

Oracle® Warehouse Management
Cloud

Rest API Guide

Update 20B

Part No. F29972-01

 March 2020

Copyright © 2019, 2020, Oracle and/or its affiliates. iii

Copyright Notice

Oracle® Warehouse Management Cloud Rest API Guide, Update 20B

Copyright © 2019, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone

licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal

Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including

applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim

any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and

services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable

agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Copyright © 2019, 2020, Oracle and/or its affiliates. iv

Contents

COPYRIGHT NOTICE ... III

CONTENTS ... IV

PREFACE .. IX

CHANGE HISTORY .. IX

1. OVERVIEW ... 10

AUDIENCE ... 10
RESTFUL WEB SERVICES ... 10
HTTP REQUESTS .. 10

HTTP METHODS .. 10
URI FORMAT .. 11
LOGIN AND AUTHENTICATION ... 12
APPLICATION PERMISSIONS ... 12

DATA INPUT METHODOLOGY ... 12

GET/HEAD ... 12
POST .. 13

2. HTTP RESPONSE ... 16

STATUS CODES ... 16
RESPONSE FORMATS ... 17
RESPONSE DATA ENCODING .. 17

RESPONSE DATA FORMATS .. 17

ERROR RESPONSE .. 18
RESOURCE REPRESENTATIONS .. 18

3. ENTITY MODULE ... 21

SUPPORTED ENTITIES .. 21
ENTITY METADATA .. 21
INPUT DATA TYPES ... 21
RESOURCE RESULT SET FILTERING ... 23

SUPPORTED LOOKUP FUNCTIONS ... 23

RESOURCE REPRESENTATIONS (GET) ... 27

LIST .. 27
RETRIEVE .. 27
RESOURCE REPRESENTATION DATA CONVENTIONS .. 28
HYPERLINK-RELATED RESOURCE REPRESENTATIONS .. 28
RELATED DATA SETS ... 29
FIELD SELECTION ... 29
ORDERING ... 30

RESOURCE EXISTENCE AND MODIFICATION (HEAD) .. 31

“IF-MODIFIED-SINCE” HTTP REQUEST HEADER .. 31

Copyright © 2019, 2020, Oracle and/or its affiliates. v

RESPONSE STATUSES .. 31

CREATING A RESOURCE (POST) .. 33

INPUT DATA ... 33
DATA STRUCTURE .. 33
RELATED RESOURCES .. 34
RESPONSE STATUSES .. 34
VALIDATIONS ... 34
NESTED RELATED OBJECTS ... 34
SUPPORTED ENTITIES .. 35

UPDATING A RESOURCE (PATCH) ... 35

INPUT DATA ... 36
RESPONSE STATUSES .. 36
ENTITIES AND FIELDS FOR PATCH .. 37
IB_SHIPMENT.. 37
IB_SHIPMENT_DTL ... 37
ITEM_CHARACTERISTICS ... 38
LOAD ... 38
LOCATION .. 39
ORDER_HDR ... 39
ORDER_DTL ... 40
PURCHASE_ORDER_HDR ... 41
PURCHASE_ORDER_DTL.. 41
WORK_ORDER_HDR .. 41
WORK_ORDER_KIT ... 42

ENTITY OPERATIONS (GET/POST) ... 42

RESPONSE STATUS ... 42
BULK OPERATIONS ... 42

4. SUPPORTED ENTITY OPERATIONS ... 45

INVENTORY ... 46
LOCATION ... 47

UPDATE_ACTIVE_INVENTORY ... 47

ITEM .. 49

IMAGE UPLOAD ... 49

TRAILER ... 50

FIRST AVAILABLE ... 50
LOCATE_TO_YARD .. 51
REMOVE_FROM_YARD .. 52

LOAD ... 53

CHECK_IN ... 53
CHECK_OUT ... 55
SHIP LOAD .. 56

CONTAINER ... 58

GET SALES ORDERS.. 58
LOCK CONTAINER ... 58

Copyright © 2019, 2020, Oracle and/or its affiliates. vi

BULK LOCK CONTAINER ... 58
UNLOCK CONTAINER ... 59
BULK UNLOCK CONTAINER .. 59
PALLETIZE CONTAINER ... 59
DEPALLETIZE INBOUND/OUTBOUND LPN ... 61

PICK-PACK.. 62

PICK CONFIRM .. 62
CLOSE LPN .. 65
WAVE COMPLETE ... 66

TASK .. 67

NEXT TASK .. 67

IBLPN ... 69

DIRECT_CONSUME .. 69
MODIFY_ITEM_QTY ... 73

OBLPN .. 75

CREATE_FROM_IBLPN .. 75
LINK OBLPN WITH ASSET .. 80

PALLET ... 82

SORT LPN ... 82
SORT LPN/CLOSE PALLET ... 84

REPLENISHMENT ... 86

REPLENISH TO ACTIVE ... 86

SALES ORDER HEADER ... 87
PRINT .. 88

PRINT SHIPPING LABEL .. 88
EXAMPLE QUERY STRING FOR GET .. 89

RESPONSE BODY DATA ... 90

PRINT LPN LABEL .. 90
API FILTERS .. 91
EXAMPLE QUERY STRING FOR GET .. 91
EXAMPLE REQUEST BODY FOR POST ... 91

RESPONSE BODY DATA ... 92

API FILTERS .. 93
EXAMPLE QUERY STRING FOR GET .. 93
EXAMPLE REQUEST BODY FOR POST ... 93

RESPONSE BODY DATA ... 93
REPORT .. 94

CUSTOM INVENTORY SUMMARY ... 94

COMPANY PARAMETER ... 94
FACILITY PARAMETER .. 95
LOCATION SIZE TYPE ... 95
PUTAWAY PRIORITY .. 96

Copyright © 2019, 2020, Oracle and/or its affiliates. vii

PUTAWAY TYPE .. 97
PUTAWAY TYPE CAL RULE ... 97
REPLENISHMENT ZONE ... 98
SQL SELECTION (RULE TREE) ... 99
ITEM IMAGE .. 100

Copyright © 2019, 2020, Oracle and/or its affiliates. viii

Send Us Your Comments

Oracle® Warehouse Management Cloud Rest API Guide, Update 20B

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication.

Your input is an important part of the information used for revision.

 Did you find any errors?

 Is the information clearly presented?

 Do you need more information? If so, where?

 Are the examples correct? Do you need more examples?

 What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the documentation and the chapter, section, and page number (if available). You can

send comments to us in the following ways:

 Electronic mail: owms-cloud-comms_us@oracle.com

If you would like a reply, please give your name, address, telephone number, and electronic mail
address (optional).

If you have problems with the software, contact Support at https://support.oracle.com or find the

Support phone number for your region at http://www.oracle.com/support/contact.html.

file:///C:/Users/rawalter/Documents/Cloud%20WMS%20Release%209.0%20Docs/owms-cloud-comms_us@oracle.com

Copyright © 2019, 2020, Oracle and/or its affiliates. ix

Preface

This document provides an overview of REST APIs which can also be used as a tool by individual users for
working with the application, but is primarily designed for system integration.

Change History
Date Document Revision Summary of Changes

07/2018 -01 Initial release.

09/2018 -02 Updates for 18C.

03/2019 -03 Added details on the following Supported Entity Operations:

IBLPN: direct consume, modify_item_qty, Trailer: locate_to_yard,

remove_from_yard Load: check_in, check_out OBLPN:

create_from_iblpn Location: update_active_inventory

06/2019 -04 Added the following in section 4: Supported Entity Operations:

Palletize Container, Depalletize Container, Link OBLPN with Asset

Print Shipping, LPN, Pallet Label, Custom Inventory Summary

Location Size Type, Putaway Type, Putaway Type Calculation Rule

Replenishment Zone, SQL Selection (Rule Tree)

08/2019 -05 Updated Print APIs in section 4: Supported Entity Operations:

08/2019 -06 In section 4: Supported Entity Operations, changed Depalletize

Container to Depalletize Inbound/Outbound LPN and updated

information details.

12/2019 -07 Added the following in section 4: Supported Entity Operations:

Item: Image Upload, Trailer: First Available, Load: Ship Load,

Pick-Pack: Pick Confirm, Close LPN, Wave Complete, Task: Next

Task, Pallet: Sort LPN, Sort LPN/ Close Pallet, Replenishment:

Replenish to Active

2/2020 -08 Added Putaway Priority to section 4: Supported Entity Operations

3/2020 -09 Added stop_ship_flag to Order Hdr table in Updating a Resource

(PATCH) section.

Copyright © 2019, 2020, Oracle and/or its affiliates. 10

1. Overview

Oracle Warehouse Management (WMS) Cloud update 18C introduces a new set of RESTful API

resources designed for interacting with and manipulating application data using HTTP requests. The

purpose of these APIs is to expose application data to external systems in a controlled and predictable

manner. REST APIs can be used as a tool for individual users working with the application, but they

are primarily designed for system integration.

This document includes an overview of the newer style APIs introduced in version 9.0.0. The WMS
legacy APIs available in earlier WMS versions will still continue to be available. For more details on
legacy APIs, refer to the Oracle Warehouse Management Cloud Integration API Guide.

Audience

This audience is intended for REST API software developers with customers or system implementors.
While the document includes a reasonable overview of REST concepts, the assumption is that the
audience understands REST, HTTP communication, response codes, and related topics.

RESTful Web Services

Representational State Transfer (REST) is a web standards-based architecture utilizing the HTTP
protocol for data communication. RESTful web services are a light weight, scalable, and maintainable

way to allow web-based system-to-system communication, irrespective of the respective application
platforms (interoperability).

RESTful web services use HTTP methods in combination with a Universal Resource Identifier (URI) to

implement the REST architecture. For reference, a URL is a type of URI. This combination allows
consumers to interact with application data via a set of controlled, stateless, and idempotent methods.

OCWMS has had REST API’s prior to update 18C, however they were not designed to provide fine
grained access. These legacy API’s continue to be available. Once all the functionality provided by
these API’s are incorporated into the newer APIs, the legacy ones will be retired with sufficient notice.
The new APIs also adhere to RESTful practices better and simplify some of the data encoding
requirements.

HTTP Requests

RESTful web services are built on top of the HTTP protocol, which carries some important implications.
First, each request is stateless. This means that each request is independent of any other requests
and the request itself must contain all relevant data to fulfill the request. Second, certain types of

requests should be idempotent; making identical requests should yield the same result on the server.
This is a safety measure that also provides consistency. For example, when reading data the same
request should always yield the same result assuming the resource’s state on the server has not

changed between requests.

HTTP Methods

The APIs may utilize the following five HTTP methods in order to provide users with Create-Read-
Update-Delete (CRUD) functionality. Note that not all APIs support all methods.

GET

Return a read-only representation of the selected resource(s) in the response body.

https://docs.oracle.com/cloud/latest/owmcs_gs-cloud/docs.htm

Copyright © 2019, 2020, Oracle and/or its affiliates. 11

HEAD
Read-only check for resource existence and/or modification. Does not return a response body.

POST
Create resources or submit data to be processed by a resource operation.

PATCH
Modify existing resource(s).

DELETE

 Remove/deactivate existing resource.

URI Format

The lgfapi URI structure is broken down into several components.

In general, lgfapi URIs following the following schema:

The first portion of the URI (protocol, domain, environment, and app) is consistent with the URL of the
environment’s UI accessed via a web browser. The remaining pieces after “lgfapi” are specific to the
lgfapi and designate the version and path to any child modules and/or resources.

Versioning

Lgfapi requires a version number in all URIs. The format is “v#’, starting with “v9” as the first release.

New versions are created only for major releases of the OCMWS application, not for minor versions.
For example, the release of OCWMS 9.0.0 included the lgfapi v9 release, but there will not be a new
lgfapi version number with the release of OCWMS 9.0.1. However, the APIs will continue to be
updated with new features and improvements along with the minor releases of OCWMS.

The purpose of version control is to give customers some ability to remain on their current
integrations until they can complete any changes required to handle the newest lgfapi version. It is

strongly encouraged that all customers use the latest version of lgfapi. Version control is a tool to
assist with upgrades and testing, it is not meant to be used in production for extended periods of time.
The previous versions of lgfapi will unavoidably become out of sync with newer versions of OCWMS,
and eventually will no longer be compatible. Oracle will not make changes to previous versions of
lgfapi in order to maintain expired functionality or compatibility. Therefore, it is always in the best
interest to use the latest version. New API versions are planned approximately once a year. Older API

versions will be supported approximately one year after a newer one is released.

lgfapi Modules

Lgfapi contains modules that can be utilized by customers. These are groupings of functionality that
may have their own formats and requirements. For example, lgfapi’s “entity” module is designed to
allow customers to examine and interact with OCWMS business resources from outside the
application.

Copyright © 2019, 2020, Oracle and/or its affiliates. 12

Resource Path

The final component to the URI is the resource path. This may take many different forms depending
on the HTTP method and any module-specific requirements.

Optional Trailing Slashes

A trailing slash at the end of and lgfapi URIs is optional and does not affect functionality.

Login and Authentication

Since each HTTP request is stateless, every request requires information to authenticate the user.
Lgfapi supports several types of user authentication:

 BasicAuth – Classic username and password.

 OAuth2 – A token based authorization framework.

Application Permissions

Making a request to lgfapi not only requires user authorization, but also one or more of the CRUD
application-level permission to access the supported HTTP methods. These are configurable in the
user’s group-level permissions.

 “lgfapi_read_access” – GET, HEAD
 “lgfapi_create_access” – POST

o Note – this access is also required in order to run resource operations.
 “lgfapi_update_access” – PATCH
 “lgfapi_delete_access” – DELETE

It’s recommended to create dedicated user(s) with appropriate lgfapi permissions and different

facility/company eligibility to protect the integrity of your data. For instance, it is safe to give users
read access but may not be appropriate to grant them permission to create or modify data.

The legacy API permission, “can_run_ws_stage_interface”, has been replaced by the new permission,
“lgfapi_update_access”. This permission now applies to both lgfapi and the legacy APIs. For legacy

API’s, this is the singular permission required to access all APIs. For lgfapi, this is one of several new
permissions used to control user access. Any existing users with the legacy permission are
automatically granted the appropriate new API permission(s) upon upgrading to OCWMS 9.0.0.

Data Input Methodology

Lgfapi allows for transmission of data in one of two ways, based on the HTTP method being used.

GET/HEAD

These read-only HTTP methods allow the user to pass additional information about the request in the
URI. This data is sent as key-value pairs and starts with a question mark (“?”) at the end of the main
URI. This section of the URI is known as the “query string”. Each key-value pair is known as a
“parameter”. It is used to provide additional information to the resource. Parameters are delimited by

an equals sign (“=”), and multiple parameters are delimited by an ampersand (“&”). The order of the
parameters does not matter.

Copyright © 2019, 2020, Oracle and/or its affiliates. 13

URL Encoding

In general, URIs only allow ASCII values, however there are specific cases like with internationalized
domain names (IDN) where non-ASCII characters may be used in the domain name. For the purposes
of communicating data using query string parameters in lgfapi, you cannot directly send non-ASCII
(unsafe) characters. Also, some characters like spaces, “=”, and “&” have a specific meaning when
sent in the query string section of the URI and are reserved. In order to handle unsafe characters and

to distinguish between data and reserved characters that have special meaning in a URI, the URI must

be “URL Encoded”. This encoding replaces non-ACII and reserved characters parameter data with
ASCII equivalents. This is also known as “Percent Encoding” since each unsafe character is replaced
with a value starting with percent sign (“%”). All parameter values should be URL encoded to ensure
correct transmission.

For example, the query string: “foo=Mañana” is URL encoded as “foo= %20Ma%C3%B1ana”. A URI

cannot have a space so that is encoded to the value “%20”. The Spanish letter “ñ” is not a valid ASCII
value and is encoded as “%C3%B1”. Once the data reaches the server, it is decoded back to the
original characters. The key portion of each parameter is determined by the application and therefore
will never contain unsafe characters.

See https://www.w3schools.com/tags/ref_urlencode.asp for more information.

It is possible to repeat the same parameter within the query string. However, lgfapi will only observe
the final occurrence of the parameter in order to obtain a value. For example, given the query string

“?code=A&code=B”, the interpreted value of the “code” parameter will be “B”. The “A” value is
discarded. There is no use case for transmitting repeated parameters as the desired result is achieved
through other module-specific query string mechanisms.

POST

A POST request is used to pass data to the server similar to pressing a “Submit” button on a web page
to submit form data to the server. In the context of lgfapi, when making a POST request, the user is
passing data to either create a resource or invoke a resource operation, such as cancelling an order.
Unlike GET and HEAD requests, POST allows for text data to be passed in the free-form body of the

request. Request body data must be in a supported format (JSON or XML) and follow the required
structure of the API being invoked.

