

Built-in Functions to
Responsys Personalization
Language (RPL)

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.
09/10/2018

1

Introduction

The document provides guidelines for using Responsys Personalization Language (RPL) to

recreate common personalization solutions created using built-in functions. This guide describes

the most common usage cases. For a complete RPL reference, see the Responsys

Personalization Language (RPL) User Guide and Language Reference.

NOTE: RPL is available only if Content Library and Message Designer for Email are enabled for

the account.

About the Data Schema

To demonstrate how to use RPL, we created a sample data model. We assume that all tables in

this data model are stored in the !MasterData folder.

CONTACTS_LIST

CONTACTS_LIST is the profile list that contains the standard fields and some custom fields.

The table below shows only the fields used in this guide.

CUSTOMER_ID_ EMAIL_ADDRESS_ FIRST_NAME LAST_NAME AGE

1234 Test1@test.com John 38

5678 Test2@test.com 14

CONTACTS_LIST is assigned to the campaign as a data source, with the following aliases:

Data Source Alias: CONTACTS_LIST

ALIAS COLUMN

CUSTOMER_ID_ CUSTOMER_ID_

EMAIL_ADDRESS_ EMAIL_ADDRESS_

FIRST_NAME FIRST_NAME

LAST_NAME LAST_NAME

2

ALIAS COLUMN

AGE AGE

FAVORITE_COLORS

FAVORITE_COLORS is a supplemental table that has a one-to-many relationship with the

profile list. The CUSTOMER_ID_ field is used as the match key. The table contains data about

customers’ favorite colors.

CUSTOMER_ID_ COLOR

1234 Green

1234 Blue

1234 Baby Blue

5678 Pink

FAVORITE_COLORS is assigned to the campaign as a data source, with the following aliases:

Data Source Alias: FAVORITE_COLORS

ALIAS COLUMN

COLOR COLOR

CUST_ID CUSTOMER_ID_

FAV_COLOR_MOD_DATE MODIFIED_DATE_

3

CART_ABANDONMENT

CART_ABANDONMENT is a supplemental table that has a one-to-many relationship with the

profile list. The CUSTOMER_ID_ field is used as the match key. The table contains data about

products that customers have abandoned.

CUSTOMER_
ID_

PRODUCT_
ID

PRODUCT_
NAME

PRODUCT_
PRICE

ABANDONED_
DATE

1234 1111 Dress 25.99 2014-01-05
00:00:00.0

5678 2222 Boots 249 2014-01-20
00:00:00.0

1234 3333 Shorts 15.99 2014-01-15
00:00:00.0

5678 4444 Jeans 69.99 2014-01-21
00:00:00.0

5678 5555 Cap 19.99 2014-01-25
00:00:00.0

CART_ABANDONMENT is assigned to the campaign as a data source, with the following

aliases:

Data Source Alias: CART_ABANDONMENT

ALIAS COLUMN

ABN_CUST_ID CUSTOMER_ID_

ABN_DATE ABANDONED_DATE

ABN_PRODUCT_ID PRODUCT_ID

ABN_PRODUCT_NAME PRODUCT_NAME

ABN_PRODUCT_PRICE PRODUCT_PRICE

4

PRODUCTS

PRODUCTS is a supplemental table that has no relationship with the profile list. It contains

detailed data for each product and is used as a reference for personalization in the email

campaign.

PRODUCT_
ID

PRODUCT_N
AME

PRODUCT_C
OLOR

PRODUCT_
PRICE

PRODUCT_
SALE_PRICE

ON_SALE

1111 Dress Baby Blue 34.99 25.99 1

2222 Boots Brown 249

3333 Shorts Blue 15.99

4444 Jeans Blue 69.99

5555 Cap Green 19.99

6666 Sun Hat Red 15.99 19.99 1

7777 Blouse Baby Blue 25 30 1

8888 Tank Top White 12.99 15.99 1

9999 Tank Top Green 12.99 9999

11111 Dress Green 19.99 25.99 1

22222 Cap Baby Blue 10.99 16.99 1

33333 Pants Green 24.99

PRODUCTS is assigned to the campaign as a data source, with the following aliases:

Data Source Alias: PRODUCTS

ALIAS COLUMN

ON_SALE ON_SALE

PRODUCT_COLOR PRODUCT_COLOR

PRODUCT_ID PRODUCT_ID

PRODUCT_NAME PRODUCT_NAME

PRODUCT_PRICE PRODUCT_PRICE

5

ALIAS COLUMN

PRODUCT_SALE_PRICE PRODUCT_SALE_PRICE

Important Tips

When using RPL, you need to:

Declare all tables as data sources

All tables (i.e. PETs and supplemental tables) that will be used for personalization, regardless of

whether they have a direct relationship with the profile list used in the campaign, must be

assigned as data sources in Message Designer for Email.

