
Oracle® Cloud
Using Oracle Messaging Cloud Service

E37257-26
May 2020

Oracle Cloud Using Oracle Messaging Cloud Service,

E37257-26

Copyright © 2014, 2020, Oracle and/or its affiliates.

Primary Author: Nisha Singh

Contributing Authors: Poh Lee Tan, Mark Moussa

Contributors: Ian Sutherland, Derek Dalrymple, Rehan Iftikhar

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Related Resources ix

Conventions ix

1 Getting Started with Oracle Messaging Cloud Service

About Oracle Messaging Cloud Service 1-1

About Messaging Concepts 1-2

Architecture Overview 1-2

About the Components of Oracle Messaging Cloud Service 1-3

About the Interfaces to Oracle Messaging Cloud Service 1-4

About Resource Limits 1-4

Before You Begin with Oracle Messaging Cloud Service 1-5

How to Begin with Oracle Messaging Cloud Service Subscriptions 1-7

About Oracle Messaging Cloud Service Roles and Users 1-7

2 Developing Applications That Use Oracle Messaging Cloud Service

Typical Workflow for Using Oracle Messaging Cloud Service 2-1

Accessing Oracle Messaging Cloud Service 2-2

Considerations When Developing Applications That Use Oracle Messaging Cloud
Service 2-3

About Queues and Topics 2-3

About Message Push and Message Push Listeners 2-4

About Verification of Message Push Listeners 2-5

About Destination Deletion 2-6

About Connections 2-6

About Sessions, Acknowledgement Modes, Transactions, and Provisional
Messages 2-7

About Producers, Consumers, and Selectors 2-8

About Parts of a Message 2-9

Message Headers 2-9

iii

Message Properties 2-9

Message Body and Message Size 2-10

About Persistent and Non-Persistent Messages 2-10

About Authorization 2-11

About Service Termination 2-11

About the Ordering of Message Delivery 2-11

Using Message Groups 2-11

Sending Large Objects as Messages Using Oracle Storage Cloud Service 2-13

Using the Java Library 2-21

Typical Workflow for Using the Java Library 2-22

Downloading the Oracle Messaging Cloud Service Java SDK 2-22

Authentication and Authorization 2-22

Differences from JMS 2-23

Using the REST API 2-23

Typical Workflow for Using the REST API 2-24

Messaging Context and HTTP Cookies 2-24

Authentication 2-25

About HTTP Headers 2-25

Cross-Site Request Forgery (CSRF) Prevention 2-26

Resource Management versus Message Transmission APIs 2-26

Message Types 2-27

PLAIN 2-27

TEXT 2-27

BYTES 2-28

OBJECT 2-28

HTTP 2-29

MAP 2-29

STREAM 2-30

Message Headers and Properties 2-31

XML versus JSON Response Types 2-32

3 Accessing Oracle Messaging Cloud Service Using REST API

Topology API 3-1

Viewing all Messaging Contexts 3-1

Viewing a Messaging Context 3-6

Sample Outputs of Topology API 3-6

Usage API 3-10

About Usage API 3-10

Sample Outputs of Usage API 3-13

About Escaped Value Strings 3-15

iv

About Using the REST API 3-16

Basics of the REST API 3-16

Functional Areas of the REST API 3-17

Understanding Messaging Context and Cookies 3-17

Understanding Durable Subscriptions 3-18

Understanding REST API Operations 3-18

Understanding Concurrent Access to Resources 3-19

Understanding Error Responses 3-20

Understanding Anti-CSRF Measures 3-22

HTTP Header for Messaging Service Version 3-23

HTTP Header for Messaging Context ID 3-23

Resource Management API 3-24

Creating and Managing Destinations 3-24

Create a Destination 3-24

List Destinations 3-25

Retrieve Destination Properties 3-26

Remove a Destination 3-28

Creating and Managing Message Push Listeners 3-28

Create a Listener 3-28

Delete a Listener 3-38

List Listeners 3-38

Retrieve Listener Properties 3-39

Message Transmission API 3-40

Creating and Managing Messaging Contexts 3-40

Create a Messaging Context 3-41

Get Maximum Inactive Interval (MII) 3-41

Set Maximum Inactive Interval (MII) 3-41

Creating and Managing Connections 3-42

Create a Connection 3-43

Update Connection Properties 3-44

Delete a Connection 3-46

Creating and Managing Sessions 3-46

Create a Session 3-46

Acknowledge, Commit, Rollback, or Recover a Session 3-47

Delete a Durable Subscription 3-48

Close and Delete a Session 3-48

Sending Messages 3-49

Create a Producer 3-49

Set Properties of a Producer 3-51

Close and Delete a Producer 3-52

Send a Message via a Producer 3-52

v

Receiving Messages 3-55

Create a Consumer 3-55

Close and Delete a Consumer 3-58

Receive a Message via a Consumer 3-59

Creating and Managing Durable Subscriptions 3-60

Create a Durable Subscription 3-60

List Durable Subscriptions 3-61

Delete a Durable Subscription 3-63

Creating and Managing Temporary Destinations 3-63

Create a Temporary Destination 3-63

List Temporary Destinations 3-65

Remove a Temporary Destination 3-68

Creating and Managing Queue Browsers 3-68

Create a Queue Browser 3-69

Retrieve Queue Browser Properties 3-69

Browse Messages 3-70

Remove a Queue Browser 3-71

Properties of HTTP Requests to Send Messages from REST Clients 3-71

Request Parameters 3-71

HTTP Headers to Specify Message Properties 3-72

Limitations on Message Size 3-73

Properties of HTTP Requests and Responses that Deliver Messages 3-73

4 Accessing Oracle Messaging Cloud Service Using Java Library

Client-Side Logging 4-1

Automatic Closing of Connections 4-3

Diagnosing Errors from the Java Library 4-4

Using the Re-try Function 4-4

About Using the Java Library 4-5

Prerequisites for Using the Java Library 4-5

How to Use the Java Library 4-5

How to Check the version of the Java Library 4-6

Creating a MessagingService Object 4-6

Using Messaging Cloud Service from Oracle Java Cloud Service - SaaS Extension 4-7

Resource Management API 4-7

Managing Destinations 4-8

Create a Destination 4-8

Delete a Destination 4-8

List Destinations 4-9

Retrieve a Destination's Properties 4-9

vi

Managing Message Push Listeners 4-9

Create a Message Push Listener 4-9

Delete a Message Push Listener 4-10

List Message Push Listeners 4-10

Retrieve a Message Push Listener's Properties 4-10

Managing Durable Subscriptions 4-11

List Durable Subscriptions 4-11

Retrieve a Durable Subscription's Properties 4-11

ConnectionFactory Creation API 4-11

Using JMS to Send and Receive Messages 4-13

Using Extensions to the JMS API 4-13

Safe Durable Subscriptions 4-14

Strong Typing for JMS 4-14

Enumerations 4-15

Wrapper Classes 4-15

Connection Timeout 4-16

Obtaining Service Version 4-16

Obtaining Messaging Context ID 4-16

Limitations on Message Size and Time-to-Live 4-17

5 Troubleshooting Oracle Messaging Cloud Service

Java Library 5-2

Messages 5-2

Destinations 5-4

Miscellaneous 5-4

A Best Practices

Learn JMS 1.1 A-1

Effective Pooling of Resources A-1

Using Transacted and/or Client-Acknowledged Sessions A-2

Diagnosing Exceptions in the Java Library A-2

Using Exception Listeners A-4

Recovery Strategies A-4

Alternative to Selectors A-4

B REST API Reference

REST API Parameters Reference B-1

REST API HTTP Status Codes and Error Messages Reference B-5

Generic Meanings of HTTP Response Status Codes B-5

vii

Error Keys, Status Codes and Error Messages B-5

Errors with HTTP Status Code 400 (Bad Request) B-6

Errors with HTTP Status Code 403 (Forbidden) B-14

Errors with HTTP Status Code 404 (Not Found) B-15

Errors with HTTP Status Code 405 (Method Not Allowed) B-15

Errors with HTTP Status Code 406 (Not Acceptable) B-16

Errors with HTTP Status Code 409 (Conflict) B-16

Errors with HTTP Status Code 500 (Internal Server Error) B-17

C Code Samples

REST API C-1

Create a Queue C-1

Create a Topic C-2

Create a Durable Subscription C-3

Create a Message Push Listener C-5

Receive a Message from a Durable Subscription C-7

Receive a Message from a Queue with a Selector C-10

Send a Message to a Topic C-13

Process Messages using a Transaction C-16

Cookie Management C-21

Java Library C-29

Create Resources C-29

Send a Message to a Topic C-30

Receive a Message from a Queue with an Optional Selector C-31

Asynchronously Receive Messages with a Durable Subscription C-33

Asynchronously Process Messages Within a Transaction C-34

Use Message Groups C-36

Receive Messages from a Queue Using a MessageListener C-42

viii

Preface

Oracle Messaging Cloud Service provides a platform that enables data communication
between applications within Oracle Cloud as well as outside of Oracle Cloud.

Topics:

• Audience

• Related Resources

• Conventions

Audience
Using Oracle Messaging Cloud Service is intended for Oracle Cloud developers who
want to facilitate data communication between software components.

For example, a company may have orders submitted on an e-commerce web site that
go into a queue for processing. After the orders are processed, they go into another
queue for shipping at the warehouse.

Related Resources
For more information, see these Oracle resources:

• Oracle Cloud

http://cloud.oracle.com

• About Oracle Java Cloud Service - SaaS Extension

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ix

http://cloud.oracle.com

1
Getting Started with Oracle Messaging
Cloud Service

This section describes how to get started with Oracle Messaging Cloud Service for
Oracle Cloud administrators and developers.

Topics:

• About Oracle Messaging Cloud Service

• Before You Begin with Oracle Messaging Cloud Service

• How to Begin with Oracle Messaging Cloud Service Subscriptions

• About Oracle Messaging Cloud Service Roles and Users

See Oracle Cloud Terminology in Getting Started with Oracle Cloud for definitions of
terms found in this and other documents in the Oracle Cloud library.

About Oracle Messaging Cloud Service
Oracle Messaging Cloud Service is one of the Infrastructure as a Service (IaaS)
offerings. It provides a messaging system for applications to communicate reliably with
each other, enabling application developers to share information across multiple
applications.

Topics:

• About Messaging Concepts

• Architecture Overview

• About the Components of Oracle Messaging Cloud Service

• About the Interfaces to Oracle Messaging Cloud Service

• About Resource Limits

Oracle Messaging Cloud Service gives developers an easier and more reliable method
to build complex, distributed systems of heterogeneous applications that may have
fundamentally different underlying characteristics such as programming platform,
system uptime, and network latency. In addition, businesses using Oracle Messaging
Cloud Service do not require any special, dedicated hardware, and the service can be
accessed by applications from anywhere over the Internet.

Oracle Messaging Cloud Service is heavily influenced by the Java Message Service
(JMS) API specification, which is a standard messaging interface for sending and
receiving messages between enterprise Java applications. For Java applications,
Oracle Messaging Cloud Service provides a Java library that implements and extends
the JMS 1.1 interface. The Java library implements the JMS API by acting as a client
of the REST API. Any application platform that understands HTTP can also use Oracle
Messaging Cloud Service through the REST interface. This means developers can

1-1

use a single communication API to build reliable and robust communication between
intra-cloud and extra-cloud applications.

Oracle Messaging Cloud Service uses wildcard certificates for HTTPS access. The
use of wildcard certificates may require that client environments be configured to
accept wildcard certificates in order to access Messaging Cloud Service. For example,
if you are using Oracle WebLogic Server, then you can configure WebLogic Server’s
SSL hostname verifier to accept wildcard certificates by referring to the Using a
Custom Host Name Verifier topic in the Oracle Fusion Middleware Securing Oracle
WebLogic Server guide.

About Messaging Concepts
In a messaging system, information is transmitted between clients (where a client is
defined as a running instance of an application) in the form of messages. From the
sending client, producers send messages to a destination. On the receiving client,
consumers retrieve messages from a destination.

A destination is a type of named resource that resides within an Oracle Messaging
Cloud Service instance. It is a repository for messages. Queues and topics are types
of destinations to which messages can be sent.

Messages sent to a queue are received by one and only one consumer. A message
sent to a queue is kept on the queue until the message is received by a client or until
the message expires. This style of messaging, in which every message sent is
successfully processed by at most one consumer, is know as point-to-point.

Messages sent to a topic can be received by multiple consumers or none. This style of
messaging, in which each message can be processed by any number of consumers
(or none at all), is known as publish/subscribe. To receive a message sent to a topic, a
consumer that subscribes to the topic (the subscriber) must be connected to the topic
when the message is sent by the producer (the publisher). That is, only clients that
have a consumer connected to a topic will receive messages sent to that topic. If there
are no consumers on the topic, messages sent to the topic will not be received by
anyone, unless there are some durable subscriptions on the topic.

A durable subscription, which stores all messages sent to a topic, can be created to
ensure that a publish/subscribe application receives all sent messages, even if there is
no client currently connected to the topic. For example, if an application goes offline
temporarily and has no consumers on the topic, the client will miss any messages sent
to the topic. However, if there is a durable subscription, upon restarting the application,
the application will be able to receive any messages sent to the topic during the time
the application was not running.

Messages sent to a destination can be pushed to another destination or to a user-
defined URL using message push listeners.

A connection and one or more sessions from a client associated with the connection
are required to send and receive messages. A session sends messages through one
or more producers and receives messages through one or more consumers.

For more information about these and other Oracle Messaging Cloud Service instance
resources, see Developing Applications That Use Oracle Messaging Cloud Service.

Architecture Overview
The Oracle Messaging Cloud Service architecture is highly available and fault-tolerant.

Chapter 1
About Oracle Messaging Cloud Service

1-2

Oracle Messaging Cloud Service provides a secure messaging solution for
applications that require reliable asynchronous communication. The applications can
be within Oracle Cloud as well as outside of Oracle Cloud.

The following diagram presents an architectural overview of Oracle Messaging Cloud
Service:

About the Components of Oracle Messaging Cloud Service
Oracle Messaging Cloud Service includes the following components:

• My Account and My Services

These are applications that allow account administrators and service
administrators to manage and monitor their Oracle Cloud service instances,
including Oracle Messaging Cloud Service instances. My Account displays
information about active, expired, and pending services for an entire account,
across multiple data centers and identity domains, and lets administrators monitor
the service status. My Services lets administrators monitor and operate all active
services within a single identity domain. For more information about the
administrative applications, see Overview of Managing Oracle Cloud Accounts and
Services in Getting Started with Oracle Cloud.

• JMS Broker

The JMS broker is responsible for handling all administrative and control aspects
of the messaging platform, including message persistence, message selection,
and session management.

• Message Push Listeners

These are user-created resources that reside within an Oracle Messaging Cloud
Service instance. A message push listener asynchronously receives messages
from one destination and either sends the messages to another destination or
pushes them to a user-defined URL as an HTTP request.

Chapter 1
About Oracle Messaging Cloud Service

1-3

About the Interfaces to Oracle Messaging Cloud Service
There are two interfaces to Oracle Messaging Cloud Service.

The interfaces to Oracle Messaging Cloud Service are:

• Java library

• REST API

The following table summarizes the interfaces to Oracle Messaging Cloud Service:

Interface Description More Information

Java library The Oracle Messaging Cloud Service
Java library provides an implementation
of the JMS 1.1 API for sending and
receiving messages through the JMS
broker. To download the Java library, see
Downloading the Oracle Messaging Cloud
Service Java SDK.

The Java library can be used from any
environment connected to the Internet.

The Java library also provides APIs for
managing instance resources such as
queues, topics, durable subscriptions, and
message push listeners.

Developing Applications That Use
Oracle Messaging Cloud Service

Accessing Oracle Messaging
Cloud Service Using Java Library

Java API Reference for Oracle
Messaging Cloud Service

REST API Oracle Messaging Cloud Service provides
a REST API for sending and receiving
messages, as well as managing instance
resources such as queues, topics,
durable subscriptions, and message push
listeners.

The REST API can be used from any
environment connected to the Internet.

Developing Applications That Use
Oracle Messaging Cloud Service

Accessing Oracle Messaging
Cloud Service Using REST API

Note:

Messages sent from one interface can be received through the other
interface. Connections, sessions, producers, and consumers cannot be
shared between the two interfaces.

About Resource Limits
Paid and trial subscriptions of Oracle Messaging Cloud Service have resource limits.

The following table shows the maximum number of messaging resources per service
instance in paid and trial service subscriptions:

Resource Paid Subscription Trial Subscription

queues 10,000 5

topics 10,000 5

Chapter 1
About Oracle Messaging Cloud Service

1-4

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/index.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/index.html

Resource Paid Subscription Trial Subscription

message push listeners unlimited * unlimited *

durable subscriptions 10,000 5

persisted messages per
destination

Hard Quota: 100,000

Soft Quota: 70,000

For more information, see
Hard and Soft Quotas.

Hard Quota: 100

Soft Quota: 70

For more information, see
Hard and Soft Quotas.

bytes of persisted messages per
destination

Hard Quota: 52,428,800
bytes

Soft Quota: 36,700,160
bytes

For more information, see
Hard and Soft Quotas.

Hard Quota: 52,428,800 bytes

Soft Quota: 36,700,160 bytes

For more information, see
Hard and Soft Quotas.

concurrent connections 10 (additional connections in
units of 10 may be
purchased)

10 (no upsize)

temporary destinations per
connection

50 50

* implicitly capped by the number of concurrent connections

Hard and Soft Quotas

Oracle Messaging Cloud Service restricts both the number of persisted messages that
can be sent to a destination but not yet consumed, and the number of bytes of
persisted messages that can be sent to a destination but not yet consumed. These
restrictions are expressed in terms of a hard quota and a soft quota on both the
number and bytes of messages. Clients are allowed to send messages to a
destination until the number and bytes of persisted messages on that destination
reach the hard quota for either number or bytes of messages. Once the hard quota
has been reached for a destination, further attempts to send to that destination will fail
with an error until both the number and bytes of message on the destination fall below
the soft quota. The hard and soft quotas are the same for all destinations in a given
service instance.

For example, suppose the hard quota on number of messages for a queue Q is 100,
and the soft quota is 70, there are 100 messages on Q, and a client attempts to send
another persistent message, which would put Q over its hard quota on the number of
messages. The send will fail, and further sends of persistent messages will continue to
fail until at least 31 messages have been consumed from Q, causing it to fall below the
soft quota on number of messages. This two-quota algorithm gives consumers on a
destination a chance to "catch up" when the destination reaches its hard quota.

See Considerations When Developing Applications That Use Oracle Messaging Cloud
Service for additional information about messaging resources.

Before You Begin with Oracle Messaging Cloud Service
Prior to using Oracle Messaging Cloud Service, ensure you are familiar with the
following:

Chapter 1
Before You Begin with Oracle Messaging Cloud Service

1-5

• Oracle Cloud

Create and configure your account on Oracle Cloud. For more information about
creating an account on Oracle Cloud, see How to Begin with Oracle Messaging
Cloud Service Subscriptions.

• Java library

The Java library is included in the Oracle Messaging Cloud Service Java SDK that
can be downloaded from Oracle Technology Network. To download the Java SDK,
see Downloading the Oracle Messaging Cloud Service Java SDK.

The Java library requires a Java Development Kit (JDK) of version 1.6 or greater
for compiling your applications.

To use the Java library, you must have connectivity to the public Internet.

The JMS 1.1 API JAR file is also required to compile your web applications. To
download the JAR file, accept the Software License Agreement and click on the
download link available at following URL:

http://download.oracle.com/otndocs/jcp/7542-jms-1.1-fr-doc-oth-JSpec/

• REST API

To use the Oracle Messaging Cloud Service REST API, you must have
connectivity to the public Internet.

You should have a strong understanding of the HTTP request/response protocol,
specifically:

– How HTTP cookies are used in response and request headers and when a
given cookie is to be included in a request to a particular URL

– How to read and manipulate HTTP headers and query string parameters

• Message Push Listeners

If you are using message push listeners to send messages to user-defined URLs,
you must have an HTTP server that is reachable from the public Internet and
addressable at the provided URL. You must also have the ability to deploy custom
applications to the user-defined URL to first verify ownership of the provided URL
and then receive messages.

If you are pushing messages to a user-defined URL over HTTPS, the push target
must have a valid Secure Sockets Layer (SSL) certification from Verisign.
Communication from Oracle Cloud to external hosts with invalid SSL certificates or
self-signed certificates will fail.

Before developing applications that use Oracle Messaging Cloud Service, make sure
you understand the following and adhere to the guidelines documented in the relevant
sections:

• JSESSIONID HTTP cookies

The Oracle Messaging Cloud Service REST API relies on the use of JSESSIONID
HTTP cookies to identify and reuse messaging contexts between REST API HTTP
requests. Each service instance has a quota of connections that can be created,
so it is important to manage messaging contexts, and their associated connections
and cookies. For guidelines on using JSESSIONID HTTP cookies, see Messaging
Context and HTTP Cookies.

• Cross-Site Request Forgery (CSRF) prevention

Chapter 1
Before You Begin with Oracle Messaging Cloud Service

1-6

http://download.oracle.com/otndocs/jcp/7542-jms-1.1-fr-doc-oth-JSpec/

CSRF is an HTTP client vulnerability in which malicious code attempts to exploit a
web server's trust in a user's identity (represented by an HTTP cookie). For
information about how Oracle Messaging Cloud Service prevents CSRF attacks
and how to manage anti-CSRF tokens generated for connections, see Cross-Site
Request Forgery (CSRF) Prevention.

For additional considerations when developing applications with the Oracle Messaging
Cloud Service Java library and REST API, see Developing Applications That Use
Oracle Messaging Cloud Service.

How to Begin with Oracle Messaging Cloud Service
Subscriptions

Here's how to get started with Oracle Messaging Cloud Service trials and paid
subscriptions:

To get started with Oracle Messaging Cloud Service, sign up for a free credit
promotion, or purchase a subscription. See Requesting and Managing Free Oracle
Cloud Promotions or Buying an Oracle Cloud Subscription in Getting Started with
Oracle Cloud.

About Oracle Messaging Cloud Service Roles and Users
User roles and privileges are described in Getting Started with Oracle Cloud.

In addition to the roles and privileges described in Managing User Accounts and
Managing User Roles in Getting Started with Oracle Cloud, two default account roles
are created during provisioning time:

• Messaging Administrator

• Messaging Worker

When the service instance is created during provisioning, the service administrator is
given both Messaging Administrator and Messaging Worker roles. The account
administrator can create more messaging administrators, messaging workers, or users
with both roles, by assigning the appropriate role to users.

The following table summarizes the Oracle Messaging Cloud Service roles used to
access, develop, and administer Oracle Messaging Cloud Service and applications.

Role Description More Information

Messaging
Administrator

Can list and manage all
destinations

Can list and manage all durable
subscriptions

Can list and manage all message
push listeners

Can send and receive messages

Developing Applications That Use
Oracle Messaging Cloud Service

Accessing Oracle Messaging
Cloud Service Using Java Library

Accessing Oracle Messaging
Cloud Service Using REST API

Chapter 1
How to Begin with Oracle Messaging Cloud Service Subscriptions

1-7

Role Description More Information

Messaging Worker Can send and receive messages

Can list and manage all durable
subscriptions

Can list and manage all message
push listeners

Can retrieve properties of
individual queues, and topics.
Cannot list, create, or delete
destinations

Developing Applications That Use
Oracle Messaging Cloud Service

Accessing Oracle Messaging
Cloud Service Using REST API

Accessing Oracle Messaging
Cloud Service Using Java Library

Chapter 1
About Oracle Messaging Cloud Service Roles and Users

1-8

2
Developing Applications That Use Oracle
Messaging Cloud Service

This section provides important information for developers who create applications that
use Oracle Messaging Cloud Service through either the Java library or the REST API.

Topics:

• Typical Workflow for Using Oracle Messaging Cloud Service

• Accessing Oracle Messaging Cloud Service

• Considerations When Developing Applications That Use Oracle Messaging Cloud
Service

• Using the Java Library

• Using the REST API

Typical Workflow for Using Oracle Messaging Cloud Service
To start developing applications that use Oracle Messaging Cloud Service, refer to the
following tasks as a guide:

Task Description More Information

Sign up for a
free credit
promotion, or
purchase a
subscription.

Provide your information,
and sign up for a free
credit promotion or
purchase a subscription.

Requesting and Managing Free Oracle Cloud
Promotions or Buying an Oracle Cloud Subscription
in Getting Started with Oracle Cloud

Add and
manage
users and
roles

Create accounts for your
users and assign them
appropriate privileges.
Assign the necessary
Oracle Messaging Cloud
Service roles.

Managing User Accounts and Managing User Roles
in Managing and Monitoring Oracle Cloud, and
About Oracle Messaging Cloud Service Roles and
Users

Access the
service

Access the service
through the REST API and
the Java library. To use
the Java library, download
the Oracle Messaging
Cloud Service Java SDK.

Accessing Oracle Messaging Cloud Service

Create and
manage
destinations

Create, list, and delete
destinations.

This functionality is only
available to users with the
Messaging Administrator
role.

REST API: Creating and Managing Destinations

Java library: Managing Destinations

2-1

Task Description More Information

Send
messages to
a destination

Send messages to a
destination.

REST API:
• Send a Message via a Producer
• Sample code: Send a Message to a Topic

Java library:
• Using JMS to Send and Receive Messages
• Sample code: Send a Message to a Topic

Receive
messages
from a
destination

Receive messages from a
destination.

REST API: Receiving Messages

Java library: Using JMS to Send and Receive
Messages

Receive
messages
using
selectors

Use selectors to specify
filtered subsets of
messages to receive.

REST API: Receive a Message from a Queue with
a Selector

Java library: Receive a Message from a Queue with
an Optional Selector

List durable
subscriptions

List information about one
or more durable
subscriptions.

REST API: List Durable Subscriptions

Java library: List Durable Subscriptions

Create and
delete
durable
subscriptions

Create and delete durable
subscriptions.

REST API:
• Creating and Managing Durable Subscriptions
• Sample code: Create a Durable Subscription

Java library: Managing Durable Subscriptions

Send and
receive
messages
within
transactions

Use transactions to group
multiple send and receive
operations into atomic
operations.

REST API:
• Sample code: Process Messages using a

Transaction

Java library:
• Using JMS to Send and Receive Messages
• Sample code: Asynchronously Process

Messages Within a Transaction

Create and
manage
message
push
listeners

Create, list, use, and
delete message push
listeners.

REST API:
• Creating and Managing Message Push

Listeners
• Sample code: Create a Message Push Listener

Java library:
• Managing Message Push Listeners
• Sample code: Create a Message Push Listener

Accessing Oracle Messaging Cloud Service
You can access Oracle Messaging Cloud Service through the Java library and the
REST API.

The Java library is included in the Oracle Messaging Cloud Service Java SDK that can
be downloaded from Oracle Technology Network. To download the Java SDK, see
Downloading the Oracle Messaging Cloud Service Java SDK.

Before you create applications that make use of Oracle Messaging Cloud Service, be
sure to review the guidelines in Considerations When Developing Applications That
Use Oracle Messaging Cloud Service.

To learn how to use the Java library and the REST API to access the service for your
specific needs, refer to the following documents:

Chapter 2
Accessing Oracle Messaging Cloud Service

2-2

• Using the Java Library and Accessing Oracle Messaging Cloud Service Using
Java Library

• Using the REST API and Accessing Oracle Messaging Cloud Service Using REST
API

Considerations When Developing Applications That Use
Oracle Messaging Cloud Service

Oracle Messaging Cloud Service is largely based on the Java Message Service (JMS)
programming model.

Topics:

• About Queues and Topics

• About Message Push and Message Push Listeners

• About Verification of Message Push Listeners

• About Connections

• About Sessions, Acknowledgement Modes, Transactions, and Provisional
Messages

• About Producers, Consumers, and Selectors

• About Parts of a Message

• About Persistent and Non-Persistent Messages

• About Authorization

• About Service Termination

• About the Ordering of Message Delivery

• Using Message Groups

• Sending Large Objects as Messages Using Oracle Storage Cloud Service

Oracle Messaging Cloud Service provides the same messaging patterns as JMS and
also introduces a new pattern of its own. If you have experience with JMS, the
concepts should be familiar. If you are not yet familiar with JMS, see About Messaging
Concepts to review basic concepts such as destinations, producers and consumers,
and connections and sessions.

The concepts in this section apply to both the REST API and Java library. Regardless
of your experience with JMS or REST APIs, and whether you are developing
applications with the Java library or REST API, it is important that you review the
general guidelines documented in this section first, before referring to the subsequent
sections for specific guidelines on Using the Java Library or Using the REST API.

About Queues and Topics
Queues and topics are types of destination to which messages can be sent.

• Queues: Messages sent to a queue are received by one and only one consumer.

When a message is sent to a queue, the message is kept until it is either received
or until it expires. This quality of queues removes the timing dependency between

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-3

producers and consumers, which means producers and consumers don't have
to be available and communicating at the same time.

When a message is received, the consumer can either automatically or manually
acknowledge message receipt to the messaging platform, indicating whether the
message was received or not. See About Sessions, Acknowledgement Modes,
Transactions, and Provisional Messages for information about acknowledgement
modes.

Each instance of Oracle Messaging Cloud Service has a bound on the number of
queues it can have. See About Resource Limits for the maximum number of
messaging resources per service instance in paid and trial service subscriptions.

• Topics: Messages sent to a topic may be received by multiple consumers or
none.

Consumers must be connected to a topic when a message is sent to the topic in
order to receive the message. This quality of topics implies there is a timing
dependency between message producers and message consumers. If a client has
no consumers on a topic, it will miss any messages sent to the topic until it creates
a consumer on the topic.

If the timing dependency for receiving a message is undesirable, a client can
create a durable subscription for the topic. A durable subscription stores all
messages sent to a topic until each message is received.

Each instance of Oracle Messaging Cloud Service has a bound on the number of
topics and durable subscriptions it can have. See About Resource Limits for the
maximum number of messaging resources per service instance in paid and trial
service subscriptions.

The time-to-live or maximum time a message can live in Oracle Messaging Cloud
Service is 14 days. The time-to-live can be set to a value less than 14 days for any
given message. When a message reaches the defined time-to-live value, it is
permanently deleted.

About Message Push and Message Push Listeners
Messages sent to a destination can be pushed to either another destination or to a
user-defined URL through message push listeners.

A user-defined URL's scheme can be either HTTP or HTTPS. For message push to an
HTTPS URL to succeed, the server to which messages are pushed must have a valid
Secure Sockets Layer (SSL) certification from Verisign. A message push listener
asynchronously receives messages from a queue, topic, or durable subscription.
When a message is received by a message push listener, the message is pushed to
the configured target.

Messages can only be pushed to a user-defined URL via PUT and POST HTTP
requests.

Message push listeners can have specific retry and failover policies that define what
the message push listener does if delivery of a message to a target fails. Failover
policies can push a message to another destination or user-defined URL. If a message
push listener cannot deliver a message and no failover policy is specified, then the
message push listener discards the message.

Message push listeners will not follow HTTP redirects. If a message push listener
makes an HTTP request to push a message to a user-defined URL, and receives a

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-4

redirect response (that is, a response whose status is in the range 300-399), the
message push listener will treat it as an error response. Any further handling of the
message will be as defined by the message push listener's failover policy. The
message push listener will not push the message to the location specified in the
redirect response.

Each instance of Oracle Messaging Cloud Service cannot be assumed to support
more message push listeners than available connections (which are required to send
and receive messages). See About Connections for information about why it is
important to assume that each message push listener will use a dedicated connection.

About Verification of Message Push Listeners
A message can be pushed to a user-defined URL using a message push listener.
Before a message push listener can be created, Oracle Messaging Cloud Service
must verify all URL targets of the message push listener. In other words, a message
push listener is created only after the service has verified that all URLs to which the
listener might push a message are willing to receive such pushes, as shown in the
following diagram.

The process to verify the URL targets of a message push listener is as follows:

1. A request is made to create a new message push listener, through either the
REST API or Java library. Note that the message push listener is not actually
created until its URL targets have been verified.

2. Oracle Messaging Cloud Service sends a verification request to every user-
defined URL in the listener's definition (primary target and failover targets). Each
verification request is an HTTP request that includes the following:

• An HTTP header with name X-OC-MPL-CHALLENGE whose value is a service-
generated pseudorandom challenge token

• An HTTP header with name X-OC-MPL-VERIFICATION whose value is a user-
provided verification token

3. For a verification request to succeed, the user-defined URL must echo the
pseudorandom challenge token as the body of the HTTP response, and the HTTP
response must return with a status code of 200. Optionally, the user-defined URL
can also validate the value of the user-provided verification token. If the verification
request receives a redirect response, the verification request fails.

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-5

The verification token is essentially a way for a client creating a message push
listener to identify itself to the endpoint as a trusted entity. The verification token
could, for example, be a secret string shared between the endpoint and the client,
a one-time password, or a cryptographically signed token. The client and endpoint
are free to use the value in whatever way they like.

4. If the verification request fails for any user-defined URL, the creation of the
message push listener will also fail.

The purpose of verifying each user-defined URL is to ensure that the owner of the
URL is willing to accept pushed messages.

About Destination Deletion
This section provides information about what happens when a client is using, or
attempts to use, a non-temporary destination (queue or topic) that is deleted.

Deleting a non-temporary destination is a non-blocking operation. The operation of
deleting a destination (either through the REST API or through the Java library) can
complete and return control to the client, and the destination can still be in the process
of being deleted. Destinations that are in the process of being deleted, but whose
deletion is not yet complete, are referred to as being marked for deletion. Destinations
that are marked for deletion will still be listed when all destinations are listed, and their
properties can still be retrieved. They will, however, have status MARK_FOR_DELETION. A
destination can have status MARK_FOR_DELETION for some time.

Any use of a destination that is marked for deletion may fail. This includes sending to
it, receiving from it, browsing it (if it is a queue), creating message push listeners on it,
having a message push listener push messages from it or to it, etc. This applies both
to attempts to use the destination after it is marked for deletion and uses of the
destination that began before it was marked for deletion. Sends to a destination that is
marked for deletion may succeed or fail. Messages on or sent to a destination that is
marked for deletion may or may not be lost. It is recommended that applications be
implemented so as to avoid making any use of destinations that are marked for
deletion, for example, by using a fixed set of destinations that does not change over
time, shutting down all uses of a destination before deleting it, etc.

Message push listeners that listen on a destination that becomes marked for deletion
will be deleted automatically. Applications that might be sensitive to the exact time that
a message push listener is deleted after its destination is marked for deletion should
delete the message push listeners on a destination manually before deleting the
destination.

Message push listeners that push to a destination that is marked for deletion or fully
deleted will not be deleted automatically when that destination is deleted. Any
message push listener that pushes to a destination that might be deleted while the
message push listener still exists should be configured with a failure policy that
ensures that messages will not be lost if the target destination is deleted.

About Connections
Connections are required to send and receive messages between clients and Oracle
Messaging Cloud Service. A connection represents all of the resources needed for
communication between clients and the messaging platform.

A client usually uses one connection for all of its sending and receiving operations,
though a client can use multiple connections if desired.

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-6

Each instance of Oracle Messaging Cloud Service has a quota of concurrent
connections. When an instance is using 100% of the connection quota, additional
attempts to establish new connections will fail.

A new connection is used when:

• A connection is created through the REST API

• A JMS connection is created through the Java library

• A message push listener is created

Oracle Messaging Cloud Service may allocate message push listeners to connections
in different ways in order to optimize performance. The service may have multiple
message push listeners use the same connection or have different message push
listeners use different connections.

See Messaging Context and HTTP Cookies and Cross-Site Request Forgery (CSRF)
Prevention for additional guidelines when using the REST API.

About Sessions, Acknowledgement Modes, Transactions, and
Provisional Messages

Once a connection has been created, a session must also be created before
messages can be sent or received. A session provides a behavioral context that
defines what it means for messages to be sent and received between clients and
Oracle Messaging Cloud Service.

A single connection can have multiple sessions. Unless explicitly closed, sessions
persist until the connection from which they are created is closed.

A message received by a client through a session must be acknowledged before its
receipt is treated as final by Oracle Messaging Cloud Service. When a session is
created, its acknowledgement mode must be set to one of the following options:

• Auto-acknowledge: In auto-acknowledge mode, every message received is
automatically acknowledged immediately after it is received. Any message
received through an auto-acknowledge session is final.

• Client-acknowledge: In client-acknowledge mode, clients must explicitly
acknowledge all message receipts. This allows clients to examine a message to
determine if it is prepared to consume the message or not. It is recommended that
this mode be used if the session is not transacted and if the Messaging Service is
being used for applications in which messages must not be lost.

• Duplicates-OK: In duplicates-OK mode, message receipts are acknowledged
automatically, but lazily, which means messages are not individually
acknowledged when they are received but are automatically acknowledged at a
later point in time. This mode reduces the communication overhead between
clients and the messaging platform, and may increase the rate at which messages
are received.

Using the duplicates-OK mode, however, may result in any given message being
delivered multiple times, potentially to more than one client. If a session using this
acknowledgement mode unexpectedly closes, the messages delivered to the
client since the last acknowledgement may be made available for delivery to other
clients.

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-7

Sessions created through the REST API are auto-acknowledged by default. Sessions
created through the Java library must have their acknowledgement mode specified
explicitly.

Instead of specifying an acknowledgement mode, a session can be configured such
that sequences of send and receive operations are grouped into atomic operations
known as transactions. Like acknowledgement modes, sessions are configured to be
transacted or not transacted when the session is created. In a transaction, all grouped
send and receive operations either complete or do not complete collectively.

At any point in a transaction, the client can call rollback, and all previous send and
receive operations within that transaction will be cancelled. Transacted sessions must
be explicitly committed. When the client calls commit on a transaction, all send and
receive operations are made permanent and a new transaction is started.

In sessions whose mode is client-acknowledge, the client receiving messages is
responsible for explicitly acknowledging that messages have been received. Until the
client explicitly acknowledges a message, received messages are considered to be
provisional. If the client fails to perform acknowledgement, provisionally received
messages are returned to the destination and made available to be received by
another client when the session or its connection is closed.

Similarly, in transacted sessions the client sending and receiving messages is
responsible for explicitly committing the session. Until the session is committed, all
sent and received messages within the transaction are considered to be provisional.
Failure to commit transacted sessions will cause provisionally sent messages to be
discarded and provisionally received messages to be made available for delivery to
other clients. In both client-acknowledge mode and transacted sessions, when a
provisionally received message becomes available to be delivered to another client,
and when the message is so delivered, it is marked as redelivered.

About Producers, Consumers, and Selectors
A session sends messages through a producer and receives messages through a
consumer. A session can have multiple producers and multiple consumers. Unless
explicitly closed, producers and consumers persist until the session in which they are
created is closed.

A producer defines the default characteristics of how messages are sent to and stored
within the messaging platform. A producer can specify the destination to which all
messages are sent, how sent messages should be stored on the target destination,
and how long sent messages can live in the service before they expire.

A consumer defines how messages are received from the messaging platform. A
consumer must specify the destination from which messages are received.

Optionally, consumers can select a subset of all available messages to be received
from a destination by specifying a selector. A selector is an SQL-like expression that
specifies a condition that a message must satisfy to be eligible for the consumer to
receive the message. Selectors can only select messages based on criteria in the
message headers and properties. Selectors cannot select messages based on the
contents or type of a message body (for example, Text or Object type). For the syntax
of selectors, see the Message Selectors section of the Java API reference for the
javax.jms.Message class. For the syntax of selectors, see the Message Selectors
section of the Java API reference for the javax.jms.Message class at the URL:

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-8

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

About Parts of a Message
Messages are unique, discrete units of information that pass between two or more
clients through Oracle Messaging Cloud Service. Each message has three parts:
headers, properties, and a body.

Topics:

Message Headers

Message Properties

Message Body and Message Size

Message Headers
Message headers are predefined key/value pairs associated with a message.

Message headers are used by the messaging platform for message identification and
routing purposes. Some headers are client-set and some are broker-set. For client-set
headers, ‘Required’ means that the client must supply the header and ‘Optional’
means that client need not supply it. For broker-set headers, ‘Required’ means the
broker will always set it, whereas ‘Optional’ means the broker may or may not set it.

The headers, some of which may or may not be present in a message, are:

• Correlation ID: An identifier that can be set by the sending client to correlate
multiple messages. The value of this header is set by the sending client.

• Delivery Mode: Required. The persistence type of the message. The value of this
header is set by the sending client.

• Destination: Required. The destination to which the message was sent. The value
of this header is set by the sending client. For more information, see About
Persistent and Non-Persistent Messages.

• Expiration: Required. The time when the message will expire. The value of this
header is a long integer, and is interpreted as Unix time. This value is set by the
JMS broker, but is partially a function of the message's time-to-live, which is set by
the sending client.

• Message ID: Required. The globally unique ID of the message. This value is set
by the JMS broker.

• Redelivered: Required. Indicates whether the message has been delivered at least
once before. Value is true or false. This value is set by the JMS broker.

• ReplyTo: A destination to which replies to this message should be sent. Controlled
by the sending client.

• Time: The time when the message was sent to the destination. Set by the JMS
broker.

Message Properties
Message properties are optional key/value pairs associated with a message. Some
message properties are user-defined, and some are set by the system.

Message property values can have the following classes:

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-9

• Boolean

• Byte

• Short

• Integer

• Long

• Float

• Double

• String

Selectors can use message properties to restrict the messages received by a
consumer. See About Producers, Consumers, and Selectors for information about
selectors.

Message Body and Message Size
A message body must have a type, which defines the format and structure of the body.

The message type can be one of the following:

• PLAIN: The message has no body. It only has headers and properties.

• TEXT: The message body is a String.

• BYTES: The message body is an array of bytes.

• OBJECT: The message body is a serialized Java object.

• MAP: The message body is a set of key/value pairs. Keys are Strings and values
are Java objects. Each value can be either a Boolean, Byte, Character, Short,
Integer, Long, Float, Double, String, or an array of bytes.

