Oracle® Cloud
Using Oracle Messaging Cloud Service

E37257-26
May 2020
ORACLE

Oracle Cloud Using Oracle Messaging Cloud Service,
E37257-26

Copyright © 2014, 2020, Oracle and/or its affiliates.

Primary Author: Nisha Singh

Contributing Authors: Poh Lee Tan, Mark Moussa
Contributors: lan Sutherland, Derek Dalrymple, Rehan lftikhar

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and maodifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and maodifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience iX
Related Resources iX
Conventions iX
1 Getting Started with Oracle Messaging Cloud Service
About Oracle Messaging Cloud Service 1-1
About Messaging Concepts 1-2
Architecture Overview 1-2
About the Components of Oracle Messaging Cloud Service 1-3
About the Interfaces to Oracle Messaging Cloud Service 1-4
About Resource Limits 1-4
Before You Begin with Oracle Messaging Cloud Service 1-5
How to Begin with Oracle Messaging Cloud Service Subscriptions 1-7
About Oracle Messaging Cloud Service Roles and Users 1-7
2 Developing Applications That Use Oracle Messaging Cloud Service
Typical Workflow for Using Oracle Messaging Cloud Service 2-1
Accessing Oracle Messaging Cloud Service 2-2
Considerations When Developing Applications That Use Oracle Messaging Cloud
Service 2-3
About Queues and Topics 2-3
About Message Push and Message Push Listeners 2-4
About Verification of Message Push Listeners 2-5
About Destination Deletion 2-6
About Connections 2-6
About Sessions, Acknowledgement Modes, Transactions, and Provisional
Messages 2-7
About Producers, Consumers, and Selectors 2-8
About Parts of a Message 2-9
Message Headers 2-9

ORACLE

Message Properties 2-9
Message Body and Message Size 2-10

About Persistent and Non-Persistent Messages 2-10
About Authorization 2-11
About Service Termination 2-11
About the Ordering of Message Delivery 2-11
Using Message Groups 2-11
Sending Large Objects as Messages Using Oracle Storage Cloud Service 2-13
Using the Java Library 2-21
Typical Workflow for Using the Java Library 2-22
Downloading the Oracle Messaging Cloud Service Java SDK 2-22
Authentication and Authorization 2-22
Differences from JMS 2-23
Using the REST API 2-23
Typical Workflow for Using the REST API 2-24
Messaging Context and HTTP Cookies 2-24
Authentication 2-25
About HTTP Headers 2-25
Cross-Site Request Forgery (CSRF) Prevention 2-26
Resource Management versus Message Transmission APIls 2-26
Message Types 2-27
PLAIN 2-27

TEXT 2-27
BYTES 2-28
OBJECT 2-28

HTTP 2-29

MAP 2-29
STREAM 2-30
Message Headers and Properties 2-31
XML versus JSON Response Types 2-32

3 Accessing Oracle Messaging Cloud Service Using REST API

Topology API 3-1
Viewing all Messaging Contexts 3-1
Viewing a Messaging Context 3-6
Sample Outputs of Topology API 3-6
Usage API 3-10
About Usage API 3-10
Sample Outputs of Usage API 3-13
About Escaped Value Strings 3-15

ORACLE

About Using the REST API
Basics of the REST API
Functional Areas of the REST API
Understanding Messaging Context and Cookies
Understanding Durable Subscriptions
Understanding REST API Operations
Understanding Concurrent Access to Resources
Understanding Error Responses
Understanding Anti-CSRF Measures
HTTP Header for Messaging Service Version
HTTP Header for Messaging Context ID
Resource Management API
Creating and Managing Destinations
Create a Destination
List Destinations
Retrieve Destination Properties
Remove a Destination
Creating and Managing Message Push Listeners
Create a Listener
Delete a Listener
List Listeners
Retrieve Listener Properties
Message Transmission API
Creating and Managing Messaging Contexts
Create a Messaging Context
Get Maximum Inactive Interval (Mll)
Set Maximum Inactive Interval (MII)
Creating and Managing Connections
Create a Connection
Update Connection Properties
Delete a Connection
Creating and Managing Sessions
Create a Session
Acknowledge, Commit, Rollback, or Recover a Session
Delete a Durable Subscription
Close and Delete a Session
Sending Messages
Create a Producer
Set Properties of a Producer
Close and Delete a Producer
Send a Message via a Producer

ORACLE

3-16
3-16
3-17
3-17
3-18
3-18
3-19
3-20
3-22
3-23
3-23
3-24
3-24
3-24
3-25
3-26
3-28
3-28
3-28
3-38
3-38
3-39
3-40
3-40
3-41
3-41
3-41
3-42
3-43
3-44
3-46
3-46
3-46
3-47
3-48
3-48
3-49
3-49
3-51
3-52
3-52

Receiving Messages 3-55

Create a Consumer 3-55
Close and Delete a Consumer 3-58
Receive a Message via a Consumer 3-59
Creating and Managing Durable Subscriptions 3-60
Create a Durable Subscription 3-60
List Durable Subscriptions 3-61
Delete a Durable Subscription 3-63
Creating and Managing Temporary Destinations 3-63
Create a Temporary Destination 3-63
List Temporary Destinations 3-65
Remove a Temporary Destination 3-68
Creating and Managing Queue Browsers 3-68
Create a Queue Browser 3-69
Retrieve Queue Browser Properties 3-69
Browse Messages 3-70
Remove a Queue Browser 3-71
Properties of HTTP Requests to Send Messages from REST Clients 3-71
Request Parameters 3-71
HTTP Headers to Specify Message Properties 3-72
Limitations on Message Size 3-73
Properties of HTTP Requests and Responses that Deliver Messages 3-73

4 Accessing Oracle Messaging Cloud Service Using Java Library

Client-Side Logging 4-1
Automatic Closing of Connections 4-3
Diagnosing Errors from the Java Library 4-4
Using the Re-try Function 4-4
About Using the Java Library 4-5
Prerequisites for Using the Java Library 4-5
How to Use the Java Library 4-5
How to Check the version of the Java Library 4-6
Creating a MessagingService Object 4-6
Using Messaging Cloud Service from Oracle Java Cloud Service - SaaS Extension 4-7
Resource Management API 4-7
Managing Destinations 4-8
Create a Destination 4-8

Delete a Destination 4-8

List Destinations 4-9
Retrieve a Destination's Properties 4-9

ORACLE vi

Managing Message Push Listeners 4-9

Create a Message Push Listener 4-9

Delete a Message Push Listener 4-10

List Message Push Listeners 4-10
Retrieve a Message Push Listener's Properties 4-10
Managing Durable Subscriptions 4-11
List Durable Subscriptions 4-11
Retrieve a Durable Subscription's Properties 4-11
ConnectionFactory Creation API 4-11
Using JMS to Send and Receive Messages 4-13
Using Extensions to the JMS API 4-13
Safe Durable Subscriptions 4-14
Strong Typing for IMS 4-14
Enumerations 4-15
Wrapper Classes 4-15
Connection Timeout 4-16
Obtaining Service Version 4-16
Obtaining Messaging Context ID 4-16
Limitations on Message Size and Time-to-Live 4-17

5 Troubleshooting Oracle Messaging Cloud Service

Java Library 5-2
Messages 5-2
Destinations 5-4
Miscellaneous 5-4

A Best Practices

Learn IMS 1.1 A-1
Effective Pooling of Resources A-1
Using Transacted and/or Client-Acknowledged Sessions A-2
Diagnosing Exceptions in the Java Library A-2
Using Exception Listeners A-4
Recovery Strategies A-4
Alternative to Selectors A-4

B REST API Reference

REST API Parameters Reference B-1
REST API HTTP Status Codes and Error Messages Reference B-5
Generic Meanings of HTTP Response Status Codes B-5

ORACLE vii

Error Keys, Status Codes and Error Messages B-5

Errors with HTTP Status Code 400 (Bad Request) B-6
Errors with HTTP Status Code 403 (Forbidden) B-14
Errors with HTTP Status Code 404 (Not Found) B-15
Errors with HTTP Status Code 405 (Method Not Allowed) B-15
Errors with HTTP Status Code 406 (Not Acceptable) B-16
Errors with HTTP Status Code 409 (Conflict) B-16
Errors with HTTP Status Code 500 (Internal Server Error) B-17

C Code Samples

REST API C-1
Create a Queue C-1
Create a Topic C-2
Create a Durable Subscription C-3
Create a Message Push Listener C-5
Receive a Message from a Durable Subscription C-7
Receive a Message from a Queue with a Selector C-10
Send a Message to a Topic C-13
Process Messages using a Transaction C-16
Cookie Management C-21

Java Library C-29
Create Resources C-29
Send a Message to a Topic C-30
Receive a Message from a Queue with an Optional Selector C-31
Asynchronously Receive Messages with a Durable Subscription C-33
Asynchronously Process Messages Within a Transaction C-34
Use Message Groups C-36
Receive Messages from a Queue Using a MessageListener C-42

ORACLE viii

Preface

Audience

Oracle Messaging Cloud Service provides a platform that enables data communication
between applications within Oracle Cloud as well as outside of Oracle Cloud.

Topics:

e Audience

* Related Resources

* Conventions

Using Oracle Messaging Cloud Service is intended for Oracle Cloud developers who
want to facilitate data communication between software components.

For example, a company may have orders submitted on an e-commerce web site that
go into a queue for processing. After the orders are processed, they go into another
gueue for shipping at the warehouse.

Related Resources

For more information, see these Oracle resources:
e Oracle Cloud
http://cloud. oracl e.com

e About Oracle Java Cloud Service - SaaS Extension

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLS, code
in examples, text that appears on the screen, or text that you enter.

http://cloud.oracle.com

Getting Started with Oracle Messaging
Cloud Service

This section describes how to get started with Oracle Messaging Cloud Service for
Oracle Cloud administrators and developers.

Topics:

» About Oracle Messaging Cloud Service

» Before You Begin with Oracle Messaging Cloud Service

» How to Begin with Oracle Messaging Cloud Service Subscriptions

» About Oracle Messaging Cloud Service Roles and Users

See Oracle Cloud Terminology in Getting Started with Oracle Cloud for definitions of
terms found in this and other documents in the Oracle Cloud library.

About Oracle Messaging Cloud Service

ORACLE

Oracle Messaging Cloud Service is one of the Infrastructure as a Service (laaS)
offerings. It provides a messaging system for applications to communicate reliably with
each other, enabling application developers to share information across multiple
applications.

Topics:

e About Messaging Concepts

» Architecture Overview

» About the Components of Oracle Messaging Cloud Service
» About the Interfaces to Oracle Messaging Cloud Service

* About Resource Limits

Oracle Messaging Cloud Service gives developers an easier and more reliable method
to build complex, distributed systems of heterogeneous applications that may have
fundamentally different underlying characteristics such as programming platform,
system uptime, and network latency. In addition, businesses using Oracle Messaging
Cloud Service do not require any special, dedicated hardware, and the service can be
accessed by applications from anywhere over the Internet.

Oracle Messaging Cloud Service is heavily influenced by the Java Message Service
(JMS) API specification, which is a standard messaging interface for sending and
receiving messages between enterprise Java applications. For Java applications,
Oracle Messaging Cloud Service provides a Java library that implements and extends
the JMS 1.1 interface. The Java library implements the JMS API by acting as a client
of the REST API. Any application platform that understands HTTP can also use Oracle
Messaging Cloud Service through the REST interface. This means developers can

1-1

Chapter 1
About Oracle Messaging Cloud Service

use a single communication API to build reliable and robust communication between
intra-cloud and extra-cloud applications.

Oracle Messaging Cloud Service uses wildcard certificates for HTTPS access. The
use of wildcard certificates may require that client environments be configured to
accept wildcard certificates in order to access Messaging Cloud Service. For example,
if you are using Oracle WebLogic Server, then you can configure WebLogic Server’s
SSL hostname verifier to accept wildcard certificates by referring to the Using a
Custom Host Name Verifier topic in the Oracle Fusion Middleware Securing Oracle
WebLogic Server guide.

About Messaging Concepts

In a messaging system, information is transmitted between clients (where a client is
defined as a running instance of an application) in the form of messages. From the
sending client, producers send messages to a destination. On the receiving client,
consumers retrieve messages from a destination.

A destination is a type of named resource that resides within an Oracle Messaging
Cloud Service instance. It is a repository for messages. Queues and topics are types
of destinations to which messages can be sent.

Messages sent to a queue are received by one and only one consumer. A message
sent to a queue is kept on the queue until the message is received by a client or until
the message expires. This style of messaging, in which every message sent is
successfully processed by at most one consumer, is know as point-to-point.

Messages sent to a topic can be received by multiple consumers or none. This style of
messaging, in which each message can be processed by any number of consumers
(or none at all), is known as publish/subscribe. To receive a message sent to a topic, a
consumer that subscribes to the topic (the subscriber) must be connected to the topic
when the message is sent by the producer (the publisher). That is, only clients that
have a consumer connected to a topic will receive messages sent to that topic. If there
are no consumers on the topic, messages sent to the topic will not be received by
anyone, unless there are some durable subscriptions on the topic.

A durable subscription, which stores all messages sent to a topic, can be created to
ensure that a publish/subscribe application receives all sent messages, even if there is
no client currently connected to the topic. For example, if an application goes offline
temporarily and has no consumers on the topic, the client will miss any messages sent
to the topic. However, if there is a durable subscription, upon restarting the application,
the application will be able to receive any messages sent to the topic during the time
the application was not running.

Messages sent to a destination can be pushed to another destination or to a user-
defined URL using message push listeners.

A connection and one or more sessions from a client associated with the connection
are required to send and receive messages. A session sends messages through one
or more producers and receives messages through one or more consumers.

For more information about these and other Oracle Messaging Cloud Service instance
resources, see Developing Applications That Use Oracle Messaging Cloud Service.

Architecture Overview

The Oracle Messaging Cloud Service architecture is highly available and fault-tolerant.

ORACLE 1-2

Chapter 1
About Oracle Messaging Cloud Service

Oracle Messaging Cloud Service provides a secure messaging solution for
applications that require reliable asynchronous communication. The applications can
be within Oracle Cloud as well as outside of Oracle Cloud.

The following diagram presents an architectural overview of Oracle Messaging Cloud
Service:

oo OracleCloud________________
- My Account and My Services
i
! -
i N
i User Metrics
! Management
:
. Messages ! Oracle Messaging Messages
Jv!:?ﬁ.. 0 E Cloud Service . o
1] L) L
. HTTPS ! HTTP/S W
Java Library H Customer
(JMS) i P - Applications
i | REST E_ g Mo
i AP Push
i Listeners
1
: Messages 1 f'—! H ; Messages i
- neg s D) . &
]
;'1’}‘ HTTPS i HTTP/IS © Rgf™
Customer I Customer
Applications i Applications
1

__

About the Components of Oracle Messaging Cloud Service

ORACLE

Oracle Messaging Cloud Service includes the following components:

e My Account and My Services

These are applications that allow account administrators and service
administrators to manage and monitor their Oracle Cloud service instances,
including Oracle Messaging Cloud Service instances. My Account displays
information about active, expired, and pending services for an entire account,
across multiple data centers and identity domains, and lets administrators monitor
the service status. My Services lets administrators monitor and operate all active
services within a single identity domain. For more information about the
administrative applications, see Overview of Managing Oracle Cloud Accounts and
Services in Getting Started with Oracle Cloud.

e JMS Broker

The JMS broker is responsible for handling all administrative and control aspects
of the messaging platform, including message persistence, message selection,
and session management.

» Message Push Listeners

These are user-created resources that reside within an Oracle Messaging Cloud
Service instance. A message push listener asynchronously receives messages
from one destination and either sends the messages to another destination or
pushes them to a user-defined URL as an HTTP request.

1-3

Chapter 1
About Oracle Messaging Cloud Service

About the Interfaces to Oracle Messaging Cloud Service

There are two interfaces to Oracle Messaging Cloud Service.

The interfaces to Oracle Messaging Cloud Service are:

e Java library

e REST API

The following table summarizes the interfaces to Oracle Messaging Cloud Service:

Interface Description More Information

Java library The Oracle Messaging Cloud Service Developing Applications That Use
Java library provides an implementation ~ Oracle Messaging Cloud Service
receiving messages through the JMS Cloud Service Using Java Library
groke{. Tg. domnlogd ”re '\\]/Iava Ilb_rary(,:lseed Java API Reference for Oracle
Sg\r/y/?cga}]e:cg SI§K. racie Messaging tlou Messaging Cloud Service
The Java library can be used from any
environment connected to the Internet.

The Java library also provides APIs for
managing instance resources such as
gueues, topics, durable subscriptions, and
message push listeners.

REST API Oracle Messaging Cloud Service provides Developing Applications That Use
a REST API for sending and receiving Oracle Messaging Cloud Service
messages, as well as managing instance Accessing Oracle Messaging
resources such as queues, topics, Cloud Service Using REST API
durable subscriptions, and message push
listeners.

The REST API can be used from any
environment connected to the Internet.
¢ Note:

Messages sent from one interface can be received through the other
interface. Connections, sessions, producers, and consumers cannot be
shared between the two interfaces.

About Resource Limits

ORACLE

Paid and trial subscriptions of Oracle Messaging Cloud Service have resource limits.

The following table shows the maximum number of messaging resources per service
instance in paid and trial service subscriptions:

Resource Paid Subscription Trial Subscription
queues 10,000 5
topics 10,000 5

1-4

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/index.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/index.html

Chapter 1

Before You Begin with Oracle Messaging Cloud Service

Resource Paid Subscription Trial Subscription
message push listeners unlimited * unlimited *
durable subscriptions 10,000 5

persisted messages per
destination

Hard Quota: 100,000
Soft Quota: 70,000

For more information, see
Hard and Soft Quotas.

Hard Quota: 100
Soft Quota: 70

For more information, see
Hard and Soft Quotas.

bytes of persisted messages per

Hard Quota: 52,428,800

Hard Quota: 52,428,800 bytes

destination bytes Soft Quota: 36,700,160 bytes
Soft Quota: 36,700,160 For more information, see
bytes Hard and Soft Quotas.

For more information, see
Hard and Soft Quotas.

concurrent connections 10 (additional connections in
units of 10 may be

purchased)
50

10 (no upsize)

temporary destinations per 50

connection

* implicitly capped by the number of concurrent connections

Hard and Soft Quotas

Oracle Messaging Cloud Service restricts both the number of persisted messages that
can be sent to a destination but not yet consumed, and the number of bytes of
persisted messages that can be sent to a destination but not yet consumed. These
restrictions are expressed in terms of a hard quota and a soft quota on both the
number and bytes of messages. Clients are allowed to send messages to a
destination until the number and bytes of persisted messages on that destination
reach the hard quota for either number or bytes of messages. Once the hard quota
has been reached for a destination, further attempts to send to that destination will fail
with an error until both the number and bytes of message on the destination fall below
the soft quota. The hard and soft quotas are the same for all destinations in a given
service instance.

For example, suppose the hard quota on number of messages for a queue Q is 100,
and the soft quota is 70, there are 100 messages on Q, and a client attempts to send
another persistent message, which would put Q over its hard quota on the number of
messages. The send will fail, and further sends of persistent messages will continue to
fail until at least 31 messages have been consumed from Q, causing it to fall below the
soft quota on number of messages. This two-quota algorithm gives consumers on a
destination a chance to "catch up" when the destination reaches its hard quota.

See Considerations When Developing Applications That Use Oracle Messaging Cloud
Service for additional information about messaging resources.

Before You Begin with Oracle Messaging Cloud Service

Prior to using Oracle Messaging Cloud Service, ensure you are familiar with the
following:

ORACLE 1-5

ORACLE

Chapter 1
Before You Begin with Oracle Messaging Cloud Service

Oracle Cloud

Create and configure your account on Oracle Cloud. For more information about
creating an account on Oracle Cloud, see How to Begin with Oracle Messaging
Cloud Service Subscriptions.

Java library

The Java library is included in the Oracle Messaging Cloud Service Java SDK that
can be downloaded from Oracle Technology Network. To download the Java SDK,
see Downloading the Oracle Messaging Cloud Service Java SDK.

The Java library requires a Java Development Kit (JDK) of version 1.6 or greater
for compiling your applications.

To use the Java library, you must have connectivity to the public Internet.

The JMS 1.1 API JAR file is also required to compile your web applications. To
download the JAR file, accept the Software License Agreement and click on the
download link available at following URL:

http://downl oad. oracl e. cont ot ndocs/j cp/ 7542-j ms-1. 1-fr - doc- ot h- JSpec/
REST API

To use the Oracle Messaging Cloud Service REST API, you must have
connectivity to the public Internet.

You should have a strong understanding of the HTTP request/response protocol,
specifically:

— How HTTP cookies are used in response and request headers and when a
given cookie is to be included in a request to a particular URL

— How to read and manipulate HTTP headers and query string parameters
Message Push Listeners

If you are using message push listeners to send messages to user-defined URLS,
you must have an HTTP server that is reachable from the public Internet and
addressable at the provided URL. You must also have the ability to deploy custom
applications to the user-defined URL to first verify ownership of the provided URL
and then receive messages.

If you are pushing messages to a user-defined URL over HTTPS, the push target
must have a valid Secure Sockets Layer (SSL) certification from Verisign.
Communication from Oracle Cloud to external hosts with invalid SSL certificates or
self-signed certificates will fail.

Before developing applications that use Oracle Messaging Cloud Service, make sure
you understand the following and adhere to the guidelines documented in the relevant
sections:

JSESSI ONI DHTTP cookies

The Oracle Messaging Cloud Service REST API relies on the use of JSESSI ONI D
HTTP cookies to identify and reuse messaging contexts between REST API HTTP
requests. Each service instance has a quota of connections that can be created,
so it is important to manage messaging contexts, and their associated connections
and cookies. For guidelines on using JSESSI ONl DHTTP cookies, see Messaging
Context and HTTP Cookies.

Cross-Site Request Forgery (CSRF) prevention

1-6

http://download.oracle.com/otndocs/jcp/7542-jms-1.1-fr-doc-oth-JSpec/

Chapter 1
How to Begin with Oracle Messaging Cloud Service Subscriptions

CSRF is an HTTP client vulnerability in which malicious code attempts to exploit a
web server's trust in a user's identity (represented by an HTTP cookie). For
information about how Oracle Messaging Cloud Service prevents CSRF attacks
and how to manage anti-CSRF tokens generated for connections, see Cross-Site
Request Forgery (CSRF) Prevention.

For additional considerations when developing applications with the Oracle Messaging
Cloud Service Java library and REST API, see Developing Applications That Use
Oracle Messaging Cloud Service.

How to Begin with Oracle Messaging Cloud Service
Subscriptions

Here's how to get started with Oracle Messaging Cloud Service trials and paid
subscriptions:

To get started with Oracle Messaging Cloud Service, sign up for a free credit
promotion, or purchase a subscription. See Requesting and Managing Free Oracle
Cloud Promotions or Buying an Oracle Cloud Subscription in Getting Started with
Oracle Cloud.

About Oracle Messaging Cloud Service Roles and Users

User roles and privileges are described in Getting Started with Oracle Cloud.

In addition to the roles and privileges described in Managing User Accounts and
Managing User Roles in Getting Started with Oracle Cloud, two default account roles
are created during provisioning time:

* Messaging Administrator
* Messaging Worker

When the service instance is created during provisioning, the service administrator is
given both Messaging Administrator and Messaging Worker roles. The account
administrator can create more messaging administrators, messaging workers, or users
with both roles, by assigning the appropriate role to users.

The following table summarizes the Oracle Messaging Cloud Service roles used to
access, develop, and administer Oracle Messaging Cloud Service and applications.

Role Description More Information

Messaging Can list and manage all Developing Applications That Use

Administrator destinations Oracle Messaging Cloud Service
Can list and manage all durable Accessing Oracle Messaging
subscriptions Cloud Service Using Java Library
Can list and manage all message Accessing Oracle Messaging
push listeners Cloud Service Using REST API

Can send and receive messages

ORACLE 1-7

ORACLE

Chapter 1
About Oracle Messaging Cloud Service Roles and Users

Role

Description More Information

Messaging Worker

Can send and receive messages Developing Applications That Use
Can list and manage all durable Oracle Messaging Cloud Service
subscriptions Accessing Oracle Messaging
Can list and manage all message C'0ud Service Using REST API

push listeners Accessing Oracle Messaging

Can retrieve properties of Cloud Service Using Java Library

individual queues, and topics.
Cannot list, create, or delete
destinations

1-8

Developing Applications That Use Oracle
Messaging Cloud Service

This section provides important information for developers who create applications that
use Oracle Messaging Cloud Service through either the Java library or the REST API.

Topics:

* Typical Workflow for Using Oracle Messaging Cloud Service

» Accessing Oracle Messaging Cloud Service

e Considerations When Developing Applications That Use Oracle Messaging Cloud

Service
» Using the Java Library
e Using the REST API

Typical Workflow for Using Oracle Messaging Cloud Service

To start developing applications that use Oracle Messaging Cloud Service, refer to the

following tasks as a guide:

Task Description

More Information

Sign up for a Provide your information,
free credit and sign up for a free
promotion, or credit promotion or
purchase a purchase a subscription.
subscription.

Requesting and Managing Free Oracle Cloud
Promotions or Buying an Oracle Cloud Subscription
in Getting Started with Oracle Cloud

Add and Create accounts for your
manage users and assign them
users and appropriate privileges.
roles Assign the necessary

Oracle Messaging Cloud
Service roles.

Managing User Accounts and Managing User Roles
in Managing and Monitoring Oracle Cloud, and
About Oracle Messaging Cloud Service Roles and
Users

Access the Access the service

service through the REST API and
the Java library. To use
the Java library, download
the Oracle Messaging
Cloud Service Java SDK.

Accessing Oracle Messaging Cloud Service

Create and Create, list, and delete

manage destinations.

destinations Thjs functionality is only
available to users with the
Messaging Administrator
role.

REST API: Creating and Managing Destinations
Java library: Managing Destinations

ORACLE

2-1

Chapter 2
Accessing Oracle Messaging Cloud Service

Task

Description

More Information

Send
messages to
a destination

Send messages to a
destination.

REST API:

e Send a Message via a Producer

e Sample code: Send a Message to a Topic
Java library:

e Using JMS to Send and Receive Messages
e Sample code: Send a Message to a Topic

Receive Receive messages froma REST API: Receiving Messages

messages destination. Java library: Using JMS to Send and Receive
froma Messages

destination

Receive Use selectors to specify REST API: Receive a Message from a Queue with
messages filtered subsets of a Selector

using messages to receive. Java library: Receive a Message from a Queue with
selectors an Optional Selector

List durable List information about one REST API: List Durable Subscriptions

subscriptions

or more durable
subscriptions.

Java library: List Durable Subscriptions

Create and
delete
durable
subscriptions

Create and delete durable
subscriptions.

REST API:
e Creating and Managing Durable Subscriptions
e Sample code: Create a Durable Subscription

Java library: Managing Durable Subscriptions

Send and Use transactions to group REST API:

receive multiple send and receive ¢ Sample code: Process Messages using a

messages operations into atomic Transaction

within operations. Java library:

transactions « Using JMS to Send and Receive Messages
e Sample code: Asynchronously Process

Messages Within a Transaction

Create and Create, list, use, and REST API:

manage delete message push e Creating and Managing Message Push

message listeners. Listeners

push e Sample code: Create a Message Push Listener

listeners Java library:

e Managing Message Push Listeners
e Sample code: Create a Message Push Listener

Accessing Oracle Messaging Cloud Service

ORACLE

You can access Oracle Messaging Cloud Service through the Java library and the
REST API.

The Java library is included in the Oracle Messaging Cloud Service Java SDK that can
be downloaded from Oracle Technology Network. To download the Java SDK, see
Downloading the Oracle Messaging Cloud Service Java SDK.

Before you create applications that make use of Oracle Messaging Cloud Service, be
sure to review the guidelines in Considerations When Developing Applications That
Use Oracle Messaging Cloud Service.

To learn how to use the Java library and the REST API to access the service for your
specific needs, refer to the following documents:

2-2

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

* Using the Java Library and Accessing Oracle Messaging Cloud Service Using
Java Library

* Using the REST API and Accessing Oracle Messaging Cloud Service Using REST
API

Considerations When Developing Applications That Use
Oracle Messaging Cloud Service

Oracle Messaging Cloud Service is largely based on the Java Message Service (JMS)
programming model.

Topics:

e About Queues and Topics

* About Message Push and Message Push Listeners

* About Verification of Message Push Listeners

* About Connections

* About Sessions, Acknowledgement Modes, Transactions, and Provisional
Messages

* About Producers, Consumers, and Selectors

e About Parts of a Message

» About Persistent and Non-Persistent Messages

* About Authorization

* About Service Termination

* About the Ordering of Message Delivery

* Using Message Groups

» Sending Large Objects as Messages Using Oracle Storage Cloud Service

Oracle Messaging Cloud Service provides the same messaging patterns as JMS and
also introduces a new pattern of its own. If you have experience with JMS, the
concepts should be familiar. If you are not yet familiar with IMS, see About Messaging
Concepts to review basic concepts such as destinations, producers and consumers,
and connections and sessions.

The concepts in this section apply to both the REST API and Java library. Regardless
of your experience with IMS or REST APIs, and whether you are developing
applications with the Java library or REST API, it is important that you review the
general guidelines documented in this section first, before referring to the subsequent
sections for specific guidelines on Using the Java Library or Using the REST API.

About Queues and Topics

ORACLE

Queues and topics are types of destination to which messages can be sent.

¢ Queues: Messages sent to a queue are received by one and only one consumer.

When a message is sent to a queue, the message is kept until it is either received
or until it expires. This quality of queues removes the timing dependency between

2-3

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

producers and consumers, which means producers and consumers don't have
to be available and communicating at the same time.

When a message is received, the consumer can either automatically or manually
acknowledge message receipt to the messaging platform, indicating whether the
message was received or not. See About Sessions, Acknowledgement Modes,
Transactions, and Provisional Messages for information about acknowledgement
modes.

Each instance of Oracle Messaging Cloud Service has a bound on the number of
gueues it can have. See About Resource Limits for the maximum number of
messaging resources per service instance in paid and trial service subscriptions.

* Topics: Messages sent to a topic may be received by multiple consumers or
none.

Consumers must be connected to a topic when a message is sent to the topic in
order to receive the message. This quality of topics implies there is a timing
dependency between message producers and message consumers. If a client has
no consumers on a topic, it will miss any messages sent to the topic until it creates
a consumer on the topic.

If the timing dependency for receiving a message is undesirable, a client can
create a durable subscription for the topic. A durable subscription stores all
messages sent to a topic until each message is received.

Each instance of Oracle Messaging Cloud Service has a bound on the number of
topics and durable subscriptions it can have. See About Resource Limits for the
maximum number of messaging resources per service instance in paid and trial
service subscriptions.

The time-to-live or maximum time a message can live in Oracle Messaging Cloud
Service is 14 days. The time-to-live can be set to a value less than 14 days for any
given message. When a message reaches the defined time-to-live value, it is
permanently deleted.

About Message Push and Message Push Listeners

ORACLE

Messages sent to a destination can be pushed to either another destination or to a
user-defined URL through message push listeners.

A user-defined URL's scheme can be either HTTP or HTTPS. For message push to an
HTTPS URL to succeed, the server to which messages are pushed must have a valid
Secure Sockets Layer (SSL) certification from Verisign. A message push listener
asynchronously receives messages from a queue, topic, or durable subscription.
When a message is received by a message push listener, the message is pushed to
the configured target.

Messages can only be pushed to a user-defined URL via PUT and POST HTTP
requests.

Message push listeners can have specific retry and failover policies that define what
the message push listener does if delivery of a message to a target fails. Failover
policies can push a message to another destination or user-defined URL. If a message
push listener cannot deliver a message and no failover policy is specified, then the
message push listener discards the message.

Message push listeners will not follow HTTP redirects. If a message push listener
makes an HTTP request to push a message to a user-defined URL, and receives a

2-4

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

redirect response (that is, a response whose status is in the range 300-399), the
message push listener will treat it as an error response. Any further handling of the
message will be as defined by the message push listener's failover policy. The
message push listener will not push the message to the location specified in the
redirect response.

Each instance of Oracle Messaging Cloud Service cannot be assumed to support
more message push listeners than available connections (which are required to send
and receive messages). See About Connections for information about why it is
important to assume that each message push listener will use a dedicated connection.

About Verification of Message Push Listeners

ORACLE

A message can be pushed to a user-defined URL using a message push listener.
Before a message push listener can be created, Oracle Messaging Cloud Service
must verify all URL targets of the message push listener. In other words, a message
push listener is created only after the service has verified that all URLs to which the
listener might push a message are willing to receive such pushes, as shown in the
following diagram.

1. Request to create
Message Push Listener

2. Request to verify targe‘

REST API 3. Target verification

Client response
4. Message Push <

Listener created

or

Java
Library Messages pushed as requests

The process to verify the URL targets of a message push listener is as follows:

1. Arequestis made to create a new message push listener, through either the
REST API or Java library. Note that the message push listener is not actually
created until its URL targets have been verified.

2. Oracle Messaging Cloud Service sends a verification request to every user-
defined URL in the listener's definition (primary target and failover targets). Each
verification request is an HTTP request that includes the following:

e An HTTP header with name X- OC- MPL- CHALLENGE whose value is a service-
generated pseudorandom challenge token

e An HTTP header with name X- OC- MPL- VERI FI CATI ON whose value is a user-
provided verification token

3. For a verification request to succeed, the user-defined URL must echo the

pseudorandom challenge token as the body of the HTTP response, and the HTTP
response must return with a status code of 200. Optionally, the user-defined URL
can also validate the value of the user-provided verification token. If the verification
request receives a redirect response, the verification request fails.

2-5

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

The verification token is essentially a way for a client creating a message push
listener to identify itself to the endpoint as a trusted entity. The verification token
could, for example, be a secret string shared between the endpoint and the client,
a one-time password, or a cryptographically signed token. The client and endpoint
are free to use the value in whatever way they like.

4. If the verification request fails for any user-defined URL, the creation of the
message push listener will also fail.

The purpose of verifying each user-defined URL is to ensure that the owner of the
URL is willing to accept pushed messages.

About Destination Deletion

This section provides information about what happens when a client is using, or
attempts to use, a hon-temporary destination (queue or topic) that is deleted.

Deleting a non-temporary destination is a non-blocking operation. The operation of
deleting a destination (either through the REST API or through the Java library) can
complete and return control to the client, and the destination can still be in the process
of being deleted. Destinations that are in the process of being deleted, but whose
deletion is not yet complete, are referred to as being marked for deletion. Destinations
that are marked for deletion will still be listed when all destinations are listed, and their
properties can still be retrieved. They will, however, have status MARK FOR DELETI ON. A
destination can have status MARK_FOR_DELETI ON for some time.

Any use of a destination that is marked for deletion may fail. This includes sending to
it, receiving from it, browsing it (if it is a queue), creating message push listeners on it,
having a message push listener push messages from it or to it, etc. This applies both
to attempts to use the destination after it is marked for deletion and uses of the
destination that began before it was marked for deletion. Sends to a destination that is
marked for deletion may succeed or fail. Messages on or sent to a destination that is
marked for deletion may or may not be lost. It is recommended that applications be
implemented so as to avoid making any use of destinations that are marked for
deletion, for example, by using a fixed set of destinations that does not change over
time, shutting down all uses of a destination before deleting it, etc.

Message push listeners that listen on a destination that becomes marked for deletion
will be deleted automatically. Applications that might be sensitive to the exact time that
a message push listener is deleted after its destination is marked for deletion should
delete the message push listeners on a destination manually before deleting the
destination.

Message push listeners that push to a destination that is marked for deletion or fully
deleted will not be deleted automatically when that destination is deleted. Any
message push listener that pushes to a destination that might be deleted while the
message push listener still exists should be configured with a failure policy that
ensures that messages will not be lost if the target destination is deleted.

About Connections

ORACLE

Connections are required to send and receive messages between clients and Oracle
Messaging Cloud Service. A connection represents all of the resources needed for
communication between clients and the messaging platform.

A client usually uses one connection for all of its sending and receiving operations,
though a client can use multiple connections if desired.

2-6

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

Each instance of Oracle Messaging Cloud Service has a quota of concurrent
connections. When an instance is using 100% of the connection quota, additional
attempts to establish new connections will fail.

A new connection is used when:

e A connection is created through the REST API
e A JMS connection is created through the Java library
A message push listener is created

Oracle Messaging Cloud Service may allocate message push listeners to connections
in different ways in order to optimize performance. The service may have multiple
message push listeners use the same connection or have different message push
listeners use different connections.

See Messaging Context and HTTP Cookies and Cross-Site Request Forgery (CSRF)
Prevention for additional guidelines when using the REST API.

About Sessions, Acknowledgement Modes, Transactions, and
Provisional Messages

ORACLE

Once a connection has been created, a session must also be created before
messages can be sent or received. A session provides a behavioral context that
defines what it means for messages to be sent and received between clients and
Oracle Messaging Cloud Service.

A single connection can have multiple sessions. Unless explicitly closed, sessions
persist until the connection from which they are created is closed.

A message received by a client through a session must be acknowledged before its
receipt is treated as final by Oracle Messaging Cloud Service. When a session is
created, its acknowledgement mode must be set to one of the following options:

* Auto-acknowledge: In auto-acknowledge mode, every message received is
automatically acknowledged immediately after it is received. Any message
received through an auto-acknowledge session is final.

* Client-acknowledge: In client-acknowledge mode, clients must explicitly
acknowledge all message receipts. This allows clients to examine a message to
determine if it is prepared to consume the message or not. It is recommended that
this mode be used if the session is not transacted and if the Messaging Service is
being used for applications in which messages must not be lost.

* Duplicates-OK: In duplicates-OK mode, message receipts are acknowledged
automatically, but lazily, which means messages are not individually
acknowledged when they are received but are automatically acknowledged at a
later point in time. This mode reduces the communication overhead between
clients and the messaging platform, and may increase the rate at which messages
are received.

Using the duplicates-OK mode, however, may result in any given message being
delivered multiple times, potentially to more than one client. If a session using this
acknowledgement mode unexpectedly closes, the messages delivered to the
client since the last acknowledgement may be made available for delivery to other
clients.

2-7

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

Sessions created through the REST API are auto-acknowledged by default. Sessions
created through the Java library must have their acknowledgement mode specified
explicitly.

Instead of specifying an acknowledgement mode, a session can be configured such
that sequences of send and receive operations are grouped into atomic operations
known as transactions. Like acknowledgement modes, sessions are configured to be
transacted or not transacted when the session is created. In a transaction, all grouped
send and receive operations either complete or do not complete collectively.

At any point in a transaction, the client can call rollback, and all previous send and
receive operations within that transaction will be cancelled. Transacted sessions must
be explicitly committed. When the client calls commit on a transaction, all send and
receive operations are made permanent and a new transaction is started.

In sessions whose mode is client-acknowledge, the client receiving messages is
responsible for explicitly acknowledging that messages have been received. Until the
client explicitly acknowledges a message, received messages are considered to be
provisional. If the client fails to perform acknowledgement, provisionally received
messages are returned to the destination and made available to be received by
another client when the session or its connection is closed.

Similarly, in transacted sessions the client sending and receiving messages is
responsible for explicitly committing the session. Until the session is committed, all
sent and received messages within the transaction are considered to be provisional.
Failure to commit transacted sessions will cause provisionally sent messages to be
discarded and provisionally received messages to be made available for delivery to
other clients. In both client-acknowledge mode and transacted sessions, when a
provisionally received message becomes available to be delivered to another client,
and when the message is so delivered, it is marked as redelivered.

About Producers, Consumers, and Selectors

ORACLE

A session sends messages through a producer and receives messages through a
consumer. A session can have multiple producers and multiple consumers. Unless
explicitly closed, producers and consumers persist until the session in which they are
created is closed.

A producer defines the default characteristics of how messages are sent to and stored
within the messaging platform. A producer can specify the destination to which all
messages are sent, how sent messages should be stored on the target destination,
and how long sent messages can live in the service before they expire.

A consumer defines how messages are received from the messaging platform. A
consumer must specify the destination from which messages are received.

Optionally, consumers can select a subset of all available messages to be received
from a destination by specifying a selector. A selector is an SQL-like expression that
specifies a condition that a message must satisfy to be eligible for the consumer to
receive the message. Selectors can only select messages based on criteria in the
message headers and properties. Selectors cannot select messages based on the
contents or type of a message body (for example, Text or Object type). For the syntax
of selectors, see the Message Selectors section of the Java API reference for the

j avax. j ms. Message class. For the syntax of selectors, see the Message Selectors
section of the Java API reference for the j avax. j ns. Message class at the URL:

http://docs. oracle. contjavaeel 6/ api /j avax/j ms/ Message. ht ni

2-8

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html
http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

About Parts of a Message

Messages are unique, discrete units of information that pass between two or more
clients through Oracle Messaging Cloud Service. Each message has three parts:
headers, properties, and a body.

Topics:

Message Headers

Message Properties

Message Body and Message Size

Message Headers

Message headers are predefined key/value pairs associated with a message.

Message headers are used by the messaging platform for message identification and
routing purposes. Some headers are client-set and some are broker-set. For client-set
headers, ‘Required’ means that the client must supply the header and ‘Optional’
means that client need not supply it. For broker-set headers, ‘Required’ means the
broker will always set it, whereas ‘Optional’ means the broker may or may not set it.

The headers, some of which may or may not be present in a message, are:

e Correlation ID: An identifier that can be set by the sending client to correlate
multiple messages. The value of this header is set by the sending client.

e Delivery Mode: Required. The persistence type of the message. The value of this
header is set by the sending client.

e Destination: Required. The destination to which the message was sent. The value
of this header is set by the sending client. For more information, see About
Persistent and Non-Persistent Messages.

e Expiration;: Required. The time when the message will expire. The value of this
header is a long integer, and is interpreted as Unix time. This value is set by the
JMS broker, but is partially a function of the message's time-to-live, which is set by
the sending client.

e Message ID: Required. The globally unique ID of the message. This value is set
by the JMS broker.

e Redelivered: Required. Indicates whether the message has been delivered at least
once bhefore. Value is t rue or f al se. This value is set by the JMS broker.

* ReplyTo: A destination to which replies to this message should be sent. Controlled
by the sending client.

e Time: The time when the message was sent to the destination. Set by the JIMS
broker.

Message Properties

Message properties are optional key/value pairs associated with a message. Some
message properties are user-defined, and some are set by the system.

Message property values can have the following classes:

ORACLE 2-9

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

* Boolean
° Byte

* Short

* Integer
* Long

* Float

* Double
e String

Selectors can use message properties to restrict the messages received by a
consumer. See About Producers, Consumers, and Selectors for information about
selectors.

Message Body and Message Size

A message body must have a type, which defines the format and structure of the body.
The message type can be one of the following:

* PLAIN: The message has no body. It only has headers and properties.
e TEXT: The message body is a String.

e BYTES: The message body is an array of bytes.

e OBJECT: The message body is a serialized Java object.

* MAP: The message body is a set of key/value pairs. Keys are Strings and values
are Java objects. Each value can be either a Boolean, Byte, Character, Short,
Integer, Long, Float, Double, String, or an array of bytes.

» STREAM The message body is a stream of Java objects. Each object in a stream is
either a Boolean, Byte, Character, Short, Integer, Long, Float, Double, String, or
an array of bytes.

e HITP: The message body is a serialized Java object that contains a byte array
representing the body of an HTTP request or response, and Strings representing
the HTTP headers that specify the language and media type of that body.

Messages have a maximum size of 512KB. Send operations with messages larger
than 512KB will fail. See Accessing Oracle Messaging Cloud Service Using REST API
and Accessing Oracle Messaging Cloud Service Using Java Library for information
about how message size is calculated.

About Persistent and Non-Persistent Messages

ORACLE

When a message is sent to a destination, the message delivery mode is marked as
persistent by default.

Persistent messages are guaranteed to be stored in a durable medium while being
processed by Oracle Messaging Cloud Service. This means persistent messages are
not lost if Oracle Messaging Cloud Service temporarily goes down.

Optionally, messages can be marked as non-persistent. Non-persistent messages
may or may not be stored in a durable medium. Since non-persistent messages do not
require as much I/O as persistent messages, higher throughput rates may be achieved

2-10

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

by using non-persistent messages. If Oracle Messaging Cloud Service temporarily
goes down, however, non-persistent messages may be lost.

A queue or topic cannot have more than 100,000 messages at any given time. Send
operations to a destination with 100,000 messages will fail. The 100,000 limit applies
to either persistent or non-persistent messages, or a combination of both.

" Note:

While persistent messages are always stored in a durable medium, there are
rare instances when the durable medium and the messages stored may be
lost. Additional copies of mission-critical data should therefore always be
stored in secure and reliable locations.

About Authorization

User roles and privileges are described in Getting Started with Oracle Cloud.

In addition to the roles and privileges described in Managing User Accounts and
Managing User Roles in Getting Started with Oracle Cloud, two default account roles,
Messaging Administrator and Messaging Worker, are created for Oracle Messaging
Cloud Service when the service instance is provisioned. Each role has privileges that
define what operations users are authorized to perform in the service instance. Any
user with the Messaging Administrator role can potentially delete any destination
within the instance. Any user with the Messaging Administrator role or the Messaging
Worker role can potentially send or receive messages to any destination within the
instance. See About Oracle Messaging Cloud Service Roles and Users for additional
privileges associated with each role.