Content-Type HTTP Header

This HTTP header is required when using a method like POST, PATCH, and DELETE that allow
transmitting data in the body of the request. It describes the data format so it can be correctly parsed
server-side. Lgfapi supports JSON and XML input and therefore requires one of the two content-type
values:

 application/json

 application/xml

The Content-Type “application/x-www-form-urlencoded” is not supported in lgfapi, but is still required
for legacy OCWMS APIs.

https://www.w3schools.com/tags/ref_urlencode.asp

Copyright © 2019, 2020, Oracle and/or its affiliates. 14

Content Encoding

By default, lgfapi will use UTF-8 to decode the request body as this handles the majority of characters
for languages supported in OCWMS. However, for situations where customers choose to use a
different encoding, it can be specified in the Content-Type header’s optional “charset” parameter:

Content-Type: application/json; charset=latin-1

Lgfapi will use the provided charset to decode the request body data. It is up to the customer to
ensure that their data is properly encoded using the desired charset before transmission to lgfapi.
Failure to do so may result in incorrect characters or an inability to process the request.

It is also important to note that this only applies to the encoding of the request body and does not
apply to the encoding used in any response body data from lgfapi.

Request Body Data – Repeated Keys

Lgfapi does not restrict users from repeating data in the request body for a single request. Rather, it
will use only the final occurrence in the body when processing the request.

For example, if one were to send a request with the key “code” multiple times in the same request
body:

{

 “code”: “A”,
 “code”: “B”
}

The value used to process the request will be “B”. “A” is ignored and is never used. There is no lgfapi
use case for needing to pass repeating data in the same request.

Request Body Data List Formatting

JSON and XML data follow language standards except for the case of lists of items in XML. This is a
unique concern for XML since there is no standard methodology for how to handle lists whereas JSON
supports lists by default.

XML Lists

A list of items in XML is represented by the wrapper tag, followed by a wrapper for each item’s value
with the special tag name “list-item”. For example, representing a list of serial numbers under the
wrapper “serial_nbr_list”, in JSON is represent as:

{
 “serial_nbr_list”: [
 “SN1”,
 “SN2”
]
}

The equivalent XML list would be represented as the following. Note the use of “list-item” for each entry
in the list to allow for correct parsing.

<serial_nbr_list>

 <list-item>SN1</list-item>

Copyright © 2019, 2020, Oracle and/or its affiliates. 15

 <list-item>SN2</list-item>
</serial_nbr_list>

Copyright © 2019, 2020, Oracle and/or its affiliates. 16

2. HTTP Response

Every valid HTTP request receives a response that is comprised of three main components:

(1) A 3-digit response status code that gives information about the success or failure of the request,
the returned content, and other information specific to the request.

(2) The response header(s), which vary by request. These headers contain metadata information
about the request, the response, the response data, and/or attributes of the server.

(3) The response body where free-form text information can be returned to the requester in either
JSON (default) or XML format and in a standard defined by the application. This is where application-
specific data pertaining to representation, success, and errors is returned to the requester.

Status Codes

Comprehensive list of HTTP status codes: https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Lgfapi uses many of the available HTTP response status codes to convey success or failure of the
request back to the user. All response status codes fall into 1 of 4 categories:

1xx – Informational
2xx – Success
3xx – Redirection

4xx – Failure

The following is a list of commonly used response status codes for lgfapi:

Status Code Status Message HTTP Method Description

200 Ok HEAD, GET, POST

GET - The request was successful.
HEAD - The resource exists.
POST - Resource exists and/or has
been modified.

201 Created POST Resource successfully created.

204 No Content POST
The request was successful, but no
content is being returned in the
response body.

304 Not Modified HEAD
The resource has not been updated
since the target date-time.

400 Bad Request HEAD, GET, POST Invalid data or request structure.

401 Unauthorized HEAD, GET, POST Invalid login credentials.

403 Forbidden HEAD, GET, POST User lacks permission.

404 Not Found HEAD, GET, POST The resource does not exist.

405 Method Not Allowed -
HTTP method is not supported for the
requested resource.

409 Conflict HEAD, GET, POST

Record Changed - The resource was
modified by a concurrent operation
before the request could be fulfilled.
Try again.

500 Server Error HEAD, GET, POST
An unhandled error occurred or the
application was unable to formulate a
valid response. Please contact support

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Copyright © 2019, 2020, Oracle and/or its affiliates. 17

Status Code Status Message HTTP Method Description

and provide any returned error
information.

Response Formats

Lgfapi supports JSON (default) and XML formats for data returned in the body of the response. This

applies to all HTTP methods that return a response body.

The requester is able to specify the response format in several ways:

1. Making a request without specifying the response format will result in the default JSON format.
2. Using the reserved “format” query string parameter in the URI when making a request.

You can set the format to XML by adding “format=xml” to the query string portion of the request
(the key-value pair data after the “?”). This is in addition to any other query string parameters
also in the URI:

…/resource/?format=json
…/resource/?format=xml

Note – “format” is one of the few query string parameters you can use with HTTP methods like
POST, which typically require all data to be in the body of the request.

3. Using the file-extension dot-notation in the URI when making a request.

Very similar to the example above, you can also request the format using dot notation like you

would when giving a file the extension “.xml” or “.json”:

…/resource/.json
…/resource.xml (optional trailing slash)

This can also be combined with a query string:
…/resource/.xml?key1=value1&key2=value2

Response Data Encoding

When a response body is returned, the raw JSON or XML data will always be encoded using UTF-8.

There is no way to configure or specify the response body’s encoding. This is done to ensure that the
response content can always be correctly rendered. A request body using a different encoding is
allowed because the requester is able to control the contents being sent to lgfapi. However, the output

data may contain characters outside of the encoding used for the request, if for example a consistent
character set has not been used throughout the application. UTF-8 covers the full change of characters
supported by OCWMS and is therefore the default, and generally preferred, encoding.

Response Data Formats

In general, the HTTP response body can take on any number of different formats and styles. For
lgfapi, several dedicated conventions have been adopted to give uniformity and consistency to the
handling of both successful and erroneous requests.

Copyright © 2019, 2020, Oracle and/or its affiliates. 18

Error Response

A standardized error format is returned in the body of the response whenever there is an error while

fulfilling the request. This is accompanied by the response status code, which provides additional
insight.

The standard error response is comprised of 4 components:

 Reference – A unique string used as reference for the request and error. This should be
provided in support requests to help more quickly identify the information pertaining to

the request in question.
 Code – A generic classification pertaining to the error message.
 Message – An error message related to the code.
 Details – Optional. Either a list or key-value map (dictionary) of more detailed information

pertaining to the error(s). For example, this may give a more detailed list of error
messages or could be a map of field name(s) to error(s).

Example JSON Error Response Body:

{
 "reference": "25b414f0-7a1d-4f35-ac3c-0ec9886cf37a",
 "code": "VALIDATION_ERROR",
 "message": "Invalid input.",
 "details": {
 "reason_code": "Invalid Reason code"
 }
}

Example XML Error Response Body:
<?xml version="1.0" encoding="utf-8"?>
<error>
 <reference>25b414f0-7a1d-4f35-ac3c-0ec9886cf37a</reference>
 <code>VALIDATION_ERROR</code>
 <message>Invalid input.</message>
 <details>
 <reason_code>Invalid Reason code</reason_code>
 </details>
</error>

Unhandled Errors
It is possible that the application is unable to convey the nature of the problem back to the requester.
In these scenarios, the server will respond with a 500 (“Server Error”) status code and an

accompanying message.

Resource Representations

Representations are by default paginated unless a specific resource is being requested. Pagination
allows the response data to be served in chunks (pages) to keep payload sizes manageable.

Pagination

A paginated result set is returned when multiple representations may exist in the result set that
exceed a preset size. This breaks the result set into chunks (pages), each with its own page number.
The page size is determined by the requesting user’s configuration of the field “Rows per Page”. This is
the same field used to set the number of results per UI page returned. It has an allowed range of 10
to 125 results per page.

Copyright © 2019, 2020, Oracle and/or its affiliates. 19

Crawl-able hyperlinks are provided to navigate between the pages.

Pagination Mode

Two modes of pagination are supported that offer different advantages and disadvantages depending
on the user requirements. The default mode is “paged”, but users may specify the type of pagination
by using the “page_mode” query string parameter in the URI. The two types are “paged” and
“sequenced”.

Mode: Paged
This is the default mode for result sets (…/resource/?page_mode=paged). This will break the data into

chunks (pages) and return one page per request. This will additionally return metadata such as the
total count of results and the total number of pages.

Each page of the result set is given a pagination header:

 result_count – The total number of results across all pages.

 page_count – The total number of pages.

 page_nbr – The current page number.
 next_page – Hyperlink to the next page (if available).
 previous_page – Hyperlink to the previous page (if available).
 results – The result set list for the page.

A specific page number for a paginated result set is requested in the URI’s query string using the
parameter “page”. For example, to request the data for page 3 of a result set, one would add

…/resource/?page=3. You will also see these automatically added in the hyperlinks generated for
“next_page” and “previous_page”.

An example of a paginated JSON response:

{
 "result_count": 1,
 "page_count": 1,
 "page_nbr": 1,
 "next_page": null,
 "previous_page": null,
 "results": [
 {
 "id": 0,
 …
 },
]
}

An example of a paginated XML response:
<?xml version="1.0" encoding="utf-8"?>
<entity_name>
 <result_count>1</result_count>
 <page_count>1</page_count>
 <page_nbr>1</page_nbr>
 <next_page></next_page>
 <previous_page></previous_page>
 <results>
 <list-item>
 <id>0</id>

Copyright © 2019, 2020, Oracle and/or its affiliates. 20

 …
 </list-item>
 </results>
</entity_name>

Mode: Sequenced
The sequenced mode (…/resource/?page_mode=sequenced) is similar to the Paged mode, except for

a few important details. This mode is recommended for system to system integration where
superfluous information and intuitive/human-readable values are not necessary.

Each page of the result set is given a header that conveys extra information to the user and makes it
easier to navigate between pages:

 next_page – Hyperlink to the next page (if available).
 previous_page – Hyperlink to the previous page (if available).

 results – The result set list for the page.

First, you’ll notice that the pagination header does not have the total result count or total page count.
This is because sequenced pagination doesn’t know either of these values, and doesn’t want to.
Instead, each page is generated on the fly in an effort to improve performance, which means less
work than paged mode where the total counts are fetched up front. Determining total count can be
expensive when you have a large result set.

With sequenced, you also sacrifice some human readability and functionality as the “page” query
string parameter is replaced by a system-generated “cursor” as well as the hyperlinks will not be as
intuitive to understand. Since in this mode the total result set is not known, only what’s rendered per
page, there is no way to report the total number of pages or label each with a specific page number. A
cursor identifier is generated for each page instead of a page number:

…/resource/?cursor=cD0xNDAw&page_mode=sequenced

Non-paginated Responses
There are a few scenarios where a request will return data in the body of the response for a specific

object, so pagination is not needed.

The first is for a GET retrieve style request where the “id” value of the resource is known and is
requested in the URI (…/resource/{id}/).

The second is when creating a single resource using a POST request. The response will be a non-
paginated representation for only the new resource.

Copyright © 2019, 2020, Oracle and/or its affiliates. 21

3. Entity Module

The lgfapi entity module is used to access and modify OCWMS application data. It exposes specific
methodologies for identifying subsets of data and obtaining their representations as well as allowing

for the creation of certain resources. The entities supported and corresponding functionality will
continue to be expanded through subsequent releases.

Supported Entities

The entity module has a documenting feature that can be accessed via a GET request to the top-level

(root) URL (…/lgfapi/v10/entity/). This will return a sorted list of supported entities for the given lgfapi
version and an accompanying base URL.

Each entity represents an object or combination of objects within OCWMS that is accessible via lgfapi.

However, not all entities support all HTTP methods. Furthermore, these entities may share
characteristics with their respective counterparts in other areas of the OCWMS application, but as a
whole should be considered independent of other application functionality.

Entity Metadata

It is possible to obtain additional information for each entity by making a GET request to the
“describe” entity operation (…/lgfapi/v10/entity/{entity_name}/describe/). This will return metadata
that can be used to further your understanding of the entity. See “Entity Operations” section for more
details.

Input Data Types

Lgfapi supports user input depending on the HTTP method:
 GET/HEAD

o Query string parameters
 POST

o Request body data
 The format must be JSON or XML

o The “format” query sting parameter alone is supported to specify the desired format
for the response.

Although the input formats may be type ambiguous, the input value is cast to the appropriate type as
defined in the entity’s field metadata. Some fields have naming conventions that are outlined below.
The following types are supported for user input:

String/Text
Query String: …/?field=abc123
JSON: {“field”: “abc123”}
XML: <field>abc1234</field>

Integer
Query String: …/?field=123

JSON: {“field”: 123}
XML: <field>123</field>

Numeric/Decimal
Query String: …/?field=1.234
JSON: {“field”: 1.234}

XML: <field>1.234</field>

Boolean
Except for a few specific cases, all True/False Boolean field names end with “_flg”.

Copyright © 2019, 2020, Oracle and/or its affiliates. 22

The input value for all formats should be either “true” or “false”.

Query String: …/?field_flg=true
JSON: {“field_flg”: true}

XML: <field_flg>true</field_flg>

Temporal (Date/Time)
All date, time, and date-time fields require the iso-8601 format: YYYY-mm-ddTHH:MM:SS.ffffff
Note that the microsecond component “f” is optional. Using January 30th, 2018 at 6:30pm as
an example:

Date
Field names for date-only fields typically end with “_date”.

Query String: …/?field_date=2018-01-30
JSON: {“field_date”: “2018-01-30”}

XML: <field_date>2018-01-30</field_date>

Time
Field names for time-only fields typically end with “_time”.

Query String: …/?field_time=18:30:00
JSON: {“field_time”: “18:30:00”}
XML: <field_time>18:30:00</field_time>

Date-time
Field names for date-time fields typically end with “_ts”.
All Date-time objects are assumed to be in the time zone of the user’s facility context.
In other words, it should be the date/time you would expect to see if viewed by the
user in the UI.

Query String: …/?field_ts=2018-01-30T18:30:00
JSON: {“field_ts”: “2018-01-3030T18:30:00”}}
XML: <field_ts>2018-01-3030T18:30:00</field_ts>

Relational
Relational fields are when one resource has a link to another resource. These fields

always end in “_id” and by default, are integer values. They are unique when filtering,
in that you can use the double-underscore (“__”) notation to reference a related
resource’s fields, or even nested related resources. This is covered in more detail in
the Resource Result Set Filtering section.

Query String: …/?field_id=1
JSON: {“field_id”: 1}

XML: <field_id>1</field_id>

Copyright © 2019, 2020, Oracle and/or its affiliates. 23

Resource Result Set Filtering

Lgfapi offers the ability to apply filters to GET and HEAD requests in order to narrow down the final
result set. This is done by adding query string filter parameters to the URI. Furthermore, lgfapi
supports several built-in lookup functions to assist in common filtering tasks.

It is important to note that all entity data is automatically filtered by the user’s eligible facilities and
companies. This prevents users from being able to access and/or change data outside of their
assigned scope that same way that data is isolated in the UI or RF features. The difference with lgfapi
is that users may access data from multiple eligible facilities and companies in a single request. In the
UI and RF, this typically requires manually changing the user’s context.

The most basic format for a filter uses simply the exact operator (“=”): …/?field=value
This can be chained to apply multiple filters: …/?field1=value1&field2=value2

Lgfapi uses double underscore (“__”) notation in order to join multiple fields or functions in the query
string filters. The double underscore is used to distinguish the field names when filtering on a related
resource’s attributes or when applying a lookup function.

Applying a lookup function: …/?field__lookup=value
Filtering on a related resource: …/?relation_id__related_field=value
Applying a lookup function on a related resource: …/?relation_id__related_field__lookup=value

These are discussed in detail in the following sections.

Supported Lookup Functions

The following lookup functions are provided by lgfapi. Note that any match function with a
corresponding “i” function means that function is case-insensitive. For example, “exact” is used to
match exactly on a value, as does “iexact” except that the latter ignores upper/lower case.

Arithmetic Lookups
 gt – Greater than

Example: Filtering sales order detail(s) for only those with an ordered quantity.
…/order_dtl/?ord_qty__gt=0

 gte – Greater than or equal to

Example: Filtering sales order detail(s) for only those with an ordered quantity.
…/order_dtl/?ord_qty__gte=1

 lt – Less than

Example: Filtering sales order detail(s) for only those with ordered quantity below 10.

…/order_dtl/?ord_qty__lt=10

 lte – Less than or equal to

Example: Filtering sales order detail(s) for those with ordered quantity at or below 10.
…/order_dtl/?ord_qty__lte=10

Text Match Lookups

 contains/icontains – Text contains substring

Example: Filtering sales order(s) for orders with “FOO” in the order_nbr field.
…/order_hdr/?order_nbr__contains=FOO

Copyright © 2019, 2020, Oracle and/or its affiliates. 24

Example: Same as previous example, but ignore case.

…/order_hdr/?order_nbr__icontains=FOO

 exact/iexact – Text exactly matches

Example: Match sales order(s) exactly on the order number.
…/order_hdr/?order_nbr__exact=ORDER001

Note: “Exact” is not typically needed. The above filter condition does not require the
exact lookup since this is automatically implied by the exact operator (“=”).