• STREAM: The message body is a stream of Java objects. Each object in a stream is
either a Boolean, Byte, Character, Short, Integer, Long, Float, Double, String, or
an array of bytes.

• HTTP: The message body is a serialized Java object that contains a byte array
representing the body of an HTTP request or response, and Strings representing
the HTTP headers that specify the language and media type of that body.

Messages have a maximum size of 512KB. Send operations with messages larger
than 512KB will fail. See Accessing Oracle Messaging Cloud Service Using REST API
and Accessing Oracle Messaging Cloud Service Using Java Library for information
about how message size is calculated.

About Persistent and Non-Persistent Messages
When a message is sent to a destination, the message delivery mode is marked as
persistent by default.

Persistent messages are guaranteed to be stored in a durable medium while being
processed by Oracle Messaging Cloud Service. This means persistent messages are
not lost if Oracle Messaging Cloud Service temporarily goes down.

Optionally, messages can be marked as non-persistent. Non-persistent messages
may or may not be stored in a durable medium. Since non-persistent messages do not
require as much I/O as persistent messages, higher throughput rates may be achieved

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-10

by using non-persistent messages. If Oracle Messaging Cloud Service temporarily
goes down, however, non-persistent messages may be lost.

A queue or topic cannot have more than 100,000 messages at any given time. Send
operations to a destination with 100,000 messages will fail. The 100,000 limit applies
to either persistent or non-persistent messages, or a combination of both.

Note:

While persistent messages are always stored in a durable medium, there are
rare instances when the durable medium and the messages stored may be
lost. Additional copies of mission-critical data should therefore always be
stored in secure and reliable locations.

About Authorization
User roles and privileges are described in Getting Started with Oracle Cloud.

In addition to the roles and privileges described in Managing User Accounts and
Managing User Roles in Getting Started with Oracle Cloud, two default account roles,
Messaging Administrator and Messaging Worker, are created for Oracle Messaging
Cloud Service when the service instance is provisioned. Each role has privileges that
define what operations users are authorized to perform in the service instance. Any
user with the Messaging Administrator role can potentially delete any destination
within the instance. Any user with the Messaging Administrator role or the Messaging
Worker role can potentially send or receive messages to any destination within the
instance. See About Oracle Messaging Cloud Service Roles and Users for additional
privileges associated with each role.

About Service Termination
When an instance of Oracle Messaging Cloud Service is terminated, no customer data
is archived. Messages residing on destinations are deleted immediately upon service
termination.

Before terminating an instance, be sure to drain and store messages from queues and
durable subscriptions if the contents of stored messages are important.

About the Ordering of Message Delivery
Oracle Messaging Cloud Service does not provide any strict guarantees about the
order in which messages are delivered.

Applications for which message ordering is critical should use the "redelivered"
message header to detect redeliveries, and should consider the use of timestamps or
sequence numbers, possibly attached to messages as message properties or in the
message bodies, to ensure that messages are processed in the proper order.

Using Message Groups
Message groups can be used to send a message that is larger than 512KB in a set of
multiple smaller messages using a queue.

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-11

Message groups are used to group different messages that should all be processed by
the same consumer. Message groups are created implicitly by sending messages that
have a message ID and sequence number set on them to a queue.

A message group is defined by a group ID and a group sequence number. If a
message belongs to a group, the group it belongs to is defined by the value of its
JMSXGroupID property.

Note:

• If you send messages in a specific group to a queue, and the sequence
numbers are out of order, the consumer will receive them in the order in
which they were sent, not in order of message sequence.

• The first message sent in a group must have sequence number 1.

• Sequence numbers have no effect on message receipt order from
queues.

• Sequence numbers are not used to eliminate duplicate messages.

• The use of message groups has no effect when used with topics: all
consumers on the topic will get all messages, and receipt order will not
be affected by sequence numbers.

• Sequence numbers play an important role in the delivery of messages in
a message group. For example, consider a scenario such as the
following:

– Messages are sent in group G. Consumer C is chosen to receive
group G, and gets some of the messages.

– After consumer C receives few messages from group G, consumer
C is closed. However, more messages are sent in group G.

– A new consumer, D, is chosen to receive messages in G.

– When consumer D receives messages that don’t start with sequence
number 1, D can conclude that some other messages in the group
were sent to some other consumer.

Method: POST

Path: /producers/producerName/messages

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-12

Parameter Description

groupId This parameter is used to set the JMSXGroupID property on the
message being sent. This is the name of the message group of
which this message is a part, if any.

Note:
If the JMSXGroupID property is set as an HTTP request header, it
must be set to an escaped value String or a badParameter error
response will be generated. For more information on escaped value
Strings, see About Escaped Value Strings. If the JMSXGroupID
property is set as a query string parameter, the usual conventions
for escaping query string parameters hold.

groupSeq This parameter is used to set the JMSXGroupSeq property on the
message being sent. This is the sequence number of the message
within the message group specified by the groupId parameter.
The groupSeq parameter must be set to an integer or a
badParameter error response will be generated.

Result: Sends multiple messages as a message group using a queue.

Error Responses:

Error Message Description

badParameter The groupSeq parameter was not set to
an integer.

incompleteGroupProperties Exactly one of the JMSXGroupID and
JMSXGroupSeq properties was set on the
message. Either both properties must be
set, or neither must be set.

See Use Message Groups for a code sample on sending messages using message
groups.

Sending Large Objects as Messages Using Oracle Storage Cloud
Service

You can use Oracle Storage Cloud Service to send large message payloads using a
message that contains a reference to the payload. This is especially useful for storing
and consuming messages with a message size of up to 5 GB, the maximum size of a
single object stored in a Storage container.

You can send large payloads with a combination of Oracle Messaging Cloud Service
and Oracle Storage Cloud Service and use the following features that the services
allow:

• Store the message payload as a storage object with an automatic deletion time.

• Create a temporary URL to access the object containing the payload.

• Send a message containing the temporary URL for the object.

• Fetch the payload from the temporary URL.

• Delete the corresponding message object from an Oracle Storage Cloud
container.

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-13

About Oracle Storage Cloud Service

Oracle Storage Cloud Service is an Infrastructure as a Service (IaaS) product, which
provides an enterprise-grade, large-scale object storage solution for data of any type.
Oracle Storage Cloud Service stores data as objects within a flat hierarchy of
containers.

Oracle Storage Cloud Service allows you to create temporary URLs for your objects,
authenticate storage requests, and auto-delete the objects after a certain period.

To learn more about Oracle Storage Cloud Service, see Features of Oracle Cloud
Infrastructure Object Storage Classic in Using Oracle Cloud Infrastructure Object
Storage Classic.

About Temporary URLs

Temporary URLs are time-limited URLs that expire after a configured time period. You
can create temporary URLs to provide a secure, temporary access to protected
resources like objects in your Oracle Storage Cloud Service account. A temporary
URL specifies both the object and the HTTP method with which the object can be
accessed. If you do not have access to Oracle Storage Cloud Service, you can
download an object from the service using a temporary URL.

Note:

The auto-delete time set on the object and the time at which the temporary
URL expires are not necessarily the same time; they can be set
independently.

See Downloading an Object Using a Temporary URL in Using Oracle Cloud
Infrastructure Object Storage Classic..

Step-by-Step Procedure to Send a Large Object Stored in a Storage Container as
a Message

The example shows a step-by-step procedure for sending a large object stored in a
storage container as a message:

Note:

• Only relevant HTTP headers are shown in the example.

• The values of the secret key, password, etc. mentioned as <***> should
be replaced by the appropriate values for the service or account, or by
user-chosen values.

1. Get an authentication token

HTTP Request

GET /auth/v1.0 HTTP/1.1
Host: storage.oraclecorp.com

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-14

Accept: */*
X-Storage-User: Storage-msnerd:msnerd.Storageadmin
X-Storage-Pass: <account password>

HTTP Response

HTTP/1.1 200 OK
Server: nginx/1.10.2
Content-Length: 0
X-Auth-Token: AUTH_tk7e51d668b970abcc71f91c64e0fa5e38
X-Storage-Token: AUTH_tk7e51d668b970abcc71f91c64e0fa5e38
X-Storage-Url: https://storage.oraclecorp.com/v1/Storage-msnerd

The authentication token and storage-URL generated in this section will be used in
the requests for accessing the message payload.

2. Create a container for your object

HTTP Request

PUT /v1/Storage-msnerd/storage-payload HTTP/1.1
Host: storage.oraclecorp.com
Accept: */*
X-Auth-Token: AUTH_tk7e51d668b970abcc71f91c64e0fa5e38

HTTP Response

HTTP/1.1 202 Accepted
Server: nginx/1.10.2

3. Set the container key using the information retrieved from steps 1 and 2

HTTP Request

POST /v1/Storage-msnerd/storage-payload HTTP/1.1
Host: storage.oraclecorp.com
Accept: */*
X-Auth-Token: AUTH_tk7e51d668b970abcc71f91c64e0fa5e38
X-Container-Meta-Temp-URL-Key: <container_secret_key>

<container_secret_key> is a password key value specific to the account owner.

HTTP Response

HTTP/1.1 204 No Content

4. Create the payload, upload the object to the storage container, and set an
auto deletion time on the object

HTTP Request

PUT /v1/Storage-msnerd/storage-payload/<UUID> HTTP/1.1
Host: storage.oraclecorp.com
Accept: */*
X-Auth-Token: AUTH_tk7e51d668b970abcc71f91c64e0fa5e38
Content-Type: <object_content_type>
X-Delete-At: <Time-stamp _for_auto-delete>
Content-Length: <Size_of_the_payload>
[Message payload]

Here are some examples of the variables used in the above request:

• UUID - To create a payload, generate or use a unique ID that can be used to
refer to the payload. For example, 1faf75ea-5619-4a0e-a8a3-764f360ee0eb.

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-15

• object_content_type - This is the media type of the object. For example,
application/octet-stream.

• Time-stamp _for_auto-delete - This is the UNIX Epoch timestamp representing
the date and time at which the object should be deleted. For example,
1416218400 represents November 17, 2014 10:00:00 GMT. See http://
www.epochconverter.com/.

• Size_of_the_payload - 3523574 (In Bytes)

HTTP Response

HTTP/1.1 201 Created
Server: nginx/1.10.2
Content-Type: <object_content_type>
Content-Length: 0

object_content_type is the media type of the object. For example, application/
octet-stream.

Sample Code to compute a temporary URL

You can refer to the following sample codes to compute a temporary URL:

• Java Code

• Python Code

Here’s a sample Java code to compute a temporary URL:

import java.io.UnsupportedEncodingException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SignatureException;

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;

/**
 * Utility class for creating HMAC-SHA1 signatures and
 * OSS temporary URLs.
 */
public class HMACUtils
{
 private static final String algorithm = "HmacSHA1";

 // Lower-case hex digits in order
 private static final char[] hexDigit = "0123456789abcdef".toCharArray();

 /**
 * Method to convert a byte array into a string of lower-case hex digit
pairs.
 *
 * @param bytes
 * Bytes to convert.
 * May not be <code>null</code>.
 *
 * @return
 * String of hex digits corresponding to the input array.
 */
 public static String bytesToHexPairs(byte[] bytes)
 {
 StringBuilder sb = new StringBuilder();

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-16

 for(byte b : bytes)
 {
 sb.append(hexDigit[(((int)b) & 0b11110000) >>> 4]);
 sb.append(hexDigit[((int)b) & 0b1111]);
 }

 return sb.toString();
 }

 /**
 * Method to compute HMAC-SHA1 signature from arbitrary data.
 *
 * @param key
 * Secret key for the signature, set on the OSS account or container.
 * May not be <code>null</code>.
 *
 * @param data
 * Data to be signed.
 * May not be <code>null</code>.
 *
 * @return
 * Bytes for the signature. Must be rendered as lower-case hex-digit
pairs in an OSS temporary URL.
 *
 * @throws SignatureException
 * An error occurred in generating the signature.
 *
 * @throws NoSuchAlgorithmException
 * Should not occur; the algorithm used should
 * be valid HMAC-SHA1.
 *
 * @throws InvalidKeyException
 * An error occurred in processing the key.
 */
 public static byte[] signature(byte[] key, byte[] data)
 throws SignatureException, NoSuchAlgorithmException, InvalidKeyException
 {
 SecretKeySpec signingKey = new SecretKeySpec(key,algorithm);
 Mac mac = Mac.getInstance(algorithm);
 mac.init(signingKey);
 return mac.doFinal(data);
 }

 /**
 * Method to compute HMAC-SHA1 signature for a method, expiration time, and
path.
 *
 * @param key
 * Secret key for the signature, set on the OSS account or container.
 * May not be <code>null</code>.
 *
 * @param method
 * HTTP method (e.g. GET, POST, DELETE, PUT).
 * May not be <code>null</code>.
 *
 * @param expiration
 * Unix epoch time in seconds at which the signature will expire.
 * Must be non-negative.
 *
 * @param path
 * Path (the part of the URL starting with '/' and coming after the

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-17

host and port) to
 * which the signature will give temporary access.
 * May not be <code>null</code>.
 *
 * @return
 * Bytes for the signature. Must be rendered as lower-case hex-digit
pairs in an OSS temporary URL.
 *
 * @throws SignatureException
 * An error occurred in generating the signature.
 *
 * @throws NoSuchAlgorithmException
 * Should not occur; the algorithm used should
 * be valid HMAC-SHA1.
 *
 * @throws InvalidKeyException
 * An error occurred in processing the key.
 *
 * @throws UnsupportedEncodingException
 * Should not occur; only UTF-8 encoding is used to convert characters
to bytes.
 */
 public static byte[] signature(byte[] key, String method, long expiration,
String path)
 throws SignatureException, NoSuchAlgorithmException,
InvalidKeyException, UnsupportedEncodingException
 {
 return HMACUtils.signature(key, (method+'\n'+expiration
+'\n'+path).getBytes("UTF-8"));
 }

 /**
 * Method to compute a temporary OSS URL.
 *
 * @param key
 * Secret key for the signature, set on the OSS account or container.
 * May not be <code>null</code>.
 *
 * @param method
 * HTTP method (e.g. GET, POST, DELETE, PUT).
 * May not be <code>null</code>.
 *
 * @param timeToExpiration
 * Amount of time in seconds after which the
 * temporary URL will expire.
 *
 * @param path
 * Path (the part of the URL starting with '/' and coming after the
host and port) to
 * which the signature will give temporary access.
 * May not be <code>null</code>.
 *
 * @return
 * Path portion of the temporary URL.
 *
 * @throws SignatureException
 * An error occurred in generating the signature.
 *
 * @throws NoSuchAlgorithmException
 * Should not occur; the algorithm used should
 * be valid HMAC-SHA1.

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-18

 *
 * @throws InvalidKeyException
 * An error occurred in processing the key.
 *
 * @throws UnsupportedEncodingException
 * Should not occur; only UTF-8 encoding is used to convert characters
to bytes.
 */
 public static String temporaryURLPath(byte[] key, String method, long
timeToExpiration, String path)
 throws SignatureException, NoSuchAlgorithmException,
InvalidKeyException, UnsupportedEncodingException
 {
 long expiration = System.currentTimeMillis()/1000 + timeToExpiration;
 byte[] sig = HMACUtils.signature(key,method,expiration,path);

 return path +
 ((path.indexOf('?') < 0) ? '?' : '&') +
 "temp_url_sig=" +
 bytesToHexPairs(sig) +
 "&temp_url_expires=" +
 expiration;
 }

 /**
 * <p>
 * Command-line interface. This interface takes
 * arguments specifying a key and a temporary
 * access to an object in OSS (such as a large
 * message payload) and outputs the path portion of
 * the temporary URL with which to access the object.
 * </p>
 * <p>
 * Specifically, the arguments are as follows:
 * </p>
 *
 *
 * the secret key with which to generate
 * the signature; this must must have been
 * set previously on the OSS container or
 * account that will contain the object to
 * be accessed
 *
 *
 * the HTTP method to put into the signature
 * (e.g. GET, POST, PUT, DELETE); this will
 * determine what methods can be used with
 * the temporary URL
 *
 *
 * the amount of time, in seconds, after
 * which the temporary URL will no longer
 * function; the signature generated will
 * work for that many seconds from the time
 * at which HMACUtils is run.
 *
 *
 * the path to the OSS object to be accessed
 * via the temporary URL; this is the part
 * of the full URL that comes after
 * <nobr><code>https://</code><i><host></i><code>:</

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-19

code><i><port></i></nobr>
 * (including any leading '/').
 *
 *
 * <p>
 * Usage:
 * <nobr>
 * <code>java HMACUtils</code>
 * <i><key></i>
 * <i><HTTP method></i>
 * <i><time to expiration></i>
 * <i><OSS object path></i>
 * </nobr>
 * </p>
 * <p>
 * The output on standard out will be the
 * path portion of the temporary URL by which to
 * access the object, that is, the portion that
 * comes after
 * <nobr><code>https://</code><i><host></i><code>:</
code><i><port></i></nobr>.
 * </p>
 */
 public static void main(String[] argv) throws Exception
 {
 byte[] key = argv[0].getBytes("UTF-8");

 String method = argv[1];
 long timeToExpiration = Long.parseLong(argv[2]);
 String path = argv[3];

 System.out.printf("%s
\n",HMACUtils.temporaryURLPath(key,method,timeToExpiration,path));
 }
}

Here’s a sample Python code to compute a temporary URL:

User Input: Specify the following parameters:

serviceInstanceName = 'Storage' # Leave as is unless your service instance has a
different name
identityDomainName = 'acme' # Name of your identity domain
container = 'myContainer' # Container that has the objects you need the tempURL
for
key = 'mykey' # X-Container-Meta-Temp-Url-Key or X-Account-Meta-Temp-Url-Key
value
object = 'myObject' # Object name that you need the tempURL for. This is
optional if a container-level key is used.
urlDuration = 300 # Seconds for which the temp URL should work
serviceRestEndpoint = 'https://acme.storage.oraclecloud.com/v1/Storage-acme' #
REST endpoint URL of your service instance, as shown in the Service Details page
in My Services

Code to generate the temporary URL:

Note:

Do not modify any values in this section.

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

2-20

import hmac
from hashlib import sha1
from time import time
path = '/v1/' + serviceInstanceName + '-' + identityDomainName + '/' + container
+ '/' + object
expires = int(time() + urlDuration)
hmac_body = '%s\n%s\n%s' % ('GET', expires, path)
sig = hmac.new(key, hmac_body, sha1).hexdigest()
url = serviceRestEndpoint + '/' + container + '/' + object +'?temp_url_sig=' +
sig + '&temp_url_expires=' + str(expires)
print(url)

5. Use Oracle Messaging Cloud service to send a message with the temporary
URL as the payload.

See Sending Messages.

6. Retrieve the payload using the temporary URL.

HTTP Request

GET /v1/Storage-msnerd/storage-payload/<UUID>?
temp_url_sig=<temp_url_sig>&temp_url_expires=<temp_url_expire> HTTP/1.1
Host: storage.oraclecorp.com
Accept: */*

temp_url_sig The sample Java/Python code above generates the full temporary
URL. Part of the URL it creates is the value of temp_url_sig. This is the HMAC-
SHA1 signature of the method, expiration time, and path to the object, signed
using the container key set in step 3.

temp_url_expires is the UNIX Epoch timestamp representing the date and time at
which the temporary URL expires. Note that this is not when the object is auto-
deleted, but the time when the temporary URL will stop working.

HTTP Response

HTTP/1.1 200 OK
Content-Type: application/octet-stream
Content-Length: <Size of Payload>
X-Delete-At: <Time-stamp for auto-delete>
[Message payload]

Using the Java Library
The Oracle Messaging Cloud Service Java SDK provides a Java library for managing
service instance resources in addition to sending and receiving messages through the
JMS API. Included in the Java SDK is a copy of the Javadocs for the Java library.

Topics:

• Typical Workflow for Using the Java Library

• Downloading the Oracle Messaging Cloud Service Java SDK

• Authentication and Authorization

• Differences from JMS

Before you begin using the Java library, be sure to review the guidelines in this section
as well as the general guidelines in Considerations When Developing Applications
That Use Oracle Messaging Cloud Service.

Chapter 2
Using the Java Library

2-21

Typical Workflow for Using the Java Library
To start using the Java library, refer to the following tasks as a guide:

Task Description More Information

Download the Oracle
Messaging Cloud Service
Java SDK

The Oracle Messaging Cloud
Service Java SDK provides a Java
library for managing service
instance resources in addition to
sending and receiving messages
through the JMS API.

Downloading the Oracle
Messaging Cloud Service
Java SDK

Extract the Oracle
Messaging Cloud Service
Java library from the
downloaded Java SDK

Extract the Java library JAR file
somewhere onto your Java
application's class path.

Package the Java library
into an enterprise Java
web application

Import the Java library's classes
and interfaces into your Java
application.

Create a Servlet or Web
service

Create a Servlet or Web service to
send and/or receive messages.

Accessing Oracle Messaging
Cloud Service Using Java
Library

Send a Message to a Topic

Create a standalone
application

Create a Java standalone
application to send and/or receive
messages without an HTTP
interface.

Accessing Oracle Messaging
Cloud Service Using Java
Library

Asynchronously Receive
Messages with a Durable
Subscription

Downloading the Oracle Messaging Cloud Service Java SDK
The Oracle Messaging Cloud Service Java SDK is a downloadable package that
contains the following components:

Download the Oracle Messaging Cloud Service Java SDK from Oracle Technology
Network at the following URL:

http://www.oracle.com/technetwork/topics/cloud/downloads/messaging-cloud-
service-sdk-2279257.html

• Java library (oracle.messaging.cloud.api-14.0.X.jar where X is the latest
version number of the Java library)

• Java API Reference documentation for Oracle Messaging Cloud Service

Authentication and Authorization
When using the Java library, a client is authenticated with Oracle Messaging Cloud
Service when any of the operations listed below is initiated for the first time:

• Using any destination management function (listing, creating, or deleting
destinations).

Chapter 2
Using the Java Library

2-22

http://www.oracle.com/technetwork/topics/cloud/downloads/messaging-cloud-service-sdk-2279257.html
http://www.oracle.com/technetwork/topics/cloud/downloads/messaging-cloud-service-sdk-2279257.html

• Using a message push listener management function (listing, creating, or deleting
message push listeners).

• Listing durable subscriptions.

• Creating a connection.

The MessagingService object is the entry point for all operations against an instance
of Oracle Messaging Cloud Service, including message transmission and resource
management. If only one MessagingService object is created for all operations, then
all operations share the same user authentication and authorization level.

Differences from JMS
The Java library provided in Oracle Messaging Cloud Service implements the JMS 1.1
API. While you may be familiar with JMS in on-premises environments, note the
following differences from JMS when using the Java library:

• The Java Naming and Directory Interface (JNDI) is currently not supported for
referencing JMS objects such as ConnectionFactory, Queue, and Topic. JMS
objects must be instantiated directly using the Java library provided in Oracle
Messaging Cloud Service. Since JNDI is not supported, Oracle Messaging Cloud
Service cannot be used to implement message-driven beans.

• Oracle Messaging Cloud Service does not enforce message priority on message
delivery. Although message priority is a standard JMS message header, the
implementation of priority headers is not mandated by the JMS specification.
Messages can still be sent with a priority header but this does not influence how a
message is delivered. The value of the priority header is set to the default value of
"4".

Using the REST API
The REST API implements the same messaging model as the Java library, with the
exception that connections, sessions, producers, consumers, queue browsers, and
temporary destinations are created as resources on the service instance through the
REST API.

Topics:

• Typical Workflow for Using the REST API

• Messaging Context and HTTP Cookies

• Authentication

• About HTTP Headers

• Cross-Site Request Forgery (CSRF) Prevention

• Resource Management versus Message Transmission APIs

• Message Types

• Message Headers and Properties

• XML versus JSON Response Types

Before you begin using the REST API, review the guidelines in this section as well as
the general guidelines in Considerations When Developing Applications That Use
Oracle Messaging Cloud Service.

Chapter 2
Using the REST API

2-23

Typical Workflow for Using the REST API
To start using the REST API, refer to the following tasks as a guide:

Task Description More Information

Create a messaging
context

Create a messaging context, and
manage the lifecycle of messaging
contexts through the maximum
inactive interval (MII) feature.

Creating and Managing
Messaging Contexts

Create a connection Create connections before sending
and receiving messages.

Creating and Managing
Connections

Create a message push
listener

Create listeners to push messages
to a destination or user-defined
URL.

Creating and Managing
Message Push Listeners

Create a session Create sessions before sending or
receiving messages.

Creating and Managing
Sessions

Create a producer Create producers to send
messages.

Sending Messages

Create a consumer Create consumers to receive
messages.

Receiving Messages

Send a message through
a producer

Send messages through
producers.

Sending Messages

Receive a message
through a consumer

Receive message through
consumers.

Receiving Messages

Messaging Context and HTTP Cookies
A messaging context is a container of ephemeral objects like connections, sessions,
producers, consumers, temporary destinations, and queue browsers.

A messaging context is identified by the JSESSIONID cookie. The only API specific to a
messaging context is the API for getting and setting the maximum inactive interval
(MII), which controls the expiration time of the messaging context. When the
messaging context expires, all ephemeral objects contained in it are closed and
deleted, except for temporary destinations. A temporary destination is closed only if
the connection by which the temporary destination was created is closed.

The Oracle Messaging Cloud Service REST API relies critically on the use of
JSESSIONID HTTP cookies to identify and reuse messaging contexts between REST
API HTTP requests.

At least one messaging context must be created by a client in order to access Oracle
Messaging Cloud Service. If an HTTP request does not include a JSESSIONID cookie
for an unexpired messaging context, then a new messaging context is created. The
HTTP response includes the header X-OC-NEW-MESSAGING-CONTEXT: true if a new
messaging context is created. Note that connections and derived objects created in a
messaging context cannot be used in other messaging contexts, except for temporary
destinations. A temporary destination created in a messaging context can be used in
other messaging contexts.

When a messaging context is created through the REST API, the messaging context
is assigned an MII. A messaging context expires if it is not accessed for a period of

Chapter 2
Using the REST API

2-24

time longer than the associated MII. By default, all messaging contexts have an MII of
5 minutes. The MII for a given messaging context can be increased to a maximum of
15 minutes by the client. The minimum non-zero value of an MII is 1 second. If the MII
is set to 0, the messaging context expires immediately.

Each Oracle Messaging Cloud Service instance has a quota of connections that can
be created. When using the REST API, it is important to handle JSESSIONID HTTP
cookies diligently to manage messaging contexts and their associated connections. If
the cookies are not handled, then a new messaging context is created on every HTTP
request to the REST API. This can quickly lead to the exhaustion of the instance's
connection quota if a connection is created in each messaging context.

In special situations, clients may wish to durably store JSESSIONID HTTP cookies
associated with active messaging contexts. For example, if a client machine fails,
cookies for active messaging contexts can be lost from non-durable storage, and if the
application cannot wait for the messaging context to expire, then it is important to
durably store cookies. If cookies are durably stored, the active messaging contexts
and their connections can be reached after the client comes back up, as long as those
messaging contexts have not expired during the client down time.

Note:

If Cross-Site Request Forgery (CSRF) prevention is enabled for a given
messaging context, clients may also wish to durably store the anti-CSRF
token associated with the messaging context for the messaging context and
associated connections to be reachable when the client is back up. See
Cross-Site Request Forgery (CSRF) Prevention for details about how anti-
CSRF tokens are used by Oracle Messaging Cloud Service.

Authentication
All HTTP requests to the Oracle Messaging Cloud Service REST API require
authentication.

Every HTTP request to Oracle Messaging Cloud Service should supply HTTP Basic
Authentication credentials through the Authorization header.

About HTTP Headers
The Oracle Messaging Cloud Service REST API uses various HTTP headers to send
and receive information. The names of these headers are written in capital letters
throughout, but HTTP headers are required to be treated as case-insensitive.

Any client of the REST API should be implemented so as to treat HTTP header names
in Oracle Messaging Cloud Service responses as case-insensitive. HTTP header
names may occur multiple times within a single HTTP response, so any client of the
REST API should be implemented so as to handle multiple occurrences of a header
with the same name (or with the same name except for differences in case) properly.

Chapter 2
Using the REST API

2-25

Cross-Site Request Forgery (CSRF) Prevention
Cross-Site Request Forgery (CSRF) is a malicious attack on HTTP clients whereby
destructive operations may be unknowingly made against a web server.

To prevent CSRF attacks, Oracle Messaging Cloud Service generates pseudorandom
anti-CSRF tokens for each messaging context.

When a new messaging context is created, a new anti-CSRF token is generated and
returned in the messaging context's first HTTP response as the value of the X-OC-ID-
TOKEN HTTP header. The token is not returned in subsequent HTTP responses.

Once an anti-CSRF token has been generated, every subsequent HTTP request must
include its messaging context's associated token in the X-OC-ID-TOKEN HTTP header.
If the token is inaccurate or missing, an HTTP response with status code 400 is
returned, and the HTTP request is not processed.

See Understanding Anti-CSRF Measures for more information about the generation
and use of anti-CSRF tokens in the Oracle Messaging Cloud Service REST API.

If desired, you can disable the CSRF prevention mechanism in these ways:

• To disable the mechanism before the connection's anti-CSRF token is generated,
pass the X-OC-ID-TOKEN-STATUS HTTP header with the value of disabled on the
messaging context's first HTTP request.

• To disable the mechanism for a messaging context that has already generated an
anti-CSRF token, pass the X-OC-ID-TOKEN-STATUS HTTP header with the value of
disabled, and also pass the X-OC-ID-TOKEN HTTP header with the value of the
token that was generated for the messaging context.

Note:

If anti-CSRF is enabled, see Messaging Context and HTTP Cookies for
information about how Oracle Messaging Cloud Service uses JSESSIONID
HTTP cookies and why clients may wish to durably store anti-CSRF tokens
and cookies associated with active messaging contexts.

Resource Management versus Message Transmission APIs
The operations in the Oracle Messaging Cloud Service REST API can be divided into
two functional areas:

• Resource management: The Resource Management API provides functionality to
create and manage destinations, and message push listeners.

• Message transmission: The Message Transmission API provides functionality to
create and manage connections, create and manage sessions, send messages
through producers, receive messages through consumers, create and delete
durable subscriptions, inspect messages through queue browsers, and create and
delete temporary destinations.

Chapter 2
Using the REST API

2-26

Message Types
This section provides information about various message types supported by the
REST API.

Topics:

• PLAIN

• TEXT

• BYTES

• OBJECT

• HTTP

• MAP

• STREAM

The REST API supports the HTTP message type in addition to all of the JMS message
types such as TEXT and BYTES.

When sending a message through the REST API, set the value of the X-OC-MESSAGE-
TYPE HTTP header to specify the message's type. The default message type is HTTP.

When messages are sent and received through the REST API, the message body is
transmitted as the HTTP request body.

The valid values for the X-OC-MESSAGE-TYPE HTTP header along with any required
formatting for the HTTP request body are described in the following sections.

PLAIN

The message has no body.

Note the following rules for a message of this type:

• When the message is sent through the REST API, the HTTP request's body is
ignored.

• When the message is accessed through the Java library, the message is an object
of the class javax.jms.Message that has no body.

• When the message is received through the REST API, the HTTP response body
and Content-Type header are empty.

• When the message is pushed to a URL by a message push listener, the HTTP
request body and Content-Type header are empty.

TEXT

The message's body is a String.

Note the following rules for a message of this type:

• When the message is sent through the REST API, the HTTP request's body is
converted to a String using the encoding specified by the HTTP request's headers.

Chapter 2
Using the REST API

2-27

• When the message is accessed through the Java library, the message is an object
of the class javax.jms.TextMessage.

• When the message is received through the REST API, the HTTP response's body
is encoded with UTF-8 and the Content-Type header is as follows:

text/plain; charset=UTF-8

• When the message is pushed to a URL by a message push listener, the HTTP
request's body is encoded with UTF-8 and the Content-Type header is as follows:

text/plain; charset=UTF-8

BYTES

The message's body is an array of bytes.

Note the following rules for a message of this type:

• When the message is sent through the REST API, the HTTP request's body is
handled as an array of bytes.

• When the message is accessed through the Java library, the message is an object
of the class javax.jms.BytesMessage.

• When the message is received through the REST API, the HTTP response's body
is the bytes of the array and the Content-Type is as follows:

application/octet-stream

• When the message is pushed to a URL by a message push listener, the HTTP
request's body is the bytes of the array and the Content-Type is as follows:

application/octet-stream

OBJECT

The message's body is a serialized Java object.

Note the following rules for a message of this type:

• When the message is sent through the REST API, the HTTP request's body is the
serialization of a Java object. Any serializable object can be sent through the
REST API.

• When the message is accessed through the Java library, the message is an object
of the class javax.jms.ObjectMessage.

• When the message is received through the REST API, the HTTP response's body
is the serialization of the Java object and the Content-Type is as follows:

application/octet-stream

Chapter 2
Using the REST API

2-28

• When the message is pushed to a URL by a message push listener, the HTTP
request's body is the serialization of the Java object and the Content-Type is as
follows:

application/octet-stream

HTTP

The message's body is a representation of the content of an HTTP request, including
the metadata of the content's media type and language.

Note the following rules for a message of this type:

• When the message is sent through the REST API, the HTTP request's body,
Content-Type header, and Content-Language header are used to create an
oracle.cloud.messaging.client.HttpContent object.

• When the message is accessed through the Java library, the message is a
javax.jms.ObjectMessage whose content is a populated
oracle.cloud.messaging.client.HttpContent object.

• When the message is received through the REST API, the HTTP response's body,
Content-Type header, and Content-Language header are set from the
oracle.cloud.messaging.client.HttpContent object.

• When the message is pushed to a URL by a message push listener, the HTTP
request's body, Content-Type header, and Content-Language header are set from
the oracle.cloud.messaging.client.HttpContent object.

MAP

The message's body is a set of name/value pairs that defines a mapping from names
to values.

Note the following rules for a message of this type:

• When the message is sent through the REST API, the HTTP request's body is an
XML document with the following format:

<map>
 <entry>
 <name>name</name>
 <type>type</type>
 <value>value</value>
 </entry>
 …
</map>

The child elements of <map> must all be <entry>. There may be 0 or more <entry>
child elements. Every <entry> must contain exactly one <name> element whose
content defines the name for the map entry, and either one <type> and one
<value> or none of either. If there are multiple <name> elements with the same
content, this is an error and the result is unspecified.

If the <type> and <value> pair is not present, the value assigned to name is null.
If the <type> and <value> pair is present, type must be one of the following:

– boolean: value must be true or false

Chapter 2
Using the REST API

2-29

– byte: value must be two hexadecimal digits (where a hexadecimal digit is a
digit from 0-9 or a letter from A-F)

– short: value must be a base-10 representation of a Java short integer

– int: value must be a base-10 representation of a Java int

– long: value must be a base-10 representation of a Java long integer

– float: value must be a String representation of a Java float

– double: value must be a String representation of a Java double

– string: value must be valid XML character data. An empty <value> object is
interpreted as the empty String rather than null.

– char: value must be a single character

– bytes: value must be an even-length string of hexadecimal digits (where a
hexadecimal digit is a digit from 0-9 or a letter from A-F)

• When the message is accessed through the Java library, the message is an object
of the class javax.jms.MapMessage. Each entry specifies a name/value pair in the
javax.jms.MapMessage, with name as name and value as specified by type and
value.

• When the message is received through the REST API, the HTTP response's body
is an XML document with the same format as the XML document for the HTTP
request's body, and the Content-Type is application/xml.

• When the message is pushed to a URL by a message push listener, the HTTP
request's body is an XML document with the same format as that in an HTTP
request to create a MAP message, and the Content-Type is application/xml.

STREAM

The message's body is a sequence of values.

Note the following rules for a message of this type:

• When the message is sent through the REST API, the HTTP request's body is an
XML document with the following format:

<stream>
 <item>
 <type>type</type>
 <value>value</value>
 </item>
 …
</stream>

All child elements of <stream> must be <item>. There may be 0 or more <item>
child elements. Every <item> must contain either one <type> and one <value> or
none of either. If the <type> and <value> pair is not present, the item in the stream
is null. If the <type> and <value> pair is present, type and value must match one
of the following:

– boolean: value must be true or false

– byte: value must be two hexadecimal digits (where a hexadecimal digit is a
digit from 0-9 or a letter from A-F)

– short: value must be a base-10 representation of a Java short integer

Chapter 2
Using the REST API

2-30

– int: value must be a base-10 representation of a Java int

– long: value must be a base-10 representation of a Java long integer

– float: value must be a String representation of a Java float

– double: value must be a String representation of a Java double

– string: value must be valid XML character data. Empty <value> elements are
interpreted as representing the empty String rather than null.

– char: value must be a single character

– bytes: value must be an even-length string of hexadecimal digits (where a
hexadecimal digit is a digit from 0-9 or a letter from A-F)

The values in the stream are in the same order as the <item> elements in the XML
document.

• When the message is accessed through the Java library, the message is an object
of the class javax.jms.StreamMessage. Each <item> specifies a value written into
the javax.jms.StreamMessage, written in document order.

• When the message is received through the REST API, the HTTP response's body
is an XML document with the same format as the XML document for the HTTP
request's body, and the Content-Type is application/xml.

• When the message is pushed to a URL by a message push listener, the HTTP
request's body is an XML document with the same format as that in an HTTP
request to create a STREAM message, and the Content-Type is application/xml.

Message Headers and Properties
Message headers and properties are treated as HTTP headers when messages are
sent and received through the REST API.

The following table maps message headers to the corresponding HTTP headers:

Message Header HTTP Header

Correlation ID X-OC-CORRELATION-ID

Delivery Mode X-OC-DELIVERY-MODE

Destination X-OC-DESTINATION

Expiration X-OC-EXPIRATION

Message ID X-OC-MESSAGE-ID

Redelivered X-OC-REDELIVERED

Reply To X-OC-REPLY-TO

Timestamp X-OC-TIMESTAMP

When a message is sent through the REST API, message properties are set by
specifying HTTP headers that follow a specific naming convention. After a message is
sent, the properties of the message are treated as standard JMS message properties.
When a message is received through the REST API, the message properties are
converted to HTTP headers that follow the same naming convention.

Message properties can be set and read through HTTP headers by using the following
convention:

Chapter 2
Using the REST API

2-31

X-OC-TYPE-PROPERTY-NAME where NAME and TYPE are strings.

NAME is the message property's name. The name can only contain alphanumeric
characters and underscores. All characters are made lowercase by the service.

TYPE is the message property's type, which must be one of the following types:

Message Property Type HTTP Header Value

BOOLEAN Must be true or false

BYTE Must be two hexadecimal digits (where a hexadecimal digit
is a digit from 0-9 or a letter from A-F)

SHORT Must be a base-10 representation of a Java short integer

INT Must be a base-10 representation of a Java int

LONG Must be a base-10 representation of a Java long integer

FLOAT Must be a String representation of a Java float

DOUBLE Must be a String representation of a Java double

STRING Must be a legal HTTP header value. See Message
Headers in the Hypertext Transfer Protocol - HTTP/1.1
document.

XML versus JSON Response Types
While some of the Oracle Messaging Cloud Service REST API endpoints support
JSON as a response type, all of the endpoints support XML.

The default response type for all endpoints is XML.

REST API endpoints that only support XML as a response type include:

• Creating or viewing a message push listener

• Creating or viewing a durable subscription

• Receiving a Map or Stream message

• Creating temporary destinations

• Listing temporary destinations

• Retrieving the properties of a single temporary destination

• Retrieving the properties of a queue browser

The response type for a REST API endpoint can be controlled by setting the HTTP
request's Accept header to either application/json or application/xml. To indicate
that a client prefers JSON but is willing to accept XML if it is the only format available,
the HTTP request's Accept header may be set to, for example, application/
json, application/xml;q=0.5.

If an HTTP response from the REST API is the result of receiving a message, the
Accept header is ignored. If the HTTP request is a request to receive a message, but
an error response is generated, the Accept header is used to determine the format of
the error response's body. Otherwise, if the REST API cannot provide a response of
the type specified in the Accept header, an HTTP response with status code 406 is
returned.

Chapter 2
Using the REST API

2-32

http://tools.ietf.org/html/rfc2616#section-4.2
http://tools.ietf.org/html/rfc2616#section-4.2

3
Accessing Oracle Messaging Cloud
Service Using REST API

Oracle Messaging Cloud Service provides a Representational State Transfer (REST)
API for sending and receiving messages, as well as managing resources such as
queues, topics, durable subscriptions, and message push listeners. This section
describes how to use the REST API in applications that make use of Oracle
Messaging Cloud Service.

Topics:

• About Using the REST API

• Resource Management API

• Message Transmission API

• Properties of HTTP Requests to Send Messages from REST Clients

• Properties of HTTP Requests and Responses that Deliver Messages

• About Escaped Value Strings

Topology API
The topology API provides functionality to obtain the topology of a namespace or
messaging context. The topology API is available only through the REST API. The
information provided by the topology API will, in general, reflect the most recent
topology of a namespace or messaging context, but is not necessarily real-time. That
is, changes to a namespace or messaging context that has just happened may not be
reflected immediately.

Topics:

• Viewing all Messaging Contexts

• Viewing a Messaging Context

• Sample Outputs of Topology API

Viewing all Messaging Contexts
A user can view all messaging contexts and their encapsulated ephemeral resources.

Method: GET

Path: /messagingcontexts

Scope: Service Instance

Authorization: Messaging Administrator or Messaging Worker

3-1

Result: Returns the topology information of all messaging contexts and their
encapsulated ephemeral resources.

Response Body: JSON or XML.

JSON

The JSON output for a GET from /messagingcontexts is a JSON array. Each element
of the array is a JSON object corresponding to a single, unique messaging context.

JSON Object for a Messaging Context

A JSON object for a messaging context will contain at most the following fields:

Field Name Description

id A service-generated ID for the messaging
context. This ID is relevant only to the topology
API. Each element of the array will have a
different id value. This field is always present.

connections A JSON array of JSON objects, with each
element representing a distinct connection
created in the messaging context. If there are
no unclosed connections in the messaging
context, this field will not be present.