About Service Termination

When an instance of Oracle Messaging Cloud Service is terminated, no customer data
is archived. Messages residing on destinations are deleted immediately upon service
termination.

Before terminating an instance, be sure to drain and store messages from queues and
durable subscriptions if the contents of stored messages are important.

About the Ordering of Message Delivery

Oracle Messaging Cloud Service does not provide any strict guarantees about the
order in which messages are delivered.

Applications for which message ordering is critical should use the "redelivered"
message header to detect redeliveries, and should consider the use of timestamps or
sequence numbers, possibly attached to messages as message properties or in the
message bodies, to ensure that messages are processed in the proper order.

Using Message Groups

Message groups can be used to send a message that is larger than 512KB in a set of
multiple smaller messages using a queue.

ORACLE 2-11

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

Message groups are used to group different messages that should all be processed by
the same consumer. Message groups are created implicitly by sending messages that
have a message ID and sequence number set on them to a queue.

A message group is defined by a group ID and a group sequence number. If a
message belongs to a group, the group it belongs to is defined by the value of its
JMBXG oupl D property.

< Note:

< If you send messages in a specific group to a queue, and the sequence
numbers are out of order, the consumer will receive them in the order in
which they were sent, not in order of message sequence.

e The first message sent in a group must have sequence number 1.

e Sequence numbers have no effect on message receipt order from
queues.

e Sequence numbers are not used to eliminate duplicate messages.

e The use of message groups has no effect when used with topics: all
consumers on the topic will get all messages, and receipt order will not
be affected by sequence numbers.

e Sequence numbers play an important role in the delivery of messages in
a message group. For example, consider a scenario such as the
following:

— Messages are sent in group G. Consumer C is chosen to receive
group G, and gets some of the messages.

— After consumer C receives few messages from group G, consumer
C is closed. However, more messages are sent in group G.

— A new consumer, D, is chosen to receive messages in G.

— When consumer D receives messages that don't start with sequence
number 1, D can conclude that some other messages in the group
were sent to some other consumer.

Method: POST

Path: / producer s/ producer Nanme/ nessages

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

ORACLE 2-12

Chapter 2

Considerations When Developing Applications That Use Oracle Messaging Cloud Service

Parameter

Description

groupld

This parameter is used to set the JMSXG oupl D property on the
message being sent. This is the name of the message group of
which this message is a part, if any.

Note:

If the JMSXG oupl D property is set as an HTTP request header, it
must be set to an escaped value String or a badPar anet er error
response will be generated. For more information on escaped value
Strings, see About Escaped Value Strings. If the JMSXG oupl D
property is set as a query string parameter, the usual conventions
for escaping query string parameters hold.

groupSeq

This parameter is used to set the JMSXGr oupSeq property on the
message being sent. This is the sequence number of the message
within the message group specified by the gr oupl d parameter.
The gr oupSeq parameter must be set to an integer or a

badPar anet er error response will be generated.

Result: Sends multiple messages as a message group using a queue.

Error Responses:

Error Message

Description

badPar anet er

The gr oupSeq parameter was not set to
an integer.

i nconpl et eG oupProperties Exactly one of the JMSXG oupl D and

JMBXG oupSeq properties was set on the
message. Either both properties must be
set, or neither must be set.

See Use Message Groups for a code sample on sending messages using message

groups.

Sending Large Objects as Messages Using Oracle Storage Cloud

Service

You can use Oracle Storage Cloud Service to send large message payloads using a
message that contains a reference to the payload. This is especially useful for storing
and consuming messages with a message size of up to 5 GB, the maximum size of a
single object stored in a Storage container.

You can send large payloads with a combination of Oracle Messaging Cloud Service
and Oracle Storage Cloud Service and use the following features that the services

allow:

e Store the message payload as a storage object with an automatic deletion time.

* Create a temporary URL to access the object containing the payload.

* Send a message containing the temporary URL for the object.

* Fetch the payload from the temporary URL.

» Delete the corresponding message object from an Oracle Storage Cloud

container.

ORACLE

2-13

ORACLE

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

About Oracle Storage Cloud Service

Oracle Storage Cloud Service is an Infrastructure as a Service (IaaS) product, which
provides an enterprise-grade, large-scale object storage solution for data of any type.
Oracle Storage Cloud Service stores data as objects within a flat hierarchy of
containers.

Oracle Storage Cloud Service allows you to create temporary URLSs for your objects,
authenticate storage requests, and auto-delete the objects after a certain period.

To learn more about Oracle Storage Cloud Service, see Features of Oracle Cloud
Infrastructure Object Storage Classic in Using Oracle Cloud Infrastructure Object
Storage Classic.

About Temporary URLs

Temporary URLSs are time-limited URLSs that expire after a configured time period. You
can create temporary URLS to provide a secure, temporary access to protected
resources like objects in your Oracle Storage Cloud Service account. A temporary
URL specifies both the object and the HTTP method with which the object can be
accessed. If you do not have access to Oracle Storage Cloud Service, you can
download an object from the service using a temporary URL.

< Note:

The auto-delete time set on the object and the time at which the temporary
URL expires are not necessarily the same time; they can be set
independently.

See Downloading an Object Using a Temporary URL in Using Oracle Cloud
Infrastructure Object Storage Classic..

Step-by-Step Procedure to Send a Large Object Stored in a Storage Container as
a Message

The example shows a step-by-step procedure for sending a large object stored in a
storage container as a message:

Note:

e Only relevant HTTP headers are shown in the example.

e The values of the secret key, password, etc. mentioned as <***> should
be replaced by the appropriate values for the service or account, or by
user-chosen values.

1. Get an authentication token
HTTP Request

GET /auth/v1.0 HTTP/1.1
Host: storage. oracl ecorp. com

2-14

ORACLE

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

Accept: */*
X- St orage- User: Storage-nsnerd: nsnerd. St orageadnin
X- St orage- Pass: <account password>

HTTP Response

HTTP/ 1.1 200 K

Server: nginx/1.10.2

Content-Length: 0

X- Aut h- Token: AUTH_t k7e51d668b970abcc71f 91c64e0f a5e38

X- St or age- Token: AUTH_ t k7e51d668b970abcc71f 91c64e0f a5e38
X-Storage-Url: https://storage. oracl ecorp.confvl/ Storage-nsnerd

The authentication token and storage-URL generated in this section will be used in
the requests for accessing the message payload.

Create a container for your object
HTTP Request

PUT /v1/ Storage-nsnerd/storage-payl oad HTTP/ 1.1

Host: storage. oracl ecorp.com

Accept: */*

X- Aut h- Token: AUTH_t k7e51d668b970abcc71f 91c64e0f a5e38

HTTP Response

HTTP/ 1.1 202 Accepted
Server: nginx/1.10.2

Set the container key using the information retrieved from steps 1 and 2
HTTP Request

POST /v1/ Storage- nmsner d/ st orage- payl oad HTTP/ 1.1
Host: storage. oracl ecorp.com

Accept: */*

X- Aut h- Token: AUTH_t k7e51d668b970abcc71f 91c64e0f a5e38
X- Cont ai ner - Met a- Tenp- URL- Key: <cont ai ner _secret _key>

<container_secret_key> is a password key value specific to the account owner.

HTTP Response
HTTP/ 1.1 204 No Cont ent

Create the payload, upload the object to the storage container, and set an
auto deletion time on the object

HTTP Request

PUT /v1/ Storage-nsnerd/ storage-payl oad/ <UUI D> HTTP/ 1. 1
Host: storage. oracl ecorp.com

Accept: */*

X- Aut h- Token: AUTH_t k7e51d668b970abcc71f 91c64e0f a5e38
Content - Type: <object_content _type>

X-Del ete-At: <Tinme-stanp _for_auto-del ete>
Content-Length: <Size_of _the_payl oad>

[Message payl oad]

Here are some examples of the variables used in the above request:

e UUID - To create a payload, generate or use a unique ID that can be used to
refer to the payload. For example, 1f af 75ea- 5619- 4a0e- a8a3- 764f 360ee0eb.

2-15

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

e object_content_type - This is the media type of the object. For example,
application/octet-stream

e Time-stamp _for_auto-delete - This is the UNIX Epoch timestamp representing
the date and time at which the object should be deleted. For example,
1416218400 represents November 17, 2014 10:00:00 GMT. See http://
www.epochconverter.com/.

» Size_of_the_payload - 3523574 (In Bytes)
HTTP Response

HTTP/ 1.1 201 Created

Server: nginx/1.10.2

Content - Type: <obj ect _content _type>
Content-Length: 0

object_content _type is the media type of the object. For example, appl i cati on/
octet-stream

Sample Code to compute a temporary URL

You can refer to the following sample codes to compute a temporary URL:

* Java Code

* Python Code

Here’s a sample Java code to compute a temporary URL:

import java.io. UnsupportedEncodi ngExcepti on;
inport java.security.lnvalidKeyException;
inport java.security.NoSuchAl gorithnException;
import java.security.SignatureException;

i mport javax. crypto. Mac;
i nport javax.crypto.spec. Secret KeySpec;

/**

* Wility class for creating HVAC- SHAL signatures and
* (O68S tenporary URLs.

*/

public class HVACUi s

{
private static final String algorithm = "HmcSHAL";
Il Lower-case hex digits in order
private static final char[] hexDigit = "0123456789abcdef".toCharArray();
/**
* Method to convert a byte array into a string of |ower-case hex digit
pairs.

@ar am byt es
Bytes to convert.
May not be <code>nul | </ code>.

@eturn
String of hex digits corresponding to the input array.

O

—

public static String bytesToHexPairs(byte[] bytes)

{
StringBuilder sb = new StringBuilder();

ORACLE 2-16

ORACLE

~

I N . T

*

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

for(byte b : bytes)
{

sb. append(hexDigi t[(((i

i

nt)b) & 0b11110000) >>> 4]);
sh. append(hexDi gi t[((int)b)

& 0b1111]):
}

return sh.toString();

Met hod to conpute HVAC- SHAL signature fromarbitrary data.

@ar am key
Secret key for the signature, set on the OSS account or container.
May not be <code>nul | </ code>.

@aram dat a
Data to be signed.
May not be <code>nul | </ code>.

@eturn
Bytes for the signature. Mist be rendered as |ower-case hex-digit

pairs in an OSS tenporary URL.

O

.

@hrows SignatureException
An error occurred in generating the signature.

@hrows NoSuchAl gorithnException
Shoul d not occur; the algorithmused shoul d
be valid HVAC- SHAL.

@hrows |nvalidKeyException
An error occurred in processing the key.

public static byte[] signature(byte[] key, byte[] data)

{

/**

pat h.

I R

throws SignatureException, NoSuchAl gorithnException, InvalidKeyException

Secr et KeySpec si gni ngKey = new Secr et KeySpec(key, al gorithm;
Mac mac = Mac. get | nstance(al gorithm;

mac. i ni t(signingkey);

return nmac. doFi nal (data);

Method to conpute HVAC-SHAL signature for a nethod, expiration time, and

@ar am key
Secret key for the signature, set on the OSS account or container.
May not be <code>nul | </ code>.

@ar am net hod
HTTP method (e.g. GET, POST, DELETE, PUT).
May not be <code>nul | </ code>.

@ar am expiration
Uni x epoch tine in seconds at which the signature will expire.
Must be non-negati ve.

@ar am pat h
Path (the part of the URL starting with '/' and coming after the

2-17

ORACLE

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

host and port) to

*

*
*
*
*

which the signature will give tenporary access.
May not be <code>nul | </ code>.

@eturn
Bytes for the signature. Mist be rendered as |ower-case hex-digit

pairs in an OSS tenporary URL.

o

*

@hrows SignatureException
An error occurred in generating the signature.

@hrows NoSuchAl gorithnException
Shoul d not occur; the algorithmused shoul d
be valid HVAC- SHAL.

@hrows |nvalidKeyException
An error occurred in processing the key.

@hrows Unsupport edEncodi ngExcept i on
Shoul d not occur; only UTF-8 encoding is used to convert characters

to bytes.

*/

public static byte[] signature(byte[] key, String nethod, |ong expiration,
String path)

throws SignatureException, NoSuchAl gorithnrException,

I nval i dKeyException, UnsupportedEncodi ngException

{

return HVACU i | s. si gnature(key, (method+ \n'+expiration

+\n' +path). get Byt es("UTF-8"));

e . R R R R

host

a
*
*
*
*
*
*
*
*
*
*
*
*

*

Method to conpute a temporary OSS URL.

@ar am key
Secret key for the signature, set on the OSS account or container.
May not be <code>nul | </ code>.

@ar am net hod
HTTP method (e.g. GET, POST, DELETE, PUT).
May not be <code>nul | </ code>.

@aram ti meToExpiration
Amount of time in seconds after which the
temporary URL will expire.

@ar am pat h
Path (the part of the URL starting with '/' and coming after the

nd port) to

which the signature will give tenmporary access.
May not be <code>nul | </ code>.

@eturn
Path portion of the tenporary URL.

@hrows SignatureException
An error occurred in generating the signature.

@hrows NoSuchAl gorithnException

Shoul d not occur; the algorithmused shoul d
be valid HVAC- SHAL.

2-18

ORACLE

*
*
*
*
*

*

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

@hrows |nvalidKeyException
An error occurred in processing the key.

@hrows Unsupport edEncodi ngExcept i on
Shoul d not occur; only UTF-8 encoding is used to convert characters

to bytes.

*

/

public static String tenporaryURLPath(byte[] key, String nmethod, |ong
timeToExpiration, String path)

throws SignatureException, NoSuchAl gorithnmException,

I nval i dKeyException, UnsupportedEncodi ngException

{

B S T T T R I R

*

long expiration = SystemcurrentTimeM | 1is()/1000 + tineToExpiration;
byte[] sig = HVACUt i | s. si gnat ure(key, nmet hod, expi ration, path);

return path +
((path.indexOr('?') <0) ?2'? : '&) +
"temp_url _sig=" +
byt esToHexPai rs(sig) +
"&tenmp_url _expires=" +
expiration;

<p>
Command-line interface. This interface takes
argunents specifying a key and a tenporary
access to an object in OSS (such as a |large
message payl oad) and outputs the path portion of
the tenmporary URL with which to access the object.

</ p>
<p>
Specifically, the arguments are as foll ows:
</ p>

the secret key with which to generate
the signature; this nust nust have been
set previously on the OSS container or
account that will contain the object to
be accessed
< li>

the HTTP nethod to put into the signature
(e.g. GET, PCST, PUT, DELETE); this will
determne what nethods can be used with
the temporary URL
</ li>

the amount of time, in seconds, after
which the tenporary URL will no |onger
function; the signature generated will
work for that many seconds fromthe tine
at which HMACWils is run.
</ li>

the path to the OSS object to be accessed

via the tenporary URL; this is the part

of the full URL that comes after
<nobr ><code>ht t ps: // </ code><i >& t; host > ; </ i ><code>: </

2-19

ORACLE

Chapter 2
Considerations When Developing Applications That Use Oracle Messaging Cloud Service

code><i >& t; port > ; </ i ></ nobr >
* (including any leading '/").
</[i>
<ful >
<p>
Usage:
<nobr >
<code>j ava HVACU i | s</ code>
<i>< key> </i>
<i>&l t; HTTP nmet hod> </i >
<i><time to expirationégt;</i>
<i>&l t; 0SS object pathé></i>
</ nobr>
</ p>
<p>
The output on standard out will be the
path portion of the temporary URL by which to
access the object, that is, the portion that
cones after
<nobr ><code>ht t ps: // </ code><i >& t; host > ; </ i ><code>: </
code><i >& t; port > ; </ i ></ nobr >,

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* </ p>

*/
public static void main(String[] argv) throws Exception
{

byte[] key = argv[0].getBytes("UTF-8");

String nethod = argv[1];
I ong tinmeToExpiration = Long. parselLong(argv[2]);
String path = argv[3];

Systemout. printf ("%
\n", HVACUt i | s. t enpor ar yURLPat h(key, met hod, ti meToExpi ration, path));
}
}

Here’s a sample Python code to compute a temporary URL:
User Input: Specify the following parameters:

servi cel nstanceNane = 'Storage' # Leave as is unless your service instance has a
different nane

i dentityDomai nNane = 'acne' # Nane of your identity domain

container = "nyContainer' # Container that has the objects you need the tenpURL
for

key = 'nykey' # X-Container-Meta-Tenp-Url-Key or X-Account-Meta- Tenp- Url - Key

val ue

object = 'nyChject’ # bject nane that you need the tenpURL for. This is
optional if a container-level key is used.

url Duration = 300 # Seconds for which the tenp URL shoul d work

servi ceRest Endpoi nt = ' https://acme. storage. oracl ecl oud. com v1/ St orage- acne' #
REST endpoint URL of your service instance, as shown in the Service Details page
in M Services

Code to generate the temporary URL:

¢ Note:

Do not modify any values in this section.

2-20

Chapter 2
Using the Java Library

i mport hnac

fromhashlib inport shal

fromtinme inport time

path = '/vl/' + servicelnstanceNane + '-' + identityDonmai nName + '/' + contai ner
+'[" + object

expires = int(time() + urlDuration)

hmac_body = '%\n%\n%' % (' GET', expires, path)

sig = hmac. new(key, hmac_body, shal).hexdigest()

url = serviceRestEndpoint +'/' + container +'/' + object + ?tenp_url_sig=" +
sig + "&enp_url_expires=" + str(expires)

print(url)

Use Oracle Messaging Cloud service to send a message with the temporary
URL as the payload.

See Sending Messages.
Retrieve the payload using the temporary URL.
HTTP Request

GET /v1/ St orage- nsner d/ st or age- payl oad/ <UUI D>?

temp_url _sig=<tenp_url _sig>& enp_url _expires=<tenp_url _expire> HITP/ 1.1
Host: storage. oracl ecorp.com

Accept: */*

temp_url_sig The sample Java/Python code above generates the full temporary
URL. Part of the URL it creates is the value of temp_url_sig. This is the HMAC-
SHAI1 signature of the method, expiration time, and path to the object, signed
using the container key set in step 3.

temp_url_expires is the UNIX Epoch timestamp representing the date and time at
which the temporary URL expires. Note that this is not when the object is auto-
deleted, but the time when the temporary URL will stop working.

HTTP Response

HTTP/ 1.1 200 K

Content-Type: application/octet-stream
Content-Length: <Size of Payl oad>

X-Del ete-At: <Time-stanp for auto-delete>
[Message payl oad]

Using the Java Library

The Oracle Messaging Cloud Service Java SDK provides a Java library for managing
service instance resources in addition to sending and receiving messages through the
JMS API. Included in the Java SDK is a copy of the Javadocs for the Java library.

ORACLE

Topics:

Typical Workflow for Using the Java Library
Downloading the Oracle Messaging Cloud Service Java SDK
Authentication and Authorization

Differences from JMS

Before you begin using the Java library, be sure to review the guidelines in this section
as well as the general guidelines in Considerations When Developing Applications
That Use Oracle Messaging Cloud Service.

2-21

Typical Workflow for Using the Java Library

To start using the Java library, refer to the following tasks as a guide:

Chapter 2
Using the Java Library

Task

Description

More Information

Download the Oracle
Messaging Cloud Service
Java SDK

The Oracle Messaging Cloud

Service Java SDK provides a Java

library for managing service
instance resources in addition to
sending and receiving messages
through the JMS API.

Downloading the Oracle
Messaging Cloud Service
Java SDK

Extract the Oracle
Messaging Cloud Service
Java library from the
downloaded Java SDK

Extract the Java library JAR file
somewhere onto your Java
application's class path.

Package the Java library
into an enterprise Java
web application

Import the Java library's classes
and interfaces into your Java
application.

Create a Servlet or Web
service

Create a Servlet or Web service to

send and/or receive messages.

Accessing Oracle Messaging
Cloud Service Using Java
Library

Send a Message to a Topic

Create a standalone
application

Create a Java standalone
application to send and/or receive
messages without an HTTP
interface.

Accessing Oracle Messaging
Cloud Service Using Java
Library

Asynchronously Receive
Messages with a Durable
Subscription

Downloading the Oracle Messaging Cloud Service Java SDK

The Oracle Messaging Cloud Service Java SDK is a downloadable package that
contains the following components:

Download the Oracle Messaging Cloud Service Java SDK from Oracle Technology
Network at the following URL:

http://ww. oracl e. con t echnet wor k/ t opi cs/ cl oud/ downl oads/ messagi ng- ¢l oud-
servi ce-sdk-2279257. ht

* Java library (or acl e. messagi ng. cl oud. api - 14. 0. X. j ar where X s the latest
version number of the Java library)

e Java API Reference documentation for Oracle Messaging Cloud Service

Authentication and Authorization

When using the Java library, a client is authenticated with Oracle Messaging Cloud
Service when any of the operations listed below is initiated for the first time:

* Using any destination management function (listing, creating, or deleting

destinations).

ORACLE

2-22

http://www.oracle.com/technetwork/topics/cloud/downloads/messaging-cloud-service-sdk-2279257.html
http://www.oracle.com/technetwork/topics/cloud/downloads/messaging-cloud-service-sdk-2279257.html

Chapter 2
Using the REST API

» Using a message push listener management function (listing, creating, or deleting
message push listeners).

e Listing durable subscriptions.
» Creating a connection.

The Messagi ngSer vi ce object is the entry point for all operations against an instance
of Oracle Messaging Cloud Service, including message transmission and resource
management. If only one Messagi ngSer vi ce object is created for all operations, then
all operations share the same user authentication and authorization level.

Differences from JMS

Using the

ORACLE

The Java library provided in Oracle Messaging Cloud Service implements the JMS 1.1
API. While you may be familiar with JMS in on-premises environments, note the
following differences from JMS when using the Java library:

e The Java Naming and Directory Interface (JNDI) is currently not supported for
referencing JMS objects such as Connect i onFact ory, Queue, and Topi ¢c. IMS
objects must be instantiated directly using the Java library provided in Oracle
Messaging Cloud Service. Since JNDI is not supported, Oracle Messaging Cloud
Service cannot be used to implement message-driven beans.

* Oracle Messaging Cloud Service does not enforce message priority on message
delivery. Although message priority is a standard JMS message header, the
implementation of priority headers is not mandated by the JMS specification.
Messages can still be sent with a priority header but this does not influence how a
message is delivered. The value of the priority header is set to the default value of
"4",

REST API

The REST API implements the same messaging model as the Java library, with the
exception that connections, sessions, producers, consumers, queue browsers, and
temporary destinations are created as resources on the service instance through the
REST API.

Topics:

e Typical Workflow for Using the REST API

* Messaging Context and HTTP Cookies

e Authentication

* About HTTP Headers

e Cross-Site Request Forgery (CSRF) Prevention

* Resource Management versus Message Transmission APIs

* Message Types

* Message Headers and Properties

e XML versus JSON Response Types

Before you begin using the REST API, review the guidelines in this section as well as
the general guidelines in Considerations When Developing Applications That Use
Oracle Messaging Cloud Service.

2-23

Chapter 2

Using the REST API
Typical Workflow for Using the REST AP|

To start using the REST API, refer to the following tasks as a guide:

Task Description More Information

Create a messaging Create a messaging context, and Creating and Managing

context manage the lifecycle of messaging Messaging Contexts
contexts through the maximum
inactive interval (MIl) feature.

Create a connection Create connections before sending Creating and Managing
and receiving messages. Connections

Create a message push Create listeners to push messages Creating and Managing

listener to a destination or user-defined Message Push Listeners
URL.

Create a session Create sessions before sending or Creating and Managing
receiving messages. Sessions

Create a producer Create producers to send Sending Messages
messages.

Create a consumer Create consumers to receive Receiving Messages
messages.

Send a message through Send messages through Sending Messages

a producer producers.

Receive a message Receive message through Receiving Messages

through a consumer consumers.

Messaging Context and HTTP Cookies

ORACLE

A messaging context is a container of ephemeral objects like connections, sessions,
producers, consumers, temporary destinations, and queue browsers.

A messaging context is identified by the JSESSI ONI D cookie. The only API specific to a
messaging context is the API for getting and setting the maximum inactive interval
(M11), which controls the expiration time of the messaging context. When the
messaging context expires, all ephemeral objects contained in it are closed and
deleted, except for temporary destinations. A temporary destination is closed only if
the connection by which the temporary destination was created is closed.

The Oracle Messaging Cloud Service REST API relies critically on the use of
JSESSI ONI DHTTP cookies to identify and reuse messaging contexts between REST
API HTTP requests.

At least one messaging context must be created by a client in order to access Oracle
Messaging Cloud Service. If an HTTP request does not include a JSESSI ONI D cookie
for an unexpired messaging context, then a new messaging context is created. The
HTTP response includes the header X- OC- NEW MESSAG NG CONTEXT: true if a new
messaging context is created. Note that connections and derived objects created in a
messaging context cannot be used in other messaging contexts, except for temporary
destinations. A temporary destination created in a messaging context can be used in
other messaging contexts.

When a messaging context is created through the REST API, the messaging context
is assigned an MIl. A messaging context expires if it is not accessed for a period of

2-24

Chapter 2
Using the REST API

time longer than the associated MIl. By default, all messaging contexts have an Mll of
5 minutes. The MII for a given messaging context can be increased to a maximum of
15 minutes by the client. The minimum non-zero value of an Mll is 1 second. If the MII
is set to 0, the messaging context expires immediately.

Each Oracle Messaging Cloud Service instance has a quota of connections that can
be created. When using the REST API, it is important to handle JSESSI ONl DHTTP
cookies diligently to manage messaging contexts and their associated connections. If
the cookies are not handled, then a new messaging context is created on every HTTP
request to the REST API. This can quickly lead to the exhaustion of the instance's
connection quota if a connection is created in each messaging context.

In special situations, clients may wish to durably store JSESSI ONl DHTTP cookies
associated with active messaging contexts. For example, if a client machine fails,
cookies for active messaging contexts can be lost from non-durable storage, and if the
application cannot wait for the messaging context to expire, then it is important to
durably store cookies. If cookies are durably stored, the active messaging contexts
and their connections can be reached after the client comes back up, as long as those
messaging contexts have not expired during the client down time.

< Note:

If Cross-Site Request Forgery (CSRF) prevention is enabled for a given
messaging context, clients may also wish to durably store the anti-CSRF
token associated with the messaging context for the messaging context and
associated connections to be reachable when the client is back up. See
Cross-Site Request Forgery (CSRF) Prevention for details about how anti-
CSRF tokens are used by Oracle Messaging Cloud Service.

Authentication

All HTTP requests to the Oracle Messaging Cloud Service REST API require
authentication.

Every HTTP request to Oracle Messaging Cloud Service should supply HTTP Basic
Authentication credentials through the Aut hori zat i on header.

About HTTP Headers

The Oracle Messaging Cloud Service REST API uses various HTTP headers to send
and receive information. The names of these headers are written in capital letters
throughout, but HTTP headers are required to be treated as case-insensitive.

Any client of the REST API should be implemented so as to treat HTTP header names
in Oracle Messaging Cloud Service responses as case-insensitive. HTTP header
names may occur multiple times within a single HTTP response, so any client of the
REST API should be implemented so as to handle multiple occurrences of a header
with the same name (or with the same name except for differences in case) properly.

ORACLE 2-25

Chapter 2
Using the REST API

Cross-Site Request Forgery (CSRF) Prevention

Cross-Site Request Forgery (CSRF) is a malicious attack on HTTP clients whereby
destructive operations may be unknowingly made against a web server.

To prevent CSRF attacks, Oracle Messaging Cloud Service generates pseudorandom
anti-CSRF tokens for each messaging context.

When a new messaging context is created, a new anti-CSRF token is generated and
returned in the messaging context's first HTTP response as the value of the X- OC- | D-
TOKEN HTTP header. The token is not returned in subsequent HTTP responses.

Once an anti-CSRF token has been generated, every subsequent HTTP request must
include its messaging context's associated token in the X- OC- | D- TOKEN HTTP header.
If the token is inaccurate or missing, an HTTP response with status code 400 is
returned, and the HTTP request is not processed.

See Understanding Anti-CSRF Measures for more information about the generation
and use of anti-CSRF tokens in the Oracle Messaging Cloud Service REST API.

If desired, you can disable the CSRF prevention mechanism in these ways:

e To disable the mechanism before the connection's anti-CSRF token is generated,
pass the X- OC- | D- TOKEN- STATUS HTTP header with the value of di sabl ed on the
messaging context's first HTTP request.

* To disable the mechanism for a messaging context that has already generated an
anti-CSRF token, pass the X- OC- | D- TOKEN- STATUS HTTP header with the value of
di sabl ed, and also pass the X- OC- | D TOKEN HTTP header with the value of the
token that was generated for the messaging context.

Note:

If anti-CSRF is enabled, see Messaging Context and HTTP Cookies for
information about how Oracle Messaging Cloud Service uses JSESSI ONI D
HTTP cookies and why clients may wish to durably store anti-CSRF tokens
and cookies associated with active messaging contexts.

Resource Management versus Message Transmission APIs

ORACLE

The operations in the Oracle Messaging Cloud Service REST API can be divided into
two functional areas:

* Resource management: The Resource Management API provides functionality to
create and manage destinations, and message push listeners.

* Message transmission: The Message Transmission API provides functionality to
create and manage connections, create and manage sessions, send messages
through producers, receive messages through consumers, create and delete
durable subscriptions, inspect messages through queue browsers, and create and
delete temporary destinations.

2-26

Chapter 2
Using the REST API

Message Types

PLAI' N

TEXT

ORACLE

This section provides information about various message types supported by the
REST API.

Topics:

* PLAIN

o TEXT

e BYTES

- OBJECT
. HTTP

* MAP

e STREAM

The REST API supports the HTTP message type in addition to all of the IMS message
types such as TEXT and BYTES.

When sending a message through the REST API, set the value of the X- OC- MESSAGE-
TYPE HTTP header to specify the message's type. The default message type is HTTP.

When messages are sent and received through the REST API, the message body is
transmitted as the HTTP request body.

The valid values for the X- OC- MESSAGE- TYPE HTTP header along with any required
formatting for the HTTP request body are described in the following sections.

The message has no body.
Note the following rules for a message of this type:

e When the message is sent through the REST API, the HTTP request's body is
ignored.

e When the message is accessed through the Java library, the message is an object
of the class j avax. j ns. Message that has no body.

* When the message is received through the REST API, the HTTP response body
and Cont ent - Type header are empty.

* When the message is pushed to a URL by a message push listener, the HTTP
request body and Cont ent - Type header are empty.

The message's body is a String.
Note the following rules for a message of this type:

* When the message is sent through the REST API, the HTTP request's body is
converted to a String using the encoding specified by the HTTP request's headers.

2-27

BYTES

OBJECT

ORACLE

Chapter 2
Using the REST API

When the message is accessed through the Java library, the message is an object
of the class j avax. j ns. Text Message.

When the message is received through the REST API, the HTTP response's body
is encoded with UTF-8 and the Cont ent - Type header is as follows:

text/plain; charset=UTF-8

When the message is pushed to a URL by a message push listener, the HTTP
request's body is encoded with UTF-8 and the Cont ent - Type header is as follows:

text/plain; charset=UTF-8

The message's body is an array of bytes.

Note the following rules for a message of this type:

When the message is sent through the REST API, the HTTP request's body is
handled as an array of bytes.

When the message is accessed through the Java library, the message is an object
of the class j avax. j ns. Byt esMessage.

When the message is received through the REST API, the HTTP response's body
is the bytes of the array and the Cont ent - Type is as follows:

application/octet-stream

When the message is pushed to a URL by a message push listener, the HTTP
request's body is the bytes of the array and the Cont ent - Type is as follows:

application/octet-stream

The message's body is a serialized Java object.

Note the following rules for a message of this type:

When the message is sent through the REST API, the HTTP request's body is the
serialization of a Java object. Any serializable object can be sent through the
REST API.

When the message is accessed through the Java library, the message is an object
of the class j avax. j ns. Qbj ect Message.

When the message is received through the REST API, the HTTP response's body
is the serialization of the Java object and the Cont ent - Type is as follows:

application/octet-stream

2-28

HTTP

MAP

ORACLE

Chapter 2
Using the REST API

When the message is pushed to a URL by a message push listener, the HTTP
request's body is the serialization of the Java object and the Cont ent - Type is as
follows:

application/octet-stream

The message's body is a representation of the content of an HTTP request, including
the metadata of the content's media type and language.

Note the following rules for a message of this type:

When the message is sent through the REST API, the HTTP request's body,
Cont ent - Type header, and Cont ent - Language header are used to create an
oracl e. cl oud. messagi ng. cl i ent. H t pCont ent object.

When the message is accessed through the Java library, the message is a
j avax. j ms. Cbj ect Message whose content is a populated
oracl e. cl oud. messagi ng. cl i ent. H t pCont ent object.

When the message is received through the REST API, the HTTP response's body,
Cont ent - Type header, and Cont ent - Language header are set from the
oracl e. cl oud. messagi ng. cl i ent. H t pCont ent object.

When the message is pushed to a URL by a message push listener, the HTTP
request's body, Cont ent - Type header, and Cont ent - Language header are set from
the or acl e. cl oud. nessagi ng. cl i ent. Ht t pCont ent object.

The message's body is a set of name/value pairs that defines a mapping from names
to values.

Note the following rules for a message of this type:

When the message is sent through the REST API, the HTTP request's body is an
XML document with the following format:

<[Tap>
<entry>
<nane>nane</ nane>
<type>type</type>
<val ue>val ue</ val ue>
<lentry>

</ map>

The child elements of <map> must all be <ent ry>. There may be 0 or more <entry>
child elements. Every <ent ry> must contain exactly one <nane> element whose
content defines the name for the map entry, and either one <t ype> and one

<val ue> or none of either. If there are multiple <nane> elements with the same
content, this is an error and the result is unspecified.

If the <t ype> and <val ue> pair is not present, the value assigned to name is nul | .
If the <t ype> and <val ue> pair is present, type must be one of the following:

— bool ean: value must be true or fal se

2-29

STREAM

ORACLE

Chapter 2
Using the REST API

— byt e: value must be two hexadecimal digits (where a hexadecimal digit is a
digit from 0-9 or a letter from A-F)

— short: value must be a base-10 representation of a Java short integer
— int:value must be a base-10 representation of a Java int

— long: value must be a base-10 representation of a Java long integer
— float: value must be a String representation of a Java float

— doubl e: value must be a String representation of a Java double

— string: value must be valid XML character data. An empty <val ue> object is
interpreted as the empty String rather than nul | .

— char: value must be a single character

— byt es: value must be an even-length string of hexadecimal digits (where a
hexadecimal digit is a digit from 0-9 or a letter from A-F)

When the message is accessed through the Java library, the message is an object
of the class j avax. j ns. MapMessage. Each entry specifies a name/value pair in the
j avax. j ms. MapMessage, with name as nane and value as specified by t ype and
val ue.

When the message is received through the REST API, the HTTP response's body
is an XML document with the same format as the XML document for the HTTP
request's body, and the Cont ent - Type is appl i cation/ xm .

When the message is pushed to a URL by a message push listener, the HTTP
request's body is an XML document with the same format as that in an HTTP
request to create a MAP message, and the Cont ent - Type is appl i cati on/ xm .

The message's body is a sequence of values.

Note the following rules for a message of this type:

When the message is sent through the REST API, the HTTP request's body is an
XML document with the following format:

<streamr
<itenp
<type>type</type>
<val ue>val ue</ val ue>
<[itenp

</ streanmr

All child elements of <st r ean> must be <i t en». There may be 0 or more <i t enp
child elements. Every <i t en» must contain either one <t ype> and one <val ue> or
none of either. If the <t ype> and <val ue> pair is not present, the item in the stream
is nul | . If the <t ype> and <val ue> pair is present, type and value must match one
of the following:

— bool ean: value must be true or f al se

— byt e: value must be two hexadecimal digits (where a hexadecimal digit is a
digit from 0-9 or a letter from A-F)

— short: value must be a base-10 representation of a Java short integer

2-30

Chapter 2
Using the REST API

— int:value must be a base-10 representation of a Java int

— | ong: value must be a base-10 representation of a Java long integer
— float: value must be a String representation of a Java float

— doubl e: value must be a String representation of a Java double

— string: value must be valid XML character data. Empty <val ue> elements are
interpreted as representing the empty String rather than nul | .

— char: value must be a single character

— Dbyt es: value must be an even-length string of hexadecimal digits (where a
hexadecimal digit is a digit from 0-9 or a letter from A-F)

The values in the stream are in the same order as the <i t en» elements in the XML
document.

When the message is accessed through the Java library, the message is an object
of the class j avax. j ns. St r eamMessage. Each <i t en» specifies a value written into
the j avax. j ns. St reanmMessage, written in document order.

When the message is received through the REST API, the HTTP response's body
is an XML document with the same format as the XML document for the HTTP
request's body, and the Cont ent - Type is appl i cation/ xm .

When the message is pushed to a URL by a message push listener, the HTTP
request’'s body is an XML document with the same format as that in an HTTP
request to create a STREAMmessage, and the Cont ent - Type is appl i cati on/ xmi .

Message Headers and Properties

ORACLE

Message headers and properties are treated as HTTP headers when messages are

sent and received through the REST API.

The following table maps message headers to the corresponding HTTP headers:

Message Header

HTTP Header

Correlation ID

X- OC- CORRELATION-1 D

Delivery Mode X- OC- DELI VERY- MODE
Destination X- OC- DESTI NATI ON
Expiration X- OC- EXPI RATI ON
Message ID X- OC- MESSAGE- | D
Redelivered X- OC- REDELI VERED
Reply To X- OC- REPLY-TO
Timestamp X- OC- Tl MESTAWP

When a message is sent through the REST API, message properties are set by
specifying HTTP headers that follow a specific naming convention. After a message is
sent, the properties of the message are treated as standard JMS message properties.
When a message is received through the REST API, the message properties are
converted to HTTP headers that follow the same naming convention.

Message properties can be set and read through HTTP headers by using the following

convention:

2-31

Chapter 2
Using the REST API

X- OC- TYPE- PROPERTY- NAME where NAME and TYPE are strings.

NAME is the message property's name. The name can only contain alphanumeric
characters and underscores. All characters are made lowercase by the service.

TYPE is the message property's type, which must be one of the following types:

Message Property Type HTTP Header Value

BOOLEAN Mustbe true orfal se

BYTE Must be two hexadecimal digits (where a hexadecimal digit
is a digit from 0-9 or a letter from A-F)

SHORT Must be a base-10 representation of a Java short integer

I NT Must be a base-10 representation of a Java int

LONG Must be a base-10 representation of a Java long integer

FLOAT Must be a String representation of a Java float

DOUBLE Must be a String representation of a Java double

STRI NG Must be a legal HTTP header value. See Message
Headers in the Hypertext Transfer Protocol - HTTP/1.1
document.

XML versus JSON Response Types

ORACLE

While some of the Oracle Messaging Cloud Service REST API endpoints support
JSON as a response type, all of the endpoints support XML.

The default response type for all endpoints is XML.
REST API endpoints that only support XML as a response type include:

» Creating or viewing a message push listener

» Creating or viewing a durable subscription

* Receiving a Map or Stream message

» Creating temporary destinations

e Listing temporary destinations

* Retrieving the properties of a single temporary destination
* Retrieving the properties of a queue browser

The response type for a REST API endpoint can be controlled by setting the HTTP
request's Accept header to either appl i cation/j son or application/xnl . To indicate
that a client prefers JSON but is willing to accept XML if it is the only format available,
the HTTP request's Accept header may be set to, for example, appl i cati on/

json, application/xm ;qg=0.5.

If an HTTP response from the REST API is the result of receiving a message, the
Accept header is ignored. If the HTTP request is a request to receive a message, but
an error response is generated, the Accept header is used to determine the format of
the error response’s body. Otherwise, if the REST API cannot provide a response of
the type specified in the Accept header, an HTTP response with status code 406 is
returned.

2-32

http://tools.ietf.org/html/rfc2616#section-4.2
http://tools.ietf.org/html/rfc2616#section-4.2

Accessing Oracle Messaging Cloud
Service Using REST API

Oracle Messaging Cloud Service provides a Representational State Transfer (REST)
API for sending and receiving messages, as well as managing resources such as
gueues, topics, durable subscriptions, and message push listeners. This section
describes how to use the REST API in applications that make use of Oracle
Messaging Cloud Service.

Topics:

e About Using the REST API

* Resource Management API

* Message Transmission API

» Properties of HTTP Requests to Send Messages from REST Clients
» Properties of HTTP Requests and Responses that Deliver Messages

* About Escaped Value Strings

Topology API

The topology API provides functionality to obtain the topology of a hamespace or
messaging context. The topology API is available only through the REST API. The
information provided by the topology API will, in general, reflect the most recent
topology of a namespace or messaging context, but is not necessarily real-time. That
is, changes to a namespace or messaging context that has just happened may not be
reflected immediately.

Topics:
* Viewing all Messaging Contexts
* Viewing a Messaging Context

e Sample Outputs of Topology API

Viewing all Messaging Contexts
A user can view all messaging contexts and their encapsulated ephemeral resources.
Method: GET
Path: / nessagi ngcont ext s
Scope: Service Instance

Authorization: Messaging Administrator or Messaging Worker

ORACLE 3-1

Chapter 3
Topology API

Result: Returns the topology information of all messaging contexts and their

encapsulated ephemeral resources.

Response Body: JSON or XML.

JSON

The JSON output for a GET from / messagi ngcont ext s is a JSON array. Each element
of the array is a JSON object corresponding to a single, uniqgue messaging context.

JSON Object for a Messaging Context

A JSON object for a messaging context will contain at most the following fields:

Field Name

Description

id

A service-generated ID for the messaging
context. This ID is relevant only to the topology
API. Each element of the array will have a
different i d value. This field is always present.

connections

A JSON array of JSON objects, with each
element representing a distinct connection
created in the messaging context. If there are
no unclosed connections in the messaging
context, this field will not be present.

JSON Object for a Connection

A JSON object for a connection will contain at most the following fields:

Field Name

Description

name

The name under which the REST API client
created the connection. This field is always
present.

clientld

The connection’s client ID; if the connection
does not have a client ID, this field will not be
present.

started

A boolean that is t r ue if the connection is
currently started, and f al se otherwise. This
field is always present.

sessi ons

A JSON array of JSON objects, with each
element representing a distinct session
created from this connection. If there are no
unclosed sessions currently created from this
connection, this field will not be present.

t empor ar yQueues

A JSON array of JSON objects, with each
element representing a temporary queue
associated with this connection. If there are no
undeleted temporary queues associated with
this connection, this field will not be present.

t enpor aryTopi cs

A JSON array of JSON objects, with each
element representing a temporary topic
associated with this connection. If there are no
temporary topics associated with this
connection, this field will not be present.

ORACLE

3-2

ORACLE

JSON Object for a Session

Chapter 3
Topology API

A JSON object for a session will contain at most the following fields:

Field Name

Description

name

The name under which the REST API client
created the session. This field is always
present.

transact ed

A boolean that is t r ue if the session is
transacted, and f al se otherwise. This field is
always present.

ackMbde

A boolean indicating the acknowledgement
mode of the session. Its value is aut 0,
client, or dups_ok. This field will be present
if transact ed is f al se; otherwise, this field
will not be present.

sessi ons

A JSON array of JSON objects, with each
element representing a distinct session
created from this connection. If there are no
unclosed sessions currently created from this
connection, this field will not be present.

producers

A JSON array of JSON objects, with each
element representing a producer in this
session. If there are no unclosed producers in
this session, this field will not be present.

consuners

A JSON array of JSON objects, with each
element representing a consumer in this
session. If there are no unclosed consumers in
this session (other than durable subscribers),
this field will not be present. Consumers that
are durable subscribers will not appear in this
array.

dur abl eSubscri bers

A JSON array of JSON objects, with each
element representing a durable subscriber in
this session. If there are no unclosed durable
subscribers in this session, this field will not be
present.

queueBr owsers

A JSON array of JSON objects, with each
element representing a queue browser in this
session. If there are no unclosed queue
browsers in this session, this field will not be
present.

JSON Object for a Producer

A JSON object for a producer will contain at most the following fields:

Field Name

Description

name

The name under which the REST API client
created the producer. This field is always
present.

3-3

Chapter 3
Topology API

Field Name

Description

destination

The destination to which the producer sends
messages. If the producer has no associated
destination (so that the destination to which a
message is sent must be specified in the
send), this field will not be present. If present,
it will have one of the following formats:

e [queues/ queueName
- [topics/topi cName
« [tenporaryQueues/ queueNane
e [tenporaryTopics/topi cNane

timeToLi ve The time-to-live, in milliseconds, that is the
default time-to-live for messages sent by this
producer. This field will always be present, and
will be formatted as an integer, not a String.

del i veryMode A String giving the default delivery mode for

messages sent by this producer. This field will
always be present, and will have the value
per si st ent or non_per si stent .

JSON Object for a Consumer

A JSON object for a consumer (other than a durable subscriber) will contain at most

the following fields:

Field Name

Description

name

The name under which the REST API client
created the consumer. This field is always
present.

destination

The destination from which the producer
receives messages. This field will always be
present, and will have one of the following
formats:

e [queues/ queueName

- [topics/topi cName

- [tenporaryQueues/ queueNane

- [tenporaryTopics/topi cNane

sel ect or

The selector for the consumer. This field will
only be present if the consumer has a selector.

| ocal Mode

The local mode of the consumer, which
defines whether a consumer on a topic will
receive message sent on the same connection
the consumer was created from. If the
consumer is not on a topic or temporary topic,
this field will not be present. The default is for
topic consumers to receive all messages sent
to the topic that match their selector, so this
field will only be present if the consumer does
not receive messages sent on its connection,
in which case the field will be present, and will
have value NO_LOCAL.