The query string can be simplified to:
…/order_hdr/?order_nbr=ORDER001

“iexact”, on the other hand, is a useful tool when you need to do an exact match, but
ignore letter casing:

…/order_hdr/?order_nbr__iexact=OrDeR001

 startwith/istartswith – Text starts with

Example: Filtering sales order(s) for only those whose order_nbr starts with “ORD”:
…/order_hdr/?order_nbr__startswith=ORD

 endswith/iendswith – Text ends with

Example: Filtering sales order(s) for only those whose order_nbr ends with “001”:
…/order_hdr/?order_nbr__endswith=001

Temporal (Date/Time) Lookups
The following temporal functions may only be used on date, time, and/or date-time data.
Consider the “order_hdr” entity’s “order_shipped_ts” date-time field with a value “2018-09-

17T20:30:59”:

 year – Match on a date’s year (date or date-time).

…/order_hdr/?order_shipped_ts__year=2018

 month – Match on a date’s month (date or date-time).

…/order_hdr/?order_shipped_ts__month=09

 week_day – Match on a date’s day of the week (date or date-time).

Takes an integer value representing the day of week from 1 (Sunday) to 7 (Saturday).

…/order_hdr/?order_shipped_ts__week_day=2

 day – Match on a date’s day (date or date-time).

…/order_hdr/?order_shipped_ts__day=17

 hour – Match on a date’s hour (time or date-time).

Assumes a 24-hour clock.

…/order_hdr/?order_shipped_ts__hour=20

 minute – Match on the time’s minutes (time or date-time).

…/order_hdr/?order_shipped_ts__minute=30

Copyright © 2019, 2020, Oracle and/or its affiliates. 25

You can also apply other lookup and arithmetic functions to temporal fields:

 Date Range

For example, if we have a date-time field where we want to search for resources that

have a value within a range, it is possible to chain two temporal filters together to
search within a set date range:

…/order_hdr/?order_shipped_ts__gte=2018-09-
01T00:00:00&order_shipped_ts__lt=2018-10-01T00:00:00

Or, it is possible to use the “range” lookup function:

…/order_hdr/?order_shipped_ts__range=2018-09-01T00:00:00,2018-10-
01T00:00:00

However, since in this example we don’t have any specific time data, this could have
also been accomplished more easily using the “month” lookup:

 …/order_hdr/?order_shipped_ts__month=09

There may be multiple different ways to arrive at the same result when filtering. It is always
desirable to be as specific as possible to minimize the result set and improve efficiency.

Additional Lookups

 isnull – Boolean; Is the field’s value null?

This lookup is used to test if a field is null. This is a useful lookup as it can be used on
any type of field to test for null.

Example: Filtering sales order(s) for only those where the shipped timestamp is null:
…/order_hdr/?order_shipped_ts__isnull=true

This is important because it allows you to make this test for any field type. If, for

example, you tried to filter on the field’s value directly
(…/order_hdr/?order_shipped_ts=null), you would receive an error that “null” is not a
valid date. Since the field is of type date-time, it is expecting a temporal value and is
interpreting “null” as the input.

 in – Filter by values in a list

This lookup function allows for filtering by a group of values. These values may be a
mix of different types, but the type(s) should be consistent with the type of the field
being filtered. The input is a comma-delimited list with no spaces between entries in
the list.

Example: Filter order_hdr by specific status id values:
…/order_hdr/?status_id__in=10,30,90

Or, it can be applied for filtering on a specific set of sales order numbers:

…/order_hdr/?order_nbr__in=ORDER001,ORDER002,ORDER003

It is also possible to use an “in” lookup with a single value to effectively function the
same as an exact operator (“=”). The two following examples are equivalent in that
they will return the same result set:

…/order_hdr/?order_nbr=ORDER001
…/order_hdr/?order_nbr__in=ORDER001

The difference is that an “in” lookup in inherently slower because of the way the filter
is built and applied when filtering the data. If you have a single value to match on, it is

recommended to use “=” instead of “in”.

Copyright © 2019, 2020, Oracle and/or its affiliates. 26

 range – Filter for resources with value within an inclusive range.

Numeric range
…/order_hdr/?status_id__range=10,90

Date range
…/order_hdr/?order_shipped_ts__range=2018-09-01T00:00:00,2018-10-
01T00:00:00

Relational Resource Filtering
It is possible to filter on any related field for the given entity. All related field names end with

“_id” and are integers by default.

For example, the simplest and fastest performing related resource filter is to search directly on
the resource’s id. An “id” is the unique value assigned to every resource. Using the
“order_hdr” field, “facility_id”, we could filter specifically for order belong to the facility with id

“1”:

…/order_hdr/?facility_id=1

Adding the “company_id” field is a very common thing to do, in order to filter resources by
facility and company (assuming the company’s id is also “1”):

…/order_hdr/?facility_id=1&company_id=1

But what if we wanted to filter by the value of a field belonging to the related resource. For
example, what if we knew the facility and company codes, but didn’t yet know their respective
“id” values. It is possible to filter on the related resource’s fields using double-underscore
(“__”) notation.

Assuming facility with id=1 has a code “FAC1” and company with id=1 has a code “COM1”:

…/order_hdr/?facility_id__code=FAC1&company_id__code=COM1

This is not as efficient as using just the “id” of the related resources since lgfapi will need to do
an additional lookup for each related resource to filter on their respective “code” fields. It is
recommended to cache client-side the “id” values of commonly used, static entities (like
facility and company) in order to improve performance in high-throughput systems.

It is also possible to filter multiple levels deep with related resources. For example, in order to
filter on the order’s facility’s parent company, we could further chain the facility field,
“parent_company_id”, as it is a related resource of “facility_id” and of entity type “company”:

…/order_hdr/?facility_id__parent_company_id=1

Again, you can also search on a related field:
…/order_hdr/?facility_id__parent_company_id__code=COM1

This is a handy and powerful tool for looking up resource sets based on related data. However,
it is important to remember that as the relational filter depth increases, the performance may
decrease as well since there is more work to be done to lookup related resource(s). Client-side
caching and other performance methodologies are discussed in their own section.

Chaining Multiple Filters
It is possible to chain multiple filters on the same field. Each condition is just another key-
value pair where the field is consistent. For example, if we wanted to filter the order_hdr
entity to return those whose order_nbr starts with “ABC” and additionally contains the word
“TEST”, we would write it as:

…/order_hdr/?order_nbr__startswith=ABC&order_nbr__contains=TEST

Copyright © 2019, 2020, Oracle and/or its affiliates. 27

It is possible to chain together any number of different field and lookup combinations to arrive
at your desired result set. However, it is important to note that the more filters applied, the
more the performance may degrade. Therefore, it is always preferred to be as specific as

possible when using filtering.

Resource Representations (GET)

Within the lgfapi entity module, JSON or XML resource representation(s) of entity(s) may be obtained
through a GET request. A GET request is made for a specific entity in the format:

…/lgfapi/v10/entity/{entity_name}/

By default, each request is filtered by the requesting user’s eligible facility(s) and company(s). It is

possible to add additional filter conditions in the URI query string in order to arrive at the data
required. If, after filtering, no data is found, a 404 – Not Found error will be returned in the standard
lgfapi response.

Furthermore, there are two conventions for how to request resource representation(s) – “list” and
“retrieve”. For the following examples, the “company” entity will be used.

List

A list request is used to fetch one or more object representations of an entity. The result set is based
on the default facility/company context filters and any optional filter parameters provided in the URI.
The default results set is comprised of all resources for the given entity that are eligible to the
requesting user. Since the result set may be of an arbitrarily size, a paginated data set is always
returned.

The representation for all eligible objects can be requested by not providing the query string portion of

the URI:

…/lgfapi/v10/company/

Query string filter parameters may optionally be used to further narrow down the data set. For
example, to filter additionally by company code “ABC”, we would add the following:

…/lgfapi/v10/company/?code=ABC

Retrieve

A retrieve request is used to fetch a single resource by its integer “id” value. This is the most

performant way to get a representation for a single resource where the “id” is known. The result set is
not paginated. The “id” value is specified in the URI after the entity name:

…/lgfapi/v10/company/{id}/

For example, if we had previously looked up the company with code “ABC” and found its “id” value to
be 1, we could retrieve its representation in the future by making a GET request to the URI:

…/lgfapi/v10/company/1/

Note that since the lookup is for a specific resource, no filters are allowed in the query string. It is
permitted to pass in allowed non-filter reserved parameters like “format” and “fields”. However, any
pagination related query string parameters like “page_mode” are not supported since the returned
representation is not paginated.

Copyright © 2019, 2020, Oracle and/or its affiliates. 28

Note that …/lgfapi/v10/company/?id=1 is still considered a “list” style request and is paginated.

“Last-Modified” HTTP Header

If the requested resource exists and the data is temporally tracked, the Last-Modified HTTP header will

be returned. This is the date-time that the resource was last updated. It is in iso-8601 format in the
requesting user’s time zone. This can be cached client-side and used in conjunction with HEAD
requests as an efficient way to check for resource modification.

Resource Representation Data Conventions

For both list and retrieve GET requests, the “format” query string parameter can be passed in order to
convey the desired response format as “json” (default) or “xml”.

Hyperlink-Related Resource Representations

All resources use hyperlinked representations for related resource fields. These are the fields whose

name ends with “_id”. They represent another entity resource that can generate its own
representation using the hyperlink provided. Lgfapi uses hyperlinked relationships to allow for users to
crawl to the intended data sets. This allows for the preservation of RESTful principals as well as to
keep the data interchange sizes manageable.

All related field representations contain three pieces of information:

1. “id” – The integer id value of the related resource
2. “key” – A string identifier for the related resource
3. “url” – A crawl-able retrieve style hyperlink to the related resource

 Both “id” and “key” are always provided. However, the value for “url” may
be blank if the related resource it not one of the supported entities. In this
case, it is not possible to build a hyperlink to the resource as it does not

support generating its own representations.

For example, when getting a representation for the “company” entity where the company is of type
Regular, the related field “company_type_id” would be represented like the following JSON string:

{
 …

 “company_type_id”: {
 “id”: 1,
 “key”: “R”,
 “url”: “https://…/wms/lgfapi/v10/entity/company_type/1”
 },
 …

}

Or, if the desired format is XML:
<company>

 …
 <company_type_id>
 <id>1</id>

 <key>R</key>
 <url>https://.../wms/lgfapi/v10/entity/company_type/1</url>
 </company_type_id>
 …
</company>

The only exception for the related field representation format is for status_id related fields. These

fields are always represented as only the related resource’s integer “id” value. It is possible to get a

Copyright © 2019, 2020, Oracle and/or its affiliates. 29

representation for any status-based entity by making a retrieve request. The only difference is that

due to the volume of status fields on various entities, the integer value is used to reduce payload size.

For example, the “order_hdr” entity has the related field “status_id” for the entity “order_status”. It is

represented on the “order_hdr” as just the “id” value:

{
 …
 “status_id”: 10,
 …
}

However, it is possible to get a representation of the status by making the request:

GET https://.../wms/lgfapi/v10/order_status/10

IMPORTANT

There are many related resource fields that are optional. If there is no linked resource, the field’s
value will be “null” if using JSON or an empty tag if using XML. For more information, reference the
entity’s field metadata for the “required” attribute.

Related Data Sets

The related resources previously discussed all link to a single resource. However, it is possible that the
current resource has a list many other linked resources of the same type. A good example is a sales
order header that has one or more child details. As a convenience and additionally for
guidance/performance reasons, many entity representations have additional hyperlinked relations to
these data sets. These field names always end in “_set”.

Continuing the sales order header example, the order details set could be represented as the following

in an order_hdr retrieve representation. Assume there are two detail line items and the “id” value of

the order_hdr entity is “123”.

GET https://.../wms/lgfapi/v10/entity/order_hdr/123

{

 “id”: 123,
 …
 "order_dtl_set": {
 "result_count": 2,
 "url": "https://.../wms/lgfapi/v10/entity/order_dtl/?order_id=123"
 },
 …

}

It’s important to note that unlike the “_id” related resources which have a retrieve style hyperlink to

the specific resource, “_set” related representations use list style with query string filters in order to
return a paginated list of 1 to n resource representations. Also, instead of giving the “id” and “key”,
the related count is returned.

If no related resources are found for the set, the value will be “null” for JSON representations and an
empty tag for XML.

Field Selection

GET requests for the lgfapi entities support the “fields” query string parameters. It takes a comma-

delimited list of field names for the entity and returns only those fields in the representation.

Copyright © 2019, 2020, Oracle and/or its affiliates. 30

For example, to return only the “id” and “code” for all eligible companies using a list style request with

no filters:
GET https://.../wms/lgfapi/v10/entity/company?fields=id,code

The “fields” parameter can be combined with filter parameters and other parameters with special
meaning, like “format”. Here is a more complex example if one wanted to search for all eligible
companies of type regular and return only the “id” and “company” for each company entity found, in
XML format:

GET https://.../wms/lgfapi/v10/entity/company?fields=id,code&format=xml&company_type_id=1

This can also be applied to retrieve style request for a specific resource:

GET https://.../wms/lgfapi/v10/entity/company/1?fields=id,code

This is an important tool when performance is of concern. If it is known ahead of time that only

specific field values are required, narrowing the returned data set using the “fields” parameter can

greatly reduce the overall payload size and remove the need for unnecessary field and/or relation
lookups.

Ordering

By default, no ordering is applied to list style GET requests that can return 0 or more representations.

This is done for performance considerations as applying ordering to any request may degrade
performance, especially in the case of larger data sets.

It is possible to specify an order-by clause for list style requests using the “ordering” query string
parameter. It accepts a comma-delimited list of field names by ordering priority.

For example, one could request all eligible companies and order by the type and then the code:

GET https://.../wms/lgfapi/v10/entity/company/?ordering=company_type_id,code

By default, fields are ordering ascending. To order by descending value, add a dash (“-“) before the
field name in the ordering list. This can be applied to order first by company type ascending and then
company code descending:

GET https://.../wms/lgfapi/v10/entity/company/?ordering=company_type_id,-code

Just like any other query string parameter, it may be chained with other parameters and filters.

Copyright © 2019, 2020, Oracle and/or its affiliates. 31

Resource Existence and Modification (HEAD)

HTTP requests for lgfapi entities using the HEAD method are an efficient way to determine if a

resource or list of resource(s) exists. Additionally, it is possible to determine if a specific resource has
been modified since a target date-time. The HEAD method does not return any data in the body of the
response. The only data returned is the response status code and any HTTP headers. Because HEAD
requests do not have to know specifics about each resource and build a representation (like in a GET
request), minimum data is transmitted and the server-side determinations can be optimized.

HEAD requests accept both retrieve and list style URI that same as a GET request. This can be used to
check for the existence of a specific resource or filter for the existence of potentially many resources in

a list.

“If-Modified-Since” HTTP Request Header

Entity HEAD requests allow for the requester to optionally pass the “If-Modified-Since” HTTP header in
the request. This is only permitted for retrieve style requests when querying for a specific resource by
id in the URL. The header’s value is the target date-time in iso-8601 format in the appropriate time
zone. When provided, the value will be compared to the resource’s last modification time to determine
if it has been modified since the header’s date-time. If the resource exists, and it has been modified, a
200 - Ok status code is returned. If it exists but has not been modified, a 304 – Not Modified status
code is returned.

Not that if the entity does not support mod time tracking, the header is ignored and a 200 – Ok
response code is returned meaning only that the resource exists.

The “If-Modified-Since” request header is typically used in conjunction with the “Last-Modified”
response header that is returned with every retrieve style GET request for those entities that track
mod timestamps. For example, a common scenario might start with a retrieve style GET request being

made for a resource. The value of the “Last-Modified” response header is saved client-side for that
resource. Sometime later, the client wants to check if the resource has been updated. A HEAD request
can be made to determine if the resource has been modified since the original GET request by passing
the last mod timestamp in the “If-Modified-Since” request header.

In scenarios where the updated resource representation is not needed, a HEAD request is much more

efficient than a GET request. Or, it may be used to determine if a more expensive GET request is
subsequently called to fetch the updated resource representation. It is also common to use HEAD
request modification checks as a trigger mechanism for down-steam operations.

Response Statuses

The HTTP response status will be one of the following and vary depending on the outcome and if
checking for existence or existence and modification of one or more resources. Note that this is not
the full list of all possible response statuses. Rather, the following statuses are directly tied to this
HTTP method’s functionality within lgfapi. For example, one can still receive a 401 status code if not
providing valid user authentication credentials.

 200 - Ok

When checking for only existence, a 200 status code response means that the
resource(s) exist. When additionally checking for modification, this status code
confirms that the specific resource exists and has been modified.

 304 – Not Modified

Copyright © 2019, 2020, Oracle and/or its affiliates. 32

Only applicable when checking for modification of a specific resource using the 'If-

Modified-Since' header. This status means that the resource exists but has not been
modified since the input target date-time.

 400 - Bad Request
For HEAD requests, it is possible to receive this status when using the 'If-Modified-
Since' header with an invalid date-time value or format. This may also be returned if
other invalid data is found, such as invalid query sting filters.

 404 - Not Found
No resource(s) were found based on the input provided. This may mean that either

the resource(s) do not exist, or they do exist but the requesting user is not eligible for
any of the resources.