Declare indirect tables as Lookup tables

When declaring a supplemental table as a data source that has an indirect relationship with the

profile list, such as the PRODUCTS table in our example, you must select the Data source is

used only as a Lookup table when adding it as a data source in Message Designer for Email.

Assign all Lookup fields as Lookup keys

After assigning a supplemental table as a data source, select Lookup Key for any field that will

be used for lookup.

Use single quotes instead of doubles quotes

RPL uses quotes in many of its functions. In some cases, these quotes conflict with HTML tags.

As a result, Message Designer for Email might trim off part of the function due to the multiple

uses of double quotes. For example:

Results in:

As a solution, you should use single quotes in RPL functions:

Sort data in desired order using SQL

RPL does not always sort and display data retrieved from a table in the same order as it

appears in the table. To control the sort order, you need to build a SQL query on top of the table

6

and use the query to sort the data in the desired order. Then, assign that SQL to the campaign

a data source.

RPL Usage

This section shows examples using RPL for common personalization solutions.

Basics: Setting a variable

The following example sets the value Winter for a variable called SEASON.

 Syntax Example

BUILT-IN
FUNCTION

$SETVARS()$ $SETVARS(SEASON, Winter)$

RPL <#assign

variable=”value”>

<#assign SEASON=”Winter”>

Basics: Concatenation

The following example combines the value of the AGE field from the CONTACTS_LIST with the

phrase “ years old today”.

 Syntax Syntax

BUILT-IN
FUNCTION

$CONCAT ()$ $CONCAT(LOOKUP(AGE), SPACE(), years old

today)$

RPL ${value1 +

value2}

${CONTACTS_LIST.AGE + “ years old today”}

7

For the user with CUSTOMER_ID_=1234, the result is:

38 years old today

For the user with CUSTOMER_ID_=5678, the result is:

14 years old today

Basics: Embedding subdocuments

The following example embeds the subdocument cms://contentlibrary/common/footer.html into

the main HTML document.

 Syntax Example

BUILT-IN
FUNCTION

$DOCUMENT()$ $DOCUMENT(/contentlibrary/common/footer.html)$

RPL <#include

subdocument>

<#include

“cms://contentlibrary/common/footer.html”>

Basics: Extracting the email domain

The following example extracts the email domain from the EMAIL_ADDRESS_ field in the

CONTACTS_LIST.

 Syntax Example

BUILT-IN
FUNCTION

$EMAILDOMAIN()$ $EMAILDOMAIN(LOOKUP(EMAIL_ADDRESS_))$

RPL ${emaildomain()} ${emaildomain(CONTACTS_LIST

.EMAIL_ADDRESS_)}

8

Basics: Replacing all occurrences of a string in an
expression

The following example replaces all occurrences of “palm” with “redwood” in the following

expression: This palm tree is the tallest palm tree in the city.

 Syntax Example

BUILT-IN
FUNCTION

$REPLACEALL()$ $REPLACEALL(This palm tree

is the tallest palm tree in

the city, palm, redwood)$

RPL ${“expression”?replace(“search-

string”, “replace-string”)}

${“This palm tree is the

tallest palm tree in the

city”?replace(“palm”,”

redwood”)}

Result:

This redwood tree is the tallest redwood tree in the city

Basics: Removing grouping commas from integer and
number fields

RPL automatically inserts a grouping comma into values of integer and number fields (i.e. the

value 1111 is converted to 1,111). Although these fields have numerical values, the values are

treated like strings. For example, the PRODUCT_ID field in the PRODUCTS supplemental table

was specified as an integer for data storage efficiency, but its value is more like a string. Since

PRODUCT_ID is specified as an integer, RPL automatically adds a grouping comma to the

value. This might cause issues when you use the value for reference. For this reason, you

should remove the grouping commas.

9

The following example removes the grouping comma from the PRODUCT_ID field in the

PRODUCTS supplemental table.