JSON Object for a Durable Subscriber

ORACLE

3-4

ORACLE

Chapter 3
Topology API

A JSON object for a durable subscriber will contain at most the following fields:

Field Name Description

name The name under which the REST API client
created the consumer. This field is always
present.

destination The destination from which the producer

receives messages. This field will always be
present, and will have one of the following
formats:

e [topics/topi cName

e [tenporaryTopics/topi cNane

subscri pti onNane

The string that is the subscription name
corresponding to the subscriber.
Note: This is different from the nane field,

which gives the name by which REST API
clients refer to the subscriber.

sel ect or The selector for the consumer. This field will
only be present if the consumer has a selector.
| ocal Mode The local mode of the consumer, which

defines whether a consumer on a topic will
receive message sent on the same connection
the consumer was created from. If the
consumer is not on a topic or temporary topic,
this field will not be present. The default is for
topic consumers to receive all messages sent
to the topic that match their selector, so this
field will only be present if the consumer does
not receive messages sent on its connection,
in which case the field will be present, and will
have value NO_LOCAL.

JSON Object for a Queue Browser

A JSON object for a queue browser will contain at most the following fields:

Field Name Description
name The name under which the REST API client
created the queue browser. This field is
always present.
queue The queue that the browser browses. This
field is always present, and will have the
format / queues/ queueNamne.
sel ector The selector for the browser. This field will
only be present if the browser has a selector.
XML

The XML output for a GET from / nessagi ngcont ext s is an XML document with root
element <nessagi ngcont ext s>. The XML output for a given service instance is closely
analogous to the JSON in the following sense:

3-5

Chapter 3
Topology API

* Afield in JSON object with a certain name will be represented in XML by a child
element whose name is the same as the field name, and whose content
corresponds to that of the value of the field.

* The elements of a JSON array will be represented in XML as a sequence of
<i t ems> elements, with the content of the nth <i t ens> corresponding to the nth
value in the JSON array.

Viewing a Messaging Context

A user can view a single messaging context and all of its encapsulated ephemeral
resources by providing the messaging context's ID

Method: GET

Path: / messagi ngcont ext s/ messagi ngCont ext | D

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Returns the topology information of a single messaging context and all of its
encapsulated ephemeral resources.

Response Body: JSON or XML.

JSON

The output for a GET from / nessagi ngcont ext s/ nessagi ngCont ext | Dis a JSON object
that represents the messaging context with the specified ID. The output format is same
as described in the JSON output sections for messaging contexts. A 404 response is
generated if the service instance has no messaging context with the given ID.

XML

The XML output for a GET from / nessagi ngcont ext s/ messagi ngCont ext | Dis an XML
document with root element <nessagi ngcont ext s> whose content is XML
corresponding to the fields of a JSON object representing the messaging context with
the specific ID. A 404 response is generated if the service instance has no messaging
context with the given ID.

Sample Outputs of Topology API

ORACLE

This section provides sample outputs of the topology API.

Sample JSON Output

Sample JSON output from GET / messagi ngcont ext s for a service instance with two
messaging contexts:

[
{
"id":"19CB3BAI6AOBO6EB"
b
{
"id": " 7ELB3AAFO9D27170"

"connections": |

{

3-6

Chapter 3
Topology API

"nane":"conn348755961301170266"
"clientld":"topol ogyCl D2211817070735200489"
"started":true
"sessions": [
{
"name": "t opol ogySessi on6782049576740617368"
"transacted":true
"consuners"; [
{
"nane":"cons1986478156341504515"
"destination":"/topics/topol ogyTopi c1"
"sel ector":"propertyl195=232"

"name": "cons8406813156667706998"
"destination":"/topics/topol ogyTopi c2"
"l ocal Mbde": "NO_LOCAL"
}
1
"durabl eSubscri bers": [
{
"name": "sub8114000992284070555"
"destination":"/topics/topol ogyTopi c2"
"subscri ptionNanme": "subscr 668"
"l ocal Mbde": "NO_LOCAL"

"name": "sub8218579099988865396"
"destination":"/topics/topol ogyTopi c1"
"subscri ptionNanme": "subscr 819"
1
1,
"queueBrowsers": [
{
"name": " qb658303539525244693"
"queue": "/ queues/ t opol ogyQueuel"
"sel ector": "property499=195"

"name": " qb7987305899602893098"
"queue": "/ queues/ t opol ogyQueue2"
"sel ector":"property269=410"

"name": "t opol ogySessi on4005620455377307315"
"transacted": fal se
"ackMbde": "aut 0"
"producers": [
{
"name": " prod2624315421281685702"
"destination":"/queues/topol ogyQueuel"
"timeToLive": 1209600000
"del i veryMode": "non_persi stent"
1
1,
"dur abl eSubscri bers": |
{
"name": "sub1542678913898814730"
"destination":"/topics/topol ogyTopi c1"

ORACLE 3.7

ORACLE

Chapter 3
Topology API

"subscri ptionNanme": "subscr 765"

1
1,
"queueBrowsers": [
{
"name": " qb8302598228704858736",
"queue": "/ queues/ t opol ogyQueue0"
|3
{
"name": " qb4326110554531990221",
"queue": "/ queues/t opol ogyQueue3",
"sel ector":"propertyl197=858"
1
]
1
1,
"t enmpor aryQueues": [
{
"name" : " 68BC612EB343DBIA"
1

1
"t enpor aryTopi cs": [

"nane": " D1970C11C263F97D"

The JSON output of GET / messagi ngcont ext s/ 19CB3BA96A0B068B for this service
instance would therefore be:

{
}

“id":"19CB3BA96A0B063B"

Sample XML Output

Sample XML output for GET / messagi ngcont ext s in the same service instance as
above:

<nessagi ngcont ext s>
<itens>
<i d>19CB3BA96A0B068B</ i d>
<litenms>
<itens>
<i d>7E1B3AAF09D27170</ i d>
<connections>
<itens>
<name>conn348755961301170266</ name>
<client!d>topol ogyCl D2211817070735200489</ cl i ent | d>
<started>true</started>
<sessi ons>
<itens>
<name>t opol ogySessi on6782049576740617368</ nane>
<transact ed>t rue</transact ed>
<consuner s>
<itens>
<name>cons1986478156341504515</ nane>

3-8

Chapter 3
Topology API

<destination>/topics/topol ogyTopi c1l</destination>
<sel ect or >pr opert y195=232</ sel ect or >
</itenms>
<items>
<name>cons8406813156667706998</ name>
<destination>/topics/topol ogyTopi c2</ desti nation>
<l ocal Mbde>NO_LOCAL</| ocal Mode>
</itenms>
</ consurmer s>
<dur abl eSubscri ber s>
<items>
<name>sub8114000992284070555</ nane>
<destination>/topics/topol ogyTopi c2</ desti nation>
<subscri pti onName>subscr 668</ subscri pti onNane>
<l ocal Mbde>NO_LOCAL</| ocal Mode>
</itens>
<items>
<nane>sub8218579099988865396</ nane>
<destination>/topics/topol ogyTopi c1</ destination>
<subscri ptionName>subscr819</ subscri pti onNane>
</itens>
</ dur abl eSubscri ber s>
<queueBr owser s>
<items>
<nane>qh658303539525244693</ nane>
<queue>/ queues/ t opol ogyQueuel</ queue>
<sel ect or >pr oper t y499=195</ sel ect or >
</itens>
<items>
<nane>qh7987305899602893098</ nane>
<queue>/ queues/ t opol ogyQueue2</ queue>
<sel ect or >pr opert y269=410</ sel ect or >
</itens>
</ queueBr owser s>
</itens>
<items>
<nane>t opol ogySessi on4005620455377307315</ name>
<transact ed>f al se</transact ed>
<ackMbde>aut o</ ackMbde>
<producer s>
<items>
<nane>pr 0d2624315421281685702</ nanme>
<destination>/ queues/t opol ogyQueuel</ desti nation>
<timeToLi ve>1209600000</ti meToLi ve>
<del i ver yMode>non_per si st ent </ del i ver yMode>
</itens>
</ producer s>
<dur abl eSubscri ber s>
<items>
<name>sub1542678913898814730</ nane>
<destination>/topics/topol ogyTopi c1</ destination>
<subscri pti onName>subscr 765</ subscri pti onNane>
</itens>
</ dur abl eSubscri ber s>
<queueBr owser s>
<items>
<nane>qh8302598228704858736</ nane>
<queue>/ queues/ t opol ogyQueue0</ queue>
</itens>
<items>
<nane>qh4326110554531990221</ nane>

ORACLE 3-9

Chapter 3
Usage API

<queue>/ queues/ t opol ogyQueue3</ queue>
<sel ect or >pr opert y197=858</ sel ect or >
</itens>
</ queueBr owser s>
</itenms>
</ sessi ons>
<t enpor ar yQueues>
<items>
<name>68BC612EB343DBIA</ nane>
</itenms>
</t enpor ar yQueues>
<t enpor ar yTopi ¢s>
<items>
<name>D1970C11C263F97D</ nane>
</itenms>
</t enpor ar yTopi cs>
</itens>
</ connecti ons>
</itens>
</ messagi ngcont ext s>

The XML output of GET / nessagi ngcont ext s/ 19CB3BA96A0B068B for this service
instance would therefore be:

<nessagi ngcont ext >
<i d>19CB3BA96A0B068B</ i d>
</ messagi ngcont ext >

Usage API

The Usage API is a part of the Oracle Messaging Cloud Service REST API that
provides information about resource usage for a given Oracle Messaging Cloud
Service instance. The API provides information on both how much of certain resources
are being used, and on various limits how much those resources may be used.
Topics:

e About Usage API

e Sample Outputs of Usage API

About Usage API

ORACLE

This topic provides information about usage API.
Method: GET

Path: / usage

Scope: Service Instance

Authorization: Messaging Administrator

Response Body: An XML or JSON representation of resource usage and limits. The
format is chosen based on the value of the Accept header.

The response body of a call to the usage API contains the following information:

3-10

ORACLE

Chapter 3
Usage API

* How many connections, queues, topics, and durable subscriptions are currently
being used, and what are the maximum numbers of each that can be used for the
given service instance.

* The hard and soft quotas on destination backlogs. Note that the API returns only
the quotas, not the backlog sizes. For more information, see Hard and Soft Quotas

* Metering data: How many bytes of data have been sent out through the REST API
(the egress data) and the number of calls to the REST API in a particular period of
time. The egress data includes all bytes sent in HTTP responses, including status
line, headers, and the response body. The number of calls to the REST API
includes all HTTP requests made.

The information provided by the usage API will, in general, reflect the most recent
usage, but is not necessarily real-time. That is, changes to resource usage, metering
data, etc. that have just happened may not be reflected immediately.

The Usage API returns usage information for connections, queues, topics, and durable
subscriptions, and hard and soft quota limits for destination backlogs. The Usage API
also returns the most recent metering data which contains both the number of API
calls and egress bandwidth. The non-metered data is accurate to the last 30 seconds.
The metered data, api calls and egress bandwidth, are an aggregate over a time
period and each metered data section contains the respective start and end times for
the metered data. The metered data start and end times are in Coordinated Universal
Time (UTC). The destination backlog data is limited to returning the hard quota and
soft quota which applies to all destinations (queues and topics) for a service. The
backlog quotas apply to both the number of messages and total bytes of messages. If
the hard quota of either is exceeded, then sends will fail until the backlog falls below
the soft quota.

JSON Format

Usage information in JSON is expressed as a JSON object. The connection, queue,
topic, and durable subscription usage is given by the "connect i onCount ",
"queueCount ", "t opi cCount", and "dur abl eSubscri pti onCount" fields of the object
respectively. The value of each of these fields is a JSON object with a " nax" field
whose value is the maximum number of connections, queues, topics, or durable
subscriptions that may be used, and a "used" field whose value is the current number
of connections, queues, topics, or durable subscriptions in use (subject to the above

caveats about the data not being real-time).

Destination backlog limitations on number and number of bytes of messages are given
by the "dest i nati onBackl ogMessageCount " and "desti nati onBackl ogByt es" fields
respectively. The value of each of these fields is a JSON object with a " har dQuot a"
field whose value is the hard quota and a " sof t Quot a" field whose value is the soft
quota.

Metering data is given by a " net eri ngUsages" field whose value is a JSON array of
JSON objects. Each object in the array contains the metering data for a certain time
period, expressed as the following fields:

e "startTimeUc"

The value of this field is the first minute of the time period for the metering data,
expressed in Coordinated Universal Time (UTC).

e "endTimeUc"

3-11

ORACLE

Chapter 3
Usage API

The value of this field is the last minute of the time period for the metering data,
expressed in Coordinated Universal Time (UTC). The metering data will include all
metering for the entire minute. For example, if the end time is 2015- 07- 09T13: 09,
all API calls occurring at or after 13:09 but before 13:10 will be included.

e« "dataCenter"

The value of this field is the data center to which the metering data in the element
applies.

e "meteredResourceUsages"

A JSON array of JSON objects containing data on a given metered resource for
the given period and data center.

Each object in the " et er edResour ceUsages” array will have the following fields:
— "resourceNane"

The value of this field is the name of the resource whose data is being
reported. The value of this field will be either " EGRESS_DATA" or " APl _CALLS".

— "quantity"
The value of this field is an integer giving amount of the resource used.
— "units"

The value of this field is the unit of measurement for the value of the
"quantity" field. If the value of "r esour ceNanme" is " EGRESS DATA", the value
of "uni ts" will be "Byt es". If the value of "resour ceNane" is "API _CALLS", the
value of "units" will be "API Cal | s".

XML Format

The connection, queue, topic, and durable subscription usage is given by the
<connect i onCount >, <queueCount >, <t opi cCount >, and <dur abl eSubscri pti onCount >
elements respectively. Each of these elements contains a <nmax> element whose
content is the maximum number of connections, queues, topics, or durable
subscriptions that may be used, and a <used> element whose content is the current
number of connections, queues, topics, or durable subscriptions in use (subject to the
above caveats about the data not being real-time).

Destination backlog limitations on number and number of bytes of messages are given
by the <dest i nat i onBackl ogMessageCount > and <dest i nat i onBackl ogByt es>
elements respectively. Each of these elements contains a <har dQuot a> element
whose content is the hard quota and a <sof t Quot a> element whose content is the soft
quota.

Metering data is contained in <net eri ngUsages> elements. Each such element
contains the metering data for a certain time period, expressed as the following child
elements:

e <startTinmeUc>

The content of this element is the first minute of the time period for the metering
data, expressed in Coordinated Universal Time (UTC).

e <endTi melt c>

3-12

Chapter 3
Usage API

The content of this element is the last minute of the time period for the metering
data, expressed in Coordinated Universal Time (UTC). The metering data will
include all metering for the entire minute. For example, if the end time is
2015-07-09T13: 09, all API calls occurring at or after 13:09 but before 13:10 will be
included.

<dat aCent er >

The content of this element is the data center to which the metering data in the
element applies.

<met er edResour ceUsages>

One or more elements containing data on a given metered resource for the given
period and data center.

Each <net er edResour ceUsages> element will contain the following elements:
— <resourceName>

The content of this element is the name of the resource whose data is being
reported. The content of this element will be either EGRESS_DATA or APl _CALLS.

— <quantity>
The content of this element is an integer giving amount of the resource used.
— <units>

The content of this element is the unit of measurement for the content of the
<quantity> element. If the content of <r esour ceNane> is EGRESS DATA, the
content of <uni t s> will be Byt es. If the content of <r esour ceName> is

APl _CALLS, the content of <uni t s> will be APl Cal | s.

Sample Outputs of Usage API

ORACLE

This section provides sample outputs of the usage API.

Sample JSON Output

Sample JSON output of the usage API:

"connectionCount": {
"max": 200
"used": 3

}

ueueCount": {
"max": 10000
"used": 156

}

opi cCount": {
"max": 10000
"used": 156
¥
"dur abl eSubscri ptionCount": {
"max": 10000
"used": 53
}

estinationBackl ogMessageCount": {
"hardQuota": 100,
"softQuota": 70

h

3-13

Chapter 3
Usage API

"destinationBackl ogBytes": {
"hardQuota ": 52428800,
"softQuota ": 36700160

¥
"net eredUsages": [
{
"dataCenter": "dc",
"endTimelt¢": "2015-07-09T13: 09"
"net er edResour ceUsages": [
{
"quantity": 2425581,
"resourceNane": "EGRESS DATA",
"units": "Bytes"
¥
{
"quantity": 3426,
"resourceNane": "APl _CALLS",
"units": "APl Calls"
}
1,
"startTi meUtc": "2015-07-09T13: 00"
¥
{
"dataCenter": "dc",
"endTi neUtc": "2015-07-09T13: 19"
"net er edResour ceUsages": [
{
"quantity": 2425521,
"resourceNane": "EGRESS DATA",
"units": "Bytes"
¥
{
"quantity": 3426,
"resourceNane": "APl _CALLS",
"units": "APl Calls"
}
1,
"startTimeltc": "2015-07-09T13: 10"
}
]

}

Sample XML Output
Sample XML output of the usage API:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<usage>
<connecti onCount >
<max>200</ max>
<used>3</ used>
</ connect i onCount >
<queueCount >
<max>10000</ nax>
<used>156</ used>
</ queueCount >
<t opi cCount >
<max>10000</ nax>
<used>156</ used>
</t opi cCount >
<dur abl eSubscri pti onCount >

ORACLE 3-14

Chapter 3
About Escaped Value Strings

<max>10000</ max>
<used>53</ used>
</ dur abl eSubscri pti onCount >
<dest i nati onBackl ogMessageCount >
<har dQuot a>100</ har dQuot a>
<sof t Quot a>70</ sof t Quot a>
</ desti nati onBackl ogMessageCount >
<desti nati onBackl ogByt es>
<har dQuot a>52428800</ har dQuot a>
<sof t Quot a>36700160</ sof t Quot a>
</ destinati onBackl ogByt es>
<net er edUsages>
<startTi meUt ¢>2015- 07-09T13: 00</ st art Ti melt c>
<endTi meUt ¢>2015- 07- 09T13: 09</ endTi melt c>
<dat aCent er >dc</ dat aCent er >
<net er edResour ceUsages>
<resour ceName>EGRESS DATA</ r esour ceName>
<quantity>2425581</ quantity>
<uni t s>Byt es</ uni t s>
</ met er edResour ceUsages>
<net er edResour ceUsages>
<resour ceNanme>API _CALLS</ r esour ceNane>
<quantity>3426</quantity>
<uni ts>APl Cal | s</units>
</ met er edResour ceUsages>
</ met er edUsages>
<net er edUsages>
<startTi meUt ¢>2015- 07-09T13: 10</ st art Ti melt c>
<endTi melt ¢>2015- 07- 09T13: 19</ endTi melt c>
<dat aCent er >dc</ dat aCent er >
<net er edResour ceUsages>
<resour ceName>EGRESS DATA</ r esour ceName>
<quantity>2425521</ quantity>
<uni t s>Byt es</ uni t s>
</ met er edResour ceUsages>
<net er edResour ceUsages>
<resour ceNanme>API _CALLS</ r esour ceNane>
<quantity>3426</ quantity>
<uni ts>APl Cal | s</units>
</ met er edResour ceUsages>
</ met er edUsages>
</ usage>

About Escaped Value Strings

This topic provides information about escaped value Strings.

An escaped value String is a String that uses the following JSON conventions for
representing characters that may not legally occur in HTTP header values:

Escape Sequence Description

\\ The backslash character (\)

\b The backspace character (ctrl-H)

\ f The form-feed character (ctrl-L)

\n The new-line character (ctrl-J)

\r The carriage return character (ctrl-M)

ORACLE 3-15

Chapter 3

About Using the REST API
Escape Sequence Description
\t The tab character
\u<4 hexadecimal digits> The Unicode character whose encoding as an

unsigned base-16 integer is given by the 4
hexadecimal digits.

The following is an example:

Raw String Corresponding Escaped Value
String
<tab>\ding! <ctrl-G<ctrl-M<ctrl-J> \t\\ding!\u0007\r\n

Note that if a String s is a legal HTTP header value that contains no backslashes, the
escaped value String corresponding to s is the same as s.

About Using the REST API

Oracle Messaging Cloud Service can be accessed using the REST API.
Topics:

* Basics of the REST API

* Functional Areas of the REST API

* Understanding Messaging Context and Cookies
» Understanding Durable Subscriptions

e Understanding REST API Operations

» Understanding Concurrent Access to Resources
* Understanding Error Responses

* Understanding Anti-CSRF Measures

e HTTP Header for Messaging Service Version

e HTTP Header for Messaging Context ID

Before you begin using the REST API, be sure to review the guidelines in this section
as well as the guidelines in Considerations When Developing Applications That Use
Oracle Messaging Cloud Service and Using the REST API.

Basics of the REST API

ORACLE

Any application platform that understands HTTP can use Oracle Messaging Cloud
Service through the Representational State Transfer (REST) interface.

REST is an architectural style for making distributed resources available through a
uniform interface that includes uniform resource identifiers (URIs), well-defined
operations, hypermedia links, and a constrained set of media types. Typically, these

3-16

Chapter 3
About Using the REST API

operations include reading, writing, editing, and removing, and media types include
JSON and XML.

The REST API can be used from any environment connected to the Internet. REST
commands use standard HTTP methods to specify whether the resource named by
the URI is being read (GET), created (PUT), modified (POST), or deleted (DELETE). REST
APIs can be used from any platform and by any development technology that can
make HTTP requests and receive HTTP responses.

Oracle Messaging Cloud Service provides a REST API by which applications can
access the service using HTTP. The REST API resources are modeled after Java
Message Service (JMS). Various objects used in JMS, such as Queue, Topi ¢, Sessi on,
MessagePr oducer, MessageConsuner, and so on, are resources in the REST interface
with a subset of the properties and methods in JIMS. In the REST interface, however,
the resources corresponding to these objects are referred to by names supplied by the
client, rather than as Java object references.

Structured information supplied as parameters to or returned by Java methods is
represented as query string parameters, HTTP headers, or JSON or XML data in
HTTP request or response bodies. All message metadata supported by JMS is
represented as custom HTTP headers. In addition, some HTTP metadata, such as the
Cont ent - Type of an HTTP request to send a message, may be passed along in the
payload of the generated JMS message, and is used to set headers of the HTTP
request or response that delivers the message to a REST client or HTTP endpoint.

Functional Areas of the REST API

The operations in the Oracle Messaging Cloud Service REST API can be divided into
two functional areas:

* Resource Management API

The Resource Management API is used to manage resources such as
destinations, and message push listeners, and to control expiration of cookies.

e Message Transmission API

The Message Transmission API involves ephemeral resources (connections,
sessions, producers, consumers, queue browsers, and temporary destinations)
that are created by explicit client action. If a messaging context expires, or the
server that created the messaging context goes down, then a client using
Message Transmission APl methods may have to be prepared to detect that
ephemeral resources have been lost and recreate them.

It is important to note, however, that client acknowledgements and transactions
are associated with sessions. If the messaging context containing a session
expires, or the server that created the messaging context goes down, then any
unacknowledged messages become available for receipt by other clients, and any
receives or sends in a transacted session that have not been committed are
rolled back.

Understanding Messaging Context and Cookies

ORACLE

A messaging context is a container of ephemeral objects like connections, sessions,
producers, consumers, temporary destinations, and queue browsers.

A messaging context is identified by the JSESSI ONI D cookie. The only API specific to a
messaging context is the API for getting and setting the MII, which controls the

3-17

Chapter 3
About Using the REST API

expiration time of the messaging context. When the messaging context expires, all
ephemeral objects contained in it are closed and deleted, except temporary
destinations. A temporary destination is closed only if the connection by which the
temporary destination was created is closed.

At least one messaging context must be created by a client in order to access Oracle
Messaging Cloud Service. If an HTTP request does not include a JSESSI ONI D cookie
for an unexpired messaging context, then a new messaging context is created. The
HTTP response includes the header X- OC- NEW MESSAG NG CONTEXT: true if a new
messaging context is created.

REST clients can detect if a messaging context has expired or the server that created
the messaging context has gone down by looking for this header. Server failures may
cause messages to be delivered multiple times, and clients must be aware of, and
possibly compensate for, duplicate delivery.

Clients that want to handle client failures gracefully should store the value of the
JSESSI ONI D cookie in durable storage so that a client that is reactivated after a failure
can reread the JSESSI ONI D cookie value from the durable store and access the
messaging context that the client was using before the failure, if the messaging
context has not expired. If this is not done, then reactivated clients get a new
messaging context, with the same problems described in Messaging Context and
HTTP Cookies, that is, unnecessarily holding connections and having no access to
previously created ephemeral objects.

Understanding Durable Subscriptions

Clients that use durable subscriptions must supply a client ID for a connection
which, along with a subscription name, identifies the durable subscription. There are
restrictions on the use of a given client ID:

* When a client uses the Resource Management API to set a client ID on a
connection, that client ID may not be used by any other connection until the
messaging context expires or the connection is deleted. This is an additional
reason why clients must store and send the JSESSI ONI D cookie, and store the
JSESSI ONI D cookie value in durable storage. If a client ID is set on a connection,
and the JSESSI ONI D cookie for that connection's messaging context is lost, then
the client ID set on the connection cannot be used by any other client or listener
until the messaging context whose cookie was lost expires.

* When a message push listener receives messages from a durable subscription,
the client ID it uses may not be used by any other connection as long as the
message push listener is in existence.

Understanding REST API Operations

ORACLE

The description of an operation of the REST API specifies the method and path for the
HTTP request, which user roles are authorized to perform the operation (that is,
Messaging Administrator or Messaging Worker, or either role) and the expected result
of a successful operation. A description may, in addition, specify the following:

e Parameters that may or must be supplied in the HTTP request
e HTTP headers that may or must be present on the HTTP response
e How the HTTP request body is used

e What may or must be returned in the HTTP response body

3-18

Chapter 3
About Using the REST API

* What errors may be returned (other than, or more specific than, the generic codes
described in REST APl HTTP Status Codes and Error Messages Reference)

The path specified for an operation is the part of the URL that comes after servi ce
name-identity domai n nane/ api/vl. For example, if a tenant with the identity domain
name "CloudBank" has a service with the name "OnlineBanking", and a client for that
tenant wants to invoke an operation for path / queues, then the following is the HTTP
request to a URL:

https://messagi ng. dat aCent er. or acl ecl oud. coni Onl i neBanki ng- G oudBank/ api / v1/ queues

Components of the path must always consist solely of letters of the Roman alphabet (a
through z or A through Z), decimal digits (0 through 9), and underscores ('_"). No other
characters are allowed. In particular, these restrictions apply to the names of queues,
topics, and listeners.

In this document, the term parameter is a value supplied in an HTTP request that is
not in the request body. Parameters may be supplied as query string parameters or as
HTTP headers. The parameters that are recognized by Oracle Messaging Cloud
Service are listed in REST API Parameters Reference. Throughout this document,
parameters are listed by their query string name.

For HTTP responses that do not return messages, the format of the body in the HTTP
response is determined by the Accept header of the HTTP request to which it is a
response. For some paths, the service may be able to generate a body in the JSON
format, with Cont ent - Type header appl i cati on/j son, or in an XML format, with

Cont ent - Type header appl i cati on/ xm . XML is generated if both are equally
acceptable. All HTTP requests should therefore have their Accept headers set so that
one or both of appl i cati on/j son and appl i cati on/ xm are acceptable, and so that
application/xm is acceptable unless the path also supports the JSON format. For
responses that do not return a message, and which can return a response body in
JSON or XML, if the media type corresponding to the JSON or XML is not acceptable
by the Accept header, the response sent will have status code 406 (Not Acceptabl e).

For requests whose response is a message, the Accept header is ignored. A message
is returned even if the Cont ent - Type does not match the Accept header, rather than a
406 response being returned. Clients that want to ensure that they do not receive
certain messages should use message properties and selectors to filter messages
they do not want to receive.

Understanding Concurrent Access to Resources

ORACLE

This section provides information about restrictions on concurrent access to Oracle
Messaging Cloud Service resources like connections, sessions, producers,
consumers, destinations, and queue browsers.

Ephemeral objects like sessions, producers, consumers, and queue browsers should
not be accessed by multiple client requests concurrently. For example, there should
not be multiple client requests to send a message through the same producer at the
same time, nor multiple client requests to receive messages from the same consumer
at the same time.

Multiple sessions can be created from a given connection. In this case, different client
requests can access different sessions concurrently.

Multiple producers, consumers, and queue browsers can be created with a given
session, and different client requests can access different producers and consumers

3-19

Chapter 3
About Using the REST API

concurrently, as long as no two requests are accessing the same producer, consumer,
or queue browser concurrently.

Connections and destinations can be accessed by multiple client requests
concurrently.

In the above statements, the term access refers to both invoking a method on a
resource's path and referencing a resource as a request parameter. For example,
clients should not have two concurrent requests to create a temporary queue that
supply the same sessi on parameter.

Note that these restrictions are not enforced by the service; they must be followed by
the client.

Understanding Error Responses

ORACLE

When a status code greater than or equal to 400 is sent in a response, the body of the
response is a JSON or XML document that specifies an error message (unless the
response is a 406 error to a request that does not accept appl i cati on/j son or
application/xm). The JISON format would be as follows:

{
"httpStatusCode": statusCode,

"httpMessage": "status |ine reason phrase for the code",
"errorCode": "urn:oracle:cloud: errorcode: messagi ng: error key",
“errorMessage": "error message"

"exceptionCass": " full Java class nane of the exception”,
"exceptionMessage": "message enbedded in the exception”,

The XML format would be as follows:

<error>
<ht t pSt at usCode>st at us code</ htt pSt at usCode>
<httpMessage>status |ine reason phrase for the code</httpMessage>
<error Code>urn: oracl e: cl oud: errorcode: messagi ng: error key</ error Code>
<errorMessage>error nessage</errorMessage>
<exceptionC ass>full Java class name of the exception</exceptionC ass>
<exceptionMessage>message enbedded in the exception</exceptionMessage>
<lerror>

In this document, the error that is returned by a given method, interface, or the API as
a whole is specified by giving the error key for the error. The error key is the last
component of the URN error code; the error code is the value of the err or Code field of
the JSON format or the content of the <err or Code> element of the XML format. The
error key determines the HTTP status code, which in turn determines the HTTP
message, and determines the format of the error message. The actual error message
may contain dynamically determined data.

The exceptionC ass and except i onMessage fields of the JISON format or the content
of the <excepti onCl ass> and <except i onMessage> elements of the XML format may
or may not be displayed. These two fields or elements are displayed only if the error
was caused by a Java exception thrown on the server side. They indicate the class
and message of a Java exception that caused the error response.

Error responses may be specified for the entire REST API (in REST API HTTP Status
Codes and Error Messages Reference), for a set of methods in the API, or for a

3-20

ORACLE

Chapter 3
About Using the REST API

specific method (for example, the Create a Session method). Each error specification
gives the error key, and gives any explanation of the circumstances under which the
error occurs that is more specific than that included with the error key listing in Error
Keys, Status Codes and Error Messages. For example, in the Create a Session
method, there is a specification of the error response, as follows:

sessi onAl r eadyExi sts

A session with the given name already exists.

This means that if, for example, a request were made to create a session hamed s,
and a session with that name already existed, then the HTTP response would have
status code 409 and the following response body in JISON:

{
"httpStat usCode": 409,
"htt pMessage": "Conflict",
“errorCode": "urn:oracle:cloud: errorcode: messagi ng: sessi onAl r eadyExi sts",
"errorMessage": "Session 's' already exists"
}

The response body in XML is as follows:

<error>
<htt pSt at usCode>409</ ht t pSt at usCode>
<htt pMessage>Conf i ct </ htt pMessage>
<error Code>urn: oracl e: cl oud: errorcode: messagi ng: sessi onAl r eadyExi st s</ error Code>
<errorMessage>Session 's' already exists</errorMssage>
<lerror>

Localization of Error Messages

When Oracle Messaging Cloud Service encounters an error, a descriptive error
message is returned in the body of the HTTP response. Oracle Messaging Cloud
Service supports localized error message, which can be used to provide a preferred
language for the error message descriptions. Note that only the content which is
displayed in the error Message field (in JISON)/ the <err or Message></ er r or Message>
element (in XML) is localized. Other content of the error response such as the
exception messages may not be localized.

To specify your preferred language for the error message descriptions, you should use
the Accept - Language header in the HTTP request.

The following languages are supported:

Language Code
US English en-US
German de
Spanish es
French fr

3-21

Chapter 3
About Using the REST API

Language Code
Italian it
Japanese ja
Korean ko
Brazilian Portuguese pt - BR
Chinese zh-CN
Taiwan Chinese zh-TW

The default language for error message descriptions is US English. If you use the
Accept - Language header and specify a language which is currently not supported,
then the error message descriptions will be returned in US English by default.

When a client's Accept - Language header specifies only a language, Oracle Messaging
Cloud Service will localize to a supported locale that includes that language if one
exists. For example, if the Accept - Language header is set to en, the error message
descriptions will be returned in en- US; if it is set to pt , the error message descriptions
will be returned in pt - BR; if it is set to zh, the error message descriptions could be
returned either inzh- CN or zh- TW

Understanding Anti-CSRF Measures

ORACLE

To prevent Cross-Site Request Forgery (CSRF) attacks, Oracle Messaging Cloud
Service generates pseudorandom anti-CSRF tokens for each messaging context.

For requests with methods, the REST API provides the capability to enable the
generation and use of an anti-CSRF ID token according to the following rules:

e Onaclient's initial HTTP request to the REST API, if the ID token is not explicitly
disabled by the request, then a pseudorandom ID token is generated by the
service and returned to the client as the value of the X- OC- | D- TOKEN header. The
initial request may disable the ID token by including the header X- OC- | D- TOKEN-
STATUS: di sabl ed.

If this header is in the initial request, no ID token is generated or stored or returned
in the response.

* Whenever a request is received when ID tokens are enabled and an ID token
value has been previously generated, the previously generated ID token is
compared with the value of the X- OC- | D- TOKEN header in the request. If there is no
such request header, or if its value does not match the previously generated ID
token, then the service sends a response with status code 400 and the error
message "Missing or incorrect X-OC-ID-TOKEN" (as listed in REST API HTTP
Status Codes and Error Messages Reference), and no further processing of the
request is performed.

3-22

Chapter 3
About Using the REST API

If a request is received when ID tokens are enabled and an ID token value has
been previously generated, and the request has the correct X- OC- | D- TOKEN header
value, and the request contains the header X- OC- | D- TOKEN- STATUS: di sabl ed,
the previously generated ID token is discarded, and the ID token is disabled on
subsequent requests.

If a request is received when the ID token is disabled, and the request contains the
header X- OC- | D- TOKEN- STATUS: enabl ed then a pseudorandom ID token is
generated by the service and returned to the client as the value of the X- OC- | D-
TOKEN header, and the ID token is enabled for subsequent requests.

Take note of the following additional rules:

An X- OC- | D- TOKEN- STATUS header that enables the ID token when the ID token is
already enabled, or that disables the ID token when it is already disabled, has no
effect on the ID token's enabling or disabling.

The ID token is returned only in response to the request (initial or subsequent) that
enables the ID token for the associated messaging context. The client must save
the value to be able to submit it in subsequent requests, or the client will be unable
to re-use the associated messaging context and any of its encapsulated
ephemeral objects, like connections, sessions, producers, and consumers.

If the ID token is currently enabled, then disabling the token requires that the
current ID token be supplied by the request.

Enabling and disabling the ID token is done "out of band" from the other
processing of a given request, prior to the normal processing of the request. Even
if a request's normal processing fails (for example, an attempt is made to create a
queue that already exists, or delete a listener that doesn't exist), the enabling or
disabling of the ID token will occur according to the rules described earlier. In
particular, even if a request that enables the ID token generates an error response
with status code 400 or greater, the response will still have an X- OC- |1 D- TOKEN
header containing the new ID token.

Applications which use the REST API that the developer feels do not need anti-
CSRF measures can send the disabling header in the client's initial request to the
service and subsequently take no account of anti-CSRF measures. If there is a
chance that a connection might expire between accesses by such a client, the
client may either check for the generation of an anti-CSRF token and disable it via
a subsequent request or send the disabling header on every request.

HTTP Header for Messaging Service Version

The Oracle Messaging Cloud Service provides an HTTP response header X- OC-
VESSAG NG- SERVER- VERSI ON that specifies the version of the Oracle Messaging Cloud
Service being run by the server to which the client is connected.

The value of the header X- OC- MESSAG NG SERVER- VERSI ON is a dot-delimited list of
integers, for example, 15.2.5.0.0.

HTTP Header for Messaging Context ID

The Oracle Messaging Cloud Service provides an HTTP response header X- OC-
MESSAG NG- CONTEXT- | Dwhose value is the ID of the messaging context associated
with the response.

ORACLE

3-23

Chapter 3
Resource Management API

The HTTP header X- OC- MESSAG NG CONTEXT- | D indicates the internal, pseudorandom
ID for the messaging context associated with the response. This header is only
returned in the response to the request that creates the messaging context.

Resource Management API

The Resource Management API provides functionality to create and manage
destinations, and message push listeners.

Topics:
e Creating and Managing Destinations

e Creating and Managing Message Push Listeners

Creating and Managing Destinations

This section provides information about creating and managing destinations in Oracle
Messaging Cloud Service.

Topics:

* Create a Destination

e List Destinations

* Retrieve Destination Properties

¢ Remove a Destination

Create a Destination

This section provides information about creating a destination.

Names of queues or topics must always consist solely of letters of the Roman
alphabet (a through z or A through Z), decimal digits (0 through 9), and underscores
('_". No other characters are allowed.

Method: PUT

Path:

e To create a queue, the path is / queues/ queueNarne

» To create a topic, the path is / t opi cs/t opi cName
Scope: Service Instance

Authorization: Messaging Administrator

Result: Create a queue or topic with the supplied name.

Error Responses:

Error Message Description

destinati onAl readyExi sts A destination of the specified type with the
specified name already exists.

ORACLE 3-24

Chapter 3
Resource Management API

Error Message Description

maxQueuesReached A request was made to create a queue, but
the number of queues is already at the
maximum for the service.

max Topi csReached A request was made to create a topic, but
the number of topics is already at the
maximum for the service.

See Create a Queue and Create a Topic for example HTTP requests which create
destinations.

List Destinations

ORACLE

This section provides information about listing destinations.

Method: GET

Path:

* To list queues, the path is / queues

e To list topics, the path is / t opi cs

Scope: Service Instance

Authorization: Messaging Administrator

Result: Returns a listing of all queues or topics in the service instance.

Response Body: XML or JSON. The XML format has one element for each
destination of the appropriate type.

For queues, the format in JSON is as follows:

{
"items": [
{
"name": "name"
"status": "status",
"canoni cal Link": "relative path to queue"
b
1
"canoni cal Link": "relative path to queue list"
}

The format for queues in XML is as follows:

<gqueues>
<itens>
<name>nanme</ nane>
<stat us>st at us</ st at us>
<canoni cal Li nk>rel ative path to queue</canoni cal Li nk>
<litenms>

<canoni cal Link>rel ative path to list of queues</canonical Li nk>
</ queues>

3-25

Chapter 3
Resource Management API

For topics, the format in JSON is as follows:

{
"items": [
{
"name": "name",
"status": "status"
"canoni cal Link": "relative path to topic"
¥
1,
"canoni cal Link": "relative path to topic list"
}

The JSON format for listing topics is the same as that for listing queues except that the
canoni cal Li nk properties are different.

The format for topics in XML is as follows:

<t opi cs>
<items>
<nane>nane</ nane>
<st at us>st at us</ st at us>
<canoni cal Li nk>rel ative path to topic</canonical Li nk>
<[itenms>

<canoni cal Li nk>rel ative path to Iist of topics</canonicalLink>

</topics>

In all cases, name is the name of the destination of the given type and status is
MARK_FOR_DELETI ON if the destination still exists in the JMS broker but has been
marked for deletion (and thus is in the process of being deleted), and is PROVI S| ONED
otherwise. If a destination has been marked for deletion, then it cannot be used, but it
is also not possible to create a destination of a given type with the marked
destination's name until the marked destination has been deleted (and thus does not
appear in the output of this method).

Retrieve Destination Properties
This section provides information about retrieving destination properties.
Method: GET
Path:

* To get the properties of a queue, the path is / queues/ queueName
* To get the properties of a topic, the path is / t opi cs/ t opi cName

Authorization: Messaging Administrator
Scope: Service Instance

Request Parameter:

ORACLE 3-26

ORACLE

Chapter 3
Resource Management API

Parameter Description
back! og The value must be t r ue or f al se. The default value is
fal se.

A destination’s backlog size is the number of messages
currently stored for the destination.

Every destination in Oracle Messaging Cloud Service
has a maximum backlog size of 100,000 messages.
Attempts to send messages to a destination with a
backlog of 100,000 messages will fail. The value
reported for a queue's backlog size may be up to 30
seconds old.

Note that the backlog feature is currently available only
for queues.

Result: Returns the properties of the destination with the specified name. When
retrieving a queue’s properties, if backl og is set to tr ue, the HTTP response body
includes a backl ogSt at s element for XML and JSON response types, respectively.

Response Body: For queues, the format in JSON is as follows:

{
"name": "nane",
"status": "status",
"canoni cal Link": "relative path to queue"
"backl ogStats" : {
“current" : "size of the destination's backlog"
}

}

The format in XML is as follows:

<queue>
<nane>nanme</ nane>
<st at us>st at us</ st at us>
<canoni cal Li nk>rel ative path to queue</canoni cal Li nk>
<backl ogSt at s>
<current>si ze of the destination's backl og</current>
</ backl ogSt at s>
</ queue>

For topics, the JSON format is the same, but with the appropriate value of the
canoni cal Li nk property. The format in XML is as follows:
<t opi ¢>

<nane>name</ nane>

<st at us>st at us</ st at us>

<canoni cal Li nk>rel ative path to topic</canonical Li nk>
</t opi c>

The value and interpretation of status are as in the List Destinations method.

Error Response:

3-27

Chapter 3
Resource Management API

Error Message Description
dest i nat i onNot Found The destination whose properties are requested does not
exist.

Remove a Destination

This section provides information about removing destinations.

Deleting a destination is a non-blocking operation. For more information, refer to About
Destination Deletion.

Method: DELETE
Path:
e To delete a queue, the path is / queues/ queueNane

e To delete a topic, the path is / t opi cs/ t opi cNane

Scope: Service Instance
Authorization: Messaging Administrator
Result: Deletes the destination with the given name.

Error Response:

Error Message Description
desti nati onNot Found The destination whose deletion is requested does not
exist.

Creating and Managing Message Push Listeners

This section provides information about creating and managing message push
listeners in Oracle Messaging Cloud Service.

Topics:

e Create a Listener
* Delete a Listener
e List Listeners

* Retrieve Listener Properties

Create a Listener

ORACLE

This topic provides information about creating a listener. The name of a listener must
always consist solely of letters of the Roman alphabet (a through z or A through Z),
decimal digits (0 through 9), and underscores ('_"). No other characters are allowed.

Method: PUT

Path: /i steners/|istenerName

3-28

ORACLE

Chapter 3
Resource Management API

Scope: Service Instance
Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

verificationToken A token used in message push listener verification.
The value of the veri fi cati onToken parameter is
a string which is passed along with the message
push listener verification request as the X- OC- MPL-
VERI FI CATI ON header.

Note: The X- OC- MPL- VERI FI CATI ON header is a
header that the service sends to the endpoint.

Request Body: An XML document that specifies the following:

e The URI to which to push messages, with any associated parameters to the push.
e The selector, if any, the listener should apply to filter the messages it receives.

e The existing durable subscription, if any, on which the listener should listen for
messages.

e The policy the listener should follow if an attempt to push a message fails.

Note:

The XML document should not contain a DOCTYPE declaration. If a DOCTYPE
declaration is included in the XML document, a 500 operati onFai |l ed
response is returned. This is done to prevent certain security and Denial of
Service (DoS) attacks.

See Create a Message Push Listener for an example HTTP request which creates a
message push listener.

The root of the document is <l i st ener >. The root must contain a single <ver si on>
whose content is the version of the listener XML. For the current release, the version
must be 1.0. The root must also contain exactly one <nanme> element whose content is
listener name. The root may also contain a single <sour ce> element whose content
specifies the queue or topic on which the listener listens for messages. If present, its
content must be one each of the following elements:

* <type>

The content must be either queue or t opi c.
e <pame>

The name of the queue or topic.

If the <sour ce> element is not present, the <l i st ener > element must contain a
<subscri pti on> element. Note that the <sour ce> element implicitly specifies a non-
temporary queue or topic. Message push listeners may not listen on temporary
gueues or topics.

3-29

ORACLE

Chapter 3
Resource Management API

The root must contain exactly one <t ar get > element, 0 or 1 <sel ect or > elements, 0
or 1 <subscri pti on> elements, and 0 or 1 <f ai | urePol i cy> elements; order of all
child elements is irrelevant. If a <subscri pti on> element is present, there can be
neither a <sour ce> nor a <sel ect or > element, as both the destination and selector, if
any, is determined by the subscription.

