or invocation service). Interceptor classes are implementation-specific.
They must provide the necessary authorization logic before passing the request to the
proxied resources.

Figure 5-2 shows a conceptual view of extend client authorization.

Figure 5-2 Conceptual View of Extend Client Authorization

Extend Client {Java,
C++, CH#) Cluster Proxy
| TGP Initiator S TGP Acceptor
TCP
I Authentication Interceptor Classes

!

Cluster Resources

Create Authorization Interceptor Classes

To create interceptor classes for both a proxied cache service and a proxied invocation
service, implement the CacheSer vi ce and | nvocat i onSer vi ce interfaces,
respectively. Or, as is more common, extend a set of wrapper classes:

com t angosol . net. W apper CacheSer vi ce (with

com t angosol . net. cache. W apper NamedCache) and

Securing Extend Client Connections 5-7

Implementing Extend Client Authorization

com t angosol . net. W apper | nvocat i onSer vi ce. The wrapper classes delegate
to their respective interfaces and provide a convenient way to create interceptor
classes that apply access control to the wrapped interface methods.

Example 5-5 is taken from the Oracle Coherence examples. The example demonstrates
creating an authorization interceptor class for a proxied invocation service by
extending W apper | nvocat i onSer vi ce. It wraps all | nvocat i onServi ce
methods on the proxy and applies access controls based on the Subj ect passed from
an extend client. The implementation allows only a Pri nci pal with a specified role
name to access the | nvocat i onSer vi ce methods.

Example 5-3 Extending the WrapperCacheService Class for Authorization

public class EntitledCacheService
ext ends W apper CacheServi ce

{
public EntitledCacheService(CacheService service)
{
super (service);
}
public NamedCache ensureCache(String sNane, C assLoader |oader)
{
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_READER) ;
return new Entitl edNamedCache(super. ensureCache(sNane, |oader));
1
public void rel easeCache(NanedCache map)
{
if (map instanceof EntitledNamedCache)
{
Entitl edNanedCache cache = (Entitl|edNamedCache) nap;
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_READER) ;
map = cache. get NamedCache() ;
}
super. rel easeCache(map);
1
public void destroyCache(NanedCache map)
{
if (map instanceof EntitledNamedCache)
{
Entitl edNanedCache cache = (Entitl|edNamedCache) nap;
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_ADM N) ;
map = cache. get NamedCache() ;
}
super . dest royCache(map) ;
1

}

Notice that the Ent i t | edCacheSer vi ce class requires a named cache
implementation. The W apper NamedCache class is extended and wraps each method
of the NanmedCache instance. This allows access controls to be applied to different
cache operations.

5-8 Securing Oracle Coherence

Implementing Extend Client Authorization

Note:

Much of the functionality that is provided by the W apper NanedCache class
is also covered by the St or ageAccessAut hori zer interface, which
provides a better and simplified way to authorize cluster operations. For
details, see Authorizing Access to Server-Side Operations .

Example 5-4 is a code excerpt taken from the Oracle Coherence examples. The
example demonstrates overriding the NamedCache methods and applying access
checks before allowing the method to be executed. See the examples for the complete
class.

Example 5-4 Extending the WrapperNamedCache Class for Authorization

public class EntitledNanedCache
ext ends W apper NamedCache

{
public EntitledNamedCache(NanedCache cache)

{

super (cache, cache. get CacheName());

}

public Chject put(Chject oKey, bject oValue, long cMIlis)

{
Securi t yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_ WRI TER) ;

return super.put(oKey, oValue, cMIlis);

}

public Chject get(nhject oKey)

{
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_READER) ;

return super. get (oKey);

}

public void destroy()

{
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_ADM N) ;

super. destroy();

Example 5-3 is taken from the Oracle Coherence examples. The example demonstrates
creating an authorization interceptor class for a proxied cache service by extending the
W apper CacheSer vi ce class. It wraps all CacheSer vi ce methods on the proxy
and applies access controls based on the Subj ect passed from an extend client. The
implementation allows only a Pri nci pal with the specified role to access the
CacheSer vi ce methods

Example 5-5 Extending the WrapperinvocationService Class for Authorization

public class EntitledlnvocationService
ext ends Wapper | nvocati onService

{

public EntitledlnvocationService(lnvocationService service)
{
super (service);
}

public void execute(lnvocabl e task, Set setMenbers, |nvocationCbserver

Securing Extend Client Connections 5-9

Implementing Extend Client Authorization

observer)

{

Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_WRI TER)
super. execut e(task, setMenbers, observer);

}

public Map query(lnvocable task, Set setMenbers)
{
Securit yExanpl eHel per. checkAccess(Securit yExanpl eHel per. ROLE_WRI TER)
return super.query(task, setMenbers);
1
}

When a client attempts to use a remote invocation service, the proxy calls the

qguer y() method on the Enti t| edl nvocati onSer vi ce class, rather than on the
proxied | nvocat i onSer vi ce instance. The Enti t | edl nvocati onSer vi ce class
decides to allow or deny the call. If the call is allowed, the proxy then calls the

quer y() method on the proxied | nvocat i onSer vi ce instance.

Enable Authorization Interceptor Classes

To enable interceptor classes for a proxied cache service and a proxied invocation
service, edit a proxy scheme definition and add a <cache- ser vi ce- pr oxy> element
and <i nvocat i on- servi ce- pr oxy> element, respectively. Use the <cl ass-

name> element to enter the fully qualified name of the interceptor class. Specify
initialization parameters using the <i ni t - par ans> element. See "cache-service-
proxy" and "invocation-service-proxy" in Developing Applications with Oracle Coherence
for detailed information about using these elements.

The following example demonstrates enabling interceptor classes for both a proxied
cache service and a proxied invocation service. The example uses the interceptor
classes from Example 5-3 and Example 5-5.

<pr oxy- scheme>

<proxy- confi g>
<cache- servi ce- proxy>
<cl ass- name>
com t angosol . exanpl es. security. Entitl edCacheService
</ cl ass- name>
<init-parans>
<init-paranp
<paramtype>com t angosol . net. CacheSer vi ce</ paramt ype>
<param val ue>{servi ce} </ param val ue>
</init-paranm
</init-params>
</ cache- servi ce- proxy>
<i nvocat i on- servi ce- proxy>
<cl ass- name>
com t angosol . exanpl es. security. Entitledl nvocationService
</ cl ass- name>
<init-parans>
<init-paranp
<paramtype>com t angosol . net. | nvocati onServi ce</ paramt ype>
<param val ue>{servi ce} </ param val ue>
</init-paranm
</init-params>
</invocation-service-proxy>
</ proxy-config>

5-10 Securing Oracle Coherence

6

Using SSL to Secure Communication

This chapter provides instructions for using Secure Sockets Layer (SSL) to secure
TCMP communication between cluster nodes and to secure the TCP communication
between Oracle Coherence*Extend clients and proxies. Oracle Coherence supports the
Transport Layer Security (TLS) protocol, which superseded the SSL protocol; however,
the term SSL is used in this documentation because it is the more widely recognized
term.

This chapter includes the following sections:

* Overview of SSL

¢ Using SSL to Secure TCMP Communication

e Using SSL to Secure Extend Client Communication
* Using SSL to Secure Federation Communication

¢ Controlling Cipher Suite and Protocol Version Usage

Overview of SSL

This section provides a brief overview of common SSL concepts that are used in this
documentation. It is not intended to be a complete guide to SSL. See the following
resources for complete documentation. Users who are familiar with SSL can skip this
section.

e Formal SSL and TLS specifications —ht t p: / / www. i et f. org

¢ Java SE Security —

http://ww. oracl e.com technet work/j ava/javase/tech/i ndex-
j sp-136007. htm

SSL is a security protocol that secures communication between entities (typically,
clients and servers) over a network. SSL. works by authenticating clients and servers
using digital certificates and by encrypting and decrypting communication using
unique keys that are associated with authenticated clients and servers.

Establishing Identity and Trust

The identity of an entity is established by using a digital certificate and public and
private encryption keys. The digital certificate contains general information about the
entity and also contains the public encryption key embedded within it. A digital
certificate is verified by a Certificate Authority (CA) and signed using the CA's digital
certificate. The CA's digital certificate establishes trust that the entity is authentic.

Using SSL to Secure Communication 6-1

http://www.ietf.org
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Overview of SSL

Encrypting and Decrypting Data

The digital certificate for an entity contains a public encryption key that is paired with
a private encryption key. Certificates are passed between entities during an initial
connection. Data is then encrypted using the public key. Data that is encrypted using
the entity public key can only be decrypted using the entity private key. This ensures
that only the entity that owns the public encryption key can decrypt the data.

