
Responsys
Personalization
Language
Quick Start Guide

Update 18A

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.
Last updated: 3/21/18

Information in this document is subject to change without notice. Data used as

examples in this document is fictitious. No part of this document may be

reproduced or transmitted in any form or by any means, electronic or mechanical,

without prior written permission of Oracle Responsys.

Address permission requests, comments, or suggestions about Oracle Responsys

documentation by creating a MOS Service Request at https://support.oracle.com.

Page 1

Chapter 1. Introduction

This guide is an introduction to getting started with the new Responsys

Personalization Language (RPL).

Although RPL has many programming capabilities, it is not a full-blown

programming language like PHP or Java. It is implemented to work only within the

Interact suite. Other than that, you can accomplish many programming tasks using

this language.

What is RPL?
RPL is the language used to create highly personalized messages across various

channels, starting with email.

RPL markup can appear anywhere in any text-based file. The engine behind the

language reads a text-based file and, when it recognizes certain pieces of text as

markup, executes the code in the markup and inserts it into the output file. Other

text is copied into the output file as is.

For a summary of RPL, see Chapter 5: Quick RPL Reference.

What happened to built-in functions?
For a long time, personalization in Interact was based on what is commonly known

as built-in functions. Built-in functions were developed through customer needs

over the years and are a Responsys proprietary language. This language is limited

as a programming language in its ability to do sophisticated personalization in an

efficient manner. Over time, the next generation of the language was envisioned

and it was decided to create a language more akin to a programming language to

expand the power of personalization capabilities of Interact.

Page 2

When the new Email Message Designer is turned on for an account, existing

campaigns using the built-in functions will continue to work. Customers can create

new campaigns that leverage the new Email Message Designer and RPL.

Glossary
RPL introduces a few new terms listed below.

Comment

Content that will not be included in the output. RPL comments are similar to

HTML comments. RPL comments begin with <#-- and end with -->.

Everything between these tags will be excluded from the output.

Directive

Instructions to RPL used in templates. Directives begin with <# or <@.

Hash

A variable that acts as a container for other variables (known as sub-variables).

Sub-variables of a hash are accessed by name.

Interpolation

An instruction to convert an expression to text and to insert that text into the

output. Interpolations begin with ${ and end with }. Note that interpolations do

not obtain a value, they only execute an expression.

Method

Calculates something based on given parameters and returns the result.

Namespace

A set of available directives, methods, RPL built-ins, and additional

structures/properties that you can use.

Page 3

Scalar

A variable that stores a single value. A scalar is of a specific type: string, number,

date/time, or boolean.

Sequence

A structure that stores sub-variables sequentially. Sub-variables in a sequence

are accessed using a numerical index.

How do I use RPL instead of built-in functions?
A few things to keep in mind before starting to use RPL:

 You need to assign an RPL-compatible alias for both the data source name
and field/column names.

 You cannot use both RPL and built-in functions in the same campaign.

 A campaign that has the Email Message Designer feature enabled can use
RPL.

 Campaigns that existed in an account before the new Email Message
Designer was turned on will continue to use built-in functions.

How does RPL work with templates?
Email Message Designer documents come from the Content Library. The following

diagram shows how RPL executes templates.

 Output:

 Hello Joe

Data in the data source:

- profile
 - firstname = “Joe”

HTML in the template:

<html>
<body>
Hello
${profile.firstname}
</body>
</html>

Page 4

Template structure
A template comprises the following parts:

 Text
Text is printed in the output as is.

 Comments
Comments are ignored and are excluded from output.

 Interpolations
Interpolations are instructions that RPL will replace in the output with
calculated values.

 RPL Directives
Directives are instructions to RPL. They are similar to HTML elements.
Directives execute statements, text, interpolations and other directives.

About data types
Every RPL element is of a specific type. RPL supports the following data types:

 String

 Numeric

 Boolean

 Date

 Hash
A hash stores sub-variables by name. The sub-variables in a hash are not
ordered and are accessed by name. All sub-variables must be of the same
type.

 Sequence
A sequence stores sub-variables by a number known as the index. The sub-
variables in a sequence are ordered and are accessed by index. The index

Page 5

starts with a 0; this means that the index of the first sub-variable is 0. The
sub-variables can be of different types.

 Node
Nodes represent a node in a tree structure, and are used mostly with XML
processing.

These data types are described in more detail in the following sections.