 Syntax Example

BUILT-IN
FUNCTION

N/A N/A

RPL ${expression?c} ${PRODUCTS.PRODUCT_ID?c}

Expressions: Greater than

The following example checks whether the value of the AGE field in CONTACTS_LIST is

greater than 18. If yes, the result shows “1”; otherwise it shows “0”.

 Syntax Example

BUILT-IN
FUNCTION

$GT()$ $GT(LOOKUP(AGE), 18)$

RPL <#if>

<#else>

</#if>

<#if CONTACTS_LIST.AGE gt 18>

1

<#else>

0

</#if>

10

Expressions: Greater than or equal to

The following example checks whether the value of the AGE field in CONTACTS_LIST is

greater than or equal to 18. If yes, the result shows “1”; otherwise it shows “0”.

 Syntax Example

BUILT-IN
FUNCTION

$GE()$ $GE(LOOKUP(AGE), 18)$

RPL <#if>

<#else>

</#if>

<#if CONTACTS_LIST.AGE gte 18>

1

<#else>

0

</#if>

Expressions: Less than

The following example checks whether the value of the AGE field in CONTACTS_LIST is less

than 18. If yes, the result shows “1”; otherwise it shows “0”.

 Syntax Example

BUILT-IN
FUNCTION

$LT()$ $LT(LOOKUP(AGE), 18)$

RPL <#if>

<#else>

</#if>

<#if CONTACTS_LIST.AGE lt 18>

1

<#else>

0

</#if>

11

Expressions: Less than or equal to

The following example checks whether the value of the AGE field in CONTACTS_LIST is less

than or equal to 18. If yes, the result shows “1”; otherwise it shows “0”.

 Syntax Example

BUILT-IN
FUNCTION

$LE()$ $LE(LOOKUP(AGE), 18)$

RPL <#if>

<#else>

</#if>

<#if CONTACTS_LIST.AGE eq 18>

1

<#else>

0

</#if>

Expressions: Equal to

The following example checks whether the value of the AGE field in CONTACTS_LIST is equal

to 18. If yes, the result shows “1”; otherwise it shows “0”.

 Syntax Example

BUILT-IN
FUNCTION

$EQ()$ $EQ(LOOKUP(AGE), 18)$

RPL <#if>

<#else>

</#if>

<#if CONTACTS_LIST.AGE == 18>

1

<#else>

0

</#if>

12

Expressions: Not equal to

The following example checks whether the value of the AGE field in CONTACTS_LIST is not

equal to 18. If it is not, the result shows “1”; otherwise it shows “0”.

 Syntax Example

BUILT-IN
FUNCTION

$NE()$ $NE(LOOKUP(AGE), 18)$

RPL <#if>

<#else>

</#if>

<#if CONTACTS_LIST.AGE != 18>

1

<#else>

0

</#if>

Expressions: And

The following example checks whether the value of the AGE field in CONTACTS_LIST is not

equal to 18 and the value of FIRST_NAME is null. If both are yes, the result shows “1”;

otherwise it shows “0”.

 Syntax Example

BUILT-IN
FUNCTION

$AND(NE(),

NOTHING())$

$AND(NE(LOOKUP(AGE), 18),

NOTHING(LOOKUP(FIRST_NAME)))$

RPL <#if>

<#else>

</#if>

<#if CONTACTS_LIST.AGE != 18 &&

CONTACTS_LIST.FIRST_NAME=””>

1

<#else>

0

</#if>

13

Expressions: Or

The following example checks whether the value of the AGE field in CONTACTS_LIST is not

equal to 18 or the value of FIRST_NAME is null. If either one is yes, the result shows “1”;

otherwise it shows “0”.

 Syntax Example

BUILT-IN
FUNCTION

$AND(NE(),

NOTHING())$

$OR(NE(LOOKUP(AGE), 18),

NOTHING(LOOKUP(FIRST_NAME)))$

RPL <#if>

<#else>

</#if>

<#if CONTACTS_LIST.AGE != 18 ||

CONTACTS_LIST.FIRST_NAME=””>

1

<#else>

0

</#if>

Campaign Details: Retrieving the Campaign ID

The following example retrieves the campaign ID.

 Syntax Example

BUILT-IN
FUNCTION

$CAMPAIGNID ()$ $CAMPAIGNID()$

RPL ${campaign.id} ${campaign.id}

14

Campaign Details: Retrieving the Marketing Program

The following example retrieves the campaign Marketing Program.