Using One-Way Authentication Versus Two-Way Authentication

SSL communication between clients and servers is set up using either one-way or two-
way authentication. With one-way authentication, a server is required to identify itself
to a client by sending its digital certificate for authentication. The client is not required
to send the server a digital certificate and remains anonymous to the server. Two-way
authentication requires both the client and the server to send their respective digital
certificates to each other for mutual authentication. Two-way authentication provides
stronger security by assuring that the identity on each sides of the communication is
known.

Generating Java SSL Artifacts

The Java keyt ool utility that is located in the JDK_HOME/ bi n directory generates
and manages SSL artifacts. This activity includes: creating a keystore; generating a
unique public/private key pair; creating a self-signed digital certificate that includes
the public key; associating the certificate with the private key; and storing these
artifacts in the keystore.

The following example creates a keystore named ser ver . j ks that is located in the /

t est directory. A public/private key pair is generated for the entity identified by the

- dnanme value (" cn=adni ni strator, ou=Coherence, o=Oracle, c=US"). A
self-signed certificate is created that includes the public key and identity information.
The certificate is valid for 180 days and is associated with the private key in a keystore
entry referred to by the alias (admni n). Both the keystore and private key must have a
password.

keytool -genkeypair -dnane "cn=adm ni strator, ou=Coherence, o=Cracle, c=US"
-alias adnmin -keypass password -keystore /test/server -storepass password
-validity 180

The certificate that is generated by the preceding command is adequate for
development purposes. However, certificates are typically verified by a trusted CA
(such as VeriSign). To have the certificate verified, use the keyt ool utility to generate
a Certificate Signing Request (CSR) file:

keytool -certreq -file admin.csr

Send the CSR file to a CA, which returns a signed certificate. Use the keyt ool utility
to import the returned certificate, which replaces the self-signed certificate in the
keystore:

keytool -inmportcert -trustcacerts -file signed_adnin.cer

Lastly, use the keyt ool utility to create a second keystore that acts as a trust keystore.
The trust keystore contains digital certificates of trusted CAs. Certificates that have
been verified by a CA are considered trusted only if the CA's certificate is also found
in the trust keystore. For example, in a typical one-way authentication scenario, a
client must have a trust keystore that contains a digital certificate of the CA that signed
the server's certificate. For development purposes, a self-signed certificate can be used
for both identity and trust; moreover, a single keystore can be used as both the identity
store and the trust keystore.

6-2 Securing Oracle Coherence

Using SSL to Secure TCMP Communication

Generating Windows SSL Artifacts

The following steps describe how to set up two-way authentication on Windows to
secure Oracle Coherence*Extend .NET clients. See “Configuring a .NET Client-Side
Stream Provider” for details on configuring .NET clients. See the Windows
documentation for complete instructions on setting up SSL on Windows:

http://technet. m crosoft.comen-us/library/cc782338%28W5.
10929. aspx

To set up two-way authentication on Windows:

1. Run the following commands from the Visual Studio command prompt:

c:\>makecert -pe -n "CN=Test And Dev Root Authority" -ss ny -sr Local Machine -a
shal -sky signature -r "Test And Dev Root Authority.cer"

c:\>makecert -pe -n "CN=MyServerName" -ss ny -sr Local Machine -a shal -sky
exchange -eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir
Local Machine -sp "Mcrosoft RSA SChannel Cryptographic Provider" -sy 12

c:\>makecert -pe -n "CNeMyClient" -ss ny -sr Local Machine -a shal -sky exchange -
eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir Local Machine -
sp "Mcrosoft RSA SChannel Cryptographic Provider" -sy 12

2. Create the certificate trusted root certification authority (for tests only).

mekecert -pe -n "CN=Test And Dev Root Authority" -ss ny -sr Local Machine -a shal
-sky signature -r "Test And Dev Root Authority.cer"

3. Copy the created certificate from the personal store to the trusted root certification
authority store.

4. Create the server certificate based on the trusted root certification.

mekecert -pe -n "CN=MyServerName" -ss ny -sr Local Machine -a shal -sky exchange -
eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir Local Machine -
sp "Mcrosoft RSA SChannel Cryptographic Provider" -sy 12

5. From the certificate store of the trusted root certification authority (Test And Dev
Root Authority), export a certificate file without a public key (. cer).

6. From the certificate store of the trusted root certification authority (Test And Dev
Root Authority), export a certificate file with a private key (. pf x).

7. Copy the. cer file to each client computer. The location must be accessible to the
ssl st r eamclient program.

8. Copy the . pf x file to each client computer.

9. Import the . pf x file to the trusted root certification authority certificate store of
each client computer.

10. On each client computer, delete the . pf x file. (This step ensures that the client
does not communicate or export the private key.)

Using SSL to Secure TCMP Communication

This section provides instructions for configuring SSL to secure communication
between cluster members. The configuration examples in this section assume that
valid digital certificates for all clients and servers have been created as required and
that the certificates have been signed by a Certificate Authority (CA). The digital

Using SSL to Secure Communication 6-3

http://technet.microsoft.com/en-us/library/cc782338%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc782338%28WS.10%29.aspx

Using SSL to Secure TCMP Communication

certificates must be found in an identity store, and the trust keystore must include the
signing CA's digital certificate. Use self-signed certificates during development as
needed. See “Using SSL to Secure Extend Client Communication” for instructions on
using SSL with Oracle Coherence*Extend.

This section includes the following topics:
* Overview of Using SSL to Secure TCMP Communication
* Define an SSL Socket Provider

¢ Using the Predefined SSL Socket Provider

Overview of Using SSL to Secure TCMP Communication

Both one-way and two-way SSL authentication are supported with TCMP. Two-way
authentication is typically used more often than one-way authentication, which has
fewer use cases in a cluster environment. In addition, it is important to realize that
TCMP is a peer-to-peer protocol that generally runs in trusted environments where
many cluster nodes are expected to remain connected with each other. Carefully
consider the implications of SSL on administration and performance.

Figure 6-1 shows a conceptual view of cluster members using two-way SSL. Each
cluster member includes a trust keystore and a Java keystore (JKS) that contains digital
certificates that are used for mutual authentication.

Figure 6-1 Conceptual Architecture of SSL with TCMP

Cluster Member Cluster Member
| Unicast Listener — Unicast Listener
SSLTCMP
Trust Trust
JKS JKS
‘ Store Store

Define an SSL Socket Provider

Configure SSL for TCMP in an operational override file by overriding the <socket -
provi der > element within the <uni cast - | i st ener > element. The preferred
approach is to use the <socket - pr ovi der > element to reference an SSL socket
provider configuration that is defined within a <socket - pr ovi der s> node.
However, the <socket - pr ovi der > element also supports including an in-line SSL
configuration. Both approaches are demonstrated in this section. See Developing
Applications with Oracle Coherence for a detailed reference of the <socket - pr ovi der >
element.

Note:

The use of Well Known Addresses (WKA) is required to use SSL with TCMP.
See Developing Applications with Oracle Coherence for details on setting up
WKA.

Example 6-1 demonstrates an SSL two-way authentication setup. The setup requires
both an identity store and trust keystore to be located on each node in the cluster. The
example uses the default values for the <pr ot ocol > and <al gori t hn> element

6-4 Securing Oracle Coherence

Using SSL to Secure TCMP Communication

(TLS and SunX509, respectively). These are shown only for completeness; you can
omit them when you use the default values. The example uses the preferred approach,
in which the SSL socket provider is defined within the <socket - pr ovi der s> node
and referred to from within the <uni cast - | i st ener > element.

Example 6-1 Sample SSL Configuration for TCMP Communication

<?xm version="1.0"?>

<coherence xn ns:xsi="http://ww. w3. org/ 2001/ XM.Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi : schemalLocation="http://xm ns. oracl e. conl coher ence/
coherence- operational - confi g coherence-operational -config. xsd">
<cl uster-config>
<uni cast -1 i stener>
<socket - provi der system property="coherence. socket provi der>
mySSLConf i g</ socket - provi der >
<wel | - known- addr esses>
<socket - address id="1">
<address system property="coherence. wka">198. 168. 1.5
</ addr ess>
<port system property="coherence. wka. port">8088</ port >
</ socket - addr ess>
</ wel | - known- addr esses>
</ uni cast-1istener>

<socket - provi der s>
<socket - provi der id="nySSLConfig">
<ssl >
<prot ocol >TLS</ pr ot ocol >
<i dentity- manager >
<al gori t hmpSunX509</ al gori t hnw
<key- st ore>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
<passwor d>passwor d</ passwor d>
</identity-mnager>
<trust - manager >
<al gori t hmpSunX509</ al gorit hnw
<key- st ore>
<url>file:rtrust.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
</ trust-mnager>
<socket - provi der >t cp</ socket - provi der >
</ssl>
</ socket - provi der >
</ socket - provi der s>
</cluster-config>
</ coher ence>