About interpolations
Interpolations are instructions to convert an expression to text and to insert that

text into the output. An interpolation begins with ${ and ends with }.

You can use interpolations only inside template text. You can not use them inside

expressions or to obtain a value. For example:

Incorrect:

${profile.firstname + ' ' + ${profile.lastname}}

<#if ${profile.age} lt 50}>

Page 6

Correct:

${profile.age + 3}

<#if profile.age lt 50>

${3+5}

About string expressions
To specify a string value, enclose the string in double quotation marks ("") or single

quotation marks (''). Enclosing at string in quotation marks is known as quoting. If

the string contains the character used for quoting (either " or ') or a backslash (\),

you must precede the symbol with a backslash (\); this is called escaping.

For example, if you use a " for quoting and want to print It’s "quoted" and this is a

backslash: \, use:

${"It's \"quoted\" and
this is a backslash: \\"}

If you use ' for quoting and want to print It’s "quoted" and this is a backslash: \, use:

${'It\'s "quoted" and
this is a backslash: \\'}

You can concatenate two strings with the + operator, for example:

${profile.firstname + ‘ ‘ + profile.lastname}

Remember that there is a distinction between text in the template and strings.

Strings appear where an expression would appear, inside an interpolation or a

directive.

About arithmetic expressions
Arithmetic expressions result in a number. RPL supports the standard arithmetic

operations:

+ — addition

- — subtraction

Page 7

* — multiplication

/ — division

% — modulus

About boolean expressions
Boolean expressions result in a value of either true or false. The constants true and

false are the only two possible values.

You can use the following comparison operators:

== — equal

!= — not equal

gt — is greater than

lt — is less then

le — is less than or equal to

ge — is greater than or equal to

You can also use the following logical operators:

&& — boolean logical operation AND. This operation results in true if both its two

operands are true, false otherwise.

||— boolean logical operation OR. This operation results in true if either one of

its two operands is true, false when both operands are false.

To use the standard operators >, >=, < and <=, you must enclose them in

parenthesis. This is because these operators can conflict with tag annotations. For

example:

<#if (profile.age > 30 && profile.gender==‘F’)>

Page 8

About date expressions
You cannot specify dates directly as constants. You must enter a date string then

convert it to a date using the ?date ?datetime, or ?time built-ins. For an

example, see the Convert a string to a date example in the Using RPL built-ins

section.

Dates can be of type date, date-time, time, or unknown. Dates can be compared to

other dates.

TIP: You can use the dayadd method to add or subtract days from the specified

date. For more information, see dayadd in Chapter 3: Method Reference.

About hashes
A hash is a mapping technique used to associate a key with a value. In other

programming languages, hashes are called maps or dictionaries.

You specify a hash as:

{‘key1’:’value1’, ‘key2’:’value2’}

Keys are usually strings. Values can be of any type.

Accessing items in a hash

To retrieve a value in a hash, specify the key of the item. For example, to obtain the

color of the apple:

<#assign fruitColors={‘apple’:’red’, ‘orange’:’orange’}>
${fruitColors[“apple”]}

Alternately, when the key is a valid identifier (letters, followed by letters and/or

digits), you can access an item using the dot notation. Using the previous example,

you can obtain the color of the apple this way:

${fruitColors.apple}

Page 9

About sequences
You use a sequence to build a list.

You specify a sequence as: [“a”, “b”, “c”], f or example:

<#assign list1=[‘one’, ‘two’, ‘three’]>

The items in a sequence can be of different types, for example:

<#assign list1=[1, ‘two’, 3]>

You can concatenate sequences with the plus sign (+), for example:

<#assign list3=list1 + list2>

You can specify sequences as a range, for example:

<#assign list4=1..4>

You can add variables to a sequence, for example:

<#assign list5=[‘a’, profile.gender, ‘b’]>

You can iterate a sequence with the <#list> directive, for example:

<#list list5 as element>
 ${element}
</#list>

Accessing items in a sequence

To access a sequence item, specify its index in square brackets ([]), for example:

${list5[2]}

Indexes start with a 0. This means that the index of the first item is 0. The example

above accesses the third item in the list.

Page 10

Using RPL instead of built-in functions
The following section shows examples of how to use RPL instead of built-in

functions.