 Syntax Example

BUILT-IN
FUNCTION

$CAMPAIGNMARKETINGPROGRAM()$ $CAMPAIGNMARKETINGPROGRAM()$

RPL ${campaign.marketingprogram} ${campaign.marketingprogram}

Campaign Details: Retrieving the Marketing Strategy

The following example retrieves the campaign Marketing Strategy.

 Syntax Example

BUILT-IN
FUNCTION

$CAMPAIGNMARKETINGSTRATEGY()$ $CAMPAIGNMARKETINGSTRATEGY ()$

RPL ${campaign.marketingstrategy} ${campaign.marketingstrategy}

Campaign Details: Retrieving the campaign name

The following example retrieves the campaign name.

 Syntax Example

BUILT-IN
FUNCTION

$CAMPAIGNNAME()$ $CAMPAIGNNAME ()$

RPL ${campaign.name} ${campaign.name}

15

Conditions: Single condition, single rule

If the FIRST_NAME field in CONTACTS_LIST has a value, the following example shows that

value; otherwise, it shows nothing.

 Syntax Example

BUILT-IN
FUNCTION

$COND()$

$LOOKUP()$

$EMPTY()$

$NOTHING()$

$COND(EMPTY(LOOKUP(FIRST_NAME)), NOTHING(),

LOOKUP(FIRST_NAME))$

RPL <#if condition>

</#if>

<#if CONTACTS_LIST.FIRST_NAME !=“”>

${ CONTACTS_LIST.FIRST_NAME }

</#if>

For the user with CUSTOMER_ID_=1234, the result is:

John

Conditions: Single condition, multiple rules

If the AGE field in CONTACTS_LIST has a value greater than or equal to 18, the following

example shows “Welcome to our site.” Otherwise, the example shows “You are not allowed to

proceed to the site.”

 Syntax Example

BUILT-IN
FUNCTION

$COND()$

$LOOKUP()$

$GE()$

$LT()$

$COND(GE(LOOKUP(AGE), 18), Welcome to our

site., You are not allowed to proceed to

the site.))$

RPL <#if condition>

<#elseif

condition>

<#else>

</#if>

<#if CONTACTS_LIST.AGE gte 18>

Welcome to our site.

<#else>

You are not allowed to proceed to the site.

</#if>

16

For the user with CUSTOMER_ID_=1234, the result is:

Welcome to our site.

For the user with CUSTOMER_ID_=5678, the result is:

You are not allowed to proceed to the site.

Conditions: Multiple conditions, multiple rules

If the value of the AGE field in CONTACTS_LIST is greater than or equal to 18, the following

example shows “Welcome to our site.”

If the value of AGE field in the CONTACTS_LIST is less than 18, the example shows “You are

not allowed to proceed to the site.”

If the AGE field in CONTACTS_LIST has no value, the examples shows “What is your age?”

 Syntax Example

BUILT-IN
FUNCTION

$COND()$

$LOOKUP()$

$GE()$

$LT()$

$COND(GE(LOOKUP(AGE), 18), Welcome to our

site., COND(LT(LOOKUP(AGE), 18), You are

not allowed to proceed to the site., What

is your age?))$

RPL <#if condition>

<#elseif

condition>

<#else>

</#if>

<#if CONTACTS_LIST.AGE gte 18>

Welcome to our site.

<#elseif CONTACTS_LIST.AGE lt 18>

You are not allowed to proceed to the

site.

<#else>

What is your age?

</#if>

17

For the user with CUSTOMER_ID_=1234, the result is:

Welcome to our site.

For the user with CUSTOMER_ID_=5678, the result is:

You are not allowed to proceed to the site.

For users where the AGE field is null, the result is:

What is your age?

Forms: Linking to an Oracle Responsys form

The following example creates a link to an Oracle Responsys form called Preference_Center.

 Syntax Example

BUILT-IN
FUNCTION

$FORMLINK()$ $FORMLINK(Preference_Center)$

RPL ${form()} ${form(‘Preference_Center’)}

Forms: Passing a field value in a form link

The following example creates a link to an Oracle Responsys form called Preference_Center

and passes the value of the AGE field in CONTACTS_LIST.

 Syntax Example

BUILT-IN
FUNCTION

$FORMLINK()$ $FORMLINK(Preference_Center, AGE)$

RPL ${form()} ${form(‘Preference_Center’, {},

‘CONTACTS_LIST.AGE’)}

18

Forms: Assigning and passing a parameter/value in a form
link

The following example creates a link to an Oracle Responsys form called Preference_Center

and assigns the value Summer_Sweepstakes to the CONTEST parameter.