For example, use a retrieve style request to check for the existence of a company entity with id=1:

HEAD https://.../wms/lgfapi/v10/entity/company/1

Or, it can be applied to a list style request with filters:

HEAD https://.../wms/lgfapi/v10/entity/company?code=ABC

Copyright © 2019, 2020, Oracle and/or its affiliates. 33

Creating a Resource (POST)

Lgfapi allows for the creating and linking of a limited number of entity resources using an HTTP POST
request. The new resource’s initial data set is passed in the body of the request, in the structure and

formats outlined below. The requesting user must have the “lgfapi_create_access” permission. Also,
the requesting user must be eligible for the facility/company context of the data being created.

Example request to create an IBLPN:

POST …/wms/lgfapi/v10/entity/iblpn/

Input Data

Data passed in the body of any POST request to the entity module requires the follow structure and
data conventions.

Data Structure

Data is input in the request body in one of two sections:

 Fields – Initial field data. The “fields” section is used to pass in the initial field data required
by the entity. Optional fields have a default and should be omitted from the “fields” data if

you with the default to be applied. Lgfapi will attempt to use any data passed in the request
body over the field default.

 Options – Additional/miscellaneous data. The “options” section is used to pass in extraneous

data not directly required by the entity. A common example is the need to pass in a reason
code when creating certain entities for the purposes of tracking against writing inventory

history records.

 JSON Example
 {
 “fields”: {
 “string_field”: “ABC”,
 “decimal_field”: 1.234
 },

 “options”: {
 “reason_code: “RC”
 },
 }

XML Example

 <request>

 <fields>
 <string_field>ABC</string_field>
 <decimal_field>1.234</decimal_field>
 </fields>
 <options>
 <reason_code>RC</reason_code>

 </options>
 </request>

Dates/Times
Temporal data must be iso-8601 format.

Copyright © 2019, 2020, Oracle and/or its affiliates. 34

Related Resources

Relational fields (denoted by a field name ending in “_id”) require the integer “id” value of the target

resource. This can be obtained by making a GET request to the corresponding entity with appropriate
filters.

Assuming that you already know the corresponding fields each have an “id” value of 1; when creating
a new resource with the required related fields “facility_id” and “company_id”, the JSON POST request
body is modeled as:

{

 “fields”: {
 “facility_id”: 1,
 “company_id”: 1
 }
 }

If a related field is optional and not required as part of the initial resource creation, the field should be
omitted to apply the default value.

Response Statuses

A non-paginated representation of the new resource will be returned in the body of the HTTP response

in the desired format.

 200 – Ok
A lookup was done and it was determined that the resource already exists. No new resource
was created. Instead, the body of the response contains a representation of the existing
resource. This is only applicable to certain entities.

 201 - Created

The resource was successfully created.

 400 - Bad Request
The request was invalid. This could be due to data validation failures, permission errors, or
other missing requirements of the operation.

Validations

Field and object-level validations are applied before the new resource is created. Any errors will be
returned the response body in the standard format. All related resources must be within the
facility/company context of the resource being created. Meaning, users cannot link the new resource
to any resources outside of its facility and/or company. For example, it is not possible to link an IBLPN

to a pallet where the pallet is for a different facility or company than the IBLPN.

Nested Related Objects

Some entities, such as “inventory”, allow for the creation and association of some related objects
within the request to create the inventory object. This allows for the creation of multiple related

objects using a single API call instead of multiple requests.

The currently supported related objects are “batch_number” and “inventory_attribute”. Instead of
passing in the “id” value of the related objects as the field definition’s value, you may alternatively
insert a nested object representation. If the nested object does not exist, it will be created. If it does
exist, no creation for that object takes place but in both cases it will be associated to the inventory

object being created.

For example, when making a POST request to create an inventory object, it is valid to associate an
existing batch using its “id” value:

Copyright © 2019, 2020, Oracle and/or its affiliates. 35

 {
 “batch_number_id”: 1,
 …
 }

It is also possible to send a nested representation of the batch object which will functionally act as

“get or create”. The nested object must still pass all of the same validations as if it were being created
independently and its “id” value passed in:

{
 “batch_number_id”: {
 “batch_nbr”: “BATCH001”,
 “item_id”: 1,
 “expiry_date”: “2019-01-01”

 },
 …

}

Supported Entities

 inventory_attribute
o Functions as get-or-create based on the provided attributes for the given facility and

company combination.
 batch_number

o Function as get-or-create based on the batch number for the given facility and company

combination.
 iblpn

o Creates an inbound container with no inventory.
 inventory

o Creates inventory in either an iblpn or an active location.
o Requires “reason_code” option for inventory history tracking.

o Success results in inventory history adjustment(s) being generated.

o Supports nested “batch_number” and “inventory_attribute” object creation.
 inventory_lock

Create an inventory lock that can applied to containers and locations.

Updating a Resource (PATCH)

Lgfapi allows you to update specific fields on a limited number of entity resources using an HTTP
PATCH request. Only the desired changes are to be passed in the body of the request using the

“fields” section (very similar to a create resource (POST) request). The requesting user must have the
“lgfapi_update_access” permission and must be eligible for the facility/company context of the data
being modified. Successful modification will additionally update the object’s “mod_ts” and “mod_user”
fields.

The entities and fields that may be modified are limited at this time, with a few exceptions, to custom
(“cust”) fields, where supported. These fields are for “pass through” data that generally has no
functional significance.

Updates are restricted to a single object per request and the “id” of the target object is required as
part of the resource URL.

The following is an example URL to update a sales order:

Copyright © 2019, 2020, Oracle and/or its affiliates. 36

PATCH …/wms/lgfapi/v10/entity/order_hdr/123/

Input Data

Data passed in the body of any PATCH request to the entity module requires the following structure
and data conventions.

 Fields –Field data with target value for update.

The “fields” section is used to pass in the fields to update and the desired value. Any omitted
fields will be unchanged.

 JSON example of updating the values of multiple “cust” fields:

 {
 “fields”: {
 “cust_field_1”: “A”,
 “cust_decimal_2: 1.234
 }
 }

Response Statuses

A non-paginated representation of the updated resource will be returned in the body of the HTTP
response in the desired format.

 200 – Ok

The resource was successfully updated.

 400 - Bad Request

The request was invalid. This could be due to data validation failures, permission errors, or

other missing or incomplete requirements.

Copyright © 2019, 2020, Oracle and/or its affiliates. 37

Entities and Fields for PATCH

ib_shipment

Field Type Description

cust_date_1 Date

cust_date_2 Date

cust_date_3 Date

cust_date_4 Date

cust_date_5 Date

cust_decimal_1 Decimal

cust_decimal_2 Decimal

cust_decimal_3 Decimal

cust_decimal_4 Decimal

cust_decimal_5 Decimal

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

cust_long_text_1 String

cust_long_text_2 String

cust_long_text_3 String

cust_number_1 Integer

cust_number_2 Integer

cust_number_3 Integer

cust_number_4 Integer

cust_number_5 Integer

cust_short_text_1 String

cust_short_text_2 String

cust_short_text_3 String

cust_short_text_4 String

cust_short_text_5 String

cust_short_text_6 String

cust_short_text_7 String

cust_short_text_8 String

cust_short_text_9 String

cust_short_text_10 String

cust_short_text_11 String

cust_short_text_12 String

ib_shipment_dtl

Field Type Description

cust_date_1 Date

cust_date_2 Date

cust_date_3 Date

Copyright © 2019, 2020, Oracle and/or its affiliates. 38

Field Type Description

cust_date_4 Date

cust_date_5 Date

cust_decimal_1 Decimal

cust_decimal_2 Decimal

cust_decimal_3 Decimal

cust_decimal_4 Decimal

cust_decimal_5 Decimal

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

cust_long_text_1 String

cust_long_text_2 String

cust_long_text_3 String

cust_number_1 Integer

cust_number_2 Integer

cust_number_3 Integer

cust_number_4 Integer

cust_number_5 Integer

cust_short_text_1 String

cust_short_text_2 String

cust_short_text_3 String

cust_short_text_4 String

cust_short_text_5 String

cust_short_text_6 String

cust_short_text_7 String

cust_short_text_8 String

cust_short_text_9 String

cust_short_text_10 String

cust_short_text_11 String

cust_short_text_12 String

item_characteristics

Field Type Description

cust_attr_1 String

cust_attr_2 String

load

Field Type Description

cust_field_1 String

cust_field_2 String

cust_field_3 String

Copyright © 2019, 2020, Oracle and/or its affiliates. 39

Field Type Description

cust_field_4 String

cust_field_5 String

cust_field_6 String

cust_field_7 String

cust_field_8 String

cust_field_9 String

cust_field_10 String

location

Field Type Description

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

order_hdr

Field Type Description

cust_date_1 Date

cust_date_2 Date

cust_date_3 Date

cust_date_4 Date

cust_date_5 Date

cust_decimal_1 Decimal

cust_decimal_2 Decimal

cust_decimal_3 Decimal

cust_decimal_4 Decimal

cust_decimal_5 Decimal

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

cust_long_text_1 String

cust_long_text_2 String

cust_long_text_3 String

cust_number_1 Integer

cust_number_2 Integer

cust_number_3 Integer

cust_number_4 Integer

cust_number_5 Integer

cust_short_text_1 String

cust_short_text_2 String

Copyright © 2019, 2020, Oracle and/or its affiliates. 40

Field Type Description

cust_short_text_3 String

cust_short_text_4 String

cust_short_text_5 String

cust_short_text_6 String

cust_short_text_7 String

cust_short_text_8 String

cust_short_text_9 String

cust_short_text_10 String

cust_short_text_11 String

cust_short_text_12 String

externally_planned_load_flg Boolean  Only valid if the order is less than Shipped status.

 When updating the flag to false, any
externally_planned_load_nbr values set on the
corresponding order details will be removed.

stop_ship_flag Boolean  Update the stop_ship_flag on the order header if API call
made is successful.

 Allowed order statuses for setting the stop_ship_flag to
true: Created, Partially Allocated, Allocated, In-Picking,
Picked, In-Packing, Packed, Loaded. If order status is
shipped or cancelled, then respond with error.

 If order status is shipped or cancelled, then respond with
error, other statuses should be ok.

order_dtl

Field Type Description

cust_date_1 Date

cust_date_2 Date

cust_date_3 Date

cust_date_4 Date

cust_date_5 Date

cust_decimal_1 Decimal

cust_decimal_2 Decimal

cust_decimal_3 Decimal

cust_decimal_4 Decimal

cust_decimal_5 Decimal

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

cust_long_text_1 String

cust_long_text_2 String

cust_long_text_3 String

Copyright © 2019, 2020, Oracle and/or its affiliates. 41

Field Type Description

cust_number_1 Integer

cust_number_2 Integer

cust_number_3 Integer

cust_number_4 Integer

cust_number_5 Integer

cust_short_text_1 String

cust_short_text_2 String

cust_short_text_3 String

cust_short_text_4 String

cust_short_text_5 String

cust_short_text_6 String

cust_short_text_7 String

cust_short_text_8 String

cust_short_text_9 String

cust_short_text_10 String

cust_short_text_11 String

cust_short_text_12 String

purchase_order_hdr

Field Type Description

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

purchase_order_dtl

Field Type Description

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

stop_recv_flg boolean

work_order_hdr

Field Type Description

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

Copyright © 2019, 2020, Oracle and/or its affiliates. 42

work_order_kit

Field Type Description

cust_field_1 String

cust_field_2 String

cust_field_3 String

cust_field_4 String

cust_field_5 String

Entity Operations (GET/POST)

Many entities offer specialized operations in order to assist users in more complicated, or performance

intensive operations. These operations can act on one or more resources and may affect entities

beyond the one(s) targeted in the request. The URLs may follow a “list” or “retrieve” styles:

Format for an entity operation URL evocable for a specific resource by “id”:

…/wms/lgfapi/v10/entity/{entity_name}/{id}/{operation_name}/

Format for a “bulk” entity operation URL evocable for potentially multiple resources:

…/wms/lgfapi/v10/entity/{entity_name}/{operation_name}/

Entity operations are invoked in the same manner as previously discussed for GET and POST requests.
Each operation has its own URL tied to the entity. Entity operations that use a GET request are still for
obtaining a representation in the response body and do not modify data. Entity operations that use

POST requests trigger an action or series of actions on the entity that can change resource state.

Response Status

Entity operations follow the response statuses previously discussed for GET and POST request, with
one addition:

 204 – No Content

This HTTP response status is returned when the request was successfully fulfilled, but there is
no additional content to return to the requester. Users should interpret this as success and
expect the response body to be empty.

Bulk Operations

Entities may also support “bulk” operation that allow the same operation to be run on one or more

resources within a single request. There are several key differences and additional options that apply
to bulk operations.

 Parameter Data Filtering
Since bulk operations are capable of acting on one or more objects in a single request, the
request body’s “parameter” data is required. This data is a series of one or more filter
conditions that will be applied to identify the target list of objects. Each operation may have its
own allowed set of filter conditions that can be applied. This may include allowing users to
filter on related objects and using complex lookups such as “in” by the same double
underscore (“__”) notation as in a GET request’s filters.

Copyright © 2019, 2020, Oracle and/or its affiliates. 43

Note that all data is still automatically filtered by the user’s eligible facilities and companies

and that the user is not permitted to run bulk operations on objects outside their allowed
scope.

In general, all bulk operations allow for the filtering of objects by “id”. For example, a JSON
request body’s parameters section for filtering on multiple object id’s would be:

{
 “paramters”: {
 “id__in”: [1, 2, 3]
 }
}

Filtering on facility code and company code could be achieved by doing the following
(assuming the entity and operation allow it):

{
 “paramters”: {
 “facility_id__code”: “FAC1”,
 “company_id__code”: “COM1”
 }
}

The maximum number of objects that may be acted upon in a single request is dictated by the
requesting user’s “Rows per Page” attribute. This is configurable per user but also applies in
other areas of the application such as how many objects are returned per page in an lgfapi
GET request, or in the UI when refreshing a page’s data grid.

 Commit Frequency
All bulk operations are provided this additional “options” integer input parameter (default =

0). This parameter allows the requester to dictate at what frequency the changes are applied
to each resource or group of resources being processed.

The default value of 0 specifies that no updates are committed unless all resources are

processed successfully (all or nothing). All changes are rolled back on the first error, and only
the first error is reported back to the user using the stand response.

A value of 1 indicates that the changes should be committed per resource successfully
processed. Any error will only cause a failure and roll back of changes for the specific resource
that failed. All errors will be accumulated and returned in the standardized bulk response
format (see below).

Although a value > 1 is permitted, it is not advised that customers use this unless instructed
to do so by support. This is typically only used for more advanced or larger data processing
scenarios and for certain performance considerations.

 Response Status and Content

When the commit frequency is 0, the bulk operations will give the standard error response

format as previously documented, if any error is found. However, a different response status
and standardized format is provided on total success or when the commit frequency value is >
0:

A 200 – OK response is returned for bulk operations along with a standardized bulk response
having the following attributes:

 record_count – Total number of resources processed in the request.
 success_count – Number of successfully processed resources.
 failure_count – Number of unsuccessfully processed resources.

Copyright © 2019, 2020, Oracle and/or its affiliates. 44

 details – A nested dictionary (key/value map) that provides additional details for any

resources that failed during the processing of the operation.
o The key to identify each resource and it’s failure is by default the resource’s

unique “id” value. However, a different identifying key may be returned per

operation, as documented.
o If no details are provided, the value will be null.

The following is a JSON example where 2 objects were processed, but one (having id=123)
failed:

{
 “record_count”: 2,
 “success_count”: 1,
 “failure_count”: 1,
 “details”: {
 123: “Invalid status.”
 }
}

Copyright © 2019, 2020, Oracle and/or its affiliates. 45

4. Supported Entity Operations

Describe Entity

GET …/wms/lgfapi/v10/entity/{entity_name}/describe/

The describe operation is unique in that it is common and can be used on any entity. It returns a

formatted representation of the entity’s metadata including any filterable “parameters” and all field
definitions. This is the primary tool for obtaining details about a specific entity.

Response components:

 parameters – A list of fields that can be used for filtering of the entity.
 fields – Field definitions and metadata for the entity.

o type – The field data type

o allow_blank – String fields only. Is an empty string value permitted?

o max_length – String fields only. Max string length permitted.
o required – Does the field require data.
o default – If the fields is not required, the default value when no value is provided.

Copyright © 2019, 2020, Oracle and/or its affiliates. 46

Inventory

Link Serial Numbers

POST …/wms/lgfapi/v10/entity/inventory/{id}/link_serial_nbrs/

This operation is used to link one or more serial numbers to a single inventory record. The “id” value
of the target inventory record is required in the URI.

Category Parameter Type Required Default Description

options serial_nbr_list Array of Strings X A list of serial number strings
to be linked to the target
inventory record.

Bulk Update Inventory Attributes

POST …/wms/lgfapi/v10/entity/inventory/bulk_update_inventory_attributes/

This operation is used to update the inventory attributes of one or more inventory objects. Inventory
in a Received or Located IBLPN and inventory in an active location may be modified. Inventory history
adjustment records will be written for each inventory record successfully modified.

The attributes individually are not necessarily required, but in total at least one attribute must be
provided to indicate a change. Additionally, an attribute value may or may not be required as dictated
by other configuration such as the corresponding item’s attribute requirements or the location allowing

mixing of attributes. Furthermore, the inventory cannot be or have been allocated.