As an alternative, the SSL socket provider supports in-line configuration directly in the
<uni cast -1 i st ener > element, as shown in Example 6-2:

Example 6-2 Sample In-line SSL Configuration for TCMP Communication

<?xm version="1.0"?>

<coherence xm ns: xsi ="http://wwmv. w3. or g/ 2001/ XM_Schena- i nst ance"

Using SSL to Secure Communication 6-5

Using SSL to Secure TCMP Communication

xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi: schemalLocation="http://xm ns. oracl e. conl coher ence/
coherence- operational - confi g coherence-operational -config. xsd">
<cl uster-config>
<uni cast-1istener>
<socket - provi der system property="coherence. socket provi der>
<ssl >
<prot ocol >TLS</ pr ot ocol >
<i dentity- manager >
<al gori t hmPSunX509</ al gori t hnw
<key- st ore>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
<passwor d>passwor d</ passwor d>
</identity-mnager>
<trust - manager >
<al gori t hmpSunX509</ al gori t hnw
<key- st ore>
<url>file:rtrust.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
</ trust-mnager>
<socket - provi der >t cp</ socket - provi der >
</ssl>
</ socket - provi der >
<wel | - known- addr esses>
<socket - address id="1">
<address system property="coherence. wka">198. 168. 1.5
</ addr ess>
<port system property="coherence. wka. port">8088</ port >
</ socket - addr ess>
</ wel | - known- addr esses>
</ uni cast-1istener>
</cluster-config>
</ coher ence>

Using the Predefined SSL Socket Provider

Oracle Coherence includes a predefined SSL socket provider that allows for
configuration of two-way SSL connections. The predefined socket provider is based on
peer trust: every trusted peer resides within a single JKS keystore. The proprietary
peer trust algorithm (PeerX509) works by assuming trust (and only trust) of the
certificates that are in the keystore and leverages the fact that TCMP is a peer-to-peer
protocol.

The predefined SSL socket provider is defined within the <socket - pr ovi der s>
element in the operational deployment descriptor:

<cl uster-config>
<socket - provi der s>
<socket - provi der id="ssl">
<ss| >
<i dentity-mnager>
<key- st ore>
<url system property="coherence.security.keystore">
file:keystore.jks
<furl>

6-6 Securing Oracle Coherence

Using SSL to Secure TCMP Communication

<password system property="coherence. security
password"/ >
</ key-store>
<password system property="coherence. security.password"/>
</identity-nmanager>
<trust - manager >
<al gori t hnmePeer X509</ al gori t hnp
<key- st ore>
<url system property="coherence.security.keystore">
file:keystore.jks
<furl>
<password system property="coherence. security
password"/ >
</ key-store>
</trust-mnager>
<socket - provi der >t cp</ socket - provi der >
</ssl>
</ socket - provi der >
</ socket - provi der s>
</cluster-config>

As configured, the predefined SSL socket provider requires a Java keystore named
keyst or e. j ks that is found on the classpath. Use an operation override file to
modify any socket provider values as required. The

coherence. security. keyst or e and coher ence. security. passwor d system
properties override the keystore and password instead of using the operational
override file. For example:

- Dcoherence. security. keyst ore=/ nykeystore. j ks -Dcoherence. security. passwor d=password

Note:

Ensure that certificates for all nodes in the cluster have been imported into the
keystore.

To use the predefined SSL socket provider, override the <socket - pr ovi der >
element in the <uni cast - | i st ener > configuration and reference the SSL socket
provider using its i d attribute. The following example configures a unicast listener to
use the predefined SSL socket provider.

<?xm version="1.0"?>

<coherence xm ns: xsi="http://wwmv. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- oper ati onal - confi g"
xsi : schemaLocation="http://xm ns. oracl e. conf coher ence/
coherence- operational -confi g coherence-operational -config. xsd">
<cl uster-config>
<uni cast - | i st ener>
<socket - provi der
syst em property="coherence. socket provi der >ss
</ socket - provi der >
<wel | - known- addr esses>
<socket - address id="1">
<address system property="coherence. wka">198. 168. 1.5
</ addr ess>
<port system property="coherence. wka. port">8088</ port >
</ socket - addr ess>
</ wel | - known- addr esses>

Using SSL to Secure Communication 6-7

Using SSL to Secure Extend Client Communication

</ uni cast-|istener>
</cluster-config>
</ coherence>

Using SSL to Secure Extend Client Communication

This section provides instructions for configuring SSL to secure communication
between extend clients and cluster proxies. The configuration examples in this section
assume that valid digital certificates for all clients and servers have been created as
required and that the certificates have been signed by a Certificate Authority (CA).
The digital certificates must be found in an identity store, and the trust keystore must
include the signing CA's digital certificate. Use self-signed certificates during
development as needed. See “Using SSL to Secure TCMP Communication” for
instructions on using SSL between cluster members.

This section includes the following topics:

* Overview of Using SSL to Secure Extend Client Communication
¢ Configuring a Cluster-Side SSL Socket Provider

¢ Configuring a Java Client-Side SSL Socket Provider

¢ Configuring a .NET Client-Side Stream Provider

Overview of Using SSL to Secure Extend Client Communication

SSL is used to secure communication between extend clients and extend proxies. SSL
requires configuration on both the client side and the cluster side. SSL is supported for
both Java and .NET clients but not for C++ clients.

Figure 6-2 shows a conceptual view of extend clients using SSL to communicate with a
cluster proxy. The clients and the proxy include a trust keystore and an identity
keystore that contain digital certificates that are used for authentication. Extend clients
typically use one-way authentication in which only proxies authenticate with clients,
and clients remain anonymous to proxies.

Figure 6-2 Conceptual Architecture of SSL with Oracle Coherence*Extend

Java Extend Client
TCP Initiator
-
Trust
JKS
Store Cluster Proxy
TCP Acceptor
SSLTCP —
;t"‘-““ JKS
.NET Extend Client s
TCP Initiator
-—
Trust Key
Store Store

6-8 Securing Oracle Coherence

Using SSL to Secure Extend Client Communication

Configuring a Cluster-Side SSL Socket Provider

Configure SSL in the cluster-side cache configuration file by defining an SSL socket
provider for a proxy service. There are two options for configuring an SSL socket
provider, depending on the level of granularity that is required:

® Per Proxy Service — Each proxy service defines an SSL socket provider
configuration or references a predefined configuration that is included in the
operational configuration file.

¢ All Proxy Services — All proxy services use the same global SSL socket provider
configuration. A proxy service that provides its own configuration overrides the
global configuration. The global configuration can also reference a predefined
configuration that is included in the operational configuration file.

Configure an SSL Socket Provider per Proxy Service

To configure an SSL socket provider for a proxy service, add a <socket - pr ovi der >
element within the <t cp- accept or > element of each <pr oxy- schene> definition.
See Developing Applications with Oracle Coherence for a detailed reference of the
<socket - provi der > element.

Example 6-3 demonstrates a proxy scheme that configures an SSL socket provider that
uses the default values for the <pr ot ocol > and <al gori t hn elements (TLS and
SunX509, respectively). These are shown only for completeness; you can omit them
when you use the default values.

Example 6-3 configures both an identity keystore (ser ver . j ks) and a trust keystore
(t rust. j ks). This is typical of two-way SSL authentication, in which both the client
and proxy must exchange digital certificates and confirm each other's identity. For
one-way SSL authentication, the proxy server configuration must include an identity
keystore but not a trust keystore.

Note:

If the proxy server is configured with a trust manager, then the client must use
two-way SSL authentication, because the proxy expects a digital certificate to
be exchanged. Make sure a trust manager is not configured if you want to use
one-way SSL authentication.

Example 6-3 Sample Cluster-Side SSL Configuration

<pr oxy- schene>
<servi ce- nane>Ext endTcpSSLPr oxySer vi ce</ servi ce- nane>
<accept or - confi g>
<t cp- accept or >
<socket - provi der >
<ss| >
<pr ot ocol >TLS</ pr ot ocol >
<i dentity- manager >
<al gori t hmpSunX509</ al gori t hnw
<key- st or e>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key- st or e>

Using SSL to Secure Communication 6-9

Using SSL to Secure Extend Client Communication

<passwor d>passwor d</ passwor d>
</identity-manager>
<trust - manager >
<al gori t hmpSunX509</ al gori t hn
<key- st ore>
<url>file:rtrust.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
</ trust-mnager>
<socket - provi der >t cp</ socket - provi der >
</ssl>
</ socket - provi der >
<l ocal - addr ess>
<addr ess>192. 168. 1. 5</ addr ess>
<port >9099</ port >
</l ocal - address>
</tcp-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

The following example references an SSL socket provider configuration that is defined
in the <socket - pr ovi der s> node of the operational deployment descriptor by
specifying the i d attribute (ssl) of the configuration. See Developing Applications with
Oracle Coherence for a detailed reference of the <socket - pr ovi der s> element.