 Syntax Example

BUILT-IN
FUNCTION

$FORMLINK()$ $FORMLINK(Preference_Center,

CONTEST=Summer_Sweepstakes)$

RPL ${form()} ${form(‘Preference_Center’, {},

‘tablename.CONTEST=Summer_Sweepstakes’)}

Forms: Creating a View as Webpage form link

The following example creates a View as Webpage link that opens the email as a web page and

passes the value of the FIRST_NAME field in CONTACTS_LIST.

 Syntax Example

BUILT-IN
FUNCTION

$FORMLINK()$ $FORMLINK(CAMPAIGNNAME())$

RPL ${form()} ${form(campaign.name, { },

‘CONTACTS_LIST.FIRST_NAME’)}

Links: Referencing a link in a link table

The following example references a link called Header_Logo in the link table.

 Syntax Example

BUILT-IN
FUNCTION

$CLICKTHROUGH()$ $CLICKTHROUGH(Header_Logo)$

RPL ${clickthrough()} ${clickthrough(‘Header_Logo’)}

19

Links: Passing a field value when referencing a link in a
link table

The following example references a link called Header_Logo in the link table and passes the

value of the AGE field in CONTACTS_LIST.

 Syntax Example

BUILT-IN
FUNCTION

$CLICKTHROUGH()$ $CLICKTHROUGH(Header_Logo, AGE)$

RPL ${clickthrough()} ${clickthrough(‘Header_Logo’,

‘CONTACTS_LIST.AGE’)}

Links: Assigning and passing a parameter/value when
referencing a link in a link table

The following example references a link called Header_Logo in the link table and assigns the

value Summer_Sweepstakes to the CONTEST parameter.

 Syntax Example

BUILT-IN
FUNCTION

$CLICKTHROUGH()$ $CLICKTHROUGH(Header_Logo,

CONTEST=Summer_Sweepstakes)$

RPL ${clickthrough()} ${clickthrough(‘Header_Logo’,

‘CONTEST=Summer_Sweepstakes’)}

Calculations: Addition

The following example adds 2 to the value of the AGE field in CONTACTS_LIST.

 Syntax Example

BUILT-IN
FUNCTION

$ADD()$ $ADD(AGE, 2)$

RPL ${value1 + value2} ${CONTACTS_LIST.AGE + 2}

20

For the user with CUSTOMER_ID_=1234, the result is:

40

For the user with CUSTOMER_ID_=5678, the result is:

16

Calculations: Subtraction

The following example subtracts 2 from the value of the AGE field in CONTACTS_LIST.

 Syntax Example

BUILT-IN
FUNCTION

$SUB()$ $SUB(AGE, 2)$

RPL ${value1 - value2} ${CONTACTS_LIST.AGE - 2}

For the user with CUSTOMER_ID_=1234, the result is:

36

For the user with CUSTOMER_ID_=5678, the result is:

12

Calculations: Multiplication

The following example multiplies the value of the AGE filed in CONTACTS_LIST by 2.

 Syntax Example

BUILT-IN
FUNCTION

$MUL()$ $MUL(AGE, 2)$

RPL ${value1 *

value2}

${CONTACTS_LIST.AGE * 2}

For the user with CUSTOMER_ID_=1234, the result is:

76

21

For the user with CUSTOMER_ID_=5678, the result is:

28

Calculations: Division

The following example divides the value of the AGE field in CONTACTS_LIST by 2.

 Syntax Example

BUILT-IN
FUNCTION

$DIV()$ $MUL(AGE, 2)$

RPL ${value1 /

value2}

${CONTACTS_LIST.AGE / 2}

For the user with CUSTOMER_ID_=1234, the result is:

19

For the user with CUSTOMER_ID_=5678, the result is:

7

22

Lookups: Looking up all matching records from a
supplemental table

The following example looks up all matching values of the COLOR field in the

FAVORITE_COLORS supplemental table that have a one-to-many relationship with the

CONTACTS_LIST, using the CUSTOMER_ID_ as the match key.