Accessing variables and fields

Using built-in functions Using RPL

Generally, the syntax for referring to fields/columns from a data source is:

Datasaourcealias.fieldnamealias

$Lookup(Field)$ ${Datasourcealias.Fieldalias}

$Lookup(Variable)$ ${Variable}

We also support simple replacements:

$Field$

Dear $Lookup(FIRST_NAME)$

Dear

${ContactList.FIRST_NAME}

Assuming all the fields above are
coming from the profile list called
ContactList.

Using conditions

Using built-in functions Using RPL

$cond(condition, onTrue, onFalse) <#if condition>

…text for true case

<#else>

… text for false case

</#if>

$cond(eq(Lookup(Travel), ‘Y’),
document(Travel, TravelOffer),
nothing())$

<#if Travel=‘Y’>

 <table>

<tr>…</tr>

 </table>

</#if>

Page 11

Using operators

Generally, the syntax for referring to fields/columns from a data source is:

Datasaourcealias.fieldnamealias

Using built-in functions Using RPL

$add(2,mul(5*Price))$

$and(ge(Price, 1000.00), le (Price,
2000.00))$

${2 + 5*Price}

${(Price >= 1000.00 && Price

<= 2000.00)}

Parentheses are used to tell RPL not to
interpret “>” or “<“ as a tag markers

${Price ge 1000.00 && Price le

2000.00}

String concatenation:

$concat(FIRST_NAME, concat(space(),
LAST_NAME))$

${ContactList.FIRST_NAME + “
“+ ContactList.LAST_NAME}

This example assumes that all fields are
coming from the profile list called
ContactList.

About RPL built-ins

RPL includes a set of routines that allow for some common programing tasks such

as converting text to uppercase and converting a number to a string. These routines

are called built-ins. Do not confuse these with Responsys built-in functions as they

are different.

You specify built-ins as expression? built-in name.

Page 12

Here are some examples of how you can use RPL built-ins instead of built-in

functions.

Generally, the syntax for referring to fields/columns from a data source is:

Datasaourcealias.fieldnamealias

The examples below assume that all fields are coming from the profile list called
ContactList.

Using built-in functions Using RPL built-in

$uppercase(Region)$ ${ContactList.Region?upper_case}

$leadingcapital(City)$ ${ContactList.City?cap_first}

$capitalizewords(Location)$ ${ContactList.Location?capitalize

Looking up records and looping

Using built-in functions Using RPL

$COND(EMPTY(LOOKUPRECORDS(!Event
Tables, Events_All_Next_21_Days,
PAIRS(GENRE_CATEGORY_DESCR, MLB
Tickets, Region_Name,
LOOKUP(Region_Name)), Event_ID)),
NOTHING(),
ESCAPECOMMAS(DOCUMENT(Modules,
MOD_TU_Event_Sports_Baseball_MLB)))$

<table>

<#data Events_All_Next_21_Days as
event>

 <#filter description=”MLB
Tickets”
 region_name=Region_Name>

 <#fields eventid description city
state date_local>

 <tr><td>…${event.city}…</td></tr>

</#data>

</table>

Including a document

Using built-in functions Using RPL

$document(folderName, doc1, doc2,
…)$

$document(folderName, doc1,
pairs(name1, value1, name2, value2,
...))$

<#include
“cms://contentlibrary/folderName
/doc1.RPL”>

<#include
“cms://contentlibrary/folderName

Page 13

$documentnobr(folderName, doc1,
doc2, …)$

/doc2.html” parse=“false”>

<#list docList as doc>

 <#assign random=rand(0,2000)>
<#-- available in included doc -
->

 <#include
“cms://contentlibrary/folderName
/” + doc>

</#list>

Using RPL built-ins

This section shows how to use some common RPL built-ins.

To do this Specify this

Convert a string to a date “2013-03-27”?date(“yyyy-MM-dd”)

Convert a number to a string in
currency format

7326847?string.currency

Protect a string for html output pet.description?html

Convert a number to hex format 123?hex

Convert a string to hex format
(Responsys built-in function equivalent)

“abc”?hex

Skip a user’s record if a string is empty profile.firstname?skip

Sort a sequence list5?sort

Get all the keys of a hash fruitColors?keys

Page 14

Chapter 2: Most Commonly Used Directives

This chapter describes three of the most commonly used RPL directives.

if

Usage

<#if condition>
 ...
</#if>

Description
This directive checks whether a condition is true. For example:

Welcome, ${user}<#if user == " Joe">Joe</#if>!

checks whether the value of the variable user is Joe. If so, the line will read

Welcome, Joe!.