Note:

A predefined SSL socket provider is included in the operational deployment
descriptor and is named ssl . The predefined SSL socket provider is
configured for two-way SSL connections and is based on peer trust, in which
every trusted peer resides within a single JKS keystore. See “Using the
Predefined SSL Socket Provider” for details. To configure a different SSL
socket provider, use an operational override file to modify the predefined SSL
socket provider or to create a socket provider configuration as required.

<pr oxy- scheme>
<servi ce- name>Ext endTcpSSLPr oxySer vi ce</ servi ce- nanme>
<acceptor-config>
<t cp-acceptor>
<socket - provi der >ssl </ socket - pr ovi der >
<l ocal - addr ess>
<addr ess>192. 168. 1. 5</ addr ess>
<port >9099</ port >
</l ocal - addr ess>
</tcp-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

Configure an SSL Socket Provider for All Proxy Services

To configure a global SSL socket provider for use by all proxy services, use a
<socket - pr ovi der > element within the <def aul t s> element of the cache

6-10 Securing Oracle Coherence

Using SSL to Secure Extend Client Communication

configuration file. With this approach, no additional configuration is required within a
proxy scheme definition. See Developing Applications with Oracle Coherence for a
detailed reference of the <def aul t > element.

The following example uses the same SSL socket provider configuration from Example
6-3 and configures it for all proxy services.

<?xm version="1.0"?>

<cache-config xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. com coher ence/ coher ence- cache-config
coher ence- cache- confi g. xsd" >
<def aul t s>
<socket - provi der>
<ssl >
<prot ocol >TLS</ pr ot ocol >
<i dentity- manager >
<al gori t hmPSunX509</ al gori t hne
<key- st ore>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
<passwor d>passwor d</ passwor d>
</identity-nmanager>
<trust - manager >
<al gori t hmPSunX509</ al gori t hne
<key- st ore>
<url>file:trust.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
</ trust-mnager>
<socket - provi der >t cp</ socket - provi der >
</ssl>
</ socket - provi der >
</ defaul t s>

The following example configures a global SSL socket provider by referencing an SSL
socket provider configuration that is defined in the operational deployment
descriptor:

<def aul t s>
<socket - provi der >ssl </ socket - provi der >
</ defaul t s>

Configuring a Java Client-Side SSL Socket Provider

Configure SSL in the client-side cache configuration file by defining an SSL socket
provider for a remote cache scheme and, if required, for a remote invocation scheme.
There are two options for configuring an SSL socket provider, depending on the level
of granularity that is required:

® Per Remote Service — Each remote service defines an SSL socket provider
configuration or references a predefined configuration that is included in the
operational configuration file.

Using SSL to Secure Communication 6-11

Using SSL to Secure Extend Client Communication

* All Remote Services — All remote services use the same global SSL socket provider
configuration. A remote service that provides its own configuration overrides the
global configuration. The global configuration can also reference a predefined
configuration that is included in the operational configuration file.

Configure an SSL Socket Provider per Remote Service

To configure an SSL socket provider for a remote service, add a <socket -

provi der > element within the <t cp-i ni ti at or > element of a remote scheme
definition. See Developing Applications with Oracle Coherence for a detailed reference of
the <socket - pr ovi der > element.

Example 6-4 demonstrates a remote cache scheme that configures a socket provider
that uses SSL. The example uses the default values for the <pr ot ocol > and

<al gori t hne elements (TLS and SunX509, respectively). These are shown only for
completeness; you can omit them when you use the default values.

Example 6-4 configures both an identity keystore (ser ver . j ks) and a trust keystore
(trust.j ks). This is typical of two-way SSL authentication, in which both the client
and proxy must exchange digital certificates and confirm each other's identity. For
one-way SSL authentication, the client configuration must include a trust keystore but
need not include an identity keystore, which indicates that the client does not
exchange its digital certificate to the proxy and remains anonymous. The client's trust
keystore must include the CA's digital certificate that was used to sign the proxy's
digital certificate.

Note:

If the proxy server is configured with a trust manager, then the client must use
two-way SSL authentication, because the proxy expects a digital certificate to
be exchanged. Remove the proxy's trust manager configuration if you want to
use one-way SSL authentication.

Example 6-4 Sample Java Client-Side SSL Configuration

<?xm version="1.0"?>

<cache-config xm ns:xsi="http://ww:. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xn ns. oracl e. con coher ence/ coher ence-cache- config
coher ence- cache- confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>di st - ext end</ cache- nane>
<schene- name>ext end- di st </ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<r enot e- cache- scheme>
<schene- nane>ext end- di st </ schene- name>
<servi ce- name>Ext endTcpSSLCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>
<socket - provi der>
<ss| >
<pr ot ocol >TLS</ pr ot ocol >
<identity-nmanager>

6-12 Securing Oracle Coherence

Using SSL to Secure Extend Client Communication

<al gorit hmSunX509</ al gori t hn»
<key- store>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
<passwor d>passwor d</ passwor d>
</identity-mnager>
<trust - manager >
<al gorit hmSunX509</ al gori t hn»
<key- store>
<url>file:trust.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
</ trust-mnager >
<socket - provi der >t cp</ socket - pr ovi der >
</ssl >
</ socket - provi der >
<renot e- addr esses>
<socket - addr ess>
<address>198. 168. 1. 5</ addr ess>
<por t >9099</ port >
</ socket - addr ess>
</renot e- addr esses>
<connect - ti meout >10s</ connect - t i neout >
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request -t i mneout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ renot e- cache- scheme>
</ cachi ng- schenes>
</ cache-confi g>

The following example references an SSL socket provider configuration that is defined
in the <socket - pr ovi der s> node of the operational deployment descriptor by
specifying the i d attribute (ssl) of the configuration. See Developing Applications with
Oracle Coherence for a detailed reference of the <socket - pr ovi der s> element.

Note:

A predefined SSL socket provider is included in the operational deployment
descriptor and is named ssl . The predefined SSL socket provider is
configured for two-way SSL connections and is based on peer trust, in which
every trusted peer resides within a single JKS keystore. See for “Using the
Predefined SSL Socket Provider” for details. To configure a different SSL
socket provider, use an operational override file to modify the predefined SSL
socket provider or to create a socket provider configuration as required.

<?xm version="1.0"?>

<cache-config xm ns:xsi="http:// ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xm ns. oracl e. con coher ence/ coher ence-cache- config
coher ence- cache- confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>

Using SSL to Secure Communication 6-13

Using SSL to Secure Extend Client Communication

<cache- nane>di st - ext end</ cache- name>
<scheme- name>ext end- di st </ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<renot e- cache- schene>
<schene- nane>ext end- di st </ scheme- nane>
<servi ce- nanme>Ext endTcpSSLCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>
<socket - provi der >ssl </ socket - pr ovi der >
<renot e- addr esses>
<socket - addr ess>
<address>198. 168. 1. 5</ addr ess>
<por t >9099</ port >
</ socket - addr ess>
</ renot e- addr esses>
<connect - ti meout >10s</ connect -t i neout >
</tcp-initiator>
<out goi ng- nessage- handl er >
<request - ti meout >5s</request -t i meout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ remot e- cache- schene>
</ cachi ng- schenes>
</ cache-confi g>

Configure an SSL Socket Provider for All Remote Services

To configure a global SSL socket provider for use by all remote services, use a
<socket - pr ovi der > element within the <def aul t s> element of the cache
configuration file. With this approach, no additional configuration is required within a
remote scheme definition. See Developing Applications with Oracle Coherence for a
detailed reference of the <def aul t > element.

The following example uses the same SSL socket provider configuration from Example
6-4 and configures it for all remote services.

<?xm version="1.0"?>

<cache-config xm ns:xsi="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://xm ns. oracl e. conf coher ence/ coher ence- cache- confi g"
xsi : schemaLocation="http://xm ns. oracl e. con coher ence/ coher ence-cache-config
coher ence- cache- confi g. xsd" >
<def aul t s>
<socket - provi der>
<ss| >
<pr ot ocol >TLS</ pr ot ocol >
<i dentity-mnager>
<al gori t hneSunX509</ al gori t hm
<key- st ore>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
<passwor d>passwor d</ passwor d>
</identity-mnager>
<t rust - manager >
<al gori t hmeSunX509</ al gori t hm
<key- st ore>

6-14 Securing Oracle Coherence

Using SSL to Secure Extend Client Communication

<url>file:trust.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
</trust-mnager>
<socket - provi der >t cp</ socket - provi der >
</ ssl >
</ socket - provi der >
</ defaul t s>

The following example configures a global SSL socket provider by referencing an SSL
socket provider configuration that is defined in the operational deployment
descriptor:

<def aul t s>
<socket - provi der >ssl </ socket - provi der >
</ defaul t s>

Configuring a .NET Client-Side Stream Provider

Configure SSL in the .NET client-side cache configuration file by defining an SSL
stream provider for remote services. The SSL stream provider is defined using the
<stream provi der > element within the <t cp-i ni ti at or > element.