JSON Object for a Connection

A JSON object for a connection will contain at most the following fields:

Field Name Description

name The name under which the REST API client
created the connection. This field is always
present.

clientId The connection’s client ID; if the connection
does not have a client ID, this field will not be
present.

started A boolean that is true if the connection is
currently started, and false otherwise. This
field is always present.

sessions A JSON array of JSON objects, with each
element representing a distinct session
created from this connection. If there are no
unclosed sessions currently created from this
connection, this field will not be present.

temporaryQueues A JSON array of JSON objects, with each
element representing a temporary queue
associated with this connection. If there are no
undeleted temporary queues associated with
this connection, this field will not be present.

temporaryTopics A JSON array of JSON objects, with each
element representing a temporary topic
associated with this connection. If there are no
temporary topics associated with this
connection, this field will not be present.

Chapter 3
Topology API

3-2

JSON Object for a Session

A JSON object for a session will contain at most the following fields:

Field Name Description

name The name under which the REST API client
created the session. This field is always
present.

transacted A boolean that is true if the session is
transacted, and false otherwise. This field is
always present.

ackMode A boolean indicating the acknowledgement
mode of the session. Its value is auto,
client, or dups_ok. This field will be present
if transacted is false; otherwise, this field
will not be present.

sessions A JSON array of JSON objects, with each
element representing a distinct session
created from this connection. If there are no
unclosed sessions currently created from this
connection, this field will not be present.

producers A JSON array of JSON objects, with each
element representing a producer in this
session. If there are no unclosed producers in
this session, this field will not be present.

consumers A JSON array of JSON objects, with each
element representing a consumer in this
session. If there are no unclosed consumers in
this session (other than durable subscribers),
this field will not be present. Consumers that
are durable subscribers will not appear in this
array.

durableSubscribers A JSON array of JSON objects, with each
element representing a durable subscriber in
this session. If there are no unclosed durable
subscribers in this session, this field will not be
present.

queueBrowsers A JSON array of JSON objects, with each
element representing a queue browser in this
session. If there are no unclosed queue
browsers in this session, this field will not be
present.

JSON Object for a Producer

A JSON object for a producer will contain at most the following fields:

Field Name Description

name The name under which the REST API client
created the producer. This field is always
present.

Chapter 3
Topology API

3-3

Field Name Description

destination The destination to which the producer sends
messages. If the producer has no associated
destination (so that the destination to which a
message is sent must be specified in the
send), this field will not be present. If present,
it will have one of the following formats:

• /queues/queueName
• /topics/topicName
• /temporaryQueues/queueName
• /temporaryTopics/topicName

timeToLive The time-to-live, in milliseconds, that is the
default time-to-live for messages sent by this
producer. This field will always be present, and
will be formatted as an integer, not a String.

deliveryMode A String giving the default delivery mode for
messages sent by this producer. This field will
always be present, and will have the value
persistentor non_persistent.

JSON Object for a Consumer

A JSON object for a consumer (other than a durable subscriber) will contain at most
the following fields:

Field Name Description

name The name under which the REST API client
created the consumer. This field is always
present.

destination The destination from which the producer
receives messages. This field will always be
present, and will have one of the following
formats:

• /queues/queueName
• /topics/topicName
• /temporaryQueues/queueName
• /temporaryTopics/topicName

selector The selector for the consumer. This field will
only be present if the consumer has a selector.

localMode The local mode of the consumer, which
defines whether a consumer on a topic will
receive message sent on the same connection
the consumer was created from. If the
consumer is not on a topic or temporary topic,
this field will not be present. The default is for
topic consumers to receive all messages sent
to the topic that match their selector, so this
field will only be present if the consumer does
not receive messages sent on its connection,
in which case the field will be present, and will
have value NO_LOCAL.

JSON Object for a Durable Subscriber

Chapter 3
Topology API

3-4

A JSON object for a durable subscriber will contain at most the following fields:

Field Name Description

name The name under which the REST API client
created the consumer. This field is always
present.

destination The destination from which the producer
receives messages. This field will always be
present, and will have one of the following
formats:

• /topics/topicName
• /temporaryTopics/topicName

subscriptionName The string that is the subscription name
corresponding to the subscriber.

Note: This is different from the name field,
which gives the name by which REST API
clients refer to the subscriber.

selector The selector for the consumer. This field will
only be present if the consumer has a selector.

localMode The local mode of the consumer, which
defines whether a consumer on a topic will
receive message sent on the same connection
the consumer was created from. If the
consumer is not on a topic or temporary topic,
this field will not be present. The default is for
topic consumers to receive all messages sent
to the topic that match their selector, so this
field will only be present if the consumer does
not receive messages sent on its connection,
in which case the field will be present, and will
have value NO_LOCAL.

JSON Object for a Queue Browser

A JSON object for a queue browser will contain at most the following fields:

Field Name Description

name The name under which the REST API client
created the queue browser. This field is
always present.

queue The queue that the browser browses. This
field is always present, and will have the
format /queues/queueName.

selector The selector for the browser. This field will
only be present if the browser has a selector.

XML

The XML output for a GET from /messagingcontexts is an XML document with root
element <messagingcontexts>. The XML output for a given service instance is closely
analogous to the JSON in the following sense:

Chapter 3
Topology API

3-5

• A field in JSON object with a certain name will be represented in XML by a child
element whose name is the same as the field name, and whose content
corresponds to that of the value of the field.

• The elements of a JSON array will be represented in XML as a sequence of
<items> elements, with the content of the nth <items> corresponding to the nth
value in the JSON array.

Viewing a Messaging Context
A user can view a single messaging context and all of its encapsulated ephemeral
resources by providing the messaging context's ID

Method: GET

Path: /messagingcontexts/messagingContextID

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Returns the topology information of a single messaging context and all of its
encapsulated ephemeral resources.

Response Body: JSON or XML.

JSON

The output for a GET from /messagingcontexts/messagingContextID is a JSON object
that represents the messaging context with the specified ID. The output format is same
as described in the JSON output sections for messaging contexts. A 404 response is
generated if the service instance has no messaging context with the given ID.

XML

The XML output for a GET from /messagingcontexts/messagingContextID is an XML
document with root element <messagingcontexts> whose content is XML
corresponding to the fields of a JSON object representing the messaging context with
the specific ID. A 404 response is generated if the service instance has no messaging
context with the given ID.

Sample Outputs of Topology API
This section provides sample outputs of the topology API.

Sample JSON Output

Sample JSON output from GET /messagingcontexts for a service instance with two
messaging contexts:

[
 {
 "id":"19CB3BA96A0B068B"
 },
 {
 "id":"7E1B3AAF09D27170",
 "connections":[
 {

Chapter 3
Topology API

3-6

 "name":"conn348755961301170266",
 "clientId":"topologyCID2211817070735200489",
 "started":true,
 "sessions":[
 {
 "name":"topologySession6782049576740617368",
 "transacted":true,
 "consumers":[
 {
 "name":"cons1986478156341504515",
 "destination":"/topics/topologyTopic1",
 "selector":"property195=232"
 },
 {
 "name":"cons8406813156667706998",
 "destination":"/topics/topologyTopic2",
 "localMode":"NO_LOCAL"
 }
],
 "durableSubscribers":[
 {
 "name":"sub8114000992284070555",
 "destination":"/topics/topologyTopic2",
 "subscriptionName":"subscr668",
 "localMode":"NO_LOCAL"
 },
 {
 "name":"sub8218579099988865396",
 "destination":"/topics/topologyTopic1",
 "subscriptionName":"subscr819"
 }
],
 "queueBrowsers":[
 {
 "name":"qb658303539525244693",
 "queue":"/queues/topologyQueue1",
 "selector":"property499=195"
 },
 {
 "name":"qb7987305899602893098",
 "queue":"/queues/topologyQueue2",
 "selector":"property269=410"
 }
]
 },
 {
 "name":"topologySession4005620455377307315",
 "transacted":false,
 "ackMode":"auto",
 "producers":[
 {
 "name":"prod2624315421281685702",
 "destination":"/queues/topologyQueue1",
 "timeToLive":1209600000,
 "deliveryMode":"non_persistent",
 }
],
 "durableSubscribers":[
 {
 "name":"sub1542678913898814730",
 "destination":"/topics/topologyTopic1",

Chapter 3
Topology API

3-7

 "subscriptionName":"subscr765"
 }
],
 "queueBrowsers":[
 {
 "name":"qb8302598228704858736",
 "queue":"/queues/topologyQueue0"
 },
 {
 "name":"qb4326110554531990221",
 "queue":"/queues/topologyQueue3",
 "selector":"property197=858"
 }
]
 }
],
 "temporaryQueues":[
 {
 "name":"68BC612EB343DB9A"
 }
],
 "temporaryTopics":[
 {
 "name":"D1970C11C263F97D"
 }
]
 }
]
 }
]

The JSON output of GET /messagingcontexts/19CB3BA96A0B068B for this service
instance would therefore be:

{
 “id”:"19CB3BA96A0B068B"
}

Sample XML Output

Sample XML output for GET /messagingcontexts in the same service instance as
above:

<messagingcontexts>
 <items>
 <id>19CB3BA96A0B068B</id>
 </items>
 <items>
 <id>7E1B3AAF09D27170</id>
 <connections>
 <items>
 <name>conn348755961301170266</name>
 <clientId>topologyCID2211817070735200489</clientId>
 <started>true</started>
 <sessions>
 <items>
 <name>topologySession6782049576740617368</name>
 <transacted>true</transacted>
 <consumers>
 <items>
 <name>cons1986478156341504515</name>

Chapter 3
Topology API

3-8

 <destination>/topics/topologyTopic1</destination>
 <selector>property195=232</selector>
 </items>
 <items>
 <name>cons8406813156667706998</name>
 <destination>/topics/topologyTopic2</destination>
 <localMode>NO_LOCAL</localMode>
 </items>
 </consumers>
 <durableSubscribers>
 <items>
 <name>sub8114000992284070555</name>
 <destination>/topics/topologyTopic2</destination>
 <subscriptionName>subscr668</subscriptionName>
 <localMode>NO_LOCAL</localMode>
 </items>
 <items>
 <name>sub8218579099988865396</name>
 <destination>/topics/topologyTopic1</destination>
 <subscriptionName>subscr819</subscriptionName>
 </items>
 </durableSubscribers>
 <queueBrowsers>
 <items>
 <name>qb658303539525244693</name>
 <queue>/queues/topologyQueue1</queue>
 <selector>property499=195</selector>
 </items>
 <items>
 <name>qb7987305899602893098</name>
 <queue>/queues/topologyQueue2</queue>
 <selector>property269=410</selector>
 </items>
 </queueBrowsers>
 </items>
 <items>
 <name>topologySession4005620455377307315</name>
 <transacted>false</transacted>
 <ackMode>auto</ackMode>
 <producers>
 <items>
 <name>prod2624315421281685702</name>
 <destination>/queues/topologyQueue1</destination>
 <timeToLive>1209600000</timeToLive>
 <deliveryMode>non_persistent</deliveryMode>
 </items>
 </producers>
 <durableSubscribers>
 <items>
 <name>sub1542678913898814730</name>
 <destination>/topics/topologyTopic1</destination>
 <subscriptionName>subscr765</subscriptionName>
 </items>
 </durableSubscribers>
 <queueBrowsers>
 <items>
 <name>qb8302598228704858736</name>
 <queue>/queues/topologyQueue0</queue>
 </items>
 <items>
 <name>qb4326110554531990221</name>

Chapter 3
Topology API

3-9

 <queue>/queues/topologyQueue3</queue>
 <selector>property197=858</selector>
 </items>
 </queueBrowsers>
 </items>
 </sessions>
 <temporaryQueues>
 <items>
 <name>68BC612EB343DB9A</name>
 </items>
 </temporaryQueues>
 <temporaryTopics>
 <items>
 <name>D1970C11C263F97D</name>
 </items>
 </temporaryTopics>
 </items>
 </connections>
 </items>
</messagingcontexts>

The XML output of GET /messagingcontexts/19CB3BA96A0B068B for this service
instance would therefore be:

<messagingcontext>
 <id>19CB3BA96A0B068B</id>
</messagingcontext>

Usage API
The Usage API is a part of the Oracle Messaging Cloud Service REST API that
provides information about resource usage for a given Oracle Messaging Cloud
Service instance. The API provides information on both how much of certain resources
are being used, and on various limits how much those resources may be used.

Topics:

• About Usage API

• Sample Outputs of Usage API

About Usage API
This topic provides information about usage API.

Method: GET

Path: /usage

Scope: Service Instance

Authorization: Messaging Administrator

Response Body: An XML or JSON representation of resource usage and limits. The
format is chosen based on the value of the Accept header.

The response body of a call to the usage API contains the following information:

Chapter 3
Usage API

3-10

• How many connections, queues, topics, and durable subscriptions are currently
being used, and what are the maximum numbers of each that can be used for the
given service instance.

• The hard and soft quotas on destination backlogs. Note that the API returns only
the quotas, not the backlog sizes. For more information, see Hard and Soft Quotas

• Metering data: How many bytes of data have been sent out through the REST API
(the egress data) and the number of calls to the REST API in a particular period of
time. The egress data includes all bytes sent in HTTP responses, including status
line, headers, and the response body. The number of calls to the REST API
includes all HTTP requests made.

The information provided by the usage API will, in general, reflect the most recent
usage, but is not necessarily real-time. That is, changes to resource usage, metering
data, etc. that have just happened may not be reflected immediately.

The Usage API returns usage information for connections, queues, topics, and durable
subscriptions, and hard and soft quota limits for destination backlogs. The Usage API
also returns the most recent metering data which contains both the number of API
calls and egress bandwidth. The non-metered data is accurate to the last 30 seconds.
The metered data, api calls and egress bandwidth, are an aggregate over a time
period and each metered data section contains the respective start and end times for
the metered data. The metered data start and end times are in Coordinated Universal
Time (UTC). The destination backlog data is limited to returning the hard quota and
soft quota which applies to all destinations (queues and topics) for a service. The
backlog quotas apply to both the number of messages and total bytes of messages. If
the hard quota of either is exceeded, then sends will fail until the backlog falls below
the soft quota.

JSON Format

Usage information in JSON is expressed as a JSON object. The connection, queue,
topic, and durable subscription usage is given by the "connectionCount",
"queueCount", "topicCount", and "durableSubscriptionCount" fields of the object
respectively. The value of each of these fields is a JSON object with a "max" field
whose value is the maximum number of connections, queues, topics, or durable
subscriptions that may be used, and a "used" field whose value is the current number
of connections, queues, topics, or durable subscriptions in use (subject to the above
caveats about the data not being real-time).

Destination backlog limitations on number and number of bytes of messages are given
by the "destinationBacklogMessageCount" and "destinationBacklogBytes" fields
respectively. The value of each of these fields is a JSON object with a "hardQuota"
field whose value is the hard quota and a "softQuota" field whose value is the soft
quota.

Metering data is given by a "meteringUsages" field whose value is a JSON array of
JSON objects. Each object in the array contains the metering data for a certain time
period, expressed as the following fields:

• "startTimeUtc"

The value of this field is the first minute of the time period for the metering data,
expressed in Coordinated Universal Time (UTC).

• "endTimeUtc"

Chapter 3
Usage API

3-11

The value of this field is the last minute of the time period for the metering data,
expressed in Coordinated Universal Time (UTC). The metering data will include all
metering for the entire minute. For example, if the end time is 2015-07-09T13:09,
all API calls occurring at or after 13:09 but before 13:10 will be included.

• "dataCenter"

The value of this field is the data center to which the metering data in the element
applies.

• "meteredResourceUsages"

A JSON array of JSON objects containing data on a given metered resource for
the given period and data center.

Each object in the "meteredResourceUsages" array will have the following fields:

– "resourceName"

The value of this field is the name of the resource whose data is being
reported. The value of this field will be either "EGRESS_DATA" or "API_CALLS".

– "quantity"

The value of this field is an integer giving amount of the resource used.

– "units"

The value of this field is the unit of measurement for the value of the
"quantity" field. If the value of "resourceName" is "EGRESS_DATA", the value
of "units" will be "Bytes". If the value of "resourceName" is "API_CALLS", the
value of "units" will be "API Calls".

XML Format

The connection, queue, topic, and durable subscription usage is given by the
<connectionCount>, <queueCount>, <topicCount>, and <durableSubscriptionCount>
elements respectively. Each of these elements contains a <max> element whose
content is the maximum number of connections, queues, topics, or durable
subscriptions that may be used, and a <used> element whose content is the current
number of connections, queues, topics, or durable subscriptions in use (subject to the
above caveats about the data not being real-time).

Destination backlog limitations on number and number of bytes of messages are given
by the <destinationBacklogMessageCount> and <destinationBacklogBytes>
elements respectively. Each of these elements contains a <hardQuota> element
whose content is the hard quota and a <softQuota> element whose content is the soft
quota.

Metering data is contained in <meteringUsages> elements. Each such element
contains the metering data for a certain time period, expressed as the following child
elements:

• <startTimeUtc>

The content of this element is the first minute of the time period for the metering
data, expressed in Coordinated Universal Time (UTC).

• <endTimeUtc>

Chapter 3
Usage API

3-12

The content of this element is the last minute of the time period for the metering
data, expressed in Coordinated Universal Time (UTC). The metering data will
include all metering for the entire minute. For example, if the end time is
2015-07-09T13:09, all API calls occurring at or after 13:09 but before 13:10 will be
included.

• <dataCenter>

The content of this element is the data center to which the metering data in the
element applies.

• <meteredResourceUsages>

One or more elements containing data on a given metered resource for the given
period and data center.

Each <meteredResourceUsages> element will contain the following elements:

– <resourceName>

The content of this element is the name of the resource whose data is being
reported. The content of this element will be either EGRESS_DATA or API_CALLS.

– <quantity>

The content of this element is an integer giving amount of the resource used.

– <units>

The content of this element is the unit of measurement for the content of the
<quantity> element. If the content of <resourceName> is EGRESS_DATA, the
content of <units> will be Bytes. If the content of <resourceName> is
API_CALLS, the content of <units> will be API Calls.

Sample Outputs of Usage API
This section provides sample outputs of the usage API.

Sample JSON Output

Sample JSON output of the usage API:

{
 "connectionCount": {
 "max": 200,
 "used": 3
 },
 "queueCount": {
 "max": 10000,
 "used": 156
 },
 "topicCount": {
 "max": 10000,
 "used": 156
 },
 "durableSubscriptionCount": {
 "max": 10000,
 "used": 53
 },
 "destinationBacklogMessageCount": {
 "hardQuota": 100,
 "softQuota": 70
 },

Chapter 3
Usage API

3-13

 "destinationBacklogBytes": {
 "hardQuota ": 52428800,
 "softQuota ": 36700160
 },
 "meteredUsages": [
 {
 "dataCenter": "dc",
 "endTimeUtc": "2015-07-09T13:09",
 "meteredResourceUsages": [
 {
 "quantity": 2425581,
 "resourceName": "EGRESS_DATA",
 "units": "Bytes"
 },
 {
 "quantity": 3426,
 "resourceName": "API_CALLS",
 "units": "API Calls"
 }
],
 "startTimeUtc": "2015-07-09T13:00"
 },
 {
 "dataCenter": "dc",
 "endTimeUtc": "2015-07-09T13:19",
 "meteredResourceUsages": [
 {
 "quantity": 2425521,
 "resourceName": "EGRESS_DATA",
 "units": "Bytes"
 },
 {
 "quantity": 3426,
 "resourceName": "API_CALLS",
 "units": "API Calls"
 }
],
 "startTimeUtc": "2015-07-09T13:10"
 }
]
}

Sample XML Output

Sample XML output of the usage API:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<usage>
 <connectionCount>
 <max>200</max>
 <used>3</used>
 </connectionCount>
 <queueCount>
 <max>10000</max>
 <used>156</used>
 </queueCount>
 <topicCount>
 <max>10000</max>
 <used>156</used>
 </topicCount>
 <durableSubscriptionCount>

Chapter 3
Usage API

3-14

 <max>10000</max>
 <used>53</used>
 </durableSubscriptionCount>
 <destinationBacklogMessageCount>
 <hardQuota>100</hardQuota>
 <softQuota>70</softQuota>
 </destinationBacklogMessageCount>
 <destinationBacklogBytes>
 <hardQuota>52428800</hardQuota>
 <softQuota>36700160</softQuota>
 </destinationBacklogBytes>
 <meteredUsages>
 <startTimeUtc>2015-07-09T13:00</startTimeUtc>
 <endTimeUtc>2015-07-09T13:09</endTimeUtc>
 <dataCenter>dc</dataCenter>
 <meteredResourceUsages>
 <resourceName>EGRESS_DATA</resourceName>
 <quantity>2425581</quantity>
 <units>Bytes</units>
 </meteredResourceUsages>
 <meteredResourceUsages>
 <resourceName>API_CALLS</resourceName>
 <quantity>3426</quantity>
 <units>API Calls</units>
 </meteredResourceUsages>
 </meteredUsages>
 <meteredUsages>
 <startTimeUtc>2015-07-09T13:10</startTimeUtc>
 <endTimeUtc>2015-07-09T13:19</endTimeUtc>
 <dataCenter>dc</dataCenter>
 <meteredResourceUsages>
 <resourceName>EGRESS_DATA</resourceName>
 <quantity>2425521</quantity>
 <units>Bytes</units>
 </meteredResourceUsages>
 <meteredResourceUsages>
 <resourceName>API_CALLS</resourceName>
 <quantity>3426</quantity>
 <units>API Calls</units>
 </meteredResourceUsages>
 </meteredUsages>
</usage>

About Escaped Value Strings
This topic provides information about escaped value Strings.

An escaped value String is a String that uses the following JSON conventions for
representing characters that may not legally occur in HTTP header values:

Escape Sequence Description

\\ The backslash character (\)

\b The backspace character (ctrl-H)

\f The form-feed character (ctrl-L)

\n The new-line character (ctrl-J)

\r The carriage return character (ctrl-M)

Chapter 3
About Escaped Value Strings

3-15

Escape Sequence Description

\t The tab character

\u<4 hexadecimal digits> The Unicode character whose encoding as an
unsigned base-16 integer is given by the 4
hexadecimal digits.

The following is an example:

Raw String Corresponding Escaped Value
String

<tab>\ding!<ctrl-G><ctrl-M><ctrl-J> \t\\ding!\u0007\r\n

Note that if a String s is a legal HTTP header value that contains no backslashes, the
escaped value String corresponding to s is the same as s.

About Using the REST API
Oracle Messaging Cloud Service can be accessed using the REST API.

Topics:

• Basics of the REST API

• Functional Areas of the REST API

• Understanding Messaging Context and Cookies

• Understanding Durable Subscriptions

• Understanding REST API Operations

• Understanding Concurrent Access to Resources

• Understanding Error Responses

• Understanding Anti-CSRF Measures

• HTTP Header for Messaging Service Version

• HTTP Header for Messaging Context ID

Before you begin using the REST API, be sure to review the guidelines in this section
as well as the guidelines in Considerations When Developing Applications That Use
Oracle Messaging Cloud Service and Using the REST API.

Basics of the REST API
Any application platform that understands HTTP can use Oracle Messaging Cloud
Service through the Representational State Transfer (REST) interface.

REST is an architectural style for making distributed resources available through a
uniform interface that includes uniform resource identifiers (URIs), well-defined
operations, hypermedia links, and a constrained set of media types. Typically, these

Chapter 3
About Using the REST API

3-16

operations include reading, writing, editing, and removing, and media types include
JSON and XML.

The REST API can be used from any environment connected to the Internet. REST
commands use standard HTTP methods to specify whether the resource named by
the URI is being read (GET), created (PUT), modified (POST), or deleted (DELETE). REST
APIs can be used from any platform and by any development technology that can
make HTTP requests and receive HTTP responses.

Oracle Messaging Cloud Service provides a REST API by which applications can
access the service using HTTP. The REST API resources are modeled after Java
Message Service (JMS). Various objects used in JMS, such as Queue, Topic, Session,
MessageProducer, MessageConsumer, and so on, are resources in the REST interface
with a subset of the properties and methods in JMS. In the REST interface, however,
the resources corresponding to these objects are referred to by names supplied by the
client, rather than as Java object references.

Structured information supplied as parameters to or returned by Java methods is
represented as query string parameters, HTTP headers, or JSON or XML data in
HTTP request or response bodies. All message metadata supported by JMS is
represented as custom HTTP headers. In addition, some HTTP metadata, such as the
Content-Type of an HTTP request to send a message, may be passed along in the
payload of the generated JMS message, and is used to set headers of the HTTP
request or response that delivers the message to a REST client or HTTP endpoint.

Functional Areas of the REST API
The operations in the Oracle Messaging Cloud Service REST API can be divided into
two functional areas:

• Resource Management API

The Resource Management API is used to manage resources such as
destinations, and message push listeners, and to control expiration of cookies.

• Message Transmission API

The Message Transmission API involves ephemeral resources (connections,
sessions, producers, consumers, queue browsers, and temporary destinations)
that are created by explicit client action. If a messaging context expires, or the
server that created the messaging context goes down, then a client using
Message Transmission API methods may have to be prepared to detect that
ephemeral resources have been lost and recreate them.

It is important to note, however, that client acknowledgements and transactions
are associated with sessions. If the messaging context containing a session
expires, or the server that created the messaging context goes down, then any
unacknowledged messages become available for receipt by other clients, and any
receives or sends in a transacted session that have not been committed are
rolled back.

Understanding Messaging Context and Cookies
A messaging context is a container of ephemeral objects like connections, sessions,
producers, consumers, temporary destinations, and queue browsers.

A messaging context is identified by the JSESSIONID cookie. The only API specific to a
messaging context is the API for getting and setting the MII, which controls the

Chapter 3
About Using the REST API

3-17

expiration time of the messaging context. When the messaging context expires, all
ephemeral objects contained in it are closed and deleted, except temporary
destinations. A temporary destination is closed only if the connection by which the
temporary destination was created is closed.

At least one messaging context must be created by a client in order to access Oracle
Messaging Cloud Service. If an HTTP request does not include a JSESSIONID cookie
for an unexpired messaging context, then a new messaging context is created. The
HTTP response includes the header X-OC-NEW-MESSAGING-CONTEXT: true if a new
messaging context is created.

REST clients can detect if a messaging context has expired or the server that created
the messaging context has gone down by looking for this header. Server failures may
cause messages to be delivered multiple times, and clients must be aware of, and
possibly compensate for, duplicate delivery.

Clients that want to handle client failures gracefully should store the value of the
JSESSIONID cookie in durable storage so that a client that is reactivated after a failure
can reread the JSESSIONID cookie value from the durable store and access the
messaging context that the client was using before the failure, if the messaging
context has not expired. If this is not done, then reactivated clients get a new
messaging context, with the same problems described in Messaging Context and
HTTP Cookies, that is, unnecessarily holding connections and having no access to
previously created ephemeral objects.

Understanding Durable Subscriptions
Clients that use durable subscriptions must supply a client ID for a connection
which, along with a subscription name, identifies the durable subscription. There are
restrictions on the use of a given client ID:

• When a client uses the Resource Management API to set a client ID on a
connection, that client ID may not be used by any other connection until the
messaging context expires or the connection is deleted. This is an additional
reason why clients must store and send the JSESSIONID cookie, and store the
JSESSIONID cookie value in durable storage. If a client ID is set on a connection,
and the JSESSIONID cookie for that connection's messaging context is lost, then
the client ID set on the connection cannot be used by any other client or listener
until the messaging context whose cookie was lost expires.

• When a message push listener receives messages from a durable subscription,
the client ID it uses may not be used by any other connection as long as the
message push listener is in existence.

Understanding REST API Operations
The description of an operation of the REST API specifies the method and path for the
HTTP request, which user roles are authorized to perform the operation (that is,
Messaging Administrator or Messaging Worker, or either role) and the expected result
of a successful operation. A description may, in addition, specify the following:

• Parameters that may or must be supplied in the HTTP request

• HTTP headers that may or must be present on the HTTP response

• How the HTTP request body is used

• What may or must be returned in the HTTP response body

Chapter 3
About Using the REST API

3-18

• What errors may be returned (other than, or more specific than, the generic codes
described in REST API HTTP Status Codes and Error Messages Reference)

The path specified for an operation is the part of the URL that comes after service
name-identity domain name/api/v1. For example, if a tenant with the identity domain
name "CloudBank" has a service with the name "OnlineBanking", and a client for that
tenant wants to invoke an operation for path /queues, then the following is the HTTP
request to a URL:

https://messaging.dataCenter.oraclecloud.com/OnlineBanking-CloudBank/api/v1/queues

Components of the path must always consist solely of letters of the Roman alphabet (a
through z or A through Z), decimal digits (0 through 9), and underscores ('_'). No other
characters are allowed. In particular, these restrictions apply to the names of queues,
topics, and listeners.

In this document, the term parameter is a value supplied in an HTTP request that is
not in the request body. Parameters may be supplied as query string parameters or as
HTTP headers. The parameters that are recognized by Oracle Messaging Cloud
Service are listed in REST API Parameters Reference. Throughout this document,
parameters are listed by their query string name.

For HTTP responses that do not return messages, the format of the body in the HTTP
response is determined by the Accept header of the HTTP request to which it is a
response. For some paths, the service may be able to generate a body in the JSON
format, with Content-Type header application/json, or in an XML format, with
Content-Type header application/xml. XML is generated if both are equally
acceptable. All HTTP requests should therefore have their Accept headers set so that
one or both of application/json and application/xml are acceptable, and so that
application/xml is acceptable unless the path also supports the JSON format. For
responses that do not return a message, and which can return a response body in
JSON or XML, if the media type corresponding to the JSON or XML is not acceptable
by the Accept header, the response sent will have status code 406 (Not Acceptable).

For requests whose response is a message, the Accept header is ignored. A message
is returned even if the Content-Type does not match the Accept header, rather than a
406 response being returned. Clients that want to ensure that they do not receive
certain messages should use message properties and selectors to filter messages
they do not want to receive.

Understanding Concurrent Access to Resources
This section provides information about restrictions on concurrent access to Oracle
Messaging Cloud Service resources like connections, sessions, producers,
consumers, destinations, and queue browsers.

Ephemeral objects like sessions, producers, consumers, and queue browsers should
not be accessed by multiple client requests concurrently. For example, there should
not be multiple client requests to send a message through the same producer at the
same time, nor multiple client requests to receive messages from the same consumer
at the same time.

Multiple sessions can be created from a given connection. In this case, different client
requests can access different sessions concurrently.

Multiple producers, consumers, and queue browsers can be created with a given
session, and different client requests can access different producers and consumers

Chapter 3
About Using the REST API

3-19

concurrently, as long as no two requests are accessing the same producer, consumer,
or queue browser concurrently.

Connections and destinations can be accessed by multiple client requests
concurrently.

In the above statements, the term access refers to both invoking a method on a
resource's path and referencing a resource as a request parameter. For example,
clients should not have two concurrent requests to create a temporary queue that
supply the same session parameter.

Note that these restrictions are not enforced by the service; they must be followed by
the client.

Understanding Error Responses
When a status code greater than or equal to 400 is sent in a response, the body of the
response is a JSON or XML document that specifies an error message (unless the
response is a 406 error to a request that does not accept application/json or
application/xml). The JSON format would be as follows:

{
 "httpStatusCode": statusCode,
 "httpMessage": "status line reason phrase for the code",
 "errorCode": "urn:oracle:cloud:errorcode:messaging:error key",
 "errorMessage": "error message"
 "exceptionClass": " full Java class name of the exception",
 "exceptionMessage": "message embedded in the exception",
}

The XML format would be as follows:

<error>
 <httpStatusCode>status code</httpStatusCode>
 <httpMessage>status line reason phrase for the code</httpMessage>
 <errorCode>urn:oracle:cloud:errorcode:messaging:error key</errorCode>
 <errorMessage>error message</errorMessage>
 <exceptionClass>full Java class name of the exception</exceptionClass>
 <exceptionMessage>message embedded in the exception</exceptionMessage>
</error>

In this document, the error that is returned by a given method, interface, or the API as
a whole is specified by giving the error key for the error. The error key is the last
component of the URN error code; the error code is the value of the errorCode field of
the JSON format or the content of the <errorCode> element of the XML format. The
error key determines the HTTP status code, which in turn determines the HTTP
message, and determines the format of the error message. The actual error message
may contain dynamically determined data.

The exceptionClass and exceptionMessage fields of the JSON format or the content
of the <exceptionClass> and <exceptionMessage> elements of the XML format may
or may not be displayed. These two fields or elements are displayed only if the error
was caused by a Java exception thrown on the server side. They indicate the class
and message of a Java exception that caused the error response.

Error responses may be specified for the entire REST API (in REST API HTTP Status
Codes and Error Messages Reference), for a set of methods in the API, or for a

Chapter 3
About Using the REST API

3-20

specific method (for example, the Create a Session method). Each error specification
gives the error key, and gives any explanation of the circumstances under which the
error occurs that is more specific than that included with the error key listing in Error
Keys, Status Codes and Error Messages. For example, in the Create a Session
method, there is a specification of the error response, as follows:

sessionAlreadyExists

A session with the given name already exists.

This means that if, for example, a request were made to create a session named s,
and a session with that name already existed, then the HTTP response would have
status code 409 and the following response body in JSON:

{
 "httpStatusCode": 409,
 "httpMessage": "Conflict",
 "errorCode": "urn:oracle:cloud:errorcode:messaging:sessionAlreadyExists",
 "errorMessage": "Session 's' already exists"
}

The response body in XML is as follows:

<error>
 <httpStatusCode>409</httpStatusCode>
 <httpMessage>Conflict</httpMessage>
 <errorCode>urn:oracle:cloud:errorcode:messaging:sessionAlreadyExists</errorCode>
 <errorMessage>Session 's' already exists</errorMessage>
</error>

Localization of Error Messages

When Oracle Messaging Cloud Service encounters an error, a descriptive error
message is returned in the body of the HTTP response. Oracle Messaging Cloud
Service supports localized error message, which can be used to provide a preferred
language for the error message descriptions. Note that only the content which is
displayed in the errorMessage field (in JSON)/ the <errorMessage></errorMessage>
element (in XML) is localized. Other content of the error response such as the
exception messages may not be localized.

To specify your preferred language for the error message descriptions, you should use
the Accept-Language header in the HTTP request.

The following languages are supported:

Language Code

US English
en-US

German
de

Spanish
es

French
fr

Chapter 3
About Using the REST API

3-21

Language Code

Italian
it

Japanese
ja

Korean
ko

Brazilian Portuguese
pt-BR

Chinese
zh-CN

Taiwan Chinese
zh-TW

The default language for error message descriptions is US English. If you use the
Accept-Language header and specify a language which is currently not supported,
then the error message descriptions will be returned in US English by default.

When a client's Accept-Language header specifies only a language, Oracle Messaging
Cloud Service will localize to a supported locale that includes that language if one
exists. For example, if the Accept-Language header is set to en, the error message
descriptions will be returned in en-US; if it is set to pt, the error message descriptions
will be returned in pt-BR; if it is set to zh, the error message descriptions could be
returned either inzh-CN or zh-TW.

Understanding Anti-CSRF Measures
To prevent Cross-Site Request Forgery (CSRF) attacks, Oracle Messaging Cloud
Service generates pseudorandom anti-CSRF tokens for each messaging context.

For requests with methods, the REST API provides the capability to enable the
generation and use of an anti-CSRF ID token according to the following rules:

• On a client's initial HTTP request to the REST API, if the ID token is not explicitly
disabled by the request, then a pseudorandom ID token is generated by the
service and returned to the client as the value of the X-OC-ID-TOKEN header. The
initial request may disable the ID token by including the header X-OC-ID-TOKEN-
STATUS: disabled.

If this header is in the initial request, no ID token is generated or stored or returned
in the response.

• Whenever a request is received when ID tokens are enabled and an ID token
value has been previously generated, the previously generated ID token is
compared with the value of the X-OC-ID-TOKEN header in the request. If there is no
such request header, or if its value does not match the previously generated ID
token, then the service sends a response with status code 400 and the error
message "Missing or incorrect X-OC-ID-TOKEN" (as listed in REST API HTTP
Status Codes and Error Messages Reference), and no further processing of the
request is performed.

Chapter 3
About Using the REST API

3-22

• If a request is received when ID tokens are enabled and an ID token value has
been previously generated, and the request has the correct X-OC-ID-TOKEN header
value, and the request contains the header X-OC-ID-TOKEN-STATUS: disabled,
the previously generated ID token is discarded, and the ID token is disabled on
subsequent requests.

• If a request is received when the ID token is disabled, and the request contains the
header X-OC-ID-TOKEN-STATUS: enabled then a pseudorandom ID token is
generated by the service and returned to the client as the value of the X-OC-ID-
TOKEN header, and the ID token is enabled for subsequent requests.

Take note of the following additional rules:

• An X-OC-ID-TOKEN-STATUS header that enables the ID token when the ID token is
already enabled, or that disables the ID token when it is already disabled, has no
effect on the ID token's enabling or disabling.

• The ID token is returned only in response to the request (initial or subsequent) that
enables the ID token for the associated messaging context. The client must save
the value to be able to submit it in subsequent requests, or the client will be unable
to re-use the associated messaging context and any of its encapsulated
ephemeral objects, like connections, sessions, producers, and consumers.

• If the ID token is currently enabled, then disabling the token requires that the
current ID token be supplied by the request.

• Enabling and disabling the ID token is done "out of band" from the other
processing of a given request, prior to the normal processing of the request. Even
if a request's normal processing fails (for example, an attempt is made to create a
queue that already exists, or delete a listener that doesn't exist), the enabling or
disabling of the ID token will occur according to the rules described earlier. In
particular, even if a request that enables the ID token generates an error response
with status code 400 or greater, the response will still have an X-OC-ID-TOKEN
header containing the new ID token.

• Applications which use the REST API that the developer feels do not need anti-
CSRF measures can send the disabling header in the client's initial request to the
service and subsequently take no account of anti-CSRF measures. If there is a
chance that a connection might expire between accesses by such a client, the
client may either check for the generation of an anti-CSRF token and disable it via
a subsequent request or send the disabling header on every request.

HTTP Header for Messaging Service Version
The Oracle Messaging Cloud Service provides an HTTP response header X-OC-
MESSAGING-SERVER-VERSION that specifies the version of the Oracle Messaging Cloud
Service being run by the server to which the client is connected.

The value of the header X-OC-MESSAGING-SERVER-VERSION is a dot-delimited list of
integers, for example, 15.2.5.0.0.

HTTP Header for Messaging Context ID
The Oracle Messaging Cloud Service provides an HTTP response header X-OC-
MESSAGING-CONTEXT-ID whose value is the ID of the messaging context associated
with the response.

Chapter 3
About Using the REST API

3-23

The HTTP header X-OC-MESSAGING-CONTEXT-ID indicates the internal, pseudorandom
ID for the messaging context associated with the response. This header is only
returned in the response to the request that creates the messaging context.

Resource Management API
The Resource Management API provides functionality to create and manage
destinations, and message push listeners.

Topics:

• Creating and Managing Destinations

• Creating and Managing Message Push Listeners

Creating and Managing Destinations
This section provides information about creating and managing destinations in Oracle
Messaging Cloud Service.

Topics:

• Create a Destination

• List Destinations

• Retrieve Destination Properties

• Remove a Destination

Create a Destination
This section provides information about creating a destination.

Names of queues or topics must always consist solely of letters of the Roman
alphabet (a through z or A through Z), decimal digits (0 through 9), and underscores
('_'). No other characters are allowed.

Method: PUT

Path:

• To create a queue, the path is /queues/queueName

• To create a topic, the path is /topics/topicName

Scope: Service Instance

Authorization: Messaging Administrator

Result: Create a queue or topic with the supplied name.

Error Responses:

Error Message Description

destinationAlreadyExists A destination of the specified type with the
specified name already exists.

Chapter 3
Resource Management API

3-24

Error Message Description

maxQueuesReached A request was made to create a queue, but
the number of queues is already at the
maximum for the service.

maxTopicsReached A request was made to create a topic, but
the number of topics is already at the
maximum for the service.

See Create a Queue and Create a Topic for example HTTP requests which create
destinations.

List Destinations
This section provides information about listing destinations.

Method: GET

Path:

• To list queues, the path is /queues

• To list topics, the path is /topics

Scope: Service Instance

Authorization: Messaging Administrator

Result: Returns a listing of all queues or topics in the service instance.

Response Body: XML or JSON. The XML format has one element for each
destination of the appropriate type.

For queues, the format in JSON is as follows:

{
 "items": [
 {
 "name": "name",
 "status": "status",
 "canonicalLink": "relative path to queue"
 },
 ...
],
 "canonicalLink": "relative path to queue list"
}

The format for queues in XML is as follows:

<queues>
 <items>
 <name>name</name>
 <status>status</status>
 <canonicalLink>relative path to queue</canonicalLink>
 </items>
 ...
 <canonicalLink>relative path to list of queues</canonicalLink>
</queues>

Chapter 3
Resource Management API

3-25

For topics, the format in JSON is as follows:

{
 "items": [
 {
 "name": "name",
 "status": "status",
 "canonicalLink": "relative path to topic"
 },
 ...
],
 "canonicalLink": "relative path to topic list"
}

The JSON format for listing topics is the same as that for listing queues except that the
canonicalLink properties are different.

The format for topics in XML is as follows:

<topics>
 <items>
 <name>name</name>
 <status>status</status>
 <canonicalLink>relative path to topic</canonicalLink>
 </items>
 ...
 <canonicalLink>relative path to list of topics</canonicalLink>
</topics>

In all cases, name is the name of the destination of the given type and status is
MARK_FOR_DELETION if the destination still exists in the JMS broker but has been
marked for deletion (and thus is in the process of being deleted), and is PROVISIONED
otherwise. If a destination has been marked for deletion, then it cannot be used, but it
is also not possible to create a destination of a given type with the marked
destination's name until the marked destination has been deleted (and thus does not
appear in the output of this method).