In this example, '' Joe'' will appear only if the value of the variable user is equal to

the string Joe. With this directive, everything between the <#if > and </#if> tags

is skipped if the condition specified within the tags is false (in this example, not

Joe).

${user} is an interpolation that provides instructions which RPL will replace with

the calculated values.

user is the name of a variable to test. Generally, unquoted words inside directives

or interpolations are treated as references to variables, and strings within double

quotes are treated as literal strings.

== is the operator that tests whether the value at right of the operator is true. An

equal value results in true.

Page 15

list

Usage

<#list sequence as loopVariable>repeatThis</#list>

Description
This directive creates a list. The code within the <#list > and </#list> tags will

be processed for each variable.

loopVariable will hold the value of the current item in all repetitions.This variable

exists only between the <#list ...> and </#list> tags.

repeatThis will be repeated for each item in the sequence, one after the other,

starting from the first item.

include

Description
This directive inserts the content of another file into the template.

For example: you have to include the same copyright notice in several templates.

The file /contentlibrary/common/copyright_footer.htm contains the copyright

notice. The following code in the template will insert the copyright_footer.htm file

into the template:

<#include "cms://contentlibrary/common/copyright_footer.html">

The output will include the content of the copyright file. If you change

copyright_footer.htm at any time, the updated copyright notice will appear on all

pages.

Page 16

data

Description
This directive obtains data from pre-declared data sources in the Email Message

Designer. Before using this directive, you must set up the data sources in the

system and include them in the campaign that you are going to launch, with proper

aliases.

When you include a data source in a campaign, you need to specify aliases for the

data source name and its columns, and to identify which columns are used as

lookup keys.

RPL checks the data source to verify that:

 The field specified as the lookup key in the directive is identified as such in
the campaign. If that field is not identified as a lookup key, an error will
occur.

 The field used as a returned field is declared in the campaign with the given
alias.

To perform the data check, you must specify a data declaration section (identified

by the <#data></#data> tags) with three parts:

 data
The alias of the data source to use

 filter
The lookup key

 fields
The returned fields

Page 17

Example

These items are on sale right now!
<table>
<tr><th>Item</th><th>Discount</th>
<#data sales as offer>
 <#filter region="NY">
 <fields sales_id description discount>
 <tr id=”sale${offer.sales_id}”>
 <td>${offer.description}</td>
 <td>${offer.discount}</td>
 </tr>
</#data>
</table>

The data declaration section specifies which data source to query, the lookup key

to use, and the fields to return.

The looping variable offer specifies the hash being created, with the requested

fields, as the source for each record returned from the inquiry.

The looping section is repeated for each record. The offer hash is updated on each

iteration with the data obtained from the data source record.

Page 18

Chapter 3: Method Reference

avg

Usage

avg(number1, number2, number3, …)
or
avg(numeric-list-expr)

Description
This method computes the average of the given numbers.

Parameters

number1,
number2,
number3, …

The numbers from which the average is
computed.

numeric-list-expr A sequence expression containing the numbers
to average.

Example

<#assign list=[1,73,22]>
${avg(list)}
${avg(1,73,22)}

Produces this output:

32
32

Page 19

bazaarvoiceauthstring

Usage

bazaarvoiceauthstring(key, query-string-expr)
or
bazaarvoiceauthstring(key)

Description
This method helps create links to the Bazaarvoice service.

To create a proper URL, you need the base URL and the key/passphrase. These will

be provided to you in a document that encrypts the required key and query

parameters.

Please consult technical services for information about obtaining these two

elements, and for further details of how to utilize the Bazaarvoice service.

Parameters

key A key/passphrase value known to both the sending
and receiving parties.

query-string-expr The decoded and unencrypted query string. This
parameter is optional.

dayadd

Usage

dayadd(date-expr, days-expr)

Description
This method adds or subtracts the number of days specified by days-expr to a

base date specified by date-expr. To subtract days, specify a negative number in

days-expr. Note decimal numbers will be truncated.

NOTE: Due technical limitations, RPL cannot always determine the type of date it

receives (date only, time only, or both). For this reason, you should use the string

built-ins ?date and ?time to specify the date type. The following examples show

the different possibilities.

Page 20

Parameters

date-expr The base date.

days-expr The number of days to add or subtract.