Note:

Certificates are managed on Window servers at the operating system level
using the Certificate Manager. The sample configuration assumes that the
Certificate Manager includes the extend proxy's certificate and the trusted
CA's certificate that signed the proxy's certificate. See “Generating Windows
SSL Artifacts” for a generic example. For more information about managing
certificates, see

http://technet. m crosoft.com en-us/library/cc782338(W5.
10) . aspx

Example 6-5 demonstrates a remote cache scheme that configures an SSL stream
provider. Refer to the cache configuration XML schema (I NSTALL_DI R\ confi g

\ cache- confi g. xsd) for details on the elements that are used to configure an SSL
stream provider.

Example 6-5 Sample .NET Client-Side SSL Configuration

<?xm version="1.0"?>

<cache-config xm ns="http://schemas. t angosol . conl cache"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemalocation="http://schemas. t angosol . conl cache
assenbl y: // Coher ence/ Tangosol . Confi g/ cache- confi g. xsd" >
<cachi ng- schene- mappi ng>
<cache- mappi ng>
<cache- name>di st - ext end</ cache- nane>
<schene- nane>ext end- di st </ schene- name>
</ cache- mappi ng>
</ cachi ng- schene- mappi ng>

<cachi ng- schemes>
<renot e- cache- schene>

Using SSL to Secure Communication 6-15

http://technet.microsoft.com/en-us/library/cc782338(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc782338(WS.10).aspx

Using SSL to Secure Federation Communication

<schene- nane>ext end- di st </ scheme- nane>
<servi ce- nanme>Ext endTcpSSLCacheSer vi ce</ servi ce- nane>
<initiator-config>
<tcp-initiator>
<stream provi der>
<ssl >
<prot ocol >Tl s</ prot ocol >
<l ocal -certificates>
<certificate>
<url>C\<lurl>
<passwor d>passwor d</ passwor d>
<fl ags>Def aul t KeySet </ f| ags>
</certificate>
</local -certificates>
</ssl >
</ stream provi der >
<renot e- addr esses>
<socket - addr ess>
<address>198. 168. 1. 5</ addr ess>
<por t >9099</ port >
</ socket - addr ess>
</ renot e- addr esses>
<connect - ti meout >10s</ connect -t i neout >
</tcp-initiator>
<out goi ng- nessage- handl er >
<request -ti meout >5s</request -t i neout >
</ out goi ng- nessage- handl er >
</initiator-config>
</ renot e- cache- schene>
</ cachi ng- schenes>
</ cache-confi g>

Using SSL to Secure Federation Communication

Communication between cluster participants in a federation can be secured using SSL
Communication is secured between federated service members and requires SSL
configuration on each cluster participant that requires SSL security. This section
assumes that valid digital certificates for all servers that run the federated service have
been created as required and that the certificates have been signed by a Certificate
Authority (CA). The digital certificates must be found in an identity store, and the
trust keystore must include the signing CA's digital certificate.

To use SSL to secure federation communication:

1. Edit the operational override file on each cluster and include an SSL socket
provider definition or use and existing SSL socket provider definition. For details
about configuring SSL socket providers, see “Define an SSL Socket Provider”.

2. Edit the federated cache scheme on each cluster to use the SSL socket provider
definition. For example:

<f eder at ed- schene>
<scheme- name>f eder at ed</ schene- name>
<servi ce- name>f eder at ed</ ser vi ce- name>
<backi ng- map- schenme>
<l ocal -scheme />
</ backi ng- map- scheme>
<autostart>true</autostart>
<socket - provi der >mySSLConf i g</ socket - pr ovi der >
<t opol ogi es>

6-16 Securing Oracle Coherence

Controlling Cipher Suite and Protocol Version Usage

<t opol ogy>
<nane>MyTopol ogy</ nane>
</t opol ogy>
</t opol ogi es>
</feder at ed- schenme>

Controlling Cipher Suite and Protocol Version Usage

An SSL socket provider can be configured to control the use of potentially weak
ciphers or specific protocol versions.

To control cipher suite and protocol version usage, edit the SSL socket provider
definition and include the <ci pher - sui t es> element and the <pr ot ocol -

ver si ons> elements, respectively, and enter a list of cipher suites and protocol
versions using the name element. Include the usage attribute to specify whether the
cipher suites and protocol versions are allowed (value of whi t e- 1 i st) or disallowed
(value of bl ack- I i st). The default value for the usage attribute if no value is
specified is whi t e- | i st . For example:

<socket - provi der >
<ssl >

<ci pher-sui tes usage="bl ack-1ist">
<nane>TLS_ECDHE_ECDSA W TH_AES_128_CBC_SHA256</ nane>

</ ci pher-suites>

<protocol -versi ons usage="hl ack-list">
<nane>SSLv3</ nanme>

</ protocol -versi ons>

</ssl>
</ socket - provi der >

Using SSL to Secure Communication 6-17

Controlling Cipher Suite and Protocol Version Usage

6-18 Securing Oracle Coherence

v

Securing Oracle Coherence in Oracle
WebLogic Server

This chapter provides instructions for using authentication and authorization to secure
Oracle Coherence in an Oracle WebLogic Server domain. The instructions are specific
to the Oracle WebLogic Server Administration Console and do not include details for
the Oracle WebLogic Scripting Tool (WLST). For details on using the Oracle WebLogic
Server Administration Console, see . For details on using WLST, see .

This chapter includes the following sections:

¢ Overview of Securing Oracle Coherence in Oracle WebLogic Server
® Securing Oracle Coherence Cluster Membership

¢ Authorizing Oracle Coherence Caches and Services

® Securing Extend Client Access with Identity Tokens

Overview of Securing Oracle Coherence in Oracle WebLogic Server

There are several security features that can be used when deploying Oracle Coherence
within an Oracle WebLogic Server domain. The default security configuration allows
any server to join a cluster and any extend client to access a cluster's resources. The
following security features should be configured to protect against unauthorized use
of a cluster:

® Oracle Coherence access controllers — provides authorization between cluster
members

¢ Oracle WebLogic Server authorization — provides authorization to Oracle
Coherence caches and services

® Oracle Coherence identity tokens — provides authentication for extend clients

Much of the security for Oracle Coherence in a Oracle WebLogic Server domain reuses
existing security capabilities. Knowledge of these existing security components is
assumed. References are provided in this documentation to existing content where
applicable.

Securing Oracle Coherence Cluster Membership

The Oracle Coherence security framework (access controller) can be enabled within a
Oracle WebLogic Server domain to secure access to cluster resources and operations.
The access controller provides authorization and uses encryption/decryption between
cluster members to validate trust. For details on the access controller, see “Overview
of Using an Access Controller”.

Securing Oracle Coherence in Oracle WebLogic Server 7-1

Securing Oracle Coherence Cluster Membership

In Oracle WebLogic Server, access controllers use a managed Coherence server's
keystore to establish a caller's identity between Oracle Coherence cluster members.
The Demo Identity keystore is used by default and contains a default SSL identity
(Demoldentity). The default keystore and identity require no setup and are ideal
during development and testing. Specific keystores and identities should be created
for production environments. For details on configuring keystores, identity and trust
in Oracle WebLogic Server, see Administering Security for Oracle WebLogic Server.

Enabling the Oracle Coherence Security Framework
To enable the security framework in an Oracle WebLogic server domain:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to
configure its settings.

2. From the cluster's settings page, click the Security tab.

3. From the General tab, click the Security Framework Enabled option to enable the
security framework.

4. Click Save.

Specifying an Identity for Use by the Security Framework

The Oracle Coherence security framework requires a principal (identity) when
performing authentication. The SSL Demo Identity keystore is used by default and
contains a default SSL identity (Demoldentity). The SSL Demo keystore and identity
are typically used during development. For production environments, you should
create an SSL keystore and identity. For example, use the Java keyt ool utility to
create a keystore that contains an adni n identity:

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admn
-keypass password -dname CN=Adni ni strator, O=MyConpany, L=M/Gi ty, ST=M/St at e

Note:

If you create an SSL keystore and identity, you must configure Oracle
WebLogic Server to use that SSL keystore and identity. In addition, the same
SSL identity must be located in the keystore of every managed Coherence
server in the cluster. Use the Keystores and SSL tabs on the Settings page for a
managed Coherence server to configure a keystore and identity.

To override the default SSL identity and specify an identity for use by the security
framework:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to
configure its settings.

2. From the cluster's settings page, click the Security tab.

3. From the General tab, click the Security Framework Enabled option to enable the
security framework if it has not already been enabled.