An empty string is a valid value to indicate removing the value from the corresponding attribute. Any

attribute that is omitted from the request data will retain its current value.

The “parameters” section of the request body is required in addition to the “options” section outlined

below. Only the “id” parameter filter is valid. It may be used as “id__in” with an array of values.

Category Parameter Type Required Default Description

options invn_attr_a String C Target attribute value.

options invn_attr_b String C Target attribute value.

options invn_attr_c String C Target attribute value.

options invn_attr_d String C Target attribute value.

options invn_attr_e String C Target attribute value.

options invn_attr_f String C Target attribute value.

options invn_attr_g String C Target attribute value.

options invn_attr_h String C Target attribute value.

options invn_attr_i String C Target attribute value.

options invn_attr_j String C Target attribute value.

options invn_attr_k String C Target attribute value.

options invn_attr_l String C Target attribute value.

options invn_attr_m String C Target attribute value.

options invn_attr_n String C Target attribute value.

options invn_attr_o String C Target attribute value.

options commit_frequency Integer 1 0 = Roll back on first error.

Copyright © 2019, 2020, Oracle and/or its affiliates. 47

Category Parameter Type Required Default Description

1 = Commit per object.

Location

update_active_inventory

The update_active_inventory API allows you to adjust the inventory quantity in an active location for a
specific item. Only a single location and item may be updated per request.

Note: This is a new API meant to replace the existing legacy `update_active_inventory` API. The legacy
API will eventually be retired so no further enhancements will be made to it. New functionality will
instead be added to this API as part of the lgfapi suite.

Regardless of the method used to identify the location, the following input is valid:

Category Name Type Required Description

options item_barcode String C Item identifier.

options item_code String C Item identifier.

options item_alternate_code String C Item identifier.

options adjustment_qty Numeric C Non-zero adjustment quantity.

options actual_qty Numeric C Non-negative final quantity.

options batch_nbr String N Batch tied to target inventory.

options expiry_date Date N Expiration date tied to target inventory.

options invn_attr_X String N Attributes A-O tied to the inventory.

options reason_code String Y Recorded on inventory history.

options transaction_ref_nbr String N Recorded on inventory history.

options locn_capacity_check_flg Boolean N Validate locations max units and volume?

options company_id Integer N Item’s company.

options company_code String N Item’s company’s code.

 Only one of `item_barcode`, `item_code`, or `item_alternate_code` is allowed.

 Only one of `actual_qty` or `adjustment_qty` is allowed.

 If positive change in quantity:
o The provided `batch_nbr` will be created if it does not exist.

 Only one of `company_id` or `company_code` is allowed.
o Although not required by the API, the company context may be necessary if there is

ambiguity when identifying the item to adjust. This is common in 3PL scenarios where the
same identifying information may be present for different items across companies for which
the user is eligible.

Location Lookup by ID

POST .../entity/location/{id}/update_active_inventory/

The caller knows the unique `id` value of the active location, which is added to the request URL. No
additional `parameters` data is required from the request body.

Copyright © 2019, 2020, Oracle and/or its affiliates. 48

Location Lookup by Filters

POST .../entity/location/update_active_inventory/

Category Name Type Required Description

parameters barcode String Y Location’s barcode.

parameters facility_id Integer N Location’s facility.

 Only a single location may be updated per request.
o The `__in` lookup is not supported for `barcode`.

 `facility_id` supports string lookup by `code` using the double-underscore notation:
o facility_id__code

Example Request Body:

{

 "parameters": {

 "facility_id__code": "FAC-1",

 "barcode": "LOCN1"

 },

 "options": {

 "item_barcode": "ITEM1234",

 "adjustment_qty": -10,

 "batch_nbr": "BATCH1234",

 "expiry_date": "2020-01-02",

 "invn_attr_a": "A",

 "invn_attr_b": "B",

 "reason_code": "RC",

 "transaction_ref_nbr": "TX123457890",

 "company_code": "COM-1"

 }

}

Copyright © 2019, 2020, Oracle and/or its affiliates. 49

Item

Image Upload

The image_upload API allows you to update an image either by Item ID or Item by Filter.

Assumptions

 Only one item may be updated per request.
 An error will be returned if no items are found.
 An error will be returned if more than one item is found.

Item by id

POST .../entity/item/{id}/image_upload/

Item by Filters

POST .../entity/item/image_upload/

Supported Item Filter Attributes

The "parameters" section of the request body supports item filters when using this URL style.

 company_id (Required)
o This additionally allows filtering on company code: "company_id__code"
 barcode
 part_a
 part_b
 part_c
 part_d
 part_e
 part_f
 item_alternate_code

Example request body parameters:

{

 "parameters": {

 "company_id__code": "COM1",

 "barcode": "ABC123"

 }

}

Copyright © 2019, 2020, Oracle and/or its affiliates. 50

Request Image Data

Regardless of which URL is used, the image data is passed in the request body's "options" section in the
"image_data" key. Data is required to be base64 encoded.

Example request body options:

{

 "options": {

 "image_data": "ABC123"

 }

}

Trailer

First Available

The first_available API allows you to identify yard locations with available capacity. After fetching this

API, you will get the first yard location with capacity based on the yard location putaway sequence. If

the putaway sequence is not configured, the fetch will display according to the yard location pick

sequence. After you get the location, you can use the locate to yard API to update the trailer location to

the yard.

Identify yard location by capacity:

GET .../entity/location/yard/first_available

Request

The following are the Query String Filters for this API:

Name Required Type Default Description

facility_id String Facility context by id.

facility_id__code String Facility context by code.

 Only one of "facility_id" or "facility_id__code" is allowed per request.

 If no additional context is provided, the user's default facility/company will be used.

Example Requests

GET .../entity/location/yard/first_available?facility_id=1

Copyright © 2019, 2020, Oracle and/or its affiliates. 51

The following is an example GET request for facility ID:

GET .../entity/location/yard/first_available?facility_id=1

The following is an example GET request for facility ID code:

GET .../entity/location/yard/first_available?facility_id_code=STRAJB01

locate_to_yard

The locate_to_yard API allows the caller to update a trailer’s location to or within the yard.
Regardless of the method used to identify the trailer, the following input is valid:

Category Name Type Required Description

options location_barcode String Y Barcode of yard location.

Trailer Lookup by ID

POST .../entity/trailer/{id}/locate_to_yard/

The caller knows the unique `id` value of the trailer, which is added to the request URL. No additional
`parameters` data is required from the request body.

Example Request Body:

{

 "options": {

 "location_barcode": "LOCN-1"

 }

}

Trailer Lookup by Filters

POST .../entity/trailer/locate_to_yard/

Category Name Type Required Description

parameters trailer_nbr String Y Trailer number to be moved.

parameters company_id Integer N Trailer’s company.

 Only a single trailer may be moved per request.
o The `__in` lookup is not supported for `trailer_nbr`.

 `company_id` additionally supports string lookup by `code` using the double-underscore
notation:

o company_id__code

Copyright © 2019, 2020, Oracle and/or its affiliates. 52

Example Request Body:

{

 "options": {

 "location_barcode": "LOCN-1"

 },

 "parameters": {

 "facility_id": 1,

 "company_id__code": "COM-1",

 "trailer_nbr": "TRLR-1"

 }

}

remove_from_yard

The remove_from_yard API allows the caller to release a trailer from its current yard location.

Trailer Lookup by ID

POST .../entity/trailer/{id}/remove_from_yard/

The caller knows the unique `id` value of the trailer, which is added to the request URL. No additional
`parameters` data is required from the request body.

Trailer Lookup by Filters

POST .../entity/trailer/remove_from_yard/

Category Name Type Required Description

parameters trailer_nbr String Y Trailer number to be removed.

parameters facility_id Integer N Trailer’s facility.

parameters company_id Integer N Trailer’s company.

 Only a single trailer may be moved per request.
o The `__in` lookup is not supported for `trailer_nbr`.

 `facility_id` and `company_id` both additionally support string lookup by `code` using the
double-underscore notation:

o facility_id__code
o company_id__code

Copyright © 2019, 2020, Oracle and/or its affiliates. 53

Example Request Body:

{

 "parameters": {

 "facility_id": 1,

 "company_id__code": "COM-1",

 "trailer_nbr": "TRLR-1"

 }

}

Load

check_in

The check_in API allows the caller to check-in an inbound or outbound load to a dock door.
Regardless of the method used to identify the load, the following input is valid:

Category Name Type Required Description

options dock_nbr String Y Dock door for check-in.

Load Lookup by ID

POST .../entity/load/{id}/check_in/

The caller knows the unique `id` value of the trailer, which is added to the request URL. No additional
`parameters` data is required from the request body.

Example Request Body:

{

 "options": {

 "dock_nbr": "DOCK-1"

 }

}

Load Lookup by Filters

POST .../entity/load/check_in/

Copyright © 2019, 2020, Oracle and/or its affiliates. 54

Category Name Type Required Description

parameters load_nbr String Y Load for check-in.

parameters facility_id Integer N Load’s facility.

parameters company_id Integer N Load’s company.

 Only a single load may be moved per request.
o The `__in` lookup is not supported for `load_nbr`.

 `facility_id` and `company_id` both additionally support string lookup by `code` using the
double-underscore notation:

o facility_id__code
o company_id__code

Example Request Body:

{

 "parameters": {

 "facility_id__code": "FAC-1",

 "company_id__code": "COM-1",

 "load_nbr": "LOAD-1"

 },

 "options": {

 "dock_nbr": "DOCK-1"

 }

}

Copyright © 2019, 2020, Oracle and/or its affiliates. 55

check_out

The check_out API allows the caller to check-out an inbound or outbound load from a dock door.

Load Lookup by ID

POST .../entity/load/{id}/check_out/

The caller knows the unique `id` value of the trailer, which is added to the request URL. No additional
`parameters` data is required from the request body.

Load Lookup by Filters

POST .../entity/load/check_out/

Category Name Type Required Description

parameters load_nbr String Y Load for check-in.

parameters facility_id Integer N Load’s facility.

parameters company_id Integer N Load’s company.

 Only a single load may be moved per request.
o The `__in` lookup is not supported for `load_nbr`.

 `facility_id` and `company_id` both additionally support string lookup by `code` using the
double-underscore notation:

o facility_id__code
o company_id__code

Example Request Body:

{

 "parameters": {

 "facility_id__code": "FAC-1",

 "company_id__code": "COM-1",

 "load_nbr": "LOAD-1"

 }

}

Copyright © 2019, 2020, Oracle and/or its affiliates. 56

Ship Load

The Ship Load API allows you to ship a load by uploading the load via ID or filter.

Category Name Required Type Description
parameters load_nbr X string Load for shipping
parameters facility_id Integer Facility context by id
parameters facility_id__code string Facility context by code
parameters company_id Integer Company context by id
parameters company_id__code string Company context by code

Load Lookup by ID

POST .../entity/load/{id}/ship/

 No additional `parameters` data in the request body is required.

Load Lookup by Filters

POST .../entity/load/ship/

Example Request Body:

{

 "parameters": {

 "facility_id__code": "FAC-1",

 "company_id__code": "COM-1",

 "load_nbr": "LOAD-1"

 }

}

This API includes the following features:

 Supports the ship load transaction for a load that is in the Loaded/ Loading Started /Checked
Out status.

 An error is displayed if the load is in a "Cancelled", "Ship Load In Progress", or "Shipped"
status.

 The shipload transaction can be performed either by providing the id or code for the
company/facility along with the load number.

 A Ship Load confirmation file is generated after the load is shipped.

Copyright © 2019, 2020, Oracle and/or its affiliates. 57

Once a load is shipped via the Ship Load API, the following applies to Inventory History Transaction (IHT)
records:

 Inventory history IHT -3 '3 - Container Shipped' is written with respect to each container
present on the load.

 For shipped loads with OBLPNs associated with asset inventory history, IHT- 58 '58 - Asset
Shipped' is written with respect to each OBLPN associated with an asset.

 Inventory history IHT- 60 '60 - Load Shipped File' is written for the outbound Load shipped.

The Ship Load API supports the following validations:

Ship Load API supports Order type with ''Single Order on multiple Loads':

 If "Single Order on multiple Loads" is set to "Do not Allow" in the order type, the system
displays the error message: "Load has Order/s marked to Prevent one order
on different loads with Error."

 When an order is in Packed status but only some of the packed OBLPNs are loaded.

 When an order is in Packed status but some OBLPNs are loaded to different loads.

 For OBLPNs with pending audit if the Company parameter
"ALLOW_LOAD_SHIP_WITH_AUDIT_PENDING" is set to no.

Company Parameter REQD_FIELDS_FOR_SHIPPING is defined:

 When the required fields configured for the parameter 'REQD_FIELDS_FOR_SHIPPING ' are
not defined for the targeted load.

 When one of the container item on the load is serial number tracked and the number of
serial numbers allocated do not match with the count of serial numbers present in the
container.

Serial Number Validations

 If company parameter ALLOW_LOAD_SHIP_WITH_AUDIT_PENDING = False and company
parameter SERIAL_NUMBER_TRACKING_LEVEL is 1 or 2

 If company parameter SERIAL_NUMBER_TRACKING_LEVEL is 0 or Non serial tracked items
exist and company parameter ALLOW_LOAD_SHIP_WITH_AUDIT_PENDING = False

 This API will not show you any warning message like the UI or RF, and it will proceed with
the Ship Load transaction.

 The Ship Load API does not generate multiple outbound files.

Copyright © 2019, 2020, Oracle and/or its affiliates. 58

Container

The “iblpn” and “oblpn” entities are derived from the “container” entity and have access to all of the
following entity operations, in addition to their own.

Get Sales Orders

GET …/wms/lgfapi/v10/entity/container/{id}/orders/

Returns a paginated representation of “order_hdr” entities for all sales order(s) allocated against the
inbound or outbound container.

Lock Container

POST …/wms/lgfapi/v10/entity/container/{id}/lock/

Apply one or more inventory locks to the target inbound or outbound container.

Bulk Lock Container

POST …/wms/lgfapi/v10/entity/container/bulk_lock/

Apply one or more inventory locks to one or more inbound or outbound container(s).

The “parameters” section of the request body is required in addition to the “options” section outlined

below. Only the “id” parameter filter is valid. It may be used as “id__in” with an array of values.

Category Parameter Type Required Default Description

options lock_code_list Array of Strings X Inventory lock code(s) to be
applied.

Category Parameter Type Required Default Description

options lock_code_list Array of Strings X Inventory lock(s) to be
applied.

options commit_frequency Integer 1 0 = Roll back on first error.
1 = Commit per object.

Copyright © 2019, 2020, Oracle and/or its affiliates. 59

Unlock Container

POST …/wms/lgfapi/v10/entity/container/{id}/unlock/

Remove one or more inventory locks to the target inbound or outbound container.

Bulk Unlock Container

POST …/wms/lgfapi/v10/entity/container/bulk_unlock/

Remove one or more inventory locks from one or more inbound or outbound container(s).

The “parameters” section of the request body is required in addition to the “options” section outlined
below. Only the “id” parameter filter is valid. It may be used as “id__in” with an array of values.

Palletize Container

POST .../entity/container/{id}/palletize/

Allows you to palletize an Inbound or Outbound LPN.

The “parameters” section of the request body is required in addition to the “options” section outlined
below. Only the “id” parameter filter is valid. It may be used as “id__in” with an array of values.

Example

{

 "parameters": {

 "facility_id": 1,

 "company_id": 1,

Category Parameter Type Required Description

options lock_code_list Array of Strings X Inventory lock code(s) to be removed.

Category Parameter Type Required Default Description

options lock_code_list Array of Strings X Inventory lock(s) to be
removed.

options commit_frequency Integer 1 0 = Roll back on first error.
1 = Commit per object.

Category Name Required Type Description

parameters Container_nbr X String IB or OB LPN to be linked.
“_in” lookup is not supported.

parameters Facility_id Integer Container’s facility

Parameters Company_id Integer Container’s company

Copyright © 2019, 2020, Oracle and/or its affiliates. 60

 "container_nbr": "LPN-1"

 }

}

 Both `facility_id` and `company_id` also support filtering on `code` as well.

{

 "parameters": {

 "facility_id__code": "FAC-1",

 "company_id__code": "COM-1",

 "container_nbr": "OBLPN-1"

 }

}

Functional Request Data

Category Name Required Type Default Description

options pallet_nbr X string Pallet number to be used for
palletizing IB or OBLPN's.

options pallet_position string Position of Inbound or
OBLPN during palletization.

options allow_mix_pa_types_flg boolean False whether to allow mixing of
LPN's with different PA types
on a single pallet.

options allow_mix_dest_shipto string valid values to be passed
are

 Validate Ship To
 Validate Destination
 Validate Ship To and

Destination
 Ignore Ship To and

Destination

{

Category Name Required Type Description

parameters Facility_id string Container’s facility

Parameters Company_id string Container’s company

Copyright © 2019, 2020, Oracle and/or its affiliates. 61

"options": {

 "pallet_nbr": "PLT001",

 "pallet_position": "01",

 "allow_mix_pa_types_flg": false

 "allow_mix_dest_shipto": Ignore Ship To and Destination

 }

}

Depalletize Inbound/Outbound LPN

Allows you to depalletize an Inbound or Outbound LPN so you do not have to use RF guns for
performing depalletization in automated guided facilities.