Example 1: Move one day forward and back

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${dayadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}
${dayadd(date, -1)?string("yyyy-MM-dd HH:mm:ss")}

Produces this output:

2012-12-28 13:25:03
2012-12-26 13:25:03

Example 2: Advance one day from a date without time

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${dayadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

Produces this output:

2012-12-28 00:00:00

Example 3: Using a time-only date will cause an error

<#assign date="2012-12-27 13:25:03"?time("yyyy-MM-dd HH:mm:ss")>
${dayadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

Produces an error because there are no days in time-only dates.

emaildomain

Usage

emaildomain(email-expr)

Description
This method extracts the string that represents the domain from the email address

specified by email-expr.

Parameters

email-expr The email address.

Page 21

Example

${emaildomain(“jamesbond@m5.com”)

Produces this output:

m5.com

facebooklike

Usage

facebooklike(button-type, link-name, button-verb, button-style,
description, thumbnail)

Description
This method adds a Facebook Like or Facebook Recommend button.

Standard Facebook images
The standard Facebook Like button and Facebook Recommend button images are

available in Interact via the following image SRC paths.

Image Path Image

/interact/ui/styles/images/likeonfacebook.png

<img src="/interact/ui/styles/images/
likeonfacebook.png ">

/interact/ui/styles/images/recommendonfacebook.png

<img src="/interact/ui/styles/images/
recommendonfacebook.png">

When you use these paths, Interact automatically updates the SRC path to the

proper Akamai URL for your Interact account.

Page 22

Parameters

button-type The type of Like button:

0 — Like an email

1 — Like an offer

link-name The name of the link for tracking.

This parameter is ignored if button-type is 0.

This is the name of the link as configured in the link
table.

The link name must be a string expression without
commas.

For Liking an offer, the link name and target URL
(LINK_URL) of the offer in the link table is required.

button-verb The verb to show on the Like button:

0 — Like

1 — Recommend

The verb also appears in the individual's Facebook news
feed, for example:

Richard likes GiftCo's Sale

John recommends GiftCo's Sale

button-style The format of the Like button on the Like landing page:

0 — Standard
One line, the Like button followed by a text string: "X
likes."

1 — Button Count
A horizontal presentation of the button and the
number of Likes for the item.

2 — Box Count
Stacked presentation of the button and number of
Likes for the item.

description The string shown on the Like landing page. This should
be a tag line string of what is liked.

This parameter is ignored if button-type is 0.

The dollar sign symbols ($) must be escaped.

thumbnail The image used for the Like landing page.

We recommend the image size of 200x200 pixels.

Page 23

firstname

Usage

firstname(string-expr)

Description
This method obtains the first name with a small set of formats. If you need

additional formats, we recommend you create a new function in a library.

Parameters

string-expr The expression that contains the individual’s full name.
Valid formats are:

First Last

Last, First

First M. Last

Last, First M.

max

Usage

max(number1, number2, number3, …)
or
max(numeric-list-expr)

Description
This method determines which number is the largest of the given numbers.

Parameters

number1,
number2,
number3, …

The numbers to compare.

numeric-list-expr A sequence expression containing the numbers to
compare.

Page 24

Example

<#assign list=[1,73,22]>
${max(list)}
${max(1,73,22)}

Produces this output:

73
73

messagedigest

Usage

messagedigest(string-expr)
or
messagedigest(string-expr, algorithm)

Description
This method generates a one-way digest by using two standard hashing algorithms.

The hashing algorithm converts a string to a unique signature that identifies the

message.

You can use this method to deliver encrypted information anywhere in a campaign

or form message. For example, you might use it to pass encrypted promotion codes

in the query string of the link URL so that the destination website can compare the

code to a list of authorized codes.

Parameters

string-expr The string to which to apply the algorithm.

algorithm Either “MD5”, “SHA”, or “SHA-256”, “SHA-384”, “SHA-
512”.

The default is “SHA”.

Page 25

Example

<#assign text=”This is a test”>
${messagedigest(text, “SHA”)}

Produces this output:

a54d88e06612d820bc3be72877c74f257b561b19

min

Usage

min(number1, number2, number3, …)
or
min(numeric-list-expr)

Description
This method determines which number is the smallest of the given numbers.

Parameters

number1,
number2,
number3, …

The numbers to compare.

numeric-list A sequence expression containing the numbers to
compare.