Retrieve Destination Properties
This section provides information about retrieving destination properties.

Method: GET

Path:

• To get the properties of a queue, the path is /queues/queueName

• To get the properties of a topic, the path is /topics/topicName

Authorization: Messaging Administrator

Scope: Service Instance

Request Parameter:

Chapter 3
Resource Management API

3-26

Parameter Description

backlog The value must be true or false. The default value is
false.

A destination’s backlog size is the number of messages
currently stored for the destination.

Every destination in Oracle Messaging Cloud Service
has a maximum backlog size of 100,000 messages.
Attempts to send messages to a destination with a
backlog of 100,000 messages will fail. The value
reported for a queue's backlog size may be up to 30
seconds old.

Note that the backlog feature is currently available only
for queues.

Result: Returns the properties of the destination with the specified name. When
retrieving a queue’s properties, if backlog is set to true, the HTTP response body
includes a backlogStats element for XML and JSON response types, respectively.

Response Body: For queues, the format in JSON is as follows:

{
 "name": "name",
 "status": "status",
 "canonicalLink": "relative path to queue"
 "backlogStats" : {
 "current" : "size of the destination's backlog"
 }
}

The format in XML is as follows:

<queue>
 <name>name</name>
 <status>status</status>
 <canonicalLink>relative path to queue</canonicalLink>
 <backlogStats>
 <current>size of the destination's backlog</current>
 </backlogStats>
</queue>

For topics, the JSON format is the same, but with the appropriate value of the
canonicalLink property. The format in XML is as follows:

<topic>
 <name>name</name>
 <status>status</status>
 <canonicalLink>relative path to topic</canonicalLink>
</topic>

The value and interpretation of status are as in the List Destinations method.

Error Response:

Chapter 3
Resource Management API

3-27

Error Message Description

destinationNotFound The destination whose properties are requested does not
exist.

Remove a Destination
This section provides information about removing destinations.

Deleting a destination is a non-blocking operation. For more information, refer to About
Destination Deletion.

Method: DELETE

Path:

• To delete a queue, the path is /queues/queueName

• To delete a topic, the path is /topics/topicName

Scope: Service Instance

Authorization: Messaging Administrator

Result: Deletes the destination with the given name.

Error Response:

Error Message Description

destinationNotFound The destination whose deletion is requested does not
exist.

Creating and Managing Message Push Listeners
This section provides information about creating and managing message push
listeners in Oracle Messaging Cloud Service.

Topics:

• Create a Listener

• Delete a Listener

• List Listeners

• Retrieve Listener Properties

Create a Listener
This topic provides information about creating a listener. The name of a listener must
always consist solely of letters of the Roman alphabet (a through z or A through Z),
decimal digits (0 through 9), and underscores ('_'). No other characters are allowed.

Method: PUT

Path: /listeners/listenerName

Chapter 3
Resource Management API

3-28

Scope: Service Instance

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

verificationToken A token used in message push listener verification.
The value of the verificationToken parameter is
a string which is passed along with the message
push listener verification request as the X-OC-MPL-
VERIFICATION header.

Note: The X-OC-MPL-VERIFICATION header is a
header that the service sends to the endpoint.

Request Body: An XML document that specifies the following:

• The URI to which to push messages, with any associated parameters to the push.

• The selector, if any, the listener should apply to filter the messages it receives.

• The existing durable subscription, if any, on which the listener should listen for
messages.

• The policy the listener should follow if an attempt to push a message fails.

Note:

The XML document should not contain a DOCTYPE declaration. If a DOCTYPE
declaration is included in the XML document, a 500 operationFailed
response is returned. This is done to prevent certain security and Denial of
Service (DoS) attacks.

See Create a Message Push Listener for an example HTTP request which creates a
message push listener.

The root of the document is <listener>. The root must contain a single <version>
whose content is the version of the listener XML. For the current release, the version
must be 1.0. The root must also contain exactly one <name> element whose content is
listener name. The root may also contain a single <source> element whose content
specifies the queue or topic on which the listener listens for messages. If present, its
content must be one each of the following elements:

• <type>

The content must be either queue or topic.

• <name>

The name of the queue or topic.

If the <source> element is not present, the <listener> element must contain a
<subscription> element. Note that the <source> element implicitly specifies a non-
temporary queue or topic. Message push listeners may not listen on temporary
queues or topics.

Chapter 3
Resource Management API

3-29

The root must contain exactly one <target> element, 0 or 1 <selector> elements, 0
or 1 <subscription> elements, and 0 or 1 <failurePolicy> elements; order of all
child elements is irrelevant. If a <subscription> element is present, there can be
neither a <source> nor a <selector> element, as both the destination and selector, if
any, is determined by the subscription.

The <target> element specifies the URI to which the listener pushes messages; it
must contain at most one of each of the following elements:

• <uri>

There must be exactly one such element. The content is the URI to which to push,
which must be one of the following types:

– An HTTP or HTTPS URL

– A URN of the form urn:oracle:cloud:messaging:queues:queueName or
urn:oracle:cloud:messaging:topics:topicName.

A URI of the first type indicates that the listener should push to an HTTP or
HTTPS endpoint. A URI of the second type indicates that the listener should send
the message to a queue or topic; the fifth colon-separated component specifies
whether the destination is a queue or topic, and the last colon-separated
component specifies the name of the queue or topic. It is expected that targets of
the latter form will usually occur as targets to which to push a message after an
HTTP or HTTPS push has failed, but this is not required.

Message push listeners will not follow HTTP redirects. An HTTP redirect response
from a user-specified URL will be treated as an error as described in the
explanation of the <failurePolicy> element below.

• <method>

The content is the HTTP method to use for the push if the <uri> contains an HTTP
or HTTPS URI. Only the POST and PUT methods will work; the default is POST. This
element is optional, and must be omitted if the URI is not an HTTP or HTTPS URI.

• <user>

The user to use for HTTP authentication if <uri> contains an HTTP or HTTP URI.
This element is optional, and must be omitted if the URI is not an HTTP or HTTPS
URI. There is no default value.

• <password>

The password to use for HTTP authentication if <uri> contains an HTTP or HTTP
URI. This element must be present if and only if the <user> element is present.
There is no default value.

The <target> element may contain an arbitrary number (including 0) of <header>
elements; these elements are ignored if the target is not an HTTP or HTTPS target.
Each <header> element must contain exactly one <name> and <value> element. The
content specifies a value for the header with name given by the content of the <name>
element and value given by the content of the <value> element. Multiple <header>
elements with the same <name> content are allowed; those after the first with a given
name add headers rather than overwriting the earlier headers. The <name> element's
content may not begin with "X-OC-" (case-insensitive). The <name> element's content
must be a legal HTTP header name and the <value> element's content must be a
legal HTTP header value. If the <name> element contains Content-Type (case-
insensitive), the value is ignored, unless the message being pushed has type HTTP and
does not specify a Content-Type. Otherwise, the Content-Type header of a message

Chapter 3
Resource Management API

3-30

push request is determined by the message. If the <name> element contains Content-
Language (case-insensitive), the value assigned by the listener is overridden if the
message being pushed has type HTTP and specifies the Content-Language.

The content of the <selector> element is used as the JMS selector for the listener.
For the syntax of selectors, see the Message Selectors section of the Java API
reference for the javax.jms.Message class.

The <subscription> element must contain one of each of the following elements:

• <clientId>

The content is the client ID of the durable subscription to use.

• <name>

The content is the name of the subscription.

If present, this element specifies an existing durable subscription whose messages the
listener should receive and push.

Note:

If there is a listener listening on a durable subscription, no other client or
listener is able to use the same client ID, even with a different subscription
name. Thus, any client ID used with a listener should be dedicated to that
listener, and only one durable subscription can be used for that client ID.

The <failurePolicy> element, if present, specifies what the listener does if its attempt
to push a message to a URI fails. If no <failurePolicy> element is present, a
message whose push fails is discarded. If present, <failurePolicy> must contain 0 or
more <failure> elements. Each <failure> element specifies the kind of push failures
to which it applies, and what to do in case of the given failure. If a push fails, the
<failure> element that is first in document order that applies to the failure is used to
determine what action is taken. If no <failure> element applies (in particular, if the
<failurePolicy> element contains no <failure> elements), the message is
discarded.

A <failure> element must contain exactly one <cond>. Its content must be one of the
following:

• connection: this value indicates that the <failure> element applies if the target
URI was an HTTP or HTTPS URL and the listener was unable to establish a
connection to the specified endpoint, or the host and port specified by the URL
was not an HTTP endpoint.

• responseCode:n-m, in which n and m are positive integers: a value of this form
indicates that the <failure> element applies if the target URI was an HTTP or
HTTPS URL, a connection was successfully made to the specified HTTP endpoint,
and the response code is greater than or equal to n and less than or equal to m.
Note that, regardless of the values of n and m, the <failure> element will only
apply if the response status is 300 or greater. HTTP requests to push messages
will not follow redirects, and will generate a responseCode error.

• responseCode: n: this is equivalent to responseCode:n-n.

Chapter 3
Resource Management API

3-31

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

• send: this value indicates that the <failure> element applies if the target URI was
a URN specifying a queue or topic, and the attempt to send failed.

• maxHops: this value indicates that the <failure> element applies if the target URI
was a URN specifying a queue or topic, and the message had already been
pushed by a listener to a queue or topic the maximum number of times allowed
(currently 8).

• any: this value indicates that the <failure> element applies to any of the above
failure types.

A <failure> element may contain 0 or 1 <wait> elements.

The <wait> element must contain exactly one <time> element. The content of the
<time> element must be a non-negative integer, and is interpreted as a number of
milliseconds to wait before attempts to push the message again. The allowed content
of a <wait> element, other than <time>, is the same as that of <listener>, except that
<target> is not required. If there is no <target> element, it is equivalent to the
<target> element being the same as that of the nearest enclosing <listener> or
<wait> element. After waiting the specified wait time, the listener then behaves as if it
were a listener whose content is that of the <wait>; it attempts to push the message to
the URI specified by its <target>, and, if that fails, applies the failure policy specified
by its <failurePolicy> child, if any. Note that the <failurePolicy> of the parent is
not inherited; successive push attempts use the <failurePolicy> at the appropriate
level. Thus, a listener will never retry forever; if all push attempts for a given message
fail, the message will eventually be discarded.

If a message received by a listener is pushed to a queue or topic, the type and content
of the message is preserved. All properties will also be preserved, with the following
exceptions:

• The X_OC_PushCount property will either be set to 1, if it is not present, is not an
integer, or is a negative integer; otherwise, it will be incremented by 1. This
property is used by listeners to track how many times the message has been re-
sent to a queue or topic by a listener. If the incoming message's X_OC_PushCount
is 8 or greater, and the listener is directed to push it to a queue or topic, it will
instead cause a failure that can be handled by a <failure> element containing a
<cond>maxHops</cond> element.

• The ID of the received message is set as the X_OC_PastJMSMessageIDN property of
the outgoing message, where N is 1 less than the value of the X_OC_PushCount
property on the outgoing message.

• The destination header of the received message, expressed as a String of the
form /queues/queueName or /topics/topicName, is set as the
X_OC_PastJMSDestinationN property of the outgoing message (N as above).

• The value of the timestamp header of the received message is set as the
X_OC_PastJMSTimestampN property of the outgoing message (N as above).

• The value of the "redelivered" header of the received message is set as the
X_OC_PastJMSRedeliveredN property of the outgoing message (N as above).

The correlation ID, reply-to, and delivery mode of the received message is set as the
corresponding headers of the outgoing message. The message is sent with a time-to-
live that will make it expire at roughly the same time as the received message.

For example:

Chapter 3
Resource Management API

3-32

<listener>
 <version>1.0</version>
 <name>myListener</name>
 <source>
 <type>queue</type>
 <name>myQueue</name>
 </source>
 <target>
 <uri>http://myHost/receiver</uri>
 <method>PUT</method>
 <user>u</user>
 <password>guest</password>
 <header>
 <name>X-PIN</name>
 <value>123456</value>
 </header>
 </target>
 <selector>(urgency = 'high') AND (count < 5)</selector>
 <failurePolicy>
 <failure>
 <cond>connection</cond>
 <wait>
 <time>5000</time>
 <failurePolicy>
 <failure>
 <cond>any</cond>
 <wait>
 <time>0</time>
 <target>
 <uri>http://myBackupHost/deadLetter</uri>
 </target>
 </wait>
 </failure>
 </failurePolicy>
 </wait>
 </failure>
 <failure>
 <cond>responseCode:500-599</cond>
 <wait>
 <time>0</time>
 <target>
 <uri>http://myBackupHost/deadLetter</uri>
 </target>
 </wait>
 </failure>
 <failure>
 <cond>responseCode:401-499</cond>
 <wait>
 <time>0</time>
 <target>
 <uri>urn:oracle:cloud:messaging:queues:unpushed</uri>
 </target>
 <failurePolicy>
 <failure>
 <cond>send</cond>
 <wait>
 <time>0</time>
 <target>
 <uri>urn:oracle:cloud:messaging:topics:backup</uri>
 </target>
 </wait>

Chapter 3
Resource Management API

3-33

 </failure>
 </failurePolicy>
 </wait>
 </failure>
 </failurePolicy>
</listener>

This listener listens for messages sent to the queue myQueue whose urgency property
has the value high and whose count property has value less than 5. (The urgency and
count properties of a message sent via the REST API, if present, would be set to the
value of the X-OC-type-PROPERTY-urgency and X-OC-type-PROPERTY-count headers,
respectively, of the HTTP request that created it, if present. The type parts of the two
property headers might be, for example, STRING for urgency and INT for count.) The
listener attempts to push messages it receives to http://myHost/receiver with
method PUT, user and password u and guest respectively, and header X-PIN: 123456.
If it cannot connect, it waits for 5 seconds and tries again. If that fails in any way, it
immediately attempts to push to http://myBackupHost/deadLetter, with method
POST, no HTTP authentication credentials, and no special headers. If the second push
fails in any way, the message is discarded. If the initial push fails with response status
code in the range 500-599, the listener will immediately attempt a push to http://
myBackupHost/deadLetter as above. If that fails, the message is discarded. If the
initial push fails with response status code in the range 401-499, the listener will
immediately attempt a push to a queue with name unpushed. If that fails, the listener
will attempt to push the message to a topic called backup, discarding the message if
that fails. If the initial push failed for any other reason (for example, response code of
exactly 400), the message is discarded.

The following is an example with a durable subscription:

<listener>
 <version>1.0</version>
 <name>myListener</name>
 <target>
 <uri>http://myHost/receiver</uri>
 <method>PUT</method>
 <user>u</user>
 <password>guest</password>
 <header>
 <name>X-PIN</name>
 <value>123456</value>
 </header>
 </target>
 <subscription>
 <clientId>myListenerID</clientId>
 <name>sub</name>
 </subscription>
 <failurePolicy>
 <failure>
 <cond>connection</cond>
 <wait>
 <time>5000</time>
 <failurePolicy>
 <failure>
 <cond>any</cond>
 <wait>
 <time>0</time>
 <target>
 <uri>http://myBackupHost/deadLetter</uri>

Chapter 3
Resource Management API

3-34

 </target>
 </wait>
 </failure>
 </failurePolicy>
 </wait>
 </failure>
 <failure>
 <cond>responseCode:500-599</cond>
 <wait>
 <time>0</time>
 <target>
 <uri>http://myBackupHost/deadLetter</uri>
 </target>
 </wait>
 </failure>
 <failure>
 <cond>responseCode:401-499</cond>
 <wait>
 <time>0</time>
 <target>
 <uri>urn:oracle:cloud:messaging:queues:unpushed</uri>
 </target>
 <failurePolicy>
 <failure>
 <cond>send</cond>
 <wait>
 <time>0</time>
 <target>
 <uri>urn:oracle:cloud:messaging:topics:backup</uri>
 </target>
 </wait>
 </failure>
 </failurePolicy>
 </wait>
 </failure>
 </failurePolicy>
</listener>

This listener is the same as the previous one, except that the topic it listens on and the
selector, if any, are taken from an existing durable subscription with client ID
myListenerID and name sub.

Result: Creates a listener with name listenerName.

Error Responses:

Error Message Description

nonexistentNamespace The specified
namespace
does not exist.

nonexistentNamespaceComponents The namespace
specified for the
request does
not exist.

nonexistentNamespaceUnknown The namespace
specified in the
request URL
does not exist.

Chapter 3
Resource Management API

3-35

Error Message Description

malformedListener One of the
following
occurred:

• Neither a
source nor
a durable
subscriptio
n was
specified in
the XML.

• The listener
XML did
not conform
to the
syntax
described
in Create a
Listener.

destinationParameterNotFound The source
specified on
which the
listener should
listen does not
exist.

subscriptionParameterNotFound The request
body specified a
subscription
from which to
receive, and the
subscription
does not exist.

subscriptionNotFoundNoInfo The request
body specified a
subscription
from which to
receive, and the
subscription
does not exist.

listenerAlreadyExists A listener with
the given name
already exists.

clientIdFailure The listener
XML specifies a
listener on a
durable
subscription
whose client ID
is invalid or in
use by some
client or other
listener.

Chapter 3
Resource Management API

3-36

Error Message Description

messagePushListenerVerificationBadResponse An HTTP or
HTTPS
endpoint
responded to a
verification
request with a
response body
that did not
match the
challenge token
sent by Oracle
Messaging
Cloud Service.

messagePushListenerVerificationConnectionFailed Oracle
Messaging
Cloud Service
was unable to
connect to an
HTTP or
HTTPS
endpoint to
send a
verification
request.

messagePushListenerVerificationErrorResponse An HTTP or
HTTPS
endpoint
responded to a
verification
request with a
status code
other than 200.

messagePushListenerVerificationException An exception
occurred in
attempting to
read the
response to a
verification
request.

messagePushListenerVerificationNoToken The listener
XML specifies
at least one
HTTP or
HTTPS URL to
which to push
messages, but
no
verification
Token was
supplied.

Chapter 3
Resource Management API

3-37

Error Message Description

messagePushListenerVerificationRedirectionDisableFailed A failed attempt
was made to
disable HTTP
redirects for the
message push
listener
verification
request.

operationFailed A low-level
exception was
thrown while
checking for a
pre-existing
listener, or while
creating the
listener.

Delete a Listener
This topic provides information about deleting a listener.

Method: DELETE

Path: /listeners/listenerName

Scope: Service Instance

Authorization: Messaging Administrator or Messaging Worker

Result: Deletes listener with name listenerName

Error Responses:

Error Message Description

nonexistentNamespace The specified namespace does not exist.

nonexistentNamespaceComponents The namespace specified for the request does
not exist.

nonexistentNamespaceUnknown The namespace specified in the request URL
does not exist.

listenerNotFound The listener to delete did not exist.

operationFailed A low-level exception was thrown while deleting
the listener.

List Listeners
This section provides information about listing listeners.

Method: GET

Path: /listeners

Scope: Service Instance

Chapter 3
Resource Management API

3-38

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

destination Optional. If present, value must be /queues/queueName or /
topics/topicName. Specifies a destination whose listeners
should be listed.

Result: Returns a list of all listeners created for the namespace if there is no
destination parameter, and a list of all listeners on the destination specified by
destination otherwise.

Response Body: XML format with one <items> element for each listener and a
<canonicalLink> element.

<listeners>
 <items>
 <name>listener name</name>
 <canonicalLink>relative path to access /listeners/listener name</
canonicalLink>
 </items>

 <canonicalLink>relative path to access /listeners</canonicalLink>
</listeners>

Error Responses:

Error Message Description

malformedDestination The destination parameter value did not
parse as a specification of a queue or topic.

nonexistentNamespace The specified namespace does not exist.

nonexistentNamespaceComponents The namespace specified for the request
does not exist.

nonexistentNamespaceUnknown The namespace specified in the request URL
does not exist.

destinationParameterNotFound The destination parameter specified a
destination that does not exist.

operationFailed An exception was thrown while getting the list
of listeners or outputting the XML
representation of the listeners.

Retrieve Listener Properties
This section provides information about retrieving listener properties.

Method: GET

Path: /listeners/listenerName

Scope: Service Instance

Authorization: Messaging Administrator or Messaging Worker

Chapter 3
Resource Management API

3-39

Result: Returns properties of the listener with name listenerName.

Response Body: An XML document in the format used in the request body to create
the listener, describing the listener with name listenerName.

Error Responses:

Error Message Description

nonexistentNamespace The specified namespace does not exist.

nonexistentNamespaceComponents The namespace specified for the request does
not exist.

nonexistentNamespaceUnknown The namespace specified in the request URL
does not exist.

listenerNotFound The specified listener does not exist.

operationFailed A low-level exception was thrown while
retrieving the listener properties.

Message Transmission API
The Message Transmission API provides an interface for sending messages through
producers and receiving messages through consumers, including advanced
messaging capabilities such as transactions. The Message Transmission API also
provides functionality to create and manage messaging contexts, connections,
sessions, durable subscriptions, temporary destinations, and queue browsers.

Topics:

• Creating and Managing Messaging Contexts

• Creating and Managing Connections

• Creating and Managing Sessions

• Sending Messages

• Receiving Messages

• Creating and Managing Durable Subscriptions

• Creating and Managing Temporary Destinations

• Creating and Managing Queue Browsers

Creating and Managing Messaging Contexts
This section provides information about creating and managing messaging contexts in
Oracle Messaging Cloud Service.

Topics:

• Create a Messaging Context

• Get Maximum Inactive Interval (MII)

• Set Maximum Inactive Interval (MII)

Chapter 3
Message Transmission API

3-40

Create a Messaging Context
A messaging context is a container of ephemeral objects like connections, sessions,
producers, consumers, temporary destinations, and queue browsers.

Creation of a messaging context is an implicit operation. It is created by the first
access to the Oracle Messaging Cloud Service that passes authentication. At least
one messaging context must be created by a client in order to access Oracle
Messaging Cloud Service. When a new messaging context is created, the HTTP
response includes the header X-OC-NEW-MESSAGING-CONTEXT: true. Existing
messaging contexts are identified in HTTP requests by JSESSIONID cookies. If an
HTTP request does not include a JSESSIONID cookie, or if the HTTP request includes a
JSESSIONID cookie for an expired messaging context, then a new messaging context
is created. For more information about messaging contexts, see Messaging Context
and HTTP Cookies.

Each messaging context created by the REST API has a maximum inactive interval
(MII) associated with it. A messaging context expires if it is not accessed for a period
of time longer than the associated MII.

Get Maximum Inactive Interval (MII)
This section provides information about getting the maximum MII allowed to be set by
the service or service instance.

Method: GET

Path: /maxInactiveInterval

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Returns the information of the current MII and the maximum allowed MII.

Response Headers:

• X-OC-MII: positive integer number of seconds

Indicates the current value of the MII.

• X-OC-MAX-MII: positive integer number of seconds

Indicates the maximum MII allowed to be set by the service or service instance.

Error Response:

Error Message Description

operationFailed A low-level exception occurred in attempting to obtain
the client ID.

Set Maximum Inactive Interval (MII)
This section provides information about setting the Maximum Inactive Interval (MII).

Method: POST

Path: /maxInactiveInterval

Chapter 3
Message Transmission API

3-41

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

mii The value must be a non-negative integer, interpreted as the number
of seconds to which the client would like to set the MII.

Result: If the value of mii in the request is positive, then the MII is set to that value (or
900 if the value is greater than 900). If it is 0, the messaging context expires
immediately, and is deleted.

Note:

A value of 0 does not indicate infinity. Clients may not set messaging
contexts to never expire.

Response Headers:

• X-OC-MII: positive integer number of seconds

If the requested MII was positive, this is the new value of the maximum inactive
interval, which may be less than the value submitted. The maximum is 900
seconds.

• X-OC-MAX-MII: positive integer number of seconds

Indicates the maximum MII allowed to be set by the service or service instance.
The maximum MII allowed is 900 seconds.

Error Responses:

Error Message Description

badParameter The value of the mii parameter did not parse as an integer
or was negative.

operationFailed A low-level exception occurred.

Creating and Managing Connections
A client can associate a client ID with a connection. The client ID is a string that, along
with a subscription name, identifies a durable subscription to a topic. When creating a
durable consumer on a topic, the client ID set on the connection is used with the
subscription name supplied in the consumer creation method to identify the durable
subscription.

An attempt to set the client ID on a connection that generates an error with
InvalidClientIDException as its exceptionClass causes the connection to become
unusable. Any connection on which such an error response is received should be
closed.

Chapter 3
Message Transmission API

3-42

Topics:

• Create a Connection

• Update Connection Properties

• Delete a Connection

Create a Connection
This topic provides information about creating a connection.

Method: PUT

Path: /connections/connectionName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

clientId Optional. The value is the client ID that the client would like to set
on the connection.

action Optional. To start a connection, value of the action parameter
must be start.

Result: Creates a connection with the name connectionName. A connection is stopped
when it is created (unless the start action is specified in the PUT request to create the
connection).

Response Body:

The response body in XML for creating a connection is as follows:

<connection>
 <metadata>
 <JMSXPropertyNames>
 <items>JMSXDeliveryCount</items>
 <items>JMSXGroupID</items>
 <items>JMSXGroupSeq</items>
 </JMSXPropertyNames>
 </metadata>
 <canonicalLink>relative path to newly created connection</canonicalLink>
</connection>

Each supported JMSX property name is listed in an <items> element.

The response body in JSON for creating a connection is as follows:

{
 "metadata":
 {
 "JMSXPropertyNames":
 [
 "JMSXDeliveryCount",
 "JMSXGroupID",

Chapter 3
Message Transmission API

3-43

 "JMSXGroupSeq"
]
 }
 "canonicalLink": "relative path to newly created connection"
}

For more information, refer to the following links:

• X-OC-DELIVERY-COUNT

• X-OC-GROUP-ID

• X-OC-GROUP-SEQ

Error Responses:

Error Message Description

clientIdFailure The value that is provided for the
connection's client ID is rejected by the
JMS provider.

connectionAlreadyExists A connection with the specified name
already exists.

maxConnectionCountUnavailable An internal error has occurred in
determining the number of connections that
a service instance is allowed.

maxLocalConnectionsReached The service instance has exceeded the
number of connections it can create on a
single virtual machine in the cloud. This
usually means that the service instance has
reached, or even gone beyond, the
maximum number of allowed connections.

operationFailed A low-level exception occurred in
attempting to obtain the client ID.

Update Connection Properties
This section provides information about updating connection properties.

Method: POST

Path: /connections/connectionName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

clientId Optional. The value is the client ID that the client would like to
set on the connection.

action Optional. To start a connection, value of the action
parameter must be start. To stop a connection, the value of
the action parameter must be stop.

Chapter 3
Message Transmission API

3-44

Result: If the clientId parameter is present, the client ID of the connection is set to
the specified value, provided that none of the following blocking conditions are true:

• The client ID has already been set to a value for the connection.

• The connection was started when it was created.

• The connection has been used for any operation.

• The client ID is in use by some other application.

If any of the blocking conditions is true, a 400 error response is generated.

Note:

If a REST API client sets a client ID on a connection, as long as that connection exists,
no other connection will be able to have the same client ID set on it. As a
consequence, no other connection will be able to create, delete, or consume from any
durable subscription with that client ID. For example, consider the following situations:

• A client fails, or otherwise loses the value of the JSESSIONID HTTP cookie that
identifies the messaging context that contains a connection with a client ID.

• A client exits without either deleting a connection with a client ID or expiring the
messaging context containing it by setting the messaging context's MII to 0.

In either of these cases, no client will be able to create a new connection with the
given client ID until the messaging context expires. To avoid these situations, a REST
API client that sets a client ID on a connection should do the following:

• Set the MII of any messaging context containing a connection with a client ID to
the smallest feasible value, so that, if the client fails or loses the value of the
JSESSIONID HTTP cookie, the time before the client ID can be used again is
minimal.

• Delete connections with client IDs before exiting, either by explicitly performing a
DELETE on the connection resource or by setting the MII of the messaging context
containing such connections to 0, which will close all connections in the context.

Error Responses:

Error Message Description

clientIdFailure The value that is provided for the connection's
client ID is rejected by the JMS provider.

The value of the clientId may be in use by
another application, including message push
listeners.

connectionNotFound The requested connection does not exist.

clientIdUnsettable An attempt was made to set the client ID on a
connection on which it cannot be set, either
because it has already been set or because an
operation has been performed (for example,
starting the connection, or creating a session)
after which the client ID can no longer be set.

operationFailed A low-level exception occurred in attempting to
obtain the client ID, or its value has been
rejected.

Chapter 3
Message Transmission API

3-45

Delete a Connection
This topic provides information about deleting a connection.

Method: DELETE

Path: /connections/connectionName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Closes and deletes the connection. This also closes and deletes all sessions,
producers, consumers, temporary destinations, and queue browsers created with the
connection.

Error Response:

Error Message Description

connectionNotFound The requested connection does not exist.

Creating and Managing Sessions
Before messages can be sent or received through the Message Transmission API, a
connection and a session must be created. A session provides a behavioral context
that defines what it means for messages to be sent and received between clients and
Oracle Messaging Cloud Service.

Topics:

• Create a Session

• Acknowledge/Commit/Rollback/Recover a Session

• Delete a Durable Subscription

• Close and Delete a Session

Create a Session
This topic provides information about creating a session.

Method: PUT

Path: /sessions/sessionName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

connection Specify the name of the connection used to create the
session.

Chapter 3
Message Transmission API

3-46

Parameter Description

transacted Optional. If present, must have value true or false; default
is false. Determines whether the session is transacted.

ackMode Optional. If present, must have value auto, client, or
dups_ok; default is auto. Determines how messages
received through the session are acknowledged. This
parameter is irrelevant if the transacted parameter is true.
The auto value means that received messages are
automatically acknowledged as they are received. The
client value means that messages must be explicitly
acknowledged by the client. The dups_ok value means that
messages are automatically acknowledged, but "lazily", so
their acknowledgement may be delayed.

Result: Creates a session.

Error Responses:

Error Message Description

missingParameter The connection parameter was not supplied.

badParameter The value of the transacted parameter had a
value other than true or false, or the value of
the ackMode parameter had a value other than
the allowed ones.

sessionAlreadyExists A session with the given name already exists.

connectionParameterNotFound No connection exists with name which is
specified for the connection parameter.

operationFailed A low-level exception was thrown in creating
the session.

Acknowledge, Commit, Rollback, or Recover a Session
This topic provides information about acknowledging, committing, doing a rollback, or
recovering a session.

Method: POST

Path: /sessions/sessionName/state

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

action Required. Must have value acknowledge, commit, rollback, or
recover. Value determines whether the operation is to acknowledge
any unacknowledged messages received through the session, commit
any uncommitted sends and receives, roll back any uncommitted
sends and receives, or recover any unacknowledged messages.

Chapter 3
Message Transmission API

3-47

Result: Performs the specified operation. If the action is acknowledge or recover, and
the session is set to acknowledge messages automatically (either with
acknowledgement mode auto or dups_ok), this is a no-op. If the action is commit or
rollback, and the session is not transacted, this is a no-op. If the action is recover
and the session is transacted, a 500 error response is generated.

See Process Messages using a Transaction for an example HTTP request/response
sequence.

Error Responses:

Error Message Description

missingParameter The action parameter was not supplied.

badParameter The value of the action parameter was not
acknowledge, commit, rollback, or recover.

sessionNotFound There is no session with the specified name.

operationFailed A low-level exception was thrown while attempting to
carry out the specified action on the specified session.

Delete a Durable Subscription
This topic provides information about deleting a durable subscription.

Method: DELETE

Path: /sessions/sessionName/subscriptions/subscriptionName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Deletes the subscription whose client ID is that set on the connection and
whose name is that given on the path.

Error Responses:

Error Message Description

sessionNotFound Session specified on the path does not exist.

subscriptionInUse The subscription has a consumer on it.

subscriptionNotFound Subscription specified on the path does not exist.

operationFailed A low-level exception was thrown while attempting
to delete the subscription.

Close and Delete a Session
This topic provides information about closing and deleting a session.

Method: DELETE

Path: /sessions/sessionName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Chapter 3
Message Transmission API

3-48

Result: Session with name sessionName is closed and deleted. All producers,
consumers, and queue browsers associated with the session are implicitly closed and
deleted.

Error Responses:

Error Message Description

sessionNotFound There is no session with the specified name.

operationFailed A low-level exception was thrown while attempting to close
and delete the specified session.

Sending Messages
This section provides information about sending messages using the REST API.

Topics:

• Create a Producer

• Set Properties of a Producer

• Close and Delete a Producer

• Send a Message via a Producer

See Send a Message to a Topic for example HTTP requests which send a message to
a destination.

Create a Producer
This topic provides information about creating a producer.

Method: PUT

Path: /producers/producerName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

session Required. The value is the name of the session in
which to create the producer.

Chapter 3
Message Transmission API

3-49

Parameter Description

destination Optional. If present, the value must have one of the
following forms:

• /queues/queueName
• /topics/topicName
• /temporaryQueues/queueName
• /temporaryTopics/topicName
Specifies the default destination of messages sent via
the producer.

If this parameter is omitted, then the destination to
which a message is sent must be specified as a
parameter in each send operation performed via this
producer.

messageIdEnabled Optional. If present, the value must be true or
false; default is true. Determines whether the
producer generates IDs for messages sent through it.

Note: The value of this parameter is a hint to the
service, which may disregard the value.

deliveryMode Optional. If present, the value must be persistent
or non_persistent; default is persistent.
Determines whether messages produced are
persistent.

ttl Optional. If present, the value must be a strictly
positive long integer or the value maximum; default is
maximum. Determines the time in milliseconds
between when a message is dispatched and when
the JMS broker may delete it if not yet delivered. The
value maximum indicates that the maximum time-to-
live allowed by the service (the number of
milliseconds in 2 weeks) should be used.

Result: Creates a producer.

Error Responses:

Error Message Description

missingParameter The session parameter value was not
supplied.

badParameter One of the following occurred:

• The destination parameter value
did not parse as a specification of a
queue or topic.

• The messageIdEnabled parameter
had a value other than true or false.

• The value of the deliveryMode
parameter did not parse as a delivery
mode.

• The value of the ttl parameter was
not a valid time-to-live.

sessionParameterNotFound Session by which to create the producer
does not exist.

Chapter 3
Message Transmission API

3-50

Error Message Description

destinationParameterNotFound The default destination specified for the
producer does not exist.

producerAlreadyExists There is already a producer with the
specified name.

timeToLiveTooLarge The ttl parameter was supplied, but was
an integer that is larger than that permitted
by the service (the number of milliseconds
in 2 weeks).

operationFailed A low-level exception was thrown while
attempting to create the producer.

Set Properties of a Producer
This section provides information about setting properties of a producer.

Method: POST

Path: /producers/producerName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

messageIdEnabled Optional. If present, the value must be true or false.
Determines whether the producer generates IDs for
messages sent through it.

Note: The value of this parameter is a hint to the
service, which may disregard the value.

deliveryMode Optional. If present, the value must be persistent or
non_persistent. Determines whether messages
produced are persistent.

ttl Optional. If present, the value must be a strictly positive
long integer or the value maximum. Determines the time
in milliseconds between when a message is dispatched
and when the JMS broker may delete it if not yet
delivered. The value maximum indicates that the
maximum time-to-live allowed by the service (the
number of milliseconds in 2 weeks) should be used.

Result: Sets the property associated with the parameter to the specified value for all
parameters present.

Error Responses:

Chapter 3
Message Transmission API

3-51

Error Message Description

badParameter One of the following occurred:

• The messageIdEnabled parameter had a
value other than true or false.

• The value of the deliveryMode parameter
did not parse as a delivery mode.

• The value of the ttl parameter was not a
valid time-to-live.

producerNotFound The specified producer to modify does not exist.

timeToLiveTooLarge The ttl parameter was supplied, but was an
integer that is larger than that permitted by the
service (the number of milliseconds in 2 weeks).

operationFailed A low-level exception was thrown while attempting
to modify the producer.

Close and Delete a Producer
This topic provides information about closing and deleting a producer.

Method: DELETE

Path: /producers/producerName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Closes and deletes the producer with name producerName.

Error Responses:

Error Message Description

producerNotFound The specified producer to close and delete does not exist.

operationFailed A low-level exception was thrown while attempting to close
and delete the producer.

Send a Message via a Producer
This section provides information about sending a message via a producer.

Method: POST

Path: /producers/producerName/messages

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Sends the message specified by the HTTP headers and request body to the
destination specified as described below.

Request parameters, headers, and the request body are as described in Properties of
HTTP Requests to Send Messages from REST Clients, with the following differences
in the request parameters:

Chapter 3
Message Transmission API

3-52

Parameter Description

deliveryMode The default value of this header is defined by the producer.

ttl The default value of this header is defined by the producer.

destination Required if the producer was not created with a destination,
in which case the message is sent to the specified
destination. If present, must have one of the following forms:

• /queues/queueName
• /topics/topicName
• /temporaryQueues/queueName
• /temporaryTopics/topicName
Forbidden if the producer was created with a destination, in
which case the message is sent to the destination with which
the producer was created.

groupId Optional. This parameter is used to set the JMSXGroupID
property on the message being sent. This is the name of the
message group of which this message is a part, if any.

Note:
• If the JMSXGroupID property is set as an HTTP request

header, it must be set to an escaped value String or a
badParameter error response will be generated. For
more information on escaped value Strings, see About
Escaped Value Strings. If the JMSXGroupID property is
set as a query string parameter, the usual conventions
for escaping query string parameters hold.

• This parameter is optional, but should be set if, and only
if, groupSeq is set.

groupSeq Optional. This parameter is used to set the JMSXGroupSeq
property on the message being sent. This is the sequence
number of the message within the message group specified
by the groupId parameter. The groupSeq parameter must
be set to an integer or a badParameter error response will
be generated.

Note that this parameter is optional, but should be set if, and
only if, groupId is set.

Response Headers:

Header Description

X-OC-DESTINATION One of the following values is set for this header:

• /queues/name of the queue to which
the message was sent

• /topics/name of the topic to which
the message was sent

• /temporaryQueues/name of the
temporary queue to which the message
was sent

• /temporaryTopics/name of the
temporary topic to which the message
was sent

X-OC-MESSAGE-ID message's ID, if present

Chapter 3
Message Transmission API

3-53

Header Description

X-OC-DELIVERY-MODE persistent or non_persistent. For more
information, see About Persistent and Non-Persistent
Messages.

X-OC-TIMESTAMP time at which message was handed off to
the JMS broker, if present. This is a long integer
interpreted as Unix time.

X-OC-EXPIRATION message expiration time. This is a long integer
interpreted as Unix time.

X-OC-PRIORITY This is always the default value, 4.

Error Responses:

Error Message Description

badParameter One of the following occurred:

• The request specified a value
for the destination
parameter that did not parse as
a specification of a queue or
topic.

• The value of the
deliveryMode parameter did
not parse as a delivery mode.

• The value of the ttl
parameter was not a valid time-
to-live.

• The value of the replyTo
parameter did not parse as a
queue or topic specification.

• The value of the messageType
parameter was not one of the
allowed values for this
parameter.

badProperty An X-OC-type-PROPERTY-name
header had a value that did not fit
the format of properties with the
given type.

forbiddenContentType The Content-Type header of the
HTTP request had value
application/x-www-form-
urlencoded. See Error Keys,
Status Codes and Error Messages
for further information.

multipleDestinations Either the producer has no default
destination and no destination was
specified by the request, or the
producer has a default destination
and a destination was specified by
the request.

destinationParameterNotFound The destination specified for the
message does not exist.

Chapter 3
Message Transmission API

3-54

Error Message Description

producerNotFound The specified producer by which to
send the message does not exist.

messageHeadersTooLarge The request's message-relevant
headers exceeded the maximum
size.

messageBodyTooLarge The request's body exceeded the
maximum size.

timeToLiveTooLarge The ttl parameter was supplied,
but was an integer that is larger
than that permitted by the service
(the number of milliseconds in 2
weeks).

maxMessagesOnTargetDestinationReached The service instance already has
the maximum number of messages
on the specified destination of the
message.

maxMessageBytesOnTargetDestinationReached The message could not be sent
because the targeted destination
reached the hard quota on the
number of bytes of messages on it,
and has not yet fallen below its soft
quota.

For more information, see Hard and
Soft Quotas.

operationFailed The server was unable to obtain the
input stream containing the
message body, or a low-level
exception was thrown by the JMS
broker in trying to send the
message.

Receiving Messages
This section provides information about receiving messages using REST API.

Topics:

• Create a Consumer

• Close and Delete a Consumer

• Receive a Message via a Consumer

Create a Consumer
This topic provides information about creating a consumer.

Method: PUT

Path: /consumers/consumerName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Chapter 3
Message Transmission API

3-55

Request Parameters:

Parameter Description

session Required. The value is the name of the session in
which to create the consumer.

destination Optional. If present, the value must have one of the
following forms:

• /queues/queueName
• /topics/topicName
• /temporaryQueues/queueName
• /temporaryTopics/topicName
Specifies the destination from which the consumer
consumes messages. If the destination parameter is
present, a consumer is created with characteristics
given by the other parameters, as described later. If the
destination parameter is not present, the consumer
being created should be a consumer of a topic through
an already created durable subscription.

selector Optional. Specifies the subset of messages the
consumer will receive. The value of the parameter must
be a selector. For the syntax of selectors, see the
Message Selectors section of the Java API reference
for the javax.jms.Message class.

localMode Optional. If present, value must be GET_LOCAL or
NO_LOCAL. Specifies whether the consumer on a topic
will receive messages sent via the connection that
contains the consumer. A value of GET_LOCAL means
that messages sent via the connection are received,
and a value of NO_LOCAL means that such messages
will not be received. The default is GET_LOCAL.

subscriptionName Optional. Specifies the name of the durable
subscription. If present, the consumer created will be a
durable topic subscriber (and so the destination
parameter must specify a topic). See Create a Durable
Subscription for an example HTTP request/response
sequence.