 Syntax Example

BUILT-IN
FUNCTION

$LOOKUPRECORDS()$ $LOOKUPRECORDS(!MasterData,

FAVORITE_COLORS, CUSTOMER_ID_,

LOOKUP(CUSTOMER_ID_), COLOR)$

RPL <#data>

<#filter>

<#fields>

</#data>

<#data FAVORITE_COLORS as fav_colors>

<#filter

CUST_ID=CONTACTS_LIST.CUSTOMER_ID_>

<#fields COLOR>

${fav_colors.COLOR}

</#data>

For the user with CUSTOMER_ID_=1234, the result is:

Baby Blue Blue Green

For the user with CUSTOMER_ID_=5678, the result it:

Pink

NOTE: Notice that the matching COLOR values are displayed in alphanumeric order rather than

in the order they appear in the FAVORITE_COLORS supplemental table. If you need the

COLOR values to appear in a specific order, create a SQL query that sorts the

FAVORITE_COLORS supplemental table data in the desired order and select that SQL as a

data source.

23

Lookups: Looking up all matching records from a
supplemental table and limit results returned

The following example looks up matching values of the COLOR field in the

FAVORITE_COLORS supplemental table that have a one-to-many relationship with the

CONTACTS_LIST and returns a limit of 2 values, using the CUSTOMER_ID_ as the match key.

 Syntax Example

BUILT-IN
FUNCTION

$LOOKUPRECORDS()$ $LOOKUPRECORDS(!MasterData,

FAVORITE_COLORS, CUSTOMER_ID_,

LOOKUP(CUSTOMER_ID_), COLOR)$

RPL <#data>

<#filter>

<#fields>

</#data>

<#data FAVORITE_COLORS as fav_colors

limit=2>

<#filter

CUST_ID=CONTACTS_LIST.CUSTOMER_ID_>

<#fields COLOR>

${fav_colors.COLOR}

</#data>

For the user with CUSTOMER_ID_=1234, the result is:

Baby Blue Blue

For the user with CUSTOMER_ID_=5678, the result it:

Pink

NOTE: Notice that the matching COLOR values are displayed in alphanumeric order rather than

in the order they appear in the FAVORITE_COLORS supplemental table. If you need the

COLOR values to appear in a specific order, create a SQL query that sorts the

FAVORITE_COLORS supplemental table data in the desired order and select that SQL as a

data source.

24

Lookups: Looking up all matching records from a
supplemental table and retrieving additional data from
another supplemental table

The following example looks up all matching values of the PRODUCT_ID field in the

CART_ABANDONMENT supplemental table that have a one-to-many relationship with the

CONTACTS_LIST, using the CUSTOMER_ID_ as the match key. The example then retrieves

the PRODUCT_NAME from the PRODUCTS table using PRODUCT_ID as the match key.

 Syntax Example

BUILT-IN
FUNCTION

$FOREACH()$

$LOOKUPRECORDS()$

$LOOKUPTABLE()$

Main Document

$FOREACH(CA_Loop, PAIRSLIST(1,

PRODUCT_ID,

LOOKUPRECORDS(!MasterData,

CART_ABANDONMENT, CUSTOMER_ID_,

LOOKUP(CUSTOMER_ID_),

PRODUCT_ID)), Cart_Abandon,

Cart_Abandon_Subdoc)$

Cart_Abandon_Subdoc.htm

Subdocument

$SETVARS(LOOKUP(CA_Loop))$

$LOOKUPTABLE(!MasterData,

PRODUCTS, PRODUCT_ID,

LOOKUP(PRODUCT_ID), PRODUCT_NAME)$

RPL <#data>

<#filter>

<#fields>

</#data>

<#data CART_ABANDONMENT as

cart_abandon>

<#filter

ABN_CUST_ID=CONTACTS_LIST.CUSTOMER

ID>

<#fields ABN_PRODUCT_ID>

<#data PRODUCTS as products>

<#filter PRODUCT_ID=

cart_abandon.ABN_PRODUCT_ID>

<#fields PRODUCT_NAME>

${products.PRODUCT_NAME}

</data>

</#data>

25

For the user with CUSTOMER_ID_=1234, the result is:

Dress

Shorts

For the user with CUSTOMER_ID_=5678, the result is:

Boots

Jeans

Cap

NOTE: Notice that the matching values are in alphanumeric order by PRODUCT_ID, which was

the original lookup source, rather than by PRODUCT_NAME. If you need the

PRODUCT_NAME values to appear in a specific order, create a SQL query that joins the

CART_ABANDONMENT and PRODUCTS supplemental tables and pre-sorts the data in the

desired order. Then, select that SQL as a data source.