Identify container by ID:

POST .../entity/container/{id}/depalletize/

 The specific inbound or outbound LPN's id value is known and is provided in the URL.

 No additional `parameters` data in the request body is required.

Identify container by Filters

POST .../entity/container/depalletize/

 lgfapi provides mechanism to determine the container entity to be dissociated with pallet.

 The `parameters` section of the request body will allow for the users to identify the specific

OBLPN

{

 "parameters": {

 "facility_id": 1,

 "company_id": 1,

 "container_nbr": "LPN001",

 "type": "O"

 }

Category Name Required Type Description

parameters Container_nbr X String IB or OB LPN to be linked.
“_in” lookup is not supported.

parameters Facility_id Integer Container’s facility

Parameters Company_id Integer Container’s company

parameters type String Container’s type “I” or “O”.

Copyright © 2019, 2020, Oracle and/or its affiliates. 62

}

 Both `facility_id` and `company_id` also support filtering on `code` as well.

{

 "parameters": {

 "facility_id__code": "FAC-1",

 "company_id__code": "COM-1",

 "container_nbr": "LPN001",

 "type": "O"

 }

}

Pick-Pack

Pick Confirm

The Pick Confirm API allows you to perform cubed or non cubed picking.

Note: This is a new API meant to replace the existing legacy `pick_confirm` API. The legacy API will
eventually be retired so no further enhancements will be made to it. New functionality will instead be
added to this API as part of the lgfapi suite.

This API supports features of the legacy API including the following new parameters:

o mhe_mode_flg - true/false; default true
o async_flg - true/false; default true
o short_flg - true/false; default false

 Replaces using the legacy "action_code" = "SHORT".

Pick Confirm API can be called using the following POST request:

POST ..lgfapi/v10/pick_pack/pick_confirm/

Category Name Required Type Description

parameters facility_id_code string Container’s facility

Parameters company_id_code string Container’s company

Copyright © 2019, 2020, Oracle and/or its affiliates. 63

Request Parameters

Pick List

These represent the parameters required for a single pick/short:

Name Required Type Default Description

facility_id Integer Facility context by id.

facility_id__code String Facility context by code.

company_id Integer Company context by id.

company_id___code String
Company context by
code.

wave_nbr X String Associated wave.

order_nbr X String Associated sales order.

item_alternate_code C String Item identifier.

item_barcode C String Item identifier.

qty X Number 0
Quantity to be acted
upon.

batch_nbr String Inventory batch/lot.

uom_qty Number
Filter on Case or Pack
quantity when searching
for allocations.

allocation_uom String
"UNITS", "PACKS", or
"CASES".

reason_code String Reason for short.

pick_location C String From location.

from_container_nbr C String From container.

to_container_nbr C String
LPN inventory is packed
into. Not required for
short.

update_inventory_on_short_flg Boolean False
Also short source
inventory on pick short?

close_container_status String "packed"
Final OBLPN status:
"picked" or "packed".

short_on_close_flg Boolean False
Should any remaining
unpacked quantity
shorted?

mhe_system_code C String MHE system.

short_flg Boolean False Is this a short?

Copyright © 2019, 2020, Oracle and/or its affiliates. 64

Validations

 Facility must be in user's eligible facilities and not be ambiguous.

 Possible if there is a Store and a DC with the same code.

 Company must be in user's eligible companies.

 If facility or company context is not included in the input parameters, user defaults are used.

 User cannot pass both "facility_id" and "facility_id__code" in the same request.

 User cannot pass both "company_id" and "company_id__code" in the same request.

 "mhe_system_code" is required if "mhe_mode_flg" is True.

 Only one of "item_alternate_code" or "item_barcode" is allowed.

 Only one of "pick_location" or "from_container_nbr" is allowed.

 "to_container_nbr" is required for "pick" operation, but is not required for "short".

Request-Level Flags

The following is an example JSON request:

{

 "mhe_mode_flg": false,

 "async_flg": false,

 "pick_list": [{

 "facility_id__code": "FAC",

 "company_id": 1,

 "wave_nbr": "WAVE001",

 "order_nbr": "ORDER001",

 "item_barcode": "ITEM1234",

 "qty": 10,

 "from_container_nbr": "IBLPN0001",

 "to_container_nbr": "OBLPN0001",

 "short_flg": false

 }]

}

Name Required Type Default Description

mhe_mode_flg Boolean True
When true, enforce that
"mhe_system_code" is provided.

async_flg Boolean True Run API asynchronously?

Copyright © 2019, 2020, Oracle and/or its affiliates. 65

The following is an example XML request:

<request>

 <mhe_mode_flg>false</mhe_mode_flg>

 <async_flg>false</async_flg>

 <pick_list>

 <list-item>

 <facility_id__code>FAC</facility_id__code>

 <company_id>1</company_id>

 <wave_nbr>WAVE001</wave_nbr>

 <order_nbr>ORDER001</order_nbr>

 <item_barcode>ITEM1234</item_barcode>

 <qty>10</qty>

 <from_container_nbr>IBLPN0001</from_container_nbr>

 <to_container_nbr>OBLPN0001</to_container_nbr>

 <short_flg>false</short_flg>

 </list-item>

 </pick_list>

</request>

Close LPN

The close_lpn API allows you to close an LPN during picking/packing. This API replaces the legacy pick
confirm API when the action code is closed. While performing pick and pack operations (either non
cubed active picking or cubed picking), the Close action code indicates to WMS that the Outbound LPN
being picked needs to be closed.

Note: This is a new API meant to replace the existing legacy `close_lpn` API. The legacy API will
eventually be retired so no further enhancements will be made to it. New functionality will instead be
added to this API as part of the lgfapi suite.

This API supports features of the legacy API including the following new parameter:

o async_flg - true/false; default true

Close LPN API can be called using the following POST request:

POST ..lgfapi/v10/pick_pack/close_lpn/

Copyright © 2019, 2020, Oracle and/or its affiliates. 66

Request Parameters

The following table provides details about the query string parameters:

The following is an example JSON request:

{

 "facility_id__code": "FAC",

 "company_id": 1,

 "to_container_nbr": "OBLPN001",

 "close_container_status": "picked",

 "short_on_close_flg": true,

 "async_flg": true

}

Wave Complete

The Wave Complete API replaces the legacy API when the action code is Complete. This is an indicator to

inform WMS that all picks are completed for that wave, and there are no more picks outstanding.

Note: This is a new API meant to replace the existing legacy `close_lpn` API. The legacy API will
eventually be retired so no further enhancements will be made to it. New functionality will instead be
added to this API as part of the lgfapi suite.

This API supports features of the legacy API including the following new parameter:

 async_flg - true/false; default true
 When false:

Name Required Type Default Description

facility_id Integer Facility context by id.

facility_id__code String Facility context by code.

company_id Integer Company context by id.

company_id__code String
Company context by
code.

to_container_nbr X String To OBLPN.

close_container_status String "packed"
Final OBLPN status:
"picked" or "packed".

short_on_close_flg Boolean False
Should any remaining
unpacked quantity
shorted?

update_inventory_on_short_flg Boolean False
Also short source
inventory on pick short?

reason_code String Reason for short.

async_flg Boolean True Run API asynchronously?

Copyright © 2019, 2020, Oracle and/or its affiliates. 67

 Instead of submitting a celery task at the end for later processing, it should be immediately
processed and a response returned.

 On success, return a 204 - "No Content" HTTP response status with no response body.
 When true: Return HTTP response status 202 - "Accepted" with no response body.
 Signals that we received the request and it was successfully submitted for processing.

The Wave Complete API can be called using the following POST request:

POST ..lgfapi/v10/pick_pack/wave_complete/

The following table provides details about the query string parameters:

The following is an example JSON request JSON:

{

 "facility_id__code": "FAC",

 "company_id": 1,

 "wave_nbr": "WAVE001",

 "update_inventory_on_short_flg": true,

 "async_flg" true

}

Task

Next Task

The next_task API allows you to determine the next task via an API operation.

You can search for the next task using the following GET request:

Name Required Type Default Description

facility_id Integer Facility context by id.

facility_id__code String Facility context by code.

company_id Integer Company context by id.

company_id___code String Company context by
code.

wave_nbr X String Associated wave.

update_inventory_on_short_flg Boolean False Also short source
inventory on pick short?

close_container_status String "packed" Final OBLPN status:
"picked" or "packed".

reason_code String Reason for short.

mhe_system_code String MHE system.

async_flg Boolean True Run API asynchronously?

Copyright © 2019, 2020, Oracle and/or its affiliates. 68

GET .../entity/task/next_task

The following table provides details about the query string parameters:

Name Required Type Default Description

facility_id Integer Facility context by id.

facility_id__code String Facility context by code.

location_barcode String User's current location.

task_type String Required task type.

ordering_rule String Order tasks by rule name.

Facility ID/Facility Code

 If a value isn't provided, the user's default facility context will be used.
 Task look up is done relative to the user's facility and eligible company contexts.

Location Barcode

 If provided, search for task within the same location area (if available) and/or pick sequence (if
available).

Task Type

 If provided, search for task only of the given type.

Ordering Rule

 If provided, order the found tasks by the corresponding field(s) and return the top result.
 The value accepted by the API is that of the Task Ordering Rule's description.

The following is an example GET request using location barcode:

GET

.../entity/task/next_task?location_barcode=MY_LOCN_BRCD&task_type=MY_TASK_TYPE&orderin

g_rule=MY_RULE

Copyright © 2019, 2020, Oracle and/or its affiliates. 69

IBLPN

The “iblpn” entity is derived from the “container” entity and therefore also has access to all of its
entity operations, in addition to the following.

Direct Consume

POST …/wms/lgfapi/v10/entity/iblpn/{id}/direct_consume/

Consume a Received or Located IBLPN and update its inventory to zero. This will write IBLPN
consumed inventory history records.

direct_consume

The `options` parameters, `transaction_ref_nbr`, may now be passed in the request body. This
parameters will be added to any CNTR_CONSUMED inventory history records created as part of the
API’s execution. The inventory history field `ref_code_3` will now be set as “TRN”. The value of
`ref_value_3` will be that of `transaction_ref_nbr` or an empty string.

Category Name Type Required Description

options transaction_ref_nbr String N Max length of 250 characters.

Example Request Body:

{

 "options": {

 "reason_code": "IT",

 "transaction_ref_nbr": "TX12345"

 }

}

Composite Create

POST …/wms/lgfapi/v10/entity/iblpn/composite_create/

This operation allows for the creation of a Received or Located IBLPN along with one or more
inventory records in a single request. Furthermore, it allows for the creating and/or association of the
inventory’s corresponding batch and inventory attribute, where applicable. This API follows all of the

same validations and extended actions, such as writing inventory history, as the standalone create
(POST) APIs for each entity, but brings them together in a single API.

Furthermore, this API takes advantage of allowing for the input of nested data, such as batch and
inventory attribute, which will allow for those objects to be created or retrieved if they already exist.
The use of the related objects “id” value is still permitted as well. All objects must have the same
facility and company context as the IBLPN being created, and must still pass all standard user

eligibility validations.

Category Parameter Type Required Default Description

options reason_code String X Used for inventory history tracking.

Copyright © 2019, 2020, Oracle and/or its affiliates. 70

This API also has unique data structure requirements that mimic those of the individual entity’s create
(POST) field inputs. It also allows for the definition of a global context where “facility_id” and
“company_id” may be defined at the top level of the data and inherited by each object, if not defined

on the object.

The following is an example of JSON request data where the facility/company context is defined at the
top level and using the “id” values of “batch_number_id” and “invn_attr_id” to associate those objects
that already exist. The defined top-level facility and company will be applied to the iblpn and inventory
objects being created. The existing batch and inventory attribute objects being associated to the
inventory must be of the same context.

Note that even though “inventory” does not have a “company_id” field, the company is determined

from the associated item’s company and must also pass validations.

{
 "fields": {
 "facility_id": 1,
 "company_id": 1,
 "iblpn": {
 "container_nbr": "IBLPN000001",
 "status_id": 30,
 "curr_location_id": 28536
 },
 "inventory": [
 {
 "item_id": 1,
 "curr_qty": 1.2345,
 "batch_number_id": 1,
 "invn_attr_id": 1
 }
]
 },
 "options": {
 "reason_code": "IT"

Category Parameter Type Required Default Description

fields facility_id Integer C “id” value of Facility. Not required if
defined on the IBLPN or per object.

fields company_id Integer C “id” value of Company. Not required
if defined on the IBLPN or per object.

fields iblpn Dictionary X Field value definitions for the IBLPN
being created. These are the same as
if using a standalone POST request
for creating an IBLPN.

fields inventory Array X A list of one or more inventory
objects to be created and associated
with the given IBLPN.

options reason_code String X Used for inventory history tracking.

Copyright © 2019, 2020, Oracle and/or its affiliates. 71

 }
}

The following is an example of JSON request data where the facility/company context is defined per
object and using the “id” values of “batch_number_id” and “invn_attr_id” to associate those objects
that already exist. Also demonstrates creating multiple inventory records for different
item/batch/attribute combinations in a single IBLPN:

{
 "fields": {
 "iblpn": {
 "facility_id": 1,
 "company_id": 1,
 "container_nbr": "IBLPN000002",
 "status_id": 10
 },
 "inventory": [
 {
 "facility_id": 1,
 "item_id": 1,
 "curr_qty": 1.2345,
 "batch_number_id": 1,
 "invn_attr_id": 1
 },
 {
 "facility_id": 1,
 "item_id": 2,
 "curr_qty": 10,
 "batch_number_id": 2,
 "invn_attr_id": 2
 }

]
 },
 "options": {
 "reason_code": "IT"
 }
}

Copyright © 2019, 2020, Oracle and/or its affiliates. 72

The following is an example of JSON request data where the facility/company context is defined at the

top level and the “id” values of “batch_number_id” and “invn_attr_id” have been replaced with nested
objects to create and associate those objects, which may or may not already exist:

{
 "fields": {
 "facility_id": 1,
 "company_id": 1,
 "iblpn": {
 "container_nbr": "IBLPN000003",
 "status_id": 10
 },
 "inventory": [
 {
 "item_id": 3,
 "curr_qty": 1,
 "batch_number_id": {
 “batch_nbr”: “BATCH001”,
 “item_id”: 3,
 “expiry_data”: “2019-01-01”
 },
 "invn_attr_id": {
 “invn_attr_a”: “A”,
 “invn_attr_b”: “B”,
 “invn_attr_c”: “C”
 }
 }
]
 },
 "options": {
 "reason_code": "IT"
 }
}

Copyright © 2019, 2020, Oracle and/or its affiliates. 73

modify_item_qty

The IBLPN modify_item_qty API allows the caller to adjust item inventory in a “Received” or “Located”
IBLPN. You can only update a single IBLPN and item per request.

Regardless of the method used to identify the IBLPN, the following input is valid:

Category Name Type Required Description

options item_barcode String C Item identifier.

options item_alternate_code String C Item identifier.

options adjustment_qty Numeric Y Non-zero adjustment quantity.

options batch_nbr String N Batch tied to target inventory.

options expiry_date Date N Expiration date tied to target inventory.

options invn_attr_X String N Attributes A-O tied to the inventory.

options reason_code String Y Recorded on inventory history.

options transaction_ref_nbr String N Recorded on inventory history.

 Only one of `item_barcode` or `item_alternate_code` is allowed.

 IBLPN inventory matching is restrictive and does not support wildcard searches:
o If no `batch_nbr` is provided, only match IBLPN inventory without a batch.
o If no `expriy_date` is provided, only match IBLPN inventory without expiration.
o If no `invn_attr_X` value is provided for A-O, it will be treated as blank.

IBLPN Lookup by ID

POST .../entity/iblpn/{id}/modify_item_qty/

Caller knows the unique `id` value of the IBLPN, which is added to the request URL. No additional
`parameters` data is required from the request body.

IBLPN Lookup by Filters

POST .../entity/iblpn/modify_item_qty/

Category Name Type Required Description

parameters container_nbr String Y IBLPN to be adjusted.

parameters facility_id Integer N IBLPN’s facility.

parameters company_id Integer N IBLPN’s company.

 Only a single IBLPN may be moved per request.
o The `__in` lookup is not supported for `container_nbr`.

 `facility_id` and `company_id` both additionally support string lookup by `code` using the
double-underscore notation:

o facility_id__code
o company_id__code

Copyright © 2019, 2020, Oracle and/or its affiliates. 74

Example Request Body:

{

 "parameters": {

 "facility_id__code": "FAC-1",

 "company_id ": 2,

 "container_nbr": "IBLPN1234"

 },

 "options": {

 "item_barcode": "ITEM1234",

 "adjustment_qty": -10,

 "batch_nbr": "BATCH1234",

 "expiry_date": "2020-01-02",

 "invn_attr_a": "A",

 "invn_attr_b": "B",

 "reason_code": "RC",

 "transaction_ref_nbr": "TX123457890"

 }

}

Copyright © 2019, 2020, Oracle and/or its affiliates. 75

OBLPN

The “oblpn” entity is derived from the “container” entity and therefore also has access to all of its
entity operations, in addition to the following.