Result: Creates a consumer. If the destination parameter is present and it specifies
a queue, then the consumer will consume from the queue. If the destination
parameter is present and it specifies a topic, then the consumer will consume from the
topic.

Note:

If the subscriptionName parameter is present, then the exact result depends
significantly on whether the destination parameter is present or not.

If the destination parameter is present, a consumer is created with characteristics
given by the other parameters, as follows:

• If the destination specifies a topic, the client ID has been set for the connection
and subscriptionName is present, then the consumer will consume messages via
a durable subscription to the topic specified by the client ID and the subscription
name.

Chapter 3
Message Transmission API

3-56

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

• If no durable subscription with the given client ID and name exists, one is created
on the specified topic with the specified selector.

• If a durable subscription for the ID and name already exists, and the topic and
selector are the same as in the method that created the durable subscription, the
existing durable subscription is used (and, thus, any messages sent to the topic
since the subscription was created that have not been consumed through the
subscription is available to be consumed).

• If a durable subscription for the ID and name already exists, but either the topic or
the selector (or lack thereof) specified in this method are different from the topic
and selector (or lack thereof) specified in the method that created the existing
subscription, the existing subscription is deleted, and messages saved by it
discarded, and a new durable subscription with the specified ID, name and
selector on the specified topic is created.

If the destination parameter is not present, the client ID must have been set on the
connection, the subscriptionName parameter must be present, the selector
parameter must not be present, and there must be an existing durable subscription
with the given client ID and subscription name. (The semantics of localMode are
unchanged.) In this case, the consumer created is a consumer on the topic for the
existing subscription, with the selector (or lack thereof) of the existing subscription, that
uses the existing subscription. In this case, the method will not create or delete a
subscription.

Response Headers:

Response to creating a consumer on an existing durable subscription contains the
following headers that provide the properties of the subscriber:

• X-OC-DESTINATION

Indicates the topic of the subscription.

• X-OC-SELECTOR

Indicates the selector of the subscription, if any.

Error Responses:

Error Message Description

missingParameter The session parameter value was
not supplied.

badParameter One of the following occurred:

• The destination parameter
value did not parse as a
specification of a queue or topic.

• The selector parameter value
was ill-formed, or contained a
disallowed identifier.

• The localMode parameter value
is not one of the allowed values.

• The method did not supply a
destination parameter, but the
existing durable subscription from
which it was meant to consume
had a bad selector.

Chapter 3
Message Transmission API

3-57

Error Message Description

noDestinationForConsumer Neither a destination nor a
subscription name were supplied.

localModeNonTopic The localMode and destination
parameters were supplied, but the
destination parameter does not
specify a topic.

subscriptionInUse An attempt was made to create a
consumer on a durable subscription
when that durable subscription
already has a consumer on it.

subscriptionNonTopic Subscription name and destination
parameters were supplied, but the
destination parameter does not
specify a topic.

sessionParameterNotFound Session by which to create the
producer does not exist.

destinationParameterNotFound The destination from which the
consumer should get messages is
nonexistent.

consumerAlreadyExists There is already a consumer with the
given name.

subscriptionNotFoundNoInfo The method did not supply a
destination parameter, but the
existing durable subscription from
which it was meant to consume was
not found.

maxDurableSubscriptionsReached The consumer whose creation was
attempted was on a durable
subscription that does not currently
exist, and this method invocation
would create the subscription if it
does not exist, and the service
instance is at its maximum number of
durable subscriptions.

operationFailed The method did not supply a
destination parameter, but the
existing durable subscription from
which it was meant to consume had a
bad destination, or a low-level
exception was thrown while creating
the consumer.

Close and Delete a Consumer
This topic provides information about closing and deleting a consumer.

Method: DELETE

Path: /consumers/consumerName

Scope: Messaging Context

Chapter 3
Message Transmission API

3-58

Authorization: Messaging Administrator or Messaging Worker

Result: Closes and deletes the consumer.

Error Responses:

Error Message Description

consumerNotFound The specified consumer to close does not exist.

operationFailed A low-level exception was thrown while closing and
deleting the specified consumer.

Receive a Message via a Consumer
This section provides information about receiving a message via a consumer.

Method: POST

Path: /consumers/consumerName/messages

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

timeout Required. The number of milliseconds in the value must be a strictly
positive long integer that is no more than the maximum receive timeout
of 5 minutes. Specifies the amount of time in milliseconds to wait for a
message to become available from the consumer before returning a
null message.

See Receive a Message from a Queue with a Selector and Receive a Message from a
Durable Subscription for examples of HTTP request/response sequences.

Result:

• If there is a message on the consumer's queue that satisfies the selector (if it was
set on the consumer), or if one enters the queue within the number of milliseconds
in timeout, it is returned in the HTTP response. Otherwise, a null response is
returned.

• If receiving from a topic, if messages have been published to the topic since the
consumer was created, or if messages are published to the topic within the
number of milliseconds in timeout, one of those messages will be return in the
HTTP response. Otherwise, a null response is returned.

• If the consumer is consuming from a durable subscription, and if there is a
message currently stored in the durable subscription, or if one enters the durable
subscription within the number of milliseconds in timeout, it is returned in the
HTTP response. Otherwise, a null response is returned.

Chapter 3
Message Transmission API

3-59

Note:

If the session by which the consumer was created is transacted, or is not
transacted but has client acknowledgement set, only one message may be
received via that consumer before committing (if the session is transacted) or
acknowledging (if the session is not transacted but has client
acknowledgement set) the session. Until the appropriate commit or
acknowledgement action is taken, receives from that consumer will return a
null response, even if there are other messages that could otherwise be
received from the consumer's destination.

Response Headers: If a message is returned, the headers will include those
determined by the message described in Properties of HTTP Requests and
Responses that Deliver Messages. Otherwise, a response with no content with the
header X-OC-NULL: true is returned.

Error Responses:

Error Message Description

missingParameter The request had no timeout parameter specified.

badParameter The value of the timeout parameter did not parse
as a long integer value, or the value of the
timeout parameter was 0 or a negative number.

consumerNotFound The specified consumer from which to receive
does not exist.

timeoutTooLarge The value of the timeout parameter was larger
than the maximum allowed value (5 minutes).

operationFailed A low-level exception was thrown while receiving,
or an exception was thrown while attempting to
extract information from the received message.

Creating and Managing Durable Subscriptions
This section provides information about creating and managing durable subscriptions
in Oracle Messaging Cloud Service.

Topics:

• Create a Durable Subscription

• List Durable Subscriptions

• Delete a Durable Subscription

Create a Durable Subscription
Durable subscriptions are implicitly created by creating a special type of consumer.

To create a durable subscription, see the Create a Consumer section, specifically the
notes about subscriptionName and clientId.

Chapter 3
Message Transmission API

3-60

List Durable Subscriptions
This section provides information about listing durable subscriptions.

Method: GET

Path: /subscriptions

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

subscriptionName The name of the subscription.

topicName The name of a topic. Note that the value of this
parameter is not of the form /topics/name, but is only
the name part of that form, since durable subscriptions
only apply to topics.

clientId A client ID associated with the subscription.

None of these parameters are mandatory, but only certain combinations are allowed,
as described below.

Result: Returns information about one or more durable subscriptions depending on
the request parameters supplied:

• clientId and subscriptionName

Returns an XML or a JSON document specifying the unique durable subscription
for the given name and client ID, if one exists, for the namespace specified in the
request.

The XML format is as follows:

<subscription>
 <clientId>client ID<clientId>
 <name>subscription name</name>
 <topic>topic name</topic>
 <selector>selector</selector>
 <canonicalLink>relative path to the subscription</canonicalLink>
</subscription>

The JSON format is as follows:

{
 "clientId": "client ID",
 "name": "subscription name",
 "topic": "topic name",
 "selector": "selector",
 "canonicalLink": "relative path to the subscription"
}

All child elements will be present except selector, which is present if the
subscription is associated with a selector. The clientId and name elements
always have the same values as the corresponding parameters.

Chapter 3
Message Transmission API

3-61

• clientId

Returns an XML or a JSON document specifying all of the durable subscriptions
for the given client ID for the namespace specified in the request.

The XML format is as follows:

<subscriptions>
 <items>
 <clientId>client ID<clientId>
 <name>name</name>
 <topic>topic name</topic>
 <selector>selector</selector>
 <canonicalLink>relative path to the subscription</canonicalLink>
 </items>
 ...
 <canonicalLink>relative path to the subscription list</canonicalLink>
</subscriptions>

The JSON format is as follows:

{
 "subscriptions":
 {
 "clientId": "client ID",
 "name": "subscription name"
 "topic": "topic name",
 "selector": "selector",
 "canonicalLink": "relative path to the subscription"
 }
 "canonicalLink": "relative path to the subscription list"
}

This element may be empty if the client ID has no subscriptions. Each child
specifies a unique durable subscription. The client ID of all subscription elements
is the same as the value of the corresponding request parameter; each value of
name will appear only once, as a durable subscription is specified by the client ID
and subscription name.

• topicName

Returns an XML or a JSON document specifying all of the durable subscriptions
for the topic with the given name for the namespace specified in the request. Note
that the value of this parameter is not of the form /topics/name, but is only the
name part of that form, since durable subscriptions only apply to topics. The format
of the XML document in the response is the same as the XML format described
earlier for clientId. This element may be empty if the topic has no subscriptions.
Each child specifies a unique durable subscription. The topic> content of all
subscription elements is the same as the value of the corresponding request
parameter; each pair of values for client ID and name will appear only once, as a
durable subscription is specified by the client ID and subscription name.

• None of the parameters are supplied

Returns an XML or a JSON document specifying all of the durable subscriptions
for the namespace specified in the request. The format is the same as described
earlier for clientId and subscriptionName, clientId, and topicName. This
element may be empty if the namespace has no durable subscriptions. Each child
specifies a unique durable subscription. The topic values of all subscription
elements is the same as the value of the corresponding request parameter; each

Chapter 3
Message Transmission API

3-62

pair of values for client ID and name will appear only once, as a durable
subscription is specified by the client ID and subscription name.

Error Responses:

Error Message Description

disallowedSubscriptionLookup A combination of the
subscriptionName, clientId, and
topicName parameters has been
supplied that is not one of those listed
earlier.

destinationParameterNotFound The topicName parameter was
specified, but there is no topic by that
name in the namespace.

subscriptionNotFoundFull A client ID and subscription name were
specified in the request, but no such
subscription exists.

operationFailed A low-level exception occurred.

Delete a Durable Subscription
Durable subscriptions are implicitly created by creating a special type of consumer. A
durable subscription stores all messages sent to a topic until each message is
received.

For information about deleting durable subscriptions through sessions, see Delete a
Durable Subscription.

Creating and Managing Temporary Destinations
This section provides information about creating and managing temporary destinations
in Oracle Messaging Cloud Service.

Topics:

• Create a Temporary Destination

• List Temporary Destinations

• Remove a Temporary Destination

Create a Temporary Destination
You can create the following kinds of temporary destinations:

• Temporary Queue: A TemporaryQueue is a unique Queue object created for the
duration of a connection. Messages may only be consumed from a temporary
queue through the connection with which it was created.

• Temporary Topic: A TemporaryTopic is a unique Topic object created for the
duration of a connection. Messages may only be consumed from a temporary
topic through the connection with which it was created.

Method: POST

Path:

Chapter 3
Message Transmission API

3-63

• To create a temporary queue, the path is /temporaryQueues

• To create a temporary topic, the path is /temporaryTopics

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

session Specify the session name. This parameter is mandatory.

Result: Creates a temporary queue or temporary topic.

Response Header:

Location

Contains the URL for the newly created temporary queue or temporary topic.

Response Body:

Destination Type XML Format JSON Format

Temporary queue
<temporaryQueue>
 <name>queue name</name>
 <connection>name of the
connection with which the queue
is associated</connection>
 <canonicalLink>relative
path to temporary queue</
canonicalLink>
</temporaryQueue>

{
 "type": "temporaryQueue",
 "name" "queue name",
 "connection": "name of the
connection with which the queue
is associated",
 "canonicalLink": "relative
path to temporary queue"
}

Temporary topic
<temporaryTopic>
 <name>topic name</name>
 <connection>name of the
connection with which the topic
is associated</connection>
 <canonicalLink>relative
path to temporary topic</
canonicalLink>
</temporaryTopic>

{
 "type": "temporaryTopic",
 "name" "topic name",
 "connection": "name of the
connection with which the topic
is associated",
 "canonicalLink": "relative
path to temporary topic"
}

Chapter 3
Message Transmission API

3-64

Destination Type XML Format JSON Format

Temporary queues
<temporaryQueues>
 <name>queue name</name>
 <connection>name of the
connection with which the queue
is associated</connection>
 <canonicalLink>relative
path to temporary queue</
canonicalLink>
 ...
 <canonicalLink>relative
path to list of temporary
queues</canonicalLink>

</temporaryQueues>

{
 "temporaryQueues": [
 {
 "name": "queue
name",
 "connection": "name
of the connection with which the
queue is associated",
 "canonicalLink":
"relative path to temporary
queue"
 }
 ...
],
 "canonicalLink": "relative
path to list of temporary
queues"
}

Temporary topics
<temporaryTopics>
 <name>topic name</name>
 <connection>name of the
connection with which the topic
is associated</connection>
 <canonicalLink>relative
path to temporary topic</
canonicalLink>
 ...
 <canonicalLink>relative
path to list of temporary
topics</canonicalLink>
</temporaryTopics>

{
 "temporaryTopics": [
 {
 "name": "topic
name",
 "connection": "name
of the connection with which the
topic is associated",
 "canonicalLink":
"relative path to temporary
topic"
 }
 ...
],
 "canonicalLink": "relative
path to list of temporary
topics"
}

The content of the name field is a pseudorandom name generated by the service for
the newly created temporary queue or topic.

The connection field is omitted if the destination was not created from a connection in
the messaging context.

Error Response:

Error Message Description

sessionNotFound A session with the specified name does not exists.

List Temporary Destinations
This section provides information about listing temporary destinations.

Chapter 3
Message Transmission API

3-65

• List Temporary Queues or Temporary Topics

• Retrieve Properties of a Single Temporary Queue or a Single Temporary Topic

List Temporary Queues or Temporary Topics

Method: GET

Path:

• To list all temporary queues in the messaging context, the path is /
temporaryQueues

• To list all temporary topics in the messaging context, the path is /
temporaryTopics

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

connection Optional. Specify the connection parameter to list
all temporary queues or topics associated with the
connection with the name connection-name.

Result: Returns a listing of all temporary queues or temporary topics in the messaging
context.

Response Body:

In XML, the format for listing all temporary queues associated with an HTTP cookie is
as follows:

<temporaryQueues>
 <items>
 <name>queue name</name>
 <connection>name of the connection with which the queue is associated</
connection>
 <canonicalLink>relative path to temporary queue</canonicalLink>
 </items>
 ...
 <canonicalLink>relative path to list of temporary queues</canonicalLink>
</temporaryQueues>

In XML, the format for listing all temporary topics associated with an HTTP cookie is as
follows:

<temporaryTopics>
 <items>
 <name>topic name</name>
 <connection>name of the connection with which the topic is associated</
connection>
 <canonicalLink>relative path to temporary topic</canonicalLink>
 </items>
 ...
 <canonicalLink>relative path to list of temporary topics</canonicalLink>
</temporaryTopics>

Chapter 3
Message Transmission API

3-66

The content of the <name> element is the queueName or topicName.The <connection>
element is present only if the temporary queue or topic was created from a connection
associated with the client's messaging context.

If the temporary queue or topic was created elsewhere and received as, for example,
in the Reply-To header of a message, then the <connection> element will not be
present.

Error Response:

Error Message Description

connectionParameterNotFound A REST API client invoked the method to list all
temporary destinations created through a certain
named connection, but no connection with that name
exists in the messaging context.

Retrieve Properties of a Single Temporary Queue or a Single Temporary Topic

Method: GET

Path:

• To retrieve the properties of a single temporary queue, the path is /
temporaryQueues/queueName

• To retrieve the properties a single temporary topic, the path is /temporaryTopics/
topicName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Returns the properties of a temporary queue or a temporary topic with the
given name.

Response Body:

The format for listing a single temporary queue is as follows:

<temporaryQueue>
 <name>queue name</name>
 <connection>name of the connection with which the queue is associated</
connection>
 <canonicalLink>relative path to temporary queue</canonicalLink>
</temporaryQueue>

The format for listing a single temporary topic is as follows:

<temporaryTopic>
 <name>topic name</name>
 <connection>name of the connection with which the topic is associated</
connection>
 <canonicalLink>relative path to temporary topic</canonicalLink>
</temporaryTopic>

The content of the <name> element is the queueName or topicName.The <connection>
element is present only if the temporary queue or topic was created from a connection
associated with the client's messaging context.

Chapter 3
Message Transmission API

3-67

If the temporary queue or topic was created elsewhere and received as, for example,
in the Reply-To header of a message, then the <connection> element will not be
present.

Error Response:

Error Message Description

destinationNotFound The temporary destination that is requested does
not exist.

Remove a Temporary Destination
This section provides information about removing temporary destinations.

Method: DELETE

Path:

• To delete a temporary queue, the path is /temporaryQueues/queueName

• To delete a temporary topic, the path is /temporaryTopics/topicName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Deletes the temporary destination with the given name.

Note:

If the temporary destination that is being deleted was created from a
connection in the same messaging context, the temporary destination will be
deleted from the back-end. Else, it will be deleted only from the messaging
context, and not from the back-end.

After being deleted from the back-end, the temporary destination will not be
available for use to other clients.

Error Response:

Error Message Description

destinationNotFound The temporary destination whose deletion is requested
does not exist.

Creating and Managing Queue Browsers
This section provides information about creating and managing queue browsers in
Oracle Messaging Cloud Service.

Topics:

• Create a Queue Browser

• Retrieve Queue Browser Properties

Chapter 3
Message Transmission API

3-68

• Browse Messages

• Remove a Queue Browser

Create a Queue Browser
A client uses a queue browser to look at messages on a queue without removing
them. A queue browser is created from a Session.

A queue browser may be used to look at all the messages in a queue, or only those
that match a message selector. Note that if messages are sent to a queue after a
browser on that queue is created, those messages may not be visible via the queue
browser.

Method: PUT

Path: /queueBrowsers/browserName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

session The value is the name of the session in which the queue browser
needs to be created.

destination Specify the destination name. The value must have the form /
queues/queueName.

selector Message selector, which is optional.

Result: Creates a queue browser on the destination parameter.

Error Responses:

Error Message Description

sessionNotFound There is no session with the specified
name.

destinationNotFound The destination that is requested does not
exist.

queueBrowserAlreadyExists A queue browser with the specified name
already exists.

badParameter One of the following occurred:

• The destination parameter value
did not parse as a specification of a
queue.

• The selector parameter value was
ill-formed, or contained a disallowed
identifier.

Retrieve Queue Browser Properties
This section provides information about retrieving queue browser properties.

Chapter 3
Message Transmission API

3-69

Method: GET

Path: /queueBrowsers/browserName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Returns properties of the queue browser with the name browserName.

Response Body:

In XML, the format for the properties of a queue browser is as follows:

<queueBrowser>
 <name>client-assigned name of the browser</name>
 <queue>path specifying the persistent or temporary queue browsed</queue>
 <selector>selector expression<selector>
 <canonicalLink>relative path to queue browser</canonicalLink>
</queueBrowser>

In JSON, the format for the properties of a queue browser is as follows:

{
 "name": "client-assigned name of the browser",
 "queue": "path specifying the persistent or temporary queue browsed",
 "selector": "selector expression",
 "canonicalLink": "relative path to queue browser"
}

The content of the queue element has the form /queue/queueName if the browser
browses a persistent queue named queueName; it has the form /temporaryQueue/
queueName if the browser browses a temporary queue named queueName.

The selector element is present only if the queue browser is associated with a
selector.

Error Response:

Error Message Description

queueBrowserNotFound The queue browser that is requested does not exist.

Browse Messages
This topic provides information about browsing messages in a queue browser.

Method: POST

Path: /queueBrowsers/browserName

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: If there is a message in the browser, it is returned in the HTTP response.
Otherwise, a null response is returned.

Response Header:

Chapter 3
Message Transmission API

3-70

If there is an X-OC-NULL header with value true, then it indicates that there are no
more messages in the browser.

Error Response:

Error Message Description

queueBrowserNotFound The queue browser that is requested does not exist.

Remove a Queue Browser
This section provides information about removing a queue browser.

Method: DELETE

Scope: Messaging Context

Path: /queueBrowsers/browserName

Authorization: Messaging Administrator or Messaging Worker

Result: Closes and deletes the queue browser.

Error Response:

Error Message Description

queueBrowserNotFound The queue browser that is requested does not exist.

Properties of HTTP Requests to Send Messages from
REST Clients

This section provides information about properties of HTTP requests to send
messages from REST clients.

Topics:

• Request Parameters

• HTTP Headers to Specify Message Properties

• Limitations on Message Size

Request Parameters
This section provides information about request parameters which can be used when
sending messages using the REST API.

correlationId

Optional. No default.

This parameter is used to group together (correlate) multiple messages.

For the query string parameter correlationId, the equivalent HTTP header is X-OC-
CORRELATION-ID.

Chapter 3
Properties of HTTP Requests to Send Messages from REST Clients

3-71

deliveryMode

Optional. If present, value must be persistent or non_persistent; default is
persistent. Determines whether the message is persistent (that is, stored by the JMS
broker in persistent storage until delivered).

For the query string parameter deliveryMode, the equivalent HTTP header is X-OC-
DELIVERY-MODE.

messageType

Optional; if omitted, the default is HTTP. This parameter specifies the type of JMS
message the HTTP request will cause to be generated. Depending on the value, there
may be restrictions on the HTTP request body, and/or special interpretation of that
body and/or some of the standard HTTP request parameters.

For the query string parameter messageType, the equivalent HTTP header is X-OC-
MESSAGE-TYPE.

See Message Types for information about the valid values for the messageType query
string parameter along with any required formatting for the HTTP request body.

replyTo

Optional. If present, must have one of the following forms:

• /queues/queueName

• /temporaryQueues/queueName

• /topics/topicName

• /temporaryTopics/topicName

Specifies a destination or a temporary destination to which replies should be sent.

For the query string parameter replyTo, the equivalent HTTP header is X-OC-REPLY-
TO.

ttl

Optional. If present, value must be a strictly positive long integer or the value maximum.
Determines the time in milliseconds between when the message is dispatched and
when the service may delete it if not yet delivered. The semantics of these parameters
is the same as the corresponding parameters for producers, but the default is defined
by the producer, and is overridden by any headers occurring in this operation.

For the query string parameter ttl, the equivalent HTTP header is X-OC-TTL.

HTTP Headers to Specify Message Properties
The HTTP request headers (when sending messages) can specify messaging
properties for the message being sent.

X-OC-propertyType-PROPERTY-propertyName

Optional. This is not a single header, but a family of headers, referred to collectively as
message property headers, one for each property type and property name. The
property name value should consist of alphanumeric characters and underscores, and
is made lower-case by the service. This sets the message property with name property

Chapter 3
Properties of HTTP Requests to Send Messages from REST Clients

3-72

name on the message to value property value, if the property type is one of the
allowed values and property value is a value allowed for the property type. See
Message Headers and Properties for information about the allowed values of property
type.

Limitations on Message Size
Oracle Messaging Cloud Service only allows messages with at most 3K (3072)
characters of messaging-relevant HTTP request headers and at most 512K (524,288)
bytes or characters of HTTP request body. An attempt to send a message that
exceeds these limits will generate an error response, and no message will be sent.
Details of this limitation are as follows:

• An HTTP request header is messaging-relevant if its name begins with X-OC-
(case-insensitive); if the message type is HTTP, or is not supplied (in which case it
defaults to HTTP), the Content-Type and Content-Language headers are also
messaging-relevant.

• The number of characters in a messaging-relevant header is the sum of the
number of characters in the header name and the number of characters in the
header value.

• If the message has no type, or has type BYTES, OBJECT, or HTTP, the size of the
HTTP request body is measured in bytes, and is counted as in the HTTP
specification.

• If the message has type TEXT, MAP, or STREAM, the size of the HTTP request body
is measured in characters according to the character encoding.

• If the message has type PLAIN, the request body is ignored, and so has size 0 for
purposes of size limitations.

Note:

• To send a message that is larger than 512 KB, see Using Message
Groups. This enables you to send messages/files up to 10 MB size in
smaller chunks.

• To send larger message payload, you can use Oracle Storage Cloud
Service to store the object and send it as a message. This is especially
useful for storing and consuming messages with a message size of up to
5 GB. See Sending Large Objects as Messages Using Oracle Storage
Cloud Service

Properties of HTTP Requests and Responses that Deliver
Messages

Messages are delivered to clients of the REST API in two ways: in the HTTP response
to a receive request, and in an HTTP request made by a message push listener to an
HTTP endpoint.

This section describes the headers and body of the responses and requests that
describe the message delivered.

Chapter 3
Properties of HTTP Requests and Responses that Deliver Messages

3-73

For HTTP requests made by message push listeners, some of the characteristics of
the requests (the URL pushed to, method used, and so on) are determined by the
listener. In addition to the characteristics that are determined by the listener, push
requests also have a header X-OC-LISTENER-NAME whose value is the name of the
listener from which the push originates.

The remainder of this section describes the aspects of a receive response or push
request that are determined by the message:

• The body of the request or response and its Content-Type, Content-Language,
and X-OC-MESSAGE-TYPE headers are as described in Properties of HTTP
Requests to Send Messages from REST Clients.

• The following non-standard headers are set from message headers and
properties:

– X-OC-CORRELATION-ID: message correlation ID

– X-OC-DELIVERY-MODE: persistent or non_persistent. See About Persistent
and Non-Persistent Messages.

– X-OC-DESTINATION: One of the following values is set for this header.

* /queues/name of the queue to which the message was sent

* /topics/name of the topic to which the message was sent

* /temporaryQueues/name of the temporary queue to which the
message was sent

* /temporaryTopics/name of the temporary topic to which the
message was sent

– X-OC-EXPIRATION: message expiration time. This is a long integer
interpreted as Unix time.

– X-OC-MESSAGE-ID: message's ID, if present

– X-OC-PRIORITY: message priority

– X-OC-REDELIVERED: true/false, indicating if message is a re-delivery

– X-OC-REPLY-TO: One of the following values is set for this header.

* /queues/name of the queue to which to reply

* /topics/name of the topic to which to reply

* /temporaryQueues/name of the temporary queue to which to reply

* /temporaryTopics/name of the temporary topic to which to reply

– X-OC-TIMESTAMP: time at which message was handed off to the JMS
broker, if present. This is a long integer interpreted as Unix time.

– X-OC-LISTENER-NAME: name of the listener that pushed the message

– X-OC-DELIVERY-COUNT: value of the message's JMSXDeliveryCount
property, if present. This is the number of times the service has attempted to
deliver this message. The value of this parameter can be 2 or higher if, for
example, the message has been received in a transacted session but the
receive was not committed.

– X-OC-GROUP-ID: the name of the message group of which this message
is a part, if any. This is the value of the JMSXGroupId property, with

Chapter 3
Properties of HTTP Requests and Responses that Deliver Messages

3-74

characters that are not legal in an HTTP header value escaped. The group of
a message is set by the client when the message is sent. The value of this
header, if present, will be an escaped value String. For more information on
escaped value Strings, see About Escaped Value Strings.

– X-OC-GROUP-SEQ:sequence number of the message within a message
group, if present. The value will be an integer. This is the value of the
JMSXGroupSeq property. The sequence number is set by the client when the
message is sent.

– For each message property, a header

X-OC-property type-PROPERTY-property name: property value

for properties whose names and values conform to the HTTP specification for
headers, with the property type determined by the type of the Message's
properties; for header names and values that do not, a header of the form

X-OC-GENERAL-property type-PROPERTY-property name as pairs of hex digits:
property value as pairs of hex digits

Any message property with value null is not expressed as a property header.

See Message Headers and Properties for information about message headers
and HTTP headers, and message property types.

Chapter 3
Properties of HTTP Requests and Responses that Deliver Messages

3-75

4
Accessing Oracle Messaging Cloud
Service Using Java Library

The Oracle Messaging Cloud Service Java library implements and extends the Java
Message Service (JMS) 1.1 interface. This section provides information about how to
use the Java library and the differences from JMS when using the Java library.

Topics:

• About Using the Java Library

• Creating a MessagingService Object

• Using Messaging Cloud Service from Oracle Java Cloud Service - SaaS Extension

• Resource Management API

• ConnectionFactory Creation API

• Using JMS to Send and Receive Messages

• Using Extensions to the JMS API

• Limitations on Message Size and Time-to-Live

• Client-Side Logging

• Automatic Closing of Connections

• Diagnosing Errors from the Java Library

Client-Side Logging
Certain events are logged by the Java library on the Java platform that runs the client
software.

Event logging is done via the java.util.logging framework, using the logging levels
of java.util.logging.Level. Events may be useful in diagnosing the cause of problems, or
may be useful input to Support.

Events are logged at the WARNING and SEVERE levels in two packages:
oracle.cloud.messaging.client and oracle.cloud.messaging.util.

4-1

http://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/logging/Level.html

Package Log Level Log Message Description

oracle.cloud.mess
aging.client

SEVERE Exception shutting
down thread pool

An exception was
thrown when a
Connection was being
closed. This occurred
when an attempt was
made to shut down a
thread pool used for
background
operations like
executing
MessageListeners.
The exception thrown
is logged.

Exception stopping
REST client

An exception was
thrown when a
Connection was being
closed. This occurred
when an attempt was
made to stop the
HTTP client by which
the Java library
communicates with
the REST API. The
exception thrown is
logged.

Exception deleting
connection

An exception was
thrown when
attempting to close
and delete the server-
side Connection
associated with a
client-side
Connection. The
exception thrown is
logged.

Exception shutting
down messaging
context

An exception was
thrown when
attempting to shut
down the server-side
messaging context
associated with a
client-side
Connection. The
exception thrown is
logged.

Exception
disconnecting HTTP
connection

An exception was
thrown when
attempting to
disconnect a network
connection from the
client to the server.
The exception thrown
is logged.

Chapter 4
Client-Side Logging

4-2

Package Log Level Log Message Description

Exception on client-
side session close

An exception was
thrown when a
Connection was being
closed. This occurred
when an attempt was
made to shut down a
Session created from
the Connection. The
exception thrown is
logged.

WARNING Closing unclosed
Connection in finalizer

A Connection was
closed when the
Connection object
was garbage-
collected; this
indicates that a
reference to a
Connection was
discarded without
calling close() on
the Connection.

oracle.cloud.mess
aging.util

WARNING Runtime exception
thrown from exception
listener

The HTTP client
encountered an
exception attempting
to reach the server,
and the listener that
handles such
exceptions threw a
RuntimeException.
The exception thrown
is logged.

Automatic Closing of Connections
This section provides information about situations in which Connections close
automatically.

Connections Close if Server is Unreachable for a Sufficiently Long Period of
Time

If a Java library client cannot reach the Oracle Messaging Cloud Service server for a
sufficiently long period of time, Connections for that client will be closed. The amount
of time before a Connection is closed is given by the Connection’s timeout, plus an
additional margin for error to allow for clock skew between the client and server.

During the period in which the client is unable to reach the server, client operations will
throw exceptions, but a Connection will not be closed until the server has been
unreachable for longer than the Connection’s timeout. When a Connection is closed
for this reason, if the Connection has an ExceptionListener set on it, a JMSException
will be dispatched to the Connection's ExceptionListener.

Connections Close if Server-Side State is Lost

Connections may detect that their server-side state has expired or been lost. This may
be because the client was unable to reach the server for a certain period, or because

Chapter 4
Automatic Closing of Connections

4-3

the server failed due to other reasons. When the Java library detects that it has lost
the server-side state for a Connection, the Connection will be closed. When a
Connection is closed for this reason, if the Connection has an ExceptionListener set
on it, a JMSException will be dispatched to the Connection's ExceptionListener.

Diagnosing Errors from the Java Library
The Java library offers additional features for diagnosing exceptions beyond what is
available from JMS.

When a JMSException (or one of its subclasses) is thrown by a method, or dispatched
to an ExceptionListener, the exception may have a cause, which can be obtained by
invoking getCause() on the exception object. If the cause is not null, and has class
HttpResponseException, the cause will contain Messaging-Service-specific
information about the error that caused the exception. In particular, it may contain an
error key and an error message with further information.

For more information on HttpResponseException, see HttpResponseException in
Java API Reference for Oracle Messaging Cloud Service. For details on the meaning
of error information obtainable from HttpResponseException, see Error Keys, Status
Codes and Error Messages.

Using the Re-try Function
When a request from the Java client library to Oracle Messaging Cloud Service
receives a response that indicates that it is attempting to access a messaging context
that has expired, it re-tries the request, with pauses, before throwing a JMSException.

By default, the library re-tries the request four times, pausing for one second before
the first re-try, then two seconds between the first re-try and the second, then four
seconds, then eight seconds. At any point, if the response to the re-try indicates that
the messaging context has been found again, no further re-tries is made.

The number of re-tries, and pauses between them, can be changed by setting the
oracle.cloud.messaging.client.retryWait property using the
OracleCloudConnectionFactory.setProperty() method. The value set for this property
must be a comma-separated list of long integers. The number of integers is the
number of re-tries; each integer is the number of milliseconds to pause before the
corresponding re-try.

For example, invoking
setProperty("oracle.cloud.messaging.client.retryWait","1000,10000") on an
OracleCloudConnectionFactory object will change the re-try behavior to re-trying
twice, waiting one second before the first re-try and ten seconds between the first and
second re-tries.

Setting the oracle.cloud.messaging.client.retryWait property to null disables re-
tries.

Chapter 4
Diagnosing Errors from the Java Library

4-4

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/HttpResponseException.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnectionFactory.html#setProperty(java.lang.String,%20java.lang.String)

About Using the Java Library
Oracle Messaging Cloud Service can be accessed using the Java library.

Topics:

• Prerequisites for Using the Java Library

• How to Use the Java Library

• How to Check the Version of the Java Library

Prerequisites for Using the Java Library
The Oracle Messaging Cloud Service Java library provides all required Java Message
Service (JMS) 1.1 functions, plus additional functions related to JMS and Oracle
Messaging Cloud Service for sending and receiving messages through the JMS
broker. Previous experience using JMS will be helpful.

The following are required to use the Oracle Messaging Cloud Service Java library:

• An Oracle Messaging Cloud Service instance

• The oracle.cloud.messaging.api-14.0.X.jar (where X is the number
representing the latest version of the Java library)

• The JMS 1.1 API JAR file

• A Java Development Kit (JDK) of version 1.6 or greater

How to Use the Java Library
Before you begin using the Java library, be sure to review the following:

• Considerations When Developing Applications That Use Oracle Messaging Cloud
Service

• Authentication and Authorization

• Differences from JMS

• Prerequisites for Using the Java Library

• Check the Version of the Java Library

To use the Oracle Messaging Cloud Service Java library:

1. Download the Java library (see Downloading the Oracle Messaging Cloud Service
Java SDK).

2. Add the jar file oracle.messaging.cloud.api-14.0.X.jar (where X is the latest
version number of the Java library) to your Java application's class path.

3. Import the Java library's classes and interfaces into your Java application.

import javax.jms.*;
import oracle.cloud.messaging.*;
import oracle.cloud.messaging.client.*;
import oracle.cloud.messaging.common.*;

4. Create a MessagingService object.

Chapter 4
About Using the Java Library

4-5

http://download.oracle.com/otndocs/jcp/7542-jms-1.1-fr-doc-oth-JSpec/

A MessagingService object is created from a MessagingServiceFactory. When
creating a MessagingService object, a MessagingServiceNamespace object and a
MessagingServiceCredentials object must be provided.

For more information, see Creating a MessagingService Object.

How to Check the version of the Java Library
The Java library is delivered in two identical .jar files — one containing the version
number of the Java library in the file name (for example,
oracle.cloud.messaging.api-14.0.1.jar,) and one without the version number (for
example, oracle.cloud.messaging.api.jar.) You can also obtain the information
about the version of the Java library after installation, through the class
oracle.cloud.messaging.VersionInfo.

To check the version of the Java library, run the following command:
java -jar <jar name>.

The version number of the Java library is displayed.

The manifest of each of the Java library jars contains the version of the Java library as
the Implementation-Version attribute of the oracle.cloud.messaging package.

Creating a MessagingService Object
The MessagingService interface is the entry point for all functionality of the Java
library.

To create a MessagingService object, you must provide an Oracle Messaging Cloud
Service instance URL and user credentials to the
MessagingServiceFactory.getMessagingService() method.

The MessagingServiceFactory.getMessagingService method takes two parameters:

• A MessagingServiceNamespace object

• A MessagingServiceCredentials object

Example to create a MessagingService object

MessagingServiceFactory factory = MessagingServiceFactory.getInstance();

String serviceUrl = "https://messaging.us2.oraclecloud.com/myservice-mydomain";
String username = "john.doe@example.com";
String password = "myPassword";

Namespace namespace = new MessagingServiceNamespace(serviceUrl);

Credentials credentials = new MessagingServiceCredentials(username, password);

MessagingService service = factory.getMessagingService(namespace, credentials);

Once a MessagingService object has been created, you can manage queues, topics,
and message push listeners. You can also list, and retrieve the properties of durable
subscriptions.

Chapter 4
Creating a MessagingService Object

4-6

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingServiceFactory.html#getMessagingService(oracle.cloud.messaging.common.Namespace,%20oracle.cloud.messaging.common.Credentials)

In addition you can create a ConnectionFactory to send and receive messages using
the Java library. See ConnectionFactory Creation API for information about how to use
the JMS API provided in the Java library to obtain a ConnectionFactory object.

Using Messaging Cloud Service from Oracle Java Cloud
Service - SaaS Extension

Complete the following steps to use Messaging Service from Oracle Java Cloud
Service - SaaS Extension:

1. Subscribe to Oracle Java Cloud Service - SaaS Extension and Oracle Messaging
Cloud Service.

2. Create a new user in Messaging Cloud Service to use from Oracle Java Cloud
Service - SaaS Extension. Assign the Messaging Worker role if the application
needs to send and receive messages. Assign the Messaging Administrator role
if the application needs to manage resources. See About Oracle Messaging Cloud
Service Roles and Users.

3. Download the Java library (see Downloading the Oracle Messaging Cloud Service
Java SDK).

4. Package the library with your Java application.

5. Write the application code that uses the Java library to create a
ConnectionFactory object. Use the ConnectionFactory object to obtain other
JMS objects to send and receive messages. See Using JMS to Send and Receive
Messages.

6. Deploy the Java application to Oracle Java Cloud Service - SaaS Extension. See
Preparing Applications for Oracle Java Cloud Service - SaaS Extension
Deployment.

Resource Management API
The Resource Management API provides functionality to create and manage
destinations, message push listeners, and durable subscriptions.

Topics:

• Managing Destinations

• Managing Message Push Listeners

• Managing Durable Subscriptions

Service roles define what messaging resource operations users are authorized to
perform in the Oracle Messaging Cloud Service instance. See About Oracle
Messaging Cloud Service Roles and Users for information about roles and the
privileges associated with each role.

Chapter 4
Using Messaging Cloud Service from Oracle Java Cloud Service - SaaS Extension

4-7

Managing Destinations
This section provides information about managing destinations.

Topics:

• Create a Destination

• Delete a Destination

• List Destinations

• Retrieve a Destination's Properties

Create a Destination
A user with the Messaging Administrator role can create both queues and topics.
Names of queues or topics must always consist solely of letters of the Roman
alphabet (a through z or A through Z), decimal digits (0 through 9), and underscores
('_'). No other characters are allowed.

Refer to the following for details:

• MessagingService.createQueue() in Java API Reference for Oracle Messaging
Cloud Service

• MessagingService.createTopic() in Java API Reference for Oracle Messaging
Cloud Service

See Create Resources for a code sample.

Delete a Destination
A user with the Messaging Administrator role can delete queues and topics.

Deleting a destination is a non-blocking operation. For more information, refer to About
Destination Deletion.

Note:

Deleting a destination will permanently delete all undelivered messages
currently residing on the destination. It also deletes all message push
listeners on the destination.

Deleting a topic deletes all durable subscriptions on the topic.

Refer to the following for details:

• MessagingService.deleteQueue() in Java API Reference for Oracle Messaging
Cloud Service

• MessagingService.deleteTopic() in Java API Reference for Oracle Messaging
Cloud Service

Chapter 4
Resource Management API

4-8

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#createQueue(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#createTopic(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#deleteQueue(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#deleteTopic(java.lang.String)

List Destinations
A user with the Messaging Administrator role can list existing destinations.

Refer to the following for details:

• MessagingService.listQueueProperties() in Java API Reference for Oracle
Messaging Cloud Service

• MessagingService.listTopicProperties() in Java API Reference for Oracle
Messaging Cloud Service

Retrieve a Destination's Properties
A user with the Messaging Administrator role can get an existing queue or topic's
properties.

Refer to the following for details:

• MessagingService.getQueueProperties() in Java API Reference for Oracle
Messaging Cloud Service

• MessagingService.getTopicProperties() in Java API Reference for Oracle
Messaging Cloud Service

Note that for queues, you can also retrieve the queue’s backlog size which is the
number of messages currently stored in the queue.

You can call the getQueueProperties(String queueName, boolean
returnBacklogStats) method on a MessagingService object to get a
QueueProperties object. If the returnBacklogStats parameter is specified as true,
the returned QueueProperties object will return a BacklogStats object when the
getBacklogStats() method is called. The queue's current backlog count can be
obtained by calling the getCurrent() method on the BacklogStats object.

Managing Message Push Listeners
This section provides information about managing message push listeners. The name
of a message push listener must always consist solely of letters of the Roman
alphabet (a through z or A through Z), decimal digits (0 through 9), and underscores
('_'). No other characters are allowed.