The <t ar get > element specifies the URI to which the listener pushes messages; it
must contain at most one of each of the following elements:

e <uri>

There must be exactly one such element. The content is the URI to which to push,
which must be one of the following types:

— AnHTTP or HTTPS URL

— A URN of the form ur n: or acl e: cl oud: messagi ng: queues: queueName or
urn: oracl e: cl oud: nessagi ng: t opi cs: t opi cNarre.

A URI of the first type indicates that the listener should push to an HTTP or
HTTPS endpoint. A URI of the second type indicates that the listener should send
the message to a queue or topic; the fifth colon-separated component specifies
whether the destination is a queue or topic, and the last colon-separated
component specifies the name of the queue or topic. It is expected that targets of
the latter form will usually occur as targets to which to push a message after an
HTTP or HTTPS push has failed, but this is not required.

Message push listeners will not follow HTTP redirects. An HTTP redirect response
from a user-specified URL will be treated as an error as described in the
explanation of the <f ai | ur ePol i cy> element below.

e <met hod>

The content is the HTTP method to use for the push if the <uri > contains an HTTP
or HTTPS URI. Only the POST and PUT methods will work; the default is POST. This
element is optional, and must be omitted if the URI is not an HTTP or HTTPS URI.

e <user >

The user to use for HTTP authentication if <uri > contains an HTTP or HTTP URI.
This element is optional, and must be omitted if the URI is not an HTTP or HTTPS
URI. There is no default value.

e <password>

The password to use for HTTP authentication if <uri > contains an HTTP or HTTP
URI. This element must be present if and only if the <user > element is present.
There is no default value.

The <t ar get > element may contain an arbitrary number (including 0) of <header >
elements; these elements are ignored if the target is not an HTTP or HTTPS target.
Each <header > element must contain exactly one <nanme> and <val ue> element. The
content specifies a value for the header with name given by the content of the <nane>
element and value given by the content of the <val ue> element. Multiple <header >
elements with the same <nane> content are allowed; those after the first with a given
name add headers rather than overwriting the earlier headers. The <name> element's
content may not begin with "X-OC-" (case-insensitive). The <name> element's content
must be a legal HTTP header name and the <val ue> element's content must be a
legal HTTP header value. If the <nane> element contains Cont ent - Type (case-
insensitive), the value is ignored, unless the message being pushed has type HTTP and
does not specify a Cont ent - Type. Otherwise, the Cont ent - Type header of a message

3-30

ORACLE

Chapter 3
Resource Management API

push request is determined by the message. If the <nane> element contains Cont ent -
Language (case-insensitive), the value assigned by the listener is overridden if the
message being pushed has type HTTP and specifies the Cont ent - Language.

The content of the <sel ect or > element is used as the JMS selector for the listener.
For the syntax of selectors, see the Message Selectors section of the Java API
reference for the j avax. j ns. Message class.

The <subscri pti on> element must contain one of each of the following elements:
o <clientld>

The content is the client ID of the durable subscription to use.
o <nane>

The content is the name of the subscription.

If present, this element specifies an existing durable subscription whose messages the
listener should receive and push.

Note:

If there is a listener listening on a durable subscription, no other client or
listener is able to use the same client ID, even with a different subscription
name. Thus, any client ID used with a listener should be dedicated to that
listener, and only one durable subscription can be used for that client ID.

The <fai | urePol i cy> element, if present, specifies what the listener does if its attempt
to push a message to a URI fails. If no <f ai | urePol i cy> element is present, a
message whose push fails is discarded. If present, <f ai | ur ePol i cy> must contain O or
more <f ai | ur e> elements. Each <f ai | ur e> element specifies the kind of push failures
to which it applies, and what to do in case of the given failure. If a push fails, the

<fai | ure> element that is first in document order that applies to the failure is used to
determine what action is taken. If no <f ai | ur e> element applies (in particular, if the
<fai | urePol i cy> element contains no <f ai | ur e> elements), the message is
discarded.

A <fai | ur e> element must contain exactly one <cond>. Its content must be one of the
following:

e connection: this value indicates that the <f ai | ur e> element applies if the target
URI was an HTTP or HTTPS URL and the listener was unable to establish a
connection to the specified endpoint, or the host and port specified by the URL
was not an HTTP endpoint.

* responseCode: n-m, in which n and m are positive integers: a value of this form
indicates that the <f ai | ur e> element applies if the target URI was an HTTP or
HTTPS URL, a connection was successfully made to the specified HTTP endpoint,
and the response code is greater than or equal to n and less than or equal to m.
Note that, regardless of the values of n and m, the <f ai | ur e> element will only
apply if the response status is 300 or greater. HTTP requests to push messages
will not follow redirects, and will generate a r esponseCode error.

e responseCode: n: this is equivalent to r esponseCode:n-n.

3-31

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

ORACLE

Chapter 3
Resource Management API

* send: this value indicates that the <f ai | ur e> element applies if the target URI was
a URN specifying a queue or topic, and the attempt to send failed.

e maxHops: this value indicates that the <f ai | ur e> element applies if the target URI
was a URN specifying a queue or topic, and the message had already been
pushed by a listener to a queue or topic the maximum number of times allowed
(currently 8).

e any: this value indicates that the <f ai | ur e> element applies to any of the above
failure types.

A <fai |l ure> element may contain 0 or 1 <wai t > elements.

The <wai t > element must contain exactly one <t i me> element. The content of the

<ti me> element must be a non-negative integer, and is interpreted as a number of
milliseconds to wait before attempts to push the message again. The allowed content
of a <wai t > element, other than <t i me>, is the same as that of <l i st ener >, except that
<t ar get > is not required. If there is no <t ar get > element, it is equivalent to the

<t ar get > element being the same as that of the nearest enclosing <l i st ener> or

<wai t > element. After waiting the specified wait time, the listener then behaves as if it
were a listener whose content is that of the <wai t >; it attempts to push the message to
the URI specified by its <t ar get >, and, if that fails, applies the failure policy specified
by its <f ai | ur ePol i cy> child, if any. Note that the <f ai | ur ePol i cy> of the parent is
not inherited; successive push attempts use the <f ai | ur ePol i cy> at the appropriate
level. Thus, a listener will never retry forever; if all push attempts for a given message
fail, the message will eventually be discarded.

If a message received by a listener is pushed to a queue or topic, the type and content
of the message is preserved. All properties will also be preserved, with the following
exceptions:

e The X_OC_PushCount property will either be set to 1, if it is not present, is not an
integer, or is a negative integer; otherwise, it will be incremented by 1. This
property is used by listeners to track how many times the message has been re-
sent to a queue or topic by a listener. If the incoming message's X_0OC_PushCount
is 8 or greater, and the listener is directed to push it to a queue or topic, it will
instead cause a failure that can be handled by a <f ai | ur e> element containing a
<cond>maxHops</ cond> element.

e The ID of the received message is set as the X OC Past JMSMessagel DN property of
the outgoing message, where N is 1 less than the value of the X_OC_PushCount
property on the outgoing message.

e The destination header of the received message, expressed as a String of the
form / queues/ queueNarre or / t opi cs/t opi cNane, is set as the
X_OC _Past JMSDest i nat i onN property of the outgoing message (N as above).

* The value of the timestamp header of the received message is set as the
X_OC_Past JMSTi mest anpN property of the outgoing message (N as above).

* The value of the "redelivered" header of the received message is set as the
X_OC _Past JMSRedel i ver edN property of the outgoing message (N as above).

The correlation ID, reply-to, and delivery mode of the received message is set as the
corresponding headers of the outgoing message. The message is sent with a time-to-
live that will make it expire at roughly the same time as the received message.

For example:

3-32

Chapter 3

Resource Management API

<listener>
<versi on>1. 0</ versi on>
<nane>nyLi st ener </ nane>
<source>
<t ype>queue</type>
<name>nyQueue</ name>
</ source>
<target >
<uri>http://myHost/receiver</uri>
<met hod>PUT</ net hod>
<user>u</ user>
<passwor d>guest </ passwor d>
<header >
<name>X- Pl N</ nanme>
<val ue>123456</ val ue>
</ header >
</target>
<sel ector>(urgency = "high') AND (count &t; 5)</selector>
<failurePolicy>
<failure>
<cond>connecti on</ cond>
<wai t >
<ti me>5000</ti me>
<failurePolicy>
<failure>
<cond>any</ cond>
<wai t >
<time>0</tinme>
<target >
<uri>http://myBackupHost/deadlLetter</uri>
</target>
</ wai t>
</failure>
</failurePolicy>
</ wai t>
</failure>
<failure>
<cond>r esponseCode: 500- 599</ cond>
<wai t >
<time>0</tinme>
<target >
<uri>http://myBackupHost/deadLetter</uri>
</target>
</ wai t>
</failure>
<failure>
<cond>r esponseCode: 401- 499</ cond>
<wai t >
<time>0</tinme>
<target >
<uri>urn:oracle: cl oud: messagi ng: queues: unpushed</ uri >
</target>
<failurePolicy>
<failure>
<cond>send</ cond>
<wai t >
<time>0</tinme>
<target >

<uri>urn:oracl e: cl oud: messagi ng: t opi cs: backup</uri>

</target>
</ wai t >

ORACLE

3-33

Chapter 3
Resource Management API

</failure>
</failurePolicy>
</ wait>
</failure>
</failurePolicy>
</listener>

This listener listens for messages sent to the queue nmyQueue whose ur gency property
has the value hi gh and whose count property has value less than 5. (The ur gency and
count properties of a message sent via the REST API, if present, would be set to the
value of the X- OC-t ype- PROPERTY- ur gency and X- OC-t ype- PROPERTY- count headers,
respectively, of the HTTP request that created it, if present. The t ype parts of the two
property headers might be, for example, STRI NGfor ur gency and I NT for count .) The
listener attempts to push messages it receives to ht t p: / / nyHost / r ecei ver with
method PUT, user and password u and guest respectively, and header X- PI N. 123456.
If it cannot connect, it waits for 5 seconds and tries again. If that fails in any way, it
immediately attempts to push to htt p: // nyBackupHost / deadLet t er , with method
POST, no HTTP authentication credentials, and no special headers. If the second push
fails in any way, the message is discarded. If the initial push fails with response status
code in the range 500-599, the listener will immediately attempt a push to http://
nmyBackupHost / deadLet t er as above. If that fails, the message is discarded. If the
initial push fails with response status code in the range 401-499, the listener will
immediately attempt a push to a queue with name unpushed. If that fails, the listener
will attempt to push the message to a topic called backup, discarding the message if
that fails. If the initial push failed for any other reason (for example, response code of
exactly 400), the message is discarded.

The following is an example with a durable subscription:

<listener>
<versi on>1. 0</ versi on>
<name>nyLi st ener </ name>
<target >
<uri>http://myHost/receiver</uri>
<net hod>PUT</ net hod>
<user>u</ user>
<passwor d>guest </ passwor d>
<header >
<nane>X- Pl N</ name>
<val ue>123456</ val ue>
</ header >
</target>
<subscri ption>
<clientld>nyListenerID</clientld>
<nane>sub</ nanme>
</ subscription>
<failurePolicy>
<failure>
<cond>connecti on</ cond>
<wai t >
<ti me>5000</ti me>
<failurePolicy>
<failure>
<cond>any</ cond>
<wai t >
<time>0</tine>
<target >
<uri>http://myBackupHost/deadLetter</uri>

ORACLE 3-34

ORACLE

Chapter 3
Resource Management API

</target>
</ wai t>
</failure>
</failurePolicy>
</ wai t>
</failure>
<failure>
<cond>r esponseCode: 500- 599</ cond>
<wai t >
<time>0</tinme>
<target >
<uri>http://myBackupHost/deadLetter</uri>
</target>
</ wai t>
</failure>
<failure>
<cond>r esponseCode: 401- 499</ cond>
<wai t >
<time>0</tine>
<target >
<uri>urn:oracl e: cl oud: messagi ng: queues: unpushed</ uri >
</target>
<failurePolicy>
<failure>
<cond>send</ cond>
<wai t >
<time>0</tinme>
<target >
<uri>urn:oracl e: cl oud: messagi ng: t opi cs: backup</uri>
</target>
</ wai t>
</failure>
</failurePolicy>
</ wai t>
</failure>
</failurePolicy>
</listener>

This listener is the same as the previous one, except that the topic it listens on and the
selector, if any, are taken from an existing durable subscription with client ID
myLi st ener | Dand name sub.

Result: Creates a listener with name | i st ener Nane.

Error Responses:

Error Message Description

nonexi st ent Nanespace The specified
namespace

does not exist.

nonexi st ent NanespaceConponent s The namespace
specified for the
request does

not exist.

nonexi st ent NanespaceUnknown The namespace
specified in the
request URL

does not exist.

3-35

Chapter 3
Resource Management API

Error Message Description

mal f or nedLi st ener One of the
following
occurred:

. Neither a
source nor
a durable
subscriptio
n was
specified in
the XML.

e The listener
XML did
not conform
to the
syntax
described
in Create a
Listener.

dest i nat i onPar anet er Not Found The source
specified on
which the
listener should
listen does not
exist.

subscri ptionPar aret er Not Found The request
body specified a
subscription
from which to
receive, and the
subscription
does not exist.

subscri pti onNot FoundNol nf o The request
body specified a
subscription
from which to
receive, and the
subscription
does not exist.

l'istenerAlreadyExists A listener with
the given name
already exists.

clientldFailure The listener
XML specifies a
listener on a
durable
subscription
whose client ID
is invalid or in
use by some
client or other
listener.

ORACLE 3-36

Chapter 3

Resource Management API

Error Message

Description

messagePushLi st ener Veri fi cati onBadResponse

An HTTP or
HTTPS
endpoint
responded to a
verification
request with a
response body
that did not
match the
challenge token
sent by Oracle
Messaging
Cloud Service.

messagePushLi st ener Veri fi cati onConnecti onFai |l ed

Oracle
Messaging
Cloud Service
was unable to
connect to an
HTTP or
HTTPS
endpoint to
send a
verification
request.

messagePushLi st ener Veri ficati onError Response

An HTTP or
HTTPS
endpoint
responded to a
verification
request with a
status code
other than 200.

messagePushLi st ener Veri ficati onException

An exception
occurred in
attempting to
read the
response to a
verification
request.

messagePushLi st ener Veri fi cati onNoToken

The listener
XML specifies
at least one
HTTP or
HTTPS URL to
which to push
messages, but
no
verification
Token was
supplied.

ORACLE

3-37

Chapter 3

Resource Management API

Error Message

Description

messagePushLi st ener Verificati onRedirecti onDi sabl eFai | ed

A failed attempt
was made to
disable HTTP
redirects for the
message push
listener
verification
request.

oper ati onFail ed

A low-level
exception was
thrown while
checking for a
pre-existing
listener, or while
creating the
listener.

Delete a Listener

List Listeners

ORACLE

This topic provides information about deleting a listener.
Method: DELETE

Path: /1isteners/|istenerName

Scope: Service Instance

Authorization: Messaging Administrator or Messaging Worker
Result: Deletes listener with name | i st ener Nane

Error Responses:

Error Message Description

nonexi st ent Nanespace

The specified namespace does not exist.

nonexi st ent NanespaceConponent s
not exist.

The namespace specified for the request does

nonexi st ent NanespaceUnknown
does not exist.

The namespace specified in the request URL

|'i st ener Not Found

The listener to delete did not exist.

operati onFail ed
the listener.

A low-level exception was thrown while deleting

This section provides information about listing listeners.
Method: GET
Path: /1i steners

Scope: Service Instance

3-38

Chapter 3
Resource Management API

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

destination Optional. If present, value must be / queues/ queueNarre or /
t opi cs/ t opi cNane. Specifies a destination whose listeners
should be listed.

Result: Returns a list of all listeners created for the namespace if there is no
desti nati on parameter, and a list of all listeners on the destination specified by
desti nati on otherwise.

Response Body: XML format with one <i t ens> element for each listener and a
<canoni cal Li nk> element.

<listeners>
<items>
<name>| i st ener nane</ name>
<canoni cal Li nk>rel ative path to access /listeners/listener nane</
canoni cal Li nk>
</itens>

<canoni cal Li nk>rel ative path to access /listeners</canonical Li nk>
</listeners>

Error Responses:

Error Message Description

mal f or medDest i nation The dest i nati on parameter value did not
parse as a specification of a queue or topic.

nonexi st ent Nanespace The specified namespace does not exist.

nonexi st ent NanespaceConponent s The namespace specified for the request

does not exist.

nonexi st ent NanespaceUnknown The namespace specified in the request URL
does not exist.

desti nati onPar anet er Not Found The dest i nati on parameter specified a
destination that does not exist.

operati onFail ed An exception was thrown while getting the list
of listeners or outputting the XML
representation of the listeners.

Retrieve Listener Properties

ORACLE

This section provides information about retrieving listener properties.
Method: GET

Path: /1isteners/|istenerName

Scope: Service Instance

Authorization: Messaging Administrator or Messaging Worker

3-39

Chapter 3
Message Transmission API

Result: Returns properties of the listener with name | i st ener Nane.

Response Body: An XML document in the format used in the request body to create
the listener, describing the listener with name | i st ener Narre.

Error Responses:

Error Message Description

nonexi st ent Nanespace The specified namespace does not exist.

nonexi st ent NanespaceConponent s The namespace specified for the request does
not exist.

nonexi st ent NanespaceUnknown The namespace specified in the request URL
does not exist.

|'i st ener Not Found The specified listener does not exist.

oper ati onFail ed A low-level exception was thrown while

retrieving the listener properties.

Message Transmission API

The Message Transmission API provides an interface for sending messages through
producers and receiving messages through consumers, including advanced
messaging capabilities such as transactions. The Message Transmission API also
provides functionality to create and manage messaging contexts, connections,
sessions, durable subscriptions, temporary destinations, and queue browsers.
Topics:

» Creating and Managing Messaging Contexts

» Creating and Managing Connections

» Creating and Managing Sessions

* Sending Messages

* Receiving Messages

» Creating and Managing Durable Subscriptions

e Creating and Managing Temporary Destinations

* Creating and Managing Queue Browsers

Creating and Managing Messaging Contexts

ORACLE

This section provides information about creating and managing messaging contexts in
Oracle Messaging Cloud Service.

Topics:
e Create a Messaging Context
e Get Maximum Inactive Interval (MIl)

e Set Maximum Inactive Interval (MIl)

3-40

Chapter 3
Message Transmission API

Create a Messaging Context

A messaging context is a container of ephemeral objects like connections, sessions,
producers, consumers, temporary destinations, and queue browsers.

Creation of a messaging context is an implicit operation. It is created by the first
access to the Oracle Messaging Cloud Service that passes authentication. At least
one messaging context must be created by a client in order to access Oracle
Messaging Cloud Service. When a new messaging context is created, the HTTP
response includes the header X- OC- NEW MESSAG NG- CONTEXT: true. Existing
messaging contexts are identified in HTTP requests by JSESSI ONI D cookies. If an
HTTP request does not include a JSESSI ONI D cookie, or if the HTTP request includes a
JSESSI ONI D cookie for an expired messaging context, then a new messaging context
is created. For more information about messaging contexts, see Messaging Context
and HTTP Cookies.

Each messaging context created by the REST API has a maximum inactive interval
(MIl) associated with it. A messaging context expires if it is not accessed for a period
of time longer than the associated MiIl.

Get Maximum Inactive Interval (MII)

This section provides information about getting the maximum MIl allowed to be set by
the service or service instance.

Method: GET

Path: / max| nacti vel nt er val

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Returns the information of the current Mll and the maximum allowed Mil|.
Response Headers:

e X-OC-MI: positive integer nunber of seconds
Indicates the current value of the MiII.
e X-OC-MAX-MI: positive integer number of seconds
Indicates the maximum MII allowed to be set by the service or service instance.

Error Response:

Error Message Description
operati onFail ed A low-level exception occurred in attempting to obtain
the client ID.

Set Maximum Inactive Interval (MII)

This section provides information about setting the Maximum Inactive Interval (MII).
Method: POST

Path: / max| nacti vel nt er val

ORACLE 3-41

Chapter 3
Message Transmission API

Scope: Messaging Context
Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

mi The value must be a non-negative integer, interpreted as the number
of seconds to which the client would like to set the MiII.

Result: If the value of ni i in the request is positive, then the Ml is set to that value (or
900 if the value is greater than 900). If it is 0, the messaging context expires
immediately, and is deleted.

< Note:

A value of 0 does not indicate infinity. Clients may not set messaging
contexts to never expire.

Response Headers:

e X-OC-MI: positive integer number of seconds

If the requested MIl was positive, this is the new value of the maximum inactive
interval, which may be less than the value submitted. The maximum is 900
seconds.

e X-OC-MAX-MI: positive integer nunber of seconds

Indicates the maximum MII allowed to be set by the service or service instance.
The maximum Ml allowed is 900 seconds.

Error Responses:

Error Message Description

badPar anet er The value of the i i parameter did not parse as an integer
or was negative.

operati onFail ed A low-level exception occurred.

Creating and Managing Connections

ORACLE

A client can associate a client ID with a connection. The client ID is a string that, along
with a subscription name, identifies a durable subscription to a topic. When creating a
durable consumer on a topic, the client ID set on the connection is used with the
subscription name supplied in the consumer creation method to identify the durable
subscription.

An attempt to set the client ID on a connection that generates an error with

Inval i dd ient| DException as its excepti onC ass causes the connection to become
unusable. Any connection on which such an error response is received should be
closed.

3-42

Chapter 3
Message Transmission API

Topics:
* Create a Connection
* Update Connection Properties

* Delete a Connection

Create a Connection
This topic provides information about creating a connection.
Method: PUT
Path: / connecti ons/ connect i onNane
Scope: Messaging Context
Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

clientld Optional. The value is the client ID that the client would like to set
on the connection.

action Optional. To start a connection, value of the act i on parameter
must be start.

Result: Creates a connection with the name connect i onNane. A connection is stopped
when it is created (unless the st art action is specified in the PUT request to create the
connection).

Response Body:
The response body in XML for creating a connection is as follows:

<connecti on>
<net adat a>
<JMBXPr oper t yNames>
<i tems>JMSXDel i veryCount </ it enms>
<i t ems>JMBXG oupl D</i t ens>
<i t ens>JMBXG oupSeq</it ens>
</ JMBXPr oper t yNames>
</ met adat a>
<canoni cal Link>rel ative path to newy created connection</canoni cal Li nk>
</ connecti on>

Each supported JMSX property name is listed in an <i t ens> element.

The response body in JSON for creating a connection is as follows:

{

"met adat a":
{
" JMSXPr oper t yNanes":

[
" JMBXDel i veryCount ",

" JMSXG oupl D',

ORACLE 3-43

" JMBXG oupSeq”
]
1

Chapter 3
Message Transmission API

“canoni cal Link": "relative path to newy created connection”

}

For more information, refer to the following links:

* X-OC-DELIVERY-COUNT
* X-OC-GROUP-ID
* X-OC-GROUP-SEQ

Error Responses:

Error Message

Description

clientldFailure

The value that is provided for the
connection's client ID is rejected by the
JMS provider.

connect i onAl readyExi st's

A connection with the specified name
already exists.

maxConnect i onCount Unavai | abl e

An internal error has occurred in
determining the number of connections that
a service instance is allowed.

maxLocal Connect i onsReached

The service instance has exceeded the
number of connections it can create on a
single virtual machine in the cloud. This
usually means that the service instance has
reached, or even gone beyond, the
maximum number of allowed connections.

oper ati onFail ed

A low-level exception occurred in
attempting to obtain the client ID.

Update Connection Properties

ORACLE

This section provides information about updating connection properties.

Method: POST

Path: / connecti ons/ connect i onNane

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

clientld Optional. The value is the client ID that the client would like to
set on the connection.

action Optional. To start a connection, value of the acti on
parameter must be st art . To stop a connection, the value of
the action parameter must be st op.

3-44

ORACLE

Chapter 3
Message Transmission API

Result: If the cl i ent | d parameter is present, the client ID of the connection is set to
the specified value, provided that none of the following blocking conditions are true:

» The client ID has already been set to a value for the connection.
* The connection was started when it was created.
* The connection has been used for any operation.
* The client ID is in use by some other application.

If any of the blocking conditions is true, a 400 error response is generated.
Note:

If a REST API client sets a client ID on a connection, as long as that connection exists,
no other connection will be able to have the same client ID set on it. As a

consequence, no other connection will be able to create, delete, or consume from any
durable subscription with that client ID. For example, consider the following situations:

* Aclient fails, or otherwise loses the value of the JSESSI ONI DHTTP cookie that
identifies the messaging context that contains a connection with a client ID.

* A client exits without either deleting a connection with a client ID or expiring the
messaging context containing it by setting the messaging context's Mil to 0.

In either of these cases, no client will be able to create a new connection with the
given client ID until the messaging context expires. To avoid these situations, a REST
API client that sets a client ID on a connection should do the following:

e Set the MIl of any messaging context containing a connection with a client ID to
the smallest feasible value, so that, if the client fails or loses the value of the
JSESSI ONI DHTTP cookie, the time before the client ID can be used again is
minimal.

» Delete connections with client IDs before exiting, either by explicitly performing a
DELETE on the connection resource or by setting the MII of the messaging context
containing such connections to 0, which will close all connections in the context.

Error Responses:

Error Message Description

clientldFailure The value that is provided for the connection's
client ID is rejected by the JMS provider.

The value of the clientld may be in use by
another application, including message push

listeners.
connect i onNot Found The requested connection does not exist.
clientldUnsettable An attempt was made to set the client ID on a

connection on which it cannot be set, either
because it has already been set or because an
operation has been performed (for example,
starting the connection, or creating a session)
after which the client ID can no longer be set.

operati onFail ed A low-level exception occurred in attempting to
obtain the client ID, or its value has been
rejected.

3-45

Chapter 3
Message Transmission API

Delete a Connection
This topic provides information about deleting a connection.
Method: DELETE
Path: / connect i ons/ connect i onName
Scope: Messaging Context
Authorization: Messaging Administrator or Messaging Worker

Result: Closes and deletes the connection. This also closes and deletes all sessions,
producers, consumers, temporary destinations, and queue browsers created with the
connection.

Error Response:

Error Message Description

connect i onNot Found The requested connection does not exist.

Creating and Managing Sessions

Before messages can be sent or received through the Message Transmission API, a
connection and a session must be created. A session provides a behavioral context
that defines what it means for messages to be sent and received between clients and
Oracle Messaging Cloud Service.

Topics:
* Create a Session
* Acknowledge/Commit/Rollback/Recover a Session

* Delete a Durable Subscription

e Close and Delete a Session

Create a Session
This topic provides information about creating a session.
Method: PUT
Path: / sessi ons/ sessi onNane
Scope: Messaging Context
Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description
connection Specify the name of the connection used to create the
session.

ORACLE 3-46

Chapter 3
Message Transmission API

Parameter

Description

transact ed

Optional. If present, must have value t r ue or f al se; default
is f al se. Determines whether the session is transacted.

ackMde

Optional. If present, must have value aut o, cl i ent, or
dups_ok; default is aut 0. Determines how messages
received through the session are acknowledged. This
parameter is irrelevant if the t r ansact ed parameter is t r ue.
The aut 0 value means that received messages are
automatically acknowledged as they are received. The

cl i ent value means that messages must be explicitly
acknowledged by the client. The dups_ok value means that
messages are automatically acknowledged, but "lazily", so
their acknowledgement may be delayed.

Result: Creates a session.

Error Responses:

Error Message

Description

m ssi ngPar anmet er

The connect i on parameter was not supplied.

badPar anet er

The value of the t r ansact ed parameter had a
value other than t r ue or f al se, or the value of
the ackMbde parameter had a value other than
the allowed ones.

sessi onAl readyExi sts

A session with the given name already exists.

connect i onPar anet er Not Found No connection exists with name which is

specified for the connect i on parameter.

operati onFail ed

A low-level exception was thrown in creating
the session.

Acknowledge, Commit, Rollback, or Recover a Session

ORACLE

This topic provides information about acknowledging, committing, doing a rollback, or

recovering a session.

Method: POST

Path: / sessi ons/ sessi onNane/ st at e

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

action Required. Must have value acknow edge, commi t, rol | back, or
recover . Value determines whether the operation is to acknowledge
any unacknowledged messages received through the session, commit
any uncommitted sends and receives, roll back any uncommitted
sends and receives, or recover any unacknowledged messages.

3-47

Chapter 3
Message Transmission API

Result: Performs the specified operation. If the action is acknow edge or r ecover, and
the session is set to acknowledge messages automatically (either with
acknowledgement mode aut o or dups_ok), this is a no-op. If the action is conmi t or
rol | back, and the session is not transacted, this is a no-op. If the action is recover
and the session is transacted, a 500 error response is generated.

See Process Messages using a Transaction for an example HTTP request/response
sequence.

Error Responses:

Error Message Description
m ssi ngPar anet er The act i on parameter was not supplied.
badPar anet er The value of the action parameter was not

acknow edge, commit, rol | back, orrecover.
sessi onNot Found There is no session with the specified name.
operati onFail ed A low-level exception was thrown while attempting to

carry out the specified action on the specified session.

Delete a Durable Subscription

This topic provides information about deleting a durable subscription.
Method: DELETE

Path: / sessi ons/ sessi onNanme/ subscri ptions/ subscri pti onNane
Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Deletes the subscription whose client ID is that set on the connection and
whose name is that given on the path.

Error Responses:

Error Message Description

sessi onNot Found Session specified on the path does not exist.
subscri ptionl nUse The subscription has a consumer on it.

subscri pti onNot Found Subscription specified on the path does not exist.
oper ati onFail ed A low-level exception was thrown while attempting

to delete the subscription.

Close and Delete a Session

ORACLE

This topic provides information about closing and deleting a session.
Method: DELETE

Path: / sessi ons/ sessi onNane

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

3-48

Chapter 3
Message Transmission API

Result: Session with name sessionName is closed and deleted. All producers,
consumers, and queue browsers associated with the session are implicitly closed and
deleted.

Error Responses:

Error Message Description
sessi onNot Found There is no session with the specified name.
operationFail ed A low-level exception was thrown while attempting to close

and delete the specified session.

Sending Messages
This section provides information about sending messages using the REST API.

Topics:

* Create a Producer

e Set Properties of a Producer

* Close and Delete a Producer

e Send a Message via a Producer

See Send a Message to a Topic for example HTTP requests which send a message to
a destination.

Create a Producer
This topic provides information about creating a producer.
Method: PUT
Path: / producer s/ producer Nare
Scope: Messaging Context
Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

sessi on Required. The value is the name of the session in
which to create the producer.

ORACLE 3-49

Chapter 3
Message Transmission API

Parameter

Description

destination

Optional. If present, the value must have one of the
following forms:

e [queues/ queueName

e [topics/topi cName

« [tenporaryQueues/ queueNane

e [tenporaryTopics/topi cNane

Specifies the default destination of messages sent via
the producer.

If this parameter is omitted, then the destination to
which a message is sent must be specified as a
parameter in each send operation performed via this
producer.

messagel dEnabl ed

Optional. If present, the value must be t r ue or
fal se; defaultis t r ue. Determines whether the
producer generates IDs for messages sent through it.

Note: The value of this parameter is a hint to the
service, which may disregard the value.

del i veryMode

Optional. If present, the value must be per si st ent
or non_per si st ent ; default is per si stent.
Determines whether messages produced are
persistent.

ttl

Optional. If present, the value must be a strictly
positive long integer or the value maxi num default is
maxi mum Determines the time in milliseconds
between when a message is dispatched and when
the JMS broker may delete it if not yet delivered. The
value maxi mumindicates that the maximum time-to-
live allowed by the service (the number of
milliseconds in 2 weeks) should be used.

Result: Creates a producer.

Error Responses:

Error Message

Description

m ssi ngPar anet er

The sessi on parameter value was not
supplied.

badPar anet er

One of the following occurred:

« Thedestination parameter value
did not parse as a specification of a
gueue or topic.

e The nessagel dEnabl ed parameter
had a value other than t r ue or f al se.

e The value of the del i ver yMode
parameter did not parse as a delivery
mode.

e Thevalue of the tt| parameter was
not a valid time-to-live.

sessi onPar anet er Not Found

Session by which to create the producer
does not exist.

ORACLE

3-50

Chapter 3
Message Transmission API

Error Message

Description

desti nat i onPar anet er Not Found

The default destination specified for the
producer does not exist.

producer Al r eadyExi st's

There is already a producer with the
specified name.

ti neTolLi veToolLar ge

The tt| parameter was supplied, but was
an integer that is larger than that permitted
by the service (the number of milliseconds
in 2 weeks).

operati onFail ed

A low-level exception was thrown while
attempting to create the producer.

Set Properties of a Producer

This section provides information about setting properties of a producer.

Method: POST
Path: / producer s/ producer Name

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter

Description

messagel dEnabl ed

Optional. If present, the value must be t rue or f al se.
Determines whether the producer generates IDs for
messages sent through it.

Note: The value of this parameter is a hint to the
service, which may disregard the value.

del i veryhode

Optional. If present, the value must be per si st ent or
non_per si st ent . Determines whether messages
produced are persistent.

ttl

Optional. If present, the value must be a strictly positive
long integer or the value naxi num Determines the time
in milliseconds between when a message is dispatched
and when the JMS broker may delete it if not yet
delivered. The value maxi mumindicates that the
maximum time-to-live allowed by the service (the
number of milliseconds in 2 weeks) should be used.

Result: Sets the property associated with the parameter to the specified value for all

parameters present.

Error Responses:

ORACLE

3-51

Chapter 3
Message Transmission API

Error Message Description

badPar anet er One of the following occurred:
e The nessagel dEnabl ed parameter had a
value other thantrue orf al se.
e The value of the del i ver yMode parameter
did not parse as a delivery mode.
e The value of the tt| parameter was not a
valid time-to-live.

pr oducer Not Found The specified producer to modify does not exist.

tinmeToLi veToolLar ge Thett| parameter was supplied, but was an
integer that is larger than that permitted by the
service (the number of milliseconds in 2 weeks).

oper ati onFail ed A low-level exception was thrown while attempting
to modify the producer.

Close and Delete a Producer

This topic provides information about closing and deleting a producer.
Method: DELETE

Path: / producer s/ pr oducer Name

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker
Result: Closes and deletes the producer with name producerName.

Error Responses:

Error Message Description
pr oducer Not Found The specified producer to close and delete does not exist.
oper ati onFail ed A low-level exception was thrown while attempting to close

and delete the producer.

Send a Message via a Producer

ORACLE

This section provides information about sending a message via a producer.
Method: PCST

Path: / producer s/ producer Name/ nessages

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Sends the message specified by the HTTP headers and request body to the
destination specified as described below.

Request parameters, headers, and the request body are as described in Properties of
HTTP Requests to Send Messages from REST Clients, with the following differences
in the request parameters:

3-52

Chapter 3
Message Transmission API

Parameter

Description

del i veryhode

The default value of this header is defined by the producer.

ttl

The default value of this header is defined by the producer.

destination

Required if the producer was not created with a destination,
in which case the message is sent to the specified
destination. If present, must have one of the following forms:
e [queues/ queueName

e [topics/topi cName

- [tenporaryQueues/ queueNane

e [tenporaryTopi cs/t opi cNane

Forbidden if the producer was created with a destination, in
which case the message is sent to the destination with which
the producer was created.

groupld

Optional. This parameter is used to set the JMSXG oupl D
property on the message being sent. This is the name of the
message group of which this message is a part, if any.
Note:

e Ifthe JMSXG oupl D property is set as an HTTP request
header, it must be set to an escaped value String or a
badPar anet er error response will be generated. For
more information on escaped value Strings, see About
Escaped Value Strings. If the JMSXG oupl D property is
set as a query string parameter, the usual conventions
for escaping query string parameters hold.

e This parameter is optional, but should be set if, and only
if, gr oupSeq is set.

groupSeq

Optional. This parameter is used to set the JMSXG oupSeq
property on the message being sent. This is the sequence
number of the message within the message group specified
by the gr oupl d parameter. The gr oupSeq parameter must
be set to an integer or a badPar anet er error response will
be generated.

Note that this parameter is optional, but should be set if, and
only if, gr oupl d is set.

Response Headers:

Header

Description

X- OC- DESTI NATI ON

One of the following values is set for this header:

e [queues/nane of the queue to which
the nessage was sent

« [topics/nanme of the topic to which
the nessage was sent

e [tenporaryQueues/name of the
tenporary queue to which the message
was sent

e [tenporaryTopi cs/ name of the
tenporary topic to which the nessage
was sent

X- OC- MESSAGE- 1 D

message' s | D, if present

ORACLE

3-53

ORACLE

Chapter 3
Message Transmission API

Header

Description

X- OC- DELI VERY- MODE

per si stent or non_per si st ent. For more
information, see About Persistent and Non-Persistent
Messages.

X- OC- Tl MESTAMP

tinme at which nessage was handed off to
the JMS broker, if present. This is a long integer
interpreted as Unix time.

X- OC- EXPI RATI ON

message expiration tine. Thisis along integer
interpreted as Unix time.

X-OC-PRICRITY

This is always the default value, 4.

Error Responses:

Error Message

Description

badPar anet er

One of the following occurred:

* The request specified a value
for the desti nation
parameter that did not parse as
a specification of a queue or
topic.

e The value of the
del i ver yMode parameter did
not parse as a delivery mode.

e Thevalue of the t t|
parameter was not a valid time-
to-live.

e The value of the repl yTo
parameter did not parse as a
queue or topic specification.

e The value of the messageType
parameter was not one of the
allowed values for this
parameter.

badProperty

An X- OC-t ype- PROPERTY- name
header had a value that did not fit
the format of properties with the
given type.

for bi ddenCont ent Type

The Cont ent - Type header of the
HTTP request had value

appl i cation/ x- ww f or m

url encoded. See Error Keys,
Status Codes and Error Messages
for further information.

mul ti pl eDestinations

Either the producer has no default
destination and no destination was
specified by the request, or the
producer has a default destination
and a destination was specified by
the request.

dest i nat i onPar anet er Not Found

The destination specified for the
message does not exist.

3-54

Chapter 3
Message Transmission API

Error Message

Description

pr oducer Not Found

The specified producer by which to
send the message does not exist.

messageHeader sToolLar ge

The request's message-relevant
headers exceeded the maximum
size.

messageBodyTooLar ge

The request's body exceeded the
maximum size.

tineToLi veToolLar ge

The tt| parameter was supplied,
but was an integer that is larger
than that permitted by the service
(the number of milliseconds in 2
weeks).

maxMessagesOnTar get Dest i nati onReached

The service instance already has
the maximum number of messages
on the specified destination of the
message.

maxMessageByt esOnTar get Dest i nat i onReached

The message could not be sent
because the targeted destination
reached the hard quota on the
number of bytes of messages on it,
and has not yet fallen below its soft
quota.

For more information, see Hard and
Soft Quotas.

operationFail ed

The server was unable to obtain the
input stream containing the
message body, or a low-level
exception was thrown by the IMS
broker in trying to send the
message.

Receiving Messages

This section provides information about receiving messages using REST API.

Topics:
e Create a Consumer
* Close and Delete a Consumer

* Receive a Message via a Consumer

Create a Consumer

ORACLE

This topic provides information about creating a consumer.

Method: PUT
Path: / consuner s/ consuner Nane

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

3-55

ORACLE

Request Parameters:

Chapter 3
Message Transmission API

Parameter

Description

sessi on

Required. The value is the name of the session in
which to create the consumer.

destination

Optional. If present, the value must have one of the
following forms:

e [queues/ queueName

- [topics/topi cName

e [tenporaryQueues/ queueNane

- [tenporaryTopics/topi cNane

Specifies the destination from which the consumer
consumes messages. If the dest i nat i on parameter is
present, a consumer is created with characteristics
given by the other parameters, as described later. If the
desti nati on parameter is not present, the consumer
being created should be a consumer of a topic through
an already created durable subscription.

sel ect or

Optional. Specifies the subset of messages the
consumer will receive. The value of the parameter must
be a selector. For the syntax of selectors, see the
Message Selectors section of the Java API reference
for the j avax. j ms. Message class.

| ocal Mode

Optional. If present, value must be GET_LCOCAL or
NO_LOCAL. Specifies whether the consumer on a topic
will receive messages sent via the connection that
contains the consumer. A value of GET_LOCAL means
that messages sent via the connection are received,
and a value of NO_LOCAL means that such messages
will not be received. The default is GET_LOCAL.

subscri pti onNane

Optional. Specifies the name of the durable
subscription. If present, the consumer created will be a
durable topic subscriber (and so the dest i nation
parameter must specify a topic). See Create a Durable
Subscription for an example HTTP request/response
sequence.

Result: Creates a consumer. If the desti nati on parameter is present and it specifies
a queue, then the consumer will consume from the queue. If the desti nation
parameter is present and it specifies a topic, then the consumer will consume from the

topic.

Note:

If the subscri pti onName parameter is present, then the exact result depends
significantly on whether the dest i nati on parameter is present or not.

If the dest i nati on parameter is present, a consumer is created with characteristics
given by the other parameters, as follows:

» If the destinati on specifies a topic, the client ID has been set for the connection
and subscri pti onNane is present, then the consumer will consume messages via
a durable subscription to the topic specified by the client ID and the subscription

name.

3-56

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

ORACLE

Chapter 3
Message Transmission API

* If no durable subscription with the given client ID and name exists, one is created
on the specified topic with the specified selector.

» If a durable subscription for the ID and name already exists, and the topic and
selector are the same as in the method that created the durable subscription, the
existing durable subscription is used (and, thus, any messages sent to the topic
since the subscription was created that have not been consumed through the
subscription is available to be consumed).

» If a durable subscription for the ID and name already exists, but either the topic or
the selector (or lack thereof) specified in this method are different from the topic
and selector (or lack thereof) specified in the method that created the existing
subscription, the existing subscription is deleted, and messages saved by it
discarded, and a new durable subscription with the specified ID, name and
selector on the specified topic is created.

If the dest i nati on parameter is not present, the client ID must have been set on the
connection, the subscri pti onNane parameter must be present, the sel ect or
parameter must not be present, and there must be an existing durable subscription
with the given client ID and subscription name. (The semantics of | ocal Mbde are
unchanged.) In this case, the consumer created is a consumer on the topic for the
existing subscription, with the selector (or lack thereof) of the existing subscription, that
uses the existing subscription. In this case, the method will not create or delete a
subscription.

Response Headers:

Response to creating a consumer on an existing durable subscription contains the
following headers that provide the properties of the subscriber:

e X-OC- DESTI NATI ON
Indicates the topic of the subscription.
e X-OC SELECTOR
Indicates the selector of the subscription, if any.

Error Responses:

Error Message Description

m ssi ngPar anet er The sessi on parameter value was
not supplied.

badPar anet er One of the following occurred:

« Thedestination parameter
value did not parse as a
specification of a queue or topic.

« The sel ect or parameter value
was ill-formed, or contained a
disallowed identifier.

e Thel ocal Mode parameter value
is not one of the allowed values.

e The method did not supply a
desti nati on parameter, but the
existing durable subscription from
which it was meant to consume
had a bad selector.

3-57

Chapter 3
Message Transmission API

Error Message

Description

noDest i nati onFor Consuner

Neither a destination nor a
subscription name were supplied.

| ocal ModeNonTopi ¢

The | ocal Mbde and desti nati on
parameters were supplied, but the

desti nati on parameter does not
specify a topic.

subscri ptionl nUse

An attempt was made to create a
consumer on a durable subscription
when that durable subscription
already has a consumer on it.

subscri ptionNonTopi ¢

Subscription name and destination
parameters were supplied, but the
desti nati on parameter does not
specify a topic.

sessi onPar anet er Not Found

Session by which to create the
producer does not exist.

dest i nat i onPar anet er Not Found

The destination from which the
consumer should get messages is
nonexistent.

consumer Al r eadyExi st's

There is already a consumer with the
given name.

subscri pti onNot FoundNol nf o

The method did not supply a

dest i nati on parameter, but the
existing durable subscription from
which it was meant to consume was
not found.

maxDur abl eSubscri pti onsReached

The consumer whose creation was
attempted was on a durable
subscription that does not currently
exist, and this method invocation
would create the subscription if it
does not exist, and the service
instance is at its maximum number of
durable subscriptions.

operati onFail ed

The method did not supply a

desti nati on parameter, but the
existing durable subscription from
which it was meant to consume had a
bad destination, or a low-level
exception was thrown while creating
the consumer.

Close and Delete a Consumer

ORACLE

This topic provides information about closing and deleting a consumer.

Method: DELETE
Path: / consuner s/ consumner Nane

Scope: Messaging Context

3-58

Chapter 3
Message Transmission API

Authorization: Messaging Administrator or Messaging Worker
Result: Closes and deletes the consumer.

Error Responses:

Error Message Description
consuner Not Found The specified consumer to close does not exist.
oper ati onFail ed A low-level exception was thrown while closing and

deleting the specified consumer.

Receive a Message via a Consumer
This section provides information about receiving a message via a consumer.
Method: POST
Path: / consuner s/ consuner Name/ nessages
Scope: Messaging Context
Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

ti meout Required. The number of milliseconds in the value must be a strictly
positive long integer that is no more than the maximum receive timeout
of 5 minutes. Specifies the amount of time in milliseconds to wait for a
message to become available from the consumer before returning a
null message.