Example

<#assign list=[1,73,22]>
${min(list)}
${min(1,73,22)}

Produces this output:

1
1

Page 26

nonemptyfields

Usage

nonemptyfields(field1, field2, field3, etc.)
or
nonemptyfields(sequence-expr)

Description
In some cases, the personalization record is set up so that some fields might be

empty. This is done so that only the fields that actually contain values are used.

This method allows you to create dynamic content by specifying a complete set of

potential	values, but retrieving only the values appropriate for the current record.

To extract the field names, use the hash built-in ?keys. To extract only the values,

use the hash built-in ?values.

This method returns a hash with the proper field names and values associated with

it.

Parameters

field1,
field2,
field3, …

The names of the fields to be examined.

sequence-expr A sequence or expression that produces a
sequence. This is useful, for instance, for
use with the randomsubset method.

Example
In this example, the personalization record for Mary has values in the fields Boots

and Backpacks, with the values 2 pair and 1, respectively.

<#assign populated=nonemptyfields(“Hats”, “Shirts”, “Shorts”,
“Boots”, “Backpacks”, “Tents”)>
<#list populated?keys as fieldName>
 - ${fieldName} - ${populated[fieldName]}
</#list>

Page 27

Produces this output:

Boots - 2 pair
Backpacks – 1

parsexml

Usage

parsexml(string-expr)

Description
This method converts a text string into a set of nodes.

Parameters

string-expr The text that contains XML.

Example
This example assumes that xmlField contains an XML string.

<#assign doc=parsexml(xmlField)>

rand

Usage

rand(value)

Description
This method returns a random numeric value between 0 and the given number.

randomsubset

Usage

randomsubset(list-expr, on-empty-expr, max-size-expr)

Description
This method returns a subset of list elements. The max-size-expr parameter

specifies the maximum number of elements to return.

Page 28

Parameters

list-expr The list from which to get the random subset.

on-empty-expr The default value to return if the list has fewer elements
than the size specified by the max-size-expr
parameter.

max-size-expr The maximum number of elements to return. If the list
contains fewer elements, the value specified by the on-
empty-expr parameter will be used.

Example

<#assign fruits=[“bananas”, “oranges”, “apples”, “strawberries”,
“pears”>
<#list randomsubset(fruits, [], 3) as fruit>${fruit}</#list>
<#assign morefruits=[“bananas”, “oranges” >
<#list randomsubset(morefruits, fruits[0..2], 3) as
fruit>${fruit}</#list>
<#list randomsubset(fruits, fruits, 6) as fruit>${fruit}<#/list>

Produces this output:

oranges strawberries pears
bananas oranges apples
bananas oranges apples strawberries pears

Page 29

Chapter 4: Namespace Reference

A namespace is a set of available directives, methods, RPL built-ins and additional

structures and properties that you can use.

This chapter describes the RPL predefined namespaces.

Campaign

The variables in the Campaign namespace are defined in the campaign definition.

The following table lists all campaign variables.

campaign.id The unique identifier of the campaign.

campaign.name The campaign name.

campaign.marketingprogram The specified marketing program in the
campaign definition.

campaign.marketingstrategy The specified marketing strategy in the
campaign definition.

campaign.externalcode The specified external campaign code as
defined in the campaign.

Data source hashes

Data source namespaces, or hashes, contain the fields that are defined in the data

sources user interface. The data source appears as a top level hash, and its fields

appear under that hash. Both the hash and its fields use the respective aliases for

registration into the namespace.

For example, if you declared a namespace to provide an email address (from

EMAIL_ADDRESS_) with the alias profile, you can specify the following

interpolation to obtain the email address of an individual record:

${profile.email}

Page 30

Launch

The Launch namespace contains only one value, launch.id, which defines the

current unique identifier of the given launch.

Message

The Message namespace describes attributes of the message campaign.

message.format Defines the format being used to personalize the
current message:

“H” – if the format is HTML

“T” – if the format is text

NOTE: In some situations, two personalization data sources include a field with the

same name but different values. Internally, only the first value is available, based on

the order in which the data sources were specified. Trying to access the second

value using the namespace expression will result in undefined values.Special

variables reference.

Special variables are variables defined by RPL. To access special variables, use the

.variable_name syntax (notice the dot).

RPL defines the following special variables:

.data_model A hash that you can use to access the data model
directly. That is, variables created with the global
directive are not visible here.

.error This variable is accessible in the body of the
recover directive, where it stores the error
message of the error being recovered.