Mark Delivered

POST …/wms/lgfapi/v10/entity/oblpn/{id}/mark_delivered/
Updates a Shipped OBLPN to Delivered status and writes container delivered inventory history.

create_from_iblpn

The OBLPN create_from_iblpn API allows you to create an OBLPN in Outbound Ready status and
allocate inventory from a designated IBLPN in a single request. Additionally allows the caller to trigger
packing of the OBLPN.

POST .../entity/oblpn/create_from_iblpn/

Assumptions

1. All allocation data must have the same facility and company context as the OBLPN.
a. Allocations may be for multiple sales orders from multiple IBLPNs for different items as

long as the facility/company context is consistent with the created OBLPN.
2. Sales order status will be recalculated on success.
3. IBLPN status will be recalculated on success.
4. Inventory history is only written if the OBLPN is packed.

Request Body Data

The request body data utilizes the 3 categories in the following ways:

1. `fields` – The initial data required to create the OBLPN.
2. `parameters` – List of data defining allocations.
3. `options` – Additional functional data.

OBLPN Fields Data

The OBLPN’s initial data is defined in the `fields` section of the request under the `oblpn` key. This is
similar to the request body data requirements when creating an LPN directly through the entity’s create
mechanism.

Supported fields:

Name Type Required Description

facility_id Integer Y OBLPN’s facility.

company_id Integer Y OBLPN’s company.

container_nbr String Y OBLPN’s container number.

curr_location_id Integer N OBLPN’s location.

lpn_type_id Integer N Associated LPN Type.

length Numeric N OBLPN’s length dimension.

Copyright © 2019, 2020, Oracle and/or its affiliates. 76

width Numeric N OBLPN’s width dimension.

height Numeric N OBLPN’s height dimension.

 If providing `lpn_type_id` - `length`, `width`, and `height` are not valid.

Example Request Body:

"fields": {

 "oblpn": {

 "facility_id": 1,

 "company_id": 1,

 "container_nbr": "OBLPN-1",

 "lpn_type_id": 5

 }

}

Allocation Parameters Data

Allocation data is defined in the `parameters` section of the request in the `allocations` key. The data is
a list of objects, each linking one sales order detail to one IBLPN for the given inventory and quantity.
An order detail or IBLPN may be referenced across multiple allocation definitions within the same
request. Each of the following allocation scenarios is supported:

 Single order detail from single IBLPN.

 Single order detail from multiple IBLPNs.

 Multiple order details from single IBLPN.

 Multiple order details from multiple IBLPNs.

Category Name Type Required Description

allocations order_nbr String Y Sales order identifier.

allocations iblpn_nbr String Y IBLPN identifier.

allocations qty Numeric Y Non-zero quantity to allocate.

allocations order_dtl Object Y Nested object identifying the sales order detail.

 Sales order status must be less than “Packed”.

 IBLPN status must be “Received”, “Located”, or “Partially Allocated” and have the necessary
available unallocated quantity.

The nested `order_dtl` object requires one of two definitions in order to identify the sales order detail.

Identify Sales Order Detail by Sequence Number

If the order detail’s unique sequence number is known to the user, this may be provided in the request
and is the only piece of data necessary to identify the correct detail for the given sales order number.

Copyright © 2019, 2020, Oracle and/or its affiliates. 77

Category Name Type Required Description

order_dtl seq_nbr Integer C Sales order detail’s unique sequence number.

Example Request Body:

"parameters": {

 "allocations": [

 {

 "order_nbr": "ORDER-1",

 "order_dtl": {

 "seq_nbr": 1

 },

 "iblpn_nbr": "IBLPN-1",

 "qty": 1

 }

]

}

Identify Sales Order Detail by Attributes

The sales order detail may also be identified by its attributes. At least one of the following pieces of
information is required. If more than one order detail is identified, an error will be returned.
Additionally, this is a restrictive search in that any omitted data will not be treated as a wildcard.

o If no `batch_nbr` is provided, only match order detail(s) without a batch.
o If no `invn_attr_X` value is provided for A-O, it will be treated as blank.

Category Name Type Required Description

order_dtl item_barcode String C Item identifier.

order_dtl item_alternate_code String C Item identifier.

order_dtl batch_nbr String N Batch identifier.

order_dtl invn_attr_X String N Attributes A-O tied to the order detail.

Example Request Body:

"parameters": {

 "allocations": [

 {

Copyright © 2019, 2020, Oracle and/or its affiliates. 78

 "order_nbr": "ORDER-2",

 "order_dtl": {

 "item_barcode": "ITEM2",

 "batch_nbr": "BATCH-1",

 "invn_attr_a": "A",

 "invn_attr_b": "B"

 },

 "iblpn_nbr": "IBLPN-2",

 "qty": 2

 }

]

}

Additional Options Data

Functional request data in the `options` section:

Category Name Type Required Description

options pack_flg Boolean N Pack the OBLPN? (Default = False)

 OBLPN will be routed regardless of the `pack_flg` value.

 If `pack_flg` = True:
o OBLPN will be updated to “Packed” status.
o The created allocations will be completed.
o The sales order detail(s) will be updated.
o OBLPN’s final weight and volume will be calculated.
o Inventory history will be written.

Example Request Body:

"options": {

 "pack_flg": true

}

Full Request Body Example:

The following example would create a packed OBLPN allocated from two different IBLPNs for the same
order.

Copyright © 2019, 2020, Oracle and/or its affiliates. 79

{

 "fields": {

 "oblpn": {

 "facility_id": 1,

 "company_id": 1,

 "container_nbr": "OBLPN-1"

 }

 },

 "parameters": {

 "allocations": [

 {

 "order_nbr": "ORDER-1",

 "order_dtl": {

 "seq_nbr": 1

 },

 "iblpn_nbr": "IBLPN-1",

 "qty": 2

 },

 {

 "order_nbr": "ORDER-1",

 "order_dtl": {

 "item_barcode": "ITEM-1",

 "batch_nbr": "BATCH-1",

 "invn_attr_a": "A",

 "invn_attr_o": "O"

 },

 "iblpn_nbr": "IBLPN-2",

 "qty": 5.52

 }

Copyright © 2019, 2020, Oracle and/or its affiliates. 80

]

 },

 "options": {

 "pack_flg": true

 }

}

Link oblpn with asset

POST …/wms/lgfapi/v10/entity/oblpn/{id}/link_asset

links asset (reusable tote) to oblpn.

Assumptions

 Only one OBLPN may be linked to one asset per request.
 OBLPN must be within user's eligible facilities/companies.

Request Body Data

The request body data utilizes the 3 categories in the following ways:

1. `parameters` – allows user to identify the specific oblpn
2. `options` – Additional functional data.

Parameters

Category Name Type Required Description

Parameters container_nbr String Y OBLPN to be linked. "__in" lookup is not
supported

Parameters facility_id Integer Container's facility.

Parameters company_id Integer Container's company.

Example Request Body:

{

 "parameters": {

 "facility_id": 1,

 "company_id": 1,

 "container_nbr": "OBLPN-1"

 }

Copyright © 2019, 2020, Oracle and/or its affiliates. 81

}

Note: Both facility id and company id also support filtering on “code”.

Additional Options Data

Functional request data in the `options` section:

Category Name Type Required Description

options asset_nbr String Y Asset to
be linked.
May be
created as
part of this
API.

options asset_seal_nbr String Optionally
tracked
seal
number.

Options replace_container_nbr_with_asset_flg boolean Rename
OBLPN to
match
asset upon
linking?

options validate_lpn_type_flg boolean Validate
the LPN
type of the
OBLPN
with the
LPN type
of the
asset

{

 "options": {

 "asset_nbr": "ASSET-01",

 "asset_seal_nbr": "SEAL-001",

 "replace_container_nbr_with_asset_flg": true

 "validate_lpn_type_flg": true

 }

}

Copyright © 2019, 2020, Oracle and/or its affiliates. 82

 If the Asset already exists in the system, then it will be made "In Use" status and update the Asset
OBLPN field with the corresponding OBLPN, Destination field with the OBLPN destination of the
linked OBLPN and Seal Nbr field with corresponding seal nbr passed in the API

 If Original OBLPN is renamed while interfacing (i.e. when "replace_container_nbr_with_asset"=
true), system will update the following:

o Populate OBLPN field with the Asset Nbr,
o Destination field with the OBLPN destination
o Seal Nbr field with corresponding seal nbr passed in the API

 OBLPN type in the Asset table will not get updated with the OBLPN type of the OBLPN

 If the Asset interfaced is new, then a new record is created in the Asset UI with the status "In Use"
with corresponding OBLPN, Seal and destination.

 If the Original OBLPN is renamed with Asset nbr while interfacing (i.e. when
"replace_container_nbr_with_asset"= true), system updates the OBLPN field with the Asset Nbr,
Destination field with the Original OBLPN's destination and Seal Nbr field with corresponding seal
nbr passed in the interface

 If the OBLPN is already linked to an asset and another Asset Nbr is passed in the interface for linking
with OBLPN, the original asset number needs to be updated back to status "In-warehouse" while the
new asset number is updated back to status "In-use".

 In case if the OBLPN is already linked to an asset/seal and another seal nbr is passed in the API, then
update the seal nbr field with the corresponding seal.

 If the Asset interfaced in the API is new to the system, then a new record is created in the Asset
table

 The fields "asset_nbr" and "asset_seal_nbr" is updated with corresponding data in the oblpn.

 If Original OBLPN is replaced with Asset Nbr while interfacing (i.e. when
"replace_container_nbr_with_asset"= true), system should update the Container table as
mentioned below:

o LPN Nbr is updated with the Asset Nbr
o Asset Nbr and Asset Seal Nbr is updated with the corresponding value passed in the API
o OBLPN Type field is not updated with the OBLPN type of the Asset
o "Ref OBLPN Nbr" field is updated with original OBLPN Nbr

 The following Inventory History records are created:
o IHT 57 - Asset Received – This record is not written if the Asset interfaced in the API is new

to the system
o IHT 31- OB Container Modified is written if the OBLPN is renamed with Asset Nbr while

linking.

Pallet

Sort LPN

The Sort LPN API allows you to sort an LPN to a Pallet in a sort location mimicking what the RF Inbound

Sorting process does. The RF modules include: RF Sort LPN, and RF Inbound Sort Location.

You can sort an LPN to a pallet in a sort location with the following POST request:

POST .../entity/pallet/sort_lpn/

Copyright © 2019, 2020, Oracle and/or its affiliates. 83

The following table provides details about the Input Parameters/Filters used to identify the target pallet:

Name Required Type Default Description

facility_id integer Facility context by id.

facility_id__code string Facility context by code.

company_id integer Company context by id.

company_id___code string Company context by code.

pallet_nbr X string Target sort pallet.

 The pallet will be created if it doesn't exist.
 The requesting user's default facility/company context will be assumed if overrides are not

provided.

Functional Options

Name Required Type Default Description

container_nbr X string LPN being sorted to pallet.

sort_zone X string Destination sort zone.

sort_location_barcode X string Destination sort location.

sort_to_inventory string

"pallet-
call-

directed-
putaway"

Sort method.

allow_received_status_flg boolean False
Allow sorting of IBLPN in Received
status.

allow_picked_status_flg boolean False
Allow sorting of OBLPNs in Picked
status.

 Default valid LPN statuses:
o Located
o Allocated

o Packed

The following is an example body for Sort LPN to Pallet:

{

 "parameters": {

 "facility_id": 1,

 "company_id__code": "FOO",

 "pallet_nbr": "PALLET001"

 },

Copyright © 2019, 2020, Oracle and/or its affiliates. 84

 "options": {

 "container_nbr": "LPN001",

 "sort_zone": "ZONE01",

 "sort_location_barcode": "BRCD001",

 "sort_to_inventory": "pallet-call-directed-putaway"

 }

}

Response Status

 204 - No content
o Operation successfully completed.

 400 - Validation error
 500 - Internal server error

Sort LPN/Close Pallet

The Sort LPN/Close Pallet API is used as part of the inbound sorting process which groups LPNs to pallets

in sort locations. This API mimics the RF IB Sort LPN module which calls the Sort LPN Close IB Pallet back

end entry point with parameters.

You can Sort LPNs and Close Pallet with the following POST requests:

POST .../entity/pallet/close_inbound_sorting/

POST .../entity/pallet/{id}/close_inbound_sorting/

The following table provides details about the Input Parameters/Filters used to identify the target pallet:

Name Required Type Default Description

facility_id integer Facility context by id.

facility_id__code string Facility context by code.

company_id integer Company context by id.

company_id___code string Company context by code.

pallet_nbr X string Target sort pallet.

 The pallet will be created if it doesn't exist.

 The requesting user's default facility/company context will be assumed if overrides are not
provided.

Copyright © 2019, 2020, Oracle and/or its affiliates. 85

The following table details the functional options:

Name Required Type Default Description

create_replen_task_flg

boolean True
Generate a replenishment task on
close?

task_type_description string
Required type description for
generated replen task. Valid when
create_replen_task_flg = True.

Default valid LPN statuses:

 Located

 Allocated

 Packed

The following is an example body for Create Replenishment Task Flag:

{

 "parameters": {

 "facility_id": 1,

 "company_id__code": "FOO",

 "pallet_nbr": "PALLET001"

 },

 "options": {

 "create_replen_task_flg": true,

 "task_type_description": "My Task Type"

 }

}

Response

Response Status:

 204 - No content
o Operation successfully completed.

 400 - Validation error

 500 - Internal server error

Copyright © 2019, 2020, Oracle and/or its affiliates. 86

Replenishment

Replenish to Active

The replenish_to_active API allows you to complete an open replenishment task for an active location.

You can replenish to active with the following POST request:

POST .../lgfapi/v10/replenishment/replenish_to_active/

Parameters

The following table provides details about the Input Parameters/Filters:

Name Required Type Default Description

facility_id integer Facility context by id.

facility_id__code string
Facility context by
code.

company_id integer
Company context by
id.

company_id___code string
Company context by
code.

 Used if the replenishment is in a context other than the requesting user's default.

 The requesting user's default facility/company context will be assumed if values are not
provided.

 Either "facility_id" or "facility_id__code" may be used, but not both.

 Either "company_id" or "company_id___code" may be used, but not both.

The following table details the functional options:

Name Required Type Default Description

task_id C integer "id" of task to be completed.

task_id__task_nbr C string Business key for task to be completed.

replen_location_id C integer
"id" of active location to be
replenished.

replen_location_id__barcode C string
Barcode of active location to be
replenished

qty decimal
Allocation

Qty
Quantity to replenish.

 Either "task_id" or "task_id__task_nbr" is required.

 Either "replen_location_id" or "replen_location_id__barcode" is required.

 If 'qty' is not provided, the full allocation quantity of the associated allocation will be used.
o If 'qty' is provided, it must be greater than 0.

Copyright © 2019, 2020, Oracle and/or its affiliates. 87

The following is an example body for Replenish Location ID Barcode:

{

 "facility_id" 1,

 "company_id__code": "COMPANY",

 "task_id": 1,

 "replen_location_id__barcode": "LOCN1"

}

Sales Order Header

Get IBLPN(s)

GET …/wms/lgfapi/v10/entity/order_hdr/{id}/iblpns/
Returns a paginated representation of all IBLPN(s) allocated to the sales order.

GET OBLPN(s)

GET …/wms/lgfapi/v10/entity/order_hdr/{id}/oblpns/
Returns a paginated representation of all OBLPN(s) allocated to the sales order.

Bulk Lock

POST …/wms/lgfapi/v10/entity/order_hdr/bulk_lock/

This operation is used to apply, and optionally create, an order lock to one or more orders.

The number of orders that can be modified by this operation in a single requests is configured by the
value of the requesting user’s “Rows per Page” attribute.

The “parameters” section of the request body is required in addition to the “options” section outlined
below. One or more parameters are used to determine the order(s) for which the operation will be

applied. The allowed filter parameters are:

 'id'
 'order_nbr'
 'facility_id'
 'company_id'
 'erp_source_hdr_ref'
 'erp_source_system_ref'

 'orderdtl__erp_source_line_ref'
 'orderdtl__erp_source_shipment_ref'
 'orderdtl__ship_request_line'

Copyright © 2019, 2020, Oracle and/or its affiliates. 88

Category Parameter Type Required Default Value Description

options lock_code String X Order lock to be applied.

options lock_description String Value of
lock_code

Description of order lock.
Only used when creating a
new order lock.

options comments String “” Additional info for the
order’s applied lock.

options allow_allocate_flg Boolean False Order lock attribute. Only
used when creating a new
order lock.

options autocreate_lock_flg Boolean False When true, the order lock
will be created in addition
to be applied, if it does
not already exist.

options commit_frequency Integer 0 0 = Roll back on first error.
1 = Commit per object.

Bulk Unlock

POST …/wms/lgfapi/v10/entity/order_hdr/bulk_unlock/
This operation is used to remove an order lock from one or more orders.