See Receive a Message from a Queue with a Selector and Receive a Message from a
Durable Subscription for examples of HTTP request/response sequences.

Result:

e If there is a message on the consumer's queue that satisfies the selector (if it was
set on the consumer), or if one enters the queue within the number of milliseconds
intimeout, itis returned in the HTTP response. Otherwise, a null response is
returned.

» If receiving from a topic, if messages have been published to the topic since the
consumer was created, or if messages are published to the topic within the
number of milliseconds in ti meout , one of those messages will be return in the
HTTP response. Otherwise, a null response is returned.

e If the consumer is consuming from a durable subscription, and if there is a
message currently stored in the durable subscription, or if one enters the durable
subscription within the number of milliseconds in ti meout , it is returned in the
HTTP response. Otherwise, a null response is returned.

ORACLE 3-59

Chapter 3
Message Transmission API

< Note:

If the session by which the consumer was created is transacted, or is not
transacted but has client acknowledgement set, only one message may be
received via that consumer before committing (if the session is transacted) or
acknowledging (if the session is not transacted but has client
acknowledgement set) the session. Until the appropriate commit or
acknowledgement action is taken, receives from that consumer will return a
null response, even if there are other messages that could otherwise be
received from the consumer's destination.

Response Headers: If a message is returned, the headers will include those
determined by the message described in Properties of HTTP Requests and
Responses that Deliver Messages. Otherwise, a response with no content with the
header X- OC- NULL: true is returned.

Error Responses:

Error Message Description
m ssi ngPar anet er The request had no t i neout parameter specified.
badPar anet er The value of the t i meout parameter did not parse

as a long integer value, or the value of the
ti meout parameter was O or a negative number.

consuner Not Found The specified consumer from which to receive
does not exist.

ti meout ToolLar ge The value of the t i meout parameter was larger
than the maximum allowed value (5 minutes).

oper ati onFail ed A low-level exception was thrown while receiving,
or an exception was thrown while attempting to
extract information from the received message.

Creating and Managing Durable Subscriptions

This section provides information about creating and managing durable subscriptions
in Oracle Messaging Cloud Service.

Topics:
* Create a Durable Subscription
e List Durable Subscriptions

o Delete a Durable Subscription

Create a Durable Subscription

Durable subscriptions are implicitly created by creating a special type of consumer.

To create a durable subscription, see the Create a Consumer section, specifically the
notes about subscri ptionNane and clientld.

ORACLE 3-60

Chapter 3
Message Transmission API

List Durable Subscriptions

ORACLE

This section provides information about listing durable subscriptions.
Method: GET

Path: / subscri ptions

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description
subscri pti onNane The name of the subscription.
t opi cName The name of a topic. Note that the value of this

parameter is not of the form / t opi ¢s/ nane, but is only
the nane part of that form, since durable subscriptions
only apply to topics.

clientld A client ID associated with the subscription.

None of these parameters are mandatory, but only certain combinations are allowed,
as described below.

Result: Returns information about one or more durable subscriptions depending on
the request parameters supplied:

e clientldandsubscriptionName

Returns an XML or a JSON document specifying the unique durable subscription
for the given name and client ID, if one exists, for the namespace specified in the
request.

The XML format is as follows:

<subscription>

<clientld>client ID<clientld>

<name>subscri ption nanme</nanme>

<t opi ¢c>t opi ¢ name</topi c>

<sel ect or >sel ect or </ sel ect or >

<canoni cal Li nk>rel ative path to the subscription</canonical Li nk>
</ subscri ption>

The JSON format is as follows:

{

"clientld": "client 1D,

"name": "subscription name",

"topic": "topic nane",

"selector": "selector",

"canoni cal Link": "relative path to the subscription”
}

All child elements will be present except sel ect or, which is present if the
subscription is associated with a selector. The cl i ent | d and nane elements
always have the same values as the corresponding parameters.

3-61

ORACLE

Chapter 3
Message Transmission AP

clientld

Returns an XML or a JSON document specifying all of the durable subscriptions
for the given client ID for the namespace specified in the request.

The XML format is as follows:

<subscriptions>
<items>
<clientld>client ID<clientld>
<name>nane</ nane>
<t opi c>t opi ¢ name</t opi c>
<sel ect or >sel ect or </ sel ect or >
<canoni cal Li nk>rel ative path to the subscription</canoni cal Li nk>
</itenms>

<canoni cal Li nk>rel ative path to the subscription Iist</canonical Li nk>
</ subscri ptions>

The JSON format is as follows:

{
"subscriptions"
{
“clientld": "client 1D,
"name": "subscription name"
"topic": "topic nane"
"selector": "selector",
"canoni cal Link": "relative path to the subscription"
"canoni cal Link": "relative path to the subscription list"
}

This element may be empty if the client ID has no subscriptions. Each child
specifies a unique durable subscription. The client ID of all subscri pti on elements
is the same as the value of the corresponding request parameter; each value of
name will appear only once, as a durable subscription is specified by the client ID
and subscription name.

t opi cNane

Returns an XML or a JSON document specifying all of the durable subscriptions
for the topic with the given name for the namespace specified in the request. Note
that the value of this parameter is not of the form / t opi c¢s/ nane, but is only the
nane part of that form, since durable subscriptions only apply to topics. The format
of the XML document in the response is the same as the XML format described
earlier for cl i ent | d. This element may be empty if the topic has no subscriptions.
Each child specifies a unique durable subscription. The t opi ¢> content of all
subscri ption elements is the same as the value of the corresponding request
parameter; each pair of values for client ID and name will appear only once, as a
durable subscription is specified by the client ID and subscription name.

None of the parameters are supplied

Returns an XML or a JSON document specifying all of the durable subscriptions
for the namespace specified in the request. The format is the same as described
earlier for cli ent1d and subscri pti onNang, clientld, and topi cNane. This
element may be empty if the namespace has no durable subscriptions. Each child
specifies a unique durable subscription. The topic values of all subscri ption
elements is the same as the value of the corresponding request parameter; each

3-62

Chapter 3
Message Transmission API

pair of values for client ID and name will appear only once, as a durable
subscription is specified by the client ID and subscription name.

Error Responses:

Error Message

Description

di sal | owedSubscri ptionLookup

A combination of the

subscri ptionNane, clientld, and
t opi cName parameters has been
supplied that is not one of those listed
earlier.

dest i nat i onPar anet er Not Found

The t opi cName parameter was
specified, but there is no topic by that
name in the namespace.

subscri pti onNot FoundFul |

A client ID and subscription name were
specified in the request, but no such
subscription exists.

oper ati onFail ed

A low-level exception occurred.

Delete a Durable Subscription

Durable subscriptions are implicitly created by creating a special type of consumer. A
durable subscription stores all messages sent to a topic until each message is

received.

For information about deleting durable subscriptions through sessions, see Delete a

Durable Subscription.

Creating and Managing Temporary Destinations

This section provides information about creating and managing temporary destinations

in Oracle Messaging Cloud Service.

Topics:

* Create a Temporary Destination

e List Temporary Destinations

* Remove a Temporary Destination

Create a Temporary Destination

You can create the following kinds of temporary destinations:

e Temporary Queue: A TemporaryQueue is a unique Queue object created for the
duration of a connection. Messages may only be consumed from a temporary
gueue through the connection with which it was created.

e Temporary Topic: A TemporaryTopic is a unique Topic object created for the
duration of a connection. Messages may only be consumed from a temporary
topic through the connection with which it was created.

Method: POST
Path:

ORACLE

3-63

Chapter 3
Message Transmission API

* To create a temporary queue, the path is / t enpor ar yQueues
e To create a temporary topic, the path is / t enpor aryTopi cs
Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

sessi on Specify the session name. This parameter is mandatory.

Result: Creates a temporary queue or temporary topic.

Response Header:

Location

Contains the URL for the newly created temporary queue or temporary topic.

Response Body:

Destination Type

XML Format

JSON Format

Temporary queue

<t enpor ar yQueue>
<name>queue nane</nane>
<connection>nane of the
connection with which the queue
i s associ at ed</ connecti on>
<canoni cal Li nk>rel ative
path to tenporary queue</
canoni cal Li nk>
</ tenpor aryQueue>

{
"type": "tenporaryQueue",
"nane" "queue name",
"connection": "name of the

connection wth which the queue

is associated",
"canoni cal Link": "relative
path to tenporary queue"

}

Temporary topic

<t enpor ar yTopi ¢>
<name>t opi ¢ nane</ nane>
<connection>nane of the
connection with which the topic
i s associ at ed</ connecti on>
<canoni cal Li nk>rel ative
path to tenporary topic</
canoni cal Li nk>
</t enpor ar yTopi ¢>

"type": "tenporaryTopic",

"name" "topic name",

"connection": "name of the
connection with which the topic
is associ ated",

"canoni cal Link": "relative
path to tenporary topic"

}

ORACLE

3-64

Chapter 3
Message Transmission API

Destination Type

XML Format

JSON Format

Temporary queues

<t enpor ar yQueues>
<name>queue hane</ nane>
<connection>nanme of the
connection with which the queue
i s associ at ed</ connecti on>
<canoni cal Li nk>rel ative
path to tenporary queue</
canoni cal Li nk>

<canoni cal Li nk>rel ative
path to list of tenporary
queues</ canoni cal Li nk>

</ tenporaryQueues>

{
"tenporaryQueues": |

{

name": "queue
"connection": "name
of the connection with which the
queue is associated",
"canoni cal Li nk":
"relative path to tenporary
queue"

}
1.

"canoni cal Link": "relative
path to list of tenporary
queues”

}

Temporary topics

<t enpor ar yTopi cs>
<name>t opi ¢ nane</ nanme>
<connection>nane of the
connection with which the topic
i s associ at ed</ connecti on>
<canoni cal Li nk>rel ative
path to temporary topic</
canoni cal Li nk>

<canoni cal Li nk>rel ative
path to list of tenporary
t opi cs</ canoni cal Li nk>
</t enporaryTopi cs>

"tenporaryTopi cs": |
{ .

"nane": "topic
name",

"connection": "name
of the connection with which the
topic is associated",

"canoni cal Li nk":
"relative path to tenporary
topic"

}

1

"canoni cal Link": "relative
path to list of tenporary
topi cs”

}

The content of the nane field is a pseudorandom name generated by the service for
the newly created temporary queue or topic.

The connecti on field is omitted if the destination was not created from a connection in

the messaging context.

Error Response:

Error Message Description

sessi onNot Found A session with the specified name does not exists.

List Temporary Destinations

This section provides information about listing temporary destinations.

ORACLE 3-65

ORACLE

Chapter 3
Message Transmission API

e List Temporary Queues or Temporary Topics

* Retrieve Properties of a Single Temporary Queue or a Single Temporary Topic

List Temporary Queues or Temporary Topics
Method: GET
Path:

* To list all temporary queues in the messaging context, the path is /
t empor ar yQueues

e To list all temporary topics in the messaging context, the path is /
t enpor aryTopi cs

Scope: Messaging Context
Authorization: Messaging Administrator or Messaging Worker

Request Parameter:

Parameter Description

connection Optional. Specify the connect i on parameter to list
all temporary queues or topics associated with the
connection with the name connect i on- nane.

Result: Returns a listing of all temporary queues or temporary topics in the messaging
context.

Response Body:

In XML, the format for listing all temporary queues associated with an HTTP cookie is
as follows:

<t enpor ar yQueues>
<itenms>
<nane>queue name</ nane>
<connection>nane of the connection with which the queue is associ ated</
connection>
<canoni cal Li nk>rel ative path to tenporary queue</canonical Li nk>
<litems>

<canoni cal Li nk>rel ative path to list of temporary queues</canonical Li nk>
</t enpor aryQueues>

In XML, the format for listing all temporary topics associated with an HTTP cookie is as
follows:

<t enpor ar yTopi cs>
<items>
<nane>t opi ¢ name</ nane>
<connect i on>nane of the connection with which the topic is associated</
connecti on>
<canoni cal Li nk>rel ative path to tenporary topic</canonical Li nk>
<litems>

<canoni cal Li nk>rel ative path to list of temporary topics</canonical Li nk>
</t enpor ar yTopi cs>

3-66

ORACLE

Chapter 3
Message Transmission API

The content of the <nane> element is the queueNane or t opi cName.The <connecti on>
element is present only if the temporary queue or topic was created from a connection
associated with the client's messaging context.

If the temporary queue or topic was created elsewhere and received as, for example,
in the Repl y- To header of a message, then the <connect i on> element will not be
present.

Error Response:

Error Message Description

connect i onPar anet er Not Found A REST API client invoked the method to list all
temporary destinations created through a certain
named connection, but no connection with that name
exists in the messaging context.

Retrieve Properties of a Single Temporary Queue or a Single Temporary Topic
Method: GET
Path:

* To retrieve the properties of a single temporary queue, the path is /
t empor ar yQueues/ queueNane

* To retrieve the properties a single temporary topic, the path is / t enpor ar yTopi cs/
t opi cNane

Scope: Messaging Context
Authorization: Messaging Administrator or Messaging Worker

Result: Returns the properties of a temporary queue or a temporary topic with the
given name.

Response Body:
The format for listing a single temporary queue is as follows:

<t enpor aryQueue>

<nane>queue name</ nane>

<connecti on>nane of the connection with which the queue is associ ated</
connecti on>

<canoni cal Li nk>rel ative path to tenporary queue</canonical Li nk>
</t enpor aryQueue>

The format for listing a single temporary topic is as follows:

<t enpor ar yTopi ¢>

<name>t opi ¢ nane</ name>

<connection>nanme of the connection with which the topic is associated</
connecti on>

<canoni cal Li nk>rel ative path to tenporary topic</canoni cal Li nk>
</t enpor ar yTopi ¢>

The content of the <nane> element is the queueNane or t opi cName.The <connecti on>
element is present only if the temporary queue or topic was created from a connection
associated with the client's messaging context.

3-67

Chapter 3
Message Transmission API

If the temporary queue or topic was created elsewhere and received as, for example,
in the Repl y- To header of a message, then the <connect i on> element will not be
present.

Error Response:

Error Message Description
dest i nat i onNot Found The temporary destination that is requested does
not exist.

Remove a Temporary Destination

This section provides information about removing temporary destinations.
Method: DELETE

Path:

* To delete a temporary queue, the path is / t enpor ar yQueues/ queueName
* To delete a temporary topic, the path is / t enpor ar yTopi cs/ t opi cNane
Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Deletes the temporary destination with the given name.

Note:

If the temporary destination that is being deleted was created from a
connection in the same messaging context, the temporary destination will be
deleted from the back-end. Else, it will be deleted only from the messaging
context, and not from the back-end.

After being deleted from the back-end, the temporary destination will not be
available for use to other clients.

Error Response:

Error Message Description

desti nati onNot Found The temporary destination whose deletion is requested
does not exist.

Creating and Managing Queue Browsers

ORACLE

This section provides information about creating and managing queue browsers in
Oracle Messaging Cloud Service.

Topics:
e Create a Queue Browser

* Retrieve Queue Browser Properties

3-68

Chapter 3
Message Transmission API

* Browse Messages

« Remove a Queue Browser

Create a Queue Browser

A client uses a queue browser to look at messages on a queue without removing
them. A queue browser is created from a Session.

A queue browser may be used to look at all the messages in a queue, or only those
that match a message selector. Note that if messages are sent to a queue after a
browser on that queue is created, those messages may not be visible via the queue
browser.

Method: PUT

Path: / queueBr owser s/ br owser Nane

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Request Parameters:

Parameter Description

session The value is the name of the session in which the queue browser
needs to be created.

destination Specify the destination name. The value must have the form /
queues/ queueNane.

sel ector Message selector, which is optional.

Result: Creates a queue browser on the desti nati on parameter.

Error Responses:

Error Message Description

sessi onNot Found There is no session with the specified
name.

desti nati onNot Found The destination that is requested does not
exist.

queueBr owser Al r eadyExi st's A queue browser with the specified name

already exists.

badPar anet er One of the following occurred:

» Thedestination parameter value
did not parse as a specification of a
queue.

* The sel ect or parameter value was
ill-formed, or contained a disallowed
identifier.

Retrieve Queue Browser Properties

This section provides information about retrieving queue browser properties.

ORACLE 3-69

Chapter 3
Message Transmission API

Method: GET

Path: / queueBr owser s/ br owser Nane

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: Returns properties of the queue browser with the name br owser Nane.
Response Body:

In XML, the format for the properties of a queue browser is as follows:

<queueBr owser >
<name>cl i ent - assi gned name of the browser </ name>
<queue>path specifying the persistent or tenporary queue browsed</queue>
<sel ector>sel ector expressi on<sel ect or >
<canoni cal Li nk>rel ative path to queue browser</canoni cal Li nk>
</ queueBr owser >

In JSON, the format for the properties of a queue browser is as follows:

{

"name": "client-assigned nane of the browser",

"queue": "path specifying the persistent or tenporary queue browsed",
"selector": "selector expression”,

"canoni cal Link": "relative path to queue browser"

}

The content of the queue element has the form / queue/ queueNane if the browser
browses a persistent queue named queueNane; it has the form / t enpor ar yQueue/
queueNane if the browser browses a temporary queue named queueNane.

The sel ect or element is present only if the queue browser is associated with a
selector.

Error Response:

Error Message Description

queueBr owser Not Found The queue browser that is requested does not exist.

Browse Messages

ORACLE

This topic provides information about browsing messages in a queue browser.
Method: POST

Path: / queueBr owser s/ br owser Nane

Scope: Messaging Context

Authorization: Messaging Administrator or Messaging Worker

Result: If there is a message in the browser, it is returned in the HTTP response.
Otherwise, a null response is returned.

Response Header:

3-70

Chapter 3
Properties of HTTP Requests to Send Messages from REST Clients

If there is an X- OC- NULL header with value t r ue, then it indicates that there are no
more messages in the browser.

Error Response:

Error Message Description

queueBr owser Not Found The queue browser that is requested does not exist.

Remove a Queue Browser

This section provides information about removing a queue browser.
Method: DELETE

Scope: Messaging Context

Path: / queueBr owser s/ br owser Nane

Authorization: Messaging Administrator or Messaging Worker
Result: Closes and deletes the queue browser.

Error Response:

Error Message Description

queueBr owser Not Found The queue browser that is requested does not exist.

Properties of HTTP Requests to Send Messages from
REST Clients

This section provides information about properties of HTTP requests to send
messages from REST clients.

Topics:
* Request Parameters
e HTTP Headers to Specify Message Properties

e Limitations on Message Size

Request Parameters

ORACLE

This section provides information about request parameters which can be used when
sending messages using the REST API.

correlationld
Optional. No default.
This parameter is used to group together (correlate) multiple messages.

For the query string parameter correl ati onl d, the equivalent HTTP header is X- OC-
CORRELATI ON- 1 D.

3-71

Chapter 3
Properties of HTTP Requests to Send Messages from REST Clients

del i ver yMode

Optional. If present, value must be per si st ent or non_per si st ent ; default is
per si st ent . Determines whether the message is persistent (that is, stored by the JIMS
broker in persistent storage until delivered).

For the query string parameter del i ver yMode, the equivalent HTTP header is X- OC-
DELI VERY- MODE.

messageType

Optional; if omitted, the default is HTTP. This parameter specifies the type of IMS
message the HTTP request will cause to be generated. Depending on the value, there
may be restrictions on the HTTP request body, and/or special interpretation of that
body and/or some of the standard HTTP request parameters.

For the query string parameter nessageType, the equivalent HTTP header is X- OC-
MESSAGE- TYPE.

See Message Types for information about the valid values for the messageType query
string parameter along with any required formatting for the HTTP request body.

replyTo

Optional. If present, must have one of the following forms:

* /queues/ queueNane

e /tenporaryQueues/ queueNare

e /topics/topi cNanme

e /tenporaryTopics/topi cName

Specifies a destination or a temporary destination to which replies should be sent.

For the query string parameter r epl yTo, the equivalent HTTP header is X- OC- REPLY-
TO

ttl

Optional. If present, value must be a strictly positive long integer or the value maxi num
Determines the time in milliseconds between when the message is dispatched and
when the service may delete it if not yet delivered. The semantics of these parameters
is the same as the corresponding parameters for producers, but the default is defined
by the producer, and is overridden by any headers occurring in this operation.

For the query string parameter tt |, the equivalent HTTP header is X- OC- TTL.

HTTP Headers to Specify Message Properties

ORACLE

The HTTP request headers (when sending messages) can specify messaging
properties for the message being sent.

X- OC- proper t yType- PROPERTY- pr oper t yName

Optional. This is not a single header, but a family of headers, referred to collectively as
message property headers, one for each property type and property name. The
property name value should consist of alphanumeric characters and underscores, and
is made lower-case by the service. This sets the message property with name property

3-72

Chapter 3
Properties of HTTP Requests and Responses that Deliver Messages

name on the message to value property value, if the property type is one of the
allowed values and property value is a value allowed for the property type. See
Message Headers and Properties for information about the allowed values of property
type.

Limitations on Message Size

Oracle Messaging Cloud Service only allows messages with at most 3K (3072)
characters of messaging-relevant HTTP request headers and at most 512K (524,288)
bytes or characters of HTTP request body. An attempt to send a message that
exceeds these limits will generate an error response, and no message will be sent.
Details of this limitation are as follows:

 An HTTP request header is messaging-relevant if its name begins with X- OC
(case-insensitive); if the message type is HTTP, or is not supplied (in which case it
defaults to HTTP), the Cont ent - Type and Cont ent - Language headers are also
messaging-relevant.

* The number of characters in a messaging-relevant header is the sum of the
number of characters in the header name and the number of characters in the
header value.

* If the message has no type, or has type BYTES, OBJECT, or HTTP, the size of the
HTTP request body is measured in bytes, and is counted as in the HTTP
specification.

e If the message has type TEXT, MAP, or STREAM the size of the HTTP request body
is measured in characters according to the character encoding.

* If the message has type PLAI N, the request body is ignored, and so has size O for
purposes of size limitations.

¢ Note:

* To send a message that is larger than 512 KB, see Using Message
Groups. This enables you to send messages/files up to 10 MB size in
smaller chunks.

e To send larger message payload, you can use Oracle Storage Cloud
Service to store the object and send it as a message. This is especially
useful for storing and consuming messages with a message size of up to
5 GB. See Sending Large Objects as Messages Using Oracle Storage
Cloud Service

Properties of HTTP Requests and Responses that Deliver
Messages

ORACLE

Messages are delivered to clients of the REST API in two ways: in the HTTP response
to a receive request, and in an HTTP request made by a message push listener to an
HTTP endpoint.

This section describes the headers and body of the responses and requests that
describe the message delivered.

3-73

ORACLE

Chapter 3
Properties of HTTP Requests and Responses that Deliver Messages

For HTTP requests made by message push listeners, some of the characteristics of
the requests (the URL pushed to, method used, and so on) are determined by the
listener. In addition to the characteristics that are determined by the listener, push
requests also have a header X- OC- LI STENER- NAME whose value is the name of the
listener from which the push originates.

The remainder of this section describes the aspects of a receive response or push
request that are determined by the message:

The body of the request or response and its Cont ent - Type, Cont ent - Language,
and X- OC- MESSAGE- TYPE headers are as described in Properties of HTTP
Requests to Send Messages from REST Clients.

The following non-standard headers are set from message headers and
properties:

X- OC- CORRELATI ON-I D: nessage correlation ID

X- OC- DELI VERY- MODE: per si st ent or non_per si st ent. See About Persistent
and Non-Persistent Messages.

X- OC- DESTI NATI ON: One of the following values is set for this header.
* | queues/nane of the queue to which the message was sent
* [topics/nane of the topic to which the message was sent

* [tenporaryQueues/ name of the tenporary queue to which the
message was sent

* [tenporaryTopi cs/ name of the tenporary topic to which the
message was sent

X- OC- EXPI RATI ON: message expiration time. Thisis along integer
interpreted as Unix time.

X- OC- MESSACGE- | D: message' s | D, if present

X-OC-PRICRITY: message priority

X- OC- REDELI VERED: true/ fal se, indicating if message is a re-delivery

X- OC- REPLY- TO: One of the following values is set for this header.

* [queues/nane of the queue to which to reply

* [topics/name of the topic to which to reply

* [tenporaryQueues/ name of the tenporary queue to which to reply
* [tenporaryTopi cs/ name of the tenporary topic to which to reply

X- OC- TI MESTAMP: tine at which message was handed off to the JMS
br oker, if present. This is a long integer interpreted as Unix time.

X- OC- LI STENER- NAME: nane of the listener that pushed the nessage

X- OC- DELI VERY- COUNT: val ue of the message's JMSXDel i veryCount
property, if present. This is the number of times the service has attempted to
deliver this message. The value of this parameter can be 2 or higher if, for
example, the message has been received in a transacted session but the
receive was not committed.

X- OC-GROUP- I D: the name of the nessage group of which this nessage
is a part, if any. This is the value of the JMSXG oupl! d property, with

3-74

ORACLE

Chapter 3
Properties of HTTP Requests and Responses that Deliver Messages

characters that are not legal in an HTTP header value escaped. The group of
a message is set by the client when the message is sent. The value of this
header, if present, will be an escaped value String. For more information on
escaped value Strings, see About Escaped Value Strings.

X- OC- GROUP- SEQ sequence number of the message within a nessage
group, if present. The value will be an integer. This is the value of the

JMBXG oupSeq property. The sequence number is set by the client when the
message is sent.

For each message property, a header

X-OC-property type- PROPERTY-property nane: property val ue

for properties whose names and values conform to the HTTP specification for

headers, with the property type determined by the type of the Message's
properties; for header names and values that do not, a header of the form

X- OC- GENERAL- property type- PROPERTY-property nane as pairs of hex digits:
property value as pairs of hex digits

Any message property with value nul | is not expressed as a property header.

See Message Headers and Properties for information about message headers
and HTTP headers, and message property types.

3-75

Accessing Oracle Messaging Cloud
Service Using Java Library

The Oracle Messaging Cloud Service Java library implements and extends the Java
Message Service (JMS) 1.1 interface. This section provides information about how to
use the Java library and the differences from JMS when using the Java library.
Topics:

* About Using the Java Library

» Creating a MessagingService Object

» Using Messaging Cloud Service from Oracle Java Cloud Service - SaaS Extension
* Resource Management API

e ConnectionFactory Creation API

e Using JMS to Send and Receive Messages

» Using Extensions to the JMS API

* Limitations on Message Size and Time-to-Live

e Client-Side Logging

* Automatic Closing of Connections

» Diagnosing Errors from the Java Library

Client-Side Logging
Certain events are logged by the Java library on the Java platform that runs the client

software.

Event logging is done via the j ava. uti | . | oggi ng framework, using the logging levels
of java.util.logging.Level. Events may be useful in diagnosing the cause of problems, or
may be useful input to Support.

Events are logged at the WARNING and SEVERE levels in two packages:
oracl e. cl oud. messagi ng. cl i ent and or acl e. cl oud. messagi ng. util .

ORACLE 4-1

http://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/logging/Level.html

ORACLE

Chapter 4
Client-Side Logging

Package

Log Level

Log Message

Description

oracl e. cl oud. mess
aging. client

SEVERE

Exception shutting
down thread pool

An exception was
thrown when a
Connection was being
closed. This occurred
when an attempt was
made to shut down a
thread pool used for
background
operations like
executing

MessagelLi st eners.
The exception thrown
is logged.

Exception stopping
REST client

An exception was
thrown when a
Connection was being
closed. This occurred
when an attempt was
made to stop the
HTTP client by which
the Java library
communicates with
the REST API. The
exception thrown is
logged.

Exception deleting
connection

An exception was
thrown when
attempting to close
and delete the server-
side Connection
associated with a
client-side
Connection. The
exception thrown is
logged.

Exception shutting
down messaging
context

An exception was
thrown when
attempting to shut
down the server-side
messaging context
associated with a
client-side
Connection. The
exception thrown is
logged.

Exception
disconnecting HTTP
connection

An exception was
thrown when
attempting to
disconnect a network
connection from the
client to the server.
The exception thrown
is logged.

4-2

Automatic Closing of Connections

ORACLE

Chapter 4

Automatic Closing of Connections

Package

Log Level

Log Message

Description

Exception on client-
side session close

An exception was
thrown when a
Connection was being
closed. This occurred
when an attempt was
made to shut down a
Session created from
the Connection. The
exception thrown is
logged.

WARNING

Closing unclosed
Connection in finalizer

A Connection was
closed when the
Connection object
was garbage-
collected; this
indicates that a
reference to a
Connection was
discarded without
calling cl ose() on
the Connection.

oracl e. cl oud. ness
aging. util

WARNING

Runtime exception
thrown from exception
listener

The HTTP client
encountered an
exception attempting
to reach the server,
and the listener that
handles such
exceptions threw a
RuntimeException.
The exception thrown
is logged.

This section provides information about situations in which Connections close

automatically.

Connections Close if Server is Unreachable for a Sufficiently Long Period of

Time

If a Java library client cannot reach the Oracle Messaging Cloud Service server for a
sufficiently long period of time, Connections for that client will be closed. The amount
of time before a Connection is closed is given by the Connection’s timeout, plus an
additional margin for error to allow for clock skew between the client and server.

During the period in which the client is unable to reach the server, client operations will
throw exceptions, but a Connection will not be closed until the server has been
unreachable for longer than the Connection’s timeout. When a Connection is closed
for this reason, if the Connection has an Excepti onLi st ener set on it, a JMSExcepti on
will be dispatched to the Connection's Except i onLi st ener .

Connections Close if Server-Side State is Lost

Connections may detect that their server-side state has expired or been lost. This may
be because the client was unable to reach the server for a certain period, or because

4-3

Chapter 4
Diagnosing Errors from the Java Library

the server failed due to other reasons. When the Java library detects that it has lost
the server-side state for a Connection, the Connection will be closed. When a
Connection is closed for this reason, if the Connection has an Excepti onLi st ener set
on it, a JMSExcept i on will be dispatched to the Connection's Excepti onLi st ener.

Diagnosing Errors from the Java Library

The Java library offers additional features for diagnosing exceptions beyond what is
available from JMS.

When a JMSException (or one of its subclasses) is thrown by a method, or dispatched
to an Except i onLi st ener, the exception may have a cause, which can be obtained by
invoking get Cause() on the exception object. If the cause is not nul | , and has class
Ht t pResponseExcepti on, the cause will contain Messaging-Service-specific
information about the error that caused the exception. In particular, it may contain an
error key and an error message with further information.

For more information on Ht t pResponseExcept i on, see Ht t pResponseExcepti on in
Java API Reference for Oracle Messaging Cloud Service. For details on the meaning
of error information obtainable from Ht t pResponseExcept i on, see Error Keys, Status
Codes and Error Messages.

Using the Re-try Function

When a request from the Java client library to Oracle Messaging Cloud Service
receives a response that indicates that it is attempting to access a messaging context
that has expired, it re-tries the request, with pauses, before throwing a JMSException.

By default, the library re-tries the request four times, pausing for one second before
the first re-try, then two seconds between the first re-try and the second, then four
seconds, then eight seconds. At any point, if the response to the re-try indicates that
the messaging context has been found again, no further re-tries is made.

The number of re-tries, and pauses between them, can be changed by setting the
oracl e. cl oud. messagi ng. client.retryWit property using the
OracleCloudConnectionFactory.setProperty() method. The value set for this property
must be a comma-separated list of long integers. The number of integers is the
number of re-tries; each integer is the number of milliseconds to pause before the
corresponding re-try.

For example, invoking

set Property("oracle. cl oud. messaging.client.retryWit","1000, 10000") on an
O acl e oudConnect i onFact or y object will change the re-try behavior to re-trying
twice, waiting one second before the first re-try and ten seconds between the first and
second re-tries.

Setting the or acl e. cl oud. nessagi ng. client.retryWit property to nul | disables re-
tries.

ORACLE 4-4

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/HttpResponseException.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnectionFactory.html#setProperty(java.lang.String,%20java.lang.String)

Chapter 4
About Using the Java Library

About Using the Java Library

Oracle Messaging Cloud Service can be accessed using the Java library.

Topics:
* Prerequisites for Using the Java Library
* How to Use the Java Library

* How to Check the Version of the Java Library

Prerequisites for Using the Java Library

The Oracle Messaging Cloud Service Java library provides all required Java Message
Service (JMS) 1.1 functions, plus additional functions related to JMS and Oracle
Messaging Cloud Service for sending and receiving messages through the JMS
broker. Previous experience using JMS will be helpful.

The following are required to use the Oracle Messaging Cloud Service Java library:

e An Oracle Messaging Cloud Service instance

e Theoracl e. cl oud. messagi ng. api - 14. 0. X. j ar (where X is the number
representing the latest version of the Java library)

* The JMS 1.1 API JAR file

* A Java Development Kit (JDK) of version 1.6 or greater

How to Use the Java Library

ORACLE

Before you begin using the Java library, be sure to review the following:

e Considerations When Developing Applications That Use Oracle Messaging Cloud
Service

* Authentication and Authorization

« Differences from JMS

e Prerequisites for Using the Java Library
e Check the Version of the Java Library

To use the Oracle Messaging Cloud Service Java library:

1. Download the Java library (see Downloading the Oracle Messaging Cloud Service
Java SDK).

2. Add the jar file oracl e. messagi ng. cl oud. api - 14. 0. X. j ar (where Xis the latest
version number of the Java library) to your Java application's class path.

3. Import the Java library's classes and interfaces into your Java application.

import javax.jms.*;

i mport oracl e. cl oud. nessagi ng. *;

i mport oracle. cl oud. messagi ng. client.*;
i mport oracl e. cl oud. messagi ng. conmon. *;

4. Create a Messagi ngSer vi ce object.

4-5

http://download.oracle.com/otndocs/jcp/7542-jms-1.1-fr-doc-oth-JSpec/

Chapter 4
Creating a MessagingService Object

A Messagi ngSer vi ce object is created from a Messagi ngSer vi ceFact ory. When
creating a Messagi ngSer vi ce object, a Messagi ngSer vi ceNanmespace object and a
Messagi ngServi ceCredenti al s object must be provided.

For more information, see Creating a MessagingService Object.

How to Check the version of the Java Library

The Java library is delivered in two identical .jar files — one containing the version
number of the Java library in the file name (for example,

oracl e. cl oud. messagi ng. api - 14. 0. 1. j ar,) and one without the version number (for
example, or acl e. cl oud. nessagi ng. api . j ar.) You can also obtain the information
about the version of the Java library after installation, through the class

oracl e. cl oud. messagi ng. Ver si onl nf 0.

To check the version of the Java library, run the following command:
java -jar <jar nane>.

The version number of the Java library is displayed.

The manifest of each of the Java library jars contains the version of the Java library as
the | npl enent at i on- Ver si on attribute of the or acl e. ¢l oud. nessagi ng package.

Cl’eatlng a Messagi ngSer vi ce ObJeCt

ORACLE

The Messagi ngSer vi ce interface is the entry point for all functionality of the Java
library.

To create a Messagi ngSer vi ce object, you must provide an Oracle Messaging Cloud
Service instance URL and user credentials to the
Messagi ngServi ceFact ory. get Messagi ngSer vi ce() method.

The Messagi ngSer vi ceFact ory. get Messagi ngSer vi ce method takes two parameters:

A Messagi ngServi ceNamespace object

e A Messagi ngServi ceCredential s object

Example to create a Messagi ngSer vi ce object

Messagi ngServi ceFactory factory = Messagi ngServi ceFact ory. get | nstance();

String serviceUrl = "https://messaging. us2.oracl ecl oud. conf nyservi ce- nydomai n";
String username = "john. doe@xanpl e. cont';
String password = "nyPassword";

Namespace nanespace = new Messagi ngServi ceNamespace(serviceUrl);
Credentials credentials = new Messagi ngServi ceCredenti al s(username, password);
Messagi ngServi ce service = factory. get Messagi ngServi ce(namespace, credentials);

Once a Messagi ngSer vi ce object has been created, you can manage queues, topics,
and message push listeners. You can also list, and retrieve the properties of durable
subscriptions.

4-6

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingServiceFactory.html#getMessagingService(oracle.cloud.messaging.common.Namespace,%20oracle.cloud.messaging.common.Credentials)

Chapter 4
Using Messaging Cloud Service from Oracle Java Cloud Service - SaaS Extension

In addition you can create a Connect i onFact ory to send and receive messages using
the Java library. See ConnectionFactory Creation API for information about how to use
the JMS API provided in the Java library to obtain a Connecti onFact ory object.

Using Messaging Cloud Service from Oracle Java Cloud
Service - SaaS Extension

Complete the following steps to use Messaging Service from Oracle Java Cloud
Service - SaaS Extension:

1. Subscribe to Oracle Java Cloud Service - SaaS Extension and Oracle Messaging
Cloud Service.

2. Create a new user in Messaging Cloud Service to use from Oracle Java Cloud
Service - SaaS Extension. Assign the Messagi ng Wr ker role if the application
needs to send and receive messages. Assign the Messagi ng Adni ni strator role
if the application needs to manage resources. See About Oracle Messaging Cloud
Service Roles and Users.

3. Download the Java library (see Downloading the Oracle Messaging Cloud Service
Java SDK).

4. Package the library with your Java application.

5. Write the application code that uses the Java library to create a
Connect i onFact ory object. Use the Connecti onFact ory object to obtain other
JMS objects to send and receive messages. See Using JMS to Send and Receive
Messages.

6. Deploy the Java application to Oracle Java Cloud Service - SaaS Extension. See
Preparing Applications for Oracle Java Cloud Service - SaaS Extension
Deployment.

Resource Management API

The Resource Management API provides functionality to create and manage
destinations, message push listeners, and durable subscriptions.

Topics:

* Managing Destinations

* Managing Message Push Listeners

* Managing Durable Subscriptions

Service roles define what messaging resource operations users are authorized to
perform in the Oracle Messaging Cloud Service instance. See About Oracle
Messaging Cloud Service Roles and Users for information about roles and the
privileges associated with each role.

ORACLE 47

Chapter 4
Resource Management API

Managing Destinations

This section provides information about managing destinations.
Topics:

* Create a Destination

» Delete a Destination

» List Destinations

» Retrieve a Destination's Properties

Create a Destination

A user with the Messaging Administrator role can create both queues and topics.
Names of queues or topics must always consist solely of letters of the Roman
alphabet (a through z or A through Z), decimal digits (0 through 9), and underscores
('_". No other characters are allowed.

Refer to the following for details:

e Messagi ngServi ce. creat eQueue() in Java APl Reference for Oracle Messaging
Cloud Service

e Messagi ngServi ce. creat eTopi ¢() in Java APl Reference for Oracle Messaging
Cloud Service

See Create Resources for a code sample.

Delete a Destination

A user with the Messaging Administrator role can delete queues and topics.

Deleting a destination is a non-blocking operation. For more information, refer to About
Destination Deletion.

" Note:

Deleting a destination will permanently delete all undelivered messages
currently residing on the destination. It also deletes all message push
listeners on the destination.

Deleting a topic deletes all durable subscriptions on the topic.

Refer to the following for details:

* Messagi ngServi ce. del et eQueue() in Java API Reference for Oracle Messaging
Cloud Service

e Messagi ngServi ce. del et eTopi ¢() in Java APl Reference for Oracle Messaging
Cloud Service

ORACLE 4-8

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#createQueue(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#createTopic(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#deleteQueue(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#deleteTopic(java.lang.String)

Chapter 4
Resource Management API

List Destinations

A user with the Messaging Administrator role can list existing destinations.
Refer to the following for details:

e Messagi ngService. | i st QueueProperties() in Java API Reference for Oracle
Messaging Cloud Service

e Messagi ngService. |istTopi cProperties() in Java APl Reference for Oracle
Messaging Cloud Service

Retrieve a Destination's Properties

A user with the Messaging Administrator role can get an existing queue or topic's
properties.

Refer to the following for details:

e Messagi ngServi ce. get QueueProperties() in Java APl Reference for Oracle
Messaging Cloud Service

* Messagi ngServi ce. get Topi cProperties() in Java API Reference for Oracle
Messaging Cloud Service

Note that for queues, you can also retrieve the queue’s backlog size which is the
number of messages currently stored in the queue.

You can call the get QueueProperties(String queueNane, bool ean

ret urnBackl ogSt at s) method on a Messagi ngSer vi ce object to get a
QueueProperti es object. If the ret ur nBackl ogSt at s parameter is specified as tr ue,
the returned QueuePr operti es object will return a Backl ogSt at s object when the
get Backl ogSt at s() method is called. The queue's current backlog count can be
obtained by calling the get Current () method on the Backl ogSt at s object.

Managing Message Push Listeners

This section provides information about managing message push listeners. The name
of a message push listener must always consist solely of letters of the Roman
alphabet (a through z or A through Z), decimal digits (0 through 9), and underscores
('_". No other characters are allowed.

Topics:

e Create a Message Push Listener
e Delete a Message Push Listener
e List Message Push Listeners

e Retrieve a Message Push Listener's Properties

Create a Message Push Listener

A user with the Messaging Administrator or Messaging Worker role can create
message push listeners.

Refer to the following for details:

ORACLE 4.9

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#listQueueProperties(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#listTopicProperties(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#getQueueProperties(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#getTopicProperties(java.lang.String)

Chapter 4
Resource Management API

e Messagi ngServi ce. creat eli st ener () in Java APl Reference for Oracle
Messaging Cloud Service

See Create Resources for a code sample.

When creating a new message push listener, a user needs to supply objects of the
following classes (as needed):

e Medi um A reference to an existing queue or topic from which the listener will
receive messages. This cannot refer to a temporary queue or topic. Message push
listeners cannot be created on temporary queues and topics.

e Durabl eSubscri ption: A reference to an existing durable subscription from which
to receive messages.

e Sel ector: Awrapper that holds a JMS Selector expression. A JMS Selector can
be used to limit the messages that a message push listener receives.

* PushURI : A superclass to define the target to which messages are pushed.
Subclasses include PushMedi um which indicates that messages should be pushed
to another destination, and PushURL, which indicates that messages should be
pushed to a URL.

e FailurePolicy: A definition of the policy for the message push listener to follow if
a failure is encountered when pushing to its configured target. Different failure
conditions can trigger different actions defined in Fai | ur eResponse objects.

Delete a Message Push Listener

A user with the Messaging Administrator or Messaging Worker role can delete existing
message push listeners.

Refer to the following for details:
e Messagi ngServi ce. del et eLi st ener () in Java APl Reference for Oracle

Messaging Cloud Service

List Message Push Listeners

A user with the Messaging Administrator or Messaging Worker role can list existing
message push listeners. All message push listeners for a service instance are listed by
default. Optionally, message push listeners for a specific queue or topic can be listed.

For more information, refer to Messagi ngSer vi ce. get Li st ener Names() in Java AP
Reference for Oracle Messaging Cloud Service.

Retrieve a Message Push Listener's Properties

A user with the Messaging Administrator or Messaging Worker role can get the
definitions of an existing message push listener.

Refer to the following for details:

e Messagi ngServi ce. get Li st ener () in Java APl Reference for Oracle Messaging
Cloud Service

ORACLE 4-10

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagePushListenerManager.html#createListener(java.lang.String,%20oracle.cloud.messaging.client.MessagePushListener)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/Medium.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscription.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/Selector.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/PushURI.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/PushMedium.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/PushURL.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/FailurePolicy.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/FailureResponse.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagePushListenerManager.html#deleteListener(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagePushListenerManager.html#getListenerNames()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagePushListenerManager.html#getListener(java.lang.String)

Chapter 4
ConnectionFactory Creation API

Managing Durable Subscriptions

Durable subscriptions are created and deleted using standard JMS 1.1 mechanisms.
Topics:
e List Durable Subscriptions

* Retrieve a Durable Subscription's Properties

Note that the Oracle Messaging Cloud Service Java library provides two additional
creat ebDur abl eSubscri ber () methods that are not part of the JMS 1.1 interface. See
Safe Durable Subscriptions for information about how to obtain durable subscribers
safely.

List Durable Subscriptions

A user with the Messaging Administrator or Messaging Worker role can list existing
durable subscriptions. Durable subscriptions can be listed for the entire service
instance, a specific client ID, or a specific topic.

Refer to the following for details:

* Messagi ngService. get Al | Durabl eSubscri ptions() in Java API Reference for
Oracle Messaging Cloud Service

* Messagi ngServi ce. get Dur abl eSubscri ptionsByCientlD() in Java API
Reference for Oracle Messaging Cloud Service

e Messagi ngServi ce. get Dur abl eSubscri pti onsByTopi ¢() in Java API Reference
for Oracle Messaging Cloud Service

Retrieve a Durable Subscription's Properties

A user with the Messaging Administrator or Messaging Worker role can get the
properties of an existing durable subscription.

For details, refer to Messagi ngSer vi ce. get Dur abl eSubscri ption() in the Java API
Reference for Oracle Messaging Cloud Service.

ConnectionFactory Creation AP

ORACLE

This topic provides information about the Connect i onFact ory object.

In the Oracle Messaging Cloud Service Java library, a JMS Connect i onFact ory object
is obtained from a Messagi ngSer vi ce object by invoking the get Connect i onFact ory()
method on the Messagi ngSer vi ce object. The object returned has class

oracl e. cl oud. messagi ng. cl i ent. O acl ed oudConnect i onFact ory, which is the
Oracle Messaging Cloud Service extension of Connect i onFact ory. Note that this is
different from the suggested method of obtaining Connect i onFact ory objects from an
instance of the Java Naming and Directory Interface (JNDI) as specified in the

JMS 1.1 standard. Oracle Messaging Cloud Service does not currently support JNDI
access to Connect i onFact ory objects.