.globals A hash that you can use to access global variables
(data model variables and the variables created
with the global directive). Note that variables
created with the assign or macro directives are
not global variables, thus they never hide the
variables when you use globals.

Page 31

.lang Returns the language part of the current value of
the locale setting. For example if .locale is
en_US, then .lang is en.

.locale Returns the current value of the locale setting. This
is a string, for example en_US.

.locals A hash that you can use to access local variables
(variables created with the local directive and
parameters of a macro).

.main A hash that you can use to access the main
namespace. Note that global variables such as the
data model variables are not visible through this
hash.

.namespace A hash that you can use to access the current
namespace. Note that global variables such as data
model variables are not visible through this hash.

.node The node you are currently processing with the
visitor pattern (i.e. with the visit, recurse, ...etc.
directives).

.now Returns the current date and time.

Usage examples: "Page generated: ${.now}",
"Today is ${.now?date}", "The current time is
${.now?time}".

.output_encoding Returns the name of the current output charset.
This special variable does not exist unless the
framework that encapsulates RPL specifies the
output charset for RPL.

.template_name The name of the current template.

.url_escaping_charset If the variable exists, it stores the name of the
charset that should be used for URL escaping. If
this variable does not exist, it means the charset to
use for URL encoding has not been specified. In
this case, the url built-in uses the charset
specified by the output_encoding special
variable for URL encoding.

Page 32

.vars The expression .vars.foo returns the same
variable as expression foo.

This variable useful if you have to use the square
bracket syntax: since that works only for hash sub-
variables, you need an artificial parent hash. For
example, to read a top-level variable with a name
that might confuse RPL, you can write
.vars["Confusing Name!"]. Or, to access a
top-level variable with dynamic name given with
variable varName you can write .vars[varName].
Note that the hash returned by .vars does not
support ?keys and ?values built-ins.

Page 33

Chapter 5: Quick RPL Reference

If you already know RPL or are an experiences programmer, you can use this

chapter as a quick reference.

Specifying values directly

Variable Type Example

String "Foo" or 'Foo' or "It's \"quoted\"" or
r"C:\raw\string"

Number 123.45

Boolean true, false

Sequence ["foo", "bar", 123.45], 1..100

Hash {"name":"green mouse", "price":150}

Retrieving variables

Variable Type Example

Top-level user

Hash user.name, user["name"]

Sequence products[5]

Special variable main

String operations

Operation Example

Interpolation (or
concatenation)

"Hello ${user}!" (or "Inter" + "act")

Getting a character name[0]

Page 34

Sequence operations

Operation Example

Concatenation users + ["guest"]

Sequence slice products[10..19] or products[5..]

Hash operations

Operation Example

Concatenation passwords + {"joe":"secret42"}

Numeric/boolean expressions

Expression Type Example

Arithmetical calculations (x * 1.5 + 10) / 2 - y % 100

Comparison x == y, x != y, x < y, x > y, x >= y,
x <= y, x < y, ...etc.

Logical operations !registered && (firstVisit ||
fromEurope)

Built-ins name?upper_case

Method calls repeat("What", 3)

Missing value handler operators

Action Example

Define a default value name!"unknown" or
(user.name)!"unknown" or name! or
(user.name)!

Test for a missing value name?? or (user.name)??

	Chapter 1. Introduction
	What is RPL?
	What happened to built-in functions?
	Glossary
	How do I use RPL instead of built-in functions?
	How does RPL work with templates?
	Template structure
	About data types
	About interpolations
	About string expressions
	About arithmetic expressions
	About boolean expressions
	About date expressions
	About hashes
	Accessing items in a hash

	About sequences
	Accessing items in a sequence

	Using RPL instead of built-in functions
	Accessing variables and fields
	Using conditions
	Using operators
	About RPL built-ins
	Looking up records and looping
	Including a document
	Using RPL built-ins

	Chapter 2: Most Commonly Used Directives
	if
	list
	include
	data

	Chapter 3: Method Reference
	avg
	bazaarvoiceauthstring
	dayadd
	emaildomain
	facebooklike
	firstname
	max
	messagedigest
	min
	nonemptyfields
	parsexml
	rand

	Chapter 4: Namespace Reference
	Campaign
	Data source hashes
	Launch
	Message

	Chapter 5: Quick RPL Reference
	Specifying values directly
	Retrieving variables
	String operations
	Sequence operations
	Hash operations
	Numeric/boolean expressions
	Missing value handler operators