The “parameters” section of the request body is required in addition to the “options” section outlined
below. One or more parameters are used to determine the order(s) for which the operation will be
applied. The allowed filter parameters are:

 'id'

 'order_nbr'
 'facility_id'
 'company_id'
 'erp_source_hdr_ref'
 'erp_source_system_ref'
 'orderdtl__erp_source_line_ref'

 'orderdtl__erp_source_shipment_ref'
 'orderdtl__ship_request_line'

Category Parameter Type Required Default Value Description

options lock_code String X Order lock to be removed.

options commit_frequency Integer 0 0 = Roll back on first error.
1 = Commit per object.

Print

Print Shipping Label

GET.../wms/lgfapi/v10/print/label/shipping/?label_designer_code=foo

Returns the ZPL representation of the label

Copyright © 2019, 2020, Oracle and/or its affiliates. 89

POST .../wms/lgfapi/v10/print/label/shipping

Submits the label for printing

The “parameters” section of the request body is required in addition to the “options” section outlined
below. One or more parameters are used to determine the order(s) for which the operation will be

applied.

Category Name Type Required GET
Request

POST
Request

Comments

options label_designer_code string X X X Label designer template to
be printed

options printer_name string X Default's to
cwuser.default_label_printer.

options label_count integer X Number of labels to print.
Must be greater than 0.
Default = 1.

API Filters

 Functions like a bulk operation for identifying one or more IBLPN(s) to be printed:
o id

 Including "in" lookup

o facility_id

o company_id
o container_nbr

 Including "in" lookup

Example Query String for GET

GET.../wms/lgfapi/v10/print/label/shipping/?label_designer_code=foo&facility_id__code=

FAC1&company_id__code=COM1&container_nbr=IBLPN1

Example Request Body for POST

{

 "parameters": {

 "facility_id__code": "FAC1",

 "company_id__code": "COM1",

 "container_nbr": "IBLPN1"

 },

 "options": {

 "label_designer_code": "label_1",

Copyright © 2019, 2020, Oracle and/or its affiliates. 90

 "printer_name": "PRINTER1",

 "label_count": 1

 }

}

Response Body Data

On success, a 200 - OK status is returned.

The standardized bulk response body is returned. This will have aggregate information for all IBLPN(s)
processed as well as the counts and any details.

For a GET request, the ZPL data bill be base64 encoded in the "data" section.

{

 "record_count": 2,

 "success_count": 1,

 "failure_count": 1,

 "data": {

 "IBLPN_1": "VGhpcyBpcyBaUEwgY29kZQ=="

 },

 "details": {

 "IBLPN_2": "Some error message."

 }

}

Print LPN Label

GET.../wms/lgfapi/v10/print/label/ib_container/?label_designer_code=foo

Returns the ZPL representation of the label.

POST .../wms/lgfapi/v10/print/label/ib_container

Submits the label for printing.The “parameters” section of the request body is required in addition to
the “options” section outlined below. One or more parameters are used to determine the order(s) for
which the operation will be applied.

Copyright © 2019, 2020, Oracle and/or its affiliates. 91

Category Name Type Required GET
Request

POST
Request

Comments

options label_designer
_code

string X X X Label designer
template to be printed

options printer_name string X Default's to
cwuser.default_label_
printer.

options label_count intege
r

 X Number of labels to
print. Must be greater
than 0. Default = 1.

API Filters

 Functions like a bulk operation for identifying one or more IBLPN(s) to be printed:
o id
 Including "in" lookup
o facility_id
o company_id
o container_nbr
 Including "in" lookup

Example Query String for GET

GET.../wms/lgfapi/v10/print/label/ib_container/?label_designer_code=foo&facility_id__c

ode=FAC1&company_id__code=COM1&container_nbr=LPN1

Example Request Body for POST

{

 "parameters": {

 "facility_id__code": "FAC1",

 "company_id__code": "COM1",

 "container_nbr": "OBLPN1"

 },

 "options": {

 "label_designer_code": "label_1",

 "printer_name": "PRINTER1"

 }

Copyright © 2019, 2020, Oracle and/or its affiliates. 92

}

Response Body Data

On success, a 200 - OK status is returned

For a GET request, the ZPL data bill be base64 encoded in the "data" section.

{

 "record_count": 2,

 "success_count": 1,

 "failure_count": 1,

 "data": {

 "IBLPN_1": "VGhpcyBpcyBaUEwgY29kZQ=="

 },

 "details": {

 "IBLPN_2": "Some error message."

 }

}

Print Pallet Label

GET.../wms/lgfapi/v10/print/label/pallet/?label_designer_code=foo

Returns the ZPL representation of the label

POST .../wms/lgfapi/v10/print/label/pallet

Submits the label for printing

The “parameters” section of the request body is required in addition to the “options” section outlined
below. One or more parameters are used to determine the order(s) for which the operation will be

applied.

Category Name Type Required GET
Request

POST
Request

Comments

options label_designer_code string X X X Label designer template to
be printed

options printer_name string X Default's to
cwuser.default_label_printer.

Copyright © 2019, 2020, Oracle and/or its affiliates. 93

options label_count integer X Number of labels to print.
Must be greater than 0.
Default = 1.

API Filters

 Functions like a bulk operation for identifying one or more IBLPN(s) to be printed:
o id
 Including "in" lookup
o facility_id
o company_id
o container_nbr
 Including "in" lookup

Example Query String for GET

GET.../wms/lgfapi/v10/print/label/pallet/?label_designer_code=foo&facility_id__code=FA

C1&company_id__code=COM1&pallet_nbr=pallet1

Example Request Body for POST

{

 "parameters": {

 "facility_id__code": "FAC1",

 "company_id__code": "COM1",

 "pallet_nbr": "pallet1"

 },

 "options": {

 "label_designer_code": "label_1",

 "printer_name": "PRINTER1"

 }

}

Response Body Data

On success, a 200 - OK status is returned

For a GET request, the ZPL data bill be base64 encoded in the "data" section.

{

 "success_count": 1,

Copyright © 2019, 2020, Oracle and/or its affiliates. 94

 "failure_count":0,

 "data": {

 "OBLPN_1": "VGhpcyBpcyBaUEwgY29kZQ=="

 }

}

Report

Custom Inventory Summary

Allows you to execute the custom inventory summary report for only a single item per request. This
request returns the result set as a file attached to the response.

If output format is pipe-delimited, use the following:

GET.../report/custom_inventory_summary/?facility_id__code=FAC1&company_id__code=COM1&item
_code=ITEM1

If output format is XML use the following:

GET.../report/custom_inventory_summary.xml?item_code=<item_code>&company_id=<company_id

>&facility_id=<facility_id>

The “parameters” section of the request body is required in

Parameter Type Required Default Description

facility_id integer C Required facility context.

facility_id__code string C Required facility context.

company_id integer C Required company context.

company_id__code string C Required company context.

item_code string X Specific item for the report.

write_header_line_flg boolean False Include the header line with field names?

 Either `facility_id` or `facility_id__code` is required

 Either `company_id` or company_id__code` is required

Company Parameter

POST .../entity/company_parm

This operation is used to add single or multiple company parameters.

If you have a new facility and you want to copy the same Company Parameters from your current

facility, you can first GET the list by querying the company_parm entity, then POST the applicable
data to this operation for the target facility.

Copyright © 2019, 2020, Oracle and/or its affiliates. 95

Example body request

{

 "fields": {

 "company_id": 1,

 "parm_key": "TEST_PARM_001",

 "parm_value": "test"

 }

}

Facility Parameter

POST .../entity/facility_parm

This operation is used to add single or multiple facility parameters.

If you have a new facility and you want to copy the same facility parameters from your current
facility, you can first GET the list by querying the facility_parm entity, then POST the applicable data

to this operation for the target facility.

Example body request

{

 "fields": {

 "facility_id": 1,

 "prog_key": "FACILITY_PARM",

 "parm_key": "TEST_PARM_001",

 "parm_value": "test"

 }

}

Location Size Type

POST .../entity/location_size_type

This operation is used to add single or multiple location size types.

Copyright © 2019, 2020, Oracle and/or its affiliates. 96

If you have a new facility and you want to copy the same location size type from your current facility,

you can first GET the list by querying the location_size_type entity, then POST the applicable data to
this operation for the target facility.

Example body request

{

 "fields": {

 "company_id": 1,

 "size_type": "TEST_SIZE_001",

 "description": "Test Size 001"

 }

}

Putaway Priority

This operation allows you to determine the order in which Putaway Types are triggered for putaway.

POST .../entity/putaway_priority

If you have a new facility and you want to copy the same Putaway Priority rules from your current
facility, you can first GET the list by querying the putaway_priority entity, then POST the applicable
data to this operation for the target facility.

Example body request:

{

 "fields": {

 "facility_id": 1,

 "priority": 1,

 "putaway_type_id": 256860,

 "putaway_method_id": 1,

 "putaway_search_mode_id": 0,

 "locn_type_id": 3,

 "locn_size_type_id": 0,

 "replenishment_zone_id": 35995,

Copyright © 2019, 2020, Oracle and/or its affiliates. 97

 "consider_fefo_flg": false,

 "radius": 1,

 "radial_increment": 1

 }

}

Putaway Type

POST .../entity/putaway_type

This operation is used to add single or multiple putaway type.

If you have a new facility and you want to copy the same putaway type from your current facility, you

can first GET the list by querying the putaway_type entity, then POST the applicable data to this
operation for the target facility.

Example body request:

{

 "fields": {

 "company_id": 1,

 "pa_type": "TEST_PA_001",

 "description": "Test PA 001",

 "pallet_position_required_flg": false,

 "depalletize_on_putaway_flg": false

 }

}

Putaway Type Cal Rule

POST .../entity/putaway_type_calc_rule

This operation is used to add single or multiple putaway type cal rules.

If you have a new facility and you want to copy the same putaway type cal rule from your current
facility, you can first GET the list by querying the putaway_type_cal entity, then POST the applicable
data to this operation for the target facility.

Copyright © 2019, 2020, Oracle and/or its affiliates. 98

Example body request:

{

 "fields": {

 "facility_id": 1,

 "company_id": 1,

 "description": "TEST-001",

 "priority": 1,

 "final_putaway_type_id": 256860,

 "sql_selection_id": 76886,

 "enabled_flg": true

 }

}

Replenishment Zone

POST .../entity/replenishment_zone

This operation is used to add one or more replenishment zones.

If you have a new facility and you want to copy the same replenishment zones from your current
facility, you can first GET the list by querying the replenishment_zone entity, then POST the applicable

data to this operation for the target facility.

Example body request

{

 "fields": {

 "facility_id": 1,

 "code": "TEST_RZ_001",

 "description": "Test RZ 001"

 }

}

Copyright © 2019, 2020, Oracle and/or its affiliates. 99

SQL Selection (Rule Tree)

POST .../entity/sql_selection

This entity is unique in that the API will allow the user to create the entire rule tree in a single request
instead of needing the create and link each parent/child object individually (it can still be done this
way if the user chooses to do so). This is accomplished using the `children` list field. This is an
abstract field that does not exists on the object itself, but rather defines the `parent_id` link, which
will be handled by the API automatically.

To illustrate a complex example, the following request body could be used to create this rule structure
as seen from the UI:

Example body request

{

 "fields": {

 "facility_id": 1,

 "sql_operator_id": 2,

 "children": [

 {

 "column_name_id": 107,

 "sql_operator_id": 5,

 "column_value": "B"

 },

 {

 "sql_operator_id": 1,

 "children": [

 {

 "column_name_id": 1379,

 "sql_operator_id": 7,

https://jira.oraclecorp.com/jira/secure/attachment/932664/932664_sql-selection-1.png

Copyright © 2019, 2020, Oracle and/or its affiliates. 100

 "column_value": "100"

 },

 {

 "column_name_id": 35,

 "sql_operator_id": 7,

 "column_value": "50"

 }

]

 }

]

 }

}

Item Image

Currently the full representation of item GET does not include the item image ('image_data') since
that can be large. However if a request specifies the `fields` query string parameter and the
'image_data' field is specified, we will return the field and value.

This will return the id and image data for one or more items.

GET .../entity/item/?fields=id,image_data

This will return the id and image data for a specific item.

GET .../entity/item/{id}/?fields=id,image_data

The 'fields` parameter may still be combined with other filters per normal functionality:

GET .../entity/item/?fields=id,image_data&barcode=ITEM123&...

	Copyright Notice
	Contents
	Preface
	Change History

	1. Overview
	Audience
	RESTful Web Services
	HTTP Requests
	HTTP Methods
	URI Format
	Versioning
	lgfapi Modules
	Resource Path
	Optional Trailing Slashes

	Login and Authentication
	Application Permissions

	Data Input Methodology
	GET/HEAD
	URL Encoding

	POST
	Content-Type HTTP Header
	Content Encoding
	Request Body Data – Repeated Keys
	Request Body Data List Formatting
	XML Lists

	2. HTTP Response
	Status Codes
	Response Formats
	Response Data Encoding
	Response Data Formats
	Error Response
	Resource Representations

	3. Entity Module
	Entity Metadata
	Input Data Types
	Resource Result Set Filtering
	Supported Lookup Functions

	Resource Representations (GET)
	List
	Retrieve
	Resource Representation Data Conventions
	Hyperlink-Related Resource Representations
	Related Data Sets
	Field Selection
	Ordering

	Resource Existence and Modification (HEAD)
	“If-Modified-Since” HTTP Request Header
	Response Statuses

	Creating a Resource (POST)
	Input Data
	Data Structure
	Related Resources
	Response Statuses
	Validations
	Nested Related Objects
	Supported Entities

	Updating a Resource (PATCH)
	Input Data
	Response Statuses
	Entities and Fields for PATCH
	ib_shipment
	ib_shipment_dtl
	item_characteristics
	load
	location
	order_hdr
	order_dtl
	purchase_order_hdr
	purchase_order_dtl
	work_order_hdr
	work_order_kit

	Entity Operations (GET/POST)
	Response Status
	Bulk Operations

	4. Supported Entity Operations
	Describe Entity
	Inventory
	Link Serial Numbers
	Bulk Update Inventory Attributes

	Location
	update_active_inventory
	Location Lookup by ID
	Location Lookup by Filters
	Example Request Body:

	Item
	Image Upload
	Assumptions
	Item by id
	Item by Filters
	Supported Item Filter Attributes
	Example request body parameters:
	Request Image Data
	Example request body options:

	Trailer
	First Available
	Identify yard location by capacity:
	Request
	Example Requests

	locate_to_yard
	Trailer Lookup by ID
	Example Request Body:
	Trailer Lookup by Filters
	Example Request Body:

	remove_from_yard
	Trailer Lookup by ID
	Trailer Lookup by Filters
	Example Request Body:

	Load
	check_in
	Load Lookup by ID
	Example Request Body:
	Load Lookup by Filters
	Example Request Body:

	check_out
	Load Lookup by ID
	Load Lookup by Filters
	Example Request Body:

	Ship Load
	Load Lookup by ID
	Load Lookup by Filters
	Example Request Body:
	Once a load is shipped via the Ship Load API, the following applies to Inventory History Transaction (IHT) records:

	Ship Load API supports Order type with ''Single Order on multiple Loads':
	Serial Number Validations

	Container
	Get Sales Orders
	Lock Container
	Bulk Lock Container
	Unlock Container
	Bulk Unlock Container
	Palletize Container
	Functional Request Data

	Depalletize Inbound/Outbound LPN
	Identify container by ID:
	Identify container by Filters

	Pick-Pack
	Pick Confirm
	Request Parameters
	Pick List
	Validations
	Request-Level Flags
	The following is an example JSON request:
	The following is an example XML request:

	Close LPN
	Request Parameters
	The following is an example JSON request:

	Wave Complete

	Task
	Next Task
	Facility ID/Facility Code
	Location Barcode
	Task Type
	Ordering Rule

	IBLPN
	Direct Consume
	direct_consume
	Example Request Body:
	Composite Create

	modify_item_qty
	IBLPN Lookup by ID
	IBLPN Lookup by Filters
	Example Request Body:

	OBLPN
	Mark Delivered
	create_from_iblpn
	Assumptions
	Request Body Data
	OBLPN Fields Data
	Example Request Body:

	Allocation Parameters Data
	Identify Sales Order Detail by Sequence Number
	Example Request Body:
	Identify Sales Order Detail by Attributes
	Example Request Body:

	Additional Options Data
	Example Request Body:

	Full Request Body Example:

	Link oblpn with asset
	Assumptions
	Request Body Data
	Parameters
	Example Request Body:

	Additional Options Data

	Pallet
	Sort LPN
	Functional Options
	Response Status

	Sort LPN/Close Pallet
	Response

	Replenishment
	Replenish to Active
	Parameters

	Sales Order Header
	Get IBLPN(s)
	GET OBLPN(s)
	Bulk Lock
	Bulk Unlock

	Print
	Print Shipping Label
	API Filters

	Example Query String for GET

	Response Body Data
	Print LPN Label
	API Filters
	Example Query String for GET
	Example Request Body for POST

	Response Body Data
	Print Pallet Label
	API Filters
	Example Query String for GET
	Example Request Body for POST

	Response Body Data
	Report
	Custom Inventory Summary

	Company Parameter
	Facility Parameter
	Location Size Type
	Putaway Priority
	Putaway Type
	Putaway Type Cal Rule
	Replenishment Zone
	SQL Selection (Rule Tree)
	Item Image