4-11

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscriptionManager.html#getAllDurableSubscriptions()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscriptionManager.html#getDurableSubscriptionsByClientID(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscriptionManager.html#getDurableSubscriptionsByTopic(java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DurableSubscriptionManager.html#getDurableSubscription(java.lang.String,%20java.lang.String)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/MessagingService.html#getConnectionFactory()

ORACLE

Chapter 4
ConnectionFactory Creation API

The Messagi ngSer vi ce class also has methods get QueueConnect i onFact ory() and
get Topi cConnecti onFact ory() . These methods are provided purely for backward
compatibility with IMS 1.0, in which separate connection factory classes are
implemented for queues and topics. The separate connection factory methods should
not be used unless it is necessary to use Oracle Messaging Cloud Service with legacy
JMS 1.0 code that requires the use of QueueConnect i onFact ory or

Topi cConnect i onFact ory objects.

The Java library includes methods to create Connecti onFactory,

QueueConnect i onFact ory, and Topi cConnect i onFact ory objects that set a fixed client
ID on the Connecti on, QueueConnect i on, or Topi cConnect i on objects that they create.
If such a Connect i onFact ory object is created, any Connection it creates must be
closed before the Connect i onFact ory can be used to create another Connection,
since there can only be one Connection with a given client ID.

Note:

Connection objects that you create via the Java library should be closed if
you are not going to use them further. This is because Connection objects
consume computing and network resources on both the client and the server
side, and failing to close them wastes these resources.

References to Connection objects that have not been closed should not just
be discarded, with the Connection being taken care of by garbage collection.
If resources held by Connections are allowed to be released by garbage
collection then there may be a substantial delay between when a Connection
reference is discarded and when garbage collection occurs. This causes
server and network resources to be wasted.

ConnectionFactory Control of Thread Pools

An API has been added to Or acl eCl oudConnect i onFact ory to control the client-side
use of thread pools. Some implementations of this interface support setting a thread
pool (an instance of j ava. util . concurrent. Execut or) for the Connecti onFactory.
This thread pool is used to obtain threads to execute concurrent operations like
processing asynchronously received Message objects via a MessagelLi st ener .

By default, the thread pool is of the sort returned by

java. util.concurrent. Execut ors. newCachedThr eadPool (). This is a pool that is
initially empty, creates new threads as needed, and re-uses previously started threads
in the pool. When a thread is returned to the pool, it remains available for re-use for 60
seconds, after which it is terminated. The threads managed by the default thread pool
are all daemon threads.

Connections that are created while a Connect i onFact ory is using a given thread pool
will continue to use threads from that thread pool for concurrent operations. For
example, if a Connecti onFact ory is created, and is used to create five Connections,
and the ConnectionFactory's thread pool is then set to a different thread pool, future
Connections will use the new thread pool, but the first five Connections will use the
default thread pool.

Oracle Cloud Messaging Service implementations of JMS that support setting thread
pools will interact with those thread pools solely via the
java. util.concurrent. Executor interface. They will not shut down or otherwise

4-12

Chapter 4
Using JMS to Send and Receive Messages

manage such thread pools. If a client sets the thread pool of a Connect i onFact ory, it
must do any configuration, startup, shutdown, or other management itself. When a
thread pool is used to execute a concurrent operation, if the attempt to start that
operation in a thread throws an exception (for example, because the thread has a
maximum pool size, and that size has been reached), it will cause a JIMSException to
be thrown by the JMS operation that attempted to start the concurrent operation (for
example, set MessagelLi st ener () on a MessageConsuner). Implementations of this
interface that support setting thread pools and are serializable will re-initialize the
thread pool to the default thread pool when de-serialized.

Using JMS to Send and Receive Messages

Once a Connect i onFact ory has been created from the Messagi ngSer vi ce object, you
can use the standard JMS 1.1 API operations for sending and receiving messages.

Refer to Java Message Service Concepts in Java EE 6 Tutorial if you need information
about how to use the JMS 1.1 API.

" Note:

There are several differences between using JMS from the Oracle
Messaging Cloud Service Java library and other on-premises environments.
See Differences from JMS for a complete list.

Refer to the following for code samples:

* Send a Message to a Topic

* Receive a Message from a Queue with an Optional Selector

* Asynchronously Receive Messages with a Durable Subscription
* Asynchronously Process Messages Within a Transaction

* Create Resources

* Use Message Groups

Using Extensions to the JMS API

ORACLE

The Oracle Messaging Cloud Service Java library extends the Java Message Service
(JMS) 1.1 interface.

Topics:

e Safe Durable Subscriptions

* Strong Typing for IMS

* Connection Timeout

* Obtaining Service Version

* Obtaining Messaging Context ID

4-13

http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

Chapter 4
Using Extensions to the JMS API

Safe Durable Subscriptions

The Oracle Messaging Cloud Service Java library provides a method to obtain a
consumer on a durable subscription safely in the sense that the creation of the
consumer will not create a subscription that does not already exist and will not destroy
an existing subscription.

In JMS 1.1, a durable subscription is not directly represented as a Java object. What is
represented is a consumer on a durable subscription. Such consumers are called
durable subscribers, and are created by invoking one of the two

creat eDur abl eSubscri ber () methods on a JMS Sessi on.

An invocation of a cr eat eDur abl eSubscri ber () method is always passed a Topi ¢
object (representing the topic on which to create a durable subscriber) and a name,
which is the name of the subscription. The Sessi on object on which the method is
invoked must have been created from a Connect i on object that had a client ID set on it
prior to the session's creation. One of the cr eat eDur abl eSubscri ber () methods also
takes a selector that will define a subset of messages that will be delivered to the
durable subscriber.

A durable subscription is uniquely identified by its associated client ID and subscription
name. The topic subscribed to and the selector, if any, are properties of the durable
subscription.

The first unsafe aspect of the IMS methods is that creating a durable subscription with
a given client ID and subscription name will create a durable subscription
corresponding to the client ID and subscription if one does not exist when the method
is called. If a client means to access an existing durable subscription, but gets the
wrong client ID or subscription name (for example, due to a typographical error in code
or data), it will simply create and begin to access a hew durable subscription.
Meanwhile, the durable subscription it means to access may be holding messages that
the client will miss.

The second unsafe aspect of the JIMS methods is their behavior when a durable
subscriber is created on an existing durable subscription, but the topic or selector
specified is different from that of the existing durable subscription. In this case, the
JMS 1.1 standard specifies that the existing durable subscription be deleted,
discarding all messages it is holding, and a new durable subscription be created on
the new topic or with the new selector, or both. This may cause messages to be lost if
a mistake in code or data causes a client to change the topic or selector of an existing
durable subscription inadvertently.

The Oracle Messaging Cloud Service extension of the JMS Sessi on interface is

oracl e. cl oud. nessagi ng. cl i ent. Oracl eCl oudSessi on has two additional

creat eDur abl eSubscri ber () methods that are not part of the JMS 1.1 interface. Each
method takes a subscription name, but no Topi ¢ object or selector. The methods
return a consumer on an existing durable subscription with the client ID from the
Connect i on object and the subscription name supplied to the invocation. If no durable
subscription with the specified client ID and subscription name exists, the method will
throw an exception.

Strong Typing for JIMS

The Oracle Messaging Cloud Service Java library adds several classes that can make
code more strongly typed and self-documenting, which can improve code quality.

ORACLE 4-14

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudSession.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudSession.html#createDurableSubscriber(java.lang.String)

Chapter 4
Using Extensions to the JMS API

The use of the Java library classes, and the methods that take them as parameters, is
optional, except in the case of a method for safe durable subscriptions, which uses the
Local Mode class.

The strong typing additions fall into two categories: Java enumeration classes and
wrapper classes.

Enumerations

In several methods in the JMS 1.1 API, parameters that indicate one of a small
number of alternatives are represented by Java bool ean or short values. In the Oracle
Messaging Cloud Service Java library, these parameters can be represented by Java
enumeration types.

The enumeration classes are:

* AcknowledgementMode: Represents whether the acknowledgement mode of a
session is auto-acknowledge, client-acknowledge, or duplicates-ok, and replaces
the use of codes of type short.

- DeliveryMode: Represents whether a message is persistent or non-persistent,
and replaces the use of codes of type short.

» LocalMode: Represents whether a consumer on a topic will receive messages
sent through the connection that the consumer uses, and replaces the use of
bool ean.

» TransactionMode: Represents whether a session is transacted or not, and
replaces the use of bool ean.

Wrapper Classes

ORACLE

In several methods in the JMS 1.1 API, parameters with specific meanings and
limitations on their values are represented by Java types or classes such as i nt, | ong,
or String.

In the Oracle Messaging Cloud Service Java library, these parameters can be
represented by classes that "wrap" the Java types and classes used in JMS 1.1.
These "wrapper" classes enforce some of the restrictions on the wrapped values that
are required by JMS 1.1, and generally improve the typing discipline of IMS. With the
wrapper classes, you can supply nul | to the send() methods that take those classes
and have the default used. Also, when using the send() methods that take the
wrapper classes as parameters, you can supply nul | for a parameter and the
producer-specified default will be used.

The wrapper classes are:

 TimeTolLive: Represents the time-to-live of a message, and replaces the use of
| ong. Use of this type ensures that inappropriate or disallowed values, such as
values less than or equal to 0, cannot be passed. It also allows clients to specify
the maximum time-to-live allowed by Oracle Messaging Cloud Service without
having to know what that maximum is.

» Selector: Represents a selector for a consumer, durable subscription, or message
push listener, and replaces the use of Stri ng. Currently, this class is a simple
wrapper for a St ri ng. In future versions, the wrapper may incorporate syntax
checking of the St ri ng and support programmatic mechanisms for constructing a
selector that is guaranteed to be well-formed.

4-15

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/AcknowledgementMode.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/DeliveryMode.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/LocalMode.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/TransactionMode.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/TimeToLive.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/Selector.html

Chapter 4
Using Extensions to the JMS API

» Priority: Represents the priority of a message, and replaces the use of i nt. Use
of this type ensures that only i nt values that correspond to a JMS 1.1 priority
value can be passed. Oracle Messaging Cloud Service does not currently support
priorities other than the default (4), so supplying priority values other than the
default will be ignored. Priorities may be supported in a future release.

Connection Timeout

The Oracle Messaging Cloud Service Java library provides methods for controlling a
Connection's timeout.

The Oracle Messaging Cloud Service extension of the JMS Connect i on interface is
oracle.cloud.messaging.client.OracleCloudConnection. Some implementations of this
interface support setting a timeout on the Connection. If a client fails or loses network
connectivity to the messaging service, after the timeout has passed, the service will
release resources reserved for the client. In particular, if a Connection is created with a
client ID set on it, and the client fails or loses network connectivity to the messaging
service, that client ID will continue to be reserved (and cannot be set on another
connection) until the timeout has passed. As long as the client is running and has
connectivity to the service, the timeout should not expire. The timeout is measured in
seconds, must be positive, is initialized to 300 (5 minutes), and can be set to a
maximum of 900 (15 minutes).

Refer to the following methods for controlling a connection's timeout in the Java library:

e i sTimeout Supported() in Java APl Reference for Oracle Messaging Cloud
Service

e get Ti meout | nSeconds() in Java API Reference for Oracle Messaging Cloud
Service

e set Timeout | nSeconds(int) in Java APl Reference for Oracle Messaging Cloud
Service

Obtaining Service Version

The Oracle Messaging Cloud Service Java library provides the get Server Ver si on()
method of the Or acl eCl oudConnect i on class to obtain the version of the Oracle
Messaging Cloud Service being run by the server to which the client is connected.

Refer to the following for details:

e get ServerVersion() in Java APl Reference for Oracle Messaging Cloud Service.

Obtaining Messaging Context ID

ORACLE

The Oracle Messaging Cloud Service Java library provides the
get Messagi ngCont ext I d() method of the Oracl eCl oudConnect i on class to obtain the
messaging context ID for a given Connection.

Refer to the following for details:

» get Messagi ngContext 1 d() in Java API Reference for Oracle Messaging Cloud
Service.

4-16

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/Priority.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#isTimeoutSupported()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#getTimeoutInSeconds()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#setTimeoutInSeconds(int)
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#getServerVersion()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#getMessagingContextId()

Chapter 4
Limitations on Message Size and Time-to-Live

Limitations on Message Size and Time-to-Live

ORACLE

Oracle Messaging Cloud Service imposes limitations on the size and time-to-live of
messages sent.

The internal, server-side representation of messages may be no larger than 512KB.
The internal size correlates roughly with the size of the body for, for example,

Byt esMessage and Text Message objects. For other Message subclasses, such as
MapMessage and St r eamvessage, the correlation is less precise. Message headers and
properties also contribute to the message size. If a message is sent whose internal
size exceeds 512KB by more than a certain margin for imprecision, the Java library
will throw a JMSExcept i on whose message will indicate the internal size of the
message.

The time-to-live (TTL) of a message may not be more than two weeks, plus a certain
margin for clock skew between the client and server machines' clocks. A TTL of O is
interpreted as the maximum, two-week TTL rather than an infinite TTL. This limitation
is enforced at sending time; setting a producer's default TTL to a value that is too large
will not throw an exception, but sends via that producer will throw a JMSExcept i on.

4-17

Troubleshooting Oracle Messaging Cloud
Service

ORACLE

This section describes common problems that you might encounter when using Oracle
Messaging Cloud Service and provides tips on possible solutions.
Topics:
e Java Library
— lam unable to use JNDI or message-driven beans

— #unique_193/
unique_193 Connect_42_|SeeALotOfThreadsBeingCreatedOrNetw-1F036C3
B

* Messages
— lam not receiving messages; | send messages, but | never receive them
— lam unable to create a durable subscription or subscriber to a topic
— lam receiving an error stating that | am sending a message that is too large

— | am receiving an error stating that a destination has reached its limit of
messages

— llost the HTTP cookie associated with a messaging context

— My messages are being redelivered

— My messages are not appearing at the target destination

— My messages are not being received by a consumer on a queue

— | am receiving messages whose Cont ent - Type does not match my client's
Accept header

— lamunable to use message selectors
» Destinations

— | am receiving errors stating that my service instance does not have any
available queues, topics, temporary queues, temporary topics, or durable
subscriptions

* Miscellaneous

— My connections are not released after | stop using the Java library or REST
API

— | am receiving the error message "Missing or incorrect X-OC-ID-TOKEN"

— lam receiving an error stating that my service instance does not have any
available connections

— | am getting a "404 Not Found" response when | try to access connections,
sessions, producers, consumers, or queue browsers that | just created

5-1

Chapter 5
Java Library

— lam receiving an error message of the form "Internal error; log reference:
<pseudorandom string>"

Java Library

The following troubleshooting tips pertain to the Java library.

I am unable to use JNDI or message-driven beans

The Oracle Messaging Cloud Service Java library currently cannot be used with the
Java Naming and Directory Interface (JNDI) or messaging-driven beans (MDBSs).

| see a lot of threads being created or network connections being made from
machines running the Java library

Make sure you are explicitly calling the cl ose() method on all Connection objects you
create, rather than discarding references to them and allowing the objects to be
reclaimed by garbage collection. The Java library's Connection objects have
resources, both threads and network connections, associated with them; discarding
references to Connection objects without calling cl ose() may cause significant delays
in those resources being reclaimed.

Messages

ORACLE

The following troubleshooting tips pertain to sending and receiving messages.

I am not receiving messages; | send messages, but | never receive them

Remember that you must start a connection before you can receive messages
through it. When using the Java library, remember to call the start () method on the
connection object. When using the REST API, remember to pass the HTTP header X-
OC Action: start tothe connection resource.

I am unable to create a durable subscription or subscriber to a topic

Make sure that the client ID for the durable subscription is not being used by any of the
following:

e Another JMS connection created using the Java library
e A connection created using the REST API

A message push listener

| am receiving an error stating that | am sending a message that is too large

Reduce the size of the message you are sending. Consider using Oracle Storage
Cloud Service to store the large message content and send a reference to the stored
content in a message. You may also opt to break the message into smaller pieces and
use message properties or correlation IDs to indicate grouping.

Note:

For all service instances, the maximum size of a message is 512KB.

5-2

Chapter 5
Messages

I am receiving an error stating that a destination has reached its limit of
messages

If the destination is a queue, remove messages from the queue at a faster rate by
adding more consumers, or slow the rate of sending.

If the destination is a topic, look for slow consumers.

" Note:

You cannot purchase any additional queues, topics, or durable subscriptions
for a given service instance. All service instances have a fixed limit of
messaging resources. See About Resource Limits for the maximum number
of resources in paid and trial service subscriptions.

| lost the HTTP cookie associated with a messaging context

Ensure that you store the JSESSI ONI D cookie in persistent storage for a high
availability client. The messaging context and its associated connections, sessions,
producers, consumers, queue browsers, and temporary destinations will remain open
on the server until the messaging context expires.

" Note:

If you lose the JSESSI ONI D cookie, you lose the ability to access the
associated messaging context and all connections, sessions, producers,
consumers, queue browsers, and temporary destinations created from it.

My messages are being redelivered

If you receive messages in a client-acknowledge mode session that are subsequently
redelivered, be sure to acknowledge the messages (or, in the REST API, the session
through which they were received).

If you receive messages in a transacted session that are subsequently redelivered, be
sure to commit the session through which the messages were received.

Note:

If a client-acknowledge mode session or a transacted session is closed (or,
in the REST API, has its messaging context expired), any messages
received through that session that are unacknowledged or uncommitted will
become available for redelivery.

My messages are not appearing at the target destination

If your message was sent through a transacted session, be sure to commit the session
before the session expires or is closed, or the sent messages will be lost.

ORACLE 5-3

Chapter 5
Destinations

My messages are not being received by a consumer on a queue

Check if there is another consumer on the same queue, or a message push listener
that is receiving messages from that queue. A message on a queue will only be
delivered to one consumer.

I am receiving messages whose Cont ent - Type does not match my client's Accept
header

The REST API ignores the Accept header of requests to receive a message. Use
message properties and selectors to ensure that you do not receive messages of a
type your client cannot handle.

I am unable to use message selectors

Ensure that you are using the correct JMS selector syntax defined in the IMS
specification. For the syntax of selectors, see the Message Selectors section of the
Java API reference for the j avax. j ns. Message class.

Destinations

The following troubleshooting tips pertain to destinations.

I am receiving errors stating that my service instance does not have any
available queues, topics, temporary queues, temporary topics, or durable
subscriptions

Ensure that you delete any unneeded queues, topics, temporary queues, temporary
topics, or durable subscriptions.

Note:

You cannot purchase any additional queues, topics, temporary queues,
temporary topics, or durable subscriptions. All service instances have a fixed
limit of messaging resources. See About Resource Limits for the maximum
number of resources in paid and trial service subscriptions.

Miscellaneous

ORACLE

The following troubleshooting tips pertain to scenarios not covered in other sections.

My connections are not released after | stop using the Java library or REST API

A connection created through the REST API is not released until it is deleted or its
messaging context expires. If a connection is created through the Java library, and the
client that created it crashes without invoking its cl ose() method, the connection will
not be released until its timeout has expired. Ensure that you always delete or close
connections when they are no longer in use.

Refer to the following methods for controlling a connection's timeout in the Java library:

5-4

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

Chapter 5
Miscellaneous

e i sTinmeout Supported() in Java API Reference for Oracle Messaging Cloud
Service

e get Ti meout I nSeconds() in Java API Reference for Oracle Messaging Cloud
Service

e set Timeout | nSeconds(int) in Java API Reference for Oracle Messaging Cloud
Service

I am receiving the error message "Missing or incorrect X-OC-ID-TOKEN"

You must send the X- OC- | D- TOKEN header on every HTTP request to the REST API.
You may also disable the checking of this token. See Understanding Anti-CSRF
Measures.

I am receiving an error stating that my service instance does not have any
available connections

Ensure that your connections are being used effectively by storing and sending the
JSESSI ONI D cookie with the REST API and closing connections from the Java library.
Delete any unneeded message push listeners. You may also opt to buy more
connections.

| am getting a "404 Not Found" response when | try to access connections,
sessions, producers, consumers, or queue browsers that | just created

Be sure to store the JSESSI ONI D cookie sent in HTTP responses and send it back in
subsequent responses. If you do not do this, connections, sessions, producers,
consumers, and queue browsers created by previous requests will be inaccessible by
subsequent responses.

Check the value of the Maximum Inactive Interval (MIl) to ensure that your REST API
messaging context is not expiring before you use it. The default value of the Mll is 5
minutes, and it can be set to at most 15 minutes. If your application needs to create
and hold messaging contexts through the REST API for more than 15 minutes, send a
"heartbeat" request periodically to keep the messaging context from expiring. For
example, a GET request to / maxI nact i vel nt erval keeps the messaging context alive
without side effects.

I am receiving an error message of the form "Internal error; log reference:
<pseudorandom string>"

This is an indication that an internal exception was thrown. Details of the exception
can be found in the server log, in a log entry that can be found by searching for the
<pseudorandom string>. Note that the server log can only be accessed by Oracle
Support. The error message, including the pseudorandom string, should be included in
any communication about the error to Oracle Support.

ORACLE 5-5

http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#isTimeoutSupported()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#getTimeoutInSeconds()
http://docs.oracle.com/cloud/latest/messcs_common/CSMSS/oracle/cloud/messaging/client/OracleCloudConnection.html#setTimeoutInSeconds(int)

Best Practices

This topic provides information on best practices for using the Oracle Messaging
Cloud Service effectively.

Topics:

* lLearnJMS 1.1

- Effective Pooling of Resources

* Using Transacted and/or Client-Acknowledged Sessions

» Diagnosing Exceptions in the Java Library

» Using Exception Listeners

* Recovery Strategies

» Alternative to Selectors

Learn JMS 1.1

The Java library provided in Oracle Messaging Cloud Service implements the JMS 1.1
API.

Before using the Java library in Oracle Messaging Cloud Service for creating
applications, it is recommended that you familiarize yourself with the JMS 1.1 standard
or the JMS 1.1 Javadocs. This will help you get a better understanding of important
topics such as Excepti onLi st ener.

Effective Pooling of Resources

ORACLE

It is recommended to avoid constant construction and destruction of IMS objects.

JMS applications are intended to set up connections, sessions, producers, and
consumers, and hold them while processing.

It is recommended not to repeatedly perform actions such as:

* Sending a message by creating a connection, creating a session, creating a
producer, sending the message, and then destroying those objects.

* Receiving a message by creating a connection, creating a session, creating a
consumer, doing a receive, and then destroying those objects.

If your application requires such actions to be performed repeatedly, the application
should try to avoid creating and destroying JMS objects, and should instead hold
objects in pools and re-use them. Note that connections are the most expensive
objects to create, followed by sessions, consumers, and producers.

A-1

Appendix A
Using Transacted and/or Client-Acknowledged Sessions

Using Transacted and/or Client-Acknowledged Sessions

In some cases it may be critical to applications that messages not be lost, in such
cases it may be desirable to use transacted and/or client-acknowledged sessions.
However, frequent acknowledgements for each and every operation should be
avoided.

Requestor Sessions

It is important that different requesters use different sessions. Acknowledging one
message acknowledges all currently unacknowledged messages received in the same
session.

If multiple requesters use the same session, and one receives its response
successfully, while another sees a failure and wishes to recover and re-try, if the first
acknowledges before the second can recover, the second requester's message will be
acknowledged and purged from Oracle Messaging Cloud Service, and the second
requester's re-try will receive a null message.

Responder Sessions

It is important that different responders use different sessions. If multiple responders
use the same session, and one has received a request, processed it, and sent the
response while another responder has only received a request, committing the session
will commit both the first responder's request and response and the second
responder's request.

Diagnosing Exceptions in the Java Library

ORACLE

The Oracle Messaging Cloud Service Java library provides support for diagnosing
problems that are indicated by a JMSException (or subclass thereof) being thrown by
an invocation of a Java library method or being dispatched to an Excepti onLi st ener .

The Java library is an implementation of IMS 1.1. As such, the problem indicated by
an exception can sometimes be inferred from the class of the exception. For example,
if an invocation of the set d i ent 1 () method of the Connecti on class throws

I nval i dd i ent| DException, the JMS standard and Javadoc indicates that this may
indicate that there may be an existing Connection with the same client ID. If you
receive this exception, you should implement logic to check for and handle this case,
or you should modify the application’s code to eliminate such a possibility.

In some cases, the JMS 1.1 specification may not define the problem indicated by an
exception. This will be true, for example, if the exception thrown is of the generic class
JMBExcept i on, or if the exception is a Messagi ngExcept i on thrown from a (hon-JMS)
method of the Messagi ngSer vi ce interface. In such cases, Oracle Messaging Cloud
Service may provide additional information about the problem behind the exception.

Subclasses of MessagingException for Specific Problems

In some cases, a non-JMS method may be declared to throw Messagi ngExcepti on,
and documented to throw subclasses of Messagi ngExcept i on to indicate specific
problems. When this is the case, it is documented in the Java library Javadocs.

Examples:

A-2

ORACLE

Appendix A
Diagnosing Exceptions in the Java Library

* The creat eQueue() method of Messagi ngSer vi ce creates a persistent queue with
a particular name. It can throw a generic Messagi ngExcept i on, but it can also
throw an exception of the Desti nati onExi st sExcepti on subclass, which indicates
that there is already a queue with the given name in the service instance.

e The get Topi cProperties() method of Messagi ngSer vi ce returns information
about a persistent topic with a particular name. It can throw a generic
Messagi ngExcept i on, but it can also throw an exception of the
Desti nati onNot FoundExcept i on subclass, which indicates that there is no topic
with the given name in the service instance.

HttpResponseException

The Java library interacts with the Oracle Messaging Cloud Service as a client of the
Oracle Messaging Cloud Service REST API. Thus, many of the exceptions thrown by
the Java library are caused by receiving an HTTP error response from the REST API.
Ht t pResponseExcepti on is a subclass of Messagi ngExcept i on that provides
programmatic access to information provided by an HTTP error response received by
the Java library. The Javadocs for this exception give full details. However, here are
some key points to be noted:

e The response code of the HTTP response from the REST API can be obtained by
invoking the exception's get ResponseCode() method. This is of particular interest
because, if the response code is in the 400-499 range, this generally indicates a
problem that the client code must correct, whereas a response code in the 400-499
range indicates a problem on the server side.

* The error key in the HTTP response of the REST API (the err or Code part of the
Oracle Messaging Cloud Service REST API error response) can be obtained as
an Err or Key object by invoking the exception's get Err or Key() method. If the
return value of this method is not nul I , it will provide additional information beyond
what is given by the the HTTP response code.

Note: If get Error Key() returns null, this indicates that the HTTP response
received by the Java library was not generated by Oracle Messaging Cloud
Service. In such cases, the response may have been generated by Oracle Cloud
infrastructure, such as a load balancer, or it may even have come from some part
of the user's infrastructure, such as an HTTP proxy. If get Err or Key() returns null,
the content of the HTTP response may be examined to attempt to diagnose the
problem.

e The error message in the HTTP response of the REST API (the err or Message part
of the Oracle Messaging Cloud Service REST API error response) can be
obtained by the get Err or Message() method. The error Message generally contains
additional information beyond what is given by the error key.

* The exception message for Ht t pResponseExcept i on (that is, the return value of
the standard get Message() method) is the full HTTP response, including the status
line, headers, and body of the error response. The error message text will be in
the exception's message, but it will be embedded in the HTTP response with other
information.

HttpResponseExceptions in Non-JMS Methods

When a Messagi ngExcepti on is thrown by a non-JMS method (e.g. the

Messagi ngSer vi ce methods), and its class is not one of the subclasses that indicate a
specific problem, its class may be Ht t pResponseExcepti on. In such a case, it will
contain the information alluded to in the previous section.

A-3

Appendix A
Using Exception Listeners

If a Messagi ngExcepti on is thrown whose class is not one of the problem-specific
classes or H t pResponseExcept i on, it generally indicates that the exception was
thrown purely on the client side. Users must not assume that a thrown

Messagi ngExcepti on is an H t pResponseExcept i on if its class is not one of the
problem-specific exception classes.

HttpResponseExceptions in JMS Methods

When a JMSException is thrown by the JMS part of the client library, if it's thrown
because of an HTTP error response from Oracle Messaging Cloud Service, its cause
(the value returned by the standard get Cause() method) will be an

Ht t pResponseExcept i on which can be used in the same way as above. Again, the
cause must be checked to ensure that it's an Ht t pResponseExcept i on.

Using Exception Listeners

Note that JMS 1.1. only allows an exception to be dispatched to an
Excepti onLi st ener to indicate some problem that is not already indicated by a JMS
method throwing an exception.

Recovery Strategies

When operations fail, throwing an exception, use the guidelines provided in
Diagnosing Exceptions in the Java Library to attempt to diagnose the seriousness of
the problem. In such situations, you should try to avoid attempting the operation
repeatedly, deleting the connection, and recreating objects.

Alternative to Selectors

Selectors are expensive, and they may slow down or delay the process of receiving
messages, so they should be avoided unless absolutely necessary.

For example, if you are using a single queue with selectors to receive response
messages that satisfy a single specific criteria, it is better to use temporary queues for
receiving such responses.

You should avoid using selectors to make a single queue look like multiple queues, for
example, to implement priorities. In such cases, it is recommended to have multiple
queues, for example, a high-, middle-, and low-priority queue.

ORACLE A-4

REST API Reference

This section lists the request parameters that can be sent and the status codes and
error responses that can be received by a REST API client of Oracle Messaging Cloud
Service.

Topics:

 REST API Parameters Reference

 REST API HTTP Status Codes and Error Messages Reference

REST API Parameters Reference

The table in this section lists the parameters that can be submitted to the REST API.

The parameters are listed by their names as query string parameters, along with their
corresponding HTTP headers and a short general description of their meanings. The
query string parameter is always a camel-case identifier beginning with a lowercase
letter. The corresponding HTTP header is the query string parameter with X- OC-
prepended, and with case-change word boundaries replaced by dashes.

" Note:

Except as noted in the methods for sending messages, every parameter may
be supplied either as a query string parameter or as an HTTP header. If
supplied as both, the header value will be ignored.

Query String Parameter/ HTTP Possible Values Description

Header

Query string parameter: aut o, cl i ent, dups_ok Acknowledgement mode for
ackMode sessions

HTTP header:

X- OC- ACK- MODE

Query string parameter: acknow edge, commi t, rol | back, Action to invoke on a session for

action recover,start, stop transaction commit/rollback or
message acknowledgement/
recovery, or action to start or

HTTP header: stop a connection

X- OC- ACTI ON

ORACLE B-1

Appendix B
REST API Parameters Reference

Query String Parameter/ HTTP
Header

Possible Values

Description

Query string parameter: String Client ID for connection/durable
clientld subscriptions

HTTP header:

X-OC-CLI ENT-1D

Query string parameter: String Name of the connection
connection

HTTP header:

X- OC- CONNECTI ON

Query string parameter: String Correlation ID for a message

correlationld

HTTP header:
X- OC- CORRELATION-1 D

Query string parameter:
del i veryMode

HTTP header:
X- OC- DEL| VERY- MODE

per si st ent, non_per si st ent

Delivery mode for a message

Query string parameter:
destination

HTTP header:
X- OC- DESTI NATI ON

/ queues/ queueNare
[/t opi cs/ t opi cNare
/ t enpor ar yQueues/ queueNane
[/t enpor ar yTopi ¢s/ t opi cNane

Destination (queue, topic,
temporary queue, or temporary
topic)

Query string parameter:
groupld

HTTP header:
X-OC- GROUP-1 D

escaped value String

Used to set the JMSXG oupl D
property on the message being
sent. This is the name of the
message group of which this
message is a part, if any.

Note: If the JMSXG oupl D
property is set as an HTTP
request header, it must be set to
an escaped value String or a
badPar anet er error response
will be generated. For more
information on escaped value
Strings, see About Escaped
Value Strings. If the

JMBXG oupl D property is set as
a query string parameter, the
usual conventions for escaping
query string parameters hold.

ORACLE

B-2

Appendix B
REST API Parameters Reference

Query String Parameter/ HTTP
Header

Possible Values

Description

Query string parameter:
groupSeq

HTTP header:
X- OC- GROUP- SEQ

Integer

Used to set the IMSXG oupSeq
property on the message being
sent. This is the sequence
number of the message within
the message group specified by
the gr oupl d parameter. It
should be set if, and only if,
groupl d is set. The X- OC-
GROUP- SEQheader must be set
to an integer or a badPar anet er
error response will be generated.

Query string parameter:
| ocal Mode

HTTP header:
X- OC- LOCAL- MODE

GET_LOCAL, NO_LOCAL

Local mode (whether to receive
messages sent to a topic via the
same connection through which
the messages were sent)

Query string parameter:
messagel dEnabl ed

HTTP header:
X- OC- MESSAGE- | D- ENABLED

true, fal se

Whether message IDs are
enabled on a producer

Query string parameter:
messageType

HTTP header:
X- OC- MESSACE- TYPE

PLAI'N, TEXT, BYTES, OBJECT, HTTP,

MAP, STREAM

The type of the message

Query string parameter:
mi

HTTP header:

Integer greater than or equal to 0

Maximum Inactive Interval for the
messaging context

X-0C-MI
Query string parameter: / queues/ queueNarre Destination to which to direct
replyTo / t opi cs/ t opi cNane replies to a message

HTTP header:
X- OC- REPLY- TO

/ t enpor ar yQueues/ queueNane
[/t enpor ar yTopi cs/ t opi cNane

Query string parameter:
sel ector

HTTP header:
X- OC- SELECTOR

For the syntax of selectors, see the

Message Selectors section of the Java

API reference for the
j avax. j ns. Message class.

Selector for filtering messages

ORACLE

B-3

http://docs.oracle.com/javaee/6/api/javax/jms/Message.html

Appendix B
REST API Parameters Reference

Query String Parameter/ HTTP
Header

Possible Values

Description

Query string parameter: String Session identifier

session

HTTP header:

X- OC- SESSI ON

Query string parameter: String Name of a durable subscription

subscri pti onNane

HTTP header:
X- OC- SUBSCRI PTI ON- NAME

Query string parameter:
ti meout

HTTP header:
X- OC- TI MEQUT

Integer strictly greater than O

Timeout for a blocking receive
operation

Query string parameter:
t opi cNare

HTTP header:
X- OC- TOPI C- NAVE

String

Name of a topic

Query string parameter:
transact ed

HTTP header:
X- OC- TRANSACTED

true, fal se

Whether a session is transacted
or not

Query string parameter:
ttl

HTTP header:
X-OC-TTL

Integer strictly greater than 0 or
maxi mum

A time-to-live of the message

Query string parameter:
verificationToken

HTTP header:
X- OC- VER! FI CATI ON- TOKEN

String

The value of the verification
token to send with the message
push listener verification request.

ORACLE

B-4

Appendix B
REST API HTTP Status Codes and Error Messages Reference

REST API HTTP Status Codes and Error Messages
Reference

This section provides information about the status codes and error messages that can
be received by a REST API client of Oracle Messaging Cloud Service.

Topics:

* Generic Meanings of HTTP Response Status Codes

* Error Key, Status Codes and Error Messages

Generic Meanings of HTTP Response Status Codes

The following table lists HTTP response status codes and their meanings:

Response Status Code

Meaning

200 Ok

Successful requests other than creations and deletions.

201 Created

Successful creation of a queue, topic, temporary queue,
temporary topic, session, producer, consumer, listener, queue
browser, or message.

204 No Content

Successful deletion of a queue, topic, session, producer, or
listener.

400 Bad Request

The path info doesn't have the right format, or a parameter or
request body value doesn't have the right format, or a required
parameter is missing, or values have the right format but are
invalid in some way (for example, dest i nat i on parameter
does not exist, content is too big, or client ID is in use).

403 Forbidden

The invoker is not authorized to invoke the operation.

404 Not Found

The object referenced by the path does not exist.

405 Method Not Allowed

The method is not one of those allowed for the path.

409 Conflict

An attempt was made to create an object that already exists.

500 Internal Server Error

The execution of the service failed in some way.

Response bodies for status codes greater than or equal to 400 are either empty or
contain an error response in JSON or XML format. For more information, see
Understanding Error Responses.

Error Keys, Status Codes and Error Messages

This section gives a list of the distinct error responses that can be generated by the

ORACLE

REST API.

Topics:

e Errors with HTTP Status Code 400 (Bad Request)
e Errors with HTTP Status Code 403 (Forbidden)
e Errors with HTTP Status Code 404 (Not Found)

B-5

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Errors with HTTP Status Code 405 (Method Not Allowed)

Errors with HTTP Status Code 406 (Not Acceptable)

Errors with HTTP Status Code 409 (Conflict)

Errors with HTTP Status Code 500 (Internal Server Error)

The error responses are listed first by their associated HTTP status code. Within each
status code, the error responses are listed by their key. The error key is the last
component of the error code returned in the response. That is, each error code has the
form:

urn: oracl e: cl oud: errorcode: messagi ng: error key

For example, the error with key met hodNot Al | owed has error code
urn:oracl e: cl oud: errorcode: messagi ng: met hodNot Al | owed.

For each error key, we give the associated error message followed by further

explanation if the error message is not self-explanatory.

Errors with HTTP Status Code 400 (Bad Request)

This section provides information about errors with HTTP status code 400.

ORACLE

Error Message

Description

badAnti Csrf

M ssing or incorrect X-CC-ID TOKEN

The anti-CSRF token is
enabled, but the request either
did not submit the token in
header X- OC- | D- TOKEN or
submitted a value that does not
match the previously generated
value.

badCont ent Type

Cont ent - Type must be one of the followi ng: |ist
of media types.

The method and URL path must
have content of a particular
media type in its body, and the
Cont ent - Type header does
not match any of the expected
media types.

B-6

Appendix B
REST API HTTP Status Codes and Error Messages Reference

Error Message Description

The value submitted for a
parameter is malformed (for
example, it should be an integer
but doesn't parse as an integer,
or should specify a destination
but doesn't start with / queues/
or/topics/), notin the proper
range (for example, a timeout
that parses as an integer but is
0 or negative), or has some
other syntactic problem. This
error does not indicate that the
value is well-formed but, for
example, refers to an entity that
doesn't exist. The error
message specifies the
parameter, giving both the
query string parameter and
header names, and the bad
value.

badPar anet er

Bad parameter 'query string parameter'/header
"header name': 'parameter value'.

The value submitted for a
message property via an X- OC-
t ype- PROPERTY- nane header
is malformed. The error
message specifies the header
and value.

badProperty

Bad property header 'header name' with val ue

"val ue'.

A message selector was found

badSel ect or to be invalid.

Bad sel ector: 'selector'.

A client ID was submitted that is
invalid or is already in use,
either by a listener, another
client, or by the current client.

clientldFailure

Cient ID'client ID is invalid or in use by a
client or listener.

The client attempted to set a
client ID on the connection after
performing an operation that
puts the connection in a state
where its client ID is no longer
settable. This includes creating
a session and any other
(successful) operation that
requires the prior creation of a
session.

clientldUnsettable

Connection state does not allow setting client
| D.

The client attempted to create a
session with a connection name
that is not the name of an
existing connection.

connect i onPar anet er Not Found

Connection 'connection name' does not exist.

ORACLE B-7

ORACLE

Appendix B
REST API HTTP Status Codes and Error Messages Reference

Error Message Description

A queue or topic submitted in
the request does not exist. This
key is used when the
destination is not the resource
specified in the URL path, but
rather when it is specified as, for
example, a desti nation
parameter or X- OC-

DESTI NATI ON header.

desti nati onPar anet er Not Found

Destination 'destination nane' of type 'queue
or topic' does not exist.

The method to list durable
subscriptions and their
properties specified a
combination of parameters that
is not one of the supported
combinations. The error
message will give a space-
delimited list consisting of some
collection of the strings
subscri ptionNarme,
clientld, andt opi cNane.

di sal | owedSubscri pti onLookup

Di sal | owed conbination of parameters: submtted
paraneters.

An attempt was made to create
a consumer on a temporary
topic that uses a durable
subscription. Durable
subscriptions are not allowed on
temporary topics.

dur abl eSubscri ber OnTenpor ar yTopi ¢

A consunmer cannot be created on a tenporary
t opi c.

A send request was made
whose Cont ent - Type header
had value appl i cati on/ x-
ww f or m ur | encoded. This
content type is not allowed in
send requests, as the
combination of the POST method
and this content type may cause
the web server to consume the
content, attempting to parse it
as if it were a <f or np
submission from an HTML
browser, making the content
unavailable to be put into the
message.

for bi ddenCont ent Type

The Content-Type header has val ue ' Content- Type
value', which is not allowed for the requested
operati on.

A parameter was submitted that
is not allowed with a given
method and URL path. The
error message gives both the
query string parameter and the
header name for the parameter.

f or bi ddenPar anet er

Parameter 'query string parameter'/header
"header name' not allowed with method ' method'
on path "URL path'.

One of the mandatory
parameters was not set when
sending messages using
message groups.

i nconpl et eG oupProperties

Exactly one of the JMSXG oupl D and JMBXG oupSeq
properties was set on the message. Either both
properties nust be set, or neither nust be set.

B-8

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Error Message

Description

i nval i dPat h

Invalid path: 'URL path'.

The URL path of a request is
not a supported path or is
malformed. Specific problems
include the following:

e The URL does not contain
the path component for the
service name and identity
domain name.

e The component of the
request path after the
service name/identity
domain name component is
not one of those handled by
the service.

e Some path component after
the service and identity
domain names contains
characters other than a-z,
A-Z, decimal digits, or
underscores ().

| ocal ModeNonTopi ¢

Local node on non-topic.

A request specified a local
mode (whether messages sent
to a destination via this
connection should be received
by consumers on this
connection) with a destination
that is not a topic (in which case
a local mode is not appropriate).

mal f or medAccept Header

Invalid Accept header: 'Accept header'.

The service was unable to
process the Accept header of a
request to determine whether
the client can accept a response
with content of a given media
type.

mal f or medDest i nati on

Mal formed destination: 'destination'.

A destination specification did
not have the proper syntax (for
example, it did not start with one
of the following forms):

e [queues/

- [topics/

e [tenporaryQueues/

e [tenporaryTopics/

mal f or medLi st ener

The XML for the nessage push listener is
mal formed; the malformed XML is as fol | ows:
"l'istener XM.'.

The message push listener
specification did not have the
proper syntax.

For examples of well-formed
XML and the proper syntax to
use, see Create a Listener.

ORACLE

B-9

ORACLE

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Error Message

Description

maxConnect i onsReached

The attenpted operation could not be conpl eted
because the service instance is currently using
all of its 'maxi mum nunber of concurrent
connections' available connections.

An operation has been
attempted that would create a
new JMS connection (sending a
message, receiving a message,
setting the client ID on an
connection, and so on), and the
service instance is already at
the maximum number of
concurrent connections it's
allowed.

maxDur abl eSubscri pti onsReached

The requested durabl e subscription could not be
created because the service instance has
reached its maxi mum nunber of durable
subscriptions. This service instance nay have
no nore than ' maxi mum nunber of durable
subscriptions' durable subscriptions.

Self-explanatory.

maxLocal Connect i onsReached

The attenpted operation could not be conpl eted
because the service instance may have exceeded
its available connections

The service instance has
exceeded the number of
connections it can create on a
single virtual machine in the
cloud. This usually means that
the service instance has
reached, or even gone beyond,
the maximum number of
allowed connections.

maxMessagesOnTar get Dest i nat i onReached

The nessage could not be sent because the
targeted destination reached its maxi num nunber
of messages. Each destination on this service

i nstance nay not have nore than 'hard quota on
number of messages' messages. The nunber of
messages is currently 'current backl og size'
The nunber of nessages nust drop bel ow ' soft
quota on nunber of nessages' before further
sends are all owed.

Self-explanatory.

maxMessageByt esOnTar get Dest i nat i onReached

The nessage could not be sent because the
targeted destination reached its maxi num nunber
of bytes of messages. Each destination on this
service instance may not have nore than 'hard
quota on bytes' bytes of nessages. The nunber
of bytes of nmessages is currently 'current
backl og bytes'. The nunber of bytes of messages
must drop bel ow 'soft quota on bytes' before
further sends are all owed.

Self-explanatory.

B-10

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Error Message

Description

maxQueuesReached

The requested queue could not be created
because the targeted service instance has
reached its maxi mum nunber of queues. This

service instance may have no nore than 'maxi mum

number of queues' queues.

Self-explanatory.

maxTenpDest i nat i onsOnConnect i onReached

The requested tenporary destination could not
be created because the targeted service

i nstance has reached its maxi num nunber of
tenporary destinations for this connection.
Each connection on this service instance may
not have nore than'maxi mum nunber of tenporary
destinations' tenporary destinations.

Self-explanatory.

maxTopi csReached

The requested topic could not be created
because the service instance has reached its
mexi num nunber of topics. This service instance
may have no nore than ' nmaxi num nunber of

topi cs' topics.

Self-explanatory.

messageHeader sToolar ge

The size of the nessaging-rel evant headers of
the send request exceeded the maxi mum naxi num
header si ze.

The request's message-relevant
headers exceeded the
maximum size.

messageBodyToolLar ge

The size of the body of the send request
exceeded the maxi num naxi mum body si ze.