Topics:

• Create a Message Push Listener

• Delete a Message Push Listener

• List Message Push Listeners

• Retrieve a Message Push Listener's Properties

Create a Message Push Listener
A user with the Messaging Administrator or Messaging Worker role can create
message push listeners.

Refer to the following for details:

Chapter 4
Resource Management API

4-9

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#listQueueProperties(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#listTopicProperties(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#getQueueProperties(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#getTopicProperties(java.lang.String)

• MessagingService.createListener() in Java API Reference for Oracle
Messaging Cloud Service

See Create Resources for a code sample.

When creating a new message push listener, a user needs to supply objects of the
following classes (as needed):

• Medium: A reference to an existing queue or topic from which the listener will
receive messages. This cannot refer to a temporary queue or topic. Message push
listeners cannot be created on temporary queues and topics.

• DurableSubscription: A reference to an existing durable subscription from which
to receive messages.

• Selector: A wrapper that holds a JMS Selector expression. A JMS Selector can
be used to limit the messages that a message push listener receives.

• PushURI: A superclass to define the target to which messages are pushed.
Subclasses include PushMedium, which indicates that messages should be pushed
to another destination, and PushURL, which indicates that messages should be
pushed to a URL.

• FailurePolicy: A definition of the policy for the message push listener to follow if
a failure is encountered when pushing to its configured target. Different failure
conditions can trigger different actions defined in FailureResponse objects.

Delete a Message Push Listener
A user with the Messaging Administrator or Messaging Worker role can delete existing
message push listeners.

Refer to the following for details:

• MessagingService.deleteListener() in Java API Reference for Oracle
Messaging Cloud Service

List Message Push Listeners
A user with the Messaging Administrator or Messaging Worker role can list existing
message push listeners. All message push listeners for a service instance are listed by
default. Optionally, message push listeners for a specific queue or topic can be listed.

For more information, refer to MessagingService.getListenerNames() in Java API
Reference for Oracle Messaging Cloud Service.

Retrieve a Message Push Listener's Properties
A user with the Messaging Administrator or Messaging Worker role can get the
definitions of an existing message push listener.

Refer to the following for details:

• MessagingService.getListener() in Java API Reference for Oracle Messaging
Cloud Service

Chapter 4
Resource Management API

4-10

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagePushListenerManager.html#createListener(java.lang.String,%20oracle.cloud.messaging.client.MessagePushListener)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/Medium.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscription.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/Selector.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/PushURI.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/PushMedium.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/PushURL.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/FailurePolicy.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/FailureResponse.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagePushListenerManager.html#deleteListener(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagePushListenerManager.html#getListenerNames()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagePushListenerManager.html#getListener(java.lang.String)

Managing Durable Subscriptions
Durable subscriptions are created and deleted using standard JMS 1.1 mechanisms.

Topics:

• List Durable Subscriptions

• Retrieve a Durable Subscription's Properties

Note that the Oracle Messaging Cloud Service Java library provides two additional
createDurableSubscriber() methods that are not part of the JMS 1.1 interface. See
Safe Durable Subscriptions for information about how to obtain durable subscribers
safely.

List Durable Subscriptions
A user with the Messaging Administrator or Messaging Worker role can list existing
durable subscriptions. Durable subscriptions can be listed for the entire service
instance, a specific client ID, or a specific topic.

Refer to the following for details:

• MessagingService.getAllDurableSubscriptions() in Java API Reference for
Oracle Messaging Cloud Service

• MessagingService.getDurableSubscriptionsByClientID() in Java API
Reference for Oracle Messaging Cloud Service

• MessagingService.getDurableSubscriptionsByTopic() in Java API Reference
for Oracle Messaging Cloud Service

Retrieve a Durable Subscription's Properties
A user with the Messaging Administrator or Messaging Worker role can get the
properties of an existing durable subscription.

For details, refer to MessagingService.getDurableSubscription() in the Java API
Reference for Oracle Messaging Cloud Service.

ConnectionFactory Creation API
This topic provides information about the ConnectionFactory object.

In the Oracle Messaging Cloud Service Java library, a JMS ConnectionFactory object
is obtained from a MessagingService object by invoking the getConnectionFactory()
method on the MessagingService object. The object returned has class
oracle.cloud.messaging.client.OracleCloudConnectionFactory, which is the
Oracle Messaging Cloud Service extension of ConnectionFactory. Note that this is
different from the suggested method of obtaining ConnectionFactory objects from an
instance of the Java Naming and Directory Interface (JNDI) as specified in the
JMS 1.1 standard. Oracle Messaging Cloud Service does not currently support JNDI
access to ConnectionFactory objects.

Chapter 4
ConnectionFactory Creation API

4-11

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscriptionManager.html#getAllDurableSubscriptions()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscriptionManager.html#getDurableSubscriptionsByClientID(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscriptionManager.html#getDurableSubscriptionsByTopic(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscriptionManager.html#getDurableSubscription(java.lang.String,%20java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#getConnectionFactory()

The MessagingService class also has methods getQueueConnectionFactory() and
getTopicConnectionFactory(). These methods are provided purely for backward
compatibility with JMS 1.0, in which separate connection factory classes are
implemented for queues and topics. The separate connection factory methods should
not be used unless it is necessary to use Oracle Messaging Cloud Service with legacy
JMS 1.0 code that requires the use of QueueConnectionFactory or
TopicConnectionFactory objects.

The Java library includes methods to create ConnectionFactory,
QueueConnectionFactory, and TopicConnectionFactory objects that set a fixed client
ID on the Connection, QueueConnection, or TopicConnection objects that they create.
If such a ConnectionFactory object is created, any Connection it creates must be
closed before the ConnectionFactory can be used to create another Connection,
since there can only be one Connection with a given client ID.

Note:

Connection objects that you create via the Java library should be closed if
you are not going to use them further. This is because Connection objects
consume computing and network resources on both the client and the server
side, and failing to close them wastes these resources.

References to Connection objects that have not been closed should not just
be discarded, with the Connection being taken care of by garbage collection.
If resources held by Connections are allowed to be released by garbage
collection then there may be a substantial delay between when a Connection
reference is discarded and when garbage collection occurs. This causes
server and network resources to be wasted.

ConnectionFactory Control of Thread Pools

An API has been added to OracleCloudConnectionFactory to control the client-side
use of thread pools. Some implementations of this interface support setting a thread
pool (an instance of java.util.concurrent.Executor) for the ConnectionFactory.
This thread pool is used to obtain threads to execute concurrent operations like
processing asynchronously received Message objects via a MessageListener.

By default, the thread pool is of the sort returned by
java.util.concurrent.Executors.newCachedThreadPool(). This is a pool that is
initially empty, creates new threads as needed, and re-uses previously started threads
in the pool. When a thread is returned to the pool, it remains available for re-use for 60
seconds, after which it is terminated. The threads managed by the default thread pool
are all daemon threads.

Connections that are created while a ConnectionFactory is using a given thread pool
will continue to use threads from that thread pool for concurrent operations. For
example, if a ConnectionFactory is created, and is used to create five Connections,
and the ConnectionFactory's thread pool is then set to a different thread pool, future
Connections will use the new thread pool, but the first five Connections will use the
default thread pool.

Oracle Cloud Messaging Service implementations of JMS that support setting thread
pools will interact with those thread pools solely via the
java.util.concurrent.Executor interface. They will not shut down or otherwise

Chapter 4
ConnectionFactory Creation API

4-12

manage such thread pools. If a client sets the thread pool of a ConnectionFactory, it
must do any configuration, startup, shutdown, or other management itself. When a
thread pool is used to execute a concurrent operation, if the attempt to start that
operation in a thread throws an exception (for example, because the thread has a
maximum pool size, and that size has been reached), it will cause a JMSException to
be thrown by the JMS operation that attempted to start the concurrent operation (for
example, setMessageListener() on a MessageConsumer). Implementations of this
interface that support setting thread pools and are serializable will re-initialize the
thread pool to the default thread pool when de-serialized.

Using JMS to Send and Receive Messages
Once a ConnectionFactory has been created from the MessagingService object, you
can use the standard JMS 1.1 API operations for sending and receiving messages.

Refer to Java Message Service Concepts in Java EE 6 Tutorial if you need information
about how to use the JMS 1.1 API.

Note:

There are several differences between using JMS from the Oracle
Messaging Cloud Service Java library and other on-premises environments.
See Differences from JMS for a complete list.

Refer to the following for code samples:

• Send a Message to a Topic

• Receive a Message from a Queue with an Optional Selector

• Asynchronously Receive Messages with a Durable Subscription

• Asynchronously Process Messages Within a Transaction

• Create Resources

• Use Message Groups

Using Extensions to the JMS API
The Oracle Messaging Cloud Service Java library extends the Java Message Service
(JMS) 1.1 interface.

Topics:

• Safe Durable Subscriptions

• Strong Typing for JMS

• Connection Timeout

• Obtaining Service Version

• Obtaining Messaging Context ID

Chapter 4
Using JMS to Send and Receive Messages

4-13

http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

Safe Durable Subscriptions
The Oracle Messaging Cloud Service Java library provides a method to obtain a
consumer on a durable subscription safely in the sense that the creation of the
consumer will not create a subscription that does not already exist and will not destroy
an existing subscription.

In JMS 1.1, a durable subscription is not directly represented as a Java object. What is
represented is a consumer on a durable subscription. Such consumers are called
durable subscribers, and are created by invoking one of the two
createDurableSubscriber() methods on a JMS Session.

An invocation of a createDurableSubscriber() method is always passed a Topic
object (representing the topic on which to create a durable subscriber) and a name,
which is the name of the subscription. The Session object on which the method is
invoked must have been created from a Connection object that had a client ID set on it
prior to the session's creation. One of the createDurableSubscriber() methods also
takes a selector that will define a subset of messages that will be delivered to the
durable subscriber.

A durable subscription is uniquely identified by its associated client ID and subscription
name. The topic subscribed to and the selector, if any, are properties of the durable
subscription.

The first unsafe aspect of the JMS methods is that creating a durable subscription with
a given client ID and subscription name will create a durable subscription
corresponding to the client ID and subscription if one does not exist when the method
is called. If a client means to access an existing durable subscription, but gets the
wrong client ID or subscription name (for example, due to a typographical error in code
or data), it will simply create and begin to access a new durable subscription.
Meanwhile, the durable subscription it means to access may be holding messages that
the client will miss.

The second unsafe aspect of the JMS methods is their behavior when a durable
subscriber is created on an existing durable subscription, but the topic or selector
specified is different from that of the existing durable subscription. In this case, the
JMS 1.1 standard specifies that the existing durable subscription be deleted,
discarding all messages it is holding, and a new durable subscription be created on
the new topic or with the new selector, or both. This may cause messages to be lost if
a mistake in code or data causes a client to change the topic or selector of an existing
durable subscription inadvertently.

The Oracle Messaging Cloud Service extension of the JMS Session interface is
oracle.cloud.messaging.client.OracleCloudSession has two additional
createDurableSubscriber() methods that are not part of the JMS 1.1 interface. Each
method takes a subscription name, but no Topic object or selector. The methods
return a consumer on an existing durable subscription with the client ID from the
Connection object and the subscription name supplied to the invocation. If no durable
subscription with the specified client ID and subscription name exists, the method will
throw an exception.

Strong Typing for JMS
The Oracle Messaging Cloud Service Java library adds several classes that can make
code more strongly typed and self-documenting, which can improve code quality.

Chapter 4
Using Extensions to the JMS API

4-14

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudSession.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudSession.html#createDurableSubscriber(java.lang.String)

The use of the Java library classes, and the methods that take them as parameters, is
optional, except in the case of a method for safe durable subscriptions, which uses the
LocalMode class.

The strong typing additions fall into two categories: Java enumeration classes and
wrapper classes.

Enumerations
In several methods in the JMS 1.1 API, parameters that indicate one of a small
number of alternatives are represented by Java boolean or short values. In the Oracle
Messaging Cloud Service Java library, these parameters can be represented by Java
enumeration types.

The enumeration classes are:

• AcknowledgementMode: Represents whether the acknowledgement mode of a
session is auto-acknowledge, client-acknowledge, or duplicates-ok, and replaces
the use of codes of type short.

• DeliveryMode: Represents whether a message is persistent or non-persistent,
and replaces the use of codes of type short.

• LocalMode: Represents whether a consumer on a topic will receive messages
sent through the connection that the consumer uses, and replaces the use of
boolean.

• TransactionMode: Represents whether a session is transacted or not, and
replaces the use of boolean.

Wrapper Classes
In several methods in the JMS 1.1 API, parameters with specific meanings and
limitations on their values are represented by Java types or classes such as int, long,
or String.

In the Oracle Messaging Cloud Service Java library, these parameters can be
represented by classes that "wrap" the Java types and classes used in JMS 1.1.
These "wrapper" classes enforce some of the restrictions on the wrapped values that
are required by JMS 1.1, and generally improve the typing discipline of JMS. With the
wrapper classes, you can supply null to the send() methods that take those classes
and have the default used. Also, when using the send() methods that take the
wrapper classes as parameters, you can supply null for a parameter and the
producer-specified default will be used.

The wrapper classes are:

• TimeToLive: Represents the time-to-live of a message, and replaces the use of
long. Use of this type ensures that inappropriate or disallowed values, such as
values less than or equal to 0, cannot be passed. It also allows clients to specify
the maximum time-to-live allowed by Oracle Messaging Cloud Service without
having to know what that maximum is.

• Selector: Represents a selector for a consumer, durable subscription, or message
push listener, and replaces the use of String. Currently, this class is a simple
wrapper for a String. In future versions, the wrapper may incorporate syntax
checking of the String and support programmatic mechanisms for constructing a
selector that is guaranteed to be well-formed.

Chapter 4
Using Extensions to the JMS API

4-15

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/AcknowledgementMode.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DeliveryMode.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/LocalMode.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/TransactionMode.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/TimeToLive.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/Selector.html

• Priority: Represents the priority of a message, and replaces the use of int. Use
of this type ensures that only int values that correspond to a JMS 1.1 priority
value can be passed. Oracle Messaging Cloud Service does not currently support
priorities other than the default (4), so supplying priority values other than the
default will be ignored. Priorities may be supported in a future release.

Connection Timeout
The Oracle Messaging Cloud Service Java library provides methods for controlling a
Connection's timeout.

The Oracle Messaging Cloud Service extension of the JMS Connection interface is
oracle.cloud.messaging.client.OracleCloudConnection. Some implementations of this
interface support setting a timeout on the Connection. If a client fails or loses network
connectivity to the messaging service, after the timeout has passed, the service will
release resources reserved for the client. In particular, if a Connection is created with a
client ID set on it, and the client fails or loses network connectivity to the messaging
service, that client ID will continue to be reserved (and cannot be set on another
connection) until the timeout has passed. As long as the client is running and has
connectivity to the service, the timeout should not expire. The timeout is measured in
seconds, must be positive, is initialized to 300 (5 minutes), and can be set to a
maximum of 900 (15 minutes).

Refer to the following methods for controlling a connection's timeout in the Java library:

• isTimeoutSupported() in Java API Reference for Oracle Messaging Cloud
Service

• getTimeoutInSeconds() in Java API Reference for Oracle Messaging Cloud
Service

• setTimeoutInSeconds(int) in Java API Reference for Oracle Messaging Cloud
Service

Obtaining Service Version
The Oracle Messaging Cloud Service Java library provides the getServerVersion()
method of the OracleCloudConnection class to obtain the version of the Oracle
Messaging Cloud Service being run by the server to which the client is connected.

Refer to the following for details:

• getServerVersion() in Java API Reference for Oracle Messaging Cloud Service.

Obtaining Messaging Context ID
The Oracle Messaging Cloud Service Java library provides the
getMessagingContextId() method of the OracleCloudConnection class to obtain the
messaging context ID for a given Connection.

Refer to the following for details:

• getMessagingContextId() in Java API Reference for Oracle Messaging Cloud
Service.

Chapter 4
Using Extensions to the JMS API

4-16

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/Priority.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#isTimeoutSupported()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#getTimeoutInSeconds()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#setTimeoutInSeconds(int)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#getServerVersion()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#getMessagingContextId()

Limitations on Message Size and Time-to-Live
Oracle Messaging Cloud Service imposes limitations on the size and time-to-live of
messages sent.

The internal, server-side representation of messages may be no larger than 512KB.
The internal size correlates roughly with the size of the body for, for example,
BytesMessage and TextMessage objects. For other Message subclasses, such as
MapMessage and StreamMessage, the correlation is less precise. Message headers and
properties also contribute to the message size. If a message is sent whose internal
size exceeds 512KB by more than a certain margin for imprecision, the Java library
will throw a JMSException whose message will indicate the internal size of the
message.

The time-to-live (TTL) of a message may not be more than two weeks, plus a certain
margin for clock skew between the client and server machines' clocks. A TTL of 0 is
interpreted as the maximum, two-week TTL rather than an infinite TTL. This limitation
is enforced at sending time; setting a producer's default TTL to a value that is too large
will not throw an exception, but sends via that producer will throw a JMSException.

Chapter 4
Limitations on Message Size and Time-to-Live

4-17

5
Troubleshooting Oracle Messaging Cloud
Service

This section describes common problems that you might encounter when using Oracle
Messaging Cloud Service and provides tips on possible solutions.

Topics:

• Java Library

– I am unable to use JNDI or message-driven beans

– #unique_193/
unique_193_Connect_42_ISeeALotOfThreadsBeingCreatedOrNetw-1F036C3
B

• Messages

– I am not receiving messages; I send messages, but I never receive them

– I am unable to create a durable subscription or subscriber to a topic

– I am receiving an error stating that I am sending a message that is too large

– I am receiving an error stating that a destination has reached its limit of
messages

– I lost the HTTP cookie associated with a messaging context

– My messages are being redelivered

– My messages are not appearing at the target destination

– My messages are not being received by a consumer on a queue

– I am receiving messages whose Content-Type does not match my client's
Accept header

– I am unable to use message selectors

• Destinations

– I am receiving errors stating that my service instance does not have any
available queues, topics, temporary queues, temporary topics, or durable
subscriptions

• Miscellaneous

– My connections are not released after I stop using the Java library or REST
API

– I am receiving the error message "Missing or incorrect X-OC-ID-TOKEN"

– I am receiving an error stating that my service instance does not have any
available connections

– I am getting a "404 Not Found" response when I try to access connections,
sessions, producers, consumers, or queue browsers that I just created

5-1

– I am receiving an error message of the form "Internal error; log reference:
<pseudorandom string>"

Java Library
The following troubleshooting tips pertain to the Java library.

I am unable to use JNDI or message-driven beans

The Oracle Messaging Cloud Service Java library currently cannot be used with the
Java Naming and Directory Interface (JNDI) or messaging-driven beans (MDBs).

I see a lot of threads being created or network connections being made from
machines running the Java library

Make sure you are explicitly calling the close() method on all Connection objects you
create, rather than discarding references to them and allowing the objects to be
reclaimed by garbage collection. The Java library's Connection objects have
resources, both threads and network connections, associated with them; discarding
references to Connection objects without calling close() may cause significant delays
in those resources being reclaimed.

Messages
The following troubleshooting tips pertain to sending and receiving messages.

I am not receiving messages; I send messages, but I never receive them

Remember that you must start a connection before you can receive messages
through it. When using the Java library, remember to call the start() method on the
connection object. When using the REST API, remember to pass the HTTP header X-
OC-Action: start to the connection resource.

I am unable to create a durable subscription or subscriber to a topic

Make sure that the client ID for the durable subscription is not being used by any of the
following:

• Another JMS connection created using the Java library

• A connection created using the REST API

• A message push listener

I am receiving an error stating that I am sending a message that is too large

Reduce the size of the message you are sending. Consider using Oracle Storage
Cloud Service to store the large message content and send a reference to the stored
content in a message. You may also opt to break the message into smaller pieces and
use message properties or correlation IDs to indicate grouping.

Note:

For all service instances, the maximum size of a message is 512KB.

Chapter 5
Java Library

5-2

I am receiving an error stating that a destination has reached its limit of
messages

If the destination is a queue, remove messages from the queue at a faster rate by
adding more consumers, or slow the rate of sending.

If the destination is a topic, look for slow consumers.

Note:

You cannot purchase any additional queues, topics, or durable subscriptions
for a given service instance. All service instances have a fixed limit of
messaging resources. See About Resource Limits for the maximum number
of resources in paid and trial service subscriptions.

I lost the HTTP cookie associated with a messaging context

Ensure that you store the JSESSIONID cookie in persistent storage for a high
availability client. The messaging context and its associated connections, sessions,
producers, consumers, queue browsers, and temporary destinations will remain open
on the server until the messaging context expires.

Note:

If you lose the JSESSIONID cookie, you lose the ability to access the
associated messaging context and all connections, sessions, producers,
consumers, queue browsers, and temporary destinations created from it.

My messages are being redelivered

If you receive messages in a client-acknowledge mode session that are subsequently
redelivered, be sure to acknowledge the messages (or, in the REST API, the session
through which they were received).

If you receive messages in a transacted session that are subsequently redelivered, be
sure to commit the session through which the messages were received.

Note:

If a client-acknowledge mode session or a transacted session is closed (or,
in the REST API, has its messaging context expired), any messages
received through that session that are unacknowledged or uncommitted will
become available for redelivery.

My messages are not appearing at the target destination

If your message was sent through a transacted session, be sure to commit the session
before the session expires or is closed, or the sent messages will be lost.

Chapter 5
Messages

5-3

My messages are not being received by a consumer on a queue

Check if there is another consumer on the same queue, or a message push listener
that is receiving messages from that queue. A message on a queue will only be
delivered to one consumer.

I am receiving messages whose Content-Type does not match my client's Accept
header

The REST API ignores the Accept header of requests to receive a message. Use
message properties and selectors to ensure that you do not receive messages of a
type your client cannot handle.

I am unable to use message selectors

Ensure that you are using the correct JMS selector syntax defined in the JMS
specification. For the syntax of selectors, see the Message Selectors section of the
Java API reference for the javax.jms.Message class.

Destinations
The following troubleshooting tips pertain to destinations.

I am receiving errors stating that my service instance does not have any
available queues, topics, temporary queues, temporary topics, or durable
subscriptions

Ensure that you delete any unneeded queues, topics, temporary queues, temporary
topics, or durable subscriptions.

Note:

You cannot purchase any additional queues, topics, temporary queues,
temporary topics, or durable subscriptions. All service instances have a fixed
limit of messaging resources. See About Resource Limits for the maximum
number of resources in paid and trial service subscriptions.

Miscellaneous
The following troubleshooting tips pertain to scenarios not covered in other sections.

My connections are not released after I stop using the Java library or REST API

A connection created through the REST API is not released until it is deleted or its
messaging context expires. If a connection is created through the Java library, and the
client that created it crashes without invoking its close() method, the connection will
not be released until its timeout has expired. Ensure that you always delete or close
connections when they are no longer in use.

Refer to the following methods for controlling a connection's timeout in the Java library:

Chapter 5
Destinations

5-4

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

• isTimeoutSupported() in Java API Reference for Oracle Messaging Cloud
Service

• getTimeoutInSeconds() in Java API Reference for Oracle Messaging Cloud
Service

• setTimeoutInSeconds(int) in Java API Reference for Oracle Messaging Cloud
Service

I am receiving the error message "Missing or incorrect X-OC-ID-TOKEN"

You must send the X-OC-ID-TOKEN header on every HTTP request to the REST API.
You may also disable the checking of this token. See Understanding Anti-CSRF
Measures.

I am receiving an error stating that my service instance does not have any
available connections

Ensure that your connections are being used effectively by storing and sending the
JSESSIONID cookie with the REST API and closing connections from the Java library.
Delete any unneeded message push listeners. You may also opt to buy more
connections.

I am getting a "404 Not Found" response when I try to access connections,
sessions, producers, consumers, or queue browsers that I just created

Be sure to store the JSESSIONID cookie sent in HTTP responses and send it back in
subsequent responses. If you do not do this, connections, sessions, producers,
consumers, and queue browsers created by previous requests will be inaccessible by
subsequent responses.

Check the value of the Maximum Inactive Interval (MII) to ensure that your REST API
messaging context is not expiring before you use it. The default value of the MII is 5
minutes, and it can be set to at most 15 minutes. If your application needs to create
and hold messaging contexts through the REST API for more than 15 minutes, send a
"heartbeat" request periodically to keep the messaging context from expiring. For
example, a GET request to /maxInactiveInterval keeps the messaging context alive
without side effects.

I am receiving an error message of the form "Internal error; log reference:
<pseudorandom string>"

This is an indication that an internal exception was thrown. Details of the exception
can be found in the server log, in a log entry that can be found by searching for the
<pseudorandom string>. Note that the server log can only be accessed by Oracle
Support. The error message, including the pseudorandom string, should be included in
any communication about the error to Oracle Support.

Chapter 5
Miscellaneous

5-5

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#isTimeoutSupported()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#getTimeoutInSeconds()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#setTimeoutInSeconds(int)

A
Best Practices

This topic provides information on best practices for using the Oracle Messaging
Cloud Service effectively.

Topics:

• Learn JMS 1.1

• Effective Pooling of Resources

• Using Transacted and/or Client-Acknowledged Sessions

• Diagnosing Exceptions in the Java Library

• Using Exception Listeners

• Recovery Strategies

• Alternative to Selectors

Learn JMS 1.1
The Java library provided in Oracle Messaging Cloud Service implements the JMS 1.1
API.

Before using the Java library in Oracle Messaging Cloud Service for creating
applications, it is recommended that you familiarize yourself with the JMS 1.1 standard
or the JMS 1.1 Javadocs. This will help you get a better understanding of important
topics such as ExceptionListener.

Effective Pooling of Resources
It is recommended to avoid constant construction and destruction of JMS objects.

JMS applications are intended to set up connections, sessions, producers, and
consumers, and hold them while processing.

It is recommended not to repeatedly perform actions such as:

• Sending a message by creating a connection, creating a session, creating a
producer, sending the message, and then destroying those objects.

• Receiving a message by creating a connection, creating a session, creating a
consumer, doing a receive, and then destroying those objects.

If your application requires such actions to be performed repeatedly, the application
should try to avoid creating and destroying JMS objects, and should instead hold
objects in pools and re-use them. Note that connections are the most expensive
objects to create, followed by sessions, consumers, and producers.

A-1

Using Transacted and/or Client-Acknowledged Sessions
In some cases it may be critical to applications that messages not be lost, in such
cases it may be desirable to use transacted and/or client-acknowledged sessions.
However, frequent acknowledgements for each and every operation should be
avoided.

Requestor Sessions

It is important that different requesters use different sessions. Acknowledging one
message acknowledges all currently unacknowledged messages received in the same
session.

If multiple requesters use the same session, and one receives its response
successfully, while another sees a failure and wishes to recover and re-try, if the first
acknowledges before the second can recover, the second requester's message will be
acknowledged and purged from Oracle Messaging Cloud Service, and the second
requester's re-try will receive a null message.

Responder Sessions

It is important that different responders use different sessions. If multiple responders
use the same session, and one has received a request, processed it, and sent the
response while another responder has only received a request, committing the session
will commit both the first responder's request and response and the second
responder's request.

Diagnosing Exceptions in the Java Library
The Oracle Messaging Cloud Service Java library provides support for diagnosing
problems that are indicated by a JMSException (or subclass thereof) being thrown by
an invocation of a Java library method or being dispatched to an ExceptionListener.

The Java library is an implementation of JMS 1.1. As such, the problem indicated by
an exception can sometimes be inferred from the class of the exception. For example,
if an invocation of the setClientID() method of the Connection class throws
InvalidClientIDException, the JMS standard and Javadoc indicates that this may
indicate that there may be an existing Connection with the same client ID. If you
receive this exception, you should implement logic to check for and handle this case,
or you should modify the application’s code to eliminate such a possibility.

In some cases, the JMS 1.1 specification may not define the problem indicated by an
exception. This will be true, for example, if the exception thrown is of the generic class
JMSException, or if the exception is a MessagingException thrown from a (non-JMS)
method of the MessagingService interface. In such cases, Oracle Messaging Cloud
Service may provide additional information about the problem behind the exception.

Subclasses of MessagingException for Specific Problems

In some cases, a non-JMS method may be declared to throw MessagingException,
and documented to throw subclasses of MessagingException to indicate specific
problems. When this is the case, it is documented in the Java library Javadocs.

Examples:

Appendix A
Using Transacted and/or Client-Acknowledged Sessions

A-2

• The createQueue() method of MessagingService creates a persistent queue with
a particular name. It can throw a generic MessagingException, but it can also
throw an exception of the DestinationExistsException subclass, which indicates
that there is already a queue with the given name in the service instance.

• The getTopicProperties() method of MessagingService returns information
about a persistent topic with a particular name. It can throw a generic
MessagingException, but it can also throw an exception of the
DestinationNotFoundException subclass, which indicates that there is no topic
with the given name in the service instance.

HttpResponseException

The Java library interacts with the Oracle Messaging Cloud Service as a client of the
Oracle Messaging Cloud Service REST API. Thus, many of the exceptions thrown by
the Java library are caused by receiving an HTTP error response from the REST API.
HttpResponseException is a subclass of MessagingException that provides
programmatic access to information provided by an HTTP error response received by
the Java library. The Javadocs for this exception give full details. However, here are
some key points to be noted:

• The response code of the HTTP response from the REST API can be obtained by
invoking the exception's getResponseCode() method. This is of particular interest
because, if the response code is in the 400-499 range, this generally indicates a
problem that the client code must correct, whereas a response code in the 400-499
range indicates a problem on the server side.

• The error key in the HTTP response of the REST API (the errorCode part of the
Oracle Messaging Cloud Service REST API error response) can be obtained as
an ErrorKey object by invoking the exception's getErrorKey() method. If the
return value of this method is not null, it will provide additional information beyond
what is given by the the HTTP response code.

Note: If getErrorKey() returns null, this indicates that the HTTP response
received by the Java library was not generated by Oracle Messaging Cloud
Service. In such cases, the response may have been generated by Oracle Cloud
infrastructure, such as a load balancer, or it may even have come from some part
of the user's infrastructure, such as an HTTP proxy. If getErrorKey() returns null,
the content of the HTTP response may be examined to attempt to diagnose the
problem.

• The error message in the HTTP response of the REST API (the errorMessage part
of the Oracle Messaging Cloud Service REST API error response) can be
obtained by the getErrorMessage() method. The errorMessage generally contains
additional information beyond what is given by the error key.

• The exception message for HttpResponseException (that is, the return value of
the standard getMessage() method) is the full HTTP response, including the status
line, headers, and body of the error response. The error message text will be in
the exception's message, but it will be embedded in the HTTP response with other
information.

HttpResponseExceptions in Non-JMS Methods

When a MessagingException is thrown by a non-JMS method (e.g. the
MessagingService methods), and its class is not one of the subclasses that indicate a
specific problem, its class may be HttpResponseException. In such a case, it will
contain the information alluded to in the previous section.

Appendix A
Diagnosing Exceptions in the Java Library

A-3

If a MessagingException is thrown whose class is not one of the problem-specific
classes or HttpResponseException, it generally indicates that the exception was
thrown purely on the client side. Users must not assume that a thrown
MessagingException is an HttpResponseException if its class is not one of the
problem-specific exception classes.

HttpResponseExceptions in JMS Methods

When a JMSException is thrown by the JMS part of the client library, if it's thrown
because of an HTTP error response from Oracle Messaging Cloud Service, its cause
(the value returned by the standard getCause() method) will be an
HttpResponseException which can be used in the same way as above. Again, the
cause must be checked to ensure that it's an HttpResponseException.

Using Exception Listeners
Note that JMS 1.1. only allows an exception to be dispatched to an
ExceptionListener to indicate some problem that is not already indicated by a JMS
method throwing an exception.

Recovery Strategies
When operations fail, throwing an exception, use the guidelines provided in
Diagnosing Exceptions in the Java Library to attempt to diagnose the seriousness of
the problem. In such situations, you should try to avoid attempting the operation
repeatedly, deleting the connection, and recreating objects.

Alternative to Selectors
Selectors are expensive, and they may slow down or delay the process of receiving
messages, so they should be avoided unless absolutely necessary.

For example, if you are using a single queue with selectors to receive response
messages that satisfy a single specific criteria, it is better to use temporary queues for
receiving such responses.

You should avoid using selectors to make a single queue look like multiple queues, for
example, to implement priorities. In such cases, it is recommended to have multiple
queues, for example, a high-, middle-, and low-priority queue.

Appendix A
Using Exception Listeners

A-4

B
REST API Reference

This section lists the request parameters that can be sent and the status codes and
error responses that can be received by a REST API client of Oracle Messaging Cloud
Service.

Topics:

• REST API Parameters Reference

• REST API HTTP Status Codes and Error Messages Reference

REST API Parameters Reference
The table in this section lists the parameters that can be submitted to the REST API.

The parameters are listed by their names as query string parameters, along with their
corresponding HTTP headers and a short general description of their meanings. The
query string parameter is always a camel-case identifier beginning with a lowercase
letter. The corresponding HTTP header is the query string parameter with X-OC-
prepended, and with case-change word boundaries replaced by dashes.

Note:

Except as noted in the methods for sending messages, every parameter may
be supplied either as a query string parameter or as an HTTP header. If
supplied as both, the header value will be ignored.

Query String Parameter/ HTTP
Header

Possible Values Description

Query string parameter:

ackMode

HTTP header:

X-OC-ACK-MODE

auto, client, dups_ok Acknowledgement mode for
sessions

Query string parameter:

action

HTTP header:

X-OC-ACTION

acknowledge, commit, rollback,
recover, start, stop

Action to invoke on a session for
transaction commit/rollback or
message acknowledgement/
recovery, or action to start or
stop a connection

B-1

Query String Parameter/ HTTP
Header

Possible Values Description

Query string parameter:

clientId

HTTP header:

X-OC-CLIENT-ID

String Client ID for connection/durable
subscriptions

Query string parameter:

connection

HTTP header:

X-OC-CONNECTION

String Name of the connection

Query string parameter:

correlationId

HTTP header:

X-OC-CORRELATION-ID

String Correlation ID for a message

Query string parameter:

deliveryMode

HTTP header:

X-OC-DELIVERY-MODE

persistent, non_persistent Delivery mode for a message

Query string parameter:

destination

HTTP header:

X-OC-DESTINATION

/queues/queueName

/topics/topicName

/temporaryQueues/queueName

/temporaryTopics/topicName

Destination (queue, topic,
temporary queue, or temporary
topic)

Query string parameter:

groupId

HTTP header:

X-OC-GROUP-ID

escaped value String Used to set the JMSXGroupID
property on the message being
sent. This is the name of the
message group of which this
message is a part, if any.

Note: If the JMSXGroupID
property is set as an HTTP
request header, it must be set to
an escaped value String or a
badParameter error response
will be generated. For more
information on escaped value
Strings, see About Escaped
Value Strings. If the
JMSXGroupID property is set as
a query string parameter, the
usual conventions for escaping
query string parameters hold.

Appendix B
REST API Parameters Reference

B-2

Query String Parameter/ HTTP
Header

Possible Values Description

Query string parameter:

groupSeq

HTTP header:

X-OC-GROUP-SEQ

Integer Used to set the JMSXGroupSeq
property on the message being
sent. This is the sequence
number of the message within
the message group specified by
the groupId parameter. It
should be set if, and only if,
groupId is set. The X-OC-
GROUP-SEQ header must be set
to an integer or a badParameter
error response will be generated.

Query string parameter:

localMode

HTTP header:

X-OC-LOCAL-MODE

GET_LOCAL, NO_LOCAL Local mode (whether to receive
messages sent to a topic via the
same connection through which
the messages were sent)

Query string parameter:

messageIdEnabled

HTTP header:

X-OC-MESSAGE-ID-ENABLED

true, false Whether message IDs are
enabled on a producer

Query string parameter:

messageType

HTTP header:

X-OC-MESSAGE-TYPE

PLAIN, TEXT, BYTES, OBJECT, HTTP,
MAP, STREAM

The type of the message

Query string parameter:

mii

HTTP header:

X-OC-MII

Integer greater than or equal to 0 Maximum Inactive Interval for the
messaging context

Query string parameter:

replyTo

HTTP header:

X-OC-REPLY-TO

/queues/queueName

/topics/topicName

/temporaryQueues/queueName

/temporaryTopics/topicName

Destination to which to direct
replies to a message

Query string parameter:

selector

HTTP header:

X-OC-SELECTOR

For the syntax of selectors, see the
Message Selectors section of the Java
API reference for the
javax.jms.Message class.

Selector for filtering messages

Appendix B
REST API Parameters Reference

B-3

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

Query String Parameter/ HTTP
Header

Possible Values Description

Query string parameter:

session

HTTP header:

X-OC-SESSION

String Session identifier

Query string parameter:

subscriptionName

HTTP header:

X-OC-SUBSCRIPTION-NAME

String Name of a durable subscription

Query string parameter:

timeout

HTTP header:

X-OC-TIMEOUT

Integer strictly greater than 0 Timeout for a blocking receive
operation

Query string parameter:

topicName

HTTP header:

X-OC-TOPIC-NAME

String Name of a topic

Query string parameter:

transacted

HTTP header:

X-OC-TRANSACTED

true, false Whether a session is transacted
or not

Query string parameter:

ttl

HTTP header:

X-OC-TTL

Integer strictly greater than 0 or
maximum

A time-to-live of the message

Query string parameter:

verificationToken

HTTP header:

X-OC-VERIFICATION-TOKEN

String The value of the verification
token to send with the message
push listener verification request.

Appendix B
REST API Parameters Reference

B-4

REST API HTTP Status Codes and Error Messages
Reference

This section provides information about the status codes and error messages that can
be received by a REST API client of Oracle Messaging Cloud Service.

Topics:

• Generic Meanings of HTTP Response Status Codes

• Error Key, Status Codes and Error Messages

Generic Meanings of HTTP Response Status Codes
The following table lists HTTP response status codes and their meanings:

Response Status Code Meaning

200 Ok Successful requests other than creations and deletions.

201 Created Successful creation of a queue, topic, temporary queue,
temporary topic, session, producer, consumer, listener, queue
browser, or message.

204 No Content Successful deletion of a queue, topic, session, producer, or
listener.

400 Bad Request The path info doesn't have the right format, or a parameter or
request body value doesn't have the right format, or a required
parameter is missing, or values have the right format but are
invalid in some way (for example, destination parameter
does not exist, content is too big, or client ID is in use).

403 Forbidden The invoker is not authorized to invoke the operation.

404 Not Found The object referenced by the path does not exist.

405 Method Not Allowed The method is not one of those allowed for the path.

409 Conflict An attempt was made to create an object that already exists.

500 Internal Server Error The execution of the service failed in some way.

Response bodies for status codes greater than or equal to 400 are either empty or
contain an error response in JSON or XML format. For more information, see
Understanding Error Responses.

Error Keys, Status Codes and Error Messages
This section gives a list of the distinct error responses that can be generated by the
REST API.

Topics:

• Errors with HTTP Status Code 400 (Bad Request)

• Errors with HTTP Status Code 403 (Forbidden)

• Errors with HTTP Status Code 404 (Not Found)

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-5

• Errors with HTTP Status Code 405 (Method Not Allowed)

• Errors with HTTP Status Code 406 (Not Acceptable)

• Errors with HTTP Status Code 409 (Conflict)

• Errors with HTTP Status Code 500 (Internal Server Error)

The error responses are listed first by their associated HTTP status code. Within each
status code, the error responses are listed by their key. The error key is the last
component of the error code returned in the response. That is, each error code has the
form:

urn:oracle:cloud:errorcode:messaging:error key

For example, the error with key methodNotAllowed has error code
urn:oracle:cloud:errorcode:messaging:methodNotAllowed.

For each error key, we give the associated error message followed by further
explanation if the error message is not self-explanatory.

Errors with HTTP Status Code 400 (Bad Request)
This section provides information about errors with HTTP status code 400.

Error Message Description

badAntiCsrf

Missing or incorrect X-OC-ID-TOKEN.

The anti-CSRF token is
enabled, but the request either
did not submit the token in
header X-OC-ID-TOKEN or
submitted a value that does not
match the previously generated
value.

badContentType

Content-Type must be one of the following: list
of media types.

The method and URL path must
have content of a particular
media type in its body, and the
Content-Type header does
not match any of the expected
media types.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-6

Error Message Description

badParameter

Bad parameter 'query string parameter'/header
'header name': 'parameter value'.

The value submitted for a
parameter is malformed (for
example, it should be an integer
but doesn't parse as an integer,
or should specify a destination
but doesn't start with /queues/
or /topics/), not in the proper
range (for example, a timeout
that parses as an integer but is
0 or negative), or has some
other syntactic problem. This
error does not indicate that the
value is well-formed but, for
example, refers to an entity that
doesn't exist. The error
message specifies the
parameter, giving both the
query string parameter and
header names, and the bad
value.

badProperty

Bad property header 'header name' with value
'value'.

The value submitted for a
message property via an X-OC-
type-PROPERTY-name header
is malformed. The error
message specifies the header
and value.

badSelector

Bad selector: 'selector'.

A message selector was found
to be invalid.

clientIdFailure

Client ID 'client ID' is invalid or in use by a
client or listener.

A client ID was submitted that is
invalid or is already in use,
either by a listener, another
client, or by the current client.

clientIdUnsettable

Connection state does not allow setting client
ID.

The client attempted to set a
client ID on the connection after
performing an operation that
puts the connection in a state
where its client ID is no longer
settable. This includes creating
a session and any other
(successful) operation that
requires the prior creation of a
session.

connectionParameterNotFound

Connection 'connection name' does not exist.

The client attempted to create a
session with a connection name
that is not the name of an
existing connection.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-7

Error Message Description

destinationParameterNotFound

Destination 'destination name' of type 'queue
or topic' does not exist.

A queue or topic submitted in
the request does not exist. This
key is used when the
destination is not the resource
specified in the URL path, but
rather when it is specified as, for
example, a destination
parameter or X-OC-
DESTINATION header.

disallowedSubscriptionLookup

Disallowed combination of parameters: submitted
parameters.