4. In the Private Key Alias field, enter the alias for the identity.

5. In the Private Key Pass Phrase field, enter the password for the identity.

7-2 Securing Oracle Coherence

Authorizing Oracle Coherence Caches and Services

6. In the Confirm Private Key Pass Phrase field, re-enter the password.

7. Click Save.

Authorizing Oracle Coherence Caches and Services

Oracle WebLogic Server authorization can be used to secure Oracle Coherence
resources that run within a domain. In particular, different roles and policies can be
created to control access to caches and services. Authorization is enabled by default
and the default authorization policy gives all users access to all Oracle Coherence
resources. For details on creating roles and policies in Oracle WebLogic Server, see
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Authorization roles and policies are explicitly configured for caches and services. You
must know the cache names and service names that are to be secured. In some cases,
inspecting the cache configuration file may provide the cache names and service
names. However, because of wildcard support for cache names in Oracle Coherence,
you may need to consult an application developer or architect that knows the cache
names being used by an application. For example, a cache mapping in the cache
configuration file could use a wildcard (such as * or di st - *) and does not indicate
the name of the cache that is actually used in the application.

Note:

Deleting a service or cache resource does not delete roles and policies that are
defined for the resource. Roles and policies must be explicitly deleted before
deleting a service or cache resource.

Specifying Cache Authorization

Oracle WebLogic Server authorization can be used to restrict access to specific Oracle
Coherence caches. To specify cache authorization:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to
configure its settings.

2. From the cluster's settings page, click the Security tab and Caches subtab.

3. Click New to define a cache on which roles and polices will be defined. The Create
a Coherence Cache page displays.

4. Enter the name of a cache in the Name field. The name of the cache must exactly
match the name of the cache used in an application.

5. Click Finish. The cache is listed on the Coherence Caches page.

6. Click the cache to access its settings page where you can define scoped roles and
policies using the Roles and Policies tab, respectively. For example, you can create
a policy that allows specific users to access the cache. The users can be selected
based on their membership in a global role, or a Coherence-specific scoped role can
be created and used to define which users can access the cache. For details on
specifying scoped roles and policies, see Oracle WebLogic Server Administration
Console Online Help.

Securing Oracle Coherence in Oracle WebLogic Server 7-3

Securing Extend Client Access with Identity Tokens

Specifying Service Authorization

Oracle WebLogic Server authorization can be used to restrict access to Oracle
Coherence services. Specifying authorization on a cache service (for example a
distributed cache service) affects access to all the caches that are created by that
service.

To specify service authorization:

1.

From the Summary of Coherence Clusters page, click a Coherence Cluster to
configure its settings.

From the cluster's settings page, click the Security tab and Services subtab.

Click New to define a service to which roles and polices will be defined. The Create
a Coherence Service page displays.

Enter the name of a service in the Name field. The name of the service must exactly
match the name of the service used in an application.

Note:

The exact name must include the scope name as a prefix to the service name.
The scope name can be explicitly defined in the cache configuration file or,
more commonly, taken from the deployment module name. For example, if
you deploy a GAR named cont act s. gar that defines a service named
Cont act sSer vi ce, then the exact service name is

cont act s: Cont act sServi ce.

Click Finish. The service is listed on the Coherence Services page.

Click the service to access its settings page where you can define scoped roles and
policies using the Roles and Policies tab, respectively. For example, you can create
a policy that allows specific users to access the service. The users can be selected
based on their membership in a global role, or a Coherence-specific scoped role can
be created and used to define which users can access the service. For details on
specifying scoped roles and policies, see Oracle WebLogic Server Administration
Console Online Help.

Securing Extend Client Access with Identity Tokens

Identity tokens are used to protect against unauthorized access to an Oracle Coherence

cluster through an Oracle Coherence proxy server. Identity tokens are used by local
(within WebLogic Server) extend clients and remote (outside of WebLogic Server)
Java, C++, and .NET extend clients. Only clients that pass a valid identity token are
permitted to access cluster services. If a nul | identity token is passed (a client
connecting without being within the scope of a Subj ect), then the client is treated as
an Oracle WebLogic Server anonymous user. The extend client is able to access caches
and services that the anonymous user can access.

7-4 Securing Oracle Coherence

Securing Extend Client Access with Identity Tokens

Note:

Once an identity is established, an authorization policy should be used to
restrict that identity to specific caches and services. For details on configuring
authorization, see “Authorizing Oracle Coherence Caches and Services”.

Identity token security requires an identity transformer implementation that creates an
identity token and an identity asserter implementation that validates the identity
token. A default identity transformer implementation

(Def aul t 1 denti t yTr ansf or mer) and identity asserter implementation
(Defaultldentity Asserter) are provided. The default implementations use a Subj ect

or Princi pal as the identity token. However, custom implementations can be
created as required to support any security token type (for example, to support
Kerberos tokens). For details on creating transformer and asserter implementations,
see “Using Identity Tokens to Restrict Client Connections”.

Enabling Identity Transformers for Use in Oracle WebLogic Server

An identity transformer associates an identity token with an identity. For local (within
Oracle WebLogic Server) extend clients, the default identity transformer cannot be
replaced. The default identity transformer passes a token of type

webl ogi c. security.acl.internal.Authenti catedSubj ect representing the
current Oracle WebLogic Server user.

For remote (outside of Oracle WebLogic Server) extend clients, the identity
transformer implementation class must be included as part of the application's
classpath and the fully qualified name of the implementation class must be defined in
the client operational override file. For details on enabling an identity transformer, see
“Enabling a Custom Identity Transformer”. The following example enables the default
identity transformer:

<security-config>
<identity-transformer>
<cl ass- name>
comtangosol . net.security. Defaul t1dentityTransforner</class-name>
</identity-transformer>
</security-config>

Remote extend clients must execute cache operations within the Subj ect . doAS
method. For example,

Principal principal = new W.SUserlnpl ("user");
Subj ect subject = new Subject();
subj ect . get Princi pal s().add(principal);

Subj ect . doAs(subj ect, new PrivilegedExceptionAction()

{
NanmedCache cache = CacheFact ory. get Cache("nycache");

Enabling Identity Asserters for Use in Oracle WebLogic Server

Identity asserters must be enabled for an Oracle Coherence cluster and are used to
assert (validate) a client's identity token. For local (within Oracle WebLogic Server)

Securing Oracle Coherence in Oracle WebLogic Server 7-5

Securing Extend Client Access with Identity Tokens

extend clients, the an identity asserter is already enabled for asserting a token of type
webl ogi c. security.acl.internal.Authenti cat edSubj ect.

For remote (outside of Oracle WebLogic Server) extend clients, a custom identity
asserter implementation class must be packaged in a GAR. However, an identity
asserter is not required if the remote extend client passes nul | as the token. If the
proxy service receives a non-null token and there is no identity asserter
implementation class configured, a Secur i t yExcept i on is thrown and the
connection attempt is rejected.

To enable an identity asserter for a cluster:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to
configure its settings.

2. From the cluster's settings page, click the Security tab.

3. From the General tab, use the Identity Assertion fields to enter the fully qualified
name of the asserter class and, if required, any class constructor arguments. For
example, to use the default identity asserter, enter:

comtangosol . net.security.Defaul tldentityAsserter

4. Click Save.

5. Restart the cluster servers or redeploy the GAR for the changes to take effect.

7-6 Securing Oracle Coherence

8

Securing Oracle Coherence REST

This chapter provides instructions for securing Oracle Coherence REST and does not
include general instructions for using Oracle Coherence REST. For detailed
information on using Oracle Coherence REST, see .

This chapter includes the following sections:

¢ Overview of Securing Oracle Coherence REST

* Using HTTP Basic Authentication with Oracle Coherence REST

e Using SSL Authentication With Oracle Coherence REST

* Using SSL and HTTP Basic Authentication with Oracle Coherence REST

¢ Implementing Authorization For Oracle Coherence REST

Overview of Securing Oracle Coherence REST

Oracle Coherence REST security uses both authentication and authorization to restrict
access to cluster resources. Authentication support includes: HTTP basic, client-side
SSL certificate, and client-side SSL certificate together with HTTP basic. Authorization
is implemented using Oracle Coherence*Extend-styled authorization, which relies on
interceptor classes that provide fine-grained access for cache service and invocation
service operations. Oracle Coherence REST authentication and authorization reuses
much of the existing security capabilities of Oracle Coherence: references are provided
to existing content where applicable.

Security for Oracle Coherence REST is disabled by default and is enabled as required.
Authentication and authorization are configured separately. Authentication is
configured in a cache configuration file using the <aut h- net hod> element within the
<ht t p- accept or > element. For details on the <aut h- met hod> element, see the
Developing Applications with Oracle Coherence. For detailed information about
implementing authorization, see “Implementing Extend Client Authorization”.