The request's body exceeded
the maximum size.

messageTot al ToolLar ge

The internal nessage representation has size
internal size, which exceeds the maxi num
internal size, maxi muminternal size.

A message whose headers and
body were within the limitations
exceeded the JMS broker's
threshold for the size of the
internal representation of a
message.

messagePushlLi st ener Veri fi cati onBadResponse

Verification that the endpoint '<URL of an
HTTP/ S endpoint> is willing to receive
messages failed. The endpoint's response body
did not match the challenge token.

An HTTP or HTTPS endpoint
responded to a verification
request with a response body
that did not match the challenge
token sent by Oracle Messaging
Cloud Service.

ORACLE

B-11

ORACLE

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Error Message

Description

messagePushLi st ener Verifi cati onConnecti onFail ed

Verification that the endpoint '<URL of an
HTTP/ S endpoint> is willing to receive
messages failed. The service instance could not
connect to the endpoint.

Oracle Messaging Cloud
Service was unable to connect
to an HTTP or HTTPS endpoint
to send a verification request.

messagePushLi st ener Verificati onError Response

Verification that the endpoint '<URL of an
HTTP/ S endpoint> is willing to receive
messages failed. The endpoint's response had
status <non-200 status>.

An HTTP or HTTPS endpoint
responded to a verification
request with a status code other
than 200.

messagePushLi st ener Verificati onException

Verification that the endpoint '<URL of an
HTTP/ S endpoint> is willing to receive
messages failed. An exception occurred in
attenpting to read the response.

An exception occurred in
attempting to read the response
to a verification request.

messagePushLi st ener Veri ficati onNoToken

The message push |istener had an HTTP/S target,
but no verification token was supplied.

The listener XML specifies at
least one HTTP or HTTPS URL
to which to push messages, but
noverificationToken was
supplied.

m ssi ngPar anet er

M ssing paranmeter 'query string paraneter'/
header 'header nane'.

A parameter that is required for
the method and URL path of the
request was not supplied, either
as a query string parameter or a
header. The error specifies the
query string parameter and
header name for the missing
parameter.

mul tipl eDestinations

No destination or nultiple destinations
speci fied.

A send via a producer was
requested, but either the
request specified no destination
and the producer had no default
destination or the request
specified a destination and the
producer had a default
destination.

noCont ent Type

No Content - Type.

A request was made that must

have a specific media type, but
no Cont ent - Type header was
supplied.

noDest i nat i onFor Consuner

Nei ther a destination nor a subscription name
were specified.

A request was made to create a
consumer, but no destination
was specified, and no existing
durable subscription (from
which a destination could be
extracted) was specified.

B-12

ORACLE

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Error Message

Description

nonexi st ent Nanespace

Nonexi st ent namespace: 'namespace identifier'.

The namespace (specified by a
service name and an identity
domain name) specified for the
request did not exist.

nonexi st ent NanespaceConponent s

There is no service instance with service name
"service name' and identity domain nane

"identity domain nane'.

The namespace specified for
the request did not exist.

nonexi st ent NamespaceUnknown

There is no service instance with the specified
service and identity donain nanme.

The namespace specified in the
request URL did not exist.

servi cel nst anceChanged

The client has attenpted to use the service
instance 'first path conponent’ with a

messagi ng context that was started with service
instance 'original first path conponent'.

The client request that created
the current messaging context
specified a service instance by
using a URL path whose first
component had the form

service name of the
instance-identity domain
nane of the instance

but the current request has
supplied a different first
component on its URL path.
The service instance may not
be changed for a given
messaging context. If a REST
client wishes to access multiple
service instances
simultaneously, it must use
multiple messaging contexts
with different JSESSI ONI D
values.

sessi onPar anet er Not Found

Session 'session name' does not exist.

This error is generated when a
nonexistent session is specified
as a query string parameter or a
header, rather than via the URL
path.

subscriptionl nUse

The durabl e subscription with client ID"'client
ID and name 'subscription name' has a consuner

onit.

This error is generated in two

circumstances:

An attempt is made to
create a consumer on a
durable subscription when
that durable subscription
already has a consumer on
it.

e An attempt is made to
delete a durable
subscription that has a
consumer on it.

B-13

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Error Message

Description

subscri pti onNonTopi ¢

Durabl e subscription on non- Topi c.

An attempt has been made to
create a consumer with a
durable subscription with a
specified destination that is not
a topic. This error is generated
when it is possible to determine
from the request alone that the
destination is not a topic (for
example, if the parameter
specifying the consumer starts
with /queues/).

subscri pti onNot FoundNol nf o

Durabl e subscription does not exist.

A durable subscription was not
found, but no information about
that durable subscription was
available.

subscri pti onPar anet er Not Found

Durabl e subscription with client 1D’
and name 'subscription nane' does not exist.

This error is generated when
the nonexistent subscription is
specified as a query string
parameter or a header, rather
than via the URL path.

client ID

ti meout TooLar ge

Receive timeout (requested timeout

mlliseconds) is larger than the maxi num

The value of the t i meout
parameter was larger than the
maximum allowed value (5
minutes).

al | owed (service nmaxinumtineout nilliseconds).

timeToLi veToolLar ge

Tinme to live (requested tine-to-live

mlliseconds) is larger than the maxi num
all owed (service maxinumtine-to-live

mlliseconds).

A requested time-to-live, either
for a producer being created, a
producer being modified, or a
message being sent, is longer
than the maximum allowed (2
weeks).

Errors with HTTP Status Code 403 (Forbidden)

This section provides information about errors with HTTP status code 403.

Error Message

Description

admi nRequi red

Admi ni strator authorization
required.

Self-explanatory.

noRol es

User nust be either messaging
wor ker or nessaging adnin.

The user has authenticated, but has neither of
the roles (Messaging Administrator or
Messaging Worker) required for any of the
messaging operations.

ORACLE

B-14

Appendix B
REST API HTTP Status Codes and Error Messages Reference

Errors with HTTP Status Code 404 (Not Found)

All errors in this category are returned when a resource specified on the URL path
does not exist.

Error Message Description

connect i onNot Found Self-explanatory.

Connection' connection name' does not exist.

consuner Not Found Self-explanatory.

Consuner 'consuner name' does not exist.

desti nat i onNot Found Self-explanatory.

Destination 'nane' of type 'queue or topic' does
not exist.

i st ener Not Found Self-explanatory.

Message push listener 'listener name' does not
exi st.

pr oducer Not Found Self-explanatory.

Producer 'producer nane' does not exist.

queueBr owser Not Found Self-explanatory.

Queue browser 'queue browser nane' does not
exi st.

sessi onNot Found Self-explanatory.

Session 'session nane' does not exist.

An attempt has been made to
delete a nonexistent
subscription via a session.

subscri pti onNot Found

Durabl e subscription with name 'subscription
nane' does not exist.

As attempt has been made to
retrieve the properties of a
nonexistent durable
subscription.

subscri pti onNot FoundFul |

Durabl e subscription with client ID'client ID
and name 'subscription nane' does not exist.

Errors with HTTP Status Code 405 (Method Not Allowed)

This section provides information about errors with HTTP status code 405.

ORACLE B-15

Appendix B
REST API HTTP Status Codes and Error Messages Reference

Error Message Description

et hodNot Al | owed Self-explanatory.

Met hod ' met hod' not al | owed on
path 'URL path'.

Errors with HTTP Status Code 406 (Not Acceptable)

This section provides information about errors with HTTP status code 406.

Error Message Description

unaccept abl e Self-explanatory.

Gient's Accept header 'Accept
header' cannot accept any of the
following content types: space-
separated |ist of content types.

Errors with HTTP Status Code 409 (Conflict)

ORACLE

This section provides information about errors with HTTP status code 409.

Error Message Description

connect i onAl r eadyExi st s Seli-explanatory.

Connection 'connection nane' al ready exists.

consuner Al readyExi st's Seli-explanatory.

Consumer ' consuner name' al ready exists.

dest i nationAl r eadyExi sts Seli-explanatory.

Destination 'destination name' of type
'queue or topic' already exists.

l'i stener Al readyExi sts Self-explanatory.

Message push |istener 'listener nang'
al ready exists.

producer Al r eadyExi st s Seli-explanatory.

Producer 'producer nane' already exists.

queueBr owser Al r eadyExi st's Seli-explanatory.

Queue browser 'queue browser nane' already
exi sts.

B-16

ORACLE

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Error Message Description

sessi onAl readyExi st's

Sessi on 'session nane' al ready exists.

Self-explanatory.

subscri pti onAl readyExi sts

A durabl e subscription with client ID
"client 1D and name 'subscription nang'
al ready exists.

Self-explanatory.

Errors with HTTP Status Code 500 (Internal Server Error)

This section provides information about errors with HTTP status code 500.

Error Message

Description

fail edGet Connecti onProps

Failed to get Connection properties.

A failed attempt
was made to get
properties related
to connections to
the JMS broker.

fail edGet Destinati onConnecti onProps

Failed to get connection properties for destination
"destination nane' of type 'queue or topic'.

A failed attempt
was made to get
properties related
to connections to
the JMS broker
for a specific
destination.

fail edGet DestinationProps

Failed to get properties for destination 'destination
name' of type 'queue or topic'.

A failed attempt
was made to get
properties related
to a specific
destination.

fail edGet Servi ceProps

Failed to get Service properties.

A failed attempt
was made to get
properties related
to a specific
service instance.

max Connect i onCount Unavai | abl e

The maxi mum nunber of connections allowed for the service
i nstance cannot be determ ned.

An internal error
has occurred in
determining the
number of
connections that a
service instance is
allowed.

messagePushLi st ener sl nterrupt ed

Message push listener functionality was unexpectedly
interrupted. Please try again.

Self-explanatory.

B-17

ORACLE

Appendix B

REST API HTTP Status Codes and Error Messages Reference

Error Message

Description

messagePushLi st ener Veri fi cati onRedirecti onDi sabl eFai | ed

A failed attempt
was made to
disable HTTP
redirects for the
message push
listener
verification
request.

operationFail ed

Qperation failed.

A low-level failure
occurred in
attempting to
carry out the
latest request.

B-18

Code Samples

REST API

The code examples in this section demonstrate how to send and receive messages
through the REST API and the Java library when developing applications that use
Oracle Messaging Cloud Service.

Topics:

« RESTAPI

e Java Library

Note that the code samples provided in this section do not contain all HTTP headers,
or responses. The code samples contain HTTP headers, and responses which are
relevant to the given example.

In the examples, request parameters are provided as query string parameters. Note
that HTTP headers can also be provided as request parameters.
Topics:

* Create a Queue

e Create a Topic

e Create a Durable Subscription

e Create a Message Push Listener

e Receive a Message from a Durable Subscription

* Receive a Message from a Queue with a Selector

e Send a Message to a Topic

e Process Messages using a Transaction

e Cookie Management

Create a Queue

ORACLE

The example shows an HTTP request and response for a queue named
Pr eprocessi ng being created.

Request to create a queue named Pr epr ocessi ng.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ queues/ Preprocessing HTTP/ 1. 1
X- OC- 1 D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1lc2VWyQ dl bG\bW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

C-1

Appendix C
REST API

* The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is disabled.
e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second preference),
or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0

Content-Length: 0

X- OC- NEW MESSAG NG- CONTEXT: true

Set - Cooki e:

JSESSI ONI D=ppNgTr j QLWY1ZgSf DyqlJWeh5px13gx YgbhJvvyPLr d2@TCpl 82! - 1133198190; pat h=/;
HtpOnly

Note:
A queue named Preprocessi ng is created by the request.

* The Cache- Control header indicates that the response should not be cached.

e The X- OC- NEW MESSAG NG CONTEXT header indicates that the request created a
new messaging context.

* The Set-Cookie header provides the JSESSI ONI D cookie that must be sent in future
requests in order to use the same connection.

Create a Topic

ORACLE

The example shows an HTTP request and response for a topic named | nconi ng being
created.

Request to create a topic | nconi ng.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/topics/Incomng HTTP/ 1.1
X- OC- 1 D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:
e The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second preference),
or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0

Content-Length: 0

X- OC- NEW MESSAG NG CONTEXT: true

Set - Cooki e:

JSESSI ONIl D=Cs SxTr j R50JDJ SOvqdFf r KCQFdTwd sy Tmvk C6gf shLXVt ZFyHf kG - 1133198190; pat h=/;
H tpOnly

Note:

* Atopic named I nconi ng is created by the request.

C-2

Appendix C
REST API

The Cache- Cont rol header indicates that the response should not be cached.

The X- OC- NEW MESSAG NG CONTEXT header indicates that the request created a
new messaging context.

The Set-Cookie header provides the JSESSI ONI D cookie that must be sent in future
requests in order to use the same connection.

Create a Durable Subscription

The example shows an HTTP request and response for a durable subscription named
Audi t being created.

ORACLE

1.

Request to create a connection named conn, and set the connection's client ID to
cid.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ connect i ons/ conn?cl i ent | d=ci d&act i on=st art
HTTP/ 1.1

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbhW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

e The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

e Theclientld query string parameter sets the connection's client ID to ci d.

* The action query string parameter indicates that the connection should be
started.

Successful response.

HTTP/ 1.1 201 Created

Cache- Control : no-cache; no-store; nust-reval i dat e; max- age=0

Content-Length: 0

X- OC- NEW MESSAG NG CONTEXT: true

Set - Cooki e:

JSESSI ONIl D=hFZBTr j Sdmx5MISGyW w@bvQLCt 8gnf Hgf n5cL7HYQy8sSgnLf Q - 1133198190;
path=/; HtpOnly

Note:
* A connection named conn is created by the request.
e The Cache- Control header indicates that the response should not be cached.

* The X- OC- NEW MESSAG NG CONTEXT header indicates that the request created a
new messaging context.

e The Set-Cookie header provides the JSESSI ONI D cookie that must be sent in
future requests in order to use the same connection.

Request to create a session hamed s.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ sessi ons/ s?connect i on=conn HTTP/ 1.1
Cooki e:
JSESSI ONI D=hFZBTr j Sdmx5MISGyW w&bvQLCt 8gnf Hgf n5cL7HYQy8sSqnLf @ - 1133198190

C-3

Appendix C
REST API

X- OC- | D- TOKEN- STATUS: di sabl ed
Aut hori zation: Basic YXd1c2VyQ dl bG\vbhW/f M=
Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

e The connecti on query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

e The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zati on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Note:

* A session named s is created by the request.

e The Cache- Control header indicates that the response should not be cached.
3. Request to create a consumer named ¢ on a durable subscription.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ consuner s/ c?sessi on=s&dest i nat i on=%2Ft opi cs
9&2FI ncomi ng&subscri ptionName=Audit HTTP/ 1.1

Cooki e:

JSESSI ONIl D=hFZBTr j Sdmx5MiISGy W wG6bvQLCt 8gnf Hgf n5cL7HYQy8sSqnLf Q - 1133198190

X- OC- 1 D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VWyQ dl bG\vbW/f M=

Accept: application/json, application/xm;qg=0.8, */*;q=0.5

Note:

e The sessi on query string parameter is set to s, which indicates that a
consumer ¢ will be created in the session s.

* The destination query string parameter is set to the topic | ncom ng, which
indicates that the consumer will consume from the topic | ncom ng.

e The subscri pti onName query string parameter indicates that the consumer will
be a durable subscriber on a durable subscription named Audi t , and the client
ID will be ci d from the connection conn.

* The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

ORACLE C-4

Appendix C
REST API

The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Note:

* The creation of the consumer will create a durable subscription on the topic
I ncom ng with client ID ci d and name Audi t, unless a subscription with that
client ID and name already exists.

If a subscription with the specified client ID and name already exists, then the
action taken is as follows:

— If the existing durable subscription is on the topic | nconi ng, and has no
selector, then this consumer will consume from the existing durable
subscription.

— If the existing durable subscription is not on the topic | ncomi ng, then the
existing durable subscription will be deleted (unless there is another
consumer on it) and a new durable subscription will be created with the
given client ID and name, on the | ncom ng topic, with no selector. Note
that when a durable subscription is deleted, all messages that were saved
in the existing durable subscription are discarded.

— If the existing durable subscription is on the topic | nconi ng, but has a
selector, the existing durable subscription will be deleted (unless there is
another consumer on it) and a new durable subscription will be created
with the given client ID and name, on the topic | nconi ng, with no selector.
Note that when a durable subscription is deleted, all messages that were
saved in the existing durable subscription are discarded.

e The Cache- Control header indicates that the response should not be cached.

Create a Message Push Listener

ORACLE

The example shows an HTTP request and response for a message push listener
named | being created.

Request to create a listener named | .

PUT / MCSSer vi ce03- MCSOr acl e3/ api /vl/listeners/| HITP/ 1.1
X- OC- 1 D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1lc2VyQ dl bG\vbW/f M=

Content - Type: appl i cation/xn

Accept: application/json, application/xm;qg=0.8, */*;q=0.5
Content-Length: 286

<?xm version="1.0" encodi ng="UTF-8"?>
<l'istener>

<version>1. 0</ versi on>

<nane>| </ nane>

C-5

Appendix C
REST API

<source>
<type>topi c</ type>
<name>| ncomi ng</ nane>

</ source>
<target >
<uri>urn:oracl e: cl oud: nessagi ng: queues: Preprocessi ng</ uri >
</target>
</listener>
Note:

* The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is disabled.
e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second preference),
or anything else (least preferable).

* The Cont ent - Type header indicates that body of the request is in XML.

e The XML body of the request indicates the properties of the listener. The listener
receives messages from the topic | nconi ng and sends them to the queue
Preprocessi ng.

< Note:

The XML document should not contain a DOCTYPE declaration. If a DOCTYPE
declaration is included in the XML document, a 500 operati onFail ed
response is returned. This is done to prevent certain security and Denial of
Service (DoS) attacks.

Successful response.

HTTP/ 1.1 201 Created

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0

Content-Length: 0

X- OC- NEW MESSAG NG CONTEXT: true

Set - Cooki e:

JSESSI ONI D=EMLyKTr j Th62Hb 1PGKWCFG 1 Le5p2sVdl 8vv1VWD5CzdNXTt ppJJCZ! - 1133198190; pat h=/;
HtpOnly

Note:

e Alistener named | is created by the request.
e The Cache- Control header indicates that the response should not be cached.

* The X- OC- NEW MESSAG NG CONTEXT header indicates that the request created a
new messaging context.

* The Set-Cookie header provides the JSESSI ONI D cookie that must be sent in future
requests in order to use the same connection.

ORACLE C-6

Appendix C
REST API

Receive a Message from a Durable Subscription

The example shows an HTTP request and response for a message being received
from a durable subscription named Audi t .

ORACLE

1.

Request to create a connection named conn, and set the connection's client ID to
cid.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ connecti ons/ conn?cl i ent | d=ci d&acti on=start
HTTP/ 1.1

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1c2VyQ dl bG\vbhW/f M=
Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

 Theclientld query string parameter sets the connection's client ID to ci d.

e The acti on query string parameter indicates that the connection should be
started.

Successful response.

HTTP/ 1.1 201 Created

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0

Content-Length: 0

X- OC- NEW MESSAG NG- CONTEXT: true

Set - Cooki e:

JSESSI ONI D=MQTLTY j V2zLv7h0GV5kny 1XwBed7hZvOLhJ SWKvyJt hg31j VH7L! - 1133198190;
path=/; HtpOnly

Note:
* A connection named conn is created by the request.

e The Cache- Control header indicates that the response should not be cached.

e The X- OC- NEW MESSAG NG CONTEXT header indicates that the request created a
new messaging context.

* The Set-Cookie header provides the JSESSI ONI D cookie that must be sent in
future requests in order to use the same connection.

Request to create a session named s.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ sessi ons/ s?connecti on=conn HTTP/ 1.1
Cooki e:

JSESSI ONI D=MQMLTr j V2zLv7b0GV5kny 1XwBcd7hZvOLhI SWkKvy Jt hq31j VH7L! - 1133198190
X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbhW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

C-7

ORACLE

Appendix C
REST API

e The connecti on query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

e The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zati on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Note:

* A session named s is created by the request.

e The Cache- Control header indicates that the response should not be cached.
Request to create a durable subscriber named c.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ consumer s/ c?sessi on=s&subscri pt i onNane=Audi t
HTTP/ 1.1

Cooki e:

JSESSI ONI D=MQLTr j V2zLv7b0GV5kny 1XwBcd7hZvOLhJ SWkKvyJt hgq31j VH7L! - 1133198190

X- OC- 1 D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1lc2VWyQ dl bG\vbW/f M=

Accept: application/json, application/xm;qg=0.8, */*;q=0.5

Note:

e The sessi on query string parameter is set to s, which indicates that a
consumer ¢ will be created on the session s.

* The request contains a subscri pti onNane query string parameter without a
desti nati on query string parameter. This indicates that the consumer will be
created on an existing durable subscription with client ID ci d and subscription
name Audi t . If a 400 error response is returned, it indicates that the durable
subscription with client ID ci d and subscription name Audi t does not exist.

e The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

» The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

C-8

ORACLE

Appendix C
REST API

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created

Cache- Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

X- OC- DESTI NATI ON: /topi cs/ | nconi ng

Note:

e A 201 response indicates that the durable subscription with client ID ci d and
subscription name Audi t exists.

* The X- OC- DESTI NATI ON header indicates that the existing durable subscription
is on the topic | nconi ng.

* The response does not contain a X- OC- SELECTOR header. This indicates that
the existing durable subscription does not have a selector, and it will store all
the messages which are sent to | ncom ng.

e The Cache- Control header indicates that the response should not be cached.
Request to receive a message from the consumer c.

POST / MCSSer vi ce03- MCSOr acl e3/ api / v1/ consuner s/ ¢/ messages?ti meout =1000 HTTP/ 1.1
Cooki e:

JSESSI ONI DEMQLTr | V2zLv7b0GVEkny 1XwBcd7hZvOLhI SWkKvy Jt hg31j VH7L! - 1133198190

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1c2VyQ dl bG\WbW/f M=

Accept: application/json, application/xnl;qg=0.8, */*;q=0.5

Note:

e Thetineout query string parameter indicates that the service should return a
response indicating that no message has been received if no message is
currently stored in the durable subscription and no new message arrives within
1000 milliseconds.

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Response returns the following message:

HTTP/ 1.1 200 &K

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Transf er-Encodi ng: chunked

Content-Type: text/plain; charset=UTF-8

X- OC- DESTI NATI ON: /topi cs/ I nconi ng

X-OCPRIORITY: 4

X- OC- DELI VERY- MODE: per si st ent

X- OC- TI MESTAMP: 1403757556763

X- OC- EXPI RATI ON: 1404967156763

X- OC- MESSAGE- TYPE: TEXT

X- OC- MESSAGE- | D: | D: adc00onb- 44216- 1403559824551-509: 1: 1: 1: 1
X- OC- REDELI VERED: fal se

0008

C-9

Appendix C
REST API

r equest
0000

Note:

* The X- OC- MESSAGE- TYPE header indicates that the message is a TEXT
message, and hence the Cont ent - Type is text/ pl ai n; charset =UTF- 8.

» The Transfer - Encodi ng header indicates that the response body is being sent
in chunks as defined by the HTTP 1.1 RFC (htt p: // www. W3. or g/ Pr ot ocol s/
rfc2616/rfc2616-sec3. ht m #sec3. 6. 1).

* In this particular message, the content of the message is sent in one chunk,
which is 8 bytes long, and consists of the letters r equest followed by a new-
line character.

e The Cache- Control header indicates that the response should not be cached.

Receive a Message from a Queue with a Selector

The example shows an HTTP request and response for a message being received
from a queue named Post pr ocessi ng with a selector.

ORACLE

1.

Request to create a connection named conn.

PUT / MCSSer vi ce03- MCSCOr acl e3/ api / v1/ connections/ conn HTTP/ 1.1
X- OC- 1 D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

e The PUT request to create the connection does not contain the acti on query
string parameter which starts the connection. Hence, the connection conn is
not started when it is created.

Successful response.

HTTP/ 1.1 201 Created

Cache- Control : no-cache; no-store; nust-reval i dat e; max- age=0

Content-Length: 0

X- OC- NEW MESSAG NG CONTEXT: true

Set - Cooki e:

JSESSI ONI D=szv9Trj YZxKBr gnt Ma3g5KnCr Ht O Yy GLBKTONRLAORS5XKQHcvf ! - 1133198190;
path=/; HtpOnly

Note:
e A connection named conn is created by the request.
» The Cache- Control header indicates that the response should not be cached.

e The X- OC- NEW MESSAG NG CONTEXT header indicates that the request created a
new messaging context.

C-10

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1

ORACLE

Appendix C
REST API

* The Set-Cookie header provides the JSESSI ONI D cookie that must be sent in
future requests in order to use the same connection.

Request to create a session named s.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ sessi ons/ s?connecti on=conn HTTP/ 1.1
Cooki e:

JSESSI ONI D=szv9Tr j YZXKBr gnt Mi3g5KnCr Ht QF Yy GLBK TONRLAORS5XKQHe vf | - 1133198190
X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1c2VyQ dl hG\WbW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

e The connecti on query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

* The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

» The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

* The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Note:

* A session named s is created by the request.

e The Cache- Control header indicates that the response should not be cached.
Request to create a consumer named ¢ with the previously created session.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ consuner s/ c?sessi on=s&dest i nati on=%2Fqueues
9%2FPost processi ngé&sel ect or =pal i ndrone HTTP/ 1.1

Cooki e:

JSESSI ONI D=szv9Trj YZxKBr gnt Mh3g5KnCr Ht OF Yy GLBKTQNRLAOR55XKQHevf ! - 1133198190

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbhW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

* The sessi on query string parameter is set to s, which indicates that a
consumer ¢ will be created in the session s.

e The destination query string parameter is set to the queue Post pr ocessi ng,
which indicates that the consumer will consume from the queue
Post processi ng.

C-11

Appendix C
REST API

* The consumer uses a selector, indicated by the sel ect or query string
parameter. The selector, pal i ndr one, indicates that the consumer should only
receive messages with a boolean property pal i ndr ome that has the value
true.

e The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

e The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache- Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

4. Request to start the connection conn.

POST / MCSSer vi ce03- MCSOr acl e3/ api / v1/ connecti ons/ conn?acti on=start HTTP/ 1.1
Cooki e:

JSESSI ONI D=szv9Tr j YZXKBr gnt Mi3g5KnCr Ht &F Yy GLBK TONRLAORS5XKQHe v f | - 1133198190
X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1c2VyQ dl bG\WbW/f M=

Accept: application/json, application/xnl;qg=0.8, */*;q=0.5

Note:

* Sessions and consumers can be created without starting the connection.
Connections can be started later using the acti on query string parameter.

* A connection must be started to receive messages from consumers on the
connection.

* The acti on query string parameter is used to start the connection.

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 200 &K
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

5. Request to receive a message through the consumer c.

POST / MCSSer vi ce03- MCSOr acl e3/ api / v1/ consuner s/ ¢/ messages?ti meout =1000 HTTP/ 1.1
Cooki e:

JSESSI ONI D=szv9Trj YZxKBr gnt Mh3g5KnCr Ht OF Yy GLBKTQNRLAOR55XKQHevf ! - 1133198190

X- OC- | D- TOKEN- STATUS: di sabl ed

ORACLE C-12

Appendix C
REST API

Aut hori zation: Basic YXd1lc2VyQ dl bG\vbhW/f M=
Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

* The receive timeout of 1000 milliseconds is indicated by the ti meout query
string parameter.

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Response returns a message, as follows:

HTTP/ 1.1 200 K

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Transfer-Encodi ng: chunked

Content-Type: text/plain; charset=UTF-8

X- OC- DESTI NATI ON: / queues/ Post processi ng

X-OC-PRIORITY: 4

X- OC- DELI VERY- MODE: per si st ent

X- OC- TI MESTAVP: 1403757560091

X- OC- EXPI RATI ON: 1404967160091

X- OC- MESSAGE- TYPE: TEXT

X- OC- MESSAGE- 1 D; | D: adc00Oonb- 44216- 1403559824551-513: 1: 1: 1: 1
X- OC- REDELI VERED: fal se

X- OC- BOOLEAN- PROPERTY- pal i ndronme: true

0008
racecar

0000

Note:

* The X- OC- MESSAGE- TYPE header indicates that the message is a TEXT
message, and hence the Cont ent - Type is text/ pl ai n; char set =UTF- 8.

e The Transf er- Encodi ng header indicates that the response body is being sent
in chunks as defined by the HTTP 1.1 RFC (htt p: // www. w3. or g/ Pr ot ocol s/
rfc2616/rfc2616-sec3. htnl #sec3. 6. 1).

* In this particular message, the content of the message is sent in one chunk,
which is 8 bytes long, and consists of the letters racecar followed by a new-
line character.

* The X- OC- BOOLEAN- PROPERTY- pal i ndr one header indicates that the message
has a boolean property pal i ndr one that has the value tr ue.

Send a Message to a Topic

The example shows HTTP requests to send a message to a topic named | ncom ng.

1. Request to create a connection named conn.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ connections/ conn HTTP/ 1.1
X- OC- 1 D- TOKEN- STATUS: di sabl ed

ORACLE C-13

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1

ORACLE

Appendix C
REST API

Aut hori zation: Basic YXd1lc2VyQ dl bG\vbhW/f M=
Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

» The PUT request to create the connection does not contain the acti on query
string parameter which starts the connection. Hence, the connection conn is
not started when it is created.

Successful response.

HTTP/ 1.1 201 Created

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0

Content-Length: 0

X- OC- NEW MESSAG NG CONTEXT: true

Set - Cooki e:

JSESSI ONI D=yvz2Tr j hh3J2qvZMp2QTI CPDQqydsFl QPzBDLv92x GYwy 6ThXj R5! - 1133198190;
path=/; HtpOnly

Note:
* A connection named conn is created by the request.
e The Cache- Control header indicates that the response should not be cached.

* The X- OC- NEW MESSAG NG CONTEXT header indicates that the request created a
new messaging context.

e The Set-Cookie header provides the JSESSI ONI D cookie that must be sent in
future requests in order to use the same connection.

Request to create a session hamed s.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ sessi ons/ s?connecti on=conn HTTP/ 1.1
Cooki e:

JSESSI ONI D=yvz2Tr j hh3J2qvZNp2QTI CPDQqydsFI QPzBD1v92x GYwy 6ThX] R5! - 1133198190
X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbhW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

* The connecti on query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

* The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

C-14

ORACLE

Appendix C
REST API

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache- Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Note:

e A session named s is created by the request.

e The Cache- Control header indicates that the response should not be cached.
Request to create a producer named p with the session s.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ producer s/ p?sessi on=s&dest i nat i on=9&2Ft opi cs
9%2FI ncoming HTTP/ 1.1

Cooki e:

JSESSI ONI D=yvz2Trj hh3J2qvZMp2QTI CPDQqydsFl QPzBD1v92xGYwy6TbXj R5! - 1133198190

X- OC- 1 D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VWyQ dl bG\bW/f M¥=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

e The destination query string parameter indicates that a destination is
specified for the producer, and the producer will send messages to the topic
I ncom ng.

« All messages sent via this producer will be sent to the specified destination.

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Request to send a TEXT message through the producer.

POST / MCSSer vi ce03- MCSOr acl e3/ api / v1/ producer s/ p/ messages?nessageType=TEXT HTTP/
1.1

Cooki e:

JSESSI ONI D=yvz2Tr j hh3J2qvZNp2QTI CPDQqydsFI QPzBD1v92x GYwy 6ThX] R5! - 1133198190

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbhW/f M=

Content-Type: text/plain; charset=UTF-8

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Content-Length: 15

A text nessage

Note:

C-15

Appendix C
REST API

» The nmessageType query string parameter indicates that the message is a
TEXT message, and hence the Cont ent - Type is t ext/ pl ai n; charset =UTF- 8.

* The content of the message is A text message, followed by a new-line
character.

e The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created

Cache- Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

X- OC- DESTI NATI ON: /topi cs/ I nconi ng

X- OC- MESSAGE- | D | D; adc00onb- 44216- 1403559824551-517: 1: 1: 1: 1
X- OC- DELI VERY- MODE: per si st ent

X- OC- TI MESTAMP: 1403757563379

X- OC- EXPI RATI ON: 1404967163379

X-OC-PRICRITY: 4

Note:

 The message's metadata is indicated by various headers. The X- OC-* headers
indicate the message headers that are set by the sending operation, except
the X- OC- PRI ORI TY header which is sent by the service.

e The X- OC- DESTI NATI ON header indicates the message is sent to the topic
I nconi ng.

Process Messages using a Transaction

The example shows an HTTP request and response for creating a transacted session,
receiving a message from a queue named Pr epr ocessi ng, sending a message to a
gueue named Post processi ng, and committing the session.

ORACLE

1.

Request to create a connection named conn.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ connect i ons/ conn?action=start HTTP/ 1.1
X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1c2VyQ dl bG\vbhW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

e The acti on query string parameter is used to start the connection.

Successful response.

C-16

ORACLE

Appendix C
REST API

HTTP/ 1.1 201 Created

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0

Content-Length: 0

X- OC- NEW MESSAG NG- CONTEXT: true

Set - Cooki e:

JSESSI ONI D=v1cyTrj bScf h2Cy62pyD9615xPhCx33vvQPT6JyJSRAT]) vi G2MI! - 1133198190;
path=/; HtpOnly

Note:
* A connection named conn is created by the request.

e The Cache- Control header indicates that the response should not be cached.

* The X- OC- NEW MESSAG NG CONTEXT header indicates that the request created a
new messaging context.

* The Set-Cookie header provides the JSESSI ONI D cookie that must be sent in
future requests in order to use the same connection.

Request to create a session named s.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ sessi ons/ s?connect i on=conné&t r ansact ed=t r ue
HTTP/ 1.1

Cooki e:

JSESSI ONI D=v1cyTrj bScf h2Cy62pyD9615xPbCx33vvQPT6JyJ5RE2T] vi G2Mi! - 1133198190

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbhW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

* The connecti on query string parameter is set to conn, which indicates that the
service should use the connection created by the previous request to create
the session.

e The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

* Thetransact ed query string parameter indicates that the session is
transacted.

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Note:
e Atransacted session named s is created by the request.

e The Cache- Control header indicates that the response should not be cached.

C-17

ORACLE

Appendix C
REST API

Request to create a consumer named ¢ on the queue Pr epr ocessi ng.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ consuner s/ c?sessi on=s&dest i nat i on=92Fqueues
9%2FPr eprocessing HTTP/ 1.1

Cooki e:

JSESSI ONI D=v1cyTrj bScf h2Cy62pyD9615xPbCx33vvQPT6JyJSRE2T] v G2Mi! - 1133198190

X- OC- 1 D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1lc2VWyQ dl bG\bW/f ME=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

e The sessi on query string parameter is set to s, which indicates that a
consumer ¢ will be created in the session s.

e Thedestination query string parameter is set to the queue Pr epr ocessi ng,
which indicates that the consumer will consume from the queue
Pr eprocessi ng.

* The Cooki e header sends the JSESSI ONI D cookie which is associated with the
messaging context and its encapsulated ephemeral objects, like connections,
sessions, producers, and consumers. This cookie is required for the
messaging context and any of its ephemeral objects to be available for the
current request.

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Request to create a producer named p with the session s.

PUT / MCSSer vi ce03- MCSOr acl e3/ api / v1/ producer s/ p?sessi on=s&dest i nat i on=%2Fqueues
9%2FPost processing HTTP/ 1.1

Cooki e:

JSESSI ONI D=v1cyTrj bScf h2Cy62pyD9615xPbCx33vvQPT6JyJSRE2T] v G2Mi! - 1133198190

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXdlc2VyQ dl bG\vbhW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

* The sessi on query string parameter is set to s, which indicates that a
producer p will be created in the session s.

* The destination query string parameter indicates that a destination is
specified for the producer, and the producer will send messages to the queue
Post processi ng.

The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

C-18

ORACLE

Appendix C
REST API

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created
Cache- Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Request to receive a message through the consumer c.

POST / MCSSer vi ce03- MCSOr acl e3/ api / v1/ consuner s/ ¢/ messages?ti neout =1000 HTTP/ 1. 1
Cooki e:

JSESSI ONI D=v1cyTrj bScf h2Cy62pyD9615xPbCx33vvQPT6JyJSRET] vi G2Mi! - 1133198190

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1c2VyQ dl hG\bW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

* The receive timeout of 1000 milliseconds is indicated by the ti neout query
string parameter.

e The X- OC | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

* The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Response returns a message, as follows:

HTTP/ 1.1 200 K

Cache- Control : no-cache; no-store; nust-reval i dat e; max- age=0
Transfer-Encodi ng: chunked

Content-Type: text/plain; charset=UTF-8

X- OC- DESTI NATI ON: / queues/ Prepr ocessi ng

X-OC-PRICRITY: 4

X- OC- DELI VERY- MODE: per si st ent

X- OC- TI MESTAWP: 1403757556777

X- OC- EXPI RATI ON: 1404967156773

X- OC- MESSAGE- TYPE: TEXT

X- OC- MESSAGE- 1 D: | D: adc00Oonb- 44216- 1403559824551- 365: 1: 5: 1: 1
X- OC- REDELI VERED: fal se

0010
Post - processi ng

0000

Note:

e The X- OC- MESSAGE- TYPE header indicates that the message is a TEXT
message, and hence the Cont ent - Type is as follows:

text/plain; charset=UTF-8
* The Transfer - Encodi ng header indicates that the response body is being sent

in chunks as defined by the HTTP 1.1 RFC (ht t p: // www. w3. or g/ Pr ot ocol s/
rfc2616/rfc2616-sec3. ht m #sec3. 6. 1).

C-19

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1

ORACLE

Appendix C
REST API

* In this particular message, the content of the message is sent in one chunk,
which is 16 bytes long, and consists of the letters Post - pr ocessi ng followed
by a new-line character.

* The message is unavailable for receipt by other consumers. The receipt of the
message is provisional because the session is transacted.

e If the session is rolled back, then the message will be available for receipt by
other consumers, and will have the header X- OC- REDELI VERED: true on any
subsequent receipts.

Request to send a message through the producer p.

POST / MCSSer vi ce03- MCSOr acl e3/ api / v1/ producer s/ p/ messages?nessageType=TEXT HTTP/
1.1

Cooki e:

JSESSI ONI D=v1cyTrj bScf h2Cy62pyD9615xPbCx33vvQPT6JyJSRE2T]) v G2Mi! - 1133198190

X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1lc2VyQ dl bG\vbW/f M=

Content-Type: text/plain; charset=UTF-8

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

X- OC- BOOLEAN- PROPERTY- pal i ndrone: true

Content-Length: 15

racecar

Note:

* The nessageType query string parameter indicates that the message is a
TEXT message, and hence the Cont ent - Type is as follows:

text/plain; charset=UTF-8

* Content of the message is r acecar, followed by a new-line character.
* The message has a boolean property pal i ndr one that has the value t r ue.

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 201 Created

Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Cont ent - Lengt h: 0X- OC- DESTI NATI ON. / queues/ Post processi ng

X- OC- MESSAGE- | D: | D: adc00onb- 44216- 1403559824551-519: 1: 1: 1: 1
X- OC- DELI VERY- MODE: per si st ent

X- OC- TI MESTAMP: 1403757567007

X- OC- EXPI RATI ON: 1404967167007

X-OCPRIORITY: 4

Note:

* The message is sent provisionally because the session is transacted. The
message is on the server, but it is not put on the queue, and is not available
for the consumers to consume.

C-20

Appendix C
REST API

7. Request to commit the session.

POST / MCSSer vi ce03- MCSOr acl e3/ api / v1/ sessi ons/ s/ state?acti on=conmit HTTP/1.1
Cooki e:

JSESSI ONI D=v1cyTrj bScf h2Cy62pyD9615xPbCx33vvQPT6JyJSRET] vi G2Mi! - 1133198190
X- OC- | D- TOKEN- STATUS: di sabl ed

Aut hori zation: Basic YXd1lc2VyQ dl bG\vbhW/f M=

Accept: application/json, application/xn;qg=0.8, */*;q=0.5

Note:

* The acti on query string parameter indicates that the session should be
committed.

e The X- OC- | D- TOKEN- STATUS header indicates that the anti-CSRF token is
disabled.

e The Aut hori zat i on header indicates that the authentication type is Basi c.

e The Accept header accepts JSON (most preferable), or XML (second
preference), or anything else (least preferable).

Successful response.

HTTP/ 1.1 200 K
Cache-Control : no-cache; no-store; nust-reval i dat e; max- age=0
Content-Length: 0

Note:

» Sending and receiving of messages is committed. This indicates that the
messages sent by the producer p can be received by other consumers.

Cookie Management

ORACLE

It is important to manage HTTP cookies created by the REST API. HTTP cookies are
used by HTTP clients to identity existing messaging contexts.

Messaging contexts are containers for ephemeral messaging objects like connections,
sessions, producers, and consumers. The Oracle Messaging Cloud Service's Java
library manages HTTP cookies for you. If you use the REST API directly (from Java or
another programming platform) you need to manage the cookies yourself.This
example shows how capture, store, and re-use HTTP cookies created by the REST
API using standard Java platform classes from the java.net package. Most modern
programming platforms which support HTTP provide support for managing HTTP
cookies. Please consult your platform's manual for further guidance.

The example class Cooki eManagenent includes an example in the mai n method.

package oracl e. cl oud. messagi ng. docs;

import java.io.|CException;

i mport java. net. Cooki eManager;
i mport java.net.CookiePolicy;
import java.net.CookieStore;
import java.net.HttpCooki e;
import java.net.HttpURLConnection;
import java.net.URl;

i mport java.net.URL;

i mport java.net.URLConnection;
inmport java.util.List;

inmport java.util.Mp;

C-21

Appendix C
REST API

import oracle.cloud. messagi ng. util.Base64Util;

/**
* (ass to manage cookies, and denonstrate cooki e management.
* Uses cookie managenent classes fromjava. net.
*/
public class Cooki eManagenent
{
/1 java.net Cooki eManager to store and manage cookies
private Cooki eManager ngr = null;
/ *
Create a Cooki eManagement Ohj ect
with a given CookiePolicy. See the
javadoc for the java.net.CookiePolicy class
(http://docs. oracl e. conljavase/ 6/ docs/ api/j aval net/ Cooki ePol i cy. htm)
for pre-defined val ues.

I A

/
publi ¢ Cooki eManagenent (Cooki ePol i cy policy)

{
this. mgr = new Cooki eManager ();
this. mgr. set Cooki ePol i cy(policy);
}
/**
* Store cookies fromthe response headers froma
* fetch of a URL.
*
* @aramuri URl fetched
* @aram responseHeaders Map encodi ng HTTP response headers
* @hrows | CException
*

.

public void storeCookies(URl wuri, Map<String,List<String>> responseHeaders)
throws | CException

{
synchroni zed(this. ngr)
{
this.ngr.put(uri,responseHeaders);
}
}
/**
* Store cookies fromthe response headers froma
* fetch of a URL.
*
* @aramuri URl fetched
* (@aram connection A connection to the "uri" paranmeter
* that has already been connected,
* so that response headers are
* avai | abl e.
* @hrows | CException
*

.

public void storeCooki es(URI uri, URLConnection connection) throws |CException

{
}

/**
* Set Cookie request headers corresponding to cookies

* fromthe cookie store that are appropriate to send
* to a URL.

this. storeCookies(uri, connection. get HeaderFi el ds());

ORACLE C-22

ORACLE

Appendix C
REST API

@aramuri URl to which we are about to connect

@aram connection A connection to the "uri" paraneter
that has not yet been connected,
so that request headers may
still be set.