The method to list durable
subscriptions and their
properties specified a
combination of parameters that
is not one of the supported
combinations. The error
message will give a space-
delimited list consisting of some
collection of the strings
subscriptionName,
clientId, and topicName.

durableSubscriberOnTemporaryTopic

A consumer cannot be created on a temporary
topic.

An attempt was made to create
a consumer on a temporary
topic that uses a durable
subscription. Durable
subscriptions are not allowed on
temporary topics.

forbiddenContentType

The Content-Type header has value 'Content-Type
value', which is not allowed for the requested
operation.

A send request was made
whose Content-Type header
had value application/x-
www-form-urlencoded. This
content type is not allowed in
send requests, as the
combination of the POST method
and this content type may cause
the web server to consume the
content, attempting to parse it
as if it were a <form>
submission from an HTML
browser, making the content
unavailable to be put into the
message.

forbiddenParameter

Parameter 'query string parameter'/header
'header name' not allowed with method 'method'
on path 'URL path'.

A parameter was submitted that
is not allowed with a given
method and URL path. The
error message gives both the
query string parameter and the
header name for the parameter.

incompleteGroupProperties

Exactly one of the JMSXGroupID and JMSXGroupSeq
properties was set on the message. Either both
properties must be set, or neither must be set.

One of the mandatory
parameters was not set when
sending messages using
message groups.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-8

Error Message Description

invalidPath

Invalid path: 'URL path'.

The URL path of a request is
not a supported path or is
malformed. Specific problems
include the following:

• The URL does not contain
the path component for the
service name and identity
domain name.

• The component of the
request path after the
service name/identity
domain name component is
not one of those handled by
the service.

• Some path component after
the service and identity
domain names contains
characters other than a-z,
A-Z, decimal digits, or
underscores ('_').

localModeNonTopic

Local mode on non-topic.

A request specified a local
mode (whether messages sent
to a destination via this
connection should be received
by consumers on this
connection) with a destination
that is not a topic (in which case
a local mode is not appropriate).

malformedAcceptHeader

Invalid Accept header: 'Accept header'.

The service was unable to
process the Accept header of a
request to determine whether
the client can accept a response
with content of a given media
type.

malformedDestination

Malformed destination: 'destination'.

A destination specification did
not have the proper syntax (for
example, it did not start with one
of the following forms):
• /queues/
• /topics/
• /temporaryQueues/
• /temporaryTopics/

malformedListener

The XML for the message push listener is
malformed; the malformed XML is as follows:
'listener XML'.

The message push listener
specification did not have the
proper syntax.

For examples of well-formed
XML and the proper syntax to
use, see Create a Listener.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-9

Error Message Description

maxConnectionsReached

The attempted operation could not be completed
because the service instance is currently using
all of its 'maximum number of concurrent
connections' available connections.

An operation has been
attempted that would create a
new JMS connection (sending a
message, receiving a message,
setting the client ID on an
connection, and so on), and the
service instance is already at
the maximum number of
concurrent connections it's
allowed.

maxDurableSubscriptionsReached

The requested durable subscription could not be
created because the service instance has
reached its maximum number of durable
subscriptions. This service instance may have
no more than 'maximum number of durable
subscriptions' durable subscriptions.

Self-explanatory.

maxLocalConnectionsReached

The attempted operation could not be completed
because the service instance may have exceeded
its available connections.

The service instance has
exceeded the number of
connections it can create on a
single virtual machine in the
cloud. This usually means that
the service instance has
reached, or even gone beyond,
the maximum number of
allowed connections.

maxMessagesOnTargetDestinationReached

The message could not be sent because the
targeted destination reached its maximum number
of messages. Each destination on this service
instance may not have more than 'hard quota on
number of messages' messages. The number of
messages is currently 'current backlog size'.
The number of messages must drop below 'soft
quota on number of messages' before further
sends are allowed.

Self-explanatory.

maxMessageBytesOnTargetDestinationReached

The message could not be sent because the
targeted destination reached its maximum number
of bytes of messages. Each destination on this
service instance may not have more than 'hard
quota on bytes' bytes of messages. The number
of bytes of messages is currently 'current
backlog bytes'. The number of bytes of messages
must drop below 'soft quota on bytes' before
further sends are allowed.

Self-explanatory.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-10

Error Message Description

maxQueuesReached

The requested queue could not be created
because the targeted service instance has
reached its maximum number of queues. This
service instance may have no more than 'maximum
number of queues' queues.

Self-explanatory.

maxTempDestinationsOnConnectionReached

The requested temporary destination could not
be created because the targeted service
instance has reached its maximum number of
temporary destinations for this connection.
Each connection on this service instance may
not have more than 'maximum number of temporary
destinations' temporary destinations.

Self-explanatory.

maxTopicsReached

The requested topic could not be created
because the service instance has reached its
maximum number of topics. This service instance
may have no more than 'maximum number of
topics' topics.

Self-explanatory.

messageHeadersTooLarge

The size of the messaging-relevant headers of
the send request exceeded the maximum, maximum
header size.

The request's message-relevant
headers exceeded the
maximum size.

messageBodyTooLarge

The size of the body of the send request
exceeded the maximum, maximum body size.

The request's body exceeded
the maximum size.

messageTotalTooLarge

The internal message representation has size
internal size, which exceeds the maximum
internal size, maximum internal size.

A message whose headers and
body were within the limitations
exceeded the JMS broker's
threshold for the size of the
internal representation of a
message.

messagePushListenerVerificationBadResponse

Verification that the endpoint '<URL of an
HTTP/S endpoint>' is willing to receive
messages failed. The endpoint's response body
did not match the challenge token.

An HTTP or HTTPS endpoint
responded to a verification
request with a response body
that did not match the challenge
token sent by Oracle Messaging
Cloud Service.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-11

Error Message Description

messagePushListenerVerificationConnectionFailed

Verification that the endpoint '<URL of an
HTTP/S endpoint>' is willing to receive
messages failed. The service instance could not
connect to the endpoint.

Oracle Messaging Cloud
Service was unable to connect
to an HTTP or HTTPS endpoint
to send a verification request.

messagePushListenerVerificationErrorResponse

Verification that the endpoint '<URL of an
HTTP/S endpoint>' is willing to receive
messages failed. The endpoint's response had
status <non-200 status>.

An HTTP or HTTPS endpoint
responded to a verification
request with a status code other
than 200.

messagePushListenerVerificationException

Verification that the endpoint '<URL of an
HTTP/S endpoint>' is willing to receive
messages failed. An exception occurred in
attempting to read the response.

An exception occurred in
attempting to read the response
to a verification request.

messagePushListenerVerificationNoToken

The message push listener had an HTTP/S target,
but no verification token was supplied.

The listener XML specifies at
least one HTTP or HTTPS URL
to which to push messages, but
no verificationToken was
supplied.

missingParameter

Missing parameter 'query string parameter'/
header 'header name'.

A parameter that is required for
the method and URL path of the
request was not supplied, either
as a query string parameter or a
header. The error specifies the
query string parameter and
header name for the missing
parameter.

multipleDestinations

No destination or multiple destinations
specified.

A send via a producer was
requested, but either the
request specified no destination
and the producer had no default
destination or the request
specified a destination and the
producer had a default
destination.

noContentType

No Content-Type.

A request was made that must
have a specific media type, but
no Content-Type header was
supplied.

noDestinationForConsumer

Neither a destination nor a subscription name
were specified.

A request was made to create a
consumer, but no destination
was specified, and no existing
durable subscription (from
which a destination could be
extracted) was specified.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-12

Error Message Description

nonexistentNamespace

Nonexistent namespace: 'namespace identifier'.

The namespace (specified by a
service name and an identity
domain name) specified for the
request did not exist.

nonexistentNamespaceComponents

There is no service instance with service name
'service name' and identity domain name
'identity domain name'.

The namespace specified for
the request did not exist.

nonexistentNamespaceUnknown

There is no service instance with the specified
service and identity domain name.

The namespace specified in the
request URL did not exist.

serviceInstanceChanged

The client has attempted to use the service
instance 'first path component' with a
messaging context that was started with service
instance 'original first path component'.

The client request that created
the current messaging context
specified a service instance by
using a URL path whose first
component had the form

service name of the
instance-identity domain
name of the instance

but the current request has
supplied a different first
component on its URL path.
The service instance may not
be changed for a given
messaging context. If a REST
client wishes to access multiple
service instances
simultaneously, it must use
multiple messaging contexts
with different JSESSIONID
values.

sessionParameterNotFound

Session 'session name' does not exist.

This error is generated when a
nonexistent session is specified
as a query string parameter or a
header, rather than via the URL
path.

subscriptionInUse

The durable subscription with client ID 'client
ID' and name 'subscription name' has a consumer
on it.

This error is generated in two
circumstances:
• An attempt is made to

create a consumer on a
durable subscription when
that durable subscription
already has a consumer on
it.

• An attempt is made to
delete a durable
subscription that has a
consumer on it.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-13

Error Message Description

subscriptionNonTopic

Durable subscription on non-Topic.

An attempt has been made to
create a consumer with a
durable subscription with a
specified destination that is not
a topic. This error is generated
when it is possible to determine
from the request alone that the
destination is not a topic (for
example, if the parameter
specifying the consumer starts
with /queues/).

subscriptionNotFoundNoInfo

Durable subscription does not exist.

A durable subscription was not
found, but no information about
that durable subscription was
available.

subscriptionParameterNotFound

Durable subscription with client ID 'client ID'
and name 'subscription name' does not exist.

This error is generated when
the nonexistent subscription is
specified as a query string
parameter or a header, rather
than via the URL path.

timeoutTooLarge

Receive timeout (requested timeout
milliseconds) is larger than the maximum
allowed (service maximum timeout milliseconds).

The value of the timeout
parameter was larger than the
maximum allowed value (5
minutes).

timeToLiveTooLarge

Time to live (requested time-to-live
milliseconds) is larger than the maximum
allowed (service maximum time-to-live
milliseconds).

A requested time-to-live, either
for a producer being created, a
producer being modified, or a
message being sent, is longer
than the maximum allowed (2
weeks).

Errors with HTTP Status Code 403 (Forbidden)
This section provides information about errors with HTTP status code 403.

Error Message Description

adminRequired

Administrator authorization
required.

Self-explanatory.

noRoles

User must be either messaging
worker or messaging admin.

The user has authenticated, but has neither of
the roles (Messaging Administrator or
Messaging Worker) required for any of the
messaging operations.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-14

Errors with HTTP Status Code 404 (Not Found)
All errors in this category are returned when a resource specified on the URL path
does not exist.

Error Message Description

connectionNotFound

Connection 'connection name' does not exist.

Self-explanatory.

consumerNotFound

Consumer 'consumer name' does not exist.

Self-explanatory.

destinationNotFound

Destination 'name' of type 'queue or topic' does
not exist.

Self-explanatory.

listenerNotFound

Message push listener 'listener name' does not
exist.

Self-explanatory.

producerNotFound

Producer 'producer name' does not exist.

Self-explanatory.

queueBrowserNotFound

Queue browser 'queue browser name' does not
exist.

Self-explanatory.

sessionNotFound

Session 'session name' does not exist.

Self-explanatory.

subscriptionNotFound

Durable subscription with name 'subscription
name' does not exist.

An attempt has been made to
delete a nonexistent
subscription via a session.

subscriptionNotFoundFull

Durable subscription with client ID 'client ID'
and name 'subscription name' does not exist.

As attempt has been made to
retrieve the properties of a
nonexistent durable
subscription.

Errors with HTTP Status Code 405 (Method Not Allowed)
This section provides information about errors with HTTP status code 405.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-15

Error Message Description

methodNotAllowed

Method 'method' not allowed on
path 'URL path'.

Self-explanatory.

Errors with HTTP Status Code 406 (Not Acceptable)
This section provides information about errors with HTTP status code 406.

Error Message Description

unacceptable

Client's Accept header 'Accept
header' cannot accept any of the
following content types: space-
separated list of content types.

Self-explanatory.

Errors with HTTP Status Code 409 (Conflict)
This section provides information about errors with HTTP status code 409.

Error Message Description

connectionAlreadyExists

Connection 'connection name' already exists.

Self-explanatory.

consumerAlreadyExists

Consumer 'consumer name' already exists.

Self-explanatory.

destinationAlreadyExists

Destination 'destination name' of type
'queue or topic' already exists.

Self-explanatory.

listenerAlreadyExists

Message push listener 'listener name'
already exists.

Self-explanatory.

producerAlreadyExists

Producer 'producer name' already exists.

Self-explanatory.

queueBrowserAlreadyExists

Queue browser 'queue browser name' already
exists.

Self-explanatory.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-16

Error Message Description

sessionAlreadyExists

Session 'session name' already exists.

Self-explanatory.

subscriptionAlreadyExists

A durable subscription with client ID
'client ID' and name 'subscription name'
already exists.

Self-explanatory.

Errors with HTTP Status Code 500 (Internal Server Error)
This section provides information about errors with HTTP status code 500.

Error Message Description

failedGetConnectionProps

Failed to get Connection properties.

A failed attempt
was made to get
properties related
to connections to
the JMS broker.

failedGetDestinationConnectionProps

Failed to get connection properties for destination
'destination name' of type 'queue or topic'.

A failed attempt
was made to get
properties related
to connections to
the JMS broker
for a specific
destination.

failedGetDestinationProps

Failed to get properties for destination 'destination
name' of type 'queue or topic'.

A failed attempt
was made to get
properties related
to a specific
destination.

failedGetServiceProps

Failed to get Service properties.

A failed attempt
was made to get
properties related
to a specific
service instance.

maxConnectionCountUnavailable

The maximum number of connections allowed for the service
instance cannot be determined.

An internal error
has occurred in
determining the
number of
connections that a
service instance is
allowed.

messagePushListenersInterrupted

Message push listener functionality was unexpectedly
interrupted. Please try again.

Self-explanatory.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-17

Error Message Description

messagePushListenerVerificationRedirectionDisableFailed
A failed attempt
was made to
disable HTTP
redirects for the
message push
listener
verification
request.

operationFailed

Operation failed.

A low-level failure
occurred in
attempting to
carry out the
latest request.

Appendix B
REST API HTTP Status Codes and Error Messages Reference

B-18

C
Code Samples

The code examples in this section demonstrate how to send and receive messages
through the REST API and the Java library when developing applications that use
Oracle Messaging Cloud Service.

Topics:

• REST API

• Java Library

REST API
Note that the code samples provided in this section do not contain all HTTP headers,
or responses. The code samples contain HTTP headers, and responses which are
relevant to the given example.

In the examples, request parameters are provided as query string parameters. Note
that HTTP headers can also be provided as request parameters.

Topics:

• Create a Queue

• Create a Topic

• Create a Durable Subscription

• Create a Message Push Listener

• Receive a Message from a Durable Subscription

• Receive a Message from a Queue with a Selector

• Send a Message to a Topic

• Process Messages using a Transaction

• Cookie Management

Create a Queue
The example shows an HTTP request and response for a queue named
Preprocessing being created.

Request to create a queue named Preprocessing.

PUT /MCSService03-MCSOracle3/api/v1/queues/Preprocessing HTTP/1.1
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

C-1

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second preference),
or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-NEW-MESSAGING-CONTEXT: true
Set-Cookie:
JSESSIONID=ppNgTrjQLWY1ZgSfDyq1JWQh5px13gxYqbhJvvyPLrd2G2TCpl82!-1133198190; path=/;
HttpOnly

Note:

• A queue named Preprocessing is created by the request.

• The Cache-Control header indicates that the response should not be cached.

• The X-OC-NEW-MESSAGING-CONTEXT header indicates that the request created a
new messaging context.

• The Set-Cookie header provides the JSESSIONID cookie that must be sent in future
requests in order to use the same connection.

Create a Topic
The example shows an HTTP request and response for a topic named Incoming being
created.

Request to create a topic Incoming.

PUT /MCSService03-MCSOracle3/api/v1/topics/Incoming HTTP/1.1
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second preference),
or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-NEW-MESSAGING-CONTEXT: true
Set-Cookie:
JSESSIONID=CsSxTrjR50JDJS0vqdFfrKCQFdTwJsyTmVkC6gfsbLXVtZFyHfkG!-1133198190; path=/;
HttpOnly

Note:

• A topic named Incoming is created by the request.

Appendix C
REST API

C-2

• The Cache-Control header indicates that the response should not be cached.

• The X-OC-NEW-MESSAGING-CONTEXT header indicates that the request created a
new messaging context.

• The Set-Cookie header provides the JSESSIONID cookie that must be sent in future
requests in order to use the same connection.

Create a Durable Subscription
The example shows an HTTP request and response for a durable subscription named
Audit being created.

1. Request to create a connection named conn, and set the connection's client ID to
cid.

PUT /MCSService03-MCSOracle3/api/v1/connections/conn?clientId=cid&action=start
HTTP/1.1
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

• The clientId query string parameter sets the connection's client ID to cid.

• The action query string parameter indicates that the connection should be
started.

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-NEW-MESSAGING-CONTEXT: true
Set-Cookie:
JSESSIONID=hFZBTrjSdmx5MdSGyWjwG6bvQLCt8gnfHgfn5cL7HYQy8sSqnLfQ!-1133198190;
path=/; HttpOnly

Note:

• A connection named conn is created by the request.

• The Cache-Control header indicates that the response should not be cached.

• The X-OC-NEW-MESSAGING-CONTEXT header indicates that the request created a
new messaging context.

• The Set-Cookie header provides the JSESSIONID cookie that must be sent in
future requests in order to use the same connection.

2. Request to create a session named s.

PUT /MCSService03-MCSOracle3/api/v1/sessions/s?connection=conn HTTP/1.1
Cookie:
JSESSIONID=hFZBTrjSdmx5MdSGyWjwG6bvQLCt8gnfHgfn5cL7HYQy8sSqnLfQ!-1133198190

Appendix C
REST API

C-3

X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The connection query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

Note:

• A session named s is created by the request.

• The Cache-Control header indicates that the response should not be cached.

3. Request to create a consumer named c on a durable subscription.

PUT /MCSService03-MCSOracle3/api/v1/consumers/c?session=s&destination=%2Ftopics
%2FIncoming&subscriptionName=Audit HTTP/1.1
Cookie:
JSESSIONID=hFZBTrjSdmx5MdSGyWjwG6bvQLCt8gnfHgfn5cL7HYQy8sSqnLfQ!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The session query string parameter is set to s, which indicates that a
consumer c will be created in the session s.

• The destination query string parameter is set to the topic Incoming, which
indicates that the consumer will consume from the topic Incoming.

• The subscriptionName query string parameter indicates that the consumer will
be a durable subscriber on a durable subscription named Audit, and the client
ID will be cid from the connection conn.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

Appendix C
REST API

C-4

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

Note:

• The creation of the consumer will create a durable subscription on the topic
Incoming with client ID cid and name Audit, unless a subscription with that
client ID and name already exists.

If a subscription with the specified client ID and name already exists, then the
action taken is as follows:

– If the existing durable subscription is on the topic Incoming, and has no
selector, then this consumer will consume from the existing durable
subscription.

– If the existing durable subscription is not on the topic Incoming, then the
existing durable subscription will be deleted (unless there is another
consumer on it) and a new durable subscription will be created with the
given client ID and name, on the Incoming topic, with no selector. Note
that when a durable subscription is deleted, all messages that were saved
in the existing durable subscription are discarded.

– If the existing durable subscription is on the topic Incoming, but has a
selector, the existing durable subscription will be deleted (unless there is
another consumer on it) and a new durable subscription will be created
with the given client ID and name, on the topic Incoming, with no selector.
Note that when a durable subscription is deleted, all messages that were
saved in the existing durable subscription are discarded.

• The Cache-Control header indicates that the response should not be cached.

Create a Message Push Listener
The example shows an HTTP request and response for a message push listener
named l being created.

Request to create a listener named l.

PUT /MCSService03-MCSOracle3/api/v1/listeners/l HTTP/1.1
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Content-Type: application/xml
Accept: application/json, application/xml;q=0.8, */*;q=0.5
Content-Length: 286

<?xml version="1.0" encoding="UTF-8"?>
<listener>
 <version>1.0</version>
 <name>l</name>

Appendix C
REST API

C-5

 <source>
 <type>topic</type>
 <name>Incoming</name>
 </source>
 <target>
 <uri>urn:oracle:cloud:messaging:queues:Preprocessing</uri>
 </target>
</listener>

Note:

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second preference),
or anything else (least preferable).

• The Content-Type header indicates that body of the request is in XML.

• The XML body of the request indicates the properties of the listener. The listener
receives messages from the topic Incoming and sends them to the queue
Preprocessing.

Note:

The XML document should not contain a DOCTYPE declaration. If a DOCTYPE
declaration is included in the XML document, a 500 operationFailed
response is returned. This is done to prevent certain security and Denial of
Service (DoS) attacks.

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-NEW-MESSAGING-CONTEXT: true
Set-Cookie:
JSESSIONID=MLyKTrjTh62Hb1PGkwCFGrrLc5p2sVdl8vv1WD5CzdNXTtppJJCZ!-1133198190; path=/;
HttpOnly

Note:

• A listener named l is created by the request.

• The Cache-Control header indicates that the response should not be cached.

• The X-OC-NEW-MESSAGING-CONTEXT header indicates that the request created a
new messaging context.

• The Set-Cookie header provides the JSESSIONID cookie that must be sent in future
requests in order to use the same connection.

Appendix C
REST API

C-6

Receive a Message from a Durable Subscription
The example shows an HTTP request and response for a message being received
from a durable subscription named Audit.

1. Request to create a connection named conn, and set the connection's client ID to
cid.

PUT /MCSService03-MCSOracle3/api/v1/connections/conn?clientId=cid&action=start
HTTP/1.1
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

• The clientId query string parameter sets the connection's client ID to cid.

• The action query string parameter indicates that the connection should be
started.

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-NEW-MESSAGING-CONTEXT: true
Set-Cookie:
JSESSIONID=MQm1TrjV2zLv7b0GV5kny1XwBcd7hZv0LhJSWxKvyJthq31jVH7L!-1133198190;
path=/; HttpOnly

Note:

• A connection named conn is created by the request.

• The Cache-Control header indicates that the response should not be cached.

• The X-OC-NEW-MESSAGING-CONTEXT header indicates that the request created a
new messaging context.

• The Set-Cookie header provides the JSESSIONID cookie that must be sent in
future requests in order to use the same connection.

2. Request to create a session named s.

PUT /MCSService03-MCSOracle3/api/v1/sessions/s?connection=conn HTTP/1.1
Cookie:
JSESSIONID=MQm1TrjV2zLv7b0GV5kny1XwBcd7hZv0LhJSWxKvyJthq31jVH7L!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

Appendix C
REST API

C-7

• The connection query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

Note:

• A session named s is created by the request.

• The Cache-Control header indicates that the response should not be cached.

3. Request to create a durable subscriber named c.

PUT /MCSService03-MCSOracle3/api/v1/consumers/c?session=s&subscriptionName=Audit
HTTP/1.1
Cookie:
JSESSIONID=MQm1TrjV2zLv7b0GV5kny1XwBcd7hZv0LhJSWxKvyJthq31jVH7L!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The session query string parameter is set to s, which indicates that a
consumer c will be created on the session s.

• The request contains a subscriptionName query string parameter without a
destination query string parameter. This indicates that the consumer will be
created on an existing durable subscription with client ID cid and subscription
name Audit. If a 400 error response is returned, it indicates that the durable
subscription with client ID cid and subscription name Audit does not exist.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

Appendix C
REST API

C-8

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-DESTINATION: /topics/Incoming

Note:

• A 201 response indicates that the durable subscription with client ID cid and
subscription name Audit exists.

• The X-OC-DESTINATION header indicates that the existing durable subscription
is on the topic Incoming.

• The response does not contain a X-OC-SELECTOR header. This indicates that
the existing durable subscription does not have a selector, and it will store all
the messages which are sent to Incoming.

• The Cache-Control header indicates that the response should not be cached.

4. Request to receive a message from the consumer c.

POST /MCSService03-MCSOracle3/api/v1/consumers/c/messages?timeout=1000 HTTP/1.1
Cookie:
JSESSIONID=MQm1TrjV2zLv7b0GV5kny1XwBcd7hZv0LhJSWxKvyJthq31jVH7L!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The timeout query string parameter indicates that the service should return a
response indicating that no message has been received if no message is
currently stored in the durable subscription and no new message arrives within
1000 milliseconds.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Response returns the following message:

HTTP/1.1 200 OK
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Transfer-Encoding: chunked
Content-Type: text/plain; charset=UTF-8
X-OC-DESTINATION: /topics/Incoming
X-OC-PRIORITY: 4
X-OC-DELIVERY-MODE: persistent
X-OC-TIMESTAMP: 1403757556763
X-OC-EXPIRATION: 1404967156763
X-OC-MESSAGE-TYPE: TEXT
X-OC-MESSAGE-ID: ID:adc00onb-44216-1403559824551-509:1:1:1:1
X-OC-REDELIVERED: false

0008

Appendix C
REST API

C-9

request

0000

Note:

• The X-OC-MESSAGE-TYPE header indicates that the message is a TEXT
message, and hence the Content-Type is text/plain; charset=UTF-8.

• The Transfer-Encoding header indicates that the response body is being sent
in chunks as defined by the HTTP 1.1 RFC (http://www.w3.org/Protocols/
rfc2616/rfc2616-sec3.html#sec3.6.1).

• In this particular message, the content of the message is sent in one chunk,
which is 8 bytes long, and consists of the letters request followed by a new-
line character.

• The Cache-Control header indicates that the response should not be cached.

Receive a Message from a Queue with a Selector
The example shows an HTTP request and response for a message being received
from a queue named Postprocessing with a selector.

1. Request to create a connection named conn.

PUT /MCSService03-MCSOracle3/api/v1/connections/conn HTTP/1.1
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

• The PUT request to create the connection does not contain the action query
string parameter which starts the connection. Hence, the connection conn is
not started when it is created.

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-NEW-MESSAGING-CONTEXT: true
Set-Cookie:
JSESSIONID=szv9TrjYZxKBrgntMn3g5KnCrHtQfYyGLBkTQnR1d0R55XKQHcvf!-1133198190;
path=/; HttpOnly

Note:

• A connection named conn is created by the request.

• The Cache-Control header indicates that the response should not be cached.

• The X-OC-NEW-MESSAGING-CONTEXT header indicates that the request created a
new messaging context.

Appendix C
REST API

C-10

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1

• The Set-Cookie header provides the JSESSIONID cookie that must be sent in
future requests in order to use the same connection.

2. Request to create a session named s.

PUT /MCSService03-MCSOracle3/api/v1/sessions/s?connection=conn HTTP/1.1
Cookie:
JSESSIONID=szv9TrjYZxKBrgntMn3g5KnCrHtQfYyGLBkTQnR1d0R55XKQHcvf!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The connection query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

Note:

• A session named s is created by the request.

• The Cache-Control header indicates that the response should not be cached.

3. Request to create a consumer named c with the previously created session.

PUT /MCSService03-MCSOracle3/api/v1/consumers/c?session=s&destination=%2Fqueues
%2FPostprocessing&selector=palindrome HTTP/1.1
Cookie:
JSESSIONID=szv9TrjYZxKBrgntMn3g5KnCrHtQfYyGLBkTQnR1d0R55XKQHcvf!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The session query string parameter is set to s, which indicates that a
consumer c will be created in the session s.

• The destination query string parameter is set to the queue Postprocessing,
which indicates that the consumer will consume from the queue
Postprocessing.

Appendix C
REST API

C-11

• The consumer uses a selector, indicated by the selector query string
parameter. The selector, palindrome, indicates that the consumer should only
receive messages with a boolean property palindrome that has the value
true.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

4. Request to start the connection conn.

POST /MCSService03-MCSOracle3/api/v1/connections/conn?action=start HTTP/1.1
Cookie:
JSESSIONID=szv9TrjYZxKBrgntMn3g5KnCrHtQfYyGLBkTQnR1d0R55XKQHcvf!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• Sessions and consumers can be created without starting the connection.
Connections can be started later using the action query string parameter.

• A connection must be started to receive messages from consumers on the
connection.

• The action query string parameter is used to start the connection.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 200 OK
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

5. Request to receive a message through the consumer c.

POST /MCSService03-MCSOracle3/api/v1/consumers/c/messages?timeout=1000 HTTP/1.1
Cookie:
JSESSIONID=szv9TrjYZxKBrgntMn3g5KnCrHtQfYyGLBkTQnR1d0R55XKQHcvf!-1133198190
X-OC-ID-TOKEN-STATUS: disabled

Appendix C
REST API

C-12

Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The receive timeout of 1000 milliseconds is indicated by the timeout query
string parameter.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Response returns a message, as follows:

HTTP/1.1 200 OK
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Transfer-Encoding: chunked
Content-Type: text/plain; charset=UTF-8
X-OC-DESTINATION: /queues/Postprocessing
X-OC-PRIORITY: 4
X-OC-DELIVERY-MODE: persistent
X-OC-TIMESTAMP: 1403757560091
X-OC-EXPIRATION: 1404967160091
X-OC-MESSAGE-TYPE: TEXT
X-OC-MESSAGE-ID: ID:adc00onb-44216-1403559824551-513:1:1:1:1
X-OC-REDELIVERED: false
X-OC-BOOLEAN-PROPERTY-palindrome: true

0008
racecar

0000

Note:

• The X-OC-MESSAGE-TYPE header indicates that the message is a TEXT
message, and hence the Content-Type is text/plain; charset=UTF-8.

• The Transfer-Encoding header indicates that the response body is being sent
in chunks as defined by the HTTP 1.1 RFC (http://www.w3.org/Protocols/
rfc2616/rfc2616-sec3.html#sec3.6.1).

• In this particular message, the content of the message is sent in one chunk,
which is 8 bytes long, and consists of the letters racecar followed by a new-
line character.

• The X-OC-BOOLEAN-PROPERTY-palindrome header indicates that the message
has a boolean property palindrome that has the value true.

Send a Message to a Topic
The example shows HTTP requests to send a message to a topic named Incoming.

1. Request to create a connection named conn.

PUT /MCSService03-MCSOracle3/api/v1/connections/conn HTTP/1.1
X-OC-ID-TOKEN-STATUS: disabled

Appendix C
REST API

C-13

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1

Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

• The PUT request to create the connection does not contain the action query
string parameter which starts the connection. Hence, the connection conn is
not started when it is created.

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-NEW-MESSAGING-CONTEXT: true
Set-Cookie:
JSESSIONID=yvz2Trjhh3J2qvZMp2QTlCPDQqydsFlQPzBD1v92xGYwy6TbXjR5!-1133198190;
path=/; HttpOnly

Note:

• A connection named conn is created by the request.

• The Cache-Control header indicates that the response should not be cached.

• The X-OC-NEW-MESSAGING-CONTEXT header indicates that the request created a
new messaging context.

• The Set-Cookie header provides the JSESSIONID cookie that must be sent in
future requests in order to use the same connection.

2. Request to create a session named s.

PUT /MCSService03-MCSOracle3/api/v1/sessions/s?connection=conn HTTP/1.1
Cookie:
JSESSIONID=yvz2Trjhh3J2qvZMp2QTlCPDQqydsFlQPzBD1v92xGYwy6TbXjR5!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The connection query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

Appendix C
REST API

C-14

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

Note:

• A session named s is created by the request.

• The Cache-Control header indicates that the response should not be cached.

3. Request to create a producer named p with the session s.

PUT /MCSService03-MCSOracle3/api/v1/producers/p?session=s&destination=%2Ftopics
%2FIncoming HTTP/1.1
Cookie:
JSESSIONID=yvz2Trjhh3J2qvZMp2QTlCPDQqydsFlQPzBD1v92xGYwy6TbXjR5!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The destination query string parameter indicates that a destination is
specified for the producer, and the producer will send messages to the topic
Incoming.

• All messages sent via this producer will be sent to the specified destination.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

4. Request to send a TEXT message through the producer.

POST /MCSService03-MCSOracle3/api/v1/producers/p/messages?messageType=TEXT HTTP/
1.1
Cookie:
JSESSIONID=yvz2Trjhh3J2qvZMp2QTlCPDQqydsFlQPzBD1v92xGYwy6TbXjR5!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Content-Type: text/plain; charset=UTF-8
Accept: application/json, application/xml;q=0.8, */*;q=0.5
Content-Length: 15

A text message

Note:

Appendix C
REST API

C-15

• The messageType query string parameter indicates that the message is a
TEXT message, and hence the Content-Type is text/plain; charset=UTF-8.

• The content of the message is A text message, followed by a new-line
character.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-DESTINATION: /topics/Incoming
X-OC-MESSAGE-ID: ID:adc00onb-44216-1403559824551-517:1:1:1:1
X-OC-DELIVERY-MODE: persistent
X-OC-TIMESTAMP: 1403757563379
X-OC-EXPIRATION: 1404967163379
X-OC-PRIORITY: 4

Note:

• The message's metadata is indicated by various headers. The X-OC-* headers
indicate the message headers that are set by the sending operation, except
the X-OC-PRIORITY header which is sent by the service.

• The X-OC-DESTINATION header indicates the message is sent to the topic
Incoming.

Process Messages using a Transaction
The example shows an HTTP request and response for creating a transacted session,
receiving a message from a queue named Preprocessing, sending a message to a
queue named Postprocessing, and committing the session.

1. Request to create a connection named conn.

PUT /MCSService03-MCSOracle3/api/v1/connections/conn?action=start HTTP/1.1
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

• The action query string parameter is used to start the connection.

Successful response.

Appendix C
REST API

C-16

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0
X-OC-NEW-MESSAGING-CONTEXT: true
Set-Cookie:
JSESSIONID=v1cyTrjbScfh2Cy62pyD9615xPbCx33vvQPT6JyJ5RG2TjvfG2Md!-1133198190;
path=/; HttpOnly

Note:

• A connection named conn is created by the request.

• The Cache-Control header indicates that the response should not be cached.

• The X-OC-NEW-MESSAGING-CONTEXT header indicates that the request created a
new messaging context.

• The Set-Cookie header provides the JSESSIONID cookie that must be sent in
future requests in order to use the same connection.

2. Request to create a session named s.

PUT /MCSService03-MCSOracle3/api/v1/sessions/s?connection=conn&transacted=true
HTTP/1.1
Cookie:
JSESSIONID=v1cyTrjbScfh2Cy62pyD9615xPbCx33vvQPT6JyJ5RG2TjvfG2Md!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The connection query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

• The transacted query string parameter indicates that the session is
transacted.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

Note:

• A transacted session named s is created by the request.

• The Cache-Control header indicates that the response should not be cached.

Appendix C
REST API

C-17

3. Request to create a consumer named c on the queue Preprocessing.

PUT /MCSService03-MCSOracle3/api/v1/consumers/c?session=s&destination=%2Fqueues
%2FPreprocessing HTTP/1.1
Cookie:
JSESSIONID=v1cyTrjbScfh2Cy62pyD9615xPbCx33vvQPT6JyJ5RG2TjvfG2Md!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The session query string parameter is set to s, which indicates that a
consumer c will be created in the session s.

• The destination query string parameter is set to the queue Preprocessing,
which indicates that the consumer will consume from the queue
Preprocessing.

• The Cookie header sends the JSESSIONID cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

4. Request to create a producer named p with the session s.

PUT /MCSService03-MCSOracle3/api/v1/producers/p?session=s&destination=%2Fqueues
%2FPostprocessing HTTP/1.1
Cookie:
JSESSIONID=v1cyTrjbScfh2Cy62pyD9615xPbCx33vvQPT6JyJ5RG2TjvfG2Md!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The session query string parameter is set to s, which indicates that a
producer p will be created in the session s.

• The destination query string parameter indicates that a destination is
specified for the producer, and the producer will send messages to the queue
Postprocessing.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

Appendix C
REST API

C-18

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

5. Request to receive a message through the consumer c.

POST /MCSService03-MCSOracle3/api/v1/consumers/c/messages?timeout=1000 HTTP/1.1
Cookie:
JSESSIONID=v1cyTrjbScfh2Cy62pyD9615xPbCx33vvQPT6JyJ5RG2TjvfG2Md!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The receive timeout of 1000 milliseconds is indicated by the timeout query
string parameter.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Response returns a message, as follows:

HTTP/1.1 200 OK
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Transfer-Encoding: chunked
Content-Type: text/plain; charset=UTF-8
X-OC-DESTINATION: /queues/Preprocessing
X-OC-PRIORITY: 4
X-OC-DELIVERY-MODE: persistent
X-OC-TIMESTAMP: 1403757556777
X-OC-EXPIRATION: 1404967156773
X-OC-MESSAGE-TYPE: TEXT
X-OC-MESSAGE-ID: ID:adc00onb-44216-1403559824551-365:1:5:1:1
X-OC-REDELIVERED: false

0010
Post-processing

0000

Note:

• The X-OC-MESSAGE-TYPE header indicates that the message is a TEXT
message, and hence the Content-Type is as follows:

text/plain; charset=UTF-8

• The Transfer-Encoding header indicates that the response body is being sent
in chunks as defined by the HTTP 1.1 RFC (http://www.w3.org/Protocols/
rfc2616/rfc2616-sec3.html#sec3.6.1).

Appendix C
REST API

C-19

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1

• In this particular message, the content of the message is sent in one chunk,
which is 16 bytes long, and consists of the letters Post-processing followed
by a new-line character.

• The message is unavailable for receipt by other consumers. The receipt of the
message is provisional because the session is transacted.

• If the session is rolled back, then the message will be available for receipt by
other consumers, and will have the header X-OC-REDELIVERED: true on any
subsequent receipts.

6. Request to send a message through the producer p.

POST /MCSService03-MCSOracle3/api/v1/producers/p/messages?messageType=TEXT HTTP/
1.1
Cookie:
JSESSIONID=v1cyTrjbScfh2Cy62pyD9615xPbCx33vvQPT6JyJ5RG2TjvfG2Md!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Content-Type: text/plain; charset=UTF-8
Accept: application/json, application/xml;q=0.8, */*;q=0.5
X-OC-BOOLEAN-PROPERTY-palindrome: true
Content-Length: 15

racecar

Note:

• The messageType query string parameter indicates that the message is a
TEXT message, and hence the Content-Type is as follows:

text/plain; charset=UTF-8

• Content of the message is racecar, followed by a new-line character.

• The message has a boolean property palindrome that has the value true.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 201 Created
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0X-OC-DESTINATION: /queues/Postprocessing
X-OC-MESSAGE-ID: ID:adc00onb-44216-1403559824551-519:1:1:1:1
X-OC-DELIVERY-MODE: persistent
X-OC-TIMESTAMP: 1403757567007
X-OC-EXPIRATION: 1404967167007
X-OC-PRIORITY: 4

Note:

• The message is sent provisionally because the session is transacted. The
message is on the server, but it is not put on the queue, and is not available
for the consumers to consume.

Appendix C
REST API

C-20

7. Request to commit the session.

POST /MCSService03-MCSOracle3/api/v1/sessions/s/state?action=commit HTTP/1.1
Cookie:
JSESSIONID=v1cyTrjbScfh2Cy62pyD9615xPbCx33vvQPT6JyJ5RG2TjvfG2Md!-1133198190
X-OC-ID-TOKEN-STATUS: disabled
Authorization: Basic YXd1c2VyOldlbGNvbWVfMQ==
Accept: application/json, application/xml;q=0.8, */*;q=0.5

Note:

• The action query string parameter indicates that the session should be
committed.

• The X-OC-ID-TOKEN-STATUS header indicates that the anti-CSRF token is
disabled.

• The Authorization header indicates that the authentication type is Basic.

• The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/1.1 200 OK
Cache-Control: no-cache;no-store;must-revalidate;max-age=0
Content-Length: 0

Note:

• Sending and receiving of messages is committed. This indicates that the
messages sent by the producer p can be received by other consumers.

Cookie Management
It is important to manage HTTP cookies created by the REST API. HTTP cookies are
used by HTTP clients to identity existing messaging contexts.

Messaging contexts are containers for ephemeral messaging objects like connections,
sessions, producers, and consumers. The Oracle Messaging Cloud Service's Java
library manages HTTP cookies for you. If you use the REST API directly (from Java or
another programming platform) you need to manage the cookies yourself.This
example shows how capture, store, and re-use HTTP cookies created by the REST
API using standard Java platform classes from the java.net package. Most modern
programming platforms which support HTTP provide support for managing HTTP
cookies. Please consult your platform's manual for further guidance.

The example class CookieManagement includes an example in the main method.

package oracle.cloud.messaging.docs;

import java.io.IOException;
import java.net.CookieManager;
import java.net.CookiePolicy;
import java.net.CookieStore;
import java.net.HttpCookie;
import java.net.HttpURLConnection;
import java.net.URI;
import java.net.URL;
import java.net.URLConnection;
import java.util.List;
import java.util.Map;

Appendix C
REST API

C-21

import oracle.cloud.messaging.util.Base64Util;

/**
 * Class to manage cookies, and demonstrate cookie management.
 * Uses cookie management classes from java.net.
 */
public class CookieManagement
{
 // java.net CookieManager to store and manage cookies
 private CookieManager mgr = null;

 /**
 * Create a CookieManagement Object
 * with a given CookiePolicy. See the
 * javadoc for the java.net.CookiePolicy class
 * (http://docs.oracle.com/javase/6/docs/api/java/net/CookiePolicy.html)
 * for pre-defined values.
 */
 public CookieManagement(CookiePolicy policy)
 {
 this.mgr = new CookieManager();
 this.mgr.setCookiePolicy(policy);
 }

 /**
 * Store cookies from the response headers from a
 * fetch of a URL.
 *
 * @param uri URI fetched
 * @param responseHeaders Map encoding HTTP response headers
 * @throws IOException
 */
 public void storeCookies(URI uri, Map<String,List<String>> responseHeaders)
throws IOException
 {
 synchronized(this.mgr)
 {
 this.mgr.put(uri,responseHeaders);
 }
 }

 /**
 * Store cookies from the response headers from a
 * fetch of a URL.
 *
 * @param uri URI fetched
 * @param connection A connection to the "uri" parameter
 * that has already been connected,
 * so that response headers are
 * available.
 * @throws IOException
 */
 public void storeCookies(URI uri, URLConnection connection) throws IOException
 {
 this.storeCookies(uri,connection.getHeaderFields());
 }

 /**
 * Set Cookie request headers corresponding to cookies
 * from the cookie store that are appropriate to send
 * to a URL.