Using HTTP Basic Authentication with Oracle Coherence REST

HTTP basic authentication provides authentication using credentials (username and
password) that are encoded and sent in the HTTP authorization request header. HTTP
basic authentication requires a Java Authentication and Authorization Service (JAAS)
login module as described in this section.

To specify basic authentication, add an <aut h- met hod> element, within the ht t p-
accept or element, that is set to basi c.

<pr oxy- scheme>
<servi ce- nanme>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<htt p-accept or >

Securing Oracle Coherence REST 8-1

Using SSL Authentication With Oracle Coherence REST

<aut h- met hod>basi c</ aut h- met hod>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy-scheme>

Specify a Login Module

HTTP basic authentication requires a JAAS

j avax. security. aut h. spi . Logi nMbdul e implementation that authenticates
client credentials which are passed from the HTTP basic authentication header. The
resulting Subj ect can then be used for both Oracle Coherence*Extend-style and
Oracle Coherence Security Framework authorization as required. Refer to the JAAS
Reference Guide for instructions about JAAS and creating a Logi nMbdul e
implementation:

http://docs.oracl e.contjavase/ 7/ docs/ t echnot es/ gui des/ security/
j aas/ JAASRef Gui de. ht m

To specify a login module, modify the COHERENCE_HOME/ | i b/ securi ty/
| ogi n. confi g login configuration file and include a Coher enceREST entry that
includes the login module implementation to use. For example:

Coher enceREST {
package. MLogi nMbdul e required debug=true;

b

At runtime, specify the | ogi n. conf i g file to use either from the command line
(using the j ava. securi ty. aut h. | ogi n. confi g system property) or in the Java
security properties file. For details, see:

http://docs.oracl e.contfjavase/ 7/ docs/ t echnot es/ gui des/ security/
j aas/ JAASLMDevCui de. ht m

As a convenience, a Java keystore (JKS) Logi nMbdul e implementation which
depends only on standard Java run-time classes is provided. The class is located in the
COHERENCE_HOMVE/ | i b/ securi ty/ coherence-1 ogin.jar file. To use the
implementation, either place this library in the proxy server classpath or in the JRE's
l'i b/ ext (standard extension) directory.

Specify the JKS login module implementation in the | ogi n. conf i g configuration file
as follows:

Coher enceREST {
com tangosol . security. KeystoreLogin required
keySt orePat h="${user.dir}${/}security${/}keystore.jks";
I

The entry contains a path to a keystore. Change the key St or ePat h variable to the
location of a keystore. For instructions about creating a keystore, see “Generating Java
SSL Artifacts”.

Using SSL Authentication With Oracle Coherence REST

SSL provides an authentication mechanism that relies on digital certificates and
encryption keys to establish both identity and trust. For an overview of SSL, including
generating SSL artifacts, see “Overview of SSL”.

8-2 Securing Oracle Coherence

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Using SSL Authentication With Oracle Coherence REST

Client-side SSL certificates are passed to the HTTP acceptor to authenticate the client.
SSL requires an SSL-based socket provider to be configured for the HTTP acceptor.
The below instructions only describe how to configure SSL and define an SSL socket
provider on the proxy for an HTTP acceptor. Refer to your REST client library
documentation for instructions on setting up SSL on the client side.

To specify SSL authentication, add an <aut h- met hod> element, within the ht t p-
accept or element, thatissettocert.

<pr oxy- scheme>
<servi ce- nanme>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<http-acceptor>

<aut h- met hod>cert </ aut h- net hod>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- scheme>

Configure an HTTP Acceptor SSL Socket Provider

Configure an SSL socket provider for an HTTP acceptor when using SSL for
authentication. To configure SSL for an HTTP acceptor, explicitly add an SSL socket
provider definition or reference an SSL socket provider definition that is in the
operational override file.

Explicitly Defining an SSL Socket Provider

To explicitly configure an SSL socket provider for an HTTP acceptor, add a <socket -
provi der > element within the <ht t p- accept or > element of each <pr oxy-
schene> definition. See Developing Applications with Oracle Coherence for a detailed
reference of the <socket - pr ovi der > element.

Example 8-1 demonstrates configuring an SSL socket provider that uses the default
values for the <pr ot ocol > and <al gori t hn element (TLS and SunX509,
respectively). These are shown for completeness but may be left out when using the
default values.

Example 8-1 configures both an identity keystore (ser ver . j ks) and a trust keystore
(trust. j ks). This is typical of two-way SSL authentication, in which both the client
and proxy must exchange digital certificates and confirm each other's identity. For
one-way SSL authentication, the proxy server configuration must include an identity
keystore but need not include a trust keystore.

Example 8-1 Sample HTTP Acceptor SSL Configuration

<pr oxy- scheme>
<servi ce- nanme>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<htt p-accept or >

<socket - provi der >
<ss| >
<pr ot ocol >TLS</ pr ot ocol >
<identity-manager >
<al gori t hnSunX509</ al gori t hne
<key-store>
<url>file:server.jks</url>
<passwor d>passwor d</ passwor d>
<t ype>JKS</type>

Securing Oracle Coherence REST 8-3

Using SSL Authentication With Oracle Coherence REST

</ key-store>
<passwor d>passwor d</ passwor d>
</identity-manager>
<trust - manager >
<al gori t hmPSunX509</ al gori t hne
<key- st ore>
<url>file:rtrust.jks</url>
<passwor d>passwor d</ passwor d>
<type>JKS</type>
</ key-store>
</ trust-mnager>
</ssl>
</ socket - provi der >

<aut h- met hod>cert </ aut h- net hod>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ proxy- scheme>

Referencing an SSL Socket Provider Definition

The following example references an SSL socket provider configuration that is defined
in the <socket - pr ovi der s> element of the operational deployment descriptor by
specifying the i d attribute (ssl) of the configuration. See Developing Applications with
Oracle Coherence for a detailed reference of the <socket - pr ovi der s> element.

Note:

A predefined SSL socket provider is included in the operational deployment
descriptor and is named ssl . The predefined SSL socket provider is
configured for two-way SSL connections and is based on peer trust, in which
every trusted peer resides within a single JKS keystore. See “Using the
Predefined SSL Socket Provider” for details. To configure a different SSL
socket provider, use an operational override file to modify the predefined SSL
socket provider or to create a socket provider configuration as required.

<pr oxy- scheme>
<servi ce- nanme>Rest Ht t pPr oxySer vi ce</ servi ce- name>
<acceptor-config>
<htt p-accept or >

<socket - provi der >ssl </ socket - pr ovi der >

<aut h- met hod>cert </ aut h- net hod>
</ http-acceptor>
</ acceptor-config>
<autostart>true</autostart>
</ pr oxy- scheme>

Access Secured REST Services

The following example demonstrates a Jersey-based client that accesses REST services
that require certificate and HTTP basic authentication. For details about creating Jersey
clients, see ht t p: // j er sey. j ava. net/ nonav/ docunment ati on/ | at est/

i ndex. htni .

8-4 Securing Oracle Coherence

http://jersey.java.net/nonav/documentation/latest/index.html
http://jersey.java.net/nonav/documentation/latest/index.html

Using SSL Authentication With Oracle Coherence REST

Client SSL Configuration File

The client SSL configuration file (ssl . xrm) configures the client's keystore and trust

keystore.

<ssl >
<i dentity- manager >
<key- st ore>
<url>file:keystore.jks</url>
<passwor d>passwor d</ passwor d>
</ key-store>
<passwor d>passwor d</ passwor d>
</identity-mnager>
<trust - manager >
<key- st ore>
<url>file:trust.jks</url>
<passwor d>passwor d</ passwor d>
</ key-store>
</trust-mnager>
</ssl>

Sample Jersey SSL Client

package exanpl e;

i mport com oracl e. common. net. SSLSocket Provi der;

inport comsun.jersey.api.client.Cient;

inport comsun.jersey.api.client.CientResponse;

i mport com sun. jersey. api.client.\WbResource;

inport comsun.jersey.api.client.config.DefaultCientConfig;
i mport com sun.jersey.client.urlconnection. HTTPSProperti es;
inport comsun.jersey.api.client.filter.HTTPBasi cAuthFilter;
i mport com tangosol .internal.net.ssl.LegacyXm SSLSocket Provi der Dependenci es;
i mport com tangosol . run. xm . Xm Docunent ;

i mport com tangosol . run. xm . Xm Hel per;

import javax.net.ssl.HostnaneVerifier;

inport javax.net.ssl.SSLSession;

i mport javax.ws.rs.core. Medi aType;

public class SslExanple

{
public static Cient createH tpsCient(SSLSocket Provider provider)

{
Defaul tCientConfig dcc = new DefaultdientConfig();

HTTPSPr operties prop = new HTTPSProperties(new Host nameVerifier()

public bool ean verify(String s, SSLSession ssl Session)