. T

/
public void setCookies(UR uri, URLConnection connection)

{
synchroni zed(this. ngr)
{
Cooki eStore store = this.ngr.getCookieStore();
/1 Get list of appropriate cookies
Li st <Ht t pCooki e> cookies = store.get(uri);
/1 Set cookies on the connection
for(HtpCookie cookie : cookies)
{
connect i on. addRequest Property(" Cooki e", cookie.toString());
}
}
}
/*
* Sanple code that uses Cooki eManagement to
* connect to the OMCS REST API.
*
* Usage:
*
* java oracl e. cl oud. messagi ng. docs. Cooki eManagenent \
* [Service URL, up to and including "/api/v1l"] \
* [Identity domain name] \
* [user nane]:[password] \
* [queue name]
*

/
public static void main(String[] argv) throws Exception
{

String baseURL = argv[0];

String identityDomai nNane = argv[1];

String userPassword = argv[2];

String queueNane = argv[3];

/1 Queue encoded for use as a query string paraneter
String queueArg = "9%RFqueues9?F" + queueNane;

/1 Accept all cookies
Cooki eManagenent cm = new Cooki eManagenent (Cooki ePol i cy. ACCEPT_ALL);

/| Base64-encoded user: password
String authorizationHeader = "Basic " +
Base64Uti| .t 064(userPassword. get Bytes("UTF-8"));

/1 Connection to the service URL
Ht t pURLConnect i on connecti on;

/1 \Wether to delete the queue used after using it
bool ean del eteAfter;

/] Create queue if it doesn't already exist

C-23

ORACLE

xn ; g=0.

test");

Appendix C
REST API

URL createQueueURL = new URL(baseURL + "/queues/" + queueNane);
connection = (HttpURLConnecti on)creat eQueueURL. openConnecti on();
connect i on. set Request Met hod(" PUT") ;

/| Disable anti-CSRF token on the first access
connect i on. set Request Property("X- OC- | D- TOKEN- STATUS", " di sabl ed") ;
connection. set Request Property("X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;

/1 Set Basic authentication header
connect i on. set Request Property("Aut hori zation", aut hori zati onHeader) ;

/'l Keep the connection open for future HTTP requests
connection. set Request Property("Connection", "keep-alive");

/1 Accept JSON rmost preferably, then XM, then anything el se
connection. set Request Property("Accept”, "application/json, application/
8, */*,q=0.5");

Systemout. println("Creating queue");
connection. connect ();

/'l Store cookie on first access
cm st or eCooki es(creat eQueueURL. t oURI (), connection);

i f (connection. get ResponseCode() == Htt pURLConnecti on. HTTP_CREATED)
{

Systemout. println("Queue created, so will be deleted at the end of the

del eteAfter = true;

}

el se
i f (connection. get ResponseCode() == HttpURLConnecti on. HTTP_CONFLI CT)

{

Systemout. println("Queue already exists");
del eteAfter = fal se;

}
el se

{
}

/| Create a connection and start it

t hrow new Exception("Queue creation failed");

URL createConnectionURL = new URL(baseURL + "/connections/nyConnection?

action=start");

xni ; g=0.

connection = (HttpURLConnecti on)creat eConnect i onURL. openConnection();
connect i on. set Request Met hod(" PUT") ;

connection. set Request Property("X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;
connect i on. set Request Property("Aut hori zation", aut hori zati onHeader);
connection. set Request Property("Connection", "keep-alive");

connection. set Request Property("Accept”, "application/json, application/
8, */*,0=0.5");

/1 Not the first access, so set cookies stored from previous accesses
cm set Cooki es(creat eConnecti onURL. t oURI (), connection);

C-24

ORACLE

Appendix C
REST API

Systemout. println("Creating connection");
connection. connect ();

cm st or eCooki es(creat eConnect i onURL. t oURI (), connecti on);

i f (connection. get ResponseCode() != HttpURLConnecti on. HTTP_CREATED)
{

}

throw new Exception("Connection creation failed");

/] Create a session

URL createSessionURL = new URL(baseURL + "/sessions/ mySession?

connect i on=nyConnection");

connection = (HttpURLConnecti on)creat eSessi onURL. openConnection();
connect i on. set Request Met hod(" PUT") ;

connection. set Request Property("X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;
connect i on. set Request Property("Aut hori zation", aut hori zati onHeader) ;
connection. set Request Property("Connection", "keep-alive");

connection. set Request Property("Accept”, "application/json, application/

xn; g=0.8, */*;q=0.5");

cm set Cooki es(creat eSessi onURL. t oURI (), connection);

Systemout. println("Creating session");
connection. connect ();

cm st or eCooki es(creat eSessi onURL. t oURI (), connecti on);

i f (connection. get ResponseCode() != HttpURLConnecti on. HTTP_CREATED)
{

}

throw new Exception("Session creation failed");

/] Create a producer with no default destination

URL createProducer URL = new URL(baseURL + "/producers/myProducer?

sessi on=nySessi on");

connection = (HttpURLConnecti on)creat eProducer URL. openConnecti on();
connect i on. set Request Met hod(" PUT") ;

connection. set Request Property("X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;
connect i on. set Request Property("Aut hori zation", aut hori zati onHeader);
connection. set Request Property("Connection", "keep-alive");

connection. set Request Property("Accept”, "application/json, application/

xn; g=0.8, */*;q=0.5");

cm set Cooki es(creat eProducer URL. t oURI (), connection);

Systemout. println("Creating producer");
connection. connect();

cm st or eCooki es(creat eProducer URL. t oURI (), connecti on);

i f (connection. get ResponseCode() != Htt pURLConnecti on. HTTP_CREATED)

C-25

ORACLE

sessi on=

xni ; g=0.

Appendix C
REST API

{
}

t hrow new Exception("Producer creation failed");

/] Create a consuner on the queue specified on the command |ine

URL createConsuner URL = new URL(baseURL + "/consuner s/ myConsumer ?
mySessi on&dest i nation=" + queueArq);

connection = (HttpURLConnecti on)creat eConsumer URL. openConnecti on();
connect i on. set Request Met hod(" PUT") ;

connection. set Request Property("X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;
connect i on. set Request Property("Aut hori zation", aut hori zati onHeader) ;
connection. set Request Property("Connection", "keep-alive");

connection. set Request Property("Accept”, "application/json, application/
8, */*,0=0.5");

cm set Cooki es(creat eConsumer URL. t oURI (), connection);

Systemout. println("Creating consunmer");
connection. connect ();

cm st or eCooki es(creat eConsumer URL. t oURI (), connect i on);

i f (connection. get ResponseCode() != HttpURLConnecti on. HTTP_CREATED)
{

}

t hrow new Exception(" Consuner creation failed");

/1 Send a PLAIN nessage to the queue via the producer

URL sendMessageURL = new URL(baseURL + "/producers/myProducer/nessages?

messageType=PLAI N&dest i nation=" + queueArg);

xni ; g=0.

connection = (HttpURLConnection)sendMessageURL. openConnection();
connect i on. set Request Met hod(" PCST") ;

connection. set Request Property(" X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;
connection. set Request Property("Aut hori zation", aut hori zati onHeader) ;
connection. set Request Property("Connection", "keep-alive");

connection. set Request Property("Accept”, "application/json, application/
8, */*,0=0.5");

cm set Cooki es(sendMessageURL. t oURI (), connection);

System out. print|n("Sending bl ank message");
connection. connect ();

cm st or eCooki es(sendMessageURL. t oURI (), connection);

i f (connection. get ResponseCode() != HttpURLConnecti on. HTTP_CREATED)
{

}

t hrow new Exception("Send failed");

/'l Receive fromthe queue 5 times, with a tineout of 1 second, and report
/1 whet her a nessage was received each tine.

C-26

ORACLE

ti meout =

recei ved

xni ; g=0.

Appendix C
REST API

URL receiveURL = new URL(baseURL + "/consuners/myConsuner/ nessages?

1000") ;

for(

int receivelndex = 0;
recei vel ndex < 5;
recei vel ndex++

connection = (HttpURLConnection)recei veURL. openConnection();

connect i on. set Request Met hod(" PCST") ;

connect i on. set Request Property(" X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;

connect i on. set Request Property
connect i on. set Request Property

"Aut horization", aut hori zati onHeader);
"Connection", "keep-alive");

(
(
(
(

connection. set Request Property("Accept”, "application/json, application/
xnt; q=0.8, */*;9=0.5");
cm set Cooki es(recei veURL. t oURI (), connection);

Systemout.print("Receiving ... ");
connection. connect () ;

cmsto

if (co
{
th
}
/] Che
if ("t
{
Sy
}
el se
{
Sy
}
}
/I Cosec

reCooki es(recei veURL. t oURI (), connection);
nnection. get ResponseCode() != Htt pURLConnecti on. HTTP_CX)

row new Exception("Receive failed");

ck for X-OC NULL: true header indicating that no nessage was

rue". equal s(connecti on. get Header Fi el d(" X- OC- NULL")))

stemout.println("No message received");

stemout. println("Message received");

onnection, and so the session, producer, and consumer

URL cl oseConnectionURL = new URL(baseURL + "/connections/ nyConnection");

connection

connection

connection
connection
connection
connection

8, */*;q=0.

cm set Cook

Syst em out
connection

= (Htt pURLConnect i on) cl oseConnect i onURL. openConnecti on();
. set Request Met hod(" DELETE") ;
. set Request Property("X-1D- TENANT- NAME", i dent i t yDomai nNane) ;
. set Request Property("Authorization", aut hori zati onHeader) ;
. set Request Property("Connection", "keep-alive");
. set Request Property("Accept", "application/json, application/
5'):
i es(cl oseConnecti onURL. t oURI (), connection);

.println("C osing connection");
.connect () ;

C-27

ORACLE

xni ; g=0.

xni ; g=0.

Appendix C
REST API

cm st or eCooki es(cl oseConnect i onURL. t oURI (), connecti on);

i f (connection. get ResponseCode() != HttpURLConnection. HTTP_NO CONTENT)
{

}

if (deleteAfter)

t hrow new Excepti on(" Connection close failed");

/1 Delete the queue created at the beginning

URL del et eQueueURL = new URL(baseURL + "/queues/" + queueNane);
connection = (HttpURLConnect i on) del et eQueueURL. openConnecti on();
connect i on. set Request Met hod(" DELETE") ;

connect i on. set Request Property(" X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;
connection. set Request Property("Aut hori zation", aut hori zati onHeader) ;
(
(

connection. set Request Property("Connection", "keep-alive");
connection. set Request Property("Accept”, "application/json, application/

8, */*,q=0.5");
cm set Cooki es(del et eQueueURL. t oURI (), connecti on);
Systemout. println("Del eting queue");
connection. connect ();
cm st or eCooki es(del et eQueueURL. t oURI (), connection);
i f (connection. get ResponseCode() != HttpURLConnection. HTTP_NO CONTENT)
{
t hrow new Exception("Queue del etion failed");
}
}

/1 Expire the Messaging Context; this will clean up any epheneral

/] resources not already cleaned up.

URL expirURL = new URL(baseURL + "/maxlnactivelnterval ?2mii=0");
connection = (Htt pURLConnect i on) expi r URL. openConnection();

connect i on. set Request Met hod(" PCST") ;

connection. set Request Property("X-1 D- TENANT- NAME", i dent i t yDonai nNane) ;
connection. set Request Property("Aut hori zation", aut hori zati onHeader) ;
connection. set Request Property("Accept”, "application/json, application/
8, */*,0=0.5");

cm set Cooki es(expi r URL. t oURI (), connecti on);

Systemout. println("Expiring Messagi ng Context");
connection. connect();

i f (connection. get ResponseCode() != Ht pURLConnecti on. HTTP_OK)
{

}

Systemout. printIn("Expiring failed");

C-28

Appendix C
Java Library

Java Library

The information provided in this section applies to Java library.

Topics:

» Create Resources

» Send a Message to a Topic

* Receive a Message from a Queue with an Optional Selector

* Asynchronously Receive Messages with a Durable Subscription
* Asynchronously Process Messages Within a Transaction

* Use Message Groups

* Receive Messages from a Queue Using a MessageListener

Create Resources

ORACLE

The example shows a command-line program that creates the following resources
when the program is started and its mai n method is run:

e Two queues named Preprocessi ng and Post processi ng
e One topic named | nconi ng

* One message push listener named For war der , which receives messages from the
topic named | nconi ng and sends them to the queue named Pr epr ocessi ng

package oracl e. cl oud. messagi ng. sanpl es;

i mport oracle. cl oud. nessagi ng. *;
import oracle.cloud. nessagi ng. client.*;
i mport oracl e. cl oud. nessagi ng. conmon. *;

inmport java.io.*;
public class CreateResources {
public static void main(String[] argv) {

Messagi ngServi ceFactory factory = Messagi ngServi ceFact ory. get | nstance();
try {

Nanespace ns = new Messagi ngServi ceNanespace("https://
messagi ng. us2. or acl ecl oud. com nynessagi ng- j ohn");

Credentials creds = new
Messagi ngSer vi ceCredenti al s("j ohn. doe@r acl e. cont', "fFHR4x7");

Messagi ngService ms = factory. get Messagi ngServi ce(ns, creds);

try {
ms. cr eat eQueue(" Preprocessing");

} catch (DestinationExistsException ex) {
Systemout. println("Preprocessing queue already exists.");
}

try {
ms. cr eat eQueue(" Post processi ng");

C-29

Appendix C
Java Library

} catch (DestinationExistsException ex) {
System out. print!|n("Postprocessi ng queue already exists.");
}

try {
ms. creat eTopi c("Incom ng");
} catch (DestinationExistsException ex) {
Systemout. printIn("Incomng already exists.");
}

String name = "Forwarder";
Medi um topi ¢ = Medi um get Medi un{ Medi unifype. TOPI C, "I ncomi ng") ;
PushMedi um target =

PushMedi um get | nst ance(Medi um get Medi um(Medi unilype. QUEUE, " Pr epr ocessi ng"));
MessagePushLi st ener npl = MessagePushLi st ener. get | nst ance(nane,

topic,
null, /1
No sel ector
target,
nul | /1
No failure policy
)
try {
ms. creat elLi stener(nul |, Il No verification token; allowed
because no URLs pushed to
npl
)

} catch (ListenerExistsException ex) {
Systemout. println("Forwarder MPL al ready exists");
}

} catch (Exception ex) {
ex. printStackTrace();
}

}

Send a Message to a Topic

The example shows a JAX-RS web service that sends a Text Message to a topic
named | nconi ng. The body of the HTTP request is used as the body of the
Text Message.

package oracle. cl oud. messagi ng. sanpl es;

inport javax.ws.rs.*;
inport javax.ws.rs.core.*;

inport javax.jns.*;

i mport oracle. cl oud. nessagi ng. *;

import oracle. cl oud. nessagi ng.client.*;
i mport oracl e. cl oud. nessagi ng. conmon. *;

inport java.io.*;

@at h("/sendMessageToTopi c")
public class sendMessageToTopic {

@ur
@r oduces(Medi aType. TEXT_PLAIN)

ORACLE C-30

Appendix C
Java Library

@onsunes(Medi aType. TEXT_PLAIN)
public String sendMessage(String body) {

Connection conn = null;
Messagi ngServi ceFactory factory = Messagi ngServi ceFactory. getlnstance();

try {

Nanespace ns = new Messagi ngServi ceNanespace("https://
messagi ng. us2. or acl ecl oud. conl nynessagi ng- j ohn");

Credential s creds = new Messagi ngServi ceCredential s("j ohn. doe@r acl e. cont',
"f FHR04x7") ;

Messagi ngService ns = factory. get Messagi ngServi ce(ns, creds);

ConnectionFactory cf = ns.get ConnectionFactory();
conn = cf.createConnection();
conn.start();
Session session = conn. createSession(fal se, Session. AUTO ACKNOW.EDGE) ;
Topi ¢ topic = session. createTopi c("Incoming");
MessageProducer producer = session.createProducer(topic);
Message nmessage = session. creat eText Message(body);
producer . send(message) ;
} catch (Exception ex) {

StringWiter sw = new StringWiter();
PrintWiter pw = new PrintWiter(sw);
ex. printStackTrace(pw);

return sw.toString();

} finally {

try {
if (conn !=null) {

conn. cl ose();

} catch (Exception jnsex) {
j meex. printStackTrace();

}
}

return "Message sent to topic successfully \n";

}

Receive a Message from a Queue with an Optional Selector

ORACLE

The example shows a JAX-RS web service that receives a message from a queue
named Post processi ng.

If the optional query parameter pal i ndr oneOnl y=t r ue is passed with the request, the
consumer will use a selector to receive only messages that have the boolean message
property pal i ndrome set to t rue. If a message was received from the queue, the body
of the message is returned in the body of the HTTP response.

package oracl e. cl oud. messagi ng. sanpl es;

inport javax.ws.rs.*;
inport javax.ws.rs.core.*;

inport javax.jms.*;

C-31

ORACLE

Appendix C
Java Library

i mport oracl e. cl oud. messagi ng. *;
i mport oracl e. cloud. messaging. client.*;
i mport oracl e. cl oud. messagi ng. common. *;

inport java.io.*;

@at h("/recei veMessageFr omQueue")
public class receiveMessageFromueue {

@osT

@r oduces(Medi aType. TEXT_PLAI N)
@onsunes(Medi aType. TEXT_PLAI N)
public String recei veMessage(@ueryParan("pal i ndroneOnly") String palindromeOnly) {

Connection conn = null;
Messagi ngServi ceFactory factory = Messagi ngServi ceFactory. getlnstance();

try {

Nanespace ns = new Messagi ngServi ceNanespace("https://
messagi ng. us2. or acl ecl oud. conl nynessagi ng- j ohn");

Credential s creds = new Messagi ngServi ceCredential s("j ohn. doe@r acl e. cont',
"f FHR04x7");

Messagi ngService ns = factory. get Messagi ngServi ce(ns, creds);

ConnectionFactory cf = ns.get ConnectionFactory();

conn = cf.createConnection();

conn.start();

Session session = conn. createSession(fal se, Session. AUTO ACKNOWEDGE) ;
Queue queue = session. creat eQueue(" Post processing");

MessageConsuner consuner;

i f(palindroneOnly != null && palindroneOnly.equal s("true")) {
consuner = session. creat eConsumer (queue, "palindronme");

} else {
consuner = session. creat eConsuner (queue) ;

1

Message nmessage = consuner.receive(1000);

if (message != null) {
if (message instanceof TextMessage) {
return (((TextMessage) message).getText());
} else {
return "A nessage not of type TextMessage was received\n”;

} else {
return "No nessage on queue\n";
1

} catch (Exception ex) {
StringWiter sw = new StringWiter();
PrintWiter pw = new PrintWiter(sw);
ex.printStackTrace(pw);
return sw.toString();

} finally {

try {
if (conn !=null) {

conn. cl ose();

} catch (Exception jmsex) {
j meex. printStackTrace();

C-32

Appendix C
Java Library

}

Asynchronously Receive Messages with a Durable Subscription

The example shows a command-line program that also implements the
Messageli st ener interface.

When the program is started and its mai n method is run, a durable subscription named
audi t is either created or reconnected to if it already exists. Messages are
asynchronously received from the durable subscription and printed until an input is
made to the program's standard input (Syst em i n).

package oracle. cl oud. messagi ng. sanpl es;
inport javax.jns.*;

i mport oracl e. cl oud. messagi ng. *;
i mport oracl e. cloud. messaging. client.*;
i mport oracl e. cl oud. messagi ng. conmon. *;

inport java.io.*;
public class AsyncRecei veFronDurabl eSubscription inplenents Messagelistener {
public static void main(String[] argv) {

Connection conn = null;

try {
Messagi ngServi ceFactory factory = Messagi ngServi ceFact ory. getlnstance();

Namespace ns = new Messagi ngServi ceNanespace("https://
messagi ng. us2. or acl ecl oud. com mynessagi ng-j ochn");

Credential s creds = new
Messagi ngServi ceCredenti al s("j ohn. doe@r acl e. cont', "fFHR4x7");

Messagi ngService nms = factory. get Messagi ngServi ce(ns, creds);

ConnectionFactory cf = ns. get ConnectionFactory();

conn = cf.createConnection();

conn.setClientI D("AuditCient");

Sessi on session = conn. createSession(fal se, Session. AUTO ACKNOW.EDCGE) ;

Topi ¢ topic = session. createTopi c("lncom ng");

MessageConsuner consuner = session. creat eDur abl eSubscri ber (topi c,
"audit");

consuner . set Messageli st ener (new AsyncRecei veFr onDur abl eSubscri ption());
conn.start();

Systemout.printIn("Ht RETURN to exit");
System in.read(new byte[1024]);

} catch (Exception ex) {
ex. printStackTrace();

} finally {
if (conn !=null) {
try {

ORACLE C-33

Appendix C
Java Library

conn. cl ose();
} catch (Exception jnsex) {
j msex. print StackTrace();
}

}

@verride
public void onMessage(Message nmessage) {
if (!(message instanceof TextMessage)) {
Systemerr.printIn("A message not of type TextMessage was received");
} else {
try {
System out. println("Message Received fromdurable subscription: " +
((Text Message) nessage) . get Text ());
} catch (Exception ex) {
ex. printStackTrace();

}

}

Asynchronously Process Messages Within a Transaction

ORACLE

The example shows a command-line program that also implements the
Messageli st ener interface.

When the program is started and its mai n method is run, a transacted session is
created. Messages are asynchronously received from the queue named

Preprocessi ng via the MessagelLi st ener . When a message is received, the contents
of the message are reversed. A new message is created from the reversed contents of
the original message and sent to the queue named Post pr ocessi ng. If the original
message and the reversed message are identical, then a boolean message property
named pal i ndrone is set to t r ue. After the send completes, the transacted session is
committed. Messages are processed until an input is made to the program's standard
input (System in).

package oracle. cl oud. messagi ng. sanpl es;

inport javax.jns.*;

i mport oracle. cl oud. nessagi ng. *;

import oracle.cloud. nessaging.client.*;

import oracle. cl oud. nessagi ng. conmon. *;

inport java.io.*;

public class AsyncTransactionProcessing inplenents Messagelistener {

private Session session;
private MessageProducer producer;

public AsyncTransacti onProcessi ng(Session session, MessageProducer producer) {
this.session = session;
this. producer = producer;

}

public static void main(String[] argv) {

C-34

Appendix C
Java Library

Connection conn = null;

try {
Messagi ngServi ceFactory factory = Messagi ngServi ceFact ory. getlnstance();

Namespace ns = new Messagi ngServi ceNanespace("https://
messagi ng. us2. or acl ecl oud. com mynessagi ng-j ochn");

Credential s creds = new
Messagi ngServi ceCredenti al s("j ohn. doe@r acl e. cont', "fFHR4x7");

Messagi ngService nms = factory. get Messagi ngServi ce(ns, creds);

ConnectionFactory cf = ns. get ConnectionFactory();
conn = cf.createConnection();
Sessi on session = conn. createSession(true, Session. AUTO ACKNOALEDGE) ;
Queue preprocessi ngQueue =

sessi on. creat eQueue(" Preprocessing");
MessageConsuner consuner = session. creat eConsuner (preprocessi ngQueue) ;
Queue post processi ngQueue = sessi on. creat eQueue(" Post processing");
MessageProducer producer = session.createProducer (post processi ngQueue);

consuner . set Messageli st ener (new
AsyncTransact i onProcessi ng(sessi on, producer));
conn.start();

Systemout.printIn("Ht RETURN to exit");
System in.read(new byte[1024]);

} catch (Exception ex) {
ex. printStackTrace();

} finally {
if (conn!=null) {
try {

conn. cl ose();
} catch (Exception jnsex) {
j msex. print StackTrace();

}

}
@verride

public void onMessage(Message nmessage) {

if (!(message instanceof TextMessage)) {
Systemerr.printIn("A message not of type TextMessage was received");
return;

}

try {

String body = ((TextMessage)nessage). get Text();
String reversed_body = new StringBuil der(body).reverse().toString();
Text Message out goi ngMessage = sessi on. cr eat eText Message(rever sed_body) ;

i f (body. equal s(reversed_body)) {
out goi ngMessage. set Bool eanProperty("pal i ndrone", true);

}

producer . send(out goi nghessage) ;
session.comit();
} catch (Exception ex) {

try {

ORACLE C-35

Appendix C
Java Library

session. rol | back();
ex.printStackTrace();

} catch (JMSException jmsex) {
j msex. print StackTrace();

}

}

Use Message Groups

ORACLE

The example explains the step-by-step process to send a large message as a group of
smaller messages. The example includes sample code to demonstrate how messages
can be grouped and sequenced for the consumer.

Steps
1. Create a queue.
2. Create the consumers.
3. Create a producer.
4. Send a large message over the queue:
a. Divide the large message into multiple smaller messages.
b. Setthe message groupl d and groupSeq.
c. Send the messages over the queue.
5. Consume the messages.
Consolidate the messages with the same groupl d into a single large messageffile.
6. Send a large message over the queue.
7. Divide the large message into multiple smaller messages.
8. Setthe message groupl d and groupSeq.
Here’s a sample code:

inport java.io.*;

inport javax.jns.*;

import oracle.cloud. nessagi ng.client.*;

i mport oracle. cl oud. messagi ng. conmon. Dest i nati onExi st sExcepti on;

/**

* Sends a file in chunks, optionally grouped using

* nessage properties.

*|

public class Sender

{

private static void send(

String fil eName,
String nessageG oupl D,
MessageProducer prod,
Sessi on sess

throws Exception

C-36

Appendix C
Java Library

Fil eReader in = null;

try
{

int messageG oupSeq = 1;
in = new Fil eReader (fil eNare);
char[] buffer = new char[102400];
for(

int nunRead = in.read(buffer);

nunRead > 0;
numRead = in.read(buffer)

)
{
Text Message tnessage =
sess. creat eText Message(new String(buf fer, 0, nunRead));
if (messageGouplD!= null)
{
t message. set StringProperty("JMSXG oupl D', messageG oupl D) ;
t message. set | nt Property(" JMSXG oupSeq", nessageG oupSeq++) ;
}
Systemerr.printf("Sending %l character\n", nunRead);
Systemerr.flush();
prod. send(t nessage) ;
}

Systemerr. printf("Sending EOF nessages\n");
Systemerr.flush();

for(
inti =0
i <65;
i ++

)

{

Text Message tmessage = sess. creat eText Message() ;

if (messageGouplD!= null)

{
t message. set StringProperty("JMSXG oupl D', messageG oupl D) ;
t message. set | nt Property(" JMSXG oupSeq", mnessageG oupSeq++) ;
}
prod. send(t nessage) ;
}
}
finally
{
if (in!=null)
{
in. close();
}
}

}

public static void main(String[] argv)

ORACLE C-37

ORACLE

Appendix C
Java Library

if (argv.length < 5)

{

1 D>\ n"

}

Systemerr.printf(
"<URL> <user> <password> <queue name> <file nanme> [<message group

)s

return;

Oracl ed oudConnection conn = nul | ;

try
{

Oracl ed oudConnectionFactory fact =
Messagi ngSer vi ceFact ory
.getlnstance()
. get Messagi ngSer vi ce(
new Messagi ngSer vi ceNamespace(argv[0]),
new Messagi ngServi ceCredential s(argv[1],argv[2])
)

. get Connecti onFactory();
conn = fact. createConnection();
Oracl e oudSessi on sess =

conn. creat eSessi on(

Transact i onMbde. NON_TRANSACTED,
Acknow edgenent Mode. AUTO_ACKNOWLEDGE

);
Oracl e oudQueue g = sess. createQueue(argv(3]);

O acl ed oudMessageProducer prod = sess. creat eProducer(Qq)
prod. set Ti meToLi ve(Ti meToLi ve. tinel nM | |iseconds(10000))

conn.start();

Sender . send(

argv[4],
((argv.length >=6) ? argv[5] : null),
prod,
sess
)
}
cat ch(Exception exc)
{
exc. print StackTrace();
}
finally
{
if (conn !=null)
{
try
{
conn. cl ose();
}
cat ch(Exception exc)
{
exc. print StackTrace();
}

C-38

ORACLE

}
/*

Appendix C
Java Library

* Receives a file sent in chunks and accunul ates them
* into a file.

*l

public class Receiver

{

public static void main(String[] argv)

{

if (argv.length < 5)

{

}

Systemerr.printf(
"<URL> <user> <password> <queue name> <file name for output>\n"
);

return;

Oracl ed oudConnection conn = null;

try
{

}

Oracl ed oudConnectionFactory fact =
Messagi ngSer vi ceFact ory
.getlnstance()
. get Messagi ngSer vi ce(
new Messagi ngSer vi ceNamespace(argv[0]),
new Messagi ngServi ceCredential s(argv[1],argv[2])
)

. get Connecti onFactory();
conn = fact. createConnection();
Oracl e oudSessi on sess =

conn. creat eSessi on(

Transact i onMbde. NON_TRANSACTED,
Acknow edgenent Mbde. AUTO_ACKNOWLEDGE

)
Oracl eC oudQueue g = sess. createQueue(argv(3]);
O acl ed oudMessageConsuner cons = sess. creat eConsuner (q);
Accunul ator accunul ator = new Accunul ator(cons, argv[4]);
conn.start();
accunul ator.start();
Systemerr.printf("RETURN to stop receiving\n");
Systemerr. flush();

System in.read(new byte[32]);

accumul ator.interrupt();
whi | e(accunul ator.isAive());

cat ch(Exception exc)

{

C-39

Appendix C
Java Library

exc. print StackTrace();

}
finally
{
if (conn !=null)
{
try
{
conn. cl ose();
}
cat ch(Exception exc)
{
exc. print StackTrace();
}
}
}
}
}
/**

* This creates the queue to use for the denp, and then
* deletes it after a RETURN on the console. It can
* probably be onmitted fromthe sanple code.
*/
public class Initializer
{
public static void main(String[] argv) throws Exception
{
if (argv.length < 4)
{
Systemerr.printf(
"<URL> <user> <password> <queue name>\n"
)
return;

}

Messagi ngService nms =
Messagi ngSer vi ceFact ory
.getlnstance()
. get Messagi ngSer vi ce(
new Messagi ngSer vi ceNamespace(argv[0]),
new Messagi ngServi ceCredential s(argv[1],argv[2])

try
{
}

catch(Destinati onExi st sException deexc)

ns. creat eQueue(argv[3]);

Il Already exists; ignore

}

Systemerr.printf("RETURN to del ete the queue");
System in.read(new byte[32]);

ns. del et eQueue(argv[3]);

}

inport java.io.*;

ORACLE C-40

ORACLE

Appendix C
Java Library

inport javax.jns.*;

*/

Thread that repeatedly consumes froma queue,
concatenating received text payloads into a file until
it receives an enpty payload, at which point it closes
the file.

public class Accumul ator extends Thread

{

private MessageConsuner consuner = null;
private byte[] buffer = new byte[102400];
private FileWiter out = null;
private String outNane = null;

public Accunul at or (MessageConsuner consuner, String out Nane)

{
this.outNane = out Nane;
this. consunmer = consuner;
}
@verride
public void run()
{
whi | e(! Thread. current Thread().islnterrupted())
{
try
{
this.process();
}
cat ch(Exception exc)
{
exc. print StackTrace();
br eak;
}
}
}
public void process() throws |COException, JVMSException
{

Message nessage = this.consuner.receive(1000);

if (message instanceof TextMessage)

{

Text Message tnessage = (Text Message) nessage;
String payl oad = tmessage. get Text();

if (payload == null)
{
if (this.out !'= null)
{
Systemerr.printf(
"Closing file "%'\n",
t his. out Nane
);
Systemerr.flush();

this.out.close();
this.out = null;

C-41

Appendix C
Java Library

}
el se
{
if (this.out == null)
{
Systemerr.printf(
"Cpening file '%'\n",
t his. out Nane
);
Systemerr.flush();
this.out = new FileWiter(this.outName);
}
Systemerr.printf(
"Witing % chars to "%'\n",
payl oad. I engt h(),
t his. out Nane
);
this.out.wite(payload);
this.out.flush();
}

}

Receive Messages from a Queue Using a MessageListener

ORACLE

This example shows sample code to receive messages from a queue using a
Messageli st ener.

The following is a command-line client to set up the MessageLi st ener :

package oracl e. cl oud. messagi ng. deno;

i nport javax.jns. Connection;

i mport javax.jms.ConnectionFactory;
i nport javax.jms.JMSException;

i mport javax.jms. MessageConsuner;

i mport javax.jnms. Queue;

i nport javax.jns. Session;

i mport oracl e. cl oud. messagi ng. cl i ent. Messagi ngSer vi ce;

i mport oracle. cl oud. messagi ng. cl i ent. Messagi ngServi ceCredenti al s;
i mport oracl e. cl oud. messagi ng. cl i ent. Messagi ngServi ceFact ory;

i mport oracl e. cl oud. messagi ng. cl i ent. Messagi ngSer vi ceNanespace;

i mport oracl e. cl oud. messagi ng. Messagi ngExcept i on;

/**

* (Oracle Messaging Service client code to receive
* nmessages froma queue using a MessagelLi stener.
*/
public class MessageToFileC ient
{

private String url WthNanespace = null;

private String user = null;

private String password = null;

private String queueName = nul l;

C-42

ORACLE

Appendix C
Java Library

private String dir = null;
private bool ean started = fal se;
private Connection connection = null;

private Session session = null;
private MessageConsuner consuner = null;

*

/
@aram url Wt hNanespace
Namespace URL for the messaging service
instance to use

@ar am user
User with admin privileges for the service
i nstance

@ar am passwor d
Password for the user

@ar am queueNane
Name of the queue for the listener to listen on

@aramdir
Name of the directory into which to put text
message payl oads as files

T A I . R

—

public MessageToFil ed ient(
String url WthNanmespace,
String user,
String password,
String queueNane,

String dir
)
{
if (url WthNanespace == null)
{
throw new I |l egal Argunment Exception("url WthNanespace == nul | ");
}
if (user == null)
{
throw new I || egal Argunment Exception("user == null");
}
if (password == null)
{
throw new I || egal Argunent Exception("password == nul |");
}
if (queueName == null)
{
throw new ||| egal Argunment Exception("queueNane == nul|");
}
if (dir == null)
{
throw new I |l egal Argunent Exception("dir == null");
}

this.url WthNamespace = url Wt hNanespace;

C-43

ORACLE

}

/**

*

*

*

*l

Appendix C
Java Library

this.user = user;
this.password = password,;
this. queueNane = queueNare;
this.dir =dir;

Start the client. If already started, this is
a no-op. On return, the client is set up and
I'i stening.

public void start() throws Messagi ngException, JMSException

{

}

/**

*

*l

synchroni zed(t hi s)

{

if (this.started)
{

}

return;

Messagi ngServi ceFactory factory = Messagi ngServi ceFact ory. getlnstance();
Messagi ngSer vi ceNamespace ns =

new Messagi ngSer vi ceNamespace(this. url WthNamespace);
Messagi ngServi ceCredentials cred =

new Messagi ngServi ceCredential s(this.user,this.password);
Messagi ngService nms = factory. get Messagi ngServi ce(ns, cred);
ConnectionFactory cf = ns. get ConnectionFactory();

this.connection = cf.createConnection();

this.session =
this. connection. creat eSessi on(
fal se, /1 Not transacted
Sessi on. AUTO_ACKNOW.EDGE

);
Queue q = this.session. createQeue(this.queueNane);
this.consuner = this.session.createConsumer(q);
t his. consuner

. set MessagelLi st ener (
new MessageToFi | eLi stener(this.dir)

)s

this.connection.start();

this.started = true;

Return whether the client is started.

public bool ean isStarted()

{

synchroni zed(t hi s)

{

C-44

ORACLE

Appendix C
Java Library

return this.started;

}

/**

* Pause the listener. This will cause the

* |istener to stop receiving nessages until {@ink
* #restart()} is called. If the client has not been

* started, Illegal StateException is thrown.
*/
public void pause() throws JMSException
{
synchroni zed(t hi s)
{
if (this.started)
{
this.connection.stop();
}
el se
{
throw new |11 egal StateException("Cient unstarted");
}
}
}
/**

* Make the |istener resune receiving nessages.
* |f the listener is not paused, this is a
* no-op. If the client has not been started,

* |llegal StateException is thrown.
*/
public void restart() throws JMSException
{
synchroni zed(t hi s)
{
if (this.started)
{
this.connection.start();
}
el se
{
throw new Il 1egal StateException("Cient unstarted");
}
}
}
/**

* Stop the client. If the client has not been
* started, this is a no-op. Once the client has
* been stopped, it cannot be re-started.
*/
public void stop() throws JMSException
{

synchroni zed(t hi s)

{

if (this.started)

{
}

this.connection.close();

C-45

ORACLE

-
R . R

.

*

Appendix C
Java Library

Run the client fromthe command |ine. The first
5 argunments to the command line are the 5 inputs
to the constructor, in order. After starting,
the client will run until a newine is input to
Systemin, after which

it will stop itself.

public static void main(String[] argv) throws Exception

{

}

MessageToFileClient client =
new MessageToFi | ed i ent (

argv[0], /1 url WthNamespace,
argv[1], /'l user,
argv[2], /1 password,
argv[3], /'l queueNane,
argv[4] [dir
);
Systemerr.printf("Starting client ... ");

Systemerr.flush();
client.start();
Systemerr.printf("started\n");
Systemerr.flush();

byte[] buffer = new byte[1024];
System in.read(buffer);

Systemerr.printf("Stopping client ... ");
Systemerr.flush();

client.stop();
Systemerr.printf("stoppedin");
Systemerr.flush();

protected void finalize() throws Throwabl e

{

try
{

}
finally
{

}

this.stop();

super. finalize();

The following is the Messageli st ener class:

package oracl e. cl oud. messagi ng. deno;

import java.io.File;
i mport java.io.FileQutputStream

inmport java.util.UU D,

import java.util.logging.Level;

C-46

ORACLE

i mport
i mport
i mport
i mport

i mport

*

/

L S R TR

—

Appendix C
Java Library

java.util.logging.Logger;
j avax. j ms. Message;

j avax. j ms. MessagelLi st ener;
j avax. j ms. Obj ect Message;

oracl e. cl oud. messagi ng. client. HtpContent;

Cient-side asynchronous nessage |istener. This

|istener assumes that the messages it receives are

(oj ect Messages with H tpContent payl oads, as woul d

be the case if they had been sent via the REST

APl with message type HTTP, or no nessage type.

Any messages not of this formare | ogged and di scarded.

The listener puts the body content of messages it processes
into files in a specified directory.

public class MessageToFil elListener inplenents Messageli stener

{
private static final Logger |ogger =
Logger . get Logger (MessageToFi | eLi stener. cl ass. get Nane()) ;
private String dir = null;
/**
* @aramdir
* Path to the directory in which files containing
* message payloads will be put; may not be null
*
/
public MessageToFil eListener(String dir)
{
if (dir == null)
{
throw new I |l egal Argunent Exception("dir == null");
}
this.dir =dir;
}
@verride
public void onMessage(Message message)
{
if (message instanceof (bjectMessage)
{
(bj ect Message onessage = ((hj ect Message) nessage;
byte[] body = null;
try
{
oj ect payl oad = onessage. get hj ect();
if (payload instanceof HttpContent)
{
String type = ((HttpContent)payl oad). get Cont ent Type();
body = ((HtpContent)payl oad).get Content();
Systemerr.printf("CGot object message with '%' content:
\n", type);

Systemerr.flush();
Systemerr.wite(body);

C-47

ORACLE

Appendix C
Java Library

Fil eQut put Streamout =
new Fi | eQut put St rean
this.dir +
File.separator +
UUI D. randonUI D() . toString() +

", dat"
)s

out.write(body);
out. flush();
out.close();

}

el se

{

MessageToFi | eLi st ener. | ogger. | og(
Level . SEVERE,
"Message delivered to listener is an Qbject Message, but
payload is not HtpContent; payload class is '" +
payl oad. get O ass(). get Nane() +

);
}
}
cat ch(Exception exc)
{
MessageToFi | eLi st ener. | ogger. | og(
Level . SEVERE,
"Exception witing nessage to file",
exc
);
}
}
el se
{
MessageToFi | eLi st ener. | ogger. | og(
Level . SEVERE,
"Message delivered to listener is not an ObjectMessage; class is '"
message. get G ass(). get Nane() +
);
}

C-48

	Contents
	Preface
	Audience
	Related Resources
	Conventions

	1 Getting Started with Oracle Messaging Cloud Service
	About Oracle Messaging Cloud Service
	About Messaging Concepts
	Architecture Overview
	About the Components of Oracle Messaging Cloud Service
	About the Interfaces to Oracle Messaging Cloud Service
	About Resource Limits

	Before You Begin with Oracle Messaging Cloud Service
	How to Begin with Oracle Messaging Cloud Service Subscriptions
	About Oracle Messaging Cloud Service Roles and Users

	2 Developing Applications That Use Oracle Messaging Cloud Service
	Typical Workflow for Using Oracle Messaging Cloud Service
	Accessing Oracle Messaging Cloud Service
	Considerations When Developing Applications That Use Oracle Messaging Cloud Service
	About Queues and Topics
	About Message Push and Message Push Listeners
	About Verification of Message Push Listeners
	About Destination Deletion
	About Connections
	About Sessions, Acknowledgement Modes, Transactions, and Provisional Messages
	About Producers, Consumers, and Selectors
	About Parts of a Message
	Message Headers
	Message Properties
	Message Body and Message Size

	About Persistent and Non-Persistent Messages
	About Authorization
	About Service Termination
	About the Ordering of Message Delivery
	Using Message Groups
	Sending Large Objects as Messages Using Oracle Storage Cloud Service

	Using the Java Library
	Typical Workflow for Using the Java Library
	Downloading the Oracle Messaging Cloud Service Java SDK
	Authentication and Authorization
	Differences from JMS

	Using the REST API
	Typical Workflow for Using the REST API
	Messaging Context and HTTP Cookies
	Authentication
	About HTTP Headers
	Cross-Site Request Forgery (CSRF) Prevention
	Resource Management versus Message Transmission APIs
	Message Types
	PLAIN
	TEXT
	BYTES
	OBJECT
	HTTP
	MAP
	STREAM

	Message Headers and Properties
	XML versus JSON Response Types

	3 Accessing Oracle Messaging Cloud Service Using REST API
	Topology API
	Viewing all Messaging Contexts
	Viewing a Messaging Context
	Sample Outputs of Topology API

	Usage API
	About Usage API
	Sample Outputs of Usage API

	About Escaped Value Strings
	About Using the REST API
	Basics of the REST API
	Functional Areas of the REST API
	Understanding Messaging Context and Cookies
	Understanding Durable Subscriptions
	Understanding REST API Operations
	Understanding Concurrent Access to Resources
	Understanding Error Responses
	Understanding Anti-CSRF Measures
	HTTP Header for Messaging Service Version
	HTTP Header for Messaging Context ID

	Resource Management API
	Creating and Managing Destinations
	Create a Destination
	List Destinations
	Retrieve Destination Properties
	Remove a Destination

	Creating and Managing Message Push Listeners
	Create a Listener
	Delete a Listener
	List Listeners
	Retrieve Listener Properties

	Message Transmission API
	Creating and Managing Messaging Contexts
	Create a Messaging Context
	Get Maximum Inactive Interval (MII)
	Set Maximum Inactive Interval (MII)

	Creating and Managing Connections
	Create a Connection
	Update Connection Properties
	Delete a Connection

	Creating and Managing Sessions
	Create a Session
	Acknowledge, Commit, Rollback, or Recover a Session
	Delete a Durable Subscription
	Close and Delete a Session

	Sending Messages
	Create a Producer
	Set Properties of a Producer
	Close and Delete a Producer
	Send a Message via a Producer

	Receiving Messages
	Create a Consumer
	Close and Delete a Consumer
	Receive a Message via a Consumer

	Creating and Managing Durable Subscriptions
	Create a Durable Subscription
	List Durable Subscriptions
	Delete a Durable Subscription

	Creating and Managing Temporary Destinations
	Create a Temporary Destination
	List Temporary Destinations
	Remove a Temporary Destination

	Creating and Managing Queue Browsers
	Create a Queue Browser
	Retrieve Queue Browser Properties
	Browse Messages
	Remove a Queue Browser

	Properties of HTTP Requests to Send Messages from REST Clients
	Request Parameters
	HTTP Headers to Specify Message Properties
	Limitations on Message Size

	Properties of HTTP Requests and Responses that Deliver Messages

	4 Accessing Oracle Messaging Cloud Service Using Java Library
	Client-Side Logging
	Automatic Closing of Connections
	Diagnosing Errors from the Java Library
	Using the Re-try Function
	About Using the Java Library
	Prerequisites for Using the Java Library
	How to Use the Java Library
	How to Check the version of the Java Library

	Creating a MessagingService Object
	Using Messaging Cloud Service from Oracle Java Cloud Service - SaaS Extension
	Resource Management API
	Managing Destinations
	Create a Destination
	Delete a Destination
	List Destinations
	Retrieve a Destination's Properties

	Managing Message Push Listeners
	Create a Message Push Listener
	Delete a Message Push Listener
	List Message Push Listeners
	Retrieve a Message Push Listener's Properties

	Managing Durable Subscriptions
	List Durable Subscriptions
	Retrieve a Durable Subscription's Properties

	ConnectionFactory Creation API
	Using JMS to Send and Receive Messages
	Using Extensions to the JMS API
	Safe Durable Subscriptions
	Strong Typing for JMS
	Enumerations
	Wrapper Classes

	Connection Timeout
	Obtaining Service Version
	Obtaining Messaging Context ID

	Limitations on Message Size and Time-to-Live

	5 Troubleshooting Oracle Messaging Cloud Service
	Java Library
	Messages
	Destinations
	Miscellaneous

	A Best Practices
	Learn JMS 1.1
	Effective Pooling of Resources
	Using Transacted and/or Client-Acknowledged Sessions
	Diagnosing Exceptions in the Java Library
	Using Exception Listeners
	Recovery Strategies
	Alternative to Selectors

	B REST API Reference
	REST API Parameters Reference
	REST API HTTP Status Codes and Error Messages Reference
	Generic Meanings of HTTP Response Status Codes
	Error Keys, Status Codes and Error Messages
	Errors with HTTP Status Code 400 (Bad Request)
	Errors with HTTP Status Code 403 (Forbidden)
	Errors with HTTP Status Code 404 (Not Found)
	Errors with HTTP Status Code 405 (Method Not Allowed)
	Errors with HTTP Status Code 406 (Not Acceptable)
	Errors with HTTP Status Code 409 (Conflict)
	Errors with HTTP Status Code 500 (Internal Server Error)

	C Code Samples
	REST API
	Create a Queue
	Create a Topic
	Create a Durable Subscription
	Create a Message Push Listener
	Receive a Message from a Durable Subscription
	Receive a Message from a Queue with a Selector
	Send a Message to a Topic
	Process Messages using a Transaction
	Cookie Management

	Java Library
	Create Resources
	Send a Message to a Topic
	Receive a Message from a Queue with an Optional Selector
	Asynchronously Receive Messages with a Durable Subscription
	Asynchronously Process Messages Within a Transaction
	Use Message Groups
	Receive Messages from a Queue Using a MessageListener