Appendix C
REST API

C-22

 *
 * @param uri URI to which we are about to connect
 *
 * @param connection A connection to the "uri" parameter
 * that has not yet been connected,
 * so that request headers may
 * still be set.
 */
 public void setCookies(URI uri, URLConnection connection)
 {
 synchronized(this.mgr)
 {
 CookieStore store = this.mgr.getCookieStore();

 // Get list of appropriate cookies
 List<HttpCookie> cookies = store.get(uri);

 // Set cookies on the connection
 for(HttpCookie cookie : cookies)
 {
 connection.addRequestProperty("Cookie",cookie.toString());
 }
 }
 }

 /*
 * Sample code that uses CookieManagement to
 * connect to the OMCS REST API.
 *
 * Usage:
 *
 * java oracle.cloud.messaging.docs.CookieManagement \
 * [Service URL, up to and including "/api/v1"] \
 * [Identity domain name] \
 * [user name]:[password] \
 * [queue name]
 */
 public static void main(String[] argv) throws Exception
 {
 String baseURL = argv[0];
 String identityDomainName = argv[1];
 String userPassword = argv[2];
 String queueName = argv[3];

 // Queue encoded for use as a query string parameter
 String queueArg = "%2Fqueues%2F" + queueName;

 // Accept all cookies
 CookieManagement cm = new CookieManagement(CookiePolicy.ACCEPT_ALL);

 // Base64-encoded user:password
 String authorizationHeader = "Basic " +
Base64Util.to64(userPassword.getBytes("UTF-8"));

 // Connection to the service URL
 HttpURLConnection connection;

 // Whether to delete the queue used after using it
 boolean deleteAfter;

 // Create queue if it doesn't already exist

Appendix C
REST API

C-23

 URL createQueueURL = new URL(baseURL + "/queues/" + queueName);

 connection = (HttpURLConnection)createQueueURL.openConnection();

 connection.setRequestMethod("PUT");

 // Disable anti-CSRF token on the first access
 connection.setRequestProperty("X-OC-ID-TOKEN-STATUS","disabled");
 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);

 // Set Basic authentication header
 connection.setRequestProperty("Authorization",authorizationHeader);

 // Keep the connection open for future HTTP requests
 connection.setRequestProperty("Connection", "keep-alive");

 // Accept JSON most preferably, then XML, then anything else
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 System.out.println("Creating queue");
 connection.connect();

 // Store cookie on first access
 cm.storeCookies(createQueueURL.toURI(),connection);

 if (connection.getResponseCode() == HttpURLConnection.HTTP_CREATED)
 {
 System.out.println("Queue created, so will be deleted at the end of the
test");
 deleteAfter = true;
 }
 else
 if (connection.getResponseCode() == HttpURLConnection.HTTP_CONFLICT)
 {
 System.out.println("Queue already exists");
 deleteAfter = false;
 }
 else
 {
 throw new Exception("Queue creation failed");
 }

 // Create a connection and start it

 URL createConnectionURL = new URL(baseURL + "/connections/myConnection?
action=start");

 connection = (HttpURLConnection)createConnectionURL.openConnection();

 connection.setRequestMethod("PUT");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Connection", "keep-alive");
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 // Not the first access, so set cookies stored from previous accesses
 cm.setCookies(createConnectionURL.toURI(),connection);

Appendix C
REST API

C-24

 System.out.println("Creating connection");
 connection.connect();

 cm.storeCookies(createConnectionURL.toURI(),connection);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_CREATED)
 {
 throw new Exception("Connection creation failed");
 }

 // Create a session

 URL createSessionURL = new URL(baseURL + "/sessions/mySession?
connection=myConnection");

 connection = (HttpURLConnection)createSessionURL.openConnection();

 connection.setRequestMethod("PUT");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Connection", "keep-alive");
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 cm.setCookies(createSessionURL.toURI(),connection);

 System.out.println("Creating session");
 connection.connect();

 cm.storeCookies(createSessionURL.toURI(),connection);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_CREATED)
 {
 throw new Exception("Session creation failed");
 }

 // Create a producer with no default destination

 URL createProducerURL = new URL(baseURL + "/producers/myProducer?
session=mySession");

 connection = (HttpURLConnection)createProducerURL.openConnection();

 connection.setRequestMethod("PUT");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Connection", "keep-alive");
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 cm.setCookies(createProducerURL.toURI(),connection);

 System.out.println("Creating producer");
 connection.connect();

 cm.storeCookies(createProducerURL.toURI(),connection);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_CREATED)

Appendix C
REST API

C-25

 {
 throw new Exception("Producer creation failed");
 }

 // Create a consumer on the queue specified on the command line

 URL createConsumerURL = new URL(baseURL + "/consumers/myConsumer?
session=mySession&destination=" + queueArg);

 connection = (HttpURLConnection)createConsumerURL.openConnection();

 connection.setRequestMethod("PUT");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Connection", "keep-alive");
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 cm.setCookies(createConsumerURL.toURI(),connection);

 System.out.println("Creating consumer");
 connection.connect();

 cm.storeCookies(createConsumerURL.toURI(),connection);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_CREATED)
 {
 throw new Exception("Consumer creation failed");
 }

 // Send a PLAIN message to the queue via the producer

 URL sendMessageURL = new URL(baseURL + "/producers/myProducer/messages?
messageType=PLAIN&destination=" + queueArg);

 connection = (HttpURLConnection)sendMessageURL.openConnection();

 connection.setRequestMethod("POST");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Connection", "keep-alive");
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 cm.setCookies(sendMessageURL.toURI(),connection);

 System.out.println("Sending blank message");
 connection.connect();

 cm.storeCookies(sendMessageURL.toURI(),connection);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_CREATED)
 {
 throw new Exception("Send failed");
 }

 // Receive from the queue 5 times, with a timeout of 1 second, and report
 // whether a message was received each time.

Appendix C
REST API

C-26

 URL receiveURL = new URL(baseURL + "/consumers/myConsumer/messages?
timeout=1000");

 for(
 int receiveIndex = 0;
 receiveIndex < 5;
 receiveIndex++
)
 {
 connection = (HttpURLConnection)receiveURL.openConnection();

 connection.setRequestMethod("POST");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Connection", "keep-alive");
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");
 cm.setCookies(receiveURL.toURI(),connection);

 System.out.print("Receiving ... ");
 connection.connect();

 cm.storeCookies(receiveURL.toURI(),connection);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_OK)
 {
 throw new Exception("Receive failed");
 }

 // Check for X-OC-NULL: true header indicating that no message was
received
 if ("true".equals(connection.getHeaderField("X-OC-NULL")))
 {
 System.out.println("No message received");
 }
 else
 {
 System.out.println("Message received");
 }
 }

 // Close connection, and so the session, producer, and consumer

 URL closeConnectionURL = new URL(baseURL + "/connections/myConnection");

 connection = (HttpURLConnection)closeConnectionURL.openConnection();

 connection.setRequestMethod("DELETE");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Connection", "keep-alive");
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 cm.setCookies(closeConnectionURL.toURI(),connection);

 System.out.println("Closing connection");
 connection.connect();

Appendix C
REST API

C-27

 cm.storeCookies(closeConnectionURL.toURI(),connection);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_NO_CONTENT)
 {
 throw new Exception("Connection close failed");
 }

 if (deleteAfter)
 {
 // Delete the queue created at the beginning

 URL deleteQueueURL = new URL(baseURL + "/queues/" + queueName);

 connection = (HttpURLConnection)deleteQueueURL.openConnection();

 connection.setRequestMethod("DELETE");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Connection", "keep-alive");
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 cm.setCookies(deleteQueueURL.toURI(),connection);

 System.out.println("Deleting queue");
 connection.connect();

 cm.storeCookies(deleteQueueURL.toURI(),connection);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_NO_CONTENT)
 {
 throw new Exception("Queue deletion failed");
 }
 }

 // Expire the Messaging Context; this will clean up any ephemeral
 // resources not already cleaned up.
 URL expirURL = new URL(baseURL + "/maxInactiveInterval?mii=0");

 connection = (HttpURLConnection)expirURL.openConnection();

 connection.setRequestMethod("POST");

 connection.setRequestProperty("X-ID-TENANT-NAME",identityDomainName);
 connection.setRequestProperty("Authorization",authorizationHeader);
 connection.setRequestProperty("Accept", "application/json, application/
xml;q=0.8, */*;q=0.5");

 cm.setCookies(expirURL.toURI(),connection);

 System.out.println("Expiring Messaging Context");
 connection.connect();

 if (connection.getResponseCode() != HttpURLConnection.HTTP_OK)
 {
 System.out.println("Expiring failed");
 }
 }
}

Appendix C
REST API

C-28

Java Library
The information provided in this section applies to Java library.

Topics:

• Create Resources

• Send a Message to a Topic

• Receive a Message from a Queue with an Optional Selector

• Asynchronously Receive Messages with a Durable Subscription

• Asynchronously Process Messages Within a Transaction

• Use Message Groups

• Receive Messages from a Queue Using a MessageListener

Create Resources
The example shows a command-line program that creates the following resources
when the program is started and its main method is run:

• Two queues named Preprocessing and Postprocessing

• One topic named Incoming

• One message push listener named Forwarder, which receives messages from the
topic named Incoming and sends them to the queue named Preprocessing

package oracle.cloud.messaging.samples;

import oracle.cloud.messaging.*;
import oracle.cloud.messaging.client.*;
import oracle.cloud.messaging.common.*;

import java.io.*;

public class CreateResources {

 public static void main(String[] argv) {

 MessagingServiceFactory factory = MessagingServiceFactory.getInstance();
 try {

 Namespace ns = new MessagingServiceNamespace("https://
messaging.us2.oraclecloud.com/mymessaging-john");
 Credentials creds = new
MessagingServiceCredentials("john.doe@oracle.com", "fFHG04x7");
 MessagingService ms = factory.getMessagingService(ns, creds);

 try {
 ms.createQueue("Preprocessing");
 } catch (DestinationExistsException ex) {
 System.out.println("Preprocessing queue already exists.");
 }

 try {
 ms.createQueue("Postprocessing");

Appendix C
Java Library

C-29

 } catch (DestinationExistsException ex) {
 System.out.println("Postprocessing queue already exists.");
 }

 try {
 ms.createTopic("Incoming");
 } catch (DestinationExistsException ex) {
 System.out.println("Incoming already exists.");
 }

 String name = "Forwarder";
 Medium topic = Medium.getMedium(MediumType.TOPIC,"Incoming");
 PushMedium target =
PushMedium.getInstance(Medium.getMedium(MediumType.QUEUE,"Preprocessing"));
 MessagePushListener mpl = MessagePushListener.getInstance(name,
 topic,
 null, //
No selector
 target,
 null //
No failure policy
);
 try {
 ms.createListener(null, // No verification token; allowed
because no URLs pushed to
 mpl
);
 } catch (ListenerExistsException ex) {
 System.out.println("Forwarder MPL already exists");
 }

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Send a Message to a Topic
The example shows a JAX-RS web service that sends a TextMessage to a topic
named Incoming. The body of the HTTP request is used as the body of the
TextMessage.

package oracle.cloud.messaging.samples;

import javax.ws.rs.*;
import javax.ws.rs.core.*;

import javax.jms.*;
import oracle.cloud.messaging.*;
import oracle.cloud.messaging.client.*;
import oracle.cloud.messaging.common.*;

import java.io.*;

@Path("/sendMessageToTopic")
public class sendMessageToTopic {

 @PUT
 @Produces(MediaType.TEXT_PLAIN)

Appendix C
Java Library

C-30

 @Consumes(MediaType.TEXT_PLAIN)
 public String sendMessage(String body) {

 Connection conn = null;
 MessagingServiceFactory factory = MessagingServiceFactory.getInstance();
 try {

 Namespace ns = new MessagingServiceNamespace("https://
messaging.us2.oraclecloud.com/mymessaging-john");
 Credentials creds = new MessagingServiceCredentials("john.doe@oracle.com",
"fFHG04x7");
 MessagingService ms = factory.getMessagingService(ns, creds);

 ConnectionFactory cf = ms.getConnectionFactory();
 conn = cf.createConnection();
 conn.start();
 Session session = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Topic topic = session.createTopic("Incoming");
 MessageProducer producer = session.createProducer(topic);
 Message message = session.createTextMessage(body);
 producer.send(message);
 } catch (Exception ex) {

 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 ex.printStackTrace(pw);
 return sw.toString();
 } finally {

 try {
 if (conn != null) {
 conn.close();
 }
 } catch (Exception jmsex) {
 jmsex.printStackTrace();
 }
 }

 return "Message sent to topic successfully \n";

 }

}

Receive a Message from a Queue with an Optional Selector
The example shows a JAX-RS web service that receives a message from a queue
named Postprocessing.

If the optional query parameter palindromeOnly=true is passed with the request, the
consumer will use a selector to receive only messages that have the boolean message
property palindrome set to true. If a message was received from the queue, the body
of the message is returned in the body of the HTTP response.

package oracle.cloud.messaging.samples;

import javax.ws.rs.*;
import javax.ws.rs.core.*;

import javax.jms.*;

Appendix C
Java Library

C-31

import oracle.cloud.messaging.*;
import oracle.cloud.messaging.client.*;
import oracle.cloud.messaging.common.*;

import java.io.*;

@Path("/receiveMessageFromQueue")
public class receiveMessageFromQueue {

 @POST
 @Produces(MediaType.TEXT_PLAIN)
 @Consumes(MediaType.TEXT_PLAIN)
 public String receiveMessage(@QueryParam("palindromeOnly") String palindromeOnly) {

 Connection conn = null;
 MessagingServiceFactory factory = MessagingServiceFactory.getInstance();
 try {

 Namespace ns = new MessagingServiceNamespace("https://
messaging.us2.oraclecloud.com/mymessaging-john");
 Credentials creds = new MessagingServiceCredentials("john.doe@oracle.com",
"fFHG04x7");
 MessagingService ms = factory.getMessagingService(ns, creds);

 ConnectionFactory cf = ms.getConnectionFactory();
 conn = cf.createConnection();
 conn.start();
 Session session = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Queue queue = session.createQueue("Postprocessing");
 MessageConsumer consumer;

 if(palindromeOnly != null && palindromeOnly.equals("true")) {
 consumer = session.createConsumer(queue, "palindrome");
 } else {
 consumer = session.createConsumer(queue);
 }

 Message message = consumer.receive(1000);

 if (message != null) {
 if (message instanceof TextMessage) {
 return (((TextMessage) message).getText());
 } else {
 return "A message not of type TextMessage was received\n";
 }
 } else {
 return "No message on queue\n";
 }

 } catch (Exception ex) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 ex.printStackTrace(pw);
 return sw.toString();
 } finally {
 try {
 if (conn != null) {
 conn.close();
 }
 } catch (Exception jmsex) {
 jmsex.printStackTrace();

Appendix C
Java Library

C-32

 }
 }

 }

}

Asynchronously Receive Messages with a Durable Subscription
The example shows a command-line program that also implements the
MessageListener interface.

When the program is started and its main method is run, a durable subscription named
audit is either created or reconnected to if it already exists. Messages are
asynchronously received from the durable subscription and printed until an input is
made to the program's standard input (System.in).

package oracle.cloud.messaging.samples;

import javax.jms.*;

import oracle.cloud.messaging.*;
import oracle.cloud.messaging.client.*;
import oracle.cloud.messaging.common.*;

import java.io.*;

public class AsyncReceiveFromDurableSubscription implements MessageListener {

 public static void main(String[] argv) {

 Connection conn = null;

 try {
 MessagingServiceFactory factory = MessagingServiceFactory.getInstance();

 Namespace ns = new MessagingServiceNamespace("https://
messaging.us2.oraclecloud.com/mymessaging-john");
 Credentials creds = new
MessagingServiceCredentials("john.doe@oracle.com", "fFHG04x7");
 MessagingService ms = factory.getMessagingService(ns, creds);

 ConnectionFactory cf = ms.getConnectionFactory();
 conn = cf.createConnection();
 conn.setClientID("AuditClient");
 Session session = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
 Topic topic = session.createTopic("Incoming");
 MessageConsumer consumer = session.createDurableSubscriber(topic,
"audit");

 consumer.setMessageListener(new AsyncReceiveFromDurableSubscription());
 conn.start();

 System.out.println("Hit RETURN to exit");
 System.in.read(new byte[1024]);
 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 if (conn != null) {
 try {

Appendix C
Java Library

C-33

 conn.close();
 } catch (Exception jmsex) {
 jmsex.printStackTrace();
 }
 }
 }
 }

 @Override
 public void onMessage(Message message) {
 if (!(message instanceof TextMessage)) {
 System.err.println("A message not of type TextMessage was received");
 } else {
 try {
 System.out.println("Message Received from durable subscription: " +
 ((TextMessage)message).getText());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
}

Asynchronously Process Messages Within a Transaction
The example shows a command-line program that also implements the
MessageListener interface.

When the program is started and its main method is run, a transacted session is
created. Messages are asynchronously received from the queue named
Preprocessing via the MessageListener. When a message is received, the contents
of the message are reversed. A new message is created from the reversed contents of
the original message and sent to the queue named Postprocessing. If the original
message and the reversed message are identical, then a boolean message property
named palindrome is set to true. After the send completes, the transacted session is
committed. Messages are processed until an input is made to the program's standard
input (System.in).

package oracle.cloud.messaging.samples;

import javax.jms.*;

import oracle.cloud.messaging.*;
import oracle.cloud.messaging.client.*;
import oracle.cloud.messaging.common.*;

import java.io.*;

public class AsyncTransactionProcessing implements MessageListener {

 private Session session;
 private MessageProducer producer;

 public AsyncTransactionProcessing(Session session, MessageProducer producer) {
 this.session = session;
 this.producer = producer;
 }

 public static void main(String[] argv) {

Appendix C
Java Library

C-34

 Connection conn = null;

 try {
 MessagingServiceFactory factory = MessagingServiceFactory.getInstance();
 Namespace ns = new MessagingServiceNamespace("https://
messaging.us2.oraclecloud.com/mymessaging-john");
 Credentials creds = new
MessagingServiceCredentials("john.doe@oracle.com", "fFHG04x7");
 MessagingService ms = factory.getMessagingService(ns, creds);

 ConnectionFactory cf = ms.getConnectionFactory();
 conn = cf.createConnection();
 Session session = conn.createSession(true, Session.AUTO_ACKNOWLEDGE);
 Queue preprocessingQueue =
session.createQueue("Preprocessing");
 MessageConsumer consumer = session.createConsumer(preprocessingQueue);
 Queue postprocessingQueue = session.createQueue("Postprocessing");
 MessageProducer producer = session.createProducer(postprocessingQueue);

 consumer.setMessageListener(new
AsyncTransactionProcessing(session,producer));
 conn.start();

 System.out.println("Hit RETURN to exit");
 System.in.read(new byte[1024]);
 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (Exception jmsex) {
 jmsex.printStackTrace();
 }
 }
 }
 }

 @Override
 public void onMessage(Message message) {

 if (!(message instanceof TextMessage)) {
 System.err.println("A message not of type TextMessage was received");
 return;
 }

 try {

 String body = ((TextMessage)message).getText();
 String reversed_body = new StringBuilder(body).reverse().toString();
 TextMessage outgoingMessage = session.createTextMessage(reversed_body);

 if (body.equals(reversed_body)) {
 outgoingMessage.setBooleanProperty("palindrome", true);
 }

 producer.send(outgoingMessage);
 session.commit();
 } catch (Exception ex) {
 try {

Appendix C
Java Library

C-35

 session.rollback();
 ex.printStackTrace();
 } catch (JMSException jmsex) {
 jmsex.printStackTrace();
 }
 }
 }

}

Use Message Groups
The example explains the step-by-step process to send a large message as a group of
smaller messages. The example includes sample code to demonstrate how messages
can be grouped and sequenced for the consumer.

Steps

1. Create a queue.

2. Create the consumers.

3. Create a producer.

4. Send a large message over the queue:

a. Divide the large message into multiple smaller messages.

b. Set the message groupId and groupSeq.

c. Send the messages over the queue.

5. Consume the messages.

Consolidate the messages with the same groupId into a single large message/file.

6. Send a large message over the queue.

7. Divide the large message into multiple smaller messages.

8. Set the message groupId and groupSeq.

Here’s a sample code:

import java.io.*;
import javax.jms.*;
import oracle.cloud.messaging.client.*;
import oracle.cloud.messaging.common.DestinationExistsException;

/**
 * Sends a file in chunks, optionally grouped using
 * message properties.
 */
public class Sender
{
 private static void send(
 String fileName,
 String messageGroupID,
 MessageProducer prod,
 Session sess
)
 throws Exception
 {

Appendix C
Java Library

C-36

 FileReader in = null;

 try
 {
 int messageGroupSeq = 1;

 in = new FileReader(fileName);

 char[] buffer = new char[102400];

 for(
 int numRead = in.read(buffer);
 numRead > 0;
 numRead = in.read(buffer)
)
 {
 TextMessage tmessage =
 sess.createTextMessage(new String(buffer,0,numRead));

 if (messageGroupID != null)
 {
 tmessage.setStringProperty("JMSXGroupID",messageGroupID);
 tmessage.setIntProperty("JMSXGroupSeq",messageGroupSeq++);
 }

 System.err.printf("Sending %d character\n",numRead);
 System.err.flush();

 prod.send(tmessage);
 }

 System.err.printf("Sending EOF messages\n");
 System.err.flush();

 for(
 int i = 0;
 i < 5;
 i++
)
 {
 TextMessage tmessage = sess.createTextMessage();

 if (messageGroupID != null)
 {
 tmessage.setStringProperty("JMSXGroupID",messageGroupID);
 tmessage.setIntProperty("JMSXGroupSeq",messageGroupSeq++);
 }

 prod.send(tmessage);
 }
 }
 finally
 {
 if (in != null)
 {
 in.close();
 }
 }
 }

 public static void main(String[] argv)

Appendix C
Java Library

C-37

 {
 if (argv.length < 5)
 {
 System.err.printf(
 "<URL> <user> <password> <queue name> <file name> [<message group
ID>]\n"
);
 return;
 }

 OracleCloudConnection conn = null;

 try
 {
 OracleCloudConnectionFactory fact =
 MessagingServiceFactory
 .getInstance()
 .getMessagingService(
 new MessagingServiceNamespace(argv[0]),
 new MessagingServiceCredentials(argv[1],argv[2])
)
 .getConnectionFactory();

 conn = fact.createConnection();

 OracleCloudSession sess =
 conn.createSession(
 TransactionMode.NON_TRANSACTED,
 AcknowledgementMode.AUTO_ACKNOWLEDGE
);

 OracleCloudQueue q = sess.createQueue(argv[3]);

 OracleCloudMessageProducer prod = sess.createProducer(q);
 prod.setTimeToLive(TimeToLive.timeInMilliseconds(10000));

 conn.start();

 Sender.send(
 argv[4],
 ((argv.length >= 6) ? argv[5] : null),
 prod,
 sess
);
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 }
 finally
 {
 if (conn != null)
 {
 try
 {
 conn.close();
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 }

Appendix C
Java Library

C-38

 }
 }
 }
}

/*
 * Receives a file sent in chunks and accumulates them
 * into a file.
 */
public class Receiver
{
 public static void main(String[] argv)
 {
 if (argv.length < 5)
 {
 System.err.printf(
 "<URL> <user> <password> <queue name> <file name for output>\n"
);
 return;
 }

 OracleCloudConnection conn = null;

 try
 {
 OracleCloudConnectionFactory fact =
 MessagingServiceFactory
 .getInstance()
 .getMessagingService(
 new MessagingServiceNamespace(argv[0]),
 new MessagingServiceCredentials(argv[1],argv[2])
)
 .getConnectionFactory();

 conn = fact.createConnection();

 OracleCloudSession sess =
 conn.createSession(
 TransactionMode.NON_TRANSACTED,
 AcknowledgementMode.AUTO_ACKNOWLEDGE
);

 OracleCloudQueue q = sess.createQueue(argv[3]);

 OracleCloudMessageConsumer cons = sess.createConsumer(q);

 Accumulator accumulator = new Accumulator(cons,argv[4]);

 conn.start();

 accumulator.start();

 System.err.printf("RETURN to stop receiving\n");
 System.err.flush();
 System.in.read(new byte[32]);

 accumulator.interrupt();
 while(accumulator.isAlive());
 }
 catch(Exception exc)
 {

Appendix C
Java Library

C-39

 exc.printStackTrace();
 }
 finally
 {
 if (conn != null)
 {
 try
 {
 conn.close();
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 }
 }
 }
 }
}

/**
 * This creates the queue to use for the demo, and then
 * deletes it after a RETURN on the console. It can
 * probably be omitted from the sample code.
 */
public class Initializer
{
 public static void main(String[] argv) throws Exception
 {
 if (argv.length < 4)
 {
 System.err.printf(
 "<URL> <user> <password> <queue name>\n"
);
 return;
 }

 MessagingService ms =
 MessagingServiceFactory
 .getInstance()
 .getMessagingService(
 new MessagingServiceNamespace(argv[0]),
 new MessagingServiceCredentials(argv[1],argv[2])
);

 try
 {
 ms.createQueue(argv[3]);
 }
 catch(DestinationExistsException deexc)
 {
 // Already exists; ignore
 }

 System.err.printf("RETURN to delete the queue");
 System.in.read(new byte[32]);

 ms.deleteQueue(argv[3]);
 }
}

import java.io.*;

Appendix C
Java Library

C-40

import javax.jms.*;

/*
 * Thread that repeatedly consumes from a queue,
 * concatenating received text payloads into a file until
 * it receives an empty payload, at which point it closes
 * the file.
 */
public class Accumulator extends Thread
{
 private MessageConsumer consumer = null;
 private byte[] buffer = new byte[102400];
 private FileWriter out = null;
 private String outName = null;

 public Accumulator(MessageConsumer consumer, String outName)
 {
 this.outName = outName;
 this.consumer = consumer;
 }

 @Override
 public void run()
 {
 while(!Thread.currentThread().isInterrupted())
 {
 try
 {
 this.process();
 }
 catch(Exception exc)
 {
 exc.printStackTrace();
 break;
 }
 }
 }

 public void process() throws IOException, JMSException
 {
 Message message = this.consumer.receive(1000);

 if (message instanceof TextMessage)
 {
 TextMessage tmessage = (TextMessage)message;

 String payload = tmessage.getText();

 if (payload == null)
 {
 if (this.out != null)
 {
 System.err.printf(
 "Closing file '%s'\n",
 this.outName
);
 System.err.flush();

 this.out.close();
 this.out = null;
 }

Appendix C
Java Library

C-41

 }
 else
 {
 if (this.out == null)
 {
 System.err.printf(
 "Opening file '%s'\n",
 this.outName
);
 System.err.flush();

 this.out = new FileWriter(this.outName);
 }

 System.err.printf(
 "Writing %d chars to '%s'\n",
 payload.length(),
 this.outName
);

 this.out.write(payload);
 this.out.flush();
 }
 }
 }
}

Receive Messages from a Queue Using a MessageListener
This example shows sample code to receive messages from a queue using a
MessageListener.

The following is a command-line client to set up the MessageListener:

package oracle.cloud.messaging.demo;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Queue;
import javax.jms.Session;

import oracle.cloud.messaging.client.MessagingService;
import oracle.cloud.messaging.client.MessagingServiceCredentials;
import oracle.cloud.messaging.client.MessagingServiceFactory;
import oracle.cloud.messaging.client.MessagingServiceNamespace;

import oracle.cloud.messaging.MessagingException;

/**
 * Oracle Messaging Service client code to receive
 * messages from a queue using a MessageListener.
 */
public class MessageToFileClient
{
 private String urlWithNamespace = null;
 private String user = null;
 private String password = null;
 private String queueName = null;

Appendix C
Java Library

C-42

 private String dir = null;

 private boolean started = false;

 private Connection connection = null;
 private Session session = null;
 private MessageConsumer consumer = null;

 /**
 * @param urlWithNamespace
 * Namespace URL for the messaging service
 * instance to use
 *
 * @param user
 * User with admin privileges for the service
 * instance
 *
 * @param password
 * Password for the user
 *
 * @param queueName
 * Name of the queue for the listener to listen on
 *
 * @param dir
 * Name of the directory into which to put text
 * message payloads as files
 */
 public MessageToFileClient(
 String urlWithNamespace,
 String user,
 String password,
 String queueName,
 String dir
)
 {
 if (urlWithNamespace == null)
 {
 throw new IllegalArgumentException("urlWithNamespace == null");
 }

 if (user == null)
 {
 throw new IllegalArgumentException("user == null");
 }

 if (password == null)
 {
 throw new IllegalArgumentException("password == null");
 }

 if (queueName == null)
 {
 throw new IllegalArgumentException("queueName == null");
 }

 if (dir == null)
 {
 throw new IllegalArgumentException("dir == null");
 }

 this.urlWithNamespace = urlWithNamespace;

Appendix C
Java Library

C-43

 this.user = user;
 this.password = password;
 this.queueName = queueName;
 this.dir = dir;
 }

 /**
 * Start the client. If already started, this is
 * a no-op. On return, the client is set up and
 * listening.
 */
 public void start() throws MessagingException, JMSException
 {
 synchronized(this)
 {
 if (this.started)
 {
 return;
 }

 MessagingServiceFactory factory = MessagingServiceFactory.getInstance();

 MessagingServiceNamespace ns =
 new MessagingServiceNamespace(this.urlWithNamespace);
 MessagingServiceCredentials cred =
 new MessagingServiceCredentials(this.user,this.password);

 MessagingService ms = factory.getMessagingService(ns,cred);

 ConnectionFactory cf = ms.getConnectionFactory();

 this.connection = cf.createConnection();

 this.session =
 this.connection.createSession(
 false, // Not transacted
 Session.AUTO_ACKNOWLEDGE
);

 Queue q = this.session.createQueue(this.queueName);

 this.consumer = this.session.createConsumer(q);

 this.consumer
 .setMessageListener(
 new MessageToFileListener(this.dir)
);

 this.connection.start();

 this.started = true;
 }
 }

 /**
 * Return whether the client is started.
 */
 public boolean isStarted()
 {
 synchronized(this)
 {

Appendix C
Java Library

C-44

 return this.started;
 }
 }

 /**
 * Pause the listener. This will cause the
 * listener to stop receiving messages until {@link
 * #restart()} is called. If the client has not been
 * started, IllegalStateException is thrown.
 */
 public void pause() throws JMSException
 {
 synchronized(this)
 {
 if (this.started)
 {
 this.connection.stop();
 }
 else
 {
 throw new IllegalStateException("Client unstarted");
 }
 }
 }

 /**
 * Make the listener resume receiving messages.
 * If the listener is not paused, this is a
 * no-op. If the client has not been started,
 * IllegalStateException is thrown.
 */
 public void restart() throws JMSException
 {
 synchronized(this)
 {
 if (this.started)
 {
 this.connection.start();
 }
 else
 {
 throw new IllegalStateException("Client unstarted");
 }
 }
 }

 /**
 * Stop the client. If the client has not been
 * started, this is a no-op. Once the client has
 * been stopped, it cannot be re-started.
 */
 public void stop() throws JMSException
 {
 synchronized(this)
 {
 if (this.started)
 {
 this.connection.close();
 }
 }
 }

Appendix C
Java Library

C-45

 /**
 * Run the client from the command line. The first
 * 5 arguments to the command line are the 5 inputs
 * to the constructor, in order. After starting,
 * the client will run until a newline is input to
 * System.in, after which
 * it will stop itself.
 */
 public static void main(String[] argv) throws Exception
 {
 MessageToFileClient client =
 new MessageToFileClient(
 argv[0], // urlWithNamespace,
 argv[1], // user,
 argv[2], // password,
 argv[3], // queueName,
 argv[4] // dir
);

 System.err.printf("Starting client ... ");
 System.err.flush();
 client.start();
 System.err.printf("started\n");
 System.err.flush();

 byte[] buffer = new byte[1024];

 System.in.read(buffer);

 System.err.printf("Stopping client ... ");
 System.err.flush();
 client.stop();
 System.err.printf("stopped\n");
 System.err.flush();
 }

 protected void finalize() throws Throwable
 {
 try
 {
 this.stop();
 }
 finally
 {
 super.finalize();
 }
 }
}

The following is the MessageListener class:

package oracle.cloud.messaging.demo;

import java.io.File;
import java.io.FileOutputStream;

import java.util.UUID;

import java.util.logging.Level;

Appendix C
Java Library

C-46

import java.util.logging.Logger;

import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;

import oracle.cloud.messaging.client.HttpContent;

/**
 * Client-side asynchronous message listener. This
 * listener assumes that the messages it receives are
 * ObjectMessages with HttpContent payloads, as would
 * be the case if they had been sent via the REST
 * API with message type HTTP, or no message type.
 * Any messages not of this form are logged and discarded.
 * The listener puts the body content of messages it processes
 * into files in a specified directory.
 */
public class MessageToFileListener implements MessageListener
{
 private static final Logger logger =
 Logger.getLogger(MessageToFileListener.class.getName());

 private String dir = null;

 /**
 * @param dir
 * Path to the directory in which files containing
 * message payloads will be put; may not be null
 */
 public MessageToFileListener(String dir)
 {
 if (dir == null)
 {
 throw new IllegalArgumentException("dir == null");
 }

 this.dir = dir;
 }

 @Override
 public void onMessage(Message message)
 {
 if (message instanceof ObjectMessage)
 {
 ObjectMessage omessage = (ObjectMessage)message;
 byte[] body = null;

 try
 {
 Object payload = omessage.getObject();

 if (payload instanceof HttpContent)
 {
 String type = ((HttpContent)payload).getContentType();
 body = ((HttpContent)payload).getContent();

 System.err.printf("Got object message with '%s' content:
\n",type);
 System.err.flush();
 System.err.write(body);

Appendix C
Java Library

C-47

 FileOutputStream out =
 new FileOutputStream(
 this.dir +
 File.separator +
 UUID.randomUUID().toString() +
 ".dat"
);

 out.write(body);
 out.flush();
 out.close();
 }
 else
 {
 MessageToFileListener.logger.log(
 Level.SEVERE,
 "Message delivered to listener is an ObjectMessage, but
payload is not HttpContent; payload class is '" +
 payload.getClass().getName() +
 "'"
);
 }
 }
 catch(Exception exc)
 {
 MessageToFileListener.logger.log(
 Level.SEVERE,
 "Exception writing message to file",
 exc
);
 }
 }
 else
 {
 MessageToFileListener.logger.log(
 Level.SEVERE,
 "Message delivered to listener is not an ObjectMessage; class is '" +
 message.getClass().getName() +
 "'"
);
 }
 }
}

Appendix C
Java Library

C-48

	Contents
	Preface
	Audience
	Related Resources
	Conventions

	1 Getting Started with Oracle Messaging Cloud Service
	About Oracle Messaging Cloud Service
	About Messaging Concepts
	Architecture Overview
	About the Components of Oracle Messaging Cloud Service
	About the Interfaces to Oracle Messaging Cloud Service
	About Resource Limits

	Before You Begin with Oracle Messaging Cloud Service
	How to Begin with Oracle Messaging Cloud Service Subscriptions
	About Oracle Messaging Cloud Service Roles and Users

	2 Developing Applications That Use Oracle Messaging Cloud Service
	Typical Workflow for Using Oracle Messaging Cloud Service
	Accessing Oracle Messaging Cloud Service
	Considerations When Developing Applications That Use Oracle Messaging Cloud Service
	About Queues and Topics
	About Message Push and Message Push Listeners
	About Verification of Message Push Listeners
	About Destination Deletion
	About Connections
	About Sessions, Acknowledgement Modes, Transactions, and Provisional Messages
	About Producers, Consumers, and Selectors
	About Parts of a Message
	Message Headers
	Message Properties
	Message Body and Message Size

	About Persistent and Non-Persistent Messages
	About Authorization
	About Service Termination
	About the Ordering of Message Delivery
	Using Message Groups
	Sending Large Objects as Messages Using Oracle Storage Cloud Service

	Using the Java Library
	Typical Workflow for Using the Java Library
	Downloading the Oracle Messaging Cloud Service Java SDK
	Authentication and Authorization
	Differences from JMS

	Using the REST API
	Typical Workflow for Using the REST API
	Messaging Context and HTTP Cookies
	Authentication
	About HTTP Headers
	Cross-Site Request Forgery (CSRF) Prevention
	Resource Management versus Message Transmission APIs
	Message Types
	PLAIN
	TEXT
	BYTES
	OBJECT
	HTTP
	MAP
	STREAM

	Message Headers and Properties
	XML versus JSON Response Types

	3 Accessing Oracle Messaging Cloud Service Using REST API
	Topology API
	Viewing all Messaging Contexts
	Viewing a Messaging Context
	Sample Outputs of Topology API

	Usage API
	About Usage API
	Sample Outputs of Usage API

	About Escaped Value Strings
	About Using the REST API
	Basics of the REST API
	Functional Areas of the REST API
	Understanding Messaging Context and Cookies
	Understanding Durable Subscriptions
	Understanding REST API Operations
	Understanding Concurrent Access to Resources
	Understanding Error Responses
	Understanding Anti-CSRF Measures
	HTTP Header for Messaging Service Version
	HTTP Header for Messaging Context ID

	Resource Management API
	Creating and Managing Destinations
	Create a Destination
	List Destinations
	Retrieve Destination Properties
	Remove a Destination

	Creating and Managing Message Push Listeners
	Create a Listener
	Delete a Listener
	List Listeners
	Retrieve Listener Properties

	Message Transmission API
	Creating and Managing Messaging Contexts
	Create a Messaging Context
	Get Maximum Inactive Interval (MII)
	Set Maximum Inactive Interval (MII)

	Creating and Managing Connections
	Create a Connection
	Update Connection Properties
	Delete a Connection

	Creating and Managing Sessions
	Create a Session
	Acknowledge, Commit, Rollback, or Recover a Session
	Delete a Durable Subscription
	Close and Delete a Session

	Sending Messages
	Create a Producer
	Set Properties of a Producer
	Close and Delete a Producer
	Send a Message via a Producer

	Receiving Messages
	Create a Consumer
	Close and Delete a Consumer
	Receive a Message via a Consumer

	Creating and Managing Durable Subscriptions
	Create a Durable Subscription
	List Durable Subscriptions
	Delete a Durable Subscription

	Creating and Managing Temporary Destinations
	Create a Temporary Destination
	List Temporary Destinations
	Remove a Temporary Destination

	Creating and Managing Queue Browsers
	Create a Queue Browser
	Retrieve Queue Browser Properties
	Browse Messages
	Remove a Queue Browser

	Properties of HTTP Requests to Send Messages from REST Clients
	Request Parameters
	HTTP Headers to Specify Message Properties
	Limitations on Message Size

	Properties of HTTP Requests and Responses that Deliver Messages

	4 Accessing Oracle Messaging Cloud Service Using Java Library
	Client-Side Logging
	Automatic Closing of Connections
	Diagnosing Errors from the Java Library
	Using the Re-try Function
	About Using the Java Library
	Prerequisites for Using the Java Library
	How to Use the Java Library
	How to Check the version of the Java Library

	Creating a MessagingService Object
	Using Messaging Cloud Service from Oracle Java Cloud Service - SaaS Extension
	Resource Management API
	Managing Destinations
	Create a Destination
	Delete a Destination
	List Destinations
	Retrieve a Destination's Properties

	Managing Message Push Listeners
	Create a Message Push Listener
	Delete a Message Push Listener
	List Message Push Listeners
	Retrieve a Message Push Listener's Properties

	Managing Durable Subscriptions
	List Durable Subscriptions
	Retrieve a Durable Subscription's Properties

	ConnectionFactory Creation API
	Using JMS to Send and Receive Messages
	Using Extensions to the JMS API
	Safe Durable Subscriptions
	Strong Typing for JMS
	Enumerations
	Wrapper Classes

	Connection Timeout
	Obtaining Service Version
	Obtaining Messaging Context ID

	Limitations on Message Size and Time-to-Live

	5 Troubleshooting Oracle Messaging Cloud Service
	Java Library
	Messages
	Destinations
	Miscellaneous

	A Best Practices
	Learn JMS 1.1
	Effective Pooling of Resources
	Using Transacted and/or Client-Acknowledged Sessions
	Diagnosing Exceptions in the Java Library
	Using Exception Listeners
	Recovery Strategies
	Alternative to Selectors

	B REST API Reference
	REST API Parameters Reference
	REST API HTTP Status Codes and Error Messages Reference
	Generic Meanings of HTTP Response Status Codes
	Error Keys, Status Codes and Error Messages
	Errors with HTTP Status Code 400 (Bad Request)
	Errors with HTTP Status Code 403 (Forbidden)
	Errors with HTTP Status Code 404 (Not Found)
	Errors with HTTP Status Code 405 (Method Not Allowed)
	Errors with HTTP Status Code 406 (Not Acceptable)
	Errors with HTTP Status Code 409 (Conflict)
	Errors with HTTP Status Code 500 (Internal Server Error)

	C Code Samples
	REST API
	Create a Queue
	Create a Topic
	Create a Durable Subscription
	Create a Message Push Listener
	Receive a Message from a Durable Subscription
	Receive a Message from a Queue with a Selector
	Send a Message to a Topic
	Process Messages using a Transaction
	Cookie Management

	Java Library
	Create Resources
	Send a Message to a Topic
	Receive a Message from a Queue with an Optional Selector
	Asynchronously Receive Messages with a Durable Subscription
	Asynchronously Process Messages Within a Transaction
	Use Message Groups
	Receive Messages from a Queue Using a MessageListener