{

return true,

}
}, provider.get Dependenci es(). get SSLContext());

dcc. get Properties(). put (HTTPSProperties. PROPERTY_HTTPS_PROPERTI ES, prop);

return Cient.create(dcc);

1

public static void PUT(String url, MediaType nedi aType, String data)
|{orocess(url, "put", nediaType, data);
1

publ{ic static void GET(String url, MediaType medi aType)

process(url, "get", mediaType, null);

Securing Oracle Coherence REST

8-5

Using SSL Authentication With Oracle Coherence REST

1
public static void POST(String url, MediaType nediaType, String data)
{
process(url, "post", nediaType, data);
1
public static void DELETE(String url, MediaType nedi aType)
{
process(url, "delete", nediaType, null);
1
static void process(String url, String action, MediaType nedi aType, String
dat a)
{
try
{

Xm Docurment xml = Xm Hel per. | oadFi | eOr Resource("/ssl.xm ", null);
SSLSocket Provi der provider = new SSLSocket Provi der (new
LegacyXm SSLSocket Provi der Dependenci es(xm));
Client client = createHttpsCient(provider);
C i ent Response response = nul | ;
V\ebResour ce webResource = client.resource(url);

Il 1f you've specified the "cert+basic" auth-nmethod in your Proxy

Il http-acceptor configuration, initialize and add an HTTP basic

Il authentication filter by

/1 uncomenting the following line and changing the username and password
Il appropriately.

Ilclient.addFilter(new HTTPBasi cAut hFilter ("username", "password"));

if (action.equal sl gnoreCase("get"))

{
response = webResource. type(nedi aType). get (Cient Response. cl ass);
}
else if (action.equalslgnoreCase("post"))
{

response = webResource. type(nedi aType). post
(dientResponse. class, data);
}

else if (action.equalslgnoreCase("put"))
{
response = webResource. type(nedi aType) . put
(dientResponse. class, data);
}

else if (action.equalslgnoreCase("delete"))
{
response = webResource. type(nedi aType). del ete
(dientResponse. class, data);
}

Systemout. println("response status:" + response.getStatus());
if (action.equals("get"))
{
Systemout.printIn("Result: " + response.getEntity(String.class));
}
}
catch (Exception e)
{
e.printStackTrace();
}
1

8-6 Securing Oracle Coherence

Using SSL and HTTP Basic Authentication with Oracle Coherence REST

public static void main(String args[])

{
PUT("https://Iocal host: 8080/ di st-http-exanpl e/ 1",
Medi aType. APPLI CATI ON_JSON_TYPE, "{\"nane\":\"chris\", \"age\":32}");
PUT("https:/ /I ocal host: 8080/ di st-http-exanpl e/ 2",
Medi aType. APPLI CATI ON_XM__TYPE,
" <per son><name>adm n</ nane><age>30</ age></ person>");
DELETE("https:// 1 ocal host: 8080/ di st-http-exanpl e/ 1",
Medi aType. APPLI CATI ON_XM__TYPE);
CGET("https://1ocal host: 8080/ di st-http-exanpl e/ 2",
Medi aType. APPLI CATI ON_XM__TYPE);
1
}

Using SSL and HTTP Basic Authentication with Oracle Coherence REST

The use of HTTP basic authentication does not preclude the use of SSL authentication.
That is, both HTTP basic authentication and SSL can be used together for added
protection. For details about setting up both SSL and HTTP basic authentication, see
“Using HTTP Basic Authentication with Oracle Coherence REST” and “Using SSL
Authentication With Oracle Coherence REST”, respectively.

To specify the use of both HTTP basic authentication and SSL, add an <aut h-
nmet hod> element, within the ht t p- accept or element, that is set to cer t +basi c.

<pr oxy- scheme>
<servi ce- nane>Rest Ht t pProxySer vi ce</ servi ce- name>
<acceptor-config>
<http-acceptor>

<socket - provi der>
<ssl >
</ssl>
</ socket - provi der >
<aut h- met hod>cert +basi c</ aut h- net hod>
</ http-acceptor>
</ acceptor-config>

<autostart>true</autostart>
</ proxy- scheme>

Implementing Authorization For Oracle Coherence REST

Oracle Coherence REST relies on the Oracle Coherence*Extend authorization
framework to restrict which operations a REST client performs on a cluster. For
detailed instructions on implementing Oracle Coherence*Extend-style authorization,
see “Implementing Extend Client Authorization”.

Oracle Coherence*Extend-style authorization with REST requires basic HTTP
authentication or HTTP basic authentication together with SSL authentication. That is,
when implementing authorization, both HTTP basic authentication and SSL can be
used together for added protection. For details on using HTTP basic authentication,
see “Using HTTP Basic Authentication with Oracle Coherence REST”. For details on
using SSL with HTTP Basic Authentication, see “Using SSL and HTTP Basic
Authentication with Oracle Coherence REST”.

Securing Oracle Coherence REST 8-7

Implementing Authorization For Oracle Coherence REST

Note:

When using SSL and HTTP basic authentication together, make sure that SSL
is setup as shown in “Using SSL Authentication With Oracle Coherence
REST” in addition to setting up HTTP basic authentication.

8-8 Securing Oracle Coherence

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1)
	Other Significant Changes in This Document for 12c (12.2.1)

	1 Introduction to Oracle Coherence Security
	Conceptual Overview of Oracle Coherence Security
	Coherence Security Quick Start
	Overview of Security Configuration

	2 Enabling General Security Measures
	Using the Java Security Manager
	Enable the Java Security Manager
	Specify Permissions
	Programmatically Specifying Local Permissions

	Using Host-Based Authorization
	Overview of Host-Based Authorization
	Specify Cluster Member Authorized Hosts
	Specify Extend Client Authorized Hosts
	Use a Filter Class to Determine Authorization

	Managing Rogue Clients

	3 Using an Access Controller
	Overview of Using an Access Controller
	Using the Default Access Controller Implementation
	Enable the Access Controller
	Create a Keystore
	Include the Login Module
	Create a Permissions File
	Create an Authentication Callback Handler
	Enable Security Audit Logs

	Using a Custom Access Controller Implementation

	4 Authorizing Access to Server-Side Operations
	Overview of Access Control Authorization
	Creating Access Control Authorization Implementations
	Declaring Access Control Authorization Implementations
	Enabling Access Control Authorization on a Partitioned Cache

	5 Securing Extend Client Connections
	Using Identity Tokens to Restrict Client Connections
	Overview of Using Identity Tokens
	Creating a Custom Identity Transformer
	Enabling a Custom Identity Transformer
	Creating a Custom Identity Asserter
	Enabling a Custom Identity Asserter
	Using Custom Security Types
	Understanding Custom Identity Token Interoperability

	Associating Identities with Extend Services
	Implementing Extend Client Authorization
	Overview of Extend Client Authorization
	Create Authorization Interceptor Classes
	Enable Authorization Interceptor Classes

	6 Using SSL to Secure Communication
	Overview of SSL
	Using SSL to Secure TCMP Communication
	Overview of Using SSL to Secure TCMP Communication
	Define an SSL Socket Provider
	Using the Predefined SSL Socket Provider

	Using SSL to Secure Extend Client Communication
	Overview of Using SSL to Secure Extend Client Communication
	Configuring a Cluster-Side SSL Socket Provider
	Configure an SSL Socket Provider per Proxy Service
	Configure an SSL Socket Provider for All Proxy Services

	Configuring a Java Client-Side SSL Socket Provider
	Configure an SSL Socket Provider per Remote Service
	Configure an SSL Socket Provider for All Remote Services

	Configuring a .NET Client-Side Stream Provider

	Using SSL to Secure Federation Communication
	Controlling Cipher Suite and Protocol Version Usage

	7 Securing Oracle Coherence in Oracle WebLogic Server
	Overview of Securing Oracle Coherence in Oracle WebLogic Server
	Securing Oracle Coherence Cluster Membership
	Enabling the Oracle Coherence Security Framework
	Specifying an Identity for Use by the Security Framework

	Authorizing Oracle Coherence Caches and Services
	Specifying Cache Authorization
	Specifying Service Authorization

	Securing Extend Client Access with Identity Tokens
	Enabling Identity Transformers for Use in Oracle WebLogic Server
	Enabling Identity Asserters for Use in Oracle WebLogic Server

	8 Securing Oracle Coherence REST
	Overview of Securing Oracle Coherence REST
	Using HTTP Basic Authentication with Oracle Coherence REST
	Specify a Login Module

	Using SSL Authentication With Oracle Coherence REST
	Configure an HTTP Acceptor SSL Socket Provider
	Access Secured REST Services

	Using SSL and HTTP Basic Authentication with Oracle Coherence REST
	Implementing Authorization For Oracle Coherence REST

